]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent_io.c
Btrfs: deal with io_tree->mapping being NULL
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78 }
79
80 #define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct extent_io_tree *tree, u64 start, u64 end)
84 {
85 struct inode *inode;
86 u64 isize;
87
88 if (!tree->mapping)
89 return;
90
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 caller, btrfs_ino(inode), isize, start, end);
97 }
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry) do {} while (0)
102 #define btrfs_leak_debug_check() do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
104 #endif
105
106 #define BUFFER_LRU_MAX 64
107
108 struct tree_entry {
109 u64 start;
110 u64 end;
111 struct rb_node rb_node;
112 };
113
114 struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
118 unsigned long bio_flags;
119
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
122 */
123 unsigned int extent_locked:1;
124
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
127 };
128
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133 if (!tree->mapping)
134 return NULL;
135 return btrfs_sb(tree->mapping->host->i_sb);
136 }
137
138 int __init extent_io_init(void)
139 {
140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 if (!extent_state_cache)
144 return -ENOMEM;
145
146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 if (!extent_buffer_cache)
150 goto free_state_cache;
151
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
156
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
159
160 return 0;
161
162 free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
165
166 free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
169
170 free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
172 extent_state_cache = NULL;
173 return -ENOMEM;
174 }
175
176 void extent_io_exit(void)
177 {
178 btrfs_leak_debug_check();
179
180 /*
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
183 */
184 rcu_barrier();
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
191 }
192
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 struct address_space *mapping)
195 {
196 tree->state = RB_ROOT;
197 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
198 tree->ops = NULL;
199 tree->dirty_bytes = 0;
200 spin_lock_init(&tree->lock);
201 spin_lock_init(&tree->buffer_lock);
202 tree->mapping = mapping;
203 }
204
205 static struct extent_state *alloc_extent_state(gfp_t mask)
206 {
207 struct extent_state *state;
208
209 state = kmem_cache_alloc(extent_state_cache, mask);
210 if (!state)
211 return state;
212 state->state = 0;
213 state->private = 0;
214 state->tree = NULL;
215 btrfs_leak_debug_add(&state->leak_list, &states);
216 atomic_set(&state->refs, 1);
217 init_waitqueue_head(&state->wq);
218 trace_alloc_extent_state(state, mask, _RET_IP_);
219 return state;
220 }
221
222 void free_extent_state(struct extent_state *state)
223 {
224 if (!state)
225 return;
226 if (atomic_dec_and_test(&state->refs)) {
227 WARN_ON(state->tree);
228 btrfs_leak_debug_del(&state->leak_list);
229 trace_free_extent_state(state, _RET_IP_);
230 kmem_cache_free(extent_state_cache, state);
231 }
232 }
233
234 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
238 {
239 struct rb_node **p = &root->rb_node;
240 struct rb_node *parent = NULL;
241 struct tree_entry *entry;
242
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
247 }
248
249 while (*p) {
250 parent = *p;
251 entry = rb_entry(parent, struct tree_entry, rb_node);
252
253 if (offset < entry->start)
254 p = &(*p)->rb_left;
255 else if (offset > entry->end)
256 p = &(*p)->rb_right;
257 else
258 return parent;
259 }
260
261 do_insert:
262 rb_link_node(node, parent, p);
263 rb_insert_color(node, root);
264 return NULL;
265 }
266
267 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
268 struct rb_node **prev_ret,
269 struct rb_node **next_ret,
270 struct rb_node ***p_ret,
271 struct rb_node **parent_ret)
272 {
273 struct rb_root *root = &tree->state;
274 struct rb_node **n = &root->rb_node;
275 struct rb_node *prev = NULL;
276 struct rb_node *orig_prev = NULL;
277 struct tree_entry *entry;
278 struct tree_entry *prev_entry = NULL;
279
280 while (*n) {
281 prev = *n;
282 entry = rb_entry(prev, struct tree_entry, rb_node);
283 prev_entry = entry;
284
285 if (offset < entry->start)
286 n = &(*n)->rb_left;
287 else if (offset > entry->end)
288 n = &(*n)->rb_right;
289 else
290 return *n;
291 }
292
293 if (p_ret)
294 *p_ret = n;
295 if (parent_ret)
296 *parent_ret = prev;
297
298 if (prev_ret) {
299 orig_prev = prev;
300 while (prev && offset > prev_entry->end) {
301 prev = rb_next(prev);
302 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
303 }
304 *prev_ret = prev;
305 prev = orig_prev;
306 }
307
308 if (next_ret) {
309 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
310 while (prev && offset < prev_entry->start) {
311 prev = rb_prev(prev);
312 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
313 }
314 *next_ret = prev;
315 }
316 return NULL;
317 }
318
319 static inline struct rb_node *
320 tree_search_for_insert(struct extent_io_tree *tree,
321 u64 offset,
322 struct rb_node ***p_ret,
323 struct rb_node **parent_ret)
324 {
325 struct rb_node *prev = NULL;
326 struct rb_node *ret;
327
328 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
329 if (!ret)
330 return prev;
331 return ret;
332 }
333
334 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
335 u64 offset)
336 {
337 return tree_search_for_insert(tree, offset, NULL, NULL);
338 }
339
340 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
341 struct extent_state *other)
342 {
343 if (tree->ops && tree->ops->merge_extent_hook)
344 tree->ops->merge_extent_hook(tree->mapping->host, new,
345 other);
346 }
347
348 /*
349 * utility function to look for merge candidates inside a given range.
350 * Any extents with matching state are merged together into a single
351 * extent in the tree. Extents with EXTENT_IO in their state field
352 * are not merged because the end_io handlers need to be able to do
353 * operations on them without sleeping (or doing allocations/splits).
354 *
355 * This should be called with the tree lock held.
356 */
357 static void merge_state(struct extent_io_tree *tree,
358 struct extent_state *state)
359 {
360 struct extent_state *other;
361 struct rb_node *other_node;
362
363 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
364 return;
365
366 other_node = rb_prev(&state->rb_node);
367 if (other_node) {
368 other = rb_entry(other_node, struct extent_state, rb_node);
369 if (other->end == state->start - 1 &&
370 other->state == state->state) {
371 merge_cb(tree, state, other);
372 state->start = other->start;
373 other->tree = NULL;
374 rb_erase(&other->rb_node, &tree->state);
375 free_extent_state(other);
376 }
377 }
378 other_node = rb_next(&state->rb_node);
379 if (other_node) {
380 other = rb_entry(other_node, struct extent_state, rb_node);
381 if (other->start == state->end + 1 &&
382 other->state == state->state) {
383 merge_cb(tree, state, other);
384 state->end = other->end;
385 other->tree = NULL;
386 rb_erase(&other->rb_node, &tree->state);
387 free_extent_state(other);
388 }
389 }
390 }
391
392 static void set_state_cb(struct extent_io_tree *tree,
393 struct extent_state *state, unsigned long *bits)
394 {
395 if (tree->ops && tree->ops->set_bit_hook)
396 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
397 }
398
399 static void clear_state_cb(struct extent_io_tree *tree,
400 struct extent_state *state, unsigned long *bits)
401 {
402 if (tree->ops && tree->ops->clear_bit_hook)
403 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
404 }
405
406 static void set_state_bits(struct extent_io_tree *tree,
407 struct extent_state *state, unsigned long *bits);
408
409 /*
410 * insert an extent_state struct into the tree. 'bits' are set on the
411 * struct before it is inserted.
412 *
413 * This may return -EEXIST if the extent is already there, in which case the
414 * state struct is freed.
415 *
416 * The tree lock is not taken internally. This is a utility function and
417 * probably isn't what you want to call (see set/clear_extent_bit).
418 */
419 static int insert_state(struct extent_io_tree *tree,
420 struct extent_state *state, u64 start, u64 end,
421 struct rb_node ***p,
422 struct rb_node **parent,
423 unsigned long *bits)
424 {
425 struct rb_node *node;
426
427 if (end < start)
428 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
429 end, start);
430 state->start = start;
431 state->end = end;
432
433 set_state_bits(tree, state, bits);
434
435 node = tree_insert(&tree->state, end, &state->rb_node, p, parent);
436 if (node) {
437 struct extent_state *found;
438 found = rb_entry(node, struct extent_state, rb_node);
439 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
440 "%llu %llu\n",
441 found->start, found->end, start, end);
442 return -EEXIST;
443 }
444 state->tree = tree;
445 merge_state(tree, state);
446 return 0;
447 }
448
449 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
450 u64 split)
451 {
452 if (tree->ops && tree->ops->split_extent_hook)
453 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
454 }
455
456 /*
457 * split a given extent state struct in two, inserting the preallocated
458 * struct 'prealloc' as the newly created second half. 'split' indicates an
459 * offset inside 'orig' where it should be split.
460 *
461 * Before calling,
462 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
463 * are two extent state structs in the tree:
464 * prealloc: [orig->start, split - 1]
465 * orig: [ split, orig->end ]
466 *
467 * The tree locks are not taken by this function. They need to be held
468 * by the caller.
469 */
470 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
471 struct extent_state *prealloc, u64 split)
472 {
473 struct rb_node *node;
474
475 split_cb(tree, orig, split);
476
477 prealloc->start = orig->start;
478 prealloc->end = split - 1;
479 prealloc->state = orig->state;
480 orig->start = split;
481
482 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node,
483 NULL, NULL);
484 if (node) {
485 free_extent_state(prealloc);
486 return -EEXIST;
487 }
488 prealloc->tree = tree;
489 return 0;
490 }
491
492 static struct extent_state *next_state(struct extent_state *state)
493 {
494 struct rb_node *next = rb_next(&state->rb_node);
495 if (next)
496 return rb_entry(next, struct extent_state, rb_node);
497 else
498 return NULL;
499 }
500
501 /*
502 * utility function to clear some bits in an extent state struct.
503 * it will optionally wake up any one waiting on this state (wake == 1).
504 *
505 * If no bits are set on the state struct after clearing things, the
506 * struct is freed and removed from the tree
507 */
508 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
509 struct extent_state *state,
510 unsigned long *bits, int wake)
511 {
512 struct extent_state *next;
513 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
514
515 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
516 u64 range = state->end - state->start + 1;
517 WARN_ON(range > tree->dirty_bytes);
518 tree->dirty_bytes -= range;
519 }
520 clear_state_cb(tree, state, bits);
521 state->state &= ~bits_to_clear;
522 if (wake)
523 wake_up(&state->wq);
524 if (state->state == 0) {
525 next = next_state(state);
526 if (state->tree) {
527 rb_erase(&state->rb_node, &tree->state);
528 state->tree = NULL;
529 free_extent_state(state);
530 } else {
531 WARN_ON(1);
532 }
533 } else {
534 merge_state(tree, state);
535 next = next_state(state);
536 }
537 return next;
538 }
539
540 static struct extent_state *
541 alloc_extent_state_atomic(struct extent_state *prealloc)
542 {
543 if (!prealloc)
544 prealloc = alloc_extent_state(GFP_ATOMIC);
545
546 return prealloc;
547 }
548
549 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
550 {
551 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
552 "Extent tree was modified by another "
553 "thread while locked.");
554 }
555
556 /*
557 * clear some bits on a range in the tree. This may require splitting
558 * or inserting elements in the tree, so the gfp mask is used to
559 * indicate which allocations or sleeping are allowed.
560 *
561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562 * the given range from the tree regardless of state (ie for truncate).
563 *
564 * the range [start, end] is inclusive.
565 *
566 * This takes the tree lock, and returns 0 on success and < 0 on error.
567 */
568 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
569 unsigned long bits, int wake, int delete,
570 struct extent_state **cached_state,
571 gfp_t mask)
572 {
573 struct extent_state *state;
574 struct extent_state *cached;
575 struct extent_state *prealloc = NULL;
576 struct rb_node *node;
577 u64 last_end;
578 int err;
579 int clear = 0;
580
581 btrfs_debug_check_extent_io_range(tree, start, end);
582
583 if (bits & EXTENT_DELALLOC)
584 bits |= EXTENT_NORESERVE;
585
586 if (delete)
587 bits |= ~EXTENT_CTLBITS;
588 bits |= EXTENT_FIRST_DELALLOC;
589
590 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591 clear = 1;
592 again:
593 if (!prealloc && (mask & __GFP_WAIT)) {
594 prealloc = alloc_extent_state(mask);
595 if (!prealloc)
596 return -ENOMEM;
597 }
598
599 spin_lock(&tree->lock);
600 if (cached_state) {
601 cached = *cached_state;
602
603 if (clear) {
604 *cached_state = NULL;
605 cached_state = NULL;
606 }
607
608 if (cached && cached->tree && cached->start <= start &&
609 cached->end > start) {
610 if (clear)
611 atomic_dec(&cached->refs);
612 state = cached;
613 goto hit_next;
614 }
615 if (clear)
616 free_extent_state(cached);
617 }
618 /*
619 * this search will find the extents that end after
620 * our range starts
621 */
622 node = tree_search(tree, start);
623 if (!node)
624 goto out;
625 state = rb_entry(node, struct extent_state, rb_node);
626 hit_next:
627 if (state->start > end)
628 goto out;
629 WARN_ON(state->end < start);
630 last_end = state->end;
631
632 /* the state doesn't have the wanted bits, go ahead */
633 if (!(state->state & bits)) {
634 state = next_state(state);
635 goto next;
636 }
637
638 /*
639 * | ---- desired range ---- |
640 * | state | or
641 * | ------------- state -------------- |
642 *
643 * We need to split the extent we found, and may flip
644 * bits on second half.
645 *
646 * If the extent we found extends past our range, we
647 * just split and search again. It'll get split again
648 * the next time though.
649 *
650 * If the extent we found is inside our range, we clear
651 * the desired bit on it.
652 */
653
654 if (state->start < start) {
655 prealloc = alloc_extent_state_atomic(prealloc);
656 BUG_ON(!prealloc);
657 err = split_state(tree, state, prealloc, start);
658 if (err)
659 extent_io_tree_panic(tree, err);
660
661 prealloc = NULL;
662 if (err)
663 goto out;
664 if (state->end <= end) {
665 state = clear_state_bit(tree, state, &bits, wake);
666 goto next;
667 }
668 goto search_again;
669 }
670 /*
671 * | ---- desired range ---- |
672 * | state |
673 * We need to split the extent, and clear the bit
674 * on the first half
675 */
676 if (state->start <= end && state->end > end) {
677 prealloc = alloc_extent_state_atomic(prealloc);
678 BUG_ON(!prealloc);
679 err = split_state(tree, state, prealloc, end + 1);
680 if (err)
681 extent_io_tree_panic(tree, err);
682
683 if (wake)
684 wake_up(&state->wq);
685
686 clear_state_bit(tree, prealloc, &bits, wake);
687
688 prealloc = NULL;
689 goto out;
690 }
691
692 state = clear_state_bit(tree, state, &bits, wake);
693 next:
694 if (last_end == (u64)-1)
695 goto out;
696 start = last_end + 1;
697 if (start <= end && state && !need_resched())
698 goto hit_next;
699 goto search_again;
700
701 out:
702 spin_unlock(&tree->lock);
703 if (prealloc)
704 free_extent_state(prealloc);
705
706 return 0;
707
708 search_again:
709 if (start > end)
710 goto out;
711 spin_unlock(&tree->lock);
712 if (mask & __GFP_WAIT)
713 cond_resched();
714 goto again;
715 }
716
717 static void wait_on_state(struct extent_io_tree *tree,
718 struct extent_state *state)
719 __releases(tree->lock)
720 __acquires(tree->lock)
721 {
722 DEFINE_WAIT(wait);
723 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
724 spin_unlock(&tree->lock);
725 schedule();
726 spin_lock(&tree->lock);
727 finish_wait(&state->wq, &wait);
728 }
729
730 /*
731 * waits for one or more bits to clear on a range in the state tree.
732 * The range [start, end] is inclusive.
733 * The tree lock is taken by this function
734 */
735 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
736 unsigned long bits)
737 {
738 struct extent_state *state;
739 struct rb_node *node;
740
741 btrfs_debug_check_extent_io_range(tree, start, end);
742
743 spin_lock(&tree->lock);
744 again:
745 while (1) {
746 /*
747 * this search will find all the extents that end after
748 * our range starts
749 */
750 node = tree_search(tree, start);
751 if (!node)
752 break;
753
754 state = rb_entry(node, struct extent_state, rb_node);
755
756 if (state->start > end)
757 goto out;
758
759 if (state->state & bits) {
760 start = state->start;
761 atomic_inc(&state->refs);
762 wait_on_state(tree, state);
763 free_extent_state(state);
764 goto again;
765 }
766 start = state->end + 1;
767
768 if (start > end)
769 break;
770
771 cond_resched_lock(&tree->lock);
772 }
773 out:
774 spin_unlock(&tree->lock);
775 }
776
777 static void set_state_bits(struct extent_io_tree *tree,
778 struct extent_state *state,
779 unsigned long *bits)
780 {
781 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
782
783 set_state_cb(tree, state, bits);
784 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
785 u64 range = state->end - state->start + 1;
786 tree->dirty_bytes += range;
787 }
788 state->state |= bits_to_set;
789 }
790
791 static void cache_state(struct extent_state *state,
792 struct extent_state **cached_ptr)
793 {
794 if (cached_ptr && !(*cached_ptr)) {
795 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
796 *cached_ptr = state;
797 atomic_inc(&state->refs);
798 }
799 }
800 }
801
802 /*
803 * set some bits on a range in the tree. This may require allocations or
804 * sleeping, so the gfp mask is used to indicate what is allowed.
805 *
806 * If any of the exclusive bits are set, this will fail with -EEXIST if some
807 * part of the range already has the desired bits set. The start of the
808 * existing range is returned in failed_start in this case.
809 *
810 * [start, end] is inclusive This takes the tree lock.
811 */
812
813 static int __must_check
814 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
815 unsigned long bits, unsigned long exclusive_bits,
816 u64 *failed_start, struct extent_state **cached_state,
817 gfp_t mask)
818 {
819 struct extent_state *state;
820 struct extent_state *prealloc = NULL;
821 struct rb_node *node;
822 struct rb_node **p;
823 struct rb_node *parent;
824 int err = 0;
825 u64 last_start;
826 u64 last_end;
827
828 btrfs_debug_check_extent_io_range(tree, start, end);
829
830 bits |= EXTENT_FIRST_DELALLOC;
831 again:
832 if (!prealloc && (mask & __GFP_WAIT)) {
833 prealloc = alloc_extent_state(mask);
834 BUG_ON(!prealloc);
835 }
836
837 spin_lock(&tree->lock);
838 if (cached_state && *cached_state) {
839 state = *cached_state;
840 if (state->start <= start && state->end > start &&
841 state->tree) {
842 node = &state->rb_node;
843 goto hit_next;
844 }
845 }
846 /*
847 * this search will find all the extents that end after
848 * our range starts.
