]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: cleanup merging conditions in submit_extent_page
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/slab.h>
4 #include <linux/bio.h>
5 #include <linux/mm.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 #include "backref.h"
24 #include "disk-io.h"
25
26 static struct kmem_cache *extent_state_cache;
27 static struct kmem_cache *extent_buffer_cache;
28 static struct bio_set *btrfs_bioset;
29
30 static inline bool extent_state_in_tree(const struct extent_state *state)
31 {
32 return !RB_EMPTY_NODE(&state->rb_node);
33 }
34
35 #ifdef CONFIG_BTRFS_DEBUG
36 static LIST_HEAD(buffers);
37 static LIST_HEAD(states);
38
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline
42 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
43 {
44 unsigned long flags;
45
46 spin_lock_irqsave(&leak_lock, flags);
47 list_add(new, head);
48 spin_unlock_irqrestore(&leak_lock, flags);
49 }
50
51 static inline
52 void btrfs_leak_debug_del(struct list_head *entry)
53 {
54 unsigned long flags;
55
56 spin_lock_irqsave(&leak_lock, flags);
57 list_del(entry);
58 spin_unlock_irqrestore(&leak_lock, flags);
59 }
60
61 static inline
62 void btrfs_leak_debug_check(void)
63 {
64 struct extent_state *state;
65 struct extent_buffer *eb;
66
67 while (!list_empty(&states)) {
68 state = list_entry(states.next, struct extent_state, leak_list);
69 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
70 state->start, state->end, state->state,
71 extent_state_in_tree(state),
72 refcount_read(&state->refs));
73 list_del(&state->leak_list);
74 kmem_cache_free(extent_state_cache, state);
75 }
76
77 while (!list_empty(&buffers)) {
78 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
79 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
81 list_del(&eb->leak_list);
82 kmem_cache_free(extent_buffer_cache, eb);
83 }
84 }
85
86 #define btrfs_debug_check_extent_io_range(tree, start, end) \
87 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
88 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
89 struct extent_io_tree *tree, u64 start, u64 end)
90 {
91 if (tree->ops && tree->ops->check_extent_io_range)
92 tree->ops->check_extent_io_range(tree->private_data, caller,
93 start, end);
94 }
95 #else
96 #define btrfs_leak_debug_add(new, head) do {} while (0)
97 #define btrfs_leak_debug_del(entry) do {} while (0)
98 #define btrfs_leak_debug_check() do {} while (0)
99 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
100 #endif
101
102 #define BUFFER_LRU_MAX 64
103
104 struct tree_entry {
105 u64 start;
106 u64 end;
107 struct rb_node rb_node;
108 };
109
110 struct extent_page_data {
111 struct bio *bio;
112 struct extent_io_tree *tree;
113 /* tells writepage not to lock the state bits for this range
114 * it still does the unlocking
115 */
116 unsigned int extent_locked:1;
117
118 /* tells the submit_bio code to use REQ_SYNC */
119 unsigned int sync_io:1;
120 };
121
122 static void add_extent_changeset(struct extent_state *state, unsigned bits,
123 struct extent_changeset *changeset,
124 int set)
125 {
126 int ret;
127
128 if (!changeset)
129 return;
130 if (set && (state->state & bits) == bits)
131 return;
132 if (!set && (state->state & bits) == 0)
133 return;
134 changeset->bytes_changed += state->end - state->start + 1;
135 ret = ulist_add(&changeset->range_changed, state->start, state->end,
136 GFP_ATOMIC);
137 /* ENOMEM */
138 BUG_ON(ret < 0);
139 }
140
141 static void flush_write_bio(struct extent_page_data *epd);
142
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
145 {
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
149 }
150
151 int __init extent_io_init(void)
152 {
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
157 return -ENOMEM;
158
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176 free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180 free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184 free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188 }
189
190 void __cold extent_io_exit(void)
191 {
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203 }
204
205 void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207 {
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213 }
214
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235 }
236
237 void free_extent_state(struct extent_state *state)
238 {
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247 }
248
249 static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255 {
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279 do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283 }
284
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290 {
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335 }
336
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342 {
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350 }
351
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354 {
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360 {
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364
365 /*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374 static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376 {
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407 }
408
409 static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411 {
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415
416 static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418 {
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422
423 static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427 /*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437 static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442 {
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463 }
464
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467 {
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471
472 /*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488 {
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505 }
506
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514 }
515
516 /*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527 {
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530
531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
536 clear_state_cb(tree, state, bits);
537 add_extent_changeset(state, bits_to_clear, changeset, 0);
538 state->state &= ~bits_to_clear;
539 if (wake)
540 wake_up(&state->wq);
541 if (state->state == 0) {
542 next = next_state(state);
543 if (extent_state_in_tree(state)) {
544 rb_erase(&state->rb_node, &tree->state);
545 RB_CLEAR_NODE(&state->rb_node);
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
552 next = next_state(state);
553 }
554 return next;
555 }
556
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
559 {
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564 }
565
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567 {
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
570 }
571
572 /*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
582 * This takes the tree lock, and returns 0 on success and < 0 on error.
583 */
584 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
588 {
589 struct extent_state *state;
590 struct extent_state *cached;
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
593 u64 last_end;
594 int err;
595 int clear = 0;
596
597 btrfs_debug_check_extent_io_range(tree, start, end);
598
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
608 again:
609 if (!prealloc && gfpflags_allow_blocking(mask)) {
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
617 prealloc = alloc_extent_state(mask);
618 }
619
620 spin_lock(&tree->lock);
621 if (cached_state) {
622 cached = *cached_state;
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
631 if (clear)
632 refcount_dec(&cached->refs);
633 state = cached;
634 goto hit_next;
635 }
636 if (clear)
637 free_extent_state(cached);
638 }
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
643 node = tree_search(tree, start);
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
647 hit_next:
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
651 last_end = state->end;
652
653 /* the state doesn't have the wanted bits, go ahead */
654 if (!(state->state & bits)) {
655 state = next_state(state);
656 goto next;
657 }
658
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
678 err = split_state(tree, state, prealloc, start);
679 if (err)
680 extent_io_tree_panic(tree, err);
681
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
688 goto next;
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
701 err = split_state(tree, state, prealloc, end + 1);
702 if (err)
703 extent_io_tree_panic(tree, err);
704
705 if (wake)
706 wake_up(&state->wq);
707
708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
709
710 prealloc = NULL;
711 goto out;
712 }
713
714 state = clear_state_bit(tree, state, &bits, wake, changeset);
715 next:
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
719 if (start <= end && state && !need_resched())
720 goto hit_next;
721
722 search_again:
723 if (start > end)
724 goto out;
725 spin_unlock(&tree->lock);
726 if (gfpflags_allow_blocking(mask))
727 cond_resched();
728 goto again;
729
730 out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
737 }
738
739 static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
741 __releases(tree->lock)
742 __acquires(tree->lock)
743 {
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746 spin_unlock(&tree->lock);
747 schedule();
748 spin_lock(&tree->lock);
749 finish_wait(&state->wq, &wait);
750 }
751
752 /*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
759 {
760 struct extent_state *state;
761 struct rb_node *node;
762
763 btrfs_debug_check_extent_io_range(tree, start, end);
764
765 spin_lock(&tree->lock);
766 again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
772 node = tree_search(tree, start);
773 process_node:
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
784 refcount_inc(&state->refs);
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
798 }
799 out:
800 spin_unlock(&tree->lock);
801 }
802
803 static void set_state_bits(struct extent_io_tree *tree,
804 struct extent_state *state,
805 unsigned *bits, struct extent_changeset *changeset)
806 {
807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
808
809 set_state_cb(tree, state, bits);
810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
814 add_extent_changeset(state, bits_to_set, changeset, 1);
815 state->state |= bits_to_set;
816 }
817
818 static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
820 unsigned flags)
821 {
822 if (cached_ptr && !(*cached_ptr)) {
823 if (!flags || (state->state & flags)) {
824 *cached_ptr = state;
825 refcount_inc(&state->refs);
826 }
827 }
828 }
829
830 static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832 {
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835 }
836
837 /*
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
840 *
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
844 *
845 * [start, end] is inclusive This takes the tree lock.
846 */
847
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850 unsigned bits, unsigned exclusive_bits,
851 u64 *failed_start, struct extent_state **cached_state,
852 gfp_t mask, struct extent_changeset *changeset)
853 {
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
857 struct rb_node **p;
858 struct rb_node *parent;
859 int err = 0;
860 u64 last_start;
861 u64 last_end;
862
863 btrfs_debug_check_extent_io_range(tree, start, end);
864
865 bits |= EXTENT_FIRST_DELALLOC;
866 again:
867 if (!prealloc && gfpflags_allow_blocking(mask)) {
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
875 prealloc = alloc_extent_state(mask);
876 }
877
878 spin_lock(&tree->lock);
879 if (cached_state && *cached_state) {
880 state = *cached_state;
881 if (state->start <= start && state->end > start &&
882 extent_state_in_tree(state)) {
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
891 node = tree_search_for_insert(tree, start, &p, &parent);
892 if (!node) {
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
895 err = insert_state(tree, prealloc, start, end,
896 &p, &parent, &bits, changeset);
897 if (err)
898 extent_io_tree_panic(tree, err);
899
900 cache_state(prealloc, cached_state);
901 prealloc = NULL;
902 goto out;
903 }
904 state = rb_entry(node, struct extent_state, rb_node);
905 hit_next:
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
916 if (state->state & exclusive_bits) {
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
921
922 set_state_bits(tree, state, &bits, changeset);
923 cache_state(state, cached_state);
924 merge_state(tree, state);
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
952 if (state->state & exclusive_bits) {
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
960 err = split_state(tree, state, prealloc, start);
961 if (err)
962 extent_io_tree_panic(tree, err);
963
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
968 set_state_bits(tree, state, &bits, changeset);
969 cache_state(state, cached_state);
970 merge_state(tree, state);
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
993 this_end = last_start - 1;
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
1002 err = insert_state(tree, prealloc, start, this_end,
1003 NULL, NULL, &bits, changeset);
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1019 if (state->state & exclusive_bits) {
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
1027 err = split_state(tree, state, prealloc, end + 1);
1028 if (err)
1029 extent_io_tree_panic(tree, err);
1030
1031 set_state_bits(tree, prealloc, &bits, changeset);
1032 cache_state(prealloc, cached_state);
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
1038 search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
1045
1046 out:
1047 spin_unlock(&tree->lock);
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
1053 }
1054
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056 unsigned bits, u64 * failed_start,
1057 struct extent_state **cached_state, gfp_t mask)
1058 {
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060 cached_state, mask, NULL);
1061 }
1062
1063
1064 /**
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
1072 * @cached_state: state that we're going to cache
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
1079 *
1080 * All allocations are done with GFP_NOFS.
1081 */
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083 unsigned bits, unsigned clear_bits,
1084 struct extent_state **cached_state)
1085 {
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
1089 struct rb_node **p;
1090 struct rb_node *parent;
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
1094 bool first_iteration = true;
1095
1096 btrfs_debug_check_extent_io_range(tree, start, end);
1097
1098 again:
1099 if (!prealloc) {
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
1107 prealloc = alloc_extent_state(GFP_NOFS);
1108 if (!prealloc && !first_iteration)
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
1116 extent_state_in_tree(state)) {
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
1126 node = tree_search_for_insert(tree, start, &p, &parent);
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
1133 err = insert_state(tree, prealloc, start, end,
1134 &p, &parent, &bits, NULL);
1135 if (err)
1136 extent_io_tree_panic(tree, err);
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142 hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
1153 set_state_bits(tree, state, &bits, NULL);
1154 cache_state(state, cached_state);
1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
1187 err = split_state(tree, state, prealloc, start);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
1194 set_state_bits(tree, state, &bits, NULL);
1195 cache_state(state, cached_state);
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
1232 NULL, NULL, &bits, NULL);
1233 if (err)
1234 extent_io_tree_panic(tree, err);
1235 cache_state(prealloc, cached_state);
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
1252
1253 err = split_state(tree, state, prealloc, end + 1);
1254 if (err)
1255 extent_io_tree_panic(tree, err);
1256
1257 set_state_bits(tree, prealloc, &bits, NULL);
1258 cache_state(prealloc, cached_state);
1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
1264 search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
1268 cond_resched();
1269 first_iteration = false;
1270 goto again;
1271
1272 out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
1278 }
1279
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282 unsigned bits, struct extent_changeset *changeset)
1283 {
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1293 changeset);
1294 }
1295
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached)
1299 {
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, GFP_NOFS, NULL);
1302 }
1303
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, struct extent_changeset *changeset)
1306 {
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1314 changeset);
1315 }
1316
1317 /*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state)
1323 {
1324 int err;
1325 u64 failed_start;
1326
1327 while (1) {
1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329 EXTENT_LOCKED, &failed_start,
1330 cached_state, GFP_NOFS, NULL);
1331 if (err == -EEXIST) {
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
1334 } else
1335 break;
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339 }
1340
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1342 {
1343 int err;
1344 u64 failed_start;
1345
1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347 &failed_start, NULL, GFP_NOFS, NULL);
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
1351 EXTENT_LOCKED, 1, 0, NULL);
1352 return 0;
1353 }
1354 return 1;
1355 }
1356
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1358 {
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
1367 put_page(page);
1368 index++;
1369 }
1370 }
1371
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 __set_page_dirty_nobuffers(page);
1382 account_page_redirty(page);
1383 put_page(page);
1384 index++;
1385 }
1386 }
1387
1388 /*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393 tree->ops->set_range_writeback(tree->private_data, start, end);
1394 }
1395
1396 /* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402 u64 start, unsigned bits)
1403 {
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
1412 if (!node)
1413 goto out;
1414
1415 while (1) {
1416 state = rb_entry(node, struct extent_state, rb_node);
1417 if (state->end >= start && (state->state & bits))
1418 return state;
1419
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424 out:
1425 return NULL;
1426 }
1427
1428 /*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
1433 * If nothing was found, 1 is returned. If found something, return 0.
1434 */
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436 u64 *start_ret, u64 *end_ret, unsigned bits,
1437 struct extent_state **cached_state)
1438 {
1439 struct extent_state *state;
1440 struct rb_node *n;
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
1463 state = find_first_extent_bit_state(tree, start, bits);
1464 got_it:
1465 if (state) {
1466 cache_state_if_flags(state, cached_state, 0);
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
1471 out:
1472 spin_unlock(&tree->lock);
1473 return ret;
1474 }
1475
1476 /*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
1485 {
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
1492 spin_lock(&tree->lock);
1493
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
1498 node = tree_search(tree, cur_start);
1499 if (!node) {
1500 if (!found)
1501 *end = (u64)-1;
1502 goto out;
1503 }
1504
1505 while (1) {
1506 state = rb_entry(node, struct extent_state, rb_node);
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
1516 if (!found) {
1517 *start = state->start;
1518 *cached_state = state;
1519 refcount_inc(&state->refs);
1520 }
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
1525 total_bytes += state->end - state->start + 1;
1526 if (total_bytes >= max_bytes)
1527 break;
1528 if (!node)
1529 break;
1530 }
1531 out:
1532 spin_unlock(&tree->lock);
1533 return found;
1534 }
1535
1536 static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
1544 {
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
1547
1548 ASSERT(locked_page);
1549 if (index == locked_page->index && end_index == index)
1550 return;
1551
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
1554 }
1555
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560 {
1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
1562 unsigned long index_ret = index;
1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1564 int ret;
1565
1566 ASSERT(locked_page);
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
1575 return ret;
1576 }
1577
1578 /*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
1588 {
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
1592 struct extent_state *cached_state = NULL;
1593 int ret;
1594 int loops = 0;
1595
1596 again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601 max_bytes, &cached_state);
1602 if (!found || delalloc_end <= *start) {
1603 *start = delalloc_start;
1604 *end = delalloc_end;
1605 free_extent_state(cached_state);
1606 return 0;
1607 }
1608
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
1614 if (delalloc_start < *start)
1615 delalloc_start = *start;
1616
1617 /*
1618 * make sure to limit the number of pages we try to lock down
1619 */
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
1622
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
1630 free_extent_state(cached_state);
1631 cached_state = NULL;
1632 if (!loops) {
1633 max_bytes = PAGE_SIZE;
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1642
1643 /* step three, lock the state bits for the whole range */
1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648 EXTENT_DELALLOC, 1, cached_state);
1649 if (!ret) {
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state);
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
1657 free_extent_state(cached_state);
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660 out_failed:
1661 return found;
1662 }
1663
1664 static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
1668 {
1669 unsigned long nr_pages = end_index - start_index + 1;
1670 unsigned long pages_locked = 0;
1671 pgoff_t index = start_index;
1672 struct page *pages[16];
1673 unsigned ret;
1674 int err = 0;
1675 int i;
1676
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683 mapping_set_error(mapping, -EIO);
1684
1685 while (nr_pages > 0) {
1686 ret = find_get_pages_contig(mapping, index,
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698
1699 for (i = 0; i < ret; i++) {
1700 if (page_ops & PAGE_SET_PRIVATE2)
1701 SetPagePrivate2(pages[i]);
1702
1703 if (pages[i] == locked_page) {
1704 put_page(pages[i]);
1705 pages_locked++;
1706 continue;
1707 }
1708 if (page_ops & PAGE_CLEAR_DIRTY)
1709 clear_page_dirty_for_io(pages[i]);
1710 if (page_ops & PAGE_SET_WRITEBACK)
1711 set_page_writeback(pages[i]);
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
1714 if (page_ops & PAGE_END_WRITEBACK)
1715 end_page_writeback(pages[i]);
1716 if (page_ops & PAGE_UNLOCK)
1717 unlock_page(pages[i]);
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
1728 put_page(pages[i]);
1729 pages_locked++;
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
1735 out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
1739 }
1740
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745 {
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1751 page_ops, NULL);
1752 }
1753
1754 /*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
1761 unsigned bits, int contig)
1762 {
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
1767 u64 last = 0;
1768 int found = 0;
1769
1770 if (WARN_ON(search_end <= cur_start))
1771 return 0;
1772
1773 spin_lock(&tree->lock);
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
1782 node = tree_search(tree, cur_start);
1783 if (!node)
1784 goto out;
1785
1786 while (1) {
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
1798 *start = max(cur_start, state->start);
1799 found = 1;
1800 }
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809 out:
1810 spin_unlock(&tree->lock);
1811 return total_bytes;
1812 }
1813
1814 /*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819 struct io_failure_record *failrec)
1820 {
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
1825 spin_lock(&tree->lock);
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
1830 node = tree_search(tree, start);
1831 if (!node) {
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 state->failrec = failrec;
1841 out:
1842 spin_unlock(&tree->lock);
1843 return ret;
1844 }
1845
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record **failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 *failrec = state->failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 /*
1875 * searches a range in the state tree for a given mask.
