]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: get fs_info from eb in lock_extent_buffer_for_io
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
110 #endif
111
112 struct tree_entry {
113 u64 start;
114 u64 end;
115 struct rb_node rb_node;
116 };
117
118 struct extent_page_data {
119 struct bio *bio;
120 struct extent_io_tree *tree;
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
123 */
124 unsigned int extent_locked:1;
125
126 /* tells the submit_bio code to use REQ_SYNC */
127 unsigned int sync_io:1;
128 };
129
130 static int add_extent_changeset(struct extent_state *state, unsigned bits,
131 struct extent_changeset *changeset,
132 int set)
133 {
134 int ret;
135
136 if (!changeset)
137 return 0;
138 if (set && (state->state & bits) == bits)
139 return 0;
140 if (!set && (state->state & bits) == 0)
141 return 0;
142 changeset->bytes_changed += state->end - state->start + 1;
143 ret = ulist_add(&changeset->range_changed, state->start, state->end,
144 GFP_ATOMIC);
145 return ret;
146 }
147
148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 unsigned long bio_flags)
150 {
151 blk_status_t ret = 0;
152 struct bio_vec *bvec = bio_last_bvec_all(bio);
153 struct bio_vec bv;
154 struct extent_io_tree *tree = bio->bi_private;
155 u64 start;
156
157 mp_bvec_last_segment(bvec, &bv);
158 start = page_offset(bv.bv_page) + bv.bv_offset;
159
160 bio->bi_private = NULL;
161
162 if (tree->ops)
163 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
164 mirror_num, bio_flags, start);
165 else
166 btrfsic_submit_bio(bio);
167
168 return blk_status_to_errno(ret);
169 }
170
171 /* Cleanup unsubmitted bios */
172 static void end_write_bio(struct extent_page_data *epd, int ret)
173 {
174 if (epd->bio) {
175 epd->bio->bi_status = errno_to_blk_status(ret);
176 bio_endio(epd->bio);
177 epd->bio = NULL;
178 }
179 }
180
181 /*
182 * Submit bio from extent page data via submit_one_bio
183 *
184 * Return 0 if everything is OK.
185 * Return <0 for error.
186 */
187 static int __must_check flush_write_bio(struct extent_page_data *epd)
188 {
189 int ret = 0;
190
191 if (epd->bio) {
192 ret = submit_one_bio(epd->bio, 0, 0);
193 /*
194 * Clean up of epd->bio is handled by its endio function.
195 * And endio is either triggered by successful bio execution
196 * or the error handler of submit bio hook.
197 * So at this point, no matter what happened, we don't need
198 * to clean up epd->bio.
199 */
200 epd->bio = NULL;
201 }
202 return ret;
203 }
204
205 int __init extent_io_init(void)
206 {
207 extent_state_cache = kmem_cache_create("btrfs_extent_state",
208 sizeof(struct extent_state), 0,
209 SLAB_MEM_SPREAD, NULL);
210 if (!extent_state_cache)
211 return -ENOMEM;
212
213 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
214 sizeof(struct extent_buffer), 0,
215 SLAB_MEM_SPREAD, NULL);
216 if (!extent_buffer_cache)
217 goto free_state_cache;
218
219 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
220 offsetof(struct btrfs_io_bio, bio),
221 BIOSET_NEED_BVECS))
222 goto free_buffer_cache;
223
224 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
225 goto free_bioset;
226
227 return 0;
228
229 free_bioset:
230 bioset_exit(&btrfs_bioset);
231
232 free_buffer_cache:
233 kmem_cache_destroy(extent_buffer_cache);
234 extent_buffer_cache = NULL;
235
236 free_state_cache:
237 kmem_cache_destroy(extent_state_cache);
238 extent_state_cache = NULL;
239 return -ENOMEM;
240 }
241
242 void __cold extent_io_exit(void)
243 {
244 btrfs_leak_debug_check();
245
246 /*
247 * Make sure all delayed rcu free are flushed before we
248 * destroy caches.
249 */
250 rcu_barrier();
251 kmem_cache_destroy(extent_state_cache);
252 kmem_cache_destroy(extent_buffer_cache);
253 bioset_exit(&btrfs_bioset);
254 }
255
256 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
257 struct extent_io_tree *tree, unsigned int owner,
258 void *private_data)
259 {
260 tree->fs_info = fs_info;
261 tree->state = RB_ROOT;
262 tree->ops = NULL;
263 tree->dirty_bytes = 0;
264 spin_lock_init(&tree->lock);
265 tree->private_data = private_data;
266 tree->owner = owner;
267 }
268
269 static struct extent_state *alloc_extent_state(gfp_t mask)
270 {
271 struct extent_state *state;
272
273 /*
274 * The given mask might be not appropriate for the slab allocator,
275 * drop the unsupported bits
276 */
277 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
278 state = kmem_cache_alloc(extent_state_cache, mask);
279 if (!state)
280 return state;
281 state->state = 0;
282 state->failrec = NULL;
283 RB_CLEAR_NODE(&state->rb_node);
284 btrfs_leak_debug_add(&state->leak_list, &states);
285 refcount_set(&state->refs, 1);
286 init_waitqueue_head(&state->wq);
287 trace_alloc_extent_state(state, mask, _RET_IP_);
288 return state;
289 }
290
291 void free_extent_state(struct extent_state *state)
292 {
293 if (!state)
294 return;
295 if (refcount_dec_and_test(&state->refs)) {
296 WARN_ON(extent_state_in_tree(state));
297 btrfs_leak_debug_del(&state->leak_list);
298 trace_free_extent_state(state, _RET_IP_);
299 kmem_cache_free(extent_state_cache, state);
300 }
301 }
302
303 static struct rb_node *tree_insert(struct rb_root *root,
304 struct rb_node *search_start,
305 u64 offset,
306 struct rb_node *node,
307 struct rb_node ***p_in,
308 struct rb_node **parent_in)
309 {
310 struct rb_node **p;
311 struct rb_node *parent = NULL;
312 struct tree_entry *entry;
313
314 if (p_in && parent_in) {
315 p = *p_in;
316 parent = *parent_in;
317 goto do_insert;
318 }
319
320 p = search_start ? &search_start : &root->rb_node;
321 while (*p) {
322 parent = *p;
323 entry = rb_entry(parent, struct tree_entry, rb_node);
324
325 if (offset < entry->start)
326 p = &(*p)->rb_left;
327 else if (offset > entry->end)
328 p = &(*p)->rb_right;
329 else
330 return parent;
331 }
332
333 do_insert:
334 rb_link_node(node, parent, p);
335 rb_insert_color(node, root);
336 return NULL;
337 }
338
339 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
340 struct rb_node **next_ret,
341 struct rb_node **prev_ret,
342 struct rb_node ***p_ret,
343 struct rb_node **parent_ret)
344 {
345 struct rb_root *root = &tree->state;
346 struct rb_node **n = &root->rb_node;
347 struct rb_node *prev = NULL;
348 struct rb_node *orig_prev = NULL;
349 struct tree_entry *entry;
350 struct tree_entry *prev_entry = NULL;
351
352 while (*n) {
353 prev = *n;
354 entry = rb_entry(prev, struct tree_entry, rb_node);
355 prev_entry = entry;
356
357 if (offset < entry->start)
358 n = &(*n)->rb_left;
359 else if (offset > entry->end)
360 n = &(*n)->rb_right;
361 else
362 return *n;
363 }
364
365 if (p_ret)
366 *p_ret = n;
367 if (parent_ret)
368 *parent_ret = prev;
369
370 if (next_ret) {
371 orig_prev = prev;
372 while (prev && offset > prev_entry->end) {
373 prev = rb_next(prev);
374 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
375 }
376 *next_ret = prev;
377 prev = orig_prev;
378 }
379
380 if (prev_ret) {
381 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
382 while (prev && offset < prev_entry->start) {
383 prev = rb_prev(prev);
384 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
385 }
386 *prev_ret = prev;
387 }
388 return NULL;
389 }
390
391 static inline struct rb_node *
392 tree_search_for_insert(struct extent_io_tree *tree,
393 u64 offset,
394 struct rb_node ***p_ret,
395 struct rb_node **parent_ret)
396 {
397 struct rb_node *next= NULL;
398 struct rb_node *ret;
399
400 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
401 if (!ret)
402 return next;
403 return ret;
404 }
405
406 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
407 u64 offset)
408 {
409 return tree_search_for_insert(tree, offset, NULL, NULL);
410 }
411
412 /*
413 * utility function to look for merge candidates inside a given range.
414 * Any extents with matching state are merged together into a single
415 * extent in the tree. Extents with EXTENT_IO in their state field
416 * are not merged because the end_io handlers need to be able to do
417 * operations on them without sleeping (or doing allocations/splits).
418 *
419 * This should be called with the tree lock held.
420 */
421 static void merge_state(struct extent_io_tree *tree,
422 struct extent_state *state)
423 {
424 struct extent_state *other;
425 struct rb_node *other_node;
426
427 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
428 return;
429
430 other_node = rb_prev(&state->rb_node);
431 if (other_node) {
432 other = rb_entry(other_node, struct extent_state, rb_node);
433 if (other->end == state->start - 1 &&
434 other->state == state->state) {
435 if (tree->private_data &&
436 is_data_inode(tree->private_data))
437 btrfs_merge_delalloc_extent(tree->private_data,
438 state, other);
439 state->start = other->start;
440 rb_erase(&other->rb_node, &tree->state);
441 RB_CLEAR_NODE(&other->rb_node);
442 free_extent_state(other);
443 }
444 }
445 other_node = rb_next(&state->rb_node);
446 if (other_node) {
447 other = rb_entry(other_node, struct extent_state, rb_node);
448 if (other->start == state->end + 1 &&
449 other->state == state->state) {
450 if (tree->private_data &&
451 is_data_inode(tree->private_data))
452 btrfs_merge_delalloc_extent(tree->private_data,
453 state, other);
454 state->end = other->end;
455 rb_erase(&other->rb_node, &tree->state);
456 RB_CLEAR_NODE(&other->rb_node);
457 free_extent_state(other);
458 }
459 }
460 }
461
462 static void set_state_bits(struct extent_io_tree *tree,
463 struct extent_state *state, unsigned *bits,
464 struct extent_changeset *changeset);
465
466 /*
467 * insert an extent_state struct into the tree. 'bits' are set on the
468 * struct before it is inserted.
469 *
470 * This may return -EEXIST if the extent is already there, in which case the
471 * state struct is freed.
472 *
473 * The tree lock is not taken internally. This is a utility function and
474 * probably isn't what you want to call (see set/clear_extent_bit).
475 */
476 static int insert_state(struct extent_io_tree *tree,
477 struct extent_state *state, u64 start, u64 end,
478 struct rb_node ***p,
479 struct rb_node **parent,
480 unsigned *bits, struct extent_changeset *changeset)
481 {
482 struct rb_node *node;
483
484 if (end < start)
485 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
486 end, start);
487 state->start = start;
488 state->end = end;
489
490 set_state_bits(tree, state, bits, changeset);
491
492 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
493 if (node) {
494 struct extent_state *found;
495 found = rb_entry(node, struct extent_state, rb_node);
496 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
497 found->start, found->end, start, end);
498 return -EEXIST;
499 }
500 merge_state(tree, state);
501 return 0;
502 }
503
504 /*
505 * split a given extent state struct in two, inserting the preallocated
506 * struct 'prealloc' as the newly created second half. 'split' indicates an
507 * offset inside 'orig' where it should be split.
508 *
509 * Before calling,
510 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
511 * are two extent state structs in the tree:
512 * prealloc: [orig->start, split - 1]
513 * orig: [ split, orig->end ]
514 *
515 * The tree locks are not taken by this function. They need to be held
516 * by the caller.
517 */
518 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
519 struct extent_state *prealloc, u64 split)
520 {
521 struct rb_node *node;
522
523 if (tree->private_data && is_data_inode(tree->private_data))
524 btrfs_split_delalloc_extent(tree->private_data, orig, split);
525
526 prealloc->start = orig->start;
527 prealloc->end = split - 1;
528 prealloc->state = orig->state;
529 orig->start = split;
530
531 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
532 &prealloc->rb_node, NULL, NULL);
533 if (node) {
534 free_extent_state(prealloc);
535 return -EEXIST;
536 }
537 return 0;
538 }
539
540 static struct extent_state *next_state(struct extent_state *state)
541 {
542 struct rb_node *next = rb_next(&state->rb_node);
543 if (next)
544 return rb_entry(next, struct extent_state, rb_node);
545 else
546 return NULL;
547 }
548
549 /*
550 * utility function to clear some bits in an extent state struct.
551 * it will optionally wake up anyone waiting on this state (wake == 1).
552 *
553 * If no bits are set on the state struct after clearing things, the
554 * struct is freed and removed from the tree
555 */
556 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
557 struct extent_state *state,
558 unsigned *bits, int wake,
559 struct extent_changeset *changeset)
560 {
561 struct extent_state *next;
562 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
563 int ret;
564
565 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
566 u64 range = state->end - state->start + 1;
567 WARN_ON(range > tree->dirty_bytes);
568 tree->dirty_bytes -= range;
569 }
570
571 if (tree->private_data && is_data_inode(tree->private_data))
572 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
573
574 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
575 BUG_ON(ret < 0);
576 state->state &= ~bits_to_clear;
577 if (wake)
578 wake_up(&state->wq);
579 if (state->state == 0) {
580 next = next_state(state);
581 if (extent_state_in_tree(state)) {
582 rb_erase(&state->rb_node, &tree->state);
583 RB_CLEAR_NODE(&state->rb_node);
584 free_extent_state(state);
585 } else {
586 WARN_ON(1);
587 }
588 } else {
589 merge_state(tree, state);
590 next = next_state(state);
591 }
592 return next;
593 }
594
595 static struct extent_state *
596 alloc_extent_state_atomic(struct extent_state *prealloc)
597 {
598 if (!prealloc)
599 prealloc = alloc_extent_state(GFP_ATOMIC);
600
601 return prealloc;
602 }
603
604 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
605 {
606 struct inode *inode = tree->private_data;
607
608 btrfs_panic(btrfs_sb(inode->i_sb), err,
609 "locking error: extent tree was modified by another thread while locked");
610 }
611
612 /*
613 * clear some bits on a range in the tree. This may require splitting
614 * or inserting elements in the tree, so the gfp mask is used to
615 * indicate which allocations or sleeping are allowed.
616 *
617 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
618 * the given range from the tree regardless of state (ie for truncate).
619 *
620 * the range [start, end] is inclusive.
621 *
622 * This takes the tree lock, and returns 0 on success and < 0 on error.
623 */
624 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
625 unsigned bits, int wake, int delete,
626 struct extent_state **cached_state,
627 gfp_t mask, struct extent_changeset *changeset)
628 {
629 struct extent_state *state;
630 struct extent_state *cached;
631 struct extent_state *prealloc = NULL;
632 struct rb_node *node;
633 u64 last_end;
634 int err;
635 int clear = 0;
636
637 btrfs_debug_check_extent_io_range(tree, start, end);
638 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
639
640 if (bits & EXTENT_DELALLOC)
641 bits |= EXTENT_NORESERVE;
642
643 if (delete)
644 bits |= ~EXTENT_CTLBITS;
645
646 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
647 clear = 1;
648 again:
649 if (!prealloc && gfpflags_allow_blocking(mask)) {
650 /*
651 * Don't care for allocation failure here because we might end
652 * up not needing the pre-allocated extent state at all, which
653 * is the case if we only have in the tree extent states that
654 * cover our input range and don't cover too any other range.
655 * If we end up needing a new extent state we allocate it later.
656 */
657 prealloc = alloc_extent_state(mask);
658 }
659
660 spin_lock(&tree->lock);
661 if (cached_state) {
662 cached = *cached_state;
663
664 if (clear) {
665 *cached_state = NULL;
666 cached_state = NULL;
667 }
668
669 if (cached && extent_state_in_tree(cached) &&
670 cached->start <= start && cached->end > start) {
671 if (clear)
672 refcount_dec(&cached->refs);
673 state = cached;
674 goto hit_next;
675 }
676 if (clear)
677 free_extent_state(cached);
678 }
679 /*
680 * this search will find the extents that end after
681 * our range starts
682 */
683 node = tree_search(tree, start);
684 if (!node)
685 goto out;
686 state = rb_entry(node, struct extent_state, rb_node);
687 hit_next:
688 if (state->start > end)
689 goto out;
690 WARN_ON(state->end < start);
691 last_end = state->end;
692
693 /* the state doesn't have the wanted bits, go ahead */
694 if (!(state->state & bits)) {
695 state = next_state(state);
696 goto next;
697 }
698
699 /*
700 * | ---- desired range ---- |
701 * | state | or
702 * | ------------- state -------------- |
703 *
704 * We need to split the extent we found, and may flip
705 * bits on second half.
706 *
707 * If the extent we found extends past our range, we
708 * just split and search again. It'll get split again
709 * the next time though.
710 *
711 * If the extent we found is inside our range, we clear
712 * the desired bit on it.
713 */
714
715 if (state->start < start) {
716 prealloc = alloc_extent_state_atomic(prealloc);
717 BUG_ON(!prealloc);
718 err = split_state(tree, state, prealloc, start);
719 if (err)
720 extent_io_tree_panic(tree, err);
721
722 prealloc = NULL;
723 if (err)
724 goto out;
725 if (state->end <= end) {
726 state = clear_state_bit(tree, state, &bits, wake,
727 changeset);
728 goto next;
729 }
730 goto search_again;
731 }
732 /*
733 * | ---- desired range ---- |
734 * | state |
735 * We need to split the extent, and clear the bit
736 * on the first half
737 */
738 if (state->start <= end && state->end > end) {
739 prealloc = alloc_extent_state_atomic(prealloc);
740 BUG_ON(!prealloc);
741 err = split_state(tree, state, prealloc, end + 1);
742 if (err)
743 extent_io_tree_panic(tree, err);
744
745 if (wake)
746 wake_up(&state->wq);
747
748 clear_state_bit(tree, prealloc, &bits, wake, changeset);
749
750 prealloc = NULL;
751 goto out;
752 }
753
754 state = clear_state_bit(tree, state, &bits, wake, changeset);
755 next:
756 if (last_end == (u64)-1)
757 goto out;
758 start = last_end + 1;
759 if (start <= end && state && !need_resched())
760 goto hit_next;
761
762 search_again:
763 if (start > end)
764 goto out;
765 spin_unlock(&tree->lock);
766 if (gfpflags_allow_blocking(mask))
767 cond_resched();
768 goto again;
769
770 out:
771 spin_unlock(&tree->lock);
772 if (prealloc)
773 free_extent_state(prealloc);
774
775 return 0;
776
777 }
778
779 static void wait_on_state(struct extent_io_tree *tree,
780 struct extent_state *state)
781 __releases(tree->lock)
782 __acquires(tree->lock)
783 {
784 DEFINE_WAIT(wait);
785 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
786 spin_unlock(&tree->lock);
787 schedule();
788 spin_lock(&tree->lock);
789 finish_wait(&state->wq, &wait);
790 }
791
792 /*
793 * waits for one or more bits to clear on a range in the state tree.
794 * The range [start, end] is inclusive.
795 * The tree lock is taken by this function
796 */
797 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
798 unsigned long bits)
799 {
800 struct extent_state *state;
801 struct rb_node *node;
802
803 btrfs_debug_check_extent_io_range(tree, start, end);
804
805 spin_lock(&tree->lock);
806 again:
807 while (1) {
808 /*
809 * this search will find all the extents that end after
810 * our range starts
811 */
812 node = tree_search(tree, start);
813 process_node:
814 if (!node)
815 break;
816
817 state = rb_entry(node, struct extent_state, rb_node);
818
819 if (state->start > end)
820 goto out;
821
822 if (state->state & bits) {
823 start = state->start;
824 refcount_inc(&state->refs);
825 wait_on_state(tree, state);
826 free_extent_state(state);
827 goto again;
828 }
829 start = state->end + 1;
830
831 if (start > end)
832 break;
833
834 if (!cond_resched_lock(&tree->lock)) {
835 node = rb_next(node);
836 goto process_node;
837 }
838 }
839 out:
840 spin_unlock(&tree->lock);
841 }
842
843 static void set_state_bits(struct extent_io_tree *tree,
844 struct extent_state *state,
845 unsigned *bits, struct extent_changeset *changeset)
846 {
847 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
848 int ret;
849
850 if (tree->private_data && is_data_inode(tree->private_data))
851 btrfs_set_delalloc_extent(tree->private_data, state, bits);
852
853 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
854 u64 range = state->end - state->start + 1;
855 tree->dirty_bytes += range;
856 }
857 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
858 BUG_ON(ret < 0);
859 state->state |= bits_to_set;
860 }
861
862 static void cache_state_if_flags(struct extent_state *state,
863 struct extent_state **cached_ptr,
864 unsigned flags)
865 {
866 if (cached_ptr && !(*cached_ptr)) {
867 if (!flags || (state->state & flags)) {
868 *cached_ptr = state;
869 refcount_inc(&state->refs);
870 }
871 }
872 }
873
874 static void cache_state(struct extent_state *state,
875 struct extent_state **cached_ptr)
876 {
877 return cache_state_if_flags(state, cached_ptr,
878 EXTENT_LOCKED | EXTENT_BOUNDARY);
879 }
880
881 /*
882 * set some bits on a range in the tree. This may require allocations or
883 * sleeping, so the gfp mask is used to indicate what is allowed.
