]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent_io.c
Merge tag 'tty-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138 if (!tree->mapping)
139 return NULL;
140 return btrfs_sb(tree->mapping->host->i_sb);
141 }
142
143 int __init extent_io_init(void)
144 {
145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 if (!extent_state_cache)
149 return -ENOMEM;
150
151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 if (!extent_buffer_cache)
155 goto free_state_cache;
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
165 return 0;
166
167 free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
171 free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
175 free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
177 extent_state_cache = NULL;
178 return -ENOMEM;
179 }
180
181 void extent_io_exit(void)
182 {
183 btrfs_leak_debug_check();
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
196 }
197
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 struct address_space *mapping)
200 {
201 tree->state = RB_ROOT;
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
204 spin_lock_init(&tree->lock);
205 tree->mapping = mapping;
206 }
207
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210 struct extent_state *state;
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
213 if (!state)
214 return state;
215 state->state = 0;
216 state->private = 0;
217 RB_CLEAR_NODE(&state->rb_node);
218 btrfs_leak_debug_add(&state->leak_list, &states);
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
221 trace_alloc_extent_state(state, mask, _RET_IP_);
222 return state;
223 }
224
225 void free_extent_state(struct extent_state *state)
226 {
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
230 WARN_ON(extent_state_in_tree(state));
231 btrfs_leak_debug_del(&state->leak_list);
232 trace_free_extent_state(state, _RET_IP_);
233 kmem_cache_free(extent_state_cache, state);
234 }
235 }
236
237 static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
243 {
244 struct rb_node **p;
245 struct rb_node *parent = NULL;
246 struct tree_entry *entry;
247
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
254 p = search_start ? &search_start : &root->rb_node;
255 while (*p) {
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
267 do_insert:
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271 }
272
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
278 {
279 struct rb_root *root = &tree->state;
280 struct rb_node **n = &root->rb_node;
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
289 prev_entry = entry;
290
291 if (offset < entry->start)
292 n = &(*n)->rb_left;
293 else if (offset > entry->end)
294 n = &(*n)->rb_right;
295 else
296 return *n;
297 }
298
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
304 if (prev_ret) {
305 orig_prev = prev;
306 while (prev && offset > prev_entry->end) {
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 while (prev && offset < prev_entry->start) {
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323 }
324
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
330 {
331 struct rb_node *prev = NULL;
332 struct rb_node *ret;
333
334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 if (!ret)
336 return prev;
337 return ret;
338 }
339
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342 {
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348 {
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352 }
353
354 /*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
363 static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
365 {
366 struct extent_state *other;
367 struct rb_node *other_node;
368
369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 return;
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
377 merge_cb(tree, state, other);
378 state->start = other->start;
379 rb_erase(&other->rb_node, &tree->state);
380 RB_CLEAR_NODE(&other->rb_node);
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->end = other->end;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
394 }
395 }
396 }
397
398 static void set_state_cb(struct extent_io_tree *tree,
399 struct extent_state *state, unsigned *bits)
400 {
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404
405 static void clear_state_cb(struct extent_io_tree *tree,
406 struct extent_state *state, unsigned *bits)
407 {
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411
412 static void set_state_bits(struct extent_io_tree *tree,
413 struct extent_state *state, unsigned *bits);
414
415 /*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425 static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
427 struct rb_node ***p,
428 struct rb_node **parent,
429 unsigned *bits)
430 {
431 struct rb_node *node;
432
433 if (end < start)
434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 end, start);
436 state->start = start;
437 state->end = end;
438
439 set_state_bits(tree, state, bits);
440
441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 "%llu %llu\n",
447 found->start, found->end, start, end);
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452 }
453
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 u64 split)
456 {
457 if (tree->ops && tree->ops->split_extent_hook)
458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460
461 /*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477 {
478 struct rb_node *node;
479
480 split_cb(tree, orig, split);
481
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
489 if (node) {
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494 }
495
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503 }
504
505 /*
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
514 unsigned *bits, int wake)
515 {
516 struct extent_state *next;
517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
518
519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
524 clear_state_cb(tree, state, bits);
525 state->state &= ~bits_to_clear;
526 if (wake)
527 wake_up(&state->wq);
528 if (state->state == 0) {
529 next = next_state(state);
530 if (extent_state_in_tree(state)) {
531 rb_erase(&state->rb_node, &tree->state);
532 RB_CLEAR_NODE(&state->rb_node);
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
539 next = next_state(state);
540 }
541 return next;
542 }
543
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551 }
552
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558 }
559
560 /*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
570 * This takes the tree lock, and returns 0 on success and < 0 on error.
571 */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 unsigned bits, int wake, int delete,
574 struct extent_state **cached_state,
575 gfp_t mask)
576 {
577 struct extent_state *state;
578 struct extent_state *cached;
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
581 u64 last_end;
582 int err;
583 int clear = 0;
584
585 btrfs_debug_check_extent_io_range(tree, start, end);
586
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
596 again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
598 /*
599 * Don't care for allocation failure here because we might end
600 * up not needing the pre-allocated extent state at all, which
601 * is the case if we only have in the tree extent states that
602 * cover our input range and don't cover too any other range.
603 * If we end up needing a new extent state we allocate it later.
604 */
605 prealloc = alloc_extent_state(mask);
606 }
607
608 spin_lock(&tree->lock);
609 if (cached_state) {
610 cached = *cached_state;
611
612 if (clear) {
613 *cached_state = NULL;
614 cached_state = NULL;
615 }
616
617 if (cached && extent_state_in_tree(cached) &&
618 cached->start <= start && cached->end > start) {
619 if (clear)
620 atomic_dec(&cached->refs);
621 state = cached;
622 goto hit_next;
623 }
624 if (clear)
625 free_extent_state(cached);
626 }
627 /*
628 * this search will find the extents that end after
629 * our range starts
630 */
631 node = tree_search(tree, start);
632 if (!node)
633 goto out;
634 state = rb_entry(node, struct extent_state, rb_node);
635 hit_next:
636 if (state->start > end)
637 goto out;
638 WARN_ON(state->end < start);
639 last_end = state->end;
640
641 /* the state doesn't have the wanted bits, go ahead */
642 if (!(state->state & bits)) {
643 state = next_state(state);
644 goto next;
645 }
646
647 /*
648 * | ---- desired range ---- |
649 * | state | or
650 * | ------------- state -------------- |
651 *
652 * We need to split the extent we found, and may flip
653 * bits on second half.
654 *
655 * If the extent we found extends past our range, we
656 * just split and search again. It'll get split again
657 * the next time though.
658 *
659 * If the extent we found is inside our range, we clear
660 * the desired bit on it.
661 */
662
663 if (state->start < start) {
664 prealloc = alloc_extent_state_atomic(prealloc);
665 BUG_ON(!prealloc);
666 err = split_state(tree, state, prealloc, start);
667 if (err)
668 extent_io_tree_panic(tree, err);
669
670 prealloc = NULL;
671 if (err)
672 goto out;
673 if (state->end <= end) {
674 state = clear_state_bit(tree, state, &bits, wake);
675 goto next;
676 }
677 goto search_again;
678 }
679 /*
680 * | ---- desired range ---- |
681 * | state |
682 * We need to split the extent, and clear the bit
683 * on the first half
684 */
685 if (state->start <= end && state->end > end) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, end + 1);
689 if (err)
690 extent_io_tree_panic(tree, err);
691
692 if (wake)
693 wake_up(&state->wq);
694
695 clear_state_bit(tree, prealloc, &bits, wake);
696
697 prealloc = NULL;
698 goto out;
699 }
700
701 state = clear_state_bit(tree, state, &bits, wake);
702 next:
703 if (last_end == (u64)-1)
704 goto out;
705 start = last_end + 1;
706 if (start <= end && state && !need_resched())
707 goto hit_next;
708 goto search_again;
709
710 out:
711 spin_unlock(&tree->lock);
712 if (prealloc)
713 free_extent_state(prealloc);
714
715 return 0;
716
717 search_again:
718 if (start > end)
719 goto out;
720 spin_unlock(&tree->lock);
721 if (mask & __GFP_WAIT)
722 cond_resched();
723 goto again;
724 }
725
726 static void wait_on_state(struct extent_io_tree *tree,
727 struct extent_state *state)
728 __releases(tree->lock)
729 __acquires(tree->lock)
730 {
731 DEFINE_WAIT(wait);
732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733 spin_unlock(&tree->lock);
734 schedule();
735 spin_lock(&tree->lock);
736 finish_wait(&state->wq, &wait);
737 }
738
739 /*
740 * waits for one or more bits to clear on a range in the state tree.
741 * The range [start, end] is inclusive.
742 * The tree lock is taken by this function
743 */
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745 unsigned long bits)
746 {
747 struct extent_state *state;
748 struct rb_node *node;
749
750 btrfs_debug_check_extent_io_range(tree, start, end);
751
752 spin_lock(&tree->lock);
753 again:
754 while (1) {
755 /*
756 * this search will find all the extents that end after
757 * our range starts
758 */
759 node = tree_search(tree, start);
760 process_node:
761 if (!node)
762 break;
763
764 state = rb_entry(node, struct extent_state, rb_node);
765
766 if (state->start > end)
767 goto out;
768
769 if (state->state & bits) {
770 start = state->start;
771 atomic_inc(&state->refs);
772 wait_on_state(tree, state);
773 free_extent_state(state);
774 goto again;
775 }
776 start = state->end + 1;
777
778 if (start > end)
779 break;
780
781 if (!cond_resched_lock(&tree->lock)) {
782 node = rb_next(node);
783 goto process_node;
784 }
785 }
786 out:
787 spin_unlock(&tree->lock);
788 }
789
790 static void set_state_bits(struct extent_io_tree *tree,
791 struct extent_state *state,
792 unsigned *bits)
793 {
794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
795
796 set_state_cb(tree, state, bits);
797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
800 }
801 state->state |= bits_to_set;
802 }
803
804 static void cache_state_if_flags(struct extent_state *state,
805 struct extent_state **cached_ptr,
806 unsigned flags)
807 {
808 if (cached_ptr && !(*cached_ptr)) {
809 if (!flags || (state->state & flags)) {
810 *cached_ptr = state;
811 atomic_inc(&state->refs);
812 }
813 }
814 }
815
816 static void cache_state(struct extent_state *state,
817 struct extent_state **cached_ptr)
818 {
819 return cache_state_if_flags(state, cached_ptr,
820 EXTENT_IOBITS | EXTENT_BOUNDARY);
821 }
822
823 /*
824 * set some bits on a range in the tree. This may require allocations or
825 * sleeping, so the gfp mask is used to indicate what is allowed.
826 *
827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
828 * part of the range already has the desired bits set. The start of the
829 * existing range is returned in failed_start in this case.
830 *
831 * [start, end] is inclusive This takes the tree lock.
832 */
833
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836 unsigned bits, unsigned exclusive_bits,
837 u64 *failed_start, struct extent_state **cached_state,
838 gfp_t mask)
839 {
840 struct extent_state *state;
841 struct extent_state *prealloc = NULL;
842 struct rb_node *node;
843 struct rb_node **p;
844 struct rb_node *parent;
845 int err = 0;
846 u64 last_start;
847 u64 last_end;
848
849 btrfs_debug_check_extent_io_range(tree, start, end);
850
851 bits |= EXTENT_FIRST_DELALLOC;
852 again:
853 if (!prealloc && (mask & __GFP_WAIT)) {
854 prealloc = alloc_extent_state(mask);
855 BUG_ON(!prealloc);
856 }
857
858 spin_lock(&tree->lock);
859 if (cached_state && *cached_state) {
860 state = *cached_state;
861 if (state->start <= start && state->end > start &&
862 extent_state_in_tree(state)) {
863 node = &state->rb_node;
864 goto hit_next;
865 }
866 }
867 /*
868 * this search will find all the extents that end after
869 * our range starts.
870 */
871 node = tree_search_for_insert(tree, start, &p, &parent);
872 if (!node) {
873 prealloc = alloc_extent_state_atomic(prealloc);
874 BUG_ON(!prealloc);
875 err = insert_state(tree, prealloc, start, end,
876 &p, &parent, &bits);
877 if (err)
878 extent_io_tree_panic(tree, err);
879
880 cache_state(prealloc, cached_state);
881 prealloc = NULL;
882 goto out;
883 }
884 state = rb_entry(node, struct extent_state, rb_node);
885 hit_next:
886 last_start = state->start;
887 last_end = state->end;
888
889 /*
890 * | ---- desired range ---- |
891 * | state |
892 *
893 * Just lock what we found and keep going
894 */
895 if (state->start == start && state->end <= end) {
896 if (state->state & exclusive_bits) {
897 *failed_start = state->start;
898 err = -EEXIST;
899 goto out;
900 }
901
902 set_state_bits(tree, state, &bits);
903 cache_state(state, cached_state);
904 merge_state(tree, state);
905 if (last_end == (u64)-1)
906 goto out;
907 start = last_end + 1;
908 state = next_state(state);
909 if (start < end && state && state->start == start &&
910 !need_resched())
911 goto hit_next;
912 goto search_again;
913 }
914
915 /*
916 * | ---- desired range ---- |
917 * | state |
918 * or
919 * | ------------- state -------------- |
920 *
921 * We need to split the extent we found, and may flip bits on
922 * second half.
923 *
924 * If the extent we found extends past our
925 * range, we just split and search again. It'll get split
926 * again the next time though.
927 *
928 * If the extent we found is inside our range, we set the
929 * desired bit on it.
930 */
931 if (state->start < start) {
932 if (state->state & exclusive_bits) {
933 *failed_start = start;
934 err = -EEXIST;
935 goto out;
936 }
937
938 prealloc = alloc_extent_state_atomic(prealloc);
939 BUG_ON(!prealloc);
940 err = split_state(tree, state, prealloc, start);
941 if (err)
942 extent_io_tree_panic(tree, err);
943
944 prealloc = NULL;
945 if (err)
946 goto out;
947 if (state->end <= end) {
948 set_state_bits(tree, state, &bits);
949 cache_state(state, cached_state);
950 merge_state(tree, state);
951 if (last_end == (u64)-1)
952 goto out;
953 start = last_end + 1;
954 state = next_state(state);
955 if (start < end && state && state->start == start &&
956 !need_resched())
957 goto hit_next;
958 }
959 goto search_again;
960 }
961 /*
962 * | ---- desired range ---- |
963 * | state | or | state |
964 *
965 * There's a hole, we need to insert something in it and
966 * ignore the extent we found.
967 */
968 if (state->start > start) {
969 u64 this_end;
970 if (end < last_start)
971 this_end = end;
972 else
973 this_end = last_start - 1;
974
975 prealloc = alloc_extent_state_atomic(prealloc);
976 BUG_ON(!prealloc);
977
978 /*
979 * Avoid to free 'prealloc' if it can be merged with
980 * the later extent.
981 */
982 err = insert_state(tree, prealloc, start, this_end,
983 NULL, NULL, &bits);
984 if (err)
985 extent_io_tree_panic(tree, err);
986
987 cache_state(prealloc, cached_state);
988 prealloc = NULL;
989 start = this_end + 1;
990 goto search_again;
991 }
992 /*
993 * | ---- desired range ---- |
994 * | state |
995 * We need to split the extent, and set the bit
996 * on the first half
997 */
998 if (state->start <= end && state->end > end) {
999 if (state->state & exclusive_bits) {
1000 *failed_start = start;
1001 err = -EEXIST;
1002 goto out;
1003 }
1004
1005 prealloc = alloc_extent_state_atomic(prealloc);
1006 BUG_ON(!prealloc);
1007 err = split_state(tree, state, prealloc, end + 1);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 set_state_bits(tree, prealloc, &bits);
1012 cache_state(prealloc, cached_state);
1013 merge_state(tree, prealloc);
1014 prealloc = NULL;
1015 goto out;
1016 }
1017
1018 goto search_again;
1019
1020 out:
1021 spin_unlock(&tree->lock);
1022 if (prealloc)
1023 free_extent_state(prealloc);
1024
1025 return err;
1026
1027 search_again:
1028 if (start > end)
1029 goto out;
1030 spin_unlock(&tree->lock);
1031 if (mask & __GFP_WAIT)
1032 cond_resched();
1033 goto again;
1034 }
1035
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037 unsigned bits, u64 * failed_start,
1038 struct extent_state **cached_state, gfp_t mask)
1039 {
1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 cached_state, mask);
1042 }
1043
1044
1045 /**
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1047 * another
1048 * @tree: the io tree to search
1049 * @start: the start offset in bytes
1050 * @end: the end offset in bytes (inclusive)
1051 * @bits: the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
1053 * @cached_state: state that we're going to cache
1054 * @mask: the allocation mask
1055 *
1056 * This will go through and set bits for the given range. If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits. This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1060 * boundary bits like LOCK.
1061 */
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063 unsigned bits, unsigned clear_bits,
1064 struct extent_state **cached_state, gfp_t mask)
1065 {
1066 struct extent_state *state;
1067 struct extent_state *prealloc = NULL;
1068 struct rb_node *node;
1069 struct rb_node **p;
1070 struct rb_node *parent;
1071 int err = 0;
1072 u64 last_start;
1073 u64 last_end;
1074 bool first_iteration = true;
1075
1076 btrfs_debug_check_extent_io_range(tree, start, end);
1077
1078 again:
1079 if (!prealloc && (mask & __GFP_WAIT)) {
1080 /*
1081 * Best effort, don't worry if extent state allocation fails
1082 * here for the first iteration. We might have a cached state
1083 * that matches exactly the target range, in which case no
1084 * extent state allocations are needed. We'll only know this
1085 * after locking the tree.
1086 */
1087 prealloc = alloc_extent_state(mask);
1088 if (!prealloc && !first_iteration)
1089 return -ENOMEM;
1090 }
1091
1092 spin_lock(&tree->lock);
1093 if (cached_state && *cached_state) {
1094 state = *cached_state;
1095 if (state->start <= start && state->end > start &&
1096 extent_state_in_tree(state)) {
1097 node = &state->rb_node;
1098 goto hit_next;
1099 }
1100 }
1101
1102 /*
1103 * this search will find all the extents that end after
1104 * our range starts.