1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881 unsigned bits, int filled, struct extent_state *cached)
1882 {
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
1886
1887 spin_lock(&tree->lock);
1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889 cached->end > start)
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
1926 spin_unlock(&tree->lock);
1927 return bitset;
1928 }
1929
1930 /*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1935 {
1936 u64 start = page_offset(page);
1937 u64 end = start + PAGE_SIZE - 1;
1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939 SetPageUptodate(page);
1940 }
1941
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
1945 {
1946 int ret;
1947 int err = 0;
1948
1949 set_state_failrec(failure_tree, rec->start, NULL);
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
1952 EXTENT_LOCKED | EXTENT_DIRTY);
1953 if (ret)
1954 err = ret;
1955
1956 ret = clear_extent_bits(io_tree, rec->start,
1957 rec->start + rec->len - 1,
1958 EXTENT_DAMAGED);
1959 if (ret && !err)
1960 err = ret;
1961
1962 kfree(rec);
1963 return err;
1964 }
1965
1966 /*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
1971 * to avoid any synchronization issues, wait for the data after writing, which
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
1979 {
1980 struct bio *bio;
1981 struct btrfs_device *dev;
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1988 BUG_ON(!mirror_num);
1989
1990 bio = btrfs_io_bio_alloc(1);
1991 bio->bi_iter.bi_size = 0;
1992 map_length = length;
1993
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
2024 }
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027 bio->bi_iter.bi_sector = sector;
2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029 btrfs_put_bbio(bbio);
2030 if (!dev || !dev->bdev ||
2031 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2032 btrfs_bio_counter_dec(fs_info);
2033 bio_put(bio);
2034 return -EIO;
2035 }
2036 bio_set_dev(bio, dev->bdev);
2037 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2038 bio_add_page(bio, page, length, pg_offset);
2039
2040 if (btrfsic_submit_bio_wait(bio)) {
2041 /* try to remap that extent elsewhere? */
2042 btrfs_bio_counter_dec(fs_info);
2043 bio_put(bio);
2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2045 return -EIO;
2046 }
2047
2048 btrfs_info_rl_in_rcu(fs_info,
2049 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2050 ino, start,
2051 rcu_str_deref(dev->name), sector);
2052 btrfs_bio_counter_dec(fs_info);
2053 bio_put(bio);
2054 return 0;
2055 }
2056
2057 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 struct extent_buffer *eb, int mirror_num)
2059 {
2060 u64 start = eb->start;
2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2062 int ret = 0;
2063
2064 if (sb_rdonly(fs_info->sb))
2065 return -EROFS;
2066
2067 for (i = 0; i < num_pages; i++) {
2068 struct page *p = eb->pages[i];
2069
2070 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2071 start - page_offset(p), mirror_num);
2072 if (ret)
2073 break;
2074 start += PAGE_SIZE;
2075 }
2076
2077 return ret;
2078 }
2079
2080 /*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
2084 int clean_io_failure(struct btrfs_fs_info *fs_info,
2085 struct extent_io_tree *failure_tree,
2086 struct extent_io_tree *io_tree, u64 start,
2087 struct page *page, u64 ino, unsigned int pg_offset)
2088 {
2089 u64 private;
2090 struct io_failure_record *failrec;
2091 struct extent_state *state;
2092 int num_copies;
2093 int ret;
2094
2095 private = 0;
2096 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2097 EXTENT_DIRTY, 0);
2098 if (!ret)
2099 return 0;
2100
2101 ret = get_state_failrec(failure_tree, start, &failrec);
2102 if (ret)
2103 return 0;
2104
2105 BUG_ON(!failrec->this_mirror);
2106
2107 if (failrec->in_validation) {
2108 /* there was no real error, just free the record */
2109 btrfs_debug(fs_info,
2110 "clean_io_failure: freeing dummy error at %llu",
2111 failrec->start);
2112 goto out;
2113 }
2114 if (sb_rdonly(fs_info->sb))
2115 goto out;
2116
2117 spin_lock(&io_tree->lock);
2118 state = find_first_extent_bit_state(io_tree,
2119 failrec->start,
2120 EXTENT_LOCKED);
2121 spin_unlock(&io_tree->lock);
2122
2123 if (state && state->start <= failrec->start &&
2124 state->end >= failrec->start + failrec->len - 1) {
2125 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 failrec->len);
2127 if (num_copies > 1) {
2128 repair_io_failure(fs_info, ino, start, failrec->len,
2129 failrec->logical, page, pg_offset,
2130 failrec->failed_mirror);
2131 }
2132 }
2133
2134 out:
2135 free_io_failure(failure_tree, io_tree, failrec);
2136
2137 return 0;
2138 }
2139
2140 /*
2141 * Can be called when
2142 * - hold extent lock
2143 * - under ordered extent
2144 * - the inode is freeing
2145 */
2146 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2147 {
2148 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2149 struct io_failure_record *failrec;
2150 struct extent_state *state, *next;
2151
2152 if (RB_EMPTY_ROOT(&failure_tree->state))
2153 return;
2154
2155 spin_lock(&failure_tree->lock);
2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 while (state) {
2158 if (state->start > end)
2159 break;
2160
2161 ASSERT(state->end <= end);
2162
2163 next = next_state(state);
2164
2165 failrec = state->failrec;
2166 free_extent_state(state);
2167 kfree(failrec);
2168
2169 state = next;
2170 }
2171 spin_unlock(&failure_tree->lock);
2172 }
2173
2174 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2175 struct io_failure_record **failrec_ret)
2176 {
2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2178 struct io_failure_record *failrec;
2179 struct extent_map *em;
2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2183 int ret;
2184 u64 logical;
2185
2186 ret = get_state_failrec(failure_tree, start, &failrec);
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2191
2192 failrec->start = start;
2193 failrec->len = end - start + 1;
2194 failrec->this_mirror = 0;
2195 failrec->bio_flags = 0;
2196 failrec->in_validation = 0;
2197
2198 read_lock(&em_tree->lock);
2199 em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 if (!em) {
2201 read_unlock(&em_tree->lock);
2202 kfree(failrec);
2203 return -EIO;
2204 }
2205
2206 if (em->start > start || em->start + em->len <= start) {
2207 free_extent_map(em);
2208 em = NULL;
2209 }
2210 read_unlock(&em_tree->lock);
2211 if (!em) {
2212 kfree(failrec);
2213 return -EIO;
2214 }
2215
2216 logical = start - em->start;
2217 logical = em->block_start + logical;
2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 logical = em->block_start;
2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 extent_set_compress_type(&failrec->bio_flags,
2222 em->compress_type);
2223 }
2224
2225 btrfs_debug(fs_info,
2226 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 logical, start, failrec->len);
2228
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
2234 EXTENT_LOCKED | EXTENT_DIRTY);
2235 if (ret >= 0)
2236 ret = set_state_failrec(failure_tree, start, failrec);
2237 /* set the bits in the inode's tree */
2238 if (ret >= 0)
2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2240 if (ret < 0) {
2241 kfree(failrec);
2242 return ret;
2243 }
2244 } else {
2245 btrfs_debug(fs_info,
2246 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 failrec->logical, failrec->start, failrec->len,
2248 failrec->in_validation);
2249 /*
2250 * when data can be on disk more than twice, add to failrec here
2251 * (e.g. with a list for failed_mirror) to make
2252 * clean_io_failure() clean all those errors at once.
2253 */
2254 }
2255
2256 *failrec_ret = failrec;
2257
2258 return 0;
2259 }
2260
2261 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2262 struct io_failure_record *failrec, int failed_mirror)
2263 {
2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265 int num_copies;
2266
2267 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2268 if (num_copies == 1) {
2269 /*
2270 * we only have a single copy of the data, so don't bother with
2271 * all the retry and error correction code that follows. no
2272 * matter what the error is, it is very likely to persist.
2273 */
2274 btrfs_debug(fs_info,
2275 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 num_copies, failrec->this_mirror, failed_mirror);
2277 return false;
2278 }
2279
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio_pages > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
2312 }
2313
2314 if (failrec->this_mirror > num_copies) {
2315 btrfs_debug(fs_info,
2316 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 num_copies, failrec->this_mirror, failed_mirror);
2318 return false;
2319 }
2320
2321 return true;
2322 }
2323
2324
2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 struct io_failure_record *failrec,
2327 struct page *page, int pg_offset, int icsum,
2328 bio_end_io_t *endio_func, void *data)
2329 {
2330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2331 struct bio *bio;
2332 struct btrfs_io_bio *btrfs_failed_bio;
2333 struct btrfs_io_bio *btrfs_bio;
2334
2335 bio = btrfs_io_bio_alloc(1);
2336 bio->bi_end_io = endio_func;
2337 bio->bi_iter.bi_sector = failrec->logical >> 9;
2338 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2339 bio->bi_iter.bi_size = 0;
2340 bio->bi_private = data;
2341
2342 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2343 if (btrfs_failed_bio->csum) {
2344 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345
2346 btrfs_bio = btrfs_io_bio(bio);
2347 btrfs_bio->csum = btrfs_bio->csum_inline;
2348 icsum *= csum_size;
2349 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2350 csum_size);
2351 }
2352
2353 bio_add_page(bio, page, failrec->len, pg_offset);
2354
2355 return bio;
2356 }
2357
2358 /*
2359 * this is a generic handler for readpage errors (default
2360 * readpage_io_failed_hook). if other copies exist, read those and write back
2361 * good data to the failed position. does not investigate in remapping the
2362 * failed extent elsewhere, hoping the device will be smart enough to do this as
2363 * needed
2364 */
2365
2366 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 struct page *page, u64 start, u64 end,
2368 int failed_mirror)
2369 {
2370 struct io_failure_record *failrec;
2371 struct inode *inode = page->mapping->host;
2372 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2373 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2374 struct bio *bio;
2375 int read_mode = 0;
2376 blk_status_t status;
2377 int ret;
2378 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2379
2380 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2381
2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 if (ret)
2384 return ret;
2385
2386 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2387 failed_mirror)) {
2388 free_io_failure(failure_tree, tree, failrec);
2389 return -EIO;
2390 }
2391
2392 if (failed_bio_pages > 1)
2393 read_mode |= REQ_FAILFAST_DEV;
2394
2395 phy_offset >>= inode->i_sb->s_blocksize_bits;
2396 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2397 start - page_offset(page),
2398 (int)phy_offset, failed_bio->bi_end_io,
2399 NULL);
2400 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2401
2402 btrfs_debug(btrfs_sb(inode->i_sb),
2403 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2404 read_mode, failrec->this_mirror, failrec->in_validation);
2405
2406 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2407 failrec->bio_flags, 0);
2408 if (status) {
2409 free_io_failure(failure_tree, tree, failrec);
2410 bio_put(bio);
2411 ret = blk_status_to_errno(status);
2412 }
2413
2414 return ret;
2415 }
2416
2417 /* lots and lots of room for performance fixes in the end_bio funcs */
2418
2419 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2420 {
2421 int uptodate = (err == 0);
2422 struct extent_io_tree *tree;
2423 int ret = 0;
2424
2425 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
2427 if (tree->ops && tree->ops->writepage_end_io_hook)
2428 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2429 uptodate);
2430
2431 if (!uptodate) {
2432 ClearPageUptodate(page);
2433 SetPageError(page);
2434 ret = err < 0 ? err : -EIO;
2435 mapping_set_error(page->mapping, ret);
2436 }
2437 }
2438
2439 /*
2440 * after a writepage IO is done, we need to:
2441 * clear the uptodate bits on error
2442 * clear the writeback bits in the extent tree for this IO
2443 * end_page_writeback if the page has no more pending IO
2444 *
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2447 */
2448 static void end_bio_extent_writepage(struct bio *bio)
2449 {
2450 int error = blk_status_to_errno(bio->bi_status);
2451 struct bio_vec *bvec;
2452 u64 start;
2453 u64 end;
2454 int i;
2455
2456 ASSERT(!bio_flagged(bio, BIO_CLONED));
2457 bio_for_each_segment_all(bvec, bio, i) {
2458 struct page *page = bvec->bv_page;
2459 struct inode *inode = page->mapping->host;
2460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2461
2462 /* We always issue full-page reads, but if some block
2463 * in a page fails to read, blk_update_request() will
2464 * advance bv_offset and adjust bv_len to compensate.
2465 * Print a warning for nonzero offsets, and an error
2466 * if they don't add up to a full page. */
2467 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2468 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2469 btrfs_err(fs_info,
2470 "partial page write in btrfs with offset %u and length %u",
2471 bvec->bv_offset, bvec->bv_len);
2472 else
2473 btrfs_info(fs_info,
2474 "incomplete page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 }
2477
2478 start = page_offset(page);
2479 end = start + bvec->bv_offset + bvec->bv_len - 1;
2480
2481 end_extent_writepage(page, error, start, end);
2482 end_page_writeback(page);
2483 }
2484
2485 bio_put(bio);
2486 }
2487
2488 static void
2489 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2490 int uptodate)
2491 {
2492 struct extent_state *cached = NULL;
2493 u64 end = start + len - 1;
2494
2495 if (uptodate && tree->track_uptodate)
2496 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2497 unlock_extent_cached_atomic(tree, start, end, &cached);
2498 }
2499
2500 /*
2501 * after a readpage IO is done, we need to:
2502 * clear the uptodate bits on error
2503 * set the uptodate bits if things worked
2504 * set the page up to date if all extents in the tree are uptodate
2505 * clear the lock bit in the extent tree
2506 * unlock the page if there are no other extents locked for it
2507 *
2508 * Scheduling is not allowed, so the extent state tree is expected
2509 * to have one and only one object corresponding to this IO.
2510 */
2511 static void end_bio_extent_readpage(struct bio *bio)
2512 {
2513 struct bio_vec *bvec;
2514 int uptodate = !bio->bi_status;
2515 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2516 struct extent_io_tree *tree, *failure_tree;
2517 u64 offset = 0;
2518 u64 start;
2519 u64 end;
2520 u64 len;
2521 u64 extent_start = 0;
2522 u64 extent_len = 0;
2523 int mirror;
2524 int ret;
2525 int i;
2526
2527 ASSERT(!bio_flagged(bio, BIO_CLONED));
2528 bio_for_each_segment_all(bvec, bio, i) {
2529 struct page *page = bvec->bv_page;
2530 struct inode *inode = page->mapping->host;
2531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2532
2533 btrfs_debug(fs_info,
2534 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2535 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2536 io_bio->mirror_num);
2537 tree = &BTRFS_I(inode)->io_tree;
2538 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2539
2540 /* We always issue full-page reads, but if some block
2541 * in a page fails to read, blk_update_request() will
2542 * advance bv_offset and adjust bv_len to compensate.
