]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: make clear_extent_bit helpers static inline
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
215 }
216
217 void extent_io_tree_init(struct extent_io_tree *tree,
218 struct address_space *mapping)
219 {
220 tree->state = RB_ROOT;
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
223 spin_lock_init(&tree->lock);
224 tree->mapping = mapping;
225 }
226
227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229 struct extent_state *state;
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
232 if (!state)
233 return state;
234 state->state = 0;
235 state->private = 0;
236 RB_CLEAR_NODE(&state->rb_node);
237 btrfs_leak_debug_add(&state->leak_list, &states);
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
240 trace_alloc_extent_state(state, mask, _RET_IP_);
241 return state;
242 }
243
244 void free_extent_state(struct extent_state *state)
245 {
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
249 WARN_ON(extent_state_in_tree(state));
250 btrfs_leak_debug_del(&state->leak_list);
251 trace_free_extent_state(state, _RET_IP_);
252 kmem_cache_free(extent_state_cache, state);
253 }
254 }
255
256 static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
262 {
263 struct rb_node **p;
264 struct rb_node *parent = NULL;
265 struct tree_entry *entry;
266
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
273 p = search_start ? &search_start : &root->rb_node;
274 while (*p) {
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
286 do_insert:
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290 }
291
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
297 {
298 struct rb_root *root = &tree->state;
299 struct rb_node **n = &root->rb_node;
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
308 prev_entry = entry;
309
310 if (offset < entry->start)
311 n = &(*n)->rb_left;
312 else if (offset > entry->end)
313 n = &(*n)->rb_right;
314 else
315 return *n;
316 }
317
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
323 if (prev_ret) {
324 orig_prev = prev;
325 while (prev && offset > prev_entry->end) {
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 while (prev && offset < prev_entry->start) {
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342 }
343
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
349 {
350 struct rb_node *prev = NULL;
351 struct rb_node *ret;
352
353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 if (!ret)
355 return prev;
356 return ret;
357 }
358
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361 {
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367 {
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371 }
372
373 /*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
382 static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
384 {
385 struct extent_state *other;
386 struct rb_node *other_node;
387
388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 return;
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
396 merge_cb(tree, state, other);
397 state->start = other->start;
398 rb_erase(&other->rb_node, &tree->state);
399 RB_CLEAR_NODE(&other->rb_node);
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
408 merge_cb(tree, state, other);
409 state->end = other->end;
410 rb_erase(&other->rb_node, &tree->state);
411 RB_CLEAR_NODE(&other->rb_node);
412 free_extent_state(other);
413 }
414 }
415 }
416
417 static void set_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
419 {
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423
424 static void clear_state_cb(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits)
426 {
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430
431 static void set_state_bits(struct extent_io_tree *tree,
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
434
435 /*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445 static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
447 struct rb_node ***p,
448 struct rb_node **parent,
449 unsigned *bits, struct extent_changeset *changeset)
450 {
451 struct rb_node *node;
452
453 if (end < start)
454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 end, start);
456 state->start = start;
457 state->end = end;
458
459 set_state_bits(tree, state, bits, changeset);
460
461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 "%llu %llu\n",
467 found->start, found->end, start, end);
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472 }
473
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 u64 split)
476 {
477 if (tree->ops && tree->ops->split_extent_hook)
478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480
481 /*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497 {
498 struct rb_node *node;
499
500 split_cb(tree, orig, split);
501
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
509 if (node) {
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514 }
515
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523 }
524
525 /*
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
536 {
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
545 clear_state_cb(tree, state, bits);
546 add_extent_changeset(state, bits_to_clear, changeset, 0);
547 state->state &= ~bits_to_clear;
548 if (wake)
549 wake_up(&state->wq);
550 if (state->state == 0) {
551 next = next_state(state);
552 if (extent_state_in_tree(state)) {
553 rb_erase(&state->rb_node, &tree->state);
554 RB_CLEAR_NODE(&state->rb_node);
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
561 next = next_state(state);
562 }
563 return next;
564 }
565
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573 }
574
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580 }
581
582 /*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
593 */
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
598 {
599 struct extent_state *state;
600 struct extent_state *cached;
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
603 u64 last_end;
604 int err;
605 int clear = 0;
606
607 btrfs_debug_check_extent_io_range(tree, start, end);
608
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
618 again:
619 if (!prealloc && gfpflags_allow_blocking(mask)) {
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
627 prealloc = alloc_extent_state(mask);
628 }
629
630 spin_lock(&tree->lock);
631 if (cached_state) {
632 cached = *cached_state;
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
641 if (clear)
642 atomic_dec(&cached->refs);
643 state = cached;
644 goto hit_next;
645 }
646 if (clear)
647 free_extent_state(cached);
648 }
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
653 node = tree_search(tree, start);
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
661 last_end = state->end;
662
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state->state & bits)) {
665 state = next_state(state);
666 goto next;
667 }
668
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, start);
689 if (err)
690 extent_io_tree_panic(tree, err);
691
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
698 goto next;
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
711 err = split_state(tree, state, prealloc, end + 1);
712 if (err)
713 extent_io_tree_panic(tree, err);
714
715 if (wake)
716 wake_up(&state->wq);
717
718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
719
720 prealloc = NULL;
721 goto out;
722 }
723
724 state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
729 if (start <= end && state && !need_resched())
730 goto hit_next;
731 goto search_again;
732
733 out:
734 spin_unlock(&tree->lock);
735 if (prealloc)
736 free_extent_state(prealloc);
737
738 return 0;
739
740 search_again:
741 if (start > end)
742 goto out;
743 spin_unlock(&tree->lock);
744 if (gfpflags_allow_blocking(mask))
745 cond_resched();
746 goto again;
747 }
748
749 static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
751 __releases(tree->lock)
752 __acquires(tree->lock)
753 {
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 spin_unlock(&tree->lock);
757 schedule();
758 spin_lock(&tree->lock);
759 finish_wait(&state->wq, &wait);
760 }
761
762 /*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
769 {
770 struct extent_state *state;
771 struct rb_node *node;
772
773 btrfs_debug_check_extent_io_range(tree, start, end);
774
775 spin_lock(&tree->lock);
776 again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
782 node = tree_search(tree, start);
783 process_node:
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
808 }
809 out:
810 spin_unlock(&tree->lock);
811 }
812
813 static void set_state_bits(struct extent_io_tree *tree,
814 struct extent_state *state,
815 unsigned *bits, struct extent_changeset *changeset)
816 {
817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818
819 set_state_cb(tree, state, bits);
820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
824 add_extent_changeset(state, bits_to_set, changeset, 1);
825 state->state |= bits_to_set;
826 }
827
828 static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
830 unsigned flags)
831 {
832 if (cached_ptr && !(*cached_ptr)) {
833 if (!flags || (state->state & flags)) {
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838 }
839
840 static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842 {
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846
847 /*
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
850 *
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
854 *
855 * [start, end] is inclusive This takes the tree lock.
856 */
857
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 unsigned bits, unsigned exclusive_bits,
861 u64 *failed_start, struct extent_state **cached_state,
862 gfp_t mask, struct extent_changeset *changeset)
863 {
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
867 struct rb_node **p;
868 struct rb_node *parent;
869 int err = 0;
870 u64 last_start;
871 u64 last_end;
872
873 btrfs_debug_check_extent_io_range(tree, start, end);
874
875 bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 if (!prealloc && gfpflags_allow_blocking(mask)) {
878 prealloc = alloc_extent_state(mask);
879 BUG_ON(!prealloc);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044 out:
1045 spin_unlock(&tree->lock);
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051 search_again:
1052 if (start > end)
1053 goto out;
1054 spin_unlock(&tree->lock);
1055 if (gfpflags_allow_blocking(mask))
1056 cond_resched();
1057 goto again;
1058 }
1059
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 unsigned bits, u64 * failed_start,
1062 struct extent_state **cached_state, gfp_t mask)
1063 {
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 cached_state, mask, NULL);
1066 }
1067
1068
1069 /**
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state, gfp_t mask)
1089 {
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102 again:
1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(mask);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270 out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277 search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
1281 if (gfpflags_allow_blocking(mask))
1282 cond_resched();
1283 first_iteration = false;
1284 goto again;
1285 }
1286
1287 /* wrappers around set/clear extent bit */
1288 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1289 unsigned bits, gfp_t mask,
1290 struct extent_changeset *changeset)
1291 {
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1301 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307 {
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, gfp_t mask,
1314 struct extent_changeset *changeset)
1315 {
1316 /*
1317 * Don't support EXTENT_LOCKED case, same reason as
1318 * set_record_extent_bits().
1319 */
1320 BUG_ON(bits & EXTENT_LOCKED);
1321
1322 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1323 changeset);
1324 }
1325
1326 /*
1327 * either insert or lock state struct between start and end use mask to tell
1328 * us if waiting is desired.
1329 */
1330 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1331 unsigned bits, struct extent_state **cached_state)
1332 {
1333 int err;
1334 u64 failed_start;
1335
1336 while (1) {
1337 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1338 EXTENT_LOCKED, &failed_start,
1339 cached_state, GFP_NOFS, NULL);
1340 if (err == -EEXIST) {
1341 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1342 start = failed_start;
1343 } else
1344 break;
1345 WARN_ON(start > end);
1346 }
1347 return err;
1348 }
1349
1350 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1351 {
1352 return lock_extent_bits(tree, start, end, 0, NULL);
1353 }
1354
1355 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1356 {
1357 int err;
1358 u64 failed_start;
1359
1360 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1361 &failed_start, NULL, GFP_NOFS, NULL);
1362 if (err == -EEXIST) {
1363 if (failed_start > start)
1364 clear_extent_bit(tree, start, failed_start - 1,
1365 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1366 return 0;
1367 }
1368 return 1;
1369 }
1370
1371 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1372 {
1373 unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 struct page *page;
1376
1377 while (index <= end_index) {
1378 page = find_get_page(inode->i_mapping, index);
1379 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1380 clear_page_dirty_for_io(page);
1381 page_cache_release(page);
1382 index++;
1383 }
1384 return 0;
1385 }
1386
1387 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1388 {
1389 unsigned long index = start >> PAGE_CACHE_SHIFT;
1390 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1391 struct page *page;
1392
1393 while (index <= end_index) {
1394 page = find_get_page(inode->i_mapping, index);
1395 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1396 __set_page_dirty_nobuffers(page);
1397 account_page_redirty(page);
1398 page_cache_release(page);
1399 index++;
1400 }
1401 return 0;
1402 }
1403
1404 /*
1405 * helper function to set both pages and extents in the tree writeback
1406 */
1407 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1408 {
1409 unsigned long index = start >> PAGE_CACHE_SHIFT;
1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411 struct page *page;
1412
1413 while (index <= end_index) {
1414 page = find_get_page(tree->mapping, index);
1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1416 set_page_writeback(page);
1417 page_cache_release(page);
1418 index++;
1419 }
1420 return 0;
1421 }
1422
1423 /* find the first state struct with 'bits' set after 'start', and
1424 * return it. tree->lock must be held. NULL will returned if
1425 * nothing was found after 'start'
1426 */
1427 static struct extent_state *
1428 find_first_extent_bit_state(struct extent_io_tree *tree,
1429 u64 start, unsigned bits)
1430 {
1431 struct rb_node *node;
1432 struct extent_state *state;
1433
1434 /*
1435 * this search will find all the extents that end after
1436 * our range starts.
1437 */
1438 node = tree_search(tree, start);
1439 if (!node)
1440 goto out;
1441
1442 while (1) {
1443 state = rb_entry(node, struct extent_state, rb_node);
1444 if (state->end >= start && (state->state & bits))
1445 return state;
1446
1447 node = rb_next(node);
1448 if (!node)
1449 break;
1450 }
1451 out:
1452 return NULL;
1453 }
1454
1455 /*
1456 * find the first offset in the io tree with 'bits' set. zero is
1457 * returned if we find something, and *start_ret and *end_ret are
1458 * set to reflect the state struct that was found.
1459 *
1460 * If nothing was found, 1 is returned. If found something, return 0.
1461 */
1462 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1463 u64 *start_ret, u64 *end_ret, unsigned bits,
1464 struct extent_state **cached_state)
1465 {
1466 struct extent_state *state;
1467 struct rb_node *n;
1468 int ret = 1;
1469
1470 spin_lock(&tree->lock);
1471 if (cached_state && *cached_state) {
1472 state = *cached_state;
1473 if (state->end == start - 1 && extent_state_in_tree(state)) {
1474 n = rb_next(&state->rb_node);
1475 while (n) {
1476 state = rb_entry(n, struct extent_state,
1477 rb_node);
1478 if (state->state & bits)
1479 goto got_it;
1480 n = rb_next(n);
1481 }
1482 free_extent_state(*cached_state);
1483 *cached_state = NULL;
1484 goto out;
1485 }
1486 free_extent_state(*cached_state);
1487 *cached_state = NULL;
1488 }
1489
1490 state = find_first_extent_bit_state(tree, start, bits);
1491 got_it:
1492 if (state) {
1493 cache_state_if_flags(state, cached_state, 0);
1494 *start_ret = state->start;
1495 *end_ret = state->end;
1496 ret = 0;
1497 }
1498 out:
1499 spin_unlock(&tree->lock);
1500 return ret;
1501 }
1502
1503 /*
1504 * find a contiguous range of bytes in the file marked as delalloc, not
1505 * more than 'max_bytes'. start and end are used to return the range,
1506 *
1507 * 1 is returned if we find something, 0 if nothing was in the tree
1508 */
1509 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1510 u64 *start, u64 *end, u64 max_bytes,
1511 struct extent_state **cached_state)
1512 {
1513 struct rb_node *node;
1514 struct extent_state *state;
1515 u64 cur_start = *start;
1516 u64 found = 0;
1517 u64 total_bytes = 0;
1518
1519 spin_lock(&tree->lock);
1520
1521 /*
1522 * this search will find all the extents that end after
1523 * our range starts.