1105 */
1106 node = tree_search_for_insert(tree, start, &p, &parent);
1107 if (!node) {
1108 prealloc = alloc_extent_state_atomic(prealloc);
1109 if (!prealloc) {
1110 err = -ENOMEM;
1111 goto out;
1112 }
1113 err = insert_state(tree, prealloc, start, end,
1114 &p, &parent, &bits);
1115 if (err)
1116 extent_io_tree_panic(tree, err);
1117 cache_state(prealloc, cached_state);
1118 prealloc = NULL;
1119 goto out;
1120 }
1121 state = rb_entry(node, struct extent_state, rb_node);
1122 hit_next:
1123 last_start = state->start;
1124 last_end = state->end;
1125
1126 /*
1127 * | ---- desired range ---- |
1128 * | state |
1129 *
1130 * Just lock what we found and keep going
1131 */
1132 if (state->start == start && state->end <= end) {
1133 set_state_bits(tree, state, &bits);
1134 cache_state(state, cached_state);
1135 state = clear_state_bit(tree, state, &clear_bits, 0);
1136 if (last_end == (u64)-1)
1137 goto out;
1138 start = last_end + 1;
1139 if (start < end && state && state->start == start &&
1140 !need_resched())
1141 goto hit_next;
1142 goto search_again;
1143 }
1144
1145 /*
1146 * | ---- desired range ---- |
1147 * | state |
1148 * or
1149 * | ------------- state -------------- |
1150 *
1151 * We need to split the extent we found, and may flip bits on
1152 * second half.
1153 *
1154 * If the extent we found extends past our
1155 * range, we just split and search again. It'll get split
1156 * again the next time though.
1157 *
1158 * If the extent we found is inside our range, we set the
1159 * desired bit on it.
1160 */
1161 if (state->start < start) {
1162 prealloc = alloc_extent_state_atomic(prealloc);
1163 if (!prealloc) {
1164 err = -ENOMEM;
1165 goto out;
1166 }
1167 err = split_state(tree, state, prealloc, start);
1168 if (err)
1169 extent_io_tree_panic(tree, err);
1170 prealloc = NULL;
1171 if (err)
1172 goto out;
1173 if (state->end <= end) {
1174 set_state_bits(tree, state, &bits);
1175 cache_state(state, cached_state);
1176 state = clear_state_bit(tree, state, &clear_bits, 0);
1177 if (last_end == (u64)-1)
1178 goto out;
1179 start = last_end + 1;
1180 if (start < end && state && state->start == start &&
1181 !need_resched())
1182 goto hit_next;
1183 }
1184 goto search_again;
1185 }
1186 /*
1187 * | ---- desired range ---- |
1188 * | state | or | state |
1189 *
1190 * There's a hole, we need to insert something in it and
1191 * ignore the extent we found.
1192 */
1193 if (state->start > start) {
1194 u64 this_end;
1195 if (end < last_start)
1196 this_end = end;
1197 else
1198 this_end = last_start - 1;
1199
1200 prealloc = alloc_extent_state_atomic(prealloc);
1201 if (!prealloc) {
1202 err = -ENOMEM;
1203 goto out;
1204 }
1205
1206 /*
1207 * Avoid to free 'prealloc' if it can be merged with
1208 * the later extent.
1209 */
1210 err = insert_state(tree, prealloc, start, this_end,
1211 NULL, NULL, &bits);
1212 if (err)
1213 extent_io_tree_panic(tree, err);
1214 cache_state(prealloc, cached_state);
1215 prealloc = NULL;
1216 start = this_end + 1;
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state |
1222 * We need to split the extent, and set the bit
1223 * on the first half
1224 */
1225 if (state->start <= end && state->end > end) {
1226 prealloc = alloc_extent_state_atomic(prealloc);
1227 if (!prealloc) {
1228 err = -ENOMEM;
1229 goto out;
1230 }
1231
1232 err = split_state(tree, state, prealloc, end + 1);
1233 if (err)
1234 extent_io_tree_panic(tree, err);
1235
1236 set_state_bits(tree, prealloc, &bits);
1237 cache_state(prealloc, cached_state);
1238 clear_state_bit(tree, prealloc, &clear_bits, 0);
1239 prealloc = NULL;
1240 goto out;
1241 }
1242
1243 goto search_again;
1244
1245 out:
1246 spin_unlock(&tree->lock);
1247 if (prealloc)
1248 free_extent_state(prealloc);
1249
1250 return err;
1251
1252 search_again:
1253 if (start > end)
1254 goto out;
1255 spin_unlock(&tree->lock);
1256 if (mask & __GFP_WAIT)
1257 cond_resched();
1258 first_iteration = false;
1259 goto again;
1260 }
1261
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264 gfp_t mask)
1265 {
1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267 NULL, mask);
1268 }
1269
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271 unsigned bits, gfp_t mask)
1272 {
1273 return set_extent_bit(tree, start, end, bits, NULL,
1274 NULL, mask);
1275 }
1276
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278 unsigned bits, gfp_t mask)
1279 {
1280 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1281 }
1282
1283 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1284 struct extent_state **cached_state, gfp_t mask)
1285 {
1286 return set_extent_bit(tree, start, end,
1287 EXTENT_DELALLOC | EXTENT_UPTODATE,
1288 NULL, cached_state, mask);
1289 }
1290
1291 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1292 struct extent_state **cached_state, gfp_t mask)
1293 {
1294 return set_extent_bit(tree, start, end,
1295 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1296 NULL, cached_state, mask);
1297 }
1298
1299 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1300 gfp_t mask)
1301 {
1302 return clear_extent_bit(tree, start, end,
1303 EXTENT_DIRTY | EXTENT_DELALLOC |
1304 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1305 }
1306
1307 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1308 gfp_t mask)
1309 {
1310 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1311 NULL, mask);
1312 }
1313
1314 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1315 struct extent_state **cached_state, gfp_t mask)
1316 {
1317 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1318 cached_state, mask);
1319 }
1320
1321 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state, gfp_t mask)
1323 {
1324 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1325 cached_state, mask);
1326 }
1327
1328 /*
1329 * either insert or lock state struct between start and end use mask to tell
1330 * us if waiting is desired.
1331 */
1332 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1333 unsigned bits, struct extent_state **cached_state)
1334 {
1335 int err;
1336 u64 failed_start;
1337
1338 while (1) {
1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1340 EXTENT_LOCKED, &failed_start,
1341 cached_state, GFP_NOFS);
1342 if (err == -EEXIST) {
1343 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1344 start = failed_start;
1345 } else
1346 break;
1347 WARN_ON(start > end);
1348 }
1349 return err;
1350 }
1351
1352 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1353 {
1354 return lock_extent_bits(tree, start, end, 0, NULL);
1355 }
1356
1357 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359 int err;
1360 u64 failed_start;
1361
1362 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1363 &failed_start, NULL, GFP_NOFS);
1364 if (err == -EEXIST) {
1365 if (failed_start > start)
1366 clear_extent_bit(tree, start, failed_start - 1,
1367 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1368 return 0;
1369 }
1370 return 1;
1371 }
1372
1373 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1374 struct extent_state **cached, gfp_t mask)
1375 {
1376 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1377 mask);
1378 }
1379
1380 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1381 {
1382 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1383 GFP_NOFS);
1384 }
1385
1386 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1387 {
1388 unsigned long index = start >> PAGE_CACHE_SHIFT;
1389 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1390 struct page *page;
1391
1392 while (index <= end_index) {
1393 page = find_get_page(inode->i_mapping, index);
1394 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1395 clear_page_dirty_for_io(page);
1396 page_cache_release(page);
1397 index++;
1398 }
1399 return 0;
1400 }
1401
1402 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1403 {
1404 unsigned long index = start >> PAGE_CACHE_SHIFT;
1405 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1406 struct page *page;
1407
1408 while (index <= end_index) {
1409 page = find_get_page(inode->i_mapping, index);
1410 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1411 __set_page_dirty_nobuffers(page);
1412 account_page_redirty(page);
1413 page_cache_release(page);
1414 index++;
1415 }
1416 return 0;
1417 }
1418
1419 /*
1420 * helper function to set both pages and extents in the tree writeback
1421 */
1422 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1423 {
1424 unsigned long index = start >> PAGE_CACHE_SHIFT;
1425 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1426 struct page *page;
1427
1428 while (index <= end_index) {
1429 page = find_get_page(tree->mapping, index);
1430 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1431 set_page_writeback(page);
1432 page_cache_release(page);
1433 index++;
1434 }
1435 return 0;
1436 }
1437
1438 /* find the first state struct with 'bits' set after 'start', and
1439 * return it. tree->lock must be held. NULL will returned if
1440 * nothing was found after 'start'
1441 */
1442 static struct extent_state *
1443 find_first_extent_bit_state(struct extent_io_tree *tree,
1444 u64 start, unsigned bits)
1445 {
1446 struct rb_node *node;
1447 struct extent_state *state;
1448
1449 /*
1450 * this search will find all the extents that end after
1451 * our range starts.
1452 */
1453 node = tree_search(tree, start);
1454 if (!node)
1455 goto out;
1456
1457 while (1) {
1458 state = rb_entry(node, struct extent_state, rb_node);
1459 if (state->end >= start && (state->state & bits))
1460 return state;
1461
1462 node = rb_next(node);
1463 if (!node)
1464 break;
1465 }
1466 out:
1467 return NULL;
1468 }
1469
1470 /*
1471 * find the first offset in the io tree with 'bits' set. zero is
1472 * returned if we find something, and *start_ret and *end_ret are
1473 * set to reflect the state struct that was found.
1474 *
1475 * If nothing was found, 1 is returned. If found something, return 0.
1476 */
1477 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1478 u64 *start_ret, u64 *end_ret, unsigned bits,
1479 struct extent_state **cached_state)
1480 {
1481 struct extent_state *state;
1482 struct rb_node *n;
1483 int ret = 1;
1484
1485 spin_lock(&tree->lock);
1486 if (cached_state && *cached_state) {
1487 state = *cached_state;
1488 if (state->end == start - 1 && extent_state_in_tree(state)) {
1489 n = rb_next(&state->rb_node);
1490 while (n) {
1491 state = rb_entry(n, struct extent_state,
1492 rb_node);
1493 if (state->state & bits)
1494 goto got_it;
1495 n = rb_next(n);
1496 }
1497 free_extent_state(*cached_state);
1498 *cached_state = NULL;
1499 goto out;
1500 }
1501 free_extent_state(*cached_state);
1502 *cached_state = NULL;
1503 }
1504
1505 state = find_first_extent_bit_state(tree, start, bits);
1506 got_it:
1507 if (state) {
1508 cache_state_if_flags(state, cached_state, 0);
1509 *start_ret = state->start;
1510 *end_ret = state->end;
1511 ret = 0;
1512 }
1513 out:
1514 spin_unlock(&tree->lock);
1515 return ret;
1516 }
1517
1518 /*
1519 * find a contiguous range of bytes in the file marked as delalloc, not
1520 * more than 'max_bytes'. start and end are used to return the range,
1521 *
1522 * 1 is returned if we find something, 0 if nothing was in the tree
1523 */
1524 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1525 u64 *start, u64 *end, u64 max_bytes,
1526 struct extent_state **cached_state)
1527 {
1528 struct rb_node *node;
1529 struct extent_state *state;
1530 u64 cur_start = *start;
1531 u64 found = 0;
1532 u64 total_bytes = 0;
1533
1534 spin_lock(&tree->lock);
1535
1536 /*
1537 * this search will find all the extents that end after
1538 * our range starts.
1539 */
1540 node = tree_search(tree, cur_start);
1541 if (!node) {
1542 if (!found)
1543 *end = (u64)-1;
1544 goto out;
1545 }
1546
1547 while (1) {
1548 state = rb_entry(node, struct extent_state, rb_node);
1549 if (found && (state->start != cur_start ||
1550 (state->state & EXTENT_BOUNDARY))) {
1551 goto out;
1552 }
1553 if (!(state->state & EXTENT_DELALLOC)) {
1554 if (!found)
1555 *end = state->end;
1556 goto out;
1557 }
1558 if (!found) {
1559 *start = state->start;
1560 *cached_state = state;
1561 atomic_inc(&state->refs);
1562 }
1563 found++;
1564 *end = state->end;
1565 cur_start = state->end + 1;
1566 node = rb_next(node);
1567 total_bytes += state->end - state->start + 1;
1568 if (total_bytes >= max_bytes)
1569 break;
1570 if (!node)
1571 break;
1572 }
1573 out:
1574 spin_unlock(&tree->lock);
1575 return found;
1576 }
1577
1578 static noinline void __unlock_for_delalloc(struct inode *inode,
1579 struct page *locked_page,
1580 u64 start, u64 end)
1581 {
1582 int ret;
1583 struct page *pages[16];
1584 unsigned long index = start >> PAGE_CACHE_SHIFT;
1585 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1586 unsigned long nr_pages = end_index - index + 1;
1587 int i;
1588
1589 if (index == locked_page->index && end_index == index)
1590 return;
1591
1592 while (nr_pages > 0) {
1593 ret = find_get_pages_contig(inode->i_mapping, index,
1594 min_t(unsigned long, nr_pages,
1595 ARRAY_SIZE(pages)), pages);
1596 for (i = 0; i < ret; i++) {
1597 if (pages[i] != locked_page)
1598 unlock_page(pages[i]);
1599 page_cache_release(pages[i]);
1600 }
1601 nr_pages -= ret;
1602 index += ret;
1603 cond_resched();
1604 }
1605 }
1606
1607 static noinline int lock_delalloc_pages(struct inode *inode,
1608 struct page *locked_page,
1609 u64 delalloc_start,
1610 u64 delalloc_end)
1611 {
1612 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1613 unsigned long start_index = index;
1614 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1615 unsigned long pages_locked = 0;
1616 struct page *pages[16];
1617 unsigned long nrpages;
1618 int ret;
1619 int i;
1620
1621 /* the caller is responsible for locking the start index */
1622 if (index == locked_page->index && index == end_index)
1623 return 0;
1624
1625 /* skip the page at the start index */
1626 nrpages = end_index - index + 1;
1627 while (nrpages > 0) {
1628 ret = find_get_pages_contig(inode->i_mapping, index,
1629 min_t(unsigned long,
1630 nrpages, ARRAY_SIZE(pages)), pages);
1631 if (ret == 0) {
1632 ret = -EAGAIN;
1633 goto done;
1634 }
1635 /* now we have an array of pages, lock them all */
1636 for (i = 0; i < ret; i++) {
1637 /*
1638 * the caller is taking responsibility for
1639 * locked_page
1640 */
1641 if (pages[i] != locked_page) {
1642 lock_page(pages[i]);
1643 if (!PageDirty(pages[i]) ||
1644 pages[i]->mapping != inode->i_mapping) {
1645 ret = -EAGAIN;
1646 unlock_page(pages[i]);
1647 page_cache_release(pages[i]);
1648 goto done;
1649 }
1650 }
1651 page_cache_release(pages[i]);
1652 pages_locked++;
1653 }
1654 nrpages -= ret;
1655 index += ret;
1656 cond_resched();
1657 }
1658 ret = 0;
1659 done:
1660 if (ret && pages_locked) {
1661 __unlock_for_delalloc(inode, locked_page,
1662 delalloc_start,
1663 ((u64)(start_index + pages_locked - 1)) <<
1664 PAGE_CACHE_SHIFT);
1665 }
1666 return ret;
1667 }
1668
1669 /*
1670 * find a contiguous range of bytes in the file marked as delalloc, not
1671 * more than 'max_bytes'. start and end are used to return the range,
1672 *
1673 * 1 is returned if we find something, 0 if nothing was in the tree
1674 */
1675 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1676 struct extent_io_tree *tree,
1677 struct page *locked_page, u64 *start,
1678 u64 *end, u64 max_bytes)
1679 {
1680 u64 delalloc_start;
1681 u64 delalloc_end;
1682 u64 found;
1683 struct extent_state *cached_state = NULL;
1684 int ret;
1685 int loops = 0;
1686
1687 again:
1688 /* step one, find a bunch of delalloc bytes starting at start */
1689 delalloc_start = *start;
1690 delalloc_end = 0;
1691 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1692 max_bytes, &cached_state);
1693 if (!found || delalloc_end <= *start) {
1694 *start = delalloc_start;
1695 *end = delalloc_end;
1696 free_extent_state(cached_state);
1697 return 0;
1698 }
1699
1700 /*
1701 * start comes from the offset of locked_page. We have to lock
1702 * pages in order, so we can't process delalloc bytes before
1703 * locked_page
1704 */
1705 if (delalloc_start < *start)
1706 delalloc_start = *start;
1707
1708 /*
1709 * make sure to limit the number of pages we try to lock down
1710 */
1711 if (delalloc_end + 1 - delalloc_start > max_bytes)
1712 delalloc_end = delalloc_start + max_bytes - 1;
1713
1714 /* step two, lock all the pages after the page that has start */
1715 ret = lock_delalloc_pages(inode, locked_page,
1716 delalloc_start, delalloc_end);
1717 if (ret == -EAGAIN) {
1718 /* some of the pages are gone, lets avoid looping by
1719 * shortening the size of the delalloc range we're searching
1720 */
1721 free_extent_state(cached_state);
1722 cached_state = NULL;
1723 if (!loops) {
1724 max_bytes = PAGE_CACHE_SIZE;
1725 loops = 1;
1726 goto again;
1727 } else {
1728 found = 0;
1729 goto out_failed;
1730 }
1731 }
1732 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1733
1734 /* step three, lock the state bits for the whole range */
1735 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1736
1737 /* then test to make sure it is all still delalloc */
1738 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1739 EXTENT_DELALLOC, 1, cached_state);
1740 if (!ret) {
1741 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1742 &cached_state, GFP_NOFS);
1743 __unlock_for_delalloc(inode, locked_page,
1744 delalloc_start, delalloc_end);
1745 cond_resched();
1746 goto again;
1747 }
1748 free_extent_state(cached_state);
1749 *start = delalloc_start;
1750 *end = delalloc_end;
1751 out_failed:
1752 return found;
1753 }
1754
1755 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1756 struct page *locked_page,
1757 unsigned clear_bits,
1758 unsigned long page_ops)
1759 {
1760 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1761 int ret;
1762 struct page *pages[16];
1763 unsigned long index = start >> PAGE_CACHE_SHIFT;
1764 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1765 unsigned long nr_pages = end_index - index + 1;
1766 int i;
1767
1768 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1769 if (page_ops == 0)
1770 return 0;
1771
1772 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1773 mapping_set_error(inode->i_mapping, -EIO);
1774
1775 while (nr_pages > 0) {
1776 ret = find_get_pages_contig(inode->i_mapping, index,
1777 min_t(unsigned long,
1778 nr_pages, ARRAY_SIZE(pages)), pages);
1779 for (i = 0; i < ret; i++) {
1780
1781 if (page_ops & PAGE_SET_PRIVATE2)
1782 SetPagePrivate2(pages[i]);
1783
1784 if (pages[i] == locked_page) {
1785 page_cache_release(pages[i]);
1786 continue;
1787 }
1788 if (page_ops & PAGE_CLEAR_DIRTY)
1789 clear_page_dirty_for_io(pages[i]);
1790 if (page_ops & PAGE_SET_WRITEBACK)
1791 set_page_writeback(pages[i]);
1792 if (page_ops & PAGE_SET_ERROR)
1793 SetPageError(pages[i]);
1794 if (page_ops & PAGE_END_WRITEBACK)
1795 end_page_writeback(pages[i]);
1796 if (page_ops & PAGE_UNLOCK)
1797 unlock_page(pages[i]);
1798 page_cache_release(pages[i]);
1799 }
1800 nr_pages -= ret;
1801 index += ret;
1802 cond_resched();
1803 }
1804 return 0;
1805 }
1806
1807 /*
1808 * count the number of bytes in the tree that have a given bit(s)
1809 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1810 * cached. The total number found is returned.
