]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/btrfs/extent_io.c
UBUNTU: Ubuntu-5.3.0-29.31
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
110 #endif
111
112 struct tree_entry {
113 u64 start;
114 u64 end;
115 struct rb_node rb_node;
116 };
117
118 struct extent_page_data {
119 struct bio *bio;
120 struct extent_io_tree *tree;
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
123 */
124 unsigned int extent_locked:1;
125
126 /* tells the submit_bio code to use REQ_SYNC */
127 unsigned int sync_io:1;
128 };
129
130 static int add_extent_changeset(struct extent_state *state, unsigned bits,
131 struct extent_changeset *changeset,
132 int set)
133 {
134 int ret;
135
136 if (!changeset)
137 return 0;
138 if (set && (state->state & bits) == bits)
139 return 0;
140 if (!set && (state->state & bits) == 0)
141 return 0;
142 changeset->bytes_changed += state->end - state->start + 1;
143 ret = ulist_add(&changeset->range_changed, state->start, state->end,
144 GFP_ATOMIC);
145 return ret;
146 }
147
148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 unsigned long bio_flags)
150 {
151 blk_status_t ret = 0;
152 struct extent_io_tree *tree = bio->bi_private;
153
154 bio->bi_private = NULL;
155
156 if (tree->ops)
157 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
158 mirror_num, bio_flags);
159 else
160 btrfsic_submit_bio(bio);
161
162 return blk_status_to_errno(ret);
163 }
164
165 /* Cleanup unsubmitted bios */
166 static void end_write_bio(struct extent_page_data *epd, int ret)
167 {
168 if (epd->bio) {
169 epd->bio->bi_status = errno_to_blk_status(ret);
170 bio_endio(epd->bio);
171 epd->bio = NULL;
172 }
173 }
174
175 /*
176 * Submit bio from extent page data via submit_one_bio
177 *
178 * Return 0 if everything is OK.
179 * Return <0 for error.
180 */
181 static int __must_check flush_write_bio(struct extent_page_data *epd)
182 {
183 int ret = 0;
184
185 if (epd->bio) {
186 ret = submit_one_bio(epd->bio, 0, 0);
187 /*
188 * Clean up of epd->bio is handled by its endio function.
189 * And endio is either triggered by successful bio execution
190 * or the error handler of submit bio hook.
191 * So at this point, no matter what happened, we don't need
192 * to clean up epd->bio.
193 */
194 epd->bio = NULL;
195 }
196 return ret;
197 }
198
199 int __init extent_io_init(void)
200 {
201 extent_state_cache = kmem_cache_create("btrfs_extent_state",
202 sizeof(struct extent_state), 0,
203 SLAB_MEM_SPREAD, NULL);
204 if (!extent_state_cache)
205 return -ENOMEM;
206
207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
208 sizeof(struct extent_buffer), 0,
209 SLAB_MEM_SPREAD, NULL);
210 if (!extent_buffer_cache)
211 goto free_state_cache;
212
213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 offsetof(struct btrfs_io_bio, bio),
215 BIOSET_NEED_BVECS))
216 goto free_buffer_cache;
217
218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
219 goto free_bioset;
220
221 return 0;
222
223 free_bioset:
224 bioset_exit(&btrfs_bioset);
225
226 free_buffer_cache:
227 kmem_cache_destroy(extent_buffer_cache);
228 extent_buffer_cache = NULL;
229
230 free_state_cache:
231 kmem_cache_destroy(extent_state_cache);
232 extent_state_cache = NULL;
233 return -ENOMEM;
234 }
235
236 void __cold extent_io_exit(void)
237 {
238 btrfs_leak_debug_check();
239
240 /*
241 * Make sure all delayed rcu free are flushed before we
242 * destroy caches.
243 */
244 rcu_barrier();
245 kmem_cache_destroy(extent_state_cache);
246 kmem_cache_destroy(extent_buffer_cache);
247 bioset_exit(&btrfs_bioset);
248 }
249
250 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
251 struct extent_io_tree *tree, unsigned int owner,
252 void *private_data)
253 {
254 tree->fs_info = fs_info;
255 tree->state = RB_ROOT;
256 tree->ops = NULL;
257 tree->dirty_bytes = 0;
258 spin_lock_init(&tree->lock);
259 tree->private_data = private_data;
260 tree->owner = owner;
261 }
262
263 void extent_io_tree_release(struct extent_io_tree *tree)
264 {
265 spin_lock(&tree->lock);
266 /*
267 * Do a single barrier for the waitqueue_active check here, the state
268 * of the waitqueue should not change once extent_io_tree_release is
269 * called.
270 */
271 smp_mb();
272 while (!RB_EMPTY_ROOT(&tree->state)) {
273 struct rb_node *node;
274 struct extent_state *state;
275
276 node = rb_first(&tree->state);
277 state = rb_entry(node, struct extent_state, rb_node);
278 rb_erase(&state->rb_node, &tree->state);
279 RB_CLEAR_NODE(&state->rb_node);
280 /*
281 * btree io trees aren't supposed to have tasks waiting for
282 * changes in the flags of extent states ever.
283 */
284 ASSERT(!waitqueue_active(&state->wq));
285 free_extent_state(state);
286
287 cond_resched_lock(&tree->lock);
288 }
289 spin_unlock(&tree->lock);
290 }
291
292 static struct extent_state *alloc_extent_state(gfp_t mask)
293 {
294 struct extent_state *state;
295
296 /*
297 * The given mask might be not appropriate for the slab allocator,
298 * drop the unsupported bits
299 */
300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
301 state = kmem_cache_alloc(extent_state_cache, mask);
302 if (!state)
303 return state;
304 state->state = 0;
305 state->failrec = NULL;
306 RB_CLEAR_NODE(&state->rb_node);
307 btrfs_leak_debug_add(&state->leak_list, &states);
308 refcount_set(&state->refs, 1);
309 init_waitqueue_head(&state->wq);
310 trace_alloc_extent_state(state, mask, _RET_IP_);
311 return state;
312 }
313
314 void free_extent_state(struct extent_state *state)
315 {
316 if (!state)
317 return;
318 if (refcount_dec_and_test(&state->refs)) {
319 WARN_ON(extent_state_in_tree(state));
320 btrfs_leak_debug_del(&state->leak_list);
321 trace_free_extent_state(state, _RET_IP_);
322 kmem_cache_free(extent_state_cache, state);
323 }
324 }
325
326 static struct rb_node *tree_insert(struct rb_root *root,
327 struct rb_node *search_start,
328 u64 offset,
329 struct rb_node *node,
330 struct rb_node ***p_in,
331 struct rb_node **parent_in)
332 {
333 struct rb_node **p;
334 struct rb_node *parent = NULL;
335 struct tree_entry *entry;
336
337 if (p_in && parent_in) {
338 p = *p_in;
339 parent = *parent_in;
340 goto do_insert;
341 }
342
343 p = search_start ? &search_start : &root->rb_node;
344 while (*p) {
345 parent = *p;
346 entry = rb_entry(parent, struct tree_entry, rb_node);
347
348 if (offset < entry->start)
349 p = &(*p)->rb_left;
350 else if (offset > entry->end)
351 p = &(*p)->rb_right;
352 else
353 return parent;
354 }
355
356 do_insert:
357 rb_link_node(node, parent, p);
358 rb_insert_color(node, root);
359 return NULL;
360 }
361
362 /**
363 * __etree_search - searche @tree for an entry that contains @offset. Such
364 * entry would have entry->start <= offset && entry->end >= offset.
365 *
366 * @tree - the tree to search
367 * @offset - offset that should fall within an entry in @tree
368 * @next_ret - pointer to the first entry whose range ends after @offset
369 * @prev - pointer to the first entry whose range begins before @offset
370 * @p_ret - pointer where new node should be anchored (used when inserting an
371 * entry in the tree)
372 * @parent_ret - points to entry which would have been the parent of the entry,
373 * containing @offset
374 *
375 * This function returns a pointer to the entry that contains @offset byte
376 * address. If no such entry exists, then NULL is returned and the other
377 * pointer arguments to the function are filled, otherwise the found entry is
378 * returned and other pointers are left untouched.
379 */
380 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
381 struct rb_node **next_ret,
382 struct rb_node **prev_ret,
383 struct rb_node ***p_ret,
384 struct rb_node **parent_ret)
385 {
386 struct rb_root *root = &tree->state;
387 struct rb_node **n = &root->rb_node;
388 struct rb_node *prev = NULL;
389 struct rb_node *orig_prev = NULL;
390 struct tree_entry *entry;
391 struct tree_entry *prev_entry = NULL;
392
393 while (*n) {
394 prev = *n;
395 entry = rb_entry(prev, struct tree_entry, rb_node);
396 prev_entry = entry;
397
398 if (offset < entry->start)
399 n = &(*n)->rb_left;
400 else if (offset > entry->end)
401 n = &(*n)->rb_right;
402 else
403 return *n;
404 }
405
406 if (p_ret)
407 *p_ret = n;
408 if (parent_ret)
409 *parent_ret = prev;
410
411 if (next_ret) {
412 orig_prev = prev;
413 while (prev && offset > prev_entry->end) {
414 prev = rb_next(prev);
415 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
416 }
417 *next_ret = prev;
418 prev = orig_prev;
419 }
420
421 if (prev_ret) {
422 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
423 while (prev && offset < prev_entry->start) {
424 prev = rb_prev(prev);
425 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 }
427 *prev_ret = prev;
428 }
429 return NULL;
430 }
431
432 static inline struct rb_node *
433 tree_search_for_insert(struct extent_io_tree *tree,
434 u64 offset,
435 struct rb_node ***p_ret,
436 struct rb_node **parent_ret)
437 {
438 struct rb_node *next= NULL;
439 struct rb_node *ret;
440
441 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
442 if (!ret)
443 return next;
444 return ret;
445 }
446
447 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
448 u64 offset)
449 {
450 return tree_search_for_insert(tree, offset, NULL, NULL);
451 }
452
453 /*
454 * utility function to look for merge candidates inside a given range.
455 * Any extents with matching state are merged together into a single
456 * extent in the tree. Extents with EXTENT_IO in their state field
457 * are not merged because the end_io handlers need to be able to do
458 * operations on them without sleeping (or doing allocations/splits).
459 *
460 * This should be called with the tree lock held.
461 */
462 static void merge_state(struct extent_io_tree *tree,
463 struct extent_state *state)
464 {
465 struct extent_state *other;
466 struct rb_node *other_node;
467
468 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
469 return;
470
471 other_node = rb_prev(&state->rb_node);
472 if (other_node) {
473 other = rb_entry(other_node, struct extent_state, rb_node);
474 if (other->end == state->start - 1 &&
475 other->state == state->state) {
476 if (tree->private_data &&
477 is_data_inode(tree->private_data))
478 btrfs_merge_delalloc_extent(tree->private_data,
479 state, other);
480 state->start = other->start;
481 rb_erase(&other->rb_node, &tree->state);
482 RB_CLEAR_NODE(&other->rb_node);
483 free_extent_state(other);
484 }
485 }
486 other_node = rb_next(&state->rb_node);
487 if (other_node) {
488 other = rb_entry(other_node, struct extent_state, rb_node);
489 if (other->start == state->end + 1 &&
490 other->state == state->state) {
491 if (tree->private_data &&
492 is_data_inode(tree->private_data))
493 btrfs_merge_delalloc_extent(tree->private_data,
494 state, other);
495 state->end = other->end;
496 rb_erase(&other->rb_node, &tree->state);
497 RB_CLEAR_NODE(&other->rb_node);
498 free_extent_state(other);
499 }
500 }
501 }
502
503 static void set_state_bits(struct extent_io_tree *tree,
504 struct extent_state *state, unsigned *bits,
505 struct extent_changeset *changeset);
506
507 /*
508 * insert an extent_state struct into the tree. 'bits' are set on the
509 * struct before it is inserted.
510 *
511 * This may return -EEXIST if the extent is already there, in which case the
512 * state struct is freed.
513 *
514 * The tree lock is not taken internally. This is a utility function and
515 * probably isn't what you want to call (see set/clear_extent_bit).
516 */
517 static int insert_state(struct extent_io_tree *tree,
518 struct extent_state *state, u64 start, u64 end,
519 struct rb_node ***p,
520 struct rb_node **parent,
521 unsigned *bits, struct extent_changeset *changeset)
522 {
523 struct rb_node *node;
524
525 if (end < start) {
526 btrfs_err(tree->fs_info,
527 "insert state: end < start %llu %llu", end, start);
528 WARN_ON(1);
529 }
530 state->start = start;
531 state->end = end;
532
533 set_state_bits(tree, state, bits, changeset);
534
535 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
536 if (node) {
537 struct extent_state *found;
538 found = rb_entry(node, struct extent_state, rb_node);
539 btrfs_err(tree->fs_info,
540 "found node %llu %llu on insert of %llu %llu",
541 found->start, found->end, start, end);
542 return -EEXIST;
543 }
544 merge_state(tree, state);
545 return 0;
546 }
547
548 /*
549 * split a given extent state struct in two, inserting the preallocated
550 * struct 'prealloc' as the newly created second half. 'split' indicates an
551 * offset inside 'orig' where it should be split.
552 *
553 * Before calling,
554 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
555 * are two extent state structs in the tree:
556 * prealloc: [orig->start, split - 1]
557 * orig: [ split, orig->end ]
558 *
559 * The tree locks are not taken by this function. They need to be held
560 * by the caller.
561 */
562 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
563 struct extent_state *prealloc, u64 split)
564 {
565 struct rb_node *node;
566
567 if (tree->private_data && is_data_inode(tree->private_data))
568 btrfs_split_delalloc_extent(tree->private_data, orig, split);
569
570 prealloc->start = orig->start;
571 prealloc->end = split - 1;
572 prealloc->state = orig->state;
573 orig->start = split;
574
575 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
576 &prealloc->rb_node, NULL, NULL);
577 if (node) {
578 free_extent_state(prealloc);
579 return -EEXIST;
580 }
581 return 0;
582 }
583
584 static struct extent_state *next_state(struct extent_state *state)
585 {
586 struct rb_node *next = rb_next(&state->rb_node);
587 if (next)
588 return rb_entry(next, struct extent_state, rb_node);
589 else
590 return NULL;
591 }
592
593 /*
594 * utility function to clear some bits in an extent state struct.
595 * it will optionally wake up anyone waiting on this state (wake == 1).
596 *
597 * If no bits are set on the state struct after clearing things, the
598 * struct is freed and removed from the tree
599 */
600 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
601 struct extent_state *state,
602 unsigned *bits, int wake,
603 struct extent_changeset *changeset)
604 {
605 struct extent_state *next;
606 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
607 int ret;
608
609 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
610 u64 range = state->end - state->start + 1;
611 WARN_ON(range > tree->dirty_bytes);
612 tree->dirty_bytes -= range;
613 }
614
615 if (tree->private_data && is_data_inode(tree->private_data))
616 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
617
618 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
619 BUG_ON(ret < 0);
620 state->state &= ~bits_to_clear;
621 if (wake)
622 wake_up(&state->wq);
623 if (state->state == 0) {
624 next = next_state(state);
625 if (extent_state_in_tree(state)) {
626 rb_erase(&state->rb_node, &tree->state);
627 RB_CLEAR_NODE(&state->rb_node);
628 free_extent_state(state);
629 } else {
630 WARN_ON(1);
631 }
632 } else {
633 merge_state(tree, state);
634 next = next_state(state);
635 }
636 return next;
637 }
638
639 static struct extent_state *
640 alloc_extent_state_atomic(struct extent_state *prealloc)
641 {
642 if (!prealloc)
643 prealloc = alloc_extent_state(GFP_ATOMIC);
644
645 return prealloc;
646 }
647
648 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
649 {
650 struct inode *inode = tree->private_data;
651
652 btrfs_panic(btrfs_sb(inode->i_sb), err,
653 "locking error: extent tree was modified by another thread while locked");
654 }
655
656 /*
657 * clear some bits on a range in the tree. This may require splitting
658 * or inserting elements in the tree, so the gfp mask is used to
659 * indicate which allocations or sleeping are allowed.
660 *
661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
662 * the given range from the tree regardless of state (ie for truncate).
663 *
664 * the range [start, end] is inclusive.
665 *
666 * This takes the tree lock, and returns 0 on success and < 0 on error.
667 */
668 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
669 unsigned bits, int wake, int delete,
670 struct extent_state **cached_state,
671 gfp_t mask, struct extent_changeset *changeset)
672 {
673 struct extent_state *state;
674 struct extent_state *cached;
675 struct extent_state *prealloc = NULL;
676 struct rb_node *node;
677 u64 last_end;
678 int err;
679 int clear = 0;
680
681 btrfs_debug_check_extent_io_range(tree, start, end);
682 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
683
684 if (bits & EXTENT_DELALLOC)
685 bits |= EXTENT_NORESERVE;
686
687 if (delete)
688 bits |= ~EXTENT_CTLBITS;
689
690 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
691 clear = 1;
692 again:
693 if (!prealloc && gfpflags_allow_blocking(mask)) {
694 /*
695 * Don't care for allocation failure here because we might end
696 * up not needing the pre-allocated extent state at all, which
697 * is the case if we only have in the tree extent states that
698 * cover our input range and don't cover too any other range.
699 * If we end up needing a new extent state we allocate it later.
700 */
701 prealloc = alloc_extent_state(mask);
702 }
703
704 spin_lock(&tree->lock);
705 if (cached_state) {
706 cached = *cached_state;
707
708 if (clear) {
709 *cached_state = NULL;
710 cached_state = NULL;
711 }
712
713 if (cached && extent_state_in_tree(cached) &&
714 cached->start <= start && cached->end > start) {
715 if (clear)
716 refcount_dec(&cached->refs);
717 state = cached;
718 goto hit_next;
719 }
720 if (clear)
721 free_extent_state(cached);
722 }
723 /*
724 * this search will find the extents that end after
725 * our range starts
726 */
727 node = tree_search(tree, start);
728 if (!node)
729 goto out;
730 state = rb_entry(node, struct extent_state, rb_node);
731 hit_next:
732 if (state->start > end)
733 goto out;
734 WARN_ON(state->end < start);
735 last_end = state->end;
736
737 /* the state doesn't have the wanted bits, go ahead */
738 if (!(state->state & bits)) {
739 state = next_state(state);
740 goto next;
741 }
742
743 /*
744 * | ---- desired range ---- |
745 * | state | or
746 * | ------------- state -------------- |
747 *
748 * We need to split the extent we found, and may flip
749 * bits on second half.
750 *
751 * If the extent we found extends past our range, we
752 * just split and search again. It'll get split again
753 * the next time though.
754 *
755 * If the extent we found is inside our range, we clear
756 * the desired bit on it.
757 */
758
759 if (state->start < start) {
760 prealloc = alloc_extent_state_atomic(prealloc);
761 BUG_ON(!prealloc);
762 err = split_state(tree, state, prealloc, start);
763 if (err)
764 extent_io_tree_panic(tree, err);
765
766 prealloc = NULL;
767 if (err)
768 goto out;
769 if (state->end <= end) {
770 state = clear_state_bit(tree, state, &bits, wake,
771 changeset);
772 goto next;
773 }
774 goto search_again;
775 }
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 * We need to split the extent, and clear the bit
780 * on the first half
781 */
782 if (state->start <= end && state->end > end) {
783 prealloc = alloc_extent_state_atomic(prealloc);
784 BUG_ON(!prealloc);
785 err = split_state(tree, state, prealloc, end + 1);
786 if (err)
787 extent_io_tree_panic(tree, err);
788
789 if (wake)
790 wake_up(&state->wq);
791
792 clear_state_bit(tree, prealloc, &bits, wake, changeset);
793
794 prealloc = NULL;
795 goto out;
796 }
797
798 state = clear_state_bit(tree, state, &bits, wake, changeset);
799 next:
800 if (last_end == (u64)-1)
801 goto out;
802 start = last_end + 1;
803 if (start <= end && state && !need_resched())
804 goto hit_next;
805
806 search_again:
807 if (start > end)
808 goto out;
809 spin_unlock(&tree->lock);
810 if (gfpflags_allow_blocking(mask))
811 cond_resched();
812 goto again;
813
814 out:
815 spin_unlock(&tree->lock);
816 if (prealloc)
817 free_extent_state(prealloc);
818
819 return 0;
820
821 }
822
823 static void wait_on_state(struct extent_io_tree *tree,
824 struct extent_state *state)
825 __releases(tree->lock)
826 __acquires(tree->lock)
827 {
828 DEFINE_WAIT(wait);
829 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
830 spin_unlock(&tree->lock);
831 schedule();
832 spin_lock(&tree->lock);
833 finish_wait(&state->wq, &wait);
834 }
835
836 /*
837 * waits for one or more bits to clear on a range in the state tree.
838 * The range [start, end] is inclusive.
