]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: btrfs_create_repair_bio never fails, skip error handling
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 refcount_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
93 }
94 #else
95 #define btrfs_leak_debug_add(new, head) do {} while (0)
96 #define btrfs_leak_debug_del(entry) do {} while (0)
97 #define btrfs_leak_debug_check() do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
99 #endif
100
101 #define BUFFER_LRU_MAX 64
102
103 struct tree_entry {
104 u64 start;
105 u64 end;
106 struct rb_node rb_node;
107 };
108
109 struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
113 unsigned long bio_flags;
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
118 unsigned int extent_locked:1;
119
120 /* tells the submit_bio code to use REQ_SYNC */
121 unsigned int sync_io:1;
122 };
123
124 static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127 {
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
134 if (!set && (state->state & bits) == 0)
135 return;
136 changeset->bytes_changed += state->end - state->start + 1;
137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141 }
142
143 static noinline void flush_write_bio(void *data);
144 static inline struct btrfs_fs_info *
145 tree_fs_info(struct extent_io_tree *tree)
146 {
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
150 }
151
152 int __init extent_io_init(void)
153 {
154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 sizeof(struct extent_state), 0,
156 SLAB_MEM_SPREAD, NULL);
157 if (!extent_state_cache)
158 return -ENOMEM;
159
160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 sizeof(struct extent_buffer), 0,
162 SLAB_MEM_SPREAD, NULL);
163 if (!extent_buffer_cache)
164 goto free_state_cache;
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio));
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176 free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180 free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184 free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188 }
189
190 void extent_io_exit(void)
191 {
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203 }
204
205 void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207 {
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213 }
214
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235 }
236
237 void free_extent_state(struct extent_state *state)
238 {
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247 }
248
249 static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255 {
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279 do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283 }
284
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290 {
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335 }
336
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342 {
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350 }
351
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354 {
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360 {
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364
365 /*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374 static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376 {
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407 }
408
409 static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411 {
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415
416 static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418 {
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422
423 static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427 /*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437 static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442 {
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463 }
464
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467 {
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471
472 /*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488 {
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505 }
506
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514 }
515
516 /*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527 {
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530
531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
536 clear_state_cb(tree, state, bits);
537 add_extent_changeset(state, bits_to_clear, changeset, 0);
538 state->state &= ~bits_to_clear;
539 if (wake)
540 wake_up(&state->wq);
541 if (state->state == 0) {
542 next = next_state(state);
543 if (extent_state_in_tree(state)) {
544 rb_erase(&state->rb_node, &tree->state);
545 RB_CLEAR_NODE(&state->rb_node);
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
552 next = next_state(state);
553 }
554 return next;
555 }
556
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
559 {
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564 }
565
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567 {
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
570 }
571
572 /*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
582 * This takes the tree lock, and returns 0 on success and < 0 on error.
583 */
584 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
588 {
589 struct extent_state *state;
590 struct extent_state *cached;
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
593 u64 last_end;
594 int err;
595 int clear = 0;
596
597 btrfs_debug_check_extent_io_range(tree, start, end);
598
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
608 again:
609 if (!prealloc && gfpflags_allow_blocking(mask)) {
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
617 prealloc = alloc_extent_state(mask);
618 }
619
620 spin_lock(&tree->lock);
621 if (cached_state) {
622 cached = *cached_state;
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
631 if (clear)
632 refcount_dec(&cached->refs);
633 state = cached;
634 goto hit_next;
635 }
636 if (clear)
637 free_extent_state(cached);
638 }
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
643 node = tree_search(tree, start);
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
647 hit_next:
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
651 last_end = state->end;
652
653 /* the state doesn't have the wanted bits, go ahead */
654 if (!(state->state & bits)) {
655 state = next_state(state);
656 goto next;
657 }
658
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
678 err = split_state(tree, state, prealloc, start);
679 if (err)
680 extent_io_tree_panic(tree, err);
681
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
688 goto next;
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
701 err = split_state(tree, state, prealloc, end + 1);
702 if (err)
703 extent_io_tree_panic(tree, err);
704
705 if (wake)
706 wake_up(&state->wq);
707
708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
709
710 prealloc = NULL;
711 goto out;
712 }
713
714 state = clear_state_bit(tree, state, &bits, wake, changeset);
715 next:
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
719 if (start <= end && state && !need_resched())
720 goto hit_next;
721
722 search_again:
723 if (start > end)
724 goto out;
725 spin_unlock(&tree->lock);
726 if (gfpflags_allow_blocking(mask))
727 cond_resched();
728 goto again;
729
730 out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
737 }
738
739 static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
741 __releases(tree->lock)
742 __acquires(tree->lock)
743 {
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746 spin_unlock(&tree->lock);
747 schedule();
748 spin_lock(&tree->lock);
749 finish_wait(&state->wq, &wait);
750 }
751
752 /*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
759 {
760 struct extent_state *state;
761 struct rb_node *node;
762
763 btrfs_debug_check_extent_io_range(tree, start, end);
764
765 spin_lock(&tree->lock);
766 again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
772 node = tree_search(tree, start);
773 process_node:
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
784 refcount_inc(&state->refs);
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
798 }
799 out:
800 spin_unlock(&tree->lock);
801 }
802
803 static void set_state_bits(struct extent_io_tree *tree,
804 struct extent_state *state,
805 unsigned *bits, struct extent_changeset *changeset)
806 {
807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
808
809 set_state_cb(tree, state, bits);
810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
814 add_extent_changeset(state, bits_to_set, changeset, 1);
815 state->state |= bits_to_set;
816 }
817
818 static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
820 unsigned flags)
821 {
822 if (cached_ptr && !(*cached_ptr)) {
823 if (!flags || (state->state & flags)) {
824 *cached_ptr = state;
825 refcount_inc(&state->refs);
826 }
827 }
828 }
829
830 static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832 {
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835 }
836
837 /*
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
840 *
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
844 *
845 * [start, end] is inclusive This takes the tree lock.