2543 * Print a warning for nonzero offsets, and an error
2544 * if they don't add up to a full page. */
2545 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2546 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2547 btrfs_err(fs_info,
2548 "partial page read in btrfs with offset %u and length %u",
2549 bvec->bv_offset, bvec->bv_len);
2550 else
2551 btrfs_info(fs_info,
2552 "incomplete page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 }
2555
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 len = bvec->bv_len;
2559
2560 mirror = io_bio->mirror_num;
2561 if (likely(uptodate && tree->ops)) {
2562 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2563 page, start, end,
2564 mirror);
2565 if (ret)
2566 uptodate = 0;
2567 else
2568 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2569 failure_tree, tree, start,
2570 page,
2571 btrfs_ino(BTRFS_I(inode)), 0);
2572 }
2573
2574 if (likely(uptodate))
2575 goto readpage_ok;
2576
2577 if (tree->ops) {
2578 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2579 if (ret == -EAGAIN) {
2580 /*
2581 * Data inode's readpage_io_failed_hook() always
2582 * returns -EAGAIN.
2583 *
2584 * The generic bio_readpage_error handles errors
2585 * the following way: If possible, new read
2586 * requests are created and submitted and will
2587 * end up in end_bio_extent_readpage as well (if
2588 * we're lucky, not in the !uptodate case). In
2589 * that case it returns 0 and we just go on with
2590 * the next page in our bio. If it can't handle
2591 * the error it will return -EIO and we remain
2592 * responsible for that page.
2593 */
2594 ret = bio_readpage_error(bio, offset, page,
2595 start, end, mirror);
2596 if (ret == 0) {
2597 uptodate = !bio->bi_status;
2598 offset += len;
2599 continue;
2600 }
2601 }
2602
2603 /*
2604 * metadata's readpage_io_failed_hook() always returns
2605 * -EIO and fixes nothing. -EIO is also returned if
2606 * data inode error could not be fixed.
2607 */
2608 ASSERT(ret == -EIO);
2609 }
2610 readpage_ok:
2611 if (likely(uptodate)) {
2612 loff_t i_size = i_size_read(inode);
2613 pgoff_t end_index = i_size >> PAGE_SHIFT;
2614 unsigned off;
2615
2616 /* Zero out the end if this page straddles i_size */
2617 off = i_size & (PAGE_SIZE-1);
2618 if (page->index == end_index && off)
2619 zero_user_segment(page, off, PAGE_SIZE);
2620 SetPageUptodate(page);
2621 } else {
2622 ClearPageUptodate(page);
2623 SetPageError(page);
2624 }
2625 unlock_page(page);
2626 offset += len;
2627
2628 if (unlikely(!uptodate)) {
2629 if (extent_len) {
2630 endio_readpage_release_extent(tree,
2631 extent_start,
2632 extent_len, 1);
2633 extent_start = 0;
2634 extent_len = 0;
2635 }
2636 endio_readpage_release_extent(tree, start,
2637 end - start + 1, 0);
2638 } else if (!extent_len) {
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 } else if (extent_start + extent_len == start) {
2642 extent_len += end + 1 - start;
2643 } else {
2644 endio_readpage_release_extent(tree, extent_start,
2645 extent_len, uptodate);
2646 extent_start = start;
2647 extent_len = end + 1 - start;
2648 }
2649 }
2650
2651 if (extent_len)
2652 endio_readpage_release_extent(tree, extent_start, extent_len,
2653 uptodate);
2654 if (io_bio->end_io)
2655 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2656 bio_put(bio);
2657 }
2658
2659 /*
2660 * Initialize the members up to but not including 'bio'. Use after allocating a
2661 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2662 * 'bio' because use of __GFP_ZERO is not supported.
2663 */
2664 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2665 {
2666 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2667 }
2668
2669 /*
2670 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2671 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2672 * for the appropriate container_of magic
2673 */
2674 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2675 {
2676 struct bio *bio;
2677
2678 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2679 bio_set_dev(bio, bdev);
2680 bio->bi_iter.bi_sector = first_byte >> 9;
2681 btrfs_io_bio_init(btrfs_io_bio(bio));
2682 return bio;
2683 }
2684
2685 struct bio *btrfs_bio_clone(struct bio *bio)
2686 {
2687 struct btrfs_io_bio *btrfs_bio;
2688 struct bio *new;
2689
2690 /* Bio allocation backed by a bioset does not fail */
2691 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2692 btrfs_bio = btrfs_io_bio(new);
2693 btrfs_io_bio_init(btrfs_bio);
2694 btrfs_bio->iter = bio->bi_iter;
2695 return new;
2696 }
2697
2698 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2699 {
2700 struct bio *bio;
2701
2702 /* Bio allocation backed by a bioset does not fail */
2703 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2704 btrfs_io_bio_init(btrfs_io_bio(bio));
2705 return bio;
2706 }
2707
2708 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2709 {
2710 struct bio *bio;
2711 struct btrfs_io_bio *btrfs_bio;
2712
2713 /* this will never fail when it's backed by a bioset */
2714 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2715 ASSERT(bio);
2716
2717 btrfs_bio = btrfs_io_bio(bio);
2718 btrfs_io_bio_init(btrfs_bio);
2719
2720 bio_trim(bio, offset >> 9, size >> 9);
2721 btrfs_bio->iter = bio->bi_iter;
2722 return bio;
2723 }
2724
2725 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2726 unsigned long bio_flags)
2727 {
2728 blk_status_t ret = 0;
2729 struct bio_vec *bvec = bio_last_bvec_all(bio);
2730 struct page *page = bvec->bv_page;
2731 struct extent_io_tree *tree = bio->bi_private;
2732 u64 start;
2733
2734 start = page_offset(page) + bvec->bv_offset;
2735
2736 bio->bi_private = NULL;
2737
2738 if (tree->ops)
2739 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2740 mirror_num, bio_flags, start);
2741 else
2742 btrfsic_submit_bio(bio);
2743
2744 return blk_status_to_errno(ret);
2745 }
2746
2747 /*
2748 * @opf: bio REQ_OP_* and REQ_* flags as one value
2749 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2750 */
2751 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2752 struct writeback_control *wbc,
2753 struct page *page, u64 offset,
2754 size_t size, unsigned long pg_offset,
2755 struct block_device *bdev,
2756 struct bio **bio_ret,
2757 bio_end_io_t end_io_func,
2758 int mirror_num,
2759 unsigned long prev_bio_flags,
2760 unsigned long bio_flags,
2761 bool force_bio_submit)
2762 {
2763 int ret = 0;
2764 struct bio *bio;
2765 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2766 sector_t sector = offset >> 9;
2767
2768 ASSERT(bio_ret);
2769
2770 if (*bio_ret) {
2771 bool contig;
2772 bool can_merge = true;
2773
2774 bio = *bio_ret;
2775 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2776 contig = bio->bi_iter.bi_sector == sector;
2777 else
2778 contig = bio_end_sector(bio) == sector;
2779
2780 if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2781 page_size, bio, bio_flags))
2782 can_merge = false;
2783
2784 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2785 force_bio_submit ||
2786 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2787 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2788 if (ret < 0) {
2789 *bio_ret = NULL;
2790 return ret;
2791 }
2792 bio = NULL;
2793 } else {
2794 if (wbc)
2795 wbc_account_io(wbc, page, page_size);
2796 return 0;
2797 }
2798 }
2799
2800 bio = btrfs_bio_alloc(bdev, offset);
2801 bio_add_page(bio, page, page_size, pg_offset);
2802 bio->bi_end_io = end_io_func;
2803 bio->bi_private = tree;
2804 bio->bi_write_hint = page->mapping->host->i_write_hint;
2805 bio->bi_opf = opf;
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
2810
2811 *bio_ret = bio;
2812
2813 return ret;
2814 }
2815
2816 static void attach_extent_buffer_page(struct extent_buffer *eb,
2817 struct page *page)
2818 {
2819 if (!PagePrivate(page)) {
2820 SetPagePrivate(page);
2821 get_page(page);
2822 set_page_private(page, (unsigned long)eb);
2823 } else {
2824 WARN_ON(page->private != (unsigned long)eb);
2825 }
2826 }
2827
2828 void set_page_extent_mapped(struct page *page)
2829 {
2830 if (!PagePrivate(page)) {
2831 SetPagePrivate(page);
2832 get_page(page);
2833 set_page_private(page, EXTENT_PAGE_PRIVATE);
2834 }
2835 }
2836
2837 static struct extent_map *
2838 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2839 u64 start, u64 len, get_extent_t *get_extent,
2840 struct extent_map **em_cached)
2841 {
2842 struct extent_map *em;
2843
2844 if (em_cached && *em_cached) {
2845 em = *em_cached;
2846 if (extent_map_in_tree(em) && start >= em->start &&
2847 start < extent_map_end(em)) {
2848 refcount_inc(&em->refs);
2849 return em;
2850 }
2851
2852 free_extent_map(em);
2853 *em_cached = NULL;
2854 }
2855
2856 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2857 if (em_cached && !IS_ERR_OR_NULL(em)) {
2858 BUG_ON(*em_cached);
2859 refcount_inc(&em->refs);
2860 *em_cached = em;
2861 }
2862 return em;
2863 }
2864 /*
2865 * basic readpage implementation. Locked extent state structs are inserted
2866 * into the tree that are removed when the IO is done (by the end_io
2867 * handlers)
2868 * XXX JDM: This needs looking at to ensure proper page locking
2869 * return 0 on success, otherwise return error
2870 */
2871 static int __do_readpage(struct extent_io_tree *tree,
2872 struct page *page,
2873 get_extent_t *get_extent,
2874 struct extent_map **em_cached,
2875 struct bio **bio, int mirror_num,
2876 unsigned long *bio_flags, unsigned int read_flags,
2877 u64 *prev_em_start)
2878 {
2879 struct inode *inode = page->mapping->host;
2880 u64 start = page_offset(page);
2881 const u64 end = start + PAGE_SIZE - 1;
2882 u64 cur = start;
2883 u64 extent_offset;
2884 u64 last_byte = i_size_read(inode);
2885 u64 block_start;
2886 u64 cur_end;
2887 struct extent_map *em;
2888 struct block_device *bdev;
2889 int ret = 0;
2890 int nr = 0;
2891 size_t pg_offset = 0;
2892 size_t iosize;
2893 size_t disk_io_size;
2894 size_t blocksize = inode->i_sb->s_blocksize;
2895 unsigned long this_bio_flag = 0;
2896
2897 set_page_extent_mapped(page);
2898
2899 if (!PageUptodate(page)) {
2900 if (cleancache_get_page(page) == 0) {
2901 BUG_ON(blocksize != PAGE_SIZE);
2902 unlock_extent(tree, start, end);
2903 goto out;
2904 }
2905 }
2906
2907 if (page->index == last_byte >> PAGE_SHIFT) {
2908 char *userpage;
2909 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2910
2911 if (zero_offset) {
2912 iosize = PAGE_SIZE - zero_offset;
2913 userpage = kmap_atomic(page);
2914 memset(userpage + zero_offset, 0, iosize);
2915 flush_dcache_page(page);
2916 kunmap_atomic(userpage);
2917 }
2918 }
2919 while (cur <= end) {
2920 bool force_bio_submit = false;
2921 u64 offset;
2922
2923 if (cur >= last_byte) {
2924 char *userpage;
2925 struct extent_state *cached = NULL;
2926
2927 iosize = PAGE_SIZE - pg_offset;
2928 userpage = kmap_atomic(page);
2929 memset(userpage + pg_offset, 0, iosize);
2930 flush_dcache_page(page);
2931 kunmap_atomic(userpage);
2932 set_extent_uptodate(tree, cur, cur + iosize - 1,
2933 &cached, GFP_NOFS);
2934 unlock_extent_cached(tree, cur,
2935 cur + iosize - 1, &cached);
2936 break;
2937 }
2938 em = __get_extent_map(inode, page, pg_offset, cur,
2939 end - cur + 1, get_extent, em_cached);
2940 if (IS_ERR_OR_NULL(em)) {
2941 SetPageError(page);
2942 unlock_extent(tree, cur, end);
2943 break;
2944 }
2945 extent_offset = cur - em->start;
2946 BUG_ON(extent_map_end(em) <= cur);
2947 BUG_ON(end < cur);
2948
2949 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2950 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2951 extent_set_compress_type(&this_bio_flag,
2952 em->compress_type);
2953 }
2954
2955 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2956 cur_end = min(extent_map_end(em) - 1, end);
2957 iosize = ALIGN(iosize, blocksize);
2958 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2959 disk_io_size = em->block_len;
2960 offset = em->block_start;
2961 } else {
2962 offset = em->block_start + extent_offset;
2963 disk_io_size = iosize;
2964 }
2965 bdev = em->bdev;
2966 block_start = em->block_start;
2967 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2968 block_start = EXTENT_MAP_HOLE;
2969
2970 /*
2971 * If we have a file range that points to a compressed extent
2972 * and it's followed by a consecutive file range that points to
2973 * to the same compressed extent (possibly with a different
2974 * offset and/or length, so it either points to the whole extent
2975 * or only part of it), we must make sure we do not submit a
2976 * single bio to populate the pages for the 2 ranges because
2977 * this makes the compressed extent read zero out the pages
2978 * belonging to the 2nd range. Imagine the following scenario:
2979 *
2980 * File layout
2981 * [0 - 8K] [8K - 24K]
2982 * | |
2983 * | |
2984 * points to extent X, points to extent X,
2985 * offset 4K, length of 8K offset 0, length 16K
2986 *
2987 * [extent X, compressed length = 4K uncompressed length = 16K]
2988 *
2989 * If the bio to read the compressed extent covers both ranges,
2990 * it will decompress extent X into the pages belonging to the
2991 * first range and then it will stop, zeroing out the remaining
2992 * pages that belong to the other range that points to extent X.
2993 * So here we make sure we submit 2 bios, one for the first
2994 * range and another one for the third range. Both will target
2995 * the same physical extent from disk, but we can't currently
2996 * make the compressed bio endio callback populate the pages
2997 * for both ranges because each compressed bio is tightly
2998 * coupled with a single extent map, and each range can have
2999 * an extent map with a different offset value relative to the
3000 * uncompressed data of our extent and different lengths. This
3001 * is a corner case so we prioritize correctness over
3002 * non-optimal behavior (submitting 2 bios for the same extent).