1524 */
1525 node = tree_search(tree, cur_start);
1526 if (!node) {
1527 if (!found)
1528 *end = (u64)-1;
1529 goto out;
1530 }
1531
1532 while (1) {
1533 state = rb_entry(node, struct extent_state, rb_node);
1534 if (found && (state->start != cur_start ||
1535 (state->state & EXTENT_BOUNDARY))) {
1536 goto out;
1537 }
1538 if (!(state->state & EXTENT_DELALLOC)) {
1539 if (!found)
1540 *end = state->end;
1541 goto out;
1542 }
1543 if (!found) {
1544 *start = state->start;
1545 *cached_state = state;
1546 atomic_inc(&state->refs);
1547 }
1548 found++;
1549 *end = state->end;
1550 cur_start = state->end + 1;
1551 node = rb_next(node);
1552 total_bytes += state->end - state->start + 1;
1553 if (total_bytes >= max_bytes)
1554 break;
1555 if (!node)
1556 break;
1557 }
1558 out:
1559 spin_unlock(&tree->lock);
1560 return found;
1561 }
1562
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
1566 {
1567 int ret;
1568 struct page *pages[16];
1569 unsigned long index = start >> PAGE_CACHE_SHIFT;
1570 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1571 unsigned long nr_pages = end_index - index + 1;
1572 int i;
1573
1574 if (index == locked_page->index && end_index == index)
1575 return;
1576
1577 while (nr_pages > 0) {
1578 ret = find_get_pages_contig(inode->i_mapping, index,
1579 min_t(unsigned long, nr_pages,
1580 ARRAY_SIZE(pages)), pages);
1581 for (i = 0; i < ret; i++) {
1582 if (pages[i] != locked_page)
1583 unlock_page(pages[i]);
1584 page_cache_release(pages[i]);
1585 }
1586 nr_pages -= ret;
1587 index += ret;
1588 cond_resched();
1589 }
1590 }
1591
1592 static noinline int lock_delalloc_pages(struct inode *inode,
1593 struct page *locked_page,
1594 u64 delalloc_start,
1595 u64 delalloc_end)
1596 {
1597 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1598 unsigned long start_index = index;
1599 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1600 unsigned long pages_locked = 0;
1601 struct page *pages[16];
1602 unsigned long nrpages;
1603 int ret;
1604 int i;
1605
1606 /* the caller is responsible for locking the start index */
1607 if (index == locked_page->index && index == end_index)
1608 return 0;
1609
1610 /* skip the page at the start index */
1611 nrpages = end_index - index + 1;
1612 while (nrpages > 0) {
1613 ret = find_get_pages_contig(inode->i_mapping, index,
1614 min_t(unsigned long,
1615 nrpages, ARRAY_SIZE(pages)), pages);
1616 if (ret == 0) {
1617 ret = -EAGAIN;
1618 goto done;
1619 }
1620 /* now we have an array of pages, lock them all */
1621 for (i = 0; i < ret; i++) {
1622 /*
1623 * the caller is taking responsibility for
1624 * locked_page
1625 */
1626 if (pages[i] != locked_page) {
1627 lock_page(pages[i]);
1628 if (!PageDirty(pages[i]) ||
1629 pages[i]->mapping != inode->i_mapping) {
1630 ret = -EAGAIN;
1631 unlock_page(pages[i]);
1632 page_cache_release(pages[i]);
1633 goto done;
1634 }
1635 }
1636 page_cache_release(pages[i]);
1637 pages_locked++;
1638 }
1639 nrpages -= ret;
1640 index += ret;
1641 cond_resched();
1642 }
1643 ret = 0;
1644 done:
1645 if (ret && pages_locked) {
1646 __unlock_for_delalloc(inode, locked_page,
1647 delalloc_start,
1648 ((u64)(start_index + pages_locked - 1)) <<
1649 PAGE_CACHE_SHIFT);
1650 }
1651 return ret;
1652 }
1653
1654 /*
1655 * find a contiguous range of bytes in the file marked as delalloc, not
1656 * more than 'max_bytes'. start and end are used to return the range,
1657 *
1658 * 1 is returned if we find something, 0 if nothing was in the tree
1659 */
1660 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1661 struct extent_io_tree *tree,
1662 struct page *locked_page, u64 *start,
1663 u64 *end, u64 max_bytes)
1664 {
1665 u64 delalloc_start;
1666 u64 delalloc_end;
1667 u64 found;
1668 struct extent_state *cached_state = NULL;
1669 int ret;
1670 int loops = 0;
1671
1672 again:
1673 /* step one, find a bunch of delalloc bytes starting at start */
1674 delalloc_start = *start;
1675 delalloc_end = 0;
1676 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1677 max_bytes, &cached_state);
1678 if (!found || delalloc_end <= *start) {
1679 *start = delalloc_start;
1680 *end = delalloc_end;
1681 free_extent_state(cached_state);
1682 return 0;
1683 }
1684
1685 /*
1686 * start comes from the offset of locked_page. We have to lock
1687 * pages in order, so we can't process delalloc bytes before
1688 * locked_page
1689 */
1690 if (delalloc_start < *start)
1691 delalloc_start = *start;
1692
1693 /*
1694 * make sure to limit the number of pages we try to lock down
1695 */
1696 if (delalloc_end + 1 - delalloc_start > max_bytes)
1697 delalloc_end = delalloc_start + max_bytes - 1;
1698
1699 /* step two, lock all the pages after the page that has start */
1700 ret = lock_delalloc_pages(inode, locked_page,
1701 delalloc_start, delalloc_end);
1702 if (ret == -EAGAIN) {
1703 /* some of the pages are gone, lets avoid looping by
1704 * shortening the size of the delalloc range we're searching
1705 */
1706 free_extent_state(cached_state);
1707 cached_state = NULL;
1708 if (!loops) {
1709 max_bytes = PAGE_CACHE_SIZE;
1710 loops = 1;
1711 goto again;
1712 } else {
1713 found = 0;
1714 goto out_failed;
1715 }
1716 }
1717 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1718
1719 /* step three, lock the state bits for the whole range */
1720 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1721
1722 /* then test to make sure it is all still delalloc */
1723 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1724 EXTENT_DELALLOC, 1, cached_state);
1725 if (!ret) {
1726 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1727 &cached_state, GFP_NOFS);
1728 __unlock_for_delalloc(inode, locked_page,
1729 delalloc_start, delalloc_end);
1730 cond_resched();
1731 goto again;
1732 }
1733 free_extent_state(cached_state);
1734 *start = delalloc_start;
1735 *end = delalloc_end;
1736 out_failed:
1737 return found;
1738 }
1739
1740 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1741 struct page *locked_page,
1742 unsigned clear_bits,
1743 unsigned long page_ops)
1744 {
1745 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1746 int ret;
1747 struct page *pages[16];
1748 unsigned long index = start >> PAGE_CACHE_SHIFT;
1749 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1750 unsigned long nr_pages = end_index - index + 1;
1751 int i;
1752
1753 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1754 if (page_ops == 0)
1755 return 0;
1756
1757 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1758 mapping_set_error(inode->i_mapping, -EIO);
1759
1760 while (nr_pages > 0) {
1761 ret = find_get_pages_contig(inode->i_mapping, index,
1762 min_t(unsigned long,
1763 nr_pages, ARRAY_SIZE(pages)), pages);
1764 for (i = 0; i < ret; i++) {
1765
1766 if (page_ops & PAGE_SET_PRIVATE2)
1767 SetPagePrivate2(pages[i]);
1768
1769 if (pages[i] == locked_page) {
1770 page_cache_release(pages[i]);
1771 continue;
1772 }
1773 if (page_ops & PAGE_CLEAR_DIRTY)
1774 clear_page_dirty_for_io(pages[i]);
1775 if (page_ops & PAGE_SET_WRITEBACK)
1776 set_page_writeback(pages[i]);
1777 if (page_ops & PAGE_SET_ERROR)
1778 SetPageError(pages[i]);
1779 if (page_ops & PAGE_END_WRITEBACK)
1780 end_page_writeback(pages[i]);
1781 if (page_ops & PAGE_UNLOCK)
1782 unlock_page(pages[i]);
1783 page_cache_release(pages[i]);
1784 }
1785 nr_pages -= ret;
1786 index += ret;
1787 cond_resched();
1788 }
1789 return 0;
1790 }
1791
1792 /*
1793 * count the number of bytes in the tree that have a given bit(s)
1794 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1795 * cached. The total number found is returned.
1796 */
1797 u64 count_range_bits(struct extent_io_tree *tree,
1798 u64 *start, u64 search_end, u64 max_bytes,
1799 unsigned bits, int contig)
1800 {
1801 struct rb_node *node;
1802 struct extent_state *state;
1803 u64 cur_start = *start;
1804 u64 total_bytes = 0;
1805 u64 last = 0;
1806 int found = 0;
1807
1808 if (WARN_ON(search_end <= cur_start))
1809 return 0;
1810
1811 spin_lock(&tree->lock);
1812 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1813 total_bytes = tree->dirty_bytes;
1814 goto out;
1815 }
1816 /*
1817 * this search will find all the extents that end after
1818 * our range starts.
1819 */
1820 node = tree_search(tree, cur_start);
1821 if (!node)
1822 goto out;
1823
1824 while (1) {
1825 state = rb_entry(node, struct extent_state, rb_node);
1826 if (state->start > search_end)
1827 break;
1828 if (contig && found && state->start > last + 1)
1829 break;
1830 if (state->end >= cur_start && (state->state & bits) == bits) {
1831 total_bytes += min(search_end, state->end) + 1 -
1832 max(cur_start, state->start);
1833 if (total_bytes >= max_bytes)
1834 break;
1835 if (!found) {
1836 *start = max(cur_start, state->start);
1837 found = 1;
1838 }
1839 last = state->end;
1840 } else if (contig && found) {
1841 break;
1842 }
1843 node = rb_next(node);
1844 if (!node)
1845 break;
1846 }
1847 out:
1848 spin_unlock(&tree->lock);
1849 return total_bytes;
1850 }
1851
1852 /*
1853 * set the private field for a given byte offset in the tree. If there isn't
1854 * an extent_state there already, this does nothing.
1855 */
1856 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1857 {
1858 struct rb_node *node;
1859 struct extent_state *state;
1860 int ret = 0;
1861
1862 spin_lock(&tree->lock);
1863 /*
1864 * this search will find all the extents that end after
1865 * our range starts.
1866 */
1867 node = tree_search(tree, start);
1868 if (!node) {
1869 ret = -ENOENT;
1870 goto out;
1871 }
1872 state = rb_entry(node, struct extent_state, rb_node);
1873 if (state->start != start) {
1874 ret = -ENOENT;
1875 goto out;
1876 }
1877 state->private = private;
1878 out:
1879 spin_unlock(&tree->lock);
1880 return ret;
1881 }
1882
1883 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1884 {
1885 struct rb_node *node;
1886 struct extent_state *state;
1887 int ret = 0;
1888
1889 spin_lock(&tree->lock);
1890 /*
1891 * this search will find all the extents that end after
1892 * our range starts.
1893 */
1894 node = tree_search(tree, start);
1895 if (!node) {
1896 ret = -ENOENT;
1897 goto out;
1898 }
1899 state = rb_entry(node, struct extent_state, rb_node);
1900 if (state->start != start) {
1901 ret = -ENOENT;
1902 goto out;
1903 }
1904 *private = state->private;
1905 out:
1906 spin_unlock(&tree->lock);
1907 return ret;
1908 }
1909
1910 /*
1911 * searches a range in the state tree for a given mask.
1912 * If 'filled' == 1, this returns 1 only if every extent in the tree
1913 * has the bits set. Otherwise, 1 is returned if any bit in the
1914 * range is found set.
1915 */
1916 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1917 unsigned bits, int filled, struct extent_state *cached)
1918 {
1919 struct extent_state *state = NULL;
1920 struct rb_node *node;
1921 int bitset = 0;
1922
1923 spin_lock(&tree->lock);
1924 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1925 cached->end > start)
1926 node = &cached->rb_node;
1927 else
1928 node = tree_search(tree, start);
1929 while (node && start <= end) {
1930 state = rb_entry(node, struct extent_state, rb_node);
1931
1932 if (filled && state->start > start) {
1933 bitset = 0;
1934 break;
1935 }
1936
1937 if (state->start > end)
1938 break;
1939
1940 if (state->state & bits) {
1941 bitset = 1;
1942 if (!filled)
1943 break;
1944 } else if (filled) {
1945 bitset = 0;
1946 break;
1947 }
1948
1949 if (state->end == (u64)-1)
1950 break;
1951
1952 start = state->end + 1;
1953 if (start > end)
1954 break;
1955 node = rb_next(node);
1956 if (!node) {
1957 if (filled)
1958 bitset = 0;
1959 break;
1960 }
1961 }
1962 spin_unlock(&tree->lock);
1963 return bitset;
1964 }
1965
1966 /*
1967 * helper function to set a given page up to date if all the
1968 * extents in the tree for that page are up to date
1969 */
1970 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1971 {
1972 u64 start = page_offset(page);
1973 u64 end = start + PAGE_CACHE_SIZE - 1;
1974 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1975 SetPageUptodate(page);
1976 }
1977
1978 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1979 {
1980 int ret;
1981 int err = 0;
1982 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1983
1984 set_state_private(failure_tree, rec->start, 0);
1985 ret = clear_extent_bits(failure_tree, rec->start,
1986 rec->start + rec->len - 1,
1987 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1988 if (ret)
1989 err = ret;
1990
1991 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1992 rec->start + rec->len - 1,
1993 EXTENT_DAMAGED, GFP_NOFS);
1994 if (ret && !err)
1995 err = ret;
1996
1997 kfree(rec);
1998 return err;
1999 }
2000
2001 /*
2002 * this bypasses the standard btrfs submit functions deliberately, as
2003 * the standard behavior is to write all copies in a raid setup. here we only
2004 * want to write the one bad copy. so we do the mapping for ourselves and issue
2005 * submit_bio directly.
2006 * to avoid any synchronization issues, wait for the data after writing, which
2007 * actually prevents the read that triggered the error from finishing.
2008 * currently, there can be no more than two copies of every data bit. thus,
2009 * exactly one rewrite is required.
2010 */
2011 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2012 struct page *page, unsigned int pg_offset, int mirror_num)
2013 {
2014 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2015 struct bio *bio;
2016 struct btrfs_device *dev;
2017 u64 map_length = 0;
2018 u64 sector;
2019 struct btrfs_bio *bbio = NULL;
2020 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2021 int ret;
2022
2023 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2024 BUG_ON(!mirror_num);
2025
2026 /* we can't repair anything in raid56 yet */
2027 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2028 return 0;
2029
2030 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2031 if (!bio)
2032 return -EIO;
2033 bio->bi_iter.bi_size = 0;
2034 map_length = length;
2035
2036 ret = btrfs_map_block(fs_info, WRITE, logical,
2037 &map_length, &bbio, mirror_num);
2038 if (ret) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 BUG_ON(mirror_num != bbio->mirror_num);
2043 sector = bbio->stripes[mirror_num-1].physical >> 9;
2044 bio->bi_iter.bi_sector = sector;
2045 dev = bbio->stripes[mirror_num-1].dev;
2046 btrfs_put_bbio(bbio);
2047 if (!dev || !dev->bdev || !dev->writeable) {
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
2052 bio_add_page(bio, page, length, pg_offset);
2053
2054 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2055 /* try to remap that extent elsewhere? */
2056 bio_put(bio);
2057 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058 return -EIO;
2059 }
2060
2061 btrfs_info_rl_in_rcu(fs_info,
2062 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063 btrfs_ino(inode), start,
2064 rcu_str_deref(dev->name), sector);
2065 bio_put(bio);
2066 return 0;
2067 }
2068
2069 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2070 int mirror_num)
2071 {
2072 u64 start = eb->start;
2073 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2074 int ret = 0;
2075
2076 if (root->fs_info->sb->s_flags & MS_RDONLY)
2077 return -EROFS;
2078
2079 for (i = 0; i < num_pages; i++) {
2080 struct page *p = eb->pages[i];
2081
2082 ret = repair_io_failure(root->fs_info->btree_inode, start,
2083 PAGE_CACHE_SIZE, start, p,
2084 start - page_offset(p), mirror_num);
2085 if (ret)
2086 break;
2087 start += PAGE_CACHE_SIZE;
2088 }
2089
2090 return ret;
2091 }
2092
2093 /*
2094 * each time an IO finishes, we do a fast check in the IO failure tree
2095 * to see if we need to process or clean up an io_failure_record
2096 */
2097 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2098 unsigned int pg_offset)
2099 {
2100 u64 private;
2101 u64 private_failure;
2102 struct io_failure_record *failrec;
2103 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104 struct extent_state *state;
2105 int num_copies;
2106 int ret;
2107
2108 private = 0;
2109 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 (u64)-1, 1, EXTENT_DIRTY, 0);
2111 if (!ret)
2112 return 0;
2113
2114 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2115 &private_failure);
2116 if (ret)
2117 return 0;
2118
2119 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2120 BUG_ON(!failrec->this_mirror);
2121
2122 if (failrec->in_validation) {
2123 /* there was no real error, just free the record */
2124 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2125 failrec->start);
2126 goto out;
2127 }
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
2141 if (num_copies > 1) {
2142 repair_io_failure(inode, start, failrec->len,
2143 failrec->logical, page,
2144 pg_offset, failrec->failed_mirror);
2145 }
2146 }
2147
2148 out:
2149 free_io_failure(inode, failrec);
2150
2151 return 0;
2152 }
2153
2154 /*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
2160 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161 {
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
2179 failrec = (struct io_failure_record *)(unsigned long)state->private;
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186 }
2187
2188 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 struct io_failure_record **failrec_ret)
2190 {
2191 struct io_failure_record *failrec;
2192 u64 private;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_private(failure_tree, start, &private);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
2247 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2248 if (ret >= 0)
2249 ret = set_state_private(failure_tree, start,
2250 (u64)(unsigned long)failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2254 GFP_NOFS);
2255 if (ret < 0) {
2256 kfree(failrec);
2257 return ret;
2258 }
2259 } else {
2260 failrec = (struct io_failure_record *)(unsigned long)private;
2261 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2262 failrec->logical, failrec->start, failrec->len,
2263 failrec->in_validation);
2264 /*
2265 * when data can be on disk more than twice, add to failrec here
2266 * (e.g. with a list for failed_mirror) to make
2267 * clean_io_failure() clean all those errors at once.
2268 */
2269 }
2270
2271 *failrec_ret = failrec;
2272
2273 return 0;
2274 }
2275
2276 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2277 struct io_failure_record *failrec, int failed_mirror)
2278 {
2279 int num_copies;
2280
2281 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2282 failrec->logical, failrec->len);
2283 if (num_copies == 1) {
2284 /*
2285 * we only have a single copy of the data, so don't bother with
2286 * all the retry and error correction code that follows. no
2287 * matter what the error is, it is very likely to persist.