839 * The tree lock is taken by this function
840 */
841 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
842 unsigned long bits)
843 {
844 struct extent_state *state;
845 struct rb_node *node;
846
847 btrfs_debug_check_extent_io_range(tree, start, end);
848
849 spin_lock(&tree->lock);
850 again:
851 while (1) {
852 /*
853 * this search will find all the extents that end after
854 * our range starts
855 */
856 node = tree_search(tree, start);
857 process_node:
858 if (!node)
859 break;
860
861 state = rb_entry(node, struct extent_state, rb_node);
862
863 if (state->start > end)
864 goto out;
865
866 if (state->state & bits) {
867 start = state->start;
868 refcount_inc(&state->refs);
869 wait_on_state(tree, state);
870 free_extent_state(state);
871 goto again;
872 }
873 start = state->end + 1;
874
875 if (start > end)
876 break;
877
878 if (!cond_resched_lock(&tree->lock)) {
879 node = rb_next(node);
880 goto process_node;
881 }
882 }
883 out:
884 spin_unlock(&tree->lock);
885 }
886
887 static void set_state_bits(struct extent_io_tree *tree,
888 struct extent_state *state,
889 unsigned *bits, struct extent_changeset *changeset)
890 {
891 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
892 int ret;
893
894 if (tree->private_data && is_data_inode(tree->private_data))
895 btrfs_set_delalloc_extent(tree->private_data, state, bits);
896
897 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
898 u64 range = state->end - state->start + 1;
899 tree->dirty_bytes += range;
900 }
901 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
902 BUG_ON(ret < 0);
903 state->state |= bits_to_set;
904 }
905
906 static void cache_state_if_flags(struct extent_state *state,
907 struct extent_state **cached_ptr,
908 unsigned flags)
909 {
910 if (cached_ptr && !(*cached_ptr)) {
911 if (!flags || (state->state & flags)) {
912 *cached_ptr = state;
913 refcount_inc(&state->refs);
914 }
915 }
916 }
917
918 static void cache_state(struct extent_state *state,
919 struct extent_state **cached_ptr)
920 {
921 return cache_state_if_flags(state, cached_ptr,
922 EXTENT_LOCKED | EXTENT_BOUNDARY);
923 }
924
925 /*
926 * set some bits on a range in the tree. This may require allocations or
927 * sleeping, so the gfp mask is used to indicate what is allowed.
928 *
929 * If any of the exclusive bits are set, this will fail with -EEXIST if some
930 * part of the range already has the desired bits set. The start of the
931 * existing range is returned in failed_start in this case.
932 *
933 * [start, end] is inclusive This takes the tree lock.
934 */
935
936 static int __must_check
937 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
938 unsigned bits, unsigned exclusive_bits,
939 u64 *failed_start, struct extent_state **cached_state,
940 gfp_t mask, struct extent_changeset *changeset)
941 {
942 struct extent_state *state;
943 struct extent_state *prealloc = NULL;
944 struct rb_node *node;
945 struct rb_node **p;
946 struct rb_node *parent;
947 int err = 0;
948 u64 last_start;
949 u64 last_end;
950
951 btrfs_debug_check_extent_io_range(tree, start, end);
952 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
953
954 again:
955 if (!prealloc && gfpflags_allow_blocking(mask)) {
956 /*
957 * Don't care for allocation failure here because we might end
958 * up not needing the pre-allocated extent state at all, which
959 * is the case if we only have in the tree extent states that
960 * cover our input range and don't cover too any other range.
961 * If we end up needing a new extent state we allocate it later.
962 */
963 prealloc = alloc_extent_state(mask);
964 }
965
966 spin_lock(&tree->lock);
967 if (cached_state && *cached_state) {
968 state = *cached_state;
969 if (state->start <= start && state->end > start &&
970 extent_state_in_tree(state)) {
971 node = &state->rb_node;
972 goto hit_next;
973 }
974 }
975 /*
976 * this search will find all the extents that end after
977 * our range starts.
978 */
979 node = tree_search_for_insert(tree, start, &p, &parent);
980 if (!node) {
981 prealloc = alloc_extent_state_atomic(prealloc);
982 BUG_ON(!prealloc);
983 err = insert_state(tree, prealloc, start, end,
984 &p, &parent, &bits, changeset);
985 if (err)
986 extent_io_tree_panic(tree, err);
987
988 cache_state(prealloc, cached_state);
989 prealloc = NULL;
990 goto out;
991 }
992 state = rb_entry(node, struct extent_state, rb_node);
993 hit_next:
994 last_start = state->start;
995 last_end = state->end;
996
997 /*
998 * | ---- desired range ---- |
999 * | state |
1000 *
1001 * Just lock what we found and keep going
1002 */
1003 if (state->start == start && state->end <= end) {
1004 if (state->state & exclusive_bits) {
1005 *failed_start = state->start;
1006 err = -EEXIST;
1007 goto out;
1008 }
1009
1010 set_state_bits(tree, state, &bits, changeset);
1011 cache_state(state, cached_state);
1012 merge_state(tree, state);
1013 if (last_end == (u64)-1)
1014 goto out;
1015 start = last_end + 1;
1016 state = next_state(state);
1017 if (start < end && state && state->start == start &&
1018 !need_resched())
1019 goto hit_next;
1020 goto search_again;
1021 }
1022
1023 /*
1024 * | ---- desired range ---- |
1025 * | state |
1026 * or
1027 * | ------------- state -------------- |
1028 *
1029 * We need to split the extent we found, and may flip bits on
1030 * second half.
1031 *
1032 * If the extent we found extends past our
1033 * range, we just split and search again. It'll get split
1034 * again the next time though.
1035 *
1036 * If the extent we found is inside our range, we set the
1037 * desired bit on it.
1038 */
1039 if (state->start < start) {
1040 if (state->state & exclusive_bits) {
1041 *failed_start = start;
1042 err = -EEXIST;
1043 goto out;
1044 }
1045
1046 prealloc = alloc_extent_state_atomic(prealloc);
1047 BUG_ON(!prealloc);
1048 err = split_state(tree, state, prealloc, start);
1049 if (err)
1050 extent_io_tree_panic(tree, err);
1051
1052 prealloc = NULL;
1053 if (err)
1054 goto out;
1055 if (state->end <= end) {
1056 set_state_bits(tree, state, &bits, changeset);
1057 cache_state(state, cached_state);
1058 merge_state(tree, state);
1059 if (last_end == (u64)-1)
1060 goto out;
1061 start = last_end + 1;
1062 state = next_state(state);
1063 if (start < end && state && state->start == start &&
1064 !need_resched())
1065 goto hit_next;
1066 }
1067 goto search_again;
1068 }
1069 /*
1070 * | ---- desired range ---- |
1071 * | state | or | state |
1072 *
1073 * There's a hole, we need to insert something in it and
1074 * ignore the extent we found.
1075 */
1076 if (state->start > start) {
1077 u64 this_end;
1078 if (end < last_start)
1079 this_end = end;
1080 else
1081 this_end = last_start - 1;
1082
1083 prealloc = alloc_extent_state_atomic(prealloc);
1084 BUG_ON(!prealloc);
1085
1086 /*
1087 * Avoid to free 'prealloc' if it can be merged with
1088 * the later extent.
1089 */
1090 err = insert_state(tree, prealloc, start, this_end,
1091 NULL, NULL, &bits, changeset);
1092 if (err)
1093 extent_io_tree_panic(tree, err);
1094
1095 cache_state(prealloc, cached_state);
1096 prealloc = NULL;
1097 start = this_end + 1;
1098 goto search_again;
1099 }
1100 /*
1101 * | ---- desired range ---- |
1102 * | state |
1103 * We need to split the extent, and set the bit
1104 * on the first half
1105 */
1106 if (state->start <= end && state->end > end) {
1107 if (state->state & exclusive_bits) {
1108 *failed_start = start;
1109 err = -EEXIST;
1110 goto out;
1111 }
1112
1113 prealloc = alloc_extent_state_atomic(prealloc);
1114 BUG_ON(!prealloc);
1115 err = split_state(tree, state, prealloc, end + 1);
1116 if (err)
1117 extent_io_tree_panic(tree, err);
1118
1119 set_state_bits(tree, prealloc, &bits, changeset);
1120 cache_state(prealloc, cached_state);
1121 merge_state(tree, prealloc);
1122 prealloc = NULL;
1123 goto out;
1124 }
1125
1126 search_again:
1127 if (start > end)
1128 goto out;
1129 spin_unlock(&tree->lock);
1130 if (gfpflags_allow_blocking(mask))
1131 cond_resched();
1132 goto again;
1133
1134 out:
1135 spin_unlock(&tree->lock);
1136 if (prealloc)
1137 free_extent_state(prealloc);
1138
1139 return err;
1140
1141 }
1142
1143 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144 unsigned bits, u64 * failed_start,
1145 struct extent_state **cached_state, gfp_t mask)
1146 {
1147 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148 cached_state, mask, NULL);
1149 }
1150
1151
1152 /**
1153 * convert_extent_bit - convert all bits in a given range from one bit to
1154 * another
1155 * @tree: the io tree to search
1156 * @start: the start offset in bytes
1157 * @end: the end offset in bytes (inclusive)
1158 * @bits: the bits to set in this range
1159 * @clear_bits: the bits to clear in this range
1160 * @cached_state: state that we're going to cache
1161 *
1162 * This will go through and set bits for the given range. If any states exist
1163 * already in this range they are set with the given bit and cleared of the
1164 * clear_bits. This is only meant to be used by things that are mergeable, ie
1165 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1166 * boundary bits like LOCK.
1167 *
1168 * All allocations are done with GFP_NOFS.
1169 */
1170 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171 unsigned bits, unsigned clear_bits,
1172 struct extent_state **cached_state)
1173 {
1174 struct extent_state *state;
1175 struct extent_state *prealloc = NULL;
1176 struct rb_node *node;
1177 struct rb_node **p;
1178 struct rb_node *parent;
1179 int err = 0;
1180 u64 last_start;
1181 u64 last_end;
1182 bool first_iteration = true;
1183
1184 btrfs_debug_check_extent_io_range(tree, start, end);
1185 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186 clear_bits);
1187
1188 again:
1189 if (!prealloc) {
1190 /*
1191 * Best effort, don't worry if extent state allocation fails
1192 * here for the first iteration. We might have a cached state
1193 * that matches exactly the target range, in which case no
1194 * extent state allocations are needed. We'll only know this
1195 * after locking the tree.
1196 */
1197 prealloc = alloc_extent_state(GFP_NOFS);
1198 if (!prealloc && !first_iteration)
1199 return -ENOMEM;
1200 }
1201
1202 spin_lock(&tree->lock);
1203 if (cached_state && *cached_state) {
1204 state = *cached_state;
1205 if (state->start <= start && state->end > start &&
1206 extent_state_in_tree(state)) {
1207 node = &state->rb_node;
1208 goto hit_next;
1209 }
1210 }
1211
1212 /*
1213 * this search will find all the extents that end after
1214 * our range starts.
1215 */
1216 node = tree_search_for_insert(tree, start, &p, &parent);
1217 if (!node) {
1218 prealloc = alloc_extent_state_atomic(prealloc);
1219 if (!prealloc) {
1220 err = -ENOMEM;
1221 goto out;
1222 }
1223 err = insert_state(tree, prealloc, start, end,
1224 &p, &parent, &bits, NULL);
1225 if (err)
1226 extent_io_tree_panic(tree, err);
1227 cache_state(prealloc, cached_state);
1228 prealloc = NULL;
1229 goto out;
1230 }
1231 state = rb_entry(node, struct extent_state, rb_node);
1232 hit_next:
1233 last_start = state->start;
1234 last_end = state->end;
1235
1236 /*
1237 * | ---- desired range ---- |
1238 * | state |
1239 *
1240 * Just lock what we found and keep going
1241 */
1242 if (state->start == start && state->end <= end) {
1243 set_state_bits(tree, state, &bits, NULL);
1244 cache_state(state, cached_state);
1245 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246 if (last_end == (u64)-1)
1247 goto out;
1248 start = last_end + 1;
1249 if (start < end && state && state->start == start &&
1250 !need_resched())
1251 goto hit_next;
1252 goto search_again;
1253 }
1254
1255 /*
1256 * | ---- desired range ---- |
1257 * | state |
1258 * or
1259 * | ------------- state -------------- |
1260 *
1261 * We need to split the extent we found, and may flip bits on
1262 * second half.
1263 *
1264 * If the extent we found extends past our
1265 * range, we just split and search again. It'll get split
1266 * again the next time though.
1267 *
1268 * If the extent we found is inside our range, we set the
1269 * desired bit on it.
1270 */
1271 if (state->start < start) {
1272 prealloc = alloc_extent_state_atomic(prealloc);
1273 if (!prealloc) {
1274 err = -ENOMEM;
1275 goto out;
1276 }
1277 err = split_state(tree, state, prealloc, start);
1278 if (err)
1279 extent_io_tree_panic(tree, err);
1280 prealloc = NULL;
1281 if (err)
1282 goto out;
1283 if (state->end <= end) {
1284 set_state_bits(tree, state, &bits, NULL);
1285 cache_state(state, cached_state);
1286 state = clear_state_bit(tree, state, &clear_bits, 0,
1287 NULL);
1288 if (last_end == (u64)-1)
1289 goto out;
1290 start = last_end + 1;
1291 if (start < end && state && state->start == start &&
1292 !need_resched())
1293 goto hit_next;
1294 }
1295 goto search_again;
1296 }
1297 /*
1298 * | ---- desired range ---- |
1299 * | state | or | state |
1300 *
1301 * There's a hole, we need to insert something in it and
1302 * ignore the extent we found.
1303 */
1304 if (state->start > start) {
1305 u64 this_end;
1306 if (end < last_start)
1307 this_end = end;
1308 else
1309 this_end = last_start - 1;
1310
1311 prealloc = alloc_extent_state_atomic(prealloc);
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
1316
1317 /*
1318 * Avoid to free 'prealloc' if it can be merged with
1319 * the later extent.
1320 */
1321 err = insert_state(tree, prealloc, start, this_end,
1322 NULL, NULL, &bits, NULL);
1323 if (err)
1324 extent_io_tree_panic(tree, err);
1325 cache_state(prealloc, cached_state);
1326 prealloc = NULL;
1327 start = this_end + 1;
1328 goto search_again;
1329 }
1330 /*
1331 * | ---- desired range ---- |
1332 * | state |
1333 * We need to split the extent, and set the bit
1334 * on the first half
1335 */
1336 if (state->start <= end && state->end > end) {
1337 prealloc = alloc_extent_state_atomic(prealloc);
1338 if (!prealloc) {
1339 err = -ENOMEM;
1340 goto out;
1341 }
1342
1343 err = split_state(tree, state, prealloc, end + 1);
1344 if (err)
1345 extent_io_tree_panic(tree, err);
1346
1347 set_state_bits(tree, prealloc, &bits, NULL);
1348 cache_state(prealloc, cached_state);
1349 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350 prealloc = NULL;
1351 goto out;
1352 }
1353
1354 search_again:
1355 if (start > end)
1356 goto out;
1357 spin_unlock(&tree->lock);
1358 cond_resched();
1359 first_iteration = false;
1360 goto again;
1361
1362 out:
1363 spin_unlock(&tree->lock);
1364 if (prealloc)
1365 free_extent_state(prealloc);
1366
1367 return err;
1368 }
1369
1370 /* wrappers around set/clear extent bit */
1371 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372 unsigned bits, struct extent_changeset *changeset)
1373 {
1374 /*
1375 * We don't support EXTENT_LOCKED yet, as current changeset will
1376 * record any bits changed, so for EXTENT_LOCKED case, it will
1377 * either fail with -EEXIST or changeset will record the whole
1378 * range.
1379 */
1380 BUG_ON(bits & EXTENT_LOCKED);
1381
1382 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383 changeset);
1384 }
1385
1386 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387 unsigned bits)
1388 {
1389 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390 GFP_NOWAIT, NULL);
1391 }
1392
1393 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394 unsigned bits, int wake, int delete,
1395 struct extent_state **cached)
1396 {
1397 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398 cached, GFP_NOFS, NULL);
1399 }
1400
1401 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402 unsigned bits, struct extent_changeset *changeset)
1403 {
1404 /*
1405 * Don't support EXTENT_LOCKED case, same reason as
1406 * set_record_extent_bits().
1407 */
1408 BUG_ON(bits & EXTENT_LOCKED);
1409
1410 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411 changeset);
1412 }
1413
1414 /*
1415 * either insert or lock state struct between start and end use mask to tell
1416 * us if waiting is desired.
1417 */
1418 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419 struct extent_state **cached_state)
1420 {
1421 int err;
1422 u64 failed_start;
1423
1424 while (1) {
1425 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426 EXTENT_LOCKED, &failed_start,
1427 cached_state, GFP_NOFS, NULL);
1428 if (err == -EEXIST) {
1429 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430 start = failed_start;
1431 } else
1432 break;
1433 WARN_ON(start > end);
1434 }
1435 return err;
1436 }
1437
1438 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439 {
1440 int err;
1441 u64 failed_start;
1442
1443 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444 &failed_start, NULL, GFP_NOFS, NULL);
1445 if (err == -EEXIST) {
1446 if (failed_start > start)
1447 clear_extent_bit(tree, start, failed_start - 1,
1448 EXTENT_LOCKED, 1, 0, NULL);
1449 return 0;
1450 }
1451 return 1;
1452 }
1453
1454 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456 unsigned long index = start >> PAGE_SHIFT;
1457 unsigned long end_index = end >> PAGE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 put_page(page);
1465 index++;
1466 }
1467 }
1468
1469 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470 {
1471 unsigned long index = start >> PAGE_SHIFT;
1472 unsigned long end_index = end >> PAGE_SHIFT;
1473 struct page *page;
1474
1475 while (index <= end_index) {
1476 page = find_get_page(inode->i_mapping, index);
1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478 __set_page_dirty_nobuffers(page);
1479 account_page_redirty(page);
1480 put_page(page);
1481 index++;
1482 }
1483 }
1484
1485 /* find the first state struct with 'bits' set after 'start', and
1486 * return it. tree->lock must be held. NULL will returned if
1487 * nothing was found after 'start'
1488 */
1489 static struct extent_state *
1490 find_first_extent_bit_state(struct extent_io_tree *tree,
1491 u64 start, unsigned bits)
1492 {
1493 struct rb_node *node;
1494 struct extent_state *state;
1495
1496 /*
1497 * this search will find all the extents that end after
1498 * our range starts.
1499 */
1500 node = tree_search(tree, start);
1501 if (!node)
1502 goto out;
1503
1504 while (1) {
1505 state = rb_entry(node, struct extent_state, rb_node);
1506 if (state->end >= start && (state->state & bits))
1507 return state;
1508
1509 node = rb_next(node);
1510 if (!node)
1511 break;
1512 }
1513 out:
1514 return NULL;
1515 }
1516
1517 /*
1518 * find the first offset in the io tree with 'bits' set. zero is
1519 * returned if we find something, and *start_ret and *end_ret are
1520 * set to reflect the state struct that was found.
1521 *
1522 * If nothing was found, 1 is returned. If found something, return 0.
1523 */
1524 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525 u64 *start_ret, u64 *end_ret, unsigned bits,
1526 struct extent_state **cached_state)
1527 {
1528 struct extent_state *state;
1529 int ret = 1;
1530
1531 spin_lock(&tree->lock);
1532 if (cached_state && *cached_state) {
1533 state = *cached_state;
1534 if (state->end == start - 1 && extent_state_in_tree(state)) {
1535 while ((state = next_state(state)) != NULL) {
1536 if (state->state & bits)
1537 goto got_it;
1538 }
1539 free_extent_state(*cached_state);
1540 *cached_state = NULL;
1541 goto out;
1542 }
1543 free_extent_state(*cached_state);
1544 *cached_state = NULL;
1545 }
1546
1547 state = find_first_extent_bit_state(tree, start, bits);
1548 got_it:
1549 if (state) {
1550 cache_state_if_flags(state, cached_state, 0);
1551 *start_ret = state->start;
1552 *end_ret = state->end;
1553 ret = 0;
1554 }
1555 out:
1556 spin_unlock(&tree->lock);
1557 return ret;
1558 }
1559
1560 /**
1561 * find_first_clear_extent_bit - find the first range that has @bits not set.
1562 * This range could start before @start.
1563 *
1564 * @tree - the tree to search
1565 * @start - the offset at/after which the found extent should start
1566 * @start_ret - records the beginning of the range
1567 * @end_ret - records the end of the range (inclusive)
1568 * @bits - the set of bits which must be unset
1569 *
1570 * Since unallocated range is also considered one which doesn't have the bits
1571 * set it's possible that @end_ret contains -1, this happens in case the range
1572 * spans (last_range_end, end of device]. In this case it's up to the caller to
1573 * trim @end_ret to the appropriate size.
1574 */
1575 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576 u64 *start_ret, u64 *end_ret, unsigned bits)
1577 {
1578 struct extent_state *state;
1579 struct rb_node *node, *prev = NULL, *next;
1580
1581 spin_lock(&tree->lock);
1582
1583 /* Find first extent with bits cleared */
1584 while (1) {
1585 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586 if (!node) {
1587 node = next;
1588 if (!node) {
1589 /*
1590 * We are past the last allocated chunk,
1591 * set start at the end of the last extent. The
1592 * device alloc tree should never be empty so
1593 * prev is always set.
1594 */
1595 ASSERT(prev);
1596 state = rb_entry(prev, struct extent_state, rb_node);
1597 *start_ret = state->end + 1;
1598 *end_ret = -1;
1599 goto out;
1600 }
1601 }
1602 /*
1603 * At this point 'node' either contains 'start' or start is
1604 * before 'node'
1605 */
1606 state = rb_entry(node, struct extent_state, rb_node);
1607
1608 if (in_range(start, state->start, state->end - state->start + 1)) {
1609 if (state->state & bits) {
1610 /*
1611 * |--range with bits sets--|
1612 * |
1613 * start
1614 */
1615 start = state->end + 1;
1616 } else {
1617 /*
1618 * 'start' falls within a range that doesn't
1619 * have the bits set, so take its start as
1620 * the beginning of the desired range
1621 *
1622 * |--range with bits cleared----|
1623 * |
1624 * start
1625 */
1626 *start_ret = state->start;
1627 break;
1628 }
1629 } else {
1630 /*
1631 * |---prev range---|---hole/unset---|---node range---|
1632 * |
1633 * start
1634 *
1635 * or
1636 *
1637 * |---hole/unset--||--first node--|
1638 * 0 |
1639 * start
1640 */
1641 if (prev) {
1642 state = rb_entry(prev, struct extent_state,
1643 rb_node);
1644 *start_ret = state->end + 1;
1645 } else {
1646 *start_ret = 0;
1647 }
1648 break;
1649 }
1650 }
1651
1652 /*
1653 * Find the longest stretch from start until an entry which has the
1654 * bits set
1655 */
1656 while (1) {
1657 state = rb_entry(node, struct extent_state, rb_node);
1658 if (state->end >= start && !(state->state & bits)) {
1659 *end_ret = state->end;
1660 } else {
1661 *end_ret = state->start - 1;
1662 break;
1663 }
1664
1665 node = rb_next(node);
1666 if (!node)
1667 break;
1668 }
1669 out:
1670 spin_unlock(&tree->lock);
1671 }
1672
1673 /*
1674 * find a contiguous range of bytes in the file marked as delalloc, not
1675 * more than 'max_bytes'. start and end are used to return the range,
1676 *
1677 * true is returned if we find something, false if nothing was in the tree
1678 */
1679 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680 u64 *start, u64 *end, u64 max_bytes,
1681 struct extent_state **cached_state)
1682 {
1683 struct rb_node *node;
1684 struct extent_state *state;
1685 u64 cur_start = *start;
1686 bool found = false;
1687 u64 total_bytes = 0;
1688
1689 spin_lock(&tree->lock);
1690
1691 /*
1692 * this search will find all the extents that end after
1693 * our range starts.