3003 */
3004 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3005 prev_em_start && *prev_em_start != (u64)-1 &&
3006 *prev_em_start != em->orig_start)
3007 force_bio_submit = true;
3008
3009 if (prev_em_start)
3010 *prev_em_start = em->orig_start;
3011
3012 free_extent_map(em);
3013 em = NULL;
3014
3015 /* we've found a hole, just zero and go on */
3016 if (block_start == EXTENT_MAP_HOLE) {
3017 char *userpage;
3018 struct extent_state *cached = NULL;
3019
3020 userpage = kmap_atomic(page);
3021 memset(userpage + pg_offset, 0, iosize);
3022 flush_dcache_page(page);
3023 kunmap_atomic(userpage);
3024
3025 set_extent_uptodate(tree, cur, cur + iosize - 1,
3026 &cached, GFP_NOFS);
3027 unlock_extent_cached(tree, cur,
3028 cur + iosize - 1, &cached);
3029 cur = cur + iosize;
3030 pg_offset += iosize;
3031 continue;
3032 }
3033 /* the get_extent function already copied into the page */
3034 if (test_range_bit(tree, cur, cur_end,
3035 EXTENT_UPTODATE, 1, NULL)) {
3036 check_page_uptodate(tree, page);
3037 unlock_extent(tree, cur, cur + iosize - 1);
3038 cur = cur + iosize;
3039 pg_offset += iosize;
3040 continue;
3041 }
3042 /* we have an inline extent but it didn't get marked up
3043 * to date. Error out
3044 */
3045 if (block_start == EXTENT_MAP_INLINE) {
3046 SetPageError(page);
3047 unlock_extent(tree, cur, cur + iosize - 1);
3048 cur = cur + iosize;
3049 pg_offset += iosize;
3050 continue;
3051 }
3052
3053 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3054 page, offset, disk_io_size,
3055 pg_offset, bdev, bio,
3056 end_bio_extent_readpage, mirror_num,
3057 *bio_flags,
3058 this_bio_flag,
3059 force_bio_submit);
3060 if (!ret) {
3061 nr++;
3062 *bio_flags = this_bio_flag;
3063 } else {
3064 SetPageError(page);
3065 unlock_extent(tree, cur, cur + iosize - 1);
3066 goto out;
3067 }
3068 cur = cur + iosize;
3069 pg_offset += iosize;
3070 }
3071 out:
3072 if (!nr) {
3073 if (!PageError(page))
3074 SetPageUptodate(page);
3075 unlock_page(page);
3076 }
3077 return ret;
3078 }
3079
3080 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3081 struct page *pages[], int nr_pages,
3082 u64 start, u64 end,
3083 struct extent_map **em_cached,
3084 struct bio **bio,
3085 unsigned long *bio_flags,
3086 u64 *prev_em_start)
3087 {
3088 struct inode *inode;
3089 struct btrfs_ordered_extent *ordered;
3090 int index;
3091
3092 inode = pages[0]->mapping->host;
3093 while (1) {
3094 lock_extent(tree, start, end);
3095 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3096 end - start + 1);
3097 if (!ordered)
3098 break;
3099 unlock_extent(tree, start, end);
3100 btrfs_start_ordered_extent(inode, ordered, 1);
3101 btrfs_put_ordered_extent(ordered);
3102 }
3103
3104 for (index = 0; index < nr_pages; index++) {
3105 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3106 bio, 0, bio_flags, 0, prev_em_start);
3107 put_page(pages[index]);
3108 }
3109 }
3110
3111 static void __extent_readpages(struct extent_io_tree *tree,
3112 struct page *pages[],
3113 int nr_pages,
3114 struct extent_map **em_cached,
3115 struct bio **bio, unsigned long *bio_flags,
3116 u64 *prev_em_start)
3117 {
3118 u64 start = 0;
3119 u64 end = 0;
3120 u64 page_start;
3121 int index;
3122 int first_index = 0;
3123
3124 for (index = 0; index < nr_pages; index++) {
3125 page_start = page_offset(pages[index]);
3126 if (!end) {
3127 start = page_start;
3128 end = start + PAGE_SIZE - 1;
3129 first_index = index;
3130 } else if (end + 1 == page_start) {
3131 end += PAGE_SIZE;
3132 } else {
3133 __do_contiguous_readpages(tree, &pages[first_index],
3134 index - first_index, start,
3135 end, em_cached,
3136 bio, bio_flags,
3137 prev_em_start);
3138 start = page_start;
3139 end = start + PAGE_SIZE - 1;
3140 first_index = index;
3141 }
3142 }
3143
3144 if (end)
3145 __do_contiguous_readpages(tree, &pages[first_index],
3146 index - first_index, start,
3147 end, em_cached, bio,
3148 bio_flags, prev_em_start);
3149 }
3150
3151 static int __extent_read_full_page(struct extent_io_tree *tree,
3152 struct page *page,
3153 get_extent_t *get_extent,
3154 struct bio **bio, int mirror_num,
3155 unsigned long *bio_flags,
3156 unsigned int read_flags)
3157 {
3158 struct inode *inode = page->mapping->host;
3159 struct btrfs_ordered_extent *ordered;
3160 u64 start = page_offset(page);
3161 u64 end = start + PAGE_SIZE - 1;
3162 int ret;
3163
3164 while (1) {
3165 lock_extent(tree, start, end);
3166 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3167 PAGE_SIZE);
3168 if (!ordered)
3169 break;
3170 unlock_extent(tree, start, end);
3171 btrfs_start_ordered_extent(inode, ordered, 1);
3172 btrfs_put_ordered_extent(ordered);
3173 }
3174
3175 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3176 bio_flags, read_flags, NULL);
3177 return ret;
3178 }
3179
3180 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3181 get_extent_t *get_extent, int mirror_num)
3182 {
3183 struct bio *bio = NULL;
3184 unsigned long bio_flags = 0;
3185 int ret;
3186
3187 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3188 &bio_flags, 0);
3189 if (bio)
3190 ret = submit_one_bio(bio, mirror_num, bio_flags);
3191 return ret;
3192 }
3193
3194 static void update_nr_written(struct writeback_control *wbc,
3195 unsigned long nr_written)
3196 {
3197 wbc->nr_to_write -= nr_written;
3198 }
3199
3200 /*
3201 * helper for __extent_writepage, doing all of the delayed allocation setup.
3202 *
3203 * This returns 1 if our fill_delalloc function did all the work required
3204 * to write the page (copy into inline extent). In this case the IO has
3205 * been started and the page is already unlocked.
3206 *
3207 * This returns 0 if all went well (page still locked)
3208 * This returns < 0 if there were errors (page still locked)
3209 */
3210 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3211 struct page *page, struct writeback_control *wbc,
3212 struct extent_page_data *epd,
3213 u64 delalloc_start,
3214 unsigned long *nr_written)
3215 {
3216 struct extent_io_tree *tree = epd->tree;
3217 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3218 u64 nr_delalloc;
3219 u64 delalloc_to_write = 0;
3220 u64 delalloc_end = 0;
3221 int ret;
3222 int page_started = 0;
3223
3224 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3225 return 0;
3226
3227 while (delalloc_end < page_end) {
3228 nr_delalloc = find_lock_delalloc_range(inode, tree,
3229 page,
3230 &delalloc_start,
3231 &delalloc_end,
3232 BTRFS_MAX_EXTENT_SIZE);
3233 if (nr_delalloc == 0) {
3234 delalloc_start = delalloc_end + 1;
3235 continue;
3236 }
3237 ret = tree->ops->fill_delalloc(inode, page,
3238 delalloc_start,
3239 delalloc_end,
3240 &page_started,
3241 nr_written, wbc);
3242 /* File system has been set read-only */
3243 if (ret) {
3244 SetPageError(page);
3245 /* fill_delalloc should be return < 0 for error
3246 * but just in case, we use > 0 here meaning the
3247 * IO is started, so we don't want to return > 0
3248 * unless things are going well.
3249 */
3250 ret = ret < 0 ? ret : -EIO;
3251 goto done;
3252 }
3253 /*
3254 * delalloc_end is already one less than the total length, so
3255 * we don't subtract one from PAGE_SIZE
3256 */
3257 delalloc_to_write += (delalloc_end - delalloc_start +
3258 PAGE_SIZE) >> PAGE_SHIFT;
3259 delalloc_start = delalloc_end + 1;
3260 }
3261 if (wbc->nr_to_write < delalloc_to_write) {
3262 int thresh = 8192;
3263
3264 if (delalloc_to_write < thresh * 2)
3265 thresh = delalloc_to_write;
3266 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3267 thresh);
3268 }
3269
3270 /* did the fill delalloc function already unlock and start
3271 * the IO?
3272 */
3273 if (page_started) {
3274 /*
3275 * we've unlocked the page, so we can't update
3276 * the mapping's writeback index, just update
3277 * nr_to_write.
3278 */
3279 wbc->nr_to_write -= *nr_written;
3280 return 1;
3281 }
3282
3283 ret = 0;
3284
3285 done:
3286 return ret;
3287 }
3288
3289 /*
3290 * helper for __extent_writepage. This calls the writepage start hooks,
3291 * and does the loop to map the page into extents and bios.
3292 *
3293 * We return 1 if the IO is started and the page is unlocked,
3294 * 0 if all went well (page still locked)
3295 * < 0 if there were errors (page still locked)
3296 */
3297 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3298 struct page *page,
3299 struct writeback_control *wbc,
3300 struct extent_page_data *epd,
3301 loff_t i_size,
3302 unsigned long nr_written,
3303 unsigned int write_flags, int *nr_ret)
3304 {
3305 struct extent_io_tree *tree = epd->tree;
3306 u64 start = page_offset(page);
3307 u64 page_end = start + PAGE_SIZE - 1;
3308 u64 end;
3309 u64 cur = start;
3310 u64 extent_offset;
3311 u64 block_start;
3312 u64 iosize;
3313 struct extent_map *em;
3314 struct block_device *bdev;
3315 size_t pg_offset = 0;
3316 size_t blocksize;
3317 int ret = 0;
3318 int nr = 0;
3319 bool compressed;
3320
3321 if (tree->ops && tree->ops->writepage_start_hook) {
3322 ret = tree->ops->writepage_start_hook(page, start,
3323 page_end);
3324 if (ret) {
3325 /* Fixup worker will requeue */
3326 if (ret == -EBUSY)
3327 wbc->pages_skipped++;
3328 else
3329 redirty_page_for_writepage(wbc, page);
3330
3331 update_nr_written(wbc, nr_written);
3332 unlock_page(page);
3333 return 1;
3334 }
3335 }
3336
3337 /*
3338 * we don't want to touch the inode after unlocking the page,
3339 * so we update the mapping writeback index now
3340 */
3341 update_nr_written(wbc, nr_written + 1);
3342
3343 end = page_end;
3344 if (i_size <= start) {
3345 if (tree->ops && tree->ops->writepage_end_io_hook)
3346 tree->ops->writepage_end_io_hook(page, start,
3347 page_end, NULL, 1);
3348 goto done;
3349 }
3350
3351 blocksize = inode->i_sb->s_blocksize;
3352
3353 while (cur <= end) {
3354 u64 em_end;
3355 u64 offset;
3356
3357 if (cur >= i_size) {
3358 if (tree->ops && tree->ops->writepage_end_io_hook)
3359 tree->ops->writepage_end_io_hook(page, cur,
3360 page_end, NULL, 1);
3361 break;
3362 }
3363 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3364 end - cur + 1, 1);
3365 if (IS_ERR_OR_NULL(em)) {
3366 SetPageError(page);
3367 ret = PTR_ERR_OR_ZERO(em);
3368 break;
3369 }
3370
3371 extent_offset = cur - em->start;
3372 em_end = extent_map_end(em);
3373 BUG_ON(em_end <= cur);
3374 BUG_ON(end < cur);
3375 iosize = min(em_end - cur, end - cur + 1);
3376 iosize = ALIGN(iosize, blocksize);
3377 offset = em->block_start + extent_offset;
3378 bdev = em->bdev;
3379 block_start = em->block_start;
3380 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3381 free_extent_map(em);
3382 em = NULL;
3383
3384 /*
3385 * compressed and inline extents are written through other
3386 * paths in the FS
3387 */
3388 if (compressed || block_start == EXTENT_MAP_HOLE ||
3389 block_start == EXTENT_MAP_INLINE) {
3390 /*
3391 * end_io notification does not happen here for
3392 * compressed extents
3393 */
3394 if (!compressed && tree->ops &&
3395 tree->ops->writepage_end_io_hook)
3396 tree->ops->writepage_end_io_hook(page, cur,
3397 cur + iosize - 1,
3398 NULL, 1);
3399 else if (compressed) {
3400 /* we don't want to end_page_writeback on
3401 * a compressed extent. this happens
3402 * elsewhere
3403 */
3404 nr++;
3405 }
3406
3407 cur += iosize;
3408 pg_offset += iosize;
3409 continue;
3410 }
3411
3412 set_range_writeback(tree, cur, cur + iosize - 1);
3413 if (!PageWriteback(page)) {
3414 btrfs_err(BTRFS_I(inode)->root->fs_info,
3415 "page %lu not writeback, cur %llu end %llu",
3416 page->index, cur, end);
3417 }
3418
3419 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3420 page, offset, iosize, pg_offset,
3421 bdev, &epd->bio,
3422 end_bio_extent_writepage,
3423 0, 0, 0, false);
3424 if (ret) {
3425 SetPageError(page);
3426 if (PageWriteback(page))
3427 end_page_writeback(page);
3428 }
3429
3430 cur = cur + iosize;
3431 pg_offset += iosize;
3432 nr++;
3433 }
3434 done:
3435 *nr_ret = nr;
3436 return ret;
3437 }
3438
3439 /*
3440 * the writepage semantics are similar to regular writepage. extent
3441 * records are inserted to lock ranges in the tree, and as dirty areas
3442 * are found, they are marked writeback. Then the lock bits are removed
3443 * and the end_io handler clears the writeback ranges
3444 */
3445 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3446 struct extent_page_data *epd)
3447 {
3448 struct inode *inode = page->mapping->host;
3449 u64 start = page_offset(page);
3450 u64 page_end = start + PAGE_SIZE - 1;
3451 int ret;
3452 int nr = 0;
3453 size_t pg_offset = 0;
3454 loff_t i_size = i_size_read(inode);
3455 unsigned long end_index = i_size >> PAGE_SHIFT;
3456 unsigned int write_flags = 0;
3457 unsigned long nr_written = 0;
3458
3459 write_flags = wbc_to_write_flags(wbc);
3460
3461 trace___extent_writepage(page, inode, wbc);
3462
3463 WARN_ON(!PageLocked(page));
3464
3465 ClearPageError(page);
3466
3467 pg_offset = i_size & (PAGE_SIZE - 1);
3468 if (page->index > end_index ||
3469 (page->index == end_index && !pg_offset)) {
3470 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3471 unlock_page(page);
3472 return 0;
3473 }
3474
3475 if (page->index == end_index) {
3476 char *userpage;
3477
3478 userpage = kmap_atomic(page);
3479 memset(userpage + pg_offset, 0,
3480 PAGE_SIZE - pg_offset);
3481 kunmap_atomic(userpage);
3482 flush_dcache_page(page);
3483 }
3484
3485 pg_offset = 0;
3486
3487 set_page_extent_mapped(page);
3488
3489 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3490 if (ret == 1)
3491 goto done_unlocked;
3492 if (ret)
3493 goto done;
3494
3495 ret = __extent_writepage_io(inode, page, wbc, epd,
3496 i_size, nr_written, write_flags, &nr);
3497 if (ret == 1)
3498 goto done_unlocked;
3499
3500 done:
3501 if (nr == 0) {
3502 /* make sure the mapping tag for page dirty gets cleared */
3503 set_page_writeback(page);
3504 end_page_writeback(page);
3505 }
3506 if (PageError(page)) {
3507 ret = ret < 0 ? ret : -EIO;
3508 end_extent_writepage(page, ret, start, page_end);
3509 }
3510 unlock_page(page);
3511 return ret;
3512
3513 done_unlocked:
3514 return 0;
3515 }
3516
3517 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3518 {
3519 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3520 TASK_UNINTERRUPTIBLE);
3521 }
3522
3523 static noinline_for_stack int
3524 lock_extent_buffer_for_io(struct extent_buffer *eb,
3525 struct btrfs_fs_info *fs_info,
3526 struct extent_page_data *epd)
3527 {
3528 unsigned long i, num_pages;
3529 int flush = 0;
3530 int ret = 0;
3531
3532 if (!btrfs_try_tree_write_lock(eb)) {
3533 flush = 1;
3534 flush_write_bio(epd);
3535 btrfs_tree_lock(eb);
3536 }
3537
3538 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3539 btrfs_tree_unlock(eb);
3540 if (!epd->sync_io)
3541 return 0;
3542 if (!flush) {
3543 flush_write_bio(epd);
3544 flush = 1;
3545 }
3546 while (1) {
3547 wait_on_extent_buffer_writeback(eb);
3548 btrfs_tree_lock(eb);
3549 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3550 break;
3551 btrfs_tree_unlock(eb);
3552 }
3553 }
3554
3555 /*
3556 * We need to do this to prevent races in people who check if the eb is
3557 * under IO since we can end up having no IO bits set for a short period
3558 * of time.
3559 */
3560 spin_lock(&eb->refs_lock);
3561 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3562 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3563 spin_unlock(&eb->refs_lock);
3564 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3565 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3566 -eb->len,
3567 fs_info->dirty_metadata_batch);
3568 ret = 1;
3569 } else {
3570 spin_unlock(&eb->refs_lock);
3571 }
3572
3573 btrfs_tree_unlock(eb);
3574
3575 if (!ret)
3576 return ret;
3577
3578 num_pages = num_extent_pages(eb->start, eb->len);
3579 for (i = 0; i < num_pages; i++) {
3580 struct page *p = eb->pages[i];
3581
3582 if (!trylock_page(p)) {
3583 if (!flush) {
3584 flush_write_bio(epd);
3585 flush = 1;
3586 }
3587 lock_page(p);
3588 }
3589 }
3590
3591 return ret;
3592 }
3593
3594 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3595 {
3596 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3597 smp_mb__after_atomic();
3598 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3599 }
3600
3601 static void set_btree_ioerr(struct page *page)
3602 {
3603 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3604
3605 SetPageError(page);
3606 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3607 return;
3608
3609 /*
3610 * If writeback for a btree extent that doesn't belong to a log tree
3611 * failed, increment the counter transaction->eb_write_errors.
3612 * We do this because while the transaction is running and before it's
3613 * committing (when we call filemap_fdata[write|wait]_range against
3614 * the btree inode), we might have
3615 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3616 * returns an error or an error happens during writeback, when we're
3617 * committing the transaction we wouldn't know about it, since the pages
3618 * can be no longer dirty nor marked anymore for writeback (if a
3619 * subsequent modification to the extent buffer didn't happen before the
3620 * transaction commit), which makes filemap_fdata[write|wait]_range not
3621 * able to find the pages tagged with SetPageError at transaction
3622 * commit time. So if this happens we must abort the transaction,
3623 * otherwise we commit a super block with btree roots that point to
3624 * btree nodes/leafs whose content on disk is invalid - either garbage
3625 * or the content of some node/leaf from a past generation that got
3626 * cowed or deleted and is no longer valid.
3627 *
3628 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3629 * not be enough - we need to distinguish between log tree extents vs
3630 * non-log tree extents, and the next filemap_fdatawait_range() call
3631 * will catch and clear such errors in the mapping - and that call might
3632 * be from a log sync and not from a transaction commit. Also, checking
3633 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3634 * not done and would not be reliable - the eb might have been released
3635 * from memory and reading it back again means that flag would not be
3636 * set (since it's a runtime flag, not persisted on disk).
3637 *
3638 * Using the flags below in the btree inode also makes us achieve the
3639 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3640 * writeback for all dirty pages and before filemap_fdatawait_range()
3641 * is called, the writeback for all dirty pages had already finished
3642 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3643 * filemap_fdatawait_range() would return success, as it could not know
3644 * that writeback errors happened (the pages were no longer tagged for
3645 * writeback).