849 */
850 node = tree_search_for_insert(tree, start, &p, &parent);
851 if (!node) {
852 prealloc = alloc_extent_state_atomic(prealloc);
853 BUG_ON(!prealloc);
854 err = insert_state(tree, prealloc, start, end,
855 &p, &parent, &bits);
856 if (err)
857 extent_io_tree_panic(tree, err);
858
859 cache_state(prealloc, cached_state);
860 prealloc = NULL;
861 goto out;
862 }
863 state = rb_entry(node, struct extent_state, rb_node);
864 hit_next:
865 last_start = state->start;
866 last_end = state->end;
867
868 /*
869 * | ---- desired range ---- |
870 * | state |
871 *
872 * Just lock what we found and keep going
873 */
874 if (state->start == start && state->end <= end) {
875 if (state->state & exclusive_bits) {
876 *failed_start = state->start;
877 err = -EEXIST;
878 goto out;
879 }
880
881 set_state_bits(tree, state, &bits);
882 cache_state(state, cached_state);
883 merge_state(tree, state);
884 if (last_end == (u64)-1)
885 goto out;
886 start = last_end + 1;
887 state = next_state(state);
888 if (start < end && state && state->start == start &&
889 !need_resched())
890 goto hit_next;
891 goto search_again;
892 }
893
894 /*
895 * | ---- desired range ---- |
896 * | state |
897 * or
898 * | ------------- state -------------- |
899 *
900 * We need to split the extent we found, and may flip bits on
901 * second half.
902 *
903 * If the extent we found extends past our
904 * range, we just split and search again. It'll get split
905 * again the next time though.
906 *
907 * If the extent we found is inside our range, we set the
908 * desired bit on it.
909 */
910 if (state->start < start) {
911 if (state->state & exclusive_bits) {
912 *failed_start = start;
913 err = -EEXIST;
914 goto out;
915 }
916
917 prealloc = alloc_extent_state_atomic(prealloc);
918 BUG_ON(!prealloc);
919 err = split_state(tree, state, prealloc, start);
920 if (err)
921 extent_io_tree_panic(tree, err);
922
923 prealloc = NULL;
924 if (err)
925 goto out;
926 if (state->end <= end) {
927 set_state_bits(tree, state, &bits);
928 cache_state(state, cached_state);
929 merge_state(tree, state);
930 if (last_end == (u64)-1)
931 goto out;
932 start = last_end + 1;
933 state = next_state(state);
934 if (start < end && state && state->start == start &&
935 !need_resched())
936 goto hit_next;
937 }
938 goto search_again;
939 }
940 /*
941 * | ---- desired range ---- |
942 * | state | or | state |
943 *
944 * There's a hole, we need to insert something in it and
945 * ignore the extent we found.
946 */
947 if (state->start > start) {
948 u64 this_end;
949 if (end < last_start)
950 this_end = end;
951 else
952 this_end = last_start - 1;
953
954 prealloc = alloc_extent_state_atomic(prealloc);
955 BUG_ON(!prealloc);
956
957 /*
958 * Avoid to free 'prealloc' if it can be merged with
959 * the later extent.
960 */
961 err = insert_state(tree, prealloc, start, this_end,
962 NULL, NULL, &bits);
963 if (err)
964 extent_io_tree_panic(tree, err);
965
966 cache_state(prealloc, cached_state);
967 prealloc = NULL;
968 start = this_end + 1;
969 goto search_again;
970 }
971 /*
972 * | ---- desired range ---- |
973 * | state |
974 * We need to split the extent, and set the bit
975 * on the first half
976 */
977 if (state->start <= end && state->end > end) {
978 if (state->state & exclusive_bits) {
979 *failed_start = start;
980 err = -EEXIST;
981 goto out;
982 }
983
984 prealloc = alloc_extent_state_atomic(prealloc);
985 BUG_ON(!prealloc);
986 err = split_state(tree, state, prealloc, end + 1);
987 if (err)
988 extent_io_tree_panic(tree, err);
989
990 set_state_bits(tree, prealloc, &bits);
991 cache_state(prealloc, cached_state);
992 merge_state(tree, prealloc);
993 prealloc = NULL;
994 goto out;
995 }
996
997 goto search_again;
998
999 out:
1000 spin_unlock(&tree->lock);
1001 if (prealloc)
1002 free_extent_state(prealloc);
1003
1004 return err;
1005
1006 search_again:
1007 if (start > end)
1008 goto out;
1009 spin_unlock(&tree->lock);
1010 if (mask & __GFP_WAIT)
1011 cond_resched();
1012 goto again;
1013 }
1014
1015 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1016 unsigned long bits, u64 * failed_start,
1017 struct extent_state **cached_state, gfp_t mask)
1018 {
1019 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1020 cached_state, mask);
1021 }
1022
1023
1024 /**
1025 * convert_extent_bit - convert all bits in a given range from one bit to
1026 * another
1027 * @tree: the io tree to search
1028 * @start: the start offset in bytes
1029 * @end: the end offset in bytes (inclusive)
1030 * @bits: the bits to set in this range
1031 * @clear_bits: the bits to clear in this range
1032 * @cached_state: state that we're going to cache
1033 * @mask: the allocation mask
1034 *
1035 * This will go through and set bits for the given range. If any states exist
1036 * already in this range they are set with the given bit and cleared of the
1037 * clear_bits. This is only meant to be used by things that are mergeable, ie
1038 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1039 * boundary bits like LOCK.
1040 */
1041 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1042 unsigned long bits, unsigned long clear_bits,
1043 struct extent_state **cached_state, gfp_t mask)
1044 {
1045 struct extent_state *state;
1046 struct extent_state *prealloc = NULL;
1047 struct rb_node *node;
1048 struct rb_node **p;
1049 struct rb_node *parent;
1050 int err = 0;
1051 u64 last_start;
1052 u64 last_end;
1053
1054 btrfs_debug_check_extent_io_range(tree, start, end);
1055
1056 again:
1057 if (!prealloc && (mask & __GFP_WAIT)) {
1058 prealloc = alloc_extent_state(mask);
1059 if (!prealloc)
1060 return -ENOMEM;
1061 }
1062
1063 spin_lock(&tree->lock);
1064 if (cached_state && *cached_state) {
1065 state = *cached_state;
1066 if (state->start <= start && state->end > start &&
1067 state->tree) {
1068 node = &state->rb_node;
1069 goto hit_next;
1070 }
1071 }
1072
1073 /*
1074 * this search will find all the extents that end after
1075 * our range starts.
1076 */
1077 node = tree_search_for_insert(tree, start, &p, &parent);
1078 if (!node) {
1079 prealloc = alloc_extent_state_atomic(prealloc);
1080 if (!prealloc) {
1081 err = -ENOMEM;
1082 goto out;
1083 }
1084 err = insert_state(tree, prealloc, start, end,
1085 &p, &parent, &bits);
1086 if (err)
1087 extent_io_tree_panic(tree, err);
1088 cache_state(prealloc, cached_state);
1089 prealloc = NULL;
1090 goto out;
1091 }
1092 state = rb_entry(node, struct extent_state, rb_node);
1093 hit_next:
1094 last_start = state->start;
1095 last_end = state->end;
1096
1097 /*
1098 * | ---- desired range ---- |
1099 * | state |
1100 *
1101 * Just lock what we found and keep going
1102 */
1103 if (state->start == start && state->end <= end) {
1104 set_state_bits(tree, state, &bits);
1105 cache_state(state, cached_state);
1106 state = clear_state_bit(tree, state, &clear_bits, 0);
1107 if (last_end == (u64)-1)
1108 goto out;
1109 start = last_end + 1;
1110 if (start < end && state && state->start == start &&
1111 !need_resched())
1112 goto hit_next;
1113 goto search_again;
1114 }
1115
1116 /*
1117 * | ---- desired range ---- |
1118 * | state |
1119 * or
1120 * | ------------- state -------------- |
1121 *
1122 * We need to split the extent we found, and may flip bits on
1123 * second half.
1124 *
1125 * If the extent we found extends past our
1126 * range, we just split and search again. It'll get split
1127 * again the next time though.
1128 *
1129 * If the extent we found is inside our range, we set the
1130 * desired bit on it.
1131 */
1132 if (state->start < start) {
1133 prealloc = alloc_extent_state_atomic(prealloc);
1134 if (!prealloc) {
1135 err = -ENOMEM;
1136 goto out;
1137 }
1138 err = split_state(tree, state, prealloc, start);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 prealloc = NULL;
1142 if (err)
1143 goto out;
1144 if (state->end <= end) {
1145 set_state_bits(tree, state, &bits);
1146 cache_state(state, cached_state);
1147 state = clear_state_bit(tree, state, &clear_bits, 0);
1148 if (last_end == (u64)-1)
1149 goto out;
1150 start = last_end + 1;
1151 if (start < end && state && state->start == start &&
1152 !need_resched())
1153 goto hit_next;
1154 }
1155 goto search_again;
1156 }
1157 /*
1158 * | ---- desired range ---- |
1159 * | state | or | state |
1160 *
1161 * There's a hole, we need to insert something in it and
1162 * ignore the extent we found.
1163 */
1164 if (state->start > start) {
1165 u64 this_end;
1166 if (end < last_start)
1167 this_end = end;
1168 else
1169 this_end = last_start - 1;
1170
1171 prealloc = alloc_extent_state_atomic(prealloc);
1172 if (!prealloc) {
1173 err = -ENOMEM;
1174 goto out;
1175 }
1176
1177 /*
1178 * Avoid to free 'prealloc' if it can be merged with
1179 * the later extent.
1180 */
1181 err = insert_state(tree, prealloc, start, this_end,
1182 NULL, NULL, &bits);
1183 if (err)
1184 extent_io_tree_panic(tree, err);
1185 cache_state(prealloc, cached_state);
1186 prealloc = NULL;
1187 start = this_end + 1;
1188 goto search_again;
1189 }
1190 /*
1191 * | ---- desired range ---- |
1192 * | state |
1193 * We need to split the extent, and set the bit
1194 * on the first half
1195 */
1196 if (state->start <= end && state->end > end) {
1197 prealloc = alloc_extent_state_atomic(prealloc);
1198 if (!prealloc) {
1199 err = -ENOMEM;
1200 goto out;
1201 }
1202
1203 err = split_state(tree, state, prealloc, end + 1);
1204 if (err)
1205 extent_io_tree_panic(tree, err);
1206
1207 set_state_bits(tree, prealloc, &bits);
1208 cache_state(prealloc, cached_state);
1209 clear_state_bit(tree, prealloc, &clear_bits, 0);
1210 prealloc = NULL;
1211 goto out;
1212 }
1213
1214 goto search_again;
1215
1216 out:
1217 spin_unlock(&tree->lock);
1218 if (prealloc)
1219 free_extent_state(prealloc);
1220
1221 return err;
1222
1223 search_again:
1224 if (start > end)
1225 goto out;
1226 spin_unlock(&tree->lock);
1227 if (mask & __GFP_WAIT)
1228 cond_resched();
1229 goto again;
1230 }
1231
1232 /* wrappers around set/clear extent bit */
1233 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1235 {
1236 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1237 NULL, mask);
1238 }
1239
1240 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1241 unsigned long bits, gfp_t mask)
1242 {
1243 return set_extent_bit(tree, start, end, bits, NULL,
1244 NULL, mask);
1245 }
1246
1247 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1248 unsigned long bits, gfp_t mask)
1249 {
1250 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1251 }
1252
1253 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1254 struct extent_state **cached_state, gfp_t mask)
1255 {
1256 return set_extent_bit(tree, start, end,
1257 EXTENT_DELALLOC | EXTENT_UPTODATE,
1258 NULL, cached_state, mask);
1259 }
1260
1261 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1262 struct extent_state **cached_state, gfp_t mask)
1263 {
1264 return set_extent_bit(tree, start, end,
1265 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1266 NULL, cached_state, mask);
1267 }
1268
1269 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1270 gfp_t mask)
1271 {
1272 return clear_extent_bit(tree, start, end,
1273 EXTENT_DIRTY | EXTENT_DELALLOC |
1274 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1275 }
1276
1277 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1278 gfp_t mask)
1279 {
1280 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1281 NULL, mask);
1282 }
1283
1284 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1285 struct extent_state **cached_state, gfp_t mask)
1286 {
1287 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1288 cached_state, mask);
1289 }
1290
1291 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1292 struct extent_state **cached_state, gfp_t mask)
1293 {
1294 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1295 cached_state, mask);
1296 }
1297
1298 /*
1299 * either insert or lock state struct between start and end use mask to tell
1300 * us if waiting is desired.
1301 */
1302 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned long bits, struct extent_state **cached_state)
1304 {
1305 int err;
1306 u64 failed_start;
1307 while (1) {
1308 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1309 EXTENT_LOCKED, &failed_start,
1310 cached_state, GFP_NOFS);
1311 if (err == -EEXIST) {
1312 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1313 start = failed_start;
1314 } else
1315 break;
1316 WARN_ON(start > end);
1317 }
1318 return err;
1319 }
1320
1321 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1322 {
1323 return lock_extent_bits(tree, start, end, 0, NULL);
1324 }
1325
1326 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1327 {
1328 int err;
1329 u64 failed_start;
1330
1331 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1332 &failed_start, NULL, GFP_NOFS);
1333 if (err == -EEXIST) {
1334 if (failed_start > start)
1335 clear_extent_bit(tree, start, failed_start - 1,
1336 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1337 return 0;
1338 }
1339 return 1;
1340 }
1341
1342 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1343 struct extent_state **cached, gfp_t mask)
1344 {
1345 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1346 mask);
1347 }
1348
1349 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1352 GFP_NOFS);
1353 }
1354
1355 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1356 {
1357 unsigned long index = start >> PAGE_CACHE_SHIFT;
1358 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359 struct page *page;
1360
1361 while (index <= end_index) {
1362 page = find_get_page(inode->i_mapping, index);
1363 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364 clear_page_dirty_for_io(page);
1365 page_cache_release(page);
1366 index++;
1367 }
1368 return 0;
1369 }
1370
1371 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1372 {
1373 unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 struct page *page;
1376
1377 while (index <= end_index) {
1378 page = find_get_page(inode->i_mapping, index);
1379 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1380 account_page_redirty(page);
1381 __set_page_dirty_nobuffers(page);
1382 page_cache_release(page);
1383 index++;
1384 }
1385 return 0;
1386 }
1387
1388 /*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
1391 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393 unsigned long index = start >> PAGE_CACHE_SHIFT;
1394 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395 struct page *page;
1396
1397 while (index <= end_index) {
1398 page = find_get_page(tree->mapping, index);
1399 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400 set_page_writeback(page);
1401 page_cache_release(page);
1402 index++;
1403 }
1404 return 0;
1405 }
1406
1407 /* find the first state struct with 'bits' set after 'start', and
1408 * return it. tree->lock must be held. NULL will returned if
1409 * nothing was found after 'start'
1410 */
1411 static struct extent_state *
1412 find_first_extent_bit_state(struct extent_io_tree *tree,
1413 u64 start, unsigned long bits)
1414 {
1415 struct rb_node *node;
1416 struct extent_state *state;
1417
1418 /*
1419 * this search will find all the extents that end after
1420 * our range starts.
1421 */
1422 node = tree_search(tree, start);
1423 if (!node)
1424 goto out;
1425
1426 while (1) {
1427 state = rb_entry(node, struct extent_state, rb_node);
1428 if (state->end >= start && (state->state & bits))
1429 return state;
1430
1431 node = rb_next(node);
1432 if (!node)
1433 break;
1434 }
1435 out:
1436 return NULL;
1437 }
1438
1439 /*
1440 * find the first offset in the io tree with 'bits' set. zero is
1441 * returned if we find something, and *start_ret and *end_ret are
1442 * set to reflect the state struct that was found.
1443 *
1444 * If nothing was found, 1 is returned. If found something, return 0.
1445 */
1446 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1447 u64 *start_ret, u64 *end_ret, unsigned long bits,
1448 struct extent_state **cached_state)
1449 {
1450 struct extent_state *state;
1451 struct rb_node *n;
1452 int ret = 1;
1453
1454 spin_lock(&tree->lock);
1455 if (cached_state && *cached_state) {
1456 state = *cached_state;
1457 if (state->end == start - 1 && state->tree) {
1458 n = rb_next(&state->rb_node);
1459 while (n) {
1460 state = rb_entry(n, struct extent_state,
1461 rb_node);
1462 if (state->state & bits)
1463 goto got_it;
1464 n = rb_next(n);
1465 }
1466 free_extent_state(*cached_state);
1467 *cached_state = NULL;
1468 goto out;
1469 }
1470 free_extent_state(*cached_state);
1471 *cached_state = NULL;
1472 }
1473
1474 state = find_first_extent_bit_state(tree, start, bits);
1475 got_it:
1476 if (state) {
1477 cache_state(state, cached_state);
1478 *start_ret = state->start;
1479 *end_ret = state->end;
1480 ret = 0;
1481 }
1482 out:
1483 spin_unlock(&tree->lock);
1484 return ret;
1485 }
1486
1487 /*
1488 * find a contiguous range of bytes in the file marked as delalloc, not
1489 * more than 'max_bytes'. start and end are used to return the range,
1490 *
1491 * 1 is returned if we find something, 0 if nothing was in the tree
1492 */
1493 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1494 u64 *start, u64 *end, u64 max_bytes,
1495 struct extent_state **cached_state)
1496 {
1497 struct rb_node *node;
1498 struct extent_state *state;
1499 u64 cur_start = *start;
1500 u64 found = 0;
1501 u64 total_bytes = 0;
1502
1503 spin_lock(&tree->lock);
1504
1505 /*
1506 * this search will find all the extents that end after
1507 * our range starts.
