]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent_io.c
Btrfs: make sure the backref walker catches all refs to our extent
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79 }
80
81 #define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 struct inode *inode, u64 start, u64 end)
85 {
86 u64 isize = i_size_read(inode);
87
88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 caller,
92 (unsigned long long)btrfs_ino(inode),
93 (unsigned long long)isize,
94 (unsigned long long)start,
95 (unsigned long long)end);
96 }
97 }
98 #else
99 #define btrfs_leak_debug_add(new, head) do {} while (0)
100 #define btrfs_leak_debug_del(entry) do {} while (0)
101 #define btrfs_leak_debug_check() do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
103 #endif
104
105 #define BUFFER_LRU_MAX 64
106
107 struct tree_entry {
108 u64 start;
109 u64 end;
110 struct rb_node rb_node;
111 };
112
113 struct extent_page_data {
114 struct bio *bio;
115 struct extent_io_tree *tree;
116 get_extent_t *get_extent;
117 unsigned long bio_flags;
118
119 /* tells writepage not to lock the state bits for this range
120 * it still does the unlocking
121 */
122 unsigned int extent_locked:1;
123
124 /* tells the submit_bio code to use a WRITE_SYNC */
125 unsigned int sync_io:1;
126 };
127
128 static noinline void flush_write_bio(void *data);
129 static inline struct btrfs_fs_info *
130 tree_fs_info(struct extent_io_tree *tree)
131 {
132 return btrfs_sb(tree->mapping->host->i_sb);
133 }
134
135 int __init extent_io_init(void)
136 {
137 extent_state_cache = kmem_cache_create("btrfs_extent_state",
138 sizeof(struct extent_state), 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
140 if (!extent_state_cache)
141 return -ENOMEM;
142
143 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
144 sizeof(struct extent_buffer), 0,
145 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
146 if (!extent_buffer_cache)
147 goto free_state_cache;
148
149 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 offsetof(struct btrfs_io_bio, bio));
151 if (!btrfs_bioset)
152 goto free_buffer_cache;
153 return 0;
154
155 free_buffer_cache:
156 kmem_cache_destroy(extent_buffer_cache);
157 extent_buffer_cache = NULL;
158
159 free_state_cache:
160 kmem_cache_destroy(extent_state_cache);
161 extent_state_cache = NULL;
162 return -ENOMEM;
163 }
164
165 void extent_io_exit(void)
166 {
167 btrfs_leak_debug_check();
168
169 /*
170 * Make sure all delayed rcu free are flushed before we
171 * destroy caches.
172 */
173 rcu_barrier();
174 if (extent_state_cache)
175 kmem_cache_destroy(extent_state_cache);
176 if (extent_buffer_cache)
177 kmem_cache_destroy(extent_buffer_cache);
178 if (btrfs_bioset)
179 bioset_free(btrfs_bioset);
180 }
181
182 void extent_io_tree_init(struct extent_io_tree *tree,
183 struct address_space *mapping)
184 {
185 tree->state = RB_ROOT;
186 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
187 tree->ops = NULL;
188 tree->dirty_bytes = 0;
189 spin_lock_init(&tree->lock);
190 spin_lock_init(&tree->buffer_lock);
191 tree->mapping = mapping;
192 }
193
194 static struct extent_state *alloc_extent_state(gfp_t mask)
195 {
196 struct extent_state *state;
197
198 state = kmem_cache_alloc(extent_state_cache, mask);
199 if (!state)
200 return state;
201 state->state = 0;
202 state->private = 0;
203 state->tree = NULL;
204 btrfs_leak_debug_add(&state->leak_list, &states);
205 atomic_set(&state->refs, 1);
206 init_waitqueue_head(&state->wq);
207 trace_alloc_extent_state(state, mask, _RET_IP_);
208 return state;
209 }
210
211 void free_extent_state(struct extent_state *state)
212 {
213 if (!state)
214 return;
215 if (atomic_dec_and_test(&state->refs)) {
216 WARN_ON(state->tree);
217 btrfs_leak_debug_del(&state->leak_list);
218 trace_free_extent_state(state, _RET_IP_);
219 kmem_cache_free(extent_state_cache, state);
220 }
221 }
222
223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 struct rb_node *node)
225 {
226 struct rb_node **p = &root->rb_node;
227 struct rb_node *parent = NULL;
228 struct tree_entry *entry;
229
230 while (*p) {
231 parent = *p;
232 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234 if (offset < entry->start)
235 p = &(*p)->rb_left;
236 else if (offset > entry->end)
237 p = &(*p)->rb_right;
238 else
239 return parent;
240 }
241
242 rb_link_node(node, parent, p);
243 rb_insert_color(node, root);
244 return NULL;
245 }
246
247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
248 struct rb_node **prev_ret,
249 struct rb_node **next_ret)
250 {
251 struct rb_root *root = &tree->state;
252 struct rb_node *n = root->rb_node;
253 struct rb_node *prev = NULL;
254 struct rb_node *orig_prev = NULL;
255 struct tree_entry *entry;
256 struct tree_entry *prev_entry = NULL;
257
258 while (n) {
259 entry = rb_entry(n, struct tree_entry, rb_node);
260 prev = n;
261 prev_entry = entry;
262
263 if (offset < entry->start)
264 n = n->rb_left;
265 else if (offset > entry->end)
266 n = n->rb_right;
267 else
268 return n;
269 }
270
271 if (prev_ret) {
272 orig_prev = prev;
273 while (prev && offset > prev_entry->end) {
274 prev = rb_next(prev);
275 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 }
277 *prev_ret = prev;
278 prev = orig_prev;
279 }
280
281 if (next_ret) {
282 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
283 while (prev && offset < prev_entry->start) {
284 prev = rb_prev(prev);
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 }
287 *next_ret = prev;
288 }
289 return NULL;
290 }
291
292 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 u64 offset)
294 {
295 struct rb_node *prev = NULL;
296 struct rb_node *ret;
297
298 ret = __etree_search(tree, offset, &prev, NULL);
299 if (!ret)
300 return prev;
301 return ret;
302 }
303
304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 struct extent_state *other)
306 {
307 if (tree->ops && tree->ops->merge_extent_hook)
308 tree->ops->merge_extent_hook(tree->mapping->host, new,
309 other);
310 }
311
312 /*
313 * utility function to look for merge candidates inside a given range.
314 * Any extents with matching state are merged together into a single
315 * extent in the tree. Extents with EXTENT_IO in their state field
316 * are not merged because the end_io handlers need to be able to do
317 * operations on them without sleeping (or doing allocations/splits).
318 *
319 * This should be called with the tree lock held.
320 */
321 static void merge_state(struct extent_io_tree *tree,
322 struct extent_state *state)
323 {
324 struct extent_state *other;
325 struct rb_node *other_node;
326
327 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
328 return;
329
330 other_node = rb_prev(&state->rb_node);
331 if (other_node) {
332 other = rb_entry(other_node, struct extent_state, rb_node);
333 if (other->end == state->start - 1 &&
334 other->state == state->state) {
335 merge_cb(tree, state, other);
336 state->start = other->start;
337 other->tree = NULL;
338 rb_erase(&other->rb_node, &tree->state);
339 free_extent_state(other);
340 }
341 }
342 other_node = rb_next(&state->rb_node);
343 if (other_node) {
344 other = rb_entry(other_node, struct extent_state, rb_node);
345 if (other->start == state->end + 1 &&
346 other->state == state->state) {
347 merge_cb(tree, state, other);
348 state->end = other->end;
349 other->tree = NULL;
350 rb_erase(&other->rb_node, &tree->state);
351 free_extent_state(other);
352 }
353 }
354 }
355
356 static void set_state_cb(struct extent_io_tree *tree,
357 struct extent_state *state, unsigned long *bits)
358 {
359 if (tree->ops && tree->ops->set_bit_hook)
360 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
361 }
362
363 static void clear_state_cb(struct extent_io_tree *tree,
364 struct extent_state *state, unsigned long *bits)
365 {
366 if (tree->ops && tree->ops->clear_bit_hook)
367 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
368 }
369
370 static void set_state_bits(struct extent_io_tree *tree,
371 struct extent_state *state, unsigned long *bits);
372
373 /*
374 * insert an extent_state struct into the tree. 'bits' are set on the
375 * struct before it is inserted.
376 *
377 * This may return -EEXIST if the extent is already there, in which case the
378 * state struct is freed.
379 *
380 * The tree lock is not taken internally. This is a utility function and
381 * probably isn't what you want to call (see set/clear_extent_bit).
382 */
383 static int insert_state(struct extent_io_tree *tree,
384 struct extent_state *state, u64 start, u64 end,
385 unsigned long *bits)
386 {
387 struct rb_node *node;
388
389 if (end < start)
390 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
391 (unsigned long long)end,
392 (unsigned long long)start);
393 state->start = start;
394 state->end = end;
395
396 set_state_bits(tree, state, bits);
397
398 node = tree_insert(&tree->state, end, &state->rb_node);
399 if (node) {
400 struct extent_state *found;
401 found = rb_entry(node, struct extent_state, rb_node);
402 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 "%llu %llu\n", (unsigned long long)found->start,
404 (unsigned long long)found->end,
405 (unsigned long long)start, (unsigned long long)end);
406 return -EEXIST;
407 }
408 state->tree = tree;
409 merge_state(tree, state);
410 return 0;
411 }
412
413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
414 u64 split)
415 {
416 if (tree->ops && tree->ops->split_extent_hook)
417 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
418 }
419
420 /*
421 * split a given extent state struct in two, inserting the preallocated
422 * struct 'prealloc' as the newly created second half. 'split' indicates an
423 * offset inside 'orig' where it should be split.
424 *
425 * Before calling,
426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
427 * are two extent state structs in the tree:
428 * prealloc: [orig->start, split - 1]
429 * orig: [ split, orig->end ]
430 *
431 * The tree locks are not taken by this function. They need to be held
432 * by the caller.
433 */
434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 struct extent_state *prealloc, u64 split)
436 {
437 struct rb_node *node;
438
439 split_cb(tree, orig, split);
440
441 prealloc->start = orig->start;
442 prealloc->end = split - 1;
443 prealloc->state = orig->state;
444 orig->start = split;
445
446 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 if (node) {
448 free_extent_state(prealloc);
449 return -EEXIST;
450 }
451 prealloc->tree = tree;
452 return 0;
453 }
454
455 static struct extent_state *next_state(struct extent_state *state)
456 {
457 struct rb_node *next = rb_next(&state->rb_node);
458 if (next)
459 return rb_entry(next, struct extent_state, rb_node);
460 else
461 return NULL;
462 }
463
464 /*
465 * utility function to clear some bits in an extent state struct.
466 * it will optionally wake up any one waiting on this state (wake == 1).
467 *
468 * If no bits are set on the state struct after clearing things, the
469 * struct is freed and removed from the tree
470 */
471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 struct extent_state *state,
473 unsigned long *bits, int wake)
474 {
475 struct extent_state *next;
476 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
477
478 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
479 u64 range = state->end - state->start + 1;
480 WARN_ON(range > tree->dirty_bytes);
481 tree->dirty_bytes -= range;
482 }
483 clear_state_cb(tree, state, bits);
484 state->state &= ~bits_to_clear;
485 if (wake)
486 wake_up(&state->wq);
487 if (state->state == 0) {
488 next = next_state(state);
489 if (state->tree) {
490 rb_erase(&state->rb_node, &tree->state);
491 state->tree = NULL;
492 free_extent_state(state);
493 } else {
494 WARN_ON(1);
495 }
496 } else {
497 merge_state(tree, state);
498 next = next_state(state);
499 }
500 return next;
501 }
502
503 static struct extent_state *
504 alloc_extent_state_atomic(struct extent_state *prealloc)
505 {
506 if (!prealloc)
507 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509 return prealloc;
510 }
511
512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
513 {
514 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 "Extent tree was modified by another "
516 "thread while locked.");
517 }
518
519 /*
520 * clear some bits on a range in the tree. This may require splitting
521 * or inserting elements in the tree, so the gfp mask is used to
522 * indicate which allocations or sleeping are allowed.
523 *
524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525 * the given range from the tree regardless of state (ie for truncate).
526 *
527 * the range [start, end] is inclusive.
528 *
529 * This takes the tree lock, and returns 0 on success and < 0 on error.
530 */
531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
532 unsigned long bits, int wake, int delete,
533 struct extent_state **cached_state,
534 gfp_t mask)
535 {
536 struct extent_state *state;
537 struct extent_state *cached;
538 struct extent_state *prealloc = NULL;
539 struct rb_node *node;
540 u64 last_end;
541 int err;
542 int clear = 0;
543
544 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
546 if (bits & EXTENT_DELALLOC)
547 bits |= EXTENT_NORESERVE;
548
549 if (delete)
550 bits |= ~EXTENT_CTLBITS;
551 bits |= EXTENT_FIRST_DELALLOC;
552
553 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 clear = 1;
555 again:
556 if (!prealloc && (mask & __GFP_WAIT)) {
557 prealloc = alloc_extent_state(mask);
558 if (!prealloc)
559 return -ENOMEM;
560 }
561
562 spin_lock(&tree->lock);
563 if (cached_state) {
564 cached = *cached_state;
565
566 if (clear) {
567 *cached_state = NULL;
568 cached_state = NULL;
569 }
570
571 if (cached && cached->tree && cached->start <= start &&
572 cached->end > start) {
573 if (clear)
574 atomic_dec(&cached->refs);
575 state = cached;
576 goto hit_next;
577 }
578 if (clear)
579 free_extent_state(cached);
580 }
581 /*
582 * this search will find the extents that end after
583 * our range starts
584 */
585 node = tree_search(tree, start);
586 if (!node)
587 goto out;
588 state = rb_entry(node, struct extent_state, rb_node);
589 hit_next:
590 if (state->start > end)
591 goto out;
592 WARN_ON(state->end < start);
593 last_end = state->end;
594
595 /* the state doesn't have the wanted bits, go ahead */
596 if (!(state->state & bits)) {
597 state = next_state(state);
598 goto next;
599 }
600
601 /*
602 * | ---- desired range ---- |
603 * | state | or
604 * | ------------- state -------------- |
605 *
606 * We need to split the extent we found, and may flip
607 * bits on second half.
608 *
609 * If the extent we found extends past our range, we
610 * just split and search again. It'll get split again
611 * the next time though.
612 *
613 * If the extent we found is inside our range, we clear
614 * the desired bit on it.
615 */
616
617 if (state->start < start) {
618 prealloc = alloc_extent_state_atomic(prealloc);
619 BUG_ON(!prealloc);
620 err = split_state(tree, state, prealloc, start);
621 if (err)
622 extent_io_tree_panic(tree, err);
623
624 prealloc = NULL;
625 if (err)
626 goto out;
627 if (state->end <= end) {
628 state = clear_state_bit(tree, state, &bits, wake);
629 goto next;
630 }
631 goto search_again;
632 }
633 /*
634 * | ---- desired range ---- |
635 * | state |
636 * We need to split the extent, and clear the bit
637 * on the first half
638 */
639 if (state->start <= end && state->end > end) {
640 prealloc = alloc_extent_state_atomic(prealloc);
641 BUG_ON(!prealloc);
642 err = split_state(tree, state, prealloc, end + 1);
643 if (err)
644 extent_io_tree_panic(tree, err);
645
646 if (wake)
647 wake_up(&state->wq);
648
649 clear_state_bit(tree, prealloc, &bits, wake);
650
651 prealloc = NULL;
652 goto out;
653 }
654
655 state = clear_state_bit(tree, state, &bits, wake);
656 next:
657 if (last_end == (u64)-1)
658 goto out;
659 start = last_end + 1;
660 if (start <= end && state && !need_resched())
661 goto hit_next;
662 goto search_again;
663
664 out:
665 spin_unlock(&tree->lock);
666 if (prealloc)
667 free_extent_state(prealloc);
668
669 return 0;
670
671 search_again:
672 if (start > end)
673 goto out;
674 spin_unlock(&tree->lock);
675 if (mask & __GFP_WAIT)
676 cond_resched();
677 goto again;
678 }
679
680 static void wait_on_state(struct extent_io_tree *tree,
681 struct extent_state *state)
682 __releases(tree->lock)
683 __acquires(tree->lock)
684 {
685 DEFINE_WAIT(wait);
686 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
687 spin_unlock(&tree->lock);
688 schedule();
689 spin_lock(&tree->lock);
690 finish_wait(&state->wq, &wait);
691 }
692
693 /*
694 * waits for one or more bits to clear on a range in the state tree.
695 * The range [start, end] is inclusive.
696 * The tree lock is taken by this function
697 */
698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 unsigned long bits)
700 {
701 struct extent_state *state;
702 struct rb_node *node;
703
704 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
706 spin_lock(&tree->lock);
707 again:
708 while (1) {
709 /*
710 * this search will find all the extents that end after
711 * our range starts
712 */
713 node = tree_search(tree, start);
714 if (!node)
715 break;
716
717 state = rb_entry(node, struct extent_state, rb_node);
718
719 if (state->start > end)
720 goto out;
721
722 if (state->state & bits) {
723 start = state->start;
724 atomic_inc(&state->refs);
725 wait_on_state(tree, state);
726 free_extent_state(state);
727 goto again;
728 }
729 start = state->end + 1;
730
731 if (start > end)
732 break;
733
734 cond_resched_lock(&tree->lock);
735 }
736 out:
737 spin_unlock(&tree->lock);
738 }
739
740 static void set_state_bits(struct extent_io_tree *tree,
741 struct extent_state *state,
742 unsigned long *bits)
743 {
744 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
745
746 set_state_cb(tree, state, bits);
747 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
748 u64 range = state->end - state->start + 1;
749 tree->dirty_bytes += range;
750 }
751 state->state |= bits_to_set;
752 }
753
754 static void cache_state(struct extent_state *state,
755 struct extent_state **cached_ptr)
756 {
757 if (cached_ptr && !(*cached_ptr)) {
758 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 *cached_ptr = state;
760 atomic_inc(&state->refs);
761 }
762 }
763 }
764
765 static void uncache_state(struct extent_state **cached_ptr)
766 {
767 if (cached_ptr && (*cached_ptr)) {
768 struct extent_state *state = *cached_ptr;
769 *cached_ptr = NULL;
770 free_extent_state(state);
771 }
772 }
773
774 /*
775 * set some bits on a range in the tree. This may require allocations or
776 * sleeping, so the gfp mask is used to indicate what is allowed.