846 */
847
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850 unsigned bits, unsigned exclusive_bits,
851 u64 *failed_start, struct extent_state **cached_state,
852 gfp_t mask, struct extent_changeset *changeset)
853 {
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
857 struct rb_node **p;
858 struct rb_node *parent;
859 int err = 0;
860 u64 last_start;
861 u64 last_end;
862
863 btrfs_debug_check_extent_io_range(tree, start, end);
864
865 bits |= EXTENT_FIRST_DELALLOC;
866 again:
867 if (!prealloc && gfpflags_allow_blocking(mask)) {
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
875 prealloc = alloc_extent_state(mask);
876 }
877
878 spin_lock(&tree->lock);
879 if (cached_state && *cached_state) {
880 state = *cached_state;
881 if (state->start <= start && state->end > start &&
882 extent_state_in_tree(state)) {
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
891 node = tree_search_for_insert(tree, start, &p, &parent);
892 if (!node) {
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
895 err = insert_state(tree, prealloc, start, end,
896 &p, &parent, &bits, changeset);
897 if (err)
898 extent_io_tree_panic(tree, err);
899
900 cache_state(prealloc, cached_state);
901 prealloc = NULL;
902 goto out;
903 }
904 state = rb_entry(node, struct extent_state, rb_node);
905 hit_next:
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
916 if (state->state & exclusive_bits) {
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
921
922 set_state_bits(tree, state, &bits, changeset);
923 cache_state(state, cached_state);
924 merge_state(tree, state);
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
952 if (state->state & exclusive_bits) {
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
960 err = split_state(tree, state, prealloc, start);
961 if (err)
962 extent_io_tree_panic(tree, err);
963
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
968 set_state_bits(tree, state, &bits, changeset);
969 cache_state(state, cached_state);
970 merge_state(tree, state);
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
993 this_end = last_start - 1;
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
1002 err = insert_state(tree, prealloc, start, this_end,
1003 NULL, NULL, &bits, changeset);
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1019 if (state->state & exclusive_bits) {
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
1027 err = split_state(tree, state, prealloc, end + 1);
1028 if (err)
1029 extent_io_tree_panic(tree, err);
1030
1031 set_state_bits(tree, prealloc, &bits, changeset);
1032 cache_state(prealloc, cached_state);
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
1038 search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
1045
1046 out:
1047 spin_unlock(&tree->lock);
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
1053 }
1054
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056 unsigned bits, u64 * failed_start,
1057 struct extent_state **cached_state, gfp_t mask)
1058 {
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060 cached_state, mask, NULL);
1061 }
1062
1063
1064 /**
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
1072 * @cached_state: state that we're going to cache
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
1079 *
1080 * All allocations are done with GFP_NOFS.