2288 */
2289 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2290 num_copies, failrec->this_mirror, failed_mirror);
2291 return 0;
2292 }
2293
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
2326 }
2327
2328 if (failrec->this_mirror > num_copies) {
2329 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2330 num_copies, failrec->this_mirror, failed_mirror);
2331 return 0;
2332 }
2333
2334 return 1;
2335 }
2336
2337
2338 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2339 struct io_failure_record *failrec,
2340 struct page *page, int pg_offset, int icsum,
2341 bio_end_io_t *endio_func, void *data)
2342 {
2343 struct bio *bio;
2344 struct btrfs_io_bio *btrfs_failed_bio;
2345 struct btrfs_io_bio *btrfs_bio;
2346
2347 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2348 if (!bio)
2349 return NULL;
2350
2351 bio->bi_end_io = endio_func;
2352 bio->bi_iter.bi_sector = failrec->logical >> 9;
2353 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2354 bio->bi_iter.bi_size = 0;
2355 bio->bi_private = data;
2356
2357 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2358 if (btrfs_failed_bio->csum) {
2359 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2360 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2361
2362 btrfs_bio = btrfs_io_bio(bio);
2363 btrfs_bio->csum = btrfs_bio->csum_inline;
2364 icsum *= csum_size;
2365 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2366 csum_size);
2367 }
2368
2369 bio_add_page(bio, page, failrec->len, pg_offset);
2370
2371 return bio;
2372 }
2373
2374 /*
2375 * this is a generic handler for readpage errors (default
2376 * readpage_io_failed_hook). if other copies exist, read those and write back
2377 * good data to the failed position. does not investigate in remapping the
2378 * failed extent elsewhere, hoping the device will be smart enough to do this as
2379 * needed
2380 */
2381
2382 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2383 struct page *page, u64 start, u64 end,
2384 int failed_mirror)
2385 {
2386 struct io_failure_record *failrec;
2387 struct inode *inode = page->mapping->host;
2388 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2389 struct bio *bio;
2390 int read_mode;
2391 int ret;
2392
2393 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2394
2395 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2396 if (ret)
2397 return ret;
2398
2399 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2400 if (!ret) {
2401 free_io_failure(inode, failrec);
2402 return -EIO;
2403 }
2404
2405 if (failed_bio->bi_vcnt > 1)
2406 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2407 else
2408 read_mode = READ_SYNC;
2409
2410 phy_offset >>= inode->i_sb->s_blocksize_bits;
2411 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2412 start - page_offset(page),
2413 (int)phy_offset, failed_bio->bi_end_io,
2414 NULL);
2415 if (!bio) {
2416 free_io_failure(inode, failrec);
2417 return -EIO;
2418 }
2419
2420 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2421 read_mode, failrec->this_mirror, failrec->in_validation);
2422
2423 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2424 failrec->this_mirror,
2425 failrec->bio_flags, 0);
2426 if (ret) {
2427 free_io_failure(inode, failrec);
2428 bio_put(bio);
2429 }
2430
2431 return ret;
2432 }
2433
2434 /* lots and lots of room for performance fixes in the end_bio funcs */
2435
2436 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437 {
2438 int uptodate = (err == 0);
2439 struct extent_io_tree *tree;
2440 int ret = 0;
2441
2442 tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444 if (tree->ops && tree->ops->writepage_end_io_hook) {
2445 ret = tree->ops->writepage_end_io_hook(page, start,
2446 end, NULL, uptodate);
2447 if (ret)
2448 uptodate = 0;
2449 }
2450
2451 if (!uptodate) {
2452 ClearPageUptodate(page);
2453 SetPageError(page);
2454 ret = ret < 0 ? ret : -EIO;
2455 mapping_set_error(page->mapping, ret);
2456 }
2457 return 0;
2458 }
2459
2460 /*
2461 * after a writepage IO is done, we need to:
2462 * clear the uptodate bits on error
2463 * clear the writeback bits in the extent tree for this IO
2464 * end_page_writeback if the page has no more pending IO
2465 *
2466 * Scheduling is not allowed, so the extent state tree is expected
2467 * to have one and only one object corresponding to this IO.
2468 */
2469 static void end_bio_extent_writepage(struct bio *bio)
2470 {
2471 struct bio_vec *bvec;
2472 u64 start;
2473 u64 end;
2474 int i;
2475
2476 bio_for_each_segment_all(bvec, bio, i) {
2477 struct page *page = bvec->bv_page;
2478
2479 /* We always issue full-page reads, but if some block
2480 * in a page fails to read, blk_update_request() will
2481 * advance bv_offset and adjust bv_len to compensate.
2482 * Print a warning for nonzero offsets, and an error
2483 * if they don't add up to a full page. */
2484 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2485 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2486 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "partial page write in btrfs with offset %u and length %u",
2488 bvec->bv_offset, bvec->bv_len);
2489 else
2490 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2491 "incomplete page write in btrfs with offset %u and "
2492 "length %u",
2493 bvec->bv_offset, bvec->bv_len);
2494 }
2495
2496 start = page_offset(page);
2497 end = start + bvec->bv_offset + bvec->bv_len - 1;
2498
2499 if (end_extent_writepage(page, bio->bi_error, start, end))
2500 continue;
2501
2502 end_page_writeback(page);
2503 }
2504
2505 bio_put(bio);
2506 }
2507
2508 static void
2509 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2510 int uptodate)
2511 {
2512 struct extent_state *cached = NULL;
2513 u64 end = start + len - 1;
2514
2515 if (uptodate && tree->track_uptodate)
2516 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2517 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2518 }
2519
2520 /*
2521 * after a readpage IO is done, we need to:
2522 * clear the uptodate bits on error
2523 * set the uptodate bits if things worked
2524 * set the page up to date if all extents in the tree are uptodate
2525 * clear the lock bit in the extent tree
2526 * unlock the page if there are no other extents locked for it
2527 *
2528 * Scheduling is not allowed, so the extent state tree is expected
2529 * to have one and only one object corresponding to this IO.
2530 */
2531 static void end_bio_extent_readpage(struct bio *bio)
2532 {
2533 struct bio_vec *bvec;
2534 int uptodate = !bio->bi_error;
2535 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2536 struct extent_io_tree *tree;
2537 u64 offset = 0;
2538 u64 start;
2539 u64 end;
2540 u64 len;
2541 u64 extent_start = 0;
2542 u64 extent_len = 0;
2543 int mirror;
2544 int ret;
2545 int i;
2546
2547 bio_for_each_segment_all(bvec, bio, i) {
2548 struct page *page = bvec->bv_page;
2549 struct inode *inode = page->mapping->host;
2550
2551 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2552 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2553 bio->bi_error, io_bio->mirror_num);
2554 tree = &BTRFS_I(inode)->io_tree;
2555
2556 /* We always issue full-page reads, but if some block
2557 * in a page fails to read, blk_update_request() will
2558 * advance bv_offset and adjust bv_len to compensate.
2559 * Print a warning for nonzero offsets, and an error
2560 * if they don't add up to a full page. */
2561 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2562 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2563 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2564 "partial page read in btrfs with offset %u and length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 else
2567 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2568 "incomplete page read in btrfs with offset %u and "
2569 "length %u",
2570 bvec->bv_offset, bvec->bv_len);
2571 }
2572
2573 start = page_offset(page);
2574 end = start + bvec->bv_offset + bvec->bv_len - 1;
2575 len = bvec->bv_len;
2576
2577 mirror = io_bio->mirror_num;
2578 if (likely(uptodate && tree->ops &&
2579 tree->ops->readpage_end_io_hook)) {
2580 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2581 page, start, end,
2582 mirror);
2583 if (ret)
2584 uptodate = 0;
2585 else
2586 clean_io_failure(inode, start, page, 0);
2587 }
2588
2589 if (likely(uptodate))
2590 goto readpage_ok;
2591
2592 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2593 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2594 if (!ret && !bio->bi_error)
2595 uptodate = 1;
2596 } else {
2597 /*
2598 * The generic bio_readpage_error handles errors the
2599 * following way: If possible, new read requests are
2600 * created and submitted and will end up in
2601 * end_bio_extent_readpage as well (if we're lucky, not
2602 * in the !uptodate case). In that case it returns 0 and
2603 * we just go on with the next page in our bio. If it
2604 * can't handle the error it will return -EIO and we
2605 * remain responsible for that page.
2606 */
2607 ret = bio_readpage_error(bio, offset, page, start, end,
2608 mirror);
2609 if (ret == 0) {
2610 uptodate = !bio->bi_error;
2611 offset += len;
2612 continue;
2613 }
2614 }
2615 readpage_ok:
2616 if (likely(uptodate)) {
2617 loff_t i_size = i_size_read(inode);
2618 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2619 unsigned off;
2620
2621 /* Zero out the end if this page straddles i_size */
2622 off = i_size & (PAGE_CACHE_SIZE-1);
2623 if (page->index == end_index && off)
2624 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2625 SetPageUptodate(page);
2626 } else {
2627 ClearPageUptodate(page);
2628 SetPageError(page);
2629 }
2630 unlock_page(page);
2631 offset += len;
2632
2633 if (unlikely(!uptodate)) {
2634 if (extent_len) {
2635 endio_readpage_release_extent(tree,
2636 extent_start,
2637 extent_len, 1);
2638 extent_start = 0;
2639 extent_len = 0;
2640 }
2641 endio_readpage_release_extent(tree, start,
2642 end - start + 1, 0);
2643 } else if (!extent_len) {
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 } else if (extent_start + extent_len == start) {
2647 extent_len += end + 1 - start;
2648 } else {
2649 endio_readpage_release_extent(tree, extent_start,
2650 extent_len, uptodate);
2651 extent_start = start;
2652 extent_len = end + 1 - start;
2653 }
2654 }
2655
2656 if (extent_len)
2657 endio_readpage_release_extent(tree, extent_start, extent_len,
2658 uptodate);
2659 if (io_bio->end_io)
2660 io_bio->end_io(io_bio, bio->bi_error);
2661 bio_put(bio);
2662 }
2663
2664 /*
2665 * this allocates from the btrfs_bioset. We're returning a bio right now
2666 * but you can call btrfs_io_bio for the appropriate container_of magic
2667 */
2668 struct bio *
2669 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2670 gfp_t gfp_flags)
2671 {
2672 struct btrfs_io_bio *btrfs_bio;
2673 struct bio *bio;
2674
2675 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2676
2677 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2678 while (!bio && (nr_vecs /= 2)) {
2679 bio = bio_alloc_bioset(gfp_flags,
2680 nr_vecs, btrfs_bioset);
2681 }
2682 }
2683
2684 if (bio) {
2685 bio->bi_bdev = bdev;
2686 bio->bi_iter.bi_sector = first_sector;
2687 btrfs_bio = btrfs_io_bio(bio);
2688 btrfs_bio->csum = NULL;
2689 btrfs_bio->csum_allocated = NULL;
2690 btrfs_bio->end_io = NULL;
2691 }
2692 return bio;
2693 }
2694
2695 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2696 {
2697 struct btrfs_io_bio *btrfs_bio;
2698 struct bio *new;
2699
2700 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2701 if (new) {
2702 btrfs_bio = btrfs_io_bio(new);
2703 btrfs_bio->csum = NULL;
2704 btrfs_bio->csum_allocated = NULL;
2705 btrfs_bio->end_io = NULL;
2706
2707 #ifdef CONFIG_BLK_CGROUP
2708 /* FIXME, put this into bio_clone_bioset */
2709 if (bio->bi_css)
2710 bio_associate_blkcg(new, bio->bi_css);
2711 #endif
2712 }
2713 return new;
2714 }
2715
2716 /* this also allocates from the btrfs_bioset */
2717 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2718 {
2719 struct btrfs_io_bio *btrfs_bio;
2720 struct bio *bio;
2721
2722 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2723 if (bio) {
2724 btrfs_bio = btrfs_io_bio(bio);
2725 btrfs_bio->csum = NULL;
2726 btrfs_bio->csum_allocated = NULL;
2727 btrfs_bio->end_io = NULL;
2728 }
2729 return bio;
2730 }
2731
2732
2733 static int __must_check submit_one_bio(int rw, struct bio *bio,
2734 int mirror_num, unsigned long bio_flags)
2735 {
2736 int ret = 0;
2737 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2738 struct page *page = bvec->bv_page;
2739 struct extent_io_tree *tree = bio->bi_private;
2740 u64 start;
2741
2742 start = page_offset(page) + bvec->bv_offset;
2743
2744 bio->bi_private = NULL;
2745
2746 bio_get(bio);
2747
2748 if (tree->ops && tree->ops->submit_bio_hook)
2749 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2750 mirror_num, bio_flags, start);
2751 else
2752 btrfsic_submit_bio(rw, bio);
2753
2754 bio_put(bio);
2755 return ret;
2756 }
2757
2758 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2759 unsigned long offset, size_t size, struct bio *bio,
2760 unsigned long bio_flags)
2761 {
2762 int ret = 0;
2763 if (tree->ops && tree->ops->merge_bio_hook)
2764 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2765 bio_flags);
2766 BUG_ON(ret < 0);
2767 return ret;
2768
2769 }
2770
2771 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2772 struct writeback_control *wbc,
2773 struct page *page, sector_t sector,
2774 size_t size, unsigned long offset,
2775 struct block_device *bdev,
2776 struct bio **bio_ret,
2777 unsigned long max_pages,
2778 bio_end_io_t end_io_func,
2779 int mirror_num,
2780 unsigned long prev_bio_flags,
2781 unsigned long bio_flags,
2782 bool force_bio_submit)
2783 {
2784 int ret = 0;
2785 struct bio *bio;
2786 int contig = 0;
2787 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2788 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2789
2790 if (bio_ret && *bio_ret) {
2791 bio = *bio_ret;
2792 if (old_compressed)
2793 contig = bio->bi_iter.bi_sector == sector;
2794 else
2795 contig = bio_end_sector(bio) == sector;
2796
2797 if (prev_bio_flags != bio_flags || !contig ||
2798 force_bio_submit ||
2799 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2800 bio_add_page(bio, page, page_size, offset) < page_size) {
2801 ret = submit_one_bio(rw, bio, mirror_num,
2802 prev_bio_flags);
2803 if (ret < 0) {
2804 *bio_ret = NULL;
2805 return ret;
2806 }
2807 bio = NULL;
2808 } else {
2809 if (wbc)
2810 wbc_account_io(wbc, page, page_size);
2811 return 0;
2812 }
2813 }
2814
2815 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2816 GFP_NOFS | __GFP_HIGH);
2817 if (!bio)
2818 return -ENOMEM;
2819
2820 bio_add_page(bio, page, page_size, offset);
2821 bio->bi_end_io = end_io_func;
2822 bio->bi_private = tree;
2823 if (wbc) {
2824 wbc_init_bio(wbc, bio);
2825 wbc_account_io(wbc, page, page_size);
2826 }
2827
2828 if (bio_ret)
2829 *bio_ret = bio;
2830 else
2831 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2832
2833 return ret;
2834 }
2835
2836 static void attach_extent_buffer_page(struct extent_buffer *eb,
2837 struct page *page)
2838 {
2839 if (!PagePrivate(page)) {
2840 SetPagePrivate(page);
2841 page_cache_get(page);
2842 set_page_private(page, (unsigned long)eb);
2843 } else {
2844 WARN_ON(page->private != (unsigned long)eb);
2845 }
2846 }
2847
2848 void set_page_extent_mapped(struct page *page)
2849 {
2850 if (!PagePrivate(page)) {
2851 SetPagePrivate(page);
2852 page_cache_get(page);
2853 set_page_private(page, EXTENT_PAGE_PRIVATE);
2854 }
2855 }
2856
2857 static struct extent_map *
2858 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2859 u64 start, u64 len, get_extent_t *get_extent,
2860 struct extent_map **em_cached)
2861 {
2862 struct extent_map *em;
2863
2864 if (em_cached && *em_cached) {
2865 em = *em_cached;
2866 if (extent_map_in_tree(em) && start >= em->start &&
2867 start < extent_map_end(em)) {
2868 atomic_inc(&em->refs);
2869 return em;
2870 }
2871
2872 free_extent_map(em);
2873 *em_cached = NULL;
2874 }
2875
2876 em = get_extent(inode, page, pg_offset, start, len, 0);
2877 if (em_cached && !IS_ERR_OR_NULL(em)) {
2878 BUG_ON(*em_cached);
2879 atomic_inc(&em->refs);
2880 *em_cached = em;
2881 }
2882 return em;
2883 }
2884 /*
2885 * basic readpage implementation. Locked extent state structs are inserted
2886 * into the tree that are removed when the IO is done (by the end_io
2887 * handlers)
2888 * XXX JDM: This needs looking at to ensure proper page locking
2889 */
2890 static int __do_readpage(struct extent_io_tree *tree,
2891 struct page *page,
2892 get_extent_t *get_extent,
2893 struct extent_map **em_cached,
2894 struct bio **bio, int mirror_num,
2895 unsigned long *bio_flags, int rw,
2896 u64 *prev_em_start)
2897 {
2898 struct inode *inode = page->mapping->host;
2899 u64 start = page_offset(page);
2900 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2901 u64 end;
2902 u64 cur = start;
2903 u64 extent_offset;
2904 u64 last_byte = i_size_read(inode);
2905 u64 block_start;
2906 u64 cur_end;
2907 sector_t sector;
2908 struct extent_map *em;
2909 struct block_device *bdev;
2910 int ret;
2911 int nr = 0;
2912 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2913 size_t pg_offset = 0;
2914 size_t iosize;
2915 size_t disk_io_size;
2916 size_t blocksize = inode->i_sb->s_blocksize;
2917 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2918
2919 set_page_extent_mapped(page);
2920
2921 end = page_end;
2922 if (!PageUptodate(page)) {
2923 if (cleancache_get_page(page) == 0) {
2924 BUG_ON(blocksize != PAGE_SIZE);
2925 unlock_extent(tree, start, end);
2926 goto out;
2927 }
2928 }
2929
2930 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2931 char *userpage;
2932 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2933
2934 if (zero_offset) {
2935 iosize = PAGE_CACHE_SIZE - zero_offset;
2936 userpage = kmap_atomic(page);
2937 memset(userpage + zero_offset, 0, iosize);
2938 flush_dcache_page(page);
2939 kunmap_atomic(userpage);
2940 }
2941 }
2942 while (cur <= end) {
2943 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2944 bool force_bio_submit = false;
2945
2946 if (cur >= last_byte) {
2947 char *userpage;
2948 struct extent_state *cached = NULL;
2949
2950 iosize = PAGE_CACHE_SIZE - pg_offset;
2951 userpage = kmap_atomic(page);
2952 memset(userpage + pg_offset, 0, iosize);
2953 flush_dcache_page(page);
2954 kunmap_atomic(userpage);
2955 set_extent_uptodate(tree, cur, cur + iosize - 1,
2956 &cached, GFP_NOFS);
2957 if (!parent_locked)
2958 unlock_extent_cached(tree, cur,
2959 cur + iosize - 1,
2960 &cached, GFP_NOFS);
2961 break;
2962 }
2963 em = __get_extent_map(inode, page, pg_offset, cur,
2964 end - cur + 1, get_extent, em_cached);
2965 if (IS_ERR_OR_NULL(em)) {
2966 SetPageError(page);
2967 if (!parent_locked)
2968 unlock_extent(tree, cur, end);
2969 break;
2970 }
2971 extent_offset = cur - em->start;
2972 BUG_ON(extent_map_end(em) <= cur);
2973 BUG_ON(end < cur);
2974
2975 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2976 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2977 extent_set_compress_type(&this_bio_flag,
2978 em->compress_type);
2979 }
2980
2981 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2982 cur_end = min(extent_map_end(em) - 1, end);
2983 iosize = ALIGN(iosize, blocksize);
2984 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2985 disk_io_size = em->block_len;
2986 sector = em->block_start >> 9;
2987 } else {
2988 sector = (em->block_start + extent_offset) >> 9;
2989 disk_io_size = iosize;
2990 }
2991 bdev = em->bdev;
2992 block_start = em->block_start;
2993 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2994 block_start = EXTENT_MAP_HOLE;
2995
2996 /*
2997 * If we have a file range that points to a compressed extent
2998 * and it's followed by a consecutive file range that points to
2999 * to the same compressed extent (possibly with a different
3000 * offset and/or length, so it either points to the whole extent
3001 * or only part of it), we must make sure we do not submit a
3002 * single bio to populate the pages for the 2 ranges because
3003 * this makes the compressed extent read zero out the pages
3004 * belonging to the 2nd range. Imagine the following scenario:
3005 *
3006 * File layout
3007 * [0 - 8K] [8K - 24K]
3008 * | |
3009 * | |
3010 * points to extent X, points to extent X,
3011 * offset 4K, length of 8K offset 0, length 16K
3012 *
3013 * [extent X, compressed length = 4K uncompressed length = 16K]
3014 *
3015 * If the bio to read the compressed extent covers both ranges,
3016 * it will decompress extent X into the pages belonging to the
3017 * first range and then it will stop, zeroing out the remaining
3018 * pages that belong to the other range that points to extent X.