777 *
778 * If any of the exclusive bits are set, this will fail with -EEXIST if some
779 * part of the range already has the desired bits set. The start of the
780 * existing range is returned in failed_start in this case.
781 *
782 * [start, end] is inclusive This takes the tree lock.
783 */
784
785 static int __must_check
786 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
787 unsigned long bits, unsigned long exclusive_bits,
788 u64 *failed_start, struct extent_state **cached_state,
789 gfp_t mask)
790 {
791 struct extent_state *state;
792 struct extent_state *prealloc = NULL;
793 struct rb_node *node;
794 int err = 0;
795 u64 last_start;
796 u64 last_end;
797
798 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
799
800 bits |= EXTENT_FIRST_DELALLOC;
801 again:
802 if (!prealloc && (mask & __GFP_WAIT)) {
803 prealloc = alloc_extent_state(mask);
804 BUG_ON(!prealloc);
805 }
806
807 spin_lock(&tree->lock);
808 if (cached_state && *cached_state) {
809 state = *cached_state;
810 if (state->start <= start && state->end > start &&
811 state->tree) {
812 node = &state->rb_node;
813 goto hit_next;
814 }
815 }
816 /*
817 * this search will find all the extents that end after
818 * our range starts.
819 */
820 node = tree_search(tree, start);
821 if (!node) {
822 prealloc = alloc_extent_state_atomic(prealloc);
823 BUG_ON(!prealloc);
824 err = insert_state(tree, prealloc, start, end, &bits);
825 if (err)
826 extent_io_tree_panic(tree, err);
827
828 prealloc = NULL;
829 goto out;
830 }
831 state = rb_entry(node, struct extent_state, rb_node);
832 hit_next:
833 last_start = state->start;
834 last_end = state->end;
835
836 /*
837 * | ---- desired range ---- |
838 * | state |
839 *
840 * Just lock what we found and keep going
841 */
842 if (state->start == start && state->end <= end) {
843 if (state->state & exclusive_bits) {
844 *failed_start = state->start;
845 err = -EEXIST;
846 goto out;
847 }
848
849 set_state_bits(tree, state, &bits);
850 cache_state(state, cached_state);
851 merge_state(tree, state);
852 if (last_end == (u64)-1)
853 goto out;
854 start = last_end + 1;
855 state = next_state(state);
856 if (start < end && state && state->start == start &&
857 !need_resched())
858 goto hit_next;
859 goto search_again;
860 }
861
862 /*
863 * | ---- desired range ---- |
864 * | state |
865 * or
866 * | ------------- state -------------- |
867 *
868 * We need to split the extent we found, and may flip bits on
869 * second half.
870 *
871 * If the extent we found extends past our
872 * range, we just split and search again. It'll get split
873 * again the next time though.
874 *
875 * If the extent we found is inside our range, we set the
876 * desired bit on it.
877 */
878 if (state->start < start) {
879 if (state->state & exclusive_bits) {
880 *failed_start = start;
881 err = -EEXIST;
882 goto out;
883 }
884
885 prealloc = alloc_extent_state_atomic(prealloc);
886 BUG_ON(!prealloc);
887 err = split_state(tree, state, prealloc, start);
888 if (err)
889 extent_io_tree_panic(tree, err);
890
891 prealloc = NULL;
892 if (err)
893 goto out;
894 if (state->end <= end) {
895 set_state_bits(tree, state, &bits);
896 cache_state(state, cached_state);
897 merge_state(tree, state);
898 if (last_end == (u64)-1)
899 goto out;
900 start = last_end + 1;
901 state = next_state(state);
902 if (start < end && state && state->start == start &&
903 !need_resched())
904 goto hit_next;
905 }
906 goto search_again;
907 }
908 /*
909 * | ---- desired range ---- |
910 * | state | or | state |
911 *
912 * There's a hole, we need to insert something in it and
913 * ignore the extent we found.
914 */
915 if (state->start > start) {
916 u64 this_end;
917 if (end < last_start)
918 this_end = end;
919 else
920 this_end = last_start - 1;
921
922 prealloc = alloc_extent_state_atomic(prealloc);
923 BUG_ON(!prealloc);
924
925 /*
926 * Avoid to free 'prealloc' if it can be merged with
927 * the later extent.
928 */
929 err = insert_state(tree, prealloc, start, this_end,
930 &bits);
931 if (err)
932 extent_io_tree_panic(tree, err);
933
934 cache_state(prealloc, cached_state);
935 prealloc = NULL;
936 start = this_end + 1;
937 goto search_again;
938 }
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * We need to split the extent, and set the bit
943 * on the first half
944 */
945 if (state->start <= end && state->end > end) {
946 if (state->state & exclusive_bits) {
947 *failed_start = start;
948 err = -EEXIST;
949 goto out;
950 }
951
952 prealloc = alloc_extent_state_atomic(prealloc);
953 BUG_ON(!prealloc);
954 err = split_state(tree, state, prealloc, end + 1);
955 if (err)
956 extent_io_tree_panic(tree, err);
957
958 set_state_bits(tree, prealloc, &bits);
959 cache_state(prealloc, cached_state);
960 merge_state(tree, prealloc);
961 prealloc = NULL;
962 goto out;
963 }
964
965 goto search_again;
966
967 out:
968 spin_unlock(&tree->lock);
969 if (prealloc)
970 free_extent_state(prealloc);
971
972 return err;
973
974 search_again:
975 if (start > end)
976 goto out;
977 spin_unlock(&tree->lock);
978 if (mask & __GFP_WAIT)
979 cond_resched();
980 goto again;
981 }
982
983 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
984 unsigned long bits, u64 * failed_start,
985 struct extent_state **cached_state, gfp_t mask)
986 {
987 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
988 cached_state, mask);
989 }
990
991
992 /**
993 * convert_extent_bit - convert all bits in a given range from one bit to
994 * another
995 * @tree: the io tree to search
996 * @start: the start offset in bytes
997 * @end: the end offset in bytes (inclusive)
998 * @bits: the bits to set in this range
999 * @clear_bits: the bits to clear in this range
1000 * @cached_state: state that we're going to cache
1001 * @mask: the allocation mask
1002 *
1003 * This will go through and set bits for the given range. If any states exist
1004 * already in this range they are set with the given bit and cleared of the
1005 * clear_bits. This is only meant to be used by things that are mergeable, ie
1006 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1007 * boundary bits like LOCK.
1008 */
1009 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1010 unsigned long bits, unsigned long clear_bits,
1011 struct extent_state **cached_state, gfp_t mask)
1012 {
1013 struct extent_state *state;
1014 struct extent_state *prealloc = NULL;
1015 struct rb_node *node;
1016 int err = 0;
1017 u64 last_start;
1018 u64 last_end;
1019
1020 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1021
1022 again:
1023 if (!prealloc && (mask & __GFP_WAIT)) {
1024 prealloc = alloc_extent_state(mask);
1025 if (!prealloc)
1026 return -ENOMEM;
1027 }
1028
1029 spin_lock(&tree->lock);
1030 if (cached_state && *cached_state) {
1031 state = *cached_state;
1032 if (state->start <= start && state->end > start &&
1033 state->tree) {
1034 node = &state->rb_node;
1035 goto hit_next;
1036 }
1037 }
1038
1039 /*
1040 * this search will find all the extents that end after
1041 * our range starts.
1042 */
1043 node = tree_search(tree, start);
1044 if (!node) {
1045 prealloc = alloc_extent_state_atomic(prealloc);
1046 if (!prealloc) {
1047 err = -ENOMEM;
1048 goto out;
1049 }
1050 err = insert_state(tree, prealloc, start, end, &bits);
1051 prealloc = NULL;
1052 if (err)
1053 extent_io_tree_panic(tree, err);
1054 goto out;
1055 }
1056 state = rb_entry(node, struct extent_state, rb_node);
1057 hit_next:
1058 last_start = state->start;
1059 last_end = state->end;
1060
1061 /*
1062 * | ---- desired range ---- |
1063 * | state |
1064 *
1065 * Just lock what we found and keep going
1066 */
1067 if (state->start == start && state->end <= end) {
1068 set_state_bits(tree, state, &bits);
1069 cache_state(state, cached_state);
1070 state = clear_state_bit(tree, state, &clear_bits, 0);
1071 if (last_end == (u64)-1)
1072 goto out;
1073 start = last_end + 1;
1074 if (start < end && state && state->start == start &&
1075 !need_resched())
1076 goto hit_next;
1077 goto search_again;
1078 }
1079
1080 /*
1081 * | ---- desired range ---- |
1082 * | state |
1083 * or
1084 * | ------------- state -------------- |
1085 *
1086 * We need to split the extent we found, and may flip bits on
1087 * second half.
1088 *
1089 * If the extent we found extends past our
1090 * range, we just split and search again. It'll get split
1091 * again the next time though.
1092 *
1093 * If the extent we found is inside our range, we set the
1094 * desired bit on it.
1095 */
1096 if (state->start < start) {
1097 prealloc = alloc_extent_state_atomic(prealloc);
1098 if (!prealloc) {
1099 err = -ENOMEM;
1100 goto out;
1101 }
1102 err = split_state(tree, state, prealloc, start);
1103 if (err)
1104 extent_io_tree_panic(tree, err);
1105 prealloc = NULL;
1106 if (err)
1107 goto out;
1108 if (state->end <= end) {
1109 set_state_bits(tree, state, &bits);
1110 cache_state(state, cached_state);
1111 state = clear_state_bit(tree, state, &clear_bits, 0);
1112 if (last_end == (u64)-1)
1113 goto out;
1114 start = last_end + 1;
1115 if (start < end && state && state->start == start &&
1116 !need_resched())
1117 goto hit_next;
1118 }
1119 goto search_again;
1120 }
1121 /*
1122 * | ---- desired range ---- |
1123 * | state | or | state |
1124 *
1125 * There's a hole, we need to insert something in it and
1126 * ignore the extent we found.
1127 */
1128 if (state->start > start) {
1129 u64 this_end;
1130 if (end < last_start)
1131 this_end = end;
1132 else
1133 this_end = last_start - 1;
1134
1135 prealloc = alloc_extent_state_atomic(prealloc);
1136 if (!prealloc) {
1137 err = -ENOMEM;
1138 goto out;
1139 }
1140
1141 /*
1142 * Avoid to free 'prealloc' if it can be merged with
1143 * the later extent.
1144 */
1145 err = insert_state(tree, prealloc, start, this_end,
1146 &bits);
1147 if (err)
1148 extent_io_tree_panic(tree, err);
1149 cache_state(prealloc, cached_state);
1150 prealloc = NULL;
1151 start = this_end + 1;
1152 goto search_again;
1153 }
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 * We need to split the extent, and set the bit
1158 * on the first half
1159 */
1160 if (state->start <= end && state->end > end) {
1161 prealloc = alloc_extent_state_atomic(prealloc);
1162 if (!prealloc) {
1163 err = -ENOMEM;
1164 goto out;
1165 }
1166
1167 err = split_state(tree, state, prealloc, end + 1);
1168 if (err)
1169 extent_io_tree_panic(tree, err);
1170
1171 set_state_bits(tree, prealloc, &bits);
1172 cache_state(prealloc, cached_state);
1173 clear_state_bit(tree, prealloc, &clear_bits, 0);
1174 prealloc = NULL;
1175 goto out;
1176 }
1177
1178 goto search_again;
1179
1180 out:
1181 spin_unlock(&tree->lock);
1182 if (prealloc)
1183 free_extent_state(prealloc);
1184
1185 return err;
1186
1187 search_again:
1188 if (start > end)
1189 goto out;
1190 spin_unlock(&tree->lock);
1191 if (mask & __GFP_WAIT)
1192 cond_resched();
1193 goto again;
1194 }
1195
1196 /* wrappers around set/clear extent bit */
1197 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1198 gfp_t mask)
1199 {
1200 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1201 NULL, mask);
1202 }
1203
1204 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1205 unsigned long bits, gfp_t mask)
1206 {
1207 return set_extent_bit(tree, start, end, bits, NULL,
1208 NULL, mask);
1209 }
1210
1211 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1212 unsigned long bits, gfp_t mask)
1213 {
1214 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1215 }
1216
1217 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1218 struct extent_state **cached_state, gfp_t mask)
1219 {
1220 return set_extent_bit(tree, start, end,
1221 EXTENT_DELALLOC | EXTENT_UPTODATE,
1222 NULL, cached_state, mask);
1223 }
1224
1225 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1226 struct extent_state **cached_state, gfp_t mask)
1227 {
1228 return set_extent_bit(tree, start, end,
1229 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1230 NULL, cached_state, mask);
1231 }
1232
1233 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1235 {
1236 return clear_extent_bit(tree, start, end,
1237 EXTENT_DIRTY | EXTENT_DELALLOC |
1238 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1239 }
1240
1241 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243 {
1244 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1245 NULL, mask);
1246 }
1247
1248 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1249 struct extent_state **cached_state, gfp_t mask)
1250 {
1251 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1252 cached_state, mask);
1253 }
1254
1255 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1256 struct extent_state **cached_state, gfp_t mask)
1257 {
1258 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1259 cached_state, mask);
1260 }
1261
1262 /*
1263 * either insert or lock state struct between start and end use mask to tell
1264 * us if waiting is desired.
1265 */
1266 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1267 unsigned long bits, struct extent_state **cached_state)
1268 {
1269 int err;
1270 u64 failed_start;
1271 while (1) {
1272 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1273 EXTENT_LOCKED, &failed_start,
1274 cached_state, GFP_NOFS);
1275 if (err == -EEXIST) {
1276 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1277 start = failed_start;
1278 } else
1279 break;
1280 WARN_ON(start > end);
1281 }
1282 return err;
1283 }
1284
1285 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1286 {
1287 return lock_extent_bits(tree, start, end, 0, NULL);
1288 }
1289
1290 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1291 {
1292 int err;
1293 u64 failed_start;
1294
1295 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1296 &failed_start, NULL, GFP_NOFS);
1297 if (err == -EEXIST) {
1298 if (failed_start > start)
1299 clear_extent_bit(tree, start, failed_start - 1,
1300 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1301 return 0;
1302 }
1303 return 1;
1304 }
1305
1306 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1307 struct extent_state **cached, gfp_t mask)
1308 {
1309 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1310 mask);
1311 }
1312
1313 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1314 {
1315 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1316 GFP_NOFS);
1317 }
1318
1319 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1320 {
1321 unsigned long index = start >> PAGE_CACHE_SHIFT;
1322 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323 struct page *page;
1324
1325 while (index <= end_index) {
1326 page = find_get_page(inode->i_mapping, index);
1327 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328 clear_page_dirty_for_io(page);
1329 page_cache_release(page);
1330 index++;
1331 }
1332 return 0;
1333 }
1334
1335 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1336 {
1337 unsigned long index = start >> PAGE_CACHE_SHIFT;
1338 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339 struct page *page;
1340
1341 while (index <= end_index) {
1342 page = find_get_page(inode->i_mapping, index);
1343 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1344 account_page_redirty(page);
1345 __set_page_dirty_nobuffers(page);
1346 page_cache_release(page);
1347 index++;
1348 }
1349 return 0;
1350 }
1351
1352 /*
1353 * helper function to set both pages and extents in the tree writeback
1354 */
1355 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1356 {
1357 unsigned long index = start >> PAGE_CACHE_SHIFT;
1358 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359 struct page *page;
1360
1361 while (index <= end_index) {
1362 page = find_get_page(tree->mapping, index);
1363 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364 set_page_writeback(page);
1365 page_cache_release(page);
1366 index++;
1367 }
1368 return 0;
1369 }
1370
1371 /* find the first state struct with 'bits' set after 'start', and
1372 * return it. tree->lock must be held. NULL will returned if
1373 * nothing was found after 'start'
1374 */
1375 static struct extent_state *
1376 find_first_extent_bit_state(struct extent_io_tree *tree,
1377 u64 start, unsigned long bits)
1378 {
1379 struct rb_node *node;
1380 struct extent_state *state;
1381
1382 /*
1383 * this search will find all the extents that end after
1384 * our range starts.
1385 */
1386 node = tree_search(tree, start);
1387 if (!node)
1388 goto out;
1389
1390 while (1) {
1391 state = rb_entry(node, struct extent_state, rb_node);
1392 if (state->end >= start && (state->state & bits))
1393 return state;
1394
1395 node = rb_next(node);
1396 if (!node)
1397 break;
1398 }
1399 out:
1400 return NULL;
1401 }
1402
1403 /*
1404 * find the first offset in the io tree with 'bits' set. zero is
1405 * returned if we find something, and *start_ret and *end_ret are
1406 * set to reflect the state struct that was found.
1407 *
1408 * If nothing was found, 1 is returned. If found something, return 0.
1409 */
1410 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1411 u64 *start_ret, u64 *end_ret, unsigned long bits,
1412 struct extent_state **cached_state)
1413 {
1414 struct extent_state *state;
1415 struct rb_node *n;
1416 int ret = 1;
1417
1418 spin_lock(&tree->lock);
1419 if (cached_state && *cached_state) {
1420 state = *cached_state;
1421 if (state->end == start - 1 && state->tree) {
1422 n = rb_next(&state->rb_node);
1423 while (n) {
1424 state = rb_entry(n, struct extent_state,
1425 rb_node);
1426 if (state->state & bits)
1427 goto got_it;
1428 n = rb_next(n);
1429 }
1430 free_extent_state(*cached_state);
1431 *cached_state = NULL;
1432 goto out;
1433 }
1434 free_extent_state(*cached_state);
1435 *cached_state = NULL;
1436 }
1437
1438 state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440 if (state) {
1441 cache_state(state, cached_state);
1442 *start_ret = state->start;
1443 *end_ret = state->end;
1444 ret = 0;
1445 }
1446 out:
1447 spin_unlock(&tree->lock);
1448 return ret;
1449 }
1450
1451 /*
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1454 *
1455 * 1 is returned if we find something, 0 if nothing was in the tree
1456 */
1457 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1458 u64 *start, u64 *end, u64 max_bytes,
1459 struct extent_state **cached_state)
1460 {
1461 struct rb_node *node;
1462 struct extent_state *state;
1463 u64 cur_start = *start;
1464 u64 found = 0;
1465 u64 total_bytes = 0;
1466
1467 spin_lock(&tree->lock);
1468
1469 /*
1470 * this search will find all the extents that end after
1471 * our range starts.