1081 */
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083 unsigned bits, unsigned clear_bits,
1084 struct extent_state **cached_state)
1085 {
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
1089 struct rb_node **p;
1090 struct rb_node *parent;
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
1094 bool first_iteration = true;
1095
1096 btrfs_debug_check_extent_io_range(tree, start, end);
1097
1098 again:
1099 if (!prealloc) {
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
1107 prealloc = alloc_extent_state(GFP_NOFS);
1108 if (!prealloc && !first_iteration)
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
1116 extent_state_in_tree(state)) {
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
1126 node = tree_search_for_insert(tree, start, &p, &parent);
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
1133 err = insert_state(tree, prealloc, start, end,
1134 &p, &parent, &bits, NULL);
1135 if (err)
1136 extent_io_tree_panic(tree, err);
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142 hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
1153 set_state_bits(tree, state, &bits, NULL);
1154 cache_state(state, cached_state);
1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
1187 err = split_state(tree, state, prealloc, start);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
1194 set_state_bits(tree, state, &bits, NULL);
1195 cache_state(state, cached_state);
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
1232 NULL, NULL, &bits, NULL);
1233 if (err)
1234 extent_io_tree_panic(tree, err);
1235 cache_state(prealloc, cached_state);
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
1252
1253 err = split_state(tree, state, prealloc, end + 1);
1254 if (err)
1255 extent_io_tree_panic(tree, err);
1256
1257 set_state_bits(tree, prealloc, &bits, NULL);
1258 cache_state(prealloc, cached_state);
1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
1264 search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
1268 cond_resched();
1269 first_iteration = false;
1270 goto again;
1271
1272 out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
1278 }
1279
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282 unsigned bits, struct extent_changeset *changeset)
1283 {
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1293 changeset);
1294 }
1295
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299 {
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302 }
1303
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, struct extent_changeset *changeset)
1306 {
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1314 changeset);
1315 }
1316
1317 /*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state)
1323 {
1324 int err;
1325 u64 failed_start;
1326
1327 while (1) {
1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329 EXTENT_LOCKED, &failed_start,
1330 cached_state, GFP_NOFS, NULL);
1331 if (err == -EEXIST) {
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
1334 } else
1335 break;
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339 }
1340
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1342 {
1343 int err;
1344 u64 failed_start;
1345
1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347 &failed_start, NULL, GFP_NOFS, NULL);
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1352 return 0;
1353 }
1354 return 1;
1355 }
1356
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1358 {
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
1367 put_page(page);
1368 index++;
1369 }
1370 }
1371
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 __set_page_dirty_nobuffers(page);
1382 account_page_redirty(page);
1383 put_page(page);
1384 index++;
1385 }
1386 }
1387
1388 /*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393 tree->ops->set_range_writeback(tree->private_data, start, end);
1394 }
1395
1396 /* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402 u64 start, unsigned bits)
1403 {
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
1412 if (!node)
1413 goto out;
1414
1415 while (1) {
1416 state = rb_entry(node, struct extent_state, rb_node);
1417 if (state->end >= start && (state->state & bits))
1418 return state;
1419
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424 out:
1425 return NULL;
1426 }
1427
1428 /*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
1433 * If nothing was found, 1 is returned. If found something, return 0.
1434 */
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436 u64 *start_ret, u64 *end_ret, unsigned bits,
1437 struct extent_state **cached_state)
1438 {
1439 struct extent_state *state;
1440 struct rb_node *n;
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
1463 state = find_first_extent_bit_state(tree, start, bits);
1464 got_it:
1465 if (state) {
1466 cache_state_if_flags(state, cached_state, 0);
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
1471 out:
1472 spin_unlock(&tree->lock);
1473 return ret;
1474 }
1475
1476 /*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
1485 {
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
1492 spin_lock(&tree->lock);
1493
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
1498 node = tree_search(tree, cur_start);
1499 if (!node) {
1500 if (!found)
1501 *end = (u64)-1;
1502 goto out;
1503 }
1504
1505 while (1) {
1506 state = rb_entry(node, struct extent_state, rb_node);
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
1516 if (!found) {
1517 *start = state->start;
1518 *cached_state = state;
1519 refcount_inc(&state->refs);
1520 }
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
1525 total_bytes += state->end - state->start + 1;
1526 if (total_bytes >= max_bytes)
1527 break;
1528 if (!node)
1529 break;
1530 }
1531 out:
1532 spin_unlock(&tree->lock);
1533 return found;
1534 }
1535
1536 static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
1544 {
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
1547
1548 ASSERT(locked_page);
1549 if (index == locked_page->index && end_index == index)
1550 return;
1551
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
1554 }
1555
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560 {
1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
1562 unsigned long index_ret = index;
1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1564 int ret;
1565
1566 ASSERT(locked_page);
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
1575 return ret;
1576 }
1577
1578 /*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
1588 {
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
