]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent_io.c
Merge branch 'CVE-2014-7970' of git://git.kernel.org/pub/scm/linux/kernel/git/luto...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138 if (!tree->mapping)
139 return NULL;
140 return btrfs_sb(tree->mapping->host->i_sb);
141 }
142
143 int __init extent_io_init(void)
144 {
145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 if (!extent_state_cache)
149 return -ENOMEM;
150
151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 if (!extent_buffer_cache)
155 goto free_state_cache;
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
165 return 0;
166
167 free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
171 free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
175 free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
177 extent_state_cache = NULL;
178 return -ENOMEM;
179 }
180
181 void extent_io_exit(void)
182 {
183 btrfs_leak_debug_check();
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
196 }
197
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 struct address_space *mapping)
200 {
201 tree->state = RB_ROOT;
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
204 spin_lock_init(&tree->lock);
205 tree->mapping = mapping;
206 }
207
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210 struct extent_state *state;
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
213 if (!state)
214 return state;
215 state->state = 0;
216 state->private = 0;
217 RB_CLEAR_NODE(&state->rb_node);
218 btrfs_leak_debug_add(&state->leak_list, &states);
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
221 trace_alloc_extent_state(state, mask, _RET_IP_);
222 return state;
223 }
224
225 void free_extent_state(struct extent_state *state)
226 {
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
230 WARN_ON(extent_state_in_tree(state));
231 btrfs_leak_debug_del(&state->leak_list);
232 trace_free_extent_state(state, _RET_IP_);
233 kmem_cache_free(extent_state_cache, state);
234 }
235 }
236
237 static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
243 {
244 struct rb_node **p;
245 struct rb_node *parent = NULL;
246 struct tree_entry *entry;
247
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
254 p = search_start ? &search_start : &root->rb_node;
255 while (*p) {
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
267 do_insert:
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271 }
272
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
278 {
279 struct rb_root *root = &tree->state;
280 struct rb_node **n = &root->rb_node;
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
289 prev_entry = entry;
290
291 if (offset < entry->start)
292 n = &(*n)->rb_left;
293 else if (offset > entry->end)
294 n = &(*n)->rb_right;
295 else
296 return *n;
297 }
298
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
304 if (prev_ret) {
305 orig_prev = prev;
306 while (prev && offset > prev_entry->end) {
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 while (prev && offset < prev_entry->start) {
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323 }
324
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
330 {
331 struct rb_node *prev = NULL;
332 struct rb_node *ret;
333
334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 if (!ret)
336 return prev;
337 return ret;
338 }
339
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342 {
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348 {
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352 }
353
354 /*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
363 static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
365 {
366 struct extent_state *other;
367 struct rb_node *other_node;
368
369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 return;
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
377 merge_cb(tree, state, other);
378 state->start = other->start;
379 rb_erase(&other->rb_node, &tree->state);
380 RB_CLEAR_NODE(&other->rb_node);
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->end = other->end;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
394 }
395 }
396 }
397
398 static void set_state_cb(struct extent_io_tree *tree,
399 struct extent_state *state, unsigned long *bits)
400 {
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404
405 static void clear_state_cb(struct extent_io_tree *tree,
406 struct extent_state *state, unsigned long *bits)
407 {
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411
412 static void set_state_bits(struct extent_io_tree *tree,
413 struct extent_state *state, unsigned long *bits);
414
415 /*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425 static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
427 struct rb_node ***p,
428 struct rb_node **parent,
429 unsigned long *bits)
430 {
431 struct rb_node *node;
432
433 if (end < start)
434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 end, start);
436 state->start = start;
437 state->end = end;
438
439 set_state_bits(tree, state, bits);
440
441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 "%llu %llu\n",
447 found->start, found->end, start, end);
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452 }
453
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 u64 split)
456 {
457 if (tree->ops && tree->ops->split_extent_hook)
458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460
461 /*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477 {
478 struct rb_node *node;
479
480 split_cb(tree, orig, split);
481
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
489 if (node) {
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494 }
495
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503 }
504
505 /*
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
514 unsigned long *bits, int wake)
515 {
516 struct extent_state *next;
517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
518
519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
524 clear_state_cb(tree, state, bits);
525 state->state &= ~bits_to_clear;
526 if (wake)
527 wake_up(&state->wq);
528 if (state->state == 0) {
529 next = next_state(state);
530 if (extent_state_in_tree(state)) {
531 rb_erase(&state->rb_node, &tree->state);
532 RB_CLEAR_NODE(&state->rb_node);
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
539 next = next_state(state);
540 }
541 return next;
542 }
543
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551 }
552
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558 }
559
560 /*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
570 * This takes the tree lock, and returns 0 on success and < 0 on error.
571 */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 unsigned long bits, int wake, int delete,
574 struct extent_state **cached_state,
575 gfp_t mask)
576 {
577 struct extent_state *state;
578 struct extent_state *cached;
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
581 u64 last_end;
582 int err;
583 int clear = 0;
584
585 btrfs_debug_check_extent_io_range(tree, start, end);
586
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
596 again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
598 prealloc = alloc_extent_state(mask);
599 if (!prealloc)
600 return -ENOMEM;
601 }
602
603 spin_lock(&tree->lock);
604 if (cached_state) {
605 cached = *cached_state;
606
607 if (clear) {
608 *cached_state = NULL;
609 cached_state = NULL;
610 }
611
612 if (cached && extent_state_in_tree(cached) &&
613 cached->start <= start && cached->end > start) {
614 if (clear)
615 atomic_dec(&cached->refs);
616 state = cached;
617 goto hit_next;
618 }
619 if (clear)
620 free_extent_state(cached);
621 }
622 /*
623 * this search will find the extents that end after
624 * our range starts
625 */
626 node = tree_search(tree, start);
627 if (!node)
628 goto out;
629 state = rb_entry(node, struct extent_state, rb_node);
630 hit_next:
631 if (state->start > end)
632 goto out;
633 WARN_ON(state->end < start);
634 last_end = state->end;
635
636 /* the state doesn't have the wanted bits, go ahead */
637 if (!(state->state & bits)) {
638 state = next_state(state);
639 goto next;
640 }
641
642 /*
643 * | ---- desired range ---- |
644 * | state | or
645 * | ------------- state -------------- |
646 *
647 * We need to split the extent we found, and may flip
648 * bits on second half.
649 *
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
653 *
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
656 */
657
658 if (state->start < start) {
659 prealloc = alloc_extent_state_atomic(prealloc);
660 BUG_ON(!prealloc);
661 err = split_state(tree, state, prealloc, start);
662 if (err)
663 extent_io_tree_panic(tree, err);
664
665 prealloc = NULL;
666 if (err)
667 goto out;
668 if (state->end <= end) {
669 state = clear_state_bit(tree, state, &bits, wake);
670 goto next;
671 }
672 goto search_again;
673 }
674 /*
675 * | ---- desired range ---- |
676 * | state |
677 * We need to split the extent, and clear the bit
678 * on the first half
679 */
680 if (state->start <= end && state->end > end) {
681 prealloc = alloc_extent_state_atomic(prealloc);
682 BUG_ON(!prealloc);
683 err = split_state(tree, state, prealloc, end + 1);
684 if (err)
685 extent_io_tree_panic(tree, err);
686
687 if (wake)
688 wake_up(&state->wq);
689
690 clear_state_bit(tree, prealloc, &bits, wake);
691
692 prealloc = NULL;
693 goto out;
694 }
695
696 state = clear_state_bit(tree, state, &bits, wake);
697 next:
698 if (last_end == (u64)-1)
699 goto out;
700 start = last_end + 1;
701 if (start <= end && state && !need_resched())
702 goto hit_next;
703 goto search_again;
704
705 out:
706 spin_unlock(&tree->lock);
707 if (prealloc)
708 free_extent_state(prealloc);
709
710 return 0;
711
712 search_again:
713 if (start > end)
714 goto out;
715 spin_unlock(&tree->lock);
716 if (mask & __GFP_WAIT)
717 cond_resched();
718 goto again;
719 }
720
721 static void wait_on_state(struct extent_io_tree *tree,
722 struct extent_state *state)
723 __releases(tree->lock)
724 __acquires(tree->lock)
725 {
726 DEFINE_WAIT(wait);
727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
728 spin_unlock(&tree->lock);
729 schedule();
730 spin_lock(&tree->lock);
731 finish_wait(&state->wq, &wait);
732 }
733
734 /*
735 * waits for one or more bits to clear on a range in the state tree.
736 * The range [start, end] is inclusive.
737 * The tree lock is taken by this function
738 */
739 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 unsigned long bits)
741 {
742 struct extent_state *state;
743 struct rb_node *node;
744
745 btrfs_debug_check_extent_io_range(tree, start, end);
746
747 spin_lock(&tree->lock);
748 again:
749 while (1) {
750 /*
751 * this search will find all the extents that end after
752 * our range starts
753 */
754 node = tree_search(tree, start);
755 process_node:
756 if (!node)
757 break;
758
759 state = rb_entry(node, struct extent_state, rb_node);
760
761 if (state->start > end)
762 goto out;
763
764 if (state->state & bits) {
765 start = state->start;
766 atomic_inc(&state->refs);
767 wait_on_state(tree, state);
768 free_extent_state(state);
769 goto again;
770 }
771 start = state->end + 1;
772
773 if (start > end)
774 break;
775
776 if (!cond_resched_lock(&tree->lock)) {
777 node = rb_next(node);
778 goto process_node;
779 }
780 }
781 out:
782 spin_unlock(&tree->lock);
783 }
784
785 static void set_state_bits(struct extent_io_tree *tree,
786 struct extent_state *state,
787 unsigned long *bits)
788 {
789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
790
791 set_state_cb(tree, state, bits);
792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
793 u64 range = state->end - state->start + 1;
794 tree->dirty_bytes += range;
795 }
796 state->state |= bits_to_set;
797 }
798
799 static void cache_state(struct extent_state *state,
800 struct extent_state **cached_ptr)
801 {
802 if (cached_ptr && !(*cached_ptr)) {
803 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804 *cached_ptr = state;
805 atomic_inc(&state->refs);
806 }
807 }
808 }
809
810 /*
811 * set some bits on a range in the tree. This may require allocations or
812 * sleeping, so the gfp mask is used to indicate what is allowed.
813 *
814 * If any of the exclusive bits are set, this will fail with -EEXIST if some
815 * part of the range already has the desired bits set. The start of the
816 * existing range is returned in failed_start in this case.
817 *
818 * [start, end] is inclusive This takes the tree lock.
819 */
820
821 static int __must_check
822 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
823 unsigned long bits, unsigned long exclusive_bits,
824 u64 *failed_start, struct extent_state **cached_state,
825 gfp_t mask)
826 {
827 struct extent_state *state;
828 struct extent_state *prealloc = NULL;
829 struct rb_node *node;
830 struct rb_node **p;
831 struct rb_node *parent;
832 int err = 0;
833 u64 last_start;
834 u64 last_end;
835
836 btrfs_debug_check_extent_io_range(tree, start, end);
837
838 bits |= EXTENT_FIRST_DELALLOC;
839 again:
840 if (!prealloc && (mask & __GFP_WAIT)) {
841 prealloc = alloc_extent_state(mask);
842 BUG_ON(!prealloc);
843 }
844
845 spin_lock(&tree->lock);
846 if (cached_state && *cached_state) {
847 state = *cached_state;
848 if (state->start <= start && state->end > start &&
849 extent_state_in_tree(state)) {
850 node = &state->rb_node;
851 goto hit_next;
852 }
853 }
854 /*
855 * this search will find all the extents that end after
856 * our range starts.
857 */
858 node = tree_search_for_insert(tree, start, &p, &parent);
859 if (!node) {
860 prealloc = alloc_extent_state_atomic(prealloc);
861 BUG_ON(!prealloc);
862 err = insert_state(tree, prealloc, start, end,
863 &p, &parent, &bits);
864 if (err)
865 extent_io_tree_panic(tree, err);
866
867 cache_state(prealloc, cached_state);
868 prealloc = NULL;
869 goto out;
870 }
871 state = rb_entry(node, struct extent_state, rb_node);
872 hit_next:
873 last_start = state->start;
874 last_end = state->end;
875
876 /*
877 * | ---- desired range ---- |
878 * | state |
879 *
880 * Just lock what we found and keep going
881 */
882 if (state->start == start && state->end <= end) {
883 if (state->state & exclusive_bits) {
884 *failed_start = state->start;
885 err = -EEXIST;
886 goto out;
887 }
888
889 set_state_bits(tree, state, &bits);
890 cache_state(state, cached_state);
891 merge_state(tree, state);
892 if (last_end == (u64)-1)
893 goto out;
894 start = last_end + 1;
895 state = next_state(state);
896 if (start < end && state && state->start == start &&
897 !need_resched())
898 goto hit_next;
899 goto search_again;
900 }
901
902 /*
903 * | ---- desired range ---- |
904 * | state |
905 * or
906 * | ------------- state -------------- |
907 *
908 * We need to split the extent we found, and may flip bits on
909 * second half.
910 *
911 * If the extent we found extends past our
912 * range, we just split and search again. It'll get split
913 * again the next time though.
914 *
915 * If the extent we found is inside our range, we set the
916 * desired bit on it.
917 */
918 if (state->start < start) {
919 if (state->state & exclusive_bits) {
920 *failed_start = start;
921 err = -EEXIST;
922 goto out;
923 }
924
925 prealloc = alloc_extent_state_atomic(prealloc);
926 BUG_ON(!prealloc);
927 err = split_state(tree, state, prealloc, start);
928 if (err)
929 extent_io_tree_panic(tree, err);
930
931 prealloc = NULL;
932 if (err)
933 goto out;
934 if (state->end <= end) {
935 set_state_bits(tree, state, &bits);
936 cache_state(state, cached_state);
937 merge_state(tree, state);
938 if (last_end == (u64)-1)
939 goto out;
940 start = last_end + 1;
941 state = next_state(state);
942 if (start < end && state && state->start == start &&
943 !need_resched())
944 goto hit_next;
945 }
946 goto search_again;
947 }
948 /*
949 * | ---- desired range ---- |
950 * | state | or | state |
951 *
952 * There's a hole, we need to insert something in it and
953 * ignore the extent we found.
954 */
955 if (state->start > start) {
956 u64 this_end;
957 if (end < last_start)
958 this_end = end;
959 else
960 this_end = last_start - 1;
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964
965 /*
966 * Avoid to free 'prealloc' if it can be merged with
967 * the later extent.
968 */
969 err = insert_state(tree, prealloc, start, this_end,
970 NULL, NULL, &bits);
971 if (err)
972 extent_io_tree_panic(tree, err);
973
974 cache_state(prealloc, cached_state);
975 prealloc = NULL;
976 start = this_end + 1;
977 goto search_again;
978 }
979 /*
980 * | ---- desired range ---- |
981 * | state |
982 * We need to split the extent, and set the bit
983 * on the first half
984 */
985 if (state->start <= end && state->end > end) {
986 if (state->state & exclusive_bits) {
987 *failed_start = start;
988 err = -EEXIST;
989 goto out;
990 }
991
992 prealloc = alloc_extent_state_atomic(prealloc);
993 BUG_ON(!prealloc);
994 err = split_state(tree, state, prealloc, end + 1);
995 if (err)
996 extent_io_tree_panic(tree, err);
997
998 set_state_bits(tree, prealloc, &bits);
999 cache_state(prealloc, cached_state);
1000 merge_state(tree, prealloc);
1001 prealloc = NULL;
1002 goto out;
1003 }
1004
1005 goto search_again;
1006
1007 out:
1008 spin_unlock(&tree->lock);
1009 if (prealloc)
1010 free_extent_state(prealloc);
1011
1012 return err;
1013
1014 search_again:
1015 if (start > end)
1016 goto out;
1017 spin_unlock(&tree->lock);
1018 if (mask & __GFP_WAIT)
1019 cond_resched();
1020 goto again;
1021 }
1022
1023 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024 unsigned long bits, u64 * failed_start,
1025 struct extent_state **cached_state, gfp_t mask)
1026 {
1027 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028 cached_state, mask);
1029 }
1030
1031
1032 /**
1033 * convert_extent_bit - convert all bits in a given range from one bit to
1034 * another
1035 * @tree: the io tree to search
1036 * @start: the start offset in bytes
1037 * @end: the end offset in bytes (inclusive)
1038 * @bits: the bits to set in this range
1039 * @clear_bits: the bits to clear in this range
1040 * @cached_state: state that we're going to cache
1041 * @mask: the allocation mask
1042 *
1043 * This will go through and set bits for the given range. If any states exist
1044 * already in this range they are set with the given bit and cleared of the
1045 * clear_bits. This is only meant to be used by things that are mergeable, ie
1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1047 * boundary bits like LOCK.