1472 */
1473 node = tree_search(tree, cur_start);
1474 if (!node) {
1475 if (!found)
1476 *end = (u64)-1;
1477 goto out;
1478 }
1479
1480 while (1) {
1481 state = rb_entry(node, struct extent_state, rb_node);
1482 if (found && (state->start != cur_start ||
1483 (state->state & EXTENT_BOUNDARY))) {
1484 goto out;
1485 }
1486 if (!(state->state & EXTENT_DELALLOC)) {
1487 if (!found)
1488 *end = state->end;
1489 goto out;
1490 }
1491 if (!found) {
1492 *start = state->start;
1493 *cached_state = state;
1494 atomic_inc(&state->refs);
1495 }
1496 found++;
1497 *end = state->end;
1498 cur_start = state->end + 1;
1499 node = rb_next(node);
1500 if (!node)
1501 break;
1502 total_bytes += state->end - state->start + 1;
1503 if (total_bytes >= max_bytes)
1504 break;
1505 }
1506 out:
1507 spin_unlock(&tree->lock);
1508 return found;
1509 }
1510
1511 static noinline void __unlock_for_delalloc(struct inode *inode,
1512 struct page *locked_page,
1513 u64 start, u64 end)
1514 {
1515 int ret;
1516 struct page *pages[16];
1517 unsigned long index = start >> PAGE_CACHE_SHIFT;
1518 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1519 unsigned long nr_pages = end_index - index + 1;
1520 int i;
1521
1522 if (index == locked_page->index && end_index == index)
1523 return;
1524
1525 while (nr_pages > 0) {
1526 ret = find_get_pages_contig(inode->i_mapping, index,
1527 min_t(unsigned long, nr_pages,
1528 ARRAY_SIZE(pages)), pages);
1529 for (i = 0; i < ret; i++) {
1530 if (pages[i] != locked_page)
1531 unlock_page(pages[i]);
1532 page_cache_release(pages[i]);
1533 }
1534 nr_pages -= ret;
1535 index += ret;
1536 cond_resched();
1537 }
1538 }
1539
1540 static noinline int lock_delalloc_pages(struct inode *inode,
1541 struct page *locked_page,
1542 u64 delalloc_start,
1543 u64 delalloc_end)
1544 {
1545 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1546 unsigned long start_index = index;
1547 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1548 unsigned long pages_locked = 0;
1549 struct page *pages[16];
1550 unsigned long nrpages;
1551 int ret;
1552 int i;
1553
1554 /* the caller is responsible for locking the start index */
1555 if (index == locked_page->index && index == end_index)
1556 return 0;
1557
1558 /* skip the page at the start index */
1559 nrpages = end_index - index + 1;
1560 while (nrpages > 0) {
1561 ret = find_get_pages_contig(inode->i_mapping, index,
1562 min_t(unsigned long,
1563 nrpages, ARRAY_SIZE(pages)), pages);
1564 if (ret == 0) {
1565 ret = -EAGAIN;
1566 goto done;
1567 }
1568 /* now we have an array of pages, lock them all */
1569 for (i = 0; i < ret; i++) {
1570 /*
1571 * the caller is taking responsibility for
1572 * locked_page
1573 */
1574 if (pages[i] != locked_page) {
1575 lock_page(pages[i]);
1576 if (!PageDirty(pages[i]) ||
1577 pages[i]->mapping != inode->i_mapping) {
1578 ret = -EAGAIN;
1579 unlock_page(pages[i]);
1580 page_cache_release(pages[i]);
1581 goto done;
1582 }
1583 }
1584 page_cache_release(pages[i]);
1585 pages_locked++;
1586 }
1587 nrpages -= ret;
1588 index += ret;
1589 cond_resched();
1590 }
1591 ret = 0;
1592 done:
1593 if (ret && pages_locked) {
1594 __unlock_for_delalloc(inode, locked_page,
1595 delalloc_start,
1596 ((u64)(start_index + pages_locked - 1)) <<
1597 PAGE_CACHE_SHIFT);
1598 }
1599 return ret;
1600 }
1601
1602 /*
1603 * find a contiguous range of bytes in the file marked as delalloc, not
1604 * more than 'max_bytes'. start and end are used to return the range,
1605 *
1606 * 1 is returned if we find something, 0 if nothing was in the tree
1607 */
1608 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1609 struct extent_io_tree *tree,
1610 struct page *locked_page,
1611 u64 *start, u64 *end,
1612 u64 max_bytes)
1613 {
1614 u64 delalloc_start;
1615 u64 delalloc_end;
1616 u64 found;
1617 struct extent_state *cached_state = NULL;
1618 int ret;
1619 int loops = 0;
1620
1621 again:
1622 /* step one, find a bunch of delalloc bytes starting at start */
1623 delalloc_start = *start;
1624 delalloc_end = 0;
1625 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1626 max_bytes, &cached_state);
1627 if (!found || delalloc_end <= *start) {
1628 *start = delalloc_start;
1629 *end = delalloc_end;
1630 free_extent_state(cached_state);
1631 return found;
1632 }
1633
1634 /*
1635 * start comes from the offset of locked_page. We have to lock
1636 * pages in order, so we can't process delalloc bytes before
1637 * locked_page
1638 */
1639 if (delalloc_start < *start)
1640 delalloc_start = *start;
1641
1642 /*
1643 * make sure to limit the number of pages we try to lock down
1644 * if we're looping.
1645 */
1646 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1647 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1648
1649 /* step two, lock all the pages after the page that has start */
1650 ret = lock_delalloc_pages(inode, locked_page,
1651 delalloc_start, delalloc_end);
1652 if (ret == -EAGAIN) {
1653 /* some of the pages are gone, lets avoid looping by
1654 * shortening the size of the delalloc range we're searching
1655 */
1656 free_extent_state(cached_state);
1657 if (!loops) {
1658 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1659 max_bytes = PAGE_CACHE_SIZE - offset;
1660 loops = 1;
1661 goto again;
1662 } else {
1663 found = 0;
1664 goto out_failed;
1665 }
1666 }
1667 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1668
1669 /* step three, lock the state bits for the whole range */
1670 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1671
1672 /* then test to make sure it is all still delalloc */
1673 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1674 EXTENT_DELALLOC, 1, cached_state);
1675 if (!ret) {
1676 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1677 &cached_state, GFP_NOFS);
1678 __unlock_for_delalloc(inode, locked_page,
1679 delalloc_start, delalloc_end);
1680 cond_resched();
1681 goto again;
1682 }
1683 free_extent_state(cached_state);
1684 *start = delalloc_start;
1685 *end = delalloc_end;
1686 out_failed:
1687 return found;
1688 }
1689
1690 int extent_clear_unlock_delalloc(struct inode *inode,
1691 struct extent_io_tree *tree,
1692 u64 start, u64 end, struct page *locked_page,
1693 unsigned long op)
1694 {
1695 int ret;
1696 struct page *pages[16];
1697 unsigned long index = start >> PAGE_CACHE_SHIFT;
1698 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1699 unsigned long nr_pages = end_index - index + 1;
1700 int i;
1701 unsigned long clear_bits = 0;
1702
1703 if (op & EXTENT_CLEAR_UNLOCK)
1704 clear_bits |= EXTENT_LOCKED;
1705 if (op & EXTENT_CLEAR_DIRTY)
1706 clear_bits |= EXTENT_DIRTY;
1707
1708 if (op & EXTENT_CLEAR_DELALLOC)
1709 clear_bits |= EXTENT_DELALLOC;
1710
1711 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1712 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1713 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1714 EXTENT_SET_PRIVATE2)))
1715 return 0;
1716
1717 while (nr_pages > 0) {
1718 ret = find_get_pages_contig(inode->i_mapping, index,
1719 min_t(unsigned long,
1720 nr_pages, ARRAY_SIZE(pages)), pages);
1721 for (i = 0; i < ret; i++) {
1722
1723 if (op & EXTENT_SET_PRIVATE2)
1724 SetPagePrivate2(pages[i]);
1725
1726 if (pages[i] == locked_page) {
1727 page_cache_release(pages[i]);
1728 continue;
1729 }
1730 if (op & EXTENT_CLEAR_DIRTY)
1731 clear_page_dirty_for_io(pages[i]);
1732 if (op & EXTENT_SET_WRITEBACK)
1733 set_page_writeback(pages[i]);
1734 if (op & EXTENT_END_WRITEBACK)
1735 end_page_writeback(pages[i]);
1736 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1737 unlock_page(pages[i]);
1738 page_cache_release(pages[i]);
1739 }
1740 nr_pages -= ret;
1741 index += ret;
1742 cond_resched();
1743 }
1744 return 0;
1745 }
1746
1747 /*
1748 * count the number of bytes in the tree that have a given bit(s)
1749 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1750 * cached. The total number found is returned.
1751 */
1752 u64 count_range_bits(struct extent_io_tree *tree,
1753 u64 *start, u64 search_end, u64 max_bytes,
1754 unsigned long bits, int contig)
1755 {
1756 struct rb_node *node;
1757 struct extent_state *state;
1758 u64 cur_start = *start;
1759 u64 total_bytes = 0;
1760 u64 last = 0;
1761 int found = 0;
1762
1763 if (search_end <= cur_start) {
1764 WARN_ON(1);
1765 return 0;
1766 }
1767
1768 spin_lock(&tree->lock);
1769 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1770 total_bytes = tree->dirty_bytes;
1771 goto out;
1772 }
1773 /*
1774 * this search will find all the extents that end after
1775 * our range starts.
1776 */
1777 node = tree_search(tree, cur_start);
1778 if (!node)
1779 goto out;
1780
1781 while (1) {
1782 state = rb_entry(node, struct extent_state, rb_node);
1783 if (state->start > search_end)
1784 break;
1785 if (contig && found && state->start > last + 1)
1786 break;
1787 if (state->end >= cur_start && (state->state & bits) == bits) {
1788 total_bytes += min(search_end, state->end) + 1 -
1789 max(cur_start, state->start);
1790 if (total_bytes >= max_bytes)
1791 break;
1792 if (!found) {
1793 *start = max(cur_start, state->start);
1794 found = 1;
1795 }
1796 last = state->end;
1797 } else if (contig && found) {
1798 break;
1799 }
1800 node = rb_next(node);
1801 if (!node)
1802 break;
1803 }
1804 out:
1805 spin_unlock(&tree->lock);
1806 return total_bytes;
1807 }
1808
1809 /*
1810 * set the private field for a given byte offset in the tree. If there isn't
1811 * an extent_state there already, this does nothing.
1812 */
1813 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1814 {
1815 struct rb_node *node;
1816 struct extent_state *state;
1817 int ret = 0;
1818
1819 spin_lock(&tree->lock);
1820 /*
1821 * this search will find all the extents that end after
1822 * our range starts.
1823 */
1824 node = tree_search(tree, start);
1825 if (!node) {
1826 ret = -ENOENT;
1827 goto out;
1828 }
1829 state = rb_entry(node, struct extent_state, rb_node);
1830 if (state->start != start) {
1831 ret = -ENOENT;
1832 goto out;
1833 }
1834 state->private = private;
1835 out:
1836 spin_unlock(&tree->lock);
1837 return ret;
1838 }
1839
1840 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1841 int count)
1842 {
1843 struct rb_node *node;
1844 struct extent_state *state;
1845
1846 spin_lock(&tree->lock);
1847 /*
1848 * this search will find all the extents that end after
1849 * our range starts.
1850 */
1851 node = tree_search(tree, start);
1852 BUG_ON(!node);
1853
1854 state = rb_entry(node, struct extent_state, rb_node);
1855 BUG_ON(state->start != start);
1856
1857 while (count) {
1858 state->private = *csums++;
1859 count--;
1860 state = next_state(state);
1861 }
1862 spin_unlock(&tree->lock);
1863 }
1864
1865 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1866 {
1867 struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1868
1869 return page_offset(bvec->bv_page) + bvec->bv_offset;
1870 }
1871
1872 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1873 u32 csums[], int count)
1874 {
1875 struct rb_node *node;
1876 struct extent_state *state = NULL;
1877 u64 start;
1878
1879 spin_lock(&tree->lock);
1880 do {
1881 start = __btrfs_get_bio_offset(bio, bio_index);
1882 if (state == NULL || state->start != start) {
1883 node = tree_search(tree, start);
1884 BUG_ON(!node);
1885
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 BUG_ON(state->start != start);
1888 }
1889 state->private = *csums++;
1890 count--;
1891 bio_index++;
1892
1893 state = next_state(state);
1894 } while (count);
1895 spin_unlock(&tree->lock);
1896 }
1897
1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1899 {
1900 struct rb_node *node;
1901 struct extent_state *state;
1902 int ret = 0;
1903
1904 spin_lock(&tree->lock);
1905 /*
1906 * this search will find all the extents that end after
1907 * our range starts.
1908 */
1909 node = tree_search(tree, start);
1910 if (!node) {
1911 ret = -ENOENT;
1912 goto out;
1913 }
1914 state = rb_entry(node, struct extent_state, rb_node);
1915 if (state->start != start) {
1916 ret = -ENOENT;
1917 goto out;
1918 }
1919 *private = state->private;
1920 out:
1921 spin_unlock(&tree->lock);
1922 return ret;
1923 }
1924
1925 /*
1926 * searches a range in the state tree for a given mask.
1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
1928 * has the bits set. Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1930 */
1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1932 unsigned long bits, int filled, struct extent_state *cached)
1933 {
1934 struct extent_state *state = NULL;
1935 struct rb_node *node;
1936 int bitset = 0;
1937
1938 spin_lock(&tree->lock);
1939 if (cached && cached->tree && cached->start <= start &&
1940 cached->end > start)
1941 node = &cached->rb_node;
1942 else
1943 node = tree_search(tree, start);
1944 while (node && start <= end) {
1945 state = rb_entry(node, struct extent_state, rb_node);
1946
1947 if (filled && state->start > start) {
1948 bitset = 0;
1949 break;
1950 }
1951
1952 if (state->start > end)
1953 break;
1954
1955 if (state->state & bits) {
1956 bitset = 1;
1957 if (!filled)
1958 break;
1959 } else if (filled) {
1960 bitset = 0;
1961 break;
1962 }
1963
1964 if (state->end == (u64)-1)
1965 break;
1966
1967 start = state->end + 1;
1968 if (start > end)
1969 break;
1970 node = rb_next(node);
1971 if (!node) {
1972 if (filled)
1973 bitset = 0;
1974 break;
1975 }
1976 }
1977 spin_unlock(&tree->lock);
1978 return bitset;
1979 }
1980
1981 /*
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1984 */
1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1986 {
1987 u64 start = page_offset(page);
1988 u64 end = start + PAGE_CACHE_SIZE - 1;
1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1990 SetPageUptodate(page);
1991 }
1992
1993 /*
1994 * When IO fails, either with EIO or csum verification fails, we
1995 * try other mirrors that might have a good copy of the data. This
1996 * io_failure_record is used to record state as we go through all the
1997 * mirrors. If another mirror has good data, the page is set up to date
1998 * and things continue. If a good mirror can't be found, the original
1999 * bio end_io callback is called to indicate things have failed.
2000 */
2001 struct io_failure_record {
2002 struct page *page;
2003 u64 start;
2004 u64 len;
2005 u64 logical;
2006 unsigned long bio_flags;
2007 int this_mirror;
2008 int failed_mirror;
2009 int in_validation;
2010 };
2011
2012 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
2013 int did_repair)
2014 {
2015 int ret;
2016 int err = 0;
2017 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2018
2019 set_state_private(failure_tree, rec->start, 0);
2020 ret = clear_extent_bits(failure_tree, rec->start,
2021 rec->start + rec->len - 1,
2022 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2023 if (ret)
2024 err = ret;
2025
2026 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2027 rec->start + rec->len - 1,
2028 EXTENT_DAMAGED, GFP_NOFS);
2029 if (ret && !err)
2030 err = ret;
2031
2032 kfree(rec);
2033 return err;
2034 }
2035
2036 static void repair_io_failure_callback(struct bio *bio, int err)
2037 {
2038 complete(bio->bi_private);
2039 }
2040
2041 /*
2042 * this bypasses the standard btrfs submit functions deliberately, as
2043 * the standard behavior is to write all copies in a raid setup. here we only
2044 * want to write the one bad copy. so we do the mapping for ourselves and issue
2045 * submit_bio directly.
2046 * to avoid any synchronization issues, wait for the data after writing, which
2047 * actually prevents the read that triggered the error from finishing.
2048 * currently, there can be no more than two copies of every data bit. thus,
2049 * exactly one rewrite is required.
