]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent_io.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
24
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
27
28 #define LEAK_DEBUG 0
29 #if LEAK_DEBUG
30 static DEFINE_SPINLOCK(leak_lock);
31 #endif
32
33 #define BUFFER_LRU_MAX 64
34
35 struct tree_entry {
36 u64 start;
37 u64 end;
38 struct rb_node rb_node;
39 };
40
41 struct extent_page_data {
42 struct bio *bio;
43 struct extent_io_tree *tree;
44 get_extent_t *get_extent;
45
46 /* tells writepage not to lock the state bits for this range
47 * it still does the unlocking
48 */
49 unsigned int extent_locked:1;
50
51 /* tells the submit_bio code to use a WRITE_SYNC */
52 unsigned int sync_io:1;
53 };
54
55 int __init extent_io_init(void)
56 {
57 extent_state_cache = kmem_cache_create("extent_state",
58 sizeof(struct extent_state), 0,
59 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
60 if (!extent_state_cache)
61 return -ENOMEM;
62
63 extent_buffer_cache = kmem_cache_create("extent_buffers",
64 sizeof(struct extent_buffer), 0,
65 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
66 if (!extent_buffer_cache)
67 goto free_state_cache;
68 return 0;
69
70 free_state_cache:
71 kmem_cache_destroy(extent_state_cache);
72 return -ENOMEM;
73 }
74
75 void extent_io_exit(void)
76 {
77 struct extent_state *state;
78 struct extent_buffer *eb;
79
80 while (!list_empty(&states)) {
81 state = list_entry(states.next, struct extent_state, leak_list);
82 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
83 "state %lu in tree %p refs %d\n",
84 (unsigned long long)state->start,
85 (unsigned long long)state->end,
86 state->state, state->tree, atomic_read(&state->refs));
87 list_del(&state->leak_list);
88 kmem_cache_free(extent_state_cache, state);
89
90 }
91
92 while (!list_empty(&buffers)) {
93 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
94 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
95 "refs %d\n", (unsigned long long)eb->start,
96 eb->len, atomic_read(&eb->refs));
97 list_del(&eb->leak_list);
98 kmem_cache_free(extent_buffer_cache, eb);
99 }
100 if (extent_state_cache)
101 kmem_cache_destroy(extent_state_cache);
102 if (extent_buffer_cache)
103 kmem_cache_destroy(extent_buffer_cache);
104 }
105
106 void extent_io_tree_init(struct extent_io_tree *tree,
107 struct address_space *mapping)
108 {
109 tree->state = RB_ROOT;
110 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
111 tree->ops = NULL;
112 tree->dirty_bytes = 0;
113 spin_lock_init(&tree->lock);
114 spin_lock_init(&tree->buffer_lock);
115 tree->mapping = mapping;
116 }
117
118 static struct extent_state *alloc_extent_state(gfp_t mask)
119 {
120 struct extent_state *state;
121 #if LEAK_DEBUG
122 unsigned long flags;
123 #endif
124
125 state = kmem_cache_alloc(extent_state_cache, mask);
126 if (!state)
127 return state;
128 state->state = 0;
129 state->private = 0;
130 state->tree = NULL;
131 #if LEAK_DEBUG
132 spin_lock_irqsave(&leak_lock, flags);
133 list_add(&state->leak_list, &states);
134 spin_unlock_irqrestore(&leak_lock, flags);
135 #endif
136 atomic_set(&state->refs, 1);
137 init_waitqueue_head(&state->wq);
138 return state;
139 }
140
141 void free_extent_state(struct extent_state *state)
142 {
143 if (!state)
144 return;
145 if (atomic_dec_and_test(&state->refs)) {
146 #if LEAK_DEBUG
147 unsigned long flags;
148 #endif
149 WARN_ON(state->tree);
150 #if LEAK_DEBUG
151 spin_lock_irqsave(&leak_lock, flags);
152 list_del(&state->leak_list);
153 spin_unlock_irqrestore(&leak_lock, flags);
154 #endif
155 kmem_cache_free(extent_state_cache, state);
156 }
157 }
158
159 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
160 struct rb_node *node)
161 {
162 struct rb_node **p = &root->rb_node;
163 struct rb_node *parent = NULL;
164 struct tree_entry *entry;
165
166 while (*p) {
167 parent = *p;
168 entry = rb_entry(parent, struct tree_entry, rb_node);
169
170 if (offset < entry->start)
171 p = &(*p)->rb_left;
172 else if (offset > entry->end)
173 p = &(*p)->rb_right;
174 else
175 return parent;
176 }
177
178 entry = rb_entry(node, struct tree_entry, rb_node);
179 rb_link_node(node, parent, p);
180 rb_insert_color(node, root);
181 return NULL;
182 }
183
184 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
185 struct rb_node **prev_ret,
186 struct rb_node **next_ret)
187 {
188 struct rb_root *root = &tree->state;
189 struct rb_node *n = root->rb_node;
190 struct rb_node *prev = NULL;
191 struct rb_node *orig_prev = NULL;
192 struct tree_entry *entry;
193 struct tree_entry *prev_entry = NULL;
194
195 while (n) {
196 entry = rb_entry(n, struct tree_entry, rb_node);
197 prev = n;
198 prev_entry = entry;
199
200 if (offset < entry->start)
201 n = n->rb_left;
202 else if (offset > entry->end)
203 n = n->rb_right;
204 else
205 return n;
206 }
207
208 if (prev_ret) {
209 orig_prev = prev;
210 while (prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213 }
214 *prev_ret = prev;
215 prev = orig_prev;
216 }
217
218 if (next_ret) {
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while (prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 }
224 *next_ret = prev;
225 }
226 return NULL;
227 }
228
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230 u64 offset)
231 {
232 struct rb_node *prev = NULL;
233 struct rb_node *ret;
234
235 ret = __etree_search(tree, offset, &prev, NULL);
236 if (!ret)
237 return prev;
238 return ret;
239 }
240
241 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
242 struct extent_state *other)
243 {
244 if (tree->ops && tree->ops->merge_extent_hook)
245 tree->ops->merge_extent_hook(tree->mapping->host, new,
246 other);
247 }
248
249 /*
250 * utility function to look for merge candidates inside a given range.
251 * Any extents with matching state are merged together into a single
252 * extent in the tree. Extents with EXTENT_IO in their state field
253 * are not merged because the end_io handlers need to be able to do
254 * operations on them without sleeping (or doing allocations/splits).
255 *
256 * This should be called with the tree lock held.
257 */
258 static void merge_state(struct extent_io_tree *tree,
259 struct extent_state *state)
260 {
261 struct extent_state *other;
262 struct rb_node *other_node;
263
264 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
265 return;
266
267 other_node = rb_prev(&state->rb_node);
268 if (other_node) {
269 other = rb_entry(other_node, struct extent_state, rb_node);
270 if (other->end == state->start - 1 &&
271 other->state == state->state) {
272 merge_cb(tree, state, other);
273 state->start = other->start;
274 other->tree = NULL;
275 rb_erase(&other->rb_node, &tree->state);
276 free_extent_state(other);
277 }
278 }
279 other_node = rb_next(&state->rb_node);
280 if (other_node) {
281 other = rb_entry(other_node, struct extent_state, rb_node);
282 if (other->start == state->end + 1 &&
283 other->state == state->state) {
284 merge_cb(tree, state, other);
285 state->end = other->end;
286 other->tree = NULL;
287 rb_erase(&other->rb_node, &tree->state);
288 free_extent_state(other);
289 }
290 }
291 }
292
293 static void set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
295 {
296 if (tree->ops && tree->ops->set_bit_hook)
297 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
298 }
299
300 static void clear_state_cb(struct extent_io_tree *tree,
301 struct extent_state *state, int *bits)
302 {
303 if (tree->ops && tree->ops->clear_bit_hook)
304 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
305 }
306
307 static void set_state_bits(struct extent_io_tree *tree,
308 struct extent_state *state, int *bits);
309
310 /*
311 * insert an extent_state struct into the tree. 'bits' are set on the
312 * struct before it is inserted.
313 *
314 * This may return -EEXIST if the extent is already there, in which case the
315 * state struct is freed.
316 *
317 * The tree lock is not taken internally. This is a utility function and
318 * probably isn't what you want to call (see set/clear_extent_bit).
319 */
320 static int insert_state(struct extent_io_tree *tree,
321 struct extent_state *state, u64 start, u64 end,
322 int *bits)
323 {
324 struct rb_node *node;
325
326 if (end < start) {
327 printk(KERN_ERR "btrfs end < start %llu %llu\n",
328 (unsigned long long)end,
329 (unsigned long long)start);
330 WARN_ON(1);
331 }
332 state->start = start;
333 state->end = end;
334
335 set_state_bits(tree, state, bits);
336
337 node = tree_insert(&tree->state, end, &state->rb_node);
338 if (node) {
339 struct extent_state *found;
340 found = rb_entry(node, struct extent_state, rb_node);
341 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
342 "%llu %llu\n", (unsigned long long)found->start,
343 (unsigned long long)found->end,
344 (unsigned long long)start, (unsigned long long)end);
345 return -EEXIST;
346 }
347 state->tree = tree;
348 merge_state(tree, state);
349 return 0;
350 }
351
352 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
353 u64 split)
354 {
355 if (tree->ops && tree->ops->split_extent_hook)
356 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
357 }
358
359 /*
360 * split a given extent state struct in two, inserting the preallocated
361 * struct 'prealloc' as the newly created second half. 'split' indicates an
362 * offset inside 'orig' where it should be split.
363 *
364 * Before calling,
365 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
366 * are two extent state structs in the tree:
367 * prealloc: [orig->start, split - 1]
368 * orig: [ split, orig->end ]
369 *
370 * The tree locks are not taken by this function. They need to be held
371 * by the caller.
372 */
373 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
374 struct extent_state *prealloc, u64 split)
375 {
376 struct rb_node *node;
377
378 split_cb(tree, orig, split);
379
380 prealloc->start = orig->start;
381 prealloc->end = split - 1;
382 prealloc->state = orig->state;
383 orig->start = split;
384
385 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
386 if (node) {
387 free_extent_state(prealloc);
388 return -EEXIST;
389 }
390 prealloc->tree = tree;
391 return 0;
392 }
393
394 /*
395 * utility function to clear some bits in an extent state struct.
396 * it will optionally wake up any one waiting on this state (wake == 1), or
397 * forcibly remove the state from the tree (delete == 1).
398 *
399 * If no bits are set on the state struct after clearing things, the
400 * struct is freed and removed from the tree
401 */
402 static int clear_state_bit(struct extent_io_tree *tree,
403 struct extent_state *state,
404 int *bits, int wake)
405 {
406 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
407 int ret = state->state & bits_to_clear;
408
409 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
410 u64 range = state->end - state->start + 1;
411 WARN_ON(range > tree->dirty_bytes);
412 tree->dirty_bytes -= range;
413 }
414 clear_state_cb(tree, state, bits);
415 state->state &= ~bits_to_clear;
416 if (wake)
417 wake_up(&state->wq);
418 if (state->state == 0) {
419 if (state->tree) {
420 rb_erase(&state->rb_node, &tree->state);
421 state->tree = NULL;
422 free_extent_state(state);
423 } else {
424 WARN_ON(1);
425 }
426 } else {
427 merge_state(tree, state);
428 }
429 return ret;
430 }
431
432 static struct extent_state *
433 alloc_extent_state_atomic(struct extent_state *prealloc)
434 {
435 if (!prealloc)
436 prealloc = alloc_extent_state(GFP_ATOMIC);
437
438 return prealloc;
439 }
440
441 /*
442 * clear some bits on a range in the tree. This may require splitting
443 * or inserting elements in the tree, so the gfp mask is used to
444 * indicate which allocations or sleeping are allowed.
445 *
446 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
447 * the given range from the tree regardless of state (ie for truncate).
448 *
449 * the range [start, end] is inclusive.
450 *
451 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
452 * bits were already set, or zero if none of the bits were already set.
453 */
454 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
455 int bits, int wake, int delete,
456 struct extent_state **cached_state,
457 gfp_t mask)
458 {
459 struct extent_state *state;
460 struct extent_state *cached;
461 struct extent_state *prealloc = NULL;
462 struct rb_node *next_node;
463 struct rb_node *node;
464 u64 last_end;
465 int err;
466 int set = 0;
467 int clear = 0;
468
469 if (delete)
470 bits |= ~EXTENT_CTLBITS;
471 bits |= EXTENT_FIRST_DELALLOC;
472
473 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
474 clear = 1;
475 again:
476 if (!prealloc && (mask & __GFP_WAIT)) {
477 prealloc = alloc_extent_state(mask);
478 if (!prealloc)
479 return -ENOMEM;
480 }
481
482 spin_lock(&tree->lock);
483 if (cached_state) {
484 cached = *cached_state;
485
486 if (clear) {
487 *cached_state = NULL;
488 cached_state = NULL;
489 }
490
491 if (cached && cached->tree && cached->start <= start &&
492 cached->end > start) {
493 if (clear)
494 atomic_dec(&cached->refs);
495 state = cached;
496 goto hit_next;
497 }
498 if (clear)
499 free_extent_state(cached);
500 }
501 /*
502 * this search will find the extents that end after
503 * our range starts
504 */
505 node = tree_search(tree, start);
506 if (!node)
507 goto out;
508 state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513 last_end = state->end;
514
515 /*
516 * | ---- desired range ---- |
517 * | state | or
518 * | ------------- state -------------- |
519 *
520 * We need to split the extent we found, and may flip
521 * bits on second half.
522 *
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
526 *
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
529 */
530
531 if (state->start < start) {
532 prealloc = alloc_extent_state_atomic(prealloc);
533 BUG_ON(!prealloc);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
536 prealloc = NULL;
537 if (err)
538 goto out;
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
542 goto out;
543 start = last_end + 1;
544 }
545 goto search_again;
546 }
547 /*
548 * | ---- desired range ---- |
549 * | state |
550 * We need to split the extent, and clear the bit
551 * on the first half
552 */
553 if (state->start <= end && state->end > end) {
554 prealloc = alloc_extent_state_atomic(prealloc);
555 BUG_ON(!prealloc);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
558 if (wake)
559 wake_up(&state->wq);
560
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
562
563 prealloc = NULL;
564 goto out;
565 }
566
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
569 else
570 next_node = NULL;
571
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
578 rb_node);
579 if (state->start == start)
580 goto hit_next;
581 }
582 goto search_again;
583
584 out:
585 spin_unlock(&tree->lock);
586 if (prealloc)
587 free_extent_state(prealloc);
588
589 return set;
590
591 search_again:
592 if (start > end)
593 goto out;
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
596 cond_resched();
597 goto again;
598 }
599
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
604 {
605 DEFINE_WAIT(wait);
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
608 schedule();
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
611 return 0;
612 }
613
614 /*
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
618 */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621 struct extent_state *state;
622 struct rb_node *node;
623
624 spin_lock(&tree->lock);
625 again:
626 while (1) {
627 /*
628 * this search will find all the extents that end after
629 * our range starts
630 */
631 node = tree_search(tree, start);
632 if (!node)
633 break;
634
635 state = rb_entry(node, struct extent_state, rb_node);
636
637 if (state->start > end)
638 goto out;
639
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
645 goto again;
646 }
647 start = state->end + 1;
648
649 if (start > end)
650 break;
651
652 cond_resched_lock(&tree->lock);
653 }
654 out:
655 spin_unlock(&tree->lock);
656 return 0;
657 }
658
659 static void set_state_bits(struct extent_io_tree *tree,
660 struct extent_state *state,
661 int *bits)
662 {
663 int bits_to_set = *bits & ~EXTENT_CTLBITS;
664
665 set_state_cb(tree, state, bits);
666 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
667 u64 range = state->end - state->start + 1;
668 tree->dirty_bytes += range;
669 }
670 state->state |= bits_to_set;
671 }
672
673 static void cache_state(struct extent_state *state,
674 struct extent_state **cached_ptr)
675 {
676 if (cached_ptr && !(*cached_ptr)) {
677 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
678 *cached_ptr = state;
679 atomic_inc(&state->refs);
680 }
681 }
682 }
683
684 static void uncache_state(struct extent_state **cached_ptr)
685 {
686 if (cached_ptr && (*cached_ptr)) {
687 struct extent_state *state = *cached_ptr;
688 *cached_ptr = NULL;
689 free_extent_state(state);
690 }
691 }
692
693 /*
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
696 *
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
700 *
701 * [start, end] is inclusive This takes the tree lock.