1048 */
1049 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1050 unsigned long bits, unsigned long clear_bits,
1051 struct extent_state **cached_state, gfp_t mask)
1052 {
1053 struct extent_state *state;
1054 struct extent_state *prealloc = NULL;
1055 struct rb_node *node;
1056 struct rb_node **p;
1057 struct rb_node *parent;
1058 int err = 0;
1059 u64 last_start;
1060 u64 last_end;
1061
1062 btrfs_debug_check_extent_io_range(tree, start, end);
1063
1064 again:
1065 if (!prealloc && (mask & __GFP_WAIT)) {
1066 prealloc = alloc_extent_state(mask);
1067 if (!prealloc)
1068 return -ENOMEM;
1069 }
1070
1071 spin_lock(&tree->lock);
1072 if (cached_state && *cached_state) {
1073 state = *cached_state;
1074 if (state->start <= start && state->end > start &&
1075 extent_state_in_tree(state)) {
1076 node = &state->rb_node;
1077 goto hit_next;
1078 }
1079 }
1080
1081 /*
1082 * this search will find all the extents that end after
1083 * our range starts.
1084 */
1085 node = tree_search_for_insert(tree, start, &p, &parent);
1086 if (!node) {
1087 prealloc = alloc_extent_state_atomic(prealloc);
1088 if (!prealloc) {
1089 err = -ENOMEM;
1090 goto out;
1091 }
1092 err = insert_state(tree, prealloc, start, end,
1093 &p, &parent, &bits);
1094 if (err)
1095 extent_io_tree_panic(tree, err);
1096 cache_state(prealloc, cached_state);
1097 prealloc = NULL;
1098 goto out;
1099 }
1100 state = rb_entry(node, struct extent_state, rb_node);
1101 hit_next:
1102 last_start = state->start;
1103 last_end = state->end;
1104
1105 /*
1106 * | ---- desired range ---- |
1107 * | state |
1108 *
1109 * Just lock what we found and keep going
1110 */
1111 if (state->start == start && state->end <= end) {
1112 set_state_bits(tree, state, &bits);
1113 cache_state(state, cached_state);
1114 state = clear_state_bit(tree, state, &clear_bits, 0);
1115 if (last_end == (u64)-1)
1116 goto out;
1117 start = last_end + 1;
1118 if (start < end && state && state->start == start &&
1119 !need_resched())
1120 goto hit_next;
1121 goto search_again;
1122 }
1123
1124 /*
1125 * | ---- desired range ---- |
1126 * | state |
1127 * or
1128 * | ------------- state -------------- |
1129 *
1130 * We need to split the extent we found, and may flip bits on
1131 * second half.
1132 *
1133 * If the extent we found extends past our
1134 * range, we just split and search again. It'll get split
1135 * again the next time though.
1136 *
1137 * If the extent we found is inside our range, we set the
1138 * desired bit on it.
1139 */
1140 if (state->start < start) {
1141 prealloc = alloc_extent_state_atomic(prealloc);
1142 if (!prealloc) {
1143 err = -ENOMEM;
1144 goto out;
1145 }
1146 err = split_state(tree, state, prealloc, start);
1147 if (err)
1148 extent_io_tree_panic(tree, err);
1149 prealloc = NULL;
1150 if (err)
1151 goto out;
1152 if (state->end <= end) {
1153 set_state_bits(tree, state, &bits);
1154 cache_state(state, cached_state);
1155 state = clear_state_bit(tree, state, &clear_bits, 0);
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
1162 }
1163 goto search_again;
1164 }
1165 /*
1166 * | ---- desired range ---- |
1167 * | state | or | state |
1168 *
1169 * There's a hole, we need to insert something in it and
1170 * ignore the extent we found.
1171 */
1172 if (state->start > start) {
1173 u64 this_end;
1174 if (end < last_start)
1175 this_end = end;
1176 else
1177 this_end = last_start - 1;
1178
1179 prealloc = alloc_extent_state_atomic(prealloc);
1180 if (!prealloc) {
1181 err = -ENOMEM;
1182 goto out;
1183 }
1184
1185 /*
1186 * Avoid to free 'prealloc' if it can be merged with
1187 * the later extent.
1188 */
1189 err = insert_state(tree, prealloc, start, this_end,
1190 NULL, NULL, &bits);
1191 if (err)
1192 extent_io_tree_panic(tree, err);
1193 cache_state(prealloc, cached_state);
1194 prealloc = NULL;
1195 start = this_end + 1;
1196 goto search_again;
1197 }
1198 /*
1199 * | ---- desired range ---- |
1200 * | state |
1201 * We need to split the extent, and set the bit
1202 * on the first half
1203 */
1204 if (state->start <= end && state->end > end) {
1205 prealloc = alloc_extent_state_atomic(prealloc);
1206 if (!prealloc) {
1207 err = -ENOMEM;
1208 goto out;
1209 }
1210
1211 err = split_state(tree, state, prealloc, end + 1);
1212 if (err)
1213 extent_io_tree_panic(tree, err);
1214
1215 set_state_bits(tree, prealloc, &bits);
1216 cache_state(prealloc, cached_state);
1217 clear_state_bit(tree, prealloc, &clear_bits, 0);
1218 prealloc = NULL;
1219 goto out;
1220 }
1221
1222 goto search_again;
1223
1224 out:
1225 spin_unlock(&tree->lock);
1226 if (prealloc)
1227 free_extent_state(prealloc);
1228
1229 return err;
1230
1231 search_again:
1232 if (start > end)
1233 goto out;
1234 spin_unlock(&tree->lock);
1235 if (mask & __GFP_WAIT)
1236 cond_resched();
1237 goto again;
1238 }
1239
1240 /* wrappers around set/clear extent bit */
1241 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243 {
1244 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1245 NULL, mask);
1246 }
1247
1248 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1249 unsigned long bits, gfp_t mask)
1250 {
1251 return set_extent_bit(tree, start, end, bits, NULL,
1252 NULL, mask);
1253 }
1254
1255 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1256 unsigned long bits, gfp_t mask)
1257 {
1258 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1259 }
1260
1261 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1262 struct extent_state **cached_state, gfp_t mask)
1263 {
1264 return set_extent_bit(tree, start, end,
1265 EXTENT_DELALLOC | EXTENT_UPTODATE,
1266 NULL, cached_state, mask);
1267 }
1268
1269 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270 struct extent_state **cached_state, gfp_t mask)
1271 {
1272 return set_extent_bit(tree, start, end,
1273 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274 NULL, cached_state, mask);
1275 }
1276
1277 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278 gfp_t mask)
1279 {
1280 return clear_extent_bit(tree, start, end,
1281 EXTENT_DIRTY | EXTENT_DELALLOC |
1282 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1283 }
1284
1285 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286 gfp_t mask)
1287 {
1288 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1289 NULL, mask);
1290 }
1291
1292 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1293 struct extent_state **cached_state, gfp_t mask)
1294 {
1295 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1296 cached_state, mask);
1297 }
1298
1299 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300 struct extent_state **cached_state, gfp_t mask)
1301 {
1302 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1303 cached_state, mask);
1304 }
1305
1306 /*
1307 * either insert or lock state struct between start and end use mask to tell
1308 * us if waiting is desired.
1309 */
1310 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned long bits, struct extent_state **cached_state)
1312 {
1313 int err;
1314 u64 failed_start;
1315 while (1) {
1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317 EXTENT_LOCKED, &failed_start,
1318 cached_state, GFP_NOFS);
1319 if (err == -EEXIST) {
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
1322 } else
1323 break;
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327 }
1328
1329 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331 return lock_extent_bits(tree, start, end, 0, NULL);
1332 }
1333
1334 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1335 {
1336 int err;
1337 u64 failed_start;
1338
1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340 &failed_start, NULL, GFP_NOFS);
1341 if (err == -EEXIST) {
1342 if (failed_start > start)
1343 clear_extent_bit(tree, start, failed_start - 1,
1344 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1345 return 0;
1346 }
1347 return 1;
1348 }
1349
1350 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351 struct extent_state **cached, gfp_t mask)
1352 {
1353 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354 mask);
1355 }
1356
1357 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1360 GFP_NOFS);
1361 }
1362
1363 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364 {
1365 unsigned long index = start >> PAGE_CACHE_SHIFT;
1366 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 page_cache_release(page);
1374 index++;
1375 }
1376 return 0;
1377 }
1378
1379 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380 {
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 account_page_redirty(page);
1389 __set_page_dirty_nobuffers(page);
1390 page_cache_release(page);
1391 index++;
1392 }
1393 return 0;
1394 }
1395
1396 /*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
1399 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 unsigned long index = start >> PAGE_CACHE_SHIFT;
1402 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 set_page_writeback(page);
1409 page_cache_release(page);
1410 index++;
1411 }
1412 return 0;
1413 }
1414
1415 /* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
1419 static struct extent_state *
1420 find_first_extent_bit_state(struct extent_io_tree *tree,
1421 u64 start, unsigned long bits)
1422 {
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
1431 if (!node)
1432 goto out;
1433
1434 while (1) {
1435 state = rb_entry(node, struct extent_state, rb_node);
1436 if (state->end >= start && (state->state & bits))
1437 return state;
1438
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443 out:
1444 return NULL;
1445 }
1446
1447 /*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
1452 * If nothing was found, 1 is returned. If found something, return 0.
1453 */
1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455 u64 *start_ret, u64 *end_ret, unsigned long bits,
1456 struct extent_state **cached_state)
1457 {
1458 struct extent_state *state;
1459 struct rb_node *n;
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
1482 state = find_first_extent_bit_state(tree, start, bits);
1483 got_it:
1484 if (state) {
1485 cache_state(state, cached_state);
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
1490 out:
1491 spin_unlock(&tree->lock);
1492 return ret;
1493 }
1494
1495 /*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
1504 {
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
1511 spin_lock(&tree->lock);
1512
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
1517 node = tree_search(tree, cur_start);
1518 if (!node) {
1519 if (!found)
1520 *end = (u64)-1;
1521 goto out;
1522 }
1523
1524 while (1) {
1525 state = rb_entry(node, struct extent_state, rb_node);
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
1535 if (!found) {
1536 *start = state->start;
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
1544 total_bytes += state->end - state->start + 1;
1545 if (total_bytes >= max_bytes)
1546 break;
1547 if (!node)
1548 break;
1549 }
1550 out:
1551 spin_unlock(&tree->lock);
1552 return found;
1553 }
1554
1555 static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
1558 {
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
1567 return;
1568
1569 while (nr_pages > 0) {
1570 ret = find_get_pages_contig(inode->i_mapping, index,
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 }
1583
1584 static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588 {
1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
1604 while (nrpages > 0) {
1605 ret = find_get_pages_contig(inode->i_mapping, index,
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
1618 if (pages[i] != locked_page) {
1619 lock_page(pages[i]);
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 page_cache_release(pages[i]);
1625 goto done;
1626 }
1627 }
1628 page_cache_release(pages[i]);
1629 pages_locked++;
1630 }
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636 done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_CACHE_SHIFT);
1642 }
1643 return ret;
1644 }
1645
1646 /*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
1652 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
1656 {
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
1660 struct extent_state *cached_state = NULL;
1661 int ret;
1662 int loops = 0;
1663
1664 again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669 max_bytes, &cached_state);
1670 if (!found || delalloc_end <= *start) {
1671 *start = delalloc_start;
1672 *end = delalloc_end;
1673 free_extent_state(cached_state);
1674 return 0;
1675 }
1676
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
1682 if (delalloc_start < *start)
1683 delalloc_start = *start;
1684
1685 /*
1686 * make sure to limit the number of pages we try to lock down
1687 */
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
1690
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
1698 free_extent_state(cached_state);
1699 cached_state = NULL;
1700 if (!loops) {
1701 max_bytes = PAGE_CACHE_SIZE;
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710
1711 /* step three, lock the state bits for the whole range */
1712 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716 EXTENT_DELALLOC, 1, cached_state);
1717 if (!ret) {
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
1725 free_extent_state(cached_state);
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728 out_failed:
1729 return found;
1730 }
1731
1732 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 struct page *locked_page,
1734 unsigned long clear_bits,
1735 unsigned long page_ops)
1736 {
1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
1744
1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746 if (page_ops == 0)
1747 return 0;
1748
1749 while (nr_pages > 0) {
1750 ret = find_get_pages_contig(inode->i_mapping, index,
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
1753 for (i = 0; i < ret; i++) {
1754
1755 if (page_ops & PAGE_SET_PRIVATE2)
1756 SetPagePrivate2(pages[i]);
1757
1758 if (pages[i] == locked_page) {
1759 page_cache_release(pages[i]);
1760 continue;
1761 }
1762 if (page_ops & PAGE_CLEAR_DIRTY)
1763 clear_page_dirty_for_io(pages[i]);
1764 if (page_ops & PAGE_SET_WRITEBACK)
1765 set_page_writeback(pages[i]);
1766 if (page_ops & PAGE_END_WRITEBACK)
1767 end_page_writeback(pages[i]);
1768 if (page_ops & PAGE_UNLOCK)
1769 unlock_page(pages[i]);
1770 page_cache_release(pages[i]);
1771 }
1772 nr_pages -= ret;
1773 index += ret;
1774 cond_resched();
1775 }
1776 return 0;
1777 }
1778
1779 /*
1780 * count the number of bytes in the tree that have a given bit(s)
1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1782 * cached. The total number found is returned.
1783 */
1784 u64 count_range_bits(struct extent_io_tree *tree,
1785 u64 *start, u64 search_end, u64 max_bytes,
1786 unsigned long bits, int contig)
1787 {
1788 struct rb_node *node;
1789 struct extent_state *state;
1790 u64 cur_start = *start;
1791 u64 total_bytes = 0;
1792 u64 last = 0;
1793 int found = 0;
1794
1795 if (WARN_ON(search_end <= cur_start))
1796 return 0;
1797
1798 spin_lock(&tree->lock);
1799 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 total_bytes = tree->dirty_bytes;
1801 goto out;
1802 }
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
1807 node = tree_search(tree, cur_start);
1808 if (!node)
1809 goto out;
1810
1811 while (1) {
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start > search_end)
1814 break;
1815 if (contig && found && state->start > last + 1)
1816 break;
1817 if (state->end >= cur_start && (state->state & bits) == bits) {
1818 total_bytes += min(search_end, state->end) + 1 -
1819 max(cur_start, state->start);
1820 if (total_bytes >= max_bytes)
1821 break;
1822 if (!found) {
1823 *start = max(cur_start, state->start);
1824 found = 1;
1825 }
1826 last = state->end;
1827 } else if (contig && found) {
1828 break;
1829 }
1830 node = rb_next(node);
1831 if (!node)
1832 break;
1833 }
1834 out:
1835 spin_unlock(&tree->lock);
1836 return total_bytes;
1837 }
1838
1839 /*
1840 * set the private field for a given byte offset in the tree. If there isn't
1841 * an extent_state there already, this does nothing.
1842 */
1843 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1844 {
1845 struct rb_node *node;
1846 struct extent_state *state;
1847 int ret = 0;
1848
1849 spin_lock(&tree->lock);
1850 /*
1851 * this search will find all the extents that end after
1852 * our range starts.
1853 */
1854 node = tree_search(tree, start);
1855 if (!node) {
1856 ret = -ENOENT;
1857 goto out;
1858 }
1859 state = rb_entry(node, struct extent_state, rb_node);
1860 if (state->start != start) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state->private = private;
1865 out:
1866 spin_unlock(&tree->lock);
1867 return ret;
1868 }
1869
1870 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871 {
1872 struct rb_node *node;
1873 struct extent_state *state;
1874 int ret = 0;
1875
1876 spin_lock(&tree->lock);
1877 /*
1878 * this search will find all the extents that end after
1879 * our range starts.
1880 */
1881 node = tree_search(tree, start);
1882 if (!node) {
1883 ret = -ENOENT;
1884 goto out;
1885 }
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 if (state->start != start) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 *private = state->private;
1892 out:
1893 spin_unlock(&tree->lock);
1894 return ret;
1895 }
1896
1897 /*
1898 * searches a range in the state tree for a given mask.
1899 * If 'filled' == 1, this returns 1 only if every extent in the tree
1900 * has the bits set. Otherwise, 1 is returned if any bit in the
1901 * range is found set.
1902 */
1903 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1904 unsigned long bits, int filled, struct extent_state *cached)
1905 {
1906 struct extent_state *state = NULL;
1907 struct rb_node *node;
1908 int bitset = 0;
1909
1910 spin_lock(&tree->lock);
1911 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1912 cached->end > start)
1913 node = &cached->rb_node;
1914 else
1915 node = tree_search(tree, start);
1916 while (node && start <= end) {
1917 state = rb_entry(node, struct extent_state, rb_node);
1918
1919 if (filled && state->start > start) {
1920 bitset = 0;
1921 break;
1922 }
1923
1924 if (state->start > end)
1925 break;
1926
1927 if (state->state & bits) {
1928 bitset = 1;
1929 if (!filled)
1930 break;
1931 } else if (filled) {
1932 bitset = 0;
1933 break;
1934 }
1935
1936 if (state->end == (u64)-1)
1937 break;
1938
1939 start = state->end + 1;
1940 if (start > end)
1941 break;
1942 node = rb_next(node);
1943 if (!node) {
1944 if (filled)
1945 bitset = 0;
1946 break;
1947 }
1948 }
1949 spin_unlock(&tree->lock);
1950 return bitset;
1951 }
1952
1953 /*
1954 * helper function to set a given page up to date if all the
1955 * extents in the tree for that page are up to date
1956 */
1957 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1958 {
1959 u64 start = page_offset(page);
1960 u64 end = start + PAGE_CACHE_SIZE - 1;
1961 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1962 SetPageUptodate(page);
1963 }
1964
1965 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1966 {
1967 int ret;
1968 int err = 0;
1969 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1970
1971 set_state_private(failure_tree, rec->start, 0);
1972 ret = clear_extent_bits(failure_tree, rec->start,
1973 rec->start + rec->len - 1,
1974 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1975 if (ret)
1976 err = ret;
1977
1978 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1979 rec->start + rec->len - 1,
1980 EXTENT_DAMAGED, GFP_NOFS);
1981 if (ret && !err)
1982 err = ret;
1983
1984 kfree(rec);
1985 return err;
1986 }
1987
1988 /*
1989 * this bypasses the standard btrfs submit functions deliberately, as
1990 * the standard behavior is to write all copies in a raid setup. here we only
1991 * want to write the one bad copy. so we do the mapping for ourselves and issue
1992 * submit_bio directly.