2050 */
2051 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2052 u64 length, u64 logical, struct page *page,
2053 int mirror_num)
2054 {
2055 struct bio *bio;
2056 struct btrfs_device *dev;
2057 DECLARE_COMPLETION_ONSTACK(compl);
2058 u64 map_length = 0;
2059 u64 sector;
2060 struct btrfs_bio *bbio = NULL;
2061 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2062 int ret;
2063
2064 BUG_ON(!mirror_num);
2065
2066 /* we can't repair anything in raid56 yet */
2067 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2068 return 0;
2069
2070 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2071 if (!bio)
2072 return -EIO;
2073 bio->bi_private = &compl;
2074 bio->bi_end_io = repair_io_failure_callback;
2075 bio->bi_size = 0;
2076 map_length = length;
2077
2078 ret = btrfs_map_block(fs_info, WRITE, logical,
2079 &map_length, &bbio, mirror_num);
2080 if (ret) {
2081 bio_put(bio);
2082 return -EIO;
2083 }
2084 BUG_ON(mirror_num != bbio->mirror_num);
2085 sector = bbio->stripes[mirror_num-1].physical >> 9;
2086 bio->bi_sector = sector;
2087 dev = bbio->stripes[mirror_num-1].dev;
2088 kfree(bbio);
2089 if (!dev || !dev->bdev || !dev->writeable) {
2090 bio_put(bio);
2091 return -EIO;
2092 }
2093 bio->bi_bdev = dev->bdev;
2094 bio_add_page(bio, page, length, start - page_offset(page));
2095 btrfsic_submit_bio(WRITE_SYNC, bio);
2096 wait_for_completion(&compl);
2097
2098 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2099 /* try to remap that extent elsewhere? */
2100 bio_put(bio);
2101 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2102 return -EIO;
2103 }
2104
2105 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2106 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2107 start, rcu_str_deref(dev->name), sector);
2108
2109 bio_put(bio);
2110 return 0;
2111 }
2112
2113 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2114 int mirror_num)
2115 {
2116 u64 start = eb->start;
2117 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2118 int ret = 0;
2119
2120 for (i = 0; i < num_pages; i++) {
2121 struct page *p = extent_buffer_page(eb, i);
2122 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2123 start, p, mirror_num);
2124 if (ret)
2125 break;
2126 start += PAGE_CACHE_SIZE;
2127 }
2128
2129 return ret;
2130 }
2131
2132 /*
2133 * each time an IO finishes, we do a fast check in the IO failure tree
2134 * to see if we need to process or clean up an io_failure_record
2135 */
2136 static int clean_io_failure(u64 start, struct page *page)
2137 {
2138 u64 private;
2139 u64 private_failure;
2140 struct io_failure_record *failrec;
2141 struct btrfs_fs_info *fs_info;
2142 struct extent_state *state;
2143 int num_copies;
2144 int did_repair = 0;
2145 int ret;
2146 struct inode *inode = page->mapping->host;
2147
2148 private = 0;
2149 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2150 (u64)-1, 1, EXTENT_DIRTY, 0);
2151 if (!ret)
2152 return 0;
2153
2154 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2155 &private_failure);
2156 if (ret)
2157 return 0;
2158
2159 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2160 BUG_ON(!failrec->this_mirror);
2161
2162 if (failrec->in_validation) {
2163 /* there was no real error, just free the record */
2164 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2165 failrec->start);
2166 did_repair = 1;
2167 goto out;
2168 }
2169
2170 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2171 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2172 failrec->start,
2173 EXTENT_LOCKED);
2174 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2175
2176 if (state && state->start == failrec->start) {
2177 fs_info = BTRFS_I(inode)->root->fs_info;
2178 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2179 failrec->len);
2180 if (num_copies > 1) {
2181 ret = repair_io_failure(fs_info, start, failrec->len,
2182 failrec->logical, page,
2183 failrec->failed_mirror);
2184 did_repair = !ret;
2185 }
2186 ret = 0;
2187 }
2188
2189 out:
2190 if (!ret)
2191 ret = free_io_failure(inode, failrec, did_repair);
2192
2193 return ret;
2194 }
2195
2196 /*
2197 * this is a generic handler for readpage errors (default
2198 * readpage_io_failed_hook). if other copies exist, read those and write back
2199 * good data to the failed position. does not investigate in remapping the
2200 * failed extent elsewhere, hoping the device will be smart enough to do this as
2201 * needed
2202 */
2203
2204 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2205 u64 start, u64 end, int failed_mirror,
2206 struct extent_state *state)
2207 {
2208 struct io_failure_record *failrec = NULL;
2209 u64 private;
2210 struct extent_map *em;
2211 struct inode *inode = page->mapping->host;
2212 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2213 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2214 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2215 struct bio *bio;
2216 int num_copies;
2217 int ret;
2218 int read_mode;
2219 u64 logical;
2220
2221 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2222
2223 ret = get_state_private(failure_tree, start, &private);
2224 if (ret) {
2225 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2226 if (!failrec)
2227 return -ENOMEM;
2228 failrec->start = start;
2229 failrec->len = end - start + 1;
2230 failrec->this_mirror = 0;
2231 failrec->bio_flags = 0;
2232 failrec->in_validation = 0;
2233
2234 read_lock(&em_tree->lock);
2235 em = lookup_extent_mapping(em_tree, start, failrec->len);
2236 if (!em) {
2237 read_unlock(&em_tree->lock);
2238 kfree(failrec);
2239 return -EIO;
2240 }
2241
2242 if (em->start > start || em->start + em->len < start) {
2243 free_extent_map(em);
2244 em = NULL;
2245 }
2246 read_unlock(&em_tree->lock);
2247
2248 if (!em) {
2249 kfree(failrec);
2250 return -EIO;
2251 }
2252 logical = start - em->start;
2253 logical = em->block_start + logical;
2254 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2255 logical = em->block_start;
2256 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2257 extent_set_compress_type(&failrec->bio_flags,
2258 em->compress_type);
2259 }
2260 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2261 "len=%llu\n", logical, start, failrec->len);
2262 failrec->logical = logical;
2263 free_extent_map(em);
2264
2265 /* set the bits in the private failure tree */
2266 ret = set_extent_bits(failure_tree, start, end,
2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268 if (ret >= 0)
2269 ret = set_state_private(failure_tree, start,
2270 (u64)(unsigned long)failrec);
2271 /* set the bits in the inode's tree */
2272 if (ret >= 0)
2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274 GFP_NOFS);
2275 if (ret < 0) {
2276 kfree(failrec);
2277 return ret;
2278 }
2279 } else {
2280 failrec = (struct io_failure_record *)(unsigned long)private;
2281 pr_debug("bio_readpage_error: (found) logical=%llu, "
2282 "start=%llu, len=%llu, validation=%d\n",
2283 failrec->logical, failrec->start, failrec->len,
2284 failrec->in_validation);
2285 /*
2286 * when data can be on disk more than twice, add to failrec here
2287 * (e.g. with a list for failed_mirror) to make
2288 * clean_io_failure() clean all those errors at once.
2289 */
2290 }
2291 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2292 failrec->logical, failrec->len);
2293 if (num_copies == 1) {
2294 /*
2295 * we only have a single copy of the data, so don't bother with
2296 * all the retry and error correction code that follows. no
2297 * matter what the error is, it is very likely to persist.
2298 */
2299 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2300 "state=%p, num_copies=%d, next_mirror %d, "
2301 "failed_mirror %d\n", state, num_copies,
2302 failrec->this_mirror, failed_mirror);
2303 free_io_failure(inode, failrec, 0);
2304 return -EIO;
2305 }
2306
2307 if (!state) {
2308 spin_lock(&tree->lock);
2309 state = find_first_extent_bit_state(tree, failrec->start,
2310 EXTENT_LOCKED);
2311 if (state && state->start != failrec->start)
2312 state = NULL;
2313 spin_unlock(&tree->lock);
2314 }
2315
2316 /*
2317 * there are two premises:
2318 * a) deliver good data to the caller
2319 * b) correct the bad sectors on disk
2320 */
2321 if (failed_bio->bi_vcnt > 1) {
2322 /*
2323 * to fulfill b), we need to know the exact failing sectors, as
2324 * we don't want to rewrite any more than the failed ones. thus,
2325 * we need separate read requests for the failed bio
2326 *
2327 * if the following BUG_ON triggers, our validation request got
2328 * merged. we need separate requests for our algorithm to work.
2329 */
2330 BUG_ON(failrec->in_validation);
2331 failrec->in_validation = 1;
2332 failrec->this_mirror = failed_mirror;
2333 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2334 } else {
2335 /*
2336 * we're ready to fulfill a) and b) alongside. get a good copy
2337 * of the failed sector and if we succeed, we have setup
2338 * everything for repair_io_failure to do the rest for us.
2339 */
2340 if (failrec->in_validation) {
2341 BUG_ON(failrec->this_mirror != failed_mirror);
2342 failrec->in_validation = 0;
2343 failrec->this_mirror = 0;
2344 }
2345 failrec->failed_mirror = failed_mirror;
2346 failrec->this_mirror++;
2347 if (failrec->this_mirror == failed_mirror)
2348 failrec->this_mirror++;
2349 read_mode = READ_SYNC;
2350 }
2351
2352 if (!state || failrec->this_mirror > num_copies) {
2353 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2354 "next_mirror %d, failed_mirror %d\n", state,
2355 num_copies, failrec->this_mirror, failed_mirror);
2356 free_io_failure(inode, failrec, 0);
2357 return -EIO;
2358 }
2359
2360 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2361 if (!bio) {
2362 free_io_failure(inode, failrec, 0);
2363 return -EIO;
2364 }
2365 bio->bi_private = state;
2366 bio->bi_end_io = failed_bio->bi_end_io;
2367 bio->bi_sector = failrec->logical >> 9;
2368 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2369 bio->bi_size = 0;
2370
2371 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2372
2373 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2374 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2375 failrec->this_mirror, num_copies, failrec->in_validation);
2376
2377 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2378 failrec->this_mirror,
2379 failrec->bio_flags, 0);
2380 return ret;
2381 }
2382
2383 /* lots and lots of room for performance fixes in the end_bio funcs */
2384
2385 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2386 {
2387 int uptodate = (err == 0);
2388 struct extent_io_tree *tree;
2389 int ret;
2390
2391 tree = &BTRFS_I(page->mapping->host)->io_tree;
2392
2393 if (tree->ops && tree->ops->writepage_end_io_hook) {
2394 ret = tree->ops->writepage_end_io_hook(page, start,
2395 end, NULL, uptodate);
2396 if (ret)
2397 uptodate = 0;
2398 }
2399
2400 if (!uptodate) {
2401 ClearPageUptodate(page);
2402 SetPageError(page);
2403 }
2404 return 0;
2405 }
2406
2407 /*
2408 * after a writepage IO is done, we need to:
2409 * clear the uptodate bits on error
2410 * clear the writeback bits in the extent tree for this IO
2411 * end_page_writeback if the page has no more pending IO
2412 *
2413 * Scheduling is not allowed, so the extent state tree is expected
2414 * to have one and only one object corresponding to this IO.
2415 */
2416 static void end_bio_extent_writepage(struct bio *bio, int err)
2417 {
2418 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2419 struct extent_io_tree *tree;
2420 u64 start;
2421 u64 end;
2422
2423 do {
2424 struct page *page = bvec->bv_page;
2425 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
2427 /* We always issue full-page reads, but if some block
2428 * in a page fails to read, blk_update_request() will
2429 * advance bv_offset and adjust bv_len to compensate.
2430 * Print a warning for nonzero offsets, and an error
2431 * if they don't add up to a full page. */
2432 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2433 printk("%s page write in btrfs with offset %u and length %u\n",
2434 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2435 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2436 bvec->bv_offset, bvec->bv_len);
2437
2438 start = page_offset(page);
2439 end = start + bvec->bv_offset + bvec->bv_len - 1;
2440
2441 if (--bvec >= bio->bi_io_vec)
2442 prefetchw(&bvec->bv_page->flags);
2443
2444 if (end_extent_writepage(page, err, start, end))
2445 continue;
2446
2447 end_page_writeback(page);
2448 } while (bvec >= bio->bi_io_vec);
2449
2450 bio_put(bio);
2451 }
2452
2453 /*
2454 * after a readpage IO is done, we need to:
2455 * clear the uptodate bits on error
2456 * set the uptodate bits if things worked
2457 * set the page up to date if all extents in the tree are uptodate
2458 * clear the lock bit in the extent tree
2459 * unlock the page if there are no other extents locked for it
2460 *
2461 * Scheduling is not allowed, so the extent state tree is expected
2462 * to have one and only one object corresponding to this IO.
2463 */
2464 static void end_bio_extent_readpage(struct bio *bio, int err)
2465 {
2466 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2467 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2468 struct bio_vec *bvec = bio->bi_io_vec;
2469 struct extent_io_tree *tree;
2470 u64 start;
2471 u64 end;
2472 int mirror;
2473 int ret;
2474
2475 if (err)
2476 uptodate = 0;
2477
2478 do {
2479 struct page *page = bvec->bv_page;
2480 struct extent_state *cached = NULL;
2481 struct extent_state *state;
2482 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2483 struct inode *inode = page->mapping->host;
2484
2485 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2486 "mirror=%lu\n", (u64)bio->bi_sector, err,
2487 io_bio->mirror_num);
2488 tree = &BTRFS_I(inode)->io_tree;
2489
2490 /* We always issue full-page reads, but if some block
2491 * in a page fails to read, blk_update_request() will
2492 * advance bv_offset and adjust bv_len to compensate.
2493 * Print a warning for nonzero offsets, and an error
2494 * if they don't add up to a full page. */
2495 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2496 printk("%s page read in btrfs with offset %u and length %u\n",
2497 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2498 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2499 bvec->bv_offset, bvec->bv_len);
2500
2501 start = page_offset(page);
2502 end = start + bvec->bv_offset + bvec->bv_len - 1;
2503
2504 if (++bvec <= bvec_end)
2505 prefetchw(&bvec->bv_page->flags);
2506
2507 spin_lock(&tree->lock);
2508 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2509 if (state && state->start == start) {
2510 /*
2511 * take a reference on the state, unlock will drop
2512 * the ref
2513 */
2514 cache_state(state, &cached);
2515 }
2516 spin_unlock(&tree->lock);
2517
2518 mirror = io_bio->mirror_num;
2519 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2520 ret = tree->ops->readpage_end_io_hook(page, start, end,
2521 state, mirror);
2522 if (ret)
2523 uptodate = 0;
2524 else
2525 clean_io_failure(start, page);
2526 }
2527
2528 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2529 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2530 if (!ret && !err &&
2531 test_bit(BIO_UPTODATE, &bio->bi_flags))
2532 uptodate = 1;
2533 } else if (!uptodate) {
2534 /*
2535 * The generic bio_readpage_error handles errors the
2536 * following way: If possible, new read requests are
2537 * created and submitted and will end up in
2538 * end_bio_extent_readpage as well (if we're lucky, not
2539 * in the !uptodate case). In that case it returns 0 and
2540 * we just go on with the next page in our bio. If it
2541 * can't handle the error it will return -EIO and we
2542 * remain responsible for that page.