3019 * So here we make sure we submit 2 bios, one for the first
3020 * range and another one for the third range. Both will target
3021 * the same physical extent from disk, but we can't currently
3022 * make the compressed bio endio callback populate the pages
3023 * for both ranges because each compressed bio is tightly
3024 * coupled with a single extent map, and each range can have
3025 * an extent map with a different offset value relative to the
3026 * uncompressed data of our extent and different lengths. This
3027 * is a corner case so we prioritize correctness over
3028 * non-optimal behavior (submitting 2 bios for the same extent).
3029 */
3030 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3031 prev_em_start && *prev_em_start != (u64)-1 &&
3032 *prev_em_start != em->orig_start)
3033 force_bio_submit = true;
3034
3035 if (prev_em_start)
3036 *prev_em_start = em->orig_start;
3037
3038 free_extent_map(em);
3039 em = NULL;
3040
3041 /* we've found a hole, just zero and go on */
3042 if (block_start == EXTENT_MAP_HOLE) {
3043 char *userpage;
3044 struct extent_state *cached = NULL;
3045
3046 userpage = kmap_atomic(page);
3047 memset(userpage + pg_offset, 0, iosize);
3048 flush_dcache_page(page);
3049 kunmap_atomic(userpage);
3050
3051 set_extent_uptodate(tree, cur, cur + iosize - 1,
3052 &cached, GFP_NOFS);
3053 if (parent_locked)
3054 free_extent_state(cached);
3055 else
3056 unlock_extent_cached(tree, cur,
3057 cur + iosize - 1,
3058 &cached, GFP_NOFS);
3059 cur = cur + iosize;
3060 pg_offset += iosize;
3061 continue;
3062 }
3063 /* the get_extent function already copied into the page */
3064 if (test_range_bit(tree, cur, cur_end,
3065 EXTENT_UPTODATE, 1, NULL)) {
3066 check_page_uptodate(tree, page);
3067 if (!parent_locked)
3068 unlock_extent(tree, cur, cur + iosize - 1);
3069 cur = cur + iosize;
3070 pg_offset += iosize;
3071 continue;
3072 }
3073 /* we have an inline extent but it didn't get marked up
3074 * to date. Error out
3075 */
3076 if (block_start == EXTENT_MAP_INLINE) {
3077 SetPageError(page);
3078 if (!parent_locked)
3079 unlock_extent(tree, cur, cur + iosize - 1);
3080 cur = cur + iosize;
3081 pg_offset += iosize;
3082 continue;
3083 }
3084
3085 pnr -= page->index;
3086 ret = submit_extent_page(rw, tree, NULL, page,
3087 sector, disk_io_size, pg_offset,
3088 bdev, bio, pnr,
3089 end_bio_extent_readpage, mirror_num,
3090 *bio_flags,
3091 this_bio_flag,
3092 force_bio_submit);
3093 if (!ret) {
3094 nr++;
3095 *bio_flags = this_bio_flag;
3096 } else {
3097 SetPageError(page);
3098 if (!parent_locked)
3099 unlock_extent(tree, cur, cur + iosize - 1);
3100 }
3101 cur = cur + iosize;
3102 pg_offset += iosize;
3103 }
3104 out:
3105 if (!nr) {
3106 if (!PageError(page))
3107 SetPageUptodate(page);
3108 unlock_page(page);
3109 }
3110 return 0;
3111 }
3112
3113 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3114 struct page *pages[], int nr_pages,
3115 u64 start, u64 end,
3116 get_extent_t *get_extent,
3117 struct extent_map **em_cached,
3118 struct bio **bio, int mirror_num,
3119 unsigned long *bio_flags, int rw,
3120 u64 *prev_em_start)
3121 {
3122 struct inode *inode;
3123 struct btrfs_ordered_extent *ordered;
3124 int index;
3125
3126 inode = pages[0]->mapping->host;
3127 while (1) {
3128 lock_extent(tree, start, end);
3129 ordered = btrfs_lookup_ordered_range(inode, start,
3130 end - start + 1);
3131 if (!ordered)
3132 break;
3133 unlock_extent(tree, start, end);
3134 btrfs_start_ordered_extent(inode, ordered, 1);
3135 btrfs_put_ordered_extent(ordered);
3136 }
3137
3138 for (index = 0; index < nr_pages; index++) {
3139 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3140 mirror_num, bio_flags, rw, prev_em_start);
3141 page_cache_release(pages[index]);
3142 }
3143 }
3144
3145 static void __extent_readpages(struct extent_io_tree *tree,
3146 struct page *pages[],
3147 int nr_pages, get_extent_t *get_extent,
3148 struct extent_map **em_cached,
3149 struct bio **bio, int mirror_num,
3150 unsigned long *bio_flags, int rw,
3151 u64 *prev_em_start)
3152 {
3153 u64 start = 0;
3154 u64 end = 0;
3155 u64 page_start;
3156 int index;
3157 int first_index = 0;
3158
3159 for (index = 0; index < nr_pages; index++) {
3160 page_start = page_offset(pages[index]);
3161 if (!end) {
3162 start = page_start;
3163 end = start + PAGE_CACHE_SIZE - 1;
3164 first_index = index;
3165 } else if (end + 1 == page_start) {
3166 end += PAGE_CACHE_SIZE;
3167 } else {
3168 __do_contiguous_readpages(tree, &pages[first_index],
3169 index - first_index, start,
3170 end, get_extent, em_cached,
3171 bio, mirror_num, bio_flags,
3172 rw, prev_em_start);
3173 start = page_start;
3174 end = start + PAGE_CACHE_SIZE - 1;
3175 first_index = index;
3176 }
3177 }
3178
3179 if (end)
3180 __do_contiguous_readpages(tree, &pages[first_index],
3181 index - first_index, start,
3182 end, get_extent, em_cached, bio,
3183 mirror_num, bio_flags, rw,
3184 prev_em_start);
3185 }
3186
3187 static int __extent_read_full_page(struct extent_io_tree *tree,
3188 struct page *page,
3189 get_extent_t *get_extent,
3190 struct bio **bio, int mirror_num,
3191 unsigned long *bio_flags, int rw)
3192 {
3193 struct inode *inode = page->mapping->host;
3194 struct btrfs_ordered_extent *ordered;
3195 u64 start = page_offset(page);
3196 u64 end = start + PAGE_CACHE_SIZE - 1;
3197 int ret;
3198
3199 while (1) {
3200 lock_extent(tree, start, end);
3201 ordered = btrfs_lookup_ordered_extent(inode, start);
3202 if (!ordered)
3203 break;
3204 unlock_extent(tree, start, end);
3205 btrfs_start_ordered_extent(inode, ordered, 1);
3206 btrfs_put_ordered_extent(ordered);
3207 }
3208
3209 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3210 bio_flags, rw, NULL);
3211 return ret;
3212 }
3213
3214 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3215 get_extent_t *get_extent, int mirror_num)
3216 {
3217 struct bio *bio = NULL;
3218 unsigned long bio_flags = 0;
3219 int ret;
3220
3221 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3222 &bio_flags, READ);
3223 if (bio)
3224 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3225 return ret;
3226 }
3227
3228 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3229 get_extent_t *get_extent, int mirror_num)
3230 {
3231 struct bio *bio = NULL;
3232 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3233 int ret;
3234
3235 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3236 &bio_flags, READ, NULL);
3237 if (bio)
3238 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3239 return ret;
3240 }
3241
3242 static noinline void update_nr_written(struct page *page,
3243 struct writeback_control *wbc,
3244 unsigned long nr_written)
3245 {
3246 wbc->nr_to_write -= nr_written;
3247 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3248 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3249 page->mapping->writeback_index = page->index + nr_written;
3250 }
3251
3252 /*
3253 * helper for __extent_writepage, doing all of the delayed allocation setup.
3254 *
3255 * This returns 1 if our fill_delalloc function did all the work required
3256 * to write the page (copy into inline extent). In this case the IO has
3257 * been started and the page is already unlocked.
3258 *
3259 * This returns 0 if all went well (page still locked)
3260 * This returns < 0 if there were errors (page still locked)
3261 */
3262 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3263 struct page *page, struct writeback_control *wbc,
3264 struct extent_page_data *epd,
3265 u64 delalloc_start,
3266 unsigned long *nr_written)
3267 {
3268 struct extent_io_tree *tree = epd->tree;
3269 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3270 u64 nr_delalloc;
3271 u64 delalloc_to_write = 0;
3272 u64 delalloc_end = 0;
3273 int ret;
3274 int page_started = 0;
3275
3276 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3277 return 0;
3278
3279 while (delalloc_end < page_end) {
3280 nr_delalloc = find_lock_delalloc_range(inode, tree,
3281 page,
3282 &delalloc_start,
3283 &delalloc_end,
3284 BTRFS_MAX_EXTENT_SIZE);
3285 if (nr_delalloc == 0) {
3286 delalloc_start = delalloc_end + 1;
3287 continue;
3288 }
3289 ret = tree->ops->fill_delalloc(inode, page,
3290 delalloc_start,
3291 delalloc_end,
3292 &page_started,
3293 nr_written);
3294 /* File system has been set read-only */
3295 if (ret) {
3296 SetPageError(page);
3297 /* fill_delalloc should be return < 0 for error
3298 * but just in case, we use > 0 here meaning the
3299 * IO is started, so we don't want to return > 0
3300 * unless things are going well.
3301 */
3302 ret = ret < 0 ? ret : -EIO;
3303 goto done;
3304 }
3305 /*
3306 * delalloc_end is already one less than the total
3307 * length, so we don't subtract one from
3308 * PAGE_CACHE_SIZE
3309 */
3310 delalloc_to_write += (delalloc_end - delalloc_start +
3311 PAGE_CACHE_SIZE) >>
3312 PAGE_CACHE_SHIFT;
3313 delalloc_start = delalloc_end + 1;
3314 }
3315 if (wbc->nr_to_write < delalloc_to_write) {
3316 int thresh = 8192;
3317
3318 if (delalloc_to_write < thresh * 2)
3319 thresh = delalloc_to_write;
3320 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3321 thresh);
3322 }
3323
3324 /* did the fill delalloc function already unlock and start
3325 * the IO?
3326 */
3327 if (page_started) {
3328 /*
3329 * we've unlocked the page, so we can't update
3330 * the mapping's writeback index, just update
3331 * nr_to_write.
3332 */
3333 wbc->nr_to_write -= *nr_written;
3334 return 1;
3335 }
3336
3337 ret = 0;
3338
3339 done:
3340 return ret;
3341 }
3342
3343 /*
3344 * helper for __extent_writepage. This calls the writepage start hooks,
3345 * and does the loop to map the page into extents and bios.