1993 * to avoid any synchronization issues, wait for the data after writing, which
1994 * actually prevents the read that triggered the error from finishing.
1995 * currently, there can be no more than two copies of every data bit. thus,
1996 * exactly one rewrite is required.
1997 */
1998 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
1999 struct page *page, unsigned int pg_offset, int mirror_num)
2000 {
2001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2002 struct bio *bio;
2003 struct btrfs_device *dev;
2004 u64 map_length = 0;
2005 u64 sector;
2006 struct btrfs_bio *bbio = NULL;
2007 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2008 int ret;
2009
2010 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2011 BUG_ON(!mirror_num);
2012
2013 /* we can't repair anything in raid56 yet */
2014 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2015 return 0;
2016
2017 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2018 if (!bio)
2019 return -EIO;
2020 bio->bi_iter.bi_size = 0;
2021 map_length = length;
2022
2023 ret = btrfs_map_block(fs_info, WRITE, logical,
2024 &map_length, &bbio, mirror_num);
2025 if (ret) {
2026 bio_put(bio);
2027 return -EIO;
2028 }
2029 BUG_ON(mirror_num != bbio->mirror_num);
2030 sector = bbio->stripes[mirror_num-1].physical >> 9;
2031 bio->bi_iter.bi_sector = sector;
2032 dev = bbio->stripes[mirror_num-1].dev;
2033 kfree(bbio);
2034 if (!dev || !dev->bdev || !dev->writeable) {
2035 bio_put(bio);
2036 return -EIO;
2037 }
2038 bio->bi_bdev = dev->bdev;
2039 bio_add_page(bio, page, length, pg_offset);
2040
2041 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2042 /* try to remap that extent elsewhere? */
2043 bio_put(bio);
2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2045 return -EIO;
2046 }
2047
2048 printk_ratelimited_in_rcu(KERN_INFO
2049 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2050 btrfs_ino(inode), start,
2051 rcu_str_deref(dev->name), sector);
2052 bio_put(bio);
2053 return 0;
2054 }
2055
2056 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2057 int mirror_num)
2058 {
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2061 int ret = 0;
2062
2063 if (root->fs_info->sb->s_flags & MS_RDONLY)
2064 return -EROFS;
2065
2066 for (i = 0; i < num_pages; i++) {
2067 struct page *p = eb->pages[i];
2068
2069 ret = repair_io_failure(root->fs_info->btree_inode, start,
2070 PAGE_CACHE_SIZE, start, p,
2071 start - page_offset(p), mirror_num);
2072 if (ret)
2073 break;
2074 start += PAGE_CACHE_SIZE;
2075 }
2076
2077 return ret;
2078 }
2079
2080 /*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
2084 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2085 unsigned int pg_offset)
2086 {
2087 u64 private;
2088 u64 private_failure;
2089 struct io_failure_record *failrec;
2090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2091 struct extent_state *state;
2092 int num_copies;
2093 int ret;
2094
2095 private = 0;
2096 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2097 (u64)-1, 1, EXTENT_DIRTY, 0);
2098 if (!ret)
2099 return 0;
2100
2101 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2102 &private_failure);
2103 if (ret)
2104 return 0;
2105
2106 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2107 BUG_ON(!failrec->this_mirror);
2108
2109 if (failrec->in_validation) {
2110 /* there was no real error, just free the record */
2111 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2112 failrec->start);
2113 goto out;
2114 }
2115 if (fs_info->sb->s_flags & MS_RDONLY)
2116 goto out;
2117
2118 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2119 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2120 failrec->start,
2121 EXTENT_LOCKED);
2122 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2123
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
2128 if (num_copies > 1) {
2129 repair_io_failure(inode, start, failrec->len,
2130 failrec->logical, page,
2131 pg_offset, failrec->failed_mirror);
2132 }
2133 }
2134
2135 out:
2136 free_io_failure(inode, failrec);
2137
2138 return 0;
2139 }
2140
2141 /*
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2146 */
2147 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2148 {
2149 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2150 struct io_failure_record *failrec;
2151 struct extent_state *state, *next;
2152
2153 if (RB_EMPTY_ROOT(&failure_tree->state))
2154 return;
2155
2156 spin_lock(&failure_tree->lock);
2157 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 while (state) {
2159 if (state->start > end)
2160 break;
2161
2162 ASSERT(state->end <= end);
2163
2164 next = next_state(state);
2165
2166 failrec = (struct io_failure_record *)state->private;
2167 free_extent_state(state);
2168 kfree(failrec);
2169
2170 state = next;
2171 }
2172 spin_unlock(&failure_tree->lock);
2173 }
2174
2175 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2176 struct io_failure_record **failrec_ret)
2177 {
2178 struct io_failure_record *failrec;
2179 u64 private;
2180 struct extent_map *em;
2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184 int ret;
2185 u64 logical;
2186
2187 ret = get_state_private(failure_tree, start, &private);
2188 if (ret) {
2189 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 if (!failrec)
2191 return -ENOMEM;
2192
2193 failrec->start = start;
2194 failrec->len = end - start + 1;
2195 failrec->this_mirror = 0;
2196 failrec->bio_flags = 0;
2197 failrec->in_validation = 0;
2198
2199 read_lock(&em_tree->lock);
2200 em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 if (!em) {
2202 read_unlock(&em_tree->lock);
2203 kfree(failrec);
2204 return -EIO;
2205 }
2206
2207 if (em->start > start || em->start + em->len <= start) {
2208 free_extent_map(em);
2209 em = NULL;
2210 }
2211 read_unlock(&em_tree->lock);
2212 if (!em) {
2213 kfree(failrec);
2214 return -EIO;
2215 }
2216
2217 logical = start - em->start;
2218 logical = em->block_start + logical;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 logical = em->block_start;
2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 extent_set_compress_type(&failrec->bio_flags,
2223 em->compress_type);
2224 }
2225
2226 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2227 logical, start, failrec->len);
2228
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
2234 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2235 if (ret >= 0)
2236 ret = set_state_private(failure_tree, start,
2237 (u64)(unsigned long)failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 GFP_NOFS);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2247 failrec = (struct io_failure_record *)(unsigned long)private;
2248 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2249 failrec->logical, failrec->start, failrec->len,
2250 failrec->in_validation);
2251 /*
2252 * when data can be on disk more than twice, add to failrec here
2253 * (e.g. with a list for failed_mirror) to make
2254 * clean_io_failure() clean all those errors at once.
2255 */
2256 }
2257
2258 *failrec_ret = failrec;
2259
2260 return 0;
2261 }
2262
2263 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2264 struct io_failure_record *failrec, int failed_mirror)
2265 {
2266 int num_copies;
2267
2268 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2269 failrec->logical, failrec->len);
2270 if (num_copies == 1) {
2271 /*
2272 * we only have a single copy of the data, so don't bother with
2273 * all the retry and error correction code that follows. no
2274 * matter what the error is, it is very likely to persist.
2275 */
2276 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2277 num_copies, failrec->this_mirror, failed_mirror);
2278 return 0;
2279 }
2280
2281 /*
2282 * there are two premises:
2283 * a) deliver good data to the caller
2284 * b) correct the bad sectors on disk
2285 */
2286 if (failed_bio->bi_vcnt > 1) {
2287 /*
2288 * to fulfill b), we need to know the exact failing sectors, as
2289 * we don't want to rewrite any more than the failed ones. thus,
2290 * we need separate read requests for the failed bio
2291 *
2292 * if the following BUG_ON triggers, our validation request got
2293 * merged. we need separate requests for our algorithm to work.
2294 */
2295 BUG_ON(failrec->in_validation);
2296 failrec->in_validation = 1;
2297 failrec->this_mirror = failed_mirror;
2298 } else {
2299 /*
2300 * we're ready to fulfill a) and b) alongside. get a good copy
2301 * of the failed sector and if we succeed, we have setup
2302 * everything for repair_io_failure to do the rest for us.
2303 */
2304 if (failrec->in_validation) {
2305 BUG_ON(failrec->this_mirror != failed_mirror);
2306 failrec->in_validation = 0;
2307 failrec->this_mirror = 0;
2308 }
2309 failrec->failed_mirror = failed_mirror;
2310 failrec->this_mirror++;
2311 if (failrec->this_mirror == failed_mirror)
2312 failrec->this_mirror++;
2313 }
2314
2315 if (failrec->this_mirror > num_copies) {
2316 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2317 num_copies, failrec->this_mirror, failed_mirror);
2318 return 0;
2319 }
2320
2321 return 1;
2322 }
2323
2324
2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 struct io_failure_record *failrec,
2327 struct page *page, int pg_offset, int icsum,
2328 bio_end_io_t *endio_func, void *data)
2329 {
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
2334 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2335 if (!bio)
2336 return NULL;
2337
2338 bio->bi_end_io = endio_func;
2339 bio->bi_iter.bi_sector = failrec->logical >> 9;
2340 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2341 bio->bi_iter.bi_size = 0;
2342 bio->bi_private = data;
2343
2344 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2345 if (btrfs_failed_bio->csum) {
2346 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2347 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2348
2349 btrfs_bio = btrfs_io_bio(bio);
2350 btrfs_bio->csum = btrfs_bio->csum_inline;
2351 icsum *= csum_size;
2352 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2353 csum_size);
2354 }
2355
2356 bio_add_page(bio, page, failrec->len, pg_offset);
2357
2358 return bio;
2359 }
2360
2361 /*
2362 * this is a generic handler for readpage errors (default
2363 * readpage_io_failed_hook). if other copies exist, read those and write back
2364 * good data to the failed position. does not investigate in remapping the
2365 * failed extent elsewhere, hoping the device will be smart enough to do this as
2366 * needed
2367 */
2368
2369 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2370 struct page *page, u64 start, u64 end,
2371 int failed_mirror)
2372 {
2373 struct io_failure_record *failrec;
2374 struct inode *inode = page->mapping->host;
2375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2376 struct bio *bio;
2377 int read_mode;
2378 int ret;
2379
2380 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2381
2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 if (ret)
2384 return ret;
2385
2386 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2387 if (!ret) {
2388 free_io_failure(inode, failrec);
2389 return -EIO;
2390 }
2391
2392 if (failed_bio->bi_vcnt > 1)
2393 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2394 else
2395 read_mode = READ_SYNC;
2396
2397 phy_offset >>= inode->i_sb->s_blocksize_bits;
2398 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2399 start - page_offset(page),
2400 (int)phy_offset, failed_bio->bi_end_io,
2401 NULL);
2402 if (!bio) {
2403 free_io_failure(inode, failrec);
2404 return -EIO;
2405 }
2406
2407 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
2409
2410 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2411 failrec->this_mirror,
2412 failrec->bio_flags, 0);
2413 if (ret) {
2414 free_io_failure(inode, failrec);
2415 bio_put(bio);
2416 }
2417
2418 return ret;
2419 }
2420
2421 /* lots and lots of room for performance fixes in the end_bio funcs */
2422
2423 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424 {
2425 int uptodate = (err == 0);
2426 struct extent_io_tree *tree;
2427 int ret = 0;
2428
2429 tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
2431 if (tree->ops && tree->ops->writepage_end_io_hook) {
2432 ret = tree->ops->writepage_end_io_hook(page, start,
2433 end, NULL, uptodate);
2434 if (ret)
2435 uptodate = 0;
2436 }
2437
2438 if (!uptodate) {
2439 ClearPageUptodate(page);
2440 SetPageError(page);
2441 ret = ret < 0 ? ret : -EIO;
2442 mapping_set_error(page->mapping, ret);
2443 }
2444 return 0;
2445 }
2446
2447 /*
2448 * after a writepage IO is done, we need to:
2449 * clear the uptodate bits on error
2450 * clear the writeback bits in the extent tree for this IO
2451 * end_page_writeback if the page has no more pending IO
2452 *
2453 * Scheduling is not allowed, so the extent state tree is expected
2454 * to have one and only one object corresponding to this IO.
2455 */
2456 static void end_bio_extent_writepage(struct bio *bio, int err)
2457 {
2458 struct bio_vec *bvec;
2459 u64 start;
2460 u64 end;
2461 int i;
2462
2463 bio_for_each_segment_all(bvec, bio, i) {
2464 struct page *page = bvec->bv_page;
2465
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
2471 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2472 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2473 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2474 "partial page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 else
2477 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2478 "incomplete page write in btrfs with offset %u and "
2479 "length %u",
2480 bvec->bv_offset, bvec->bv_len);
2481 }
2482
2483 start = page_offset(page);
2484 end = start + bvec->bv_offset + bvec->bv_len - 1;
2485
2486 if (end_extent_writepage(page, err, start, end))
2487 continue;
2488
2489 end_page_writeback(page);
2490 }
2491
2492 bio_put(bio);
2493 }
2494
2495 static void
2496 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2497 int uptodate)
2498 {
2499 struct extent_state *cached = NULL;
2500 u64 end = start + len - 1;
2501
2502 if (uptodate && tree->track_uptodate)
2503 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2504 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2505 }
2506
2507 /*
2508 * after a readpage IO is done, we need to:
2509 * clear the uptodate bits on error
2510 * set the uptodate bits if things worked
2511 * set the page up to date if all extents in the tree are uptodate
2512 * clear the lock bit in the extent tree
2513 * unlock the page if there are no other extents locked for it
2514 *
2515 * Scheduling is not allowed, so the extent state tree is expected
2516 * to have one and only one object corresponding to this IO.
2517 */
2518 static void end_bio_extent_readpage(struct bio *bio, int err)
2519 {
2520 struct bio_vec *bvec;
2521 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2522 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2523 struct extent_io_tree *tree;
2524 u64 offset = 0;
2525 u64 start;
2526 u64 end;
2527 u64 len;
2528 u64 extent_start = 0;
2529 u64 extent_len = 0;
2530 int mirror;
2531 int ret;
2532 int i;
2533
2534 if (err)
2535 uptodate = 0;
2536
2537 bio_for_each_segment_all(bvec, bio, i) {
2538 struct page *page = bvec->bv_page;
2539 struct inode *inode = page->mapping->host;
2540
2541 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2542 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
2543 io_bio->mirror_num);
2544 tree = &BTRFS_I(inode)->io_tree;
2545
2546 /* We always issue full-page reads, but if some block
2547 * in a page fails to read, blk_update_request() will
2548 * advance bv_offset and adjust bv_len to compensate.
2549 * Print a warning for nonzero offsets, and an error
2550 * if they don't add up to a full page. */
2551 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2552 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2553 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2554 "partial page read in btrfs with offset %u and length %u",
2555 bvec->bv_offset, bvec->bv_len);
2556 else
2557 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "incomplete page read in btrfs with offset %u and "
2559 "length %u",
2560 bvec->bv_offset, bvec->bv_len);
2561 }
2562
2563 start = page_offset(page);
2564 end = start + bvec->bv_offset + bvec->bv_len - 1;
2565 len = bvec->bv_len;
2566
2567 mirror = io_bio->mirror_num;
2568 if (likely(uptodate && tree->ops &&
2569 tree->ops->readpage_end_io_hook)) {
2570 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2571 page, start, end,
2572 mirror);
2573 if (ret)
2574 uptodate = 0;
2575 else
2576 clean_io_failure(inode, start, page, 0);
2577 }
2578
2579 if (likely(uptodate))
2580 goto readpage_ok;
2581
2582 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2583 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2584 if (!ret && !err &&
2585 test_bit(BIO_UPTODATE, &bio->bi_flags))
2586 uptodate = 1;
2587 } else {
2588 /*
2589 * The generic bio_readpage_error handles errors the
2590 * following way: If possible, new read requests are
2591 * created and submitted and will end up in
2592 * end_bio_extent_readpage as well (if we're lucky, not
2593 * in the !uptodate case). In that case it returns 0 and
2594 * we just go on with the next page in our bio. If it
2595 * can't handle the error it will return -EIO and we
2596 * remain responsible for that page.