1811 */
1812 u64 count_range_bits(struct extent_io_tree *tree,
1813 u64 *start, u64 search_end, u64 max_bytes,
1814 unsigned bits, int contig)
1815 {
1816 struct rb_node *node;
1817 struct extent_state *state;
1818 u64 cur_start = *start;
1819 u64 total_bytes = 0;
1820 u64 last = 0;
1821 int found = 0;
1822
1823 if (WARN_ON(search_end <= cur_start))
1824 return 0;
1825
1826 spin_lock(&tree->lock);
1827 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1828 total_bytes = tree->dirty_bytes;
1829 goto out;
1830 }
1831 /*
1832 * this search will find all the extents that end after
1833 * our range starts.
1834 */
1835 node = tree_search(tree, cur_start);
1836 if (!node)
1837 goto out;
1838
1839 while (1) {
1840 state = rb_entry(node, struct extent_state, rb_node);
1841 if (state->start > search_end)
1842 break;
1843 if (contig && found && state->start > last + 1)
1844 break;
1845 if (state->end >= cur_start && (state->state & bits) == bits) {
1846 total_bytes += min(search_end, state->end) + 1 -
1847 max(cur_start, state->start);
1848 if (total_bytes >= max_bytes)
1849 break;
1850 if (!found) {
1851 *start = max(cur_start, state->start);
1852 found = 1;
1853 }
1854 last = state->end;
1855 } else if (contig && found) {
1856 break;
1857 }
1858 node = rb_next(node);
1859 if (!node)
1860 break;
1861 }
1862 out:
1863 spin_unlock(&tree->lock);
1864 return total_bytes;
1865 }
1866
1867 /*
1868 * set the private field for a given byte offset in the tree. If there isn't
1869 * an extent_state there already, this does nothing.
1870 */
1871 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1872 {
1873 struct rb_node *node;
1874 struct extent_state *state;
1875 int ret = 0;
1876
1877 spin_lock(&tree->lock);
1878 /*
1879 * this search will find all the extents that end after
1880 * our range starts.
1881 */
1882 node = tree_search(tree, start);
1883 if (!node) {
1884 ret = -ENOENT;
1885 goto out;
1886 }
1887 state = rb_entry(node, struct extent_state, rb_node);
1888 if (state->start != start) {
1889 ret = -ENOENT;
1890 goto out;
1891 }
1892 state->private = private;
1893 out:
1894 spin_unlock(&tree->lock);
1895 return ret;
1896 }
1897
1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1899 {
1900 struct rb_node *node;
1901 struct extent_state *state;
1902 int ret = 0;
1903
1904 spin_lock(&tree->lock);
1905 /*
1906 * this search will find all the extents that end after
1907 * our range starts.
1908 */
1909 node = tree_search(tree, start);
1910 if (!node) {
1911 ret = -ENOENT;
1912 goto out;
1913 }
1914 state = rb_entry(node, struct extent_state, rb_node);
1915 if (state->start != start) {
1916 ret = -ENOENT;
1917 goto out;
1918 }
1919 *private = state->private;
1920 out:
1921 spin_unlock(&tree->lock);
1922 return ret;
1923 }
1924
1925 /*
1926 * searches a range in the state tree for a given mask.
1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
1928 * has the bits set. Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1930 */
1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1932 unsigned bits, int filled, struct extent_state *cached)
1933 {
1934 struct extent_state *state = NULL;
1935 struct rb_node *node;
1936 int bitset = 0;
1937
1938 spin_lock(&tree->lock);
1939 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1940 cached->end > start)
1941 node = &cached->rb_node;
1942 else
1943 node = tree_search(tree, start);
1944 while (node && start <= end) {
1945 state = rb_entry(node, struct extent_state, rb_node);
1946
1947 if (filled && state->start > start) {
1948 bitset = 0;
1949 break;
1950 }
1951
1952 if (state->start > end)
1953 break;
1954
1955 if (state->state & bits) {
1956 bitset = 1;
1957 if (!filled)
1958 break;
1959 } else if (filled) {
1960 bitset = 0;
1961 break;
1962 }
1963
1964 if (state->end == (u64)-1)
1965 break;
1966
1967 start = state->end + 1;
1968 if (start > end)
1969 break;
1970 node = rb_next(node);
1971 if (!node) {
1972 if (filled)
1973 bitset = 0;
1974 break;
1975 }
1976 }
1977 spin_unlock(&tree->lock);
1978 return bitset;
1979 }
1980
1981 /*
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1984 */
1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1986 {
1987 u64 start = page_offset(page);
1988 u64 end = start + PAGE_CACHE_SIZE - 1;
1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1990 SetPageUptodate(page);
1991 }
1992
1993 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1994 {
1995 int ret;
1996 int err = 0;
1997 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1998
1999 set_state_private(failure_tree, rec->start, 0);
2000 ret = clear_extent_bits(failure_tree, rec->start,
2001 rec->start + rec->len - 1,
2002 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2003 if (ret)
2004 err = ret;
2005
2006 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2007 rec->start + rec->len - 1,
2008 EXTENT_DAMAGED, GFP_NOFS);
2009 if (ret && !err)
2010 err = ret;
2011
2012 kfree(rec);
2013 return err;
2014 }
2015
2016 /*
2017 * this bypasses the standard btrfs submit functions deliberately, as
2018 * the standard behavior is to write all copies in a raid setup. here we only
2019 * want to write the one bad copy. so we do the mapping for ourselves and issue
2020 * submit_bio directly.
2021 * to avoid any synchronization issues, wait for the data after writing, which
2022 * actually prevents the read that triggered the error from finishing.
2023 * currently, there can be no more than two copies of every data bit. thus,
2024 * exactly one rewrite is required.
2025 */
2026 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2027 struct page *page, unsigned int pg_offset, int mirror_num)
2028 {
2029 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2030 struct bio *bio;
2031 struct btrfs_device *dev;
2032 u64 map_length = 0;
2033 u64 sector;
2034 struct btrfs_bio *bbio = NULL;
2035 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2036 int ret;
2037
2038 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2039 BUG_ON(!mirror_num);
2040
2041 /* we can't repair anything in raid56 yet */
2042 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2043 return 0;
2044
2045 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2046 if (!bio)
2047 return -EIO;
2048 bio->bi_iter.bi_size = 0;
2049 map_length = length;
2050
2051 ret = btrfs_map_block(fs_info, WRITE, logical,
2052 &map_length, &bbio, mirror_num);
2053 if (ret) {
2054 bio_put(bio);
2055 return -EIO;
2056 }
2057 BUG_ON(mirror_num != bbio->mirror_num);
2058 sector = bbio->stripes[mirror_num-1].physical >> 9;
2059 bio->bi_iter.bi_sector = sector;
2060 dev = bbio->stripes[mirror_num-1].dev;
2061 btrfs_put_bbio(bbio);
2062 if (!dev || !dev->bdev || !dev->writeable) {
2063 bio_put(bio);
2064 return -EIO;
2065 }
2066 bio->bi_bdev = dev->bdev;
2067 bio_add_page(bio, page, length, pg_offset);
2068
2069 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2070 /* try to remap that extent elsewhere? */
2071 bio_put(bio);
2072 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2073 return -EIO;
2074 }
2075
2076 printk_ratelimited_in_rcu(KERN_INFO
2077 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2078 btrfs_ino(inode), start,
2079 rcu_str_deref(dev->name), sector);
2080 bio_put(bio);
2081 return 0;
2082 }
2083
2084 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2085 int mirror_num)
2086 {
2087 u64 start = eb->start;
2088 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2089 int ret = 0;
2090
2091 if (root->fs_info->sb->s_flags & MS_RDONLY)
2092 return -EROFS;
2093
2094 for (i = 0; i < num_pages; i++) {
2095 struct page *p = eb->pages[i];
2096
2097 ret = repair_io_failure(root->fs_info->btree_inode, start,
2098 PAGE_CACHE_SIZE, start, p,
2099 start - page_offset(p), mirror_num);
2100 if (ret)
2101 break;
2102 start += PAGE_CACHE_SIZE;
2103 }
2104
2105 return ret;
2106 }
2107
2108 /*
2109 * each time an IO finishes, we do a fast check in the IO failure tree
2110 * to see if we need to process or clean up an io_failure_record
2111 */
2112 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2113 unsigned int pg_offset)
2114 {
2115 u64 private;
2116 u64 private_failure;
2117 struct io_failure_record *failrec;
2118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2119 struct extent_state *state;
2120 int num_copies;
2121 int ret;
2122
2123 private = 0;
2124 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2125 (u64)-1, 1, EXTENT_DIRTY, 0);
2126 if (!ret)
2127 return 0;
2128
2129 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2130 &private_failure);
2131 if (ret)
2132 return 0;
2133
2134 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2135 BUG_ON(!failrec->this_mirror);
2136
2137 if (failrec->in_validation) {
2138 /* there was no real error, just free the record */
2139 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2140 failrec->start);
2141 goto out;
2142 }
2143 if (fs_info->sb->s_flags & MS_RDONLY)
2144 goto out;
2145
2146 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2147 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2148 failrec->start,
2149 EXTENT_LOCKED);
2150 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2151
2152 if (state && state->start <= failrec->start &&
2153 state->end >= failrec->start + failrec->len - 1) {
2154 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2155 failrec->len);
2156 if (num_copies > 1) {
2157 repair_io_failure(inode, start, failrec->len,
2158 failrec->logical, page,
2159 pg_offset, failrec->failed_mirror);
2160 }
2161 }
2162
2163 out:
2164 free_io_failure(inode, failrec);
2165
2166 return 0;
2167 }
2168
2169 /*
2170 * Can be called when
2171 * - hold extent lock
2172 * - under ordered extent
2173 * - the inode is freeing
2174 */
2175 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2176 {
2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178 struct io_failure_record *failrec;
2179 struct extent_state *state, *next;
2180
2181 if (RB_EMPTY_ROOT(&failure_tree->state))
2182 return;
2183
2184 spin_lock(&failure_tree->lock);
2185 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2186 while (state) {
2187 if (state->start > end)
2188 break;
2189
2190 ASSERT(state->end <= end);
2191
2192 next = next_state(state);
2193
2194 failrec = (struct io_failure_record *)(unsigned long)state->private;
2195 free_extent_state(state);
2196 kfree(failrec);
2197
2198 state = next;
2199 }
2200 spin_unlock(&failure_tree->lock);
2201 }
2202
2203 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2204 struct io_failure_record **failrec_ret)
2205 {
2206 struct io_failure_record *failrec;
2207 u64 private;
2208 struct extent_map *em;
2209 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2210 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2211 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2212 int ret;
2213 u64 logical;
2214
2215 ret = get_state_private(failure_tree, start, &private);
2216 if (ret) {
2217 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2218 if (!failrec)
2219 return -ENOMEM;
2220
2221 failrec->start = start;
2222 failrec->len = end - start + 1;
2223 failrec->this_mirror = 0;
2224 failrec->bio_flags = 0;
2225 failrec->in_validation = 0;
2226
2227 read_lock(&em_tree->lock);
2228 em = lookup_extent_mapping(em_tree, start, failrec->len);
2229 if (!em) {
2230 read_unlock(&em_tree->lock);
2231 kfree(failrec);
2232 return -EIO;
2233 }
2234
2235 if (em->start > start || em->start + em->len <= start) {
2236 free_extent_map(em);
2237 em = NULL;
2238 }
2239 read_unlock(&em_tree->lock);
2240 if (!em) {
2241 kfree(failrec);
2242 return -EIO;
2243 }
2244
2245 logical = start - em->start;
2246 logical = em->block_start + logical;
2247 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2248 logical = em->block_start;
2249 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2250 extent_set_compress_type(&failrec->bio_flags,
2251 em->compress_type);
2252 }
2253
2254 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2255 logical, start, failrec->len);
2256
2257 failrec->logical = logical;
2258 free_extent_map(em);
2259
2260 /* set the bits in the private failure tree */
2261 ret = set_extent_bits(failure_tree, start, end,
2262 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2263 if (ret >= 0)
2264 ret = set_state_private(failure_tree, start,
2265 (u64)(unsigned long)failrec);
2266 /* set the bits in the inode's tree */
2267 if (ret >= 0)
2268 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2269 GFP_NOFS);
2270 if (ret < 0) {
2271 kfree(failrec);
2272 return ret;
2273 }
2274 } else {
2275 failrec = (struct io_failure_record *)(unsigned long)private;
2276 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2277 failrec->logical, failrec->start, failrec->len,
2278 failrec->in_validation);
2279 /*
2280 * when data can be on disk more than twice, add to failrec here
2281 * (e.g. with a list for failed_mirror) to make
2282 * clean_io_failure() clean all those errors at once.
2283 */
2284 }
2285
2286 *failrec_ret = failrec;
2287
2288 return 0;
2289 }
2290
2291 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2292 struct io_failure_record *failrec, int failed_mirror)
2293 {
2294 int num_copies;
2295
2296 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2297 failrec->logical, failrec->len);
2298 if (num_copies == 1) {
2299 /*
2300 * we only have a single copy of the data, so don't bother with
2301 * all the retry and error correction code that follows. no
2302 * matter what the error is, it is very likely to persist.
2303 */
2304 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2305 num_copies, failrec->this_mirror, failed_mirror);
2306 return 0;
2307 }
2308
2309 /*
2310 * there are two premises:
2311 * a) deliver good data to the caller
2312 * b) correct the bad sectors on disk
2313 */
2314 if (failed_bio->bi_vcnt > 1) {
2315 /*
2316 * to fulfill b), we need to know the exact failing sectors, as
2317 * we don't want to rewrite any more than the failed ones. thus,
2318 * we need separate read requests for the failed bio
2319 *
2320 * if the following BUG_ON triggers, our validation request got
2321 * merged. we need separate requests for our algorithm to work.
2322 */
2323 BUG_ON(failrec->in_validation);
2324 failrec->in_validation = 1;
2325 failrec->this_mirror = failed_mirror;
2326 } else {
2327 /*
2328 * we're ready to fulfill a) and b) alongside. get a good copy
2329 * of the failed sector and if we succeed, we have setup
2330 * everything for repair_io_failure to do the rest for us.
2331 */
2332 if (failrec->in_validation) {
2333 BUG_ON(failrec->this_mirror != failed_mirror);
2334 failrec->in_validation = 0;
2335 failrec->this_mirror = 0;
2336 }
2337 failrec->failed_mirror = failed_mirror;
2338 failrec->this_mirror++;
2339 if (failrec->this_mirror == failed_mirror)
2340 failrec->this_mirror++;
2341 }
2342
2343 if (failrec->this_mirror > num_copies) {
2344 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2345 num_copies, failrec->this_mirror, failed_mirror);
2346 return 0;
2347 }
2348
2349 return 1;
2350 }
2351
2352
2353 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2354 struct io_failure_record *failrec,
2355 struct page *page, int pg_offset, int icsum,
2356 bio_end_io_t *endio_func, void *data)
2357 {
2358 struct bio *bio;
2359 struct btrfs_io_bio *btrfs_failed_bio;
2360 struct btrfs_io_bio *btrfs_bio;
2361
2362 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2363 if (!bio)
2364 return NULL;
2365
2366 bio->bi_end_io = endio_func;
2367 bio->bi_iter.bi_sector = failrec->logical >> 9;
2368 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2369 bio->bi_iter.bi_size = 0;
2370 bio->bi_private = data;
2371
2372 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2373 if (btrfs_failed_bio->csum) {
2374 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2375 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2376
2377 btrfs_bio = btrfs_io_bio(bio);
2378 btrfs_bio->csum = btrfs_bio->csum_inline;
2379 icsum *= csum_size;
2380 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2381 csum_size);
2382 }
2383
2384 bio_add_page(bio, page, failrec->len, pg_offset);
2385
2386 return bio;
2387 }
2388
2389 /*
2390 * this is a generic handler for readpage errors (default
2391 * readpage_io_failed_hook). if other copies exist, read those and write back
2392 * good data to the failed position. does not investigate in remapping the
2393 * failed extent elsewhere, hoping the device will be smart enough to do this as
2394 * needed
2395 */
2396
2397 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2398 struct page *page, u64 start, u64 end,
2399 int failed_mirror)
2400 {
2401 struct io_failure_record *failrec;
2402 struct inode *inode = page->mapping->host;
2403 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2404 struct bio *bio;
2405 int read_mode;
2406 int ret;
2407
2408 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2409
2410 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2411 if (ret)
2412 return ret;
2413
2414 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2415 if (!ret) {
2416 free_io_failure(inode, failrec);
2417 return -EIO;
2418 }
2419
2420 if (failed_bio->bi_vcnt > 1)
2421 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2422 else
2423 read_mode = READ_SYNC;
2424
2425 phy_offset >>= inode->i_sb->s_blocksize_bits;
2426 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2427 start - page_offset(page),
2428 (int)phy_offset, failed_bio->bi_end_io,
2429 NULL);
2430 if (!bio) {
2431 free_io_failure(inode, failrec);
2432 return -EIO;
2433 }
2434
2435 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2436 read_mode, failrec->this_mirror, failrec->in_validation);
2437
2438 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2439 failrec->this_mirror,
2440 failrec->bio_flags, 0);
2441 if (ret) {
2442 free_io_failure(inode, failrec);
2443 bio_put(bio);
2444 }
2445
2446 return ret;
2447 }
2448
2449 /* lots and lots of room for performance fixes in the end_bio funcs */
2450
2451 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2452 {
2453 int uptodate = (err == 0);
2454 struct extent_io_tree *tree;
2455 int ret = 0;
2456
2457 tree = &BTRFS_I(page->mapping->host)->io_tree;
2458
2459 if (tree->ops && tree->ops->writepage_end_io_hook) {
2460 ret = tree->ops->writepage_end_io_hook(page, start,
2461 end, NULL, uptodate);
2462 if (ret)
2463 uptodate = 0;
2464 }
2465
2466 if (!uptodate) {
2467 ClearPageUptodate(page);
2468 SetPageError(page);
2469 ret = ret < 0 ? ret : -EIO;
2470 mapping_set_error(page->mapping, ret);
2471 }
2472 return 0;
2473 }
2474
2475 /*
2476 * after a writepage IO is done, we need to:
2477 * clear the uptodate bits on error
2478 * clear the writeback bits in the extent tree for this IO
2479 * end_page_writeback if the page has no more pending IO
2480 *
2481 * Scheduling is not allowed, so the extent state tree is expected
2482 * to have one and only one object corresponding to this IO.