702 */
703
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state, gfp_t mask)
707 {
708 struct extent_state *state;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 int err = 0;
712 u64 last_start;
713 u64 last_end;
714
715 bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
719 BUG_ON(!prealloc);
720 }
721
722 spin_lock(&tree->lock);
723 if (cached_state && *cached_state) {
724 state = *cached_state;
725 if (state->start <= start && state->end > start &&
726 state->tree) {
727 node = &state->rb_node;
728 goto hit_next;
729 }
730 }
731 /*
732 * this search will find all the extents that end after
733 * our range starts.
734 */
735 node = tree_search(tree, start);
736 if (!node) {
737 prealloc = alloc_extent_state_atomic(prealloc);
738 BUG_ON(!prealloc);
739 err = insert_state(tree, prealloc, start, end, &bits);
740 prealloc = NULL;
741 BUG_ON(err == -EEXIST);
742 goto out;
743 }
744 state = rb_entry(node, struct extent_state, rb_node);
745 hit_next:
746 last_start = state->start;
747 last_end = state->end;
748
749 /*
750 * | ---- desired range ---- |
751 * | state |
752 *
753 * Just lock what we found and keep going
754 */
755 if (state->start == start && state->end <= end) {
756 struct rb_node *next_node;
757 if (state->state & exclusive_bits) {
758 *failed_start = state->start;
759 err = -EEXIST;
760 goto out;
761 }
762
763 set_state_bits(tree, state, &bits);
764
765 cache_state(state, cached_state);
766 merge_state(tree, state);
767 if (last_end == (u64)-1)
768 goto out;
769
770 start = last_end + 1;
771 next_node = rb_next(&state->rb_node);
772 if (next_node && start < end && prealloc && !need_resched()) {
773 state = rb_entry(next_node, struct extent_state,
774 rb_node);
775 if (state->start == start)
776 goto hit_next;
777 }
778 goto search_again;
779 }
780
781 /*
782 * | ---- desired range ---- |
783 * | state |
784 * or
785 * | ------------- state -------------- |
786 *
787 * We need to split the extent we found, and may flip bits on
788 * second half.
789 *
790 * If the extent we found extends past our
791 * range, we just split and search again. It'll get split
792 * again the next time though.
793 *
794 * If the extent we found is inside our range, we set the
795 * desired bit on it.
796 */
797 if (state->start < start) {
798 if (state->state & exclusive_bits) {
799 *failed_start = start;
800 err = -EEXIST;
801 goto out;
802 }
803
804 prealloc = alloc_extent_state_atomic(prealloc);
805 BUG_ON(!prealloc);
806 err = split_state(tree, state, prealloc, start);
807 BUG_ON(err == -EEXIST);
808 prealloc = NULL;
809 if (err)
810 goto out;
811 if (state->end <= end) {
812 set_state_bits(tree, state, &bits);
813 cache_state(state, cached_state);
814 merge_state(tree, state);
815 if (last_end == (u64)-1)
816 goto out;
817 start = last_end + 1;
818 }
819 goto search_again;
820 }
821 /*
822 * | ---- desired range ---- |
823 * | state | or | state |
824 *
825 * There's a hole, we need to insert something in it and
826 * ignore the extent we found.
827 */
828 if (state->start > start) {
829 u64 this_end;
830 if (end < last_start)
831 this_end = end;
832 else
833 this_end = last_start - 1;
834
835 prealloc = alloc_extent_state_atomic(prealloc);
836 BUG_ON(!prealloc);
837
838 /*
839 * Avoid to free 'prealloc' if it can be merged with
840 * the later extent.
841 */
842 err = insert_state(tree, prealloc, start, this_end,
843 &bits);
844 BUG_ON(err == -EEXIST);
845 if (err) {
846 free_extent_state(prealloc);
847 prealloc = NULL;
848 goto out;
849 }
850 cache_state(prealloc, cached_state);
851 prealloc = NULL;
852 start = this_end + 1;
853 goto search_again;
854 }
855 /*
856 * | ---- desired range ---- |
857 * | state |
858 * We need to split the extent, and set the bit
859 * on the first half
860 */
861 if (state->start <= end && state->end > end) {
862 if (state->state & exclusive_bits) {
863 *failed_start = start;
864 err = -EEXIST;
865 goto out;
866 }
867
868 prealloc = alloc_extent_state_atomic(prealloc);
869 BUG_ON(!prealloc);
870 err = split_state(tree, state, prealloc, end + 1);
871 BUG_ON(err == -EEXIST);
872
873 set_state_bits(tree, prealloc, &bits);
874 cache_state(prealloc, cached_state);
875 merge_state(tree, prealloc);
876 prealloc = NULL;
877 goto out;
878 }
879
880 goto search_again;
881
882 out:
883 spin_unlock(&tree->lock);
884 if (prealloc)
885 free_extent_state(prealloc);
886
887 return err;
888
889 search_again:
890 if (start > end)
891 goto out;
892 spin_unlock(&tree->lock);
893 if (mask & __GFP_WAIT)
894 cond_resched();
895 goto again;
896 }
897
898 /**
899 * convert_extent - convert all bits in a given range from one bit to another
900 * @tree: the io tree to search
901 * @start: the start offset in bytes
902 * @end: the end offset in bytes (inclusive)
903 * @bits: the bits to set in this range
904 * @clear_bits: the bits to clear in this range
905 * @mask: the allocation mask
906 *
907 * This will go through and set bits for the given range. If any states exist
908 * already in this range they are set with the given bit and cleared of the
909 * clear_bits. This is only meant to be used by things that are mergeable, ie
910 * converting from say DELALLOC to DIRTY. This is not meant to be used with
911 * boundary bits like LOCK.
912 */
913 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
914 int bits, int clear_bits, gfp_t mask)
915 {
916 struct extent_state *state;
917 struct extent_state *prealloc = NULL;
918 struct rb_node *node;
919 int err = 0;
920 u64 last_start;
921 u64 last_end;
922
923 again:
924 if (!prealloc && (mask & __GFP_WAIT)) {
925 prealloc = alloc_extent_state(mask);
926 if (!prealloc)
927 return -ENOMEM;
928 }
929
930 spin_lock(&tree->lock);
931 /*
932 * this search will find all the extents that end after
933 * our range starts.
934 */
935 node = tree_search(tree, start);
936 if (!node) {
937 prealloc = alloc_extent_state_atomic(prealloc);
938 if (!prealloc)
939 return -ENOMEM;
940 err = insert_state(tree, prealloc, start, end, &bits);
941 prealloc = NULL;
942 BUG_ON(err == -EEXIST);
943 goto out;
944 }
945 state = rb_entry(node, struct extent_state, rb_node);
946 hit_next:
947 last_start = state->start;
948 last_end = state->end;
949
950 /*
951 * | ---- desired range ---- |
952 * | state |
953 *
954 * Just lock what we found and keep going
955 */
956 if (state->start == start && state->end <= end) {
957 struct rb_node *next_node;
958
959 set_state_bits(tree, state, &bits);
960 clear_state_bit(tree, state, &clear_bits, 0);
961
962 merge_state(tree, state);
963 if (last_end == (u64)-1)
964 goto out;
965
966 start = last_end + 1;
967 next_node = rb_next(&state->rb_node);
968 if (next_node && start < end && prealloc && !need_resched()) {
969 state = rb_entry(next_node, struct extent_state,
970 rb_node);
971 if (state->start == start)
972 goto hit_next;
973 }
974 goto search_again;
975 }
976
977 /*
978 * | ---- desired range ---- |
979 * | state |
980 * or
981 * | ------------- state -------------- |
982 *
983 * We need to split the extent we found, and may flip bits on
984 * second half.
985 *
986 * If the extent we found extends past our
987 * range, we just split and search again. It'll get split
988 * again the next time though.
989 *
990 * If the extent we found is inside our range, we set the
991 * desired bit on it.
992 */
993 if (state->start < start) {
994 prealloc = alloc_extent_state_atomic(prealloc);
995 if (!prealloc)
996 return -ENOMEM;
997 err = split_state(tree, state, prealloc, start);
998 BUG_ON(err == -EEXIST);
999 prealloc = NULL;
1000 if (err)
1001 goto out;
1002 if (state->end <= end) {
1003 set_state_bits(tree, state, &bits);
1004 clear_state_bit(tree, state, &clear_bits, 0);
1005 merge_state(tree, state);
1006 if (last_end == (u64)-1)
1007 goto out;
1008 start = last_end + 1;
1009 }
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state | or | state |
1015 *
1016 * There's a hole, we need to insert something in it and
1017 * ignore the extent we found.
1018 */
1019 if (state->start > start) {
1020 u64 this_end;
1021 if (end < last_start)
1022 this_end = end;
1023 else
1024 this_end = last_start - 1;
1025
1026 prealloc = alloc_extent_state_atomic(prealloc);
1027 if (!prealloc)
1028 return -ENOMEM;
1029
1030 /*
1031 * Avoid to free 'prealloc' if it can be merged with
1032 * the later extent.
1033 */
1034 err = insert_state(tree, prealloc, start, this_end,
1035 &bits);
1036 BUG_ON(err == -EEXIST);
1037 if (err) {
1038 free_extent_state(prealloc);
1039 prealloc = NULL;
1040 goto out;
1041 }
1042 prealloc = NULL;
1043 start = this_end + 1;
1044 goto search_again;
1045 }
1046 /*
1047 * | ---- desired range ---- |
1048 * | state |
1049 * We need to split the extent, and set the bit
1050 * on the first half
1051 */
1052 if (state->start <= end && state->end > end) {
1053 prealloc = alloc_extent_state_atomic(prealloc);
1054 if (!prealloc)
1055 return -ENOMEM;
1056
1057 err = split_state(tree, state, prealloc, end + 1);
1058 BUG_ON(err == -EEXIST);
1059
1060 set_state_bits(tree, prealloc, &bits);
1061 clear_state_bit(tree, prealloc, &clear_bits, 0);
1062
1063 merge_state(tree, prealloc);
1064 prealloc = NULL;
1065 goto out;
1066 }
1067
1068 goto search_again;
1069
1070 out:
1071 spin_unlock(&tree->lock);
1072 if (prealloc)
1073 free_extent_state(prealloc);
1074
1075 return err;
1076
1077 search_again:
1078 if (start > end)
1079 goto out;
1080 spin_unlock(&tree->lock);
1081 if (mask & __GFP_WAIT)
1082 cond_resched();
1083 goto again;
1084 }
1085
1086 /* wrappers around set/clear extent bit */
1087 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1088 gfp_t mask)
1089 {
1090 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1091 NULL, mask);
1092 }
1093
1094 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1095 int bits, gfp_t mask)
1096 {
1097 return set_extent_bit(tree, start, end, bits, 0, NULL,
1098 NULL, mask);
1099 }
1100
1101 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1102 int bits, gfp_t mask)
1103 {
1104 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1105 }
1106
1107 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1108 struct extent_state **cached_state, gfp_t mask)
1109 {
1110 return set_extent_bit(tree, start, end,
1111 EXTENT_DELALLOC | EXTENT_UPTODATE,
1112 0, NULL, cached_state, mask);
1113 }
1114
1115 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1116 gfp_t mask)
1117 {
1118 return clear_extent_bit(tree, start, end,
1119 EXTENT_DIRTY | EXTENT_DELALLOC |
1120 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1121 }
1122
1123 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1124 gfp_t mask)
1125 {
1126 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1127 NULL, mask);
1128 }
1129
1130 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1131 struct extent_state **cached_state, gfp_t mask)
1132 {
1133 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1134 NULL, cached_state, mask);
1135 }
1136
1137 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1138 u64 end, struct extent_state **cached_state,
1139 gfp_t mask)
1140 {
1141 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1142 cached_state, mask);
1143 }
1144
1145 /*
1146 * either insert or lock state struct between start and end use mask to tell
1147 * us if waiting is desired.
1148 */
1149 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1150 int bits, struct extent_state **cached_state, gfp_t mask)
1151 {
1152 int err;
1153 u64 failed_start;
1154 while (1) {
1155 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1156 EXTENT_LOCKED, &failed_start,
1157 cached_state, mask);
1158 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1159 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1160 start = failed_start;
1161 } else {
1162 break;
1163 }
1164 WARN_ON(start > end);
1165 }
1166 return err;
1167 }
1168
1169 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1170 {
1171 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1172 }
1173
1174 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1175 gfp_t mask)
1176 {
1177 int err;
1178 u64 failed_start;
1179
1180 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1181 &failed_start, NULL, mask);
1182 if (err == -EEXIST) {
1183 if (failed_start > start)
1184 clear_extent_bit(tree, start, failed_start - 1,
1185 EXTENT_LOCKED, 1, 0, NULL, mask);
1186 return 0;
1187 }
1188 return 1;
1189 }
1190
1191 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1192 struct extent_state **cached, gfp_t mask)
1193 {
1194 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1195 mask);
1196 }
1197
1198 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1199 {
1200 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1201 mask);
1202 }
1203
1204 /*
1205 * helper function to set both pages and extents in the tree writeback
1206 */
1207 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1208 {
1209 unsigned long index = start >> PAGE_CACHE_SHIFT;
1210 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1211 struct page *page;
1212
1213 while (index <= end_index) {
1214 page = find_get_page(tree->mapping, index);
1215 BUG_ON(!page);
1216 set_page_writeback(page);
1217 page_cache_release(page);
1218 index++;
1219 }
1220 return 0;
1221 }
1222
1223 /* find the first state struct with 'bits' set after 'start', and
1224 * return it. tree->lock must be held. NULL will returned if
1225 * nothing was found after 'start'
1226 */
1227 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1228 u64 start, int bits)
1229 {
1230 struct rb_node *node;
1231 struct extent_state *state;
1232
1233 /*
1234 * this search will find all the extents that end after
1235 * our range starts.
1236 */
1237 node = tree_search(tree, start);
1238 if (!node)
1239 goto out;
1240
1241 while (1) {
1242 state = rb_entry(node, struct extent_state, rb_node);
1243 if (state->end >= start && (state->state & bits))
1244 return state;
1245
1246 node = rb_next(node);
1247 if (!node)
1248 break;
1249 }
1250 out:
1251 return NULL;
1252 }
1253
1254 /*
1255 * find the first offset in the io tree with 'bits' set. zero is
1256 * returned if we find something, and *start_ret and *end_ret are
1257 * set to reflect the state struct that was found.