1508 */
1509 node = tree_search(tree, cur_start);
1510 if (!node) {
1511 if (!found)
1512 *end = (u64)-1;
1513 goto out;
1514 }
1515
1516 while (1) {
1517 state = rb_entry(node, struct extent_state, rb_node);
1518 if (found && (state->start != cur_start ||
1519 (state->state & EXTENT_BOUNDARY))) {
1520 goto out;
1521 }
1522 if (!(state->state & EXTENT_DELALLOC)) {
1523 if (!found)
1524 *end = state->end;
1525 goto out;
1526 }
1527 if (!found) {
1528 *start = state->start;
1529 *cached_state = state;
1530 atomic_inc(&state->refs);
1531 }
1532 found++;
1533 *end = state->end;
1534 cur_start = state->end + 1;
1535 node = rb_next(node);
1536 total_bytes += state->end - state->start + 1;
1537 if (total_bytes >= max_bytes)
1538 break;
1539 if (!node)
1540 break;
1541 }
1542 out:
1543 spin_unlock(&tree->lock);
1544 return found;
1545 }
1546
1547 static noinline void __unlock_for_delalloc(struct inode *inode,
1548 struct page *locked_page,
1549 u64 start, u64 end)
1550 {
1551 int ret;
1552 struct page *pages[16];
1553 unsigned long index = start >> PAGE_CACHE_SHIFT;
1554 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1555 unsigned long nr_pages = end_index - index + 1;
1556 int i;
1557
1558 if (index == locked_page->index && end_index == index)
1559 return;
1560
1561 while (nr_pages > 0) {
1562 ret = find_get_pages_contig(inode->i_mapping, index,
1563 min_t(unsigned long, nr_pages,
1564 ARRAY_SIZE(pages)), pages);
1565 for (i = 0; i < ret; i++) {
1566 if (pages[i] != locked_page)
1567 unlock_page(pages[i]);
1568 page_cache_release(pages[i]);
1569 }
1570 nr_pages -= ret;
1571 index += ret;
1572 cond_resched();
1573 }
1574 }
1575
1576 static noinline int lock_delalloc_pages(struct inode *inode,
1577 struct page *locked_page,
1578 u64 delalloc_start,
1579 u64 delalloc_end)
1580 {
1581 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1582 unsigned long start_index = index;
1583 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1584 unsigned long pages_locked = 0;
1585 struct page *pages[16];
1586 unsigned long nrpages;
1587 int ret;
1588 int i;
1589
1590 /* the caller is responsible for locking the start index */
1591 if (index == locked_page->index && index == end_index)
1592 return 0;
1593
1594 /* skip the page at the start index */
1595 nrpages = end_index - index + 1;
1596 while (nrpages > 0) {
1597 ret = find_get_pages_contig(inode->i_mapping, index,
1598 min_t(unsigned long,
1599 nrpages, ARRAY_SIZE(pages)), pages);
1600 if (ret == 0) {
1601 ret = -EAGAIN;
1602 goto done;
1603 }
1604 /* now we have an array of pages, lock them all */
1605 for (i = 0; i < ret; i++) {
1606 /*
1607 * the caller is taking responsibility for
1608 * locked_page
1609 */
1610 if (pages[i] != locked_page) {
1611 lock_page(pages[i]);
1612 if (!PageDirty(pages[i]) ||
1613 pages[i]->mapping != inode->i_mapping) {
1614 ret = -EAGAIN;
1615 unlock_page(pages[i]);
1616 page_cache_release(pages[i]);
1617 goto done;
1618 }
1619 }
1620 page_cache_release(pages[i]);
1621 pages_locked++;
1622 }
1623 nrpages -= ret;
1624 index += ret;
1625 cond_resched();
1626 }
1627 ret = 0;
1628 done:
1629 if (ret && pages_locked) {
1630 __unlock_for_delalloc(inode, locked_page,
1631 delalloc_start,
1632 ((u64)(start_index + pages_locked - 1)) <<
1633 PAGE_CACHE_SHIFT);
1634 }
1635 return ret;
1636 }
1637
1638 /*
1639 * find a contiguous range of bytes in the file marked as delalloc, not
1640 * more than 'max_bytes'. start and end are used to return the range,
1641 *
1642 * 1 is returned if we find something, 0 if nothing was in the tree
1643 */
1644 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1645 struct extent_io_tree *tree,
1646 struct page *locked_page, u64 *start,
1647 u64 *end, u64 max_bytes)
1648 {
1649 u64 delalloc_start;
1650 u64 delalloc_end;
1651 u64 found;
1652 struct extent_state *cached_state = NULL;
1653 int ret;
1654 int loops = 0;
1655
1656 again:
1657 /* step one, find a bunch of delalloc bytes starting at start */
1658 delalloc_start = *start;
1659 delalloc_end = 0;
1660 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1661 max_bytes, &cached_state);
1662 if (!found || delalloc_end <= *start) {
1663 *start = delalloc_start;
1664 *end = delalloc_end;
1665 free_extent_state(cached_state);
1666 return 0;
1667 }
1668
1669 /*
1670 * start comes from the offset of locked_page. We have to lock
1671 * pages in order, so we can't process delalloc bytes before
1672 * locked_page
1673 */
1674 if (delalloc_start < *start)
1675 delalloc_start = *start;
1676
1677 /*
1678 * make sure to limit the number of pages we try to lock down
1679 */
1680 if (delalloc_end + 1 - delalloc_start > max_bytes)
1681 delalloc_end = delalloc_start + max_bytes - 1;
1682
1683 /* step two, lock all the pages after the page that has start */
1684 ret = lock_delalloc_pages(inode, locked_page,
1685 delalloc_start, delalloc_end);
1686 if (ret == -EAGAIN) {
1687 /* some of the pages are gone, lets avoid looping by
1688 * shortening the size of the delalloc range we're searching
1689 */
1690 free_extent_state(cached_state);
1691 if (!loops) {
1692 max_bytes = PAGE_CACHE_SIZE;
1693 loops = 1;
1694 goto again;
1695 } else {
1696 found = 0;
1697 goto out_failed;
1698 }
1699 }
1700 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1701
1702 /* step three, lock the state bits for the whole range */
1703 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1704
1705 /* then test to make sure it is all still delalloc */
1706 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1707 EXTENT_DELALLOC, 1, cached_state);
1708 if (!ret) {
1709 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1710 &cached_state, GFP_NOFS);
1711 __unlock_for_delalloc(inode, locked_page,
1712 delalloc_start, delalloc_end);
1713 cond_resched();
1714 goto again;
1715 }
1716 free_extent_state(cached_state);
1717 *start = delalloc_start;
1718 *end = delalloc_end;
1719 out_failed:
1720 return found;
1721 }
1722
1723 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1724 struct page *locked_page,
1725 unsigned long clear_bits,
1726 unsigned long page_ops)
1727 {
1728 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1729 int ret;
1730 struct page *pages[16];
1731 unsigned long index = start >> PAGE_CACHE_SHIFT;
1732 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1733 unsigned long nr_pages = end_index - index + 1;
1734 int i;
1735
1736 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1737 if (page_ops == 0)
1738 return 0;
1739
1740 while (nr_pages > 0) {
1741 ret = find_get_pages_contig(inode->i_mapping, index,
1742 min_t(unsigned long,
1743 nr_pages, ARRAY_SIZE(pages)), pages);
1744 for (i = 0; i < ret; i++) {
1745
1746 if (page_ops & PAGE_SET_PRIVATE2)
1747 SetPagePrivate2(pages[i]);
1748
1749 if (pages[i] == locked_page) {
1750 page_cache_release(pages[i]);
1751 continue;
1752 }
1753 if (page_ops & PAGE_CLEAR_DIRTY)
1754 clear_page_dirty_for_io(pages[i]);
1755 if (page_ops & PAGE_SET_WRITEBACK)
1756 set_page_writeback(pages[i]);
1757 if (page_ops & PAGE_END_WRITEBACK)
1758 end_page_writeback(pages[i]);
1759 if (page_ops & PAGE_UNLOCK)
1760 unlock_page(pages[i]);
1761 page_cache_release(pages[i]);
1762 }
1763 nr_pages -= ret;
1764 index += ret;
1765 cond_resched();
1766 }
1767 return 0;
1768 }
1769
1770 /*
1771 * count the number of bytes in the tree that have a given bit(s)
1772 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1773 * cached. The total number found is returned.
1774 */
1775 u64 count_range_bits(struct extent_io_tree *tree,
1776 u64 *start, u64 search_end, u64 max_bytes,
1777 unsigned long bits, int contig)
1778 {
1779 struct rb_node *node;
1780 struct extent_state *state;
1781 u64 cur_start = *start;
1782 u64 total_bytes = 0;
1783 u64 last = 0;
1784 int found = 0;
1785
1786 if (WARN_ON(search_end <= cur_start))
1787 return 0;
1788
1789 spin_lock(&tree->lock);
1790 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1791 total_bytes = tree->dirty_bytes;
1792 goto out;
1793 }
1794 /*
1795 * this search will find all the extents that end after
1796 * our range starts.
1797 */
1798 node = tree_search(tree, cur_start);
1799 if (!node)
1800 goto out;
1801
1802 while (1) {
1803 state = rb_entry(node, struct extent_state, rb_node);
1804 if (state->start > search_end)
1805 break;
1806 if (contig && found && state->start > last + 1)
1807 break;
1808 if (state->end >= cur_start && (state->state & bits) == bits) {
1809 total_bytes += min(search_end, state->end) + 1 -
1810 max(cur_start, state->start);
1811 if (total_bytes >= max_bytes)
1812 break;
1813 if (!found) {
1814 *start = max(cur_start, state->start);
1815 found = 1;
1816 }
1817 last = state->end;
1818 } else if (contig && found) {
1819 break;
1820 }
1821 node = rb_next(node);
1822 if (!node)
1823 break;
1824 }
1825 out:
1826 spin_unlock(&tree->lock);
1827 return total_bytes;
1828 }
1829
1830 /*
1831 * set the private field for a given byte offset in the tree. If there isn't
1832 * an extent_state there already, this does nothing.
1833 */
1834 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1835 {
1836 struct rb_node *node;
1837 struct extent_state *state;
1838 int ret = 0;
1839
1840 spin_lock(&tree->lock);
1841 /*
1842 * this search will find all the extents that end after
1843 * our range starts.
1844 */
1845 node = tree_search(tree, start);
1846 if (!node) {
1847 ret = -ENOENT;
1848 goto out;
1849 }
1850 state = rb_entry(node, struct extent_state, rb_node);
1851 if (state->start != start) {
1852 ret = -ENOENT;
1853 goto out;
1854 }
1855 state->private = private;
1856 out:
1857 spin_unlock(&tree->lock);
1858 return ret;
1859 }
1860
1861 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1862 {
1863 struct rb_node *node;
1864 struct extent_state *state;
1865 int ret = 0;
1866
1867 spin_lock(&tree->lock);
1868 /*
1869 * this search will find all the extents that end after
1870 * our range starts.
1871 */
1872 node = tree_search(tree, start);
1873 if (!node) {
1874 ret = -ENOENT;
1875 goto out;
1876 }
1877 state = rb_entry(node, struct extent_state, rb_node);
1878 if (state->start != start) {
1879 ret = -ENOENT;
1880 goto out;
1881 }
1882 *private = state->private;
1883 out:
1884 spin_unlock(&tree->lock);
1885 return ret;
1886 }
1887
1888 /*
1889 * searches a range in the state tree for a given mask.
1890 * If 'filled' == 1, this returns 1 only if every extent in the tree
1891 * has the bits set. Otherwise, 1 is returned if any bit in the
1892 * range is found set.
1893 */
1894 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1895 unsigned long bits, int filled, struct extent_state *cached)
1896 {
1897 struct extent_state *state = NULL;
1898 struct rb_node *node;
1899 int bitset = 0;
1900
1901 spin_lock(&tree->lock);
1902 if (cached && cached->tree && cached->start <= start &&
1903 cached->end > start)
1904 node = &cached->rb_node;
1905 else
1906 node = tree_search(tree, start);
1907 while (node && start <= end) {
1908 state = rb_entry(node, struct extent_state, rb_node);
1909
1910 if (filled && state->start > start) {
1911 bitset = 0;
1912 break;
1913 }
1914
1915 if (state->start > end)
1916 break;
1917
1918 if (state->state & bits) {
1919 bitset = 1;
1920 if (!filled)
1921 break;
1922 } else if (filled) {
1923 bitset = 0;
1924 break;
1925 }
1926
1927 if (state->end == (u64)-1)
1928 break;
1929
1930 start = state->end + 1;
1931 if (start > end)
1932 break;
1933 node = rb_next(node);
1934 if (!node) {
1935 if (filled)
1936 bitset = 0;
1937 break;
1938 }
1939 }
1940 spin_unlock(&tree->lock);
1941 return bitset;
1942 }
1943
1944 /*
1945 * helper function to set a given page up to date if all the
1946 * extents in the tree for that page are up to date
1947 */
1948 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1949 {
1950 u64 start = page_offset(page);
1951 u64 end = start + PAGE_CACHE_SIZE - 1;
1952 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1953 SetPageUptodate(page);
1954 }
1955
1956 /*
1957 * When IO fails, either with EIO or csum verification fails, we
1958 * try other mirrors that might have a good copy of the data. This
1959 * io_failure_record is used to record state as we go through all the
1960 * mirrors. If another mirror has good data, the page is set up to date
1961 * and things continue. If a good mirror can't be found, the original
1962 * bio end_io callback is called to indicate things have failed.
1963 */
1964 struct io_failure_record {
1965 struct page *page;
1966 u64 start;
1967 u64 len;
1968 u64 logical;
1969 unsigned long bio_flags;
1970 int this_mirror;
1971 int failed_mirror;
1972 int in_validation;
1973 };
1974
1975 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1976 int did_repair)
1977 {
1978 int ret;
1979 int err = 0;
1980 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1981
1982 set_state_private(failure_tree, rec->start, 0);
1983 ret = clear_extent_bits(failure_tree, rec->start,
1984 rec->start + rec->len - 1,
1985 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1986 if (ret)
1987 err = ret;
1988
1989 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1990 rec->start + rec->len - 1,
1991 EXTENT_DAMAGED, GFP_NOFS);
1992 if (ret && !err)
1993 err = ret;
1994
1995 kfree(rec);
1996 return err;
1997 }
1998
1999 /*
2000 * this bypasses the standard btrfs submit functions deliberately, as
2001 * the standard behavior is to write all copies in a raid setup. here we only
2002 * want to write the one bad copy. so we do the mapping for ourselves and issue
2003 * submit_bio directly.
2004 * to avoid any synchronization issues, wait for the data after writing, which
2005 * actually prevents the read that triggered the error from finishing.
2006 * currently, there can be no more than two copies of every data bit. thus,
2007 * exactly one rewrite is required.
2008 */
2009 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2010 u64 length, u64 logical, struct page *page,
2011 int mirror_num)
2012 {
2013 struct bio *bio;
2014 struct btrfs_device *dev;
2015 u64 map_length = 0;
2016 u64 sector;
2017 struct btrfs_bio *bbio = NULL;
2018 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2019 int ret;
2020
2021 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2022 BUG_ON(!mirror_num);
2023
2024 /* we can't repair anything in raid56 yet */
2025 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2026 return 0;
2027
2028 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2029 if (!bio)
2030 return -EIO;
2031 bio->bi_size = 0;
2032 map_length = length;
2033
2034 ret = btrfs_map_block(fs_info, WRITE, logical,
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
2037 bio_put(bio);
2038 return -EIO;
2039 }
2040 BUG_ON(mirror_num != bbio->mirror_num);
2041 sector = bbio->stripes[mirror_num-1].physical >> 9;
2042 bio->bi_sector = sector;
2043 dev = bbio->stripes[mirror_num-1].dev;
2044 kfree(bbio);
2045 if (!dev || !dev->bdev || !dev->writeable) {
2046 bio_put(bio);
2047 return -EIO;
2048 }
2049 bio->bi_bdev = dev->bdev;
2050 bio_add_page(bio, page, length, start - page_offset(page));
2051
2052 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2053 /* try to remap that extent elsewhere? */
2054 bio_put(bio);
2055 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2056 return -EIO;
2057 }
2058
2059 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2060 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2061 start, rcu_str_deref(dev->name), sector);
2062
2063 bio_put(bio);
2064 return 0;
2065 }
2066
2067 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2068 int mirror_num)
2069 {
2070 u64 start = eb->start;
2071 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2072 int ret = 0;
2073
2074 if (root->fs_info->sb->s_flags & MS_RDONLY)
2075 return -EROFS;
2076
2077 for (i = 0; i < num_pages; i++) {
2078 struct page *p = extent_buffer_page(eb, i);
2079 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2080 start, p, mirror_num);
2081 if (ret)
2082 break;
2083 start += PAGE_CACHE_SIZE;
2084 }
2085
2086 return ret;
2087 }
2088
2089 /*
2090 * each time an IO finishes, we do a fast check in the IO failure tree
2091 * to see if we need to process or clean up an io_failure_record
2092 */
2093 static int clean_io_failure(u64 start, struct page *page)
2094 {
2095 u64 private;
2096 u64 private_failure;
2097 struct io_failure_record *failrec;
2098 struct inode *inode = page->mapping->host;
2099 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2100 struct extent_state *state;
2101 int num_copies;
2102 int did_repair = 0;
2103 int ret;
2104
2105 private = 0;
2106 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2107 (u64)-1, 1, EXTENT_DIRTY, 0);
2108 if (!ret)
2109 return 0;
2110
2111 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2112 &private_failure);
2113 if (ret)
2114 return 0;
2115
2116 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2117 BUG_ON(!failrec->this_mirror);
2118
2119 if (failrec->in_validation) {
2120 /* there was no real error, just free the record */
2121 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2122 failrec->start);
2123 did_repair = 1;
2124 goto out;
2125 }
2126 if (fs_info->sb->s_flags & MS_RDONLY)
2127 goto out;
2128
2129 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2130 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2131 failrec->start,
2132 EXTENT_LOCKED);
2133 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2134
2135 if (state && state->start <= failrec->start &&
2136 state->end >= failrec->start + failrec->len - 1) {
2137 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2138 failrec->len);
2139 if (num_copies > 1) {
2140 ret = repair_io_failure(fs_info, start, failrec->len,
2141 failrec->logical, page,
2142 failrec->failed_mirror);
2143 did_repair = !ret;
2144 }
2145 ret = 0;
2146 }
2147
2148 out:
2149 if (!ret)
2150 ret = free_io_failure(inode, failrec, did_repair);
2151
2152 return ret;
2153 }
2154
2155 /*
2156 * this is a generic handler for readpage errors (default
2157 * readpage_io_failed_hook). if other copies exist, read those and write back
2158 * good data to the failed position. does not investigate in remapping the
2159 * failed extent elsewhere, hoping the device will be smart enough to do this as
2160 * needed
2161 */
2162
2163 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2164 struct page *page, u64 start, u64 end,
2165 int failed_mirror)
2166 {
2167 struct io_failure_record *failrec = NULL;
2168 u64 private;
2169 struct extent_map *em;
2170 struct inode *inode = page->mapping->host;
2171 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2172 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2173 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2174 struct bio *bio;
2175 struct btrfs_io_bio *btrfs_failed_bio;
2176 struct btrfs_io_bio *btrfs_bio;
2177 int num_copies;
2178 int ret;
2179 int read_mode;
2180 u64 logical;
2181
2182 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2183
2184 ret = get_state_private(failure_tree, start, &private);
2185 if (ret) {
2186 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2187 if (!failrec)
2188 return -ENOMEM;
2189 failrec->start = start;
2190 failrec->len = end - start + 1;
2191 failrec->this_mirror = 0;
2192 failrec->bio_flags = 0;
2193 failrec->in_validation = 0;
2194
2195 read_lock(&em_tree->lock);
2196 em = lookup_extent_mapping(em_tree, start, failrec->len);
2197 if (!em) {
2198 read_unlock(&em_tree->lock);
2199 kfree(failrec);
2200 return -EIO;
2201 }
2202
2203 if (em->start > start || em->start + em->len <= start) {
2204 free_extent_map(em);
2205 em = NULL;
2206 }
2207 read_unlock(&em_tree->lock);
2208
2209 if (!em) {
2210 kfree(failrec);
2211 return -EIO;
2212 }
2213 logical = start - em->start;
2214 logical = em->block_start + logical;
2215 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2216 logical = em->block_start;
2217 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2218 extent_set_compress_type(&failrec->bio_flags,
2219 em->compress_type);
2220 }
2221 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2222 "len=%llu\n", logical, start, failrec->len);
2223 failrec->logical = logical;
2224 free_extent_map(em);
2225
2226 /* set the bits in the private failure tree */
2227 ret = set_extent_bits(failure_tree, start, end,
2228 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2229 if (ret >= 0)
2230 ret = set_state_private(failure_tree, start,
2231 (u64)(unsigned long)failrec);
2232 /* set the bits in the inode's tree */
2233 if (ret >= 0)
2234 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2235 GFP_NOFS);
2236 if (ret < 0) {
2237 kfree(failrec);
2238 return ret;
2239 }
2240 } else {
2241 failrec = (struct io_failure_record *)(unsigned long)private;
2242 pr_debug("bio_readpage_error: (found) logical=%llu, "
2243 "start=%llu, len=%llu, validation=%d\n",
2244 failrec->logical, failrec->start, failrec->len,
2245 failrec->in_validation);
2246 /*
2247 * when data can be on disk more than twice, add to failrec here
2248 * (e.g. with a list for failed_mirror) to make
2249 * clean_io_failure() clean all those errors at once.