884 *
885 * If any of the exclusive bits are set, this will fail with -EEXIST if some
886 * part of the range already has the desired bits set. The start of the
887 * existing range is returned in failed_start in this case.
888 *
889 * [start, end] is inclusive This takes the tree lock.
890 */
891
892 static int __must_check
893 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
894 unsigned bits, unsigned exclusive_bits,
895 u64 *failed_start, struct extent_state **cached_state,
896 gfp_t mask, struct extent_changeset *changeset)
897 {
898 struct extent_state *state;
899 struct extent_state *prealloc = NULL;
900 struct rb_node *node;
901 struct rb_node **p;
902 struct rb_node *parent;
903 int err = 0;
904 u64 last_start;
905 u64 last_end;
906
907 btrfs_debug_check_extent_io_range(tree, start, end);
908 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
909
910 again:
911 if (!prealloc && gfpflags_allow_blocking(mask)) {
912 /*
913 * Don't care for allocation failure here because we might end
914 * up not needing the pre-allocated extent state at all, which
915 * is the case if we only have in the tree extent states that
916 * cover our input range and don't cover too any other range.
917 * If we end up needing a new extent state we allocate it later.
918 */
919 prealloc = alloc_extent_state(mask);
920 }
921
922 spin_lock(&tree->lock);
923 if (cached_state && *cached_state) {
924 state = *cached_state;
925 if (state->start <= start && state->end > start &&
926 extent_state_in_tree(state)) {
927 node = &state->rb_node;
928 goto hit_next;
929 }
930 }
931 /*
932 * this search will find all the extents that end after
933 * our range starts.
934 */
935 node = tree_search_for_insert(tree, start, &p, &parent);
936 if (!node) {
937 prealloc = alloc_extent_state_atomic(prealloc);
938 BUG_ON(!prealloc);
939 err = insert_state(tree, prealloc, start, end,
940 &p, &parent, &bits, changeset);
941 if (err)
942 extent_io_tree_panic(tree, err);
943
944 cache_state(prealloc, cached_state);
945 prealloc = NULL;
946 goto out;
947 }
948 state = rb_entry(node, struct extent_state, rb_node);
949 hit_next:
950 last_start = state->start;
951 last_end = state->end;
952
953 /*
954 * | ---- desired range ---- |
955 * | state |
956 *
957 * Just lock what we found and keep going
958 */
959 if (state->start == start && state->end <= end) {
960 if (state->state & exclusive_bits) {
961 *failed_start = state->start;
962 err = -EEXIST;
963 goto out;
964 }
965
966 set_state_bits(tree, state, &bits, changeset);
967 cache_state(state, cached_state);
968 merge_state(tree, state);
969 if (last_end == (u64)-1)
970 goto out;
971 start = last_end + 1;
972 state = next_state(state);
973 if (start < end && state && state->start == start &&
974 !need_resched())
975 goto hit_next;
976 goto search_again;
977 }
978
979 /*
980 * | ---- desired range ---- |
981 * | state |
982 * or
983 * | ------------- state -------------- |
984 *
985 * We need to split the extent we found, and may flip bits on
986 * second half.
987 *
988 * If the extent we found extends past our
989 * range, we just split and search again. It'll get split
990 * again the next time though.
991 *
992 * If the extent we found is inside our range, we set the
993 * desired bit on it.
994 */
995 if (state->start < start) {
996 if (state->state & exclusive_bits) {
997 *failed_start = start;
998 err = -EEXIST;
999 goto out;
1000 }
1001
1002 prealloc = alloc_extent_state_atomic(prealloc);
1003 BUG_ON(!prealloc);
1004 err = split_state(tree, state, prealloc, start);
1005 if (err)
1006 extent_io_tree_panic(tree, err);
1007
1008 prealloc = NULL;
1009 if (err)
1010 goto out;
1011 if (state->end <= end) {
1012 set_state_bits(tree, state, &bits, changeset);
1013 cache_state(state, cached_state);
1014 merge_state(tree, state);
1015 if (last_end == (u64)-1)
1016 goto out;
1017 start = last_end + 1;
1018 state = next_state(state);
1019 if (start < end && state && state->start == start &&
1020 !need_resched())
1021 goto hit_next;
1022 }
1023 goto search_again;
1024 }
1025 /*
1026 * | ---- desired range ---- |
1027 * | state | or | state |
1028 *
1029 * There's a hole, we need to insert something in it and
1030 * ignore the extent we found.
1031 */
1032 if (state->start > start) {
1033 u64 this_end;
1034 if (end < last_start)
1035 this_end = end;
1036 else
1037 this_end = last_start - 1;
1038
1039 prealloc = alloc_extent_state_atomic(prealloc);
1040 BUG_ON(!prealloc);
1041
1042 /*
1043 * Avoid to free 'prealloc' if it can be merged with
1044 * the later extent.
1045 */
1046 err = insert_state(tree, prealloc, start, this_end,
1047 NULL, NULL, &bits, changeset);
1048 if (err)
1049 extent_io_tree_panic(tree, err);
1050
1051 cache_state(prealloc, cached_state);
1052 prealloc = NULL;
1053 start = this_end + 1;
1054 goto search_again;
1055 }
1056 /*
1057 * | ---- desired range ---- |
1058 * | state |
1059 * We need to split the extent, and set the bit
1060 * on the first half
1061 */
1062 if (state->start <= end && state->end > end) {
1063 if (state->state & exclusive_bits) {
1064 *failed_start = start;
1065 err = -EEXIST;
1066 goto out;
1067 }
1068
1069 prealloc = alloc_extent_state_atomic(prealloc);
1070 BUG_ON(!prealloc);
1071 err = split_state(tree, state, prealloc, end + 1);
1072 if (err)
1073 extent_io_tree_panic(tree, err);
1074
1075 set_state_bits(tree, prealloc, &bits, changeset);
1076 cache_state(prealloc, cached_state);
1077 merge_state(tree, prealloc);
1078 prealloc = NULL;
1079 goto out;
1080 }
1081
1082 search_again:
1083 if (start > end)
1084 goto out;
1085 spin_unlock(&tree->lock);
1086 if (gfpflags_allow_blocking(mask))
1087 cond_resched();
1088 goto again;
1089
1090 out:
1091 spin_unlock(&tree->lock);
1092 if (prealloc)
1093 free_extent_state(prealloc);
1094
1095 return err;
1096
1097 }
1098
1099 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1100 unsigned bits, u64 * failed_start,
1101 struct extent_state **cached_state, gfp_t mask)
1102 {
1103 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1104 cached_state, mask, NULL);
1105 }
1106
1107
1108 /**
1109 * convert_extent_bit - convert all bits in a given range from one bit to
1110 * another
1111 * @tree: the io tree to search
1112 * @start: the start offset in bytes
1113 * @end: the end offset in bytes (inclusive)
1114 * @bits: the bits to set in this range
1115 * @clear_bits: the bits to clear in this range
1116 * @cached_state: state that we're going to cache
1117 *
1118 * This will go through and set bits for the given range. If any states exist
1119 * already in this range they are set with the given bit and cleared of the
1120 * clear_bits. This is only meant to be used by things that are mergeable, ie
1121 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1122 * boundary bits like LOCK.
1123 *
1124 * All allocations are done with GFP_NOFS.
1125 */
1126 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1127 unsigned bits, unsigned clear_bits,
1128 struct extent_state **cached_state)
1129 {
1130 struct extent_state *state;
1131 struct extent_state *prealloc = NULL;
1132 struct rb_node *node;
1133 struct rb_node **p;
1134 struct rb_node *parent;
1135 int err = 0;
1136 u64 last_start;
1137 u64 last_end;
1138 bool first_iteration = true;
1139
1140 btrfs_debug_check_extent_io_range(tree, start, end);
1141 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1142 clear_bits);
1143
1144 again:
1145 if (!prealloc) {
1146 /*
1147 * Best effort, don't worry if extent state allocation fails
1148 * here for the first iteration. We might have a cached state
1149 * that matches exactly the target range, in which case no
1150 * extent state allocations are needed. We'll only know this
1151 * after locking the tree.
1152 */
1153 prealloc = alloc_extent_state(GFP_NOFS);
1154 if (!prealloc && !first_iteration)
1155 return -ENOMEM;
1156 }
1157
1158 spin_lock(&tree->lock);
1159 if (cached_state && *cached_state) {
1160 state = *cached_state;
1161 if (state->start <= start && state->end > start &&
1162 extent_state_in_tree(state)) {
1163 node = &state->rb_node;
1164 goto hit_next;
1165 }
1166 }
1167
1168 /*
1169 * this search will find all the extents that end after
1170 * our range starts.
1171 */
1172 node = tree_search_for_insert(tree, start, &p, &parent);
1173 if (!node) {
1174 prealloc = alloc_extent_state_atomic(prealloc);
1175 if (!prealloc) {
1176 err = -ENOMEM;
1177 goto out;
1178 }
1179 err = insert_state(tree, prealloc, start, end,
1180 &p, &parent, &bits, NULL);
1181 if (err)
1182 extent_io_tree_panic(tree, err);
1183 cache_state(prealloc, cached_state);
1184 prealloc = NULL;
1185 goto out;
1186 }
1187 state = rb_entry(node, struct extent_state, rb_node);
1188 hit_next:
1189 last_start = state->start;
1190 last_end = state->end;
1191
1192 /*
1193 * | ---- desired range ---- |
1194 * | state |
1195 *
1196 * Just lock what we found and keep going
1197 */
1198 if (state->start == start && state->end <= end) {
1199 set_state_bits(tree, state, &bits, NULL);
1200 cache_state(state, cached_state);
1201 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 goto search_again;
1209 }
1210
1211 /*
1212 * | ---- desired range ---- |
1213 * | state |
1214 * or
1215 * | ------------- state -------------- |
1216 *
1217 * We need to split the extent we found, and may flip bits on
1218 * second half.
1219 *
1220 * If the extent we found extends past our
1221 * range, we just split and search again. It'll get split
1222 * again the next time though.
1223 *
1224 * If the extent we found is inside our range, we set the
1225 * desired bit on it.
1226 */
1227 if (state->start < start) {
1228 prealloc = alloc_extent_state_atomic(prealloc);
1229 if (!prealloc) {
1230 err = -ENOMEM;
1231 goto out;
1232 }
1233 err = split_state(tree, state, prealloc, start);
1234 if (err)
1235 extent_io_tree_panic(tree, err);
1236 prealloc = NULL;
1237 if (err)
1238 goto out;
1239 if (state->end <= end) {
1240 set_state_bits(tree, state, &bits, NULL);
1241 cache_state(state, cached_state);
1242 state = clear_state_bit(tree, state, &clear_bits, 0,
1243 NULL);
1244 if (last_end == (u64)-1)
1245 goto out;
1246 start = last_end + 1;
1247 if (start < end && state && state->start == start &&
1248 !need_resched())
1249 goto hit_next;
1250 }
1251 goto search_again;
1252 }
1253 /*
1254 * | ---- desired range ---- |
1255 * | state | or | state |
1256 *
1257 * There's a hole, we need to insert something in it and
1258 * ignore the extent we found.
1259 */
1260 if (state->start > start) {
1261 u64 this_end;
1262 if (end < last_start)
1263 this_end = end;
1264 else
1265 this_end = last_start - 1;
1266
1267 prealloc = alloc_extent_state_atomic(prealloc);
1268 if (!prealloc) {
1269 err = -ENOMEM;
1270 goto out;
1271 }
1272
1273 /*
1274 * Avoid to free 'prealloc' if it can be merged with
1275 * the later extent.
1276 */
1277 err = insert_state(tree, prealloc, start, this_end,
1278 NULL, NULL, &bits, NULL);
1279 if (err)
1280 extent_io_tree_panic(tree, err);
1281 cache_state(prealloc, cached_state);
1282 prealloc = NULL;
1283 start = this_end + 1;
1284 goto search_again;
1285 }
1286 /*
1287 * | ---- desired range ---- |
1288 * | state |
1289 * We need to split the extent, and set the bit
1290 * on the first half
1291 */
1292 if (state->start <= end && state->end > end) {
1293 prealloc = alloc_extent_state_atomic(prealloc);
1294 if (!prealloc) {
1295 err = -ENOMEM;
1296 goto out;
1297 }
1298
1299 err = split_state(tree, state, prealloc, end + 1);
1300 if (err)
1301 extent_io_tree_panic(tree, err);
1302
1303 set_state_bits(tree, prealloc, &bits, NULL);
1304 cache_state(prealloc, cached_state);
1305 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1306 prealloc = NULL;
1307 goto out;
1308 }
1309
1310 search_again:
1311 if (start > end)
1312 goto out;
1313 spin_unlock(&tree->lock);
1314 cond_resched();
1315 first_iteration = false;
1316 goto again;
1317
1318 out:
1319 spin_unlock(&tree->lock);
1320 if (prealloc)
1321 free_extent_state(prealloc);
1322
1323 return err;
1324 }
1325
1326 /* wrappers around set/clear extent bit */
1327 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328 unsigned bits, struct extent_changeset *changeset)
1329 {
1330 /*
1331 * We don't support EXTENT_LOCKED yet, as current changeset will
1332 * record any bits changed, so for EXTENT_LOCKED case, it will
1333 * either fail with -EEXIST or changeset will record the whole
1334 * range.
1335 */
1336 BUG_ON(bits & EXTENT_LOCKED);
1337
1338 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1339 changeset);
1340 }
1341
1342 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1343 unsigned bits, int wake, int delete,
1344 struct extent_state **cached)
1345 {
1346 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1347 cached, GFP_NOFS, NULL);
1348 }
1349
1350 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1351 unsigned bits, struct extent_changeset *changeset)
1352 {
1353 /*
1354 * Don't support EXTENT_LOCKED case, same reason as
1355 * set_record_extent_bits().
1356 */
1357 BUG_ON(bits & EXTENT_LOCKED);
1358
1359 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1360 changeset);
1361 }
1362
1363 /*
1364 * either insert or lock state struct between start and end use mask to tell
1365 * us if waiting is desired.
1366 */
1367 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1368 struct extent_state **cached_state)
1369 {
1370 int err;
1371 u64 failed_start;
1372
1373 while (1) {
1374 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1375 EXTENT_LOCKED, &failed_start,
1376 cached_state, GFP_NOFS, NULL);
1377 if (err == -EEXIST) {
1378 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1379 start = failed_start;
1380 } else
1381 break;
1382 WARN_ON(start > end);
1383 }
1384 return err;
1385 }
1386
1387 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1388 {
1389 int err;
1390 u64 failed_start;
1391
1392 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1393 &failed_start, NULL, GFP_NOFS, NULL);
1394 if (err == -EEXIST) {
1395 if (failed_start > start)
1396 clear_extent_bit(tree, start, failed_start - 1,
1397 EXTENT_LOCKED, 1, 0, NULL);
1398 return 0;
1399 }
1400 return 1;
1401 }
1402
1403 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1404 {
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
1407 struct page *page;
1408
1409 while (index <= end_index) {
1410 page = find_get_page(inode->i_mapping, index);
1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 clear_page_dirty_for_io(page);
1413 put_page(page);
1414 index++;
1415 }
1416 }
1417
1418 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1419 {
1420 unsigned long index = start >> PAGE_SHIFT;
1421 unsigned long end_index = end >> PAGE_SHIFT;
1422 struct page *page;
1423
1424 while (index <= end_index) {
1425 page = find_get_page(inode->i_mapping, index);
1426 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1427 __set_page_dirty_nobuffers(page);
1428 account_page_redirty(page);
1429 put_page(page);
1430 index++;
1431 }
1432 }
1433
1434 /* find the first state struct with 'bits' set after 'start', and
1435 * return it. tree->lock must be held. NULL will returned if
1436 * nothing was found after 'start'
1437 */
1438 static struct extent_state *
1439 find_first_extent_bit_state(struct extent_io_tree *tree,
1440 u64 start, unsigned bits)
1441 {
1442 struct rb_node *node;
1443 struct extent_state *state;
1444
1445 /*
1446 * this search will find all the extents that end after
1447 * our range starts.
1448 */
1449 node = tree_search(tree, start);
1450 if (!node)
1451 goto out;
1452
1453 while (1) {
1454 state = rb_entry(node, struct extent_state, rb_node);
1455 if (state->end >= start && (state->state & bits))
1456 return state;
1457
1458 node = rb_next(node);
1459 if (!node)
1460 break;
1461 }
1462 out:
1463 return NULL;
1464 }
1465
1466 /*
1467 * find the first offset in the io tree with 'bits' set. zero is
1468 * returned if we find something, and *start_ret and *end_ret are
1469 * set to reflect the state struct that was found.
1470 *
1471 * If nothing was found, 1 is returned. If found something, return 0.
1472 */
1473 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1474 u64 *start_ret, u64 *end_ret, unsigned bits,
1475 struct extent_state **cached_state)
1476 {
1477 struct extent_state *state;
1478 int ret = 1;
1479
1480 spin_lock(&tree->lock);
1481 if (cached_state && *cached_state) {
1482 state = *cached_state;
1483 if (state->end == start - 1 && extent_state_in_tree(state)) {
1484 while ((state = next_state(state)) != NULL) {
1485 if (state->state & bits)
1486 goto got_it;
1487 }
1488 free_extent_state(*cached_state);
1489 *cached_state = NULL;
1490 goto out;
1491 }
1492 free_extent_state(*cached_state);
1493 *cached_state = NULL;
1494 }
1495
1496 state = find_first_extent_bit_state(tree, start, bits);
1497 got_it:
1498 if (state) {
1499 cache_state_if_flags(state, cached_state, 0);
1500 *start_ret = state->start;
1501 *end_ret = state->end;
1502 ret = 0;
1503 }
1504 out:
1505 spin_unlock(&tree->lock);
1506 return ret;
1507 }
1508
1509 /*
1510 * find a contiguous range of bytes in the file marked as delalloc, not
1511 * more than 'max_bytes'. start and end are used to return the range,
1512 *
1513 * true is returned if we find something, false if nothing was in the tree
1514 */
1515 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1516 u64 *start, u64 *end, u64 max_bytes,
1517 struct extent_state **cached_state)
1518 {
1519 struct rb_node *node;
1520 struct extent_state *state;
1521 u64 cur_start = *start;
1522 bool found = false;
1523 u64 total_bytes = 0;
1524
1525 spin_lock(&tree->lock);
1526
1527 /*
1528 * this search will find all the extents that end after
1529 * our range starts.