1694 */
1695 node = tree_search(tree, cur_start);
1696 if (!node) {
1697 *end = (u64)-1;
1698 goto out;
1699 }
1700
1701 while (1) {
1702 state = rb_entry(node, struct extent_state, rb_node);
1703 if (found && (state->start != cur_start ||
1704 (state->state & EXTENT_BOUNDARY))) {
1705 goto out;
1706 }
1707 if (!(state->state & EXTENT_DELALLOC)) {
1708 if (!found)
1709 *end = state->end;
1710 goto out;
1711 }
1712 if (!found) {
1713 *start = state->start;
1714 *cached_state = state;
1715 refcount_inc(&state->refs);
1716 }
1717 found = true;
1718 *end = state->end;
1719 cur_start = state->end + 1;
1720 node = rb_next(node);
1721 total_bytes += state->end - state->start + 1;
1722 if (total_bytes >= max_bytes)
1723 break;
1724 if (!node)
1725 break;
1726 }
1727 out:
1728 spin_unlock(&tree->lock);
1729 return found;
1730 }
1731
1732 static int __process_pages_contig(struct address_space *mapping,
1733 struct page *locked_page,
1734 pgoff_t start_index, pgoff_t end_index,
1735 unsigned long page_ops, pgoff_t *index_ret);
1736
1737 static noinline void __unlock_for_delalloc(struct inode *inode,
1738 struct page *locked_page,
1739 u64 start, u64 end)
1740 {
1741 unsigned long index = start >> PAGE_SHIFT;
1742 unsigned long end_index = end >> PAGE_SHIFT;
1743
1744 ASSERT(locked_page);
1745 if (index == locked_page->index && end_index == index)
1746 return;
1747
1748 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749 PAGE_UNLOCK, NULL);
1750 }
1751
1752 static noinline int lock_delalloc_pages(struct inode *inode,
1753 struct page *locked_page,
1754 u64 delalloc_start,
1755 u64 delalloc_end)
1756 {
1757 unsigned long index = delalloc_start >> PAGE_SHIFT;
1758 unsigned long index_ret = index;
1759 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1760 int ret;
1761
1762 ASSERT(locked_page);
1763 if (index == locked_page->index && index == end_index)
1764 return 0;
1765
1766 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767 end_index, PAGE_LOCK, &index_ret);
1768 if (ret == -EAGAIN)
1769 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1770 (u64)index_ret << PAGE_SHIFT);
1771 return ret;
1772 }
1773
1774 /*
1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776 * more than @max_bytes. @Start and @end are used to return the range,
1777 *
1778 * Return: true if we find something
1779 * false if nothing was in the tree
1780 */
1781 EXPORT_FOR_TESTS
1782 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783 struct page *locked_page, u64 *start,
1784 u64 *end)
1785 {
1786 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1788 u64 delalloc_start;
1789 u64 delalloc_end;
1790 bool found;
1791 struct extent_state *cached_state = NULL;
1792 int ret;
1793 int loops = 0;
1794
1795 again:
1796 /* step one, find a bunch of delalloc bytes starting at start */
1797 delalloc_start = *start;
1798 delalloc_end = 0;
1799 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800 max_bytes, &cached_state);
1801 if (!found || delalloc_end <= *start) {
1802 *start = delalloc_start;
1803 *end = delalloc_end;
1804 free_extent_state(cached_state);
1805 return false;
1806 }
1807
1808 /*
1809 * start comes from the offset of locked_page. We have to lock
1810 * pages in order, so we can't process delalloc bytes before
1811 * locked_page
1812 */
1813 if (delalloc_start < *start)
1814 delalloc_start = *start;
1815
1816 /*
1817 * make sure to limit the number of pages we try to lock down
1818 */
1819 if (delalloc_end + 1 - delalloc_start > max_bytes)
1820 delalloc_end = delalloc_start + max_bytes - 1;
1821
1822 /* step two, lock all the pages after the page that has start */
1823 ret = lock_delalloc_pages(inode, locked_page,
1824 delalloc_start, delalloc_end);
1825 ASSERT(!ret || ret == -EAGAIN);
1826 if (ret == -EAGAIN) {
1827 /* some of the pages are gone, lets avoid looping by
1828 * shortening the size of the delalloc range we're searching
1829 */
1830 free_extent_state(cached_state);
1831 cached_state = NULL;
1832 if (!loops) {
1833 max_bytes = PAGE_SIZE;
1834 loops = 1;
1835 goto again;
1836 } else {
1837 found = false;
1838 goto out_failed;
1839 }
1840 }
1841
1842 /* step three, lock the state bits for the whole range */
1843 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844
1845 /* then test to make sure it is all still delalloc */
1846 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847 EXTENT_DELALLOC, 1, cached_state);
1848 if (!ret) {
1849 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850 &cached_state);
1851 __unlock_for_delalloc(inode, locked_page,
1852 delalloc_start, delalloc_end);
1853 cond_resched();
1854 goto again;
1855 }
1856 free_extent_state(cached_state);
1857 *start = delalloc_start;
1858 *end = delalloc_end;
1859 out_failed:
1860 return found;
1861 }
1862
1863 static int __process_pages_contig(struct address_space *mapping,
1864 struct page *locked_page,
1865 pgoff_t start_index, pgoff_t end_index,
1866 unsigned long page_ops, pgoff_t *index_ret)
1867 {
1868 unsigned long nr_pages = end_index - start_index + 1;
1869 unsigned long pages_locked = 0;
1870 pgoff_t index = start_index;
1871 struct page *pages[16];
1872 unsigned ret;
1873 int err = 0;
1874 int i;
1875
1876 if (page_ops & PAGE_LOCK) {
1877 ASSERT(page_ops == PAGE_LOCK);
1878 ASSERT(index_ret && *index_ret == start_index);
1879 }
1880
1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882 mapping_set_error(mapping, -EIO);
1883
1884 while (nr_pages > 0) {
1885 ret = find_get_pages_contig(mapping, index,
1886 min_t(unsigned long,
1887 nr_pages, ARRAY_SIZE(pages)), pages);
1888 if (ret == 0) {
1889 /*
1890 * Only if we're going to lock these pages,
1891 * can we find nothing at @index.
1892 */
1893 ASSERT(page_ops & PAGE_LOCK);
1894 err = -EAGAIN;
1895 goto out;
1896 }
1897
1898 for (i = 0; i < ret; i++) {
1899 if (page_ops & PAGE_SET_PRIVATE2)
1900 SetPagePrivate2(pages[i]);
1901
1902 if (pages[i] == locked_page) {
1903 put_page(pages[i]);
1904 pages_locked++;
1905 continue;
1906 }
1907 if (page_ops & PAGE_CLEAR_DIRTY)
1908 clear_page_dirty_for_io(pages[i]);
1909 if (page_ops & PAGE_SET_WRITEBACK)
1910 set_page_writeback(pages[i]);
1911 if (page_ops & PAGE_SET_ERROR)
1912 SetPageError(pages[i]);
1913 if (page_ops & PAGE_END_WRITEBACK)
1914 end_page_writeback(pages[i]);
1915 if (page_ops & PAGE_UNLOCK)
1916 unlock_page(pages[i]);
1917 if (page_ops & PAGE_LOCK) {
1918 lock_page(pages[i]);
1919 if (!PageDirty(pages[i]) ||
1920 pages[i]->mapping != mapping) {
1921 unlock_page(pages[i]);
1922 put_page(pages[i]);
1923 err = -EAGAIN;
1924 goto out;
1925 }
1926 }
1927 put_page(pages[i]);
1928 pages_locked++;
1929 }
1930 nr_pages -= ret;
1931 index += ret;
1932 cond_resched();
1933 }
1934 out:
1935 if (err && index_ret)
1936 *index_ret = start_index + pages_locked - 1;
1937 return err;
1938 }
1939
1940 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941 u64 delalloc_end, struct page *locked_page,
1942 unsigned clear_bits,
1943 unsigned long page_ops)
1944 {
1945 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946 NULL);
1947
1948 __process_pages_contig(inode->i_mapping, locked_page,
1949 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950 page_ops, NULL);
1951 }
1952
1953 /*
1954 * count the number of bytes in the tree that have a given bit(s)
1955 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1956 * cached. The total number found is returned.
1957 */
1958 u64 count_range_bits(struct extent_io_tree *tree,
1959 u64 *start, u64 search_end, u64 max_bytes,
1960 unsigned bits, int contig)
1961 {
1962 struct rb_node *node;
1963 struct extent_state *state;
1964 u64 cur_start = *start;
1965 u64 total_bytes = 0;
1966 u64 last = 0;
1967 int found = 0;
1968
1969 if (WARN_ON(search_end <= cur_start))
1970 return 0;
1971
1972 spin_lock(&tree->lock);
1973 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974 total_bytes = tree->dirty_bytes;
1975 goto out;
1976 }
1977 /*
1978 * this search will find all the extents that end after
1979 * our range starts.
1980 */
1981 node = tree_search(tree, cur_start);
1982 if (!node)
1983 goto out;
1984
1985 while (1) {
1986 state = rb_entry(node, struct extent_state, rb_node);
1987 if (state->start > search_end)
1988 break;
1989 if (contig && found && state->start > last + 1)
1990 break;
1991 if (state->end >= cur_start && (state->state & bits) == bits) {
1992 total_bytes += min(search_end, state->end) + 1 -
1993 max(cur_start, state->start);
1994 if (total_bytes >= max_bytes)
1995 break;
1996 if (!found) {
1997 *start = max(cur_start, state->start);
1998 found = 1;
1999 }
2000 last = state->end;
2001 } else if (contig && found) {
2002 break;
2003 }
2004 node = rb_next(node);
2005 if (!node)
2006 break;
2007 }
2008 out:
2009 spin_unlock(&tree->lock);
2010 return total_bytes;
2011 }
2012
2013 /*
2014 * set the private field for a given byte offset in the tree. If there isn't
2015 * an extent_state there already, this does nothing.
2016 */
2017 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018 struct io_failure_record *failrec)
2019 {
2020 struct rb_node *node;
2021 struct extent_state *state;
2022 int ret = 0;
2023
2024 spin_lock(&tree->lock);
2025 /*
2026 * this search will find all the extents that end after
2027 * our range starts.
2028 */
2029 node = tree_search(tree, start);
2030 if (!node) {
2031 ret = -ENOENT;
2032 goto out;
2033 }
2034 state = rb_entry(node, struct extent_state, rb_node);
2035 if (state->start != start) {
2036 ret = -ENOENT;
2037 goto out;
2038 }
2039 state->failrec = failrec;
2040 out:
2041 spin_unlock(&tree->lock);
2042 return ret;
2043 }
2044
2045 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046 struct io_failure_record **failrec)
2047 {
2048 struct rb_node *node;
2049 struct extent_state *state;
2050 int ret = 0;
2051
2052 spin_lock(&tree->lock);
2053 /*
2054 * this search will find all the extents that end after
2055 * our range starts.
2056 */
2057 node = tree_search(tree, start);
2058 if (!node) {
2059 ret = -ENOENT;
2060 goto out;
2061 }
2062 state = rb_entry(node, struct extent_state, rb_node);
2063 if (state->start != start) {
2064 ret = -ENOENT;
2065 goto out;
2066 }
2067 *failrec = state->failrec;
2068 out:
2069 spin_unlock(&tree->lock);
2070 return ret;
2071 }
2072
2073 /*
2074 * searches a range in the state tree for a given mask.
2075 * If 'filled' == 1, this returns 1 only if every extent in the tree
2076 * has the bits set. Otherwise, 1 is returned if any bit in the
2077 * range is found set.
2078 */
2079 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080 unsigned bits, int filled, struct extent_state *cached)
2081 {
2082 struct extent_state *state = NULL;
2083 struct rb_node *node;
2084 int bitset = 0;
2085
2086 spin_lock(&tree->lock);
2087 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088 cached->end > start)
2089 node = &cached->rb_node;
2090 else
2091 node = tree_search(tree, start);
2092 while (node && start <= end) {
2093 state = rb_entry(node, struct extent_state, rb_node);
2094
2095 if (filled && state->start > start) {
2096 bitset = 0;
2097 break;
2098 }
2099
2100 if (state->start > end)
2101 break;
2102
2103 if (state->state & bits) {
2104 bitset = 1;
2105 if (!filled)
2106 break;
2107 } else if (filled) {
2108 bitset = 0;
2109 break;
2110 }
2111
2112 if (state->end == (u64)-1)
2113 break;
2114
2115 start = state->end + 1;
2116 if (start > end)
2117 break;
2118 node = rb_next(node);
2119 if (!node) {
2120 if (filled)
2121 bitset = 0;
2122 break;
2123 }
2124 }
2125 spin_unlock(&tree->lock);
2126 return bitset;
2127 }
2128
2129 /*
2130 * helper function to set a given page up to date if all the
2131 * extents in the tree for that page are up to date
2132 */
2133 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134 {
2135 u64 start = page_offset(page);
2136 u64 end = start + PAGE_SIZE - 1;
2137 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138 SetPageUptodate(page);
2139 }
2140
2141 int free_io_failure(struct extent_io_tree *failure_tree,
2142 struct extent_io_tree *io_tree,
2143 struct io_failure_record *rec)
2144 {
2145 int ret;
2146 int err = 0;
2147
2148 set_state_failrec(failure_tree, rec->start, NULL);
2149 ret = clear_extent_bits(failure_tree, rec->start,
2150 rec->start + rec->len - 1,
2151 EXTENT_LOCKED | EXTENT_DIRTY);
2152 if (ret)
2153 err = ret;
2154
2155 ret = clear_extent_bits(io_tree, rec->start,
2156 rec->start + rec->len - 1,
2157 EXTENT_DAMAGED);
2158 if (ret && !err)
2159 err = ret;
2160
2161 kfree(rec);
2162 return err;
2163 }
2164
2165 /*
2166 * this bypasses the standard btrfs submit functions deliberately, as
2167 * the standard behavior is to write all copies in a raid setup. here we only
2168 * want to write the one bad copy. so we do the mapping for ourselves and issue
2169 * submit_bio directly.
2170 * to avoid any synchronization issues, wait for the data after writing, which
2171 * actually prevents the read that triggered the error from finishing.
2172 * currently, there can be no more than two copies of every data bit. thus,
2173 * exactly one rewrite is required.
2174 */
2175 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176 u64 length, u64 logical, struct page *page,
2177 unsigned int pg_offset, int mirror_num)
2178 {
2179 struct bio *bio;
2180 struct btrfs_device *dev;
2181 u64 map_length = 0;
2182 u64 sector;
2183 struct btrfs_bio *bbio = NULL;
2184 int ret;
2185
2186 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187 BUG_ON(!mirror_num);
2188
2189 bio = btrfs_io_bio_alloc(1);
2190 bio->bi_iter.bi_size = 0;
2191 map_length = length;
2192
2193 /*
2194 * Avoid races with device replace and make sure our bbio has devices
2195 * associated to its stripes that don't go away while we are doing the
2196 * read repair operation.
2197 */
2198 btrfs_bio_counter_inc_blocked(fs_info);
2199 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200 /*
2201 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202 * to update all raid stripes, but here we just want to correct
2203 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204 * stripe's dev and sector.
2205 */
2206 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207 &map_length, &bbio, 0);
2208 if (ret) {
2209 btrfs_bio_counter_dec(fs_info);
2210 bio_put(bio);
2211 return -EIO;
2212 }
2213 ASSERT(bbio->mirror_num == 1);
2214 } else {
2215 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216 &map_length, &bbio, mirror_num);
2217 if (ret) {
2218 btrfs_bio_counter_dec(fs_info);
2219 bio_put(bio);
2220 return -EIO;
2221 }
2222 BUG_ON(mirror_num != bbio->mirror_num);
2223 }
2224
2225 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226 bio->bi_iter.bi_sector = sector;
2227 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228 btrfs_put_bbio(bbio);
2229 if (!dev || !dev->bdev ||
2230 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231 btrfs_bio_counter_dec(fs_info);
2232 bio_put(bio);
2233 return -EIO;
2234 }
2235 bio_set_dev(bio, dev->bdev);
2236 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237 bio_add_page(bio, page, length, pg_offset);
2238
2239 if (btrfsic_submit_bio_wait(bio)) {
2240 /* try to remap that extent elsewhere? */
2241 btrfs_bio_counter_dec(fs_info);
2242 bio_put(bio);
2243 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244 return -EIO;
2245 }
2246
2247 btrfs_info_rl_in_rcu(fs_info,
2248 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249 ino, start,
2250 rcu_str_deref(dev->name), sector);
2251 btrfs_bio_counter_dec(fs_info);
2252 bio_put(bio);
2253 return 0;
2254 }
2255
2256 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2257 {
2258 struct btrfs_fs_info *fs_info = eb->fs_info;
2259 u64 start = eb->start;
2260 int i, num_pages = num_extent_pages(eb);
2261 int ret = 0;
2262
2263 if (sb_rdonly(fs_info->sb))
2264 return -EROFS;
2265
2266 for (i = 0; i < num_pages; i++) {
2267 struct page *p = eb->pages[i];
2268
2269 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270 start - page_offset(p), mirror_num);
2271 if (ret)
2272 break;
2273 start += PAGE_SIZE;
2274 }
2275
2276 return ret;
2277 }
2278
2279 /*
2280 * each time an IO finishes, we do a fast check in the IO failure tree
2281 * to see if we need to process or clean up an io_failure_record
2282 */
2283 int clean_io_failure(struct btrfs_fs_info *fs_info,
2284 struct extent_io_tree *failure_tree,
2285 struct extent_io_tree *io_tree, u64 start,
2286 struct page *page, u64 ino, unsigned int pg_offset)
2287 {
2288 u64 private;
2289 struct io_failure_record *failrec;
2290 struct extent_state *state;
2291 int num_copies;
2292 int ret;
2293
2294 private = 0;
2295 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296 EXTENT_DIRTY, 0);
2297 if (!ret)
2298 return 0;
2299
2300 ret = get_state_failrec(failure_tree, start, &failrec);
2301 if (ret)
2302 return 0;
2303
2304 BUG_ON(!failrec->this_mirror);
2305
2306 if (failrec->in_validation) {
2307 /* there was no real error, just free the record */
2308 btrfs_debug(fs_info,
2309 "clean_io_failure: freeing dummy error at %llu",
2310 failrec->start);
2311 goto out;
2312 }
2313 if (sb_rdonly(fs_info->sb))
2314 goto out;
2315
2316 spin_lock(&io_tree->lock);
2317 state = find_first_extent_bit_state(io_tree,
2318 failrec->start,
2319 EXTENT_LOCKED);
2320 spin_unlock(&io_tree->lock);
2321
2322 if (state && state->start <= failrec->start &&
2323 state->end >= failrec->start + failrec->len - 1) {
2324 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325 failrec->len);
2326 if (num_copies > 1) {
2327 repair_io_failure(fs_info, ino, start, failrec->len,
2328 failrec->logical, page, pg_offset,
2329 failrec->failed_mirror);
2330 }
2331 }
2332
2333 out:
2334 free_io_failure(failure_tree, io_tree, failrec);
2335
2336 return 0;
2337 }
2338
2339 /*
2340 * Can be called when
2341 * - hold extent lock
2342 * - under ordered extent
2343 * - the inode is freeing
2344 */
2345 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346 {
2347 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348 struct io_failure_record *failrec;
2349 struct extent_state *state, *next;
2350
2351 if (RB_EMPTY_ROOT(&failure_tree->state))
2352 return;
2353
2354 spin_lock(&failure_tree->lock);
2355 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356 while (state) {
2357 if (state->start > end)
2358 break;
2359
2360 ASSERT(state->end <= end);
2361
2362 next = next_state(state);
2363
2364 failrec = state->failrec;
2365 free_extent_state(state);
2366 kfree(failrec);
2367
2368 state = next;
2369 }
2370 spin_unlock(&failure_tree->lock);
2371 }
2372
2373 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374 struct io_failure_record **failrec_ret)
2375 {
2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377 struct io_failure_record *failrec;
2378 struct extent_map *em;
2379 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2382 int ret;
2383 u64 logical;
2384
2385 ret = get_state_failrec(failure_tree, start, &failrec);
2386 if (ret) {
2387 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388 if (!failrec)
2389 return -ENOMEM;
2390
2391 failrec->start = start;
2392 failrec->len = end - start + 1;
2393 failrec->this_mirror = 0;
2394 failrec->bio_flags = 0;
2395 failrec->in_validation = 0;
2396
2397 read_lock(&em_tree->lock);
2398 em = lookup_extent_mapping(em_tree, start, failrec->len);
2399 if (!em) {
2400 read_unlock(&em_tree->lock);
2401 kfree(failrec);
2402 return -EIO;
2403 }
2404
2405 if (em->start > start || em->start + em->len <= start) {
2406 free_extent_map(em);
2407 em = NULL;
2408 }
2409 read_unlock(&em_tree->lock);
2410 if (!em) {
2411 kfree(failrec);
2412 return -EIO;
2413 }
2414
2415 logical = start - em->start;
2416 logical = em->block_start + logical;
2417 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418 logical = em->block_start;
2419 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420 extent_set_compress_type(&failrec->bio_flags,
2421 em->compress_type);
2422 }
2423
2424 btrfs_debug(fs_info,
2425 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426 logical, start, failrec->len);
2427
2428 failrec->logical = logical;
2429 free_extent_map(em);
2430
2431 /* set the bits in the private failure tree */
2432 ret = set_extent_bits(failure_tree, start, end,
2433 EXTENT_LOCKED | EXTENT_DIRTY);
2434 if (ret >= 0)
2435 ret = set_state_failrec(failure_tree, start, failrec);
2436 /* set the bits in the inode's tree */
2437 if (ret >= 0)
2438 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2439 if (ret < 0) {
2440 kfree(failrec);
2441 return ret;
2442 }
2443 } else {
2444 btrfs_debug(fs_info,
2445 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446 failrec->logical, failrec->start, failrec->len,
2447 failrec->in_validation);
2448 /*
2449 * when data can be on disk more than twice, add to failrec here
2450 * (e.g. with a list for failed_mirror) to make
2451 * clean_io_failure() clean all those errors at once.