2250 */
2251 }
2252 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2253 failrec->logical, failrec->len);
2254 if (num_copies == 1) {
2255 /*
2256 * we only have a single copy of the data, so don't bother with
2257 * all the retry and error correction code that follows. no
2258 * matter what the error is, it is very likely to persist.
2259 */
2260 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2261 num_copies, failrec->this_mirror, failed_mirror);
2262 free_io_failure(inode, failrec, 0);
2263 return -EIO;
2264 }
2265
2266 /*
2267 * there are two premises:
2268 * a) deliver good data to the caller
2269 * b) correct the bad sectors on disk
2270 */
2271 if (failed_bio->bi_vcnt > 1) {
2272 /*
2273 * to fulfill b), we need to know the exact failing sectors, as
2274 * we don't want to rewrite any more than the failed ones. thus,
2275 * we need separate read requests for the failed bio
2276 *
2277 * if the following BUG_ON triggers, our validation request got
2278 * merged. we need separate requests for our algorithm to work.
2279 */
2280 BUG_ON(failrec->in_validation);
2281 failrec->in_validation = 1;
2282 failrec->this_mirror = failed_mirror;
2283 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2284 } else {
2285 /*
2286 * we're ready to fulfill a) and b) alongside. get a good copy
2287 * of the failed sector and if we succeed, we have setup
2288 * everything for repair_io_failure to do the rest for us.
2289 */
2290 if (failrec->in_validation) {
2291 BUG_ON(failrec->this_mirror != failed_mirror);
2292 failrec->in_validation = 0;
2293 failrec->this_mirror = 0;
2294 }
2295 failrec->failed_mirror = failed_mirror;
2296 failrec->this_mirror++;
2297 if (failrec->this_mirror == failed_mirror)
2298 failrec->this_mirror++;
2299 read_mode = READ_SYNC;
2300 }
2301
2302 if (failrec->this_mirror > num_copies) {
2303 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2304 num_copies, failrec->this_mirror, failed_mirror);
2305 free_io_failure(inode, failrec, 0);
2306 return -EIO;
2307 }
2308
2309 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2310 if (!bio) {
2311 free_io_failure(inode, failrec, 0);
2312 return -EIO;
2313 }
2314 bio->bi_end_io = failed_bio->bi_end_io;
2315 bio->bi_sector = failrec->logical >> 9;
2316 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2317 bio->bi_size = 0;
2318
2319 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320 if (btrfs_failed_bio->csum) {
2321 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2322 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2323
2324 btrfs_bio = btrfs_io_bio(bio);
2325 btrfs_bio->csum = btrfs_bio->csum_inline;
2326 phy_offset >>= inode->i_sb->s_blocksize_bits;
2327 phy_offset *= csum_size;
2328 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2329 csum_size);
2330 }
2331
2332 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2333
2334 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2335 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2336 failrec->this_mirror, num_copies, failrec->in_validation);
2337
2338 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2339 failrec->this_mirror,
2340 failrec->bio_flags, 0);
2341 return ret;
2342 }
2343
2344 /* lots and lots of room for performance fixes in the end_bio funcs */
2345
2346 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2347 {
2348 int uptodate = (err == 0);
2349 struct extent_io_tree *tree;
2350 int ret;
2351
2352 tree = &BTRFS_I(page->mapping->host)->io_tree;
2353
2354 if (tree->ops && tree->ops->writepage_end_io_hook) {
2355 ret = tree->ops->writepage_end_io_hook(page, start,
2356 end, NULL, uptodate);
2357 if (ret)
2358 uptodate = 0;
2359 }
2360
2361 if (!uptodate) {
2362 ClearPageUptodate(page);
2363 SetPageError(page);
2364 }
2365 return 0;
2366 }
2367
2368 /*
2369 * after a writepage IO is done, we need to:
2370 * clear the uptodate bits on error
2371 * clear the writeback bits in the extent tree for this IO
2372 * end_page_writeback if the page has no more pending IO
2373 *
2374 * Scheduling is not allowed, so the extent state tree is expected
2375 * to have one and only one object corresponding to this IO.
2376 */
2377 static void end_bio_extent_writepage(struct bio *bio, int err)
2378 {
2379 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2380 u64 start;
2381 u64 end;
2382
2383 do {
2384 struct page *page = bvec->bv_page;
2385
2386 /* We always issue full-page reads, but if some block
2387 * in a page fails to read, blk_update_request() will
2388 * advance bv_offset and adjust bv_len to compensate.
2389 * Print a warning for nonzero offsets, and an error
2390 * if they don't add up to a full page. */
2391 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2392 printk("%s page write in btrfs with offset %u and length %u\n",
2393 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2394 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2395 bvec->bv_offset, bvec->bv_len);
2396
2397 start = page_offset(page);
2398 end = start + bvec->bv_offset + bvec->bv_len - 1;
2399
2400 if (--bvec >= bio->bi_io_vec)
2401 prefetchw(&bvec->bv_page->flags);
2402
2403 if (end_extent_writepage(page, err, start, end))
2404 continue;
2405
2406 end_page_writeback(page);
2407 } while (bvec >= bio->bi_io_vec);
2408
2409 bio_put(bio);
2410 }
2411
2412 static void
2413 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2414 int uptodate)
2415 {
2416 struct extent_state *cached = NULL;
2417 u64 end = start + len - 1;
2418
2419 if (uptodate && tree->track_uptodate)
2420 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2421 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2422 }
2423
2424 /*
2425 * after a readpage IO is done, we need to:
2426 * clear the uptodate bits on error
2427 * set the uptodate bits if things worked
2428 * set the page up to date if all extents in the tree are uptodate
2429 * clear the lock bit in the extent tree
2430 * unlock the page if there are no other extents locked for it
2431 *
2432 * Scheduling is not allowed, so the extent state tree is expected
2433 * to have one and only one object corresponding to this IO.
2434 */
2435 static void end_bio_extent_readpage(struct bio *bio, int err)
2436 {
2437 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2438 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2439 struct bio_vec *bvec = bio->bi_io_vec;
2440 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2441 struct extent_io_tree *tree;
2442 u64 offset = 0;
2443 u64 start;
2444 u64 end;
2445 u64 len;
2446 u64 extent_start = 0;
2447 u64 extent_len = 0;
2448 int mirror;
2449 int ret;
2450
2451 if (err)
2452 uptodate = 0;
2453
2454 do {
2455 struct page *page = bvec->bv_page;
2456 struct inode *inode = page->mapping->host;
2457
2458 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2459 "mirror=%lu\n", (u64)bio->bi_sector, err,
2460 io_bio->mirror_num);
2461 tree = &BTRFS_I(inode)->io_tree;
2462
2463 /* We always issue full-page reads, but if some block
2464 * in a page fails to read, blk_update_request() will
2465 * advance bv_offset and adjust bv_len to compensate.
2466 * Print a warning for nonzero offsets, and an error
2467 * if they don't add up to a full page. */
2468 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2469 printk("%s page read in btrfs with offset %u and length %u\n",
2470 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2471 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2472 bvec->bv_offset, bvec->bv_len);
2473
2474 start = page_offset(page);
2475 end = start + bvec->bv_offset + bvec->bv_len - 1;
2476 len = bvec->bv_len;
2477
2478 if (++bvec <= bvec_end)
2479 prefetchw(&bvec->bv_page->flags);
2480
2481 mirror = io_bio->mirror_num;
2482 if (likely(uptodate && tree->ops &&
2483 tree->ops->readpage_end_io_hook)) {
2484 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2485 page, start, end,
2486 mirror);
2487 if (ret)
2488 uptodate = 0;
2489 else
2490 clean_io_failure(start, page);
2491 }
2492
2493 if (likely(uptodate))
2494 goto readpage_ok;
2495
2496 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2497 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2498 if (!ret && !err &&
2499 test_bit(BIO_UPTODATE, &bio->bi_flags))
2500 uptodate = 1;
2501 } else {
2502 /*
2503 * The generic bio_readpage_error handles errors the
2504 * following way: If possible, new read requests are
2505 * created and submitted and will end up in
2506 * end_bio_extent_readpage as well (if we're lucky, not
2507 * in the !uptodate case). In that case it returns 0 and
2508 * we just go on with the next page in our bio. If it
2509 * can't handle the error it will return -EIO and we
2510 * remain responsible for that page.
2511 */
2512 ret = bio_readpage_error(bio, offset, page, start, end,
2513 mirror);
2514 if (ret == 0) {
2515 uptodate =
2516 test_bit(BIO_UPTODATE, &bio->bi_flags);
2517 if (err)
2518 uptodate = 0;
2519 continue;
2520 }
2521 }
2522 readpage_ok:
2523 if (likely(uptodate)) {
2524 loff_t i_size = i_size_read(inode);
2525 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2526 unsigned offset;
2527
2528 /* Zero out the end if this page straddles i_size */
2529 offset = i_size & (PAGE_CACHE_SIZE-1);
2530 if (page->index == end_index && offset)
2531 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2532 SetPageUptodate(page);
2533 } else {
2534 ClearPageUptodate(page);
2535 SetPageError(page);
2536 }
2537 unlock_page(page);
2538 offset += len;
2539
2540 if (unlikely(!uptodate)) {
2541 if (extent_len) {
2542 endio_readpage_release_extent(tree,
2543 extent_start,
2544 extent_len, 1);
2545 extent_start = 0;
2546 extent_len = 0;
2547 }
2548 endio_readpage_release_extent(tree, start,
2549 end - start + 1, 0);
2550 } else if (!extent_len) {
2551 extent_start = start;
2552 extent_len = end + 1 - start;
2553 } else if (extent_start + extent_len == start) {
2554 extent_len += end + 1 - start;
2555 } else {
2556 endio_readpage_release_extent(tree, extent_start,
2557 extent_len, uptodate);
2558 extent_start = start;
2559 extent_len = end + 1 - start;
2560 }
2561 } while (bvec <= bvec_end);
2562
2563 if (extent_len)
2564 endio_readpage_release_extent(tree, extent_start, extent_len,
2565 uptodate);
2566 if (io_bio->end_io)
2567 io_bio->end_io(io_bio, err);
2568 bio_put(bio);
2569 }
2570
2571 /*
2572 * this allocates from the btrfs_bioset. We're returning a bio right now
2573 * but you can call btrfs_io_bio for the appropriate container_of magic
2574 */
2575 struct bio *
2576 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2577 gfp_t gfp_flags)
2578 {
2579 struct btrfs_io_bio *btrfs_bio;
2580 struct bio *bio;
2581
2582 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2583
2584 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2585 while (!bio && (nr_vecs /= 2)) {
2586 bio = bio_alloc_bioset(gfp_flags,
2587 nr_vecs, btrfs_bioset);
2588 }
2589 }
2590
2591 if (bio) {
2592 bio->bi_size = 0;
2593 bio->bi_bdev = bdev;
2594 bio->bi_sector = first_sector;
2595 btrfs_bio = btrfs_io_bio(bio);
2596 btrfs_bio->csum = NULL;
2597 btrfs_bio->csum_allocated = NULL;
2598 btrfs_bio->end_io = NULL;
2599 }
2600 return bio;
2601 }
2602
2603 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2604 {
2605 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2606 }
2607
2608
2609 /* this also allocates from the btrfs_bioset */
2610 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2611 {
2612 struct btrfs_io_bio *btrfs_bio;
2613 struct bio *bio;
2614
2615 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2616 if (bio) {
2617 btrfs_bio = btrfs_io_bio(bio);
2618 btrfs_bio->csum = NULL;
2619 btrfs_bio->csum_allocated = NULL;
2620 btrfs_bio->end_io = NULL;
2621 }
2622 return bio;
2623 }
2624
2625
2626 static int __must_check submit_one_bio(int rw, struct bio *bio,
2627 int mirror_num, unsigned long bio_flags)
2628 {
2629 int ret = 0;
2630 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2631 struct page *page = bvec->bv_page;
2632 struct extent_io_tree *tree = bio->bi_private;
2633 u64 start;
2634
2635 start = page_offset(page) + bvec->bv_offset;
2636
2637 bio->bi_private = NULL;
2638
2639 bio_get(bio);
2640
2641 if (tree->ops && tree->ops->submit_bio_hook)
2642 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2643 mirror_num, bio_flags, start);
2644 else
2645 btrfsic_submit_bio(rw, bio);
2646
2647 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2648 ret = -EOPNOTSUPP;
2649 bio_put(bio);
2650 return ret;
2651 }
2652
2653 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2654 unsigned long offset, size_t size, struct bio *bio,
2655 unsigned long bio_flags)
2656 {
2657 int ret = 0;
2658 if (tree->ops && tree->ops->merge_bio_hook)
2659 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2660 bio_flags);
2661 BUG_ON(ret < 0);
2662 return ret;
2663
2664 }
2665
2666 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2667 struct page *page, sector_t sector,
2668 size_t size, unsigned long offset,
2669 struct block_device *bdev,
2670 struct bio **bio_ret,
2671 unsigned long max_pages,
2672 bio_end_io_t end_io_func,
2673 int mirror_num,
2674 unsigned long prev_bio_flags,
2675 unsigned long bio_flags)
2676 {
2677 int ret = 0;
2678 struct bio *bio;
2679 int nr;
2680 int contig = 0;
2681 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2682 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2683 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2684
2685 if (bio_ret && *bio_ret) {
2686 bio = *bio_ret;
2687 if (old_compressed)
2688 contig = bio->bi_sector == sector;
2689 else
2690 contig = bio_end_sector(bio) == sector;
2691
2692 if (prev_bio_flags != bio_flags || !contig ||
2693 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2694 bio_add_page(bio, page, page_size, offset) < page_size) {
2695 ret = submit_one_bio(rw, bio, mirror_num,
2696 prev_bio_flags);
2697 if (ret < 0)
2698 return ret;
2699 bio = NULL;
2700 } else {
2701 return 0;
2702 }
2703 }
2704 if (this_compressed)
2705 nr = BIO_MAX_PAGES;
2706 else
2707 nr = bio_get_nr_vecs(bdev);
2708
2709 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2710 if (!bio)
2711 return -ENOMEM;
2712
2713 bio_add_page(bio, page, page_size, offset);
2714 bio->bi_end_io = end_io_func;
2715 bio->bi_private = tree;
2716
2717 if (bio_ret)
2718 *bio_ret = bio;
2719 else
2720 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2721
2722 return ret;
2723 }
2724
2725 static void attach_extent_buffer_page(struct extent_buffer *eb,
2726 struct page *page)
2727 {
2728 if (!PagePrivate(page)) {
2729 SetPagePrivate(page);
2730 page_cache_get(page);
2731 set_page_private(page, (unsigned long)eb);
2732 } else {
2733 WARN_ON(page->private != (unsigned long)eb);
2734 }
2735 }
2736
2737 void set_page_extent_mapped(struct page *page)
2738 {
2739 if (!PagePrivate(page)) {
2740 SetPagePrivate(page);
2741 page_cache_get(page);
2742 set_page_private(page, EXTENT_PAGE_PRIVATE);
2743 }
2744 }
2745
2746 static struct extent_map *
2747 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2748 u64 start, u64 len, get_extent_t *get_extent,
2749 struct extent_map **em_cached)
2750 {
2751 struct extent_map *em;
2752
2753 if (em_cached && *em_cached) {
2754 em = *em_cached;
2755 if (em->in_tree && start >= em->start &&
2756 start < extent_map_end(em)) {
2757 atomic_inc(&em->refs);
2758 return em;
2759 }
2760
2761 free_extent_map(em);
2762 *em_cached = NULL;
2763 }
2764
2765 em = get_extent(inode, page, pg_offset, start, len, 0);
2766 if (em_cached && !IS_ERR_OR_NULL(em)) {
2767 BUG_ON(*em_cached);
2768 atomic_inc(&em->refs);
2769 *em_cached = em;
2770 }
2771 return em;
2772 }
2773 /*
2774 * basic readpage implementation. Locked extent state structs are inserted
2775 * into the tree that are removed when the IO is done (by the end_io
2776 * handlers)
2777 * XXX JDM: This needs looking at to ensure proper page locking
2778 */
2779 static int __do_readpage(struct extent_io_tree *tree,
2780 struct page *page,
2781 get_extent_t *get_extent,
2782 struct extent_map **em_cached,
2783 struct bio **bio, int mirror_num,
2784 unsigned long *bio_flags, int rw)
2785 {
2786 struct inode *inode = page->mapping->host;
2787 u64 start = page_offset(page);
2788 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2789 u64 end;
2790 u64 cur = start;
2791 u64 extent_offset;
2792 u64 last_byte = i_size_read(inode);
2793 u64 block_start;
2794 u64 cur_end;
2795 sector_t sector;
2796 struct extent_map *em;
2797 struct block_device *bdev;
2798 int ret;
2799 int nr = 0;
2800 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2801 size_t pg_offset = 0;
2802 size_t iosize;
2803 size_t disk_io_size;
2804 size_t blocksize = inode->i_sb->s_blocksize;