2597 */
2598 ret = bio_readpage_error(bio, offset, page, start, end,
2599 mirror);
2600 if (ret == 0) {
2601 uptodate =
2602 test_bit(BIO_UPTODATE, &bio->bi_flags);
2603 if (err)
2604 uptodate = 0;
2605 offset += len;
2606 continue;
2607 }
2608 }
2609 readpage_ok:
2610 if (likely(uptodate)) {
2611 loff_t i_size = i_size_read(inode);
2612 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2613 unsigned off;
2614
2615 /* Zero out the end if this page straddles i_size */
2616 off = i_size & (PAGE_CACHE_SIZE-1);
2617 if (page->index == end_index && off)
2618 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2619 SetPageUptodate(page);
2620 } else {
2621 ClearPageUptodate(page);
2622 SetPageError(page);
2623 }
2624 unlock_page(page);
2625 offset += len;
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2648 }
2649
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
2653 if (io_bio->end_io)
2654 io_bio->end_io(io_bio, err);
2655 bio_put(bio);
2656 }
2657
2658 /*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
2662 struct bio *
2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
2665 {
2666 struct btrfs_io_bio *btrfs_bio;
2667 struct bio *bio;
2668
2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
2680 bio->bi_iter.bi_sector = first_sector;
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
2685 }
2686 return bio;
2687 }
2688
2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690 {
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
2693
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
2700 }
2701 return new;
2702 }
2703
2704 /* this also allocates from the btrfs_bioset */
2705 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706 {
2707 struct btrfs_io_bio *btrfs_bio;
2708 struct bio *bio;
2709
2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 if (bio) {
2712 btrfs_bio = btrfs_io_bio(bio);
2713 btrfs_bio->csum = NULL;
2714 btrfs_bio->csum_allocated = NULL;
2715 btrfs_bio->end_io = NULL;
2716 }
2717 return bio;
2718 }
2719
2720
2721 static int __must_check submit_one_bio(int rw, struct bio *bio,
2722 int mirror_num, unsigned long bio_flags)
2723 {
2724 int ret = 0;
2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 struct page *page = bvec->bv_page;
2727 struct extent_io_tree *tree = bio->bi_private;
2728 u64 start;
2729
2730 start = page_offset(page) + bvec->bv_offset;
2731
2732 bio->bi_private = NULL;
2733
2734 bio_get(bio);
2735
2736 if (tree->ops && tree->ops->submit_bio_hook)
2737 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2738 mirror_num, bio_flags, start);
2739 else
2740 btrfsic_submit_bio(rw, bio);
2741
2742 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2743 ret = -EOPNOTSUPP;
2744 bio_put(bio);
2745 return ret;
2746 }
2747
2748 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2749 unsigned long offset, size_t size, struct bio *bio,
2750 unsigned long bio_flags)
2751 {
2752 int ret = 0;
2753 if (tree->ops && tree->ops->merge_bio_hook)
2754 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2755 bio_flags);
2756 BUG_ON(ret < 0);
2757 return ret;
2758
2759 }
2760
2761 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2762 struct page *page, sector_t sector,
2763 size_t size, unsigned long offset,
2764 struct block_device *bdev,
2765 struct bio **bio_ret,
2766 unsigned long max_pages,
2767 bio_end_io_t end_io_func,
2768 int mirror_num,
2769 unsigned long prev_bio_flags,
2770 unsigned long bio_flags)
2771 {
2772 int ret = 0;
2773 struct bio *bio;
2774 int nr;
2775 int contig = 0;
2776 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2778 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2779
2780 if (bio_ret && *bio_ret) {
2781 bio = *bio_ret;
2782 if (old_compressed)
2783 contig = bio->bi_iter.bi_sector == sector;
2784 else
2785 contig = bio_end_sector(bio) == sector;
2786
2787 if (prev_bio_flags != bio_flags || !contig ||
2788 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2789 bio_add_page(bio, page, page_size, offset) < page_size) {
2790 ret = submit_one_bio(rw, bio, mirror_num,
2791 prev_bio_flags);
2792 if (ret < 0)
2793 return ret;
2794 bio = NULL;
2795 } else {
2796 return 0;
2797 }
2798 }
2799 if (this_compressed)
2800 nr = BIO_MAX_PAGES;
2801 else
2802 nr = bio_get_nr_vecs(bdev);
2803
2804 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2805 if (!bio)
2806 return -ENOMEM;
2807
2808 bio_add_page(bio, page, page_size, offset);
2809 bio->bi_end_io = end_io_func;
2810 bio->bi_private = tree;
2811
2812 if (bio_ret)
2813 *bio_ret = bio;
2814 else
2815 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2816
2817 return ret;
2818 }
2819
2820 static void attach_extent_buffer_page(struct extent_buffer *eb,
2821 struct page *page)
2822 {
2823 if (!PagePrivate(page)) {
2824 SetPagePrivate(page);
2825 page_cache_get(page);
2826 set_page_private(page, (unsigned long)eb);
2827 } else {
2828 WARN_ON(page->private != (unsigned long)eb);
2829 }
2830 }
2831
2832 void set_page_extent_mapped(struct page *page)
2833 {
2834 if (!PagePrivate(page)) {
2835 SetPagePrivate(page);
2836 page_cache_get(page);
2837 set_page_private(page, EXTENT_PAGE_PRIVATE);
2838 }
2839 }
2840
2841 static struct extent_map *
2842 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2843 u64 start, u64 len, get_extent_t *get_extent,
2844 struct extent_map **em_cached)
2845 {
2846 struct extent_map *em;
2847
2848 if (em_cached && *em_cached) {
2849 em = *em_cached;
2850 if (extent_map_in_tree(em) && start >= em->start &&
2851 start < extent_map_end(em)) {
2852 atomic_inc(&em->refs);
2853 return em;
2854 }
2855
2856 free_extent_map(em);
2857 *em_cached = NULL;
2858 }
2859
2860 em = get_extent(inode, page, pg_offset, start, len, 0);
2861 if (em_cached && !IS_ERR_OR_NULL(em)) {
2862 BUG_ON(*em_cached);
2863 atomic_inc(&em->refs);
2864 *em_cached = em;
2865 }
2866 return em;
2867 }
2868 /*
2869 * basic readpage implementation. Locked extent state structs are inserted
2870 * into the tree that are removed when the IO is done (by the end_io
2871 * handlers)
2872 * XXX JDM: This needs looking at to ensure proper page locking
2873 */
2874 static int __do_readpage(struct extent_io_tree *tree,
2875 struct page *page,
2876 get_extent_t *get_extent,
2877 struct extent_map **em_cached,
2878 struct bio **bio, int mirror_num,
2879 unsigned long *bio_flags, int rw)
2880 {
2881 struct inode *inode = page->mapping->host;
2882 u64 start = page_offset(page);
2883 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret;
2894 int nr = 0;
2895 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2896 size_t pg_offset = 0;
2897 size_t iosize;
2898 size_t disk_io_size;
2899 size_t blocksize = inode->i_sb->s_blocksize;
2900 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2901
2902 set_page_extent_mapped(page);
2903
2904 end = page_end;
2905 if (!PageUptodate(page)) {
2906 if (cleancache_get_page(page) == 0) {
2907 BUG_ON(blocksize != PAGE_SIZE);
2908 unlock_extent(tree, start, end);
2909 goto out;
2910 }
2911 }
2912
2913 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2914 char *userpage;
2915 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2916
2917 if (zero_offset) {
2918 iosize = PAGE_CACHE_SIZE - zero_offset;
2919 userpage = kmap_atomic(page);
2920 memset(userpage + zero_offset, 0, iosize);
2921 flush_dcache_page(page);
2922 kunmap_atomic(userpage);
2923 }
2924 }
2925 while (cur <= end) {
2926 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2927
2928 if (cur >= last_byte) {
2929 char *userpage;
2930 struct extent_state *cached = NULL;
2931
2932 iosize = PAGE_CACHE_SIZE - pg_offset;
2933 userpage = kmap_atomic(page);
2934 memset(userpage + pg_offset, 0, iosize);
2935 flush_dcache_page(page);
2936 kunmap_atomic(userpage);
2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 &cached, GFP_NOFS);
2939 if (!parent_locked)
2940 unlock_extent_cached(tree, cur,
2941 cur + iosize - 1,
2942 &cached, GFP_NOFS);
2943 break;
2944 }
2945 em = __get_extent_map(inode, page, pg_offset, cur,
2946 end - cur + 1, get_extent, em_cached);
2947 if (IS_ERR_OR_NULL(em)) {
2948 SetPageError(page);
2949 if (!parent_locked)
2950 unlock_extent(tree, cur, end);
2951 break;
2952 }
2953 extent_offset = cur - em->start;
2954 BUG_ON(extent_map_end(em) <= cur);
2955 BUG_ON(end < cur);
2956
2957 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2958 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2959 extent_set_compress_type(&this_bio_flag,
2960 em->compress_type);
2961 }
2962
2963 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2964 cur_end = min(extent_map_end(em) - 1, end);
2965 iosize = ALIGN(iosize, blocksize);
2966 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2967 disk_io_size = em->block_len;
2968 sector = em->block_start >> 9;
2969 } else {
2970 sector = (em->block_start + extent_offset) >> 9;
2971 disk_io_size = iosize;
2972 }
2973 bdev = em->bdev;
2974 block_start = em->block_start;
2975 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2976 block_start = EXTENT_MAP_HOLE;
2977 free_extent_map(em);
2978 em = NULL;
2979
2980 /* we've found a hole, just zero and go on */
2981 if (block_start == EXTENT_MAP_HOLE) {
2982 char *userpage;
2983 struct extent_state *cached = NULL;
2984
2985 userpage = kmap_atomic(page);
2986 memset(userpage + pg_offset, 0, iosize);
2987 flush_dcache_page(page);
2988 kunmap_atomic(userpage);
2989
2990 set_extent_uptodate(tree, cur, cur + iosize - 1,
2991 &cached, GFP_NOFS);
2992 unlock_extent_cached(tree, cur, cur + iosize - 1,
2993 &cached, GFP_NOFS);
2994 cur = cur + iosize;
2995 pg_offset += iosize;
2996 continue;
2997 }
2998 /* the get_extent function already copied into the page */
2999 if (test_range_bit(tree, cur, cur_end,
3000 EXTENT_UPTODATE, 1, NULL)) {
3001 check_page_uptodate(tree, page);
3002 if (!parent_locked)
3003 unlock_extent(tree, cur, cur + iosize - 1);
3004 cur = cur + iosize;
3005 pg_offset += iosize;
3006 continue;
3007 }
3008 /* we have an inline extent but it didn't get marked up
3009 * to date. Error out
3010 */
3011 if (block_start == EXTENT_MAP_INLINE) {
3012 SetPageError(page);
3013 if (!parent_locked)
3014 unlock_extent(tree, cur, cur + iosize - 1);
3015 cur = cur + iosize;
3016 pg_offset += iosize;
3017 continue;
3018 }
3019
3020 pnr -= page->index;
3021 ret = submit_extent_page(rw, tree, page,
3022 sector, disk_io_size, pg_offset,
3023 bdev, bio, pnr,
3024 end_bio_extent_readpage, mirror_num,
3025 *bio_flags,
3026 this_bio_flag);
3027 if (!ret) {
3028 nr++;
3029 *bio_flags = this_bio_flag;
3030 } else {
3031 SetPageError(page);
3032 if (!parent_locked)
3033 unlock_extent(tree, cur, cur + iosize - 1);
3034 }
3035 cur = cur + iosize;
3036 pg_offset += iosize;
3037 }
3038 out:
3039 if (!nr) {
3040 if (!PageError(page))
3041 SetPageUptodate(page);
3042 unlock_page(page);
3043 }
3044 return 0;
3045 }
3046
3047 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3048 struct page *pages[], int nr_pages,
3049 u64 start, u64 end,
3050 get_extent_t *get_extent,
3051 struct extent_map **em_cached,
3052 struct bio **bio, int mirror_num,
3053 unsigned long *bio_flags, int rw)
3054 {
3055 struct inode *inode;
3056 struct btrfs_ordered_extent *ordered;
3057 int index;
3058
3059 inode = pages[0]->mapping->host;
3060 while (1) {
3061 lock_extent(tree, start, end);
3062 ordered = btrfs_lookup_ordered_range(inode, start,
3063 end - start + 1);
3064 if (!ordered)
3065 break;
3066 unlock_extent(tree, start, end);
3067 btrfs_start_ordered_extent(inode, ordered, 1);
3068 btrfs_put_ordered_extent(ordered);
3069 }
3070
3071 for (index = 0; index < nr_pages; index++) {
3072 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3073 mirror_num, bio_flags, rw);
3074 page_cache_release(pages[index]);
3075 }
3076 }
3077
3078 static void __extent_readpages(struct extent_io_tree *tree,
3079 struct page *pages[],
3080 int nr_pages, get_extent_t *get_extent,
3081 struct extent_map **em_cached,
3082 struct bio **bio, int mirror_num,
3083 unsigned long *bio_flags, int rw)
3084 {
3085 u64 start = 0;
3086 u64 end = 0;
3087 u64 page_start;
3088 int index;
3089 int first_index = 0;
3090
3091 for (index = 0; index < nr_pages; index++) {
3092 page_start = page_offset(pages[index]);
3093 if (!end) {
3094 start = page_start;
3095 end = start + PAGE_CACHE_SIZE - 1;
3096 first_index = index;
3097 } else if (end + 1 == page_start) {
3098 end += PAGE_CACHE_SIZE;
3099 } else {
3100 __do_contiguous_readpages(tree, &pages[first_index],
3101 index - first_index, start,
3102 end, get_extent, em_cached,
3103 bio, mirror_num, bio_flags,
3104 rw);
3105 start = page_start;
3106 end = start + PAGE_CACHE_SIZE - 1;
3107 first_index = index;
3108 }
3109 }
3110
3111 if (end)
3112 __do_contiguous_readpages(tree, &pages[first_index],
3113 index - first_index, start,
3114 end, get_extent, em_cached, bio,
3115 mirror_num, bio_flags, rw);
3116 }
3117
3118 static int __extent_read_full_page(struct extent_io_tree *tree,
3119 struct page *page,
3120 get_extent_t *get_extent,
3121 struct bio **bio, int mirror_num,
3122 unsigned long *bio_flags, int rw)
3123 {
3124 struct inode *inode = page->mapping->host;
3125 struct btrfs_ordered_extent *ordered;
3126 u64 start = page_offset(page);
3127 u64 end = start + PAGE_CACHE_SIZE - 1;
3128 int ret;
3129
3130 while (1) {
3131 lock_extent(tree, start, end);
3132 ordered = btrfs_lookup_ordered_extent(inode, start);
3133 if (!ordered)
3134 break;
3135 unlock_extent(tree, start, end);
3136 btrfs_start_ordered_extent(inode, ordered, 1);
3137 btrfs_put_ordered_extent(ordered);
3138 }
3139
3140 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3141 bio_flags, rw);
3142 return ret;
3143 }
3144
3145 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3146 get_extent_t *get_extent, int mirror_num)
3147 {
3148 struct bio *bio = NULL;
3149 unsigned long bio_flags = 0;
3150 int ret;
3151
3152 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3153 &bio_flags, READ);
3154 if (bio)
3155 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3156 return ret;
3157 }
3158
3159 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3160 get_extent_t *get_extent, int mirror_num)
3161 {
3162 struct bio *bio = NULL;
3163 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3164 int ret;
3165
3166 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3167 &bio_flags, READ);
3168 if (bio)
3169 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3170 return ret;
3171 }
3172
3173 static noinline void update_nr_written(struct page *page,
3174 struct writeback_control *wbc,
3175 unsigned long nr_written)
3176 {
3177 wbc->nr_to_write -= nr_written;
3178 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3179 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3180 page->mapping->writeback_index = page->index + nr_written;
3181 }
3182
3183 /*
3184 * helper for __extent_writepage, doing all of the delayed allocation setup.
3185 *
3186 * This returns 1 if our fill_delalloc function did all the work required
3187 * to write the page (copy into inline extent). In this case the IO has
3188 * been started and the page is already unlocked.
3189 *
3190 * This returns 0 if all went well (page still locked)
3191 * This returns < 0 if there were errors (page still locked)
3192 */
3193 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3194 struct page *page, struct writeback_control *wbc,
3195 struct extent_page_data *epd,
3196 u64 delalloc_start,
3197 unsigned long *nr_written)
3198 {
3199 struct extent_io_tree *tree = epd->tree;
3200 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3201 u64 nr_delalloc;
3202 u64 delalloc_to_write = 0;
3203 u64 delalloc_end = 0;
3204 int ret;
3205 int page_started = 0;
3206
3207 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3208 return 0;
3209
3210 while (delalloc_end < page_end) {
3211 nr_delalloc = find_lock_delalloc_range(inode, tree,
3212 page,
3213 &delalloc_start,
3214 &delalloc_end,
3215 128 * 1024 * 1024);
3216 if (nr_delalloc == 0) {
3217 delalloc_start = delalloc_end + 1;
3218 continue;
3219 }
3220 ret = tree->ops->fill_delalloc(inode, page,
3221 delalloc_start,
3222 delalloc_end,
3223 &page_started,
3224 nr_written);
3225 /* File system has been set read-only */
3226 if (ret) {
3227 SetPageError(page);
3228 /* fill_delalloc should be return < 0 for error
3229 * but just in case, we use > 0 here meaning the
3230 * IO is started, so we don't want to return > 0
3231 * unless things are going well.