3346 *
3347 * We return 1 if the IO is started and the page is unlocked,
3348 * 0 if all went well (page still locked)
3349 * < 0 if there were errors (page still locked)
3350 */
3351 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3352 struct page *page,
3353 struct writeback_control *wbc,
3354 struct extent_page_data *epd,
3355 loff_t i_size,
3356 unsigned long nr_written,
3357 int write_flags, int *nr_ret)
3358 {
3359 struct extent_io_tree *tree = epd->tree;
3360 u64 start = page_offset(page);
3361 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3362 u64 end;
3363 u64 cur = start;
3364 u64 extent_offset;
3365 u64 block_start;
3366 u64 iosize;
3367 sector_t sector;
3368 struct extent_state *cached_state = NULL;
3369 struct extent_map *em;
3370 struct block_device *bdev;
3371 size_t pg_offset = 0;
3372 size_t blocksize;
3373 int ret = 0;
3374 int nr = 0;
3375 bool compressed;
3376
3377 if (tree->ops && tree->ops->writepage_start_hook) {
3378 ret = tree->ops->writepage_start_hook(page, start,
3379 page_end);
3380 if (ret) {
3381 /* Fixup worker will requeue */
3382 if (ret == -EBUSY)
3383 wbc->pages_skipped++;
3384 else
3385 redirty_page_for_writepage(wbc, page);
3386
3387 update_nr_written(page, wbc, nr_written);
3388 unlock_page(page);
3389 ret = 1;
3390 goto done_unlocked;
3391 }
3392 }
3393
3394 /*
3395 * we don't want to touch the inode after unlocking the page,
3396 * so we update the mapping writeback index now
3397 */
3398 update_nr_written(page, wbc, nr_written + 1);
3399
3400 end = page_end;
3401 if (i_size <= start) {
3402 if (tree->ops && tree->ops->writepage_end_io_hook)
3403 tree->ops->writepage_end_io_hook(page, start,
3404 page_end, NULL, 1);
3405 goto done;
3406 }
3407
3408 blocksize = inode->i_sb->s_blocksize;
3409
3410 while (cur <= end) {
3411 u64 em_end;
3412 if (cur >= i_size) {
3413 if (tree->ops && tree->ops->writepage_end_io_hook)
3414 tree->ops->writepage_end_io_hook(page, cur,
3415 page_end, NULL, 1);
3416 break;
3417 }
3418 em = epd->get_extent(inode, page, pg_offset, cur,
3419 end - cur + 1, 1);
3420 if (IS_ERR_OR_NULL(em)) {
3421 SetPageError(page);
3422 ret = PTR_ERR_OR_ZERO(em);
3423 break;
3424 }
3425
3426 extent_offset = cur - em->start;
3427 em_end = extent_map_end(em);
3428 BUG_ON(em_end <= cur);
3429 BUG_ON(end < cur);
3430 iosize = min(em_end - cur, end - cur + 1);
3431 iosize = ALIGN(iosize, blocksize);
3432 sector = (em->block_start + extent_offset) >> 9;
3433 bdev = em->bdev;
3434 block_start = em->block_start;
3435 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3436 free_extent_map(em);
3437 em = NULL;
3438
3439 /*
3440 * compressed and inline extents are written through other
3441 * paths in the FS
3442 */
3443 if (compressed || block_start == EXTENT_MAP_HOLE ||
3444 block_start == EXTENT_MAP_INLINE) {
3445 /*
3446 * end_io notification does not happen here for
3447 * compressed extents
3448 */
3449 if (!compressed && tree->ops &&
3450 tree->ops->writepage_end_io_hook)
3451 tree->ops->writepage_end_io_hook(page, cur,
3452 cur + iosize - 1,
3453 NULL, 1);
3454 else if (compressed) {
3455 /* we don't want to end_page_writeback on
3456 * a compressed extent. this happens
3457 * elsewhere
3458 */
3459 nr++;
3460 }
3461
3462 cur += iosize;
3463 pg_offset += iosize;
3464 continue;
3465 }
3466
3467 if (tree->ops && tree->ops->writepage_io_hook) {
3468 ret = tree->ops->writepage_io_hook(page, cur,
3469 cur + iosize - 1);
3470 } else {
3471 ret = 0;
3472 }
3473 if (ret) {
3474 SetPageError(page);
3475 } else {
3476 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3477
3478 set_range_writeback(tree, cur, cur + iosize - 1);
3479 if (!PageWriteback(page)) {
3480 btrfs_err(BTRFS_I(inode)->root->fs_info,
3481 "page %lu not writeback, cur %llu end %llu",
3482 page->index, cur, end);
3483 }
3484
3485 ret = submit_extent_page(write_flags, tree, wbc, page,
3486 sector, iosize, pg_offset,
3487 bdev, &epd->bio, max_nr,
3488 end_bio_extent_writepage,
3489 0, 0, 0, false);
3490 if (ret)
3491 SetPageError(page);
3492 }
3493 cur = cur + iosize;
3494 pg_offset += iosize;
3495 nr++;
3496 }
3497 done:
3498 *nr_ret = nr;
3499
3500 done_unlocked:
3501
3502 /* drop our reference on any cached states */
3503 free_extent_state(cached_state);
3504 return ret;
3505 }
3506
3507 /*
3508 * the writepage semantics are similar to regular writepage. extent
3509 * records are inserted to lock ranges in the tree, and as dirty areas
3510 * are found, they are marked writeback. Then the lock bits are removed
3511 * and the end_io handler clears the writeback ranges
3512 */
3513 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3514 void *data)
3515 {
3516 struct inode *inode = page->mapping->host;
3517 struct extent_page_data *epd = data;
3518 u64 start = page_offset(page);
3519 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3520 int ret;
3521 int nr = 0;
3522 size_t pg_offset = 0;
3523 loff_t i_size = i_size_read(inode);
3524 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3525 int write_flags;
3526 unsigned long nr_written = 0;
3527
3528 if (wbc->sync_mode == WB_SYNC_ALL)
3529 write_flags = WRITE_SYNC;
3530 else
3531 write_flags = WRITE;
3532
3533 trace___extent_writepage(page, inode, wbc);
3534
3535 WARN_ON(!PageLocked(page));
3536
3537 ClearPageError(page);
3538
3539 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3540 if (page->index > end_index ||
3541 (page->index == end_index && !pg_offset)) {
3542 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3543 unlock_page(page);
3544 return 0;
3545 }
3546
3547 if (page->index == end_index) {
3548 char *userpage;
3549
3550 userpage = kmap_atomic(page);
3551 memset(userpage + pg_offset, 0,
3552 PAGE_CACHE_SIZE - pg_offset);
3553 kunmap_atomic(userpage);
3554 flush_dcache_page(page);
3555 }
3556
3557 pg_offset = 0;
3558
3559 set_page_extent_mapped(page);
3560
3561 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3562 if (ret == 1)
3563 goto done_unlocked;
3564 if (ret)
3565 goto done;
3566
3567 ret = __extent_writepage_io(inode, page, wbc, epd,
3568 i_size, nr_written, write_flags, &nr);
3569 if (ret == 1)
3570 goto done_unlocked;
3571
3572 done:
3573 if (nr == 0) {
3574 /* make sure the mapping tag for page dirty gets cleared */
3575 set_page_writeback(page);
3576 end_page_writeback(page);
3577 }
3578 if (PageError(page)) {
3579 ret = ret < 0 ? ret : -EIO;
3580 end_extent_writepage(page, ret, start, page_end);
3581 }
3582 unlock_page(page);
3583 return ret;
3584
3585 done_unlocked:
3586 return 0;
3587 }
3588
3589 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3590 {
3591 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3592 TASK_UNINTERRUPTIBLE);
3593 }
3594
3595 static noinline_for_stack int
3596 lock_extent_buffer_for_io(struct extent_buffer *eb,
3597 struct btrfs_fs_info *fs_info,
3598 struct extent_page_data *epd)
3599 {
3600 unsigned long i, num_pages;
3601 int flush = 0;
3602 int ret = 0;
3603
3604 if (!btrfs_try_tree_write_lock(eb)) {
3605 flush = 1;
3606 flush_write_bio(epd);
3607 btrfs_tree_lock(eb);
3608 }
3609
3610 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3611 btrfs_tree_unlock(eb);
3612 if (!epd->sync_io)
3613 return 0;
3614 if (!flush) {
3615 flush_write_bio(epd);
3616 flush = 1;
3617 }
3618 while (1) {
3619 wait_on_extent_buffer_writeback(eb);
3620 btrfs_tree_lock(eb);
3621 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3622 break;
3623 btrfs_tree_unlock(eb);
3624 }
3625 }
3626
3627 /*
3628 * We need to do this to prevent races in people who check if the eb is
3629 * under IO since we can end up having no IO bits set for a short period
3630 * of time.
3631 */
3632 spin_lock(&eb->refs_lock);
3633 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3634 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3635 spin_unlock(&eb->refs_lock);
3636 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3637 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3638 -eb->len,
3639 fs_info->dirty_metadata_batch);
3640 ret = 1;
3641 } else {
3642 spin_unlock(&eb->refs_lock);
3643 }
3644
3645 btrfs_tree_unlock(eb);
3646
3647 if (!ret)
3648 return ret;
3649
3650 num_pages = num_extent_pages(eb->start, eb->len);
3651 for (i = 0; i < num_pages; i++) {
3652 struct page *p = eb->pages[i];
3653
3654 if (!trylock_page(p)) {
3655 if (!flush) {
3656 flush_write_bio(epd);
3657 flush = 1;
3658 }
3659 lock_page(p);
3660 }
3661 }
3662
3663 return ret;
3664 }
3665
3666 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3667 {
3668 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3669 smp_mb__after_atomic();
3670 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3671 }
3672
3673 static void set_btree_ioerr(struct page *page)
3674 {
3675 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3676 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3677
3678 SetPageError(page);
3679 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3680 return;
3681
3682 /*
3683 * If writeback for a btree extent that doesn't belong to a log tree
3684 * failed, increment the counter transaction->eb_write_errors.
3685 * We do this because while the transaction is running and before it's
3686 * committing (when we call filemap_fdata[write|wait]_range against
3687 * the btree inode), we might have
3688 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3689 * returns an error or an error happens during writeback, when we're
3690 * committing the transaction we wouldn't know about it, since the pages
3691 * can be no longer dirty nor marked anymore for writeback (if a
3692 * subsequent modification to the extent buffer didn't happen before the
3693 * transaction commit), which makes filemap_fdata[write|wait]_range not
3694 * able to find the pages tagged with SetPageError at transaction
3695 * commit time. So if this happens we must abort the transaction,
3696 * otherwise we commit a super block with btree roots that point to
3697 * btree nodes/leafs whose content on disk is invalid - either garbage
3698 * or the content of some node/leaf from a past generation that got
3699 * cowed or deleted and is no longer valid.
3700 *
3701 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3702 * not be enough - we need to distinguish between log tree extents vs
3703 * non-log tree extents, and the next filemap_fdatawait_range() call
3704 * will catch and clear such errors in the mapping - and that call might
3705 * be from a log sync and not from a transaction commit. Also, checking
3706 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3707 * not done and would not be reliable - the eb might have been released
3708 * from memory and reading it back again means that flag would not be
3709 * set (since it's a runtime flag, not persisted on disk).
3710 *
3711 * Using the flags below in the btree inode also makes us achieve the
3712 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3713 * writeback for all dirty pages and before filemap_fdatawait_range()
3714 * is called, the writeback for all dirty pages had already finished
3715 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3716 * filemap_fdatawait_range() would return success, as it could not know
3717 * that writeback errors happened (the pages were no longer tagged for
3718 * writeback).
3719 */
3720 switch (eb->log_index) {
3721 case -1:
3722 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3723 break;
3724 case 0:
3725 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3726 break;
3727 case 1:
3728 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3729 break;
3730 default:
3731 BUG(); /* unexpected, logic error */
3732 }
3733 }
3734
3735 static void end_bio_extent_buffer_writepage(struct bio *bio)
3736 {
3737 struct bio_vec *bvec;
3738 struct extent_buffer *eb;
3739 int i, done;
3740
3741 bio_for_each_segment_all(bvec, bio, i) {
3742 struct page *page = bvec->bv_page;
3743
3744 eb = (struct extent_buffer *)page->private;
3745 BUG_ON(!eb);
3746 done = atomic_dec_and_test(&eb->io_pages);
3747
3748 if (bio->bi_error ||
3749 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3750 ClearPageUptodate(page);
3751 set_btree_ioerr(page);
3752 }
3753
3754 end_page_writeback(page);
3755
3756 if (!done)
3757 continue;
3758
3759 end_extent_buffer_writeback(eb);
3760 }
3761
3762 bio_put(bio);
3763 }
3764
3765 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3766 struct btrfs_fs_info *fs_info,
3767 struct writeback_control *wbc,
3768 struct extent_page_data *epd)
3769 {
3770 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3771 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3772 u64 offset = eb->start;
3773 unsigned long i, num_pages;
3774 unsigned long bio_flags = 0;
3775 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3776 int ret = 0;
3777
3778 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3779 num_pages = num_extent_pages(eb->start, eb->len);
3780 atomic_set(&eb->io_pages, num_pages);
3781 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3782 bio_flags = EXTENT_BIO_TREE_LOG;
3783
3784 for (i = 0; i < num_pages; i++) {
3785 struct page *p = eb->pages[i];
3786
3787 clear_page_dirty_for_io(p);
3788 set_page_writeback(p);
3789 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3790 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3791 -1, end_bio_extent_buffer_writepage,
3792 0, epd->bio_flags, bio_flags, false);
3793 epd->bio_flags = bio_flags;
3794 if (ret) {
3795 set_btree_ioerr(p);
3796 end_page_writeback(p);
3797 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3798 end_extent_buffer_writeback(eb);
3799 ret = -EIO;
3800 break;
3801 }
3802 offset += PAGE_CACHE_SIZE;
3803 update_nr_written(p, wbc, 1);
3804 unlock_page(p);
3805 }
3806
3807 if (unlikely(ret)) {
3808 for (; i < num_pages; i++) {
3809 struct page *p = eb->pages[i];
3810 clear_page_dirty_for_io(p);
3811 unlock_page(p);
3812 }
3813 }
3814
3815 return ret;
3816 }
3817
3818 int btree_write_cache_pages(struct address_space *mapping,
3819 struct writeback_control *wbc)
3820 {
3821 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3822 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3823 struct extent_buffer *eb, *prev_eb = NULL;
3824 struct extent_page_data epd = {
3825 .bio = NULL,
3826 .tree = tree,
3827 .extent_locked = 0,
3828 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3829 .bio_flags = 0,
3830 };
3831 int ret = 0;
3832 int done = 0;
3833 int nr_to_write_done = 0;
3834 struct pagevec pvec;
3835 int nr_pages;
3836 pgoff_t index;
3837 pgoff_t end; /* Inclusive */
3838 int scanned = 0;
3839 int tag;
3840
3841 pagevec_init(&pvec, 0);
3842 if (wbc->range_cyclic) {
3843 index = mapping->writeback_index; /* Start from prev offset */
3844 end = -1;
3845 } else {
3846 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3847 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3848 scanned = 1;
3849 }
3850 if (wbc->sync_mode == WB_SYNC_ALL)
3851 tag = PAGECACHE_TAG_TOWRITE;
3852 else
3853 tag = PAGECACHE_TAG_DIRTY;
3854 retry:
3855 if (wbc->sync_mode == WB_SYNC_ALL)
3856 tag_pages_for_writeback(mapping, index, end);
3857 while (!done && !nr_to_write_done && (index <= end) &&
3858 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3859 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3860 unsigned i;
3861
3862 scanned = 1;
3863 for (i = 0; i < nr_pages; i++) {
3864 struct page *page = pvec.pages[i];
3865
3866 if (!PagePrivate(page))
3867 continue;
3868
3869 if (!wbc->range_cyclic && page->index > end) {
3870 done = 1;
3871 break;
3872 }
3873
3874 spin_lock(&mapping->private_lock);
3875 if (!PagePrivate(page)) {
3876 spin_unlock(&mapping->private_lock);
3877 continue;
3878 }
3879
3880 eb = (struct extent_buffer *)page->private;
3881
3882 /*
3883 * Shouldn't happen and normally this would be a BUG_ON
3884 * but no sense in crashing the users box for something
3885 * we can survive anyway.
3886 */
3887 if (WARN_ON(!eb)) {
3888 spin_unlock(&mapping->private_lock);
3889 continue;
3890 }
3891
3892 if (eb == prev_eb) {
3893 spin_unlock(&mapping->private_lock);
3894 continue;
3895 }
3896
3897 ret = atomic_inc_not_zero(&eb->refs);
3898 spin_unlock(&mapping->private_lock);
3899 if (!ret)
3900 continue;
3901
3902 prev_eb = eb;
3903 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3904 if (!ret) {
3905 free_extent_buffer(eb);
3906 continue;
3907 }
3908
3909 ret = write_one_eb(eb, fs_info, wbc, &epd);
3910 if (ret) {
3911 done = 1;
3912 free_extent_buffer(eb);
3913 break;
3914 }
3915 free_extent_buffer(eb);
3916
3917 /*
3918 * the filesystem may choose to bump up nr_to_write.
3919 * We have to make sure to honor the new nr_to_write
3920 * at any time
3921 */
3922 nr_to_write_done = wbc->nr_to_write <= 0;
3923 }
3924 pagevec_release(&pvec);
3925 cond_resched();
3926 }
3927 if (!scanned && !done) {
3928 /*
3929 * We hit the last page and there is more work to be done: wrap
3930 * back to the start of the file
3931 */
3932 scanned = 1;
3933 index = 0;
3934 goto retry;
3935 }
3936 flush_write_bio(&epd);
3937 return ret;
3938 }
3939
3940 /**
3941 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3942 * @mapping: address space structure to write
3943 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3944 * @writepage: function called for each page
3945 * @data: data passed to writepage function
3946 *
3947 * If a page is already under I/O, write_cache_pages() skips it, even
3948 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3949 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3950 * and msync() need to guarantee that all the data which was dirty at the time
3951 * the call was made get new I/O started against them. If wbc->sync_mode is
3952 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3953 * existing IO to complete.