1592 struct extent_state *cached_state = NULL;
1593 int ret;
1594 int loops = 0;
1595
1596 again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601 max_bytes, &cached_state);
1602 if (!found || delalloc_end <= *start) {
1603 *start = delalloc_start;
1604 *end = delalloc_end;
1605 free_extent_state(cached_state);
1606 return 0;
1607 }
1608
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
1614 if (delalloc_start < *start)
1615 delalloc_start = *start;
1616
1617 /*
1618 * make sure to limit the number of pages we try to lock down
1619 */
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
1622
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
1630 free_extent_state(cached_state);
1631 cached_state = NULL;
1632 if (!loops) {
1633 max_bytes = PAGE_SIZE;
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1642
1643 /* step three, lock the state bits for the whole range */
1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648 EXTENT_DELALLOC, 1, cached_state);
1649 if (!ret) {
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
1657 free_extent_state(cached_state);
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660 out_failed:
1661 return found;
1662 }
1663
1664 static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
1668 {
1669 unsigned long nr_pages = end_index - start_index + 1;
1670 unsigned long pages_locked = 0;
1671 pgoff_t index = start_index;
1672 struct page *pages[16];
1673 unsigned ret;
1674 int err = 0;
1675 int i;
1676
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683 mapping_set_error(mapping, -EIO);
1684
1685 while (nr_pages > 0) {
1686 ret = find_get_pages_contig(mapping, index,
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698
1699 for (i = 0; i < ret; i++) {
1700 if (page_ops & PAGE_SET_PRIVATE2)
1701 SetPagePrivate2(pages[i]);
1702
1703 if (pages[i] == locked_page) {
1704 put_page(pages[i]);
1705 pages_locked++;
1706 continue;
1707 }
1708 if (page_ops & PAGE_CLEAR_DIRTY)
1709 clear_page_dirty_for_io(pages[i]);
1710 if (page_ops & PAGE_SET_WRITEBACK)
1711 set_page_writeback(pages[i]);
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
1714 if (page_ops & PAGE_END_WRITEBACK)
1715 end_page_writeback(pages[i]);
1716 if (page_ops & PAGE_UNLOCK)
1717 unlock_page(pages[i]);
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
1728 put_page(pages[i]);
1729 pages_locked++;
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
1735 out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
1739 }
1740
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745 {
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1751 page_ops, NULL);
1752 }
1753
1754 /*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
1761 unsigned bits, int contig)
1762 {
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
1767 u64 last = 0;
1768 int found = 0;
1769
1770 if (WARN_ON(search_end <= cur_start))
1771 return 0;
1772
1773 spin_lock(&tree->lock);
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
1782 node = tree_search(tree, cur_start);
1783 if (!node)
1784 goto out;
1785
1786 while (1) {
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
1798 *start = max(cur_start, state->start);
1799 found = 1;
1800 }
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809 out:
1810 spin_unlock(&tree->lock);
1811 return total_bytes;
1812 }
1813
1814 /*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819 struct io_failure_record *failrec)
1820 {
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
1825 spin_lock(&tree->lock);
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
1830 node = tree_search(tree, start);
1831 if (!node) {
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 state->failrec = failrec;
1841 out:
1842 spin_unlock(&tree->lock);
1843 return ret;
1844 }
1845
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record **failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 *failrec = state->failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 /*
1875 * searches a range in the state tree for a given mask.
1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881 unsigned bits, int filled, struct extent_state *cached)
1882 {
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
1886
1887 spin_lock(&tree->lock);
1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889 cached->end > start)
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
1926 spin_unlock(&tree->lock);
1927 return bitset;
1928 }
1929
1930 /*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1935 {
1936 u64 start = page_offset(page);
1937 u64 end = start + PAGE_SIZE - 1;
1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939 SetPageUptodate(page);
1940 }
1941
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
1945 {
1946 int ret;
1947 int err = 0;
1948
1949 set_state_failrec(failure_tree, rec->start, NULL);
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
1952 EXTENT_LOCKED | EXTENT_DIRTY);
1953 if (ret)
1954 err = ret;
1955
1956 ret = clear_extent_bits(io_tree, rec->start,
1957 rec->start + rec->len - 1,
1958 EXTENT_DAMAGED);
1959 if (ret && !err)
1960 err = ret;
1961
1962 kfree(rec);
1963 return err;
1964 }
1965
1966 /*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
1971 * to avoid any synchronization issues, wait for the data after writing, which
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
1979 {
1980 struct bio *bio;
1981 struct btrfs_device *dev;
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1988 BUG_ON(!mirror_num);
1989
1990 bio = btrfs_io_bio_alloc(1);
1991 bio->bi_iter.bi_size = 0;
1992 map_length = length;
1993
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
2000 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
2024 }
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027 bio->bi_iter.bi_sector = sector;
2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029 btrfs_put_bbio(bbio);
2030 if (!dev || !dev->bdev || !dev->writeable) {
2031 btrfs_bio_counter_dec(fs_info);
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 bio->bi_bdev = dev->bdev;
2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2037 bio_add_page(bio, page, length, pg_offset);
2038
2039 if (btrfsic_submit_bio_wait(bio)) {
2040 /* try to remap that extent elsewhere? */
2041 btrfs_bio_counter_dec(fs_info);
2042 bio_put(bio);
2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2044 return -EIO;
2045 }
2046
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2049 ino, start,
2050 rcu_str_deref(dev->name), sector);
2051 btrfs_bio_counter_dec(fs_info);
2052 bio_put(bio);
2053 return 0;
2054 }
2055