2452 */
2453 }
2454
2455 *failrec_ret = failrec;
2456
2457 return 0;
2458 }
2459
2460 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461 struct io_failure_record *failrec, int failed_mirror)
2462 {
2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464 int num_copies;
2465
2466 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467 if (num_copies == 1) {
2468 /*
2469 * we only have a single copy of the data, so don't bother with
2470 * all the retry and error correction code that follows. no
2471 * matter what the error is, it is very likely to persist.
2472 */
2473 btrfs_debug(fs_info,
2474 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475 num_copies, failrec->this_mirror, failed_mirror);
2476 return false;
2477 }
2478
2479 /*
2480 * there are two premises:
2481 * a) deliver good data to the caller
2482 * b) correct the bad sectors on disk
2483 */
2484 if (failed_bio_pages > 1) {
2485 /*
2486 * to fulfill b), we need to know the exact failing sectors, as
2487 * we don't want to rewrite any more than the failed ones. thus,
2488 * we need separate read requests for the failed bio
2489 *
2490 * if the following BUG_ON triggers, our validation request got
2491 * merged. we need separate requests for our algorithm to work.
2492 */
2493 BUG_ON(failrec->in_validation);
2494 failrec->in_validation = 1;
2495 failrec->this_mirror = failed_mirror;
2496 } else {
2497 /*
2498 * we're ready to fulfill a) and b) alongside. get a good copy
2499 * of the failed sector and if we succeed, we have setup
2500 * everything for repair_io_failure to do the rest for us.
2501 */
2502 if (failrec->in_validation) {
2503 BUG_ON(failrec->this_mirror != failed_mirror);
2504 failrec->in_validation = 0;
2505 failrec->this_mirror = 0;
2506 }
2507 failrec->failed_mirror = failed_mirror;
2508 failrec->this_mirror++;
2509 if (failrec->this_mirror == failed_mirror)
2510 failrec->this_mirror++;
2511 }
2512
2513 if (failrec->this_mirror > num_copies) {
2514 btrfs_debug(fs_info,
2515 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516 num_copies, failrec->this_mirror, failed_mirror);
2517 return false;
2518 }
2519
2520 return true;
2521 }
2522
2523
2524 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525 struct io_failure_record *failrec,
2526 struct page *page, int pg_offset, int icsum,
2527 bio_end_io_t *endio_func, void *data)
2528 {
2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530 struct bio *bio;
2531 struct btrfs_io_bio *btrfs_failed_bio;
2532 struct btrfs_io_bio *btrfs_bio;
2533
2534 bio = btrfs_io_bio_alloc(1);
2535 bio->bi_end_io = endio_func;
2536 bio->bi_iter.bi_sector = failrec->logical >> 9;
2537 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538 bio->bi_iter.bi_size = 0;
2539 bio->bi_private = data;
2540
2541 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542 if (btrfs_failed_bio->csum) {
2543 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545 btrfs_bio = btrfs_io_bio(bio);
2546 btrfs_bio->csum = btrfs_bio->csum_inline;
2547 icsum *= csum_size;
2548 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549 csum_size);
2550 }
2551
2552 bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554 return bio;
2555 }
2556
2557 /*
2558 * This is a generic handler for readpage errors. If other copies exist, read
2559 * those and write back good data to the failed position. Does not investigate
2560 * in remapping the failed extent elsewhere, hoping the device will be smart
2561 * enough to do this as needed
2562 */
2563 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564 struct page *page, u64 start, u64 end,
2565 int failed_mirror)
2566 {
2567 struct io_failure_record *failrec;
2568 struct inode *inode = page->mapping->host;
2569 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571 struct bio *bio;
2572 int read_mode = 0;
2573 blk_status_t status;
2574 int ret;
2575 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2576
2577 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578
2579 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580 if (ret)
2581 return ret;
2582
2583 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584 failed_mirror)) {
2585 free_io_failure(failure_tree, tree, failrec);
2586 return -EIO;
2587 }
2588
2589 if (failed_bio_pages > 1)
2590 read_mode |= REQ_FAILFAST_DEV;
2591
2592 phy_offset >>= inode->i_sb->s_blocksize_bits;
2593 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594 start - page_offset(page),
2595 (int)phy_offset, failed_bio->bi_end_io,
2596 NULL);
2597 bio->bi_opf = REQ_OP_READ | read_mode;
2598
2599 btrfs_debug(btrfs_sb(inode->i_sb),
2600 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601 read_mode, failrec->this_mirror, failrec->in_validation);
2602
2603 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604 failrec->bio_flags);
2605 if (status) {
2606 free_io_failure(failure_tree, tree, failrec);
2607 bio_put(bio);
2608 ret = blk_status_to_errno(status);
2609 }
2610
2611 return ret;
2612 }
2613
2614 /* lots and lots of room for performance fixes in the end_bio funcs */
2615
2616 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617 {
2618 int uptodate = (err == 0);
2619 int ret = 0;
2620
2621 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2622
2623 if (!uptodate) {
2624 ClearPageUptodate(page);
2625 SetPageError(page);
2626 ret = err < 0 ? err : -EIO;
2627 mapping_set_error(page->mapping, ret);
2628 }
2629 }
2630
2631 /*
2632 * after a writepage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * clear the writeback bits in the extent tree for this IO
2635 * end_page_writeback if the page has no more pending IO
2636 *
2637 * Scheduling is not allowed, so the extent state tree is expected
2638 * to have one and only one object corresponding to this IO.
2639 */
2640 static void end_bio_extent_writepage(struct bio *bio)
2641 {
2642 int error = blk_status_to_errno(bio->bi_status);
2643 struct bio_vec *bvec;
2644 u64 start;
2645 u64 end;
2646 struct bvec_iter_all iter_all;
2647
2648 ASSERT(!bio_flagged(bio, BIO_CLONED));
2649 bio_for_each_segment_all(bvec, bio, iter_all) {
2650 struct page *page = bvec->bv_page;
2651 struct inode *inode = page->mapping->host;
2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653
2654 /* We always issue full-page reads, but if some block
2655 * in a page fails to read, blk_update_request() will
2656 * advance bv_offset and adjust bv_len to compensate.
2657 * Print a warning for nonzero offsets, and an error
2658 * if they don't add up to a full page. */
2659 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661 btrfs_err(fs_info,
2662 "partial page write in btrfs with offset %u and length %u",
2663 bvec->bv_offset, bvec->bv_len);
2664 else
2665 btrfs_info(fs_info,
2666 "incomplete page write in btrfs with offset %u and length %u",
2667 bvec->bv_offset, bvec->bv_len);
2668 }
2669
2670 start = page_offset(page);
2671 end = start + bvec->bv_offset + bvec->bv_len - 1;
2672
2673 end_extent_writepage(page, error, start, end);
2674 end_page_writeback(page);
2675 }
2676
2677 bio_put(bio);
2678 }
2679
2680 static void
2681 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682 int uptodate)
2683 {
2684 struct extent_state *cached = NULL;
2685 u64 end = start + len - 1;
2686
2687 if (uptodate && tree->track_uptodate)
2688 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689 unlock_extent_cached_atomic(tree, start, end, &cached);
2690 }
2691
2692 /*
2693 * after a readpage IO is done, we need to:
2694 * clear the uptodate bits on error
2695 * set the uptodate bits if things worked
2696 * set the page up to date if all extents in the tree are uptodate
2697 * clear the lock bit in the extent tree
2698 * unlock the page if there are no other extents locked for it
2699 *
2700 * Scheduling is not allowed, so the extent state tree is expected
2701 * to have one and only one object corresponding to this IO.
2702 */
2703 static void end_bio_extent_readpage(struct bio *bio)
2704 {
2705 struct bio_vec *bvec;
2706 int uptodate = !bio->bi_status;
2707 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708 struct extent_io_tree *tree, *failure_tree;
2709 u64 offset = 0;
2710 u64 start;
2711 u64 end;
2712 u64 len;
2713 u64 extent_start = 0;
2714 u64 extent_len = 0;
2715 int mirror;
2716 int ret;
2717 struct bvec_iter_all iter_all;
2718
2719 ASSERT(!bio_flagged(bio, BIO_CLONED));
2720 bio_for_each_segment_all(bvec, bio, iter_all) {
2721 struct page *page = bvec->bv_page;
2722 struct inode *inode = page->mapping->host;
2723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724 bool data_inode = btrfs_ino(BTRFS_I(inode))
2725 != BTRFS_BTREE_INODE_OBJECTID;
2726
2727 btrfs_debug(fs_info,
2728 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2730 io_bio->mirror_num);
2731 tree = &BTRFS_I(inode)->io_tree;
2732 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733
2734 /* We always issue full-page reads, but if some block
2735 * in a page fails to read, blk_update_request() will
2736 * advance bv_offset and adjust bv_len to compensate.
2737 * Print a warning for nonzero offsets, and an error
2738 * if they don't add up to a full page. */
2739 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741 btrfs_err(fs_info,
2742 "partial page read in btrfs with offset %u and length %u",
2743 bvec->bv_offset, bvec->bv_len);
2744 else
2745 btrfs_info(fs_info,
2746 "incomplete page read in btrfs with offset %u and length %u",
2747 bvec->bv_offset, bvec->bv_len);
2748 }
2749
2750 start = page_offset(page);
2751 end = start + bvec->bv_offset + bvec->bv_len - 1;
2752 len = bvec->bv_len;
2753
2754 mirror = io_bio->mirror_num;
2755 if (likely(uptodate)) {
2756 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757 page, start, end,
2758 mirror);
2759 if (ret)
2760 uptodate = 0;
2761 else
2762 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763 failure_tree, tree, start,
2764 page,
2765 btrfs_ino(BTRFS_I(inode)), 0);
2766 }
2767
2768 if (likely(uptodate))
2769 goto readpage_ok;
2770
2771 if (data_inode) {
2772
2773 /*
2774 * The generic bio_readpage_error handles errors the
2775 * following way: If possible, new read requests are
2776 * created and submitted and will end up in
2777 * end_bio_extent_readpage as well (if we're lucky,
2778 * not in the !uptodate case). In that case it returns
2779 * 0 and we just go on with the next page in our bio.
2780 * If it can't handle the error it will return -EIO and
2781 * we remain responsible for that page.
2782 */
2783 ret = bio_readpage_error(bio, offset, page, start, end,
2784 mirror);
2785 if (ret == 0) {
2786 uptodate = !bio->bi_status;
2787 offset += len;
2788 continue;
2789 }
2790 } else {
2791 struct extent_buffer *eb;
2792
2793 eb = (struct extent_buffer *)page->private;
2794 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795 eb->read_mirror = mirror;
2796 atomic_dec(&eb->io_pages);
2797 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798 &eb->bflags))
2799 btree_readahead_hook(eb, -EIO);
2800 }
2801 readpage_ok:
2802 if (likely(uptodate)) {
2803 loff_t i_size = i_size_read(inode);
2804 pgoff_t end_index = i_size >> PAGE_SHIFT;
2805 unsigned off;
2806
2807 /* Zero out the end if this page straddles i_size */
2808 off = offset_in_page(i_size);
2809 if (page->index == end_index && off)
2810 zero_user_segment(page, off, PAGE_SIZE);
2811 SetPageUptodate(page);
2812 } else {
2813 ClearPageUptodate(page);
2814 SetPageError(page);
2815 }
2816 unlock_page(page);
2817 offset += len;
2818
2819 if (unlikely(!uptodate)) {
2820 if (extent_len) {
2821 endio_readpage_release_extent(tree,
2822 extent_start,
2823 extent_len, 1);
2824 extent_start = 0;
2825 extent_len = 0;
2826 }
2827 endio_readpage_release_extent(tree, start,
2828 end - start + 1, 0);
2829 } else if (!extent_len) {
2830 extent_start = start;
2831 extent_len = end + 1 - start;
2832 } else if (extent_start + extent_len == start) {
2833 extent_len += end + 1 - start;
2834 } else {
2835 endio_readpage_release_extent(tree, extent_start,
2836 extent_len, uptodate);
2837 extent_start = start;
2838 extent_len = end + 1 - start;
2839 }
2840 }
2841
2842 if (extent_len)
2843 endio_readpage_release_extent(tree, extent_start, extent_len,
2844 uptodate);
2845 btrfs_io_bio_free_csum(io_bio);
2846 bio_put(bio);
2847 }
2848
2849 /*
2850 * Initialize the members up to but not including 'bio'. Use after allocating a
2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852 * 'bio' because use of __GFP_ZERO is not supported.
2853 */
2854 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855 {
2856 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857 }
2858
2859 /*
2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2862 * for the appropriate container_of magic
2863 */
2864 struct bio *btrfs_bio_alloc(u64 first_byte)
2865 {
2866 struct bio *bio;
2867
2868 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869 bio->bi_iter.bi_sector = first_byte >> 9;
2870 btrfs_io_bio_init(btrfs_io_bio(bio));
2871 return bio;
2872 }
2873
2874 struct bio *btrfs_bio_clone(struct bio *bio)
2875 {
2876 struct btrfs_io_bio *btrfs_bio;
2877 struct bio *new;
2878
2879 /* Bio allocation backed by a bioset does not fail */
2880 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881 btrfs_bio = btrfs_io_bio(new);
2882 btrfs_io_bio_init(btrfs_bio);
2883 btrfs_bio->iter = bio->bi_iter;
2884 return new;
2885 }
2886
2887 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888 {
2889 struct bio *bio;
2890
2891 /* Bio allocation backed by a bioset does not fail */
2892 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893 btrfs_io_bio_init(btrfs_io_bio(bio));
2894 return bio;
2895 }
2896
2897 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2898 {
2899 struct bio *bio;
2900 struct btrfs_io_bio *btrfs_bio;
2901
2902 /* this will never fail when it's backed by a bioset */
2903 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904 ASSERT(bio);
2905
2906 btrfs_bio = btrfs_io_bio(bio);
2907 btrfs_io_bio_init(btrfs_bio);
2908
2909 bio_trim(bio, offset >> 9, size >> 9);
2910 btrfs_bio->iter = bio->bi_iter;
2911 return bio;
2912 }
2913
2914 /*
2915 * @opf: bio REQ_OP_* and REQ_* flags as one value
2916 * @tree: tree so we can call our merge_bio hook
2917 * @wbc: optional writeback control for io accounting
2918 * @page: page to add to the bio
2919 * @pg_offset: offset of the new bio or to check whether we are adding
2920 * a contiguous page to the previous one
2921 * @size: portion of page that we want to write
2922 * @offset: starting offset in the page
2923 * @bdev: attach newly created bios to this bdev
2924 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2925 * @end_io_func: end_io callback for new bio
2926 * @mirror_num: desired mirror to read/write
2927 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2928 * @bio_flags: flags of the current bio to see if we can merge them
2929 */
2930 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931 struct writeback_control *wbc,
2932 struct page *page, u64 offset,
2933 size_t size, unsigned long pg_offset,
2934 struct block_device *bdev,
2935 struct bio **bio_ret,
2936 bio_end_io_t end_io_func,
2937 int mirror_num,
2938 unsigned long prev_bio_flags,
2939 unsigned long bio_flags,
2940 bool force_bio_submit)
2941 {
2942 int ret = 0;
2943 struct bio *bio;
2944 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945 sector_t sector = offset >> 9;
2946
2947 ASSERT(bio_ret);
2948
2949 if (*bio_ret) {
2950 bool contig;
2951 bool can_merge = true;
2952
2953 bio = *bio_ret;
2954 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955 contig = bio->bi_iter.bi_sector == sector;
2956 else
2957 contig = bio_end_sector(bio) == sector;
2958
2959 ASSERT(tree->ops);
2960 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961 can_merge = false;
2962
2963 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964 force_bio_submit ||
2965 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967 if (ret < 0) {
2968 *bio_ret = NULL;
2969 return ret;
2970 }
2971 bio = NULL;
2972 } else {
2973 if (wbc)
2974 wbc_account_cgroup_owner(wbc, page, page_size);
2975 return 0;
2976 }
2977 }
2978
2979 bio = btrfs_bio_alloc(offset);
2980 bio_set_dev(bio, bdev);
2981 bio_add_page(bio, page, page_size, pg_offset);
2982 bio->bi_end_io = end_io_func;
2983 bio->bi_private = tree;
2984 bio->bi_write_hint = page->mapping->host->i_write_hint;
2985 bio->bi_opf = opf;
2986 if (wbc) {
2987 wbc_init_bio(wbc, bio);
2988 wbc_account_cgroup_owner(wbc, page, page_size);
2989 }
2990
2991 *bio_ret = bio;
2992
2993 return ret;
2994 }
2995
2996 static void attach_extent_buffer_page(struct extent_buffer *eb,
2997 struct page *page)
2998 {
2999 if (!PagePrivate(page)) {
3000 SetPagePrivate(page);
3001 get_page(page);
3002 set_page_private(page, (unsigned long)eb);
3003 } else {
3004 WARN_ON(page->private != (unsigned long)eb);
3005 }
3006 }
3007
3008 void set_page_extent_mapped(struct page *page)
3009 {
3010 if (!PagePrivate(page)) {
3011 SetPagePrivate(page);
3012 get_page(page);
3013 set_page_private(page, EXTENT_PAGE_PRIVATE);
3014 }
3015 }
3016
3017 static struct extent_map *
3018 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019 u64 start, u64 len, get_extent_t *get_extent,
3020 struct extent_map **em_cached)
3021 {
3022 struct extent_map *em;
3023
3024 if (em_cached && *em_cached) {
3025 em = *em_cached;
3026 if (extent_map_in_tree(em) && start >= em->start &&
3027 start < extent_map_end(em)) {
3028 refcount_inc(&em->refs);
3029 return em;
3030 }
3031
3032 free_extent_map(em);
3033 *em_cached = NULL;
3034 }
3035
3036 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037 if (em_cached && !IS_ERR_OR_NULL(em)) {
3038 BUG_ON(*em_cached);
3039 refcount_inc(&em->refs);
3040 *em_cached = em;
3041 }
3042 return em;
3043 }
3044 /*
3045 * basic readpage implementation. Locked extent state structs are inserted
3046 * into the tree that are removed when the IO is done (by the end_io
3047 * handlers)
3048 * XXX JDM: This needs looking at to ensure proper page locking
3049 * return 0 on success, otherwise return error
3050 */
3051 static int __do_readpage(struct extent_io_tree *tree,
3052 struct page *page,
3053 get_extent_t *get_extent,
3054 struct extent_map **em_cached,
3055 struct bio **bio, int mirror_num,
3056 unsigned long *bio_flags, unsigned int read_flags,
3057 u64 *prev_em_start)
3058 {
3059 struct inode *inode = page->mapping->host;
3060 u64 start = page_offset(page);
3061 const u64 end = start + PAGE_SIZE - 1;
3062 u64 cur = start;
3063 u64 extent_offset;
3064 u64 last_byte = i_size_read(inode);
3065 u64 block_start;
3066 u64 cur_end;
3067 struct extent_map *em;
3068 struct block_device *bdev;
3069 int ret = 0;
3070 int nr = 0;
3071 size_t pg_offset = 0;
3072 size_t iosize;
3073 size_t disk_io_size;
3074 size_t blocksize = inode->i_sb->s_blocksize;
3075 unsigned long this_bio_flag = 0;
3076
3077 set_page_extent_mapped(page);
3078
3079 if (!PageUptodate(page)) {
3080 if (cleancache_get_page(page) == 0) {
3081 BUG_ON(blocksize != PAGE_SIZE);
3082 unlock_extent(tree, start, end);
3083 goto out;
3084 }
3085 }
3086
3087 if (page->index == last_byte >> PAGE_SHIFT) {
3088 char *userpage;
3089 size_t zero_offset = offset_in_page(last_byte);
3090
3091 if (zero_offset) {
3092 iosize = PAGE_SIZE - zero_offset;
3093 userpage = kmap_atomic(page);
3094 memset(userpage + zero_offset, 0, iosize);
3095 flush_dcache_page(page);
3096 kunmap_atomic(userpage);
3097 }
3098 }
3099 while (cur <= end) {
3100 bool force_bio_submit = false;
3101 u64 offset;
3102
3103 if (cur >= last_byte) {
3104 char *userpage;
3105 struct extent_state *cached = NULL;
3106
3107 iosize = PAGE_SIZE - pg_offset;
3108 userpage = kmap_atomic(page);
3109 memset(userpage + pg_offset, 0, iosize);
3110 flush_dcache_page(page);
3111 kunmap_atomic(userpage);
3112 set_extent_uptodate(tree, cur, cur + iosize - 1,
3113 &cached, GFP_NOFS);
3114 unlock_extent_cached(tree, cur,
3115 cur + iosize - 1, &cached);
3116 break;
3117 }
3118 em = __get_extent_map(inode, page, pg_offset, cur,
3119 end - cur + 1, get_extent, em_cached);
3120 if (IS_ERR_OR_NULL(em)) {
3121 SetPageError(page);
3122 unlock_extent(tree, cur, end);
3123 break;
3124 }
3125 extent_offset = cur - em->start;
3126 BUG_ON(extent_map_end(em) <= cur);
3127 BUG_ON(end < cur);
3128
3129 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131 extent_set_compress_type(&this_bio_flag,
3132 em->compress_type);
3133 }
3134
3135 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136 cur_end = min(extent_map_end(em) - 1, end);
3137 iosize = ALIGN(iosize, blocksize);
3138 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139 disk_io_size = em->block_len;
3140 offset = em->block_start;
3141 } else {
3142 offset = em->block_start + extent_offset;
3143 disk_io_size = iosize;
3144 }
3145 bdev = em->bdev;
3146 block_start = em->block_start;
3147 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148 block_start = EXTENT_MAP_HOLE;
3149
3150 /*
3151 * If we have a file range that points to a compressed extent
3152 * and it's followed by a consecutive file range that points to
3153 * to the same compressed extent (possibly with a different
3154 * offset and/or length, so it either points to the whole extent
3155 * or only part of it), we must make sure we do not submit a
3156 * single bio to populate the pages for the 2 ranges because
3157 * this makes the compressed extent read zero out the pages
3158 * belonging to the 2nd range. Imagine the following scenario:
3159 *
3160 * File layout
3161 * [0 - 8K] [8K - 24K]
3162 * | |
3163 * | |
3164 * points to extent X, points to extent X,
3165 * offset 4K, length of 8K offset 0, length 16K
3166 *
3167 * [extent X, compressed length = 4K uncompressed length = 16K]
3168 *
3169 * If the bio to read the compressed extent covers both ranges,
3170 * it will decompress extent X into the pages belonging to the
3171 * first range and then it will stop, zeroing out the remaining
3172 * pages that belong to the other range that points to extent X.