3646 */
3647 switch (eb->log_index) {
3648 case -1:
3649 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3650 break;
3651 case 0:
3652 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3653 break;
3654 case 1:
3655 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3656 break;
3657 default:
3658 BUG(); /* unexpected, logic error */
3659 }
3660 }
3661
3662 static void end_bio_extent_buffer_writepage(struct bio *bio)
3663 {
3664 struct bio_vec *bvec;
3665 struct extent_buffer *eb;
3666 int i, done;
3667
3668 ASSERT(!bio_flagged(bio, BIO_CLONED));
3669 bio_for_each_segment_all(bvec, bio, i) {
3670 struct page *page = bvec->bv_page;
3671
3672 eb = (struct extent_buffer *)page->private;
3673 BUG_ON(!eb);
3674 done = atomic_dec_and_test(&eb->io_pages);
3675
3676 if (bio->bi_status ||
3677 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3678 ClearPageUptodate(page);
3679 set_btree_ioerr(page);
3680 }
3681
3682 end_page_writeback(page);
3683
3684 if (!done)
3685 continue;
3686
3687 end_extent_buffer_writeback(eb);
3688 }
3689
3690 bio_put(bio);
3691 }
3692
3693 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3694 struct btrfs_fs_info *fs_info,
3695 struct writeback_control *wbc,
3696 struct extent_page_data *epd)
3697 {
3698 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3699 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3700 u64 offset = eb->start;
3701 u32 nritems;
3702 unsigned long i, num_pages;
3703 unsigned long start, end;
3704 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3705 int ret = 0;
3706
3707 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3708 num_pages = num_extent_pages(eb->start, eb->len);
3709 atomic_set(&eb->io_pages, num_pages);
3710
3711 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3712 nritems = btrfs_header_nritems(eb);
3713 if (btrfs_header_level(eb) > 0) {
3714 end = btrfs_node_key_ptr_offset(nritems);
3715
3716 memzero_extent_buffer(eb, end, eb->len - end);
3717 } else {
3718 /*
3719 * leaf:
3720 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3721 */
3722 start = btrfs_item_nr_offset(nritems);
3723 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3724 memzero_extent_buffer(eb, start, end - start);
3725 }
3726
3727 for (i = 0; i < num_pages; i++) {
3728 struct page *p = eb->pages[i];
3729
3730 clear_page_dirty_for_io(p);
3731 set_page_writeback(p);
3732 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3733 p, offset, PAGE_SIZE, 0, bdev,
3734 &epd->bio,
3735 end_bio_extent_buffer_writepage,
3736 0, 0, 0, false);
3737 if (ret) {
3738 set_btree_ioerr(p);
3739 if (PageWriteback(p))
3740 end_page_writeback(p);
3741 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3742 end_extent_buffer_writeback(eb);
3743 ret = -EIO;
3744 break;
3745 }
3746 offset += PAGE_SIZE;
3747 update_nr_written(wbc, 1);
3748 unlock_page(p);
3749 }
3750
3751 if (unlikely(ret)) {
3752 for (; i < num_pages; i++) {
3753 struct page *p = eb->pages[i];
3754 clear_page_dirty_for_io(p);
3755 unlock_page(p);
3756 }
3757 }
3758
3759 return ret;
3760 }
3761
3762 int btree_write_cache_pages(struct address_space *mapping,
3763 struct writeback_control *wbc)
3764 {
3765 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3766 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3767 struct extent_buffer *eb, *prev_eb = NULL;
3768 struct extent_page_data epd = {
3769 .bio = NULL,
3770 .tree = tree,
3771 .extent_locked = 0,
3772 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3773 };
3774 int ret = 0;
3775 int done = 0;
3776 int nr_to_write_done = 0;
3777 struct pagevec pvec;
3778 int nr_pages;
3779 pgoff_t index;
3780 pgoff_t end; /* Inclusive */
3781 int scanned = 0;
3782 int tag;
3783
3784 pagevec_init(&pvec);
3785 if (wbc->range_cyclic) {
3786 index = mapping->writeback_index; /* Start from prev offset */
3787 end = -1;
3788 } else {
3789 index = wbc->range_start >> PAGE_SHIFT;
3790 end = wbc->range_end >> PAGE_SHIFT;
3791 scanned = 1;
3792 }
3793 if (wbc->sync_mode == WB_SYNC_ALL)
3794 tag = PAGECACHE_TAG_TOWRITE;
3795 else
3796 tag = PAGECACHE_TAG_DIRTY;
3797 retry:
3798 if (wbc->sync_mode == WB_SYNC_ALL)
3799 tag_pages_for_writeback(mapping, index, end);
3800 while (!done && !nr_to_write_done && (index <= end) &&
3801 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3802 tag))) {
3803 unsigned i;
3804
3805 scanned = 1;
3806 for (i = 0; i < nr_pages; i++) {
3807 struct page *page = pvec.pages[i];
3808
3809 if (!PagePrivate(page))
3810 continue;
3811
3812 spin_lock(&mapping->private_lock);
3813 if (!PagePrivate(page)) {
3814 spin_unlock(&mapping->private_lock);
3815 continue;
3816 }
3817
3818 eb = (struct extent_buffer *)page->private;
3819
3820 /*
3821 * Shouldn't happen and normally this would be a BUG_ON
3822 * but no sense in crashing the users box for something
3823 * we can survive anyway.
3824 */
3825 if (WARN_ON(!eb)) {
3826 spin_unlock(&mapping->private_lock);
3827 continue;
3828 }
3829
3830 if (eb == prev_eb) {
3831 spin_unlock(&mapping->private_lock);
3832 continue;
3833 }
3834
3835 ret = atomic_inc_not_zero(&eb->refs);
3836 spin_unlock(&mapping->private_lock);
3837 if (!ret)
3838 continue;
3839
3840 prev_eb = eb;
3841 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3842 if (!ret) {
3843 free_extent_buffer(eb);
3844 continue;
3845 }
3846
3847 ret = write_one_eb(eb, fs_info, wbc, &epd);
3848 if (ret) {
3849 done = 1;
3850 free_extent_buffer(eb);
3851 break;
3852 }
3853 free_extent_buffer(eb);
3854
3855 /*
3856 * the filesystem may choose to bump up nr_to_write.
3857 * We have to make sure to honor the new nr_to_write
3858 * at any time
3859 */
3860 nr_to_write_done = wbc->nr_to_write <= 0;
3861 }
3862 pagevec_release(&pvec);
3863 cond_resched();
3864 }
3865 if (!scanned && !done) {
3866 /*
3867 * We hit the last page and there is more work to be done: wrap
3868 * back to the start of the file
3869 */
3870 scanned = 1;
3871 index = 0;
3872 goto retry;
3873 }
3874 flush_write_bio(&epd);
3875 return ret;
3876 }
3877
3878 /**
3879 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3880 * @mapping: address space structure to write
3881 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3882 * @data: data passed to __extent_writepage function
3883 *
3884 * If a page is already under I/O, write_cache_pages() skips it, even
3885 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3886 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3887 * and msync() need to guarantee that all the data which was dirty at the time
3888 * the call was made get new I/O started against them. If wbc->sync_mode is
3889 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3890 * existing IO to complete.
3891 */
3892 static int extent_write_cache_pages(struct address_space *mapping,
3893 struct writeback_control *wbc,
3894 struct extent_page_data *epd)
3895 {
3896 struct inode *inode = mapping->host;
3897 int ret = 0;
3898 int done = 0;
3899 int nr_to_write_done = 0;
3900 struct pagevec pvec;
3901 int nr_pages;
3902 pgoff_t index;
3903 pgoff_t end; /* Inclusive */
3904 pgoff_t done_index;
3905 int range_whole = 0;
3906 int scanned = 0;
3907 int tag;
3908
3909 /*
3910 * We have to hold onto the inode so that ordered extents can do their
3911 * work when the IO finishes. The alternative to this is failing to add
3912 * an ordered extent if the igrab() fails there and that is a huge pain
3913 * to deal with, so instead just hold onto the inode throughout the
3914 * writepages operation. If it fails here we are freeing up the inode
3915 * anyway and we'd rather not waste our time writing out stuff that is
3916 * going to be truncated anyway.
3917 */
3918 if (!igrab(inode))
3919 return 0;
3920
3921 pagevec_init(&pvec);
3922 if (wbc->range_cyclic) {
3923 index = mapping->writeback_index; /* Start from prev offset */
3924 end = -1;
3925 } else {
3926 index = wbc->range_start >> PAGE_SHIFT;
3927 end = wbc->range_end >> PAGE_SHIFT;
3928 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3929 range_whole = 1;
3930 scanned = 1;
3931 }
3932 if (wbc->sync_mode == WB_SYNC_ALL)
3933 tag = PAGECACHE_TAG_TOWRITE;
3934 else
3935 tag = PAGECACHE_TAG_DIRTY;
3936 retry:
3937 if (wbc->sync_mode == WB_SYNC_ALL)
3938 tag_pages_for_writeback(mapping, index, end);
3939 done_index = index;
3940 while (!done && !nr_to_write_done && (index <= end) &&
3941 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3942 &index, end, tag))) {
3943 unsigned i;
3944
3945 scanned = 1;
3946 for (i = 0; i < nr_pages; i++) {
3947 struct page *page = pvec.pages[i];
3948
3949 done_index = page->index;
3950 /*
3951 * At this point we hold neither mapping->tree_lock nor
3952 * lock on the page itself: the page may be truncated or
3953 * invalidated (changing page->mapping to NULL), or even
3954 * swizzled back from swapper_space to tmpfs file
3955 * mapping
3956 */
3957 if (!trylock_page(page)) {
3958 flush_write_bio(epd);
3959 lock_page(page);
3960 }
3961
3962 if (unlikely(page->mapping != mapping)) {
3963 unlock_page(page);
3964 continue;
3965 }
3966
3967 if (wbc->sync_mode != WB_SYNC_NONE) {
3968 if (PageWriteback(page))
3969 flush_write_bio(epd);
3970 wait_on_page_writeback(page);
3971 }
3972
3973 if (PageWriteback(page) ||
3974 !clear_page_dirty_for_io(page)) {
3975 unlock_page(page);
3976 continue;
3977 }
3978
3979 ret = __extent_writepage(page, wbc, epd);
3980
3981 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3982 unlock_page(page);
3983 ret = 0;
3984 }
3985 if (ret < 0) {
3986 /*
3987 * done_index is set past this page,
3988 * so media errors will not choke
3989 * background writeout for the entire
3990 * file. This has consequences for
3991 * range_cyclic semantics (ie. it may
3992 * not be suitable for data integrity
3993 * writeout).
3994 */
3995 done_index = page->index + 1;
3996 done = 1;
3997 break;
3998 }
3999
4000 /*
4001 * the filesystem may choose to bump up nr_to_write.
4002 * We have to make sure to honor the new nr_to_write
4003 * at any time
4004 */
4005 nr_to_write_done = wbc->nr_to_write <= 0;
4006 }
4007 pagevec_release(&pvec);
4008 cond_resched();
4009 }
4010 if (!scanned && !done) {
4011 /*
4012 * We hit the last page and there is more work to be done: wrap
4013 * back to the start of the file
4014 */
4015 scanned = 1;
4016 index = 0;
4017 goto retry;
4018 }
4019
4020 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4021 mapping->writeback_index = done_index;
4022
4023 btrfs_add_delayed_iput(inode);
4024 return ret;
4025 }
4026
4027 static void flush_write_bio(struct extent_page_data *epd)
4028 {
4029 if (epd->bio) {
4030 int ret;
4031
4032 ret = submit_one_bio(epd->bio, 0, 0);
4033 BUG_ON(ret < 0); /* -ENOMEM */
4034 epd->bio = NULL;
4035 }
4036 }
4037
4038 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4039 {
4040 int ret;
4041 struct extent_page_data epd = {
4042 .bio = NULL,
4043 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4044 .extent_locked = 0,
4045 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4046 };
4047
4048 ret = __extent_writepage(page, wbc, &epd);
4049
4050 flush_write_bio(&epd);
4051 return ret;
4052 }
4053
4054 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4055 int mode)
4056 {
4057 int ret = 0;
4058 struct address_space *mapping = inode->i_mapping;
4059 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4060 struct page *page;
4061 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4062 PAGE_SHIFT;
4063
4064 struct extent_page_data epd = {
4065 .bio = NULL,
4066 .tree = tree,
4067 .extent_locked = 1,
4068 .sync_io = mode == WB_SYNC_ALL,
4069 };
4070 struct writeback_control wbc_writepages = {
4071 .sync_mode = mode,
4072 .nr_to_write = nr_pages * 2,
4073 .range_start = start,
4074 .range_end = end + 1,
4075 };
4076
4077 while (start <= end) {
4078 page = find_get_page(mapping, start >> PAGE_SHIFT);
4079 if (clear_page_dirty_for_io(page))
4080 ret = __extent_writepage(page, &wbc_writepages, &epd);
4081 else {
4082 if (tree->ops && tree->ops->writepage_end_io_hook)
4083 tree->ops->writepage_end_io_hook(page, start,
4084 start + PAGE_SIZE - 1,
4085 NULL, 1);
4086 unlock_page(page);
4087 }
4088 put_page(page);
4089 start += PAGE_SIZE;
4090 }
4091
4092 flush_write_bio(&epd);
4093 return ret;
4094 }
4095
4096 int extent_writepages(struct extent_io_tree *tree,
4097 struct address_space *mapping,
4098 struct writeback_control *wbc)
4099 {
4100 int ret = 0;
4101 struct extent_page_data epd = {
4102 .bio = NULL,
4103 .tree = tree,
4104 .extent_locked = 0,
4105 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4106 };
4107
4108 ret = extent_write_cache_pages(mapping, wbc, &epd);
4109 flush_write_bio(&epd);
4110 return ret;
4111 }
4112
4113 int extent_readpages(struct extent_io_tree *tree,
4114 struct address_space *mapping,
4115 struct list_head *pages, unsigned nr_pages)
4116 {
4117 struct bio *bio = NULL;
4118 unsigned page_idx;
4119 unsigned long bio_flags = 0;
4120 struct page *pagepool[16];
4121 struct page *page;
4122 struct extent_map *em_cached = NULL;
4123 int nr = 0;
4124 u64 prev_em_start = (u64)-1;
4125
4126 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4127 page = list_entry(pages->prev, struct page, lru);
4128
4129 prefetchw(&page->flags);
4130 list_del(&page->lru);
4131 if (add_to_page_cache_lru(page, mapping,
4132 page->index,
4133 readahead_gfp_mask(mapping))) {
4134 put_page(page);
4135 continue;
4136 }
4137
4138 pagepool[nr++] = page;
4139 if (nr < ARRAY_SIZE(pagepool))
4140 continue;
4141 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4142 &bio_flags, &prev_em_start);
4143 nr = 0;
4144 }
4145 if (nr)
4146 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4147 &bio_flags, &prev_em_start);
4148
4149 if (em_cached)
4150 free_extent_map(em_cached);
4151
4152 BUG_ON(!list_empty(pages));
4153 if (bio)
4154 return submit_one_bio(bio, 0, bio_flags);
4155 return 0;
4156 }
4157
4158 /*
4159 * basic invalidatepage code, this waits on any locked or writeback
4160 * ranges corresponding to the page, and then deletes any extent state
4161 * records from the tree
4162 */
4163 int extent_invalidatepage(struct extent_io_tree *tree,
4164 struct page *page, unsigned long offset)
4165 {
4166 struct extent_state *cached_state = NULL;
4167 u64 start = page_offset(page);
4168 u64 end = start + PAGE_SIZE - 1;
4169 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4170
4171 start += ALIGN(offset, blocksize);
4172 if (start > end)
4173 return 0;
4174
4175 lock_extent_bits(tree, start, end, &cached_state);
4176 wait_on_page_writeback(page);
4177 clear_extent_bit(tree, start, end,
4178 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4179 EXTENT_DO_ACCOUNTING,
4180 1, 1, &cached_state);
4181 return 0;
4182 }
4183
4184 /*
4185 * a helper for releasepage, this tests for areas of the page that
4186 * are locked or under IO and drops the related state bits if it is safe
4187 * to drop the page.
4188 */
4189 static int try_release_extent_state(struct extent_map_tree *map,
4190 struct extent_io_tree *tree,
4191 struct page *page, gfp_t mask)
4192 {
4193 u64 start = page_offset(page);
4194 u64 end = start + PAGE_SIZE - 1;
4195 int ret = 1;
4196
4197 if (test_range_bit(tree, start, end,
4198 EXTENT_IOBITS, 0, NULL))
4199 ret = 0;
4200 else {
4201 /*
4202 * at this point we can safely clear everything except the
4203 * locked bit and the nodatasum bit
4204 */
4205 ret = __clear_extent_bit(tree, start, end,
4206 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4207 0, 0, NULL, mask, NULL);
4208
4209 /* if clear_extent_bit failed for enomem reasons,
4210 * we can't allow the release to continue.