1258 *
1259 * If nothing was found, 1 is returned, < 0 on error
1260 */
1261 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1262 u64 *start_ret, u64 *end_ret, int bits)
1263 {
1264 struct extent_state *state;
1265 int ret = 1;
1266
1267 spin_lock(&tree->lock);
1268 state = find_first_extent_bit_state(tree, start, bits);
1269 if (state) {
1270 *start_ret = state->start;
1271 *end_ret = state->end;
1272 ret = 0;
1273 }
1274 spin_unlock(&tree->lock);
1275 return ret;
1276 }
1277
1278 /*
1279 * find a contiguous range of bytes in the file marked as delalloc, not
1280 * more than 'max_bytes'. start and end are used to return the range,
1281 *
1282 * 1 is returned if we find something, 0 if nothing was in the tree
1283 */
1284 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1285 u64 *start, u64 *end, u64 max_bytes,
1286 struct extent_state **cached_state)
1287 {
1288 struct rb_node *node;
1289 struct extent_state *state;
1290 u64 cur_start = *start;
1291 u64 found = 0;
1292 u64 total_bytes = 0;
1293
1294 spin_lock(&tree->lock);
1295
1296 /*
1297 * this search will find all the extents that end after
1298 * our range starts.
1299 */
1300 node = tree_search(tree, cur_start);
1301 if (!node) {
1302 if (!found)
1303 *end = (u64)-1;
1304 goto out;
1305 }
1306
1307 while (1) {
1308 state = rb_entry(node, struct extent_state, rb_node);
1309 if (found && (state->start != cur_start ||
1310 (state->state & EXTENT_BOUNDARY))) {
1311 goto out;
1312 }
1313 if (!(state->state & EXTENT_DELALLOC)) {
1314 if (!found)
1315 *end = state->end;
1316 goto out;
1317 }
1318 if (!found) {
1319 *start = state->start;
1320 *cached_state = state;
1321 atomic_inc(&state->refs);
1322 }
1323 found++;
1324 *end = state->end;
1325 cur_start = state->end + 1;
1326 node = rb_next(node);
1327 if (!node)
1328 break;
1329 total_bytes += state->end - state->start + 1;
1330 if (total_bytes >= max_bytes)
1331 break;
1332 }
1333 out:
1334 spin_unlock(&tree->lock);
1335 return found;
1336 }
1337
1338 static noinline int __unlock_for_delalloc(struct inode *inode,
1339 struct page *locked_page,
1340 u64 start, u64 end)
1341 {
1342 int ret;
1343 struct page *pages[16];
1344 unsigned long index = start >> PAGE_CACHE_SHIFT;
1345 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1346 unsigned long nr_pages = end_index - index + 1;
1347 int i;
1348
1349 if (index == locked_page->index && end_index == index)
1350 return 0;
1351
1352 while (nr_pages > 0) {
1353 ret = find_get_pages_contig(inode->i_mapping, index,
1354 min_t(unsigned long, nr_pages,
1355 ARRAY_SIZE(pages)), pages);
1356 for (i = 0; i < ret; i++) {
1357 if (pages[i] != locked_page)
1358 unlock_page(pages[i]);
1359 page_cache_release(pages[i]);
1360 }
1361 nr_pages -= ret;
1362 index += ret;
1363 cond_resched();
1364 }
1365 return 0;
1366 }
1367
1368 static noinline int lock_delalloc_pages(struct inode *inode,
1369 struct page *locked_page,
1370 u64 delalloc_start,
1371 u64 delalloc_end)
1372 {
1373 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1374 unsigned long start_index = index;
1375 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1376 unsigned long pages_locked = 0;
1377 struct page *pages[16];
1378 unsigned long nrpages;
1379 int ret;
1380 int i;
1381
1382 /* the caller is responsible for locking the start index */
1383 if (index == locked_page->index && index == end_index)
1384 return 0;
1385
1386 /* skip the page at the start index */
1387 nrpages = end_index - index + 1;
1388 while (nrpages > 0) {
1389 ret = find_get_pages_contig(inode->i_mapping, index,
1390 min_t(unsigned long,
1391 nrpages, ARRAY_SIZE(pages)), pages);
1392 if (ret == 0) {
1393 ret = -EAGAIN;
1394 goto done;
1395 }
1396 /* now we have an array of pages, lock them all */
1397 for (i = 0; i < ret; i++) {
1398 /*
1399 * the caller is taking responsibility for
1400 * locked_page
1401 */
1402 if (pages[i] != locked_page) {
1403 lock_page(pages[i]);
1404 if (!PageDirty(pages[i]) ||
1405 pages[i]->mapping != inode->i_mapping) {
1406 ret = -EAGAIN;
1407 unlock_page(pages[i]);
1408 page_cache_release(pages[i]);
1409 goto done;
1410 }
1411 }
1412 page_cache_release(pages[i]);
1413 pages_locked++;
1414 }
1415 nrpages -= ret;
1416 index += ret;
1417 cond_resched();
1418 }
1419 ret = 0;
1420 done:
1421 if (ret && pages_locked) {
1422 __unlock_for_delalloc(inode, locked_page,
1423 delalloc_start,
1424 ((u64)(start_index + pages_locked - 1)) <<
1425 PAGE_CACHE_SHIFT);
1426 }
1427 return ret;
1428 }
1429
1430 /*
1431 * find a contiguous range of bytes in the file marked as delalloc, not
1432 * more than 'max_bytes'. start and end are used to return the range,
1433 *
1434 * 1 is returned if we find something, 0 if nothing was in the tree
1435 */
1436 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1437 struct extent_io_tree *tree,
1438 struct page *locked_page,
1439 u64 *start, u64 *end,
1440 u64 max_bytes)
1441 {
1442 u64 delalloc_start;
1443 u64 delalloc_end;
1444 u64 found;
1445 struct extent_state *cached_state = NULL;
1446 int ret;
1447 int loops = 0;
1448
1449 again:
1450 /* step one, find a bunch of delalloc bytes starting at start */
1451 delalloc_start = *start;
1452 delalloc_end = 0;
1453 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1454 max_bytes, &cached_state);
1455 if (!found || delalloc_end <= *start) {
1456 *start = delalloc_start;
1457 *end = delalloc_end;
1458 free_extent_state(cached_state);
1459 return found;
1460 }
1461
1462 /*
1463 * start comes from the offset of locked_page. We have to lock
1464 * pages in order, so we can't process delalloc bytes before
1465 * locked_page
1466 */
1467 if (delalloc_start < *start)
1468 delalloc_start = *start;
1469
1470 /*
1471 * make sure to limit the number of pages we try to lock down
1472 * if we're looping.
1473 */
1474 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1475 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1476
1477 /* step two, lock all the pages after the page that has start */
1478 ret = lock_delalloc_pages(inode, locked_page,
1479 delalloc_start, delalloc_end);
1480 if (ret == -EAGAIN) {
1481 /* some of the pages are gone, lets avoid looping by
1482 * shortening the size of the delalloc range we're searching
1483 */
1484 free_extent_state(cached_state);
1485 if (!loops) {
1486 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1487 max_bytes = PAGE_CACHE_SIZE - offset;
1488 loops = 1;
1489 goto again;
1490 } else {
1491 found = 0;
1492 goto out_failed;
1493 }
1494 }
1495 BUG_ON(ret);
1496
1497 /* step three, lock the state bits for the whole range */
1498 lock_extent_bits(tree, delalloc_start, delalloc_end,
1499 0, &cached_state, GFP_NOFS);
1500
1501 /* then test to make sure it is all still delalloc */
1502 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1503 EXTENT_DELALLOC, 1, cached_state);
1504 if (!ret) {
1505 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1506 &cached_state, GFP_NOFS);
1507 __unlock_for_delalloc(inode, locked_page,
1508 delalloc_start, delalloc_end);
1509 cond_resched();
1510 goto again;
1511 }
1512 free_extent_state(cached_state);
1513 *start = delalloc_start;
1514 *end = delalloc_end;
1515 out_failed:
1516 return found;
1517 }
1518
1519 int extent_clear_unlock_delalloc(struct inode *inode,
1520 struct extent_io_tree *tree,
1521 u64 start, u64 end, struct page *locked_page,
1522 unsigned long op)
1523 {
1524 int ret;
1525 struct page *pages[16];
1526 unsigned long index = start >> PAGE_CACHE_SHIFT;
1527 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1528 unsigned long nr_pages = end_index - index + 1;
1529 int i;
1530 int clear_bits = 0;
1531
1532 if (op & EXTENT_CLEAR_UNLOCK)
1533 clear_bits |= EXTENT_LOCKED;
1534 if (op & EXTENT_CLEAR_DIRTY)
1535 clear_bits |= EXTENT_DIRTY;
1536
1537 if (op & EXTENT_CLEAR_DELALLOC)
1538 clear_bits |= EXTENT_DELALLOC;
1539
1540 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1541 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1542 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1543 EXTENT_SET_PRIVATE2)))
1544 return 0;
1545
1546 while (nr_pages > 0) {
1547 ret = find_get_pages_contig(inode->i_mapping, index,
1548 min_t(unsigned long,
1549 nr_pages, ARRAY_SIZE(pages)), pages);
1550 for (i = 0; i < ret; i++) {
1551
1552 if (op & EXTENT_SET_PRIVATE2)
1553 SetPagePrivate2(pages[i]);
1554
1555 if (pages[i] == locked_page) {
1556 page_cache_release(pages[i]);
1557 continue;
1558 }
1559 if (op & EXTENT_CLEAR_DIRTY)
1560 clear_page_dirty_for_io(pages[i]);
1561 if (op & EXTENT_SET_WRITEBACK)
1562 set_page_writeback(pages[i]);
1563 if (op & EXTENT_END_WRITEBACK)
1564 end_page_writeback(pages[i]);
1565 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1566 unlock_page(pages[i]);
1567 page_cache_release(pages[i]);
1568 }
1569 nr_pages -= ret;
1570 index += ret;
1571 cond_resched();
1572 }
1573 return 0;
1574 }
1575
1576 /*
1577 * count the number of bytes in the tree that have a given bit(s)
1578 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1579 * cached. The total number found is returned.
1580 */
1581 u64 count_range_bits(struct extent_io_tree *tree,
1582 u64 *start, u64 search_end, u64 max_bytes,
1583 unsigned long bits, int contig)
1584 {
1585 struct rb_node *node;
1586 struct extent_state *state;
1587 u64 cur_start = *start;
1588 u64 total_bytes = 0;
1589 u64 last = 0;
1590 int found = 0;
1591
1592 if (search_end <= cur_start) {
1593 WARN_ON(1);
1594 return 0;
1595 }
1596
1597 spin_lock(&tree->lock);
1598 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1599 total_bytes = tree->dirty_bytes;
1600 goto out;
1601 }
1602 /*
1603 * this search will find all the extents that end after
1604 * our range starts.
1605 */
1606 node = tree_search(tree, cur_start);
1607 if (!node)
1608 goto out;
1609
1610 while (1) {
1611 state = rb_entry(node, struct extent_state, rb_node);
1612 if (state->start > search_end)
1613 break;
1614 if (contig && found && state->start > last + 1)
1615 break;
1616 if (state->end >= cur_start && (state->state & bits) == bits) {
1617 total_bytes += min(search_end, state->end) + 1 -
1618 max(cur_start, state->start);
1619 if (total_bytes >= max_bytes)
1620 break;
1621 if (!found) {
1622 *start = max(cur_start, state->start);
1623 found = 1;
1624 }
1625 last = state->end;
1626 } else if (contig && found) {
1627 break;
1628 }
1629 node = rb_next(node);
1630 if (!node)
1631 break;
1632 }
1633 out:
1634 spin_unlock(&tree->lock);
1635 return total_bytes;
1636 }
1637
1638 /*
1639 * set the private field for a given byte offset in the tree. If there isn't
1640 * an extent_state there already, this does nothing.
1641 */
1642 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1643 {
1644 struct rb_node *node;
1645 struct extent_state *state;
1646 int ret = 0;
1647
1648 spin_lock(&tree->lock);
1649 /*
1650 * this search will find all the extents that end after
1651 * our range starts.
1652 */
1653 node = tree_search(tree, start);
1654 if (!node) {
1655 ret = -ENOENT;
1656 goto out;
1657 }
1658 state = rb_entry(node, struct extent_state, rb_node);
1659 if (state->start != start) {
1660 ret = -ENOENT;
1661 goto out;
1662 }
1663 state->private = private;
1664 out:
1665 spin_unlock(&tree->lock);
1666 return ret;
1667 }
1668
1669 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1670 {
1671 struct rb_node *node;
1672 struct extent_state *state;
1673 int ret = 0;
1674
1675 spin_lock(&tree->lock);
1676 /*
1677 * this search will find all the extents that end after
1678 * our range starts.
1679 */
1680 node = tree_search(tree, start);
1681 if (!node) {
1682 ret = -ENOENT;
1683 goto out;
1684 }
1685 state = rb_entry(node, struct extent_state, rb_node);
1686 if (state->start != start) {
1687 ret = -ENOENT;
1688 goto out;
1689 }
1690 *private = state->private;
1691 out:
1692 spin_unlock(&tree->lock);
1693 return ret;
1694 }
1695
1696 /*
1697 * searches a range in the state tree for a given mask.
1698 * If 'filled' == 1, this returns 1 only if every extent in the tree
1699 * has the bits set. Otherwise, 1 is returned if any bit in the
1700 * range is found set.
1701 */
1702 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1703 int bits, int filled, struct extent_state *cached)
1704 {
1705 struct extent_state *state = NULL;
1706 struct rb_node *node;
1707 int bitset = 0;
1708
1709 spin_lock(&tree->lock);
1710 if (cached && cached->tree && cached->start <= start &&
1711 cached->end > start)
1712 node = &cached->rb_node;
1713 else
1714 node = tree_search(tree, start);
1715 while (node && start <= end) {
1716 state = rb_entry(node, struct extent_state, rb_node);
1717
1718 if (filled && state->start > start) {
1719 bitset = 0;
1720 break;
1721 }
1722
1723 if (state->start > end)
1724 break;
1725
1726 if (state->state & bits) {
1727 bitset = 1;
1728 if (!filled)
1729 break;
1730 } else if (filled) {
1731 bitset = 0;
1732 break;
1733 }
1734
1735 if (state->end == (u64)-1)
1736 break;
1737
1738 start = state->end + 1;
1739 if (start > end)
1740 break;
1741 node = rb_next(node);
1742 if (!node) {
1743 if (filled)
1744 bitset = 0;
1745 break;
1746 }
1747 }
1748 spin_unlock(&tree->lock);
1749 return bitset;
1750 }
1751
1752 /*
1753 * helper function to set a given page up to date if all the
1754 * extents in the tree for that page are up to date
1755 */
1756 static int check_page_uptodate(struct extent_io_tree *tree,
1757 struct page *page)
1758 {
1759 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1760 u64 end = start + PAGE_CACHE_SIZE - 1;
1761 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1762 SetPageUptodate(page);
1763 return 0;
1764 }
1765
1766 /*
1767 * helper function to unlock a page if all the extents in the tree
1768 * for that page are unlocked
1769 */
1770 static int check_page_locked(struct extent_io_tree *tree,
1771 struct page *page)
1772 {
1773 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1774 u64 end = start + PAGE_CACHE_SIZE - 1;
1775 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1776 unlock_page(page);
1777 return 0;
1778 }
1779
1780 /*
1781 * helper function to end page writeback if all the extents
1782 * in the tree for that page are done with writeback
1783 */
1784 static int check_page_writeback(struct extent_io_tree *tree,
1785 struct page *page)
1786 {
1787 end_page_writeback(page);
1788 return 0;
1789 }
1790
1791 /*
1792 * When IO fails, either with EIO or csum verification fails, we
1793 * try other mirrors that might have a good copy of the data. This
1794 * io_failure_record is used to record state as we go through all the
1795 * mirrors. If another mirror has good data, the page is set up to date
1796 * and things continue. If a good mirror can't be found, the original
1797 * bio end_io callback is called to indicate things have failed.