2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
2058 {
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2061 int ret = 0;
2062
2063 if (fs_info->sb->s_flags & MS_RDONLY)
2064 return -EROFS;
2065
2066 for (i = 0; i < num_pages; i++) {
2067 struct page *p = eb->pages[i];
2068
2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2070 start - page_offset(p), mirror_num);
2071 if (ret)
2072 break;
2073 start += PAGE_SIZE;
2074 }
2075
2076 return ret;
2077 }
2078
2079 /*
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2082 */
2083 int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
2087 {
2088 u64 private;
2089 struct io_failure_record *failrec;
2090 struct extent_state *state;
2091 int num_copies;
2092 int ret;
2093
2094 private = 0;
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096 EXTENT_DIRTY, 0);
2097 if (!ret)
2098 return 0;
2099
2100 ret = get_state_failrec(failure_tree, start, &failrec);
2101 if (ret)
2102 return 0;
2103
2104 BUG_ON(!failrec->this_mirror);
2105
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2110 failrec->start);
2111 goto out;
2112 }
2113 if (fs_info->sb->s_flags & MS_RDONLY)
2114 goto out;
2115
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
2118 failrec->start,
2119 EXTENT_LOCKED);
2120 spin_unlock(&io_tree->lock);
2121
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125 failrec->len);
2126 if (num_copies > 1) {
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
2130 }
2131 }
2132
2133 out:
2134 free_io_failure(failure_tree, io_tree, failrec);
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2144 */
2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2146 {
2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2150
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2152 return;
2153
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156 while (state) {
2157 if (state->start > end)
2158 break;
2159
2160 ASSERT(state->end <= end);
2161
2162 next = next_state(state);
2163
2164 failrec = state->failrec;
2165 free_extent_state(state);
2166 kfree(failrec);
2167
2168 state = next;
2169 }
2170 spin_unlock(&failure_tree->lock);
2171 }
2172
2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2174 struct io_failure_record **failrec_ret)
2175 {
2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177 struct io_failure_record *failrec;
2178 struct extent_map *em;
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2182 int ret;
2183 u64 logical;
2184
2185 ret = get_state_failrec(failure_tree, start, &failrec);
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2190
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
2205 if (em->start > start || em->start + em->len <= start) {
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
2210 if (!em) {
2211 kfree(failrec);
2212 return -EIO;
2213 }
2214
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2223
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2227
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
2233 EXTENT_LOCKED | EXTENT_DIRTY);
2234 if (ret >= 0)
2235 ret = set_state_failrec(failure_tree, start, failrec);
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258 }
2259
2260 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261 struct io_failure_record *failrec, int failed_mirror)
2262 {
2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2264 int num_copies;
2265
2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
2276 return 0;
2277 }
2278
2279 /*
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2283 */
2284 if (failed_bio->bi_vcnt > 1) {
2285 /*
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2289 *
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2292 */
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
2311 }
2312
2313 if (failrec->this_mirror > num_copies) {
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
2317 return 0;
2318 }
2319
2320 return 1;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2328 {
2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
2334 bio = btrfs_io_bio_alloc(1);
2335 bio->bi_end_io = endio_func;
2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
2337 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2338 bio->bi_iter.bi_size = 0;
2339 bio->bi_private = data;
2340
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2349 csum_size);
2350 }
2351
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355 }
2356
2357 /*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368 {
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2373 struct bio *bio;
2374 int read_mode = 0;
2375 int ret;
2376
2377 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2378
2379 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2380 if (ret)
2381 return ret;
2382
2383 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2384 if (!ret) {
2385 free_io_failure(failure_tree, tree, failrec);
2386 return -EIO;
2387 }
2388
2389 if (failed_bio->bi_vcnt > 1)
2390 read_mode |= REQ_FAILFAST_DEV;
2391
2392 phy_offset >>= inode->i_sb->s_blocksize_bits;
2393 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2394 start - page_offset(page),
2395 (int)phy_offset, failed_bio->bi_end_io,
2396 NULL);
2397 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2398
2399 btrfs_debug(btrfs_sb(inode->i_sb),
2400 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2401 read_mode, failrec->this_mirror, failrec->in_validation);
2402
2403 ret = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2404 failrec->bio_flags, 0);
2405 if (ret) {
2406 free_io_failure(failure_tree, tree, failrec);
2407 bio_put(bio);
2408 }
2409
2410 return ret;
2411 }
2412
2413 /* lots and lots of room for performance fixes in the end_bio funcs */
2414
2415 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2416 {
2417 int uptodate = (err == 0);
2418 struct extent_io_tree *tree;
2419 int ret = 0;
2420
2421 tree = &BTRFS_I(page->mapping->host)->io_tree;
2422
2423 if (tree->ops && tree->ops->writepage_end_io_hook)
2424 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2425 uptodate);
2426
2427 if (!uptodate) {
2428 ClearPageUptodate(page);
2429 SetPageError(page);
2430 ret = err < 0 ? err : -EIO;
2431 mapping_set_error(page->mapping, ret);
2432 }
2433 }
2434
2435 /*
2436 * after a writepage IO is done, we need to:
2437 * clear the uptodate bits on error
2438 * clear the writeback bits in the extent tree for this IO
2439 * end_page_writeback if the page has no more pending IO
2440 *
2441 * Scheduling is not allowed, so the extent state tree is expected
2442 * to have one and only one object corresponding to this IO.