1530 */
1531 node = tree_search(tree, cur_start);
1532 if (!node) {
1533 *end = (u64)-1;
1534 goto out;
1535 }
1536
1537 while (1) {
1538 state = rb_entry(node, struct extent_state, rb_node);
1539 if (found && (state->start != cur_start ||
1540 (state->state & EXTENT_BOUNDARY))) {
1541 goto out;
1542 }
1543 if (!(state->state & EXTENT_DELALLOC)) {
1544 if (!found)
1545 *end = state->end;
1546 goto out;
1547 }
1548 if (!found) {
1549 *start = state->start;
1550 *cached_state = state;
1551 refcount_inc(&state->refs);
1552 }
1553 found = true;
1554 *end = state->end;
1555 cur_start = state->end + 1;
1556 node = rb_next(node);
1557 total_bytes += state->end - state->start + 1;
1558 if (total_bytes >= max_bytes)
1559 break;
1560 if (!node)
1561 break;
1562 }
1563 out:
1564 spin_unlock(&tree->lock);
1565 return found;
1566 }
1567
1568 static int __process_pages_contig(struct address_space *mapping,
1569 struct page *locked_page,
1570 pgoff_t start_index, pgoff_t end_index,
1571 unsigned long page_ops, pgoff_t *index_ret);
1572
1573 static noinline void __unlock_for_delalloc(struct inode *inode,
1574 struct page *locked_page,
1575 u64 start, u64 end)
1576 {
1577 unsigned long index = start >> PAGE_SHIFT;
1578 unsigned long end_index = end >> PAGE_SHIFT;
1579
1580 ASSERT(locked_page);
1581 if (index == locked_page->index && end_index == index)
1582 return;
1583
1584 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1585 PAGE_UNLOCK, NULL);
1586 }
1587
1588 static noinline int lock_delalloc_pages(struct inode *inode,
1589 struct page *locked_page,
1590 u64 delalloc_start,
1591 u64 delalloc_end)
1592 {
1593 unsigned long index = delalloc_start >> PAGE_SHIFT;
1594 unsigned long index_ret = index;
1595 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1596 int ret;
1597
1598 ASSERT(locked_page);
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1603 end_index, PAGE_LOCK, &index_ret);
1604 if (ret == -EAGAIN)
1605 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1606 (u64)index_ret << PAGE_SHIFT);
1607 return ret;
1608 }
1609
1610 /*
1611 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1612 * more than @max_bytes. @Start and @end are used to return the range,
1613 *
1614 * Return: true if we find something
1615 * false if nothing was in the tree
1616 */
1617 EXPORT_FOR_TESTS
1618 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1619 struct extent_io_tree *tree,
1620 struct page *locked_page, u64 *start,
1621 u64 *end)
1622 {
1623 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1624 u64 delalloc_start;
1625 u64 delalloc_end;
1626 bool found;
1627 struct extent_state *cached_state = NULL;
1628 int ret;
1629 int loops = 0;
1630
1631 again:
1632 /* step one, find a bunch of delalloc bytes starting at start */
1633 delalloc_start = *start;
1634 delalloc_end = 0;
1635 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1636 max_bytes, &cached_state);
1637 if (!found || delalloc_end <= *start) {
1638 *start = delalloc_start;
1639 *end = delalloc_end;
1640 free_extent_state(cached_state);
1641 return false;
1642 }
1643
1644 /*
1645 * start comes from the offset of locked_page. We have to lock
1646 * pages in order, so we can't process delalloc bytes before
1647 * locked_page
1648 */
1649 if (delalloc_start < *start)
1650 delalloc_start = *start;
1651
1652 /*
1653 * make sure to limit the number of pages we try to lock down
1654 */
1655 if (delalloc_end + 1 - delalloc_start > max_bytes)
1656 delalloc_end = delalloc_start + max_bytes - 1;
1657
1658 /* step two, lock all the pages after the page that has start */
1659 ret = lock_delalloc_pages(inode, locked_page,
1660 delalloc_start, delalloc_end);
1661 ASSERT(!ret || ret == -EAGAIN);
1662 if (ret == -EAGAIN) {
1663 /* some of the pages are gone, lets avoid looping by
1664 * shortening the size of the delalloc range we're searching
1665 */
1666 free_extent_state(cached_state);
1667 cached_state = NULL;
1668 if (!loops) {
1669 max_bytes = PAGE_SIZE;
1670 loops = 1;
1671 goto again;
1672 } else {
1673 found = false;
1674 goto out_failed;
1675 }
1676 }
1677
1678 /* step three, lock the state bits for the whole range */
1679 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1680
1681 /* then test to make sure it is all still delalloc */
1682 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1683 EXTENT_DELALLOC, 1, cached_state);
1684 if (!ret) {
1685 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1686 &cached_state);
1687 __unlock_for_delalloc(inode, locked_page,
1688 delalloc_start, delalloc_end);
1689 cond_resched();
1690 goto again;
1691 }
1692 free_extent_state(cached_state);
1693 *start = delalloc_start;
1694 *end = delalloc_end;
1695 out_failed:
1696 return found;
1697 }
1698
1699 static int __process_pages_contig(struct address_space *mapping,
1700 struct page *locked_page,
1701 pgoff_t start_index, pgoff_t end_index,
1702 unsigned long page_ops, pgoff_t *index_ret)
1703 {
1704 unsigned long nr_pages = end_index - start_index + 1;
1705 unsigned long pages_locked = 0;
1706 pgoff_t index = start_index;
1707 struct page *pages[16];
1708 unsigned ret;
1709 int err = 0;
1710 int i;
1711
1712 if (page_ops & PAGE_LOCK) {
1713 ASSERT(page_ops == PAGE_LOCK);
1714 ASSERT(index_ret && *index_ret == start_index);
1715 }
1716
1717 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1718 mapping_set_error(mapping, -EIO);
1719
1720 while (nr_pages > 0) {
1721 ret = find_get_pages_contig(mapping, index,
1722 min_t(unsigned long,
1723 nr_pages, ARRAY_SIZE(pages)), pages);
1724 if (ret == 0) {
1725 /*
1726 * Only if we're going to lock these pages,
1727 * can we find nothing at @index.
1728 */
1729 ASSERT(page_ops & PAGE_LOCK);
1730 err = -EAGAIN;
1731 goto out;
1732 }
1733
1734 for (i = 0; i < ret; i++) {
1735 if (page_ops & PAGE_SET_PRIVATE2)
1736 SetPagePrivate2(pages[i]);
1737
1738 if (pages[i] == locked_page) {
1739 put_page(pages[i]);
1740 pages_locked++;
1741 continue;
1742 }
1743 if (page_ops & PAGE_CLEAR_DIRTY)
1744 clear_page_dirty_for_io(pages[i]);
1745 if (page_ops & PAGE_SET_WRITEBACK)
1746 set_page_writeback(pages[i]);
1747 if (page_ops & PAGE_SET_ERROR)
1748 SetPageError(pages[i]);
1749 if (page_ops & PAGE_END_WRITEBACK)
1750 end_page_writeback(pages[i]);
1751 if (page_ops & PAGE_UNLOCK)
1752 unlock_page(pages[i]);
1753 if (page_ops & PAGE_LOCK) {
1754 lock_page(pages[i]);
1755 if (!PageDirty(pages[i]) ||
1756 pages[i]->mapping != mapping) {
1757 unlock_page(pages[i]);
1758 put_page(pages[i]);
1759 err = -EAGAIN;
1760 goto out;
1761 }
1762 }
1763 put_page(pages[i]);
1764 pages_locked++;
1765 }
1766 nr_pages -= ret;
1767 index += ret;
1768 cond_resched();
1769 }
1770 out:
1771 if (err && index_ret)
1772 *index_ret = start_index + pages_locked - 1;
1773 return err;
1774 }
1775
1776 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1777 u64 delalloc_end, struct page *locked_page,
1778 unsigned clear_bits,
1779 unsigned long page_ops)
1780 {
1781 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1782 NULL);
1783
1784 __process_pages_contig(inode->i_mapping, locked_page,
1785 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1786 page_ops, NULL);
1787 }
1788
1789 /*
1790 * count the number of bytes in the tree that have a given bit(s)
1791 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1792 * cached. The total number found is returned.
1793 */
1794 u64 count_range_bits(struct extent_io_tree *tree,
1795 u64 *start, u64 search_end, u64 max_bytes,
1796 unsigned bits, int contig)
1797 {
1798 struct rb_node *node;
1799 struct extent_state *state;
1800 u64 cur_start = *start;
1801 u64 total_bytes = 0;
1802 u64 last = 0;
1803 int found = 0;
1804
1805 if (WARN_ON(search_end <= cur_start))
1806 return 0;
1807
1808 spin_lock(&tree->lock);
1809 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1810 total_bytes = tree->dirty_bytes;
1811 goto out;
1812 }
1813 /*
1814 * this search will find all the extents that end after
1815 * our range starts.
1816 */
1817 node = tree_search(tree, cur_start);
1818 if (!node)
1819 goto out;
1820
1821 while (1) {
1822 state = rb_entry(node, struct extent_state, rb_node);
1823 if (state->start > search_end)
1824 break;
1825 if (contig && found && state->start > last + 1)
1826 break;
1827 if (state->end >= cur_start && (state->state & bits) == bits) {
1828 total_bytes += min(search_end, state->end) + 1 -
1829 max(cur_start, state->start);
1830 if (total_bytes >= max_bytes)
1831 break;
1832 if (!found) {
1833 *start = max(cur_start, state->start);
1834 found = 1;
1835 }
1836 last = state->end;
1837 } else if (contig && found) {
1838 break;
1839 }
1840 node = rb_next(node);
1841 if (!node)
1842 break;
1843 }
1844 out:
1845 spin_unlock(&tree->lock);
1846 return total_bytes;
1847 }
1848
1849 /*
1850 * set the private field for a given byte offset in the tree. If there isn't
1851 * an extent_state there already, this does nothing.
1852 */
1853 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1854 struct io_failure_record *failrec)
1855 {
1856 struct rb_node *node;
1857 struct extent_state *state;
1858 int ret = 0;
1859
1860 spin_lock(&tree->lock);
1861 /*
1862 * this search will find all the extents that end after
1863 * our range starts.
1864 */
1865 node = tree_search(tree, start);
1866 if (!node) {
1867 ret = -ENOENT;
1868 goto out;
1869 }
1870 state = rb_entry(node, struct extent_state, rb_node);
1871 if (state->start != start) {
1872 ret = -ENOENT;
1873 goto out;
1874 }
1875 state->failrec = failrec;
1876 out:
1877 spin_unlock(&tree->lock);
1878 return ret;
1879 }
1880
1881 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1882 struct io_failure_record **failrec)
1883 {
1884 struct rb_node *node;
1885 struct extent_state *state;
1886 int ret = 0;
1887
1888 spin_lock(&tree->lock);
1889 /*
1890 * this search will find all the extents that end after
1891 * our range starts.
1892 */
1893 node = tree_search(tree, start);
1894 if (!node) {
1895 ret = -ENOENT;
1896 goto out;
1897 }
1898 state = rb_entry(node, struct extent_state, rb_node);
1899 if (state->start != start) {
1900 ret = -ENOENT;
1901 goto out;
1902 }
1903 *failrec = state->failrec;
1904 out:
1905 spin_unlock(&tree->lock);
1906 return ret;
1907 }
1908
1909 /*
1910 * searches a range in the state tree for a given mask.
1911 * If 'filled' == 1, this returns 1 only if every extent in the tree
1912 * has the bits set. Otherwise, 1 is returned if any bit in the
1913 * range is found set.
1914 */
1915 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1916 unsigned bits, int filled, struct extent_state *cached)
1917 {
1918 struct extent_state *state = NULL;
1919 struct rb_node *node;
1920 int bitset = 0;
1921
1922 spin_lock(&tree->lock);
1923 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1924 cached->end > start)
1925 node = &cached->rb_node;
1926 else
1927 node = tree_search(tree, start);
1928 while (node && start <= end) {
1929 state = rb_entry(node, struct extent_state, rb_node);
1930
1931 if (filled && state->start > start) {
1932 bitset = 0;
1933 break;
1934 }
1935
1936 if (state->start > end)
1937 break;
1938
1939 if (state->state & bits) {
1940 bitset = 1;
1941 if (!filled)
1942 break;
1943 } else if (filled) {
1944 bitset = 0;
1945 break;
1946 }
1947
1948 if (state->end == (u64)-1)
1949 break;
1950
1951 start = state->end + 1;
1952 if (start > end)
1953 break;
1954 node = rb_next(node);
1955 if (!node) {
1956 if (filled)
1957 bitset = 0;
1958 break;
1959 }
1960 }
1961 spin_unlock(&tree->lock);
1962 return bitset;
1963 }
1964
1965 /*
1966 * helper function to set a given page up to date if all the
1967 * extents in the tree for that page are up to date
1968 */
1969 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1970 {
1971 u64 start = page_offset(page);
1972 u64 end = start + PAGE_SIZE - 1;
1973 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1974 SetPageUptodate(page);
1975 }
1976
1977 int free_io_failure(struct extent_io_tree *failure_tree,
1978 struct extent_io_tree *io_tree,
1979 struct io_failure_record *rec)
1980 {
1981 int ret;
1982 int err = 0;
1983
1984 set_state_failrec(failure_tree, rec->start, NULL);
1985 ret = clear_extent_bits(failure_tree, rec->start,
1986 rec->start + rec->len - 1,
1987 EXTENT_LOCKED | EXTENT_DIRTY);
1988 if (ret)
1989 err = ret;
1990
1991 ret = clear_extent_bits(io_tree, rec->start,
1992 rec->start + rec->len - 1,
1993 EXTENT_DAMAGED);
1994 if (ret && !err)
1995 err = ret;
1996
1997 kfree(rec);
1998 return err;
1999 }
2000
2001 /*
2002 * this bypasses the standard btrfs submit functions deliberately, as
2003 * the standard behavior is to write all copies in a raid setup. here we only
2004 * want to write the one bad copy. so we do the mapping for ourselves and issue
2005 * submit_bio directly.
2006 * to avoid any synchronization issues, wait for the data after writing, which
2007 * actually prevents the read that triggered the error from finishing.
2008 * currently, there can be no more than two copies of every data bit. thus,
2009 * exactly one rewrite is required.
2010 */
2011 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2012 u64 length, u64 logical, struct page *page,
2013 unsigned int pg_offset, int mirror_num)
2014 {
2015 struct bio *bio;
2016 struct btrfs_device *dev;
2017 u64 map_length = 0;
2018 u64 sector;
2019 struct btrfs_bio *bbio = NULL;
2020 int ret;
2021
2022 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2023 BUG_ON(!mirror_num);
2024
2025 bio = btrfs_io_bio_alloc(1);
2026 bio->bi_iter.bi_size = 0;
2027 map_length = length;
2028
2029 /*
2030 * Avoid races with device replace and make sure our bbio has devices
2031 * associated to its stripes that don't go away while we are doing the
2032 * read repair operation.
2033 */
2034 btrfs_bio_counter_inc_blocked(fs_info);
2035 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2036 /*
2037 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2038 * to update all raid stripes, but here we just want to correct
2039 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2040 * stripe's dev and sector.
2041 */
2042 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2043 &map_length, &bbio, 0);
2044 if (ret) {
2045 btrfs_bio_counter_dec(fs_info);
2046 bio_put(bio);
2047 return -EIO;
2048 }
2049 ASSERT(bbio->mirror_num == 1);
2050 } else {
2051 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2052 &map_length, &bbio, mirror_num);
2053 if (ret) {
2054 btrfs_bio_counter_dec(fs_info);
2055 bio_put(bio);
2056 return -EIO;
2057 }
2058 BUG_ON(mirror_num != bbio->mirror_num);
2059 }
2060
2061 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2062 bio->bi_iter.bi_sector = sector;
2063 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2064 btrfs_put_bbio(bbio);
2065 if (!dev || !dev->bdev ||
2066 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2067 btrfs_bio_counter_dec(fs_info);
2068 bio_put(bio);
2069 return -EIO;
2070 }
2071 bio_set_dev(bio, dev->bdev);
2072 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2073 bio_add_page(bio, page, length, pg_offset);
2074
2075 if (btrfsic_submit_bio_wait(bio)) {
2076 /* try to remap that extent elsewhere? */
2077 btrfs_bio_counter_dec(fs_info);
2078 bio_put(bio);
2079 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2080 return -EIO;
2081 }
2082
2083 btrfs_info_rl_in_rcu(fs_info,
2084 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2085 ino, start,
2086 rcu_str_deref(dev->name), sector);
2087 btrfs_bio_counter_dec(fs_info);
2088 bio_put(bio);
2089 return 0;
2090 }
2091
2092 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2093 struct extent_buffer *eb, int mirror_num)
2094 {
2095 u64 start = eb->start;
2096 int i, num_pages = num_extent_pages(eb);
2097 int ret = 0;
2098
2099 if (sb_rdonly(fs_info->sb))
2100 return -EROFS;
2101
2102 for (i = 0; i < num_pages; i++) {
2103 struct page *p = eb->pages[i];
2104
2105 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2106 start - page_offset(p), mirror_num);
2107 if (ret)
2108 break;
2109 start += PAGE_SIZE;
2110 }
2111
2112 return ret;
2113 }
2114
2115 /*
2116 * each time an IO finishes, we do a fast check in the IO failure tree
2117 * to see if we need to process or clean up an io_failure_record
2118 */
2119 int clean_io_failure(struct btrfs_fs_info *fs_info,
2120 struct extent_io_tree *failure_tree,
2121 struct extent_io_tree *io_tree, u64 start,
2122 struct page *page, u64 ino, unsigned int pg_offset)
2123 {
2124 u64 private;
2125 struct io_failure_record *failrec;
2126 struct extent_state *state;
2127 int num_copies;
2128 int ret;
2129
2130 private = 0;
2131 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2132 EXTENT_DIRTY, 0);
2133 if (!ret)
2134 return 0;
2135
2136 ret = get_state_failrec(failure_tree, start, &failrec);
2137 if (ret)
2138 return 0;
2139
2140 BUG_ON(!failrec->this_mirror);
2141
2142 if (failrec->in_validation) {
2143 /* there was no real error, just free the record */
2144 btrfs_debug(fs_info,
2145 "clean_io_failure: freeing dummy error at %llu",
2146 failrec->start);
2147 goto out;
2148 }
2149 if (sb_rdonly(fs_info->sb))
2150 goto out;
2151
2152 spin_lock(&io_tree->lock);
2153 state = find_first_extent_bit_state(io_tree,
2154 failrec->start,
2155 EXTENT_LOCKED);
2156 spin_unlock(&io_tree->lock);
2157
2158 if (state && state->start <= failrec->start &&
2159 state->end >= failrec->start + failrec->len - 1) {
2160 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2161 failrec->len);
2162 if (num_copies > 1) {
2163 repair_io_failure(fs_info, ino, start, failrec->len,
2164 failrec->logical, page, pg_offset,
2165 failrec->failed_mirror);
2166 }
2167 }
2168
2169 out:
2170 free_io_failure(failure_tree, io_tree, failrec);
2171
2172 return 0;
2173 }
2174
2175 /*
2176 * Can be called when
2177 * - hold extent lock
2178 * - under ordered extent
2179 * - the inode is freeing
2180 */
2181 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2182 {
2183 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2184 struct io_failure_record *failrec;
2185 struct extent_state *state, *next;
2186
2187 if (RB_EMPTY_ROOT(&failure_tree->state))
2188 return;
2189
2190 spin_lock(&failure_tree->lock);
2191 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2192 while (state) {
2193 if (state->start > end)
2194 break;
2195
2196 ASSERT(state->end <= end);
2197
2198 next = next_state(state);
2199
2200 failrec = state->failrec;
2201 free_extent_state(state);
2202 kfree(failrec);
2203
2204 state = next;
2205 }
2206 spin_unlock(&failure_tree->lock);
2207 }
2208
2209 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2210 struct io_failure_record **failrec_ret)
2211 {
2212 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2213 struct io_failure_record *failrec;
2214 struct extent_map *em;
2215 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2216 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2217 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2218 int ret;
2219 u64 logical;
2220
2221 ret = get_state_failrec(failure_tree, start, &failrec);
2222 if (ret) {
2223 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2224 if (!failrec)
2225 return -ENOMEM;
2226
2227 failrec->start = start;
2228 failrec->len = end - start + 1;
2229 failrec->this_mirror = 0;
2230 failrec->bio_flags = 0;
2231 failrec->in_validation = 0;
2232
2233 read_lock(&em_tree->lock);
2234 em = lookup_extent_mapping(em_tree, start, failrec->len);
2235 if (!em) {
2236 read_unlock(&em_tree->lock);
2237 kfree(failrec);
2238 return -EIO;
2239 }
2240
2241 if (em->start > start || em->start + em->len <= start) {
2242 free_extent_map(em);
2243 em = NULL;
2244 }
2245 read_unlock(&em_tree->lock);
2246 if (!em) {
2247 kfree(failrec);
2248 return -EIO;
2249 }
2250
2251 logical = start - em->start;
2252 logical = em->block_start + logical;
2253 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2254 logical = em->block_start;
2255 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2256 extent_set_compress_type(&failrec->bio_flags,
2257 em->compress_type);
2258 }
2259
2260 btrfs_debug(fs_info,
2261 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2262 logical, start, failrec->len);
2263
2264 failrec->logical = logical;
2265 free_extent_map(em);
2266
2267 /* set the bits in the private failure tree */
2268 ret = set_extent_bits(failure_tree, start, end,
2269 EXTENT_LOCKED | EXTENT_DIRTY);
2270 if (ret >= 0)
2271 ret = set_state_failrec(failure_tree, start, failrec);
2272 /* set the bits in the inode's tree */
2273 if (ret >= 0)
2274 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2275 if (ret < 0) {
2276 kfree(failrec);
2277 return ret;
2278 }
2279 } else {
2280 btrfs_debug(fs_info,
2281 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2282 failrec->logical, failrec->start, failrec->len,
2283 failrec->in_validation);
2284 /*
2285 * when data can be on disk more than twice, add to failrec here
2286 * (e.g. with a list for failed_mirror) to make
2287 * clean_io_failure() clean all those errors at once.
2288 */
2289 }
2290
2291 *failrec_ret = failrec;
2292
2293 return 0;
2294 }
2295
2296 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2297 struct io_failure_record *failrec, int failed_mirror)
2298 {
2299 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2300 int num_copies;
2301
2302 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2303 if (num_copies == 1) {
2304 /*
2305 * we only have a single copy of the data, so don't bother with
2306 * all the retry and error correction code that follows. no
2307 * matter what the error is, it is very likely to persist.
2308 */
2309 btrfs_debug(fs_info,
2310 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2311 num_copies, failrec->this_mirror, failed_mirror);
2312 return false;
2313 }
2314
2315 /*
2316 * there are two premises:
2317 * a) deliver good data to the caller
2318 * b) correct the bad sectors on disk
2319 */
2320 if (failed_bio_pages > 1) {
2321 /*
2322 * to fulfill b), we need to know the exact failing sectors, as
2323 * we don't want to rewrite any more than the failed ones. thus,
2324 * we need separate read requests for the failed bio
2325 *
2326 * if the following BUG_ON triggers, our validation request got
2327 * merged. we need separate requests for our algorithm to work.
2328 */
2329 BUG_ON(failrec->in_validation);
2330 failrec->in_validation = 1;
2331 failrec->this_mirror = failed_mirror;
2332 } else {
2333 /*
2334 * we're ready to fulfill a) and b) alongside. get a good copy
2335 * of the failed sector and if we succeed, we have setup
2336 * everything for repair_io_failure to do the rest for us.