2483 */
2484 static void end_bio_extent_writepage(struct bio *bio, int err)
2485 {
2486 struct bio_vec *bvec;
2487 u64 start;
2488 u64 end;
2489 int i;
2490
2491 bio_for_each_segment_all(bvec, bio, i) {
2492 struct page *page = bvec->bv_page;
2493
2494 /* We always issue full-page reads, but if some block
2495 * in a page fails to read, blk_update_request() will
2496 * advance bv_offset and adjust bv_len to compensate.
2497 * Print a warning for nonzero offsets, and an error
2498 * if they don't add up to a full page. */
2499 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2500 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2501 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2502 "partial page write in btrfs with offset %u and length %u",
2503 bvec->bv_offset, bvec->bv_len);
2504 else
2505 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2506 "incomplete page write in btrfs with offset %u and "
2507 "length %u",
2508 bvec->bv_offset, bvec->bv_len);
2509 }
2510
2511 start = page_offset(page);
2512 end = start + bvec->bv_offset + bvec->bv_len - 1;
2513
2514 if (end_extent_writepage(page, err, start, end))
2515 continue;
2516
2517 end_page_writeback(page);
2518 }
2519
2520 bio_put(bio);
2521 }
2522
2523 static void
2524 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2525 int uptodate)
2526 {
2527 struct extent_state *cached = NULL;
2528 u64 end = start + len - 1;
2529
2530 if (uptodate && tree->track_uptodate)
2531 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2532 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2533 }
2534
2535 /*
2536 * after a readpage IO is done, we need to:
2537 * clear the uptodate bits on error
2538 * set the uptodate bits if things worked
2539 * set the page up to date if all extents in the tree are uptodate
2540 * clear the lock bit in the extent tree
2541 * unlock the page if there are no other extents locked for it
2542 *
2543 * Scheduling is not allowed, so the extent state tree is expected
2544 * to have one and only one object corresponding to this IO.
2545 */
2546 static void end_bio_extent_readpage(struct bio *bio, int err)
2547 {
2548 struct bio_vec *bvec;
2549 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2550 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2551 struct extent_io_tree *tree;
2552 u64 offset = 0;
2553 u64 start;
2554 u64 end;
2555 u64 len;
2556 u64 extent_start = 0;
2557 u64 extent_len = 0;
2558 int mirror;
2559 int ret;
2560 int i;
2561
2562 if (err)
2563 uptodate = 0;
2564
2565 bio_for_each_segment_all(bvec, bio, i) {
2566 struct page *page = bvec->bv_page;
2567 struct inode *inode = page->mapping->host;
2568
2569 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2570 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
2571 io_bio->mirror_num);
2572 tree = &BTRFS_I(inode)->io_tree;
2573
2574 /* We always issue full-page reads, but if some block
2575 * in a page fails to read, blk_update_request() will
2576 * advance bv_offset and adjust bv_len to compensate.
2577 * Print a warning for nonzero offsets, and an error
2578 * if they don't add up to a full page. */
2579 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2580 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2581 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2582 "partial page read in btrfs with offset %u and length %u",
2583 bvec->bv_offset, bvec->bv_len);
2584 else
2585 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2586 "incomplete page read in btrfs with offset %u and "
2587 "length %u",
2588 bvec->bv_offset, bvec->bv_len);
2589 }
2590
2591 start = page_offset(page);
2592 end = start + bvec->bv_offset + bvec->bv_len - 1;
2593 len = bvec->bv_len;
2594
2595 mirror = io_bio->mirror_num;
2596 if (likely(uptodate && tree->ops &&
2597 tree->ops->readpage_end_io_hook)) {
2598 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2599 page, start, end,
2600 mirror);
2601 if (ret)
2602 uptodate = 0;
2603 else
2604 clean_io_failure(inode, start, page, 0);
2605 }
2606
2607 if (likely(uptodate))
2608 goto readpage_ok;
2609
2610 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2611 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2612 if (!ret && !err &&
2613 test_bit(BIO_UPTODATE, &bio->bi_flags))
2614 uptodate = 1;
2615 } else {
2616 /*
2617 * The generic bio_readpage_error handles errors the
2618 * following way: If possible, new read requests are
2619 * created and submitted and will end up in
2620 * end_bio_extent_readpage as well (if we're lucky, not
2621 * in the !uptodate case). In that case it returns 0 and
2622 * we just go on with the next page in our bio. If it
2623 * can't handle the error it will return -EIO and we
2624 * remain responsible for that page.
2625 */
2626 ret = bio_readpage_error(bio, offset, page, start, end,
2627 mirror);
2628 if (ret == 0) {
2629 uptodate =
2630 test_bit(BIO_UPTODATE, &bio->bi_flags);
2631 if (err)
2632 uptodate = 0;
2633 offset += len;
2634 continue;
2635 }
2636 }
2637 readpage_ok:
2638 if (likely(uptodate)) {
2639 loff_t i_size = i_size_read(inode);
2640 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2641 unsigned off;
2642
2643 /* Zero out the end if this page straddles i_size */
2644 off = i_size & (PAGE_CACHE_SIZE-1);
2645 if (page->index == end_index && off)
2646 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2647 SetPageUptodate(page);
2648 } else {
2649 ClearPageUptodate(page);
2650 SetPageError(page);
2651 }
2652 unlock_page(page);
2653 offset += len;
2654
2655 if (unlikely(!uptodate)) {
2656 if (extent_len) {
2657 endio_readpage_release_extent(tree,
2658 extent_start,
2659 extent_len, 1);
2660 extent_start = 0;
2661 extent_len = 0;
2662 }
2663 endio_readpage_release_extent(tree, start,
2664 end - start + 1, 0);
2665 } else if (!extent_len) {
2666 extent_start = start;
2667 extent_len = end + 1 - start;
2668 } else if (extent_start + extent_len == start) {
2669 extent_len += end + 1 - start;
2670 } else {
2671 endio_readpage_release_extent(tree, extent_start,
2672 extent_len, uptodate);
2673 extent_start = start;
2674 extent_len = end + 1 - start;
2675 }
2676 }
2677
2678 if (extent_len)
2679 endio_readpage_release_extent(tree, extent_start, extent_len,
2680 uptodate);
2681 if (io_bio->end_io)
2682 io_bio->end_io(io_bio, err);
2683 bio_put(bio);
2684 }
2685
2686 /*
2687 * this allocates from the btrfs_bioset. We're returning a bio right now
2688 * but you can call btrfs_io_bio for the appropriate container_of magic
2689 */
2690 struct bio *
2691 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2692 gfp_t gfp_flags)
2693 {
2694 struct btrfs_io_bio *btrfs_bio;
2695 struct bio *bio;
2696
2697 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2698
2699 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2700 while (!bio && (nr_vecs /= 2)) {
2701 bio = bio_alloc_bioset(gfp_flags,
2702 nr_vecs, btrfs_bioset);
2703 }
2704 }
2705
2706 if (bio) {
2707 bio->bi_bdev = bdev;
2708 bio->bi_iter.bi_sector = first_sector;
2709 btrfs_bio = btrfs_io_bio(bio);
2710 btrfs_bio->csum = NULL;
2711 btrfs_bio->csum_allocated = NULL;
2712 btrfs_bio->end_io = NULL;
2713 }
2714 return bio;
2715 }
2716
2717 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2718 {
2719 struct btrfs_io_bio *btrfs_bio;
2720 struct bio *new;
2721
2722 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2723 if (new) {
2724 btrfs_bio = btrfs_io_bio(new);
2725 btrfs_bio->csum = NULL;
2726 btrfs_bio->csum_allocated = NULL;
2727 btrfs_bio->end_io = NULL;
2728 }
2729 return new;
2730 }
2731
2732 /* this also allocates from the btrfs_bioset */
2733 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2734 {
2735 struct btrfs_io_bio *btrfs_bio;
2736 struct bio *bio;
2737
2738 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2739 if (bio) {
2740 btrfs_bio = btrfs_io_bio(bio);
2741 btrfs_bio->csum = NULL;
2742 btrfs_bio->csum_allocated = NULL;
2743 btrfs_bio->end_io = NULL;
2744 }
2745 return bio;
2746 }
2747
2748
2749 static int __must_check submit_one_bio(int rw, struct bio *bio,
2750 int mirror_num, unsigned long bio_flags)
2751 {
2752 int ret = 0;
2753 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2754 struct page *page = bvec->bv_page;
2755 struct extent_io_tree *tree = bio->bi_private;
2756 u64 start;
2757
2758 start = page_offset(page) + bvec->bv_offset;
2759
2760 bio->bi_private = NULL;
2761
2762 bio_get(bio);
2763
2764 if (tree->ops && tree->ops->submit_bio_hook)
2765 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2766 mirror_num, bio_flags, start);
2767 else
2768 btrfsic_submit_bio(rw, bio);
2769
2770 bio_put(bio);
2771 return ret;
2772 }
2773
2774 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2775 unsigned long offset, size_t size, struct bio *bio,
2776 unsigned long bio_flags)
2777 {
2778 int ret = 0;
2779 if (tree->ops && tree->ops->merge_bio_hook)
2780 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2781 bio_flags);
2782 BUG_ON(ret < 0);
2783 return ret;
2784
2785 }
2786
2787 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2788 struct page *page, sector_t sector,
2789 size_t size, unsigned long offset,
2790 struct block_device *bdev,
2791 struct bio **bio_ret,
2792 unsigned long max_pages,
2793 bio_end_io_t end_io_func,
2794 int mirror_num,
2795 unsigned long prev_bio_flags,
2796 unsigned long bio_flags)
2797 {
2798 int ret = 0;
2799 struct bio *bio;
2800 int nr;
2801 int contig = 0;
2802 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2803 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2804 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2805
2806 if (bio_ret && *bio_ret) {
2807 bio = *bio_ret;
2808 if (old_compressed)
2809 contig = bio->bi_iter.bi_sector == sector;
2810 else
2811 contig = bio_end_sector(bio) == sector;
2812
2813 if (prev_bio_flags != bio_flags || !contig ||
2814 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2815 bio_add_page(bio, page, page_size, offset) < page_size) {
2816 ret = submit_one_bio(rw, bio, mirror_num,
2817 prev_bio_flags);
2818 if (ret < 0) {
2819 *bio_ret = NULL;
2820 return ret;
2821 }
2822 bio = NULL;
2823 } else {
2824 return 0;
2825 }
2826 }
2827 if (this_compressed)
2828 nr = BIO_MAX_PAGES;
2829 else
2830 nr = bio_get_nr_vecs(bdev);
2831
2832 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2833 if (!bio)
2834 return -ENOMEM;
2835
2836 bio_add_page(bio, page, page_size, offset);
2837 bio->bi_end_io = end_io_func;
2838 bio->bi_private = tree;
2839
2840 if (bio_ret)
2841 *bio_ret = bio;
2842 else
2843 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2844
2845 return ret;
2846 }
2847
2848 static void attach_extent_buffer_page(struct extent_buffer *eb,
2849 struct page *page)
2850 {
2851 if (!PagePrivate(page)) {
2852 SetPagePrivate(page);
2853 page_cache_get(page);
2854 set_page_private(page, (unsigned long)eb);
2855 } else {
2856 WARN_ON(page->private != (unsigned long)eb);
2857 }
2858 }
2859
2860 void set_page_extent_mapped(struct page *page)
2861 {
2862 if (!PagePrivate(page)) {
2863 SetPagePrivate(page);
2864 page_cache_get(page);
2865 set_page_private(page, EXTENT_PAGE_PRIVATE);
2866 }
2867 }
2868
2869 static struct extent_map *
2870 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2871 u64 start, u64 len, get_extent_t *get_extent,
2872 struct extent_map **em_cached)
2873 {
2874 struct extent_map *em;
2875
2876 if (em_cached && *em_cached) {
2877 em = *em_cached;
2878 if (extent_map_in_tree(em) && start >= em->start &&
2879 start < extent_map_end(em)) {
2880 atomic_inc(&em->refs);
2881 return em;
2882 }
2883
2884 free_extent_map(em);
2885 *em_cached = NULL;
2886 }
2887
2888 em = get_extent(inode, page, pg_offset, start, len, 0);
2889 if (em_cached && !IS_ERR_OR_NULL(em)) {
2890 BUG_ON(*em_cached);
2891 atomic_inc(&em->refs);
2892 *em_cached = em;
2893 }
2894 return em;
2895 }
2896 /*
2897 * basic readpage implementation. Locked extent state structs are inserted
2898 * into the tree that are removed when the IO is done (by the end_io
2899 * handlers)
2900 * XXX JDM: This needs looking at to ensure proper page locking
2901 */
2902 static int __do_readpage(struct extent_io_tree *tree,
2903 struct page *page,
2904 get_extent_t *get_extent,
2905 struct extent_map **em_cached,
2906 struct bio **bio, int mirror_num,
2907 unsigned long *bio_flags, int rw)
2908 {
2909 struct inode *inode = page->mapping->host;
2910 u64 start = page_offset(page);
2911 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2912 u64 end;
2913 u64 cur = start;
2914 u64 extent_offset;
2915 u64 last_byte = i_size_read(inode);
2916 u64 block_start;
2917 u64 cur_end;
2918 sector_t sector;
2919 struct extent_map *em;
2920 struct block_device *bdev;
2921 int ret;
2922 int nr = 0;
2923 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2924 size_t pg_offset = 0;
2925 size_t iosize;
2926 size_t disk_io_size;
2927 size_t blocksize = inode->i_sb->s_blocksize;
2928 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2929
2930 set_page_extent_mapped(page);
2931
2932 end = page_end;
2933 if (!PageUptodate(page)) {
2934 if (cleancache_get_page(page) == 0) {
2935 BUG_ON(blocksize != PAGE_SIZE);
2936 unlock_extent(tree, start, end);
2937 goto out;
2938 }
2939 }
2940
2941 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2942 char *userpage;
2943 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2944
2945 if (zero_offset) {
2946 iosize = PAGE_CACHE_SIZE - zero_offset;
2947 userpage = kmap_atomic(page);
2948 memset(userpage + zero_offset, 0, iosize);
2949 flush_dcache_page(page);
2950 kunmap_atomic(userpage);
2951 }
2952 }
2953 while (cur <= end) {
2954 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2955
2956 if (cur >= last_byte) {
2957 char *userpage;
2958 struct extent_state *cached = NULL;
2959
2960 iosize = PAGE_CACHE_SIZE - pg_offset;
2961 userpage = kmap_atomic(page);
2962 memset(userpage + pg_offset, 0, iosize);
2963 flush_dcache_page(page);
2964 kunmap_atomic(userpage);
2965 set_extent_uptodate(tree, cur, cur + iosize - 1,
2966 &cached, GFP_NOFS);
2967 if (!parent_locked)
2968 unlock_extent_cached(tree, cur,
2969 cur + iosize - 1,
2970 &cached, GFP_NOFS);
2971 break;
2972 }
2973 em = __get_extent_map(inode, page, pg_offset, cur,
2974 end - cur + 1, get_extent, em_cached);
2975 if (IS_ERR_OR_NULL(em)) {
2976 SetPageError(page);
2977 if (!parent_locked)
2978 unlock_extent(tree, cur, end);
2979 break;
2980 }
2981 extent_offset = cur - em->start;
2982 BUG_ON(extent_map_end(em) <= cur);
2983 BUG_ON(end < cur);
2984
2985 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2986 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2987 extent_set_compress_type(&this_bio_flag,
2988 em->compress_type);
2989 }
2990
2991 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2992 cur_end = min(extent_map_end(em) - 1, end);
2993 iosize = ALIGN(iosize, blocksize);
2994 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2995 disk_io_size = em->block_len;
2996 sector = em->block_start >> 9;
2997 } else {
2998 sector = (em->block_start + extent_offset) >> 9;
2999 disk_io_size = iosize;
3000 }
3001 bdev = em->bdev;
3002 block_start = em->block_start;
3003 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3004 block_start = EXTENT_MAP_HOLE;
3005 free_extent_map(em);
3006 em = NULL;
3007
3008 /* we've found a hole, just zero and go on */
3009 if (block_start == EXTENT_MAP_HOLE) {
3010 char *userpage;
3011 struct extent_state *cached = NULL;
3012
3013 userpage = kmap_atomic(page);
3014 memset(userpage + pg_offset, 0, iosize);
3015 flush_dcache_page(page);
3016 kunmap_atomic(userpage);
3017
3018 set_extent_uptodate(tree, cur, cur + iosize - 1,
3019 &cached, GFP_NOFS);
3020 unlock_extent_cached(tree, cur, cur + iosize - 1,
3021 &cached, GFP_NOFS);
3022 cur = cur + iosize;
3023 pg_offset += iosize;
3024 continue;
3025 }
3026 /* the get_extent function already copied into the page */
3027 if (test_range_bit(tree, cur, cur_end,
3028 EXTENT_UPTODATE, 1, NULL)) {
3029 check_page_uptodate(tree, page);
3030 if (!parent_locked)
3031 unlock_extent(tree, cur, cur + iosize - 1);
3032 cur = cur + iosize;
3033 pg_offset += iosize;
3034 continue;
3035 }
3036 /* we have an inline extent but it didn't get marked up
3037 * to date. Error out
3038 */
3039 if (block_start == EXTENT_MAP_INLINE) {
3040 SetPageError(page);
3041 if (!parent_locked)
3042 unlock_extent(tree, cur, cur + iosize - 1);
3043 cur = cur + iosize;
3044 pg_offset += iosize;
3045 continue;
3046 }
3047
3048 pnr -= page->index;
3049 ret = submit_extent_page(rw, tree, page,
3050 sector, disk_io_size, pg_offset,
3051 bdev, bio, pnr,
3052 end_bio_extent_readpage, mirror_num,
3053 *bio_flags,
3054 this_bio_flag);
3055 if (!ret) {
3056 nr++;
3057 *bio_flags = this_bio_flag;
3058 } else {
3059 SetPageError(page);
3060 if (!parent_locked)
3061 unlock_extent(tree, cur, cur + iosize - 1);
3062 }
3063 cur = cur + iosize;
3064 pg_offset += iosize;
3065 }
3066 out:
3067 if (!nr) {
3068 if (!PageError(page))
3069 SetPageUptodate(page);
3070 unlock_page(page);
3071 }
3072 return 0;
3073 }
3074
3075 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3076 struct page *pages[], int nr_pages,
3077 u64 start, u64 end,
3078 get_extent_t *get_extent,
3079 struct extent_map **em_cached,
3080 struct bio **bio, int mirror_num,
3081 unsigned long *bio_flags, int rw)
3082 {
3083 struct inode *inode;
3084 struct btrfs_ordered_extent *ordered;
3085 int index;
3086
3087 inode = pages[0]->mapping->host;
3088 while (1) {
3089 lock_extent(tree, start, end);
3090 ordered = btrfs_lookup_ordered_range(inode, start,
3091 end - start + 1);
3092 if (!ordered)
3093 break;
3094 unlock_extent(tree, start, end);
3095 btrfs_start_ordered_extent(inode, ordered, 1);
3096 btrfs_put_ordered_extent(ordered);
3097 }
3098
3099 for (index = 0; index < nr_pages; index++) {
3100 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3101 mirror_num, bio_flags, rw);
3102 page_cache_release(pages[index]);
3103 }
3104 }
3105
3106 static void __extent_readpages(struct extent_io_tree *tree,
3107 struct page *pages[],
3108 int nr_pages, get_extent_t *get_extent,
3109 struct extent_map **em_cached,
3110 struct bio **bio, int mirror_num,
3111 unsigned long *bio_flags, int rw)
3112 {
3113 u64 start = 0;
3114 u64 end = 0;
3115 u64 page_start;
3116 int index;
3117 int first_index = 0;
3118
3119 for (index = 0; index < nr_pages; index++) {
3120 page_start = page_offset(pages[index]);
3121 if (!end) {
3122 start = page_start;
3123 end = start + PAGE_CACHE_SIZE - 1;
3124 first_index = index;
3125 } else if (end + 1 == page_start) {
3126 end += PAGE_CACHE_SIZE;
3127 } else {
3128 __do_contiguous_readpages(tree, &pages[first_index],
3129 index - first_index, start,
3130 end, get_extent, em_cached,
3131 bio, mirror_num, bio_flags,
3132 rw);
3133 start = page_start;
3134 end = start + PAGE_CACHE_SIZE - 1;
3135 first_index = index;
3136 }
3137 }
3138
3139 if (end)
3140 __do_contiguous_readpages(tree, &pages[first_index],
3141 index - first_index, start,
3142 end, get_extent, em_cached, bio,
3143 mirror_num, bio_flags, rw);
3144 }
3145
3146 static int __extent_read_full_page(struct extent_io_tree *tree,
3147 struct page *page,
3148 get_extent_t *get_extent,
3149 struct bio **bio, int mirror_num,
3150 unsigned long *bio_flags, int rw)
3151 {
3152 struct inode *inode = page->mapping->host;
3153 struct btrfs_ordered_extent *ordered;
3154 u64 start = page_offset(page);
3155 u64 end = start + PAGE_CACHE_SIZE - 1;
3156 int ret;
3157
3158 while (1) {
3159 lock_extent(tree, start, end);
3160 ordered = btrfs_lookup_ordered_extent(inode, start);
3161 if (!ordered)
3162 break;
3163 unlock_extent(tree, start, end);
3164 btrfs_start_ordered_extent(inode, ordered, 1);
3165 btrfs_put_ordered_extent(ordered);
3166 }
3167
3168 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3169 bio_flags, rw);
3170 return ret;
3171 }
3172
3173 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3174 get_extent_t *get_extent, int mirror_num)
3175 {
3176 struct bio *bio = NULL;
3177 unsigned long bio_flags = 0;
3178 int ret;
3179
3180 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3181 &bio_flags, READ);
3182 if (bio)
3183 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3184 return ret;
3185 }
3186
3187 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3188 get_extent_t *get_extent, int mirror_num)
3189 {
3190 struct bio *bio = NULL;
3191 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3192 int ret;
3193
3194 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3195 &bio_flags, READ);
3196 if (bio)
3197 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3198 return ret;
3199 }
3200
3201 static noinline void update_nr_written(struct page *page,
3202 struct writeback_control *wbc,
3203 unsigned long nr_written)
3204 {
3205 wbc->nr_to_write -= nr_written;
3206 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3207 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3208 page->mapping->writeback_index = page->index + nr_written;
3209 }
3210
3211 /*
3212 * helper for __extent_writepage, doing all of the delayed allocation setup.