2443 */
2444 static void end_bio_extent_writepage(struct bio *bio)
2445 {
2446 struct bio_vec *bvec;
2447 u64 start;
2448 u64 end;
2449 int i;
2450
2451 ASSERT(!bio_flagged(bio, BIO_CLONED));
2452 bio_for_each_segment_all(bvec, bio, i) {
2453 struct page *page = bvec->bv_page;
2454 struct inode *inode = page->mapping->host;
2455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2456
2457 /* We always issue full-page reads, but if some block
2458 * in a page fails to read, blk_update_request() will
2459 * advance bv_offset and adjust bv_len to compensate.
2460 * Print a warning for nonzero offsets, and an error
2461 * if they don't add up to a full page. */
2462 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2463 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2464 btrfs_err(fs_info,
2465 "partial page write in btrfs with offset %u and length %u",
2466 bvec->bv_offset, bvec->bv_len);
2467 else
2468 btrfs_info(fs_info,
2469 "incomplete page write in btrfs with offset %u and length %u",
2470 bvec->bv_offset, bvec->bv_len);
2471 }
2472
2473 start = page_offset(page);
2474 end = start + bvec->bv_offset + bvec->bv_len - 1;
2475
2476 end_extent_writepage(page, bio->bi_error, start, end);
2477 end_page_writeback(page);
2478 }
2479
2480 bio_put(bio);
2481 }
2482
2483 static void
2484 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2485 int uptodate)
2486 {
2487 struct extent_state *cached = NULL;
2488 u64 end = start + len - 1;
2489
2490 if (uptodate && tree->track_uptodate)
2491 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2492 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2493 }
2494
2495 /*
2496 * after a readpage IO is done, we need to:
2497 * clear the uptodate bits on error
2498 * set the uptodate bits if things worked
2499 * set the page up to date if all extents in the tree are uptodate
2500 * clear the lock bit in the extent tree
2501 * unlock the page if there are no other extents locked for it
2502 *
2503 * Scheduling is not allowed, so the extent state tree is expected
2504 * to have one and only one object corresponding to this IO.
2505 */
2506 static void end_bio_extent_readpage(struct bio *bio)
2507 {
2508 struct bio_vec *bvec;
2509 int uptodate = !bio->bi_error;
2510 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2511 struct extent_io_tree *tree, *failure_tree;
2512 u64 offset = 0;
2513 u64 start;
2514 u64 end;
2515 u64 len;
2516 u64 extent_start = 0;
2517 u64 extent_len = 0;
2518 int mirror;
2519 int ret;
2520 int i;
2521
2522 ASSERT(!bio_flagged(bio, BIO_CLONED));
2523 bio_for_each_segment_all(bvec, bio, i) {
2524 struct page *page = bvec->bv_page;
2525 struct inode *inode = page->mapping->host;
2526 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2527
2528 btrfs_debug(fs_info,
2529 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2530 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2531 io_bio->mirror_num);
2532 tree = &BTRFS_I(inode)->io_tree;
2533 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2534
2535 /* We always issue full-page reads, but if some block
2536 * in a page fails to read, blk_update_request() will
2537 * advance bv_offset and adjust bv_len to compensate.