2337 */
2338 if (failrec->in_validation) {
2339 BUG_ON(failrec->this_mirror != failed_mirror);
2340 failrec->in_validation = 0;
2341 failrec->this_mirror = 0;
2342 }
2343 failrec->failed_mirror = failed_mirror;
2344 failrec->this_mirror++;
2345 if (failrec->this_mirror == failed_mirror)
2346 failrec->this_mirror++;
2347 }
2348
2349 if (failrec->this_mirror > num_copies) {
2350 btrfs_debug(fs_info,
2351 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2352 num_copies, failrec->this_mirror, failed_mirror);
2353 return false;
2354 }
2355
2356 return true;
2357 }
2358
2359
2360 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2361 struct io_failure_record *failrec,
2362 struct page *page, int pg_offset, int icsum,
2363 bio_end_io_t *endio_func, void *data)
2364 {
2365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2366 struct bio *bio;
2367 struct btrfs_io_bio *btrfs_failed_bio;
2368 struct btrfs_io_bio *btrfs_bio;
2369
2370 bio = btrfs_io_bio_alloc(1);
2371 bio->bi_end_io = endio_func;
2372 bio->bi_iter.bi_sector = failrec->logical >> 9;
2373 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2374 bio->bi_iter.bi_size = 0;
2375 bio->bi_private = data;
2376
2377 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378 if (btrfs_failed_bio->csum) {
2379 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2380
2381 btrfs_bio = btrfs_io_bio(bio);
2382 btrfs_bio->csum = btrfs_bio->csum_inline;
2383 icsum *= csum_size;
2384 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2385 csum_size);
2386 }
2387
2388 bio_add_page(bio, page, failrec->len, pg_offset);
2389
2390 return bio;
2391 }
2392
2393 /*
2394 * This is a generic handler for readpage errors. If other copies exist, read
2395 * those and write back good data to the failed position. Does not investigate
2396 * in remapping the failed extent elsewhere, hoping the device will be smart
2397 * enough to do this as needed
2398 */
2399 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2400 struct page *page, u64 start, u64 end,
2401 int failed_mirror)
2402 {
2403 struct io_failure_record *failrec;
2404 struct inode *inode = page->mapping->host;
2405 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2406 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2407 struct bio *bio;
2408 int read_mode = 0;
2409 blk_status_t status;
2410 int ret;
2411 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2412
2413 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2414
2415 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2416 if (ret)
2417 return ret;
2418
2419 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2420 failed_mirror)) {
2421 free_io_failure(failure_tree, tree, failrec);
2422 return -EIO;
2423 }
2424
2425 if (failed_bio_pages > 1)
2426 read_mode |= REQ_FAILFAST_DEV;
2427
2428 phy_offset >>= inode->i_sb->s_blocksize_bits;
2429 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2430 start - page_offset(page),
2431 (int)phy_offset, failed_bio->bi_end_io,
2432 NULL);
2433 bio->bi_opf = REQ_OP_READ | read_mode;
2434
2435 btrfs_debug(btrfs_sb(inode->i_sb),
2436 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2437 read_mode, failrec->this_mirror, failrec->in_validation);
2438
2439 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2440 failrec->bio_flags, 0);
2441 if (status) {
2442 free_io_failure(failure_tree, tree, failrec);
2443 bio_put(bio);
2444 ret = blk_status_to_errno(status);
2445 }
2446
2447 return ret;
2448 }
2449
2450 /* lots and lots of room for performance fixes in the end_bio funcs */
2451
2452 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2453 {
2454 int uptodate = (err == 0);
2455 int ret = 0;
2456
2457 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2458
2459 if (!uptodate) {
2460 ClearPageUptodate(page);
2461 SetPageError(page);
2462 ret = err < 0 ? err : -EIO;
2463 mapping_set_error(page->mapping, ret);
2464 }
2465 }
2466
2467 /*
2468 * after a writepage IO is done, we need to:
2469 * clear the uptodate bits on error
2470 * clear the writeback bits in the extent tree for this IO
2471 * end_page_writeback if the page has no more pending IO
2472 *
2473 * Scheduling is not allowed, so the extent state tree is expected
2474 * to have one and only one object corresponding to this IO.
2475 */
2476 static void end_bio_extent_writepage(struct bio *bio)
2477 {
2478 int error = blk_status_to_errno(bio->bi_status);
2479 struct bio_vec *bvec;
2480 u64 start;
2481 u64 end;
2482 int i;
2483 struct bvec_iter_all iter_all;
2484
2485 ASSERT(!bio_flagged(bio, BIO_CLONED));
2486 bio_for_each_segment_all(bvec, bio, i, iter_all) {
2487 struct page *page = bvec->bv_page;
2488 struct inode *inode = page->mapping->host;
2489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2490
2491 /* We always issue full-page reads, but if some block
2492 * in a page fails to read, blk_update_request() will
2493 * advance bv_offset and adjust bv_len to compensate.
2494 * Print a warning for nonzero offsets, and an error
2495 * if they don't add up to a full page. */
2496 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2497 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2498 btrfs_err(fs_info,
2499 "partial page write in btrfs with offset %u and length %u",
2500 bvec->bv_offset, bvec->bv_len);
2501 else
2502 btrfs_info(fs_info,
2503 "incomplete page write in btrfs with offset %u and length %u",
2504 bvec->bv_offset, bvec->bv_len);
2505 }
2506
2507 start = page_offset(page);
2508 end = start + bvec->bv_offset + bvec->bv_len - 1;
2509
2510 end_extent_writepage(page, error, start, end);
2511 end_page_writeback(page);
2512 }
2513
2514 bio_put(bio);
2515 }
2516
2517 static void
2518 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2519 int uptodate)
2520 {
2521 struct extent_state *cached = NULL;
2522 u64 end = start + len - 1;
2523
2524 if (uptodate && tree->track_uptodate)
2525 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2526 unlock_extent_cached_atomic(tree, start, end, &cached);
2527 }
2528
2529 /*
2530 * after a readpage IO is done, we need to:
2531 * clear the uptodate bits on error
2532 * set the uptodate bits if things worked
2533 * set the page up to date if all extents in the tree are uptodate
2534 * clear the lock bit in the extent tree
2535 * unlock the page if there are no other extents locked for it
2536 *
2537 * Scheduling is not allowed, so the extent state tree is expected
2538 * to have one and only one object corresponding to this IO.
2539 */
2540 static void end_bio_extent_readpage(struct bio *bio)
2541 {
2542 struct bio_vec *bvec;
2543 int uptodate = !bio->bi_status;
2544 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2545 struct extent_io_tree *tree, *failure_tree;
2546 u64 offset = 0;
2547 u64 start;
2548 u64 end;
2549 u64 len;
2550 u64 extent_start = 0;
2551 u64 extent_len = 0;
2552 int mirror;
2553 int ret;
2554 int i;
2555 struct bvec_iter_all iter_all;
2556
2557 ASSERT(!bio_flagged(bio, BIO_CLONED));
2558 bio_for_each_segment_all(bvec, bio, i, iter_all) {
2559 struct page *page = bvec->bv_page;
2560 struct inode *inode = page->mapping->host;
2561 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2562 bool data_inode = btrfs_ino(BTRFS_I(inode))
2563 != BTRFS_BTREE_INODE_OBJECTID;
2564
2565 btrfs_debug(fs_info,
2566 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2567 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2568 io_bio->mirror_num);
2569 tree = &BTRFS_I(inode)->io_tree;
2570 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571
2572 /* We always issue full-page reads, but if some block
2573 * in a page fails to read, blk_update_request() will
2574 * advance bv_offset and adjust bv_len to compensate.
2575 * Print a warning for nonzero offsets, and an error
2576 * if they don't add up to a full page. */
2577 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2578 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2579 btrfs_err(fs_info,
2580 "partial page read in btrfs with offset %u and length %u",
2581 bvec->bv_offset, bvec->bv_len);
2582 else
2583 btrfs_info(fs_info,
2584 "incomplete page read in btrfs with offset %u and length %u",
2585 bvec->bv_offset, bvec->bv_len);
2586 }
2587
2588 start = page_offset(page);
2589 end = start + bvec->bv_offset + bvec->bv_len - 1;
2590 len = bvec->bv_len;
2591
2592 mirror = io_bio->mirror_num;
2593 if (likely(uptodate)) {
2594 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2595 page, start, end,
2596 mirror);
2597 if (ret)
2598 uptodate = 0;
2599 else
2600 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2601 failure_tree, tree, start,
2602 page,
2603 btrfs_ino(BTRFS_I(inode)), 0);
2604 }
2605
2606 if (likely(uptodate))
2607 goto readpage_ok;
2608
2609 if (data_inode) {
2610
2611 /*
2612 * The generic bio_readpage_error handles errors the
2613 * following way: If possible, new read requests are
2614 * created and submitted and will end up in
2615 * end_bio_extent_readpage as well (if we're lucky,
2616 * not in the !uptodate case). In that case it returns
2617 * 0 and we just go on with the next page in our bio.
2618 * If it can't handle the error it will return -EIO and
2619 * we remain responsible for that page.
2620 */
2621 ret = bio_readpage_error(bio, offset, page, start, end,
2622 mirror);
2623 if (ret == 0) {
2624 uptodate = !bio->bi_status;
2625 offset += len;
2626 continue;
2627 }
2628 } else {
2629 struct extent_buffer *eb;
2630
2631 eb = (struct extent_buffer *)page->private;
2632 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2633 eb->read_mirror = mirror;
2634 atomic_dec(&eb->io_pages);
2635 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2636 &eb->bflags))
2637 btree_readahead_hook(eb, -EIO);
2638 }
2639 readpage_ok:
2640 if (likely(uptodate)) {
2641 loff_t i_size = i_size_read(inode);
2642 pgoff_t end_index = i_size >> PAGE_SHIFT;
2643 unsigned off;
2644
2645 /* Zero out the end if this page straddles i_size */
2646 off = offset_in_page(i_size);
2647 if (page->index == end_index && off)
2648 zero_user_segment(page, off, PAGE_SIZE);
2649 SetPageUptodate(page);
2650 } else {
2651 ClearPageUptodate(page);
2652 SetPageError(page);
2653 }
2654 unlock_page(page);
2655 offset += len;
2656
2657 if (unlikely(!uptodate)) {
2658 if (extent_len) {
2659 endio_readpage_release_extent(tree,
2660 extent_start,
2661 extent_len, 1);
2662 extent_start = 0;
2663 extent_len = 0;
2664 }
2665 endio_readpage_release_extent(tree, start,
2666 end - start + 1, 0);
2667 } else if (!extent_len) {
2668 extent_start = start;
2669 extent_len = end + 1 - start;
2670 } else if (extent_start + extent_len == start) {
2671 extent_len += end + 1 - start;
2672 } else {
2673 endio_readpage_release_extent(tree, extent_start,
2674 extent_len, uptodate);
2675 extent_start = start;
2676 extent_len = end + 1 - start;
2677 }
2678 }
2679
2680 if (extent_len)
2681 endio_readpage_release_extent(tree, extent_start, extent_len,
2682 uptodate);
2683 btrfs_io_bio_free_csum(io_bio);
2684 bio_put(bio);
2685 }
2686
2687 /*
2688 * Initialize the members up to but not including 'bio'. Use after allocating a
2689 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2690 * 'bio' because use of __GFP_ZERO is not supported.
2691 */
2692 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2693 {
2694 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2695 }
2696
2697 /*
2698 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2699 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2700 * for the appropriate container_of magic
2701 */
2702 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2703 {
2704 struct bio *bio;
2705
2706 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2707 bio_set_dev(bio, bdev);
2708 bio->bi_iter.bi_sector = first_byte >> 9;
2709 btrfs_io_bio_init(btrfs_io_bio(bio));
2710 return bio;
2711 }
2712
2713 struct bio *btrfs_bio_clone(struct bio *bio)
2714 {
2715 struct btrfs_io_bio *btrfs_bio;
2716 struct bio *new;
2717
2718 /* Bio allocation backed by a bioset does not fail */
2719 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2720 btrfs_bio = btrfs_io_bio(new);
2721 btrfs_io_bio_init(btrfs_bio);
2722 btrfs_bio->iter = bio->bi_iter;
2723 return new;
2724 }
2725
2726 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2727 {
2728 struct bio *bio;
2729
2730 /* Bio allocation backed by a bioset does not fail */
2731 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2732 btrfs_io_bio_init(btrfs_io_bio(bio));
2733 return bio;
2734 }
2735
2736 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2737 {
2738 struct bio *bio;
2739 struct btrfs_io_bio *btrfs_bio;
2740
2741 /* this will never fail when it's backed by a bioset */
2742 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2743 ASSERT(bio);
2744
2745 btrfs_bio = btrfs_io_bio(bio);
2746 btrfs_io_bio_init(btrfs_bio);
2747
2748 bio_trim(bio, offset >> 9, size >> 9);
2749 btrfs_bio->iter = bio->bi_iter;
2750 return bio;
2751 }
2752
2753 /*
2754 * @opf: bio REQ_OP_* and REQ_* flags as one value
2755 * @tree: tree so we can call our merge_bio hook
2756 * @wbc: optional writeback control for io accounting
2757 * @page: page to add to the bio
2758 * @pg_offset: offset of the new bio or to check whether we are adding
2759 * a contiguous page to the previous one
2760 * @size: portion of page that we want to write
2761 * @offset: starting offset in the page
2762 * @bdev: attach newly created bios to this bdev
2763 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2764 * @end_io_func: end_io callback for new bio
2765 * @mirror_num: desired mirror to read/write
2766 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2767 * @bio_flags: flags of the current bio to see if we can merge them
2768 */
2769 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2770 struct writeback_control *wbc,
2771 struct page *page, u64 offset,
2772 size_t size, unsigned long pg_offset,
2773 struct block_device *bdev,
2774 struct bio **bio_ret,
2775 bio_end_io_t end_io_func,
2776 int mirror_num,
2777 unsigned long prev_bio_flags,
2778 unsigned long bio_flags,
2779 bool force_bio_submit)
2780 {
2781 int ret = 0;
2782 struct bio *bio;
2783 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2784 sector_t sector = offset >> 9;
2785
2786 ASSERT(bio_ret);
2787
2788 if (*bio_ret) {
2789 bool contig;
2790 bool can_merge = true;
2791
2792 bio = *bio_ret;
2793 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2794 contig = bio->bi_iter.bi_sector == sector;
2795 else
2796 contig = bio_end_sector(bio) == sector;
2797
2798 ASSERT(tree->ops);
2799 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2800 can_merge = false;
2801
2802 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2803 force_bio_submit ||
2804 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2805 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2806 if (ret < 0) {
2807 *bio_ret = NULL;
2808 return ret;
2809 }
2810 bio = NULL;
2811 } else {
2812 if (wbc)
2813 wbc_account_io(wbc, page, page_size);
2814 return 0;
2815 }
2816 }
2817
2818 bio = btrfs_bio_alloc(bdev, offset);
2819 bio_add_page(bio, page, page_size, pg_offset);
2820 bio->bi_end_io = end_io_func;
2821 bio->bi_private = tree;
2822 bio->bi_write_hint = page->mapping->host->i_write_hint;
2823 bio->bi_opf = opf;
2824 if (wbc) {
2825 wbc_init_bio(wbc, bio);
2826 wbc_account_io(wbc, page, page_size);
2827 }
2828
2829 *bio_ret = bio;
2830
2831 return ret;
2832 }
2833
2834 static void attach_extent_buffer_page(struct extent_buffer *eb,
2835 struct page *page)
2836 {
2837 if (!PagePrivate(page)) {
2838 SetPagePrivate(page);
2839 get_page(page);
2840 set_page_private(page, (unsigned long)eb);
2841 } else {
2842 WARN_ON(page->private != (unsigned long)eb);
2843 }
2844 }
2845
2846 void set_page_extent_mapped(struct page *page)
2847 {
2848 if (!PagePrivate(page)) {
2849 SetPagePrivate(page);
2850 get_page(page);
2851 set_page_private(page, EXTENT_PAGE_PRIVATE);
2852 }
2853 }
2854
2855 static struct extent_map *
2856 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2857 u64 start, u64 len, get_extent_t *get_extent,
2858 struct extent_map **em_cached)
2859 {
2860 struct extent_map *em;
2861
2862 if (em_cached && *em_cached) {
2863 em = *em_cached;
2864 if (extent_map_in_tree(em) && start >= em->start &&
2865 start < extent_map_end(em)) {
2866 refcount_inc(&em->refs);
2867 return em;
2868 }
2869
2870 free_extent_map(em);
2871 *em_cached = NULL;
2872 }
2873
2874 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2875 if (em_cached && !IS_ERR_OR_NULL(em)) {
2876 BUG_ON(*em_cached);
2877 refcount_inc(&em->refs);
2878 *em_cached = em;
2879 }
2880 return em;
2881 }
2882 /*
2883 * basic readpage implementation. Locked extent state structs are inserted
2884 * into the tree that are removed when the IO is done (by the end_io
2885 * handlers)
2886 * XXX JDM: This needs looking at to ensure proper page locking
2887 * return 0 on success, otherwise return error
2888 */
2889 static int __do_readpage(struct extent_io_tree *tree,
2890 struct page *page,
2891 get_extent_t *get_extent,
2892 struct extent_map **em_cached,
2893 struct bio **bio, int mirror_num,
2894 unsigned long *bio_flags, unsigned int read_flags,
2895 u64 *prev_em_start)
2896 {
2897 struct inode *inode = page->mapping->host;
2898 u64 start = page_offset(page);
2899 const u64 end = start + PAGE_SIZE - 1;
2900 u64 cur = start;
2901 u64 extent_offset;
2902 u64 last_byte = i_size_read(inode);
2903 u64 block_start;
2904 u64 cur_end;
2905 struct extent_map *em;
2906 struct block_device *bdev;
2907 int ret = 0;
2908 int nr = 0;
2909 size_t pg_offset = 0;
2910 size_t iosize;
2911 size_t disk_io_size;
2912 size_t blocksize = inode->i_sb->s_blocksize;
2913 unsigned long this_bio_flag = 0;
2914
2915 set_page_extent_mapped(page);
2916
2917 if (!PageUptodate(page)) {
2918 if (cleancache_get_page(page) == 0) {
2919 BUG_ON(blocksize != PAGE_SIZE);
2920 unlock_extent(tree, start, end);
2921 goto out;
2922 }
2923 }
2924
2925 if (page->index == last_byte >> PAGE_SHIFT) {
2926 char *userpage;
2927 size_t zero_offset = offset_in_page(last_byte);
2928
2929 if (zero_offset) {
2930 iosize = PAGE_SIZE - zero_offset;
2931 userpage = kmap_atomic(page);
2932 memset(userpage + zero_offset, 0, iosize);
2933 flush_dcache_page(page);
2934 kunmap_atomic(userpage);
2935 }
2936 }
2937 while (cur <= end) {
2938 bool force_bio_submit = false;
2939 u64 offset;
2940
2941 if (cur >= last_byte) {
2942 char *userpage;
2943 struct extent_state *cached = NULL;
2944
2945 iosize = PAGE_SIZE - pg_offset;
2946 userpage = kmap_atomic(page);
2947 memset(userpage + pg_offset, 0, iosize);
2948 flush_dcache_page(page);
2949 kunmap_atomic(userpage);
2950 set_extent_uptodate(tree, cur, cur + iosize - 1,
2951 &cached, GFP_NOFS);
2952 unlock_extent_cached(tree, cur,
2953 cur + iosize - 1, &cached);
2954 break;
2955 }
2956 em = __get_extent_map(inode, page, pg_offset, cur,
2957 end - cur + 1, get_extent, em_cached);
2958 if (IS_ERR_OR_NULL(em)) {
2959 SetPageError(page);
2960 unlock_extent(tree, cur, end);
2961 break;
2962 }
2963 extent_offset = cur - em->start;
2964 BUG_ON(extent_map_end(em) <= cur);
2965 BUG_ON(end < cur);
2966
2967 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2968 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2969 extent_set_compress_type(&this_bio_flag,
2970 em->compress_type);
2971 }
2972
2973 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2974 cur_end = min(extent_map_end(em) - 1, end);
2975 iosize = ALIGN(iosize, blocksize);
2976 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2977 disk_io_size = em->block_len;
2978 offset = em->block_start;
2979 } else {
2980 offset = em->block_start + extent_offset;
2981 disk_io_size = iosize;
2982 }
2983 bdev = em->bdev;
2984 block_start = em->block_start;
2985 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2986 block_start = EXTENT_MAP_HOLE;
2987
2988 /*
2989 * If we have a file range that points to a compressed extent
2990 * and it's followed by a consecutive file range that points to
2991 * to the same compressed extent (possibly with a different
2992 * offset and/or length, so it either points to the whole extent
2993 * or only part of it), we must make sure we do not submit a
2994 * single bio to populate the pages for the 2 ranges because
2995 * this makes the compressed extent read zero out the pages
2996 * belonging to the 2nd range. Imagine the following scenario:
2997 *
2998 * File layout
2999 * [0 - 8K] [8K - 24K]
3000 * | |
3001 * | |
3002 * points to extent X, points to extent X,
3003 * offset 4K, length of 8K offset 0, length 16K
3004 *
3005 * [extent X, compressed length = 4K uncompressed length = 16K]
3006 *
3007 * If the bio to read the compressed extent covers both ranges,
3008 * it will decompress extent X into the pages belonging to the
3009 * first range and then it will stop, zeroing out the remaining
3010 * pages that belong to the other range that points to extent X.