4211 */
4212 if (ret < 0)
4213 ret = 0;
4214 else
4215 ret = 1;
4216 }
4217 return ret;
4218 }
4219
4220 /*
4221 * a helper for releasepage. As long as there are no locked extents
4222 * in the range corresponding to the page, both state records and extent
4223 * map records are removed
4224 */
4225 int try_release_extent_mapping(struct extent_map_tree *map,
4226 struct extent_io_tree *tree, struct page *page,
4227 gfp_t mask)
4228 {
4229 struct extent_map *em;
4230 u64 start = page_offset(page);
4231 u64 end = start + PAGE_SIZE - 1;
4232
4233 if (gfpflags_allow_blocking(mask) &&
4234 page->mapping->host->i_size > SZ_16M) {
4235 u64 len;
4236 while (start <= end) {
4237 len = end - start + 1;
4238 write_lock(&map->lock);
4239 em = lookup_extent_mapping(map, start, len);
4240 if (!em) {
4241 write_unlock(&map->lock);
4242 break;
4243 }
4244 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4245 em->start != start) {
4246 write_unlock(&map->lock);
4247 free_extent_map(em);
4248 break;
4249 }
4250 if (!test_range_bit(tree, em->start,
4251 extent_map_end(em) - 1,
4252 EXTENT_LOCKED | EXTENT_WRITEBACK,
4253 0, NULL)) {
4254 remove_extent_mapping(map, em);
4255 /* once for the rb tree */
4256 free_extent_map(em);
4257 }
4258 start = extent_map_end(em);
4259 write_unlock(&map->lock);
4260
4261 /* once for us */
4262 free_extent_map(em);
4263 }
4264 }
4265 return try_release_extent_state(map, tree, page, mask);
4266 }
4267
4268 /*
4269 * helper function for fiemap, which doesn't want to see any holes.
4270 * This maps until we find something past 'last'
4271 */
4272 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4273 u64 offset, u64 last)
4274 {
4275 u64 sectorsize = btrfs_inode_sectorsize(inode);
4276 struct extent_map *em;
4277 u64 len;
4278
4279 if (offset >= last)
4280 return NULL;
4281
4282 while (1) {
4283 len = last - offset;
4284 if (len == 0)
4285 break;
4286 len = ALIGN(len, sectorsize);
4287 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4288 len, 0);
4289 if (IS_ERR_OR_NULL(em))
4290 return em;
4291
4292 /* if this isn't a hole return it */
4293 if (em->block_start != EXTENT_MAP_HOLE)
4294 return em;
4295
4296 /* this is a hole, advance to the next extent */
4297 offset = extent_map_end(em);
4298 free_extent_map(em);
4299 if (offset >= last)
4300 break;
4301 }
4302 return NULL;
4303 }
4304
4305 /*
4306 * To cache previous fiemap extent
4307 *
4308 * Will be used for merging fiemap extent
4309 */
4310 struct fiemap_cache {
4311 u64 offset;
4312 u64 phys;
4313 u64 len;
4314 u32 flags;
4315 bool cached;
4316 };
4317
4318 /*
4319 * Helper to submit fiemap extent.
4320 *
4321 * Will try to merge current fiemap extent specified by @offset, @phys,
4322 * @len and @flags with cached one.
4323 * And only when we fails to merge, cached one will be submitted as
4324 * fiemap extent.
4325 *
4326 * Return value is the same as fiemap_fill_next_extent().
4327 */
4328 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4329 struct fiemap_cache *cache,
4330 u64 offset, u64 phys, u64 len, u32 flags)
4331 {
4332 int ret = 0;
4333
4334 if (!cache->cached)
4335 goto assign;
4336
4337 /*
4338 * Sanity check, extent_fiemap() should have ensured that new
4339 * fiemap extent won't overlap with cahced one.
4340 * Not recoverable.
4341 *
4342 * NOTE: Physical address can overlap, due to compression
4343 */
4344 if (cache->offset + cache->len > offset) {
4345 WARN_ON(1);
4346 return -EINVAL;
4347 }
4348
4349 /*
4350 * Only merges fiemap extents if
4351 * 1) Their logical addresses are continuous
4352 *
4353 * 2) Their physical addresses are continuous
4354 * So truly compressed (physical size smaller than logical size)
4355 * extents won't get merged with each other
4356 *
4357 * 3) Share same flags except FIEMAP_EXTENT_LAST
4358 * So regular extent won't get merged with prealloc extent
4359 */
4360 if (cache->offset + cache->len == offset &&
4361 cache->phys + cache->len == phys &&
4362 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4363 (flags & ~FIEMAP_EXTENT_LAST)) {
4364 cache->len += len;
4365 cache->flags |= flags;
4366 goto try_submit_last;
4367 }
4368
4369 /* Not mergeable, need to submit cached one */
4370 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4371 cache->len, cache->flags);
4372 cache->cached = false;
4373 if (ret)
4374 return ret;
4375 assign:
4376 cache->cached = true;
4377 cache->offset = offset;
4378 cache->phys = phys;
4379 cache->len = len;
4380 cache->flags = flags;
4381 try_submit_last:
4382 if (cache->flags & FIEMAP_EXTENT_LAST) {
4383 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4384 cache->phys, cache->len, cache->flags);
4385 cache->cached = false;
4386 }
4387 return ret;
4388 }
4389
4390 /*
4391 * Emit last fiemap cache
4392 *
4393 * The last fiemap cache may still be cached in the following case:
4394 * 0 4k 8k
4395 * |<- Fiemap range ->|
4396 * |<------------ First extent ----------->|
4397 *
4398 * In this case, the first extent range will be cached but not emitted.
4399 * So we must emit it before ending extent_fiemap().
4400 */
4401 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4402 struct fiemap_extent_info *fieinfo,
4403 struct fiemap_cache *cache)
4404 {
4405 int ret;
4406
4407 if (!cache->cached)
4408 return 0;
4409
4410 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4411 cache->len, cache->flags);
4412 cache->cached = false;
4413 if (ret > 0)
4414 ret = 0;
4415 return ret;
4416 }
4417
4418 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4419 __u64 start, __u64 len)
4420 {
4421 int ret = 0;
4422 u64 off = start;
4423 u64 max = start + len;
4424 u32 flags = 0;
4425 u32 found_type;
4426 u64 last;
4427 u64 last_for_get_extent = 0;
4428 u64 disko = 0;
4429 u64 isize = i_size_read(inode);
4430 struct btrfs_key found_key;
4431 struct extent_map *em = NULL;
4432 struct extent_state *cached_state = NULL;
4433 struct btrfs_path *path;
4434 struct btrfs_root *root = BTRFS_I(inode)->root;
4435 struct fiemap_cache cache = { 0 };
4436 int end = 0;
4437 u64 em_start = 0;
4438 u64 em_len = 0;
4439 u64 em_end = 0;
4440
4441 if (len == 0)
4442 return -EINVAL;
4443
4444 path = btrfs_alloc_path();
4445 if (!path)
4446 return -ENOMEM;
4447 path->leave_spinning = 1;
4448
4449 start = round_down(start, btrfs_inode_sectorsize(inode));
4450 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4451
4452 /*
4453 * lookup the last file extent. We're not using i_size here
4454 * because there might be preallocation past i_size
4455 */
4456 ret = btrfs_lookup_file_extent(NULL, root, path,
4457 btrfs_ino(BTRFS_I(inode)), -1, 0);
4458 if (ret < 0) {
4459 btrfs_free_path(path);
4460 return ret;
4461 } else {
4462 WARN_ON(!ret);
4463 if (ret == 1)
4464 ret = 0;
4465 }
4466
4467 path->slots[0]--;
4468 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4469 found_type = found_key.type;
4470
4471 /* No extents, but there might be delalloc bits */
4472 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4473 found_type != BTRFS_EXTENT_DATA_KEY) {
4474 /* have to trust i_size as the end */
4475 last = (u64)-1;
4476 last_for_get_extent = isize;
4477 } else {
4478 /*
4479 * remember the start of the last extent. There are a
4480 * bunch of different factors that go into the length of the
4481 * extent, so its much less complex to remember where it started
4482 */
4483 last = found_key.offset;
4484 last_for_get_extent = last + 1;
4485 }
4486 btrfs_release_path(path);
4487
4488 /*
4489 * we might have some extents allocated but more delalloc past those
4490 * extents. so, we trust isize unless the start of the last extent is
4491 * beyond isize
4492 */
4493 if (last < isize) {
4494 last = (u64)-1;
4495 last_for_get_extent = isize;
4496 }
4497
4498 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4499 &cached_state);
4500
4501 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4502 if (!em)
4503 goto out;
4504 if (IS_ERR(em)) {
4505 ret = PTR_ERR(em);
4506 goto out;
4507 }
4508
4509 while (!end) {
4510 u64 offset_in_extent = 0;
4511
4512 /* break if the extent we found is outside the range */
4513 if (em->start >= max || extent_map_end(em) < off)
4514 break;
4515
4516 /*
4517 * get_extent may return an extent that starts before our
4518 * requested range. We have to make sure the ranges
4519 * we return to fiemap always move forward and don't
4520 * overlap, so adjust the offsets here
4521 */
4522 em_start = max(em->start, off);
4523
4524 /*
4525 * record the offset from the start of the extent
4526 * for adjusting the disk offset below. Only do this if the
4527 * extent isn't compressed since our in ram offset may be past
4528 * what we have actually allocated on disk.
4529 */
4530 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4531 offset_in_extent = em_start - em->start;
4532 em_end = extent_map_end(em);
4533 em_len = em_end - em_start;
4534 disko = 0;
4535 flags = 0;
4536
4537 /*
4538 * bump off for our next call to get_extent
4539 */
4540 off = extent_map_end(em);
4541 if (off >= max)
4542 end = 1;
4543
4544 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4545 end = 1;
4546 flags |= FIEMAP_EXTENT_LAST;
4547 } else if (em->block_start == EXTENT_MAP_INLINE) {
4548 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4549 FIEMAP_EXTENT_NOT_ALIGNED);
4550 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4551 flags |= (FIEMAP_EXTENT_DELALLOC |
4552 FIEMAP_EXTENT_UNKNOWN);
4553 } else if (fieinfo->fi_extents_max) {
4554 u64 bytenr = em->block_start -
4555 (em->start - em->orig_start);
4556
4557 disko = em->block_start + offset_in_extent;
4558
4559 /*
4560 * As btrfs supports shared space, this information
4561 * can be exported to userspace tools via
4562 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4563 * then we're just getting a count and we can skip the
4564 * lookup stuff.
4565 */
4566 ret = btrfs_check_shared(root,
4567 btrfs_ino(BTRFS_I(inode)),
4568 bytenr);
4569 if (ret < 0)
4570 goto out_free;
4571 if (ret)
4572 flags |= FIEMAP_EXTENT_SHARED;
4573 ret = 0;
4574 }
4575 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4576 flags |= FIEMAP_EXTENT_ENCODED;
4577 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4578 flags |= FIEMAP_EXTENT_UNWRITTEN;
4579
4580 free_extent_map(em);
4581 em = NULL;
4582 if ((em_start >= last) || em_len == (u64)-1 ||
4583 (last == (u64)-1 && isize <= em_end)) {
4584 flags |= FIEMAP_EXTENT_LAST;
4585 end = 1;
4586 }
4587
4588 /* now scan forward to see if this is really the last extent. */
4589 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4590 if (IS_ERR(em)) {
4591 ret = PTR_ERR(em);
4592 goto out;
4593 }
4594 if (!em) {
4595 flags |= FIEMAP_EXTENT_LAST;
4596 end = 1;
4597 }
4598 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4599 em_len, flags);
4600 if (ret) {
4601 if (ret == 1)
4602 ret = 0;
4603 goto out_free;
4604 }
4605 }
4606 out_free:
4607 if (!ret)
4608 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4609 free_extent_map(em);
4610 out:
4611 btrfs_free_path(path);
4612 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4613 &cached_state);
4614 return ret;
4615 }
4616
4617 static void __free_extent_buffer(struct extent_buffer *eb)
4618 {
4619 btrfs_leak_debug_del(&eb->leak_list);
4620 kmem_cache_free(extent_buffer_cache, eb);
4621 }
4622
4623 int extent_buffer_under_io(struct extent_buffer *eb)
4624 {
4625 return (atomic_read(&eb->io_pages) ||
4626 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4627 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4628 }
4629
4630 /*
4631 * Helper for releasing extent buffer page.
4632 */
4633 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4634 {
4635 unsigned long index;
4636 struct page *page;
4637 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4638
4639 BUG_ON(extent_buffer_under_io(eb));
4640
4641 index = num_extent_pages(eb->start, eb->len);
4642 if (index == 0)
4643 return;
4644
4645 do {
4646 index--;
4647 page = eb->pages[index];
4648 if (!page)
4649 continue;
4650 if (mapped)
4651 spin_lock(&page->mapping->private_lock);
4652 /*
4653 * We do this since we'll remove the pages after we've
4654 * removed the eb from the radix tree, so we could race
4655 * and have this page now attached to the new eb. So
4656 * only clear page_private if it's still connected to
4657 * this eb.
4658 */
4659 if (PagePrivate(page) &&
4660 page->private == (unsigned long)eb) {
4661 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4662 BUG_ON(PageDirty(page));
4663 BUG_ON(PageWriteback(page));
4664 /*
4665 * We need to make sure we haven't be attached
4666 * to a new eb.
4667 */
4668 ClearPagePrivate(page);
4669 set_page_private(page, 0);
4670 /* One for the page private */
4671 put_page(page);
4672 }
4673
4674 if (mapped)
4675 spin_unlock(&page->mapping->private_lock);
4676
4677 /* One for when we allocated the page */
4678 put_page(page);
4679 } while (index != 0);
4680 }
4681
4682 /*
4683 * Helper for releasing the extent buffer.
4684 */
4685 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4686 {
4687 btrfs_release_extent_buffer_page(eb);
4688 __free_extent_buffer(eb);
4689 }
4690
4691 static struct extent_buffer *
4692 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4693 unsigned long len)
4694 {
4695 struct extent_buffer *eb = NULL;
4696
4697 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4698 eb->start = start;
4699 eb->len = len;
4700 eb->fs_info = fs_info;
4701 eb->bflags = 0;
4702 rwlock_init(&eb->lock);
4703 atomic_set(&eb->write_locks, 0);
4704 atomic_set(&eb->read_locks, 0);
4705 atomic_set(&eb->blocking_readers, 0);
4706 atomic_set(&eb->blocking_writers, 0);
4707 atomic_set(&eb->spinning_readers, 0);
4708 atomic_set(&eb->spinning_writers, 0);
4709 eb->lock_nested = 0;
4710 init_waitqueue_head(&eb->write_lock_wq);
4711 init_waitqueue_head(&eb->read_lock_wq);
4712
4713 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4714
4715 spin_lock_init(&eb->refs_lock);
4716 atomic_set(&eb->refs, 1);
4717 atomic_set(&eb->io_pages, 0);
4718
4719 /*
4720 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4721 */
4722 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4723 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4724 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4725
4726 return eb;
4727 }
4728
4729 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4730 {
4731 unsigned long i;
4732 struct page *p;
4733 struct extent_buffer *new;
4734 unsigned long num_pages = num_extent_pages(src->start, src->len);
4735
4736 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4737 if (new == NULL)
4738 return NULL;
4739
4740 for (i = 0; i < num_pages; i++) {
4741 p = alloc_page(GFP_NOFS);
4742 if (!p) {
4743 btrfs_release_extent_buffer(new);
4744 return NULL;
4745 }
4746 attach_extent_buffer_page(new, p);
4747 WARN_ON(PageDirty(p));
4748 SetPageUptodate(p);
4749 new->pages[i] = p;
4750 copy_page(page_address(p), page_address(src->pages[i]));
4751 }
4752
4753 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4754 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4755
4756 return new;
4757 }
4758
4759 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4760 u64 start, unsigned long len)
4761 {
4762 struct extent_buffer *eb;
4763 unsigned long num_pages;
4764 unsigned long i;
4765
4766 num_pages = num_extent_pages(start, len);
4767
4768 eb = __alloc_extent_buffer(fs_info, start, len);
4769 if (!eb)
4770 return NULL;
4771
4772 for (i = 0; i < num_pages; i++) {
4773 eb->pages[i] = alloc_page(GFP_NOFS);
4774 if (!eb->pages[i])
4775 goto err;
4776 }
4777 set_extent_buffer_uptodate(eb);
4778 btrfs_set_header_nritems(eb, 0);
4779 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4780
4781 return eb;
4782 err:
4783 for (; i > 0; i--)
4784 __free_page(eb->pages[i - 1]);
4785 __free_extent_buffer(eb);
4786 return NULL;
4787 }
4788
4789 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4790 u64 start)
4791 {
4792 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4793 }
4794
4795 static void check_buffer_tree_ref(struct extent_buffer *eb)
4796 {
4797 int refs;
4798 /* the ref bit is tricky. We have to make sure it is set
4799 * if we have the buffer dirty. Otherwise the
4800 * code to free a buffer can end up dropping a dirty
4801 * page
4802 *
4803 * Once the ref bit is set, it won't go away while the
4804 * buffer is dirty or in writeback, and it also won't
4805 * go away while we have the reference count on the
4806 * eb bumped.