3213 *
3214 * This returns 1 if our fill_delalloc function did all the work required
3215 * to write the page (copy into inline extent). In this case the IO has
3216 * been started and the page is already unlocked.
3217 *
3218 * This returns 0 if all went well (page still locked)
3219 * This returns < 0 if there were errors (page still locked)
3220 */
3221 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3222 struct page *page, struct writeback_control *wbc,
3223 struct extent_page_data *epd,
3224 u64 delalloc_start,
3225 unsigned long *nr_written)
3226 {
3227 struct extent_io_tree *tree = epd->tree;
3228 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3229 u64 nr_delalloc;
3230 u64 delalloc_to_write = 0;
3231 u64 delalloc_end = 0;
3232 int ret;
3233 int page_started = 0;
3234
3235 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3236 return 0;
3237
3238 while (delalloc_end < page_end) {
3239 nr_delalloc = find_lock_delalloc_range(inode, tree,
3240 page,
3241 &delalloc_start,
3242 &delalloc_end,
3243 BTRFS_MAX_EXTENT_SIZE);
3244 if (nr_delalloc == 0) {
3245 delalloc_start = delalloc_end + 1;
3246 continue;
3247 }
3248 ret = tree->ops->fill_delalloc(inode, page,
3249 delalloc_start,
3250 delalloc_end,
3251 &page_started,
3252 nr_written);
3253 /* File system has been set read-only */
3254 if (ret) {
3255 SetPageError(page);
3256 /* fill_delalloc should be return < 0 for error
3257 * but just in case, we use > 0 here meaning the
3258 * IO is started, so we don't want to return > 0
3259 * unless things are going well.
3260 */
3261 ret = ret < 0 ? ret : -EIO;
3262 goto done;
3263 }
3264 /*
3265 * delalloc_end is already one less than the total
3266 * length, so we don't subtract one from
3267 * PAGE_CACHE_SIZE
3268 */
3269 delalloc_to_write += (delalloc_end - delalloc_start +
3270 PAGE_CACHE_SIZE) >>
3271 PAGE_CACHE_SHIFT;
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298 done:
3299 return ret;
3300 }
3301
3302 /*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 int write_flags, int *nr_ret)
3317 {
3318 struct extent_io_tree *tree = epd->tree;
3319 u64 start = page_offset(page);
3320 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
3324 u64 block_start;
3325 u64 iosize;
3326 sector_t sector;
3327 struct extent_state *cached_state = NULL;
3328 struct extent_map *em;
3329 struct block_device *bdev;
3330 size_t pg_offset = 0;
3331 size_t blocksize;
3332 int ret = 0;
3333 int nr = 0;
3334 bool compressed;
3335
3336 if (tree->ops && tree->ops->writepage_start_hook) {
3337 ret = tree->ops->writepage_start_hook(page, start,
3338 page_end);
3339 if (ret) {
3340 /* Fixup worker will requeue */
3341 if (ret == -EBUSY)
3342 wbc->pages_skipped++;
3343 else
3344 redirty_page_for_writepage(wbc, page);
3345
3346 update_nr_written(page, wbc, nr_written);
3347 unlock_page(page);
3348 ret = 1;
3349 goto done_unlocked;
3350 }
3351 }
3352
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3357 update_nr_written(page, wbc, nr_written + 1);
3358
3359 end = page_end;
3360 if (i_size <= start) {
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
3364 goto done;
3365 }
3366
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
3370 u64 em_end;
3371 if (cur >= i_size) {
3372 if (tree->ops && tree->ops->writepage_end_io_hook)
3373 tree->ops->writepage_end_io_hook(page, cur,
3374 page_end, NULL, 1);
3375 break;
3376 }
3377 em = epd->get_extent(inode, page, pg_offset, cur,
3378 end - cur + 1, 1);
3379 if (IS_ERR_OR_NULL(em)) {
3380 SetPageError(page);
3381 ret = PTR_ERR_OR_ZERO(em);
3382 break;
3383 }
3384
3385 extent_offset = cur - em->start;
3386 em_end = extent_map_end(em);
3387 BUG_ON(em_end <= cur);
3388 BUG_ON(end < cur);
3389 iosize = min(em_end - cur, end - cur + 1);
3390 iosize = ALIGN(iosize, blocksize);
3391 sector = (em->block_start + extent_offset) >> 9;
3392 bdev = em->bdev;
3393 block_start = em->block_start;
3394 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3395 free_extent_map(em);
3396 em = NULL;
3397
3398 /*
3399 * compressed and inline extents are written through other
3400 * paths in the FS
3401 */
3402 if (compressed || block_start == EXTENT_MAP_HOLE ||
3403 block_start == EXTENT_MAP_INLINE) {
3404 /*
3405 * end_io notification does not happen here for
3406 * compressed extents
3407 */
3408 if (!compressed && tree->ops &&
3409 tree->ops->writepage_end_io_hook)
3410 tree->ops->writepage_end_io_hook(page, cur,
3411 cur + iosize - 1,
3412 NULL, 1);
3413 else if (compressed) {
3414 /* we don't want to end_page_writeback on
3415 * a compressed extent. this happens
3416 * elsewhere
3417 */
3418 nr++;
3419 }
3420
3421 cur += iosize;
3422 pg_offset += iosize;
3423 continue;
3424 }
3425
3426 if (tree->ops && tree->ops->writepage_io_hook) {
3427 ret = tree->ops->writepage_io_hook(page, cur,
3428 cur + iosize - 1);
3429 } else {
3430 ret = 0;
3431 }
3432 if (ret) {
3433 SetPageError(page);
3434 } else {
3435 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3436
3437 set_range_writeback(tree, cur, cur + iosize - 1);
3438 if (!PageWriteback(page)) {
3439 btrfs_err(BTRFS_I(inode)->root->fs_info,
3440 "page %lu not writeback, cur %llu end %llu",
3441 page->index, cur, end);
3442 }
3443
3444 ret = submit_extent_page(write_flags, tree, page,
3445 sector, iosize, pg_offset,
3446 bdev, &epd->bio, max_nr,
3447 end_bio_extent_writepage,
3448 0, 0, 0);
3449 if (ret)
3450 SetPageError(page);
3451 }
3452 cur = cur + iosize;
3453 pg_offset += iosize;
3454 nr++;
3455 }
3456 done:
3457 *nr_ret = nr;
3458
3459 done_unlocked:
3460
3461 /* drop our reference on any cached states */
3462 free_extent_state(cached_state);
3463 return ret;
3464 }
3465
3466 /*
3467 * the writepage semantics are similar to regular writepage. extent
3468 * records are inserted to lock ranges in the tree, and as dirty areas
3469 * are found, they are marked writeback. Then the lock bits are removed
3470 * and the end_io handler clears the writeback ranges
3471 */
3472 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3473 void *data)
3474 {
3475 struct inode *inode = page->mapping->host;
3476 struct extent_page_data *epd = data;
3477 u64 start = page_offset(page);
3478 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3479 int ret;
3480 int nr = 0;
3481 size_t pg_offset = 0;
3482 loff_t i_size = i_size_read(inode);
3483 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3484 int write_flags;
3485 unsigned long nr_written = 0;
3486
3487 if (wbc->sync_mode == WB_SYNC_ALL)
3488 write_flags = WRITE_SYNC;
3489 else
3490 write_flags = WRITE;
3491
3492 trace___extent_writepage(page, inode, wbc);
3493
3494 WARN_ON(!PageLocked(page));
3495
3496 ClearPageError(page);
3497
3498 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3499 if (page->index > end_index ||
3500 (page->index == end_index && !pg_offset)) {
3501 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3502 unlock_page(page);
3503 return 0;
3504 }
3505
3506 if (page->index == end_index) {
3507 char *userpage;
3508
3509 userpage = kmap_atomic(page);
3510 memset(userpage + pg_offset, 0,
3511 PAGE_CACHE_SIZE - pg_offset);
3512 kunmap_atomic(userpage);
3513 flush_dcache_page(page);
3514 }
3515
3516 pg_offset = 0;
3517
3518 set_page_extent_mapped(page);
3519
3520 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3521 if (ret == 1)
3522 goto done_unlocked;
3523 if (ret)
3524 goto done;
3525
3526 ret = __extent_writepage_io(inode, page, wbc, epd,
3527 i_size, nr_written, write_flags, &nr);
3528 if (ret == 1)
3529 goto done_unlocked;
3530
3531 done:
3532 if (nr == 0) {
3533 /* make sure the mapping tag for page dirty gets cleared */
3534 set_page_writeback(page);
3535 end_page_writeback(page);
3536 }
3537 if (PageError(page)) {
3538 ret = ret < 0 ? ret : -EIO;
3539 end_extent_writepage(page, ret, start, page_end);
3540 }
3541 unlock_page(page);
3542 return ret;
3543
3544 done_unlocked:
3545 return 0;
3546 }
3547
3548 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3549 {
3550 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3551 TASK_UNINTERRUPTIBLE);
3552 }
3553
3554 static noinline_for_stack int
3555 lock_extent_buffer_for_io(struct extent_buffer *eb,
3556 struct btrfs_fs_info *fs_info,
3557 struct extent_page_data *epd)
3558 {
3559 unsigned long i, num_pages;
3560 int flush = 0;
3561 int ret = 0;
3562
3563 if (!btrfs_try_tree_write_lock(eb)) {
3564 flush = 1;
3565 flush_write_bio(epd);
3566 btrfs_tree_lock(eb);
3567 }
3568
3569 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3570 btrfs_tree_unlock(eb);
3571 if (!epd->sync_io)
3572 return 0;
3573 if (!flush) {
3574 flush_write_bio(epd);
3575 flush = 1;
3576 }
3577 while (1) {
3578 wait_on_extent_buffer_writeback(eb);
3579 btrfs_tree_lock(eb);
3580 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3581 break;
3582 btrfs_tree_unlock(eb);
3583 }
3584 }
3585
3586 /*
3587 * We need to do this to prevent races in people who check if the eb is
3588 * under IO since we can end up having no IO bits set for a short period
3589 * of time.
3590 */
3591 spin_lock(&eb->refs_lock);
3592 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3593 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3594 spin_unlock(&eb->refs_lock);
3595 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3596 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3597 -eb->len,
3598 fs_info->dirty_metadata_batch);
3599 ret = 1;
3600 } else {
3601 spin_unlock(&eb->refs_lock);
3602 }
3603
3604 btrfs_tree_unlock(eb);
3605
3606 if (!ret)
3607 return ret;
3608
3609 num_pages = num_extent_pages(eb->start, eb->len);
3610 for (i = 0; i < num_pages; i++) {
3611 struct page *p = eb->pages[i];
3612
3613 if (!trylock_page(p)) {
3614 if (!flush) {
3615 flush_write_bio(epd);
3616 flush = 1;
3617 }
3618 lock_page(p);
3619 }
3620 }
3621
3622 return ret;
3623 }
3624
3625 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3626 {
3627 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3628 smp_mb__after_atomic();
3629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3630 }
3631
3632 static void set_btree_ioerr(struct page *page)
3633 {
3634 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3635 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3636
3637 SetPageError(page);
3638 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3639 return;
3640
3641 /*
3642 * If writeback for a btree extent that doesn't belong to a log tree
3643 * failed, increment the counter transaction->eb_write_errors.
3644 * We do this because while the transaction is running and before it's
3645 * committing (when we call filemap_fdata[write|wait]_range against
3646 * the btree inode), we might have
3647 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3648 * returns an error or an error happens during writeback, when we're
3649 * committing the transaction we wouldn't know about it, since the pages
3650 * can be no longer dirty nor marked anymore for writeback (if a
3651 * subsequent modification to the extent buffer didn't happen before the
3652 * transaction commit), which makes filemap_fdata[write|wait]_range not
3653 * able to find the pages tagged with SetPageError at transaction
3654 * commit time. So if this happens we must abort the transaction,
3655 * otherwise we commit a super block with btree roots that point to
3656 * btree nodes/leafs whose content on disk is invalid - either garbage
3657 * or the content of some node/leaf from a past generation that got
3658 * cowed or deleted and is no longer valid.
3659 *
3660 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3661 * not be enough - we need to distinguish between log tree extents vs
3662 * non-log tree extents, and the next filemap_fdatawait_range() call
3663 * will catch and clear such errors in the mapping - and that call might
3664 * be from a log sync and not from a transaction commit. Also, checking
3665 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3666 * not done and would not be reliable - the eb might have been released
3667 * from memory and reading it back again means that flag would not be
3668 * set (since it's a runtime flag, not persisted on disk).
3669 *
3670 * Using the flags below in the btree inode also makes us achieve the
3671 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3672 * writeback for all dirty pages and before filemap_fdatawait_range()
3673 * is called, the writeback for all dirty pages had already finished
3674 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3675 * filemap_fdatawait_range() would return success, as it could not know
3676 * that writeback errors happened (the pages were no longer tagged for
3677 * writeback).