3011 * So here we make sure we submit 2 bios, one for the first
3012 * range and another one for the third range. Both will target
3013 * the same physical extent from disk, but we can't currently
3014 * make the compressed bio endio callback populate the pages
3015 * for both ranges because each compressed bio is tightly
3016 * coupled with a single extent map, and each range can have
3017 * an extent map with a different offset value relative to the
3018 * uncompressed data of our extent and different lengths. This
3019 * is a corner case so we prioritize correctness over
3020 * non-optimal behavior (submitting 2 bios for the same extent).
3021 */
3022 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3023 prev_em_start && *prev_em_start != (u64)-1 &&
3024 *prev_em_start != em->start)
3025 force_bio_submit = true;
3026
3027 if (prev_em_start)
3028 *prev_em_start = em->start;
3029
3030 free_extent_map(em);
3031 em = NULL;
3032
3033 /* we've found a hole, just zero and go on */
3034 if (block_start == EXTENT_MAP_HOLE) {
3035 char *userpage;
3036 struct extent_state *cached = NULL;
3037
3038 userpage = kmap_atomic(page);
3039 memset(userpage + pg_offset, 0, iosize);
3040 flush_dcache_page(page);
3041 kunmap_atomic(userpage);
3042
3043 set_extent_uptodate(tree, cur, cur + iosize - 1,
3044 &cached, GFP_NOFS);
3045 unlock_extent_cached(tree, cur,
3046 cur + iosize - 1, &cached);
3047 cur = cur + iosize;
3048 pg_offset += iosize;
3049 continue;
3050 }
3051 /* the get_extent function already copied into the page */
3052 if (test_range_bit(tree, cur, cur_end,
3053 EXTENT_UPTODATE, 1, NULL)) {
3054 check_page_uptodate(tree, page);
3055 unlock_extent(tree, cur, cur + iosize - 1);
3056 cur = cur + iosize;
3057 pg_offset += iosize;
3058 continue;
3059 }
3060 /* we have an inline extent but it didn't get marked up
3061 * to date. Error out
3062 */
3063 if (block_start == EXTENT_MAP_INLINE) {
3064 SetPageError(page);
3065 unlock_extent(tree, cur, cur + iosize - 1);
3066 cur = cur + iosize;
3067 pg_offset += iosize;
3068 continue;
3069 }
3070
3071 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3072 page, offset, disk_io_size,
3073 pg_offset, bdev, bio,
3074 end_bio_extent_readpage, mirror_num,
3075 *bio_flags,
3076 this_bio_flag,
3077 force_bio_submit);
3078 if (!ret) {
3079 nr++;
3080 *bio_flags = this_bio_flag;
3081 } else {
3082 SetPageError(page);
3083 unlock_extent(tree, cur, cur + iosize - 1);
3084 goto out;
3085 }
3086 cur = cur + iosize;
3087 pg_offset += iosize;
3088 }
3089 out:
3090 if (!nr) {
3091 if (!PageError(page))
3092 SetPageUptodate(page);
3093 unlock_page(page);
3094 }
3095 return ret;
3096 }
3097
3098 static inline void contiguous_readpages(struct extent_io_tree *tree,
3099 struct page *pages[], int nr_pages,
3100 u64 start, u64 end,
3101 struct extent_map **em_cached,
3102 struct bio **bio,
3103 unsigned long *bio_flags,
3104 u64 *prev_em_start)
3105 {
3106 struct inode *inode;
3107 struct btrfs_ordered_extent *ordered;
3108 int index;
3109
3110 inode = pages[0]->mapping->host;
3111 while (1) {
3112 lock_extent(tree, start, end);
3113 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3114 end - start + 1);
3115 if (!ordered)
3116 break;
3117 unlock_extent(tree, start, end);
3118 btrfs_start_ordered_extent(inode, ordered, 1);
3119 btrfs_put_ordered_extent(ordered);
3120 }
3121
3122 for (index = 0; index < nr_pages; index++) {
3123 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3124 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3125 put_page(pages[index]);
3126 }
3127 }
3128
3129 static int __extent_read_full_page(struct extent_io_tree *tree,
3130 struct page *page,
3131 get_extent_t *get_extent,
3132 struct bio **bio, int mirror_num,
3133 unsigned long *bio_flags,
3134 unsigned int read_flags)
3135 {
3136 struct inode *inode = page->mapping->host;
3137 struct btrfs_ordered_extent *ordered;
3138 u64 start = page_offset(page);
3139 u64 end = start + PAGE_SIZE - 1;
3140 int ret;
3141
3142 while (1) {
3143 lock_extent(tree, start, end);
3144 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3145 PAGE_SIZE);
3146 if (!ordered)
3147 break;
3148 unlock_extent(tree, start, end);
3149 btrfs_start_ordered_extent(inode, ordered, 1);
3150 btrfs_put_ordered_extent(ordered);
3151 }
3152
3153 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3154 bio_flags, read_flags, NULL);
3155 return ret;
3156 }
3157
3158 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3159 get_extent_t *get_extent, int mirror_num)
3160 {
3161 struct bio *bio = NULL;
3162 unsigned long bio_flags = 0;
3163 int ret;
3164
3165 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3166 &bio_flags, 0);
3167 if (bio)
3168 ret = submit_one_bio(bio, mirror_num, bio_flags);
3169 return ret;
3170 }
3171
3172 static void update_nr_written(struct writeback_control *wbc,
3173 unsigned long nr_written)
3174 {
3175 wbc->nr_to_write -= nr_written;
3176 }
3177
3178 /*
3179 * helper for __extent_writepage, doing all of the delayed allocation setup.
3180 *
3181 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3182 * to write the page (copy into inline extent). In this case the IO has
3183 * been started and the page is already unlocked.
3184 *
3185 * This returns 0 if all went well (page still locked)
3186 * This returns < 0 if there were errors (page still locked)
3187 */
3188 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3189 struct page *page, struct writeback_control *wbc,
3190 u64 delalloc_start, unsigned long *nr_written)
3191 {
3192 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3193 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3194 bool found;
3195 u64 delalloc_to_write = 0;
3196 u64 delalloc_end = 0;
3197 int ret;
3198 int page_started = 0;
3199
3200
3201 while (delalloc_end < page_end) {
3202 found = find_lock_delalloc_range(inode, tree,
3203 page,
3204 &delalloc_start,
3205 &delalloc_end);
3206 if (!found) {
3207 delalloc_start = delalloc_end + 1;
3208 continue;
3209 }
3210 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3211 delalloc_end, &page_started, nr_written, wbc);
3212 /* File system has been set read-only */
3213 if (ret) {
3214 SetPageError(page);
3215 /*
3216 * btrfs_run_delalloc_range should return < 0 for error
3217 * but just in case, we use > 0 here meaning the IO is
3218 * started, so we don't want to return > 0 unless
3219 * things are going well.
3220 */
3221 ret = ret < 0 ? ret : -EIO;
3222 goto done;
3223 }
3224 /*
3225 * delalloc_end is already one less than the total length, so
3226 * we don't subtract one from PAGE_SIZE
3227 */
3228 delalloc_to_write += (delalloc_end - delalloc_start +
3229 PAGE_SIZE) >> PAGE_SHIFT;
3230 delalloc_start = delalloc_end + 1;
3231 }
3232 if (wbc->nr_to_write < delalloc_to_write) {
3233 int thresh = 8192;
3234
3235 if (delalloc_to_write < thresh * 2)
3236 thresh = delalloc_to_write;
3237 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3238 thresh);
3239 }
3240
3241 /* did the fill delalloc function already unlock and start
3242 * the IO?
3243 */
3244 if (page_started) {
3245 /*
3246 * we've unlocked the page, so we can't update
3247 * the mapping's writeback index, just update
3248 * nr_to_write.
3249 */
3250 wbc->nr_to_write -= *nr_written;
3251 return 1;
3252 }
3253
3254 ret = 0;
3255
3256 done:
3257 return ret;
3258 }
3259
3260 /*
3261 * helper for __extent_writepage. This calls the writepage start hooks,
3262 * and does the loop to map the page into extents and bios.
3263 *
3264 * We return 1 if the IO is started and the page is unlocked,
3265 * 0 if all went well (page still locked)
3266 * < 0 if there were errors (page still locked)
3267 */
3268 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3269 struct page *page,
3270 struct writeback_control *wbc,
3271 struct extent_page_data *epd,
3272 loff_t i_size,
3273 unsigned long nr_written,
3274 unsigned int write_flags, int *nr_ret)
3275 {
3276 struct extent_io_tree *tree = epd->tree;
3277 u64 start = page_offset(page);
3278 u64 page_end = start + PAGE_SIZE - 1;
3279 u64 end;
3280 u64 cur = start;
3281 u64 extent_offset;
3282 u64 block_start;
3283 u64 iosize;
3284 struct extent_map *em;
3285 struct block_device *bdev;
3286 size_t pg_offset = 0;
3287 size_t blocksize;
3288 int ret = 0;
3289 int nr = 0;
3290 bool compressed;
3291
3292 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3293 if (ret) {
3294 /* Fixup worker will requeue */
3295 if (ret == -EBUSY)
3296 wbc->pages_skipped++;
3297 else
3298 redirty_page_for_writepage(wbc, page);
3299
3300 update_nr_written(wbc, nr_written);
3301 unlock_page(page);
3302 return 1;
3303 }
3304
3305 /*
3306 * we don't want to touch the inode after unlocking the page,
3307 * so we update the mapping writeback index now
3308 */
3309 update_nr_written(wbc, nr_written + 1);
3310
3311 end = page_end;
3312 if (i_size <= start) {
3313 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3314 goto done;
3315 }
3316
3317 blocksize = inode->i_sb->s_blocksize;
3318
3319 while (cur <= end) {
3320 u64 em_end;
3321 u64 offset;
3322
3323 if (cur >= i_size) {
3324 btrfs_writepage_endio_finish_ordered(page, cur,
3325 page_end, 1);
3326 break;
3327 }
3328 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3329 end - cur + 1, 1);
3330 if (IS_ERR_OR_NULL(em)) {
3331 SetPageError(page);
3332 ret = PTR_ERR_OR_ZERO(em);
3333 break;
3334 }
3335
3336 extent_offset = cur - em->start;
3337 em_end = extent_map_end(em);
3338 BUG_ON(em_end <= cur);
3339 BUG_ON(end < cur);
3340 iosize = min(em_end - cur, end - cur + 1);
3341 iosize = ALIGN(iosize, blocksize);
3342 offset = em->block_start + extent_offset;
3343 bdev = em->bdev;
3344 block_start = em->block_start;
3345 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3346 free_extent_map(em);
3347 em = NULL;
3348
3349 /*
3350 * compressed and inline extents are written through other
3351 * paths in the FS
3352 */
3353 if (compressed || block_start == EXTENT_MAP_HOLE ||
3354 block_start == EXTENT_MAP_INLINE) {
3355 /*
3356 * end_io notification does not happen here for
3357 * compressed extents
3358 */
3359 if (!compressed)
3360 btrfs_writepage_endio_finish_ordered(page, cur,
3361 cur + iosize - 1,
3362 1);
3363 else if (compressed) {
3364 /* we don't want to end_page_writeback on
3365 * a compressed extent. this happens
3366 * elsewhere
3367 */
3368 nr++;
3369 }
3370
3371 cur += iosize;
3372 pg_offset += iosize;
3373 continue;
3374 }
3375
3376 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3377 if (!PageWriteback(page)) {
3378 btrfs_err(BTRFS_I(inode)->root->fs_info,
3379 "page %lu not writeback, cur %llu end %llu",
3380 page->index, cur, end);
3381 }
3382
3383 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3384 page, offset, iosize, pg_offset,
3385 bdev, &epd->bio,
3386 end_bio_extent_writepage,
3387 0, 0, 0, false);
3388 if (ret) {
3389 SetPageError(page);
3390 if (PageWriteback(page))
3391 end_page_writeback(page);
3392 }
3393
3394 cur = cur + iosize;
3395 pg_offset += iosize;
3396 nr++;
3397 }
3398 done:
3399 *nr_ret = nr;
3400 return ret;
3401 }
3402
3403 /*
3404 * the writepage semantics are similar to regular writepage. extent
3405 * records are inserted to lock ranges in the tree, and as dirty areas
3406 * are found, they are marked writeback. Then the lock bits are removed
3407 * and the end_io handler clears the writeback ranges
3408 *
3409 * Return 0 if everything goes well.
3410 * Return <0 for error.
3411 */
3412 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3413 struct extent_page_data *epd)
3414 {
3415 struct inode *inode = page->mapping->host;
3416 u64 start = page_offset(page);
3417 u64 page_end = start + PAGE_SIZE - 1;
3418 int ret;
3419 int nr = 0;
3420 size_t pg_offset = 0;
3421 loff_t i_size = i_size_read(inode);
3422 unsigned long end_index = i_size >> PAGE_SHIFT;
3423 unsigned int write_flags = 0;
3424 unsigned long nr_written = 0;
3425
3426 write_flags = wbc_to_write_flags(wbc);
3427
3428 trace___extent_writepage(page, inode, wbc);
3429
3430 WARN_ON(!PageLocked(page));
3431
3432 ClearPageError(page);
3433
3434 pg_offset = offset_in_page(i_size);
3435 if (page->index > end_index ||
3436 (page->index == end_index && !pg_offset)) {
3437 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3438 unlock_page(page);
3439 return 0;
3440 }
3441
3442 if (page->index == end_index) {
3443 char *userpage;
3444
3445 userpage = kmap_atomic(page);
3446 memset(userpage + pg_offset, 0,
3447 PAGE_SIZE - pg_offset);
3448 kunmap_atomic(userpage);
3449 flush_dcache_page(page);
3450 }
3451
3452 pg_offset = 0;
3453
3454 set_page_extent_mapped(page);
3455
3456 if (!epd->extent_locked) {
3457 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3458 if (ret == 1)
3459 goto done_unlocked;
3460 if (ret)
3461 goto done;
3462 }
3463
3464 ret = __extent_writepage_io(inode, page, wbc, epd,
3465 i_size, nr_written, write_flags, &nr);
3466 if (ret == 1)
3467 goto done_unlocked;
3468
3469 done:
3470 if (nr == 0) {
3471 /* make sure the mapping tag for page dirty gets cleared */
3472 set_page_writeback(page);
3473 end_page_writeback(page);
3474 }
3475 if (PageError(page)) {
3476 ret = ret < 0 ? ret : -EIO;
3477 end_extent_writepage(page, ret, start, page_end);
3478 }
3479 unlock_page(page);
3480 ASSERT(ret <= 0);
3481 return ret;
3482
3483 done_unlocked:
3484 return 0;
3485 }
3486
3487 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3488 {
3489 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3490 TASK_UNINTERRUPTIBLE);
3491 }
3492
3493 /*
3494 * Lock eb pages and flush the bio if we can't the locks
3495 *
3496 * Return 0 if nothing went wrong
3497 * Return >0 is same as 0, except bio is not submitted
3498 * Return <0 if something went wrong, no page is locked
3499 */
3500 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3501 struct extent_page_data *epd)
3502 {
3503 struct btrfs_fs_info *fs_info = eb->fs_info;
3504 int i, num_pages, failed_page_nr;
3505 int flush = 0;
3506 int ret = 0;
3507
3508 if (!btrfs_try_tree_write_lock(eb)) {
3509 ret = flush_write_bio(epd);
3510 if (ret < 0)
3511 return ret;
3512 flush = 1;
3513 btrfs_tree_lock(eb);
3514 }
3515
3516 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3517 btrfs_tree_unlock(eb);
3518 if (!epd->sync_io)
3519 return 0;
3520 if (!flush) {
3521 ret = flush_write_bio(epd);
3522 if (ret < 0)
3523 return ret;
3524 flush = 1;
3525 }
3526 while (1) {
3527 wait_on_extent_buffer_writeback(eb);
3528 btrfs_tree_lock(eb);
3529 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3530 break;
3531 btrfs_tree_unlock(eb);
3532 }
3533 }
3534
3535 /*
3536 * We need to do this to prevent races in people who check if the eb is
3537 * under IO since we can end up having no IO bits set for a short period
3538 * of time.
3539 */
3540 spin_lock(&eb->refs_lock);
3541 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3542 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3543 spin_unlock(&eb->refs_lock);
3544 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3545 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3546 -eb->len,
3547 fs_info->dirty_metadata_batch);
3548 ret = 1;
3549 } else {
3550 spin_unlock(&eb->refs_lock);
3551 }
3552
3553 btrfs_tree_unlock(eb);
3554
3555 if (!ret)
3556 return ret;
3557
3558 num_pages = num_extent_pages(eb);
3559 for (i = 0; i < num_pages; i++) {
3560 struct page *p = eb->pages[i];
3561
3562 if (!trylock_page(p)) {
3563 if (!flush) {
3564 ret = flush_write_bio(epd);
3565 if (ret < 0) {
3566 failed_page_nr = i;
3567 goto err_unlock;
3568 }
3569 flush = 1;
3570 }
3571 lock_page(p);
3572 }
3573 }
3574
3575 return ret;
3576 err_unlock:
3577 /* Unlock already locked pages */
3578 for (i = 0; i < failed_page_nr; i++)
3579 unlock_page(eb->pages[i]);
3580 return ret;
3581 }
3582
3583 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3584 {
3585 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3586 smp_mb__after_atomic();
3587 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3588 }
3589
3590 static void set_btree_ioerr(struct page *page)
3591 {
3592 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3593
3594 SetPageError(page);
3595 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3596 return;
3597
3598 /*
3599 * If writeback for a btree extent that doesn't belong to a log tree
3600 * failed, increment the counter transaction->eb_write_errors.
3601 * We do this because while the transaction is running and before it's
3602 * committing (when we call filemap_fdata[write|wait]_range against
3603 * the btree inode), we might have
3604 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3605 * returns an error or an error happens during writeback, when we're
3606 * committing the transaction we wouldn't know about it, since the pages
3607 * can be no longer dirty nor marked anymore for writeback (if a
3608 * subsequent modification to the extent buffer didn't happen before the
3609 * transaction commit), which makes filemap_fdata[write|wait]_range not
3610 * able to find the pages tagged with SetPageError at transaction
3611 * commit time. So if this happens we must abort the transaction,
3612 * otherwise we commit a super block with btree roots that point to
3613 * btree nodes/leafs whose content on disk is invalid - either garbage
3614 * or the content of some node/leaf from a past generation that got
3615 * cowed or deleted and is no longer valid.
3616 *
3617 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3618 * not be enough - we need to distinguish between log tree extents vs
3619 * non-log tree extents, and the next filemap_fdatawait_range() call
3620 * will catch and clear such errors in the mapping - and that call might
3621 * be from a log sync and not from a transaction commit. Also, checking
3622 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3623 * not done and would not be reliable - the eb might have been released
3624 * from memory and reading it back again means that flag would not be
3625 * set (since it's a runtime flag, not persisted on disk).
3626 *
3627 * Using the flags below in the btree inode also makes us achieve the
3628 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3629 * writeback for all dirty pages and before filemap_fdatawait_range()
3630 * is called, the writeback for all dirty pages had already finished
3631 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3632 * filemap_fdatawait_range() would return success, as it could not know
3633 * that writeback errors happened (the pages were no longer tagged for
3634 * writeback).