3173 * So here we make sure we submit 2 bios, one for the first
3174 * range and another one for the third range. Both will target
3175 * the same physical extent from disk, but we can't currently
3176 * make the compressed bio endio callback populate the pages
3177 * for both ranges because each compressed bio is tightly
3178 * coupled with a single extent map, and each range can have
3179 * an extent map with a different offset value relative to the
3180 * uncompressed data of our extent and different lengths. This
3181 * is a corner case so we prioritize correctness over
3182 * non-optimal behavior (submitting 2 bios for the same extent).
3183 */
3184 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185 prev_em_start && *prev_em_start != (u64)-1 &&
3186 *prev_em_start != em->start)
3187 force_bio_submit = true;
3188
3189 if (prev_em_start)
3190 *prev_em_start = em->start;
3191
3192 free_extent_map(em);
3193 em = NULL;
3194
3195 /* we've found a hole, just zero and go on */
3196 if (block_start == EXTENT_MAP_HOLE) {
3197 char *userpage;
3198 struct extent_state *cached = NULL;
3199
3200 userpage = kmap_atomic(page);
3201 memset(userpage + pg_offset, 0, iosize);
3202 flush_dcache_page(page);
3203 kunmap_atomic(userpage);
3204
3205 set_extent_uptodate(tree, cur, cur + iosize - 1,
3206 &cached, GFP_NOFS);
3207 unlock_extent_cached(tree, cur,
3208 cur + iosize - 1, &cached);
3209 cur = cur + iosize;
3210 pg_offset += iosize;
3211 continue;
3212 }
3213 /* the get_extent function already copied into the page */
3214 if (test_range_bit(tree, cur, cur_end,
3215 EXTENT_UPTODATE, 1, NULL)) {
3216 check_page_uptodate(tree, page);
3217 unlock_extent(tree, cur, cur + iosize - 1);
3218 cur = cur + iosize;
3219 pg_offset += iosize;
3220 continue;
3221 }
3222 /* we have an inline extent but it didn't get marked up
3223 * to date. Error out
3224 */
3225 if (block_start == EXTENT_MAP_INLINE) {
3226 SetPageError(page);
3227 unlock_extent(tree, cur, cur + iosize - 1);
3228 cur = cur + iosize;
3229 pg_offset += iosize;
3230 continue;
3231 }
3232
3233 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234 page, offset, disk_io_size,
3235 pg_offset, bdev, bio,
3236 end_bio_extent_readpage, mirror_num,
3237 *bio_flags,
3238 this_bio_flag,
3239 force_bio_submit);
3240 if (!ret) {
3241 nr++;
3242 *bio_flags = this_bio_flag;
3243 } else {
3244 SetPageError(page);
3245 unlock_extent(tree, cur, cur + iosize - 1);
3246 goto out;
3247 }
3248 cur = cur + iosize;
3249 pg_offset += iosize;
3250 }
3251 out:
3252 if (!nr) {
3253 if (!PageError(page))
3254 SetPageUptodate(page);
3255 unlock_page(page);
3256 }
3257 return ret;
3258 }
3259
3260 static inline void contiguous_readpages(struct extent_io_tree *tree,
3261 struct page *pages[], int nr_pages,
3262 u64 start, u64 end,
3263 struct extent_map **em_cached,
3264 struct bio **bio,
3265 unsigned long *bio_flags,
3266 u64 *prev_em_start)
3267 {
3268 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269 int index;
3270
3271 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272
3273 for (index = 0; index < nr_pages; index++) {
3274 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276 put_page(pages[index]);
3277 }
3278 }
3279
3280 static int __extent_read_full_page(struct extent_io_tree *tree,
3281 struct page *page,
3282 get_extent_t *get_extent,
3283 struct bio **bio, int mirror_num,
3284 unsigned long *bio_flags,
3285 unsigned int read_flags)
3286 {
3287 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3288 u64 start = page_offset(page);
3289 u64 end = start + PAGE_SIZE - 1;
3290 int ret;
3291
3292 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3293
3294 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295 bio_flags, read_flags, NULL);
3296 return ret;
3297 }
3298
3299 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300 get_extent_t *get_extent, int mirror_num)
3301 {
3302 struct bio *bio = NULL;
3303 unsigned long bio_flags = 0;
3304 int ret;
3305
3306 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307 &bio_flags, 0);
3308 if (bio)
3309 ret = submit_one_bio(bio, mirror_num, bio_flags);
3310 return ret;
3311 }
3312
3313 static void update_nr_written(struct writeback_control *wbc,
3314 unsigned long nr_written)
3315 {
3316 wbc->nr_to_write -= nr_written;
3317 }
3318
3319 /*
3320 * helper for __extent_writepage, doing all of the delayed allocation setup.
3321 *
3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323 * to write the page (copy into inline extent). In this case the IO has
3324 * been started and the page is already unlocked.
3325 *
3326 * This returns 0 if all went well (page still locked)
3327 * This returns < 0 if there were errors (page still locked)
3328 */
3329 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330 struct page *page, struct writeback_control *wbc,
3331 u64 delalloc_start, unsigned long *nr_written)
3332 {
3333 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334 bool found;
3335 u64 delalloc_to_write = 0;
3336 u64 delalloc_end = 0;
3337 int ret;
3338 int page_started = 0;
3339
3340
3341 while (delalloc_end < page_end) {
3342 found = find_lock_delalloc_range(inode, page,
3343 &delalloc_start,
3344 &delalloc_end);
3345 if (!found) {
3346 delalloc_start = delalloc_end + 1;
3347 continue;
3348 }
3349 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350 delalloc_end, &page_started, nr_written, wbc);
3351 if (ret) {
3352 SetPageError(page);
3353 /*
3354 * btrfs_run_delalloc_range should return < 0 for error
3355 * but just in case, we use > 0 here meaning the IO is
3356 * started, so we don't want to return > 0 unless
3357 * things are going well.
3358 */
3359 ret = ret < 0 ? ret : -EIO;
3360 goto done;
3361 }
3362 /*
3363 * delalloc_end is already one less than the total length, so
3364 * we don't subtract one from PAGE_SIZE
3365 */
3366 delalloc_to_write += (delalloc_end - delalloc_start +
3367 PAGE_SIZE) >> PAGE_SHIFT;
3368 delalloc_start = delalloc_end + 1;
3369 }
3370 if (wbc->nr_to_write < delalloc_to_write) {
3371 int thresh = 8192;
3372
3373 if (delalloc_to_write < thresh * 2)
3374 thresh = delalloc_to_write;
3375 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376 thresh);
3377 }
3378
3379 /* did the fill delalloc function already unlock and start
3380 * the IO?
3381 */
3382 if (page_started) {
3383 /*
3384 * we've unlocked the page, so we can't update
3385 * the mapping's writeback index, just update
3386 * nr_to_write.
3387 */
3388 wbc->nr_to_write -= *nr_written;
3389 return 1;
3390 }
3391
3392 ret = 0;
3393
3394 done:
3395 return ret;
3396 }
3397
3398 /*
3399 * helper for __extent_writepage. This calls the writepage start hooks,
3400 * and does the loop to map the page into extents and bios.
3401 *
3402 * We return 1 if the IO is started and the page is unlocked,
3403 * 0 if all went well (page still locked)
3404 * < 0 if there were errors (page still locked)
3405 */
3406 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407 struct page *page,
3408 struct writeback_control *wbc,
3409 struct extent_page_data *epd,
3410 loff_t i_size,
3411 unsigned long nr_written,
3412 unsigned int write_flags, int *nr_ret)
3413 {
3414 struct extent_io_tree *tree = epd->tree;
3415 u64 start = page_offset(page);
3416 u64 page_end = start + PAGE_SIZE - 1;
3417 u64 end;
3418 u64 cur = start;
3419 u64 extent_offset;
3420 u64 block_start;
3421 u64 iosize;
3422 struct extent_map *em;
3423 struct block_device *bdev;
3424 size_t pg_offset = 0;
3425 size_t blocksize;
3426 int ret = 0;
3427 int nr = 0;
3428 bool compressed;
3429
3430 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431 if (ret) {
3432 /* Fixup worker will requeue */
3433 if (ret == -EBUSY)
3434 wbc->pages_skipped++;
3435 else
3436 redirty_page_for_writepage(wbc, page);
3437
3438 update_nr_written(wbc, nr_written);
3439 unlock_page(page);
3440 return 1;
3441 }
3442
3443 /*
3444 * we don't want to touch the inode after unlocking the page,
3445 * so we update the mapping writeback index now
3446 */
3447 update_nr_written(wbc, nr_written + 1);
3448
3449 end = page_end;
3450 if (i_size <= start) {
3451 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3452 goto done;
3453 }
3454
3455 blocksize = inode->i_sb->s_blocksize;
3456
3457 while (cur <= end) {
3458 u64 em_end;
3459 u64 offset;
3460
3461 if (cur >= i_size) {
3462 btrfs_writepage_endio_finish_ordered(page, cur,
3463 page_end, 1);
3464 break;
3465 }
3466 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467 end - cur + 1, 1);
3468 if (IS_ERR_OR_NULL(em)) {
3469 SetPageError(page);
3470 ret = PTR_ERR_OR_ZERO(em);
3471 break;
3472 }
3473
3474 extent_offset = cur - em->start;
3475 em_end = extent_map_end(em);
3476 BUG_ON(em_end <= cur);
3477 BUG_ON(end < cur);
3478 iosize = min(em_end - cur, end - cur + 1);
3479 iosize = ALIGN(iosize, blocksize);
3480 offset = em->block_start + extent_offset;
3481 bdev = em->bdev;
3482 block_start = em->block_start;
3483 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3484 free_extent_map(em);
3485 em = NULL;
3486
3487 /*
3488 * compressed and inline extents are written through other
3489 * paths in the FS
3490 */
3491 if (compressed || block_start == EXTENT_MAP_HOLE ||
3492 block_start == EXTENT_MAP_INLINE) {
3493 /*
3494 * end_io notification does not happen here for
3495 * compressed extents
3496 */
3497 if (!compressed)
3498 btrfs_writepage_endio_finish_ordered(page, cur,
3499 cur + iosize - 1,
3500 1);
3501 else if (compressed) {
3502 /* we don't want to end_page_writeback on
3503 * a compressed extent. this happens
3504 * elsewhere
3505 */
3506 nr++;
3507 }
3508
3509 cur += iosize;
3510 pg_offset += iosize;
3511 continue;
3512 }
3513
3514 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515 if (!PageWriteback(page)) {
3516 btrfs_err(BTRFS_I(inode)->root->fs_info,
3517 "page %lu not writeback, cur %llu end %llu",
3518 page->index, cur, end);
3519 }
3520
3521 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522 page, offset, iosize, pg_offset,
3523 bdev, &epd->bio,
3524 end_bio_extent_writepage,
3525 0, 0, 0, false);
3526 if (ret) {
3527 SetPageError(page);
3528 if (PageWriteback(page))
3529 end_page_writeback(page);
3530 }
3531
3532 cur = cur + iosize;
3533 pg_offset += iosize;
3534 nr++;
3535 }
3536 done:
3537 *nr_ret = nr;
3538 return ret;
3539 }
3540
3541 /*
3542 * the writepage semantics are similar to regular writepage. extent
3543 * records are inserted to lock ranges in the tree, and as dirty areas
3544 * are found, they are marked writeback. Then the lock bits are removed
3545 * and the end_io handler clears the writeback ranges
3546 *
3547 * Return 0 if everything goes well.
3548 * Return <0 for error.
3549 */
3550 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551 struct extent_page_data *epd)
3552 {
3553 struct inode *inode = page->mapping->host;
3554 u64 start = page_offset(page);
3555 u64 page_end = start + PAGE_SIZE - 1;
3556 int ret;
3557 int nr = 0;
3558 size_t pg_offset = 0;
3559 loff_t i_size = i_size_read(inode);
3560 unsigned long end_index = i_size >> PAGE_SHIFT;
3561 unsigned int write_flags = 0;
3562 unsigned long nr_written = 0;
3563
3564 write_flags = wbc_to_write_flags(wbc);
3565
3566 trace___extent_writepage(page, inode, wbc);
3567
3568 WARN_ON(!PageLocked(page));
3569
3570 ClearPageError(page);
3571
3572 pg_offset = offset_in_page(i_size);
3573 if (page->index > end_index ||
3574 (page->index == end_index && !pg_offset)) {
3575 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576 unlock_page(page);
3577 return 0;
3578 }
3579
3580 if (page->index == end_index) {
3581 char *userpage;
3582
3583 userpage = kmap_atomic(page);
3584 memset(userpage + pg_offset, 0,
3585 PAGE_SIZE - pg_offset);
3586 kunmap_atomic(userpage);
3587 flush_dcache_page(page);
3588 }
3589
3590 pg_offset = 0;
3591
3592 set_page_extent_mapped(page);
3593
3594 if (!epd->extent_locked) {
3595 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3596 if (ret == 1)
3597 goto done_unlocked;
3598 if (ret)
3599 goto done;
3600 }
3601
3602 ret = __extent_writepage_io(inode, page, wbc, epd,
3603 i_size, nr_written, write_flags, &nr);
3604 if (ret == 1)
3605 goto done_unlocked;
3606
3607 done:
3608 if (nr == 0) {
3609 /* make sure the mapping tag for page dirty gets cleared */
3610 set_page_writeback(page);
3611 end_page_writeback(page);
3612 }
3613 if (PageError(page)) {
3614 ret = ret < 0 ? ret : -EIO;
3615 end_extent_writepage(page, ret, start, page_end);
3616 }
3617 unlock_page(page);
3618 ASSERT(ret <= 0);
3619 return ret;
3620
3621 done_unlocked:
3622 return 0;
3623 }
3624
3625 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626 {
3627 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628 TASK_UNINTERRUPTIBLE);
3629 }
3630
3631 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632 {
3633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634 smp_mb__after_atomic();
3635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636 }
3637
3638 /*
3639 * Lock eb pages and flush the bio if we can't the locks
3640 *
3641 * Return 0 if nothing went wrong
3642 * Return >0 is same as 0, except bio is not submitted
3643 * Return <0 if something went wrong, no page is locked
3644 */
3645 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3646 struct extent_page_data *epd)
3647 {
3648 struct btrfs_fs_info *fs_info = eb->fs_info;
3649 int i, num_pages, failed_page_nr;
3650 int flush = 0;
3651 int ret = 0;
3652
3653 if (!btrfs_try_tree_write_lock(eb)) {
3654 ret = flush_write_bio(epd);
3655 if (ret < 0)
3656 return ret;
3657 flush = 1;
3658 btrfs_tree_lock(eb);
3659 }
3660
3661 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3662 btrfs_tree_unlock(eb);
3663 if (!epd->sync_io)
3664 return 0;
3665 if (!flush) {
3666 ret = flush_write_bio(epd);
3667 if (ret < 0)
3668 return ret;
3669 flush = 1;
3670 }
3671 while (1) {
3672 wait_on_extent_buffer_writeback(eb);
3673 btrfs_tree_lock(eb);
3674 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3675 break;
3676 btrfs_tree_unlock(eb);
3677 }
3678 }
3679
3680 /*
3681 * We need to do this to prevent races in people who check if the eb is
3682 * under IO since we can end up having no IO bits set for a short period
3683 * of time.
3684 */
3685 spin_lock(&eb->refs_lock);
3686 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3687 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3688 spin_unlock(&eb->refs_lock);
3689 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3690 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3691 -eb->len,
3692 fs_info->dirty_metadata_batch);
3693 ret = 1;
3694 } else {
3695 spin_unlock(&eb->refs_lock);
3696 }
3697
3698 btrfs_tree_unlock(eb);
3699
3700 if (!ret)
3701 return ret;
3702
3703 num_pages = num_extent_pages(eb);
3704 for (i = 0; i < num_pages; i++) {
3705 struct page *p = eb->pages[i];
3706
3707 if (!trylock_page(p)) {
3708 if (!flush) {
3709 int err;
3710
3711 err = flush_write_bio(epd);
3712 if (err < 0) {
3713 ret = err;
3714 failed_page_nr = i;
3715 goto err_unlock;
3716 }
3717 flush = 1;
3718 }
3719 lock_page(p);
3720 }
3721 }
3722
3723 return ret;
3724 err_unlock:
3725 /* Unlock already locked pages */
3726 for (i = 0; i < failed_page_nr; i++)
3727 unlock_page(eb->pages[i]);
3728 /*
3729 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3730 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3731 * be made and undo everything done before.
3732 */
3733 btrfs_tree_lock(eb);
3734 spin_lock(&eb->refs_lock);
3735 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3736 end_extent_buffer_writeback(eb);
3737 spin_unlock(&eb->refs_lock);
3738 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3739 fs_info->dirty_metadata_batch);
3740 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3741 btrfs_tree_unlock(eb);
3742 return ret;
3743 }
3744
3745 static void set_btree_ioerr(struct page *page)
3746 {
3747 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3748 struct btrfs_fs_info *fs_info;
3749
3750 SetPageError(page);
3751 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3752 return;
3753
3754 /*
3755 * If we error out, we should add back the dirty_metadata_bytes
3756 * to make it consistent.
3757 */
3758 fs_info = eb->fs_info;
3759 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3760 eb->len, fs_info->dirty_metadata_batch);
3761
3762 /*
3763 * If writeback for a btree extent that doesn't belong to a log tree
3764 * failed, increment the counter transaction->eb_write_errors.
3765 * We do this because while the transaction is running and before it's
3766 * committing (when we call filemap_fdata[write|wait]_range against
3767 * the btree inode), we might have
3768 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3769 * returns an error or an error happens during writeback, when we're
3770 * committing the transaction we wouldn't know about it, since the pages
3771 * can be no longer dirty nor marked anymore for writeback (if a
3772 * subsequent modification to the extent buffer didn't happen before the
3773 * transaction commit), which makes filemap_fdata[write|wait]_range not
3774 * able to find the pages tagged with SetPageError at transaction
3775 * commit time. So if this happens we must abort the transaction,
3776 * otherwise we commit a super block with btree roots that point to
3777 * btree nodes/leafs whose content on disk is invalid - either garbage
3778 * or the content of some node/leaf from a past generation that got
3779 * cowed or deleted and is no longer valid.
3780 *
3781 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3782 * not be enough - we need to distinguish between log tree extents vs
3783 * non-log tree extents, and the next filemap_fdatawait_range() call
3784 * will catch and clear such errors in the mapping - and that call might
3785 * be from a log sync and not from a transaction commit. Also, checking
3786 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3787 * not done and would not be reliable - the eb might have been released
3788 * from memory and reading it back again means that flag would not be
3789 * set (since it's a runtime flag, not persisted on disk).
3790 *
3791 * Using the flags below in the btree inode also makes us achieve the
3792 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3793 * writeback for all dirty pages and before filemap_fdatawait_range()
3794 * is called, the writeback for all dirty pages had already finished
3795 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3796 * filemap_fdatawait_range() would return success, as it could not know
3797 * that writeback errors happened (the pages were no longer tagged for
3798 * writeback).