3678 */
3679 switch (eb->log_index) {
3680 case -1:
3681 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3682 break;
3683 case 0:
3684 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3685 break;
3686 case 1:
3687 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3688 break;
3689 default:
3690 BUG(); /* unexpected, logic error */
3691 }
3692 }
3693
3694 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3695 {
3696 struct bio_vec *bvec;
3697 struct extent_buffer *eb;
3698 int i, done;
3699
3700 bio_for_each_segment_all(bvec, bio, i) {
3701 struct page *page = bvec->bv_page;
3702
3703 eb = (struct extent_buffer *)page->private;
3704 BUG_ON(!eb);
3705 done = atomic_dec_and_test(&eb->io_pages);
3706
3707 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3708 ClearPageUptodate(page);
3709 set_btree_ioerr(page);
3710 }
3711
3712 end_page_writeback(page);
3713
3714 if (!done)
3715 continue;
3716
3717 end_extent_buffer_writeback(eb);
3718 }
3719
3720 bio_put(bio);
3721 }
3722
3723 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3724 struct btrfs_fs_info *fs_info,
3725 struct writeback_control *wbc,
3726 struct extent_page_data *epd)
3727 {
3728 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3729 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3730 u64 offset = eb->start;
3731 unsigned long i, num_pages;
3732 unsigned long bio_flags = 0;
3733 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3734 int ret = 0;
3735
3736 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3737 num_pages = num_extent_pages(eb->start, eb->len);
3738 atomic_set(&eb->io_pages, num_pages);
3739 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3740 bio_flags = EXTENT_BIO_TREE_LOG;
3741
3742 for (i = 0; i < num_pages; i++) {
3743 struct page *p = eb->pages[i];
3744
3745 clear_page_dirty_for_io(p);
3746 set_page_writeback(p);
3747 ret = submit_extent_page(rw, tree, p, offset >> 9,
3748 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3749 -1, end_bio_extent_buffer_writepage,
3750 0, epd->bio_flags, bio_flags);
3751 epd->bio_flags = bio_flags;
3752 if (ret) {
3753 set_btree_ioerr(p);
3754 end_page_writeback(p);
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3757 ret = -EIO;
3758 break;
3759 }
3760 offset += PAGE_CACHE_SIZE;
3761 update_nr_written(p, wbc, 1);
3762 unlock_page(p);
3763 }
3764
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
3767 struct page *p = eb->pages[i];
3768 clear_page_dirty_for_io(p);
3769 unlock_page(p);
3770 }
3771 }
3772
3773 return ret;
3774 }
3775
3776 int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3778 {
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3783 .bio = NULL,
3784 .tree = tree,
3785 .extent_locked = 0,
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787 .bio_flags = 0,
3788 };
3789 int ret = 0;
3790 int done = 0;
3791 int nr_to_write_done = 0;
3792 struct pagevec pvec;
3793 int nr_pages;
3794 pgoff_t index;
3795 pgoff_t end; /* Inclusive */
3796 int scanned = 0;
3797 int tag;
3798
3799 pagevec_init(&pvec, 0);
3800 if (wbc->range_cyclic) {
3801 index = mapping->writeback_index; /* Start from prev offset */
3802 end = -1;
3803 } else {
3804 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3805 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3806 scanned = 1;
3807 }
3808 if (wbc->sync_mode == WB_SYNC_ALL)
3809 tag = PAGECACHE_TAG_TOWRITE;
3810 else
3811 tag = PAGECACHE_TAG_DIRTY;
3812 retry:
3813 if (wbc->sync_mode == WB_SYNC_ALL)
3814 tag_pages_for_writeback(mapping, index, end);
3815 while (!done && !nr_to_write_done && (index <= end) &&
3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818 unsigned i;
3819
3820 scanned = 1;
3821 for (i = 0; i < nr_pages; i++) {
3822 struct page *page = pvec.pages[i];
3823
3824 if (!PagePrivate(page))
3825 continue;
3826
3827 if (!wbc->range_cyclic && page->index > end) {
3828 done = 1;
3829 break;
3830 }
3831
3832 spin_lock(&mapping->private_lock);
3833 if (!PagePrivate(page)) {
3834 spin_unlock(&mapping->private_lock);
3835 continue;
3836 }
3837
3838 eb = (struct extent_buffer *)page->private;
3839
3840 /*
3841 * Shouldn't happen and normally this would be a BUG_ON
3842 * but no sense in crashing the users box for something
3843 * we can survive anyway.
3844 */
3845 if (WARN_ON(!eb)) {
3846 spin_unlock(&mapping->private_lock);
3847 continue;
3848 }
3849
3850 if (eb == prev_eb) {
3851 spin_unlock(&mapping->private_lock);
3852 continue;
3853 }
3854
3855 ret = atomic_inc_not_zero(&eb->refs);
3856 spin_unlock(&mapping->private_lock);
3857 if (!ret)
3858 continue;
3859
3860 prev_eb = eb;
3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862 if (!ret) {
3863 free_extent_buffer(eb);
3864 continue;
3865 }
3866
3867 ret = write_one_eb(eb, fs_info, wbc, &epd);
3868 if (ret) {
3869 done = 1;
3870 free_extent_buffer(eb);
3871 break;
3872 }
3873 free_extent_buffer(eb);
3874
3875 /*
3876 * the filesystem may choose to bump up nr_to_write.
3877 * We have to make sure to honor the new nr_to_write
3878 * at any time
3879 */
3880 nr_to_write_done = wbc->nr_to_write <= 0;
3881 }
3882 pagevec_release(&pvec);
3883 cond_resched();
3884 }
3885 if (!scanned && !done) {
3886 /*
3887 * We hit the last page and there is more work to be done: wrap
3888 * back to the start of the file
3889 */
3890 scanned = 1;
3891 index = 0;
3892 goto retry;
3893 }
3894 flush_write_bio(&epd);
3895 return ret;
3896 }
3897
3898 /**
3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3900 * @mapping: address space structure to write
3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902 * @writepage: function called for each page
3903 * @data: data passed to writepage function
3904 *
3905 * If a page is already under I/O, write_cache_pages() skips it, even
3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3908 * and msync() need to guarantee that all the data which was dirty at the time
3909 * the call was made get new I/O started against them. If wbc->sync_mode is
3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911 * existing IO to complete.
3912 */
3913 static int extent_write_cache_pages(struct extent_io_tree *tree,
3914 struct address_space *mapping,
3915 struct writeback_control *wbc,
3916 writepage_t writepage, void *data,
3917 void (*flush_fn)(void *))
3918 {
3919 struct inode *inode = mapping->host;
3920 int ret = 0;
3921 int done = 0;
3922 int err = 0;
3923 int nr_to_write_done = 0;
3924 struct pagevec pvec;
3925 int nr_pages;
3926 pgoff_t index;
3927 pgoff_t end; /* Inclusive */
3928 int scanned = 0;
3929 int tag;
3930
3931 /*
3932 * We have to hold onto the inode so that ordered extents can do their
3933 * work when the IO finishes. The alternative to this is failing to add
3934 * an ordered extent if the igrab() fails there and that is a huge pain
3935 * to deal with, so instead just hold onto the inode throughout the
3936 * writepages operation. If it fails here we are freeing up the inode
3937 * anyway and we'd rather not waste our time writing out stuff that is
3938 * going to be truncated anyway.
3939 */
3940 if (!igrab(inode))
3941 return 0;
3942
3943 pagevec_init(&pvec, 0);
3944 if (wbc->range_cyclic) {
3945 index = mapping->writeback_index; /* Start from prev offset */
3946 end = -1;
3947 } else {
3948 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3949 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3950 scanned = 1;
3951 }
3952 if (wbc->sync_mode == WB_SYNC_ALL)
3953 tag = PAGECACHE_TAG_TOWRITE;
3954 else
3955 tag = PAGECACHE_TAG_DIRTY;
3956 retry:
3957 if (wbc->sync_mode == WB_SYNC_ALL)
3958 tag_pages_for_writeback(mapping, index, end);
3959 while (!done && !nr_to_write_done && (index <= end) &&
3960 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3961 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3962 unsigned i;
3963
3964 scanned = 1;
3965 for (i = 0; i < nr_pages; i++) {
3966 struct page *page = pvec.pages[i];
3967
3968 /*
3969 * At this point we hold neither mapping->tree_lock nor
3970 * lock on the page itself: the page may be truncated or
3971 * invalidated (changing page->mapping to NULL), or even
3972 * swizzled back from swapper_space to tmpfs file
3973 * mapping
3974 */
3975 if (!trylock_page(page)) {
3976 flush_fn(data);
3977 lock_page(page);
3978 }
3979
3980 if (unlikely(page->mapping != mapping)) {
3981 unlock_page(page);
3982 continue;
3983 }
3984
3985 if (!wbc->range_cyclic && page->index > end) {
3986 done = 1;
3987 unlock_page(page);
3988 continue;
3989 }
3990
3991 if (wbc->sync_mode != WB_SYNC_NONE) {
3992 if (PageWriteback(page))
3993 flush_fn(data);
3994 wait_on_page_writeback(page);
3995 }
3996
3997 if (PageWriteback(page) ||
3998 !clear_page_dirty_for_io(page)) {
3999 unlock_page(page);
4000 continue;
4001 }
4002
4003 ret = (*writepage)(page, wbc, data);
4004
4005 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4006 unlock_page(page);
4007 ret = 0;
4008 }
4009 if (!err && ret < 0)
4010 err = ret;
4011
4012 /*
4013 * the filesystem may choose to bump up nr_to_write.
4014 * We have to make sure to honor the new nr_to_write
4015 * at any time
4016 */
4017 nr_to_write_done = wbc->nr_to_write <= 0;
4018 }
4019 pagevec_release(&pvec);
4020 cond_resched();
4021 }
4022 if (!scanned && !done && !err) {
4023 /*
4024 * We hit the last page and there is more work to be done: wrap
4025 * back to the start of the file
4026 */
4027 scanned = 1;
4028 index = 0;
4029 goto retry;
4030 }
4031 btrfs_add_delayed_iput(inode);
4032 return err;
4033 }
4034
4035 static void flush_epd_write_bio(struct extent_page_data *epd)
4036 {
4037 if (epd->bio) {
4038 int rw = WRITE;
4039 int ret;
4040
4041 if (epd->sync_io)
4042 rw = WRITE_SYNC;
4043
4044 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4045 BUG_ON(ret < 0); /* -ENOMEM */
4046 epd->bio = NULL;
4047 }
4048 }
4049
4050 static noinline void flush_write_bio(void *data)
4051 {
4052 struct extent_page_data *epd = data;
4053 flush_epd_write_bio(epd);
4054 }
4055
4056 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4057 get_extent_t *get_extent,
4058 struct writeback_control *wbc)
4059 {
4060 int ret;
4061 struct extent_page_data epd = {
4062 .bio = NULL,
4063 .tree = tree,
4064 .get_extent = get_extent,
4065 .extent_locked = 0,
4066 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4067 .bio_flags = 0,
4068 };
4069
4070 ret = __extent_writepage(page, wbc, &epd);
4071
4072 flush_epd_write_bio(&epd);
4073 return ret;
4074 }
4075
4076 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4077 u64 start, u64 end, get_extent_t *get_extent,
4078 int mode)
4079 {
4080 int ret = 0;
4081 struct address_space *mapping = inode->i_mapping;
4082 struct page *page;
4083 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4084 PAGE_CACHE_SHIFT;
4085
4086 struct extent_page_data epd = {
4087 .bio = NULL,
4088 .tree = tree,
4089 .get_extent = get_extent,
4090 .extent_locked = 1,
4091 .sync_io = mode == WB_SYNC_ALL,
4092 .bio_flags = 0,
4093 };
4094 struct writeback_control wbc_writepages = {
4095 .sync_mode = mode,
4096 .nr_to_write = nr_pages * 2,
4097 .range_start = start,
4098 .range_end = end + 1,
4099 };
4100
4101 while (start <= end) {
4102 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4103 if (clear_page_dirty_for_io(page))
4104 ret = __extent_writepage(page, &wbc_writepages, &epd);
4105 else {
4106 if (tree->ops && tree->ops->writepage_end_io_hook)
4107 tree->ops->writepage_end_io_hook(page, start,
4108 start + PAGE_CACHE_SIZE - 1,
4109 NULL, 1);
4110 unlock_page(page);
4111 }
4112 page_cache_release(page);
4113 start += PAGE_CACHE_SIZE;
4114 }
4115
4116 flush_epd_write_bio(&epd);
4117 return ret;
4118 }
4119
4120 int extent_writepages(struct extent_io_tree *tree,
4121 struct address_space *mapping,
4122 get_extent_t *get_extent,
4123 struct writeback_control *wbc)
4124 {
4125 int ret = 0;
4126 struct extent_page_data epd = {
4127 .bio = NULL,
4128 .tree = tree,
4129 .get_extent = get_extent,
4130 .extent_locked = 0,
4131 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4132 .bio_flags = 0,
4133 };
4134
4135 ret = extent_write_cache_pages(tree, mapping, wbc,
4136 __extent_writepage, &epd,
4137 flush_write_bio);
4138 flush_epd_write_bio(&epd);
4139 return ret;
4140 }
4141
4142 int extent_readpages(struct extent_io_tree *tree,
4143 struct address_space *mapping,
4144 struct list_head *pages, unsigned nr_pages,
4145 get_extent_t get_extent)
4146 {
4147 struct bio *bio = NULL;
4148 unsigned page_idx;
4149 unsigned long bio_flags = 0;
4150 struct page *pagepool[16];
4151 struct page *page;
4152 struct extent_map *em_cached = NULL;
4153 int nr = 0;
4154
4155 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4156 page = list_entry(pages->prev, struct page, lru);
4157
4158 prefetchw(&page->flags);
4159 list_del(&page->lru);
4160 if (add_to_page_cache_lru(page, mapping,
4161 page->index, GFP_NOFS)) {
4162 page_cache_release(page);
4163 continue;
4164 }
4165
4166 pagepool[nr++] = page;
4167 if (nr < ARRAY_SIZE(pagepool))
4168 continue;
4169 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4170 &bio, 0, &bio_flags, READ);
4171 nr = 0;
4172 }
4173 if (nr)
4174 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4175 &bio, 0, &bio_flags, READ);
4176
4177 if (em_cached)
4178 free_extent_map(em_cached);
4179
4180 BUG_ON(!list_empty(pages));
4181 if (bio)
4182 return submit_one_bio(READ, bio, 0, bio_flags);
4183 return 0;
4184 }
4185
4186 /*
4187 * basic invalidatepage code, this waits on any locked or writeback
4188 * ranges corresponding to the page, and then deletes any extent state
4189 * records from the tree
4190 */
4191 int extent_invalidatepage(struct extent_io_tree *tree,
4192 struct page *page, unsigned long offset)
4193 {
4194 struct extent_state *cached_state = NULL;
4195 u64 start = page_offset(page);
4196 u64 end = start + PAGE_CACHE_SIZE - 1;
4197 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4198
4199 start += ALIGN(offset, blocksize);
4200 if (start > end)
4201 return 0;
4202
4203 lock_extent_bits(tree, start, end, 0, &cached_state);
4204 wait_on_page_writeback(page);
4205 clear_extent_bit(tree, start, end,
4206 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4207 EXTENT_DO_ACCOUNTING,
4208 1, 1, &cached_state, GFP_NOFS);
4209 return 0;
4210 }
4211
4212 /*
4213 * a helper for releasepage, this tests for areas of the page that
4214 * are locked or under IO and drops the related state bits if it is safe
4215 * to drop the page.
4216 */
4217 static int try_release_extent_state(struct extent_map_tree *map,
4218 struct extent_io_tree *tree,
4219 struct page *page, gfp_t mask)
4220 {
4221 u64 start = page_offset(page);
4222 u64 end = start + PAGE_CACHE_SIZE - 1;
4223 int ret = 1;
4224
4225 if (test_range_bit(tree, start, end,
4226 EXTENT_IOBITS, 0, NULL))
4227 ret = 0;
4228 else {
4229 if ((mask & GFP_NOFS) == GFP_NOFS)
4230 mask = GFP_NOFS;
4231 /*
4232 * at this point we can safely clear everything except the
4233 * locked bit and the nodatasum bit
4234 */
4235 ret = clear_extent_bit(tree, start, end,
4236 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4237 0, 0, NULL, mask);
4238
4239 /* if clear_extent_bit failed for enomem reasons,
4240 * we can't allow the release to continue.
4241 */
4242 if (ret < 0)
4243 ret = 0;
4244 else
4245 ret = 1;
4246 }
4247 return ret;
4248 }
4249
4250 /*
4251 * a helper for releasepage. As long as there are no locked extents
4252 * in the range corresponding to the page, both state records and extent
4253 * map records are removed
4254 */
4255 int try_release_extent_mapping(struct extent_map_tree *map,
4256 struct extent_io_tree *tree, struct page *page,
4257 gfp_t mask)
4258 {
4259 struct extent_map *em;
4260 u64 start = page_offset(page);
4261 u64 end = start + PAGE_CACHE_SIZE - 1;
4262
4263 if ((mask & __GFP_WAIT) &&
4264 page->mapping->host->i_size > 16 * 1024 * 1024) {
4265 u64 len;
4266 while (start <= end) {
4267 len = end - start + 1;
4268 write_lock(&map->lock);
4269 em = lookup_extent_mapping(map, start, len);
4270 if (!em) {
4271 write_unlock(&map->lock);
4272 break;
4273 }
4274 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4275 em->start != start) {
4276 write_unlock(&map->lock);
4277 free_extent_map(em);
4278 break;
4279 }
4280 if (!test_range_bit(tree, em->start,
4281 extent_map_end(em) - 1,
4282 EXTENT_LOCKED | EXTENT_WRITEBACK,
4283 0, NULL)) {
4284 remove_extent_mapping(map, em);
4285 /* once for the rb tree */
4286 free_extent_map(em);
4287 }
4288 start = extent_map_end(em);
4289 write_unlock(&map->lock);
4290
4291 /* once for us */
4292 free_extent_map(em);
4293 }
4294 }
4295 return try_release_extent_state(map, tree, page, mask);
4296 }
4297
4298 /*
4299 * helper function for fiemap, which doesn't want to see any holes.