3954 */
3955 static int extent_write_cache_pages(struct extent_io_tree *tree,
3956 struct address_space *mapping,
3957 struct writeback_control *wbc,
3958 writepage_t writepage, void *data,
3959 void (*flush_fn)(void *))
3960 {
3961 struct inode *inode = mapping->host;
3962 int ret = 0;
3963 int done = 0;
3964 int err = 0;
3965 int nr_to_write_done = 0;
3966 struct pagevec pvec;
3967 int nr_pages;
3968 pgoff_t index;
3969 pgoff_t end; /* Inclusive */
3970 int scanned = 0;
3971 int tag;
3972
3973 /*
3974 * We have to hold onto the inode so that ordered extents can do their
3975 * work when the IO finishes. The alternative to this is failing to add
3976 * an ordered extent if the igrab() fails there and that is a huge pain
3977 * to deal with, so instead just hold onto the inode throughout the
3978 * writepages operation. If it fails here we are freeing up the inode
3979 * anyway and we'd rather not waste our time writing out stuff that is
3980 * going to be truncated anyway.
3981 */
3982 if (!igrab(inode))
3983 return 0;
3984
3985 pagevec_init(&pvec, 0);
3986 if (wbc->range_cyclic) {
3987 index = mapping->writeback_index; /* Start from prev offset */
3988 end = -1;
3989 } else {
3990 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3991 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3992 scanned = 1;
3993 }
3994 if (wbc->sync_mode == WB_SYNC_ALL)
3995 tag = PAGECACHE_TAG_TOWRITE;
3996 else
3997 tag = PAGECACHE_TAG_DIRTY;
3998 retry:
3999 if (wbc->sync_mode == WB_SYNC_ALL)
4000 tag_pages_for_writeback(mapping, index, end);
4001 while (!done && !nr_to_write_done && (index <= end) &&
4002 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4003 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4004 unsigned i;
4005
4006 scanned = 1;
4007 for (i = 0; i < nr_pages; i++) {
4008 struct page *page = pvec.pages[i];
4009
4010 /*
4011 * At this point we hold neither mapping->tree_lock nor
4012 * lock on the page itself: the page may be truncated or
4013 * invalidated (changing page->mapping to NULL), or even
4014 * swizzled back from swapper_space to tmpfs file
4015 * mapping
4016 */
4017 if (!trylock_page(page)) {
4018 flush_fn(data);
4019 lock_page(page);
4020 }
4021
4022 if (unlikely(page->mapping != mapping)) {
4023 unlock_page(page);
4024 continue;
4025 }
4026
4027 if (!wbc->range_cyclic && page->index > end) {
4028 done = 1;
4029 unlock_page(page);
4030 continue;
4031 }
4032
4033 if (wbc->sync_mode != WB_SYNC_NONE) {
4034 if (PageWriteback(page))
4035 flush_fn(data);
4036 wait_on_page_writeback(page);
4037 }
4038
4039 if (PageWriteback(page) ||
4040 !clear_page_dirty_for_io(page)) {
4041 unlock_page(page);
4042 continue;
4043 }
4044
4045 ret = (*writepage)(page, wbc, data);
4046
4047 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4048 unlock_page(page);
4049 ret = 0;
4050 }
4051 if (!err && ret < 0)
4052 err = ret;
4053
4054 /*
4055 * the filesystem may choose to bump up nr_to_write.
4056 * We have to make sure to honor the new nr_to_write
4057 * at any time
4058 */
4059 nr_to_write_done = wbc->nr_to_write <= 0;
4060 }
4061 pagevec_release(&pvec);
4062 cond_resched();
4063 }
4064 if (!scanned && !done && !err) {
4065 /*
4066 * We hit the last page and there is more work to be done: wrap
4067 * back to the start of the file
4068 */
4069 scanned = 1;
4070 index = 0;
4071 goto retry;
4072 }
4073 btrfs_add_delayed_iput(inode);
4074 return err;
4075 }
4076
4077 static void flush_epd_write_bio(struct extent_page_data *epd)
4078 {
4079 if (epd->bio) {
4080 int rw = WRITE;
4081 int ret;
4082
4083 if (epd->sync_io)
4084 rw = WRITE_SYNC;
4085
4086 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4087 BUG_ON(ret < 0); /* -ENOMEM */
4088 epd->bio = NULL;
4089 }
4090 }
4091
4092 static noinline void flush_write_bio(void *data)
4093 {
4094 struct extent_page_data *epd = data;
4095 flush_epd_write_bio(epd);
4096 }
4097
4098 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4099 get_extent_t *get_extent,
4100 struct writeback_control *wbc)
4101 {
4102 int ret;
4103 struct extent_page_data epd = {
4104 .bio = NULL,
4105 .tree = tree,
4106 .get_extent = get_extent,
4107 .extent_locked = 0,
4108 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4109 .bio_flags = 0,
4110 };
4111
4112 ret = __extent_writepage(page, wbc, &epd);
4113
4114 flush_epd_write_bio(&epd);
4115 return ret;
4116 }
4117
4118 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4119 u64 start, u64 end, get_extent_t *get_extent,
4120 int mode)
4121 {
4122 int ret = 0;
4123 struct address_space *mapping = inode->i_mapping;
4124 struct page *page;
4125 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4126 PAGE_CACHE_SHIFT;
4127
4128 struct extent_page_data epd = {
4129 .bio = NULL,
4130 .tree = tree,
4131 .get_extent = get_extent,
4132 .extent_locked = 1,
4133 .sync_io = mode == WB_SYNC_ALL,
4134 .bio_flags = 0,
4135 };
4136 struct writeback_control wbc_writepages = {
4137 .sync_mode = mode,
4138 .nr_to_write = nr_pages * 2,
4139 .range_start = start,
4140 .range_end = end + 1,
4141 };
4142
4143 while (start <= end) {
4144 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4145 if (clear_page_dirty_for_io(page))
4146 ret = __extent_writepage(page, &wbc_writepages, &epd);
4147 else {
4148 if (tree->ops && tree->ops->writepage_end_io_hook)
4149 tree->ops->writepage_end_io_hook(page, start,
4150 start + PAGE_CACHE_SIZE - 1,
4151 NULL, 1);
4152 unlock_page(page);
4153 }
4154 page_cache_release(page);
4155 start += PAGE_CACHE_SIZE;
4156 }
4157
4158 flush_epd_write_bio(&epd);
4159 return ret;
4160 }
4161
4162 int extent_writepages(struct extent_io_tree *tree,
4163 struct address_space *mapping,
4164 get_extent_t *get_extent,
4165 struct writeback_control *wbc)
4166 {
4167 int ret = 0;
4168 struct extent_page_data epd = {
4169 .bio = NULL,
4170 .tree = tree,
4171 .get_extent = get_extent,
4172 .extent_locked = 0,
4173 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4174 .bio_flags = 0,
4175 };
4176
4177 ret = extent_write_cache_pages(tree, mapping, wbc,
4178 __extent_writepage, &epd,
4179 flush_write_bio);
4180 flush_epd_write_bio(&epd);
4181 return ret;
4182 }
4183
4184 int extent_readpages(struct extent_io_tree *tree,
4185 struct address_space *mapping,
4186 struct list_head *pages, unsigned nr_pages,
4187 get_extent_t get_extent)
4188 {
4189 struct bio *bio = NULL;
4190 unsigned page_idx;
4191 unsigned long bio_flags = 0;
4192 struct page *pagepool[16];
4193 struct page *page;
4194 struct extent_map *em_cached = NULL;
4195 int nr = 0;
4196 u64 prev_em_start = (u64)-1;
4197
4198 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4199 page = list_entry(pages->prev, struct page, lru);
4200
4201 prefetchw(&page->flags);
4202 list_del(&page->lru);
4203 if (add_to_page_cache_lru(page, mapping,
4204 page->index, GFP_NOFS)) {
4205 page_cache_release(page);
4206 continue;
4207 }
4208
4209 pagepool[nr++] = page;
4210 if (nr < ARRAY_SIZE(pagepool))
4211 continue;
4212 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4213 &bio, 0, &bio_flags, READ, &prev_em_start);
4214 nr = 0;
4215 }
4216 if (nr)
4217 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4218 &bio, 0, &bio_flags, READ, &prev_em_start);
4219
4220 if (em_cached)
4221 free_extent_map(em_cached);
4222
4223 BUG_ON(!list_empty(pages));
4224 if (bio)
4225 return submit_one_bio(READ, bio, 0, bio_flags);
4226 return 0;
4227 }
4228
4229 /*
4230 * basic invalidatepage code, this waits on any locked or writeback
4231 * ranges corresponding to the page, and then deletes any extent state
4232 * records from the tree
4233 */
4234 int extent_invalidatepage(struct extent_io_tree *tree,
4235 struct page *page, unsigned long offset)
4236 {
4237 struct extent_state *cached_state = NULL;
4238 u64 start = page_offset(page);
4239 u64 end = start + PAGE_CACHE_SIZE - 1;
4240 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4241
4242 start += ALIGN(offset, blocksize);
4243 if (start > end)
4244 return 0;
4245
4246 lock_extent_bits(tree, start, end, 0, &cached_state);
4247 wait_on_page_writeback(page);
4248 clear_extent_bit(tree, start, end,
4249 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4250 EXTENT_DO_ACCOUNTING,
4251 1, 1, &cached_state, GFP_NOFS);
4252 return 0;
4253 }
4254
4255 /*
4256 * a helper for releasepage, this tests for areas of the page that
4257 * are locked or under IO and drops the related state bits if it is safe
4258 * to drop the page.
4259 */
4260 static int try_release_extent_state(struct extent_map_tree *map,
4261 struct extent_io_tree *tree,
4262 struct page *page, gfp_t mask)
4263 {
4264 u64 start = page_offset(page);
4265 u64 end = start + PAGE_CACHE_SIZE - 1;
4266 int ret = 1;
4267
4268 if (test_range_bit(tree, start, end,
4269 EXTENT_IOBITS, 0, NULL))
4270 ret = 0;
4271 else {
4272 if ((mask & GFP_NOFS) == GFP_NOFS)
4273 mask = GFP_NOFS;
4274 /*
4275 * at this point we can safely clear everything except the
4276 * locked bit and the nodatasum bit
4277 */
4278 ret = clear_extent_bit(tree, start, end,
4279 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4280 0, 0, NULL, mask);
4281
4282 /* if clear_extent_bit failed for enomem reasons,
4283 * we can't allow the release to continue.
4284 */
4285 if (ret < 0)
4286 ret = 0;
4287 else
4288 ret = 1;
4289 }
4290 return ret;
4291 }
4292
4293 /*
4294 * a helper for releasepage. As long as there are no locked extents
4295 * in the range corresponding to the page, both state records and extent
4296 * map records are removed
4297 */
4298 int try_release_extent_mapping(struct extent_map_tree *map,
4299 struct extent_io_tree *tree, struct page *page,
4300 gfp_t mask)
4301 {
4302 struct extent_map *em;
4303 u64 start = page_offset(page);
4304 u64 end = start + PAGE_CACHE_SIZE - 1;
4305
4306 if (gfpflags_allow_blocking(mask) &&
4307 page->mapping->host->i_size > 16 * 1024 * 1024) {
4308 u64 len;
4309 while (start <= end) {
4310 len = end - start + 1;
4311 write_lock(&map->lock);
4312 em = lookup_extent_mapping(map, start, len);
4313 if (!em) {
4314 write_unlock(&map->lock);
4315 break;
4316 }
4317 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4318 em->start != start) {
4319 write_unlock(&map->lock);
4320 free_extent_map(em);
4321 break;
4322 }
4323 if (!test_range_bit(tree, em->start,
4324 extent_map_end(em) - 1,
4325 EXTENT_LOCKED | EXTENT_WRITEBACK,
4326 0, NULL)) {
4327 remove_extent_mapping(map, em);
4328 /* once for the rb tree */
4329 free_extent_map(em);
4330 }
4331 start = extent_map_end(em);
4332 write_unlock(&map->lock);
4333
4334 /* once for us */
4335 free_extent_map(em);
4336 }
4337 }
4338 return try_release_extent_state(map, tree, page, mask);
4339 }
4340
4341 /*
4342 * helper function for fiemap, which doesn't want to see any holes.
4343 * This maps until we find something past 'last'
4344 */
4345 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4346 u64 offset,
4347 u64 last,
4348 get_extent_t *get_extent)
4349 {
4350 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4351 struct extent_map *em;
4352 u64 len;
4353
4354 if (offset >= last)
4355 return NULL;
4356
4357 while (1) {
4358 len = last - offset;
4359 if (len == 0)
4360 break;
4361 len = ALIGN(len, sectorsize);
4362 em = get_extent(inode, NULL, 0, offset, len, 0);
4363 if (IS_ERR_OR_NULL(em))
4364 return em;
4365
4366 /* if this isn't a hole return it */
4367 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4368 em->block_start != EXTENT_MAP_HOLE) {
4369 return em;
4370 }
4371
4372 /* this is a hole, advance to the next extent */
4373 offset = extent_map_end(em);
4374 free_extent_map(em);
4375 if (offset >= last)
4376 break;
4377 }
4378 return NULL;
4379 }
4380
4381 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4382 __u64 start, __u64 len, get_extent_t *get_extent)
4383 {
4384 int ret = 0;
4385 u64 off = start;
4386 u64 max = start + len;
4387 u32 flags = 0;
4388 u32 found_type;
4389 u64 last;
4390 u64 last_for_get_extent = 0;
4391 u64 disko = 0;
4392 u64 isize = i_size_read(inode);
4393 struct btrfs_key found_key;
4394 struct extent_map *em = NULL;
4395 struct extent_state *cached_state = NULL;
4396 struct btrfs_path *path;
4397 struct btrfs_root *root = BTRFS_I(inode)->root;
4398 int end = 0;
4399 u64 em_start = 0;
4400 u64 em_len = 0;
4401 u64 em_end = 0;
4402
4403 if (len == 0)
4404 return -EINVAL;
4405
4406 path = btrfs_alloc_path();
4407 if (!path)
4408 return -ENOMEM;
4409 path->leave_spinning = 1;
4410
4411 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4412 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4413
4414 /*
4415 * lookup the last file extent. We're not using i_size here
4416 * because there might be preallocation past i_size
4417 */
4418 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4419 0);
4420 if (ret < 0) {
4421 btrfs_free_path(path);
4422 return ret;
4423 }
4424 WARN_ON(!ret);
4425 path->slots[0]--;
4426 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4427 found_type = found_key.type;
4428
4429 /* No extents, but there might be delalloc bits */
4430 if (found_key.objectid != btrfs_ino(inode) ||
4431 found_type != BTRFS_EXTENT_DATA_KEY) {
4432 /* have to trust i_size as the end */
4433 last = (u64)-1;
4434 last_for_get_extent = isize;
4435 } else {
4436 /*
4437 * remember the start of the last extent. There are a
4438 * bunch of different factors that go into the length of the
4439 * extent, so its much less complex to remember where it started
4440 */
4441 last = found_key.offset;
4442 last_for_get_extent = last + 1;
4443 }
4444 btrfs_release_path(path);
4445
4446 /*
4447 * we might have some extents allocated but more delalloc past those
4448 * extents. so, we trust isize unless the start of the last extent is
4449 * beyond isize
4450 */
4451 if (last < isize) {
4452 last = (u64)-1;
4453 last_for_get_extent = isize;
4454 }
4455
4456 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4457 &cached_state);
4458
4459 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4460 get_extent);
4461 if (!em)
4462 goto out;
4463 if (IS_ERR(em)) {
4464 ret = PTR_ERR(em);
4465 goto out;
4466 }
4467
4468 while (!end) {
4469 u64 offset_in_extent = 0;
4470
4471 /* break if the extent we found is outside the range */
4472 if (em->start >= max || extent_map_end(em) < off)
4473 break;
4474
4475 /*
4476 * get_extent may return an extent that starts before our
4477 * requested range. We have to make sure the ranges
4478 * we return to fiemap always move forward and don't
4479 * overlap, so adjust the offsets here
4480 */
4481 em_start = max(em->start, off);
4482
4483 /*
4484 * record the offset from the start of the extent
4485 * for adjusting the disk offset below. Only do this if the
4486 * extent isn't compressed since our in ram offset may be past
4487 * what we have actually allocated on disk.
4488 */
4489 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4490 offset_in_extent = em_start - em->start;
4491 em_end = extent_map_end(em);
4492 em_len = em_end - em_start;
4493 disko = 0;
4494 flags = 0;
4495
4496 /*
4497 * bump off for our next call to get_extent
4498 */
4499 off = extent_map_end(em);
4500 if (off >= max)
4501 end = 1;
4502
4503 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4504 end = 1;
4505 flags |= FIEMAP_EXTENT_LAST;
4506 } else if (em->block_start == EXTENT_MAP_INLINE) {
4507 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4508 FIEMAP_EXTENT_NOT_ALIGNED);
4509 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4510 flags |= (FIEMAP_EXTENT_DELALLOC |
4511 FIEMAP_EXTENT_UNKNOWN);
4512 } else if (fieinfo->fi_extents_max) {
4513 u64 bytenr = em->block_start -
4514 (em->start - em->orig_start);
4515
4516 disko = em->block_start + offset_in_extent;
4517
4518 /*
4519 * As btrfs supports shared space, this information
4520 * can be exported to userspace tools via
4521 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4522 * then we're just getting a count and we can skip the
4523 * lookup stuff.