3232 */
3233 ret = ret < 0 ? ret : -EIO;
3234 goto done;
3235 }
3236 /*
3237 * delalloc_end is already one less than the total
3238 * length, so we don't subtract one from
3239 * PAGE_CACHE_SIZE
3240 */
3241 delalloc_to_write += (delalloc_end - delalloc_start +
3242 PAGE_CACHE_SIZE) >>
3243 PAGE_CACHE_SHIFT;
3244 delalloc_start = delalloc_end + 1;
3245 }
3246 if (wbc->nr_to_write < delalloc_to_write) {
3247 int thresh = 8192;
3248
3249 if (delalloc_to_write < thresh * 2)
3250 thresh = delalloc_to_write;
3251 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3252 thresh);
3253 }
3254
3255 /* did the fill delalloc function already unlock and start
3256 * the IO?
3257 */
3258 if (page_started) {
3259 /*
3260 * we've unlocked the page, so we can't update
3261 * the mapping's writeback index, just update
3262 * nr_to_write.
3263 */
3264 wbc->nr_to_write -= *nr_written;
3265 return 1;
3266 }
3267
3268 ret = 0;
3269
3270 done:
3271 return ret;
3272 }
3273
3274 /*
3275 * helper for __extent_writepage. This calls the writepage start hooks,
3276 * and does the loop to map the page into extents and bios.
3277 *
3278 * We return 1 if the IO is started and the page is unlocked,
3279 * 0 if all went well (page still locked)
3280 * < 0 if there were errors (page still locked)
3281 */
3282 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3283 struct page *page,
3284 struct writeback_control *wbc,
3285 struct extent_page_data *epd,
3286 loff_t i_size,
3287 unsigned long nr_written,
3288 int write_flags, int *nr_ret)
3289 {
3290 struct extent_io_tree *tree = epd->tree;
3291 u64 start = page_offset(page);
3292 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3293 u64 end;
3294 u64 cur = start;
3295 u64 extent_offset;
3296 u64 block_start;
3297 u64 iosize;
3298 sector_t sector;
3299 struct extent_state *cached_state = NULL;
3300 struct extent_map *em;
3301 struct block_device *bdev;
3302 size_t pg_offset = 0;
3303 size_t blocksize;
3304 int ret = 0;
3305 int nr = 0;
3306 bool compressed;
3307
3308 if (tree->ops && tree->ops->writepage_start_hook) {
3309 ret = tree->ops->writepage_start_hook(page, start,
3310 page_end);
3311 if (ret) {
3312 /* Fixup worker will requeue */
3313 if (ret == -EBUSY)
3314 wbc->pages_skipped++;
3315 else
3316 redirty_page_for_writepage(wbc, page);
3317
3318 update_nr_written(page, wbc, nr_written);
3319 unlock_page(page);
3320 ret = 1;
3321 goto done_unlocked;
3322 }
3323 }
3324
3325 /*
3326 * we don't want to touch the inode after unlocking the page,
3327 * so we update the mapping writeback index now
3328 */
3329 update_nr_written(page, wbc, nr_written + 1);
3330
3331 end = page_end;
3332 if (i_size <= start) {
3333 if (tree->ops && tree->ops->writepage_end_io_hook)
3334 tree->ops->writepage_end_io_hook(page, start,
3335 page_end, NULL, 1);
3336 goto done;
3337 }
3338
3339 blocksize = inode->i_sb->s_blocksize;
3340
3341 while (cur <= end) {
3342 u64 em_end;
3343 if (cur >= i_size) {
3344 if (tree->ops && tree->ops->writepage_end_io_hook)
3345 tree->ops->writepage_end_io_hook(page, cur,
3346 page_end, NULL, 1);
3347 break;
3348 }
3349 em = epd->get_extent(inode, page, pg_offset, cur,
3350 end - cur + 1, 1);
3351 if (IS_ERR_OR_NULL(em)) {
3352 SetPageError(page);
3353 ret = PTR_ERR_OR_ZERO(em);
3354 break;
3355 }
3356
3357 extent_offset = cur - em->start;
3358 em_end = extent_map_end(em);
3359 BUG_ON(em_end <= cur);
3360 BUG_ON(end < cur);
3361 iosize = min(em_end - cur, end - cur + 1);
3362 iosize = ALIGN(iosize, blocksize);
3363 sector = (em->block_start + extent_offset) >> 9;
3364 bdev = em->bdev;
3365 block_start = em->block_start;
3366 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3367 free_extent_map(em);
3368 em = NULL;
3369
3370 /*
3371 * compressed and inline extents are written through other
3372 * paths in the FS
3373 */
3374 if (compressed || block_start == EXTENT_MAP_HOLE ||
3375 block_start == EXTENT_MAP_INLINE) {
3376 /*
3377 * end_io notification does not happen here for
3378 * compressed extents
3379 */
3380 if (!compressed && tree->ops &&
3381 tree->ops->writepage_end_io_hook)
3382 tree->ops->writepage_end_io_hook(page, cur,
3383 cur + iosize - 1,
3384 NULL, 1);
3385 else if (compressed) {
3386 /* we don't want to end_page_writeback on
3387 * a compressed extent. this happens
3388 * elsewhere
3389 */
3390 nr++;
3391 }
3392
3393 cur += iosize;
3394 pg_offset += iosize;
3395 continue;
3396 }
3397
3398 if (tree->ops && tree->ops->writepage_io_hook) {
3399 ret = tree->ops->writepage_io_hook(page, cur,
3400 cur + iosize - 1);
3401 } else {
3402 ret = 0;
3403 }
3404 if (ret) {
3405 SetPageError(page);
3406 } else {
3407 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3408
3409 set_range_writeback(tree, cur, cur + iosize - 1);
3410 if (!PageWriteback(page)) {
3411 btrfs_err(BTRFS_I(inode)->root->fs_info,
3412 "page %lu not writeback, cur %llu end %llu",
3413 page->index, cur, end);
3414 }
3415
3416 ret = submit_extent_page(write_flags, tree, page,
3417 sector, iosize, pg_offset,
3418 bdev, &epd->bio, max_nr,
3419 end_bio_extent_writepage,
3420 0, 0, 0);
3421 if (ret)
3422 SetPageError(page);
3423 }
3424 cur = cur + iosize;
3425 pg_offset += iosize;
3426 nr++;
3427 }
3428 done:
3429 *nr_ret = nr;
3430
3431 done_unlocked:
3432
3433 /* drop our reference on any cached states */
3434 free_extent_state(cached_state);
3435 return ret;
3436 }
3437
3438 /*
3439 * the writepage semantics are similar to regular writepage. extent
3440 * records are inserted to lock ranges in the tree, and as dirty areas
3441 * are found, they are marked writeback. Then the lock bits are removed
3442 * and the end_io handler clears the writeback ranges
3443 */
3444 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3445 void *data)
3446 {
3447 struct inode *inode = page->mapping->host;
3448 struct extent_page_data *epd = data;
3449 u64 start = page_offset(page);
3450 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3451 int ret;
3452 int nr = 0;
3453 size_t pg_offset = 0;
3454 loff_t i_size = i_size_read(inode);
3455 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3456 int write_flags;
3457 unsigned long nr_written = 0;
3458
3459 if (wbc->sync_mode == WB_SYNC_ALL)
3460 write_flags = WRITE_SYNC;
3461 else
3462 write_flags = WRITE;
3463
3464 trace___extent_writepage(page, inode, wbc);
3465
3466 WARN_ON(!PageLocked(page));
3467
3468 ClearPageError(page);
3469
3470 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3471 if (page->index > end_index ||
3472 (page->index == end_index && !pg_offset)) {
3473 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3474 unlock_page(page);
3475 return 0;
3476 }
3477
3478 if (page->index == end_index) {
3479 char *userpage;
3480
3481 userpage = kmap_atomic(page);
3482 memset(userpage + pg_offset, 0,
3483 PAGE_CACHE_SIZE - pg_offset);
3484 kunmap_atomic(userpage);
3485 flush_dcache_page(page);
3486 }
3487
3488 pg_offset = 0;
3489
3490 set_page_extent_mapped(page);
3491
3492 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3493 if (ret == 1)
3494 goto done_unlocked;
3495 if (ret)
3496 goto done;
3497
3498 ret = __extent_writepage_io(inode, page, wbc, epd,
3499 i_size, nr_written, write_flags, &nr);
3500 if (ret == 1)
3501 goto done_unlocked;
3502
3503 done:
3504 if (nr == 0) {
3505 /* make sure the mapping tag for page dirty gets cleared */
3506 set_page_writeback(page);
3507 end_page_writeback(page);
3508 }
3509 if (PageError(page)) {
3510 ret = ret < 0 ? ret : -EIO;
3511 end_extent_writepage(page, ret, start, page_end);
3512 }
3513 unlock_page(page);
3514 return ret;
3515
3516 done_unlocked:
3517 return 0;
3518 }
3519
3520 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3521 {
3522 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3523 TASK_UNINTERRUPTIBLE);
3524 }
3525
3526 static noinline_for_stack int
3527 lock_extent_buffer_for_io(struct extent_buffer *eb,
3528 struct btrfs_fs_info *fs_info,
3529 struct extent_page_data *epd)
3530 {
3531 unsigned long i, num_pages;
3532 int flush = 0;
3533 int ret = 0;
3534
3535 if (!btrfs_try_tree_write_lock(eb)) {
3536 flush = 1;
3537 flush_write_bio(epd);
3538 btrfs_tree_lock(eb);
3539 }
3540
3541 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3542 btrfs_tree_unlock(eb);
3543 if (!epd->sync_io)
3544 return 0;
3545 if (!flush) {
3546 flush_write_bio(epd);
3547 flush = 1;
3548 }
3549 while (1) {
3550 wait_on_extent_buffer_writeback(eb);
3551 btrfs_tree_lock(eb);
3552 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3553 break;
3554 btrfs_tree_unlock(eb);
3555 }
3556 }
3557
3558 /*
3559 * We need to do this to prevent races in people who check if the eb is
3560 * under IO since we can end up having no IO bits set for a short period
3561 * of time.
3562 */
3563 spin_lock(&eb->refs_lock);
3564 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3565 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3566 spin_unlock(&eb->refs_lock);
3567 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3568 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3569 -eb->len,
3570 fs_info->dirty_metadata_batch);
3571 ret = 1;
3572 } else {
3573 spin_unlock(&eb->refs_lock);
3574 }
3575
3576 btrfs_tree_unlock(eb);
3577
3578 if (!ret)
3579 return ret;
3580
3581 num_pages = num_extent_pages(eb->start, eb->len);
3582 for (i = 0; i < num_pages; i++) {
3583 struct page *p = eb->pages[i];
3584
3585 if (!trylock_page(p)) {
3586 if (!flush) {
3587 flush_write_bio(epd);
3588 flush = 1;
3589 }
3590 lock_page(p);
3591 }
3592 }
3593
3594 return ret;
3595 }
3596
3597 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3598 {
3599 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3600 smp_mb__after_atomic();
3601 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3602 }
3603
3604 static void set_btree_ioerr(struct page *page)
3605 {
3606 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3607 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3608
3609 SetPageError(page);
3610 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3611 return;
3612
3613 /*
3614 * If writeback for a btree extent that doesn't belong to a log tree
3615 * failed, increment the counter transaction->eb_write_errors.
3616 * We do this because while the transaction is running and before it's
3617 * committing (when we call filemap_fdata[write|wait]_range against
3618 * the btree inode), we might have
3619 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3620 * returns an error or an error happens during writeback, when we're
3621 * committing the transaction we wouldn't know about it, since the pages
3622 * can be no longer dirty nor marked anymore for writeback (if a
3623 * subsequent modification to the extent buffer didn't happen before the
3624 * transaction commit), which makes filemap_fdata[write|wait]_range not
3625 * able to find the pages tagged with SetPageError at transaction
3626 * commit time. So if this happens we must abort the transaction,
3627 * otherwise we commit a super block with btree roots that point to
3628 * btree nodes/leafs whose content on disk is invalid - either garbage
3629 * or the content of some node/leaf from a past generation that got
3630 * cowed or deleted and is no longer valid.
3631 *
3632 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3633 * not be enough - we need to distinguish between log tree extents vs
3634 * non-log tree extents, and the next filemap_fdatawait_range() call
3635 * will catch and clear such errors in the mapping - and that call might
3636 * be from a log sync and not from a transaction commit. Also, checking
3637 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3638 * not done and would not be reliable - the eb might have been released
3639 * from memory and reading it back again means that flag would not be
3640 * set (since it's a runtime flag, not persisted on disk).
3641 *
3642 * Using the flags below in the btree inode also makes us achieve the
3643 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3644 * writeback for all dirty pages and before filemap_fdatawait_range()
3645 * is called, the writeback for all dirty pages had already finished
3646 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3647 * filemap_fdatawait_range() would return success, as it could not know
3648 * that writeback errors happened (the pages were no longer tagged for
3649 * writeback).
3650 */
3651 switch (eb->log_index) {
3652 case -1:
3653 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3654 break;
3655 case 0:
3656 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3657 break;
3658 case 1:
3659 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3660 break;
3661 default:
3662 BUG(); /* unexpected, logic error */
3663 }
3664 }
3665
3666 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3667 {
3668 struct bio_vec *bvec;
3669 struct extent_buffer *eb;
3670 int i, done;
3671
3672 bio_for_each_segment_all(bvec, bio, i) {
3673 struct page *page = bvec->bv_page;
3674
3675 eb = (struct extent_buffer *)page->private;
3676 BUG_ON(!eb);
3677 done = atomic_dec_and_test(&eb->io_pages);
3678
3679 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3680 ClearPageUptodate(page);
3681 set_btree_ioerr(page);
3682 }
3683
3684 end_page_writeback(page);
3685
3686 if (!done)
3687 continue;
3688
3689 end_extent_buffer_writeback(eb);
3690 }
3691
3692 bio_put(bio);
3693 }
3694
3695 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3696 struct btrfs_fs_info *fs_info,
3697 struct writeback_control *wbc,
3698 struct extent_page_data *epd)
3699 {
3700 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3701 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3702 u64 offset = eb->start;
3703 unsigned long i, num_pages;
3704 unsigned long bio_flags = 0;
3705 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3706 int ret = 0;
3707
3708 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3709 num_pages = num_extent_pages(eb->start, eb->len);
3710 atomic_set(&eb->io_pages, num_pages);
3711 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3712 bio_flags = EXTENT_BIO_TREE_LOG;
3713
3714 for (i = 0; i < num_pages; i++) {
3715 struct page *p = eb->pages[i];
3716
3717 clear_page_dirty_for_io(p);
3718 set_page_writeback(p);
3719 ret = submit_extent_page(rw, tree, p, offset >> 9,
3720 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3721 -1, end_bio_extent_buffer_writepage,
3722 0, epd->bio_flags, bio_flags);
3723 epd->bio_flags = bio_flags;
3724 if (ret) {
3725 set_btree_ioerr(p);
3726 end_page_writeback(p);
3727 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3728 end_extent_buffer_writeback(eb);
3729 ret = -EIO;
3730 break;
3731 }
3732 offset += PAGE_CACHE_SIZE;
3733 update_nr_written(p, wbc, 1);
3734 unlock_page(p);
3735 }
3736
3737 if (unlikely(ret)) {
3738 for (; i < num_pages; i++) {
3739 struct page *p = eb->pages[i];
3740 clear_page_dirty_for_io(p);
3741 unlock_page(p);
3742 }
3743 }
3744
3745 return ret;
3746 }
3747
3748 int btree_write_cache_pages(struct address_space *mapping,
3749 struct writeback_control *wbc)
3750 {
3751 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3752 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3753 struct extent_buffer *eb, *prev_eb = NULL;
3754 struct extent_page_data epd = {
3755 .bio = NULL,
3756 .tree = tree,
3757 .extent_locked = 0,
3758 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3759 .bio_flags = 0,
3760 };
3761 int ret = 0;
3762 int done = 0;
3763 int nr_to_write_done = 0;
3764 struct pagevec pvec;
3765 int nr_pages;
3766 pgoff_t index;
3767 pgoff_t end; /* Inclusive */
3768 int scanned = 0;
3769 int tag;
3770
3771 pagevec_init(&pvec, 0);
3772 if (wbc->range_cyclic) {
3773 index = mapping->writeback_index; /* Start from prev offset */
3774 end = -1;
3775 } else {
3776 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3777 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3778 scanned = 1;
3779 }
3780 if (wbc->sync_mode == WB_SYNC_ALL)
3781 tag = PAGECACHE_TAG_TOWRITE;
3782 else
3783 tag = PAGECACHE_TAG_DIRTY;
3784 retry:
3785 if (wbc->sync_mode == WB_SYNC_ALL)
3786 tag_pages_for_writeback(mapping, index, end);
3787 while (!done && !nr_to_write_done && (index <= end) &&
3788 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3789 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3790 unsigned i;
3791
3792 scanned = 1;
3793 for (i = 0; i < nr_pages; i++) {
3794 struct page *page = pvec.pages[i];
3795
3796 if (!PagePrivate(page))
3797 continue;
3798
3799 if (!wbc->range_cyclic && page->index > end) {
3800 done = 1;
3801 break;
3802 }
3803
3804 spin_lock(&mapping->private_lock);
3805 if (!PagePrivate(page)) {
3806 spin_unlock(&mapping->private_lock);
3807 continue;
3808 }
3809
3810 eb = (struct extent_buffer *)page->private;
3811
3812 /*
3813 * Shouldn't happen and normally this would be a BUG_ON
3814 * but no sense in crashing the users box for something
3815 * we can survive anyway.