1798 */
1799 struct io_failure_record {
1800 struct page *page;
1801 u64 start;
1802 u64 len;
1803 u64 logical;
1804 unsigned long bio_flags;
1805 int this_mirror;
1806 int failed_mirror;
1807 int in_validation;
1808 };
1809
1810 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1811 int did_repair)
1812 {
1813 int ret;
1814 int err = 0;
1815 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1816
1817 set_state_private(failure_tree, rec->start, 0);
1818 ret = clear_extent_bits(failure_tree, rec->start,
1819 rec->start + rec->len - 1,
1820 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1821 if (ret)
1822 err = ret;
1823
1824 if (did_repair) {
1825 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1826 rec->start + rec->len - 1,
1827 EXTENT_DAMAGED, GFP_NOFS);
1828 if (ret && !err)
1829 err = ret;
1830 }
1831
1832 kfree(rec);
1833 return err;
1834 }
1835
1836 static void repair_io_failure_callback(struct bio *bio, int err)
1837 {
1838 complete(bio->bi_private);
1839 }
1840
1841 /*
1842 * this bypasses the standard btrfs submit functions deliberately, as
1843 * the standard behavior is to write all copies in a raid setup. here we only
1844 * want to write the one bad copy. so we do the mapping for ourselves and issue
1845 * submit_bio directly.
1846 * to avoid any synchonization issues, wait for the data after writing, which
1847 * actually prevents the read that triggered the error from finishing.
1848 * currently, there can be no more than two copies of every data bit. thus,
1849 * exactly one rewrite is required.
1850 */
1851 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1852 u64 length, u64 logical, struct page *page,
1853 int mirror_num)
1854 {
1855 struct bio *bio;
1856 struct btrfs_device *dev;
1857 DECLARE_COMPLETION_ONSTACK(compl);
1858 u64 map_length = 0;
1859 u64 sector;
1860 struct btrfs_bio *bbio = NULL;
1861 int ret;
1862
1863 BUG_ON(!mirror_num);
1864
1865 bio = bio_alloc(GFP_NOFS, 1);
1866 if (!bio)
1867 return -EIO;
1868 bio->bi_private = &compl;
1869 bio->bi_end_io = repair_io_failure_callback;
1870 bio->bi_size = 0;
1871 map_length = length;
1872
1873 ret = btrfs_map_block(map_tree, WRITE, logical,
1874 &map_length, &bbio, mirror_num);
1875 if (ret) {
1876 bio_put(bio);
1877 return -EIO;
1878 }
1879 BUG_ON(mirror_num != bbio->mirror_num);
1880 sector = bbio->stripes[mirror_num-1].physical >> 9;
1881 bio->bi_sector = sector;
1882 dev = bbio->stripes[mirror_num-1].dev;
1883 kfree(bbio);
1884 if (!dev || !dev->bdev || !dev->writeable) {
1885 bio_put(bio);
1886 return -EIO;
1887 }
1888 bio->bi_bdev = dev->bdev;
1889 bio_add_page(bio, page, length, start-page_offset(page));
1890 submit_bio(WRITE_SYNC, bio);
1891 wait_for_completion(&compl);
1892
1893 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1894 /* try to remap that extent elsewhere? */
1895 bio_put(bio);
1896 return -EIO;
1897 }
1898
1899 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1900 "sector %llu)\n", page->mapping->host->i_ino, start,
1901 dev->name, sector);
1902
1903 bio_put(bio);
1904 return 0;
1905 }
1906
1907 /*
1908 * each time an IO finishes, we do a fast check in the IO failure tree
1909 * to see if we need to process or clean up an io_failure_record
1910 */
1911 static int clean_io_failure(u64 start, struct page *page)
1912 {
1913 u64 private;
1914 u64 private_failure;
1915 struct io_failure_record *failrec;
1916 struct btrfs_mapping_tree *map_tree;
1917 struct extent_state *state;
1918 int num_copies;
1919 int did_repair = 0;
1920 int ret;
1921 struct inode *inode = page->mapping->host;
1922
1923 private = 0;
1924 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1925 (u64)-1, 1, EXTENT_DIRTY, 0);
1926 if (!ret)
1927 return 0;
1928
1929 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1930 &private_failure);
1931 if (ret)
1932 return 0;
1933
1934 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1935 BUG_ON(!failrec->this_mirror);
1936
1937 if (failrec->in_validation) {
1938 /* there was no real error, just free the record */
1939 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1940 failrec->start);
1941 did_repair = 1;
1942 goto out;
1943 }
1944
1945 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1946 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1947 failrec->start,
1948 EXTENT_LOCKED);
1949 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1950
1951 if (state && state->start == failrec->start) {
1952 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1953 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1954 failrec->len);
1955 if (num_copies > 1) {
1956 ret = repair_io_failure(map_tree, start, failrec->len,
1957 failrec->logical, page,
1958 failrec->failed_mirror);
1959 did_repair = !ret;
1960 }
1961 }
1962
1963 out:
1964 if (!ret)
1965 ret = free_io_failure(inode, failrec, did_repair);
1966
1967 return ret;
1968 }
1969
1970 /*
1971 * this is a generic handler for readpage errors (default
1972 * readpage_io_failed_hook). if other copies exist, read those and write back
1973 * good data to the failed position. does not investigate in remapping the
1974 * failed extent elsewhere, hoping the device will be smart enough to do this as
1975 * needed
1976 */
1977
1978 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1979 u64 start, u64 end, int failed_mirror,
1980 struct extent_state *state)
1981 {
1982 struct io_failure_record *failrec = NULL;
1983 u64 private;
1984 struct extent_map *em;
1985 struct inode *inode = page->mapping->host;
1986 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1987 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1988 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1989 struct bio *bio;
1990 int num_copies;
1991 int ret;
1992 int read_mode;
1993 u64 logical;
1994
1995 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
1996
1997 ret = get_state_private(failure_tree, start, &private);
1998 if (ret) {
1999 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2000 if (!failrec)
2001 return -ENOMEM;
2002 failrec->start = start;
2003 failrec->len = end - start + 1;
2004 failrec->this_mirror = 0;
2005 failrec->bio_flags = 0;
2006 failrec->in_validation = 0;
2007
2008 read_lock(&em_tree->lock);
2009 em = lookup_extent_mapping(em_tree, start, failrec->len);
2010 if (!em) {
2011 read_unlock(&em_tree->lock);
2012 kfree(failrec);
2013 return -EIO;
2014 }
2015
2016 if (em->start > start || em->start + em->len < start) {
2017 free_extent_map(em);
2018 em = NULL;
2019 }
2020 read_unlock(&em_tree->lock);
2021
2022 if (!em || IS_ERR(em)) {
2023 kfree(failrec);
2024 return -EIO;
2025 }
2026 logical = start - em->start;
2027 logical = em->block_start + logical;
2028 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2029 logical = em->block_start;
2030 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2031 extent_set_compress_type(&failrec->bio_flags,
2032 em->compress_type);
2033 }
2034 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2035 "len=%llu\n", logical, start, failrec->len);
2036 failrec->logical = logical;
2037 free_extent_map(em);
2038
2039 /* set the bits in the private failure tree */
2040 ret = set_extent_bits(failure_tree, start, end,
2041 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2042 if (ret >= 0)
2043 ret = set_state_private(failure_tree, start,
2044 (u64)(unsigned long)failrec);
2045 /* set the bits in the inode's tree */
2046 if (ret >= 0)
2047 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2048 GFP_NOFS);
2049 if (ret < 0) {
2050 kfree(failrec);
2051 return ret;
2052 }
2053 } else {
2054 failrec = (struct io_failure_record *)(unsigned long)private;
2055 pr_debug("bio_readpage_error: (found) logical=%llu, "
2056 "start=%llu, len=%llu, validation=%d\n",
2057 failrec->logical, failrec->start, failrec->len,
2058 failrec->in_validation);
2059 /*
2060 * when data can be on disk more than twice, add to failrec here
2061 * (e.g. with a list for failed_mirror) to make
2062 * clean_io_failure() clean all those errors at once.
2063 */
2064 }
2065 num_copies = btrfs_num_copies(
2066 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2067 failrec->logical, failrec->len);
2068 if (num_copies == 1) {
2069 /*
2070 * we only have a single copy of the data, so don't bother with
2071 * all the retry and error correction code that follows. no
2072 * matter what the error is, it is very likely to persist.
2073 */
2074 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2075 "state=%p, num_copies=%d, next_mirror %d, "
2076 "failed_mirror %d\n", state, num_copies,
2077 failrec->this_mirror, failed_mirror);
2078 free_io_failure(inode, failrec, 0);
2079 return -EIO;
2080 }
2081
2082 if (!state) {
2083 spin_lock(&tree->lock);
2084 state = find_first_extent_bit_state(tree, failrec->start,
2085 EXTENT_LOCKED);
2086 if (state && state->start != failrec->start)
2087 state = NULL;
2088 spin_unlock(&tree->lock);
2089 }
2090
2091 /*
2092 * there are two premises:
2093 * a) deliver good data to the caller
2094 * b) correct the bad sectors on disk
2095 */
2096 if (failed_bio->bi_vcnt > 1) {
2097 /*
2098 * to fulfill b), we need to know the exact failing sectors, as
2099 * we don't want to rewrite any more than the failed ones. thus,
2100 * we need separate read requests for the failed bio
2101 *
2102 * if the following BUG_ON triggers, our validation request got
2103 * merged. we need separate requests for our algorithm to work.
2104 */
2105 BUG_ON(failrec->in_validation);
2106 failrec->in_validation = 1;
2107 failrec->this_mirror = failed_mirror;
2108 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2109 } else {
2110 /*
2111 * we're ready to fulfill a) and b) alongside. get a good copy
2112 * of the failed sector and if we succeed, we have setup
2113 * everything for repair_io_failure to do the rest for us.
2114 */
2115 if (failrec->in_validation) {
2116 BUG_ON(failrec->this_mirror != failed_mirror);
2117 failrec->in_validation = 0;
2118 failrec->this_mirror = 0;
2119 }
2120 failrec->failed_mirror = failed_mirror;
2121 failrec->this_mirror++;
2122 if (failrec->this_mirror == failed_mirror)
2123 failrec->this_mirror++;
2124 read_mode = READ_SYNC;
2125 }
2126
2127 if (!state || failrec->this_mirror > num_copies) {
2128 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2129 "next_mirror %d, failed_mirror %d\n", state,
2130 num_copies, failrec->this_mirror, failed_mirror);
2131 free_io_failure(inode, failrec, 0);
2132 return -EIO;
2133 }
2134
2135 bio = bio_alloc(GFP_NOFS, 1);
2136 bio->bi_private = state;
2137 bio->bi_end_io = failed_bio->bi_end_io;
2138 bio->bi_sector = failrec->logical >> 9;
2139 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2140 bio->bi_size = 0;
2141
2142 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2143
2144 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2145 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2146 failrec->this_mirror, num_copies, failrec->in_validation);
2147
2148 tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2149 failrec->bio_flags, 0);
2150 return 0;
2151 }
2152
2153 /* lots and lots of room for performance fixes in the end_bio funcs */
2154
2155 /*
2156 * after a writepage IO is done, we need to:
2157 * clear the uptodate bits on error
2158 * clear the writeback bits in the extent tree for this IO
2159 * end_page_writeback if the page has no more pending IO
2160 *
2161 * Scheduling is not allowed, so the extent state tree is expected
2162 * to have one and only one object corresponding to this IO.
2163 */
2164 static void end_bio_extent_writepage(struct bio *bio, int err)
2165 {
2166 int uptodate = err == 0;
2167 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2168 struct extent_io_tree *tree;
2169 u64 start;
2170 u64 end;
2171 int whole_page;
2172 int ret;
2173
2174 do {
2175 struct page *page = bvec->bv_page;
2176 tree = &BTRFS_I(page->mapping->host)->io_tree;
2177
2178 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2179 bvec->bv_offset;
2180 end = start + bvec->bv_len - 1;
2181
2182 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2183 whole_page = 1;
2184 else
2185 whole_page = 0;
2186
2187 if (--bvec >= bio->bi_io_vec)
2188 prefetchw(&bvec->bv_page->flags);
2189 if (tree->ops && tree->ops->writepage_end_io_hook) {
2190 ret = tree->ops->writepage_end_io_hook(page, start,
2191 end, NULL, uptodate);
2192 if (ret)
2193 uptodate = 0;
2194 }
2195
2196 if (!uptodate && tree->ops &&
2197 tree->ops->writepage_io_failed_hook) {
2198 ret = tree->ops->writepage_io_failed_hook(bio, page,
2199 start, end, NULL);
2200 if (ret == 0) {
2201 uptodate = (err == 0);
2202 continue;
2203 }
2204 }
2205
2206 if (!uptodate) {
2207 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2208 ClearPageUptodate(page);
2209 SetPageError(page);
2210 }
2211
2212 if (whole_page)
2213 end_page_writeback(page);
2214 else
2215 check_page_writeback(tree, page);
2216 } while (bvec >= bio->bi_io_vec);
2217
2218 bio_put(bio);
2219 }
2220
2221 /*
2222 * after a readpage IO is done, we need to:
2223 * clear the uptodate bits on error
2224 * set the uptodate bits if things worked
2225 * set the page up to date if all extents in the tree are uptodate
2226 * clear the lock bit in the extent tree
2227 * unlock the page if there are no other extents locked for it
2228 *
2229 * Scheduling is not allowed, so the extent state tree is expected
2230 * to have one and only one object corresponding to this IO.
2231 */
2232 static void end_bio_extent_readpage(struct bio *bio, int err)
2233 {
2234 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2235 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2236 struct bio_vec *bvec = bio->bi_io_vec;
2237 struct extent_io_tree *tree;
2238 u64 start;
2239 u64 end;
2240 int whole_page;
2241 int ret;
2242
2243 if (err)
2244 uptodate = 0;
2245
2246 do {
2247 struct page *page = bvec->bv_page;
2248 struct extent_state *cached = NULL;
2249 struct extent_state *state;
2250
2251 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2252 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2253 (long int)bio->bi_bdev);
2254 tree = &BTRFS_I(page->mapping->host)->io_tree;
2255
2256 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2257 bvec->bv_offset;
2258 end = start + bvec->bv_len - 1;
2259
2260 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2261 whole_page = 1;
2262 else
2263 whole_page = 0;
2264
2265 if (++bvec <= bvec_end)
2266 prefetchw(&bvec->bv_page->flags);
2267
2268 spin_lock(&tree->lock);
2269 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2270 if (state && state->start == start) {
2271 /*
2272 * take a reference on the state, unlock will drop
2273 * the ref
2274 */
2275 cache_state(state, &cached);
2276 }
2277 spin_unlock(&tree->lock);
2278
2279 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2280 ret = tree->ops->readpage_end_io_hook(page, start, end,
2281 state);
2282 if (ret)
2283 uptodate = 0;
2284 else
2285 clean_io_failure(start, page);
2286 }
2287 if (!uptodate) {
2288 int failed_mirror;
2289 failed_mirror = (int)(unsigned long)bio->bi_bdev;
2290 /*
2291 * The generic bio_readpage_error handles errors the
2292 * following way: If possible, new read requests are
2293 * created and submitted and will end up in
2294 * end_bio_extent_readpage as well (if we're lucky, not
2295 * in the !uptodate case). In that case it returns 0 and
2296 * we just go on with the next page in our bio. If it
2297 * can't handle the error it will return -EIO and we
2298 * remain responsible for that page.