2543 */
2544 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2545 if (ret == 0) {
2546 uptodate =
2547 test_bit(BIO_UPTODATE, &bio->bi_flags);
2548 if (err)
2549 uptodate = 0;
2550 uncache_state(&cached);
2551 continue;
2552 }
2553 }
2554
2555 if (uptodate && tree->track_uptodate) {
2556 set_extent_uptodate(tree, start, end, &cached,
2557 GFP_ATOMIC);
2558 }
2559 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2560
2561 if (uptodate) {
2562 loff_t i_size = i_size_read(inode);
2563 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2564 unsigned offset;
2565
2566 /* Zero out the end if this page straddles i_size */
2567 offset = i_size & (PAGE_CACHE_SIZE-1);
2568 if (page->index == end_index && offset)
2569 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2570 SetPageUptodate(page);
2571 } else {
2572 ClearPageUptodate(page);
2573 SetPageError(page);
2574 }
2575 unlock_page(page);
2576 } while (bvec <= bvec_end);
2577
2578 bio_put(bio);
2579 }
2580
2581 /*
2582 * this allocates from the btrfs_bioset. We're returning a bio right now
2583 * but you can call btrfs_io_bio for the appropriate container_of magic
2584 */
2585 struct bio *
2586 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2587 gfp_t gfp_flags)
2588 {
2589 struct bio *bio;
2590
2591 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2592
2593 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2594 while (!bio && (nr_vecs /= 2)) {
2595 bio = bio_alloc_bioset(gfp_flags,
2596 nr_vecs, btrfs_bioset);
2597 }
2598 }
2599
2600 if (bio) {
2601 bio->bi_size = 0;
2602 bio->bi_bdev = bdev;
2603 bio->bi_sector = first_sector;
2604 }
2605 return bio;
2606 }
2607
2608 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2609 {
2610 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2611 }
2612
2613
2614 /* this also allocates from the btrfs_bioset */
2615 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2616 {
2617 return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2618 }
2619
2620
2621 static int __must_check submit_one_bio(int rw, struct bio *bio,
2622 int mirror_num, unsigned long bio_flags)
2623 {
2624 int ret = 0;
2625 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2626 struct page *page = bvec->bv_page;
2627 struct extent_io_tree *tree = bio->bi_private;
2628 u64 start;
2629
2630 start = page_offset(page) + bvec->bv_offset;
2631
2632 bio->bi_private = NULL;
2633
2634 bio_get(bio);
2635
2636 if (tree->ops && tree->ops->submit_bio_hook)
2637 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2638 mirror_num, bio_flags, start);
2639 else
2640 btrfsic_submit_bio(rw, bio);
2641
2642 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2643 ret = -EOPNOTSUPP;
2644 bio_put(bio);
2645 return ret;
2646 }
2647
2648 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2649 unsigned long offset, size_t size, struct bio *bio,
2650 unsigned long bio_flags)
2651 {
2652 int ret = 0;
2653 if (tree->ops && tree->ops->merge_bio_hook)
2654 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2655 bio_flags);
2656 BUG_ON(ret < 0);
2657 return ret;
2658
2659 }
2660
2661 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2662 struct page *page, sector_t sector,
2663 size_t size, unsigned long offset,
2664 struct block_device *bdev,
2665 struct bio **bio_ret,
2666 unsigned long max_pages,
2667 bio_end_io_t end_io_func,
2668 int mirror_num,
2669 unsigned long prev_bio_flags,
2670 unsigned long bio_flags)
2671 {
2672 int ret = 0;
2673 struct bio *bio;
2674 int nr;
2675 int contig = 0;
2676 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2677 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2678 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2679
2680 if (bio_ret && *bio_ret) {
2681 bio = *bio_ret;
2682 if (old_compressed)
2683 contig = bio->bi_sector == sector;
2684 else
2685 contig = bio_end_sector(bio) == sector;
2686
2687 if (prev_bio_flags != bio_flags || !contig ||
2688 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2689 bio_add_page(bio, page, page_size, offset) < page_size) {
2690 ret = submit_one_bio(rw, bio, mirror_num,
2691 prev_bio_flags);
2692 if (ret < 0)
2693 return ret;
2694 bio = NULL;
2695 } else {
2696 return 0;
2697 }
2698 }
2699 if (this_compressed)
2700 nr = BIO_MAX_PAGES;
2701 else
2702 nr = bio_get_nr_vecs(bdev);
2703
2704 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2705 if (!bio)
2706 return -ENOMEM;
2707
2708 bio_add_page(bio, page, page_size, offset);
2709 bio->bi_end_io = end_io_func;
2710 bio->bi_private = tree;
2711
2712 if (bio_ret)
2713 *bio_ret = bio;
2714 else
2715 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2716
2717 return ret;
2718 }
2719
2720 static void attach_extent_buffer_page(struct extent_buffer *eb,
2721 struct page *page)
2722 {
2723 if (!PagePrivate(page)) {
2724 SetPagePrivate(page);
2725 page_cache_get(page);
2726 set_page_private(page, (unsigned long)eb);
2727 } else {
2728 WARN_ON(page->private != (unsigned long)eb);
2729 }
2730 }
2731
2732 void set_page_extent_mapped(struct page *page)
2733 {
2734 if (!PagePrivate(page)) {
2735 SetPagePrivate(page);
2736 page_cache_get(page);
2737 set_page_private(page, EXTENT_PAGE_PRIVATE);
2738 }
2739 }
2740
2741 /*
2742 * basic readpage implementation. Locked extent state structs are inserted
2743 * into the tree that are removed when the IO is done (by the end_io
2744 * handlers)
2745 * XXX JDM: This needs looking at to ensure proper page locking
2746 */
2747 static int __extent_read_full_page(struct extent_io_tree *tree,
2748 struct page *page,
2749 get_extent_t *get_extent,
2750 struct bio **bio, int mirror_num,
2751 unsigned long *bio_flags, int rw)
2752 {
2753 struct inode *inode = page->mapping->host;
2754 u64 start = page_offset(page);
2755 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756 u64 end;
2757 u64 cur = start;
2758 u64 extent_offset;
2759 u64 last_byte = i_size_read(inode);
2760 u64 block_start;
2761 u64 cur_end;
2762 sector_t sector;
2763 struct extent_map *em;
2764 struct block_device *bdev;
2765 struct btrfs_ordered_extent *ordered;
2766 int ret;
2767 int nr = 0;
2768 size_t pg_offset = 0;
2769 size_t iosize;
2770 size_t disk_io_size;
2771 size_t blocksize = inode->i_sb->s_blocksize;
2772 unsigned long this_bio_flag = 0;
2773
2774 set_page_extent_mapped(page);
2775
2776 if (!PageUptodate(page)) {
2777 if (cleancache_get_page(page) == 0) {
2778 BUG_ON(blocksize != PAGE_SIZE);
2779 goto out;
2780 }
2781 }
2782
2783 end = page_end;
2784 while (1) {
2785 lock_extent(tree, start, end);
2786 ordered = btrfs_lookup_ordered_extent(inode, start);
2787 if (!ordered)
2788 break;
2789 unlock_extent(tree, start, end);
2790 btrfs_start_ordered_extent(inode, ordered, 1);
2791 btrfs_put_ordered_extent(ordered);
2792 }
2793
2794 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2795 char *userpage;
2796 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2797
2798 if (zero_offset) {
2799 iosize = PAGE_CACHE_SIZE - zero_offset;
2800 userpage = kmap_atomic(page);
2801 memset(userpage + zero_offset, 0, iosize);
2802 flush_dcache_page(page);
2803 kunmap_atomic(userpage);
2804 }
2805 }
2806 while (cur <= end) {
2807 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2808
2809 if (cur >= last_byte) {
2810 char *userpage;
2811 struct extent_state *cached = NULL;
2812
2813 iosize = PAGE_CACHE_SIZE - pg_offset;
2814 userpage = kmap_atomic(page);
2815 memset(userpage + pg_offset, 0, iosize);
2816 flush_dcache_page(page);
2817 kunmap_atomic(userpage);
2818 set_extent_uptodate(tree, cur, cur + iosize - 1,
2819 &cached, GFP_NOFS);
2820 unlock_extent_cached(tree, cur, cur + iosize - 1,
2821 &cached, GFP_NOFS);
2822 break;
2823 }
2824 em = get_extent(inode, page, pg_offset, cur,
2825 end - cur + 1, 0);
2826 if (IS_ERR_OR_NULL(em)) {
2827 SetPageError(page);
2828 unlock_extent(tree, cur, end);
2829 break;
2830 }
2831 extent_offset = cur - em->start;
2832 BUG_ON(extent_map_end(em) <= cur);
2833 BUG_ON(end < cur);
2834
2835 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2836 this_bio_flag = EXTENT_BIO_COMPRESSED;
2837 extent_set_compress_type(&this_bio_flag,
2838 em->compress_type);
2839 }
2840
2841 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2842 cur_end = min(extent_map_end(em) - 1, end);
2843 iosize = ALIGN(iosize, blocksize);
2844 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2845 disk_io_size = em->block_len;
2846 sector = em->block_start >> 9;
2847 } else {
2848 sector = (em->block_start + extent_offset) >> 9;
2849 disk_io_size = iosize;
2850 }
2851 bdev = em->bdev;
2852 block_start = em->block_start;
2853 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2854 block_start = EXTENT_MAP_HOLE;
2855 free_extent_map(em);
2856 em = NULL;
2857
2858 /* we've found a hole, just zero and go on */
2859 if (block_start == EXTENT_MAP_HOLE) {
2860 char *userpage;
2861 struct extent_state *cached = NULL;
2862
2863 userpage = kmap_atomic(page);
2864 memset(userpage + pg_offset, 0, iosize);
2865 flush_dcache_page(page);
2866 kunmap_atomic(userpage);
2867
2868 set_extent_uptodate(tree, cur, cur + iosize - 1,
2869 &cached, GFP_NOFS);
2870 unlock_extent_cached(tree, cur, cur + iosize - 1,
2871 &cached, GFP_NOFS);
2872 cur = cur + iosize;
2873 pg_offset += iosize;
2874 continue;
2875 }
2876 /* the get_extent function already copied into the page */
2877 if (test_range_bit(tree, cur, cur_end,
2878 EXTENT_UPTODATE, 1, NULL)) {
2879 check_page_uptodate(tree, page);
2880 unlock_extent(tree, cur, cur + iosize - 1);
2881 cur = cur + iosize;
2882 pg_offset += iosize;
2883 continue;
2884 }
2885 /* we have an inline extent but it didn't get marked up
2886 * to date. Error out
2887 */
2888 if (block_start == EXTENT_MAP_INLINE) {
2889 SetPageError(page);
2890 unlock_extent(tree, cur, cur + iosize - 1);
2891 cur = cur + iosize;
2892 pg_offset += iosize;
2893 continue;
2894 }
2895
2896 pnr -= page->index;
2897 ret = submit_extent_page(rw, tree, page,
2898 sector, disk_io_size, pg_offset,
2899 bdev, bio, pnr,
2900 end_bio_extent_readpage, mirror_num,
2901 *bio_flags,
2902 this_bio_flag);
2903 if (!ret) {
2904 nr++;
2905 *bio_flags = this_bio_flag;
2906 } else {
2907 SetPageError(page);
2908 unlock_extent(tree, cur, cur + iosize - 1);
2909 }
2910 cur = cur + iosize;
2911 pg_offset += iosize;
2912 }
2913 out:
2914 if (!nr) {
2915 if (!PageError(page))
2916 SetPageUptodate(page);
2917 unlock_page(page);
2918 }
2919 return 0;
2920 }
2921
2922 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2923 get_extent_t *get_extent, int mirror_num)
2924 {
2925 struct bio *bio = NULL;
2926 unsigned long bio_flags = 0;
2927 int ret;
2928
2929 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2930 &bio_flags, READ);
2931 if (bio)
2932 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2933 return ret;
2934 }
2935
2936 static noinline void update_nr_written(struct page *page,
2937 struct writeback_control *wbc,
2938 unsigned long nr_written)
2939 {
2940 wbc->nr_to_write -= nr_written;
2941 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2942 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2943 page->mapping->writeback_index = page->index + nr_written;
2944 }
2945
2946 /*
2947 * the writepage semantics are similar to regular writepage. extent
2948 * records are inserted to lock ranges in the tree, and as dirty areas
2949 * are found, they are marked writeback. Then the lock bits are removed
2950 * and the end_io handler clears the writeback ranges
2951 */
2952 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2953 void *data)
2954 {
2955 struct inode *inode = page->mapping->host;
2956 struct extent_page_data *epd = data;
2957 struct extent_io_tree *tree = epd->tree;
2958 u64 start = page_offset(page);
2959 u64 delalloc_start;
2960 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2961 u64 end;
2962 u64 cur = start;
2963 u64 extent_offset;
2964 u64 last_byte = i_size_read(inode);
2965 u64 block_start;
2966 u64 iosize;
2967 sector_t sector;
2968 struct extent_state *cached_state = NULL;
2969 struct extent_map *em;
2970 struct block_device *bdev;
2971 int ret;
2972 int nr = 0;
2973 size_t pg_offset = 0;
2974 size_t blocksize;
2975 loff_t i_size = i_size_read(inode);
2976 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2977 u64 nr_delalloc;
2978 u64 delalloc_end;
2979 int page_started;
2980 int compressed;
2981 int write_flags;
2982 unsigned long nr_written = 0;
2983 bool fill_delalloc = true;
2984
2985 if (wbc->sync_mode == WB_SYNC_ALL)
2986 write_flags = WRITE_SYNC;
2987 else
2988 write_flags = WRITE;
2989
2990 trace___extent_writepage(page, inode, wbc);
2991
2992 WARN_ON(!PageLocked(page));
2993
2994 ClearPageError(page);
2995
2996 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2997 if (page->index > end_index ||
2998 (page->index == end_index && !pg_offset)) {
2999 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3000 unlock_page(page);
3001 return 0;
3002 }
3003
3004 if (page->index == end_index) {
3005 char *userpage;
3006
3007 userpage = kmap_atomic(page);
3008 memset(userpage + pg_offset, 0,
3009 PAGE_CACHE_SIZE - pg_offset);
3010 kunmap_atomic(userpage);
3011 flush_dcache_page(page);
3012 }
3013 pg_offset = 0;
3014
3015 set_page_extent_mapped(page);
3016
3017 if (!tree->ops || !tree->ops->fill_delalloc)
3018 fill_delalloc = false;
3019
3020 delalloc_start = start;
3021 delalloc_end = 0;
3022 page_started = 0;
3023 if (!epd->extent_locked && fill_delalloc) {
3024 u64 delalloc_to_write = 0;
3025 /*
3026 * make sure the wbc mapping index is at least updated
3027 * to this page.
3028 */
3029 update_nr_written(page, wbc, 0);
3030
3031 while (delalloc_end < page_end) {
3032 nr_delalloc = find_lock_delalloc_range(inode, tree,
3033 page,
3034 &delalloc_start,
3035 &delalloc_end,
3036 128 * 1024 * 1024);
3037 if (nr_delalloc == 0) {
3038 delalloc_start = delalloc_end + 1;
3039 continue;
3040 }
3041 ret = tree->ops->fill_delalloc(inode, page,
3042 delalloc_start,
3043 delalloc_end,
3044 &page_started,
3045 &nr_written);
3046 /* File system has been set read-only */
3047 if (ret) {
3048 SetPageError(page);
3049 goto done;
3050 }
3051 /*
3052 * delalloc_end is already one less than the total
3053 * length, so we don't subtract one from
3054 * PAGE_CACHE_SIZE
3055 */
3056 delalloc_to_write += (delalloc_end - delalloc_start +
3057 PAGE_CACHE_SIZE) >>
3058 PAGE_CACHE_SHIFT;
3059 delalloc_start = delalloc_end + 1;
3060 }
3061 if (wbc->nr_to_write < delalloc_to_write) {
3062 int thresh = 8192;
3063
3064 if (delalloc_to_write < thresh * 2)
3065 thresh = delalloc_to_write;
3066 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3067 thresh);
3068 }
3069
3070 /* did the fill delalloc function already unlock and start
3071 * the IO?
3072 */
3073 if (page_started) {
3074 ret = 0;
3075 /*
3076 * we've unlocked the page, so we can't update
3077 * the mapping's writeback index, just update
3078 * nr_to_write.
3079 */
3080 wbc->nr_to_write -= nr_written;
3081 goto done_unlocked;
3082 }
3083 }
3084 if (tree->ops && tree->ops->writepage_start_hook) {
3085 ret = tree->ops->writepage_start_hook(page, start,
3086 page_end);
3087 if (ret) {
3088 /* Fixup worker will requeue */
3089 if (ret == -EBUSY)
3090 wbc->pages_skipped++;
3091 else
3092 redirty_page_for_writepage(wbc, page);
3093 update_nr_written(page, wbc, nr_written);
3094 unlock_page(page);
3095 ret = 0;
3096 goto done_unlocked;
3097 }
3098 }
3099
3100 /*
3101 * we don't want to touch the inode after unlocking the page,
3102 * so we update the mapping writeback index now
3103 */
3104 update_nr_written(page, wbc, nr_written + 1);
3105
3106 end = page_end;
3107 if (last_byte <= start) {
3108 if (tree->ops && tree->ops->writepage_end_io_hook)
3109 tree->ops->writepage_end_io_hook(page, start,
3110 page_end, NULL, 1);
3111 goto done;
3112 }
3113
3114 blocksize = inode->i_sb->s_blocksize;
3115
3116 while (cur <= end) {
3117 if (cur >= last_byte) {
3118 if (tree->ops && tree->ops->writepage_end_io_hook)
3119 tree->ops->writepage_end_io_hook(page, cur,
3120 page_end, NULL, 1);
3121 break;
3122 }
3123 em = epd->get_extent(inode, page, pg_offset, cur,
3124 end - cur + 1, 1);
3125 if (IS_ERR_OR_NULL(em)) {
3126 SetPageError(page);
3127 break;
3128 }
3129
3130 extent_offset = cur - em->start;
3131 BUG_ON(extent_map_end(em) <= cur);
3132 BUG_ON(end < cur);
3133 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3134 iosize = ALIGN(iosize, blocksize);
3135 sector = (em->block_start + extent_offset) >> 9;
3136 bdev = em->bdev;
3137 block_start = em->block_start;
3138 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3139 free_extent_map(em);
3140 em = NULL;
3141
3142 /*
3143 * compressed and inline extents are written through other
3144 * paths in the FS
3145 */
3146 if (compressed || block_start == EXTENT_MAP_HOLE ||
3147 block_start == EXTENT_MAP_INLINE) {
3148 /*
3149 * end_io notification does not happen here for
3150 * compressed extents
3151 */
3152 if (!compressed && tree->ops &&
3153 tree->ops->writepage_end_io_hook)
3154 tree->ops->writepage_end_io_hook(page, cur,
3155 cur + iosize - 1,
3156 NULL, 1);
3157 else if (compressed) {
3158 /* we don't want to end_page_writeback on
3159 * a compressed extent. this happens
3160 * elsewhere
3161 */
3162 nr++;
3163 }
3164
3165 cur += iosize;
3166 pg_offset += iosize;
3167 continue;
3168 }
3169 /* leave this out until we have a page_mkwrite call */
3170 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3171 EXTENT_DIRTY, 0, NULL)) {
3172 cur = cur + iosize;
3173 pg_offset += iosize;
3174 continue;
3175 }
3176
3177 if (tree->ops && tree->ops->writepage_io_hook) {
3178 ret = tree->ops->writepage_io_hook(page, cur,
3179 cur + iosize - 1);
3180 } else {
3181 ret = 0;
3182 }
3183 if (ret) {
3184 SetPageError(page);
3185 } else {
3186 unsigned long max_nr = end_index + 1;
3187
3188 set_range_writeback(tree, cur, cur + iosize - 1);
3189 if (!PageWriteback(page)) {
3190 printk(KERN_ERR "btrfs warning page %lu not "
3191 "writeback, cur %llu end %llu\n",
3192 page->index, (unsigned long long)cur,
3193 (unsigned long long)end);
3194 }
3195
3196 ret = submit_extent_page(write_flags, tree, page,
3197 sector, iosize, pg_offset,
3198 bdev, &epd->bio, max_nr,
3199 end_bio_extent_writepage,
3200 0, 0, 0);
3201 if (ret)
3202 SetPageError(page);
3203 }
3204 cur = cur + iosize;
3205 pg_offset += iosize;
3206 nr++;
3207 }
3208 done:
3209 if (nr == 0) {
3210 /* make sure the mapping tag for page dirty gets cleared */
3211 set_page_writeback(page);
3212 end_page_writeback(page);
3213 }
3214 unlock_page(page);
3215
3216 done_unlocked:
3217
3218 /* drop our reference on any cached states */
3219 free_extent_state(cached_state);
3220 return 0;
3221 }
3222
3223 static int eb_wait(void *word)
3224 {
3225 io_schedule();
3226 return 0;
3227 }
3228
3229 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3230 {
3231 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3232 TASK_UNINTERRUPTIBLE);
3233 }
3234
3235 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3236 struct btrfs_fs_info *fs_info,
3237 struct extent_page_data *epd)
3238 {
3239 unsigned long i, num_pages;
3240 int flush = 0;
3241 int ret = 0;
3242
3243 if (!btrfs_try_tree_write_lock(eb)) {
3244 flush = 1;
3245 flush_write_bio(epd);
3246 btrfs_tree_lock(eb);
3247 }
3248
3249 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3250 btrfs_tree_unlock(eb);
3251 if (!epd->sync_io)
3252 return 0;
3253 if (!flush) {
3254 flush_write_bio(epd);
3255 flush = 1;
3256 }
3257 while (1) {
3258 wait_on_extent_buffer_writeback(eb);
3259 btrfs_tree_lock(eb);
3260 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3261 break;
3262 btrfs_tree_unlock(eb);
3263 }
3264 }
3265
3266 /*
3267 * We need to do this to prevent races in people who check if the eb is
3268 * under IO since we can end up having no IO bits set for a short period
3269 * of time.