4524 */
4525 ret = btrfs_check_shared(NULL, root->fs_info,
4526 root->objectid,
4527 btrfs_ino(inode), bytenr);
4528 if (ret < 0)
4529 goto out_free;
4530 if (ret)
4531 flags |= FIEMAP_EXTENT_SHARED;
4532 ret = 0;
4533 }
4534 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4535 flags |= FIEMAP_EXTENT_ENCODED;
4536 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4537 flags |= FIEMAP_EXTENT_UNWRITTEN;
4538
4539 free_extent_map(em);
4540 em = NULL;
4541 if ((em_start >= last) || em_len == (u64)-1 ||
4542 (last == (u64)-1 && isize <= em_end)) {
4543 flags |= FIEMAP_EXTENT_LAST;
4544 end = 1;
4545 }
4546
4547 /* now scan forward to see if this is really the last extent. */
4548 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4549 get_extent);
4550 if (IS_ERR(em)) {
4551 ret = PTR_ERR(em);
4552 goto out;
4553 }
4554 if (!em) {
4555 flags |= FIEMAP_EXTENT_LAST;
4556 end = 1;
4557 }
4558 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4559 em_len, flags);
4560 if (ret) {
4561 if (ret == 1)
4562 ret = 0;
4563 goto out_free;
4564 }
4565 }
4566 out_free:
4567 free_extent_map(em);
4568 out:
4569 btrfs_free_path(path);
4570 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4571 &cached_state, GFP_NOFS);
4572 return ret;
4573 }
4574
4575 static void __free_extent_buffer(struct extent_buffer *eb)
4576 {
4577 btrfs_leak_debug_del(&eb->leak_list);
4578 kmem_cache_free(extent_buffer_cache, eb);
4579 }
4580
4581 int extent_buffer_under_io(struct extent_buffer *eb)
4582 {
4583 return (atomic_read(&eb->io_pages) ||
4584 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4585 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4586 }
4587
4588 /*
4589 * Helper for releasing extent buffer page.
4590 */
4591 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4592 {
4593 unsigned long index;
4594 struct page *page;
4595 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4596
4597 BUG_ON(extent_buffer_under_io(eb));
4598
4599 index = num_extent_pages(eb->start, eb->len);
4600 if (index == 0)
4601 return;
4602
4603 do {
4604 index--;
4605 page = eb->pages[index];
4606 if (!page)
4607 continue;
4608 if (mapped)
4609 spin_lock(&page->mapping->private_lock);
4610 /*
4611 * We do this since we'll remove the pages after we've
4612 * removed the eb from the radix tree, so we could race
4613 * and have this page now attached to the new eb. So
4614 * only clear page_private if it's still connected to
4615 * this eb.
4616 */
4617 if (PagePrivate(page) &&
4618 page->private == (unsigned long)eb) {
4619 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4620 BUG_ON(PageDirty(page));
4621 BUG_ON(PageWriteback(page));
4622 /*
4623 * We need to make sure we haven't be attached
4624 * to a new eb.
4625 */
4626 ClearPagePrivate(page);
4627 set_page_private(page, 0);
4628 /* One for the page private */
4629 page_cache_release(page);
4630 }
4631
4632 if (mapped)
4633 spin_unlock(&page->mapping->private_lock);
4634
4635 /* One for when we alloced the page */
4636 page_cache_release(page);
4637 } while (index != 0);
4638 }
4639
4640 /*
4641 * Helper for releasing the extent buffer.
4642 */
4643 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4644 {
4645 btrfs_release_extent_buffer_page(eb);
4646 __free_extent_buffer(eb);
4647 }
4648
4649 static struct extent_buffer *
4650 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4651 unsigned long len)
4652 {
4653 struct extent_buffer *eb = NULL;
4654
4655 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4656 eb->start = start;
4657 eb->len = len;
4658 eb->fs_info = fs_info;
4659 eb->bflags = 0;
4660 rwlock_init(&eb->lock);
4661 atomic_set(&eb->write_locks, 0);
4662 atomic_set(&eb->read_locks, 0);
4663 atomic_set(&eb->blocking_readers, 0);
4664 atomic_set(&eb->blocking_writers, 0);
4665 atomic_set(&eb->spinning_readers, 0);
4666 atomic_set(&eb->spinning_writers, 0);
4667 eb->lock_nested = 0;
4668 init_waitqueue_head(&eb->write_lock_wq);
4669 init_waitqueue_head(&eb->read_lock_wq);
4670
4671 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4672
4673 spin_lock_init(&eb->refs_lock);
4674 atomic_set(&eb->refs, 1);
4675 atomic_set(&eb->io_pages, 0);
4676
4677 /*
4678 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4679 */
4680 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4681 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4682 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4683
4684 return eb;
4685 }
4686
4687 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4688 {
4689 unsigned long i;
4690 struct page *p;
4691 struct extent_buffer *new;
4692 unsigned long num_pages = num_extent_pages(src->start, src->len);
4693
4694 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4695 if (new == NULL)
4696 return NULL;
4697
4698 for (i = 0; i < num_pages; i++) {
4699 p = alloc_page(GFP_NOFS);
4700 if (!p) {
4701 btrfs_release_extent_buffer(new);
4702 return NULL;
4703 }
4704 attach_extent_buffer_page(new, p);
4705 WARN_ON(PageDirty(p));
4706 SetPageUptodate(p);
4707 new->pages[i] = p;
4708 }
4709
4710 copy_extent_buffer(new, src, 0, 0, src->len);
4711 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4712 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4713
4714 return new;
4715 }
4716
4717 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4718 u64 start)
4719 {
4720 struct extent_buffer *eb;
4721 unsigned long len;
4722 unsigned long num_pages;
4723 unsigned long i;
4724
4725 if (!fs_info) {
4726 /*
4727 * Called only from tests that don't always have a fs_info
4728 * available, but we know that nodesize is 4096
4729 */
4730 len = 4096;
4731 } else {
4732 len = fs_info->tree_root->nodesize;
4733 }
4734 num_pages = num_extent_pages(0, len);
4735
4736 eb = __alloc_extent_buffer(fs_info, start, len);
4737 if (!eb)
4738 return NULL;
4739
4740 for (i = 0; i < num_pages; i++) {
4741 eb->pages[i] = alloc_page(GFP_NOFS);
4742 if (!eb->pages[i])
4743 goto err;
4744 }
4745 set_extent_buffer_uptodate(eb);
4746 btrfs_set_header_nritems(eb, 0);
4747 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4748
4749 return eb;
4750 err:
4751 for (; i > 0; i--)
4752 __free_page(eb->pages[i - 1]);
4753 __free_extent_buffer(eb);
4754 return NULL;
4755 }
4756
4757 static void check_buffer_tree_ref(struct extent_buffer *eb)
4758 {
4759 int refs;
4760 /* the ref bit is tricky. We have to make sure it is set
4761 * if we have the buffer dirty. Otherwise the
4762 * code to free a buffer can end up dropping a dirty
4763 * page
4764 *
4765 * Once the ref bit is set, it won't go away while the
4766 * buffer is dirty or in writeback, and it also won't
4767 * go away while we have the reference count on the
4768 * eb bumped.
4769 *
4770 * We can't just set the ref bit without bumping the
4771 * ref on the eb because free_extent_buffer might
4772 * see the ref bit and try to clear it. If this happens
4773 * free_extent_buffer might end up dropping our original
4774 * ref by mistake and freeing the page before we are able
4775 * to add one more ref.
4776 *
4777 * So bump the ref count first, then set the bit. If someone
4778 * beat us to it, drop the ref we added.
4779 */
4780 refs = atomic_read(&eb->refs);
4781 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4782 return;
4783
4784 spin_lock(&eb->refs_lock);
4785 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4786 atomic_inc(&eb->refs);
4787 spin_unlock(&eb->refs_lock);
4788 }
4789
4790 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4791 struct page *accessed)
4792 {
4793 unsigned long num_pages, i;
4794
4795 check_buffer_tree_ref(eb);
4796
4797 num_pages = num_extent_pages(eb->start, eb->len);
4798 for (i = 0; i < num_pages; i++) {
4799 struct page *p = eb->pages[i];
4800
4801 if (p != accessed)
4802 mark_page_accessed(p);
4803 }
4804 }
4805
4806 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4807 u64 start)
4808 {
4809 struct extent_buffer *eb;
4810
4811 rcu_read_lock();
4812 eb = radix_tree_lookup(&fs_info->buffer_radix,
4813 start >> PAGE_CACHE_SHIFT);
4814 if (eb && atomic_inc_not_zero(&eb->refs)) {
4815 rcu_read_unlock();
4816 /*
4817 * Lock our eb's refs_lock to avoid races with
4818 * free_extent_buffer. When we get our eb it might be flagged
4819 * with EXTENT_BUFFER_STALE and another task running
4820 * free_extent_buffer might have seen that flag set,
4821 * eb->refs == 2, that the buffer isn't under IO (dirty and
4822 * writeback flags not set) and it's still in the tree (flag
4823 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4824 * of decrementing the extent buffer's reference count twice.
4825 * So here we could race and increment the eb's reference count,
4826 * clear its stale flag, mark it as dirty and drop our reference
4827 * before the other task finishes executing free_extent_buffer,
4828 * which would later result in an attempt to free an extent
4829 * buffer that is dirty.
4830 */
4831 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4832 spin_lock(&eb->refs_lock);
4833 spin_unlock(&eb->refs_lock);
4834 }
4835 mark_extent_buffer_accessed(eb, NULL);
4836 return eb;
4837 }
4838 rcu_read_unlock();
4839
4840 return NULL;
4841 }
4842
4843 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4844 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4845 u64 start)
4846 {
4847 struct extent_buffer *eb, *exists = NULL;
4848 int ret;
4849
4850 eb = find_extent_buffer(fs_info, start);
4851 if (eb)
4852 return eb;
4853 eb = alloc_dummy_extent_buffer(fs_info, start);
4854 if (!eb)
4855 return NULL;
4856 eb->fs_info = fs_info;
4857 again:
4858 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4859 if (ret)
4860 goto free_eb;
4861 spin_lock(&fs_info->buffer_lock);
4862 ret = radix_tree_insert(&fs_info->buffer_radix,
4863 start >> PAGE_CACHE_SHIFT, eb);
4864 spin_unlock(&fs_info->buffer_lock);
4865 radix_tree_preload_end();
4866 if (ret == -EEXIST) {
4867 exists = find_extent_buffer(fs_info, start);
4868 if (exists)
4869 goto free_eb;
4870 else
4871 goto again;
4872 }
4873 check_buffer_tree_ref(eb);
4874 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4875
4876 /*
4877 * We will free dummy extent buffer's if they come into
4878 * free_extent_buffer with a ref count of 2, but if we are using this we
4879 * want the buffers to stay in memory until we're done with them, so
4880 * bump the ref count again.
4881 */
4882 atomic_inc(&eb->refs);
4883 return eb;
4884 free_eb:
4885 btrfs_release_extent_buffer(eb);
4886 return exists;
4887 }
4888 #endif
4889
4890 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4891 u64 start)
4892 {
4893 unsigned long len = fs_info->tree_root->nodesize;
4894 unsigned long num_pages = num_extent_pages(start, len);
4895 unsigned long i;
4896 unsigned long index = start >> PAGE_CACHE_SHIFT;
4897 struct extent_buffer *eb;
4898 struct extent_buffer *exists = NULL;
4899 struct page *p;
4900 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4901 int uptodate = 1;
4902 int ret;
4903
4904 eb = find_extent_buffer(fs_info, start);
4905 if (eb)
4906 return eb;
4907
4908 eb = __alloc_extent_buffer(fs_info, start, len);
4909 if (!eb)
4910 return NULL;
4911
4912 for (i = 0; i < num_pages; i++, index++) {
4913 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4914 if (!p)
4915 goto free_eb;
4916
4917 spin_lock(&mapping->private_lock);
4918 if (PagePrivate(p)) {
4919 /*
4920 * We could have already allocated an eb for this page
4921 * and attached one so lets see if we can get a ref on
4922 * the existing eb, and if we can we know it's good and
4923 * we can just return that one, else we know we can just
4924 * overwrite page->private.
4925 */
4926 exists = (struct extent_buffer *)p->private;
4927 if (atomic_inc_not_zero(&exists->refs)) {
4928 spin_unlock(&mapping->private_lock);
4929 unlock_page(p);
4930 page_cache_release(p);
4931 mark_extent_buffer_accessed(exists, p);
4932 goto free_eb;
4933 }
4934 exists = NULL;
4935
4936 /*
4937 * Do this so attach doesn't complain and we need to
4938 * drop the ref the old guy had.
4939 */
4940 ClearPagePrivate(p);
4941 WARN_ON(PageDirty(p));
4942 page_cache_release(p);
4943 }
4944 attach_extent_buffer_page(eb, p);
4945 spin_unlock(&mapping->private_lock);
4946 WARN_ON(PageDirty(p));
4947 eb->pages[i] = p;
4948 if (!PageUptodate(p))
4949 uptodate = 0;
4950
4951 /*
4952 * see below about how we avoid a nasty race with release page
4953 * and why we unlock later
4954 */
4955 }
4956 if (uptodate)
4957 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4958 again:
4959 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4960 if (ret)
4961 goto free_eb;
4962
4963 spin_lock(&fs_info->buffer_lock);
4964 ret = radix_tree_insert(&fs_info->buffer_radix,
4965 start >> PAGE_CACHE_SHIFT, eb);
4966 spin_unlock(&fs_info->buffer_lock);
4967 radix_tree_preload_end();
4968 if (ret == -EEXIST) {
4969 exists = find_extent_buffer(fs_info, start);
4970 if (exists)
4971 goto free_eb;
4972 else
4973 goto again;
4974 }
4975 /* add one reference for the tree */
4976 check_buffer_tree_ref(eb);
4977 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4978
4979 /*
4980 * there is a race where release page may have
4981 * tried to find this extent buffer in the radix
4982 * but failed. It will tell the VM it is safe to
4983 * reclaim the, and it will clear the page private bit.
4984 * We must make sure to set the page private bit properly
4985 * after the extent buffer is in the radix tree so
4986 * it doesn't get lost
4987 */
4988 SetPageChecked(eb->pages[0]);
4989 for (i = 1; i < num_pages; i++) {
4990 p = eb->pages[i];
4991 ClearPageChecked(p);
4992 unlock_page(p);
4993 }
4994 unlock_page(eb->pages[0]);
4995 return eb;
4996
4997 free_eb:
4998 WARN_ON(!atomic_dec_and_test(&eb->refs));
4999 for (i = 0; i < num_pages; i++) {
5000 if (eb->pages[i])
5001 unlock_page(eb->pages[i]);
5002 }
5003
5004 btrfs_release_extent_buffer(eb);
5005 return exists;
5006 }
5007
5008 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5009 {
5010 struct extent_buffer *eb =
5011 container_of(head, struct extent_buffer, rcu_head);
5012
5013 __free_extent_buffer(eb);
5014 }
5015
5016 /* Expects to have eb->eb_lock already held */
5017 static int release_extent_buffer(struct extent_buffer *eb)
5018 {
5019 WARN_ON(atomic_read(&eb->refs) == 0);
5020 if (atomic_dec_and_test(&eb->refs)) {
5021 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5022 struct btrfs_fs_info *fs_info = eb->fs_info;
5023
5024 spin_unlock(&eb->refs_lock);
5025
5026 spin_lock(&fs_info->buffer_lock);
5027 radix_tree_delete(&fs_info->buffer_radix,
5028 eb->start >> PAGE_CACHE_SHIFT);
5029 spin_unlock(&fs_info->buffer_lock);
5030 } else {
5031 spin_unlock(&eb->refs_lock);
5032 }
5033
5034 /* Should be safe to release our pages at this point */
5035 btrfs_release_extent_buffer_page(eb);
5036 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5037 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5038 __free_extent_buffer(eb);
5039 return 1;
5040 }
5041 #endif
5042 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5043 return 1;
5044 }
5045 spin_unlock(&eb->refs_lock);
5046
5047 return 0;
5048 }
5049
5050 void free_extent_buffer(struct extent_buffer *eb)
5051 {
5052 int refs;
5053 int old;
5054 if (!eb)
5055 return;
5056
5057 while (1) {
5058 refs = atomic_read(&eb->refs);
5059 if (refs <= 3)
5060 break;
5061 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5062 if (old == refs)
5063 return;
5064 }
5065
5066 spin_lock(&eb->refs_lock);
5067 if (atomic_read(&eb->refs) == 2 &&
5068 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5069 atomic_dec(&eb->refs);
5070
5071 if (atomic_read(&eb->refs) == 2 &&
5072 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5073 !extent_buffer_under_io(eb) &&
5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 atomic_dec(&eb->refs);
5076
5077 /*
5078 * I know this is terrible, but it's temporary until we stop tracking
5079 * the uptodate bits and such for the extent buffers.