2299 */
2300 ret = bio_readpage_error(bio, page, start, end,
2301 failed_mirror, NULL);
2302 if (ret == 0) {
2303 error_handled:
2304 uptodate =
2305 test_bit(BIO_UPTODATE, &bio->bi_flags);
2306 if (err)
2307 uptodate = 0;
2308 uncache_state(&cached);
2309 continue;
2310 }
2311 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2312 ret = tree->ops->readpage_io_failed_hook(
2313 bio, page, start, end,
2314 failed_mirror, state);
2315 if (ret == 0)
2316 goto error_handled;
2317 }
2318 }
2319
2320 if (uptodate) {
2321 set_extent_uptodate(tree, start, end, &cached,
2322 GFP_ATOMIC);
2323 }
2324 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2325
2326 if (whole_page) {
2327 if (uptodate) {
2328 SetPageUptodate(page);
2329 } else {
2330 ClearPageUptodate(page);
2331 SetPageError(page);
2332 }
2333 unlock_page(page);
2334 } else {
2335 if (uptodate) {
2336 check_page_uptodate(tree, page);
2337 } else {
2338 ClearPageUptodate(page);
2339 SetPageError(page);
2340 }
2341 check_page_locked(tree, page);
2342 }
2343 } while (bvec <= bvec_end);
2344
2345 bio_put(bio);
2346 }
2347
2348 struct bio *
2349 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2350 gfp_t gfp_flags)
2351 {
2352 struct bio *bio;
2353
2354 bio = bio_alloc(gfp_flags, nr_vecs);
2355
2356 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2357 while (!bio && (nr_vecs /= 2))
2358 bio = bio_alloc(gfp_flags, nr_vecs);
2359 }
2360
2361 if (bio) {
2362 bio->bi_size = 0;
2363 bio->bi_bdev = bdev;
2364 bio->bi_sector = first_sector;
2365 }
2366 return bio;
2367 }
2368
2369 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2370 unsigned long bio_flags)
2371 {
2372 int ret = 0;
2373 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2374 struct page *page = bvec->bv_page;
2375 struct extent_io_tree *tree = bio->bi_private;
2376 u64 start;
2377
2378 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2379
2380 bio->bi_private = NULL;
2381
2382 bio_get(bio);
2383
2384 if (tree->ops && tree->ops->submit_bio_hook)
2385 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2386 mirror_num, bio_flags, start);
2387 else
2388 submit_bio(rw, bio);
2389
2390 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2391 ret = -EOPNOTSUPP;
2392 bio_put(bio);
2393 return ret;
2394 }
2395
2396 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2397 struct page *page, sector_t sector,
2398 size_t size, unsigned long offset,
2399 struct block_device *bdev,
2400 struct bio **bio_ret,
2401 unsigned long max_pages,
2402 bio_end_io_t end_io_func,
2403 int mirror_num,
2404 unsigned long prev_bio_flags,
2405 unsigned long bio_flags)
2406 {
2407 int ret = 0;
2408 struct bio *bio;
2409 int nr;
2410 int contig = 0;
2411 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2412 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2413 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2414
2415 if (bio_ret && *bio_ret) {
2416 bio = *bio_ret;
2417 if (old_compressed)
2418 contig = bio->bi_sector == sector;
2419 else
2420 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2421 sector;
2422
2423 if (prev_bio_flags != bio_flags || !contig ||
2424 (tree->ops && tree->ops->merge_bio_hook &&
2425 tree->ops->merge_bio_hook(page, offset, page_size, bio,
2426 bio_flags)) ||
2427 bio_add_page(bio, page, page_size, offset) < page_size) {
2428 ret = submit_one_bio(rw, bio, mirror_num,
2429 prev_bio_flags);
2430 bio = NULL;
2431 } else {
2432 return 0;
2433 }
2434 }
2435 if (this_compressed)
2436 nr = BIO_MAX_PAGES;
2437 else
2438 nr = bio_get_nr_vecs(bdev);
2439
2440 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2441 if (!bio)
2442 return -ENOMEM;
2443
2444 bio_add_page(bio, page, page_size, offset);
2445 bio->bi_end_io = end_io_func;
2446 bio->bi_private = tree;
2447
2448 if (bio_ret)
2449 *bio_ret = bio;
2450 else
2451 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2452
2453 return ret;
2454 }
2455
2456 void set_page_extent_mapped(struct page *page)
2457 {
2458 if (!PagePrivate(page)) {
2459 SetPagePrivate(page);
2460 page_cache_get(page);
2461 set_page_private(page, EXTENT_PAGE_PRIVATE);
2462 }
2463 }
2464
2465 static void set_page_extent_head(struct page *page, unsigned long len)
2466 {
2467 WARN_ON(!PagePrivate(page));
2468 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2469 }
2470
2471 /*
2472 * basic readpage implementation. Locked extent state structs are inserted
2473 * into the tree that are removed when the IO is done (by the end_io
2474 * handlers)
2475 */
2476 static int __extent_read_full_page(struct extent_io_tree *tree,
2477 struct page *page,
2478 get_extent_t *get_extent,
2479 struct bio **bio, int mirror_num,
2480 unsigned long *bio_flags)
2481 {
2482 struct inode *inode = page->mapping->host;
2483 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2484 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2485 u64 end;
2486 u64 cur = start;
2487 u64 extent_offset;
2488 u64 last_byte = i_size_read(inode);
2489 u64 block_start;
2490 u64 cur_end;
2491 sector_t sector;
2492 struct extent_map *em;
2493 struct block_device *bdev;
2494 struct btrfs_ordered_extent *ordered;
2495 int ret;
2496 int nr = 0;
2497 size_t pg_offset = 0;
2498 size_t iosize;
2499 size_t disk_io_size;
2500 size_t blocksize = inode->i_sb->s_blocksize;
2501 unsigned long this_bio_flag = 0;
2502
2503 set_page_extent_mapped(page);
2504
2505 if (!PageUptodate(page)) {
2506 if (cleancache_get_page(page) == 0) {
2507 BUG_ON(blocksize != PAGE_SIZE);
2508 goto out;
2509 }
2510 }
2511
2512 end = page_end;
2513 while (1) {
2514 lock_extent(tree, start, end, GFP_NOFS);
2515 ordered = btrfs_lookup_ordered_extent(inode, start);
2516 if (!ordered)
2517 break;
2518 unlock_extent(tree, start, end, GFP_NOFS);
2519 btrfs_start_ordered_extent(inode, ordered, 1);
2520 btrfs_put_ordered_extent(ordered);
2521 }
2522
2523 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2524 char *userpage;
2525 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2526
2527 if (zero_offset) {
2528 iosize = PAGE_CACHE_SIZE - zero_offset;
2529 userpage = kmap_atomic(page, KM_USER0);
2530 memset(userpage + zero_offset, 0, iosize);
2531 flush_dcache_page(page);
2532 kunmap_atomic(userpage, KM_USER0);
2533 }
2534 }
2535 while (cur <= end) {
2536 if (cur >= last_byte) {
2537 char *userpage;
2538 struct extent_state *cached = NULL;
2539
2540 iosize = PAGE_CACHE_SIZE - pg_offset;
2541 userpage = kmap_atomic(page, KM_USER0);
2542 memset(userpage + pg_offset, 0, iosize);
2543 flush_dcache_page(page);
2544 kunmap_atomic(userpage, KM_USER0);
2545 set_extent_uptodate(tree, cur, cur + iosize - 1,
2546 &cached, GFP_NOFS);
2547 unlock_extent_cached(tree, cur, cur + iosize - 1,
2548 &cached, GFP_NOFS);
2549 break;
2550 }
2551 em = get_extent(inode, page, pg_offset, cur,
2552 end - cur + 1, 0);
2553 if (IS_ERR_OR_NULL(em)) {
2554 SetPageError(page);
2555 unlock_extent(tree, cur, end, GFP_NOFS);
2556 break;
2557 }
2558 extent_offset = cur - em->start;
2559 BUG_ON(extent_map_end(em) <= cur);
2560 BUG_ON(end < cur);
2561
2562 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2563 this_bio_flag = EXTENT_BIO_COMPRESSED;
2564 extent_set_compress_type(&this_bio_flag,
2565 em->compress_type);
2566 }
2567
2568 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2569 cur_end = min(extent_map_end(em) - 1, end);
2570 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2571 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2572 disk_io_size = em->block_len;
2573 sector = em->block_start >> 9;
2574 } else {
2575 sector = (em->block_start + extent_offset) >> 9;
2576 disk_io_size = iosize;
2577 }
2578 bdev = em->bdev;
2579 block_start = em->block_start;
2580 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2581 block_start = EXTENT_MAP_HOLE;
2582 free_extent_map(em);
2583 em = NULL;
2584
2585 /* we've found a hole, just zero and go on */
2586 if (block_start == EXTENT_MAP_HOLE) {
2587 char *userpage;
2588 struct extent_state *cached = NULL;
2589
2590 userpage = kmap_atomic(page, KM_USER0);
2591 memset(userpage + pg_offset, 0, iosize);
2592 flush_dcache_page(page);
2593 kunmap_atomic(userpage, KM_USER0);
2594
2595 set_extent_uptodate(tree, cur, cur + iosize - 1,
2596 &cached, GFP_NOFS);
2597 unlock_extent_cached(tree, cur, cur + iosize - 1,
2598 &cached, GFP_NOFS);
2599 cur = cur + iosize;
2600 pg_offset += iosize;
2601 continue;
2602 }
2603 /* the get_extent function already copied into the page */
2604 if (test_range_bit(tree, cur, cur_end,
2605 EXTENT_UPTODATE, 1, NULL)) {
2606 check_page_uptodate(tree, page);
2607 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2608 cur = cur + iosize;
2609 pg_offset += iosize;
2610 continue;
2611 }
2612 /* we have an inline extent but it didn't get marked up
2613 * to date. Error out
2614 */
2615 if (block_start == EXTENT_MAP_INLINE) {
2616 SetPageError(page);
2617 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2618 cur = cur + iosize;
2619 pg_offset += iosize;
2620 continue;
2621 }
2622
2623 ret = 0;
2624 if (tree->ops && tree->ops->readpage_io_hook) {
2625 ret = tree->ops->readpage_io_hook(page, cur,
2626 cur + iosize - 1);
2627 }
2628 if (!ret) {
2629 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2630 pnr -= page->index;
2631 ret = submit_extent_page(READ, tree, page,
2632 sector, disk_io_size, pg_offset,
2633 bdev, bio, pnr,
2634 end_bio_extent_readpage, mirror_num,
2635 *bio_flags,
2636 this_bio_flag);
2637 nr++;
2638 *bio_flags = this_bio_flag;
2639 }
2640 if (ret)
2641 SetPageError(page);
2642 cur = cur + iosize;
2643 pg_offset += iosize;
2644 }
2645 out:
2646 if (!nr) {
2647 if (!PageError(page))
2648 SetPageUptodate(page);
2649 unlock_page(page);
2650 }
2651 return 0;
2652 }
2653
2654 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2655 get_extent_t *get_extent, int mirror_num)
2656 {
2657 struct bio *bio = NULL;
2658 unsigned long bio_flags = 0;
2659 int ret;
2660
2661 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2662 &bio_flags);
2663 if (bio)
2664 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2665 return ret;
2666 }
2667
2668 static noinline void update_nr_written(struct page *page,
2669 struct writeback_control *wbc,
2670 unsigned long nr_written)
2671 {
2672 wbc->nr_to_write -= nr_written;
2673 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2674 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2675 page->mapping->writeback_index = page->index + nr_written;
2676 }
2677
2678 /*
2679 * the writepage semantics are similar to regular writepage. extent
2680 * records are inserted to lock ranges in the tree, and as dirty areas
2681 * are found, they are marked writeback. Then the lock bits are removed
2682 * and the end_io handler clears the writeback ranges
2683 */
2684 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2685 void *data)
2686 {
2687 struct inode *inode = page->mapping->host;
2688 struct extent_page_data *epd = data;
2689 struct extent_io_tree *tree = epd->tree;
2690 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2691 u64 delalloc_start;
2692 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2693 u64 end;
2694 u64 cur = start;
2695 u64 extent_offset;
2696 u64 last_byte = i_size_read(inode);
2697 u64 block_start;
2698 u64 iosize;
2699 sector_t sector;
2700 struct extent_state *cached_state = NULL;
2701 struct extent_map *em;
2702 struct block_device *bdev;
2703 int ret;
2704 int nr = 0;
2705 size_t pg_offset = 0;
2706 size_t blocksize;
2707 loff_t i_size = i_size_read(inode);
2708 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2709 u64 nr_delalloc;
2710 u64 delalloc_end;
2711 int page_started;
2712 int compressed;
2713 int write_flags;
2714 unsigned long nr_written = 0;
2715 bool fill_delalloc = true;
2716
2717 if (wbc->sync_mode == WB_SYNC_ALL)
2718 write_flags = WRITE_SYNC;
2719 else
2720 write_flags = WRITE;
2721
2722 trace___extent_writepage(page, inode, wbc);
2723
2724 WARN_ON(!PageLocked(page));
2725
2726 ClearPageError(page);
2727
2728 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2729 if (page->index > end_index ||
2730 (page->index == end_index && !pg_offset)) {
2731 page->mapping->a_ops->invalidatepage(page, 0);
2732 unlock_page(page);
2733 return 0;
2734 }
2735
2736 if (page->index == end_index) {
2737 char *userpage;
2738
2739 userpage = kmap_atomic(page, KM_USER0);
2740 memset(userpage + pg_offset, 0,
2741 PAGE_CACHE_SIZE - pg_offset);
2742 kunmap_atomic(userpage, KM_USER0);
2743 flush_dcache_page(page);
2744 }
2745 pg_offset = 0;
2746
2747 set_page_extent_mapped(page);
2748
2749 if (!tree->ops || !tree->ops->fill_delalloc)
2750 fill_delalloc = false;
2751
2752 delalloc_start = start;
2753 delalloc_end = 0;
2754 page_started = 0;
2755 if (!epd->extent_locked && fill_delalloc) {
2756 u64 delalloc_to_write = 0;
2757 /*
2758 * make sure the wbc mapping index is at least updated
2759 * to this page.
2760 */
2761 update_nr_written(page, wbc, 0);
2762
2763 while (delalloc_end < page_end) {
2764 nr_delalloc = find_lock_delalloc_range(inode, tree,
2765 page,
2766 &delalloc_start,
2767 &delalloc_end,
2768 128 * 1024 * 1024);
2769 if (nr_delalloc == 0) {
2770 delalloc_start = delalloc_end + 1;
2771 continue;
2772 }
2773 tree->ops->fill_delalloc(inode, page, delalloc_start,
2774 delalloc_end, &page_started,
2775 &nr_written);
2776 /*
2777 * delalloc_end is already one less than the total
2778 * length, so we don't subtract one from
2779 * PAGE_CACHE_SIZE
2780 */
2781 delalloc_to_write += (delalloc_end - delalloc_start +
2782 PAGE_CACHE_SIZE) >>
2783 PAGE_CACHE_SHIFT;
2784 delalloc_start = delalloc_end + 1;
2785 }
2786 if (wbc->nr_to_write < delalloc_to_write) {
2787 int thresh = 8192;
2788
2789 if (delalloc_to_write < thresh * 2)
2790 thresh = delalloc_to_write;
2791 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2792 thresh);
2793 }
2794
2795 /* did the fill delalloc function already unlock and start
2796 * the IO?
2797 */
2798 if (page_started) {
2799 ret = 0;
2800 /*
2801 * we've unlocked the page, so we can't update
2802 * the mapping's writeback index, just update
2803 * nr_to_write.