3270 */
3271 spin_lock(&eb->refs_lock);
3272 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3273 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3274 spin_unlock(&eb->refs_lock);
3275 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3276 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3277 -eb->len,
3278 fs_info->dirty_metadata_batch);
3279 ret = 1;
3280 } else {
3281 spin_unlock(&eb->refs_lock);
3282 }
3283
3284 btrfs_tree_unlock(eb);
3285
3286 if (!ret)
3287 return ret;
3288
3289 num_pages = num_extent_pages(eb->start, eb->len);
3290 for (i = 0; i < num_pages; i++) {
3291 struct page *p = extent_buffer_page(eb, i);
3292
3293 if (!trylock_page(p)) {
3294 if (!flush) {
3295 flush_write_bio(epd);
3296 flush = 1;
3297 }
3298 lock_page(p);
3299 }
3300 }
3301
3302 return ret;
3303 }
3304
3305 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3306 {
3307 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3308 smp_mb__after_clear_bit();
3309 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3310 }
3311
3312 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3313 {
3314 int uptodate = err == 0;
3315 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3316 struct extent_buffer *eb;
3317 int done;
3318
3319 do {
3320 struct page *page = bvec->bv_page;
3321
3322 bvec--;
3323 eb = (struct extent_buffer *)page->private;
3324 BUG_ON(!eb);
3325 done = atomic_dec_and_test(&eb->io_pages);
3326
3327 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3328 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3329 ClearPageUptodate(page);
3330 SetPageError(page);
3331 }
3332
3333 end_page_writeback(page);
3334
3335 if (!done)
3336 continue;
3337
3338 end_extent_buffer_writeback(eb);
3339 } while (bvec >= bio->bi_io_vec);
3340
3341 bio_put(bio);
3342
3343 }
3344
3345 static int write_one_eb(struct extent_buffer *eb,
3346 struct btrfs_fs_info *fs_info,
3347 struct writeback_control *wbc,
3348 struct extent_page_data *epd)
3349 {
3350 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3351 u64 offset = eb->start;
3352 unsigned long i, num_pages;
3353 unsigned long bio_flags = 0;
3354 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3355 int ret = 0;
3356
3357 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3358 num_pages = num_extent_pages(eb->start, eb->len);
3359 atomic_set(&eb->io_pages, num_pages);
3360 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3361 bio_flags = EXTENT_BIO_TREE_LOG;
3362
3363 for (i = 0; i < num_pages; i++) {
3364 struct page *p = extent_buffer_page(eb, i);
3365
3366 clear_page_dirty_for_io(p);
3367 set_page_writeback(p);
3368 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3369 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3370 -1, end_bio_extent_buffer_writepage,
3371 0, epd->bio_flags, bio_flags);
3372 epd->bio_flags = bio_flags;
3373 if (ret) {
3374 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3375 SetPageError(p);
3376 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3377 end_extent_buffer_writeback(eb);
3378 ret = -EIO;
3379 break;
3380 }
3381 offset += PAGE_CACHE_SIZE;
3382 update_nr_written(p, wbc, 1);
3383 unlock_page(p);
3384 }
3385
3386 if (unlikely(ret)) {
3387 for (; i < num_pages; i++) {
3388 struct page *p = extent_buffer_page(eb, i);
3389 unlock_page(p);
3390 }
3391 }
3392
3393 return ret;
3394 }
3395
3396 int btree_write_cache_pages(struct address_space *mapping,
3397 struct writeback_control *wbc)
3398 {
3399 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3400 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3401 struct extent_buffer *eb, *prev_eb = NULL;
3402 struct extent_page_data epd = {
3403 .bio = NULL,
3404 .tree = tree,
3405 .extent_locked = 0,
3406 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3407 .bio_flags = 0,
3408 };
3409 int ret = 0;
3410 int done = 0;
3411 int nr_to_write_done = 0;
3412 struct pagevec pvec;
3413 int nr_pages;
3414 pgoff_t index;
3415 pgoff_t end; /* Inclusive */
3416 int scanned = 0;
3417 int tag;
3418
3419 pagevec_init(&pvec, 0);
3420 if (wbc->range_cyclic) {
3421 index = mapping->writeback_index; /* Start from prev offset */
3422 end = -1;
3423 } else {
3424 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3425 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3426 scanned = 1;
3427 }
3428 if (wbc->sync_mode == WB_SYNC_ALL)
3429 tag = PAGECACHE_TAG_TOWRITE;
3430 else
3431 tag = PAGECACHE_TAG_DIRTY;
3432 retry:
3433 if (wbc->sync_mode == WB_SYNC_ALL)
3434 tag_pages_for_writeback(mapping, index, end);
3435 while (!done && !nr_to_write_done && (index <= end) &&
3436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3437 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3438 unsigned i;
3439
3440 scanned = 1;
3441 for (i = 0; i < nr_pages; i++) {
3442 struct page *page = pvec.pages[i];
3443
3444 if (!PagePrivate(page))
3445 continue;
3446
3447 if (!wbc->range_cyclic && page->index > end) {
3448 done = 1;
3449 break;
3450 }
3451
3452 spin_lock(&mapping->private_lock);
3453 if (!PagePrivate(page)) {
3454 spin_unlock(&mapping->private_lock);
3455 continue;
3456 }
3457
3458 eb = (struct extent_buffer *)page->private;
3459
3460 /*
3461 * Shouldn't happen and normally this would be a BUG_ON
3462 * but no sense in crashing the users box for something
3463 * we can survive anyway.
3464 */
3465 if (!eb) {
3466 spin_unlock(&mapping->private_lock);
3467 WARN_ON(1);
3468 continue;
3469 }
3470
3471 if (eb == prev_eb) {
3472 spin_unlock(&mapping->private_lock);
3473 continue;
3474 }
3475
3476 ret = atomic_inc_not_zero(&eb->refs);
3477 spin_unlock(&mapping->private_lock);
3478 if (!ret)
3479 continue;
3480
3481 prev_eb = eb;
3482 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3483 if (!ret) {
3484 free_extent_buffer(eb);
3485 continue;
3486 }
3487
3488 ret = write_one_eb(eb, fs_info, wbc, &epd);
3489 if (ret) {
3490 done = 1;
3491 free_extent_buffer(eb);
3492 break;
3493 }
3494 free_extent_buffer(eb);
3495
3496 /*
3497 * the filesystem may choose to bump up nr_to_write.
3498 * We have to make sure to honor the new nr_to_write
3499 * at any time
3500 */
3501 nr_to_write_done = wbc->nr_to_write <= 0;
3502 }
3503 pagevec_release(&pvec);
3504 cond_resched();
3505 }
3506 if (!scanned && !done) {
3507 /*
3508 * We hit the last page and there is more work to be done: wrap
3509 * back to the start of the file
3510 */
3511 scanned = 1;
3512 index = 0;
3513 goto retry;
3514 }
3515 flush_write_bio(&epd);
3516 return ret;
3517 }
3518
3519 /**
3520 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3521 * @mapping: address space structure to write
3522 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3523 * @writepage: function called for each page
3524 * @data: data passed to writepage function
3525 *
3526 * If a page is already under I/O, write_cache_pages() skips it, even
3527 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3528 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3529 * and msync() need to guarantee that all the data which was dirty at the time
3530 * the call was made get new I/O started against them. If wbc->sync_mode is
3531 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3532 * existing IO to complete.
3533 */
3534 static int extent_write_cache_pages(struct extent_io_tree *tree,
3535 struct address_space *mapping,
3536 struct writeback_control *wbc,
3537 writepage_t writepage, void *data,
3538 void (*flush_fn)(void *))
3539 {
3540 struct inode *inode = mapping->host;
3541 int ret = 0;
3542 int done = 0;
3543 int nr_to_write_done = 0;
3544 struct pagevec pvec;
3545 int nr_pages;
3546 pgoff_t index;
3547 pgoff_t end; /* Inclusive */
3548 int scanned = 0;
3549 int tag;
3550
3551 /*
3552 * We have to hold onto the inode so that ordered extents can do their
3553 * work when the IO finishes. The alternative to this is failing to add
3554 * an ordered extent if the igrab() fails there and that is a huge pain
3555 * to deal with, so instead just hold onto the inode throughout the
3556 * writepages operation. If it fails here we are freeing up the inode
3557 * anyway and we'd rather not waste our time writing out stuff that is
3558 * going to be truncated anyway.
3559 */
3560 if (!igrab(inode))
3561 return 0;
3562
3563 pagevec_init(&pvec, 0);
3564 if (wbc->range_cyclic) {
3565 index = mapping->writeback_index; /* Start from prev offset */
3566 end = -1;
3567 } else {
3568 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3569 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3570 scanned = 1;
3571 }
3572 if (wbc->sync_mode == WB_SYNC_ALL)
3573 tag = PAGECACHE_TAG_TOWRITE;
3574 else
3575 tag = PAGECACHE_TAG_DIRTY;
3576 retry:
3577 if (wbc->sync_mode == WB_SYNC_ALL)
3578 tag_pages_for_writeback(mapping, index, end);
3579 while (!done && !nr_to_write_done && (index <= end) &&
3580 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3581 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3582 unsigned i;
3583
3584 scanned = 1;
3585 for (i = 0; i < nr_pages; i++) {
3586 struct page *page = pvec.pages[i];
3587
3588 /*
3589 * At this point we hold neither mapping->tree_lock nor
3590 * lock on the page itself: the page may be truncated or
3591 * invalidated (changing page->mapping to NULL), or even
3592 * swizzled back from swapper_space to tmpfs file
3593 * mapping
3594 */
3595 if (!trylock_page(page)) {
3596 flush_fn(data);
3597 lock_page(page);
3598 }
3599
3600 if (unlikely(page->mapping != mapping)) {
3601 unlock_page(page);
3602 continue;
3603 }
3604
3605 if (!wbc->range_cyclic && page->index > end) {
3606 done = 1;
3607 unlock_page(page);
3608 continue;
3609 }
3610
3611 if (wbc->sync_mode != WB_SYNC_NONE) {
3612 if (PageWriteback(page))
3613 flush_fn(data);
3614 wait_on_page_writeback(page);
3615 }
3616
3617 if (PageWriteback(page) ||
3618 !clear_page_dirty_for_io(page)) {
3619 unlock_page(page);
3620 continue;
3621 }
3622
3623 ret = (*writepage)(page, wbc, data);
3624
3625 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3626 unlock_page(page);
3627 ret = 0;
3628 }
3629 if (ret)
3630 done = 1;
3631
3632 /*
3633 * the filesystem may choose to bump up nr_to_write.
3634 * We have to make sure to honor the new nr_to_write
3635 * at any time
3636 */
3637 nr_to_write_done = wbc->nr_to_write <= 0;
3638 }
3639 pagevec_release(&pvec);
3640 cond_resched();
3641 }
3642 if (!scanned && !done) {
3643 /*
3644 * We hit the last page and there is more work to be done: wrap
3645 * back to the start of the file
3646 */
3647 scanned = 1;
3648 index = 0;
3649 goto retry;
3650 }
3651 btrfs_add_delayed_iput(inode);
3652 return ret;
3653 }
3654
3655 static void flush_epd_write_bio(struct extent_page_data *epd)
3656 {
3657 if (epd->bio) {
3658 int rw = WRITE;
3659 int ret;
3660
3661 if (epd->sync_io)
3662 rw = WRITE_SYNC;
3663
3664 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3665 BUG_ON(ret < 0); /* -ENOMEM */
3666 epd->bio = NULL;
3667 }
3668 }
3669
3670 static noinline void flush_write_bio(void *data)
3671 {
3672 struct extent_page_data *epd = data;
3673 flush_epd_write_bio(epd);
3674 }
3675
3676 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3677 get_extent_t *get_extent,
3678 struct writeback_control *wbc)
3679 {
3680 int ret;
3681 struct extent_page_data epd = {
3682 .bio = NULL,
3683 .tree = tree,
3684 .get_extent = get_extent,
3685 .extent_locked = 0,
3686 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3687 .bio_flags = 0,
3688 };
3689
3690 ret = __extent_writepage(page, wbc, &epd);
3691
3692 flush_epd_write_bio(&epd);
3693 return ret;
3694 }
3695
3696 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3697 u64 start, u64 end, get_extent_t *get_extent,
3698 int mode)
3699 {
3700 int ret = 0;
3701 struct address_space *mapping = inode->i_mapping;
3702 struct page *page;
3703 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3704 PAGE_CACHE_SHIFT;
3705
3706 struct extent_page_data epd = {
3707 .bio = NULL,
3708 .tree = tree,
3709 .get_extent = get_extent,
3710 .extent_locked = 1,
3711 .sync_io = mode == WB_SYNC_ALL,
3712 .bio_flags = 0,
3713 };
3714 struct writeback_control wbc_writepages = {
3715 .sync_mode = mode,
3716 .nr_to_write = nr_pages * 2,
3717 .range_start = start,
3718 .range_end = end + 1,
3719 };
3720
3721 while (start <= end) {
3722 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3723 if (clear_page_dirty_for_io(page))
3724 ret = __extent_writepage(page, &wbc_writepages, &epd);
3725 else {
3726 if (tree->ops && tree->ops->writepage_end_io_hook)
3727 tree->ops->writepage_end_io_hook(page, start,
3728 start + PAGE_CACHE_SIZE - 1,
3729 NULL, 1);
3730 unlock_page(page);
3731 }
3732 page_cache_release(page);
3733 start += PAGE_CACHE_SIZE;
3734 }
3735
3736 flush_epd_write_bio(&epd);
3737 return ret;
3738 }
3739
3740 int extent_writepages(struct extent_io_tree *tree,
3741 struct address_space *mapping,
3742 get_extent_t *get_extent,
3743 struct writeback_control *wbc)
3744 {
3745 int ret = 0;
3746 struct extent_page_data epd = {
3747 .bio = NULL,
3748 .tree = tree,
3749 .get_extent = get_extent,
3750 .extent_locked = 0,
3751 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3752 .bio_flags = 0,
3753 };
3754
3755 ret = extent_write_cache_pages(tree, mapping, wbc,
3756 __extent_writepage, &epd,
3757 flush_write_bio);
3758 flush_epd_write_bio(&epd);
3759 return ret;
3760 }
3761
3762 int extent_readpages(struct extent_io_tree *tree,
3763 struct address_space *mapping,
3764 struct list_head *pages, unsigned nr_pages,
3765 get_extent_t get_extent)
3766 {
3767 struct bio *bio = NULL;
3768 unsigned page_idx;
3769 unsigned long bio_flags = 0;
3770 struct page *pagepool[16];
3771 struct page *page;
3772 int i = 0;
3773 int nr = 0;
3774
3775 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3776 page = list_entry(pages->prev, struct page, lru);
3777
3778 prefetchw(&page->flags);
3779 list_del(&page->lru);
3780 if (add_to_page_cache_lru(page, mapping,
3781 page->index, GFP_NOFS)) {
3782 page_cache_release(page);
3783 continue;
3784 }
3785
3786 pagepool[nr++] = page;
3787 if (nr < ARRAY_SIZE(pagepool))
3788 continue;
3789 for (i = 0; i < nr; i++) {
3790 __extent_read_full_page(tree, pagepool[i], get_extent,
3791 &bio, 0, &bio_flags, READ);
3792 page_cache_release(pagepool[i]);
3793 }
3794 nr = 0;
3795 }
3796 for (i = 0; i < nr; i++) {
3797 __extent_read_full_page(tree, pagepool[i], get_extent,
3798 &bio, 0, &bio_flags, READ);
3799 page_cache_release(pagepool[i]);
3800 }
3801
3802 BUG_ON(!list_empty(pages));
3803 if (bio)
3804 return submit_one_bio(READ, bio, 0, bio_flags);
3805 return 0;
3806 }
3807
3808 /*
3809 * basic invalidatepage code, this waits on any locked or writeback
3810 * ranges corresponding to the page, and then deletes any extent state
3811 * records from the tree
3812 */
3813 int extent_invalidatepage(struct extent_io_tree *tree,
3814 struct page *page, unsigned long offset)
3815 {
3816 struct extent_state *cached_state = NULL;
3817 u64 start = page_offset(page);
3818 u64 end = start + PAGE_CACHE_SIZE - 1;
3819 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3820
3821 start += ALIGN(offset, blocksize);
3822 if (start > end)
3823 return 0;
3824
3825 lock_extent_bits(tree, start, end, 0, &cached_state);
3826 wait_on_page_writeback(page);
3827 clear_extent_bit(tree, start, end,
3828 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3829 EXTENT_DO_ACCOUNTING,
3830 1, 1, &cached_state, GFP_NOFS);
3831 return 0;
3832 }
3833
3834 /*
3835 * a helper for releasepage, this tests for areas of the page that
3836 * are locked or under IO and drops the related state bits if it is safe
3837 * to drop the page.
3838 */
3839 static int try_release_extent_state(struct extent_map_tree *map,
3840 struct extent_io_tree *tree,
3841 struct page *page, gfp_t mask)
3842 {
3843 u64 start = page_offset(page);
3844 u64 end = start + PAGE_CACHE_SIZE - 1;
3845 int ret = 1;
3846
3847 if (test_range_bit(tree, start, end,
3848 EXTENT_IOBITS, 0, NULL))
3849 ret = 0;
3850 else {
3851 if ((mask & GFP_NOFS) == GFP_NOFS)
3852 mask = GFP_NOFS;
3853 /*
3854 * at this point we can safely clear everything except the
3855 * locked bit and the nodatasum bit
3856 */
3857 ret = clear_extent_bit(tree, start, end,
3858 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3859 0, 0, NULL, mask);
3860
3861 /* if clear_extent_bit failed for enomem reasons,
3862 * we can't allow the release to continue.