3799 */
3800 switch (eb->log_index) {
3801 case -1:
3802 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3803 break;
3804 case 0:
3805 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3806 break;
3807 case 1:
3808 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3809 break;
3810 default:
3811 BUG(); /* unexpected, logic error */
3812 }
3813 }
3814
3815 static void end_bio_extent_buffer_writepage(struct bio *bio)
3816 {
3817 struct bio_vec *bvec;
3818 struct extent_buffer *eb;
3819 int done;
3820 struct bvec_iter_all iter_all;
3821
3822 ASSERT(!bio_flagged(bio, BIO_CLONED));
3823 bio_for_each_segment_all(bvec, bio, iter_all) {
3824 struct page *page = bvec->bv_page;
3825
3826 eb = (struct extent_buffer *)page->private;
3827 BUG_ON(!eb);
3828 done = atomic_dec_and_test(&eb->io_pages);
3829
3830 if (bio->bi_status ||
3831 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3832 ClearPageUptodate(page);
3833 set_btree_ioerr(page);
3834 }
3835
3836 end_page_writeback(page);
3837
3838 if (!done)
3839 continue;
3840
3841 end_extent_buffer_writeback(eb);
3842 }
3843
3844 bio_put(bio);
3845 }
3846
3847 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3848 struct writeback_control *wbc,
3849 struct extent_page_data *epd)
3850 {
3851 struct btrfs_fs_info *fs_info = eb->fs_info;
3852 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3853 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3854 u64 offset = eb->start;
3855 u32 nritems;
3856 int i, num_pages;
3857 unsigned long start, end;
3858 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3859 int ret = 0;
3860
3861 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3862 num_pages = num_extent_pages(eb);
3863 atomic_set(&eb->io_pages, num_pages);
3864
3865 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3866 nritems = btrfs_header_nritems(eb);
3867 if (btrfs_header_level(eb) > 0) {
3868 end = btrfs_node_key_ptr_offset(nritems);
3869
3870 memzero_extent_buffer(eb, end, eb->len - end);
3871 } else {
3872 /*
3873 * leaf:
3874 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3875 */
3876 start = btrfs_item_nr_offset(nritems);
3877 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3878 memzero_extent_buffer(eb, start, end - start);
3879 }
3880
3881 for (i = 0; i < num_pages; i++) {
3882 struct page *p = eb->pages[i];
3883
3884 clear_page_dirty_for_io(p);
3885 set_page_writeback(p);
3886 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3887 p, offset, PAGE_SIZE, 0, bdev,
3888 &epd->bio,
3889 end_bio_extent_buffer_writepage,
3890 0, 0, 0, false);
3891 if (ret) {
3892 set_btree_ioerr(p);
3893 if (PageWriteback(p))
3894 end_page_writeback(p);
3895 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3896 end_extent_buffer_writeback(eb);
3897 ret = -EIO;
3898 break;
3899 }
3900 offset += PAGE_SIZE;
3901 update_nr_written(wbc, 1);
3902 unlock_page(p);
3903 }
3904
3905 if (unlikely(ret)) {
3906 for (; i < num_pages; i++) {
3907 struct page *p = eb->pages[i];
3908 clear_page_dirty_for_io(p);
3909 unlock_page(p);
3910 }
3911 }
3912
3913 return ret;
3914 }
3915
3916 int btree_write_cache_pages(struct address_space *mapping,
3917 struct writeback_control *wbc)
3918 {
3919 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3920 struct extent_buffer *eb, *prev_eb = NULL;
3921 struct extent_page_data epd = {
3922 .bio = NULL,
3923 .tree = tree,
3924 .extent_locked = 0,
3925 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3926 };
3927 int ret = 0;
3928 int done = 0;
3929 int nr_to_write_done = 0;
3930 struct pagevec pvec;
3931 int nr_pages;
3932 pgoff_t index;
3933 pgoff_t end; /* Inclusive */
3934 int scanned = 0;
3935 xa_mark_t tag;
3936
3937 pagevec_init(&pvec);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
3944 scanned = 1;
3945 }
3946 if (wbc->sync_mode == WB_SYNC_ALL)
3947 tag = PAGECACHE_TAG_TOWRITE;
3948 else
3949 tag = PAGECACHE_TAG_DIRTY;
3950 retry:
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag_pages_for_writeback(mapping, index, end);
3953 while (!done && !nr_to_write_done && (index <= end) &&
3954 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3955 tag))) {
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
3962 if (!PagePrivate(page))
3963 continue;
3964
3965 spin_lock(&mapping->private_lock);
3966 if (!PagePrivate(page)) {
3967 spin_unlock(&mapping->private_lock);
3968 continue;
3969 }
3970
3971 eb = (struct extent_buffer *)page->private;
3972
3973 /*
3974 * Shouldn't happen and normally this would be a BUG_ON
3975 * but no sense in crashing the users box for something
3976 * we can survive anyway.
3977 */
3978 if (WARN_ON(!eb)) {
3979 spin_unlock(&mapping->private_lock);
3980 continue;
3981 }
3982
3983 if (eb == prev_eb) {
3984 spin_unlock(&mapping->private_lock);
3985 continue;
3986 }
3987
3988 ret = atomic_inc_not_zero(&eb->refs);
3989 spin_unlock(&mapping->private_lock);
3990 if (!ret)
3991 continue;
3992
3993 prev_eb = eb;
3994 ret = lock_extent_buffer_for_io(eb, &epd);
3995 if (!ret) {
3996 free_extent_buffer(eb);
3997 continue;
3998 }
3999
4000 ret = write_one_eb(eb, wbc, &epd);
4001 if (ret) {
4002 done = 1;
4003 free_extent_buffer(eb);
4004 break;
4005 }
4006 free_extent_buffer(eb);
4007
4008 /*
4009 * the filesystem may choose to bump up nr_to_write.
4010 * We have to make sure to honor the new nr_to_write
4011 * at any time
4012 */
4013 nr_to_write_done = wbc->nr_to_write <= 0;
4014 }
4015 pagevec_release(&pvec);
4016 cond_resched();
4017 }
4018 if (!scanned && !done) {
4019 /*
4020 * We hit the last page and there is more work to be done: wrap
4021 * back to the start of the file
4022 */
4023 scanned = 1;
4024 index = 0;
4025 goto retry;
4026 }
4027 ASSERT(ret <= 0);
4028 if (ret < 0) {
4029 end_write_bio(&epd, ret);
4030 return ret;
4031 }
4032 ret = flush_write_bio(&epd);
4033 return ret;
4034 }
4035
4036 /**
4037 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4038 * @mapping: address space structure to write
4039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4040 * @data: data passed to __extent_writepage function
4041 *
4042 * If a page is already under I/O, write_cache_pages() skips it, even
4043 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4044 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4045 * and msync() need to guarantee that all the data which was dirty at the time
4046 * the call was made get new I/O started against them. If wbc->sync_mode is
4047 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4048 * existing IO to complete.
4049 */
4050 static int extent_write_cache_pages(struct address_space *mapping,
4051 struct writeback_control *wbc,
4052 struct extent_page_data *epd)
4053 {
4054 struct inode *inode = mapping->host;
4055 int ret = 0;
4056 int done = 0;
4057 int nr_to_write_done = 0;
4058 struct pagevec pvec;
4059 int nr_pages;
4060 pgoff_t index;
4061 pgoff_t end; /* Inclusive */
4062 pgoff_t done_index;
4063 int range_whole = 0;
4064 int scanned = 0;
4065 xa_mark_t tag;
4066
4067 /*
4068 * We have to hold onto the inode so that ordered extents can do their
4069 * work when the IO finishes. The alternative to this is failing to add
4070 * an ordered extent if the igrab() fails there and that is a huge pain
4071 * to deal with, so instead just hold onto the inode throughout the
4072 * writepages operation. If it fails here we are freeing up the inode
4073 * anyway and we'd rather not waste our time writing out stuff that is
4074 * going to be truncated anyway.
4075 */
4076 if (!igrab(inode))
4077 return 0;
4078
4079 pagevec_init(&pvec);
4080 if (wbc->range_cyclic) {
4081 index = mapping->writeback_index; /* Start from prev offset */
4082 end = -1;
4083 } else {
4084 index = wbc->range_start >> PAGE_SHIFT;
4085 end = wbc->range_end >> PAGE_SHIFT;
4086 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4087 range_whole = 1;
4088 scanned = 1;
4089 }
4090
4091 /*
4092 * We do the tagged writepage as long as the snapshot flush bit is set
4093 * and we are the first one who do the filemap_flush() on this inode.
4094 *
4095 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4096 * not race in and drop the bit.
4097 */
4098 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4099 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4100 &BTRFS_I(inode)->runtime_flags))
4101 wbc->tagged_writepages = 1;
4102
4103 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4104 tag = PAGECACHE_TAG_TOWRITE;
4105 else
4106 tag = PAGECACHE_TAG_DIRTY;
4107 retry:
4108 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4109 tag_pages_for_writeback(mapping, index, end);
4110 done_index = index;
4111 while (!done && !nr_to_write_done && (index <= end) &&
4112 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4113 &index, end, tag))) {
4114 unsigned i;
4115
4116 scanned = 1;
4117 for (i = 0; i < nr_pages; i++) {
4118 struct page *page = pvec.pages[i];
4119
4120 done_index = page->index;
4121 /*
4122 * At this point we hold neither the i_pages lock nor
4123 * the page lock: the page may be truncated or
4124 * invalidated (changing page->mapping to NULL),
4125 * or even swizzled back from swapper_space to
4126 * tmpfs file mapping
4127 */
4128 if (!trylock_page(page)) {
4129 ret = flush_write_bio(epd);
4130 BUG_ON(ret < 0);
4131 lock_page(page);
4132 }
4133
4134 if (unlikely(page->mapping != mapping)) {
4135 unlock_page(page);
4136 continue;
4137 }
4138
4139 if (wbc->sync_mode != WB_SYNC_NONE) {
4140 if (PageWriteback(page)) {
4141 ret = flush_write_bio(epd);
4142 BUG_ON(ret < 0);
4143 }
4144 wait_on_page_writeback(page);
4145 }
4146
4147 if (PageWriteback(page) ||
4148 !clear_page_dirty_for_io(page)) {
4149 unlock_page(page);
4150 continue;
4151 }
4152
4153 ret = __extent_writepage(page, wbc, epd);
4154 if (ret < 0) {
4155 /*
4156 * done_index is set past this page,
4157 * so media errors will not choke
4158 * background writeout for the entire
4159 * file. This has consequences for
4160 * range_cyclic semantics (ie. it may
4161 * not be suitable for data integrity
4162 * writeout).
4163 */
4164 done_index = page->index + 1;
4165 done = 1;
4166 break;
4167 }
4168
4169 /*
4170 * the filesystem may choose to bump up nr_to_write.
4171 * We have to make sure to honor the new nr_to_write
4172 * at any time
4173 */
4174 nr_to_write_done = wbc->nr_to_write <= 0;
4175 }
4176 pagevec_release(&pvec);
4177 cond_resched();
4178 }
4179 if (!scanned && !done) {
4180 /*
4181 * We hit the last page and there is more work to be done: wrap
4182 * back to the start of the file
4183 */
4184 scanned = 1;
4185 index = 0;
4186 goto retry;
4187 }
4188
4189 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4190 mapping->writeback_index = done_index;
4191
4192 btrfs_add_delayed_iput(inode);
4193 return ret;
4194 }
4195
4196 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4197 {
4198 int ret;
4199 struct extent_page_data epd = {
4200 .bio = NULL,
4201 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4202 .extent_locked = 0,
4203 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4204 };
4205
4206 ret = __extent_writepage(page, wbc, &epd);
4207 ASSERT(ret <= 0);
4208 if (ret < 0) {
4209 end_write_bio(&epd, ret);
4210 return ret;
4211 }
4212
4213 ret = flush_write_bio(&epd);
4214 ASSERT(ret <= 0);
4215 return ret;
4216 }
4217
4218 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4219 int mode)
4220 {
4221 int ret = 0;
4222 struct address_space *mapping = inode->i_mapping;
4223 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4224 struct page *page;
4225 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4226 PAGE_SHIFT;
4227
4228 struct extent_page_data epd = {
4229 .bio = NULL,
4230 .tree = tree,
4231 .extent_locked = 1,
4232 .sync_io = mode == WB_SYNC_ALL,
4233 };
4234 struct writeback_control wbc_writepages = {
4235 .sync_mode = mode,
4236 .nr_to_write = nr_pages * 2,
4237 .range_start = start,
4238 .range_end = end + 1,
4239 };
4240
4241 while (start <= end) {
4242 page = find_get_page(mapping, start >> PAGE_SHIFT);
4243 if (clear_page_dirty_for_io(page))
4244 ret = __extent_writepage(page, &wbc_writepages, &epd);
4245 else {
4246 btrfs_writepage_endio_finish_ordered(page, start,
4247 start + PAGE_SIZE - 1, 1);
4248 unlock_page(page);
4249 }
4250 put_page(page);
4251 start += PAGE_SIZE;
4252 }
4253
4254 ASSERT(ret <= 0);
4255 if (ret < 0) {
4256 end_write_bio(&epd, ret);
4257 return ret;
4258 }
4259 ret = flush_write_bio(&epd);
4260 return ret;
4261 }
4262
4263 int extent_writepages(struct address_space *mapping,
4264 struct writeback_control *wbc)
4265 {
4266 int ret = 0;
4267 struct extent_page_data epd = {
4268 .bio = NULL,
4269 .tree = &BTRFS_I(mapping->host)->io_tree,
4270 .extent_locked = 0,
4271 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4272 };
4273
4274 ret = extent_write_cache_pages(mapping, wbc, &epd);
4275 ASSERT(ret <= 0);
4276 if (ret < 0) {
4277 end_write_bio(&epd, ret);
4278 return ret;
4279 }
4280 ret = flush_write_bio(&epd);
4281 return ret;
4282 }
4283
4284 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4285 unsigned nr_pages)
4286 {
4287 struct bio *bio = NULL;
4288 unsigned long bio_flags = 0;
4289 struct page *pagepool[16];
4290 struct extent_map *em_cached = NULL;
4291 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4292 int nr = 0;
4293 u64 prev_em_start = (u64)-1;
4294
4295 while (!list_empty(pages)) {
4296 u64 contig_end = 0;
4297
4298 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4299 struct page *page = lru_to_page(pages);
4300
4301 prefetchw(&page->flags);
4302 list_del(&page->lru);
4303 if (add_to_page_cache_lru(page, mapping, page->index,
4304 readahead_gfp_mask(mapping))) {
4305 put_page(page);
4306 break;
4307 }
4308
4309 pagepool[nr++] = page;
4310 contig_end = page_offset(page) + PAGE_SIZE - 1;
4311 }
4312
4313 if (nr) {
4314 u64 contig_start = page_offset(pagepool[0]);
4315
4316 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4317
4318 contiguous_readpages(tree, pagepool, nr, contig_start,
4319 contig_end, &em_cached, &bio, &bio_flags,
4320 &prev_em_start);
4321 }
4322 }
4323
4324 if (em_cached)
4325 free_extent_map(em_cached);
4326
4327 if (bio)
4328 return submit_one_bio(bio, 0, bio_flags);
4329 return 0;
4330 }
4331
4332 /*
4333 * basic invalidatepage code, this waits on any locked or writeback
4334 * ranges corresponding to the page, and then deletes any extent state
4335 * records from the tree
4336 */
4337 int extent_invalidatepage(struct extent_io_tree *tree,
4338 struct page *page, unsigned long offset)
4339 {
4340 struct extent_state *cached_state = NULL;
4341 u64 start = page_offset(page);
4342 u64 end = start + PAGE_SIZE - 1;
4343 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4344
4345 start += ALIGN(offset, blocksize);
4346 if (start > end)
4347 return 0;
4348
4349 lock_extent_bits(tree, start, end, &cached_state);
4350 wait_on_page_writeback(page);
4351 clear_extent_bit(tree, start, end,
4352 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4353 EXTENT_DO_ACCOUNTING,
4354 1, 1, &cached_state);
4355 return 0;
4356 }
4357
4358 /*
4359 * a helper for releasepage, this tests for areas of the page that
4360 * are locked or under IO and drops the related state bits if it is safe
4361 * to drop the page.
4362 */
4363 static int try_release_extent_state(struct extent_io_tree *tree,
4364 struct page *page, gfp_t mask)
4365 {
4366 u64 start = page_offset(page);
4367 u64 end = start + PAGE_SIZE - 1;
4368 int ret = 1;
4369
4370 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4371 ret = 0;
4372 } else {
4373 /*
4374 * at this point we can safely clear everything except the
4375 * locked bit and the nodatasum bit
4376 */
4377 ret = __clear_extent_bit(tree, start, end,
4378 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4379 0, 0, NULL, mask, NULL);
4380
4381 /* if clear_extent_bit failed for enomem reasons,
4382 * we can't allow the release to continue.
4383 */
4384 if (ret < 0)
4385 ret = 0;
4386 else
4387 ret = 1;
4388 }
4389 return ret;
4390 }
4391
4392 /*
4393 * a helper for releasepage. As long as there are no locked extents
4394 * in the range corresponding to the page, both state records and extent
4395 * map records are removed
4396 */
4397 int try_release_extent_mapping(struct page *page, gfp_t mask)
4398 {
4399 struct extent_map *em;
4400 u64 start = page_offset(page);
4401 u64 end = start + PAGE_SIZE - 1;
4402 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4403 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4404 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4405
4406 if (gfpflags_allow_blocking(mask) &&
4407 page->mapping->host->i_size > SZ_16M) {
4408 u64 len;
4409 while (start <= end) {
4410 len = end - start + 1;
4411 write_lock(&map->lock);
4412 em = lookup_extent_mapping(map, start, len);
4413 if (!em) {
4414 write_unlock(&map->lock);
4415 break;
4416 }
4417 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4418 em->start != start) {
4419 write_unlock(&map->lock);
4420 free_extent_map(em);
4421 break;
4422 }
4423 if (!test_range_bit(tree, em->start,
4424 extent_map_end(em) - 1,
4425 EXTENT_LOCKED, 0, NULL)) {
4426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4427 &btrfs_inode->runtime_flags);
4428 remove_extent_mapping(map, em);
4429 /* once for the rb tree */
4430 free_extent_map(em);
4431 }
4432 start = extent_map_end(em);
4433 write_unlock(&map->lock);
4434
4435 /* once for us */
4436 free_extent_map(em);
4437 }
4438 }
4439 return try_release_extent_state(tree, page, mask);
4440 }
4441
4442 /*
4443 * helper function for fiemap, which doesn't want to see any holes.
4444 * This maps until we find something past 'last'
4445 */
4446 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4447 u64 offset, u64 last)
4448 {
4449 u64 sectorsize = btrfs_inode_sectorsize(inode);
4450 struct extent_map *em;
4451 u64 len;
4452
4453 if (offset >= last)
4454 return NULL;
4455
4456 while (1) {
4457 len = last - offset;
4458 if (len == 0)
4459 break;
4460 len = ALIGN(len, sectorsize);
4461 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4462 if (IS_ERR_OR_NULL(em))
4463 return em;
4464
4465 /* if this isn't a hole return it */
4466 if (em->block_start != EXTENT_MAP_HOLE)
4467 return em;
4468
4469 /* this is a hole, advance to the next extent */
4470 offset = extent_map_end(em);
4471 free_extent_map(em);
4472 if (offset >= last)
4473 break;
4474 }
4475 return NULL;
4476 }
4477
4478 /*
4479 * To cache previous fiemap extent
4480 *
4481 * Will be used for merging fiemap extent
4482 */
4483 struct fiemap_cache {
4484 u64 offset;
4485 u64 phys;
4486 u64 len;
4487 u32 flags;
4488 bool cached;
4489 };
4490
4491 /*
4492 * Helper to submit fiemap extent.
4493 *
4494 * Will try to merge current fiemap extent specified by @offset, @phys,
4495 * @len and @flags with cached one.
4496 * And only when we fails to merge, cached one will be submitted as
4497 * fiemap extent.
4498 *
4499 * Return value is the same as fiemap_fill_next_extent().
4500 */
4501 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4502 struct fiemap_cache *cache,
4503 u64 offset, u64 phys, u64 len, u32 flags)
4504 {
4505 int ret = 0;
4506
4507 if (!cache->cached)
4508 goto assign;
4509
4510 /*
4511 * Sanity check, extent_fiemap() should have ensured that new
4512 * fiemap extent won't overlap with cached one.
4513 * Not recoverable.
4514 *
4515 * NOTE: Physical address can overlap, due to compression
4516 */
4517 if (cache->offset + cache->len > offset) {
4518 WARN_ON(1);
4519 return -EINVAL;
4520 }
4521
4522 /*
4523 * Only merges fiemap extents if
4524 * 1) Their logical addresses are continuous
4525 *
4526 * 2) Their physical addresses are continuous
4527 * So truly compressed (physical size smaller than logical size)
4528 * extents won't get merged with each other
4529 *
4530 * 3) Share same flags except FIEMAP_EXTENT_LAST
4531 * So regular extent won't get merged with prealloc extent
4532 */
4533 if (cache->offset + cache->len == offset &&
4534 cache->phys + cache->len == phys &&
4535 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4536 (flags & ~FIEMAP_EXTENT_LAST)) {
4537 cache->len += len;
4538 cache->flags |= flags;
4539 goto try_submit_last;
4540 }
4541
4542 /* Not mergeable, need to submit cached one */
4543 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4544 cache->len, cache->flags);
4545 cache->cached = false;
4546 if (ret)
4547 return ret;
4548 assign:
4549 cache->cached = true;
4550 cache->offset = offset;
4551 cache->phys = phys;
4552 cache->len = len;
4553 cache->flags = flags;
4554 try_submit_last:
4555 if (cache->flags & FIEMAP_EXTENT_LAST) {
4556 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4557 cache->phys, cache->len, cache->flags);
4558 cache->cached = false;
4559 }
4560 return ret;
4561 }
4562
4563 /*
4564 * Emit last fiemap cache
4565 *
4566 * The last fiemap cache may still be cached in the following case:
4567 * 0 4k 8k
4568 * |<- Fiemap range ->|
4569 * |<------------ First extent ----------->|
4570 *
4571 * In this case, the first extent range will be cached but not emitted.
4572 * So we must emit it before ending extent_fiemap().