3635 */
3636 switch (eb->log_index) {
3637 case -1:
3638 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3639 break;
3640 case 0:
3641 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3642 break;
3643 case 1:
3644 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3645 break;
3646 default:
3647 BUG(); /* unexpected, logic error */
3648 }
3649 }
3650
3651 static void end_bio_extent_buffer_writepage(struct bio *bio)
3652 {
3653 struct bio_vec *bvec;
3654 struct extent_buffer *eb;
3655 int i, done;
3656 struct bvec_iter_all iter_all;
3657
3658 ASSERT(!bio_flagged(bio, BIO_CLONED));
3659 bio_for_each_segment_all(bvec, bio, i, iter_all) {
3660 struct page *page = bvec->bv_page;
3661
3662 eb = (struct extent_buffer *)page->private;
3663 BUG_ON(!eb);
3664 done = atomic_dec_and_test(&eb->io_pages);
3665
3666 if (bio->bi_status ||
3667 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3668 ClearPageUptodate(page);
3669 set_btree_ioerr(page);
3670 }
3671
3672 end_page_writeback(page);
3673
3674 if (!done)
3675 continue;
3676
3677 end_extent_buffer_writeback(eb);
3678 }
3679
3680 bio_put(bio);
3681 }
3682
3683 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3684 struct btrfs_fs_info *fs_info,
3685 struct writeback_control *wbc,
3686 struct extent_page_data *epd)
3687 {
3688 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3689 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3690 u64 offset = eb->start;
3691 u32 nritems;
3692 int i, num_pages;
3693 unsigned long start, end;
3694 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3695 int ret = 0;
3696
3697 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3698 num_pages = num_extent_pages(eb);
3699 atomic_set(&eb->io_pages, num_pages);
3700
3701 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3702 nritems = btrfs_header_nritems(eb);
3703 if (btrfs_header_level(eb) > 0) {
3704 end = btrfs_node_key_ptr_offset(nritems);
3705
3706 memzero_extent_buffer(eb, end, eb->len - end);
3707 } else {
3708 /*
3709 * leaf:
3710 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3711 */
3712 start = btrfs_item_nr_offset(nritems);
3713 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3714 memzero_extent_buffer(eb, start, end - start);
3715 }
3716
3717 for (i = 0; i < num_pages; i++) {
3718 struct page *p = eb->pages[i];
3719
3720 clear_page_dirty_for_io(p);
3721 set_page_writeback(p);
3722 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3723 p, offset, PAGE_SIZE, 0, bdev,
3724 &epd->bio,
3725 end_bio_extent_buffer_writepage,
3726 0, 0, 0, false);
3727 if (ret) {
3728 set_btree_ioerr(p);
3729 if (PageWriteback(p))
3730 end_page_writeback(p);
3731 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3732 end_extent_buffer_writeback(eb);
3733 ret = -EIO;
3734 break;
3735 }
3736 offset += PAGE_SIZE;
3737 update_nr_written(wbc, 1);
3738 unlock_page(p);
3739 }
3740
3741 if (unlikely(ret)) {
3742 for (; i < num_pages; i++) {
3743 struct page *p = eb->pages[i];
3744 clear_page_dirty_for_io(p);
3745 unlock_page(p);
3746 }
3747 }
3748
3749 return ret;
3750 }
3751
3752 int btree_write_cache_pages(struct address_space *mapping,
3753 struct writeback_control *wbc)
3754 {
3755 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3756 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3757 struct extent_buffer *eb, *prev_eb = NULL;
3758 struct extent_page_data epd = {
3759 .bio = NULL,
3760 .tree = tree,
3761 .extent_locked = 0,
3762 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3763 };
3764 int ret = 0;
3765 int done = 0;
3766 int nr_to_write_done = 0;
3767 struct pagevec pvec;
3768 int nr_pages;
3769 pgoff_t index;
3770 pgoff_t end; /* Inclusive */
3771 int scanned = 0;
3772 xa_mark_t tag;
3773
3774 pagevec_init(&pvec);
3775 if (wbc->range_cyclic) {
3776 index = mapping->writeback_index; /* Start from prev offset */
3777 end = -1;
3778 } else {
3779 index = wbc->range_start >> PAGE_SHIFT;
3780 end = wbc->range_end >> PAGE_SHIFT;
3781 scanned = 1;
3782 }
3783 if (wbc->sync_mode == WB_SYNC_ALL)
3784 tag = PAGECACHE_TAG_TOWRITE;
3785 else
3786 tag = PAGECACHE_TAG_DIRTY;
3787 retry:
3788 if (wbc->sync_mode == WB_SYNC_ALL)
3789 tag_pages_for_writeback(mapping, index, end);
3790 while (!done && !nr_to_write_done && (index <= end) &&
3791 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3792 tag))) {
3793 unsigned i;
3794
3795 scanned = 1;
3796 for (i = 0; i < nr_pages; i++) {
3797 struct page *page = pvec.pages[i];
3798
3799 if (!PagePrivate(page))
3800 continue;
3801
3802 spin_lock(&mapping->private_lock);
3803 if (!PagePrivate(page)) {
3804 spin_unlock(&mapping->private_lock);
3805 continue;
3806 }
3807
3808 eb = (struct extent_buffer *)page->private;
3809
3810 /*
3811 * Shouldn't happen and normally this would be a BUG_ON
3812 * but no sense in crashing the users box for something
3813 * we can survive anyway.
3814 */
3815 if (WARN_ON(!eb)) {
3816 spin_unlock(&mapping->private_lock);
3817 continue;
3818 }
3819
3820 if (eb == prev_eb) {
3821 spin_unlock(&mapping->private_lock);
3822 continue;
3823 }
3824
3825 ret = atomic_inc_not_zero(&eb->refs);
3826 spin_unlock(&mapping->private_lock);
3827 if (!ret)
3828 continue;
3829
3830 prev_eb = eb;
3831 ret = lock_extent_buffer_for_io(eb, &epd);
3832 if (!ret) {
3833 free_extent_buffer(eb);
3834 continue;
3835 }
3836
3837 ret = write_one_eb(eb, fs_info, wbc, &epd);
3838 if (ret) {
3839 done = 1;
3840 free_extent_buffer(eb);
3841 break;
3842 }
3843 free_extent_buffer(eb);
3844
3845 /*
3846 * the filesystem may choose to bump up nr_to_write.
3847 * We have to make sure to honor the new nr_to_write
3848 * at any time
3849 */
3850 nr_to_write_done = wbc->nr_to_write <= 0;
3851 }
3852 pagevec_release(&pvec);
3853 cond_resched();
3854 }
3855 if (!scanned && !done) {
3856 /*
3857 * We hit the last page and there is more work to be done: wrap
3858 * back to the start of the file
3859 */
3860 scanned = 1;
3861 index = 0;
3862 goto retry;
3863 }
3864 ASSERT(ret <= 0);
3865 if (ret < 0) {
3866 end_write_bio(&epd, ret);
3867 return ret;
3868 }
3869 ret = flush_write_bio(&epd);
3870 return ret;
3871 }
3872
3873 /**
3874 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3875 * @mapping: address space structure to write
3876 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3877 * @data: data passed to __extent_writepage function
3878 *
3879 * If a page is already under I/O, write_cache_pages() skips it, even
3880 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3881 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3882 * and msync() need to guarantee that all the data which was dirty at the time
3883 * the call was made get new I/O started against them. If wbc->sync_mode is
3884 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3885 * existing IO to complete.
3886 */
3887 static int extent_write_cache_pages(struct address_space *mapping,
3888 struct writeback_control *wbc,
3889 struct extent_page_data *epd)
3890 {
3891 struct inode *inode = mapping->host;
3892 int ret = 0;
3893 int done = 0;
3894 int nr_to_write_done = 0;
3895 struct pagevec pvec;
3896 int nr_pages;
3897 pgoff_t index;
3898 pgoff_t end; /* Inclusive */
3899 pgoff_t done_index;
3900 int range_whole = 0;
3901 int scanned = 0;
3902 xa_mark_t tag;
3903
3904 /*
3905 * We have to hold onto the inode so that ordered extents can do their
3906 * work when the IO finishes. The alternative to this is failing to add
3907 * an ordered extent if the igrab() fails there and that is a huge pain
3908 * to deal with, so instead just hold onto the inode throughout the
3909 * writepages operation. If it fails here we are freeing up the inode
3910 * anyway and we'd rather not waste our time writing out stuff that is
3911 * going to be truncated anyway.
3912 */
3913 if (!igrab(inode))
3914 return 0;
3915
3916 pagevec_init(&pvec);
3917 if (wbc->range_cyclic) {
3918 index = mapping->writeback_index; /* Start from prev offset */
3919 end = -1;
3920 } else {
3921 index = wbc->range_start >> PAGE_SHIFT;
3922 end = wbc->range_end >> PAGE_SHIFT;
3923 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3924 range_whole = 1;
3925 scanned = 1;
3926 }
3927
3928 /*
3929 * We do the tagged writepage as long as the snapshot flush bit is set
3930 * and we are the first one who do the filemap_flush() on this inode.
3931 *
3932 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3933 * not race in and drop the bit.
3934 */
3935 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3936 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3937 &BTRFS_I(inode)->runtime_flags))
3938 wbc->tagged_writepages = 1;
3939
3940 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3941 tag = PAGECACHE_TAG_TOWRITE;
3942 else
3943 tag = PAGECACHE_TAG_DIRTY;
3944 retry:
3945 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3946 tag_pages_for_writeback(mapping, index, end);
3947 done_index = index;
3948 while (!done && !nr_to_write_done && (index <= end) &&
3949 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3950 &index, end, tag))) {
3951 unsigned i;
3952
3953 scanned = 1;
3954 for (i = 0; i < nr_pages; i++) {
3955 struct page *page = pvec.pages[i];
3956
3957 done_index = page->index;
3958 /*
3959 * At this point we hold neither the i_pages lock nor
3960 * the page lock: the page may be truncated or
3961 * invalidated (changing page->mapping to NULL),
3962 * or even swizzled back from swapper_space to
3963 * tmpfs file mapping
3964 */
3965 if (!trylock_page(page)) {
3966 ret = flush_write_bio(epd);
3967 BUG_ON(ret < 0);
3968 lock_page(page);
3969 }
3970
3971 if (unlikely(page->mapping != mapping)) {
3972 unlock_page(page);
3973 continue;
3974 }
3975
3976 if (wbc->sync_mode != WB_SYNC_NONE) {
3977 if (PageWriteback(page)) {
3978 ret = flush_write_bio(epd);
3979 BUG_ON(ret < 0);
3980 }
3981 wait_on_page_writeback(page);
3982 }
3983
3984 if (PageWriteback(page) ||
3985 !clear_page_dirty_for_io(page)) {
3986 unlock_page(page);
3987 continue;
3988 }
3989
3990 ret = __extent_writepage(page, wbc, epd);
3991 if (ret < 0) {
3992 /*
3993 * done_index is set past this page,
3994 * so media errors will not choke
3995 * background writeout for the entire
3996 * file. This has consequences for
3997 * range_cyclic semantics (ie. it may
3998 * not be suitable for data integrity
3999 * writeout).
4000 */
4001 done_index = page->index + 1;
4002 done = 1;
4003 break;
4004 }
4005
4006 /*
4007 * the filesystem may choose to bump up nr_to_write.
4008 * We have to make sure to honor the new nr_to_write
4009 * at any time
4010 */
4011 nr_to_write_done = wbc->nr_to_write <= 0;
4012 }
4013 pagevec_release(&pvec);
4014 cond_resched();
4015 }
4016 if (!scanned && !done) {
4017 /*
4018 * We hit the last page and there is more work to be done: wrap
4019 * back to the start of the file
4020 */
4021 scanned = 1;
4022 index = 0;
4023 goto retry;
4024 }
4025
4026 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4027 mapping->writeback_index = done_index;
4028
4029 btrfs_add_delayed_iput(inode);
4030 return ret;
4031 }
4032
4033 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4034 {
4035 int ret;
4036 struct extent_page_data epd = {
4037 .bio = NULL,
4038 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4039 .extent_locked = 0,
4040 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4041 };
4042
4043 ret = __extent_writepage(page, wbc, &epd);
4044 ASSERT(ret <= 0);
4045 if (ret < 0) {
4046 end_write_bio(&epd, ret);
4047 return ret;
4048 }
4049
4050 ret = flush_write_bio(&epd);
4051 ASSERT(ret <= 0);
4052 return ret;
4053 }
4054
4055 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4056 int mode)
4057 {
4058 int ret = 0;
4059 struct address_space *mapping = inode->i_mapping;
4060 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4061 struct page *page;
4062 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4063 PAGE_SHIFT;
4064
4065 struct extent_page_data epd = {
4066 .bio = NULL,
4067 .tree = tree,
4068 .extent_locked = 1,
4069 .sync_io = mode == WB_SYNC_ALL,
4070 };
4071 struct writeback_control wbc_writepages = {
4072 .sync_mode = mode,
4073 .nr_to_write = nr_pages * 2,
4074 .range_start = start,
4075 .range_end = end + 1,
4076 };
4077
4078 while (start <= end) {
4079 page = find_get_page(mapping, start >> PAGE_SHIFT);
4080 if (clear_page_dirty_for_io(page))
4081 ret = __extent_writepage(page, &wbc_writepages, &epd);
4082 else {
4083 btrfs_writepage_endio_finish_ordered(page, start,
4084 start + PAGE_SIZE - 1, 1);
4085 unlock_page(page);
4086 }
4087 put_page(page);
4088 start += PAGE_SIZE;
4089 }
4090
4091 ASSERT(ret <= 0);
4092 if (ret < 0) {
4093 end_write_bio(&epd, ret);
4094 return ret;
4095 }
4096 ret = flush_write_bio(&epd);
4097 return ret;
4098 }
4099
4100 int extent_writepages(struct address_space *mapping,
4101 struct writeback_control *wbc)
4102 {
4103 int ret = 0;
4104 struct extent_page_data epd = {
4105 .bio = NULL,
4106 .tree = &BTRFS_I(mapping->host)->io_tree,
4107 .extent_locked = 0,
4108 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4109 };
4110
4111 ret = extent_write_cache_pages(mapping, wbc, &epd);
4112 ASSERT(ret <= 0);
4113 if (ret < 0) {
4114 end_write_bio(&epd, ret);
4115 return ret;
4116 }
4117 ret = flush_write_bio(&epd);
4118 return ret;
4119 }
4120
4121 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4122 unsigned nr_pages)
4123 {
4124 struct bio *bio = NULL;
4125 unsigned long bio_flags = 0;
4126 struct page *pagepool[16];
4127 struct extent_map *em_cached = NULL;
4128 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4129 int nr = 0;
4130 u64 prev_em_start = (u64)-1;
4131
4132 while (!list_empty(pages)) {
4133 u64 contig_end = 0;
4134
4135 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4136 struct page *page = lru_to_page(pages);
4137
4138 prefetchw(&page->flags);
4139 list_del(&page->lru);
4140 if (add_to_page_cache_lru(page, mapping, page->index,
4141 readahead_gfp_mask(mapping))) {
4142 put_page(page);
4143 break;
4144 }
4145
4146 pagepool[nr++] = page;
4147 contig_end = page_offset(page) + PAGE_SIZE - 1;
4148 }
4149
4150 if (nr) {
4151 u64 contig_start = page_offset(pagepool[0]);
4152
4153 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4154
4155 contiguous_readpages(tree, pagepool, nr, contig_start,
4156 contig_end, &em_cached, &bio, &bio_flags,
4157 &prev_em_start);
4158 }
4159 }
4160
4161 if (em_cached)
4162 free_extent_map(em_cached);
4163
4164 if (bio)
4165 return submit_one_bio(bio, 0, bio_flags);
4166 return 0;
4167 }
4168
4169 /*
4170 * basic invalidatepage code, this waits on any locked or writeback
4171 * ranges corresponding to the page, and then deletes any extent state
4172 * records from the tree
4173 */
4174 int extent_invalidatepage(struct extent_io_tree *tree,
4175 struct page *page, unsigned long offset)
4176 {
4177 struct extent_state *cached_state = NULL;
4178 u64 start = page_offset(page);
4179 u64 end = start + PAGE_SIZE - 1;
4180 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4181
4182 start += ALIGN(offset, blocksize);
4183 if (start > end)
4184 return 0;
4185
4186 lock_extent_bits(tree, start, end, &cached_state);
4187 wait_on_page_writeback(page);
4188 clear_extent_bit(tree, start, end,
4189 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4190 EXTENT_DO_ACCOUNTING,
4191 1, 1, &cached_state);
4192 return 0;
4193 }
4194
4195 /*
4196 * a helper for releasepage, this tests for areas of the page that
4197 * are locked or under IO and drops the related state bits if it is safe
4198 * to drop the page.
4199 */
4200 static int try_release_extent_state(struct extent_io_tree *tree,
4201 struct page *page, gfp_t mask)
4202 {
4203 u64 start = page_offset(page);
4204 u64 end = start + PAGE_SIZE - 1;
4205 int ret = 1;
4206
4207 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4208 ret = 0;
4209 } else {
4210 /*
4211 * at this point we can safely clear everything except the
4212 * locked bit and the nodatasum bit
4213 */
4214 ret = __clear_extent_bit(tree, start, end,
4215 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4216 0, 0, NULL, mask, NULL);
4217
4218 /* if clear_extent_bit failed for enomem reasons,
4219 * we can't allow the release to continue.
4220 */
4221 if (ret < 0)
4222 ret = 0;
4223 else
4224 ret = 1;
4225 }
4226 return ret;
4227 }
4228
4229 /*
4230 * a helper for releasepage. As long as there are no locked extents
4231 * in the range corresponding to the page, both state records and extent
4232 * map records are removed
4233 */
4234 int try_release_extent_mapping(struct page *page, gfp_t mask)
4235 {
4236 struct extent_map *em;
4237 u64 start = page_offset(page);
4238 u64 end = start + PAGE_SIZE - 1;
4239 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4240 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4241 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4242
4243 if (gfpflags_allow_blocking(mask) &&
4244 page->mapping->host->i_size > SZ_16M) {
4245 u64 len;
4246 while (start <= end) {
4247 len = end - start + 1;
4248 write_lock(&map->lock);
4249 em = lookup_extent_mapping(map, start, len);
4250 if (!em) {
4251 write_unlock(&map->lock);
4252 break;
4253 }
4254 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4255 em->start != start) {
4256 write_unlock(&map->lock);
4257 free_extent_map(em);
4258 break;
4259 }
4260 if (!test_range_bit(tree, em->start,
4261 extent_map_end(em) - 1,
4262 EXTENT_LOCKED, 0, NULL)) {
4263 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4264 &btrfs_inode->runtime_flags);
4265 remove_extent_mapping(map, em);
4266 /* once for the rb tree */
4267 free_extent_map(em);
4268 }
4269 start = extent_map_end(em);
4270 write_unlock(&map->lock);
4271
4272 /* once for us */
4273 free_extent_map(em);
4274 }
4275 }
4276 return try_release_extent_state(tree, page, mask);
4277 }
4278
4279 /*
4280 * helper function for fiemap, which doesn't want to see any holes.
4281 * This maps until we find something past 'last'
4282 */
4283 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4284 u64 offset, u64 last)
4285 {
4286 u64 sectorsize = btrfs_inode_sectorsize(inode);
4287 struct extent_map *em;
4288 u64 len;
4289
4290 if (offset >= last)
4291 return NULL;
4292
4293 while (1) {
4294 len = last - offset;
4295 if (len == 0)
4296 break;
4297 len = ALIGN(len, sectorsize);
4298 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4299 if (IS_ERR_OR_NULL(em))
4300 return em;
4301
4302 /* if this isn't a hole return it */
4303 if (em->block_start != EXTENT_MAP_HOLE)
4304 return em;
4305
4306 /* this is a hole, advance to the next extent */
4307 offset = extent_map_end(em);
4308 free_extent_map(em);
4309 if (offset >= last)
4310 break;
4311 }
4312 return NULL;
4313 }
4314
4315 /*
4316 * To cache previous fiemap extent
4317 *
4318 * Will be used for merging fiemap extent
4319 */
4320 struct fiemap_cache {
4321 u64 offset;
4322 u64 phys;
4323 u64 len;
4324 u32 flags;
4325 bool cached;
4326 };
4327
4328 /*
4329 * Helper to submit fiemap extent.
4330 *
4331 * Will try to merge current fiemap extent specified by @offset, @phys,
4332 * @len and @flags with cached one.
4333 * And only when we fails to merge, cached one will be submitted as
4334 * fiemap extent.
4335 *
4336 * Return value is the same as fiemap_fill_next_extent().
4337 */
4338 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4339 struct fiemap_cache *cache,
4340 u64 offset, u64 phys, u64 len, u32 flags)
4341 {
4342 int ret = 0;
4343
4344 if (!cache->cached)
4345 goto assign;
4346
4347 /*
4348 * Sanity check, extent_fiemap() should have ensured that new
4349 * fiemap extent won't overlap with cached one.
4350 * Not recoverable.
4351 *
4352 * NOTE: Physical address can overlap, due to compression
4353 */
4354 if (cache->offset + cache->len > offset) {
4355 WARN_ON(1);
4356 return -EINVAL;
4357 }
4358
4359 /*
4360 * Only merges fiemap extents if
4361 * 1) Their logical addresses are continuous
4362 *
4363 * 2) Their physical addresses are continuous
4364 * So truly compressed (physical size smaller than logical size)
4365 * extents won't get merged with each other
4366 *
4367 * 3) Share same flags except FIEMAP_EXTENT_LAST
4368 * So regular extent won't get merged with prealloc extent
4369 */
4370 if (cache->offset + cache->len == offset &&
4371 cache->phys + cache->len == phys &&
4372 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4373 (flags & ~FIEMAP_EXTENT_LAST)) {
4374 cache->len += len;
4375 cache->flags |= flags;
4376 goto try_submit_last;
4377 }
4378
4379 /* Not mergeable, need to submit cached one */
4380 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4381 cache->len, cache->flags);
4382 cache->cached = false;
4383 if (ret)
4384 return ret;
4385 assign:
4386 cache->cached = true;
4387 cache->offset = offset;
4388 cache->phys = phys;
4389 cache->len = len;
4390 cache->flags = flags;
4391 try_submit_last:
4392 if (cache->flags & FIEMAP_EXTENT_LAST) {
4393 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4394 cache->phys, cache->len, cache->flags);
4395 cache->cached = false;
4396 }
4397 return ret;
4398 }
4399
4400 /*
4401 * Emit last fiemap cache
4402 *
4403 * The last fiemap cache may still be cached in the following case:
4404 * 0 4k 8k
4405 * |<- Fiemap range ->|
4406 * |<------------ First extent ----------->|
4407 *
4408 * In this case, the first extent range will be cached but not emitted.
4409 * So we must emit it before ending extent_fiemap().