3816 */
3817 if (WARN_ON(!eb)) {
3818 spin_unlock(&mapping->private_lock);
3819 continue;
3820 }
3821
3822 if (eb == prev_eb) {
3823 spin_unlock(&mapping->private_lock);
3824 continue;
3825 }
3826
3827 ret = atomic_inc_not_zero(&eb->refs);
3828 spin_unlock(&mapping->private_lock);
3829 if (!ret)
3830 continue;
3831
3832 prev_eb = eb;
3833 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3834 if (!ret) {
3835 free_extent_buffer(eb);
3836 continue;
3837 }
3838
3839 ret = write_one_eb(eb, fs_info, wbc, &epd);
3840 if (ret) {
3841 done = 1;
3842 free_extent_buffer(eb);
3843 break;
3844 }
3845 free_extent_buffer(eb);
3846
3847 /*
3848 * the filesystem may choose to bump up nr_to_write.
3849 * We have to make sure to honor the new nr_to_write
3850 * at any time
3851 */
3852 nr_to_write_done = wbc->nr_to_write <= 0;
3853 }
3854 pagevec_release(&pvec);
3855 cond_resched();
3856 }
3857 if (!scanned && !done) {
3858 /*
3859 * We hit the last page and there is more work to be done: wrap
3860 * back to the start of the file
3861 */
3862 scanned = 1;
3863 index = 0;
3864 goto retry;
3865 }
3866 flush_write_bio(&epd);
3867 return ret;
3868 }
3869
3870 /**
3871 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3872 * @mapping: address space structure to write
3873 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3874 * @writepage: function called for each page
3875 * @data: data passed to writepage function
3876 *
3877 * If a page is already under I/O, write_cache_pages() skips it, even
3878 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3879 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3880 * and msync() need to guarantee that all the data which was dirty at the time
3881 * the call was made get new I/O started against them. If wbc->sync_mode is
3882 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3883 * existing IO to complete.
3884 */
3885 static int extent_write_cache_pages(struct extent_io_tree *tree,
3886 struct address_space *mapping,
3887 struct writeback_control *wbc,
3888 writepage_t writepage, void *data,
3889 void (*flush_fn)(void *))
3890 {
3891 struct inode *inode = mapping->host;
3892 int ret = 0;
3893 int done = 0;
3894 int err = 0;
3895 int nr_to_write_done = 0;
3896 struct pagevec pvec;
3897 int nr_pages;
3898 pgoff_t index;
3899 pgoff_t end; /* Inclusive */
3900 int scanned = 0;
3901 int tag;
3902
3903 /*
3904 * We have to hold onto the inode so that ordered extents can do their
3905 * work when the IO finishes. The alternative to this is failing to add
3906 * an ordered extent if the igrab() fails there and that is a huge pain
3907 * to deal with, so instead just hold onto the inode throughout the
3908 * writepages operation. If it fails here we are freeing up the inode
3909 * anyway and we'd rather not waste our time writing out stuff that is
3910 * going to be truncated anyway.
3911 */
3912 if (!igrab(inode))
3913 return 0;
3914
3915 pagevec_init(&pvec, 0);
3916 if (wbc->range_cyclic) {
3917 index = mapping->writeback_index; /* Start from prev offset */
3918 end = -1;
3919 } else {
3920 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3921 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3922 scanned = 1;
3923 }
3924 if (wbc->sync_mode == WB_SYNC_ALL)
3925 tag = PAGECACHE_TAG_TOWRITE;
3926 else
3927 tag = PAGECACHE_TAG_DIRTY;
3928 retry:
3929 if (wbc->sync_mode == WB_SYNC_ALL)
3930 tag_pages_for_writeback(mapping, index, end);
3931 while (!done && !nr_to_write_done && (index <= end) &&
3932 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3933 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3934 unsigned i;
3935
3936 scanned = 1;
3937 for (i = 0; i < nr_pages; i++) {
3938 struct page *page = pvec.pages[i];
3939
3940 /*
3941 * At this point we hold neither mapping->tree_lock nor
3942 * lock on the page itself: the page may be truncated or
3943 * invalidated (changing page->mapping to NULL), or even
3944 * swizzled back from swapper_space to tmpfs file
3945 * mapping
3946 */
3947 if (!trylock_page(page)) {
3948 flush_fn(data);
3949 lock_page(page);
3950 }
3951
3952 if (unlikely(page->mapping != mapping)) {
3953 unlock_page(page);
3954 continue;
3955 }
3956
3957 if (!wbc->range_cyclic && page->index > end) {
3958 done = 1;
3959 unlock_page(page);
3960 continue;
3961 }
3962
3963 if (wbc->sync_mode != WB_SYNC_NONE) {
3964 if (PageWriteback(page))
3965 flush_fn(data);
3966 wait_on_page_writeback(page);
3967 }
3968
3969 if (PageWriteback(page) ||
3970 !clear_page_dirty_for_io(page)) {
3971 unlock_page(page);
3972 continue;
3973 }
3974
3975 ret = (*writepage)(page, wbc, data);
3976
3977 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3978 unlock_page(page);
3979 ret = 0;
3980 }
3981 if (!err && ret < 0)
3982 err = ret;
3983
3984 /*
3985 * the filesystem may choose to bump up nr_to_write.
3986 * We have to make sure to honor the new nr_to_write
3987 * at any time
3988 */
3989 nr_to_write_done = wbc->nr_to_write <= 0;
3990 }
3991 pagevec_release(&pvec);
3992 cond_resched();
3993 }
3994 if (!scanned && !done && !err) {
3995 /*
3996 * We hit the last page and there is more work to be done: wrap
3997 * back to the start of the file
3998 */
3999 scanned = 1;
4000 index = 0;
4001 goto retry;
4002 }
4003 btrfs_add_delayed_iput(inode);
4004 return err;
4005 }
4006
4007 static void flush_epd_write_bio(struct extent_page_data *epd)
4008 {
4009 if (epd->bio) {
4010 int rw = WRITE;
4011 int ret;
4012
4013 if (epd->sync_io)
4014 rw = WRITE_SYNC;
4015
4016 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4017 BUG_ON(ret < 0); /* -ENOMEM */
4018 epd->bio = NULL;
4019 }
4020 }
4021
4022 static noinline void flush_write_bio(void *data)
4023 {
4024 struct extent_page_data *epd = data;
4025 flush_epd_write_bio(epd);
4026 }
4027
4028 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4029 get_extent_t *get_extent,
4030 struct writeback_control *wbc)
4031 {
4032 int ret;
4033 struct extent_page_data epd = {
4034 .bio = NULL,
4035 .tree = tree,
4036 .get_extent = get_extent,
4037 .extent_locked = 0,
4038 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4039 .bio_flags = 0,
4040 };
4041
4042 ret = __extent_writepage(page, wbc, &epd);
4043
4044 flush_epd_write_bio(&epd);
4045 return ret;
4046 }
4047
4048 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4049 u64 start, u64 end, get_extent_t *get_extent,
4050 int mode)
4051 {
4052 int ret = 0;
4053 struct address_space *mapping = inode->i_mapping;
4054 struct page *page;
4055 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4056 PAGE_CACHE_SHIFT;
4057
4058 struct extent_page_data epd = {
4059 .bio = NULL,
4060 .tree = tree,
4061 .get_extent = get_extent,
4062 .extent_locked = 1,
4063 .sync_io = mode == WB_SYNC_ALL,
4064 .bio_flags = 0,
4065 };
4066 struct writeback_control wbc_writepages = {
4067 .sync_mode = mode,
4068 .nr_to_write = nr_pages * 2,
4069 .range_start = start,
4070 .range_end = end + 1,
4071 };
4072
4073 while (start <= end) {
4074 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4075 if (clear_page_dirty_for_io(page))
4076 ret = __extent_writepage(page, &wbc_writepages, &epd);
4077 else {
4078 if (tree->ops && tree->ops->writepage_end_io_hook)
4079 tree->ops->writepage_end_io_hook(page, start,
4080 start + PAGE_CACHE_SIZE - 1,
4081 NULL, 1);
4082 unlock_page(page);
4083 }
4084 page_cache_release(page);
4085 start += PAGE_CACHE_SIZE;
4086 }
4087
4088 flush_epd_write_bio(&epd);
4089 return ret;
4090 }
4091
4092 int extent_writepages(struct extent_io_tree *tree,
4093 struct address_space *mapping,
4094 get_extent_t *get_extent,
4095 struct writeback_control *wbc)
4096 {
4097 int ret = 0;
4098 struct extent_page_data epd = {
4099 .bio = NULL,
4100 .tree = tree,
4101 .get_extent = get_extent,
4102 .extent_locked = 0,
4103 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4104 .bio_flags = 0,
4105 };
4106
4107 ret = extent_write_cache_pages(tree, mapping, wbc,
4108 __extent_writepage, &epd,
4109 flush_write_bio);
4110 flush_epd_write_bio(&epd);
4111 return ret;
4112 }
4113
4114 int extent_readpages(struct extent_io_tree *tree,
4115 struct address_space *mapping,
4116 struct list_head *pages, unsigned nr_pages,
4117 get_extent_t get_extent)
4118 {
4119 struct bio *bio = NULL;
4120 unsigned page_idx;
4121 unsigned long bio_flags = 0;
4122 struct page *pagepool[16];
4123 struct page *page;
4124 struct extent_map *em_cached = NULL;
4125 int nr = 0;
4126
4127 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4128 page = list_entry(pages->prev, struct page, lru);
4129
4130 prefetchw(&page->flags);
4131 list_del(&page->lru);
4132 if (add_to_page_cache_lru(page, mapping,
4133 page->index, GFP_NOFS)) {
4134 page_cache_release(page);
4135 continue;
4136 }
4137
4138 pagepool[nr++] = page;
4139 if (nr < ARRAY_SIZE(pagepool))
4140 continue;
4141 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4142 &bio, 0, &bio_flags, READ);
4143 nr = 0;
4144 }
4145 if (nr)
4146 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4147 &bio, 0, &bio_flags, READ);
4148
4149 if (em_cached)
4150 free_extent_map(em_cached);
4151
4152 BUG_ON(!list_empty(pages));
4153 if (bio)
4154 return submit_one_bio(READ, bio, 0, bio_flags);
4155 return 0;
4156 }
4157
4158 /*
4159 * basic invalidatepage code, this waits on any locked or writeback
4160 * ranges corresponding to the page, and then deletes any extent state
4161 * records from the tree
4162 */
4163 int extent_invalidatepage(struct extent_io_tree *tree,
4164 struct page *page, unsigned long offset)
4165 {
4166 struct extent_state *cached_state = NULL;
4167 u64 start = page_offset(page);
4168 u64 end = start + PAGE_CACHE_SIZE - 1;
4169 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4170
4171 start += ALIGN(offset, blocksize);
4172 if (start > end)
4173 return 0;
4174
4175 lock_extent_bits(tree, start, end, 0, &cached_state);
4176 wait_on_page_writeback(page);
4177 clear_extent_bit(tree, start, end,
4178 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4179 EXTENT_DO_ACCOUNTING,
4180 1, 1, &cached_state, GFP_NOFS);
4181 return 0;
4182 }
4183
4184 /*
4185 * a helper for releasepage, this tests for areas of the page that
4186 * are locked or under IO and drops the related state bits if it is safe
4187 * to drop the page.
4188 */
4189 static int try_release_extent_state(struct extent_map_tree *map,
4190 struct extent_io_tree *tree,
4191 struct page *page, gfp_t mask)
4192 {
4193 u64 start = page_offset(page);
4194 u64 end = start + PAGE_CACHE_SIZE - 1;
4195 int ret = 1;
4196
4197 if (test_range_bit(tree, start, end,
4198 EXTENT_IOBITS, 0, NULL))
4199 ret = 0;
4200 else {
4201 if ((mask & GFP_NOFS) == GFP_NOFS)
4202 mask = GFP_NOFS;
4203 /*
4204 * at this point we can safely clear everything except the
4205 * locked bit and the nodatasum bit
4206 */
4207 ret = clear_extent_bit(tree, start, end,
4208 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4209 0, 0, NULL, mask);
4210
4211 /* if clear_extent_bit failed for enomem reasons,
4212 * we can't allow the release to continue.
4213 */
4214 if (ret < 0)
4215 ret = 0;
4216 else
4217 ret = 1;
4218 }
4219 return ret;
4220 }
4221
4222 /*
4223 * a helper for releasepage. As long as there are no locked extents
4224 * in the range corresponding to the page, both state records and extent
4225 * map records are removed
4226 */
4227 int try_release_extent_mapping(struct extent_map_tree *map,
4228 struct extent_io_tree *tree, struct page *page,
4229 gfp_t mask)
4230 {
4231 struct extent_map *em;
4232 u64 start = page_offset(page);
4233 u64 end = start + PAGE_CACHE_SIZE - 1;
4234
4235 if ((mask & __GFP_WAIT) &&
4236 page->mapping->host->i_size > 16 * 1024 * 1024) {
4237 u64 len;
4238 while (start <= end) {
4239 len = end - start + 1;
4240 write_lock(&map->lock);
4241 em = lookup_extent_mapping(map, start, len);
4242 if (!em) {
4243 write_unlock(&map->lock);
4244 break;
4245 }
4246 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4247 em->start != start) {
4248 write_unlock(&map->lock);
4249 free_extent_map(em);
4250 break;
4251 }
4252 if (!test_range_bit(tree, em->start,
4253 extent_map_end(em) - 1,
4254 EXTENT_LOCKED | EXTENT_WRITEBACK,
4255 0, NULL)) {
4256 remove_extent_mapping(map, em);
4257 /* once for the rb tree */
4258 free_extent_map(em);
4259 }
4260 start = extent_map_end(em);
4261 write_unlock(&map->lock);
4262
4263 /* once for us */
4264 free_extent_map(em);
4265 }
4266 }
4267 return try_release_extent_state(map, tree, page, mask);
4268 }
4269
4270 /*
4271 * helper function for fiemap, which doesn't want to see any holes.
4272 * This maps until we find something past 'last'
4273 */
4274 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4275 u64 offset,
4276 u64 last,
4277 get_extent_t *get_extent)
4278 {
4279 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4280 struct extent_map *em;
4281 u64 len;
4282
4283 if (offset >= last)
4284 return NULL;
4285
4286 while (1) {
4287 len = last - offset;
4288 if (len == 0)
4289 break;
4290 len = ALIGN(len, sectorsize);
4291 em = get_extent(inode, NULL, 0, offset, len, 0);
4292 if (IS_ERR_OR_NULL(em))
4293 return em;
4294
4295 /* if this isn't a hole return it */
4296 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4297 em->block_start != EXTENT_MAP_HOLE) {
4298 return em;
4299 }
4300
4301 /* this is a hole, advance to the next extent */
4302 offset = extent_map_end(em);
4303 free_extent_map(em);
4304 if (offset >= last)
4305 break;
4306 }
4307 return NULL;
4308 }
4309
4310 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4311 __u64 start, __u64 len, get_extent_t *get_extent)
4312 {
4313 int ret = 0;
4314 u64 off = start;
4315 u64 max = start + len;
4316 u32 flags = 0;
4317 u32 found_type;
4318 u64 last;
4319 u64 last_for_get_extent = 0;
4320 u64 disko = 0;
4321 u64 isize = i_size_read(inode);
4322 struct btrfs_key found_key;
4323 struct extent_map *em = NULL;
4324 struct extent_state *cached_state = NULL;
4325 struct btrfs_path *path;
4326 struct btrfs_root *root = BTRFS_I(inode)->root;
4327 int end = 0;
4328 u64 em_start = 0;
4329 u64 em_len = 0;
4330 u64 em_end = 0;
4331
4332 if (len == 0)
4333 return -EINVAL;
4334
4335 path = btrfs_alloc_path();
4336 if (!path)
4337 return -ENOMEM;
4338 path->leave_spinning = 1;
4339
4340 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4341 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4342
4343 /*
4344 * lookup the last file extent. We're not using i_size here
4345 * because there might be preallocation past i_size
4346 */
4347 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4348 0);
4349 if (ret < 0) {
4350 btrfs_free_path(path);
4351 return ret;
4352 }
4353 WARN_ON(!ret);
4354 path->slots[0]--;
4355 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4356 found_type = found_key.type;
4357
4358 /* No extents, but there might be delalloc bits */
4359 if (found_key.objectid != btrfs_ino(inode) ||
4360 found_type != BTRFS_EXTENT_DATA_KEY) {
4361 /* have to trust i_size as the end */
4362 last = (u64)-1;
4363 last_for_get_extent = isize;
4364 } else {
4365 /*
4366 * remember the start of the last extent. There are a
4367 * bunch of different factors that go into the length of the
4368 * extent, so its much less complex to remember where it started
4369 */
4370 last = found_key.offset;
4371 last_for_get_extent = last + 1;
4372 }
4373 btrfs_release_path(path);
4374
4375 /*
4376 * we might have some extents allocated but more delalloc past those
4377 * extents. so, we trust isize unless the start of the last extent is
4378 * beyond isize
4379 */
4380 if (last < isize) {
4381 last = (u64)-1;
4382 last_for_get_extent = isize;
4383 }
4384
4385 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4386 &cached_state);
4387
4388 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4389 get_extent);
4390 if (!em)
4391 goto out;
4392 if (IS_ERR(em)) {
4393 ret = PTR_ERR(em);
4394 goto out;
4395 }
4396
4397 while (!end) {
4398 u64 offset_in_extent = 0;
4399
4400 /* break if the extent we found is outside the range */
4401 if (em->start >= max || extent_map_end(em) < off)
4402 break;
4403
4404 /*
4405 * get_extent may return an extent that starts before our
4406 * requested range. We have to make sure the ranges
4407 * we return to fiemap always move forward and don't
4408 * overlap, so adjust the offsets here
4409 */
4410 em_start = max(em->start, off);
4411
4412 /*
4413 * record the offset from the start of the extent
4414 * for adjusting the disk offset below. Only do this if the
4415 * extent isn't compressed since our in ram offset may be past
4416 * what we have actually allocated on disk.