2804 */
2805 wbc->nr_to_write -= nr_written;
2806 goto done_unlocked;
2807 }
2808 }
2809 if (tree->ops && tree->ops->writepage_start_hook) {
2810 ret = tree->ops->writepage_start_hook(page, start,
2811 page_end);
2812 if (ret == -EAGAIN) {
2813 redirty_page_for_writepage(wbc, page);
2814 update_nr_written(page, wbc, nr_written);
2815 unlock_page(page);
2816 ret = 0;
2817 goto done_unlocked;
2818 }
2819 }
2820
2821 /*
2822 * we don't want to touch the inode after unlocking the page,
2823 * so we update the mapping writeback index now
2824 */
2825 update_nr_written(page, wbc, nr_written + 1);
2826
2827 end = page_end;
2828 if (last_byte <= start) {
2829 if (tree->ops && tree->ops->writepage_end_io_hook)
2830 tree->ops->writepage_end_io_hook(page, start,
2831 page_end, NULL, 1);
2832 goto done;
2833 }
2834
2835 blocksize = inode->i_sb->s_blocksize;
2836
2837 while (cur <= end) {
2838 if (cur >= last_byte) {
2839 if (tree->ops && tree->ops->writepage_end_io_hook)
2840 tree->ops->writepage_end_io_hook(page, cur,
2841 page_end, NULL, 1);
2842 break;
2843 }
2844 em = epd->get_extent(inode, page, pg_offset, cur,
2845 end - cur + 1, 1);
2846 if (IS_ERR_OR_NULL(em)) {
2847 SetPageError(page);
2848 break;
2849 }
2850
2851 extent_offset = cur - em->start;
2852 BUG_ON(extent_map_end(em) <= cur);
2853 BUG_ON(end < cur);
2854 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2855 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2856 sector = (em->block_start + extent_offset) >> 9;
2857 bdev = em->bdev;
2858 block_start = em->block_start;
2859 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2860 free_extent_map(em);
2861 em = NULL;
2862
2863 /*
2864 * compressed and inline extents are written through other
2865 * paths in the FS
2866 */
2867 if (compressed || block_start == EXTENT_MAP_HOLE ||
2868 block_start == EXTENT_MAP_INLINE) {
2869 /*
2870 * end_io notification does not happen here for
2871 * compressed extents
2872 */
2873 if (!compressed && tree->ops &&
2874 tree->ops->writepage_end_io_hook)
2875 tree->ops->writepage_end_io_hook(page, cur,
2876 cur + iosize - 1,
2877 NULL, 1);
2878 else if (compressed) {
2879 /* we don't want to end_page_writeback on
2880 * a compressed extent. this happens
2881 * elsewhere
2882 */
2883 nr++;
2884 }
2885
2886 cur += iosize;
2887 pg_offset += iosize;
2888 continue;
2889 }
2890 /* leave this out until we have a page_mkwrite call */
2891 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2892 EXTENT_DIRTY, 0, NULL)) {
2893 cur = cur + iosize;
2894 pg_offset += iosize;
2895 continue;
2896 }
2897
2898 if (tree->ops && tree->ops->writepage_io_hook) {
2899 ret = tree->ops->writepage_io_hook(page, cur,
2900 cur + iosize - 1);
2901 } else {
2902 ret = 0;
2903 }
2904 if (ret) {
2905 SetPageError(page);
2906 } else {
2907 unsigned long max_nr = end_index + 1;
2908
2909 set_range_writeback(tree, cur, cur + iosize - 1);
2910 if (!PageWriteback(page)) {
2911 printk(KERN_ERR "btrfs warning page %lu not "
2912 "writeback, cur %llu end %llu\n",
2913 page->index, (unsigned long long)cur,
2914 (unsigned long long)end);
2915 }
2916
2917 ret = submit_extent_page(write_flags, tree, page,
2918 sector, iosize, pg_offset,
2919 bdev, &epd->bio, max_nr,
2920 end_bio_extent_writepage,
2921 0, 0, 0);
2922 if (ret)
2923 SetPageError(page);
2924 }
2925 cur = cur + iosize;
2926 pg_offset += iosize;
2927 nr++;
2928 }
2929 done:
2930 if (nr == 0) {
2931 /* make sure the mapping tag for page dirty gets cleared */
2932 set_page_writeback(page);
2933 end_page_writeback(page);
2934 }
2935 unlock_page(page);
2936
2937 done_unlocked:
2938
2939 /* drop our reference on any cached states */
2940 free_extent_state(cached_state);
2941 return 0;
2942 }
2943
2944 /**
2945 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2946 * @mapping: address space structure to write
2947 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2948 * @writepage: function called for each page
2949 * @data: data passed to writepage function
2950 *
2951 * If a page is already under I/O, write_cache_pages() skips it, even
2952 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2953 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2954 * and msync() need to guarantee that all the data which was dirty at the time
2955 * the call was made get new I/O started against them. If wbc->sync_mode is
2956 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2957 * existing IO to complete.
2958 */
2959 static int extent_write_cache_pages(struct extent_io_tree *tree,
2960 struct address_space *mapping,
2961 struct writeback_control *wbc,
2962 writepage_t writepage, void *data,
2963 void (*flush_fn)(void *))
2964 {
2965 int ret = 0;
2966 int done = 0;
2967 int nr_to_write_done = 0;
2968 struct pagevec pvec;
2969 int nr_pages;
2970 pgoff_t index;
2971 pgoff_t end; /* Inclusive */
2972 int scanned = 0;
2973 int tag;
2974
2975 pagevec_init(&pvec, 0);
2976 if (wbc->range_cyclic) {
2977 index = mapping->writeback_index; /* Start from prev offset */
2978 end = -1;
2979 } else {
2980 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2981 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2982 scanned = 1;
2983 }
2984 if (wbc->sync_mode == WB_SYNC_ALL)
2985 tag = PAGECACHE_TAG_TOWRITE;
2986 else
2987 tag = PAGECACHE_TAG_DIRTY;
2988 retry:
2989 if (wbc->sync_mode == WB_SYNC_ALL)
2990 tag_pages_for_writeback(mapping, index, end);
2991 while (!done && !nr_to_write_done && (index <= end) &&
2992 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2993 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2994 unsigned i;
2995
2996 scanned = 1;
2997 for (i = 0; i < nr_pages; i++) {
2998 struct page *page = pvec.pages[i];
2999
3000 /*
3001 * At this point we hold neither mapping->tree_lock nor
3002 * lock on the page itself: the page may be truncated or
3003 * invalidated (changing page->mapping to NULL), or even
3004 * swizzled back from swapper_space to tmpfs file
3005 * mapping
3006 */
3007 if (tree->ops &&
3008 tree->ops->write_cache_pages_lock_hook) {
3009 tree->ops->write_cache_pages_lock_hook(page,
3010 data, flush_fn);
3011 } else {
3012 if (!trylock_page(page)) {
3013 flush_fn(data);
3014 lock_page(page);
3015 }
3016 }
3017
3018 if (unlikely(page->mapping != mapping)) {
3019 unlock_page(page);
3020 continue;
3021 }
3022
3023 if (!wbc->range_cyclic && page->index > end) {
3024 done = 1;
3025 unlock_page(page);
3026 continue;
3027 }
3028
3029 if (wbc->sync_mode != WB_SYNC_NONE) {
3030 if (PageWriteback(page))
3031 flush_fn(data);
3032 wait_on_page_writeback(page);
3033 }
3034
3035 if (PageWriteback(page) ||
3036 !clear_page_dirty_for_io(page)) {
3037 unlock_page(page);
3038 continue;
3039 }
3040
3041 ret = (*writepage)(page, wbc, data);
3042
3043 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3044 unlock_page(page);
3045 ret = 0;
3046 }
3047 if (ret)
3048 done = 1;
3049
3050 /*
3051 * the filesystem may choose to bump up nr_to_write.
3052 * We have to make sure to honor the new nr_to_write
3053 * at any time
3054 */
3055 nr_to_write_done = wbc->nr_to_write <= 0;
3056 }
3057 pagevec_release(&pvec);
3058 cond_resched();
3059 }
3060 if (!scanned && !done) {
3061 /*
3062 * We hit the last page and there is more work to be done: wrap
3063 * back to the start of the file
3064 */
3065 scanned = 1;
3066 index = 0;
3067 goto retry;
3068 }
3069 return ret;
3070 }
3071
3072 static void flush_epd_write_bio(struct extent_page_data *epd)
3073 {
3074 if (epd->bio) {
3075 if (epd->sync_io)
3076 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3077 else
3078 submit_one_bio(WRITE, epd->bio, 0, 0);
3079 epd->bio = NULL;
3080 }
3081 }
3082
3083 static noinline void flush_write_bio(void *data)
3084 {
3085 struct extent_page_data *epd = data;
3086 flush_epd_write_bio(epd);
3087 }
3088
3089 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3090 get_extent_t *get_extent,
3091 struct writeback_control *wbc)
3092 {
3093 int ret;
3094 struct extent_page_data epd = {
3095 .bio = NULL,
3096 .tree = tree,
3097 .get_extent = get_extent,
3098 .extent_locked = 0,
3099 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3100 };
3101
3102 ret = __extent_writepage(page, wbc, &epd);
3103
3104 flush_epd_write_bio(&epd);
3105 return ret;
3106 }
3107
3108 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3109 u64 start, u64 end, get_extent_t *get_extent,
3110 int mode)
3111 {
3112 int ret = 0;
3113 struct address_space *mapping = inode->i_mapping;
3114 struct page *page;
3115 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3116 PAGE_CACHE_SHIFT;
3117
3118 struct extent_page_data epd = {
3119 .bio = NULL,
3120 .tree = tree,
3121 .get_extent = get_extent,
3122 .extent_locked = 1,
3123 .sync_io = mode == WB_SYNC_ALL,
3124 };
3125 struct writeback_control wbc_writepages = {
3126 .sync_mode = mode,
3127 .nr_to_write = nr_pages * 2,
3128 .range_start = start,
3129 .range_end = end + 1,
3130 };
3131
3132 while (start <= end) {
3133 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3134 if (clear_page_dirty_for_io(page))
3135 ret = __extent_writepage(page, &wbc_writepages, &epd);
3136 else {
3137 if (tree->ops && tree->ops->writepage_end_io_hook)
3138 tree->ops->writepage_end_io_hook(page, start,
3139 start + PAGE_CACHE_SIZE - 1,
3140 NULL, 1);
3141 unlock_page(page);
3142 }
3143 page_cache_release(page);
3144 start += PAGE_CACHE_SIZE;
3145 }
3146
3147 flush_epd_write_bio(&epd);
3148 return ret;
3149 }
3150
3151 int extent_writepages(struct extent_io_tree *tree,
3152 struct address_space *mapping,
3153 get_extent_t *get_extent,
3154 struct writeback_control *wbc)
3155 {
3156 int ret = 0;
3157 struct extent_page_data epd = {
3158 .bio = NULL,
3159 .tree = tree,
3160 .get_extent = get_extent,
3161 .extent_locked = 0,
3162 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3163 };
3164
3165 ret = extent_write_cache_pages(tree, mapping, wbc,
3166 __extent_writepage, &epd,
3167 flush_write_bio);
3168 flush_epd_write_bio(&epd);
3169 return ret;
3170 }
3171
3172 int extent_readpages(struct extent_io_tree *tree,
3173 struct address_space *mapping,
3174 struct list_head *pages, unsigned nr_pages,
3175 get_extent_t get_extent)
3176 {
3177 struct bio *bio = NULL;
3178 unsigned page_idx;
3179 unsigned long bio_flags = 0;
3180
3181 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3182 struct page *page = list_entry(pages->prev, struct page, lru);
3183
3184 prefetchw(&page->flags);
3185 list_del(&page->lru);
3186 if (!add_to_page_cache_lru(page, mapping,
3187 page->index, GFP_NOFS)) {
3188 __extent_read_full_page(tree, page, get_extent,
3189 &bio, 0, &bio_flags);
3190 }
3191 page_cache_release(page);
3192 }
3193 BUG_ON(!list_empty(pages));
3194 if (bio)
3195 submit_one_bio(READ, bio, 0, bio_flags);
3196 return 0;
3197 }
3198
3199 /*
3200 * basic invalidatepage code, this waits on any locked or writeback
3201 * ranges corresponding to the page, and then deletes any extent state
3202 * records from the tree
3203 */
3204 int extent_invalidatepage(struct extent_io_tree *tree,
3205 struct page *page, unsigned long offset)
3206 {
3207 struct extent_state *cached_state = NULL;
3208 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3209 u64 end = start + PAGE_CACHE_SIZE - 1;
3210 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3211
3212 start += (offset + blocksize - 1) & ~(blocksize - 1);
3213 if (start > end)
3214 return 0;
3215
3216 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3217 wait_on_page_writeback(page);
3218 clear_extent_bit(tree, start, end,
3219 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3220 EXTENT_DO_ACCOUNTING,
3221 1, 1, &cached_state, GFP_NOFS);
3222 return 0;
3223 }
3224
3225 /*
3226 * a helper for releasepage, this tests for areas of the page that
3227 * are locked or under IO and drops the related state bits if it is safe
3228 * to drop the page.
3229 */
3230 int try_release_extent_state(struct extent_map_tree *map,
3231 struct extent_io_tree *tree, struct page *page,
3232 gfp_t mask)
3233 {
3234 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3235 u64 end = start + PAGE_CACHE_SIZE - 1;
3236 int ret = 1;
3237
3238 if (test_range_bit(tree, start, end,
3239 EXTENT_IOBITS, 0, NULL))
3240 ret = 0;
3241 else {
3242 if ((mask & GFP_NOFS) == GFP_NOFS)
3243 mask = GFP_NOFS;
3244 /*
3245 * at this point we can safely clear everything except the
3246 * locked bit and the nodatasum bit
3247 */
3248 ret = clear_extent_bit(tree, start, end,
3249 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3250 0, 0, NULL, mask);
3251
3252 /* if clear_extent_bit failed for enomem reasons,
3253 * we can't allow the release to continue.
3254 */
3255 if (ret < 0)
3256 ret = 0;
3257 else
3258 ret = 1;
3259 }
3260 return ret;
3261 }
3262
3263 /*
3264 * a helper for releasepage. As long as there are no locked extents
3265 * in the range corresponding to the page, both state records and extent
3266 * map records are removed
3267 */
3268 int try_release_extent_mapping(struct extent_map_tree *map,
3269 struct extent_io_tree *tree, struct page *page,
3270 gfp_t mask)
3271 {
3272 struct extent_map *em;
3273 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3274 u64 end = start + PAGE_CACHE_SIZE - 1;
3275
3276 if ((mask & __GFP_WAIT) &&
3277 page->mapping->host->i_size > 16 * 1024 * 1024) {
3278 u64 len;
3279 while (start <= end) {
3280 len = end - start + 1;
3281 write_lock(&map->lock);
3282 em = lookup_extent_mapping(map, start, len);
3283 if (IS_ERR_OR_NULL(em)) {
3284 write_unlock(&map->lock);
3285 break;
3286 }
3287 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3288 em->start != start) {
3289 write_unlock(&map->lock);
3290 free_extent_map(em);
3291 break;
3292 }
3293 if (!test_range_bit(tree, em->start,
3294 extent_map_end(em) - 1,
3295 EXTENT_LOCKED | EXTENT_WRITEBACK,
3296 0, NULL)) {
3297 remove_extent_mapping(map, em);
3298 /* once for the rb tree */
3299 free_extent_map(em);
3300 }
3301 start = extent_map_end(em);
3302 write_unlock(&map->lock);
3303
3304 /* once for us */
3305 free_extent_map(em);
3306 }
3307 }
3308 return try_release_extent_state(map, tree, page, mask);
3309 }
3310
3311 /*
3312 * helper function for fiemap, which doesn't want to see any holes.