4807 *
4808 * We can't just set the ref bit without bumping the
4809 * ref on the eb because free_extent_buffer might
4810 * see the ref bit and try to clear it. If this happens
4811 * free_extent_buffer might end up dropping our original
4812 * ref by mistake and freeing the page before we are able
4813 * to add one more ref.
4814 *
4815 * So bump the ref count first, then set the bit. If someone
4816 * beat us to it, drop the ref we added.
4817 */
4818 refs = atomic_read(&eb->refs);
4819 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4820 return;
4821
4822 spin_lock(&eb->refs_lock);
4823 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4824 atomic_inc(&eb->refs);
4825 spin_unlock(&eb->refs_lock);
4826 }
4827
4828 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4829 struct page *accessed)
4830 {
4831 unsigned long num_pages, i;
4832
4833 check_buffer_tree_ref(eb);
4834
4835 num_pages = num_extent_pages(eb->start, eb->len);
4836 for (i = 0; i < num_pages; i++) {
4837 struct page *p = eb->pages[i];
4838
4839 if (p != accessed)
4840 mark_page_accessed(p);
4841 }
4842 }
4843
4844 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4845 u64 start)
4846 {
4847 struct extent_buffer *eb;
4848
4849 rcu_read_lock();
4850 eb = radix_tree_lookup(&fs_info->buffer_radix,
4851 start >> PAGE_SHIFT);
4852 if (eb && atomic_inc_not_zero(&eb->refs)) {
4853 rcu_read_unlock();
4854 /*
4855 * Lock our eb's refs_lock to avoid races with
4856 * free_extent_buffer. When we get our eb it might be flagged
4857 * with EXTENT_BUFFER_STALE and another task running
4858 * free_extent_buffer might have seen that flag set,
4859 * eb->refs == 2, that the buffer isn't under IO (dirty and
4860 * writeback flags not set) and it's still in the tree (flag
4861 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4862 * of decrementing the extent buffer's reference count twice.
4863 * So here we could race and increment the eb's reference count,
4864 * clear its stale flag, mark it as dirty and drop our reference
4865 * before the other task finishes executing free_extent_buffer,
4866 * which would later result in an attempt to free an extent
4867 * buffer that is dirty.
4868 */
4869 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4870 spin_lock(&eb->refs_lock);
4871 spin_unlock(&eb->refs_lock);
4872 }
4873 mark_extent_buffer_accessed(eb, NULL);
4874 return eb;
4875 }
4876 rcu_read_unlock();
4877
4878 return NULL;
4879 }
4880
4881 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4882 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4883 u64 start)
4884 {
4885 struct extent_buffer *eb, *exists = NULL;
4886 int ret;
4887
4888 eb = find_extent_buffer(fs_info, start);
4889 if (eb)
4890 return eb;
4891 eb = alloc_dummy_extent_buffer(fs_info, start);
4892 if (!eb)
4893 return NULL;
4894 eb->fs_info = fs_info;
4895 again:
4896 ret = radix_tree_preload(GFP_NOFS);
4897 if (ret)
4898 goto free_eb;
4899 spin_lock(&fs_info->buffer_lock);
4900 ret = radix_tree_insert(&fs_info->buffer_radix,
4901 start >> PAGE_SHIFT, eb);
4902 spin_unlock(&fs_info->buffer_lock);
4903 radix_tree_preload_end();
4904 if (ret == -EEXIST) {
4905 exists = find_extent_buffer(fs_info, start);
4906 if (exists)
4907 goto free_eb;
4908 else
4909 goto again;
4910 }
4911 check_buffer_tree_ref(eb);
4912 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4913
4914 /*
4915 * We will free dummy extent buffer's if they come into
4916 * free_extent_buffer with a ref count of 2, but if we are using this we
4917 * want the buffers to stay in memory until we're done with them, so
4918 * bump the ref count again.
4919 */
4920 atomic_inc(&eb->refs);
4921 return eb;
4922 free_eb:
4923 btrfs_release_extent_buffer(eb);
4924 return exists;
4925 }
4926 #endif
4927
4928 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4929 u64 start)
4930 {
4931 unsigned long len = fs_info->nodesize;
4932 unsigned long num_pages = num_extent_pages(start, len);
4933 unsigned long i;
4934 unsigned long index = start >> PAGE_SHIFT;
4935 struct extent_buffer *eb;
4936 struct extent_buffer *exists = NULL;
4937 struct page *p;
4938 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4939 int uptodate = 1;
4940 int ret;
4941
4942 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4943 btrfs_err(fs_info, "bad tree block start %llu", start);
4944 return ERR_PTR(-EINVAL);
4945 }
4946
4947 eb = find_extent_buffer(fs_info, start);
4948 if (eb)
4949 return eb;
4950
4951 eb = __alloc_extent_buffer(fs_info, start, len);
4952 if (!eb)
4953 return ERR_PTR(-ENOMEM);
4954
4955 for (i = 0; i < num_pages; i++, index++) {
4956 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4957 if (!p) {
4958 exists = ERR_PTR(-ENOMEM);
4959 goto free_eb;
4960 }
4961
4962 spin_lock(&mapping->private_lock);
4963 if (PagePrivate(p)) {
4964 /*
4965 * We could have already allocated an eb for this page
4966 * and attached one so lets see if we can get a ref on
4967 * the existing eb, and if we can we know it's good and
4968 * we can just return that one, else we know we can just
4969 * overwrite page->private.
4970 */
4971 exists = (struct extent_buffer *)p->private;
4972 if (atomic_inc_not_zero(&exists->refs)) {
4973 spin_unlock(&mapping->private_lock);
4974 unlock_page(p);
4975 put_page(p);
4976 mark_extent_buffer_accessed(exists, p);
4977 goto free_eb;
4978 }
4979 exists = NULL;
4980
4981 /*
4982 * Do this so attach doesn't complain and we need to
4983 * drop the ref the old guy had.
4984 */
4985 ClearPagePrivate(p);
4986 WARN_ON(PageDirty(p));
4987 put_page(p);
4988 }
4989 attach_extent_buffer_page(eb, p);
4990 spin_unlock(&mapping->private_lock);
4991 WARN_ON(PageDirty(p));
4992 eb->pages[i] = p;
4993 if (!PageUptodate(p))
4994 uptodate = 0;
4995
4996 /*
4997 * see below about how we avoid a nasty race with release page
4998 * and why we unlock later
4999 */
5000 }
5001 if (uptodate)
5002 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5003 again:
5004 ret = radix_tree_preload(GFP_NOFS);
5005 if (ret) {
5006 exists = ERR_PTR(ret);
5007 goto free_eb;
5008 }
5009
5010 spin_lock(&fs_info->buffer_lock);
5011 ret = radix_tree_insert(&fs_info->buffer_radix,
5012 start >> PAGE_SHIFT, eb);
5013 spin_unlock(&fs_info->buffer_lock);
5014 radix_tree_preload_end();
5015 if (ret == -EEXIST) {
5016 exists = find_extent_buffer(fs_info, start);
5017 if (exists)
5018 goto free_eb;
5019 else
5020 goto again;
5021 }
5022 /* add one reference for the tree */
5023 check_buffer_tree_ref(eb);
5024 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5025
5026 /*
5027 * there is a race where release page may have
5028 * tried to find this extent buffer in the radix
5029 * but failed. It will tell the VM it is safe to
5030 * reclaim the, and it will clear the page private bit.
5031 * We must make sure to set the page private bit properly
5032 * after the extent buffer is in the radix tree so
5033 * it doesn't get lost
5034 */
5035 SetPageChecked(eb->pages[0]);
5036 for (i = 1; i < num_pages; i++) {
5037 p = eb->pages[i];
5038 ClearPageChecked(p);
5039 unlock_page(p);
5040 }
5041 unlock_page(eb->pages[0]);
5042 return eb;
5043
5044 free_eb:
5045 WARN_ON(!atomic_dec_and_test(&eb->refs));
5046 for (i = 0; i < num_pages; i++) {
5047 if (eb->pages[i])
5048 unlock_page(eb->pages[i]);
5049 }
5050
5051 btrfs_release_extent_buffer(eb);
5052 return exists;
5053 }
5054
5055 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5056 {
5057 struct extent_buffer *eb =
5058 container_of(head, struct extent_buffer, rcu_head);
5059
5060 __free_extent_buffer(eb);
5061 }
5062
5063 /* Expects to have eb->eb_lock already held */
5064 static int release_extent_buffer(struct extent_buffer *eb)
5065 {
5066 WARN_ON(atomic_read(&eb->refs) == 0);
5067 if (atomic_dec_and_test(&eb->refs)) {
5068 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5069 struct btrfs_fs_info *fs_info = eb->fs_info;
5070
5071 spin_unlock(&eb->refs_lock);
5072
5073 spin_lock(&fs_info->buffer_lock);
5074 radix_tree_delete(&fs_info->buffer_radix,
5075 eb->start >> PAGE_SHIFT);
5076 spin_unlock(&fs_info->buffer_lock);
5077 } else {
5078 spin_unlock(&eb->refs_lock);
5079 }
5080
5081 /* Should be safe to release our pages at this point */
5082 btrfs_release_extent_buffer_page(eb);
5083 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5084 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5085 __free_extent_buffer(eb);
5086 return 1;
5087 }
5088 #endif
5089 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5090 return 1;
5091 }
5092 spin_unlock(&eb->refs_lock);
5093
5094 return 0;
5095 }
5096
5097 void free_extent_buffer(struct extent_buffer *eb)
5098 {
5099 int refs;
5100 int old;
5101 if (!eb)
5102 return;
5103
5104 while (1) {
5105 refs = atomic_read(&eb->refs);
5106 if (refs <= 3)
5107 break;
5108 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5109 if (old == refs)
5110 return;
5111 }
5112
5113 spin_lock(&eb->refs_lock);
5114 if (atomic_read(&eb->refs) == 2 &&
5115 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5116 atomic_dec(&eb->refs);
5117
5118 if (atomic_read(&eb->refs) == 2 &&
5119 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5120 !extent_buffer_under_io(eb) &&
5121 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5122 atomic_dec(&eb->refs);
5123
5124 /*
5125 * I know this is terrible, but it's temporary until we stop tracking
5126 * the uptodate bits and such for the extent buffers.
5127 */
5128 release_extent_buffer(eb);
5129 }
5130
5131 void free_extent_buffer_stale(struct extent_buffer *eb)
5132 {
5133 if (!eb)
5134 return;
5135
5136 spin_lock(&eb->refs_lock);
5137 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5138
5139 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5140 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5141 atomic_dec(&eb->refs);
5142 release_extent_buffer(eb);
5143 }
5144
5145 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5146 {
5147 unsigned long i;
5148 unsigned long num_pages;
5149 struct page *page;
5150
5151 num_pages = num_extent_pages(eb->start, eb->len);
5152
5153 for (i = 0; i < num_pages; i++) {
5154 page = eb->pages[i];
5155 if (!PageDirty(page))
5156 continue;
5157
5158 lock_page(page);
5159 WARN_ON(!PagePrivate(page));
5160
5161 clear_page_dirty_for_io(page);
5162 spin_lock_irq(&page->mapping->tree_lock);
5163 if (!PageDirty(page)) {
5164 radix_tree_tag_clear(&page->mapping->page_tree,
5165 page_index(page),
5166 PAGECACHE_TAG_DIRTY);
5167 }
5168 spin_unlock_irq(&page->mapping->tree_lock);
5169 ClearPageError(page);
5170 unlock_page(page);
5171 }
5172 WARN_ON(atomic_read(&eb->refs) == 0);
5173 }
5174
5175 int set_extent_buffer_dirty(struct extent_buffer *eb)
5176 {
5177 unsigned long i;
5178 unsigned long num_pages;
5179 int was_dirty = 0;
5180
5181 check_buffer_tree_ref(eb);
5182
5183 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5184
5185 num_pages = num_extent_pages(eb->start, eb->len);
5186 WARN_ON(atomic_read(&eb->refs) == 0);
5187 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5188
5189 for (i = 0; i < num_pages; i++)
5190 set_page_dirty(eb->pages[i]);
5191 return was_dirty;
5192 }
5193
5194 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5195 {
5196 unsigned long i;
5197 struct page *page;
5198 unsigned long num_pages;
5199
5200 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5201 num_pages = num_extent_pages(eb->start, eb->len);
5202 for (i = 0; i < num_pages; i++) {
5203 page = eb->pages[i];
5204 if (page)
5205 ClearPageUptodate(page);
5206 }
5207 }
5208
5209 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5210 {
5211 unsigned long i;
5212 struct page *page;
5213 unsigned long num_pages;
5214
5215 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5216 num_pages = num_extent_pages(eb->start, eb->len);
5217 for (i = 0; i < num_pages; i++) {
5218 page = eb->pages[i];
5219 SetPageUptodate(page);
5220 }
5221 }
5222
5223 int read_extent_buffer_pages(struct extent_io_tree *tree,
5224 struct extent_buffer *eb, int wait, int mirror_num)
5225 {
5226 unsigned long i;
5227 struct page *page;
5228 int err;
5229 int ret = 0;
5230 int locked_pages = 0;
5231 int all_uptodate = 1;
5232 unsigned long num_pages;
5233 unsigned long num_reads = 0;
5234 struct bio *bio = NULL;
5235 unsigned long bio_flags = 0;
5236
5237 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5238 return 0;
5239
5240 num_pages = num_extent_pages(eb->start, eb->len);
5241 for (i = 0; i < num_pages; i++) {
5242 page = eb->pages[i];
5243 if (wait == WAIT_NONE) {
5244 if (!trylock_page(page))
5245 goto unlock_exit;
5246 } else {
5247 lock_page(page);
5248 }
5249 locked_pages++;
5250 }
5251 /*
5252 * We need to firstly lock all pages to make sure that
5253 * the uptodate bit of our pages won't be affected by
5254 * clear_extent_buffer_uptodate().
5255 */
5256 for (i = 0; i < num_pages; i++) {
5257 page = eb->pages[i];
5258 if (!PageUptodate(page)) {
5259 num_reads++;
5260 all_uptodate = 0;
5261 }
5262 }
5263
5264 if (all_uptodate) {
5265 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5266 goto unlock_exit;
5267 }
5268
5269 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5270 eb->read_mirror = 0;
5271 atomic_set(&eb->io_pages, num_reads);
5272 for (i = 0; i < num_pages; i++) {
5273 page = eb->pages[i];
5274
5275 if (!PageUptodate(page)) {
5276 if (ret) {
5277 atomic_dec(&eb->io_pages);
5278 unlock_page(page);
5279 continue;
5280 }
5281
5282 ClearPageError(page);
5283 err = __extent_read_full_page(tree, page,
5284 btree_get_extent, &bio,
5285 mirror_num, &bio_flags,
5286 REQ_META);
5287 if (err) {
5288 ret = err;
5289 /*
5290 * We use &bio in above __extent_read_full_page,
5291 * so we ensure that if it returns error, the
5292 * current page fails to add itself to bio and
5293 * it's been unlocked.
5294 *
5295 * We must dec io_pages by ourselves.
5296 */
5297 atomic_dec(&eb->io_pages);
5298 }
5299 } else {
5300 unlock_page(page);
5301 }
5302 }
5303
5304 if (bio) {
5305 err = submit_one_bio(bio, mirror_num, bio_flags);
5306 if (err)
5307 return err;
5308 }
5309
5310 if (ret || wait != WAIT_COMPLETE)
5311 return ret;
5312
5313 for (i = 0; i < num_pages; i++) {
5314 page = eb->pages[i];
5315 wait_on_page_locked(page);
5316 if (!PageUptodate(page))
5317 ret = -EIO;
5318 }
5319
5320 return ret;
5321
5322 unlock_exit:
5323 while (locked_pages > 0) {
5324 locked_pages--;
5325 page = eb->pages[locked_pages];
5326 unlock_page(page);
5327 }
5328 return ret;
5329 }
5330
5331 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5332 unsigned long start, unsigned long len)
5333 {
5334 size_t cur;
5335 size_t offset;
5336 struct page *page;
5337 char *kaddr;
5338 char *dst = (char *)dstv;
5339 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5340 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5341
5342 if (start + len > eb->len) {
5343 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5344 eb->start, eb->len, start, len);
5345 memset(dst, 0, len);
5346 return;
5347 }
5348
5349 offset = (start_offset + start) & (PAGE_SIZE - 1);
5350
5351 while (len > 0) {
5352 page = eb->pages[i];
5353
5354 cur = min(len, (PAGE_SIZE - offset));
5355 kaddr = page_address(page);
5356 memcpy(dst, kaddr + offset, cur);
5357
5358 dst += cur;
5359 len -= cur;
5360 offset = 0;
5361 i++;
5362 }
5363 }
5364
5365 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5366 void __user *dstv,
5367 unsigned long start, unsigned long len)
5368 {
5369 size_t cur;
5370 size_t offset;
5371 struct page *page;
5372 char *kaddr;
5373 char __user *dst = (char __user *)dstv;
5374 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5375 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5376 int ret = 0;
5377
5378 WARN_ON(start > eb->len);
5379 WARN_ON(start + len > eb->start + eb->len);
5380
5381 offset = (start_offset + start) & (PAGE_SIZE - 1);
5382
5383 while (len > 0) {
5384 page = eb->pages[i];
5385
5386 cur = min(len, (PAGE_SIZE - offset));
5387 kaddr = page_address(page);
5388 if (copy_to_user(dst, kaddr + offset, cur)) {
5389 ret = -EFAULT;
5390 break;
5391 }
5392
5393 dst += cur;
5394 len -= cur;
5395 offset = 0;
5396 i++;
5397 }
5398
5399 return ret;
5400 }
5401
5402 /*
5403 * return 0 if the item is found within a page.