4300 * This maps until we find something past 'last'
4301 */
4302 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4303 u64 offset,
4304 u64 last,
4305 get_extent_t *get_extent)
4306 {
4307 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4308 struct extent_map *em;
4309 u64 len;
4310
4311 if (offset >= last)
4312 return NULL;
4313
4314 while (1) {
4315 len = last - offset;
4316 if (len == 0)
4317 break;
4318 len = ALIGN(len, sectorsize);
4319 em = get_extent(inode, NULL, 0, offset, len, 0);
4320 if (IS_ERR_OR_NULL(em))
4321 return em;
4322
4323 /* if this isn't a hole return it */
4324 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4325 em->block_start != EXTENT_MAP_HOLE) {
4326 return em;
4327 }
4328
4329 /* this is a hole, advance to the next extent */
4330 offset = extent_map_end(em);
4331 free_extent_map(em);
4332 if (offset >= last)
4333 break;
4334 }
4335 return NULL;
4336 }
4337
4338 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4339 __u64 start, __u64 len, get_extent_t *get_extent)
4340 {
4341 int ret = 0;
4342 u64 off = start;
4343 u64 max = start + len;
4344 u32 flags = 0;
4345 u32 found_type;
4346 u64 last;
4347 u64 last_for_get_extent = 0;
4348 u64 disko = 0;
4349 u64 isize = i_size_read(inode);
4350 struct btrfs_key found_key;
4351 struct extent_map *em = NULL;
4352 struct extent_state *cached_state = NULL;
4353 struct btrfs_path *path;
4354 struct btrfs_root *root = BTRFS_I(inode)->root;
4355 int end = 0;
4356 u64 em_start = 0;
4357 u64 em_len = 0;
4358 u64 em_end = 0;
4359
4360 if (len == 0)
4361 return -EINVAL;
4362
4363 path = btrfs_alloc_path();
4364 if (!path)
4365 return -ENOMEM;
4366 path->leave_spinning = 1;
4367
4368 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4369 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4370
4371 /*
4372 * lookup the last file extent. We're not using i_size here
4373 * because there might be preallocation past i_size
4374 */
4375 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4376 0);
4377 if (ret < 0) {
4378 btrfs_free_path(path);
4379 return ret;
4380 }
4381 WARN_ON(!ret);
4382 path->slots[0]--;
4383 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4384 found_type = found_key.type;
4385
4386 /* No extents, but there might be delalloc bits */
4387 if (found_key.objectid != btrfs_ino(inode) ||
4388 found_type != BTRFS_EXTENT_DATA_KEY) {
4389 /* have to trust i_size as the end */
4390 last = (u64)-1;
4391 last_for_get_extent = isize;
4392 } else {
4393 /*
4394 * remember the start of the last extent. There are a
4395 * bunch of different factors that go into the length of the
4396 * extent, so its much less complex to remember where it started
4397 */
4398 last = found_key.offset;
4399 last_for_get_extent = last + 1;
4400 }
4401 btrfs_release_path(path);
4402
4403 /*
4404 * we might have some extents allocated but more delalloc past those
4405 * extents. so, we trust isize unless the start of the last extent is
4406 * beyond isize
4407 */
4408 if (last < isize) {
4409 last = (u64)-1;
4410 last_for_get_extent = isize;
4411 }
4412
4413 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4414 &cached_state);
4415
4416 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4417 get_extent);
4418 if (!em)
4419 goto out;
4420 if (IS_ERR(em)) {
4421 ret = PTR_ERR(em);
4422 goto out;
4423 }
4424
4425 while (!end) {
4426 u64 offset_in_extent = 0;
4427
4428 /* break if the extent we found is outside the range */
4429 if (em->start >= max || extent_map_end(em) < off)
4430 break;
4431
4432 /*
4433 * get_extent may return an extent that starts before our
4434 * requested range. We have to make sure the ranges
4435 * we return to fiemap always move forward and don't
4436 * overlap, so adjust the offsets here
4437 */
4438 em_start = max(em->start, off);
4439
4440 /*
4441 * record the offset from the start of the extent
4442 * for adjusting the disk offset below. Only do this if the
4443 * extent isn't compressed since our in ram offset may be past
4444 * what we have actually allocated on disk.
4445 */
4446 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4447 offset_in_extent = em_start - em->start;
4448 em_end = extent_map_end(em);
4449 em_len = em_end - em_start;
4450 disko = 0;
4451 flags = 0;
4452
4453 /*
4454 * bump off for our next call to get_extent
4455 */
4456 off = extent_map_end(em);
4457 if (off >= max)
4458 end = 1;
4459
4460 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4461 end = 1;
4462 flags |= FIEMAP_EXTENT_LAST;
4463 } else if (em->block_start == EXTENT_MAP_INLINE) {
4464 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4465 FIEMAP_EXTENT_NOT_ALIGNED);
4466 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4467 flags |= (FIEMAP_EXTENT_DELALLOC |
4468 FIEMAP_EXTENT_UNKNOWN);
4469 } else if (fieinfo->fi_extents_max) {
4470 u64 bytenr = em->block_start -
4471 (em->start - em->orig_start);
4472
4473 disko = em->block_start + offset_in_extent;
4474
4475 /*
4476 * As btrfs supports shared space, this information
4477 * can be exported to userspace tools via
4478 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4479 * then we're just getting a count and we can skip the
4480 * lookup stuff.
4481 */
4482 ret = btrfs_check_shared(NULL, root->fs_info,
4483 root->objectid,
4484 btrfs_ino(inode), bytenr);
4485 if (ret < 0)
4486 goto out_free;
4487 if (ret)
4488 flags |= FIEMAP_EXTENT_SHARED;
4489 ret = 0;
4490 }
4491 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4492 flags |= FIEMAP_EXTENT_ENCODED;
4493
4494 free_extent_map(em);
4495 em = NULL;
4496 if ((em_start >= last) || em_len == (u64)-1 ||
4497 (last == (u64)-1 && isize <= em_end)) {
4498 flags |= FIEMAP_EXTENT_LAST;
4499 end = 1;
4500 }
4501
4502 /* now scan forward to see if this is really the last extent. */
4503 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4504 get_extent);
4505 if (IS_ERR(em)) {
4506 ret = PTR_ERR(em);
4507 goto out;
4508 }
4509 if (!em) {
4510 flags |= FIEMAP_EXTENT_LAST;
4511 end = 1;
4512 }
4513 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4514 em_len, flags);
4515 if (ret) {
4516 if (ret == 1)
4517 ret = 0;
4518 goto out_free;
4519 }
4520 }
4521 out_free:
4522 free_extent_map(em);
4523 out:
4524 btrfs_free_path(path);
4525 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4526 &cached_state, GFP_NOFS);
4527 return ret;
4528 }
4529
4530 static void __free_extent_buffer(struct extent_buffer *eb)
4531 {
4532 btrfs_leak_debug_del(&eb->leak_list);
4533 kmem_cache_free(extent_buffer_cache, eb);
4534 }
4535
4536 int extent_buffer_under_io(struct extent_buffer *eb)
4537 {
4538 return (atomic_read(&eb->io_pages) ||
4539 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4540 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4541 }
4542
4543 /*
4544 * Helper for releasing extent buffer page.
4545 */
4546 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4547 {
4548 unsigned long index;
4549 struct page *page;
4550 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4551
4552 BUG_ON(extent_buffer_under_io(eb));
4553
4554 index = num_extent_pages(eb->start, eb->len);
4555 if (index == 0)
4556 return;
4557
4558 do {
4559 index--;
4560 page = eb->pages[index];
4561 if (!page)
4562 continue;
4563 if (mapped)
4564 spin_lock(&page->mapping->private_lock);
4565 /*
4566 * We do this since we'll remove the pages after we've
4567 * removed the eb from the radix tree, so we could race
4568 * and have this page now attached to the new eb. So
4569 * only clear page_private if it's still connected to
4570 * this eb.
4571 */
4572 if (PagePrivate(page) &&
4573 page->private == (unsigned long)eb) {
4574 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4575 BUG_ON(PageDirty(page));
4576 BUG_ON(PageWriteback(page));
4577 /*
4578 * We need to make sure we haven't be attached
4579 * to a new eb.
4580 */
4581 ClearPagePrivate(page);
4582 set_page_private(page, 0);
4583 /* One for the page private */
4584 page_cache_release(page);
4585 }
4586
4587 if (mapped)
4588 spin_unlock(&page->mapping->private_lock);
4589
4590 /* One for when we alloced the page */
4591 page_cache_release(page);
4592 } while (index != 0);
4593 }
4594
4595 /*
4596 * Helper for releasing the extent buffer.
4597 */
4598 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4599 {
4600 btrfs_release_extent_buffer_page(eb);
4601 __free_extent_buffer(eb);
4602 }
4603
4604 static struct extent_buffer *
4605 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4606 unsigned long len)
4607 {
4608 struct extent_buffer *eb = NULL;
4609
4610 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS);
4611 if (eb == NULL)
4612 return NULL;
4613 eb->start = start;
4614 eb->len = len;
4615 eb->fs_info = fs_info;
4616 eb->bflags = 0;
4617 rwlock_init(&eb->lock);
4618 atomic_set(&eb->write_locks, 0);
4619 atomic_set(&eb->read_locks, 0);
4620 atomic_set(&eb->blocking_readers, 0);
4621 atomic_set(&eb->blocking_writers, 0);
4622 atomic_set(&eb->spinning_readers, 0);
4623 atomic_set(&eb->spinning_writers, 0);
4624 eb->lock_nested = 0;
4625 init_waitqueue_head(&eb->write_lock_wq);
4626 init_waitqueue_head(&eb->read_lock_wq);
4627
4628 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4629
4630 spin_lock_init(&eb->refs_lock);
4631 atomic_set(&eb->refs, 1);
4632 atomic_set(&eb->io_pages, 0);
4633
4634 /*
4635 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4636 */
4637 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4638 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4639 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4640
4641 return eb;
4642 }
4643
4644 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4645 {
4646 unsigned long i;
4647 struct page *p;
4648 struct extent_buffer *new;
4649 unsigned long num_pages = num_extent_pages(src->start, src->len);
4650
4651 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4652 if (new == NULL)
4653 return NULL;
4654
4655 for (i = 0; i < num_pages; i++) {
4656 p = alloc_page(GFP_NOFS);
4657 if (!p) {
4658 btrfs_release_extent_buffer(new);
4659 return NULL;
4660 }
4661 attach_extent_buffer_page(new, p);
4662 WARN_ON(PageDirty(p));
4663 SetPageUptodate(p);
4664 new->pages[i] = p;
4665 }
4666
4667 copy_extent_buffer(new, src, 0, 0, src->len);
4668 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4669 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4670
4671 return new;
4672 }
4673
4674 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4675 u64 start)
4676 {
4677 struct extent_buffer *eb;
4678 unsigned long len;
4679 unsigned long num_pages;
4680 unsigned long i;
4681
4682 if (!fs_info) {
4683 /*
4684 * Called only from tests that don't always have a fs_info
4685 * available, but we know that nodesize is 4096
4686 */
4687 len = 4096;
4688 } else {
4689 len = fs_info->tree_root->nodesize;
4690 }
4691 num_pages = num_extent_pages(0, len);
4692
4693 eb = __alloc_extent_buffer(fs_info, start, len);
4694 if (!eb)
4695 return NULL;
4696
4697 for (i = 0; i < num_pages; i++) {
4698 eb->pages[i] = alloc_page(GFP_NOFS);
4699 if (!eb->pages[i])
4700 goto err;
4701 }
4702 set_extent_buffer_uptodate(eb);
4703 btrfs_set_header_nritems(eb, 0);
4704 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4705
4706 return eb;
4707 err:
4708 for (; i > 0; i--)
4709 __free_page(eb->pages[i - 1]);
4710 __free_extent_buffer(eb);
4711 return NULL;
4712 }
4713
4714 static void check_buffer_tree_ref(struct extent_buffer *eb)
4715 {
4716 int refs;
4717 /* the ref bit is tricky. We have to make sure it is set
4718 * if we have the buffer dirty. Otherwise the
4719 * code to free a buffer can end up dropping a dirty
4720 * page
4721 *
4722 * Once the ref bit is set, it won't go away while the
4723 * buffer is dirty or in writeback, and it also won't
4724 * go away while we have the reference count on the
4725 * eb bumped.
4726 *
4727 * We can't just set the ref bit without bumping the
4728 * ref on the eb because free_extent_buffer might
4729 * see the ref bit and try to clear it. If this happens
4730 * free_extent_buffer might end up dropping our original
4731 * ref by mistake and freeing the page before we are able
4732 * to add one more ref.
4733 *
4734 * So bump the ref count first, then set the bit. If someone
4735 * beat us to it, drop the ref we added.
4736 */
4737 refs = atomic_read(&eb->refs);
4738 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4739 return;
4740
4741 spin_lock(&eb->refs_lock);
4742 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4743 atomic_inc(&eb->refs);
4744 spin_unlock(&eb->refs_lock);
4745 }
4746
4747 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4748 struct page *accessed)
4749 {
4750 unsigned long num_pages, i;
4751
4752 check_buffer_tree_ref(eb);
4753
4754 num_pages = num_extent_pages(eb->start, eb->len);
4755 for (i = 0; i < num_pages; i++) {
4756 struct page *p = eb->pages[i];
4757
4758 if (p != accessed)
4759 mark_page_accessed(p);
4760 }
4761 }
4762
4763 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4764 u64 start)
4765 {
4766 struct extent_buffer *eb;
4767
4768 rcu_read_lock();
4769 eb = radix_tree_lookup(&fs_info->buffer_radix,
4770 start >> PAGE_CACHE_SHIFT);
4771 if (eb && atomic_inc_not_zero(&eb->refs)) {
4772 rcu_read_unlock();
4773 /*
4774 * Lock our eb's refs_lock to avoid races with
4775 * free_extent_buffer. When we get our eb it might be flagged
4776 * with EXTENT_BUFFER_STALE and another task running
4777 * free_extent_buffer might have seen that flag set,
4778 * eb->refs == 2, that the buffer isn't under IO (dirty and
4779 * writeback flags not set) and it's still in the tree (flag
4780 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4781 * of decrementing the extent buffer's reference count twice.
4782 * So here we could race and increment the eb's reference count,
4783 * clear its stale flag, mark it as dirty and drop our reference
4784 * before the other task finishes executing free_extent_buffer,
4785 * which would later result in an attempt to free an extent
4786 * buffer that is dirty.
4787 */
4788 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4789 spin_lock(&eb->refs_lock);
4790 spin_unlock(&eb->refs_lock);
4791 }
4792 mark_extent_buffer_accessed(eb, NULL);
4793 return eb;
4794 }
4795 rcu_read_unlock();
4796
4797 return NULL;
4798 }
4799
4800 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4801 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4802 u64 start)
4803 {
4804 struct extent_buffer *eb, *exists = NULL;
4805 int ret;
4806
4807 eb = find_extent_buffer(fs_info, start);
4808 if (eb)
4809 return eb;
4810 eb = alloc_dummy_extent_buffer(fs_info, start);
4811 if (!eb)
4812 return NULL;
4813 eb->fs_info = fs_info;
4814 again:
4815 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4816 if (ret)
4817 goto free_eb;
4818 spin_lock(&fs_info->buffer_lock);
4819 ret = radix_tree_insert(&fs_info->buffer_radix,
4820 start >> PAGE_CACHE_SHIFT, eb);
4821 spin_unlock(&fs_info->buffer_lock);
4822 radix_tree_preload_end();
4823 if (ret == -EEXIST) {
4824 exists = find_extent_buffer(fs_info, start);
4825 if (exists)
4826 goto free_eb;
4827 else
4828 goto again;
4829 }
4830 check_buffer_tree_ref(eb);
4831 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4832
4833 /*
4834 * We will free dummy extent buffer's if they come into
4835 * free_extent_buffer with a ref count of 2, but if we are using this we
4836 * want the buffers to stay in memory until we're done with them, so
4837 * bump the ref count again.
4838 */
4839 atomic_inc(&eb->refs);
4840 return eb;
4841 free_eb:
4842 btrfs_release_extent_buffer(eb);
4843 return exists;
4844 }
4845 #endif
4846
4847 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4848 u64 start)
4849 {
4850 unsigned long len = fs_info->tree_root->nodesize;
4851 unsigned long num_pages = num_extent_pages(start, len);
4852 unsigned long i;
4853 unsigned long index = start >> PAGE_CACHE_SHIFT;
4854 struct extent_buffer *eb;
4855 struct extent_buffer *exists = NULL;
4856 struct page *p;
4857 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4858 int uptodate = 1;
4859 int ret;
4860
4861 eb = find_extent_buffer(fs_info, start);
4862 if (eb)
4863 return eb;
4864
4865 eb = __alloc_extent_buffer(fs_info, start, len);
4866 if (!eb)
4867 return NULL;
4868
4869 for (i = 0; i < num_pages; i++, index++) {
4870 p = find_or_create_page(mapping, index, GFP_NOFS);
4871 if (!p)
4872 goto free_eb;
4873
4874 spin_lock(&mapping->private_lock);
4875 if (PagePrivate(p)) {
4876 /*
4877 * We could have already allocated an eb for this page
4878 * and attached one so lets see if we can get a ref on
4879 * the existing eb, and if we can we know it's good and
4880 * we can just return that one, else we know we can just
4881 * overwrite page->private.
4882 */
4883 exists = (struct extent_buffer *)p->private;
4884 if (atomic_inc_not_zero(&exists->refs)) {
4885 spin_unlock(&mapping->private_lock);
4886 unlock_page(p);
4887 page_cache_release(p);
4888 mark_extent_buffer_accessed(exists, p);
4889 goto free_eb;
4890 }
4891 exists = NULL;
4892
4893 /*
4894 * Do this so attach doesn't complain and we need to
4895 * drop the ref the old guy had.
4896 */
4897 ClearPagePrivate(p);
4898 WARN_ON(PageDirty(p));
4899 page_cache_release(p);
4900 }
4901 attach_extent_buffer_page(eb, p);
4902 spin_unlock(&mapping->private_lock);
4903 WARN_ON(PageDirty(p));
4904 eb->pages[i] = p;
4905 if (!PageUptodate(p))
4906 uptodate = 0;
4907
4908 /*
4909 * see below about how we avoid a nasty race with release page
4910 * and why we unlock later
4911 */
4912 }
4913 if (uptodate)
4914 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4915 again:
4916 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4917 if (ret)
4918 goto free_eb;
4919
4920 spin_lock(&fs_info->buffer_lock);
4921 ret = radix_tree_insert(&fs_info->buffer_radix,
4922 start >> PAGE_CACHE_SHIFT, eb);
4923 spin_unlock(&fs_info->buffer_lock);
4924 radix_tree_preload_end();
4925 if (ret == -EEXIST) {
4926 exists = find_extent_buffer(fs_info, start);
4927 if (exists)
4928 goto free_eb;
4929 else
4930 goto again;
4931 }
4932 /* add one reference for the tree */
4933 check_buffer_tree_ref(eb);
4934 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4935
4936 /*
4937 * there is a race where release page may have
4938 * tried to find this extent buffer in the radix
4939 * but failed. It will tell the VM it is safe to
4940 * reclaim the, and it will clear the page private bit.