2538 * Print a warning for nonzero offsets, and an error
2539 * if they don't add up to a full page. */
2540 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2541 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2542 btrfs_err(fs_info,
2543 "partial page read in btrfs with offset %u and length %u",
2544 bvec->bv_offset, bvec->bv_len);
2545 else
2546 btrfs_info(fs_info,
2547 "incomplete page read in btrfs with offset %u and length %u",
2548 bvec->bv_offset, bvec->bv_len);
2549 }
2550
2551 start = page_offset(page);
2552 end = start + bvec->bv_offset + bvec->bv_len - 1;
2553 len = bvec->bv_len;
2554
2555 mirror = io_bio->mirror_num;
2556 if (likely(uptodate && tree->ops)) {
2557 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2558 page, start, end,
2559 mirror);
2560 if (ret)
2561 uptodate = 0;
2562 else
2563 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2564 failure_tree, tree, start,
2565 page,
2566 btrfs_ino(BTRFS_I(inode)), 0);
2567 }
2568
2569 if (likely(uptodate))
2570 goto readpage_ok;
2571
2572 if (tree->ops) {
2573 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2574 if (ret == -EAGAIN) {
2575 /*
2576 * Data inode's readpage_io_failed_hook() always
2577 * returns -EAGAIN.
2578 *
2579 * The generic bio_readpage_error handles errors
2580 * the following way: If possible, new read
2581 * requests are created and submitted and will
2582 * end up in end_bio_extent_readpage as well (if
2583 * we're lucky, not in the !uptodate case). In
2584 * that case it returns 0 and we just go on with
2585 * the next page in our bio. If it can't handle
2586 * the error it will return -EIO and we remain
2587 * responsible for that page.
2588 */
2589 ret = bio_readpage_error(bio, offset, page,
2590 start, end, mirror);
2591 if (ret == 0) {
2592 uptodate = !bio->bi_error;
2593 offset += len;
2594 continue;
2595 }
2596 }
2597
2598 /*
2599 * metadata's readpage_io_failed_hook() always returns
2600 * -EIO and fixes nothing. -EIO is also returned if
2601 * data inode error could not be fixed.
2602 */
2603 ASSERT(ret == -EIO);
2604 }
2605 readpage_ok:
2606 if (likely(uptodate)) {
2607 loff_t i_size = i_size_read(inode);
2608 pgoff_t end_index = i_size >> PAGE_SHIFT;
2609 unsigned off;
2610
2611 /* Zero out the end if this page straddles i_size */
2612 off = i_size & (PAGE_SIZE-1);
2613 if (page->index == end_index && off)
2614 zero_user_segment(page, off, PAGE_SIZE);
2615 SetPageUptodate(page);
2616 } else {
2617 ClearPageUptodate(page);
2618 SetPageError(page);
2619 }
2620 unlock_page(page);
2621 offset += len;
2622
2623 if (unlikely(!uptodate)) {
2624 if (extent_len) {
2625 endio_readpage_release_extent(tree,
2626 extent_start,
2627 extent_len, 1);
2628 extent_start = 0;
2629 extent_len = 0;
2630 }
2631 endio_readpage_release_extent(tree, start,
2632 end - start + 1, 0);
2633 } else if (!extent_len) {
2634 extent_start = start;
2635 extent_len = end + 1 - start;
2636 } else if (extent_start + extent_len == start) {
2637 extent_len += end + 1 - start;
2638 } else {
2639 endio_readpage_release_extent(tree, extent_start,
2640 extent_len, uptodate);
2641 extent_start = start;
2642 extent_len = end + 1 - start;
2643 }
2644 }
2645
2646 if (extent_len)
2647 endio_readpage_release_extent(tree, extent_start, extent_len,
2648 uptodate);
2649 if (io_bio->end_io)
2650 io_bio->end_io(io_bio, bio->bi_error);
2651 bio_put(bio);
2652 }
2653
2654 /*
2655 * Initialize the members up to but not including 'bio'. Use after allocating a
2656 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2657 * 'bio' because use of __GFP_ZERO is not supported.