5404 * return 1 if the item spans two pages.
5405 * return -EINVAL otherwise.
5406 */
5407 int map_private_extent_buffer(const struct extent_buffer *eb,
5408 unsigned long start, unsigned long min_len,
5409 char **map, unsigned long *map_start,
5410 unsigned long *map_len)
5411 {
5412 size_t offset = start & (PAGE_SIZE - 1);
5413 char *kaddr;
5414 struct page *p;
5415 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5416 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5417 unsigned long end_i = (start_offset + start + min_len - 1) >>
5418 PAGE_SHIFT;
5419
5420 if (start + min_len > eb->len) {
5421 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5422 eb->start, eb->len, start, min_len);
5423 return -EINVAL;
5424 }
5425
5426 if (i != end_i)
5427 return 1;
5428
5429 if (i == 0) {
5430 offset = start_offset;
5431 *map_start = 0;
5432 } else {
5433 offset = 0;
5434 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5435 }
5436
5437 p = eb->pages[i];
5438 kaddr = page_address(p);
5439 *map = kaddr + offset;
5440 *map_len = PAGE_SIZE - offset;
5441 return 0;
5442 }
5443
5444 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5445 unsigned long start, unsigned long len)
5446 {
5447 size_t cur;
5448 size_t offset;
5449 struct page *page;
5450 char *kaddr;
5451 char *ptr = (char *)ptrv;
5452 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5453 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5454 int ret = 0;
5455
5456 WARN_ON(start > eb->len);
5457 WARN_ON(start + len > eb->start + eb->len);
5458
5459 offset = (start_offset + start) & (PAGE_SIZE - 1);
5460
5461 while (len > 0) {
5462 page = eb->pages[i];
5463
5464 cur = min(len, (PAGE_SIZE - offset));
5465
5466 kaddr = page_address(page);
5467 ret = memcmp(ptr, kaddr + offset, cur);
5468 if (ret)
5469 break;
5470
5471 ptr += cur;
5472 len -= cur;
5473 offset = 0;
5474 i++;
5475 }
5476 return ret;
5477 }
5478
5479 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5480 const void *srcv)
5481 {
5482 char *kaddr;
5483
5484 WARN_ON(!PageUptodate(eb->pages[0]));
5485 kaddr = page_address(eb->pages[0]);
5486 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5487 BTRFS_FSID_SIZE);
5488 }
5489
5490 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5491 {
5492 char *kaddr;
5493
5494 WARN_ON(!PageUptodate(eb->pages[0]));
5495 kaddr = page_address(eb->pages[0]);
5496 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5497 BTRFS_FSID_SIZE);
5498 }
5499
5500 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5501 unsigned long start, unsigned long len)
5502 {
5503 size_t cur;
5504 size_t offset;
5505 struct page *page;
5506 char *kaddr;
5507 char *src = (char *)srcv;
5508 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5509 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5510
5511 WARN_ON(start > eb->len);
5512 WARN_ON(start + len > eb->start + eb->len);
5513
5514 offset = (start_offset + start) & (PAGE_SIZE - 1);
5515
5516 while (len > 0) {
5517 page = eb->pages[i];
5518 WARN_ON(!PageUptodate(page));
5519
5520 cur = min(len, PAGE_SIZE - offset);
5521 kaddr = page_address(page);
5522 memcpy(kaddr + offset, src, cur);
5523
5524 src += cur;
5525 len -= cur;
5526 offset = 0;
5527 i++;
5528 }
5529 }
5530
5531 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5532 unsigned long len)
5533 {
5534 size_t cur;
5535 size_t offset;
5536 struct page *page;
5537 char *kaddr;
5538 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5539 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5540
5541 WARN_ON(start > eb->len);
5542 WARN_ON(start + len > eb->start + eb->len);
5543
5544 offset = (start_offset + start) & (PAGE_SIZE - 1);
5545
5546 while (len > 0) {
5547 page = eb->pages[i];
5548 WARN_ON(!PageUptodate(page));
5549
5550 cur = min(len, PAGE_SIZE - offset);
5551 kaddr = page_address(page);
5552 memset(kaddr + offset, 0, cur);
5553
5554 len -= cur;
5555 offset = 0;
5556 i++;
5557 }
5558 }
5559
5560 void copy_extent_buffer_full(struct extent_buffer *dst,
5561 struct extent_buffer *src)
5562 {
5563 int i;
5564 unsigned num_pages;
5565
5566 ASSERT(dst->len == src->len);
5567
5568 num_pages = num_extent_pages(dst->start, dst->len);
5569 for (i = 0; i < num_pages; i++)
5570 copy_page(page_address(dst->pages[i]),
5571 page_address(src->pages[i]));
5572 }
5573
5574 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5575 unsigned long dst_offset, unsigned long src_offset,
5576 unsigned long len)
5577 {
5578 u64 dst_len = dst->len;
5579 size_t cur;
5580 size_t offset;
5581 struct page *page;
5582 char *kaddr;
5583 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5584 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5585
5586 WARN_ON(src->len != dst_len);
5587
5588 offset = (start_offset + dst_offset) &
5589 (PAGE_SIZE - 1);
5590
5591 while (len > 0) {
5592 page = dst->pages[i];
5593 WARN_ON(!PageUptodate(page));
5594
5595 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5596
5597 kaddr = page_address(page);
5598 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5599
5600 src_offset += cur;
5601 len -= cur;
5602 offset = 0;
5603 i++;
5604 }
5605 }
5606
5607 void le_bitmap_set(u8 *map, unsigned int start, int len)
5608 {
5609 u8 *p = map + BIT_BYTE(start);
5610 const unsigned int size = start + len;
5611 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5612 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5613
5614 while (len - bits_to_set >= 0) {
5615 *p |= mask_to_set;
5616 len -= bits_to_set;
5617 bits_to_set = BITS_PER_BYTE;
5618 mask_to_set = ~0;
5619 p++;
5620 }
5621 if (len) {
5622 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5623 *p |= mask_to_set;
5624 }
5625 }
5626
5627 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5628 {
5629 u8 *p = map + BIT_BYTE(start);
5630 const unsigned int size = start + len;
5631 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5632 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5633
5634 while (len - bits_to_clear >= 0) {
5635 *p &= ~mask_to_clear;
5636 len -= bits_to_clear;
5637 bits_to_clear = BITS_PER_BYTE;
5638 mask_to_clear = ~0;
5639 p++;
5640 }
5641 if (len) {
5642 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5643 *p &= ~mask_to_clear;
5644 }
5645 }
5646
5647 /*
5648 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5649 * given bit number
5650 * @eb: the extent buffer
5651 * @start: offset of the bitmap item in the extent buffer
5652 * @nr: bit number
5653 * @page_index: return index of the page in the extent buffer that contains the
5654 * given bit number
5655 * @page_offset: return offset into the page given by page_index
5656 *
5657 * This helper hides the ugliness of finding the byte in an extent buffer which
5658 * contains a given bit.
5659 */
5660 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5661 unsigned long start, unsigned long nr,
5662 unsigned long *page_index,
5663 size_t *page_offset)
5664 {
5665 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5666 size_t byte_offset = BIT_BYTE(nr);
5667 size_t offset;
5668
5669 /*
5670 * The byte we want is the offset of the extent buffer + the offset of
5671 * the bitmap item in the extent buffer + the offset of the byte in the
5672 * bitmap item.
5673 */
5674 offset = start_offset + start + byte_offset;
5675
5676 *page_index = offset >> PAGE_SHIFT;
5677 *page_offset = offset & (PAGE_SIZE - 1);
5678 }
5679
5680 /**
5681 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5682 * @eb: the extent buffer
5683 * @start: offset of the bitmap item in the extent buffer
5684 * @nr: bit number to test
5685 */
5686 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5687 unsigned long nr)
5688 {
5689 u8 *kaddr;
5690 struct page *page;
5691 unsigned long i;
5692 size_t offset;
5693
5694 eb_bitmap_offset(eb, start, nr, &i, &offset);
5695 page = eb->pages[i];
5696 WARN_ON(!PageUptodate(page));
5697 kaddr = page_address(page);
5698 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5699 }
5700
5701 /**
5702 * extent_buffer_bitmap_set - set an area of a bitmap
5703 * @eb: the extent buffer
5704 * @start: offset of the bitmap item in the extent buffer
5705 * @pos: bit number of the first bit
5706 * @len: number of bits to set
5707 */
5708 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5709 unsigned long pos, unsigned long len)
5710 {
5711 u8 *kaddr;
5712 struct page *page;
5713 unsigned long i;
5714 size_t offset;
5715 const unsigned int size = pos + len;
5716 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5717 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5718
5719 eb_bitmap_offset(eb, start, pos, &i, &offset);
5720 page = eb->pages[i];
5721 WARN_ON(!PageUptodate(page));
5722 kaddr = page_address(page);
5723
5724 while (len >= bits_to_set) {
5725 kaddr[offset] |= mask_to_set;
5726 len -= bits_to_set;
5727 bits_to_set = BITS_PER_BYTE;
5728 mask_to_set = ~0;
5729 if (++offset >= PAGE_SIZE && len > 0) {
5730 offset = 0;
5731 page = eb->pages[++i];
5732 WARN_ON(!PageUptodate(page));
5733 kaddr = page_address(page);
5734 }
5735 }
5736 if (len) {
5737 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5738 kaddr[offset] |= mask_to_set;
5739 }
5740 }
5741
5742
5743 /**
5744 * extent_buffer_bitmap_clear - clear an area of a bitmap
5745 * @eb: the extent buffer
5746 * @start: offset of the bitmap item in the extent buffer
5747 * @pos: bit number of the first bit
5748 * @len: number of bits to clear
5749 */
5750 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5751 unsigned long pos, unsigned long len)
5752 {
5753 u8 *kaddr;
5754 struct page *page;
5755 unsigned long i;
5756 size_t offset;
5757 const unsigned int size = pos + len;
5758 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5759 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5760
5761 eb_bitmap_offset(eb, start, pos, &i, &offset);
5762 page = eb->pages[i];
5763 WARN_ON(!PageUptodate(page));
5764 kaddr = page_address(page);
5765
5766 while (len >= bits_to_clear) {
5767 kaddr[offset] &= ~mask_to_clear;
5768 len -= bits_to_clear;
5769 bits_to_clear = BITS_PER_BYTE;
5770 mask_to_clear = ~0;
5771 if (++offset >= PAGE_SIZE && len > 0) {
5772 offset = 0;
5773 page = eb->pages[++i];
5774 WARN_ON(!PageUptodate(page));
5775 kaddr = page_address(page);
5776 }
5777 }
5778 if (len) {
5779 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5780 kaddr[offset] &= ~mask_to_clear;
5781 }
5782 }
5783
5784 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5785 {
5786 unsigned long distance = (src > dst) ? src - dst : dst - src;
5787 return distance < len;
5788 }
5789
5790 static void copy_pages(struct page *dst_page, struct page *src_page,
5791 unsigned long dst_off, unsigned long src_off,
5792 unsigned long len)
5793 {
5794 char *dst_kaddr = page_address(dst_page);
5795 char *src_kaddr;
5796 int must_memmove = 0;
5797
5798 if (dst_page != src_page) {
5799 src_kaddr = page_address(src_page);
5800 } else {
5801 src_kaddr = dst_kaddr;
5802 if (areas_overlap(src_off, dst_off, len))
5803 must_memmove = 1;
5804 }
5805
5806 if (must_memmove)
5807 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5808 else
5809 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5810 }
5811
5812 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5813 unsigned long src_offset, unsigned long len)
5814 {
5815 struct btrfs_fs_info *fs_info = dst->fs_info;
5816 size_t cur;
5817 size_t dst_off_in_page;
5818 size_t src_off_in_page;
5819 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5820 unsigned long dst_i;
5821 unsigned long src_i;
5822
5823 if (src_offset + len > dst->len) {
5824 btrfs_err(fs_info,
5825 "memmove bogus src_offset %lu move len %lu dst len %lu",
5826 src_offset, len, dst->len);
5827 BUG_ON(1);
5828 }
5829 if (dst_offset + len > dst->len) {
5830 btrfs_err(fs_info,
5831 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5832 dst_offset, len, dst->len);
5833 BUG_ON(1);
5834 }
5835
5836 while (len > 0) {
5837 dst_off_in_page = (start_offset + dst_offset) &
5838 (PAGE_SIZE - 1);
5839 src_off_in_page = (start_offset + src_offset) &
5840 (PAGE_SIZE - 1);
5841
5842 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5843 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5844
5845 cur = min(len, (unsigned long)(PAGE_SIZE -
5846 src_off_in_page));
5847 cur = min_t(unsigned long, cur,
5848 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5849
5850 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5851 dst_off_in_page, src_off_in_page, cur);
5852
5853 src_offset += cur;
5854 dst_offset += cur;
5855 len -= cur;
5856 }
5857 }
5858
5859 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5860 unsigned long src_offset, unsigned long len)
5861 {
5862 struct btrfs_fs_info *fs_info = dst->fs_info;
5863 size_t cur;
5864 size_t dst_off_in_page;
5865 size_t src_off_in_page;
5866 unsigned long dst_end = dst_offset + len - 1;
5867 unsigned long src_end = src_offset + len - 1;
5868 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5869 unsigned long dst_i;
5870 unsigned long src_i;
5871
5872 if (src_offset + len > dst->len) {
5873 btrfs_err(fs_info,
5874 "memmove bogus src_offset %lu move len %lu len %lu",
5875 src_offset, len, dst->len);
5876 BUG_ON(1);
5877 }
5878 if (dst_offset + len > dst->len) {
5879 btrfs_err(fs_info,
5880 "memmove bogus dst_offset %lu move len %lu len %lu",
5881 dst_offset, len, dst->len);
5882 BUG_ON(1);
5883 }
5884 if (dst_offset < src_offset) {
5885 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5886 return;
5887 }
5888 while (len > 0) {
5889 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5890 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5891
5892 dst_off_in_page = (start_offset + dst_end) &
5893 (PAGE_SIZE - 1);
5894 src_off_in_page = (start_offset + src_end) &
5895 (PAGE_SIZE - 1);
5896
5897 cur = min_t(unsigned long, len, src_off_in_page + 1);
5898 cur = min(cur, dst_off_in_page + 1);
5899 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5900 dst_off_in_page - cur + 1,
5901 src_off_in_page - cur + 1, cur);
5902
5903 dst_end -= cur;
5904 src_end -= cur;
5905 len -= cur;
5906 }
5907 }
5908
5909 int try_release_extent_buffer(struct page *page)
5910 {
5911 struct extent_buffer *eb;
5912
5913 /*
5914 * We need to make sure nobody is attaching this page to an eb right
5915 * now.
5916 */
5917 spin_lock(&page->mapping->private_lock);
5918 if (!PagePrivate(page)) {
5919 spin_unlock(&page->mapping->private_lock);
5920 return 1;
5921 }
5922
5923 eb = (struct extent_buffer *)page->private;
5924 BUG_ON(!eb);
5925
5926 /*
5927 * This is a little awful but should be ok, we need to make sure that
5928 * the eb doesn't disappear out from under us while we're looking at
5929 * this page.
5930 */
5931 spin_lock(&eb->refs_lock);
5932 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5933 spin_unlock(&eb->refs_lock);
5934 spin_unlock(&page->mapping->private_lock);
5935 return 0;
5936 }
5937 spin_unlock(&page->mapping->private_lock);
5938
5939 /*
5940 * If tree ref isn't set then we know the ref on this eb is a real ref,
5941 * so just return, this page will likely be freed soon anyway.
5942 */
5943 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5944 spin_unlock(&eb->refs_lock);
5945 return 0;
5946 }
5947
5948 return release_extent_buffer(eb);
5949 }