4410 */
4411 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4412 struct fiemap_extent_info *fieinfo,
4413 struct fiemap_cache *cache)
4414 {
4415 int ret;
4416
4417 if (!cache->cached)
4418 return 0;
4419
4420 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4421 cache->len, cache->flags);
4422 cache->cached = false;
4423 if (ret > 0)
4424 ret = 0;
4425 return ret;
4426 }
4427
4428 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4429 __u64 start, __u64 len)
4430 {
4431 int ret = 0;
4432 u64 off = start;
4433 u64 max = start + len;
4434 u32 flags = 0;
4435 u32 found_type;
4436 u64 last;
4437 u64 last_for_get_extent = 0;
4438 u64 disko = 0;
4439 u64 isize = i_size_read(inode);
4440 struct btrfs_key found_key;
4441 struct extent_map *em = NULL;
4442 struct extent_state *cached_state = NULL;
4443 struct btrfs_path *path;
4444 struct btrfs_root *root = BTRFS_I(inode)->root;
4445 struct fiemap_cache cache = { 0 };
4446 int end = 0;
4447 u64 em_start = 0;
4448 u64 em_len = 0;
4449 u64 em_end = 0;
4450
4451 if (len == 0)
4452 return -EINVAL;
4453
4454 path = btrfs_alloc_path();
4455 if (!path)
4456 return -ENOMEM;
4457 path->leave_spinning = 1;
4458
4459 start = round_down(start, btrfs_inode_sectorsize(inode));
4460 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4461
4462 /*
4463 * lookup the last file extent. We're not using i_size here
4464 * because there might be preallocation past i_size
4465 */
4466 ret = btrfs_lookup_file_extent(NULL, root, path,
4467 btrfs_ino(BTRFS_I(inode)), -1, 0);
4468 if (ret < 0) {
4469 btrfs_free_path(path);
4470 return ret;
4471 } else {
4472 WARN_ON(!ret);
4473 if (ret == 1)
4474 ret = 0;
4475 }
4476
4477 path->slots[0]--;
4478 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4479 found_type = found_key.type;
4480
4481 /* No extents, but there might be delalloc bits */
4482 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4483 found_type != BTRFS_EXTENT_DATA_KEY) {
4484 /* have to trust i_size as the end */
4485 last = (u64)-1;
4486 last_for_get_extent = isize;
4487 } else {
4488 /*
4489 * remember the start of the last extent. There are a
4490 * bunch of different factors that go into the length of the
4491 * extent, so its much less complex to remember where it started
4492 */
4493 last = found_key.offset;
4494 last_for_get_extent = last + 1;
4495 }
4496 btrfs_release_path(path);
4497
4498 /*
4499 * we might have some extents allocated but more delalloc past those
4500 * extents. so, we trust isize unless the start of the last extent is
4501 * beyond isize
4502 */
4503 if (last < isize) {
4504 last = (u64)-1;
4505 last_for_get_extent = isize;
4506 }
4507
4508 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4509 &cached_state);
4510
4511 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4512 if (!em)
4513 goto out;
4514 if (IS_ERR(em)) {
4515 ret = PTR_ERR(em);
4516 goto out;
4517 }
4518
4519 while (!end) {
4520 u64 offset_in_extent = 0;
4521
4522 /* break if the extent we found is outside the range */
4523 if (em->start >= max || extent_map_end(em) < off)
4524 break;
4525
4526 /*
4527 * get_extent may return an extent that starts before our
4528 * requested range. We have to make sure the ranges
4529 * we return to fiemap always move forward and don't
4530 * overlap, so adjust the offsets here
4531 */
4532 em_start = max(em->start, off);
4533
4534 /*
4535 * record the offset from the start of the extent
4536 * for adjusting the disk offset below. Only do this if the
4537 * extent isn't compressed since our in ram offset may be past
4538 * what we have actually allocated on disk.
4539 */
4540 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4541 offset_in_extent = em_start - em->start;
4542 em_end = extent_map_end(em);
4543 em_len = em_end - em_start;
4544 flags = 0;
4545 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4546 disko = em->block_start + offset_in_extent;
4547 else
4548 disko = 0;
4549
4550 /*
4551 * bump off for our next call to get_extent
4552 */
4553 off = extent_map_end(em);
4554 if (off >= max)
4555 end = 1;
4556
4557 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4558 end = 1;
4559 flags |= FIEMAP_EXTENT_LAST;
4560 } else if (em->block_start == EXTENT_MAP_INLINE) {
4561 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4562 FIEMAP_EXTENT_NOT_ALIGNED);
4563 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4564 flags |= (FIEMAP_EXTENT_DELALLOC |
4565 FIEMAP_EXTENT_UNKNOWN);
4566 } else if (fieinfo->fi_extents_max) {
4567 u64 bytenr = em->block_start -
4568 (em->start - em->orig_start);
4569
4570 /*
4571 * As btrfs supports shared space, this information
4572 * can be exported to userspace tools via
4573 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4574 * then we're just getting a count and we can skip the
4575 * lookup stuff.
4576 */
4577 ret = btrfs_check_shared(root,
4578 btrfs_ino(BTRFS_I(inode)),
4579 bytenr);
4580 if (ret < 0)
4581 goto out_free;
4582 if (ret)
4583 flags |= FIEMAP_EXTENT_SHARED;
4584 ret = 0;
4585 }
4586 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4587 flags |= FIEMAP_EXTENT_ENCODED;
4588 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4589 flags |= FIEMAP_EXTENT_UNWRITTEN;
4590
4591 free_extent_map(em);
4592 em = NULL;
4593 if ((em_start >= last) || em_len == (u64)-1 ||
4594 (last == (u64)-1 && isize <= em_end)) {
4595 flags |= FIEMAP_EXTENT_LAST;
4596 end = 1;
4597 }
4598
4599 /* now scan forward to see if this is really the last extent. */
4600 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4601 if (IS_ERR(em)) {
4602 ret = PTR_ERR(em);
4603 goto out;
4604 }
4605 if (!em) {
4606 flags |= FIEMAP_EXTENT_LAST;
4607 end = 1;
4608 }
4609 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4610 em_len, flags);
4611 if (ret) {
4612 if (ret == 1)
4613 ret = 0;
4614 goto out_free;
4615 }
4616 }
4617 out_free:
4618 if (!ret)
4619 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4620 free_extent_map(em);
4621 out:
4622 btrfs_free_path(path);
4623 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4624 &cached_state);
4625 return ret;
4626 }
4627
4628 static void __free_extent_buffer(struct extent_buffer *eb)
4629 {
4630 btrfs_leak_debug_del(&eb->leak_list);
4631 kmem_cache_free(extent_buffer_cache, eb);
4632 }
4633
4634 int extent_buffer_under_io(struct extent_buffer *eb)
4635 {
4636 return (atomic_read(&eb->io_pages) ||
4637 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4638 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4639 }
4640
4641 /*
4642 * Release all pages attached to the extent buffer.
4643 */
4644 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4645 {
4646 int i;
4647 int num_pages;
4648 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4649
4650 BUG_ON(extent_buffer_under_io(eb));
4651
4652 num_pages = num_extent_pages(eb);
4653 for (i = 0; i < num_pages; i++) {
4654 struct page *page = eb->pages[i];
4655
4656 if (!page)
4657 continue;
4658 if (mapped)
4659 spin_lock(&page->mapping->private_lock);
4660 /*
4661 * We do this since we'll remove the pages after we've
4662 * removed the eb from the radix tree, so we could race
4663 * and have this page now attached to the new eb. So
4664 * only clear page_private if it's still connected to
4665 * this eb.
4666 */
4667 if (PagePrivate(page) &&
4668 page->private == (unsigned long)eb) {
4669 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4670 BUG_ON(PageDirty(page));
4671 BUG_ON(PageWriteback(page));
4672 /*
4673 * We need to make sure we haven't be attached
4674 * to a new eb.
4675 */
4676 ClearPagePrivate(page);
4677 set_page_private(page, 0);
4678 /* One for the page private */
4679 put_page(page);
4680 }
4681
4682 if (mapped)
4683 spin_unlock(&page->mapping->private_lock);
4684
4685 /* One for when we allocated the page */
4686 put_page(page);
4687 }
4688 }
4689
4690 /*
4691 * Helper for releasing the extent buffer.
4692 */
4693 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4694 {
4695 btrfs_release_extent_buffer_pages(eb);
4696 __free_extent_buffer(eb);
4697 }
4698
4699 static struct extent_buffer *
4700 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4701 unsigned long len)
4702 {
4703 struct extent_buffer *eb = NULL;
4704
4705 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4706 eb->start = start;
4707 eb->len = len;
4708 eb->fs_info = fs_info;
4709 eb->bflags = 0;
4710 rwlock_init(&eb->lock);
4711 atomic_set(&eb->blocking_readers, 0);
4712 atomic_set(&eb->blocking_writers, 0);
4713 eb->lock_nested = false;
4714 init_waitqueue_head(&eb->write_lock_wq);
4715 init_waitqueue_head(&eb->read_lock_wq);
4716
4717 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4718
4719 spin_lock_init(&eb->refs_lock);
4720 atomic_set(&eb->refs, 1);
4721 atomic_set(&eb->io_pages, 0);
4722
4723 /*
4724 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4725 */
4726 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4727 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4728 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4729
4730 #ifdef CONFIG_BTRFS_DEBUG
4731 atomic_set(&eb->spinning_writers, 0);
4732 atomic_set(&eb->spinning_readers, 0);
4733 atomic_set(&eb->read_locks, 0);
4734 atomic_set(&eb->write_locks, 0);
4735 #endif
4736
4737 return eb;
4738 }
4739
4740 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4741 {
4742 int i;
4743 struct page *p;
4744 struct extent_buffer *new;
4745 int num_pages = num_extent_pages(src);
4746
4747 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4748 if (new == NULL)
4749 return NULL;
4750
4751 for (i = 0; i < num_pages; i++) {
4752 p = alloc_page(GFP_NOFS);
4753 if (!p) {
4754 btrfs_release_extent_buffer(new);
4755 return NULL;
4756 }
4757 attach_extent_buffer_page(new, p);
4758 WARN_ON(PageDirty(p));
4759 SetPageUptodate(p);
4760 new->pages[i] = p;
4761 copy_page(page_address(p), page_address(src->pages[i]));
4762 }
4763
4764 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4765 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4766
4767 return new;
4768 }
4769
4770 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4771 u64 start, unsigned long len)
4772 {
4773 struct extent_buffer *eb;
4774 int num_pages;
4775 int i;
4776
4777 eb = __alloc_extent_buffer(fs_info, start, len);
4778 if (!eb)
4779 return NULL;
4780
4781 num_pages = num_extent_pages(eb);
4782 for (i = 0; i < num_pages; i++) {
4783 eb->pages[i] = alloc_page(GFP_NOFS);
4784 if (!eb->pages[i])
4785 goto err;
4786 }
4787 set_extent_buffer_uptodate(eb);
4788 btrfs_set_header_nritems(eb, 0);
4789 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4790
4791 return eb;
4792 err:
4793 for (; i > 0; i--)
4794 __free_page(eb->pages[i - 1]);
4795 __free_extent_buffer(eb);
4796 return NULL;
4797 }
4798
4799 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4800 u64 start)
4801 {
4802 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4803 }
4804
4805 static void check_buffer_tree_ref(struct extent_buffer *eb)
4806 {
4807 int refs;
4808 /* the ref bit is tricky. We have to make sure it is set
4809 * if we have the buffer dirty. Otherwise the
4810 * code to free a buffer can end up dropping a dirty
4811 * page
4812 *
4813 * Once the ref bit is set, it won't go away while the
4814 * buffer is dirty or in writeback, and it also won't
4815 * go away while we have the reference count on the
4816 * eb bumped.
4817 *
4818 * We can't just set the ref bit without bumping the
4819 * ref on the eb because free_extent_buffer might
4820 * see the ref bit and try to clear it. If this happens
4821 * free_extent_buffer might end up dropping our original
4822 * ref by mistake and freeing the page before we are able
4823 * to add one more ref.
4824 *
4825 * So bump the ref count first, then set the bit. If someone
4826 * beat us to it, drop the ref we added.
4827 */
4828 refs = atomic_read(&eb->refs);
4829 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4830 return;
4831
4832 spin_lock(&eb->refs_lock);
4833 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4834 atomic_inc(&eb->refs);
4835 spin_unlock(&eb->refs_lock);
4836 }
4837
4838 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4839 struct page *accessed)
4840 {
4841 int num_pages, i;
4842
4843 check_buffer_tree_ref(eb);
4844
4845 num_pages = num_extent_pages(eb);
4846 for (i = 0; i < num_pages; i++) {
4847 struct page *p = eb->pages[i];
4848
4849 if (p != accessed)
4850 mark_page_accessed(p);
4851 }
4852 }
4853
4854 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4855 u64 start)
4856 {
4857 struct extent_buffer *eb;
4858
4859 rcu_read_lock();
4860 eb = radix_tree_lookup(&fs_info->buffer_radix,
4861 start >> PAGE_SHIFT);
4862 if (eb && atomic_inc_not_zero(&eb->refs)) {
4863 rcu_read_unlock();
4864 /*
4865 * Lock our eb's refs_lock to avoid races with
4866 * free_extent_buffer. When we get our eb it might be flagged
4867 * with EXTENT_BUFFER_STALE and another task running
4868 * free_extent_buffer might have seen that flag set,
4869 * eb->refs == 2, that the buffer isn't under IO (dirty and
4870 * writeback flags not set) and it's still in the tree (flag
4871 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4872 * of decrementing the extent buffer's reference count twice.
4873 * So here we could race and increment the eb's reference count,
4874 * clear its stale flag, mark it as dirty and drop our reference
4875 * before the other task finishes executing free_extent_buffer,
4876 * which would later result in an attempt to free an extent
4877 * buffer that is dirty.
4878 */
4879 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4880 spin_lock(&eb->refs_lock);
4881 spin_unlock(&eb->refs_lock);
4882 }
4883 mark_extent_buffer_accessed(eb, NULL);
4884 return eb;
4885 }
4886 rcu_read_unlock();
4887
4888 return NULL;
4889 }
4890
4891 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4892 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4893 u64 start)
4894 {
4895 struct extent_buffer *eb, *exists = NULL;
4896 int ret;
4897
4898 eb = find_extent_buffer(fs_info, start);
4899 if (eb)
4900 return eb;
4901 eb = alloc_dummy_extent_buffer(fs_info, start);
4902 if (!eb)
4903 return NULL;
4904 eb->fs_info = fs_info;
4905 again:
4906 ret = radix_tree_preload(GFP_NOFS);
4907 if (ret)
4908 goto free_eb;
4909 spin_lock(&fs_info->buffer_lock);
4910 ret = radix_tree_insert(&fs_info->buffer_radix,
4911 start >> PAGE_SHIFT, eb);
4912 spin_unlock(&fs_info->buffer_lock);
4913 radix_tree_preload_end();
4914 if (ret == -EEXIST) {
4915 exists = find_extent_buffer(fs_info, start);
4916 if (exists)
4917 goto free_eb;
4918 else
4919 goto again;
4920 }
4921 check_buffer_tree_ref(eb);
4922 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4923
4924 return eb;
4925 free_eb:
4926 btrfs_release_extent_buffer(eb);
4927 return exists;
4928 }
4929 #endif
4930
4931 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4932 u64 start)
4933 {
4934 unsigned long len = fs_info->nodesize;
4935 int num_pages;
4936 int i;
4937 unsigned long index = start >> PAGE_SHIFT;
4938 struct extent_buffer *eb;
4939 struct extent_buffer *exists = NULL;
4940 struct page *p;
4941 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4942 int uptodate = 1;
4943 int ret;
4944
4945 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4946 btrfs_err(fs_info, "bad tree block start %llu", start);
4947 return ERR_PTR(-EINVAL);
4948 }
4949
4950 eb = find_extent_buffer(fs_info, start);
4951 if (eb)
4952 return eb;
4953
4954 eb = __alloc_extent_buffer(fs_info, start, len);
4955 if (!eb)
4956 return ERR_PTR(-ENOMEM);
4957
4958 num_pages = num_extent_pages(eb);
4959 for (i = 0; i < num_pages; i++, index++) {
4960 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4961 if (!p) {
4962 exists = ERR_PTR(-ENOMEM);
4963 goto free_eb;
4964 }
4965
4966 spin_lock(&mapping->private_lock);
4967 if (PagePrivate(p)) {
4968 /*
4969 * We could have already allocated an eb for this page
4970 * and attached one so lets see if we can get a ref on
4971 * the existing eb, and if we can we know it's good and
4972 * we can just return that one, else we know we can just
4973 * overwrite page->private.
4974 */
4975 exists = (struct extent_buffer *)p->private;
4976 if (atomic_inc_not_zero(&exists->refs)) {
4977 spin_unlock(&mapping->private_lock);
4978 unlock_page(p);
4979 put_page(p);
4980 mark_extent_buffer_accessed(exists, p);
4981 goto free_eb;
4982 }
4983 exists = NULL;
4984
4985 /*
4986 * Do this so attach doesn't complain and we need to
4987 * drop the ref the old guy had.
4988 */
4989 ClearPagePrivate(p);
4990 WARN_ON(PageDirty(p));
4991 put_page(p);
4992 }
4993 attach_extent_buffer_page(eb, p);
4994 spin_unlock(&mapping->private_lock);
4995 WARN_ON(PageDirty(p));
4996 eb->pages[i] = p;
4997 if (!PageUptodate(p))
4998 uptodate = 0;
4999
5000 /*
5001 * We can't unlock the pages just yet since the extent buffer
5002 * hasn't been properly inserted in the radix tree, this
5003 * opens a race with btree_releasepage which can free a page
5004 * while we are still filling in all pages for the buffer and
5005 * we could crash.
5006 */
5007 }
5008 if (uptodate)
5009 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5010 again:
5011 ret = radix_tree_preload(GFP_NOFS);
5012 if (ret) {
5013 exists = ERR_PTR(ret);
5014 goto free_eb;
5015 }
5016
5017 spin_lock(&fs_info->buffer_lock);
5018 ret = radix_tree_insert(&fs_info->buffer_radix,
5019 start >> PAGE_SHIFT, eb);
5020 spin_unlock(&fs_info->buffer_lock);
5021 radix_tree_preload_end();
5022 if (ret == -EEXIST) {
5023 exists = find_extent_buffer(fs_info, start);
5024 if (exists)
5025 goto free_eb;
5026 else
5027 goto again;
5028 }
5029 /* add one reference for the tree */
5030 check_buffer_tree_ref(eb);
5031 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5032
5033 /*
5034 * Now it's safe to unlock the pages because any calls to
5035 * btree_releasepage will correctly detect that a page belongs to a
5036 * live buffer and won't free them prematurely.
5037 */
5038 for (i = 0; i < num_pages; i++)
5039 unlock_page(eb->pages[i]);
5040 return eb;
5041
5042 free_eb:
5043 WARN_ON(!atomic_dec_and_test(&eb->refs));
5044 for (i = 0; i < num_pages; i++) {
5045 if (eb->pages[i])
5046 unlock_page(eb->pages[i]);
5047 }
5048
5049 btrfs_release_extent_buffer(eb);
5050 return exists;
5051 }
5052
5053 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5054 {
5055 struct extent_buffer *eb =
5056 container_of(head, struct extent_buffer, rcu_head);
5057
5058 __free_extent_buffer(eb);
5059 }
5060
5061 static int release_extent_buffer(struct extent_buffer *eb)
5062 {
5063 lockdep_assert_held(&eb->refs_lock);
5064
5065 WARN_ON(atomic_read(&eb->refs) == 0);
5066 if (atomic_dec_and_test(&eb->refs)) {
5067 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5068 struct btrfs_fs_info *fs_info = eb->fs_info;
5069
5070 spin_unlock(&eb->refs_lock);
5071
5072 spin_lock(&fs_info->buffer_lock);
5073 radix_tree_delete(&fs_info->buffer_radix,
5074 eb->start >> PAGE_SHIFT);
5075 spin_unlock(&fs_info->buffer_lock);
5076 } else {
5077 spin_unlock(&eb->refs_lock);
5078 }
5079
5080 /* Should be safe to release our pages at this point */
5081 btrfs_release_extent_buffer_pages(eb);
5082 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5083 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5084 __free_extent_buffer(eb);
5085 return 1;
5086 }
5087 #endif
5088 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5089 return 1;
5090 }
5091 spin_unlock(&eb->refs_lock);
5092
5093 return 0;
5094 }
5095
5096 void free_extent_buffer(struct extent_buffer *eb)
5097 {
5098 int refs;
5099 int old;
5100 if (!eb)
5101 return;
5102
5103 while (1) {
5104 refs = atomic_read(&eb->refs);
5105 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5106 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5107 refs == 1))
5108 break;
5109 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5110 if (old == refs)
5111 return;
5112 }
5113
5114 spin_lock(&eb->refs_lock);
5115 if (atomic_read(&eb->refs) == 2 &&
5116 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5117 !extent_buffer_under_io(eb) &&
5118 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5119 atomic_dec(&eb->refs);
5120
5121 /*
5122 * I know this is terrible, but it's temporary until we stop tracking
5123 * the uptodate bits and such for the extent buffers.