2805 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2806
2807 set_page_extent_mapped(page);
2808
2809 end = page_end;
2810 if (!PageUptodate(page)) {
2811 if (cleancache_get_page(page) == 0) {
2812 BUG_ON(blocksize != PAGE_SIZE);
2813 unlock_extent(tree, start, end);
2814 goto out;
2815 }
2816 }
2817
2818 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2819 char *userpage;
2820 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2821
2822 if (zero_offset) {
2823 iosize = PAGE_CACHE_SIZE - zero_offset;
2824 userpage = kmap_atomic(page);
2825 memset(userpage + zero_offset, 0, iosize);
2826 flush_dcache_page(page);
2827 kunmap_atomic(userpage);
2828 }
2829 }
2830 while (cur <= end) {
2831 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2832
2833 if (cur >= last_byte) {
2834 char *userpage;
2835 struct extent_state *cached = NULL;
2836
2837 iosize = PAGE_CACHE_SIZE - pg_offset;
2838 userpage = kmap_atomic(page);
2839 memset(userpage + pg_offset, 0, iosize);
2840 flush_dcache_page(page);
2841 kunmap_atomic(userpage);
2842 set_extent_uptodate(tree, cur, cur + iosize - 1,
2843 &cached, GFP_NOFS);
2844 if (!parent_locked)
2845 unlock_extent_cached(tree, cur,
2846 cur + iosize - 1,
2847 &cached, GFP_NOFS);
2848 break;
2849 }
2850 em = __get_extent_map(inode, page, pg_offset, cur,
2851 end - cur + 1, get_extent, em_cached);
2852 if (IS_ERR_OR_NULL(em)) {
2853 SetPageError(page);
2854 if (!parent_locked)
2855 unlock_extent(tree, cur, end);
2856 break;
2857 }
2858 extent_offset = cur - em->start;
2859 BUG_ON(extent_map_end(em) <= cur);
2860 BUG_ON(end < cur);
2861
2862 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2863 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2864 extent_set_compress_type(&this_bio_flag,
2865 em->compress_type);
2866 }
2867
2868 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2869 cur_end = min(extent_map_end(em) - 1, end);
2870 iosize = ALIGN(iosize, blocksize);
2871 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2872 disk_io_size = em->block_len;
2873 sector = em->block_start >> 9;
2874 } else {
2875 sector = (em->block_start + extent_offset) >> 9;
2876 disk_io_size = iosize;
2877 }
2878 bdev = em->bdev;
2879 block_start = em->block_start;
2880 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2881 block_start = EXTENT_MAP_HOLE;
2882 free_extent_map(em);
2883 em = NULL;
2884
2885 /* we've found a hole, just zero and go on */
2886 if (block_start == EXTENT_MAP_HOLE) {
2887 char *userpage;
2888 struct extent_state *cached = NULL;
2889
2890 userpage = kmap_atomic(page);
2891 memset(userpage + pg_offset, 0, iosize);
2892 flush_dcache_page(page);
2893 kunmap_atomic(userpage);
2894
2895 set_extent_uptodate(tree, cur, cur + iosize - 1,
2896 &cached, GFP_NOFS);
2897 unlock_extent_cached(tree, cur, cur + iosize - 1,
2898 &cached, GFP_NOFS);
2899 cur = cur + iosize;
2900 pg_offset += iosize;
2901 continue;
2902 }
2903 /* the get_extent function already copied into the page */
2904 if (test_range_bit(tree, cur, cur_end,
2905 EXTENT_UPTODATE, 1, NULL)) {
2906 check_page_uptodate(tree, page);
2907 if (!parent_locked)
2908 unlock_extent(tree, cur, cur + iosize - 1);
2909 cur = cur + iosize;
2910 pg_offset += iosize;
2911 continue;
2912 }
2913 /* we have an inline extent but it didn't get marked up
2914 * to date. Error out
2915 */
2916 if (block_start == EXTENT_MAP_INLINE) {
2917 SetPageError(page);
2918 if (!parent_locked)
2919 unlock_extent(tree, cur, cur + iosize - 1);
2920 cur = cur + iosize;
2921 pg_offset += iosize;
2922 continue;
2923 }
2924
2925 pnr -= page->index;
2926 ret = submit_extent_page(rw, tree, page,
2927 sector, disk_io_size, pg_offset,
2928 bdev, bio, pnr,
2929 end_bio_extent_readpage, mirror_num,
2930 *bio_flags,
2931 this_bio_flag);
2932 if (!ret) {
2933 nr++;
2934 *bio_flags = this_bio_flag;
2935 } else {
2936 SetPageError(page);
2937 if (!parent_locked)
2938 unlock_extent(tree, cur, cur + iosize - 1);
2939 }
2940 cur = cur + iosize;
2941 pg_offset += iosize;
2942 }
2943 out:
2944 if (!nr) {
2945 if (!PageError(page))
2946 SetPageUptodate(page);
2947 unlock_page(page);
2948 }
2949 return 0;
2950 }
2951
2952 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2953 struct page *pages[], int nr_pages,
2954 u64 start, u64 end,
2955 get_extent_t *get_extent,
2956 struct extent_map **em_cached,
2957 struct bio **bio, int mirror_num,
2958 unsigned long *bio_flags, int rw)
2959 {
2960 struct inode *inode;
2961 struct btrfs_ordered_extent *ordered;
2962 int index;
2963
2964 inode = pages[0]->mapping->host;
2965 while (1) {
2966 lock_extent(tree, start, end);
2967 ordered = btrfs_lookup_ordered_range(inode, start,
2968 end - start + 1);
2969 if (!ordered)
2970 break;
2971 unlock_extent(tree, start, end);
2972 btrfs_start_ordered_extent(inode, ordered, 1);
2973 btrfs_put_ordered_extent(ordered);
2974 }
2975
2976 for (index = 0; index < nr_pages; index++) {
2977 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2978 mirror_num, bio_flags, rw);
2979 page_cache_release(pages[index]);
2980 }
2981 }
2982
2983 static void __extent_readpages(struct extent_io_tree *tree,
2984 struct page *pages[],
2985 int nr_pages, get_extent_t *get_extent,
2986 struct extent_map **em_cached,
2987 struct bio **bio, int mirror_num,
2988 unsigned long *bio_flags, int rw)
2989 {
2990 u64 start = 0;
2991 u64 end = 0;
2992 u64 page_start;
2993 int index;
2994 int first_index = 0;
2995
2996 for (index = 0; index < nr_pages; index++) {
2997 page_start = page_offset(pages[index]);
2998 if (!end) {
2999 start = page_start;
3000 end = start + PAGE_CACHE_SIZE - 1;
3001 first_index = index;
3002 } else if (end + 1 == page_start) {
3003 end += PAGE_CACHE_SIZE;
3004 } else {
3005 __do_contiguous_readpages(tree, &pages[first_index],
3006 index - first_index, start,
3007 end, get_extent, em_cached,
3008 bio, mirror_num, bio_flags,
3009 rw);
3010 start = page_start;
3011 end = start + PAGE_CACHE_SIZE - 1;
3012 first_index = index;
3013 }
3014 }
3015
3016 if (end)
3017 __do_contiguous_readpages(tree, &pages[first_index],
3018 index - first_index, start,
3019 end, get_extent, em_cached, bio,
3020 mirror_num, bio_flags, rw);
3021 }
3022
3023 static int __extent_read_full_page(struct extent_io_tree *tree,
3024 struct page *page,
3025 get_extent_t *get_extent,
3026 struct bio **bio, int mirror_num,
3027 unsigned long *bio_flags, int rw)
3028 {
3029 struct inode *inode = page->mapping->host;
3030 struct btrfs_ordered_extent *ordered;
3031 u64 start = page_offset(page);
3032 u64 end = start + PAGE_CACHE_SIZE - 1;
3033 int ret;
3034
3035 while (1) {
3036 lock_extent(tree, start, end);
3037 ordered = btrfs_lookup_ordered_extent(inode, start);
3038 if (!ordered)
3039 break;
3040 unlock_extent(tree, start, end);
3041 btrfs_start_ordered_extent(inode, ordered, 1);
3042 btrfs_put_ordered_extent(ordered);
3043 }
3044
3045 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3046 bio_flags, rw);
3047 return ret;
3048 }
3049
3050 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3051 get_extent_t *get_extent, int mirror_num)
3052 {
3053 struct bio *bio = NULL;
3054 unsigned long bio_flags = 0;
3055 int ret;
3056
3057 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3058 &bio_flags, READ);
3059 if (bio)
3060 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3061 return ret;
3062 }
3063
3064 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3065 get_extent_t *get_extent, int mirror_num)
3066 {
3067 struct bio *bio = NULL;
3068 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3069 int ret;
3070
3071 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3072 &bio_flags, READ);
3073 if (bio)
3074 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3075 return ret;
3076 }
3077
3078 static noinline void update_nr_written(struct page *page,
3079 struct writeback_control *wbc,
3080 unsigned long nr_written)
3081 {
3082 wbc->nr_to_write -= nr_written;
3083 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3084 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3085 page->mapping->writeback_index = page->index + nr_written;
3086 }
3087
3088 /*
3089 * the writepage semantics are similar to regular writepage. extent
3090 * records are inserted to lock ranges in the tree, and as dirty areas
3091 * are found, they are marked writeback. Then the lock bits are removed
3092 * and the end_io handler clears the writeback ranges
3093 */
3094 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3095 void *data)
3096 {
3097 struct inode *inode = page->mapping->host;
3098 struct extent_page_data *epd = data;
3099 struct extent_io_tree *tree = epd->tree;
3100 u64 start = page_offset(page);
3101 u64 delalloc_start;
3102 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3103 u64 end;
3104 u64 cur = start;
3105 u64 extent_offset;
3106 u64 last_byte = i_size_read(inode);
3107 u64 block_start;
3108 u64 iosize;
3109 sector_t sector;
3110 struct extent_state *cached_state = NULL;
3111 struct extent_map *em;
3112 struct block_device *bdev;
3113 int ret;
3114 int nr = 0;
3115 size_t pg_offset = 0;
3116 size_t blocksize;
3117 loff_t i_size = i_size_read(inode);
3118 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3119 u64 nr_delalloc;
3120 u64 delalloc_end;
3121 int page_started;
3122 int compressed;
3123 int write_flags;
3124 unsigned long nr_written = 0;
3125 bool fill_delalloc = true;
3126
3127 if (wbc->sync_mode == WB_SYNC_ALL)
3128 write_flags = WRITE_SYNC;
3129 else
3130 write_flags = WRITE;
3131
3132 trace___extent_writepage(page, inode, wbc);
3133
3134 WARN_ON(!PageLocked(page));
3135
3136 ClearPageError(page);
3137
3138 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3139 if (page->index > end_index ||
3140 (page->index == end_index && !pg_offset)) {
3141 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3142 unlock_page(page);
3143 return 0;
3144 }
3145
3146 if (page->index == end_index) {
3147 char *userpage;
3148
3149 userpage = kmap_atomic(page);
3150 memset(userpage + pg_offset, 0,
3151 PAGE_CACHE_SIZE - pg_offset);
3152 kunmap_atomic(userpage);
3153 flush_dcache_page(page);
3154 }
3155 pg_offset = 0;
3156
3157 set_page_extent_mapped(page);
3158
3159 if (!tree->ops || !tree->ops->fill_delalloc)
3160 fill_delalloc = false;
3161
3162 delalloc_start = start;
3163 delalloc_end = 0;
3164 page_started = 0;
3165 if (!epd->extent_locked && fill_delalloc) {
3166 u64 delalloc_to_write = 0;
3167 /*
3168 * make sure the wbc mapping index is at least updated
3169 * to this page.
3170 */
3171 update_nr_written(page, wbc, 0);
3172
3173 while (delalloc_end < page_end) {
3174 nr_delalloc = find_lock_delalloc_range(inode, tree,
3175 page,
3176 &delalloc_start,
3177 &delalloc_end,
3178 128 * 1024 * 1024);
3179 if (nr_delalloc == 0) {
3180 delalloc_start = delalloc_end + 1;
3181 continue;
3182 }
3183 ret = tree->ops->fill_delalloc(inode, page,
3184 delalloc_start,
3185 delalloc_end,
3186 &page_started,
3187 &nr_written);
3188 /* File system has been set read-only */
3189 if (ret) {
3190 SetPageError(page);
3191 goto done;
3192 }
3193 /*
3194 * delalloc_end is already one less than the total
3195 * length, so we don't subtract one from
3196 * PAGE_CACHE_SIZE
3197 */
3198 delalloc_to_write += (delalloc_end - delalloc_start +
3199 PAGE_CACHE_SIZE) >>
3200 PAGE_CACHE_SHIFT;
3201 delalloc_start = delalloc_end + 1;
3202 }
3203 if (wbc->nr_to_write < delalloc_to_write) {
3204 int thresh = 8192;
3205
3206 if (delalloc_to_write < thresh * 2)
3207 thresh = delalloc_to_write;
3208 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3209 thresh);
3210 }
3211
3212 /* did the fill delalloc function already unlock and start
3213 * the IO?
3214 */
3215 if (page_started) {
3216 ret = 0;
3217 /*
3218 * we've unlocked the page, so we can't update
3219 * the mapping's writeback index, just update
3220 * nr_to_write.
3221 */
3222 wbc->nr_to_write -= nr_written;
3223 goto done_unlocked;
3224 }
3225 }
3226 if (tree->ops && tree->ops->writepage_start_hook) {
3227 ret = tree->ops->writepage_start_hook(page, start,
3228 page_end);
3229 if (ret) {
3230 /* Fixup worker will requeue */
3231 if (ret == -EBUSY)
3232 wbc->pages_skipped++;
3233 else
3234 redirty_page_for_writepage(wbc, page);
3235 update_nr_written(page, wbc, nr_written);
3236 unlock_page(page);
3237 ret = 0;
3238 goto done_unlocked;
3239 }
3240 }
3241
3242 /*
3243 * we don't want to touch the inode after unlocking the page,
3244 * so we update the mapping writeback index now
3245 */
3246 update_nr_written(page, wbc, nr_written + 1);
3247
3248 end = page_end;
3249 if (last_byte <= start) {
3250 if (tree->ops && tree->ops->writepage_end_io_hook)
3251 tree->ops->writepage_end_io_hook(page, start,
3252 page_end, NULL, 1);
3253 goto done;
3254 }
3255
3256 blocksize = inode->i_sb->s_blocksize;
3257
3258 while (cur <= end) {
3259 if (cur >= last_byte) {
3260 if (tree->ops && tree->ops->writepage_end_io_hook)
3261 tree->ops->writepage_end_io_hook(page, cur,
3262 page_end, NULL, 1);
3263 break;
3264 }
3265 em = epd->get_extent(inode, page, pg_offset, cur,
3266 end - cur + 1, 1);
3267 if (IS_ERR_OR_NULL(em)) {
3268 SetPageError(page);
3269 break;
3270 }
3271
3272 extent_offset = cur - em->start;
3273 BUG_ON(extent_map_end(em) <= cur);
3274 BUG_ON(end < cur);
3275 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3276 iosize = ALIGN(iosize, blocksize);
3277 sector = (em->block_start + extent_offset) >> 9;
3278 bdev = em->bdev;
3279 block_start = em->block_start;
3280 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3281 free_extent_map(em);
3282 em = NULL;
3283
3284 /*
3285 * compressed and inline extents are written through other
3286 * paths in the FS
3287 */
3288 if (compressed || block_start == EXTENT_MAP_HOLE ||
3289 block_start == EXTENT_MAP_INLINE) {
3290 /*
3291 * end_io notification does not happen here for
3292 * compressed extents
3293 */
3294 if (!compressed && tree->ops &&
3295 tree->ops->writepage_end_io_hook)
3296 tree->ops->writepage_end_io_hook(page, cur,
3297 cur + iosize - 1,
3298 NULL, 1);
3299 else if (compressed) {
3300 /* we don't want to end_page_writeback on
3301 * a compressed extent. this happens
3302 * elsewhere
3303 */
3304 nr++;
3305 }
3306
3307 cur += iosize;
3308 pg_offset += iosize;
3309 continue;
3310 }
3311 /* leave this out until we have a page_mkwrite call */
3312 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3313 EXTENT_DIRTY, 0, NULL)) {
3314 cur = cur + iosize;
3315 pg_offset += iosize;
3316 continue;
3317 }
3318
3319 if (tree->ops && tree->ops->writepage_io_hook) {
3320 ret = tree->ops->writepage_io_hook(page, cur,
3321 cur + iosize - 1);
3322 } else {
3323 ret = 0;
3324 }
3325 if (ret) {
3326 SetPageError(page);
3327 } else {
3328 unsigned long max_nr = end_index + 1;
3329
3330 set_range_writeback(tree, cur, cur + iosize - 1);
3331 if (!PageWriteback(page)) {
3332 printk(KERN_ERR "btrfs warning page %lu not "
3333 "writeback, cur %llu end %llu\n",
3334 page->index, cur, end);
3335 }
3336
3337 ret = submit_extent_page(write_flags, tree, page,
3338 sector, iosize, pg_offset,
3339 bdev, &epd->bio, max_nr,
3340 end_bio_extent_writepage,
3341 0, 0, 0);
3342 if (ret)
3343 SetPageError(page);
3344 }
3345 cur = cur + iosize;
3346 pg_offset += iosize;
3347 nr++;
3348 }
3349 done:
3350 if (nr == 0) {
3351 /* make sure the mapping tag for page dirty gets cleared */
3352 set_page_writeback(page);
3353 end_page_writeback(page);
3354 }
3355 unlock_page(page);
3356
3357 done_unlocked:
3358
3359 /* drop our reference on any cached states */
3360 free_extent_state(cached_state);
3361 return 0;
3362 }
3363
3364 static int eb_wait(void *word)
3365 {
3366 io_schedule();
3367 return 0;
3368 }
3369
3370 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3371 {
3372 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3373 TASK_UNINTERRUPTIBLE);
3374 }
3375
3376 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3377 struct btrfs_fs_info *fs_info,
3378 struct extent_page_data *epd)
3379 {
3380 unsigned long i, num_pages;
3381 int flush = 0;
3382 int ret = 0;
3383
3384 if (!btrfs_try_tree_write_lock(eb)) {
3385 flush = 1;
3386 flush_write_bio(epd);
3387 btrfs_tree_lock(eb);
3388 }
3389
3390 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3391 btrfs_tree_unlock(eb);
3392 if (!epd->sync_io)
3393 return 0;
3394 if (!flush) {
3395 flush_write_bio(epd);
3396 flush = 1;
3397 }
3398 while (1) {
3399 wait_on_extent_buffer_writeback(eb);
3400 btrfs_tree_lock(eb);
3401 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3402 break;
3403 btrfs_tree_unlock(eb);
3404 }
3405 }
3406
3407 /*
3408 * We need to do this to prevent races in people who check if the eb is
3409 * under IO since we can end up having no IO bits set for a short period
3410 * of time.