3863 */
3864 if (ret < 0)
3865 ret = 0;
3866 else
3867 ret = 1;
3868 }
3869 return ret;
3870 }
3871
3872 /*
3873 * a helper for releasepage. As long as there are no locked extents
3874 * in the range corresponding to the page, both state records and extent
3875 * map records are removed
3876 */
3877 int try_release_extent_mapping(struct extent_map_tree *map,
3878 struct extent_io_tree *tree, struct page *page,
3879 gfp_t mask)
3880 {
3881 struct extent_map *em;
3882 u64 start = page_offset(page);
3883 u64 end = start + PAGE_CACHE_SIZE - 1;
3884
3885 if ((mask & __GFP_WAIT) &&
3886 page->mapping->host->i_size > 16 * 1024 * 1024) {
3887 u64 len;
3888 while (start <= end) {
3889 len = end - start + 1;
3890 write_lock(&map->lock);
3891 em = lookup_extent_mapping(map, start, len);
3892 if (!em) {
3893 write_unlock(&map->lock);
3894 break;
3895 }
3896 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3897 em->start != start) {
3898 write_unlock(&map->lock);
3899 free_extent_map(em);
3900 break;
3901 }
3902 if (!test_range_bit(tree, em->start,
3903 extent_map_end(em) - 1,
3904 EXTENT_LOCKED | EXTENT_WRITEBACK,
3905 0, NULL)) {
3906 remove_extent_mapping(map, em);
3907 /* once for the rb tree */
3908 free_extent_map(em);
3909 }
3910 start = extent_map_end(em);
3911 write_unlock(&map->lock);
3912
3913 /* once for us */
3914 free_extent_map(em);
3915 }
3916 }
3917 return try_release_extent_state(map, tree, page, mask);
3918 }
3919
3920 /*
3921 * helper function for fiemap, which doesn't want to see any holes.
3922 * This maps until we find something past 'last'
3923 */
3924 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3925 u64 offset,
3926 u64 last,
3927 get_extent_t *get_extent)
3928 {
3929 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3930 struct extent_map *em;
3931 u64 len;
3932
3933 if (offset >= last)
3934 return NULL;
3935
3936 while(1) {
3937 len = last - offset;
3938 if (len == 0)
3939 break;
3940 len = ALIGN(len, sectorsize);
3941 em = get_extent(inode, NULL, 0, offset, len, 0);
3942 if (IS_ERR_OR_NULL(em))
3943 return em;
3944
3945 /* if this isn't a hole return it */
3946 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3947 em->block_start != EXTENT_MAP_HOLE) {
3948 return em;
3949 }
3950
3951 /* this is a hole, advance to the next extent */
3952 offset = extent_map_end(em);
3953 free_extent_map(em);
3954 if (offset >= last)
3955 break;
3956 }
3957 return NULL;
3958 }
3959
3960 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3961 __u64 start, __u64 len, get_extent_t *get_extent)
3962 {
3963 int ret = 0;
3964 u64 off = start;
3965 u64 max = start + len;
3966 u32 flags = 0;
3967 u32 found_type;
3968 u64 last;
3969 u64 last_for_get_extent = 0;
3970 u64 disko = 0;
3971 u64 isize = i_size_read(inode);
3972 struct btrfs_key found_key;
3973 struct extent_map *em = NULL;
3974 struct extent_state *cached_state = NULL;
3975 struct btrfs_path *path;
3976 struct btrfs_file_extent_item *item;
3977 int end = 0;
3978 u64 em_start = 0;
3979 u64 em_len = 0;
3980 u64 em_end = 0;
3981 unsigned long emflags;
3982
3983 if (len == 0)
3984 return -EINVAL;
3985
3986 path = btrfs_alloc_path();
3987 if (!path)
3988 return -ENOMEM;
3989 path->leave_spinning = 1;
3990
3991 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3992 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3993
3994 /*
3995 * lookup the last file extent. We're not using i_size here
3996 * because there might be preallocation past i_size
3997 */
3998 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3999 path, btrfs_ino(inode), -1, 0);
4000 if (ret < 0) {
4001 btrfs_free_path(path);
4002 return ret;
4003 }
4004 WARN_ON(!ret);
4005 path->slots[0]--;
4006 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4007 struct btrfs_file_extent_item);
4008 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4009 found_type = btrfs_key_type(&found_key);
4010
4011 /* No extents, but there might be delalloc bits */
4012 if (found_key.objectid != btrfs_ino(inode) ||
4013 found_type != BTRFS_EXTENT_DATA_KEY) {
4014 /* have to trust i_size as the end */
4015 last = (u64)-1;
4016 last_for_get_extent = isize;
4017 } else {
4018 /*
4019 * remember the start of the last extent. There are a
4020 * bunch of different factors that go into the length of the
4021 * extent, so its much less complex to remember where it started
4022 */
4023 last = found_key.offset;
4024 last_for_get_extent = last + 1;
4025 }
4026 btrfs_free_path(path);
4027
4028 /*
4029 * we might have some extents allocated but more delalloc past those
4030 * extents. so, we trust isize unless the start of the last extent is
4031 * beyond isize
4032 */
4033 if (last < isize) {
4034 last = (u64)-1;
4035 last_for_get_extent = isize;
4036 }
4037
4038 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4039 &cached_state);
4040
4041 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4042 get_extent);
4043 if (!em)
4044 goto out;
4045 if (IS_ERR(em)) {
4046 ret = PTR_ERR(em);
4047 goto out;
4048 }
4049
4050 while (!end) {
4051 u64 offset_in_extent = 0;
4052
4053 /* break if the extent we found is outside the range */
4054 if (em->start >= max || extent_map_end(em) < off)
4055 break;
4056
4057 /*
4058 * get_extent may return an extent that starts before our
4059 * requested range. We have to make sure the ranges
4060 * we return to fiemap always move forward and don't
4061 * overlap, so adjust the offsets here
4062 */
4063 em_start = max(em->start, off);
4064
4065 /*
4066 * record the offset from the start of the extent
4067 * for adjusting the disk offset below. Only do this if the
4068 * extent isn't compressed since our in ram offset may be past
4069 * what we have actually allocated on disk.
4070 */
4071 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4072 offset_in_extent = em_start - em->start;
4073 em_end = extent_map_end(em);
4074 em_len = em_end - em_start;
4075 emflags = em->flags;
4076 disko = 0;
4077 flags = 0;
4078
4079 /*
4080 * bump off for our next call to get_extent
4081 */
4082 off = extent_map_end(em);
4083 if (off >= max)
4084 end = 1;
4085
4086 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4087 end = 1;
4088 flags |= FIEMAP_EXTENT_LAST;
4089 } else if (em->block_start == EXTENT_MAP_INLINE) {
4090 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4091 FIEMAP_EXTENT_NOT_ALIGNED);
4092 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4093 flags |= (FIEMAP_EXTENT_DELALLOC |
4094 FIEMAP_EXTENT_UNKNOWN);
4095 } else {
4096 disko = em->block_start + offset_in_extent;
4097 }
4098 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4099 flags |= FIEMAP_EXTENT_ENCODED;
4100
4101 free_extent_map(em);
4102 em = NULL;
4103 if ((em_start >= last) || em_len == (u64)-1 ||
4104 (last == (u64)-1 && isize <= em_end)) {
4105 flags |= FIEMAP_EXTENT_LAST;
4106 end = 1;
4107 }
4108
4109 /* now scan forward to see if this is really the last extent. */
4110 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4111 get_extent);
4112 if (IS_ERR(em)) {
4113 ret = PTR_ERR(em);
4114 goto out;
4115 }
4116 if (!em) {
4117 flags |= FIEMAP_EXTENT_LAST;
4118 end = 1;
4119 }
4120 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4121 em_len, flags);
4122 if (ret)
4123 goto out_free;
4124 }
4125 out_free:
4126 free_extent_map(em);
4127 out:
4128 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4129 &cached_state, GFP_NOFS);
4130 return ret;
4131 }
4132
4133 static void __free_extent_buffer(struct extent_buffer *eb)
4134 {
4135 btrfs_leak_debug_del(&eb->leak_list);
4136 kmem_cache_free(extent_buffer_cache, eb);
4137 }
4138
4139 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4140 u64 start,
4141 unsigned long len,
4142 gfp_t mask)
4143 {
4144 struct extent_buffer *eb = NULL;
4145
4146 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4147 if (eb == NULL)
4148 return NULL;
4149 eb->start = start;
4150 eb->len = len;
4151 eb->tree = tree;
4152 eb->bflags = 0;
4153 rwlock_init(&eb->lock);
4154 atomic_set(&eb->write_locks, 0);
4155 atomic_set(&eb->read_locks, 0);
4156 atomic_set(&eb->blocking_readers, 0);
4157 atomic_set(&eb->blocking_writers, 0);
4158 atomic_set(&eb->spinning_readers, 0);
4159 atomic_set(&eb->spinning_writers, 0);
4160 eb->lock_nested = 0;
4161 init_waitqueue_head(&eb->write_lock_wq);
4162 init_waitqueue_head(&eb->read_lock_wq);
4163
4164 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4165
4166 spin_lock_init(&eb->refs_lock);
4167 atomic_set(&eb->refs, 1);
4168 atomic_set(&eb->io_pages, 0);
4169
4170 /*
4171 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4172 */
4173 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4174 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4175 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4176
4177 return eb;
4178 }
4179
4180 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4181 {
4182 unsigned long i;
4183 struct page *p;
4184 struct extent_buffer *new;
4185 unsigned long num_pages = num_extent_pages(src->start, src->len);
4186
4187 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4188 if (new == NULL)
4189 return NULL;
4190
4191 for (i = 0; i < num_pages; i++) {
4192 p = alloc_page(GFP_ATOMIC);
4193 BUG_ON(!p);
4194 attach_extent_buffer_page(new, p);
4195 WARN_ON(PageDirty(p));
4196 SetPageUptodate(p);
4197 new->pages[i] = p;
4198 }
4199
4200 copy_extent_buffer(new, src, 0, 0, src->len);
4201 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4202 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4203
4204 return new;
4205 }
4206
4207 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4208 {
4209 struct extent_buffer *eb;
4210 unsigned long num_pages = num_extent_pages(0, len);
4211 unsigned long i;
4212
4213 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4214 if (!eb)
4215 return NULL;
4216
4217 for (i = 0; i < num_pages; i++) {
4218 eb->pages[i] = alloc_page(GFP_ATOMIC);
4219 if (!eb->pages[i])
4220 goto err;
4221 }
4222 set_extent_buffer_uptodate(eb);
4223 btrfs_set_header_nritems(eb, 0);
4224 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4225
4226 return eb;
4227 err:
4228 for (; i > 0; i--)
4229 __free_page(eb->pages[i - 1]);
4230 __free_extent_buffer(eb);
4231 return NULL;
4232 }
4233
4234 static int extent_buffer_under_io(struct extent_buffer *eb)
4235 {
4236 return (atomic_read(&eb->io_pages) ||
4237 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4238 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4239 }
4240
4241 /*
4242 * Helper for releasing extent buffer page.
4243 */
4244 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4245 unsigned long start_idx)
4246 {
4247 unsigned long index;
4248 unsigned long num_pages;
4249 struct page *page;
4250 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4251
4252 BUG_ON(extent_buffer_under_io(eb));
4253
4254 num_pages = num_extent_pages(eb->start, eb->len);
4255 index = start_idx + num_pages;
4256 if (start_idx >= index)
4257 return;
4258
4259 do {
4260 index--;
4261 page = extent_buffer_page(eb, index);
4262 if (page && mapped) {
4263 spin_lock(&page->mapping->private_lock);
4264 /*
4265 * We do this since we'll remove the pages after we've
4266 * removed the eb from the radix tree, so we could race
4267 * and have this page now attached to the new eb. So
4268 * only clear page_private if it's still connected to
4269 * this eb.
4270 */
4271 if (PagePrivate(page) &&
4272 page->private == (unsigned long)eb) {
4273 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4274 BUG_ON(PageDirty(page));
4275 BUG_ON(PageWriteback(page));
4276 /*
4277 * We need to make sure we haven't be attached
4278 * to a new eb.
4279 */
4280 ClearPagePrivate(page);
4281 set_page_private(page, 0);
4282 /* One for the page private */
4283 page_cache_release(page);
4284 }
4285 spin_unlock(&page->mapping->private_lock);
4286
4287 }
4288 if (page) {
4289 /* One for when we alloced the page */
4290 page_cache_release(page);
4291 }
4292 } while (index != start_idx);
4293 }
4294
4295 /*
4296 * Helper for releasing the extent buffer.
4297 */
4298 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4299 {
4300 btrfs_release_extent_buffer_page(eb, 0);
4301 __free_extent_buffer(eb);
4302 }
4303
4304 static void check_buffer_tree_ref(struct extent_buffer *eb)
4305 {
4306 int refs;
4307 /* the ref bit is tricky. We have to make sure it is set
4308 * if we have the buffer dirty. Otherwise the
4309 * code to free a buffer can end up dropping a dirty
4310 * page
4311 *
4312 * Once the ref bit is set, it won't go away while the
4313 * buffer is dirty or in writeback, and it also won't
4314 * go away while we have the reference count on the
4315 * eb bumped.
4316 *
4317 * We can't just set the ref bit without bumping the
4318 * ref on the eb because free_extent_buffer might
4319 * see the ref bit and try to clear it. If this happens
4320 * free_extent_buffer might end up dropping our original
4321 * ref by mistake and freeing the page before we are able
4322 * to add one more ref.
4323 *
4324 * So bump the ref count first, then set the bit. If someone
4325 * beat us to it, drop the ref we added.
4326 */
4327 refs = atomic_read(&eb->refs);
4328 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4329 return;
4330
4331 spin_lock(&eb->refs_lock);
4332 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4333 atomic_inc(&eb->refs);
4334 spin_unlock(&eb->refs_lock);
4335 }
4336
4337 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4338 {
4339 unsigned long num_pages, i;
4340
4341 check_buffer_tree_ref(eb);
4342
4343 num_pages = num_extent_pages(eb->start, eb->len);
4344 for (i = 0; i < num_pages; i++) {
4345 struct page *p = extent_buffer_page(eb, i);
4346 mark_page_accessed(p);
4347 }
4348 }
4349
4350 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4351 u64 start, unsigned long len)
4352 {
4353 unsigned long num_pages = num_extent_pages(start, len);
4354 unsigned long i;
4355 unsigned long index = start >> PAGE_CACHE_SHIFT;
4356 struct extent_buffer *eb;
4357 struct extent_buffer *exists = NULL;
4358 struct page *p;
4359 struct address_space *mapping = tree->mapping;
4360 int uptodate = 1;
4361 int ret;
4362
4363 rcu_read_lock();
4364 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4365 if (eb && atomic_inc_not_zero(&eb->refs)) {
4366 rcu_read_unlock();
4367 mark_extent_buffer_accessed(eb);
4368 return eb;
4369 }
4370 rcu_read_unlock();
4371
4372 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4373 if (!eb)
4374 return NULL;
4375
4376 for (i = 0; i < num_pages; i++, index++) {
4377 p = find_or_create_page(mapping, index, GFP_NOFS);
4378 if (!p)
4379 goto free_eb;
4380
4381 spin_lock(&mapping->private_lock);
4382 if (PagePrivate(p)) {
4383 /*
4384 * We could have already allocated an eb for this page
4385 * and attached one so lets see if we can get a ref on
4386 * the existing eb, and if we can we know it's good and
4387 * we can just return that one, else we know we can just
4388 * overwrite page->private.
4389 */
4390 exists = (struct extent_buffer *)p->private;
4391 if (atomic_inc_not_zero(&exists->refs)) {
4392 spin_unlock(&mapping->private_lock);
4393 unlock_page(p);
4394 page_cache_release(p);
4395 mark_extent_buffer_accessed(exists);
4396 goto free_eb;
4397 }
4398
4399 /*
4400 * Do this so attach doesn't complain and we need to
4401 * drop the ref the old guy had.
4402 */
4403 ClearPagePrivate(p);
4404 WARN_ON(PageDirty(p));
4405 page_cache_release(p);
4406 }
4407 attach_extent_buffer_page(eb, p);
4408 spin_unlock(&mapping->private_lock);
4409 WARN_ON(PageDirty(p));
4410 mark_page_accessed(p);
4411 eb->pages[i] = p;
4412 if (!PageUptodate(p))
4413 uptodate = 0;
4414
4415 /*
4416 * see below about how we avoid a nasty race with release page
4417 * and why we unlock later
4418 */
4419 }
4420 if (uptodate)
4421 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4422 again:
4423 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4424 if (ret)
4425 goto free_eb;
4426
4427 spin_lock(&tree->buffer_lock);
4428 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4429 if (ret == -EEXIST) {
4430 exists = radix_tree_lookup(&tree->buffer,
4431 start >> PAGE_CACHE_SHIFT);
4432 if (!atomic_inc_not_zero(&exists->refs)) {
4433 spin_unlock(&tree->buffer_lock);
4434 radix_tree_preload_end();
4435 exists = NULL;
4436 goto again;
4437 }
4438 spin_unlock(&tree->buffer_lock);
4439 radix_tree_preload_end();
4440 mark_extent_buffer_accessed(exists);
4441 goto free_eb;
4442 }
4443 /* add one reference for the tree */
4444 check_buffer_tree_ref(eb);
4445 spin_unlock(&tree->buffer_lock);
4446 radix_tree_preload_end();
4447
4448 /*
4449 * there is a race where release page may have
4450 * tried to find this extent buffer in the radix
4451 * but failed. It will tell the VM it is safe to
4452 * reclaim the, and it will clear the page private bit.