3313 * This maps until we find something past 'last'
3314 */
3315 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3316 u64 offset,
3317 u64 last,
3318 get_extent_t *get_extent)
3319 {
3320 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3321 struct extent_map *em;
3322 u64 len;
3323
3324 if (offset >= last)
3325 return NULL;
3326
3327 while(1) {
3328 len = last - offset;
3329 if (len == 0)
3330 break;
3331 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3332 em = get_extent(inode, NULL, 0, offset, len, 0);
3333 if (IS_ERR_OR_NULL(em))
3334 return em;
3335
3336 /* if this isn't a hole return it */
3337 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3338 em->block_start != EXTENT_MAP_HOLE) {
3339 return em;
3340 }
3341
3342 /* this is a hole, advance to the next extent */
3343 offset = extent_map_end(em);
3344 free_extent_map(em);
3345 if (offset >= last)
3346 break;
3347 }
3348 return NULL;
3349 }
3350
3351 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3352 __u64 start, __u64 len, get_extent_t *get_extent)
3353 {
3354 int ret = 0;
3355 u64 off = start;
3356 u64 max = start + len;
3357 u32 flags = 0;
3358 u32 found_type;
3359 u64 last;
3360 u64 last_for_get_extent = 0;
3361 u64 disko = 0;
3362 u64 isize = i_size_read(inode);
3363 struct btrfs_key found_key;
3364 struct extent_map *em = NULL;
3365 struct extent_state *cached_state = NULL;
3366 struct btrfs_path *path;
3367 struct btrfs_file_extent_item *item;
3368 int end = 0;
3369 u64 em_start = 0;
3370 u64 em_len = 0;
3371 u64 em_end = 0;
3372 unsigned long emflags;
3373
3374 if (len == 0)
3375 return -EINVAL;
3376
3377 path = btrfs_alloc_path();
3378 if (!path)
3379 return -ENOMEM;
3380 path->leave_spinning = 1;
3381
3382 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3383 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3384
3385 /*
3386 * lookup the last file extent. We're not using i_size here
3387 * because there might be preallocation past i_size
3388 */
3389 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3390 path, btrfs_ino(inode), -1, 0);
3391 if (ret < 0) {
3392 btrfs_free_path(path);
3393 return ret;
3394 }
3395 WARN_ON(!ret);
3396 path->slots[0]--;
3397 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3398 struct btrfs_file_extent_item);
3399 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3400 found_type = btrfs_key_type(&found_key);
3401
3402 /* No extents, but there might be delalloc bits */
3403 if (found_key.objectid != btrfs_ino(inode) ||
3404 found_type != BTRFS_EXTENT_DATA_KEY) {
3405 /* have to trust i_size as the end */
3406 last = (u64)-1;
3407 last_for_get_extent = isize;
3408 } else {
3409 /*
3410 * remember the start of the last extent. There are a
3411 * bunch of different factors that go into the length of the
3412 * extent, so its much less complex to remember where it started
3413 */
3414 last = found_key.offset;
3415 last_for_get_extent = last + 1;
3416 }
3417 btrfs_free_path(path);
3418
3419 /*
3420 * we might have some extents allocated but more delalloc past those
3421 * extents. so, we trust isize unless the start of the last extent is
3422 * beyond isize
3423 */
3424 if (last < isize) {
3425 last = (u64)-1;
3426 last_for_get_extent = isize;
3427 }
3428
3429 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3430 &cached_state, GFP_NOFS);
3431
3432 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3433 get_extent);
3434 if (!em)
3435 goto out;
3436 if (IS_ERR(em)) {
3437 ret = PTR_ERR(em);
3438 goto out;
3439 }
3440
3441 while (!end) {
3442 u64 offset_in_extent;
3443
3444 /* break if the extent we found is outside the range */
3445 if (em->start >= max || extent_map_end(em) < off)
3446 break;
3447
3448 /*
3449 * get_extent may return an extent that starts before our
3450 * requested range. We have to make sure the ranges
3451 * we return to fiemap always move forward and don't
3452 * overlap, so adjust the offsets here
3453 */
3454 em_start = max(em->start, off);
3455
3456 /*
3457 * record the offset from the start of the extent
3458 * for adjusting the disk offset below
3459 */
3460 offset_in_extent = em_start - em->start;
3461 em_end = extent_map_end(em);
3462 em_len = em_end - em_start;
3463 emflags = em->flags;
3464 disko = 0;
3465 flags = 0;
3466
3467 /*
3468 * bump off for our next call to get_extent
3469 */
3470 off = extent_map_end(em);
3471 if (off >= max)
3472 end = 1;
3473
3474 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3475 end = 1;
3476 flags |= FIEMAP_EXTENT_LAST;
3477 } else if (em->block_start == EXTENT_MAP_INLINE) {
3478 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3479 FIEMAP_EXTENT_NOT_ALIGNED);
3480 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3481 flags |= (FIEMAP_EXTENT_DELALLOC |
3482 FIEMAP_EXTENT_UNKNOWN);
3483 } else {
3484 disko = em->block_start + offset_in_extent;
3485 }
3486 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3487 flags |= FIEMAP_EXTENT_ENCODED;
3488
3489 free_extent_map(em);
3490 em = NULL;
3491 if ((em_start >= last) || em_len == (u64)-1 ||
3492 (last == (u64)-1 && isize <= em_end)) {
3493 flags |= FIEMAP_EXTENT_LAST;
3494 end = 1;
3495 }
3496
3497 /* now scan forward to see if this is really the last extent. */
3498 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3499 get_extent);
3500 if (IS_ERR(em)) {
3501 ret = PTR_ERR(em);
3502 goto out;
3503 }
3504 if (!em) {
3505 flags |= FIEMAP_EXTENT_LAST;
3506 end = 1;
3507 }
3508 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3509 em_len, flags);
3510 if (ret)
3511 goto out_free;
3512 }
3513 out_free:
3514 free_extent_map(em);
3515 out:
3516 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3517 &cached_state, GFP_NOFS);
3518 return ret;
3519 }
3520
3521 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3522 unsigned long i)
3523 {
3524 struct page *p;
3525 struct address_space *mapping;
3526
3527 if (i == 0)
3528 return eb->first_page;
3529 i += eb->start >> PAGE_CACHE_SHIFT;
3530 mapping = eb->first_page->mapping;
3531 if (!mapping)
3532 return NULL;
3533
3534 /*
3535 * extent_buffer_page is only called after pinning the page
3536 * by increasing the reference count. So we know the page must
3537 * be in the radix tree.
3538 */
3539 rcu_read_lock();
3540 p = radix_tree_lookup(&mapping->page_tree, i);
3541 rcu_read_unlock();
3542
3543 return p;
3544 }
3545
3546 inline unsigned long num_extent_pages(u64 start, u64 len)
3547 {
3548 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3549 (start >> PAGE_CACHE_SHIFT);
3550 }
3551
3552 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3553 u64 start,
3554 unsigned long len,
3555 gfp_t mask)
3556 {
3557 struct extent_buffer *eb = NULL;
3558 #if LEAK_DEBUG
3559 unsigned long flags;
3560 #endif
3561
3562 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3563 if (eb == NULL)
3564 return NULL;
3565 eb->start = start;
3566 eb->len = len;
3567 rwlock_init(&eb->lock);
3568 atomic_set(&eb->write_locks, 0);
3569 atomic_set(&eb->read_locks, 0);
3570 atomic_set(&eb->blocking_readers, 0);
3571 atomic_set(&eb->blocking_writers, 0);
3572 atomic_set(&eb->spinning_readers, 0);
3573 atomic_set(&eb->spinning_writers, 0);
3574 init_waitqueue_head(&eb->write_lock_wq);
3575 init_waitqueue_head(&eb->read_lock_wq);
3576
3577 #if LEAK_DEBUG
3578 spin_lock_irqsave(&leak_lock, flags);
3579 list_add(&eb->leak_list, &buffers);
3580 spin_unlock_irqrestore(&leak_lock, flags);
3581 #endif
3582 atomic_set(&eb->refs, 1);
3583
3584 return eb;
3585 }
3586
3587 static void __free_extent_buffer(struct extent_buffer *eb)
3588 {
3589 #if LEAK_DEBUG
3590 unsigned long flags;
3591 spin_lock_irqsave(&leak_lock, flags);
3592 list_del(&eb->leak_list);
3593 spin_unlock_irqrestore(&leak_lock, flags);
3594 #endif
3595 kmem_cache_free(extent_buffer_cache, eb);
3596 }
3597
3598 /*
3599 * Helper for releasing extent buffer page.
3600 */
3601 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3602 unsigned long start_idx)
3603 {
3604 unsigned long index;
3605 struct page *page;
3606
3607 if (!eb->first_page)
3608 return;
3609
3610 index = num_extent_pages(eb->start, eb->len);
3611 if (start_idx >= index)
3612 return;
3613
3614 do {
3615 index--;
3616 page = extent_buffer_page(eb, index);
3617 if (page)
3618 page_cache_release(page);
3619 } while (index != start_idx);
3620 }
3621
3622 /*
3623 * Helper for releasing the extent buffer.
3624 */
3625 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3626 {
3627 btrfs_release_extent_buffer_page(eb, 0);
3628 __free_extent_buffer(eb);
3629 }
3630
3631 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3632 u64 start, unsigned long len,
3633 struct page *page0)
3634 {
3635 unsigned long num_pages = num_extent_pages(start, len);
3636 unsigned long i;
3637 unsigned long index = start >> PAGE_CACHE_SHIFT;
3638 struct extent_buffer *eb;
3639 struct extent_buffer *exists = NULL;
3640 struct page *p;
3641 struct address_space *mapping = tree->mapping;
3642 int uptodate = 1;
3643 int ret;
3644
3645 rcu_read_lock();
3646 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3647 if (eb && atomic_inc_not_zero(&eb->refs)) {
3648 rcu_read_unlock();
3649 mark_page_accessed(eb->first_page);
3650 return eb;
3651 }
3652 rcu_read_unlock();
3653
3654 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3655 if (!eb)
3656 return NULL;
3657
3658 if (page0) {
3659 eb->first_page = page0;
3660 i = 1;
3661 index++;
3662 page_cache_get(page0);
3663 mark_page_accessed(page0);
3664 set_page_extent_mapped(page0);
3665 set_page_extent_head(page0, len);
3666 uptodate = PageUptodate(page0);
3667 } else {
3668 i = 0;
3669 }
3670 for (; i < num_pages; i++, index++) {
3671 p = find_or_create_page(mapping, index, GFP_NOFS);
3672 if (!p) {
3673 WARN_ON(1);
3674 goto free_eb;
3675 }
3676 set_page_extent_mapped(p);
3677 mark_page_accessed(p);
3678 if (i == 0) {
3679 eb->first_page = p;
3680 set_page_extent_head(p, len);
3681 } else {
3682 set_page_private(p, EXTENT_PAGE_PRIVATE);
3683 }
3684 if (!PageUptodate(p))
3685 uptodate = 0;
3686
3687 /*
3688 * see below about how we avoid a nasty race with release page
3689 * and why we unlock later
3690 */
3691 if (i != 0)
3692 unlock_page(p);
3693 }
3694 if (uptodate)
3695 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3696
3697 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3698 if (ret)
3699 goto free_eb;
3700
3701 spin_lock(&tree->buffer_lock);
3702 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3703 if (ret == -EEXIST) {
3704 exists = radix_tree_lookup(&tree->buffer,
3705 start >> PAGE_CACHE_SHIFT);
3706 /* add one reference for the caller */
3707 atomic_inc(&exists->refs);
3708 spin_unlock(&tree->buffer_lock);
3709 radix_tree_preload_end();
3710 goto free_eb;
3711 }
3712 /* add one reference for the tree */
3713 atomic_inc(&eb->refs);
3714 spin_unlock(&tree->buffer_lock);
3715 radix_tree_preload_end();
3716
3717 /*
3718 * there is a race where release page may have
3719 * tried to find this extent buffer in the radix
3720 * but failed. It will tell the VM it is safe to
3721 * reclaim the, and it will clear the page private bit.