3411 */
3412 spin_lock(&eb->refs_lock);
3413 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3414 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3415 spin_unlock(&eb->refs_lock);
3416 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3417 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3418 -eb->len,
3419 fs_info->dirty_metadata_batch);
3420 ret = 1;
3421 } else {
3422 spin_unlock(&eb->refs_lock);
3423 }
3424
3425 btrfs_tree_unlock(eb);
3426
3427 if (!ret)
3428 return ret;
3429
3430 num_pages = num_extent_pages(eb->start, eb->len);
3431 for (i = 0; i < num_pages; i++) {
3432 struct page *p = extent_buffer_page(eb, i);
3433
3434 if (!trylock_page(p)) {
3435 if (!flush) {
3436 flush_write_bio(epd);
3437 flush = 1;
3438 }
3439 lock_page(p);
3440 }
3441 }
3442
3443 return ret;
3444 }
3445
3446 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3447 {
3448 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3449 smp_mb__after_clear_bit();
3450 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3451 }
3452
3453 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3454 {
3455 int uptodate = err == 0;
3456 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3457 struct extent_buffer *eb;
3458 int done;
3459
3460 do {
3461 struct page *page = bvec->bv_page;
3462
3463 bvec--;
3464 eb = (struct extent_buffer *)page->private;
3465 BUG_ON(!eb);
3466 done = atomic_dec_and_test(&eb->io_pages);
3467
3468 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3469 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3470 ClearPageUptodate(page);
3471 SetPageError(page);
3472 }
3473
3474 end_page_writeback(page);
3475
3476 if (!done)
3477 continue;
3478
3479 end_extent_buffer_writeback(eb);
3480 } while (bvec >= bio->bi_io_vec);
3481
3482 bio_put(bio);
3483
3484 }
3485
3486 static int write_one_eb(struct extent_buffer *eb,
3487 struct btrfs_fs_info *fs_info,
3488 struct writeback_control *wbc,
3489 struct extent_page_data *epd)
3490 {
3491 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3492 u64 offset = eb->start;
3493 unsigned long i, num_pages;
3494 unsigned long bio_flags = 0;
3495 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3496 int ret = 0;
3497
3498 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3499 num_pages = num_extent_pages(eb->start, eb->len);
3500 atomic_set(&eb->io_pages, num_pages);
3501 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3502 bio_flags = EXTENT_BIO_TREE_LOG;
3503
3504 for (i = 0; i < num_pages; i++) {
3505 struct page *p = extent_buffer_page(eb, i);
3506
3507 clear_page_dirty_for_io(p);
3508 set_page_writeback(p);
3509 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3510 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3511 -1, end_bio_extent_buffer_writepage,
3512 0, epd->bio_flags, bio_flags);
3513 epd->bio_flags = bio_flags;
3514 if (ret) {
3515 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3516 SetPageError(p);
3517 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3518 end_extent_buffer_writeback(eb);
3519 ret = -EIO;
3520 break;
3521 }
3522 offset += PAGE_CACHE_SIZE;
3523 update_nr_written(p, wbc, 1);
3524 unlock_page(p);
3525 }
3526
3527 if (unlikely(ret)) {
3528 for (; i < num_pages; i++) {
3529 struct page *p = extent_buffer_page(eb, i);
3530 unlock_page(p);
3531 }
3532 }
3533
3534 return ret;
3535 }
3536
3537 int btree_write_cache_pages(struct address_space *mapping,
3538 struct writeback_control *wbc)
3539 {
3540 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3541 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3542 struct extent_buffer *eb, *prev_eb = NULL;
3543 struct extent_page_data epd = {
3544 .bio = NULL,
3545 .tree = tree,
3546 .extent_locked = 0,
3547 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3548 .bio_flags = 0,
3549 };
3550 int ret = 0;
3551 int done = 0;
3552 int nr_to_write_done = 0;
3553 struct pagevec pvec;
3554 int nr_pages;
3555 pgoff_t index;
3556 pgoff_t end; /* Inclusive */
3557 int scanned = 0;
3558 int tag;
3559
3560 pagevec_init(&pvec, 0);
3561 if (wbc->range_cyclic) {
3562 index = mapping->writeback_index; /* Start from prev offset */
3563 end = -1;
3564 } else {
3565 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3566 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3567 scanned = 1;
3568 }
3569 if (wbc->sync_mode == WB_SYNC_ALL)
3570 tag = PAGECACHE_TAG_TOWRITE;
3571 else
3572 tag = PAGECACHE_TAG_DIRTY;
3573 retry:
3574 if (wbc->sync_mode == WB_SYNC_ALL)
3575 tag_pages_for_writeback(mapping, index, end);
3576 while (!done && !nr_to_write_done && (index <= end) &&
3577 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3578 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3579 unsigned i;
3580
3581 scanned = 1;
3582 for (i = 0; i < nr_pages; i++) {
3583 struct page *page = pvec.pages[i];
3584
3585 if (!PagePrivate(page))
3586 continue;
3587
3588 if (!wbc->range_cyclic && page->index > end) {
3589 done = 1;
3590 break;
3591 }
3592
3593 spin_lock(&mapping->private_lock);
3594 if (!PagePrivate(page)) {
3595 spin_unlock(&mapping->private_lock);
3596 continue;
3597 }
3598
3599 eb = (struct extent_buffer *)page->private;
3600
3601 /*
3602 * Shouldn't happen and normally this would be a BUG_ON
3603 * but no sense in crashing the users box for something
3604 * we can survive anyway.
3605 */
3606 if (WARN_ON(!eb)) {
3607 spin_unlock(&mapping->private_lock);
3608 continue;
3609 }
3610
3611 if (eb == prev_eb) {
3612 spin_unlock(&mapping->private_lock);
3613 continue;
3614 }
3615
3616 ret = atomic_inc_not_zero(&eb->refs);
3617 spin_unlock(&mapping->private_lock);
3618 if (!ret)
3619 continue;
3620
3621 prev_eb = eb;
3622 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3623 if (!ret) {
3624 free_extent_buffer(eb);
3625 continue;
3626 }
3627
3628 ret = write_one_eb(eb, fs_info, wbc, &epd);
3629 if (ret) {
3630 done = 1;
3631 free_extent_buffer(eb);
3632 break;
3633 }
3634 free_extent_buffer(eb);
3635
3636 /*
3637 * the filesystem may choose to bump up nr_to_write.
3638 * We have to make sure to honor the new nr_to_write
3639 * at any time
3640 */
3641 nr_to_write_done = wbc->nr_to_write <= 0;
3642 }
3643 pagevec_release(&pvec);
3644 cond_resched();
3645 }
3646 if (!scanned && !done) {
3647 /*
3648 * We hit the last page and there is more work to be done: wrap
3649 * back to the start of the file
3650 */
3651 scanned = 1;
3652 index = 0;
3653 goto retry;
3654 }
3655 flush_write_bio(&epd);
3656 return ret;
3657 }
3658
3659 /**
3660 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3661 * @mapping: address space structure to write
3662 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3663 * @writepage: function called for each page
3664 * @data: data passed to writepage function
3665 *
3666 * If a page is already under I/O, write_cache_pages() skips it, even
3667 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3668 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3669 * and msync() need to guarantee that all the data which was dirty at the time
3670 * the call was made get new I/O started against them. If wbc->sync_mode is
3671 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3672 * existing IO to complete.
3673 */
3674 static int extent_write_cache_pages(struct extent_io_tree *tree,
3675 struct address_space *mapping,
3676 struct writeback_control *wbc,
3677 writepage_t writepage, void *data,
3678 void (*flush_fn)(void *))
3679 {
3680 struct inode *inode = mapping->host;
3681 int ret = 0;
3682 int done = 0;
3683 int nr_to_write_done = 0;
3684 struct pagevec pvec;
3685 int nr_pages;
3686 pgoff_t index;
3687 pgoff_t end; /* Inclusive */
3688 int scanned = 0;
3689 int tag;
3690
3691 /*
3692 * We have to hold onto the inode so that ordered extents can do their
3693 * work when the IO finishes. The alternative to this is failing to add
3694 * an ordered extent if the igrab() fails there and that is a huge pain
3695 * to deal with, so instead just hold onto the inode throughout the
3696 * writepages operation. If it fails here we are freeing up the inode
3697 * anyway and we'd rather not waste our time writing out stuff that is
3698 * going to be truncated anyway.
3699 */
3700 if (!igrab(inode))
3701 return 0;
3702
3703 pagevec_init(&pvec, 0);
3704 if (wbc->range_cyclic) {
3705 index = mapping->writeback_index; /* Start from prev offset */
3706 end = -1;
3707 } else {
3708 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3709 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3710 scanned = 1;
3711 }
3712 if (wbc->sync_mode == WB_SYNC_ALL)
3713 tag = PAGECACHE_TAG_TOWRITE;
3714 else
3715 tag = PAGECACHE_TAG_DIRTY;
3716 retry:
3717 if (wbc->sync_mode == WB_SYNC_ALL)
3718 tag_pages_for_writeback(mapping, index, end);
3719 while (!done && !nr_to_write_done && (index <= end) &&
3720 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3721 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3722 unsigned i;
3723
3724 scanned = 1;
3725 for (i = 0; i < nr_pages; i++) {
3726 struct page *page = pvec.pages[i];
3727
3728 /*
3729 * At this point we hold neither mapping->tree_lock nor
3730 * lock on the page itself: the page may be truncated or
3731 * invalidated (changing page->mapping to NULL), or even
3732 * swizzled back from swapper_space to tmpfs file
3733 * mapping
3734 */
3735 if (!trylock_page(page)) {
3736 flush_fn(data);
3737 lock_page(page);
3738 }
3739
3740 if (unlikely(page->mapping != mapping)) {
3741 unlock_page(page);
3742 continue;
3743 }
3744
3745 if (!wbc->range_cyclic && page->index > end) {
3746 done = 1;
3747 unlock_page(page);
3748 continue;
3749 }
3750
3751 if (wbc->sync_mode != WB_SYNC_NONE) {
3752 if (PageWriteback(page))
3753 flush_fn(data);
3754 wait_on_page_writeback(page);
3755 }
3756
3757 if (PageWriteback(page) ||
3758 !clear_page_dirty_for_io(page)) {
3759 unlock_page(page);
3760 continue;
3761 }
3762
3763 ret = (*writepage)(page, wbc, data);
3764
3765 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3766 unlock_page(page);
3767 ret = 0;
3768 }
3769 if (ret)
3770 done = 1;
3771
3772 /*
3773 * the filesystem may choose to bump up nr_to_write.
3774 * We have to make sure to honor the new nr_to_write
3775 * at any time
3776 */
3777 nr_to_write_done = wbc->nr_to_write <= 0;
3778 }
3779 pagevec_release(&pvec);
3780 cond_resched();
3781 }
3782 if (!scanned && !done) {
3783 /*
3784 * We hit the last page and there is more work to be done: wrap
3785 * back to the start of the file
3786 */
3787 scanned = 1;
3788 index = 0;
3789 goto retry;
3790 }
3791 btrfs_add_delayed_iput(inode);
3792 return ret;
3793 }
3794
3795 static void flush_epd_write_bio(struct extent_page_data *epd)
3796 {
3797 if (epd->bio) {
3798 int rw = WRITE;
3799 int ret;
3800
3801 if (epd->sync_io)
3802 rw = WRITE_SYNC;
3803
3804 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3805 BUG_ON(ret < 0); /* -ENOMEM */
3806 epd->bio = NULL;
3807 }
3808 }
3809
3810 static noinline void flush_write_bio(void *data)
3811 {
3812 struct extent_page_data *epd = data;
3813 flush_epd_write_bio(epd);
3814 }
3815
3816 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3817 get_extent_t *get_extent,
3818 struct writeback_control *wbc)
3819 {
3820 int ret;
3821 struct extent_page_data epd = {
3822 .bio = NULL,
3823 .tree = tree,
3824 .get_extent = get_extent,
3825 .extent_locked = 0,
3826 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3827 .bio_flags = 0,
3828 };
3829
3830 ret = __extent_writepage(page, wbc, &epd);
3831
3832 flush_epd_write_bio(&epd);
3833 return ret;
3834 }
3835
3836 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3837 u64 start, u64 end, get_extent_t *get_extent,
3838 int mode)
3839 {
3840 int ret = 0;
3841 struct address_space *mapping = inode->i_mapping;
3842 struct page *page;
3843 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3844 PAGE_CACHE_SHIFT;
3845
3846 struct extent_page_data epd = {
3847 .bio = NULL,
3848 .tree = tree,
3849 .get_extent = get_extent,
3850 .extent_locked = 1,
3851 .sync_io = mode == WB_SYNC_ALL,
3852 .bio_flags = 0,
3853 };
3854 struct writeback_control wbc_writepages = {
3855 .sync_mode = mode,
3856 .nr_to_write = nr_pages * 2,
3857 .range_start = start,
3858 .range_end = end + 1,
3859 };
3860
3861 while (start <= end) {
3862 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3863 if (clear_page_dirty_for_io(page))
3864 ret = __extent_writepage(page, &wbc_writepages, &epd);
3865 else {
3866 if (tree->ops && tree->ops->writepage_end_io_hook)
3867 tree->ops->writepage_end_io_hook(page, start,
3868 start + PAGE_CACHE_SIZE - 1,
3869 NULL, 1);
3870 unlock_page(page);
3871 }
3872 page_cache_release(page);
3873 start += PAGE_CACHE_SIZE;
3874 }
3875
3876 flush_epd_write_bio(&epd);
3877 return ret;
3878 }
3879
3880 int extent_writepages(struct extent_io_tree *tree,
3881 struct address_space *mapping,
3882 get_extent_t *get_extent,
3883 struct writeback_control *wbc)
3884 {
3885 int ret = 0;
3886 struct extent_page_data epd = {
3887 .bio = NULL,
3888 .tree = tree,
3889 .get_extent = get_extent,
3890 .extent_locked = 0,
3891 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3892 .bio_flags = 0,
3893 };
3894
3895 ret = extent_write_cache_pages(tree, mapping, wbc,
3896 __extent_writepage, &epd,
3897 flush_write_bio);
3898 flush_epd_write_bio(&epd);
3899 return ret;
3900 }
3901
3902 int extent_readpages(struct extent_io_tree *tree,
3903 struct address_space *mapping,
3904 struct list_head *pages, unsigned nr_pages,
3905 get_extent_t get_extent)
3906 {
3907 struct bio *bio = NULL;
3908 unsigned page_idx;
3909 unsigned long bio_flags = 0;
3910 struct page *pagepool[16];
3911 struct page *page;
3912 struct extent_map *em_cached = NULL;
3913 int nr = 0;
3914
3915 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3916 page = list_entry(pages->prev, struct page, lru);
3917
3918 prefetchw(&page->flags);
3919 list_del(&page->lru);
3920 if (add_to_page_cache_lru(page, mapping,
3921 page->index, GFP_NOFS)) {
3922 page_cache_release(page);
3923 continue;
3924 }
3925
3926 pagepool[nr++] = page;
3927 if (nr < ARRAY_SIZE(pagepool))
3928 continue;
3929 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3930 &bio, 0, &bio_flags, READ);
3931 nr = 0;
3932 }
3933 if (nr)
3934 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3935 &bio, 0, &bio_flags, READ);
3936
3937 if (em_cached)
3938 free_extent_map(em_cached);
3939
3940 BUG_ON(!list_empty(pages));
3941 if (bio)
3942 return submit_one_bio(READ, bio, 0, bio_flags);
3943 return 0;
3944 }
3945
3946 /*
3947 * basic invalidatepage code, this waits on any locked or writeback
3948 * ranges corresponding to the page, and then deletes any extent state
3949 * records from the tree
3950 */
3951 int extent_invalidatepage(struct extent_io_tree *tree,
3952 struct page *page, unsigned long offset)
3953 {
3954 struct extent_state *cached_state = NULL;
3955 u64 start = page_offset(page);
3956 u64 end = start + PAGE_CACHE_SIZE - 1;
3957 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3958
3959 start += ALIGN(offset, blocksize);
3960 if (start > end)
3961 return 0;
3962
3963 lock_extent_bits(tree, start, end, 0, &cached_state);
3964 wait_on_page_writeback(page);
3965 clear_extent_bit(tree, start, end,
3966 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3967 EXTENT_DO_ACCOUNTING,
3968 1, 1, &cached_state, GFP_NOFS);
3969 return 0;
3970 }
3971
3972 /*
3973 * a helper for releasepage, this tests for areas of the page that
3974 * are locked or under IO and drops the related state bits if it is safe
3975 * to drop the page.