4417 */
4418 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4419 offset_in_extent = em_start - em->start;
4420 em_end = extent_map_end(em);
4421 em_len = em_end - em_start;
4422 disko = 0;
4423 flags = 0;
4424
4425 /*
4426 * bump off for our next call to get_extent
4427 */
4428 off = extent_map_end(em);
4429 if (off >= max)
4430 end = 1;
4431
4432 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4433 end = 1;
4434 flags |= FIEMAP_EXTENT_LAST;
4435 } else if (em->block_start == EXTENT_MAP_INLINE) {
4436 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4437 FIEMAP_EXTENT_NOT_ALIGNED);
4438 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4439 flags |= (FIEMAP_EXTENT_DELALLOC |
4440 FIEMAP_EXTENT_UNKNOWN);
4441 } else if (fieinfo->fi_extents_max) {
4442 u64 bytenr = em->block_start -
4443 (em->start - em->orig_start);
4444
4445 disko = em->block_start + offset_in_extent;
4446
4447 /*
4448 * As btrfs supports shared space, this information
4449 * can be exported to userspace tools via
4450 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4451 * then we're just getting a count and we can skip the
4452 * lookup stuff.
4453 */
4454 ret = btrfs_check_shared(NULL, root->fs_info,
4455 root->objectid,
4456 btrfs_ino(inode), bytenr);
4457 if (ret < 0)
4458 goto out_free;
4459 if (ret)
4460 flags |= FIEMAP_EXTENT_SHARED;
4461 ret = 0;
4462 }
4463 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4464 flags |= FIEMAP_EXTENT_ENCODED;
4465
4466 free_extent_map(em);
4467 em = NULL;
4468 if ((em_start >= last) || em_len == (u64)-1 ||
4469 (last == (u64)-1 && isize <= em_end)) {
4470 flags |= FIEMAP_EXTENT_LAST;
4471 end = 1;
4472 }
4473
4474 /* now scan forward to see if this is really the last extent. */
4475 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4476 get_extent);
4477 if (IS_ERR(em)) {
4478 ret = PTR_ERR(em);
4479 goto out;
4480 }
4481 if (!em) {
4482 flags |= FIEMAP_EXTENT_LAST;
4483 end = 1;
4484 }
4485 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4486 em_len, flags);
4487 if (ret)
4488 goto out_free;
4489 }
4490 out_free:
4491 free_extent_map(em);
4492 out:
4493 btrfs_free_path(path);
4494 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4495 &cached_state, GFP_NOFS);
4496 return ret;
4497 }
4498
4499 static void __free_extent_buffer(struct extent_buffer *eb)
4500 {
4501 btrfs_leak_debug_del(&eb->leak_list);
4502 kmem_cache_free(extent_buffer_cache, eb);
4503 }
4504
4505 int extent_buffer_under_io(struct extent_buffer *eb)
4506 {
4507 return (atomic_read(&eb->io_pages) ||
4508 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4509 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4510 }
4511
4512 /*
4513 * Helper for releasing extent buffer page.
4514 */
4515 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4516 {
4517 unsigned long index;
4518 struct page *page;
4519 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4520
4521 BUG_ON(extent_buffer_under_io(eb));
4522
4523 index = num_extent_pages(eb->start, eb->len);
4524 if (index == 0)
4525 return;
4526
4527 do {
4528 index--;
4529 page = eb->pages[index];
4530 if (page && mapped) {
4531 spin_lock(&page->mapping->private_lock);
4532 /*
4533 * We do this since we'll remove the pages after we've
4534 * removed the eb from the radix tree, so we could race
4535 * and have this page now attached to the new eb. So
4536 * only clear page_private if it's still connected to
4537 * this eb.
4538 */
4539 if (PagePrivate(page) &&
4540 page->private == (unsigned long)eb) {
4541 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4542 BUG_ON(PageDirty(page));
4543 BUG_ON(PageWriteback(page));
4544 /*
4545 * We need to make sure we haven't be attached
4546 * to a new eb.
4547 */
4548 ClearPagePrivate(page);
4549 set_page_private(page, 0);
4550 /* One for the page private */
4551 page_cache_release(page);
4552 }
4553 spin_unlock(&page->mapping->private_lock);
4554
4555 }
4556 if (page) {
4557 /* One for when we alloced the page */
4558 page_cache_release(page);
4559 }
4560 } while (index != 0);
4561 }
4562
4563 /*
4564 * Helper for releasing the extent buffer.
4565 */
4566 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4567 {
4568 btrfs_release_extent_buffer_page(eb);
4569 __free_extent_buffer(eb);
4570 }
4571
4572 static struct extent_buffer *
4573 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4574 unsigned long len, gfp_t mask)
4575 {
4576 struct extent_buffer *eb = NULL;
4577
4578 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4579 if (eb == NULL)
4580 return NULL;
4581 eb->start = start;
4582 eb->len = len;
4583 eb->fs_info = fs_info;
4584 eb->bflags = 0;
4585 rwlock_init(&eb->lock);
4586 atomic_set(&eb->write_locks, 0);
4587 atomic_set(&eb->read_locks, 0);
4588 atomic_set(&eb->blocking_readers, 0);
4589 atomic_set(&eb->blocking_writers, 0);
4590 atomic_set(&eb->spinning_readers, 0);
4591 atomic_set(&eb->spinning_writers, 0);
4592 eb->lock_nested = 0;
4593 init_waitqueue_head(&eb->write_lock_wq);
4594 init_waitqueue_head(&eb->read_lock_wq);
4595
4596 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4597
4598 spin_lock_init(&eb->refs_lock);
4599 atomic_set(&eb->refs, 1);
4600 atomic_set(&eb->io_pages, 0);
4601
4602 /*
4603 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4604 */
4605 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4606 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4607 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4608
4609 return eb;
4610 }
4611
4612 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4613 {
4614 unsigned long i;
4615 struct page *p;
4616 struct extent_buffer *new;
4617 unsigned long num_pages = num_extent_pages(src->start, src->len);
4618
4619 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4620 if (new == NULL)
4621 return NULL;
4622
4623 for (i = 0; i < num_pages; i++) {
4624 p = alloc_page(GFP_NOFS);
4625 if (!p) {
4626 btrfs_release_extent_buffer(new);
4627 return NULL;
4628 }
4629 attach_extent_buffer_page(new, p);
4630 WARN_ON(PageDirty(p));
4631 SetPageUptodate(p);
4632 new->pages[i] = p;
4633 }
4634
4635 copy_extent_buffer(new, src, 0, 0, src->len);
4636 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4637 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4638
4639 return new;
4640 }
4641
4642 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4643 {
4644 struct extent_buffer *eb;
4645 unsigned long num_pages = num_extent_pages(0, len);
4646 unsigned long i;
4647
4648 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4649 if (!eb)
4650 return NULL;
4651
4652 for (i = 0; i < num_pages; i++) {
4653 eb->pages[i] = alloc_page(GFP_NOFS);
4654 if (!eb->pages[i])
4655 goto err;
4656 }
4657 set_extent_buffer_uptodate(eb);
4658 btrfs_set_header_nritems(eb, 0);
4659 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4660
4661 return eb;
4662 err:
4663 for (; i > 0; i--)
4664 __free_page(eb->pages[i - 1]);
4665 __free_extent_buffer(eb);
4666 return NULL;
4667 }
4668
4669 static void check_buffer_tree_ref(struct extent_buffer *eb)
4670 {
4671 int refs;
4672 /* the ref bit is tricky. We have to make sure it is set
4673 * if we have the buffer dirty. Otherwise the
4674 * code to free a buffer can end up dropping a dirty
4675 * page
4676 *
4677 * Once the ref bit is set, it won't go away while the
4678 * buffer is dirty or in writeback, and it also won't
4679 * go away while we have the reference count on the
4680 * eb bumped.
4681 *
4682 * We can't just set the ref bit without bumping the
4683 * ref on the eb because free_extent_buffer might
4684 * see the ref bit and try to clear it. If this happens
4685 * free_extent_buffer might end up dropping our original
4686 * ref by mistake and freeing the page before we are able
4687 * to add one more ref.
4688 *
4689 * So bump the ref count first, then set the bit. If someone
4690 * beat us to it, drop the ref we added.
4691 */
4692 refs = atomic_read(&eb->refs);
4693 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4694 return;
4695
4696 spin_lock(&eb->refs_lock);
4697 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4698 atomic_inc(&eb->refs);
4699 spin_unlock(&eb->refs_lock);
4700 }
4701
4702 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4703 struct page *accessed)
4704 {
4705 unsigned long num_pages, i;
4706
4707 check_buffer_tree_ref(eb);
4708
4709 num_pages = num_extent_pages(eb->start, eb->len);
4710 for (i = 0; i < num_pages; i++) {
4711 struct page *p = eb->pages[i];
4712
4713 if (p != accessed)
4714 mark_page_accessed(p);
4715 }
4716 }
4717
4718 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4719 u64 start)
4720 {
4721 struct extent_buffer *eb;
4722
4723 rcu_read_lock();
4724 eb = radix_tree_lookup(&fs_info->buffer_radix,
4725 start >> PAGE_CACHE_SHIFT);
4726 if (eb && atomic_inc_not_zero(&eb->refs)) {
4727 rcu_read_unlock();
4728 mark_extent_buffer_accessed(eb, NULL);
4729 return eb;
4730 }
4731 rcu_read_unlock();
4732
4733 return NULL;
4734 }
4735
4736 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4737 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4738 u64 start, unsigned long len)
4739 {
4740 struct extent_buffer *eb, *exists = NULL;
4741 int ret;
4742
4743 eb = find_extent_buffer(fs_info, start);
4744 if (eb)
4745 return eb;
4746 eb = alloc_dummy_extent_buffer(start, len);
4747 if (!eb)
4748 return NULL;
4749 eb->fs_info = fs_info;
4750 again:
4751 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4752 if (ret)
4753 goto free_eb;
4754 spin_lock(&fs_info->buffer_lock);
4755 ret = radix_tree_insert(&fs_info->buffer_radix,
4756 start >> PAGE_CACHE_SHIFT, eb);
4757 spin_unlock(&fs_info->buffer_lock);
4758 radix_tree_preload_end();
4759 if (ret == -EEXIST) {
4760 exists = find_extent_buffer(fs_info, start);
4761 if (exists)
4762 goto free_eb;
4763 else
4764 goto again;
4765 }
4766 check_buffer_tree_ref(eb);
4767 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4768
4769 /*
4770 * We will free dummy extent buffer's if they come into
4771 * free_extent_buffer with a ref count of 2, but if we are using this we
4772 * want the buffers to stay in memory until we're done with them, so
4773 * bump the ref count again.
4774 */
4775 atomic_inc(&eb->refs);
4776 return eb;
4777 free_eb:
4778 btrfs_release_extent_buffer(eb);
4779 return exists;
4780 }
4781 #endif
4782
4783 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4784 u64 start, unsigned long len)
4785 {
4786 unsigned long num_pages = num_extent_pages(start, len);
4787 unsigned long i;
4788 unsigned long index = start >> PAGE_CACHE_SHIFT;
4789 struct extent_buffer *eb;
4790 struct extent_buffer *exists = NULL;
4791 struct page *p;
4792 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4793 int uptodate = 1;
4794 int ret;
4795
4796 eb = find_extent_buffer(fs_info, start);
4797 if (eb)
4798 return eb;
4799
4800 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4801 if (!eb)
4802 return NULL;
4803
4804 for (i = 0; i < num_pages; i++, index++) {
4805 p = find_or_create_page(mapping, index, GFP_NOFS);
4806 if (!p)
4807 goto free_eb;
4808
4809 spin_lock(&mapping->private_lock);
4810 if (PagePrivate(p)) {
4811 /*
4812 * We could have already allocated an eb for this page
4813 * and attached one so lets see if we can get a ref on
4814 * the existing eb, and if we can we know it's good and
4815 * we can just return that one, else we know we can just
4816 * overwrite page->private.
4817 */
4818 exists = (struct extent_buffer *)p->private;
4819 if (atomic_inc_not_zero(&exists->refs)) {
4820 spin_unlock(&mapping->private_lock);
4821 unlock_page(p);
4822 page_cache_release(p);
4823 mark_extent_buffer_accessed(exists, p);
4824 goto free_eb;
4825 }
4826
4827 /*
4828 * Do this so attach doesn't complain and we need to
4829 * drop the ref the old guy had.
4830 */
4831 ClearPagePrivate(p);
4832 WARN_ON(PageDirty(p));
4833 page_cache_release(p);
4834 }
4835 attach_extent_buffer_page(eb, p);
4836 spin_unlock(&mapping->private_lock);
4837 WARN_ON(PageDirty(p));
4838 eb->pages[i] = p;
4839 if (!PageUptodate(p))
4840 uptodate = 0;
4841
4842 /*
4843 * see below about how we avoid a nasty race with release page
4844 * and why we unlock later
4845 */
4846 }
4847 if (uptodate)
4848 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4849 again:
4850 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4851 if (ret)
4852 goto free_eb;
4853
4854 spin_lock(&fs_info->buffer_lock);
4855 ret = radix_tree_insert(&fs_info->buffer_radix,
4856 start >> PAGE_CACHE_SHIFT, eb);
4857 spin_unlock(&fs_info->buffer_lock);
4858 radix_tree_preload_end();
4859 if (ret == -EEXIST) {
4860 exists = find_extent_buffer(fs_info, start);
4861 if (exists)
4862 goto free_eb;
4863 else
4864 goto again;
4865 }
4866 /* add one reference for the tree */
4867 check_buffer_tree_ref(eb);
4868 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4869
4870 /*
4871 * there is a race where release page may have
4872 * tried to find this extent buffer in the radix
4873 * but failed. It will tell the VM it is safe to
4874 * reclaim the, and it will clear the page private bit.
4875 * We must make sure to set the page private bit properly
4876 * after the extent buffer is in the radix tree so
4877 * it doesn't get lost
4878 */
4879 SetPageChecked(eb->pages[0]);
4880 for (i = 1; i < num_pages; i++) {
4881 p = eb->pages[i];
4882 ClearPageChecked(p);
4883 unlock_page(p);
4884 }
4885 unlock_page(eb->pages[0]);
4886 return eb;
4887
4888 free_eb:
4889 for (i = 0; i < num_pages; i++) {
4890 if (eb->pages[i])
4891 unlock_page(eb->pages[i]);
4892 }
4893
4894 WARN_ON(!atomic_dec_and_test(&eb->refs));
4895 btrfs_release_extent_buffer(eb);
4896 return exists;
4897 }
4898
4899 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4900 {
4901 struct extent_buffer *eb =
4902 container_of(head, struct extent_buffer, rcu_head);
4903
4904 __free_extent_buffer(eb);
4905 }
4906
4907 /* Expects to have eb->eb_lock already held */
4908 static int release_extent_buffer(struct extent_buffer *eb)
4909 {
4910 WARN_ON(atomic_read(&eb->refs) == 0);
4911 if (atomic_dec_and_test(&eb->refs)) {
4912 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4913 struct btrfs_fs_info *fs_info = eb->fs_info;
4914
4915 spin_unlock(&eb->refs_lock);
4916
4917 spin_lock(&fs_info->buffer_lock);
4918 radix_tree_delete(&fs_info->buffer_radix,
4919 eb->start >> PAGE_CACHE_SHIFT);
4920 spin_unlock(&fs_info->buffer_lock);
4921 } else {
4922 spin_unlock(&eb->refs_lock);
4923 }
4924
4925 /* Should be safe to release our pages at this point */
4926 btrfs_release_extent_buffer_page(eb);
4927 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4928 return 1;
4929 }
4930 spin_unlock(&eb->refs_lock);
4931
4932 return 0;
4933 }
4934
4935 void free_extent_buffer(struct extent_buffer *eb)
4936 {
4937 int refs;
4938 int old;
4939 if (!eb)
4940 return;
4941
4942 while (1) {
4943 refs = atomic_read(&eb->refs);
4944 if (refs <= 3)
4945 break;
4946 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4947 if (old == refs)
4948 return;
4949 }
4950
4951 spin_lock(&eb->refs_lock);
4952 if (atomic_read(&eb->refs) == 2 &&
4953 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4954 atomic_dec(&eb->refs);
4955
4956 if (atomic_read(&eb->refs) == 2 &&
4957 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4958 !extent_buffer_under_io(eb) &&
4959 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4960 atomic_dec(&eb->refs);
4961
4962 /*
4963 * I know this is terrible, but it's temporary until we stop tracking
4964 * the uptodate bits and such for the extent buffers.