5124 */
5125 release_extent_buffer(eb);
5126 }
5127
5128 void free_extent_buffer_stale(struct extent_buffer *eb)
5129 {
5130 if (!eb)
5131 return;
5132
5133 spin_lock(&eb->refs_lock);
5134 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5135
5136 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5137 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138 atomic_dec(&eb->refs);
5139 release_extent_buffer(eb);
5140 }
5141
5142 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5143 {
5144 int i;
5145 int num_pages;
5146 struct page *page;
5147
5148 num_pages = num_extent_pages(eb);
5149
5150 for (i = 0; i < num_pages; i++) {
5151 page = eb->pages[i];
5152 if (!PageDirty(page))
5153 continue;
5154
5155 lock_page(page);
5156 WARN_ON(!PagePrivate(page));
5157
5158 clear_page_dirty_for_io(page);
5159 xa_lock_irq(&page->mapping->i_pages);
5160 if (!PageDirty(page))
5161 __xa_clear_mark(&page->mapping->i_pages,
5162 page_index(page), PAGECACHE_TAG_DIRTY);
5163 xa_unlock_irq(&page->mapping->i_pages);
5164 ClearPageError(page);
5165 unlock_page(page);
5166 }
5167 WARN_ON(atomic_read(&eb->refs) == 0);
5168 }
5169
5170 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5171 {
5172 int i;
5173 int num_pages;
5174 bool was_dirty;
5175
5176 check_buffer_tree_ref(eb);
5177
5178 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5179
5180 num_pages = num_extent_pages(eb);
5181 WARN_ON(atomic_read(&eb->refs) == 0);
5182 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5183
5184 if (!was_dirty)
5185 for (i = 0; i < num_pages; i++)
5186 set_page_dirty(eb->pages[i]);
5187
5188 #ifdef CONFIG_BTRFS_DEBUG
5189 for (i = 0; i < num_pages; i++)
5190 ASSERT(PageDirty(eb->pages[i]));
5191 #endif
5192
5193 return was_dirty;
5194 }
5195
5196 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5197 {
5198 int i;
5199 struct page *page;
5200 int num_pages;
5201
5202 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5203 num_pages = num_extent_pages(eb);
5204 for (i = 0; i < num_pages; i++) {
5205 page = eb->pages[i];
5206 if (page)
5207 ClearPageUptodate(page);
5208 }
5209 }
5210
5211 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5212 {
5213 int i;
5214 struct page *page;
5215 int num_pages;
5216
5217 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5218 num_pages = num_extent_pages(eb);
5219 for (i = 0; i < num_pages; i++) {
5220 page = eb->pages[i];
5221 SetPageUptodate(page);
5222 }
5223 }
5224
5225 int read_extent_buffer_pages(struct extent_io_tree *tree,
5226 struct extent_buffer *eb, int wait, int mirror_num)
5227 {
5228 int i;
5229 struct page *page;
5230 int err;
5231 int ret = 0;
5232 int locked_pages = 0;
5233 int all_uptodate = 1;
5234 int num_pages;
5235 unsigned long num_reads = 0;
5236 struct bio *bio = NULL;
5237 unsigned long bio_flags = 0;
5238
5239 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5240 return 0;
5241
5242 num_pages = num_extent_pages(eb);
5243 for (i = 0; i < num_pages; i++) {
5244 page = eb->pages[i];
5245 if (wait == WAIT_NONE) {
5246 if (!trylock_page(page))
5247 goto unlock_exit;
5248 } else {
5249 lock_page(page);
5250 }
5251 locked_pages++;
5252 }
5253 /*
5254 * We need to firstly lock all pages to make sure that
5255 * the uptodate bit of our pages won't be affected by
5256 * clear_extent_buffer_uptodate().
5257 */
5258 for (i = 0; i < num_pages; i++) {
5259 page = eb->pages[i];
5260 if (!PageUptodate(page)) {
5261 num_reads++;
5262 all_uptodate = 0;
5263 }
5264 }
5265
5266 if (all_uptodate) {
5267 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5268 goto unlock_exit;
5269 }
5270
5271 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5272 eb->read_mirror = 0;
5273 atomic_set(&eb->io_pages, num_reads);
5274 for (i = 0; i < num_pages; i++) {
5275 page = eb->pages[i];
5276
5277 if (!PageUptodate(page)) {
5278 if (ret) {
5279 atomic_dec(&eb->io_pages);
5280 unlock_page(page);
5281 continue;
5282 }
5283
5284 ClearPageError(page);
5285 err = __extent_read_full_page(tree, page,
5286 btree_get_extent, &bio,
5287 mirror_num, &bio_flags,
5288 REQ_META);
5289 if (err) {
5290 ret = err;
5291 /*
5292 * We use &bio in above __extent_read_full_page,
5293 * so we ensure that if it returns error, the
5294 * current page fails to add itself to bio and
5295 * it's been unlocked.
5296 *
5297 * We must dec io_pages by ourselves.
5298 */
5299 atomic_dec(&eb->io_pages);
5300 }
5301 } else {
5302 unlock_page(page);
5303 }
5304 }
5305
5306 if (bio) {
5307 err = submit_one_bio(bio, mirror_num, bio_flags);
5308 if (err)
5309 return err;
5310 }
5311
5312 if (ret || wait != WAIT_COMPLETE)
5313 return ret;
5314
5315 for (i = 0; i < num_pages; i++) {
5316 page = eb->pages[i];
5317 wait_on_page_locked(page);
5318 if (!PageUptodate(page))
5319 ret = -EIO;
5320 }
5321
5322 return ret;
5323
5324 unlock_exit:
5325 while (locked_pages > 0) {
5326 locked_pages--;
5327 page = eb->pages[locked_pages];
5328 unlock_page(page);
5329 }
5330 return ret;
5331 }
5332
5333 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5334 unsigned long start, unsigned long len)
5335 {
5336 size_t cur;
5337 size_t offset;
5338 struct page *page;
5339 char *kaddr;
5340 char *dst = (char *)dstv;
5341 size_t start_offset = offset_in_page(eb->start);
5342 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5343
5344 if (start + len > eb->len) {
5345 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5346 eb->start, eb->len, start, len);
5347 memset(dst, 0, len);
5348 return;
5349 }
5350
5351 offset = offset_in_page(start_offset + start);
5352
5353 while (len > 0) {
5354 page = eb->pages[i];
5355
5356 cur = min(len, (PAGE_SIZE - offset));
5357 kaddr = page_address(page);
5358 memcpy(dst, kaddr + offset, cur);
5359
5360 dst += cur;
5361 len -= cur;
5362 offset = 0;
5363 i++;
5364 }
5365 }
5366
5367 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5368 void __user *dstv,
5369 unsigned long start, unsigned long len)
5370 {
5371 size_t cur;
5372 size_t offset;
5373 struct page *page;
5374 char *kaddr;
5375 char __user *dst = (char __user *)dstv;
5376 size_t start_offset = offset_in_page(eb->start);
5377 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5378 int ret = 0;
5379
5380 WARN_ON(start > eb->len);
5381 WARN_ON(start + len > eb->start + eb->len);
5382
5383 offset = offset_in_page(start_offset + start);
5384
5385 while (len > 0) {
5386 page = eb->pages[i];
5387
5388 cur = min(len, (PAGE_SIZE - offset));
5389 kaddr = page_address(page);
5390 if (copy_to_user(dst, kaddr + offset, cur)) {
5391 ret = -EFAULT;
5392 break;
5393 }
5394
5395 dst += cur;
5396 len -= cur;
5397 offset = 0;
5398 i++;
5399 }
5400
5401 return ret;
5402 }
5403
5404 /*
5405 * return 0 if the item is found within a page.
5406 * return 1 if the item spans two pages.
5407 * return -EINVAL otherwise.
5408 */
5409 int map_private_extent_buffer(const struct extent_buffer *eb,
5410 unsigned long start, unsigned long min_len,
5411 char **map, unsigned long *map_start,
5412 unsigned long *map_len)
5413 {
5414 size_t offset;
5415 char *kaddr;
5416 struct page *p;
5417 size_t start_offset = offset_in_page(eb->start);
5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5419 unsigned long end_i = (start_offset + start + min_len - 1) >>
5420 PAGE_SHIFT;
5421
5422 if (start + min_len > eb->len) {
5423 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5424 eb->start, eb->len, start, min_len);
5425 return -EINVAL;
5426 }
5427
5428 if (i != end_i)
5429 return 1;
5430
5431 if (i == 0) {
5432 offset = start_offset;
5433 *map_start = 0;
5434 } else {
5435 offset = 0;
5436 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5437 }
5438
5439 p = eb->pages[i];
5440 kaddr = page_address(p);
5441 *map = kaddr + offset;
5442 *map_len = PAGE_SIZE - offset;
5443 return 0;
5444 }
5445
5446 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5447 unsigned long start, unsigned long len)
5448 {
5449 size_t cur;
5450 size_t offset;
5451 struct page *page;
5452 char *kaddr;
5453 char *ptr = (char *)ptrv;
5454 size_t start_offset = offset_in_page(eb->start);
5455 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5456 int ret = 0;
5457
5458 WARN_ON(start > eb->len);
5459 WARN_ON(start + len > eb->start + eb->len);
5460
5461 offset = offset_in_page(start_offset + start);
5462
5463 while (len > 0) {
5464 page = eb->pages[i];
5465
5466 cur = min(len, (PAGE_SIZE - offset));
5467
5468 kaddr = page_address(page);
5469 ret = memcmp(ptr, kaddr + offset, cur);
5470 if (ret)
5471 break;
5472
5473 ptr += cur;
5474 len -= cur;
5475 offset = 0;
5476 i++;
5477 }
5478 return ret;
5479 }
5480
5481 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5482 const void *srcv)
5483 {
5484 char *kaddr;
5485
5486 WARN_ON(!PageUptodate(eb->pages[0]));
5487 kaddr = page_address(eb->pages[0]);
5488 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5489 BTRFS_FSID_SIZE);
5490 }
5491
5492 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5493 {
5494 char *kaddr;
5495
5496 WARN_ON(!PageUptodate(eb->pages[0]));
5497 kaddr = page_address(eb->pages[0]);
5498 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5499 BTRFS_FSID_SIZE);
5500 }
5501
5502 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5503 unsigned long start, unsigned long len)
5504 {
5505 size_t cur;
5506 size_t offset;
5507 struct page *page;
5508 char *kaddr;
5509 char *src = (char *)srcv;
5510 size_t start_offset = offset_in_page(eb->start);
5511 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5512
5513 WARN_ON(start > eb->len);
5514 WARN_ON(start + len > eb->start + eb->len);
5515
5516 offset = offset_in_page(start_offset + start);
5517
5518 while (len > 0) {
5519 page = eb->pages[i];
5520 WARN_ON(!PageUptodate(page));
5521
5522 cur = min(len, PAGE_SIZE - offset);
5523 kaddr = page_address(page);
5524 memcpy(kaddr + offset, src, cur);
5525
5526 src += cur;
5527 len -= cur;
5528 offset = 0;
5529 i++;
5530 }
5531 }
5532
5533 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5534 unsigned long len)
5535 {
5536 size_t cur;
5537 size_t offset;
5538 struct page *page;
5539 char *kaddr;
5540 size_t start_offset = offset_in_page(eb->start);
5541 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5542
5543 WARN_ON(start > eb->len);
5544 WARN_ON(start + len > eb->start + eb->len);
5545
5546 offset = offset_in_page(start_offset + start);
5547
5548 while (len > 0) {
5549 page = eb->pages[i];
5550 WARN_ON(!PageUptodate(page));
5551
5552 cur = min(len, PAGE_SIZE - offset);
5553 kaddr = page_address(page);
5554 memset(kaddr + offset, 0, cur);
5555
5556 len -= cur;
5557 offset = 0;
5558 i++;
5559 }
5560 }
5561
5562 void copy_extent_buffer_full(struct extent_buffer *dst,
5563 struct extent_buffer *src)
5564 {
5565 int i;
5566 int num_pages;
5567
5568 ASSERT(dst->len == src->len);
5569
5570 num_pages = num_extent_pages(dst);
5571 for (i = 0; i < num_pages; i++)
5572 copy_page(page_address(dst->pages[i]),
5573 page_address(src->pages[i]));
5574 }
5575
5576 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5577 unsigned long dst_offset, unsigned long src_offset,
5578 unsigned long len)
5579 {
5580 u64 dst_len = dst->len;
5581 size_t cur;
5582 size_t offset;
5583 struct page *page;
5584 char *kaddr;
5585 size_t start_offset = offset_in_page(dst->start);
5586 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5587
5588 WARN_ON(src->len != dst_len);
5589
5590 offset = offset_in_page(start_offset + dst_offset);
5591
5592 while (len > 0) {
5593 page = dst->pages[i];
5594 WARN_ON(!PageUptodate(page));
5595
5596 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5597
5598 kaddr = page_address(page);
5599 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5600
5601 src_offset += cur;
5602 len -= cur;
5603 offset = 0;
5604 i++;
5605 }
5606 }
5607
5608 /*
5609 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5610 * given bit number
5611 * @eb: the extent buffer
5612 * @start: offset of the bitmap item in the extent buffer
5613 * @nr: bit number
5614 * @page_index: return index of the page in the extent buffer that contains the
5615 * given bit number
5616 * @page_offset: return offset into the page given by page_index
5617 *
5618 * This helper hides the ugliness of finding the byte in an extent buffer which
5619 * contains a given bit.
5620 */
5621 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5622 unsigned long start, unsigned long nr,
5623 unsigned long *page_index,
5624 size_t *page_offset)
5625 {
5626 size_t start_offset = offset_in_page(eb->start);
5627 size_t byte_offset = BIT_BYTE(nr);
5628 size_t offset;
5629
5630 /*
5631 * The byte we want is the offset of the extent buffer + the offset of
5632 * the bitmap item in the extent buffer + the offset of the byte in the
5633 * bitmap item.
5634 */
5635 offset = start_offset + start + byte_offset;
5636
5637 *page_index = offset >> PAGE_SHIFT;
5638 *page_offset = offset_in_page(offset);
5639 }
5640
5641 /**
5642 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5643 * @eb: the extent buffer
5644 * @start: offset of the bitmap item in the extent buffer
5645 * @nr: bit number to test
5646 */
5647 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5648 unsigned long nr)
5649 {
5650 u8 *kaddr;
5651 struct page *page;
5652 unsigned long i;
5653 size_t offset;
5654
5655 eb_bitmap_offset(eb, start, nr, &i, &offset);
5656 page = eb->pages[i];
5657 WARN_ON(!PageUptodate(page));
5658 kaddr = page_address(page);
5659 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5660 }
5661
5662 /**
5663 * extent_buffer_bitmap_set - set an area of a bitmap
5664 * @eb: the extent buffer
5665 * @start: offset of the bitmap item in the extent buffer
5666 * @pos: bit number of the first bit
5667 * @len: number of bits to set
5668 */
5669 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5670 unsigned long pos, unsigned long len)
5671 {
5672 u8 *kaddr;
5673 struct page *page;
5674 unsigned long i;
5675 size_t offset;
5676 const unsigned int size = pos + len;
5677 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5678 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5679
5680 eb_bitmap_offset(eb, start, pos, &i, &offset);
5681 page = eb->pages[i];
5682 WARN_ON(!PageUptodate(page));
5683 kaddr = page_address(page);
5684
5685 while (len >= bits_to_set) {
5686 kaddr[offset] |= mask_to_set;
5687 len -= bits_to_set;
5688 bits_to_set = BITS_PER_BYTE;
5689 mask_to_set = ~0;
5690 if (++offset >= PAGE_SIZE && len > 0) {
5691 offset = 0;
5692 page = eb->pages[++i];
5693 WARN_ON(!PageUptodate(page));
5694 kaddr = page_address(page);
5695 }
5696 }
5697 if (len) {
5698 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5699 kaddr[offset] |= mask_to_set;
5700 }
5701 }
5702
5703
5704 /**
5705 * extent_buffer_bitmap_clear - clear an area of a bitmap
5706 * @eb: the extent buffer
5707 * @start: offset of the bitmap item in the extent buffer
5708 * @pos: bit number of the first bit
5709 * @len: number of bits to clear
5710 */
5711 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5712 unsigned long pos, unsigned long len)
5713 {
5714 u8 *kaddr;
5715 struct page *page;
5716 unsigned long i;
5717 size_t offset;
5718 const unsigned int size = pos + len;
5719 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5720 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5721
5722 eb_bitmap_offset(eb, start, pos, &i, &offset);
5723 page = eb->pages[i];
5724 WARN_ON(!PageUptodate(page));
5725 kaddr = page_address(page);
5726
5727 while (len >= bits_to_clear) {
5728 kaddr[offset] &= ~mask_to_clear;
5729 len -= bits_to_clear;
5730 bits_to_clear = BITS_PER_BYTE;
5731 mask_to_clear = ~0;
5732 if (++offset >= PAGE_SIZE && len > 0) {
5733 offset = 0;
5734 page = eb->pages[++i];
5735 WARN_ON(!PageUptodate(page));
5736 kaddr = page_address(page);
5737 }
5738 }
5739 if (len) {
5740 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5741 kaddr[offset] &= ~mask_to_clear;
5742 }
5743 }
5744
5745 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5746 {
5747 unsigned long distance = (src > dst) ? src - dst : dst - src;
5748 return distance < len;
5749 }
5750
5751 static void copy_pages(struct page *dst_page, struct page *src_page,
5752 unsigned long dst_off, unsigned long src_off,
5753 unsigned long len)
5754 {
5755 char *dst_kaddr = page_address(dst_page);
5756 char *src_kaddr;
5757 int must_memmove = 0;
5758
5759 if (dst_page != src_page) {
5760 src_kaddr = page_address(src_page);
5761 } else {
5762 src_kaddr = dst_kaddr;
5763 if (areas_overlap(src_off, dst_off, len))
5764 must_memmove = 1;
5765 }
5766
5767 if (must_memmove)
5768 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5769 else
5770 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5771 }
5772
5773 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5774 unsigned long src_offset, unsigned long len)
5775 {
5776 struct btrfs_fs_info *fs_info = dst->fs_info;
5777 size_t cur;
5778 size_t dst_off_in_page;
5779 size_t src_off_in_page;
5780 size_t start_offset = offset_in_page(dst->start);
5781 unsigned long dst_i;
5782 unsigned long src_i;
5783
5784 if (src_offset + len > dst->len) {
5785 btrfs_err(fs_info,
5786 "memmove bogus src_offset %lu move len %lu dst len %lu",
5787 src_offset, len, dst->len);
5788 BUG();
5789 }
5790 if (dst_offset + len > dst->len) {
5791 btrfs_err(fs_info,
5792 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5793 dst_offset, len, dst->len);
5794 BUG();
5795 }
5796
5797 while (len > 0) {
5798 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5799 src_off_in_page = offset_in_page(start_offset + src_offset);
5800
5801 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5802 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5803
5804 cur = min(len, (unsigned long)(PAGE_SIZE -
5805 src_off_in_page));
5806 cur = min_t(unsigned long, cur,
5807 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5808
5809 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5810 dst_off_in_page, src_off_in_page, cur);
5811
5812 src_offset += cur;
5813 dst_offset += cur;
5814 len -= cur;
5815 }
5816 }
5817
5818 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5819 unsigned long src_offset, unsigned long len)
5820 {
5821 struct btrfs_fs_info *fs_info = dst->fs_info;
5822 size_t cur;
5823 size_t dst_off_in_page;
5824 size_t src_off_in_page;
5825 unsigned long dst_end = dst_offset + len - 1;
5826 unsigned long src_end = src_offset + len - 1;
5827 size_t start_offset = offset_in_page(dst->start);
5828 unsigned long dst_i;
5829 unsigned long src_i;
5830
5831 if (src_offset + len > dst->len) {
5832 btrfs_err(fs_info,
5833 "memmove bogus src_offset %lu move len %lu len %lu",
5834 src_offset, len, dst->len);
5835 BUG();
5836 }
5837 if (dst_offset + len > dst->len) {
5838 btrfs_err(fs_info,
5839 "memmove bogus dst_offset %lu move len %lu len %lu",
5840 dst_offset, len, dst->len);
5841 BUG();
5842 }
5843 if (dst_offset < src_offset) {
5844 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5845 return;
5846 }
5847 while (len > 0) {
5848 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5849 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5850
5851 dst_off_in_page = offset_in_page(start_offset + dst_end);
5852 src_off_in_page = offset_in_page(start_offset + src_end);
5853
5854 cur = min_t(unsigned long, len, src_off_in_page + 1);
5855 cur = min(cur, dst_off_in_page + 1);
5856 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5857 dst_off_in_page - cur + 1,
5858 src_off_in_page - cur + 1, cur);
5859
5860 dst_end -= cur;
5861 src_end -= cur;
5862 len -= cur;
5863 }
5864 }
5865
5866 int try_release_extent_buffer(struct page *page)
5867 {
5868 struct extent_buffer *eb;
5869
5870 /*
5871 * We need to make sure nobody is attaching this page to an eb right
5872 * now.
5873 */
5874 spin_lock(&page->mapping->private_lock);
5875 if (!PagePrivate(page)) {
5876 spin_unlock(&page->mapping->private_lock);
5877 return 1;
5878 }
5879
5880 eb = (struct extent_buffer *)page->private;
5881 BUG_ON(!eb);
5882
5883 /*
5884 * This is a little awful but should be ok, we need to make sure that
5885 * the eb doesn't disappear out from under us while we're looking at
5886 * this page.
5887 */
5888 spin_lock(&eb->refs_lock);
5889 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5890 spin_unlock(&eb->refs_lock);
5891 spin_unlock(&page->mapping->private_lock);
5892 return 0;
5893 }
5894 spin_unlock(&page->mapping->private_lock);
5895
5896 /*
5897 * If tree ref isn't set then we know the ref on this eb is a real ref,
5898 * so just return, this page will likely be freed soon anyway.
5899 */
5900 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5901 spin_unlock(&eb->refs_lock);
5902 return 0;
5903 }
5904
5905 return release_extent_buffer(eb);
5906 }