5080 */
5081 release_extent_buffer(eb);
5082 }
5083
5084 void free_extent_buffer_stale(struct extent_buffer *eb)
5085 {
5086 if (!eb)
5087 return;
5088
5089 spin_lock(&eb->refs_lock);
5090 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5091
5092 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 atomic_dec(&eb->refs);
5095 release_extent_buffer(eb);
5096 }
5097
5098 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5099 {
5100 unsigned long i;
5101 unsigned long num_pages;
5102 struct page *page;
5103
5104 num_pages = num_extent_pages(eb->start, eb->len);
5105
5106 for (i = 0; i < num_pages; i++) {
5107 page = eb->pages[i];
5108 if (!PageDirty(page))
5109 continue;
5110
5111 lock_page(page);
5112 WARN_ON(!PagePrivate(page));
5113
5114 clear_page_dirty_for_io(page);
5115 spin_lock_irq(&page->mapping->tree_lock);
5116 if (!PageDirty(page)) {
5117 radix_tree_tag_clear(&page->mapping->page_tree,
5118 page_index(page),
5119 PAGECACHE_TAG_DIRTY);
5120 }
5121 spin_unlock_irq(&page->mapping->tree_lock);
5122 ClearPageError(page);
5123 unlock_page(page);
5124 }
5125 WARN_ON(atomic_read(&eb->refs) == 0);
5126 }
5127
5128 int set_extent_buffer_dirty(struct extent_buffer *eb)
5129 {
5130 unsigned long i;
5131 unsigned long num_pages;
5132 int was_dirty = 0;
5133
5134 check_buffer_tree_ref(eb);
5135
5136 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5137
5138 num_pages = num_extent_pages(eb->start, eb->len);
5139 WARN_ON(atomic_read(&eb->refs) == 0);
5140 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5141
5142 for (i = 0; i < num_pages; i++)
5143 set_page_dirty(eb->pages[i]);
5144 return was_dirty;
5145 }
5146
5147 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5148 {
5149 unsigned long i;
5150 struct page *page;
5151 unsigned long num_pages;
5152
5153 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5154 num_pages = num_extent_pages(eb->start, eb->len);
5155 for (i = 0; i < num_pages; i++) {
5156 page = eb->pages[i];
5157 if (page)
5158 ClearPageUptodate(page);
5159 }
5160 return 0;
5161 }
5162
5163 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5164 {
5165 unsigned long i;
5166 struct page *page;
5167 unsigned long num_pages;
5168
5169 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5170 num_pages = num_extent_pages(eb->start, eb->len);
5171 for (i = 0; i < num_pages; i++) {
5172 page = eb->pages[i];
5173 SetPageUptodate(page);
5174 }
5175 return 0;
5176 }
5177
5178 int extent_buffer_uptodate(struct extent_buffer *eb)
5179 {
5180 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5181 }
5182
5183 int read_extent_buffer_pages(struct extent_io_tree *tree,
5184 struct extent_buffer *eb, u64 start, int wait,
5185 get_extent_t *get_extent, int mirror_num)
5186 {
5187 unsigned long i;
5188 unsigned long start_i;
5189 struct page *page;
5190 int err;
5191 int ret = 0;
5192 int locked_pages = 0;
5193 int all_uptodate = 1;
5194 unsigned long num_pages;
5195 unsigned long num_reads = 0;
5196 struct bio *bio = NULL;
5197 unsigned long bio_flags = 0;
5198
5199 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5200 return 0;
5201
5202 if (start) {
5203 WARN_ON(start < eb->start);
5204 start_i = (start >> PAGE_CACHE_SHIFT) -
5205 (eb->start >> PAGE_CACHE_SHIFT);
5206 } else {
5207 start_i = 0;
5208 }
5209
5210 num_pages = num_extent_pages(eb->start, eb->len);
5211 for (i = start_i; i < num_pages; i++) {
5212 page = eb->pages[i];
5213 if (wait == WAIT_NONE) {
5214 if (!trylock_page(page))
5215 goto unlock_exit;
5216 } else {
5217 lock_page(page);
5218 }
5219 locked_pages++;
5220 if (!PageUptodate(page)) {
5221 num_reads++;
5222 all_uptodate = 0;
5223 }
5224 }
5225 if (all_uptodate) {
5226 if (start_i == 0)
5227 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5228 goto unlock_exit;
5229 }
5230
5231 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5232 eb->read_mirror = 0;
5233 atomic_set(&eb->io_pages, num_reads);
5234 for (i = start_i; i < num_pages; i++) {
5235 page = eb->pages[i];
5236 if (!PageUptodate(page)) {
5237 ClearPageError(page);
5238 err = __extent_read_full_page(tree, page,
5239 get_extent, &bio,
5240 mirror_num, &bio_flags,
5241 READ | REQ_META);
5242 if (err)
5243 ret = err;
5244 } else {
5245 unlock_page(page);
5246 }
5247 }
5248
5249 if (bio) {
5250 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5251 bio_flags);
5252 if (err)
5253 return err;
5254 }
5255
5256 if (ret || wait != WAIT_COMPLETE)
5257 return ret;
5258
5259 for (i = start_i; i < num_pages; i++) {
5260 page = eb->pages[i];
5261 wait_on_page_locked(page);
5262 if (!PageUptodate(page))
5263 ret = -EIO;
5264 }
5265
5266 return ret;
5267
5268 unlock_exit:
5269 i = start_i;
5270 while (locked_pages > 0) {
5271 page = eb->pages[i];
5272 i++;
5273 unlock_page(page);
5274 locked_pages--;
5275 }
5276 return ret;
5277 }
5278
5279 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5280 unsigned long start,
5281 unsigned long len)
5282 {
5283 size_t cur;
5284 size_t offset;
5285 struct page *page;
5286 char *kaddr;
5287 char *dst = (char *)dstv;
5288 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5289 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5290
5291 WARN_ON(start > eb->len);
5292 WARN_ON(start + len > eb->start + eb->len);
5293
5294 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5295
5296 while (len > 0) {
5297 page = eb->pages[i];
5298
5299 cur = min(len, (PAGE_CACHE_SIZE - offset));
5300 kaddr = page_address(page);
5301 memcpy(dst, kaddr + offset, cur);
5302
5303 dst += cur;
5304 len -= cur;
5305 offset = 0;
5306 i++;
5307 }
5308 }
5309
5310 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5311 unsigned long start,
5312 unsigned long len)
5313 {
5314 size_t cur;
5315 size_t offset;
5316 struct page *page;
5317 char *kaddr;
5318 char __user *dst = (char __user *)dstv;
5319 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5320 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5321 int ret = 0;
5322
5323 WARN_ON(start > eb->len);
5324 WARN_ON(start + len > eb->start + eb->len);
5325
5326 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5327
5328 while (len > 0) {
5329 page = eb->pages[i];
5330
5331 cur = min(len, (PAGE_CACHE_SIZE - offset));
5332 kaddr = page_address(page);
5333 if (copy_to_user(dst, kaddr + offset, cur)) {
5334 ret = -EFAULT;
5335 break;
5336 }
5337
5338 dst += cur;
5339 len -= cur;
5340 offset = 0;
5341 i++;
5342 }
5343
5344 return ret;
5345 }
5346
5347 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5348 unsigned long min_len, char **map,
5349 unsigned long *map_start,
5350 unsigned long *map_len)
5351 {
5352 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5353 char *kaddr;
5354 struct page *p;
5355 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5357 unsigned long end_i = (start_offset + start + min_len - 1) >>
5358 PAGE_CACHE_SHIFT;
5359
5360 if (i != end_i)
5361 return -EINVAL;
5362
5363 if (i == 0) {
5364 offset = start_offset;
5365 *map_start = 0;
5366 } else {
5367 offset = 0;
5368 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5369 }
5370
5371 if (start + min_len > eb->len) {
5372 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5373 "wanted %lu %lu\n",
5374 eb->start, eb->len, start, min_len);
5375 return -EINVAL;
5376 }
5377
5378 p = eb->pages[i];
5379 kaddr = page_address(p);
5380 *map = kaddr + offset;
5381 *map_len = PAGE_CACHE_SIZE - offset;
5382 return 0;
5383 }
5384
5385 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5386 unsigned long start,
5387 unsigned long len)
5388 {
5389 size_t cur;
5390 size_t offset;
5391 struct page *page;
5392 char *kaddr;
5393 char *ptr = (char *)ptrv;
5394 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5395 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5396 int ret = 0;
5397
5398 WARN_ON(start > eb->len);
5399 WARN_ON(start + len > eb->start + eb->len);
5400
5401 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5402
5403 while (len > 0) {
5404 page = eb->pages[i];
5405
5406 cur = min(len, (PAGE_CACHE_SIZE - offset));
5407
5408 kaddr = page_address(page);
5409 ret = memcmp(ptr, kaddr + offset, cur);
5410 if (ret)
5411 break;
5412
5413 ptr += cur;
5414 len -= cur;
5415 offset = 0;
5416 i++;
5417 }
5418 return ret;
5419 }
5420
5421 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5422 unsigned long start, unsigned long len)
5423 {
5424 size_t cur;
5425 size_t offset;
5426 struct page *page;
5427 char *kaddr;
5428 char *src = (char *)srcv;
5429 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5430 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5431
5432 WARN_ON(start > eb->len);
5433 WARN_ON(start + len > eb->start + eb->len);
5434
5435 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5436
5437 while (len > 0) {
5438 page = eb->pages[i];
5439 WARN_ON(!PageUptodate(page));
5440
5441 cur = min(len, PAGE_CACHE_SIZE - offset);
5442 kaddr = page_address(page);
5443 memcpy(kaddr + offset, src, cur);
5444
5445 src += cur;
5446 len -= cur;
5447 offset = 0;
5448 i++;
5449 }
5450 }
5451
5452 void memset_extent_buffer(struct extent_buffer *eb, char c,
5453 unsigned long start, unsigned long len)
5454 {
5455 size_t cur;
5456 size_t offset;
5457 struct page *page;
5458 char *kaddr;
5459 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5460 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5461
5462 WARN_ON(start > eb->len);
5463 WARN_ON(start + len > eb->start + eb->len);
5464
5465 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5466
5467 while (len > 0) {
5468 page = eb->pages[i];
5469 WARN_ON(!PageUptodate(page));
5470
5471 cur = min(len, PAGE_CACHE_SIZE - offset);
5472 kaddr = page_address(page);
5473 memset(kaddr + offset, c, cur);
5474
5475 len -= cur;
5476 offset = 0;
5477 i++;
5478 }
5479 }
5480
5481 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5482 unsigned long dst_offset, unsigned long src_offset,
5483 unsigned long len)
5484 {
5485 u64 dst_len = dst->len;
5486 size_t cur;
5487 size_t offset;
5488 struct page *page;
5489 char *kaddr;
5490 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5491 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5492
5493 WARN_ON(src->len != dst_len);
5494
5495 offset = (start_offset + dst_offset) &
5496 (PAGE_CACHE_SIZE - 1);
5497
5498 while (len > 0) {
5499 page = dst->pages[i];
5500 WARN_ON(!PageUptodate(page));
5501
5502 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5503
5504 kaddr = page_address(page);
5505 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5506
5507 src_offset += cur;
5508 len -= cur;
5509 offset = 0;
5510 i++;
5511 }
5512 }
5513
5514 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5515 {
5516 unsigned long distance = (src > dst) ? src - dst : dst - src;
5517 return distance < len;
5518 }
5519
5520 static void copy_pages(struct page *dst_page, struct page *src_page,
5521 unsigned long dst_off, unsigned long src_off,
5522 unsigned long len)
5523 {
5524 char *dst_kaddr = page_address(dst_page);
5525 char *src_kaddr;
5526 int must_memmove = 0;
5527
5528 if (dst_page != src_page) {
5529 src_kaddr = page_address(src_page);
5530 } else {
5531 src_kaddr = dst_kaddr;
5532 if (areas_overlap(src_off, dst_off, len))
5533 must_memmove = 1;
5534 }
5535
5536 if (must_memmove)
5537 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5538 else
5539 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5540 }
5541
5542 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5543 unsigned long src_offset, unsigned long len)
5544 {
5545 size_t cur;
5546 size_t dst_off_in_page;
5547 size_t src_off_in_page;
5548 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5549 unsigned long dst_i;
5550 unsigned long src_i;
5551
5552 if (src_offset + len > dst->len) {
5553 btrfs_err(dst->fs_info,
5554 "memmove bogus src_offset %lu move "
5555 "len %lu dst len %lu", src_offset, len, dst->len);
5556 BUG_ON(1);
5557 }
5558 if (dst_offset + len > dst->len) {
5559 btrfs_err(dst->fs_info,
5560 "memmove bogus dst_offset %lu move "
5561 "len %lu dst len %lu", dst_offset, len, dst->len);
5562 BUG_ON(1);
5563 }
5564
5565 while (len > 0) {
5566 dst_off_in_page = (start_offset + dst_offset) &
5567 (PAGE_CACHE_SIZE - 1);
5568 src_off_in_page = (start_offset + src_offset) &
5569 (PAGE_CACHE_SIZE - 1);
5570
5571 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5572 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5573
5574 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5575 src_off_in_page));
5576 cur = min_t(unsigned long, cur,
5577 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5578
5579 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5580 dst_off_in_page, src_off_in_page, cur);
5581
5582 src_offset += cur;
5583 dst_offset += cur;
5584 len -= cur;
5585 }
5586 }
5587
5588 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5589 unsigned long src_offset, unsigned long len)
5590 {
5591 size_t cur;
5592 size_t dst_off_in_page;
5593 size_t src_off_in_page;
5594 unsigned long dst_end = dst_offset + len - 1;
5595 unsigned long src_end = src_offset + len - 1;
5596 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5597 unsigned long dst_i;
5598 unsigned long src_i;
5599
5600 if (src_offset + len > dst->len) {
5601 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5602 "len %lu len %lu", src_offset, len, dst->len);
5603 BUG_ON(1);
5604 }
5605 if (dst_offset + len > dst->len) {
5606 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5607 "len %lu len %lu", dst_offset, len, dst->len);
5608 BUG_ON(1);
5609 }
5610 if (dst_offset < src_offset) {
5611 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5612 return;
5613 }
5614 while (len > 0) {
5615 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5616 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5617
5618 dst_off_in_page = (start_offset + dst_end) &
5619 (PAGE_CACHE_SIZE - 1);
5620 src_off_in_page = (start_offset + src_end) &
5621 (PAGE_CACHE_SIZE - 1);
5622
5623 cur = min_t(unsigned long, len, src_off_in_page + 1);
5624 cur = min(cur, dst_off_in_page + 1);
5625 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5626 dst_off_in_page - cur + 1,
5627 src_off_in_page - cur + 1, cur);
5628
5629 dst_end -= cur;
5630 src_end -= cur;
5631 len -= cur;
5632 }
5633 }
5634
5635 int try_release_extent_buffer(struct page *page)
5636 {
5637 struct extent_buffer *eb;
5638
5639 /*
5640 * We need to make sure noboody is attaching this page to an eb right
5641 * now.
5642 */
5643 spin_lock(&page->mapping->private_lock);
5644 if (!PagePrivate(page)) {
5645 spin_unlock(&page->mapping->private_lock);
5646 return 1;
5647 }
5648
5649 eb = (struct extent_buffer *)page->private;
5650 BUG_ON(!eb);
5651
5652 /*
5653 * This is a little awful but should be ok, we need to make sure that
5654 * the eb doesn't disappear out from under us while we're looking at
5655 * this page.
5656 */
5657 spin_lock(&eb->refs_lock);
5658 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5659 spin_unlock(&eb->refs_lock);
5660 spin_unlock(&page->mapping->private_lock);
5661 return 0;
5662 }
5663 spin_unlock(&page->mapping->private_lock);
5664
5665 /*
5666 * If tree ref isn't set then we know the ref on this eb is a real ref,
5667 * so just return, this page will likely be freed soon anyway.
5668 */
5669 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5670 spin_unlock(&eb->refs_lock);
5671 return 0;
5672 }
5673
5674 return release_extent_buffer(eb);
5675 }