3976 */
3977 static int try_release_extent_state(struct extent_map_tree *map,
3978 struct extent_io_tree *tree,
3979 struct page *page, gfp_t mask)
3980 {
3981 u64 start = page_offset(page);
3982 u64 end = start + PAGE_CACHE_SIZE - 1;
3983 int ret = 1;
3984
3985 if (test_range_bit(tree, start, end,
3986 EXTENT_IOBITS, 0, NULL))
3987 ret = 0;
3988 else {
3989 if ((mask & GFP_NOFS) == GFP_NOFS)
3990 mask = GFP_NOFS;
3991 /*
3992 * at this point we can safely clear everything except the
3993 * locked bit and the nodatasum bit
3994 */
3995 ret = clear_extent_bit(tree, start, end,
3996 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3997 0, 0, NULL, mask);
3998
3999 /* if clear_extent_bit failed for enomem reasons,
4000 * we can't allow the release to continue.
4001 */
4002 if (ret < 0)
4003 ret = 0;
4004 else
4005 ret = 1;
4006 }
4007 return ret;
4008 }
4009
4010 /*
4011 * a helper for releasepage. As long as there are no locked extents
4012 * in the range corresponding to the page, both state records and extent
4013 * map records are removed
4014 */
4015 int try_release_extent_mapping(struct extent_map_tree *map,
4016 struct extent_io_tree *tree, struct page *page,
4017 gfp_t mask)
4018 {
4019 struct extent_map *em;
4020 u64 start = page_offset(page);
4021 u64 end = start + PAGE_CACHE_SIZE - 1;
4022
4023 if ((mask & __GFP_WAIT) &&
4024 page->mapping->host->i_size > 16 * 1024 * 1024) {
4025 u64 len;
4026 while (start <= end) {
4027 len = end - start + 1;
4028 write_lock(&map->lock);
4029 em = lookup_extent_mapping(map, start, len);
4030 if (!em) {
4031 write_unlock(&map->lock);
4032 break;
4033 }
4034 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4035 em->start != start) {
4036 write_unlock(&map->lock);
4037 free_extent_map(em);
4038 break;
4039 }
4040 if (!test_range_bit(tree, em->start,
4041 extent_map_end(em) - 1,
4042 EXTENT_LOCKED | EXTENT_WRITEBACK,
4043 0, NULL)) {
4044 remove_extent_mapping(map, em);
4045 /* once for the rb tree */
4046 free_extent_map(em);
4047 }
4048 start = extent_map_end(em);
4049 write_unlock(&map->lock);
4050
4051 /* once for us */
4052 free_extent_map(em);
4053 }
4054 }
4055 return try_release_extent_state(map, tree, page, mask);
4056 }
4057
4058 /*
4059 * helper function for fiemap, which doesn't want to see any holes.
4060 * This maps until we find something past 'last'
4061 */
4062 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4063 u64 offset,
4064 u64 last,
4065 get_extent_t *get_extent)
4066 {
4067 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4068 struct extent_map *em;
4069 u64 len;
4070
4071 if (offset >= last)
4072 return NULL;
4073
4074 while (1) {
4075 len = last - offset;
4076 if (len == 0)
4077 break;
4078 len = ALIGN(len, sectorsize);
4079 em = get_extent(inode, NULL, 0, offset, len, 0);
4080 if (IS_ERR_OR_NULL(em))
4081 return em;
4082
4083 /* if this isn't a hole return it */
4084 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4085 em->block_start != EXTENT_MAP_HOLE) {
4086 return em;
4087 }
4088
4089 /* this is a hole, advance to the next extent */
4090 offset = extent_map_end(em);
4091 free_extent_map(em);
4092 if (offset >= last)
4093 break;
4094 }
4095 return NULL;
4096 }
4097
4098 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4099 {
4100 unsigned long cnt = *((unsigned long *)ctx);
4101
4102 cnt++;
4103 *((unsigned long *)ctx) = cnt;
4104
4105 /* Now we're sure that the extent is shared. */
4106 if (cnt > 1)
4107 return 1;
4108 return 0;
4109 }
4110
4111 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4112 __u64 start, __u64 len, get_extent_t *get_extent)
4113 {
4114 int ret = 0;
4115 u64 off = start;
4116 u64 max = start + len;
4117 u32 flags = 0;
4118 u32 found_type;
4119 u64 last;
4120 u64 last_for_get_extent = 0;
4121 u64 disko = 0;
4122 u64 isize = i_size_read(inode);
4123 struct btrfs_key found_key;
4124 struct extent_map *em = NULL;
4125 struct extent_state *cached_state = NULL;
4126 struct btrfs_path *path;
4127 int end = 0;
4128 u64 em_start = 0;
4129 u64 em_len = 0;
4130 u64 em_end = 0;
4131
4132 if (len == 0)
4133 return -EINVAL;
4134
4135 path = btrfs_alloc_path();
4136 if (!path)
4137 return -ENOMEM;
4138 path->leave_spinning = 1;
4139
4140 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4141 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4142
4143 /*
4144 * lookup the last file extent. We're not using i_size here
4145 * because there might be preallocation past i_size
4146 */
4147 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4148 path, btrfs_ino(inode), -1, 0);
4149 if (ret < 0) {
4150 btrfs_free_path(path);
4151 return ret;
4152 }
4153 WARN_ON(!ret);
4154 path->slots[0]--;
4155 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4156 found_type = btrfs_key_type(&found_key);
4157
4158 /* No extents, but there might be delalloc bits */
4159 if (found_key.objectid != btrfs_ino(inode) ||
4160 found_type != BTRFS_EXTENT_DATA_KEY) {
4161 /* have to trust i_size as the end */
4162 last = (u64)-1;
4163 last_for_get_extent = isize;
4164 } else {
4165 /*
4166 * remember the start of the last extent. There are a
4167 * bunch of different factors that go into the length of the
4168 * extent, so its much less complex to remember where it started
4169 */
4170 last = found_key.offset;
4171 last_for_get_extent = last + 1;
4172 }
4173 btrfs_release_path(path);
4174
4175 /*
4176 * we might have some extents allocated but more delalloc past those
4177 * extents. so, we trust isize unless the start of the last extent is
4178 * beyond isize
4179 */
4180 if (last < isize) {
4181 last = (u64)-1;
4182 last_for_get_extent = isize;
4183 }
4184
4185 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4186 &cached_state);
4187
4188 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4189 get_extent);
4190 if (!em)
4191 goto out;
4192 if (IS_ERR(em)) {
4193 ret = PTR_ERR(em);
4194 goto out;
4195 }
4196
4197 while (!end) {
4198 u64 offset_in_extent = 0;
4199
4200 /* break if the extent we found is outside the range */
4201 if (em->start >= max || extent_map_end(em) < off)
4202 break;
4203
4204 /*
4205 * get_extent may return an extent that starts before our
4206 * requested range. We have to make sure the ranges
4207 * we return to fiemap always move forward and don't
4208 * overlap, so adjust the offsets here
4209 */
4210 em_start = max(em->start, off);
4211
4212 /*
4213 * record the offset from the start of the extent
4214 * for adjusting the disk offset below. Only do this if the
4215 * extent isn't compressed since our in ram offset may be past
4216 * what we have actually allocated on disk.
4217 */
4218 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4219 offset_in_extent = em_start - em->start;
4220 em_end = extent_map_end(em);
4221 em_len = em_end - em_start;
4222 disko = 0;
4223 flags = 0;
4224
4225 /*
4226 * bump off for our next call to get_extent
4227 */
4228 off = extent_map_end(em);
4229 if (off >= max)
4230 end = 1;
4231
4232 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4233 end = 1;
4234 flags |= FIEMAP_EXTENT_LAST;
4235 } else if (em->block_start == EXTENT_MAP_INLINE) {
4236 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4237 FIEMAP_EXTENT_NOT_ALIGNED);
4238 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4239 flags |= (FIEMAP_EXTENT_DELALLOC |
4240 FIEMAP_EXTENT_UNKNOWN);
4241 } else {
4242 unsigned long ref_cnt = 0;
4243
4244 disko = em->block_start + offset_in_extent;
4245
4246 /*
4247 * As btrfs supports shared space, this information
4248 * can be exported to userspace tools via
4249 * flag FIEMAP_EXTENT_SHARED.
4250 */
4251 ret = iterate_inodes_from_logical(
4252 em->block_start,
4253 BTRFS_I(inode)->root->fs_info,
4254 path, count_ext_ref, &ref_cnt);
4255 if (ret < 0 && ret != -ENOENT)
4256 goto out_free;
4257
4258 if (ref_cnt > 1)
4259 flags |= FIEMAP_EXTENT_SHARED;
4260 }
4261 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4262 flags |= FIEMAP_EXTENT_ENCODED;
4263
4264 free_extent_map(em);
4265 em = NULL;
4266 if ((em_start >= last) || em_len == (u64)-1 ||
4267 (last == (u64)-1 && isize <= em_end)) {
4268 flags |= FIEMAP_EXTENT_LAST;
4269 end = 1;
4270 }
4271
4272 /* now scan forward to see if this is really the last extent. */
4273 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4274 get_extent);
4275 if (IS_ERR(em)) {
4276 ret = PTR_ERR(em);
4277 goto out;
4278 }
4279 if (!em) {
4280 flags |= FIEMAP_EXTENT_LAST;
4281 end = 1;
4282 }
4283 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4284 em_len, flags);
4285 if (ret)
4286 goto out_free;
4287 }
4288 out_free:
4289 free_extent_map(em);
4290 out:
4291 btrfs_free_path(path);
4292 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4293 &cached_state, GFP_NOFS);
4294 return ret;
4295 }
4296
4297 static void __free_extent_buffer(struct extent_buffer *eb)
4298 {
4299 btrfs_leak_debug_del(&eb->leak_list);
4300 kmem_cache_free(extent_buffer_cache, eb);
4301 }
4302
4303 static int extent_buffer_under_io(struct extent_buffer *eb)
4304 {
4305 return (atomic_read(&eb->io_pages) ||
4306 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4307 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4308 }
4309
4310 /*
4311 * Helper for releasing extent buffer page.
4312 */
4313 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4314 unsigned long start_idx)
4315 {
4316 unsigned long index;
4317 unsigned long num_pages;
4318 struct page *page;
4319 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4320
4321 BUG_ON(extent_buffer_under_io(eb));
4322
4323 num_pages = num_extent_pages(eb->start, eb->len);
4324 index = start_idx + num_pages;
4325 if (start_idx >= index)
4326 return;
4327
4328 do {
4329 index--;
4330 page = extent_buffer_page(eb, index);
4331 if (page && mapped) {
4332 spin_lock(&page->mapping->private_lock);
4333 /*
4334 * We do this since we'll remove the pages after we've
4335 * removed the eb from the radix tree, so we could race
4336 * and have this page now attached to the new eb. So
4337 * only clear page_private if it's still connected to
4338 * this eb.
4339 */
4340 if (PagePrivate(page) &&
4341 page->private == (unsigned long)eb) {
4342 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4343 BUG_ON(PageDirty(page));
4344 BUG_ON(PageWriteback(page));
4345 /*
4346 * We need to make sure we haven't be attached
4347 * to a new eb.
4348 */
4349 ClearPagePrivate(page);
4350 set_page_private(page, 0);
4351 /* One for the page private */
4352 page_cache_release(page);
4353 }
4354 spin_unlock(&page->mapping->private_lock);
4355
4356 }
4357 if (page) {
4358 /* One for when we alloced the page */
4359 page_cache_release(page);
4360 }
4361 } while (index != start_idx);
4362 }
4363
4364 /*
4365 * Helper for releasing the extent buffer.
4366 */
4367 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4368 {
4369 btrfs_release_extent_buffer_page(eb, 0);
4370 __free_extent_buffer(eb);
4371 }
4372
4373 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4374 u64 start,
4375 unsigned long len,
4376 gfp_t mask)
4377 {
4378 struct extent_buffer *eb = NULL;
4379
4380 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4381 if (eb == NULL)
4382 return NULL;
4383 eb->start = start;
4384 eb->len = len;
4385 eb->tree = tree;
4386 eb->bflags = 0;
4387 rwlock_init(&eb->lock);
4388 atomic_set(&eb->write_locks, 0);
4389 atomic_set(&eb->read_locks, 0);
4390 atomic_set(&eb->blocking_readers, 0);
4391 atomic_set(&eb->blocking_writers, 0);
4392 atomic_set(&eb->spinning_readers, 0);
4393 atomic_set(&eb->spinning_writers, 0);
4394 eb->lock_nested = 0;
4395 init_waitqueue_head(&eb->write_lock_wq);
4396 init_waitqueue_head(&eb->read_lock_wq);
4397
4398 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4399
4400 spin_lock_init(&eb->refs_lock);
4401 atomic_set(&eb->refs, 1);
4402 atomic_set(&eb->io_pages, 0);
4403
4404 /*
4405 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4406 */
4407 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4408 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4409 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4410
4411 return eb;
4412 }
4413
4414 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4415 {
4416 unsigned long i;
4417 struct page *p;
4418 struct extent_buffer *new;
4419 unsigned long num_pages = num_extent_pages(src->start, src->len);
4420
4421 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4422 if (new == NULL)
4423 return NULL;
4424
4425 for (i = 0; i < num_pages; i++) {
4426 p = alloc_page(GFP_NOFS);
4427 if (!p) {
4428 btrfs_release_extent_buffer(new);
4429 return NULL;
4430 }
4431 attach_extent_buffer_page(new, p);
4432 WARN_ON(PageDirty(p));
4433 SetPageUptodate(p);
4434 new->pages[i] = p;
4435 }
4436
4437 copy_extent_buffer(new, src, 0, 0, src->len);
4438 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4439 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4440
4441 return new;
4442 }
4443
4444 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4445 {
4446 struct extent_buffer *eb;
4447 unsigned long num_pages = num_extent_pages(0, len);
4448 unsigned long i;
4449
4450 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4451 if (!eb)
4452 return NULL;
4453
4454 for (i = 0; i < num_pages; i++) {
4455 eb->pages[i] = alloc_page(GFP_NOFS);
4456 if (!eb->pages[i])
4457 goto err;
4458 }
4459 set_extent_buffer_uptodate(eb);
4460 btrfs_set_header_nritems(eb, 0);
4461 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4462
4463 return eb;
4464 err:
4465 for (; i > 0; i--)
4466 __free_page(eb->pages[i - 1]);
4467 __free_extent_buffer(eb);
4468 return NULL;
4469 }
4470
4471 static void check_buffer_tree_ref(struct extent_buffer *eb)
4472 {
4473 int refs;
4474 /* the ref bit is tricky. We have to make sure it is set
4475 * if we have the buffer dirty. Otherwise the
4476 * code to free a buffer can end up dropping a dirty
4477 * page
4478 *
4479 * Once the ref bit is set, it won't go away while the
4480 * buffer is dirty or in writeback, and it also won't
4481 * go away while we have the reference count on the
4482 * eb bumped.
4483 *
4484 * We can't just set the ref bit without bumping the
4485 * ref on the eb because free_extent_buffer might
4486 * see the ref bit and try to clear it. If this happens
4487 * free_extent_buffer might end up dropping our original
4488 * ref by mistake and freeing the page before we are able
4489 * to add one more ref.
4490 *
4491 * So bump the ref count first, then set the bit. If someone
4492 * beat us to it, drop the ref we added.
4493 */
4494 refs = atomic_read(&eb->refs);
4495 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4496 return;
4497
4498 spin_lock(&eb->refs_lock);
4499 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4500 atomic_inc(&eb->refs);
4501 spin_unlock(&eb->refs_lock);
4502 }
4503
4504 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4505 {
4506 unsigned long num_pages, i;
4507
4508 check_buffer_tree_ref(eb);
4509
4510 num_pages = num_extent_pages(eb->start, eb->len);
4511 for (i = 0; i < num_pages; i++) {
4512 struct page *p = extent_buffer_page(eb, i);
4513 mark_page_accessed(p);
4514 }
4515 }
4516
4517 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4518 u64 start)
4519 {
4520 struct extent_buffer *eb;
4521
4522 rcu_read_lock();
4523 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4524 if (eb && atomic_inc_not_zero(&eb->refs)) {
4525 rcu_read_unlock();
4526 mark_extent_buffer_accessed(eb);
4527 return eb;
4528 }
4529 rcu_read_unlock();
4530
4531 return NULL;
4532 }
4533
4534 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4535 u64 start, unsigned long len)
4536 {
4537 unsigned long num_pages = num_extent_pages(start, len);
4538 unsigned long i;
4539 unsigned long index = start >> PAGE_CACHE_SHIFT;
4540 struct extent_buffer *eb;
4541 struct extent_buffer *exists = NULL;
4542 struct page *p;
4543 struct address_space *mapping = tree->mapping;
4544 int uptodate = 1;
4545 int ret;
4546
4547
4548 eb = find_extent_buffer(tree, start);
4549 if (eb)
4550 return eb;
4551
4552 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4553 if (!eb)
4554 return NULL;
4555
4556 for (i = 0; i < num_pages; i++, index++) {
4557 p = find_or_create_page(mapping, index, GFP_NOFS);
4558 if (!p)
4559 goto free_eb;
4560
4561 spin_lock(&mapping->private_lock);
4562 if (PagePrivate(p)) {
4563 /*
4564 * We could have already allocated an eb for this page
4565 * and attached one so lets see if we can get a ref on
4566 * the existing eb, and if we can we know it's good and
4567 * we can just return that one, else we know we can just
4568 * overwrite page->private.
4569 */
4570 exists = (struct extent_buffer *)p->private;
4571 if (atomic_inc_not_zero(&exists->refs)) {
4572 spin_unlock(&mapping->private_lock);
4573 unlock_page(p);
4574 page_cache_release(p);
4575 mark_extent_buffer_accessed(exists);
4576 goto free_eb;
4577 }
4578
4579 /*
4580 * Do this so attach doesn't complain and we need to
4581 * drop the ref the old guy had.
4582 */
4583 ClearPagePrivate(p);
4584 WARN_ON(PageDirty(p));
4585 page_cache_release(p);
4586 }
4587 attach_extent_buffer_page(eb, p);
4588 spin_unlock(&mapping->private_lock);
4589 WARN_ON(PageDirty(p));
4590 mark_page_accessed(p);
4591 eb->pages[i] = p;
4592 if (!PageUptodate(p))
4593 uptodate = 0;
4594
4595 /*
4596 * see below about how we avoid a nasty race with release page
4597 * and why we unlock later
4598 */
4599 }
4600 if (uptodate)
4601 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4602 again:
4603 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4604 if (ret)
4605 goto free_eb;
4606
4607 spin_lock(&tree->buffer_lock);
4608 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4609 spin_unlock(&tree->buffer_lock);
4610 radix_tree_preload_end();
4611 if (ret == -EEXIST) {
4612 exists = find_extent_buffer(tree, start);
4613 if (exists)
4614 goto free_eb;
4615 else
4616 goto again;
4617 }
4618 /* add one reference for the tree */
4619 check_buffer_tree_ref(eb);
4620
4621 /*
4622 * there is a race where release page may have
4623 * tried to find this extent buffer in the radix
4624 * but failed. It will tell the VM it is safe to
4625 * reclaim the, and it will clear the page private bit.