3722 * We must make sure to set the page private bit properly
3723 * after the extent buffer is in the radix tree so
3724 * it doesn't get lost
3725 */
3726 set_page_extent_mapped(eb->first_page);
3727 set_page_extent_head(eb->first_page, eb->len);
3728 if (!page0)
3729 unlock_page(eb->first_page);
3730 return eb;
3731
3732 free_eb:
3733 if (eb->first_page && !page0)
3734 unlock_page(eb->first_page);
3735
3736 if (!atomic_dec_and_test(&eb->refs))
3737 return exists;
3738 btrfs_release_extent_buffer(eb);
3739 return exists;
3740 }
3741
3742 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3743 u64 start, unsigned long len)
3744 {
3745 struct extent_buffer *eb;
3746
3747 rcu_read_lock();
3748 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3749 if (eb && atomic_inc_not_zero(&eb->refs)) {
3750 rcu_read_unlock();
3751 mark_page_accessed(eb->first_page);
3752 return eb;
3753 }
3754 rcu_read_unlock();
3755
3756 return NULL;
3757 }
3758
3759 void free_extent_buffer(struct extent_buffer *eb)
3760 {
3761 if (!eb)
3762 return;
3763
3764 if (!atomic_dec_and_test(&eb->refs))
3765 return;
3766
3767 WARN_ON(1);
3768 }
3769
3770 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3771 struct extent_buffer *eb)
3772 {
3773 unsigned long i;
3774 unsigned long num_pages;
3775 struct page *page;
3776
3777 num_pages = num_extent_pages(eb->start, eb->len);
3778
3779 for (i = 0; i < num_pages; i++) {
3780 page = extent_buffer_page(eb, i);
3781 if (!PageDirty(page))
3782 continue;
3783
3784 lock_page(page);
3785 WARN_ON(!PagePrivate(page));
3786
3787 set_page_extent_mapped(page);
3788 if (i == 0)
3789 set_page_extent_head(page, eb->len);
3790
3791 clear_page_dirty_for_io(page);
3792 spin_lock_irq(&page->mapping->tree_lock);
3793 if (!PageDirty(page)) {
3794 radix_tree_tag_clear(&page->mapping->page_tree,
3795 page_index(page),
3796 PAGECACHE_TAG_DIRTY);
3797 }
3798 spin_unlock_irq(&page->mapping->tree_lock);
3799 ClearPageError(page);
3800 unlock_page(page);
3801 }
3802 return 0;
3803 }
3804
3805 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3806 struct extent_buffer *eb)
3807 {
3808 unsigned long i;
3809 unsigned long num_pages;
3810 int was_dirty = 0;
3811
3812 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3813 num_pages = num_extent_pages(eb->start, eb->len);
3814 for (i = 0; i < num_pages; i++)
3815 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3816 return was_dirty;
3817 }
3818
3819 static int __eb_straddles_pages(u64 start, u64 len)
3820 {
3821 if (len < PAGE_CACHE_SIZE)
3822 return 1;
3823 if (start & (PAGE_CACHE_SIZE - 1))
3824 return 1;
3825 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3826 return 1;
3827 return 0;
3828 }
3829
3830 static int eb_straddles_pages(struct extent_buffer *eb)
3831 {
3832 return __eb_straddles_pages(eb->start, eb->len);
3833 }
3834
3835 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3836 struct extent_buffer *eb,
3837 struct extent_state **cached_state)
3838 {
3839 unsigned long i;
3840 struct page *page;
3841 unsigned long num_pages;
3842
3843 num_pages = num_extent_pages(eb->start, eb->len);
3844 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3845
3846 if (eb_straddles_pages(eb)) {
3847 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3848 cached_state, GFP_NOFS);
3849 }
3850 for (i = 0; i < num_pages; i++) {
3851 page = extent_buffer_page(eb, i);
3852 if (page)
3853 ClearPageUptodate(page);
3854 }
3855 return 0;
3856 }
3857
3858 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3859 struct extent_buffer *eb)
3860 {
3861 unsigned long i;
3862 struct page *page;
3863 unsigned long num_pages;
3864
3865 num_pages = num_extent_pages(eb->start, eb->len);
3866
3867 if (eb_straddles_pages(eb)) {
3868 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3869 NULL, GFP_NOFS);
3870 }
3871 for (i = 0; i < num_pages; i++) {
3872 page = extent_buffer_page(eb, i);
3873 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3874 ((i == num_pages - 1) &&
3875 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3876 check_page_uptodate(tree, page);
3877 continue;
3878 }
3879 SetPageUptodate(page);
3880 }
3881 return 0;
3882 }
3883
3884 int extent_range_uptodate(struct extent_io_tree *tree,
3885 u64 start, u64 end)
3886 {
3887 struct page *page;
3888 int ret;
3889 int pg_uptodate = 1;
3890 int uptodate;
3891 unsigned long index;
3892
3893 if (__eb_straddles_pages(start, end - start + 1)) {
3894 ret = test_range_bit(tree, start, end,
3895 EXTENT_UPTODATE, 1, NULL);
3896 if (ret)
3897 return 1;
3898 }
3899 while (start <= end) {
3900 index = start >> PAGE_CACHE_SHIFT;
3901 page = find_get_page(tree->mapping, index);
3902 uptodate = PageUptodate(page);
3903 page_cache_release(page);
3904 if (!uptodate) {
3905 pg_uptodate = 0;
3906 break;
3907 }
3908 start += PAGE_CACHE_SIZE;
3909 }
3910 return pg_uptodate;
3911 }
3912
3913 int extent_buffer_uptodate(struct extent_io_tree *tree,
3914 struct extent_buffer *eb,
3915 struct extent_state *cached_state)
3916 {
3917 int ret = 0;
3918 unsigned long num_pages;
3919 unsigned long i;
3920 struct page *page;
3921 int pg_uptodate = 1;
3922
3923 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3924 return 1;
3925
3926 if (eb_straddles_pages(eb)) {
3927 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3928 EXTENT_UPTODATE, 1, cached_state);
3929 if (ret)
3930 return ret;
3931 }
3932
3933 num_pages = num_extent_pages(eb->start, eb->len);
3934 for (i = 0; i < num_pages; i++) {
3935 page = extent_buffer_page(eb, i);
3936 if (!PageUptodate(page)) {
3937 pg_uptodate = 0;
3938 break;
3939 }
3940 }
3941 return pg_uptodate;
3942 }
3943
3944 int read_extent_buffer_pages(struct extent_io_tree *tree,
3945 struct extent_buffer *eb, u64 start, int wait,
3946 get_extent_t *get_extent, int mirror_num)
3947 {
3948 unsigned long i;
3949 unsigned long start_i;
3950 struct page *page;
3951 int err;
3952 int ret = 0;
3953 int locked_pages = 0;
3954 int all_uptodate = 1;
3955 int inc_all_pages = 0;
3956 unsigned long num_pages;
3957 struct bio *bio = NULL;
3958 unsigned long bio_flags = 0;
3959
3960 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3961 return 0;
3962
3963 if (eb_straddles_pages(eb)) {
3964 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3965 EXTENT_UPTODATE, 1, NULL)) {
3966 return 0;
3967 }
3968 }
3969
3970 if (start) {
3971 WARN_ON(start < eb->start);
3972 start_i = (start >> PAGE_CACHE_SHIFT) -
3973 (eb->start >> PAGE_CACHE_SHIFT);
3974 } else {
3975 start_i = 0;
3976 }
3977
3978 num_pages = num_extent_pages(eb->start, eb->len);
3979 for (i = start_i; i < num_pages; i++) {
3980 page = extent_buffer_page(eb, i);
3981 if (wait == WAIT_NONE) {
3982 if (!trylock_page(page))
3983 goto unlock_exit;
3984 } else {
3985 lock_page(page);
3986 }
3987 locked_pages++;
3988 if (!PageUptodate(page))
3989 all_uptodate = 0;
3990 }
3991 if (all_uptodate) {
3992 if (start_i == 0)
3993 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3994 goto unlock_exit;
3995 }
3996
3997 for (i = start_i; i < num_pages; i++) {
3998 page = extent_buffer_page(eb, i);
3999
4000 WARN_ON(!PagePrivate(page));
4001
4002 set_page_extent_mapped(page);
4003 if (i == 0)
4004 set_page_extent_head(page, eb->len);
4005
4006 if (inc_all_pages)
4007 page_cache_get(page);
4008 if (!PageUptodate(page)) {
4009 if (start_i == 0)
4010 inc_all_pages = 1;
4011 ClearPageError(page);
4012 err = __extent_read_full_page(tree, page,
4013 get_extent, &bio,
4014 mirror_num, &bio_flags);
4015 if (err)
4016 ret = err;
4017 } else {
4018 unlock_page(page);
4019 }
4020 }
4021
4022 if (bio)
4023 submit_one_bio(READ, bio, mirror_num, bio_flags);
4024
4025 if (ret || wait != WAIT_COMPLETE)
4026 return ret;
4027
4028 for (i = start_i; i < num_pages; i++) {
4029 page = extent_buffer_page(eb, i);
4030 wait_on_page_locked(page);
4031 if (!PageUptodate(page))
4032 ret = -EIO;
4033 }
4034
4035 if (!ret)
4036 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4037 return ret;
4038
4039 unlock_exit:
4040 i = start_i;
4041 while (locked_pages > 0) {
4042 page = extent_buffer_page(eb, i);
4043 i++;
4044 unlock_page(page);
4045 locked_pages--;
4046 }
4047 return ret;
4048 }
4049
4050 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4051 unsigned long start,
4052 unsigned long len)
4053 {
4054 size_t cur;
4055 size_t offset;
4056 struct page *page;
4057 char *kaddr;
4058 char *dst = (char *)dstv;
4059 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4060 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4061
4062 WARN_ON(start > eb->len);
4063 WARN_ON(start + len > eb->start + eb->len);
4064
4065 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4066
4067 while (len > 0) {
4068 page = extent_buffer_page(eb, i);
4069
4070 cur = min(len, (PAGE_CACHE_SIZE - offset));
4071 kaddr = page_address(page);
4072 memcpy(dst, kaddr + offset, cur);
4073
4074 dst += cur;
4075 len -= cur;
4076 offset = 0;
4077 i++;
4078 }
4079 }
4080
4081 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4082 unsigned long min_len, char **map,
4083 unsigned long *map_start,
4084 unsigned long *map_len)
4085 {
4086 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4087 char *kaddr;
4088 struct page *p;
4089 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4090 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4091 unsigned long end_i = (start_offset + start + min_len - 1) >>
4092 PAGE_CACHE_SHIFT;
4093
4094 if (i != end_i)
4095 return -EINVAL;
4096
4097 if (i == 0) {
4098 offset = start_offset;
4099 *map_start = 0;
4100 } else {
4101 offset = 0;
4102 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4103 }
4104
4105 if (start + min_len > eb->len) {
4106 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4107 "wanted %lu %lu\n", (unsigned long long)eb->start,
4108 eb->len, start, min_len);
4109 WARN_ON(1);
4110 return -EINVAL;
4111 }
4112
4113 p = extent_buffer_page(eb, i);
4114 kaddr = page_address(p);
4115 *map = kaddr + offset;
4116 *map_len = PAGE_CACHE_SIZE - offset;
4117 return 0;
4118 }
4119
4120 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4121 unsigned long start,
4122 unsigned long len)
4123 {
4124 size_t cur;
4125 size_t offset;
4126 struct page *page;
4127 char *kaddr;
4128 char *ptr = (char *)ptrv;
4129 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4130 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4131 int ret = 0;
4132
4133 WARN_ON(start > eb->len);
4134 WARN_ON(start + len > eb->start + eb->len);
4135
4136 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4137
4138 while (len > 0) {
4139 page = extent_buffer_page(eb, i);
4140
4141 cur = min(len, (PAGE_CACHE_SIZE - offset));
4142
4143 kaddr = page_address(page);
4144 ret = memcmp(ptr, kaddr + offset, cur);
4145 if (ret)
4146 break;
4147
4148 ptr += cur;
4149 len -= cur;
4150 offset = 0;
4151 i++;
4152 }
4153 return ret;
4154 }
4155
4156 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4157 unsigned long start, unsigned long len)
4158 {
4159 size_t cur;
4160 size_t offset;
4161 struct page *page;
4162 char *kaddr;
4163 char *src = (char *)srcv;
4164 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4165 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4166
4167 WARN_ON(start > eb->len);
4168 WARN_ON(start + len > eb->start + eb->len);
4169
4170 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4171
4172 while (len > 0) {
4173 page = extent_buffer_page(eb, i);
4174 WARN_ON(!PageUptodate(page));
4175
4176 cur = min(len, PAGE_CACHE_SIZE - offset);
4177 kaddr = page_address(page);
4178 memcpy(kaddr + offset, src, cur);
4179
4180 src += cur;
4181 len -= cur;
4182 offset = 0;
4183 i++;
4184 }
4185 }
4186
4187 void memset_extent_buffer(struct extent_buffer *eb, char c,
4188 unsigned long start, unsigned long len)
4189 {
4190 size_t cur;
4191 size_t offset;
4192 struct page *page;
4193 char *kaddr;
4194 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4195 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4196
4197 WARN_ON(start > eb->len);
4198 WARN_ON(start + len > eb->start + eb->len);
4199
4200 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4201
4202 while (len > 0) {
4203 page = extent_buffer_page(eb, i);
4204 WARN_ON(!PageUptodate(page));
4205
4206 cur = min(len, PAGE_CACHE_SIZE - offset);
4207 kaddr = page_address(page);
4208 memset(kaddr + offset, c, cur);
4209
4210 len -= cur;
4211 offset = 0;
4212 i++;
4213 }
4214 }
4215
4216 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4217 unsigned long dst_offset, unsigned long src_offset,
4218 unsigned long len)
4219 {
4220 u64 dst_len = dst->len;
4221 size_t cur;
4222 size_t offset;
4223 struct page *page;
4224 char *kaddr;
4225 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4226 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4227
4228 WARN_ON(src->len != dst_len);
4229
4230 offset = (start_offset + dst_offset) &
4231 ((unsigned long)PAGE_CACHE_SIZE - 1);
4232
4233 while (len > 0) {
4234 page = extent_buffer_page(dst, i);
4235 WARN_ON(!PageUptodate(page));
4236
4237 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4238
4239 kaddr = page_address(page);
4240 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4241
4242 src_offset += cur;
4243 len -= cur;
4244 offset = 0;
4245 i++;
4246 }
4247 }
4248
4249 static void move_pages(struct page *dst_page, struct page *src_page,
4250 unsigned long dst_off, unsigned long src_off,
4251 unsigned long len)
4252 {
4253 char *dst_kaddr = page_address(dst_page);
4254 if (dst_page == src_page) {
4255 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4256 } else {
4257 char *src_kaddr = page_address(src_page);
4258 char *p = dst_kaddr + dst_off + len;
4259 char *s = src_kaddr + src_off + len;
4260
4261 while (len--)
4262 *--p = *--s;
4263 }
4264 }
4265
4266 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4267 {
4268 unsigned long distance = (src > dst) ? src - dst : dst - src;
4269 return distance < len;
4270 }
4271
4272 static void copy_pages(struct page *dst_page, struct page *src_page,
4273 unsigned long dst_off, unsigned long src_off,
4274 unsigned long len)
4275 {
4276 char *dst_kaddr = page_address(dst_page);
4277 char *src_kaddr;
4278
4279 if (dst_page != src_page) {
4280 src_kaddr = page_address(src_page);
4281 } else {
4282 src_kaddr = dst_kaddr;
4283 BUG_ON(areas_overlap(src_off, dst_off, len));
4284 }
4285
4286 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4287 }
4288
4289 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4290 unsigned long src_offset, unsigned long len)
4291 {
4292 size_t cur;
4293 size_t dst_off_in_page;
4294 size_t src_off_in_page;
4295 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4296 unsigned long dst_i;
4297 unsigned long src_i;
4298
4299 if (src_offset + len > dst->len) {
4300 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4301 "len %lu dst len %lu\n", src_offset, len, dst->len);
4302 BUG_ON(1);
4303 }
4304 if (dst_offset + len > dst->len) {
4305 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4306 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4307 BUG_ON(1);
4308 }
4309
4310 while (len > 0) {
4311 dst_off_in_page = (start_offset + dst_offset) &
4312 ((unsigned long)PAGE_CACHE_SIZE - 1);
4313 src_off_in_page = (start_offset + src_offset) &
4314 ((unsigned long)PAGE_CACHE_SIZE - 1);
4315
4316 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4317 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4318
4319 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4320 src_off_in_page));
4321 cur = min_t(unsigned long, cur,
4322 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4323
4324 copy_pages(extent_buffer_page(dst, dst_i),
4325 extent_buffer_page(dst, src_i),
4326 dst_off_in_page, src_off_in_page, cur);
4327
4328 src_offset += cur;
4329 dst_offset += cur;
4330 len -= cur;
4331 }
4332 }
4333
4334 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4335 unsigned long src_offset, unsigned long len)
4336 {
4337 size_t cur;
4338 size_t dst_off_in_page;
4339 size_t src_off_in_page;
4340 unsigned long dst_end = dst_offset + len - 1;
4341 unsigned long src_end = src_offset + len - 1;
4342 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4343 unsigned long dst_i;
4344 unsigned long src_i;
4345
4346 if (src_offset + len > dst->len) {
4347 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4348 "len %lu len %lu\n", src_offset, len, dst->len);
4349 BUG_ON(1);
4350 }
4351 if (dst_offset + len > dst->len) {
4352 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4353 "len %lu len %lu\n", dst_offset, len, dst->len);
4354 BUG_ON(1);
4355 }
4356 if (!areas_overlap(src_offset, dst_offset, len)) {
4357 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4358 return;
4359 }
4360 while (len > 0) {
4361 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4362 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4363
4364 dst_off_in_page = (start_offset + dst_end) &
4365 ((unsigned long)PAGE_CACHE_SIZE - 1);
4366 src_off_in_page = (start_offset + src_end) &
4367 ((unsigned long)PAGE_CACHE_SIZE - 1);
4368
4369 cur = min_t(unsigned long, len, src_off_in_page + 1);
4370 cur = min(cur, dst_off_in_page + 1);
4371 move_pages(extent_buffer_page(dst, dst_i),
4372 extent_buffer_page(dst, src_i),
4373 dst_off_in_page - cur + 1,
4374 src_off_in_page - cur + 1, cur);
4375
4376 dst_end -= cur;
4377 src_end -= cur;
4378 len -= cur;
4379 }
4380 }
4381
4382 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4383 {
4384 struct extent_buffer *eb =
4385 container_of(head, struct extent_buffer, rcu_head);
4386
4387 btrfs_release_extent_buffer(eb);
4388 }
4389
4390 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4391 {
4392 u64 start = page_offset(page);
4393 struct extent_buffer *eb;
4394 int ret = 1;
4395
4396 spin_lock(&tree->buffer_lock);
4397 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4398 if (!eb) {
4399 spin_unlock(&tree->buffer_lock);
4400 return ret;
4401 }
4402
4403 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4404 ret = 0;
4405 goto out;
4406 }
4407
4408 /*
4409 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4410 * Or go back.
4411 */
4412 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4413 ret = 0;
4414 goto out;
4415 }
4416
4417 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4418 out:
4419 spin_unlock(&tree->buffer_lock);
4420
4421 /* at this point we can safely release the extent buffer */
4422 if (atomic_read(&eb->refs) == 0)
4423 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4424 return ret;
4425 }