4573 */
4574 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4575 struct fiemap_cache *cache)
4576 {
4577 int ret;
4578
4579 if (!cache->cached)
4580 return 0;
4581
4582 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4583 cache->len, cache->flags);
4584 cache->cached = false;
4585 if (ret > 0)
4586 ret = 0;
4587 return ret;
4588 }
4589
4590 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4591 __u64 start, __u64 len)
4592 {
4593 int ret = 0;
4594 u64 off = start;
4595 u64 max = start + len;
4596 u32 flags = 0;
4597 u32 found_type;
4598 u64 last;
4599 u64 last_for_get_extent = 0;
4600 u64 disko = 0;
4601 u64 isize = i_size_read(inode);
4602 struct btrfs_key found_key;
4603 struct extent_map *em = NULL;
4604 struct extent_state *cached_state = NULL;
4605 struct btrfs_path *path;
4606 struct btrfs_root *root = BTRFS_I(inode)->root;
4607 struct fiemap_cache cache = { 0 };
4608 struct ulist *roots;
4609 struct ulist *tmp_ulist;
4610 int end = 0;
4611 u64 em_start = 0;
4612 u64 em_len = 0;
4613 u64 em_end = 0;
4614
4615 if (len == 0)
4616 return -EINVAL;
4617
4618 path = btrfs_alloc_path();
4619 if (!path)
4620 return -ENOMEM;
4621 path->leave_spinning = 1;
4622
4623 roots = ulist_alloc(GFP_KERNEL);
4624 tmp_ulist = ulist_alloc(GFP_KERNEL);
4625 if (!roots || !tmp_ulist) {
4626 ret = -ENOMEM;
4627 goto out_free_ulist;
4628 }
4629
4630 start = round_down(start, btrfs_inode_sectorsize(inode));
4631 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4632
4633 /*
4634 * lookup the last file extent. We're not using i_size here
4635 * because there might be preallocation past i_size
4636 */
4637 ret = btrfs_lookup_file_extent(NULL, root, path,
4638 btrfs_ino(BTRFS_I(inode)), -1, 0);
4639 if (ret < 0) {
4640 goto out_free_ulist;
4641 } else {
4642 WARN_ON(!ret);
4643 if (ret == 1)
4644 ret = 0;
4645 }
4646
4647 path->slots[0]--;
4648 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4649 found_type = found_key.type;
4650
4651 /* No extents, but there might be delalloc bits */
4652 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4653 found_type != BTRFS_EXTENT_DATA_KEY) {
4654 /* have to trust i_size as the end */
4655 last = (u64)-1;
4656 last_for_get_extent = isize;
4657 } else {
4658 /*
4659 * remember the start of the last extent. There are a
4660 * bunch of different factors that go into the length of the
4661 * extent, so its much less complex to remember where it started
4662 */
4663 last = found_key.offset;
4664 last_for_get_extent = last + 1;
4665 }
4666 btrfs_release_path(path);
4667
4668 /*
4669 * we might have some extents allocated but more delalloc past those
4670 * extents. so, we trust isize unless the start of the last extent is
4671 * beyond isize
4672 */
4673 if (last < isize) {
4674 last = (u64)-1;
4675 last_for_get_extent = isize;
4676 }
4677
4678 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4679 &cached_state);
4680
4681 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4682 if (!em)
4683 goto out;
4684 if (IS_ERR(em)) {
4685 ret = PTR_ERR(em);
4686 goto out;
4687 }
4688
4689 while (!end) {
4690 u64 offset_in_extent = 0;
4691
4692 /* break if the extent we found is outside the range */
4693 if (em->start >= max || extent_map_end(em) < off)
4694 break;
4695
4696 /*
4697 * get_extent may return an extent that starts before our
4698 * requested range. We have to make sure the ranges
4699 * we return to fiemap always move forward and don't
4700 * overlap, so adjust the offsets here
4701 */
4702 em_start = max(em->start, off);
4703
4704 /*
4705 * record the offset from the start of the extent
4706 * for adjusting the disk offset below. Only do this if the
4707 * extent isn't compressed since our in ram offset may be past
4708 * what we have actually allocated on disk.
4709 */
4710 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4711 offset_in_extent = em_start - em->start;
4712 em_end = extent_map_end(em);
4713 em_len = em_end - em_start;
4714 flags = 0;
4715 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4716 disko = em->block_start + offset_in_extent;
4717 else
4718 disko = 0;
4719
4720 /*
4721 * bump off for our next call to get_extent
4722 */
4723 off = extent_map_end(em);
4724 if (off >= max)
4725 end = 1;
4726
4727 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4728 end = 1;
4729 flags |= FIEMAP_EXTENT_LAST;
4730 } else if (em->block_start == EXTENT_MAP_INLINE) {
4731 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4732 FIEMAP_EXTENT_NOT_ALIGNED);
4733 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4734 flags |= (FIEMAP_EXTENT_DELALLOC |
4735 FIEMAP_EXTENT_UNKNOWN);
4736 } else if (fieinfo->fi_extents_max) {
4737 u64 bytenr = em->block_start -
4738 (em->start - em->orig_start);
4739
4740 /*
4741 * As btrfs supports shared space, this information
4742 * can be exported to userspace tools via
4743 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4744 * then we're just getting a count and we can skip the
4745 * lookup stuff.
4746 */
4747 ret = btrfs_check_shared(root,
4748 btrfs_ino(BTRFS_I(inode)),
4749 bytenr, roots, tmp_ulist);
4750 if (ret < 0)
4751 goto out_free;
4752 if (ret)
4753 flags |= FIEMAP_EXTENT_SHARED;
4754 ret = 0;
4755 }
4756 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4757 flags |= FIEMAP_EXTENT_ENCODED;
4758 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4759 flags |= FIEMAP_EXTENT_UNWRITTEN;
4760
4761 free_extent_map(em);
4762 em = NULL;
4763 if ((em_start >= last) || em_len == (u64)-1 ||
4764 (last == (u64)-1 && isize <= em_end)) {
4765 flags |= FIEMAP_EXTENT_LAST;
4766 end = 1;
4767 }
4768
4769 /* now scan forward to see if this is really the last extent. */
4770 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4771 if (IS_ERR(em)) {
4772 ret = PTR_ERR(em);
4773 goto out;
4774 }
4775 if (!em) {
4776 flags |= FIEMAP_EXTENT_LAST;
4777 end = 1;
4778 }
4779 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4780 em_len, flags);
4781 if (ret) {
4782 if (ret == 1)
4783 ret = 0;
4784 goto out_free;
4785 }
4786 }
4787 out_free:
4788 if (!ret)
4789 ret = emit_last_fiemap_cache(fieinfo, &cache);
4790 free_extent_map(em);
4791 out:
4792 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4793 &cached_state);
4794
4795 out_free_ulist:
4796 btrfs_free_path(path);
4797 ulist_free(roots);
4798 ulist_free(tmp_ulist);
4799 return ret;
4800 }
4801
4802 static void __free_extent_buffer(struct extent_buffer *eb)
4803 {
4804 btrfs_leak_debug_del(&eb->leak_list);
4805 kmem_cache_free(extent_buffer_cache, eb);
4806 }
4807
4808 int extent_buffer_under_io(struct extent_buffer *eb)
4809 {
4810 return (atomic_read(&eb->io_pages) ||
4811 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4812 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4813 }
4814
4815 /*
4816 * Release all pages attached to the extent buffer.
4817 */
4818 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4819 {
4820 int i;
4821 int num_pages;
4822 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4823
4824 BUG_ON(extent_buffer_under_io(eb));
4825
4826 num_pages = num_extent_pages(eb);
4827 for (i = 0; i < num_pages; i++) {
4828 struct page *page = eb->pages[i];
4829
4830 if (!page)
4831 continue;
4832 if (mapped)
4833 spin_lock(&page->mapping->private_lock);
4834 /*
4835 * We do this since we'll remove the pages after we've
4836 * removed the eb from the radix tree, so we could race
4837 * and have this page now attached to the new eb. So
4838 * only clear page_private if it's still connected to
4839 * this eb.
4840 */
4841 if (PagePrivate(page) &&
4842 page->private == (unsigned long)eb) {
4843 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4844 BUG_ON(PageDirty(page));
4845 BUG_ON(PageWriteback(page));
4846 /*
4847 * We need to make sure we haven't be attached
4848 * to a new eb.
4849 */
4850 ClearPagePrivate(page);
4851 set_page_private(page, 0);
4852 /* One for the page private */
4853 put_page(page);
4854 }
4855
4856 if (mapped)
4857 spin_unlock(&page->mapping->private_lock);
4858
4859 /* One for when we allocated the page */
4860 put_page(page);
4861 }
4862 }
4863
4864 /*
4865 * Helper for releasing the extent buffer.
4866 */
4867 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4868 {
4869 btrfs_release_extent_buffer_pages(eb);
4870 __free_extent_buffer(eb);
4871 }
4872
4873 static struct extent_buffer *
4874 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4875 unsigned long len)
4876 {
4877 struct extent_buffer *eb = NULL;
4878
4879 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4880 eb->start = start;
4881 eb->len = len;
4882 eb->fs_info = fs_info;
4883 eb->bflags = 0;
4884 rwlock_init(&eb->lock);
4885 atomic_set(&eb->blocking_readers, 0);
4886 eb->blocking_writers = 0;
4887 eb->lock_nested = false;
4888 init_waitqueue_head(&eb->write_lock_wq);
4889 init_waitqueue_head(&eb->read_lock_wq);
4890
4891 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4892
4893 spin_lock_init(&eb->refs_lock);
4894 atomic_set(&eb->refs, 1);
4895 atomic_set(&eb->io_pages, 0);
4896
4897 /*
4898 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4899 */
4900 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4901 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4902 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4903
4904 #ifdef CONFIG_BTRFS_DEBUG
4905 eb->spinning_writers = 0;
4906 atomic_set(&eb->spinning_readers, 0);
4907 atomic_set(&eb->read_locks, 0);
4908 eb->write_locks = 0;
4909 #endif
4910
4911 return eb;
4912 }
4913
4914 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4915 {
4916 int i;
4917 struct page *p;
4918 struct extent_buffer *new;
4919 int num_pages = num_extent_pages(src);
4920
4921 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4922 if (new == NULL)
4923 return NULL;
4924
4925 for (i = 0; i < num_pages; i++) {
4926 p = alloc_page(GFP_NOFS);
4927 if (!p) {
4928 btrfs_release_extent_buffer(new);
4929 return NULL;
4930 }
4931 attach_extent_buffer_page(new, p);
4932 WARN_ON(PageDirty(p));
4933 SetPageUptodate(p);
4934 new->pages[i] = p;
4935 copy_page(page_address(p), page_address(src->pages[i]));
4936 }
4937
4938 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4939 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4940
4941 return new;
4942 }
4943
4944 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4945 u64 start, unsigned long len)
4946 {
4947 struct extent_buffer *eb;
4948 int num_pages;
4949 int i;
4950
4951 eb = __alloc_extent_buffer(fs_info, start, len);
4952 if (!eb)
4953 return NULL;
4954
4955 num_pages = num_extent_pages(eb);
4956 for (i = 0; i < num_pages; i++) {
4957 eb->pages[i] = alloc_page(GFP_NOFS);
4958 if (!eb->pages[i])
4959 goto err;
4960 }
4961 set_extent_buffer_uptodate(eb);
4962 btrfs_set_header_nritems(eb, 0);
4963 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4964
4965 return eb;
4966 err:
4967 for (; i > 0; i--)
4968 __free_page(eb->pages[i - 1]);
4969 __free_extent_buffer(eb);
4970 return NULL;
4971 }
4972
4973 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4974 u64 start)
4975 {
4976 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4977 }
4978
4979 static void check_buffer_tree_ref(struct extent_buffer *eb)
4980 {
4981 int refs;
4982 /* the ref bit is tricky. We have to make sure it is set
4983 * if we have the buffer dirty. Otherwise the
4984 * code to free a buffer can end up dropping a dirty
4985 * page
4986 *
4987 * Once the ref bit is set, it won't go away while the
4988 * buffer is dirty or in writeback, and it also won't
4989 * go away while we have the reference count on the
4990 * eb bumped.
4991 *
4992 * We can't just set the ref bit without bumping the
4993 * ref on the eb because free_extent_buffer might
4994 * see the ref bit and try to clear it. If this happens
4995 * free_extent_buffer might end up dropping our original
4996 * ref by mistake and freeing the page before we are able
4997 * to add one more ref.
4998 *
4999 * So bump the ref count first, then set the bit. If someone
5000 * beat us to it, drop the ref we added.
5001 */
5002 refs = atomic_read(&eb->refs);
5003 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5004 return;
5005
5006 spin_lock(&eb->refs_lock);
5007 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5008 atomic_inc(&eb->refs);
5009 spin_unlock(&eb->refs_lock);
5010 }
5011
5012 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5013 struct page *accessed)
5014 {
5015 int num_pages, i;
5016
5017 check_buffer_tree_ref(eb);
5018
5019 num_pages = num_extent_pages(eb);
5020 for (i = 0; i < num_pages; i++) {
5021 struct page *p = eb->pages[i];
5022
5023 if (p != accessed)
5024 mark_page_accessed(p);
5025 }
5026 }
5027
5028 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5029 u64 start)
5030 {
5031 struct extent_buffer *eb;
5032
5033 rcu_read_lock();
5034 eb = radix_tree_lookup(&fs_info->buffer_radix,
5035 start >> PAGE_SHIFT);
5036 if (eb && atomic_inc_not_zero(&eb->refs)) {
5037 rcu_read_unlock();
5038 /*
5039 * Lock our eb's refs_lock to avoid races with
5040 * free_extent_buffer. When we get our eb it might be flagged
5041 * with EXTENT_BUFFER_STALE and another task running
5042 * free_extent_buffer might have seen that flag set,
5043 * eb->refs == 2, that the buffer isn't under IO (dirty and
5044 * writeback flags not set) and it's still in the tree (flag
5045 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5046 * of decrementing the extent buffer's reference count twice.
5047 * So here we could race and increment the eb's reference count,
5048 * clear its stale flag, mark it as dirty and drop our reference
5049 * before the other task finishes executing free_extent_buffer,
5050 * which would later result in an attempt to free an extent
5051 * buffer that is dirty.
5052 */
5053 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5054 spin_lock(&eb->refs_lock);
5055 spin_unlock(&eb->refs_lock);
5056 }
5057 mark_extent_buffer_accessed(eb, NULL);
5058 return eb;
5059 }
5060 rcu_read_unlock();
5061
5062 return NULL;
5063 }
5064
5065 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5066 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5067 u64 start)
5068 {
5069 struct extent_buffer *eb, *exists = NULL;
5070 int ret;
5071
5072 eb = find_extent_buffer(fs_info, start);
5073 if (eb)
5074 return eb;
5075 eb = alloc_dummy_extent_buffer(fs_info, start);
5076 if (!eb)
5077 return NULL;
5078 eb->fs_info = fs_info;
5079 again:
5080 ret = radix_tree_preload(GFP_NOFS);
5081 if (ret)
5082 goto free_eb;
5083 spin_lock(&fs_info->buffer_lock);
5084 ret = radix_tree_insert(&fs_info->buffer_radix,
5085 start >> PAGE_SHIFT, eb);
5086 spin_unlock(&fs_info->buffer_lock);
5087 radix_tree_preload_end();
5088 if (ret == -EEXIST) {
5089 exists = find_extent_buffer(fs_info, start);
5090 if (exists)
5091 goto free_eb;
5092 else
5093 goto again;
5094 }
5095 check_buffer_tree_ref(eb);
5096 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5097
5098 return eb;
5099 free_eb:
5100 btrfs_release_extent_buffer(eb);
5101 return exists;
5102 }
5103 #endif
5104
5105 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5106 u64 start)
5107 {
5108 unsigned long len = fs_info->nodesize;
5109 int num_pages;
5110 int i;
5111 unsigned long index = start >> PAGE_SHIFT;
5112 struct extent_buffer *eb;
5113 struct extent_buffer *exists = NULL;
5114 struct page *p;
5115 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5116 int uptodate = 1;
5117 int ret;
5118
5119 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5120 btrfs_err(fs_info, "bad tree block start %llu", start);
5121 return ERR_PTR(-EINVAL);
5122 }
5123
5124 eb = find_extent_buffer(fs_info, start);
5125 if (eb)
5126 return eb;
5127
5128 eb = __alloc_extent_buffer(fs_info, start, len);
5129 if (!eb)
5130 return ERR_PTR(-ENOMEM);
5131
5132 num_pages = num_extent_pages(eb);
5133 for (i = 0; i < num_pages; i++, index++) {
5134 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5135 if (!p) {
5136 exists = ERR_PTR(-ENOMEM);
5137 goto free_eb;
5138 }
5139
5140 spin_lock(&mapping->private_lock);
5141 if (PagePrivate(p)) {
5142 /*
5143 * We could have already allocated an eb for this page
5144 * and attached one so lets see if we can get a ref on
5145 * the existing eb, and if we can we know it's good and
5146 * we can just return that one, else we know we can just
5147 * overwrite page->private.
5148 */
5149 exists = (struct extent_buffer *)p->private;
5150 if (atomic_inc_not_zero(&exists->refs)) {
5151 spin_unlock(&mapping->private_lock);
5152 unlock_page(p);
5153 put_page(p);
5154 mark_extent_buffer_accessed(exists, p);
5155 goto free_eb;
5156 }
5157 exists = NULL;
5158
5159 /*
5160 * Do this so attach doesn't complain and we need to
5161 * drop the ref the old guy had.
5162 */
5163 ClearPagePrivate(p);
5164 WARN_ON(PageDirty(p));
5165 put_page(p);
5166 }
5167 attach_extent_buffer_page(eb, p);
5168 spin_unlock(&mapping->private_lock);
5169 WARN_ON(PageDirty(p));
5170 eb->pages[i] = p;
5171 if (!PageUptodate(p))
5172 uptodate = 0;
5173
5174 /*
5175 * We can't unlock the pages just yet since the extent buffer
5176 * hasn't been properly inserted in the radix tree, this
5177 * opens a race with btree_releasepage which can free a page
5178 * while we are still filling in all pages for the buffer and
5179 * we could crash.
5180 */
5181 }
5182 if (uptodate)
5183 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5184 again:
5185 ret = radix_tree_preload(GFP_NOFS);
5186 if (ret) {
5187 exists = ERR_PTR(ret);
5188 goto free_eb;
5189 }
5190
5191 spin_lock(&fs_info->buffer_lock);
5192 ret = radix_tree_insert(&fs_info->buffer_radix,
5193 start >> PAGE_SHIFT, eb);
5194 spin_unlock(&fs_info->buffer_lock);
5195 radix_tree_preload_end();
5196 if (ret == -EEXIST) {
5197 exists = find_extent_buffer(fs_info, start);
5198 if (exists)
5199 goto free_eb;
5200 else
5201 goto again;
5202 }
5203 /* add one reference for the tree */
5204 check_buffer_tree_ref(eb);
5205 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5206
5207 /*
5208 * Now it's safe to unlock the pages because any calls to
5209 * btree_releasepage will correctly detect that a page belongs to a
5210 * live buffer and won't free them prematurely.
5211 */
5212 for (i = 0; i < num_pages; i++)
5213 unlock_page(eb->pages[i]);
5214 return eb;
5215
5216 free_eb:
5217 WARN_ON(!atomic_dec_and_test(&eb->refs));
5218 for (i = 0; i < num_pages; i++) {
5219 if (eb->pages[i])
5220 unlock_page(eb->pages[i]);
5221 }
5222
5223 btrfs_release_extent_buffer(eb);
5224 return exists;
5225 }
5226
5227 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5228 {
5229 struct extent_buffer *eb =
5230 container_of(head, struct extent_buffer, rcu_head);
5231
5232 __free_extent_buffer(eb);
5233 }
5234
5235 static int release_extent_buffer(struct extent_buffer *eb)
5236 {
5237 lockdep_assert_held(&eb->refs_lock);
5238
5239 WARN_ON(atomic_read(&eb->refs) == 0);
5240 if (atomic_dec_and_test(&eb->refs)) {
5241 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5242 struct btrfs_fs_info *fs_info = eb->fs_info;
5243
5244 spin_unlock(&eb->refs_lock);
5245
5246 spin_lock(&fs_info->buffer_lock);
5247 radix_tree_delete(&fs_info->buffer_radix,
5248 eb->start >> PAGE_SHIFT);
5249 spin_unlock(&fs_info->buffer_lock);
5250 } else {
5251 spin_unlock(&eb->refs_lock);
5252 }
5253
5254 /* Should be safe to release our pages at this point */
5255 btrfs_release_extent_buffer_pages(eb);
5256 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5257 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5258 __free_extent_buffer(eb);
5259 return 1;
5260 }
5261 #endif
5262 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5263 return 1;
5264 }
5265 spin_unlock(&eb->refs_lock);
5266
5267 return 0;
5268 }
5269
5270 void free_extent_buffer(struct extent_buffer *eb)
5271 {
5272 int refs;
5273 int old;
5274 if (!eb)
5275 return;
5276
5277 while (1) {
5278 refs = atomic_read(&eb->refs);
5279 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5280 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5281 refs == 1))
5282 break;
5283 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5284 if (old == refs)
5285 return;
5286 }
5287
5288 spin_lock(&eb->refs_lock);
5289 if (atomic_read(&eb->refs) == 2 &&
5290 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5291 !extent_buffer_under_io(eb) &&
5292 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5293 atomic_dec(&eb->refs);
5294
5295 /*
5296 * I know this is terrible, but it's temporary until we stop tracking
5297 * the uptodate bits and such for the extent buffers.