4626 * We must make sure to set the page private bit properly
4627 * after the extent buffer is in the radix tree so
4628 * it doesn't get lost
4629 */
4630 SetPageChecked(eb->pages[0]);
4631 for (i = 1; i < num_pages; i++) {
4632 p = extent_buffer_page(eb, i);
4633 ClearPageChecked(p);
4634 unlock_page(p);
4635 }
4636 unlock_page(eb->pages[0]);
4637 return eb;
4638
4639 free_eb:
4640 for (i = 0; i < num_pages; i++) {
4641 if (eb->pages[i])
4642 unlock_page(eb->pages[i]);
4643 }
4644
4645 WARN_ON(!atomic_dec_and_test(&eb->refs));
4646 btrfs_release_extent_buffer(eb);
4647 return exists;
4648 }
4649
4650 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4651 {
4652 struct extent_buffer *eb =
4653 container_of(head, struct extent_buffer, rcu_head);
4654
4655 __free_extent_buffer(eb);
4656 }
4657
4658 /* Expects to have eb->eb_lock already held */
4659 static int release_extent_buffer(struct extent_buffer *eb)
4660 {
4661 WARN_ON(atomic_read(&eb->refs) == 0);
4662 if (atomic_dec_and_test(&eb->refs)) {
4663 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4664 spin_unlock(&eb->refs_lock);
4665 } else {
4666 struct extent_io_tree *tree = eb->tree;
4667
4668 spin_unlock(&eb->refs_lock);
4669
4670 spin_lock(&tree->buffer_lock);
4671 radix_tree_delete(&tree->buffer,
4672 eb->start >> PAGE_CACHE_SHIFT);
4673 spin_unlock(&tree->buffer_lock);
4674 }
4675
4676 /* Should be safe to release our pages at this point */
4677 btrfs_release_extent_buffer_page(eb, 0);
4678 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4679 return 1;
4680 }
4681 spin_unlock(&eb->refs_lock);
4682
4683 return 0;
4684 }
4685
4686 void free_extent_buffer(struct extent_buffer *eb)
4687 {
4688 int refs;
4689 int old;
4690 if (!eb)
4691 return;
4692
4693 while (1) {
4694 refs = atomic_read(&eb->refs);
4695 if (refs <= 3)
4696 break;
4697 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4698 if (old == refs)
4699 return;
4700 }
4701
4702 spin_lock(&eb->refs_lock);
4703 if (atomic_read(&eb->refs) == 2 &&
4704 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4705 atomic_dec(&eb->refs);
4706
4707 if (atomic_read(&eb->refs) == 2 &&
4708 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4709 !extent_buffer_under_io(eb) &&
4710 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4711 atomic_dec(&eb->refs);
4712
4713 /*
4714 * I know this is terrible, but it's temporary until we stop tracking
4715 * the uptodate bits and such for the extent buffers.
4716 */
4717 release_extent_buffer(eb);
4718 }
4719
4720 void free_extent_buffer_stale(struct extent_buffer *eb)
4721 {
4722 if (!eb)
4723 return;
4724
4725 spin_lock(&eb->refs_lock);
4726 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4727
4728 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4729 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4730 atomic_dec(&eb->refs);
4731 release_extent_buffer(eb);
4732 }
4733
4734 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4735 {
4736 unsigned long i;
4737 unsigned long num_pages;
4738 struct page *page;
4739
4740 num_pages = num_extent_pages(eb->start, eb->len);
4741
4742 for (i = 0; i < num_pages; i++) {
4743 page = extent_buffer_page(eb, i);
4744 if (!PageDirty(page))
4745 continue;
4746
4747 lock_page(page);
4748 WARN_ON(!PagePrivate(page));
4749
4750 clear_page_dirty_for_io(page);
4751 spin_lock_irq(&page->mapping->tree_lock);
4752 if (!PageDirty(page)) {
4753 radix_tree_tag_clear(&page->mapping->page_tree,
4754 page_index(page),
4755 PAGECACHE_TAG_DIRTY);
4756 }
4757 spin_unlock_irq(&page->mapping->tree_lock);
4758 ClearPageError(page);
4759 unlock_page(page);
4760 }
4761 WARN_ON(atomic_read(&eb->refs) == 0);
4762 }
4763
4764 int set_extent_buffer_dirty(struct extent_buffer *eb)
4765 {
4766 unsigned long i;
4767 unsigned long num_pages;
4768 int was_dirty = 0;
4769
4770 check_buffer_tree_ref(eb);
4771
4772 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4773
4774 num_pages = num_extent_pages(eb->start, eb->len);
4775 WARN_ON(atomic_read(&eb->refs) == 0);
4776 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4777
4778 for (i = 0; i < num_pages; i++)
4779 set_page_dirty(extent_buffer_page(eb, i));
4780 return was_dirty;
4781 }
4782
4783 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4784 {
4785 unsigned long i;
4786 struct page *page;
4787 unsigned long num_pages;
4788
4789 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4790 num_pages = num_extent_pages(eb->start, eb->len);
4791 for (i = 0; i < num_pages; i++) {
4792 page = extent_buffer_page(eb, i);
4793 if (page)
4794 ClearPageUptodate(page);
4795 }
4796 return 0;
4797 }
4798
4799 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4800 {
4801 unsigned long i;
4802 struct page *page;
4803 unsigned long num_pages;
4804
4805 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4806 num_pages = num_extent_pages(eb->start, eb->len);
4807 for (i = 0; i < num_pages; i++) {
4808 page = extent_buffer_page(eb, i);
4809 SetPageUptodate(page);
4810 }
4811 return 0;
4812 }
4813
4814 int extent_buffer_uptodate(struct extent_buffer *eb)
4815 {
4816 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4817 }
4818
4819 int read_extent_buffer_pages(struct extent_io_tree *tree,
4820 struct extent_buffer *eb, u64 start, int wait,
4821 get_extent_t *get_extent, int mirror_num)
4822 {
4823 unsigned long i;
4824 unsigned long start_i;
4825 struct page *page;
4826 int err;
4827 int ret = 0;
4828 int locked_pages = 0;
4829 int all_uptodate = 1;
4830 unsigned long num_pages;
4831 unsigned long num_reads = 0;
4832 struct bio *bio = NULL;
4833 unsigned long bio_flags = 0;
4834
4835 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4836 return 0;
4837
4838 if (start) {
4839 WARN_ON(start < eb->start);
4840 start_i = (start >> PAGE_CACHE_SHIFT) -
4841 (eb->start >> PAGE_CACHE_SHIFT);
4842 } else {
4843 start_i = 0;
4844 }
4845
4846 num_pages = num_extent_pages(eb->start, eb->len);
4847 for (i = start_i; i < num_pages; i++) {
4848 page = extent_buffer_page(eb, i);
4849 if (wait == WAIT_NONE) {
4850 if (!trylock_page(page))
4851 goto unlock_exit;
4852 } else {
4853 lock_page(page);
4854 }
4855 locked_pages++;
4856 if (!PageUptodate(page)) {
4857 num_reads++;
4858 all_uptodate = 0;
4859 }
4860 }
4861 if (all_uptodate) {
4862 if (start_i == 0)
4863 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4864 goto unlock_exit;
4865 }
4866
4867 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4868 eb->read_mirror = 0;
4869 atomic_set(&eb->io_pages, num_reads);
4870 for (i = start_i; i < num_pages; i++) {
4871 page = extent_buffer_page(eb, i);
4872 if (!PageUptodate(page)) {
4873 ClearPageError(page);
4874 err = __extent_read_full_page(tree, page,
4875 get_extent, &bio,
4876 mirror_num, &bio_flags,
4877 READ | REQ_META);
4878 if (err)
4879 ret = err;
4880 } else {
4881 unlock_page(page);
4882 }
4883 }
4884
4885 if (bio) {
4886 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4887 bio_flags);
4888 if (err)
4889 return err;
4890 }
4891
4892 if (ret || wait != WAIT_COMPLETE)
4893 return ret;
4894
4895 for (i = start_i; i < num_pages; i++) {
4896 page = extent_buffer_page(eb, i);
4897 wait_on_page_locked(page);
4898 if (!PageUptodate(page))
4899 ret = -EIO;
4900 }
4901
4902 return ret;
4903
4904 unlock_exit:
4905 i = start_i;
4906 while (locked_pages > 0) {
4907 page = extent_buffer_page(eb, i);
4908 i++;
4909 unlock_page(page);
4910 locked_pages--;
4911 }
4912 return ret;
4913 }
4914
4915 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4916 unsigned long start,
4917 unsigned long len)
4918 {
4919 size_t cur;
4920 size_t offset;
4921 struct page *page;
4922 char *kaddr;
4923 char *dst = (char *)dstv;
4924 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4925 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4926
4927 WARN_ON(start > eb->len);
4928 WARN_ON(start + len > eb->start + eb->len);
4929
4930 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4931
4932 while (len > 0) {
4933 page = extent_buffer_page(eb, i);
4934
4935 cur = min(len, (PAGE_CACHE_SIZE - offset));
4936 kaddr = page_address(page);
4937 memcpy(dst, kaddr + offset, cur);
4938
4939 dst += cur;
4940 len -= cur;
4941 offset = 0;
4942 i++;
4943 }
4944 }
4945
4946 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4947 unsigned long min_len, char **map,
4948 unsigned long *map_start,
4949 unsigned long *map_len)
4950 {
4951 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4952 char *kaddr;
4953 struct page *p;
4954 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4955 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4956 unsigned long end_i = (start_offset + start + min_len - 1) >>
4957 PAGE_CACHE_SHIFT;
4958
4959 if (i != end_i)
4960 return -EINVAL;
4961
4962 if (i == 0) {
4963 offset = start_offset;
4964 *map_start = 0;
4965 } else {
4966 offset = 0;
4967 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4968 }
4969
4970 if (start + min_len > eb->len) {
4971 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4972 "wanted %lu %lu\n",
4973 eb->start, eb->len, start, min_len);
4974 return -EINVAL;
4975 }
4976
4977 p = extent_buffer_page(eb, i);
4978 kaddr = page_address(p);
4979 *map = kaddr + offset;
4980 *map_len = PAGE_CACHE_SIZE - offset;
4981 return 0;
4982 }
4983
4984 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4985 unsigned long start,
4986 unsigned long len)
4987 {
4988 size_t cur;
4989 size_t offset;
4990 struct page *page;
4991 char *kaddr;
4992 char *ptr = (char *)ptrv;
4993 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4994 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4995 int ret = 0;
4996
4997 WARN_ON(start > eb->len);
4998 WARN_ON(start + len > eb->start + eb->len);
4999
5000 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5001
5002 while (len > 0) {
5003 page = extent_buffer_page(eb, i);
5004
5005 cur = min(len, (PAGE_CACHE_SIZE - offset));
5006
5007 kaddr = page_address(page);
5008 ret = memcmp(ptr, kaddr + offset, cur);
5009 if (ret)
5010 break;
5011
5012 ptr += cur;
5013 len -= cur;
5014 offset = 0;
5015 i++;
5016 }
5017 return ret;
5018 }
5019
5020 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5021 unsigned long start, unsigned long len)
5022 {
5023 size_t cur;
5024 size_t offset;
5025 struct page *page;
5026 char *kaddr;
5027 char *src = (char *)srcv;
5028 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5029 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5030
5031 WARN_ON(start > eb->len);
5032 WARN_ON(start + len > eb->start + eb->len);
5033
5034 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5035
5036 while (len > 0) {
5037 page = extent_buffer_page(eb, i);
5038 WARN_ON(!PageUptodate(page));
5039
5040 cur = min(len, PAGE_CACHE_SIZE - offset);
5041 kaddr = page_address(page);
5042 memcpy(kaddr + offset, src, cur);
5043
5044 src += cur;
5045 len -= cur;
5046 offset = 0;
5047 i++;
5048 }
5049 }
5050
5051 void memset_extent_buffer(struct extent_buffer *eb, char c,
5052 unsigned long start, unsigned long len)
5053 {
5054 size_t cur;
5055 size_t offset;
5056 struct page *page;
5057 char *kaddr;
5058 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5059 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5060
5061 WARN_ON(start > eb->len);
5062 WARN_ON(start + len > eb->start + eb->len);
5063
5064 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5065
5066 while (len > 0) {
5067 page = extent_buffer_page(eb, i);
5068 WARN_ON(!PageUptodate(page));
5069
5070 cur = min(len, PAGE_CACHE_SIZE - offset);
5071 kaddr = page_address(page);
5072 memset(kaddr + offset, c, cur);
5073
5074 len -= cur;
5075 offset = 0;
5076 i++;
5077 }
5078 }
5079
5080 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5081 unsigned long dst_offset, unsigned long src_offset,
5082 unsigned long len)
5083 {
5084 u64 dst_len = dst->len;
5085 size_t cur;
5086 size_t offset;
5087 struct page *page;
5088 char *kaddr;
5089 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5090 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5091
5092 WARN_ON(src->len != dst_len);
5093
5094 offset = (start_offset + dst_offset) &
5095 (PAGE_CACHE_SIZE - 1);
5096
5097 while (len > 0) {
5098 page = extent_buffer_page(dst, i);
5099 WARN_ON(!PageUptodate(page));
5100
5101 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5102
5103 kaddr = page_address(page);
5104 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5105
5106 src_offset += cur;
5107 len -= cur;
5108 offset = 0;
5109 i++;
5110 }
5111 }
5112
5113 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5114 {
5115 unsigned long distance = (src > dst) ? src - dst : dst - src;
5116 return distance < len;
5117 }
5118
5119 static void copy_pages(struct page *dst_page, struct page *src_page,
5120 unsigned long dst_off, unsigned long src_off,
5121 unsigned long len)
5122 {
5123 char *dst_kaddr = page_address(dst_page);
5124 char *src_kaddr;
5125 int must_memmove = 0;
5126
5127 if (dst_page != src_page) {
5128 src_kaddr = page_address(src_page);
5129 } else {
5130 src_kaddr = dst_kaddr;
5131 if (areas_overlap(src_off, dst_off, len))
5132 must_memmove = 1;
5133 }
5134
5135 if (must_memmove)
5136 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5137 else
5138 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5139 }
5140
5141 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5142 unsigned long src_offset, unsigned long len)
5143 {
5144 size_t cur;
5145 size_t dst_off_in_page;
5146 size_t src_off_in_page;
5147 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5148 unsigned long dst_i;
5149 unsigned long src_i;
5150
5151 if (src_offset + len > dst->len) {
5152 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5153 "len %lu dst len %lu\n", src_offset, len, dst->len);
5154 BUG_ON(1);
5155 }
5156 if (dst_offset + len > dst->len) {
5157 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5158 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5159 BUG_ON(1);
5160 }
5161
5162 while (len > 0) {
5163 dst_off_in_page = (start_offset + dst_offset) &
5164 (PAGE_CACHE_SIZE - 1);
5165 src_off_in_page = (start_offset + src_offset) &
5166 (PAGE_CACHE_SIZE - 1);
5167
5168 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5169 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5170
5171 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5172 src_off_in_page));
5173 cur = min_t(unsigned long, cur,
5174 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5175
5176 copy_pages(extent_buffer_page(dst, dst_i),
5177 extent_buffer_page(dst, src_i),
5178 dst_off_in_page, src_off_in_page, cur);
5179
5180 src_offset += cur;
5181 dst_offset += cur;
5182 len -= cur;
5183 }
5184 }
5185
5186 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5187 unsigned long src_offset, unsigned long len)
5188 {
5189 size_t cur;
5190 size_t dst_off_in_page;
5191 size_t src_off_in_page;
5192 unsigned long dst_end = dst_offset + len - 1;
5193 unsigned long src_end = src_offset + len - 1;
5194 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5195 unsigned long dst_i;
5196 unsigned long src_i;
5197
5198 if (src_offset + len > dst->len) {
5199 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5200 "len %lu len %lu\n", src_offset, len, dst->len);
5201 BUG_ON(1);
5202 }
5203 if (dst_offset + len > dst->len) {
5204 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5205 "len %lu len %lu\n", dst_offset, len, dst->len);
5206 BUG_ON(1);
5207 }
5208 if (dst_offset < src_offset) {
5209 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5210 return;
5211 }
5212 while (len > 0) {
5213 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5214 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5215
5216 dst_off_in_page = (start_offset + dst_end) &
5217 (PAGE_CACHE_SIZE - 1);
5218 src_off_in_page = (start_offset + src_end) &
5219 (PAGE_CACHE_SIZE - 1);
5220
5221 cur = min_t(unsigned long, len, src_off_in_page + 1);
5222 cur = min(cur, dst_off_in_page + 1);
5223 copy_pages(extent_buffer_page(dst, dst_i),
5224 extent_buffer_page(dst, src_i),
5225 dst_off_in_page - cur + 1,
5226 src_off_in_page - cur + 1, cur);
5227
5228 dst_end -= cur;
5229 src_end -= cur;
5230 len -= cur;
5231 }
5232 }
5233
5234 int try_release_extent_buffer(struct page *page)
5235 {
5236 struct extent_buffer *eb;
5237
5238 /*
5239 * We need to make sure noboody is attaching this page to an eb right
5240 * now.
5241 */
5242 spin_lock(&page->mapping->private_lock);
5243 if (!PagePrivate(page)) {
5244 spin_unlock(&page->mapping->private_lock);
5245 return 1;
5246 }
5247
5248 eb = (struct extent_buffer *)page->private;
5249 BUG_ON(!eb);
5250
5251 /*
5252 * This is a little awful but should be ok, we need to make sure that
5253 * the eb doesn't disappear out from under us while we're looking at
5254 * this page.
5255 */
5256 spin_lock(&eb->refs_lock);
5257 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5258 spin_unlock(&eb->refs_lock);
5259 spin_unlock(&page->mapping->private_lock);
5260 return 0;
5261 }
5262 spin_unlock(&page->mapping->private_lock);
5263
5264 /*
5265 * If tree ref isn't set then we know the ref on this eb is a real ref,
5266 * so just return, this page will likely be freed soon anyway.
5267 */
5268 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5269 spin_unlock(&eb->refs_lock);
5270 return 0;
5271 }
5272
5273 return release_extent_buffer(eb);
5274 }