4941 * We must make sure to set the page private bit properly
4942 * after the extent buffer is in the radix tree so
4943 * it doesn't get lost
4944 */
4945 SetPageChecked(eb->pages[0]);
4946 for (i = 1; i < num_pages; i++) {
4947 p = eb->pages[i];
4948 ClearPageChecked(p);
4949 unlock_page(p);
4950 }
4951 unlock_page(eb->pages[0]);
4952 return eb;
4953
4954 free_eb:
4955 WARN_ON(!atomic_dec_and_test(&eb->refs));
4956 for (i = 0; i < num_pages; i++) {
4957 if (eb->pages[i])
4958 unlock_page(eb->pages[i]);
4959 }
4960
4961 btrfs_release_extent_buffer(eb);
4962 return exists;
4963 }
4964
4965 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4966 {
4967 struct extent_buffer *eb =
4968 container_of(head, struct extent_buffer, rcu_head);
4969
4970 __free_extent_buffer(eb);
4971 }
4972
4973 /* Expects to have eb->eb_lock already held */
4974 static int release_extent_buffer(struct extent_buffer *eb)
4975 {
4976 WARN_ON(atomic_read(&eb->refs) == 0);
4977 if (atomic_dec_and_test(&eb->refs)) {
4978 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4979 struct btrfs_fs_info *fs_info = eb->fs_info;
4980
4981 spin_unlock(&eb->refs_lock);
4982
4983 spin_lock(&fs_info->buffer_lock);
4984 radix_tree_delete(&fs_info->buffer_radix,
4985 eb->start >> PAGE_CACHE_SHIFT);
4986 spin_unlock(&fs_info->buffer_lock);
4987 } else {
4988 spin_unlock(&eb->refs_lock);
4989 }
4990
4991 /* Should be safe to release our pages at this point */
4992 btrfs_release_extent_buffer_page(eb);
4993 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4994 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
4995 __free_extent_buffer(eb);
4996 return 1;
4997 }
4998 #endif
4999 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5000 return 1;
5001 }
5002 spin_unlock(&eb->refs_lock);
5003
5004 return 0;
5005 }
5006
5007 void free_extent_buffer(struct extent_buffer *eb)
5008 {
5009 int refs;
5010 int old;
5011 if (!eb)
5012 return;
5013
5014 while (1) {
5015 refs = atomic_read(&eb->refs);
5016 if (refs <= 3)
5017 break;
5018 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5019 if (old == refs)
5020 return;
5021 }
5022
5023 spin_lock(&eb->refs_lock);
5024 if (atomic_read(&eb->refs) == 2 &&
5025 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5026 atomic_dec(&eb->refs);
5027
5028 if (atomic_read(&eb->refs) == 2 &&
5029 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5030 !extent_buffer_under_io(eb) &&
5031 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5032 atomic_dec(&eb->refs);
5033
5034 /*
5035 * I know this is terrible, but it's temporary until we stop tracking
5036 * the uptodate bits and such for the extent buffers.
5037 */
5038 release_extent_buffer(eb);
5039 }
5040
5041 void free_extent_buffer_stale(struct extent_buffer *eb)
5042 {
5043 if (!eb)
5044 return;
5045
5046 spin_lock(&eb->refs_lock);
5047 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5048
5049 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5050 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5051 atomic_dec(&eb->refs);
5052 release_extent_buffer(eb);
5053 }
5054
5055 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5056 {
5057 unsigned long i;
5058 unsigned long num_pages;
5059 struct page *page;
5060
5061 num_pages = num_extent_pages(eb->start, eb->len);
5062
5063 for (i = 0; i < num_pages; i++) {
5064 page = eb->pages[i];
5065 if (!PageDirty(page))
5066 continue;
5067
5068 lock_page(page);
5069 WARN_ON(!PagePrivate(page));
5070
5071 clear_page_dirty_for_io(page);
5072 spin_lock_irq(&page->mapping->tree_lock);
5073 if (!PageDirty(page)) {
5074 radix_tree_tag_clear(&page->mapping->page_tree,
5075 page_index(page),
5076 PAGECACHE_TAG_DIRTY);
5077 }
5078 spin_unlock_irq(&page->mapping->tree_lock);
5079 ClearPageError(page);
5080 unlock_page(page);
5081 }
5082 WARN_ON(atomic_read(&eb->refs) == 0);
5083 }
5084
5085 int set_extent_buffer_dirty(struct extent_buffer *eb)
5086 {
5087 unsigned long i;
5088 unsigned long num_pages;
5089 int was_dirty = 0;
5090
5091 check_buffer_tree_ref(eb);
5092
5093 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5094
5095 num_pages = num_extent_pages(eb->start, eb->len);
5096 WARN_ON(atomic_read(&eb->refs) == 0);
5097 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5098
5099 for (i = 0; i < num_pages; i++)
5100 set_page_dirty(eb->pages[i]);
5101 return was_dirty;
5102 }
5103
5104 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5105 {
5106 unsigned long i;
5107 struct page *page;
5108 unsigned long num_pages;
5109
5110 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5111 num_pages = num_extent_pages(eb->start, eb->len);
5112 for (i = 0; i < num_pages; i++) {
5113 page = eb->pages[i];
5114 if (page)
5115 ClearPageUptodate(page);
5116 }
5117 return 0;
5118 }
5119
5120 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5121 {
5122 unsigned long i;
5123 struct page *page;
5124 unsigned long num_pages;
5125
5126 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5127 num_pages = num_extent_pages(eb->start, eb->len);
5128 for (i = 0; i < num_pages; i++) {
5129 page = eb->pages[i];
5130 SetPageUptodate(page);
5131 }
5132 return 0;
5133 }
5134
5135 int extent_buffer_uptodate(struct extent_buffer *eb)
5136 {
5137 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5138 }
5139
5140 int read_extent_buffer_pages(struct extent_io_tree *tree,
5141 struct extent_buffer *eb, u64 start, int wait,
5142 get_extent_t *get_extent, int mirror_num)
5143 {
5144 unsigned long i;
5145 unsigned long start_i;
5146 struct page *page;
5147 int err;
5148 int ret = 0;
5149 int locked_pages = 0;
5150 int all_uptodate = 1;
5151 unsigned long num_pages;
5152 unsigned long num_reads = 0;
5153 struct bio *bio = NULL;
5154 unsigned long bio_flags = 0;
5155
5156 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5157 return 0;
5158
5159 if (start) {
5160 WARN_ON(start < eb->start);
5161 start_i = (start >> PAGE_CACHE_SHIFT) -
5162 (eb->start >> PAGE_CACHE_SHIFT);
5163 } else {
5164 start_i = 0;
5165 }
5166
5167 num_pages = num_extent_pages(eb->start, eb->len);
5168 for (i = start_i; i < num_pages; i++) {
5169 page = eb->pages[i];
5170 if (wait == WAIT_NONE) {
5171 if (!trylock_page(page))
5172 goto unlock_exit;
5173 } else {
5174 lock_page(page);
5175 }
5176 locked_pages++;
5177 if (!PageUptodate(page)) {
5178 num_reads++;
5179 all_uptodate = 0;
5180 }
5181 }
5182 if (all_uptodate) {
5183 if (start_i == 0)
5184 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5185 goto unlock_exit;
5186 }
5187
5188 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5189 eb->read_mirror = 0;
5190 atomic_set(&eb->io_pages, num_reads);
5191 for (i = start_i; i < num_pages; i++) {
5192 page = eb->pages[i];
5193 if (!PageUptodate(page)) {
5194 ClearPageError(page);
5195 err = __extent_read_full_page(tree, page,
5196 get_extent, &bio,
5197 mirror_num, &bio_flags,
5198 READ | REQ_META);
5199 if (err)
5200 ret = err;
5201 } else {
5202 unlock_page(page);
5203 }
5204 }
5205
5206 if (bio) {
5207 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5208 bio_flags);
5209 if (err)
5210 return err;
5211 }
5212
5213 if (ret || wait != WAIT_COMPLETE)
5214 return ret;
5215
5216 for (i = start_i; i < num_pages; i++) {
5217 page = eb->pages[i];
5218 wait_on_page_locked(page);
5219 if (!PageUptodate(page))
5220 ret = -EIO;
5221 }
5222
5223 return ret;
5224
5225 unlock_exit:
5226 i = start_i;
5227 while (locked_pages > 0) {
5228 page = eb->pages[i];
5229 i++;
5230 unlock_page(page);
5231 locked_pages--;
5232 }
5233 return ret;
5234 }
5235
5236 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5237 unsigned long start,
5238 unsigned long len)
5239 {
5240 size_t cur;
5241 size_t offset;
5242 struct page *page;
5243 char *kaddr;
5244 char *dst = (char *)dstv;
5245 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5246 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5247
5248 WARN_ON(start > eb->len);
5249 WARN_ON(start + len > eb->start + eb->len);
5250
5251 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5252
5253 while (len > 0) {
5254 page = eb->pages[i];
5255
5256 cur = min(len, (PAGE_CACHE_SIZE - offset));
5257 kaddr = page_address(page);
5258 memcpy(dst, kaddr + offset, cur);
5259
5260 dst += cur;
5261 len -= cur;
5262 offset = 0;
5263 i++;
5264 }
5265 }
5266
5267 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5268 unsigned long start,
5269 unsigned long len)
5270 {
5271 size_t cur;
5272 size_t offset;
5273 struct page *page;
5274 char *kaddr;
5275 char __user *dst = (char __user *)dstv;
5276 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5277 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5278 int ret = 0;
5279
5280 WARN_ON(start > eb->len);
5281 WARN_ON(start + len > eb->start + eb->len);
5282
5283 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5284
5285 while (len > 0) {
5286 page = eb->pages[i];
5287
5288 cur = min(len, (PAGE_CACHE_SIZE - offset));
5289 kaddr = page_address(page);
5290 if (copy_to_user(dst, kaddr + offset, cur)) {
5291 ret = -EFAULT;
5292 break;
5293 }
5294
5295 dst += cur;
5296 len -= cur;
5297 offset = 0;
5298 i++;
5299 }
5300
5301 return ret;
5302 }
5303
5304 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5305 unsigned long min_len, char **map,
5306 unsigned long *map_start,
5307 unsigned long *map_len)
5308 {
5309 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5310 char *kaddr;
5311 struct page *p;
5312 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5313 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5314 unsigned long end_i = (start_offset + start + min_len - 1) >>
5315 PAGE_CACHE_SHIFT;
5316
5317 if (i != end_i)
5318 return -EINVAL;
5319
5320 if (i == 0) {
5321 offset = start_offset;
5322 *map_start = 0;
5323 } else {
5324 offset = 0;
5325 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5326 }
5327
5328 if (start + min_len > eb->len) {
5329 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5330 "wanted %lu %lu\n",
5331 eb->start, eb->len, start, min_len);
5332 return -EINVAL;
5333 }
5334
5335 p = eb->pages[i];
5336 kaddr = page_address(p);
5337 *map = kaddr + offset;
5338 *map_len = PAGE_CACHE_SIZE - offset;
5339 return 0;
5340 }
5341
5342 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5343 unsigned long start,
5344 unsigned long len)
5345 {
5346 size_t cur;
5347 size_t offset;
5348 struct page *page;
5349 char *kaddr;
5350 char *ptr = (char *)ptrv;
5351 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5352 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5353 int ret = 0;
5354
5355 WARN_ON(start > eb->len);
5356 WARN_ON(start + len > eb->start + eb->len);
5357
5358 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5359
5360 while (len > 0) {
5361 page = eb->pages[i];
5362
5363 cur = min(len, (PAGE_CACHE_SIZE - offset));
5364
5365 kaddr = page_address(page);
5366 ret = memcmp(ptr, kaddr + offset, cur);
5367 if (ret)
5368 break;
5369
5370 ptr += cur;
5371 len -= cur;
5372 offset = 0;
5373 i++;
5374 }
5375 return ret;
5376 }
5377
5378 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5379 unsigned long start, unsigned long len)
5380 {
5381 size_t cur;
5382 size_t offset;
5383 struct page *page;
5384 char *kaddr;
5385 char *src = (char *)srcv;
5386 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5387 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5388
5389 WARN_ON(start > eb->len);
5390 WARN_ON(start + len > eb->start + eb->len);
5391
5392 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5393
5394 while (len > 0) {
5395 page = eb->pages[i];
5396 WARN_ON(!PageUptodate(page));
5397
5398 cur = min(len, PAGE_CACHE_SIZE - offset);
5399 kaddr = page_address(page);
5400 memcpy(kaddr + offset, src, cur);
5401
5402 src += cur;
5403 len -= cur;
5404 offset = 0;
5405 i++;
5406 }
5407 }
5408
5409 void memset_extent_buffer(struct extent_buffer *eb, char c,
5410 unsigned long start, unsigned long len)
5411 {
5412 size_t cur;
5413 size_t offset;
5414 struct page *page;
5415 char *kaddr;
5416 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5417 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5418
5419 WARN_ON(start > eb->len);
5420 WARN_ON(start + len > eb->start + eb->len);
5421
5422 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5423
5424 while (len > 0) {
5425 page = eb->pages[i];
5426 WARN_ON(!PageUptodate(page));
5427
5428 cur = min(len, PAGE_CACHE_SIZE - offset);
5429 kaddr = page_address(page);
5430 memset(kaddr + offset, c, cur);
5431
5432 len -= cur;
5433 offset = 0;
5434 i++;
5435 }
5436 }
5437
5438 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5439 unsigned long dst_offset, unsigned long src_offset,
5440 unsigned long len)
5441 {
5442 u64 dst_len = dst->len;
5443 size_t cur;
5444 size_t offset;
5445 struct page *page;
5446 char *kaddr;
5447 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5448 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5449
5450 WARN_ON(src->len != dst_len);
5451
5452 offset = (start_offset + dst_offset) &
5453 (PAGE_CACHE_SIZE - 1);
5454
5455 while (len > 0) {
5456 page = dst->pages[i];
5457 WARN_ON(!PageUptodate(page));
5458
5459 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5460
5461 kaddr = page_address(page);
5462 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5463
5464 src_offset += cur;
5465 len -= cur;
5466 offset = 0;
5467 i++;
5468 }
5469 }
5470
5471 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5472 {
5473 unsigned long distance = (src > dst) ? src - dst : dst - src;
5474 return distance < len;
5475 }
5476
5477 static void copy_pages(struct page *dst_page, struct page *src_page,
5478 unsigned long dst_off, unsigned long src_off,
5479 unsigned long len)
5480 {
5481 char *dst_kaddr = page_address(dst_page);
5482 char *src_kaddr;
5483 int must_memmove = 0;
5484
5485 if (dst_page != src_page) {
5486 src_kaddr = page_address(src_page);
5487 } else {
5488 src_kaddr = dst_kaddr;
5489 if (areas_overlap(src_off, dst_off, len))
5490 must_memmove = 1;
5491 }
5492
5493 if (must_memmove)
5494 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5495 else
5496 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5497 }
5498
5499 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5500 unsigned long src_offset, unsigned long len)
5501 {
5502 size_t cur;
5503 size_t dst_off_in_page;
5504 size_t src_off_in_page;
5505 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5506 unsigned long dst_i;
5507 unsigned long src_i;
5508
5509 if (src_offset + len > dst->len) {
5510 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5511 "len %lu dst len %lu\n", src_offset, len, dst->len);
5512 BUG_ON(1);
5513 }
5514 if (dst_offset + len > dst->len) {
5515 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5516 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5517 BUG_ON(1);
5518 }
5519
5520 while (len > 0) {
5521 dst_off_in_page = (start_offset + dst_offset) &
5522 (PAGE_CACHE_SIZE - 1);
5523 src_off_in_page = (start_offset + src_offset) &
5524 (PAGE_CACHE_SIZE - 1);
5525
5526 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5527 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5528
5529 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5530 src_off_in_page));
5531 cur = min_t(unsigned long, cur,
5532 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5533
5534 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5535 dst_off_in_page, src_off_in_page, cur);
5536
5537 src_offset += cur;
5538 dst_offset += cur;
5539 len -= cur;
5540 }
5541 }
5542
5543 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5544 unsigned long src_offset, unsigned long len)
5545 {
5546 size_t cur;
5547 size_t dst_off_in_page;
5548 size_t src_off_in_page;
5549 unsigned long dst_end = dst_offset + len - 1;
5550 unsigned long src_end = src_offset + len - 1;
5551 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5552 unsigned long dst_i;
5553 unsigned long src_i;
5554
5555 if (src_offset + len > dst->len) {
5556 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5557 "len %lu len %lu\n", src_offset, len, dst->len);
5558 BUG_ON(1);
5559 }
5560 if (dst_offset + len > dst->len) {
5561 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5562 "len %lu len %lu\n", dst_offset, len, dst->len);
5563 BUG_ON(1);
5564 }
5565 if (dst_offset < src_offset) {
5566 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5567 return;
5568 }
5569 while (len > 0) {
5570 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5571 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5572
5573 dst_off_in_page = (start_offset + dst_end) &
5574 (PAGE_CACHE_SIZE - 1);
5575 src_off_in_page = (start_offset + src_end) &
5576 (PAGE_CACHE_SIZE - 1);
5577
5578 cur = min_t(unsigned long, len, src_off_in_page + 1);
5579 cur = min(cur, dst_off_in_page + 1);
5580 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5581 dst_off_in_page - cur + 1,
5582 src_off_in_page - cur + 1, cur);
5583
5584 dst_end -= cur;
5585 src_end -= cur;
5586 len -= cur;
5587 }
5588 }
5589
5590 int try_release_extent_buffer(struct page *page)
5591 {
5592 struct extent_buffer *eb;
5593
5594 /*
5595 * We need to make sure noboody is attaching this page to an eb right
5596 * now.
5597 */
5598 spin_lock(&page->mapping->private_lock);
5599 if (!PagePrivate(page)) {
5600 spin_unlock(&page->mapping->private_lock);
5601 return 1;
5602 }
5603
5604 eb = (struct extent_buffer *)page->private;
5605 BUG_ON(!eb);
5606
5607 /*
5608 * This is a little awful but should be ok, we need to make sure that
5609 * the eb doesn't disappear out from under us while we're looking at
5610 * this page.
5611 */
5612 spin_lock(&eb->refs_lock);
5613 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5614 spin_unlock(&eb->refs_lock);
5615 spin_unlock(&page->mapping->private_lock);
5616 return 0;
5617 }
5618 spin_unlock(&page->mapping->private_lock);
5619
5620 /*
5621 * If tree ref isn't set then we know the ref on this eb is a real ref,
5622 * so just return, this page will likely be freed soon anyway.
5623 */
5624 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5625 spin_unlock(&eb->refs_lock);
5626 return 0;
5627 }
5628
5629 return release_extent_buffer(eb);
5630 }