5298 */
5299 release_extent_buffer(eb);
5300 }
5301
5302 void free_extent_buffer_stale(struct extent_buffer *eb)
5303 {
5304 if (!eb)
5305 return;
5306
5307 spin_lock(&eb->refs_lock);
5308 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5309
5310 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5311 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5312 atomic_dec(&eb->refs);
5313 release_extent_buffer(eb);
5314 }
5315
5316 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5317 {
5318 int i;
5319 int num_pages;
5320 struct page *page;
5321
5322 num_pages = num_extent_pages(eb);
5323
5324 for (i = 0; i < num_pages; i++) {
5325 page = eb->pages[i];
5326 if (!PageDirty(page))
5327 continue;
5328
5329 lock_page(page);
5330 WARN_ON(!PagePrivate(page));
5331
5332 clear_page_dirty_for_io(page);
5333 xa_lock_irq(&page->mapping->i_pages);
5334 if (!PageDirty(page))
5335 __xa_clear_mark(&page->mapping->i_pages,
5336 page_index(page), PAGECACHE_TAG_DIRTY);
5337 xa_unlock_irq(&page->mapping->i_pages);
5338 ClearPageError(page);
5339 unlock_page(page);
5340 }
5341 WARN_ON(atomic_read(&eb->refs) == 0);
5342 }
5343
5344 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5345 {
5346 int i;
5347 int num_pages;
5348 bool was_dirty;
5349
5350 check_buffer_tree_ref(eb);
5351
5352 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5353
5354 num_pages = num_extent_pages(eb);
5355 WARN_ON(atomic_read(&eb->refs) == 0);
5356 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5357
5358 if (!was_dirty)
5359 for (i = 0; i < num_pages; i++)
5360 set_page_dirty(eb->pages[i]);
5361
5362 #ifdef CONFIG_BTRFS_DEBUG
5363 for (i = 0; i < num_pages; i++)
5364 ASSERT(PageDirty(eb->pages[i]));
5365 #endif
5366
5367 return was_dirty;
5368 }
5369
5370 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5371 {
5372 int i;
5373 struct page *page;
5374 int num_pages;
5375
5376 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5377 num_pages = num_extent_pages(eb);
5378 for (i = 0; i < num_pages; i++) {
5379 page = eb->pages[i];
5380 if (page)
5381 ClearPageUptodate(page);
5382 }
5383 }
5384
5385 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5386 {
5387 int i;
5388 struct page *page;
5389 int num_pages;
5390
5391 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5392 num_pages = num_extent_pages(eb);
5393 for (i = 0; i < num_pages; i++) {
5394 page = eb->pages[i];
5395 SetPageUptodate(page);
5396 }
5397 }
5398
5399 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5400 {
5401 int i;
5402 struct page *page;
5403 int err;
5404 int ret = 0;
5405 int locked_pages = 0;
5406 int all_uptodate = 1;
5407 int num_pages;
5408 unsigned long num_reads = 0;
5409 struct bio *bio = NULL;
5410 unsigned long bio_flags = 0;
5411 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5412
5413 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5414 return 0;
5415
5416 num_pages = num_extent_pages(eb);
5417 for (i = 0; i < num_pages; i++) {
5418 page = eb->pages[i];
5419 if (wait == WAIT_NONE) {
5420 if (!trylock_page(page))
5421 goto unlock_exit;
5422 } else {
5423 lock_page(page);
5424 }
5425 locked_pages++;
5426 }
5427 /*
5428 * We need to firstly lock all pages to make sure that
5429 * the uptodate bit of our pages won't be affected by
5430 * clear_extent_buffer_uptodate().
5431 */
5432 for (i = 0; i < num_pages; i++) {
5433 page = eb->pages[i];
5434 if (!PageUptodate(page)) {
5435 num_reads++;
5436 all_uptodate = 0;
5437 }
5438 }
5439
5440 if (all_uptodate) {
5441 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5442 goto unlock_exit;
5443 }
5444
5445 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5446 eb->read_mirror = 0;
5447 atomic_set(&eb->io_pages, num_reads);
5448 for (i = 0; i < num_pages; i++) {
5449 page = eb->pages[i];
5450
5451 if (!PageUptodate(page)) {
5452 if (ret) {
5453 atomic_dec(&eb->io_pages);
5454 unlock_page(page);
5455 continue;
5456 }
5457
5458 ClearPageError(page);
5459 err = __extent_read_full_page(tree, page,
5460 btree_get_extent, &bio,
5461 mirror_num, &bio_flags,
5462 REQ_META);
5463 if (err) {
5464 ret = err;
5465 /*
5466 * We use &bio in above __extent_read_full_page,
5467 * so we ensure that if it returns error, the
5468 * current page fails to add itself to bio and
5469 * it's been unlocked.
5470 *
5471 * We must dec io_pages by ourselves.
5472 */
5473 atomic_dec(&eb->io_pages);
5474 }
5475 } else {
5476 unlock_page(page);
5477 }
5478 }
5479
5480 if (bio) {
5481 err = submit_one_bio(bio, mirror_num, bio_flags);
5482 if (err)
5483 return err;
5484 }
5485
5486 if (ret || wait != WAIT_COMPLETE)
5487 return ret;
5488
5489 for (i = 0; i < num_pages; i++) {
5490 page = eb->pages[i];
5491 wait_on_page_locked(page);
5492 if (!PageUptodate(page))
5493 ret = -EIO;
5494 }
5495
5496 return ret;
5497
5498 unlock_exit:
5499 while (locked_pages > 0) {
5500 locked_pages--;
5501 page = eb->pages[locked_pages];
5502 unlock_page(page);
5503 }
5504 return ret;
5505 }
5506
5507 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5508 unsigned long start, unsigned long len)
5509 {
5510 size_t cur;
5511 size_t offset;
5512 struct page *page;
5513 char *kaddr;
5514 char *dst = (char *)dstv;
5515 size_t start_offset = offset_in_page(eb->start);
5516 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5517
5518 if (start + len > eb->len) {
5519 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5520 eb->start, eb->len, start, len);
5521 memset(dst, 0, len);
5522 return;
5523 }
5524
5525 offset = offset_in_page(start_offset + start);
5526
5527 while (len > 0) {
5528 page = eb->pages[i];
5529
5530 cur = min(len, (PAGE_SIZE - offset));
5531 kaddr = page_address(page);
5532 memcpy(dst, kaddr + offset, cur);
5533
5534 dst += cur;
5535 len -= cur;
5536 offset = 0;
5537 i++;
5538 }
5539 }
5540
5541 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5542 void __user *dstv,
5543 unsigned long start, unsigned long len)
5544 {
5545 size_t cur;
5546 size_t offset;
5547 struct page *page;
5548 char *kaddr;
5549 char __user *dst = (char __user *)dstv;
5550 size_t start_offset = offset_in_page(eb->start);
5551 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5552 int ret = 0;
5553
5554 WARN_ON(start > eb->len);
5555 WARN_ON(start + len > eb->start + eb->len);
5556
5557 offset = offset_in_page(start_offset + start);
5558
5559 while (len > 0) {
5560 page = eb->pages[i];
5561
5562 cur = min(len, (PAGE_SIZE - offset));
5563 kaddr = page_address(page);
5564 if (copy_to_user(dst, kaddr + offset, cur)) {
5565 ret = -EFAULT;
5566 break;
5567 }
5568
5569 dst += cur;
5570 len -= cur;
5571 offset = 0;
5572 i++;
5573 }
5574
5575 return ret;
5576 }
5577
5578 /*
5579 * return 0 if the item is found within a page.
5580 * return 1 if the item spans two pages.
5581 * return -EINVAL otherwise.
5582 */
5583 int map_private_extent_buffer(const struct extent_buffer *eb,
5584 unsigned long start, unsigned long min_len,
5585 char **map, unsigned long *map_start,
5586 unsigned long *map_len)
5587 {
5588 size_t offset;
5589 char *kaddr;
5590 struct page *p;
5591 size_t start_offset = offset_in_page(eb->start);
5592 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5593 unsigned long end_i = (start_offset + start + min_len - 1) >>
5594 PAGE_SHIFT;
5595
5596 if (start + min_len > eb->len) {
5597 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5598 eb->start, eb->len, start, min_len);
5599 return -EINVAL;
5600 }
5601
5602 if (i != end_i)
5603 return 1;
5604
5605 if (i == 0) {
5606 offset = start_offset;
5607 *map_start = 0;
5608 } else {
5609 offset = 0;
5610 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5611 }
5612
5613 p = eb->pages[i];
5614 kaddr = page_address(p);
5615 *map = kaddr + offset;
5616 *map_len = PAGE_SIZE - offset;
5617 return 0;
5618 }
5619
5620 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5621 unsigned long start, unsigned long len)
5622 {
5623 size_t cur;
5624 size_t offset;
5625 struct page *page;
5626 char *kaddr;
5627 char *ptr = (char *)ptrv;
5628 size_t start_offset = offset_in_page(eb->start);
5629 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5630 int ret = 0;
5631
5632 WARN_ON(start > eb->len);
5633 WARN_ON(start + len > eb->start + eb->len);
5634
5635 offset = offset_in_page(start_offset + start);
5636
5637 while (len > 0) {
5638 page = eb->pages[i];
5639
5640 cur = min(len, (PAGE_SIZE - offset));
5641
5642 kaddr = page_address(page);
5643 ret = memcmp(ptr, kaddr + offset, cur);
5644 if (ret)
5645 break;
5646
5647 ptr += cur;
5648 len -= cur;
5649 offset = 0;
5650 i++;
5651 }
5652 return ret;
5653 }
5654
5655 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5656 const void *srcv)
5657 {
5658 char *kaddr;
5659
5660 WARN_ON(!PageUptodate(eb->pages[0]));
5661 kaddr = page_address(eb->pages[0]);
5662 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5663 BTRFS_FSID_SIZE);
5664 }
5665
5666 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5667 {
5668 char *kaddr;
5669
5670 WARN_ON(!PageUptodate(eb->pages[0]));
5671 kaddr = page_address(eb->pages[0]);
5672 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5673 BTRFS_FSID_SIZE);
5674 }
5675
5676 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5677 unsigned long start, unsigned long len)
5678 {
5679 size_t cur;
5680 size_t offset;
5681 struct page *page;
5682 char *kaddr;
5683 char *src = (char *)srcv;
5684 size_t start_offset = offset_in_page(eb->start);
5685 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5686
5687 WARN_ON(start > eb->len);
5688 WARN_ON(start + len > eb->start + eb->len);
5689
5690 offset = offset_in_page(start_offset + start);
5691
5692 while (len > 0) {
5693 page = eb->pages[i];
5694 WARN_ON(!PageUptodate(page));
5695
5696 cur = min(len, PAGE_SIZE - offset);
5697 kaddr = page_address(page);
5698 memcpy(kaddr + offset, src, cur);
5699
5700 src += cur;
5701 len -= cur;
5702 offset = 0;
5703 i++;
5704 }
5705 }
5706
5707 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5708 unsigned long len)
5709 {
5710 size_t cur;
5711 size_t offset;
5712 struct page *page;
5713 char *kaddr;
5714 size_t start_offset = offset_in_page(eb->start);
5715 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5716
5717 WARN_ON(start > eb->len);
5718 WARN_ON(start + len > eb->start + eb->len);
5719
5720 offset = offset_in_page(start_offset + start);
5721
5722 while (len > 0) {
5723 page = eb->pages[i];
5724 WARN_ON(!PageUptodate(page));
5725
5726 cur = min(len, PAGE_SIZE - offset);
5727 kaddr = page_address(page);
5728 memset(kaddr + offset, 0, cur);
5729
5730 len -= cur;
5731 offset = 0;
5732 i++;
5733 }
5734 }
5735
5736 void copy_extent_buffer_full(struct extent_buffer *dst,
5737 struct extent_buffer *src)
5738 {
5739 int i;
5740 int num_pages;
5741
5742 ASSERT(dst->len == src->len);
5743
5744 num_pages = num_extent_pages(dst);
5745 for (i = 0; i < num_pages; i++)
5746 copy_page(page_address(dst->pages[i]),
5747 page_address(src->pages[i]));
5748 }
5749
5750 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5751 unsigned long dst_offset, unsigned long src_offset,
5752 unsigned long len)
5753 {
5754 u64 dst_len = dst->len;
5755 size_t cur;
5756 size_t offset;
5757 struct page *page;
5758 char *kaddr;
5759 size_t start_offset = offset_in_page(dst->start);
5760 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5761
5762 WARN_ON(src->len != dst_len);
5763
5764 offset = offset_in_page(start_offset + dst_offset);
5765
5766 while (len > 0) {
5767 page = dst->pages[i];
5768 WARN_ON(!PageUptodate(page));
5769
5770 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5771
5772 kaddr = page_address(page);
5773 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5774
5775 src_offset += cur;
5776 len -= cur;
5777 offset = 0;
5778 i++;
5779 }
5780 }
5781
5782 /*
5783 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5784 * given bit number
5785 * @eb: the extent buffer
5786 * @start: offset of the bitmap item in the extent buffer
5787 * @nr: bit number
5788 * @page_index: return index of the page in the extent buffer that contains the
5789 * given bit number
5790 * @page_offset: return offset into the page given by page_index
5791 *
5792 * This helper hides the ugliness of finding the byte in an extent buffer which
5793 * contains a given bit.
5794 */
5795 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5796 unsigned long start, unsigned long nr,
5797 unsigned long *page_index,
5798 size_t *page_offset)
5799 {
5800 size_t start_offset = offset_in_page(eb->start);
5801 size_t byte_offset = BIT_BYTE(nr);
5802 size_t offset;
5803
5804 /*
5805 * The byte we want is the offset of the extent buffer + the offset of
5806 * the bitmap item in the extent buffer + the offset of the byte in the
5807 * bitmap item.
5808 */
5809 offset = start_offset + start + byte_offset;
5810
5811 *page_index = offset >> PAGE_SHIFT;
5812 *page_offset = offset_in_page(offset);
5813 }
5814
5815 /**
5816 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5817 * @eb: the extent buffer
5818 * @start: offset of the bitmap item in the extent buffer
5819 * @nr: bit number to test
5820 */
5821 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5822 unsigned long nr)
5823 {
5824 u8 *kaddr;
5825 struct page *page;
5826 unsigned long i;
5827 size_t offset;
5828
5829 eb_bitmap_offset(eb, start, nr, &i, &offset);
5830 page = eb->pages[i];
5831 WARN_ON(!PageUptodate(page));
5832 kaddr = page_address(page);
5833 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5834 }
5835
5836 /**
5837 * extent_buffer_bitmap_set - set an area of a bitmap
5838 * @eb: the extent buffer
5839 * @start: offset of the bitmap item in the extent buffer
5840 * @pos: bit number of the first bit
5841 * @len: number of bits to set
5842 */
5843 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5844 unsigned long pos, unsigned long len)
5845 {
5846 u8 *kaddr;
5847 struct page *page;
5848 unsigned long i;
5849 size_t offset;
5850 const unsigned int size = pos + len;
5851 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5852 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5853
5854 eb_bitmap_offset(eb, start, pos, &i, &offset);
5855 page = eb->pages[i];
5856 WARN_ON(!PageUptodate(page));
5857 kaddr = page_address(page);
5858
5859 while (len >= bits_to_set) {
5860 kaddr[offset] |= mask_to_set;
5861 len -= bits_to_set;
5862 bits_to_set = BITS_PER_BYTE;
5863 mask_to_set = ~0;
5864 if (++offset >= PAGE_SIZE && len > 0) {
5865 offset = 0;
5866 page = eb->pages[++i];
5867 WARN_ON(!PageUptodate(page));
5868 kaddr = page_address(page);
5869 }
5870 }
5871 if (len) {
5872 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5873 kaddr[offset] |= mask_to_set;
5874 }
5875 }
5876
5877
5878 /**
5879 * extent_buffer_bitmap_clear - clear an area of a bitmap
5880 * @eb: the extent buffer
5881 * @start: offset of the bitmap item in the extent buffer
5882 * @pos: bit number of the first bit
5883 * @len: number of bits to clear
5884 */
5885 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5886 unsigned long pos, unsigned long len)
5887 {
5888 u8 *kaddr;
5889 struct page *page;
5890 unsigned long i;
5891 size_t offset;
5892 const unsigned int size = pos + len;
5893 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5894 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5895
5896 eb_bitmap_offset(eb, start, pos, &i, &offset);
5897 page = eb->pages[i];
5898 WARN_ON(!PageUptodate(page));
5899 kaddr = page_address(page);
5900
5901 while (len >= bits_to_clear) {
5902 kaddr[offset] &= ~mask_to_clear;
5903 len -= bits_to_clear;
5904 bits_to_clear = BITS_PER_BYTE;
5905 mask_to_clear = ~0;
5906 if (++offset >= PAGE_SIZE && len > 0) {
5907 offset = 0;
5908 page = eb->pages[++i];
5909 WARN_ON(!PageUptodate(page));
5910 kaddr = page_address(page);
5911 }
5912 }
5913 if (len) {
5914 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5915 kaddr[offset] &= ~mask_to_clear;
5916 }
5917 }
5918
5919 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5920 {
5921 unsigned long distance = (src > dst) ? src - dst : dst - src;
5922 return distance < len;
5923 }
5924
5925 static void copy_pages(struct page *dst_page, struct page *src_page,
5926 unsigned long dst_off, unsigned long src_off,
5927 unsigned long len)
5928 {
5929 char *dst_kaddr = page_address(dst_page);
5930 char *src_kaddr;
5931 int must_memmove = 0;
5932
5933 if (dst_page != src_page) {
5934 src_kaddr = page_address(src_page);
5935 } else {
5936 src_kaddr = dst_kaddr;
5937 if (areas_overlap(src_off, dst_off, len))
5938 must_memmove = 1;
5939 }
5940
5941 if (must_memmove)
5942 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5943 else
5944 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5945 }
5946
5947 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5948 unsigned long src_offset, unsigned long len)
5949 {
5950 struct btrfs_fs_info *fs_info = dst->fs_info;
5951 size_t cur;
5952 size_t dst_off_in_page;
5953 size_t src_off_in_page;
5954 size_t start_offset = offset_in_page(dst->start);
5955 unsigned long dst_i;
5956 unsigned long src_i;
5957
5958 if (src_offset + len > dst->len) {
5959 btrfs_err(fs_info,
5960 "memmove bogus src_offset %lu move len %lu dst len %lu",
5961 src_offset, len, dst->len);
5962 BUG();
5963 }
5964 if (dst_offset + len > dst->len) {
5965 btrfs_err(fs_info,
5966 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5967 dst_offset, len, dst->len);
5968 BUG();
5969 }
5970
5971 while (len > 0) {
5972 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5973 src_off_in_page = offset_in_page(start_offset + src_offset);
5974
5975 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5976 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5977
5978 cur = min(len, (unsigned long)(PAGE_SIZE -
5979 src_off_in_page));
5980 cur = min_t(unsigned long, cur,
5981 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5982
5983 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5984 dst_off_in_page, src_off_in_page, cur);
5985
5986 src_offset += cur;
5987 dst_offset += cur;
5988 len -= cur;
5989 }
5990 }
5991
5992 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5993 unsigned long src_offset, unsigned long len)
5994 {
5995 struct btrfs_fs_info *fs_info = dst->fs_info;
5996 size_t cur;
5997 size_t dst_off_in_page;
5998 size_t src_off_in_page;
5999 unsigned long dst_end = dst_offset + len - 1;
6000 unsigned long src_end = src_offset + len - 1;
6001 size_t start_offset = offset_in_page(dst->start);
6002 unsigned long dst_i;
6003 unsigned long src_i;
6004
6005 if (src_offset + len > dst->len) {
6006 btrfs_err(fs_info,
6007 "memmove bogus src_offset %lu move len %lu len %lu",
6008 src_offset, len, dst->len);
6009 BUG();
6010 }
6011 if (dst_offset + len > dst->len) {
6012 btrfs_err(fs_info,
6013 "memmove bogus dst_offset %lu move len %lu len %lu",
6014 dst_offset, len, dst->len);
6015 BUG();
6016 }
6017 if (dst_offset < src_offset) {
6018 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6019 return;
6020 }
6021 while (len > 0) {
6022 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6023 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6024
6025 dst_off_in_page = offset_in_page(start_offset + dst_end);
6026 src_off_in_page = offset_in_page(start_offset + src_end);
6027
6028 cur = min_t(unsigned long, len, src_off_in_page + 1);
6029 cur = min(cur, dst_off_in_page + 1);
6030 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6031 dst_off_in_page - cur + 1,
6032 src_off_in_page - cur + 1, cur);
6033
6034 dst_end -= cur;
6035 src_end -= cur;
6036 len -= cur;
6037 }
6038 }
6039
6040 int try_release_extent_buffer(struct page *page)
6041 {
6042 struct extent_buffer *eb;
6043
6044 /*
6045 * We need to make sure nobody is attaching this page to an eb right
6046 * now.
6047 */
6048 spin_lock(&page->mapping->private_lock);
6049 if (!PagePrivate(page)) {
6050 spin_unlock(&page->mapping->private_lock);
6051 return 1;
6052 }
6053
6054 eb = (struct extent_buffer *)page->private;
6055 BUG_ON(!eb);
6056
6057 /*
6058 * This is a little awful but should be ok, we need to make sure that
6059 * the eb doesn't disappear out from under us while we're looking at
6060 * this page.
6061 */
6062 spin_lock(&eb->refs_lock);
6063 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6064 spin_unlock(&eb->refs_lock);
6065 spin_unlock(&page->mapping->private_lock);
6066 return 0;
6067 }
6068 spin_unlock(&page->mapping->private_lock);
6069
6070 /*
6071 * If tree ref isn't set then we know the ref on this eb is a real ref,
6072 * so just return, this page will likely be freed soon anyway.
6073 */
6074 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6075 spin_unlock(&eb->refs_lock);
6076 return 0;
6077 }
6078
6079 return release_extent_buffer(eb);
6080 }