4453 * We must make sure to set the page private bit properly
4454 * after the extent buffer is in the radix tree so
4455 * it doesn't get lost
4456 */
4457 SetPageChecked(eb->pages[0]);
4458 for (i = 1; i < num_pages; i++) {
4459 p = extent_buffer_page(eb, i);
4460 ClearPageChecked(p);
4461 unlock_page(p);
4462 }
4463 unlock_page(eb->pages[0]);
4464 return eb;
4465
4466 free_eb:
4467 for (i = 0; i < num_pages; i++) {
4468 if (eb->pages[i])
4469 unlock_page(eb->pages[i]);
4470 }
4471
4472 WARN_ON(!atomic_dec_and_test(&eb->refs));
4473 btrfs_release_extent_buffer(eb);
4474 return exists;
4475 }
4476
4477 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4478 u64 start, unsigned long len)
4479 {
4480 struct extent_buffer *eb;
4481
4482 rcu_read_lock();
4483 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4484 if (eb && atomic_inc_not_zero(&eb->refs)) {
4485 rcu_read_unlock();
4486 mark_extent_buffer_accessed(eb);
4487 return eb;
4488 }
4489 rcu_read_unlock();
4490
4491 return NULL;
4492 }
4493
4494 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4495 {
4496 struct extent_buffer *eb =
4497 container_of(head, struct extent_buffer, rcu_head);
4498
4499 __free_extent_buffer(eb);
4500 }
4501
4502 /* Expects to have eb->eb_lock already held */
4503 static int release_extent_buffer(struct extent_buffer *eb)
4504 {
4505 WARN_ON(atomic_read(&eb->refs) == 0);
4506 if (atomic_dec_and_test(&eb->refs)) {
4507 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4508 spin_unlock(&eb->refs_lock);
4509 } else {
4510 struct extent_io_tree *tree = eb->tree;
4511
4512 spin_unlock(&eb->refs_lock);
4513
4514 spin_lock(&tree->buffer_lock);
4515 radix_tree_delete(&tree->buffer,
4516 eb->start >> PAGE_CACHE_SHIFT);
4517 spin_unlock(&tree->buffer_lock);
4518 }
4519
4520 /* Should be safe to release our pages at this point */
4521 btrfs_release_extent_buffer_page(eb, 0);
4522 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4523 return 1;
4524 }
4525 spin_unlock(&eb->refs_lock);
4526
4527 return 0;
4528 }
4529
4530 void free_extent_buffer(struct extent_buffer *eb)
4531 {
4532 int refs;
4533 int old;
4534 if (!eb)
4535 return;
4536
4537 while (1) {
4538 refs = atomic_read(&eb->refs);
4539 if (refs <= 3)
4540 break;
4541 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4542 if (old == refs)
4543 return;
4544 }
4545
4546 spin_lock(&eb->refs_lock);
4547 if (atomic_read(&eb->refs) == 2 &&
4548 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4549 atomic_dec(&eb->refs);
4550
4551 if (atomic_read(&eb->refs) == 2 &&
4552 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4553 !extent_buffer_under_io(eb) &&
4554 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4555 atomic_dec(&eb->refs);
4556
4557 /*
4558 * I know this is terrible, but it's temporary until we stop tracking
4559 * the uptodate bits and such for the extent buffers.
4560 */
4561 release_extent_buffer(eb);
4562 }
4563
4564 void free_extent_buffer_stale(struct extent_buffer *eb)
4565 {
4566 if (!eb)
4567 return;
4568
4569 spin_lock(&eb->refs_lock);
4570 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4571
4572 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4573 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4574 atomic_dec(&eb->refs);
4575 release_extent_buffer(eb);
4576 }
4577
4578 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4579 {
4580 unsigned long i;
4581 unsigned long num_pages;
4582 struct page *page;
4583
4584 num_pages = num_extent_pages(eb->start, eb->len);
4585
4586 for (i = 0; i < num_pages; i++) {
4587 page = extent_buffer_page(eb, i);
4588 if (!PageDirty(page))
4589 continue;
4590
4591 lock_page(page);
4592 WARN_ON(!PagePrivate(page));
4593
4594 clear_page_dirty_for_io(page);
4595 spin_lock_irq(&page->mapping->tree_lock);
4596 if (!PageDirty(page)) {
4597 radix_tree_tag_clear(&page->mapping->page_tree,
4598 page_index(page),
4599 PAGECACHE_TAG_DIRTY);
4600 }
4601 spin_unlock_irq(&page->mapping->tree_lock);
4602 ClearPageError(page);
4603 unlock_page(page);
4604 }
4605 WARN_ON(atomic_read(&eb->refs) == 0);
4606 }
4607
4608 int set_extent_buffer_dirty(struct extent_buffer *eb)
4609 {
4610 unsigned long i;
4611 unsigned long num_pages;
4612 int was_dirty = 0;
4613
4614 check_buffer_tree_ref(eb);
4615
4616 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4617
4618 num_pages = num_extent_pages(eb->start, eb->len);
4619 WARN_ON(atomic_read(&eb->refs) == 0);
4620 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4621
4622 for (i = 0; i < num_pages; i++)
4623 set_page_dirty(extent_buffer_page(eb, i));
4624 return was_dirty;
4625 }
4626
4627 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4628 {
4629 unsigned long i;
4630 struct page *page;
4631 unsigned long num_pages;
4632
4633 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4634 num_pages = num_extent_pages(eb->start, eb->len);
4635 for (i = 0; i < num_pages; i++) {
4636 page = extent_buffer_page(eb, i);
4637 if (page)
4638 ClearPageUptodate(page);
4639 }
4640 return 0;
4641 }
4642
4643 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4644 {
4645 unsigned long i;
4646 struct page *page;
4647 unsigned long num_pages;
4648
4649 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4650 num_pages = num_extent_pages(eb->start, eb->len);
4651 for (i = 0; i < num_pages; i++) {
4652 page = extent_buffer_page(eb, i);
4653 SetPageUptodate(page);
4654 }
4655 return 0;
4656 }
4657
4658 int extent_buffer_uptodate(struct extent_buffer *eb)
4659 {
4660 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4661 }
4662
4663 int read_extent_buffer_pages(struct extent_io_tree *tree,
4664 struct extent_buffer *eb, u64 start, int wait,
4665 get_extent_t *get_extent, int mirror_num)
4666 {
4667 unsigned long i;
4668 unsigned long start_i;
4669 struct page *page;
4670 int err;
4671 int ret = 0;
4672 int locked_pages = 0;
4673 int all_uptodate = 1;
4674 unsigned long num_pages;
4675 unsigned long num_reads = 0;
4676 struct bio *bio = NULL;
4677 unsigned long bio_flags = 0;
4678
4679 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4680 return 0;
4681
4682 if (start) {
4683 WARN_ON(start < eb->start);
4684 start_i = (start >> PAGE_CACHE_SHIFT) -
4685 (eb->start >> PAGE_CACHE_SHIFT);
4686 } else {
4687 start_i = 0;
4688 }
4689
4690 num_pages = num_extent_pages(eb->start, eb->len);
4691 for (i = start_i; i < num_pages; i++) {
4692 page = extent_buffer_page(eb, i);
4693 if (wait == WAIT_NONE) {
4694 if (!trylock_page(page))
4695 goto unlock_exit;
4696 } else {
4697 lock_page(page);
4698 }
4699 locked_pages++;
4700 if (!PageUptodate(page)) {
4701 num_reads++;
4702 all_uptodate = 0;
4703 }
4704 }
4705 if (all_uptodate) {
4706 if (start_i == 0)
4707 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4708 goto unlock_exit;
4709 }
4710
4711 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4712 eb->read_mirror = 0;
4713 atomic_set(&eb->io_pages, num_reads);
4714 for (i = start_i; i < num_pages; i++) {
4715 page = extent_buffer_page(eb, i);
4716 if (!PageUptodate(page)) {
4717 ClearPageError(page);
4718 err = __extent_read_full_page(tree, page,
4719 get_extent, &bio,
4720 mirror_num, &bio_flags,
4721 READ | REQ_META);
4722 if (err)
4723 ret = err;
4724 } else {
4725 unlock_page(page);
4726 }
4727 }
4728
4729 if (bio) {
4730 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4731 bio_flags);
4732 if (err)
4733 return err;
4734 }
4735
4736 if (ret || wait != WAIT_COMPLETE)
4737 return ret;
4738
4739 for (i = start_i; i < num_pages; i++) {
4740 page = extent_buffer_page(eb, i);
4741 wait_on_page_locked(page);
4742 if (!PageUptodate(page))
4743 ret = -EIO;
4744 }
4745
4746 return ret;
4747
4748 unlock_exit:
4749 i = start_i;
4750 while (locked_pages > 0) {
4751 page = extent_buffer_page(eb, i);
4752 i++;
4753 unlock_page(page);
4754 locked_pages--;
4755 }
4756 return ret;
4757 }
4758
4759 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4760 unsigned long start,
4761 unsigned long len)
4762 {
4763 size_t cur;
4764 size_t offset;
4765 struct page *page;
4766 char *kaddr;
4767 char *dst = (char *)dstv;
4768 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4769 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4770
4771 WARN_ON(start > eb->len);
4772 WARN_ON(start + len > eb->start + eb->len);
4773
4774 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4775
4776 while (len > 0) {
4777 page = extent_buffer_page(eb, i);
4778
4779 cur = min(len, (PAGE_CACHE_SIZE - offset));
4780 kaddr = page_address(page);
4781 memcpy(dst, kaddr + offset, cur);
4782
4783 dst += cur;
4784 len -= cur;
4785 offset = 0;
4786 i++;
4787 }
4788 }
4789
4790 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4791 unsigned long min_len, char **map,
4792 unsigned long *map_start,
4793 unsigned long *map_len)
4794 {
4795 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4796 char *kaddr;
4797 struct page *p;
4798 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4799 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4800 unsigned long end_i = (start_offset + start + min_len - 1) >>
4801 PAGE_CACHE_SHIFT;
4802
4803 if (i != end_i)
4804 return -EINVAL;
4805
4806 if (i == 0) {
4807 offset = start_offset;
4808 *map_start = 0;
4809 } else {
4810 offset = 0;
4811 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4812 }
4813
4814 if (start + min_len > eb->len) {
4815 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4816 "wanted %lu %lu\n", (unsigned long long)eb->start,
4817 eb->len, start, min_len);
4818 return -EINVAL;
4819 }
4820
4821 p = extent_buffer_page(eb, i);
4822 kaddr = page_address(p);
4823 *map = kaddr + offset;
4824 *map_len = PAGE_CACHE_SIZE - offset;
4825 return 0;
4826 }
4827
4828 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4829 unsigned long start,
4830 unsigned long len)
4831 {
4832 size_t cur;
4833 size_t offset;
4834 struct page *page;
4835 char *kaddr;
4836 char *ptr = (char *)ptrv;
4837 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4838 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4839 int ret = 0;
4840
4841 WARN_ON(start > eb->len);
4842 WARN_ON(start + len > eb->start + eb->len);
4843
4844 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4845
4846 while (len > 0) {
4847 page = extent_buffer_page(eb, i);
4848
4849 cur = min(len, (PAGE_CACHE_SIZE - offset));
4850
4851 kaddr = page_address(page);
4852 ret = memcmp(ptr, kaddr + offset, cur);
4853 if (ret)
4854 break;
4855
4856 ptr += cur;
4857 len -= cur;
4858 offset = 0;
4859 i++;
4860 }
4861 return ret;
4862 }
4863
4864 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4865 unsigned long start, unsigned long len)
4866 {
4867 size_t cur;
4868 size_t offset;
4869 struct page *page;
4870 char *kaddr;
4871 char *src = (char *)srcv;
4872 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4873 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4874
4875 WARN_ON(start > eb->len);
4876 WARN_ON(start + len > eb->start + eb->len);
4877
4878 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4879
4880 while (len > 0) {
4881 page = extent_buffer_page(eb, i);
4882 WARN_ON(!PageUptodate(page));
4883
4884 cur = min(len, PAGE_CACHE_SIZE - offset);
4885 kaddr = page_address(page);
4886 memcpy(kaddr + offset, src, cur);
4887
4888 src += cur;
4889 len -= cur;
4890 offset = 0;
4891 i++;
4892 }
4893 }
4894
4895 void memset_extent_buffer(struct extent_buffer *eb, char c,
4896 unsigned long start, unsigned long len)
4897 {
4898 size_t cur;
4899 size_t offset;
4900 struct page *page;
4901 char *kaddr;
4902 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4903 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4904
4905 WARN_ON(start > eb->len);
4906 WARN_ON(start + len > eb->start + eb->len);
4907
4908 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4909
4910 while (len > 0) {
4911 page = extent_buffer_page(eb, i);
4912 WARN_ON(!PageUptodate(page));
4913
4914 cur = min(len, PAGE_CACHE_SIZE - offset);
4915 kaddr = page_address(page);
4916 memset(kaddr + offset, c, cur);
4917
4918 len -= cur;
4919 offset = 0;
4920 i++;
4921 }
4922 }
4923
4924 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4925 unsigned long dst_offset, unsigned long src_offset,
4926 unsigned long len)
4927 {
4928 u64 dst_len = dst->len;
4929 size_t cur;
4930 size_t offset;
4931 struct page *page;
4932 char *kaddr;
4933 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4934 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4935
4936 WARN_ON(src->len != dst_len);
4937
4938 offset = (start_offset + dst_offset) &
4939 ((unsigned long)PAGE_CACHE_SIZE - 1);
4940
4941 while (len > 0) {
4942 page = extent_buffer_page(dst, i);
4943 WARN_ON(!PageUptodate(page));
4944
4945 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4946
4947 kaddr = page_address(page);
4948 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4949
4950 src_offset += cur;
4951 len -= cur;
4952 offset = 0;
4953 i++;
4954 }
4955 }
4956
4957 static void move_pages(struct page *dst_page, struct page *src_page,
4958 unsigned long dst_off, unsigned long src_off,
4959 unsigned long len)
4960 {
4961 char *dst_kaddr = page_address(dst_page);
4962 if (dst_page == src_page) {
4963 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4964 } else {
4965 char *src_kaddr = page_address(src_page);
4966 char *p = dst_kaddr + dst_off + len;
4967 char *s = src_kaddr + src_off + len;
4968
4969 while (len--)
4970 *--p = *--s;
4971 }
4972 }
4973
4974 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4975 {
4976 unsigned long distance = (src > dst) ? src - dst : dst - src;
4977 return distance < len;
4978 }
4979
4980 static void copy_pages(struct page *dst_page, struct page *src_page,
4981 unsigned long dst_off, unsigned long src_off,
4982 unsigned long len)
4983 {
4984 char *dst_kaddr = page_address(dst_page);
4985 char *src_kaddr;
4986 int must_memmove = 0;
4987
4988 if (dst_page != src_page) {
4989 src_kaddr = page_address(src_page);
4990 } else {
4991 src_kaddr = dst_kaddr;
4992 if (areas_overlap(src_off, dst_off, len))
4993 must_memmove = 1;
4994 }
4995
4996 if (must_memmove)
4997 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4998 else
4999 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5000 }
5001
5002 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5003 unsigned long src_offset, unsigned long len)
5004 {
5005 size_t cur;
5006 size_t dst_off_in_page;
5007 size_t src_off_in_page;
5008 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5009 unsigned long dst_i;
5010 unsigned long src_i;
5011
5012 if (src_offset + len > dst->len) {
5013 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5014 "len %lu dst len %lu\n", src_offset, len, dst->len);
5015 BUG_ON(1);
5016 }
5017 if (dst_offset + len > dst->len) {
5018 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5019 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5020 BUG_ON(1);
5021 }
5022
5023 while (len > 0) {
5024 dst_off_in_page = (start_offset + dst_offset) &
5025 ((unsigned long)PAGE_CACHE_SIZE - 1);
5026 src_off_in_page = (start_offset + src_offset) &
5027 ((unsigned long)PAGE_CACHE_SIZE - 1);
5028
5029 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5030 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5031
5032 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5033 src_off_in_page));
5034 cur = min_t(unsigned long, cur,
5035 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5036
5037 copy_pages(extent_buffer_page(dst, dst_i),
5038 extent_buffer_page(dst, src_i),
5039 dst_off_in_page, src_off_in_page, cur);
5040
5041 src_offset += cur;
5042 dst_offset += cur;
5043 len -= cur;
5044 }
5045 }
5046
5047 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5048 unsigned long src_offset, unsigned long len)
5049 {
5050 size_t cur;
5051 size_t dst_off_in_page;
5052 size_t src_off_in_page;
5053 unsigned long dst_end = dst_offset + len - 1;
5054 unsigned long src_end = src_offset + len - 1;
5055 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5056 unsigned long dst_i;
5057 unsigned long src_i;
5058
5059 if (src_offset + len > dst->len) {
5060 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5061 "len %lu len %lu\n", src_offset, len, dst->len);
5062 BUG_ON(1);
5063 }
5064 if (dst_offset + len > dst->len) {
5065 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5066 "len %lu len %lu\n", dst_offset, len, dst->len);
5067 BUG_ON(1);
5068 }
5069 if (dst_offset < src_offset) {
5070 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5071 return;
5072 }
5073 while (len > 0) {
5074 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5075 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5076
5077 dst_off_in_page = (start_offset + dst_end) &
5078 ((unsigned long)PAGE_CACHE_SIZE - 1);
5079 src_off_in_page = (start_offset + src_end) &
5080 ((unsigned long)PAGE_CACHE_SIZE - 1);
5081
5082 cur = min_t(unsigned long, len, src_off_in_page + 1);
5083 cur = min(cur, dst_off_in_page + 1);
5084 move_pages(extent_buffer_page(dst, dst_i),
5085 extent_buffer_page(dst, src_i),
5086 dst_off_in_page - cur + 1,
5087 src_off_in_page - cur + 1, cur);
5088
5089 dst_end -= cur;
5090 src_end -= cur;
5091 len -= cur;
5092 }
5093 }
5094
5095 int try_release_extent_buffer(struct page *page)
5096 {
5097 struct extent_buffer *eb;
5098
5099 /*
5100 * We need to make sure noboody is attaching this page to an eb right
5101 * now.
5102 */
5103 spin_lock(&page->mapping->private_lock);
5104 if (!PagePrivate(page)) {
5105 spin_unlock(&page->mapping->private_lock);
5106 return 1;
5107 }
5108
5109 eb = (struct extent_buffer *)page->private;
5110 BUG_ON(!eb);
5111
5112 /*
5113 * This is a little awful but should be ok, we need to make sure that
5114 * the eb doesn't disappear out from under us while we're looking at
5115 * this page.
5116 */
5117 spin_lock(&eb->refs_lock);
5118 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5119 spin_unlock(&eb->refs_lock);
5120 spin_unlock(&page->mapping->private_lock);
5121 return 0;
5122 }
5123 spin_unlock(&page->mapping->private_lock);
5124
5125 /*
5126 * If tree ref isn't set then we know the ref on this eb is a real ref,
5127 * so just return, this page will likely be freed soon anyway.
5128 */
5129 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5130 spin_unlock(&eb->refs_lock);
5131 return 0;
5132 }
5133
5134 return release_extent_buffer(eb);
5135 }