4965 */
4966 release_extent_buffer(eb);
4967 }
4968
4969 void free_extent_buffer_stale(struct extent_buffer *eb)
4970 {
4971 if (!eb)
4972 return;
4973
4974 spin_lock(&eb->refs_lock);
4975 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4976
4977 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4978 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4979 atomic_dec(&eb->refs);
4980 release_extent_buffer(eb);
4981 }
4982
4983 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4984 {
4985 unsigned long i;
4986 unsigned long num_pages;
4987 struct page *page;
4988
4989 num_pages = num_extent_pages(eb->start, eb->len);
4990
4991 for (i = 0; i < num_pages; i++) {
4992 page = eb->pages[i];
4993 if (!PageDirty(page))
4994 continue;
4995
4996 lock_page(page);
4997 WARN_ON(!PagePrivate(page));
4998
4999 clear_page_dirty_for_io(page);
5000 spin_lock_irq(&page->mapping->tree_lock);
5001 if (!PageDirty(page)) {
5002 radix_tree_tag_clear(&page->mapping->page_tree,
5003 page_index(page),
5004 PAGECACHE_TAG_DIRTY);
5005 }
5006 spin_unlock_irq(&page->mapping->tree_lock);
5007 ClearPageError(page);
5008 unlock_page(page);
5009 }
5010 WARN_ON(atomic_read(&eb->refs) == 0);
5011 }
5012
5013 int set_extent_buffer_dirty(struct extent_buffer *eb)
5014 {
5015 unsigned long i;
5016 unsigned long num_pages;
5017 int was_dirty = 0;
5018
5019 check_buffer_tree_ref(eb);
5020
5021 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5022
5023 num_pages = num_extent_pages(eb->start, eb->len);
5024 WARN_ON(atomic_read(&eb->refs) == 0);
5025 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5026
5027 for (i = 0; i < num_pages; i++)
5028 set_page_dirty(eb->pages[i]);
5029 return was_dirty;
5030 }
5031
5032 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5033 {
5034 unsigned long i;
5035 struct page *page;
5036 unsigned long num_pages;
5037
5038 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5039 num_pages = num_extent_pages(eb->start, eb->len);
5040 for (i = 0; i < num_pages; i++) {
5041 page = eb->pages[i];
5042 if (page)
5043 ClearPageUptodate(page);
5044 }
5045 return 0;
5046 }
5047
5048 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5049 {
5050 unsigned long i;
5051 struct page *page;
5052 unsigned long num_pages;
5053
5054 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5055 num_pages = num_extent_pages(eb->start, eb->len);
5056 for (i = 0; i < num_pages; i++) {
5057 page = eb->pages[i];
5058 SetPageUptodate(page);
5059 }
5060 return 0;
5061 }
5062
5063 int extent_buffer_uptodate(struct extent_buffer *eb)
5064 {
5065 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5066 }
5067
5068 int read_extent_buffer_pages(struct extent_io_tree *tree,
5069 struct extent_buffer *eb, u64 start, int wait,
5070 get_extent_t *get_extent, int mirror_num)
5071 {
5072 unsigned long i;
5073 unsigned long start_i;
5074 struct page *page;
5075 int err;
5076 int ret = 0;
5077 int locked_pages = 0;
5078 int all_uptodate = 1;
5079 unsigned long num_pages;
5080 unsigned long num_reads = 0;
5081 struct bio *bio = NULL;
5082 unsigned long bio_flags = 0;
5083
5084 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5085 return 0;
5086
5087 if (start) {
5088 WARN_ON(start < eb->start);
5089 start_i = (start >> PAGE_CACHE_SHIFT) -
5090 (eb->start >> PAGE_CACHE_SHIFT);
5091 } else {
5092 start_i = 0;
5093 }
5094
5095 num_pages = num_extent_pages(eb->start, eb->len);
5096 for (i = start_i; i < num_pages; i++) {
5097 page = eb->pages[i];
5098 if (wait == WAIT_NONE) {
5099 if (!trylock_page(page))
5100 goto unlock_exit;
5101 } else {
5102 lock_page(page);
5103 }
5104 locked_pages++;
5105 if (!PageUptodate(page)) {
5106 num_reads++;
5107 all_uptodate = 0;
5108 }
5109 }
5110 if (all_uptodate) {
5111 if (start_i == 0)
5112 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5113 goto unlock_exit;
5114 }
5115
5116 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5117 eb->read_mirror = 0;
5118 atomic_set(&eb->io_pages, num_reads);
5119 for (i = start_i; i < num_pages; i++) {
5120 page = eb->pages[i];
5121 if (!PageUptodate(page)) {
5122 ClearPageError(page);
5123 err = __extent_read_full_page(tree, page,
5124 get_extent, &bio,
5125 mirror_num, &bio_flags,
5126 READ | REQ_META);
5127 if (err)
5128 ret = err;
5129 } else {
5130 unlock_page(page);
5131 }
5132 }
5133
5134 if (bio) {
5135 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5136 bio_flags);
5137 if (err)
5138 return err;
5139 }
5140
5141 if (ret || wait != WAIT_COMPLETE)
5142 return ret;
5143
5144 for (i = start_i; i < num_pages; i++) {
5145 page = eb->pages[i];
5146 wait_on_page_locked(page);
5147 if (!PageUptodate(page))
5148 ret = -EIO;
5149 }
5150
5151 return ret;
5152
5153 unlock_exit:
5154 i = start_i;
5155 while (locked_pages > 0) {
5156 page = eb->pages[i];
5157 i++;
5158 unlock_page(page);
5159 locked_pages--;
5160 }
5161 return ret;
5162 }
5163
5164 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5165 unsigned long start,
5166 unsigned long len)
5167 {
5168 size_t cur;
5169 size_t offset;
5170 struct page *page;
5171 char *kaddr;
5172 char *dst = (char *)dstv;
5173 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5174 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5175
5176 WARN_ON(start > eb->len);
5177 WARN_ON(start + len > eb->start + eb->len);
5178
5179 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5180
5181 while (len > 0) {
5182 page = eb->pages[i];
5183
5184 cur = min(len, (PAGE_CACHE_SIZE - offset));
5185 kaddr = page_address(page);
5186 memcpy(dst, kaddr + offset, cur);
5187
5188 dst += cur;
5189 len -= cur;
5190 offset = 0;
5191 i++;
5192 }
5193 }
5194
5195 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5196 unsigned long start,
5197 unsigned long len)
5198 {
5199 size_t cur;
5200 size_t offset;
5201 struct page *page;
5202 char *kaddr;
5203 char __user *dst = (char __user *)dstv;
5204 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5205 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5206 int ret = 0;
5207
5208 WARN_ON(start > eb->len);
5209 WARN_ON(start + len > eb->start + eb->len);
5210
5211 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5212
5213 while (len > 0) {
5214 page = eb->pages[i];
5215
5216 cur = min(len, (PAGE_CACHE_SIZE - offset));
5217 kaddr = page_address(page);
5218 if (copy_to_user(dst, kaddr + offset, cur)) {
5219 ret = -EFAULT;
5220 break;
5221 }
5222
5223 dst += cur;
5224 len -= cur;
5225 offset = 0;
5226 i++;
5227 }
5228
5229 return ret;
5230 }
5231
5232 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5233 unsigned long min_len, char **map,
5234 unsigned long *map_start,
5235 unsigned long *map_len)
5236 {
5237 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5238 char *kaddr;
5239 struct page *p;
5240 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5241 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5242 unsigned long end_i = (start_offset + start + min_len - 1) >>
5243 PAGE_CACHE_SHIFT;
5244
5245 if (i != end_i)
5246 return -EINVAL;
5247
5248 if (i == 0) {
5249 offset = start_offset;
5250 *map_start = 0;
5251 } else {
5252 offset = 0;
5253 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5254 }
5255
5256 if (start + min_len > eb->len) {
5257 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5258 "wanted %lu %lu\n",
5259 eb->start, eb->len, start, min_len);
5260 return -EINVAL;
5261 }
5262
5263 p = eb->pages[i];
5264 kaddr = page_address(p);
5265 *map = kaddr + offset;
5266 *map_len = PAGE_CACHE_SIZE - offset;
5267 return 0;
5268 }
5269
5270 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5271 unsigned long start,
5272 unsigned long len)
5273 {
5274 size_t cur;
5275 size_t offset;
5276 struct page *page;
5277 char *kaddr;
5278 char *ptr = (char *)ptrv;
5279 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5280 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5281 int ret = 0;
5282
5283 WARN_ON(start > eb->len);
5284 WARN_ON(start + len > eb->start + eb->len);
5285
5286 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5287
5288 while (len > 0) {
5289 page = eb->pages[i];
5290
5291 cur = min(len, (PAGE_CACHE_SIZE - offset));
5292
5293 kaddr = page_address(page);
5294 ret = memcmp(ptr, kaddr + offset, cur);
5295 if (ret)
5296 break;
5297
5298 ptr += cur;
5299 len -= cur;
5300 offset = 0;
5301 i++;
5302 }
5303 return ret;
5304 }
5305
5306 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5307 unsigned long start, unsigned long len)
5308 {
5309 size_t cur;
5310 size_t offset;
5311 struct page *page;
5312 char *kaddr;
5313 char *src = (char *)srcv;
5314 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5315 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5316
5317 WARN_ON(start > eb->len);
5318 WARN_ON(start + len > eb->start + eb->len);
5319
5320 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5321
5322 while (len > 0) {
5323 page = eb->pages[i];
5324 WARN_ON(!PageUptodate(page));
5325
5326 cur = min(len, PAGE_CACHE_SIZE - offset);
5327 kaddr = page_address(page);
5328 memcpy(kaddr + offset, src, cur);
5329
5330 src += cur;
5331 len -= cur;
5332 offset = 0;
5333 i++;
5334 }
5335 }
5336
5337 void memset_extent_buffer(struct extent_buffer *eb, char c,
5338 unsigned long start, unsigned long len)
5339 {
5340 size_t cur;
5341 size_t offset;
5342 struct page *page;
5343 char *kaddr;
5344 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5345 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5346
5347 WARN_ON(start > eb->len);
5348 WARN_ON(start + len > eb->start + eb->len);
5349
5350 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5351
5352 while (len > 0) {
5353 page = eb->pages[i];
5354 WARN_ON(!PageUptodate(page));
5355
5356 cur = min(len, PAGE_CACHE_SIZE - offset);
5357 kaddr = page_address(page);
5358 memset(kaddr + offset, c, cur);
5359
5360 len -= cur;
5361 offset = 0;
5362 i++;
5363 }
5364 }
5365
5366 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5367 unsigned long dst_offset, unsigned long src_offset,
5368 unsigned long len)
5369 {
5370 u64 dst_len = dst->len;
5371 size_t cur;
5372 size_t offset;
5373 struct page *page;
5374 char *kaddr;
5375 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5376 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5377
5378 WARN_ON(src->len != dst_len);
5379
5380 offset = (start_offset + dst_offset) &
5381 (PAGE_CACHE_SIZE - 1);
5382
5383 while (len > 0) {
5384 page = dst->pages[i];
5385 WARN_ON(!PageUptodate(page));
5386
5387 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5388
5389 kaddr = page_address(page);
5390 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5391
5392 src_offset += cur;
5393 len -= cur;
5394 offset = 0;
5395 i++;
5396 }
5397 }
5398
5399 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5400 {
5401 unsigned long distance = (src > dst) ? src - dst : dst - src;
5402 return distance < len;
5403 }
5404
5405 static void copy_pages(struct page *dst_page, struct page *src_page,
5406 unsigned long dst_off, unsigned long src_off,
5407 unsigned long len)
5408 {
5409 char *dst_kaddr = page_address(dst_page);
5410 char *src_kaddr;
5411 int must_memmove = 0;
5412
5413 if (dst_page != src_page) {
5414 src_kaddr = page_address(src_page);
5415 } else {
5416 src_kaddr = dst_kaddr;
5417 if (areas_overlap(src_off, dst_off, len))
5418 must_memmove = 1;
5419 }
5420
5421 if (must_memmove)
5422 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5423 else
5424 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5425 }
5426
5427 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5428 unsigned long src_offset, unsigned long len)
5429 {
5430 size_t cur;
5431 size_t dst_off_in_page;
5432 size_t src_off_in_page;
5433 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5434 unsigned long dst_i;
5435 unsigned long src_i;
5436
5437 if (src_offset + len > dst->len) {
5438 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5439 "len %lu dst len %lu\n", src_offset, len, dst->len);
5440 BUG_ON(1);
5441 }
5442 if (dst_offset + len > dst->len) {
5443 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5444 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5445 BUG_ON(1);
5446 }
5447
5448 while (len > 0) {
5449 dst_off_in_page = (start_offset + dst_offset) &
5450 (PAGE_CACHE_SIZE - 1);
5451 src_off_in_page = (start_offset + src_offset) &
5452 (PAGE_CACHE_SIZE - 1);
5453
5454 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5455 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5456
5457 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5458 src_off_in_page));
5459 cur = min_t(unsigned long, cur,
5460 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5461
5462 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5463 dst_off_in_page, src_off_in_page, cur);
5464
5465 src_offset += cur;
5466 dst_offset += cur;
5467 len -= cur;
5468 }
5469 }
5470
5471 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5472 unsigned long src_offset, unsigned long len)
5473 {
5474 size_t cur;
5475 size_t dst_off_in_page;
5476 size_t src_off_in_page;
5477 unsigned long dst_end = dst_offset + len - 1;
5478 unsigned long src_end = src_offset + len - 1;
5479 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5480 unsigned long dst_i;
5481 unsigned long src_i;
5482
5483 if (src_offset + len > dst->len) {
5484 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5485 "len %lu len %lu\n", src_offset, len, dst->len);
5486 BUG_ON(1);
5487 }
5488 if (dst_offset + len > dst->len) {
5489 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5490 "len %lu len %lu\n", dst_offset, len, dst->len);
5491 BUG_ON(1);
5492 }
5493 if (dst_offset < src_offset) {
5494 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5495 return;
5496 }
5497 while (len > 0) {
5498 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5499 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5500
5501 dst_off_in_page = (start_offset + dst_end) &
5502 (PAGE_CACHE_SIZE - 1);
5503 src_off_in_page = (start_offset + src_end) &
5504 (PAGE_CACHE_SIZE - 1);
5505
5506 cur = min_t(unsigned long, len, src_off_in_page + 1);
5507 cur = min(cur, dst_off_in_page + 1);
5508 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5509 dst_off_in_page - cur + 1,
5510 src_off_in_page - cur + 1, cur);
5511
5512 dst_end -= cur;
5513 src_end -= cur;
5514 len -= cur;
5515 }
5516 }
5517
5518 int try_release_extent_buffer(struct page *page)
5519 {
5520 struct extent_buffer *eb;
5521
5522 /*
5523 * We need to make sure noboody is attaching this page to an eb right
5524 * now.
5525 */
5526 spin_lock(&page->mapping->private_lock);
5527 if (!PagePrivate(page)) {
5528 spin_unlock(&page->mapping->private_lock);
5529 return 1;
5530 }
5531
5532 eb = (struct extent_buffer *)page->private;
5533 BUG_ON(!eb);
5534
5535 /*
5536 * This is a little awful but should be ok, we need to make sure that
5537 * the eb doesn't disappear out from under us while we're looking at
5538 * this page.
5539 */
5540 spin_lock(&eb->refs_lock);
5541 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5542 spin_unlock(&eb->refs_lock);
5543 spin_unlock(&page->mapping->private_lock);
5544 return 0;
5545 }
5546 spin_unlock(&page->mapping->private_lock);
5547
5548 /*
5549 * If tree ref isn't set then we know the ref on this eb is a real ref,
5550 * so just return, this page will likely be freed soon anyway.
5551 */
5552 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5553 spin_unlock(&eb->refs_lock);
5554 return 0;
5555 }
5556
5557 return release_extent_buffer(eb);
5558 }