2658 */
2659 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2660 {
2661 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2662 }
2663
2664 /*
2665 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2666 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2667 * for the appropriate container_of magic
2668 */
2669 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2670 {
2671 struct bio *bio;
2672
2673 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2674 bio->bi_bdev = bdev;
2675 bio->bi_iter.bi_sector = first_byte >> 9;
2676 btrfs_io_bio_init(btrfs_io_bio(bio));
2677 return bio;
2678 }
2679
2680 struct bio *btrfs_bio_clone(struct bio *bio)
2681 {
2682 struct btrfs_io_bio *btrfs_bio;
2683 struct bio *new;
2684
2685 /* Bio allocation backed by a bioset does not fail */
2686 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2687 btrfs_bio = btrfs_io_bio(new);
2688 btrfs_io_bio_init(btrfs_bio);
2689 btrfs_bio->iter = bio->bi_iter;
2690 return new;
2691 }
2692
2693 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2694 {
2695 struct bio *bio;
2696
2697 /* Bio allocation backed by a bioset does not fail */
2698 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2699 btrfs_io_bio_init(btrfs_io_bio(bio));
2700 return bio;
2701 }
2702
2703 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2704 {
2705 struct bio *bio;
2706 struct btrfs_io_bio *btrfs_bio;
2707
2708 /* this will never fail when it's backed by a bioset */
2709 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2710 ASSERT(bio);
2711
2712 btrfs_bio = btrfs_io_bio(bio);
2713 btrfs_io_bio_init(btrfs_bio);
2714
2715 bio_trim(bio, offset >> 9, size >> 9);
2716 btrfs_bio->iter = bio->bi_iter;
2717 return bio;
2718 }
2719
2720 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2721 unsigned long bio_flags)
2722 {
2723 int ret = 0;
2724 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2725 struct page *page = bvec->bv_page;
2726 struct extent_io_tree *tree = bio->bi_private;
2727 u64 start;
2728
2729 start = page_offset(page) + bvec->bv_offset;
2730
2731 bio->bi_private = NULL;
2732 bio_get(bio);
2733
2734 if (tree->ops)
2735 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2736 mirror_num, bio_flags, start);
2737 else
2738 btrfsic_submit_bio(bio);
2739
2740 bio_put(bio);
2741 return ret;
2742 }
2743
2744 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2745 unsigned long offset, size_t size, struct bio *bio,
2746 unsigned long bio_flags)
2747 {
2748 int ret = 0;
2749 if (tree->ops)
2750 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2751 bio_flags);
2752 return ret;
2753
2754 }
2755
2756 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2757 struct writeback_control *wbc,
2758 struct page *page, sector_t sector,
2759 size_t size, unsigned long offset,
2760 struct block_device *bdev,
2761 struct bio **bio_ret,
2762 bio_end_io_t end_io_func,
2763 int mirror_num,
2764 unsigned long prev_bio_flags,
2765 unsigned long bio_flags,
2766 bool force_bio_submit)
2767 {
2768 int ret = 0;
2769 struct bio *bio;
2770 int contig = 0;
2771 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2772 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2773
2774 if (bio_ret && *bio_ret) {
2775 bio = *bio_ret;
2776 if (old_compressed)
2777 contig = bio->bi_iter.bi_sector == sector;
2778 else
2779 contig = bio_end_sector(bio) == sector;
2780
2781 if (prev_bio_flags != bio_flags || !contig ||
2782 force_bio_submit ||
2783 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2784 bio_add_page(bio, page, page_size, offset) < page_size) {
2785 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2786 if (ret < 0) {
2787 *bio_ret = NULL;
2788 return ret;
2789 }
2790 bio = NULL;
2791 } else {
2792 if (wbc)
2793 wbc_account_io(wbc, page, page_size);
2794 return 0;
2795 }
2796 }
2797
2798 bio = btrfs_bio_alloc(bdev, sector << 9);
2799 bio_add_page(bio, page, page_size, offset);
2800 bio->bi_end_io = end_io_func;
2801 bio->bi_private = tree;
2802 bio_set_op_attrs(bio, op, op_flags);
2803 if (wbc) {
2804 wbc_init_bio(wbc, bio);
2805 wbc_account_io(wbc, page, page_size);
2806 }
2807
2808 if (bio_ret)
2809 *bio_ret = bio;
2810 else
2811 ret = submit_one_bio(bio, mirror_num, bio_flags);
2812
2813 return ret;
2814 }
2815
2816 static void attach_extent_buffer_page(struct extent_buffer *eb,
2817 struct page *page)
2818 {
2819 if (!PagePrivate(page)) {
2820 SetPagePrivate(page);
2821 get_page(page);
2822 set_page_private(page, (unsigned long)eb);
2823 } else {
2824 WARN_ON(page->private != (unsigned long)eb);
2825 }
2826 }
2827
2828 void set_page_extent_mapped(struct page *page)
2829 {
2830 if (!PagePrivate(page)) {
2831 SetPagePrivate(page);
2832 get_page(page);
2833 set_page_private(page, EXTENT_PAGE_PRIVATE);
2834 }
2835 }
2836
2837 static struct extent_map *
2838 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2839 u64 start, u64 len, get_extent_t *get_extent,
2840 struct extent_map **em_cached)
2841 {
2842 struct extent_map *em;
2843
2844 if (em_cached && *em_cached) {
2845 em = *em_cached;
2846 if (extent_map_in_tree(em) && start >= em->start &&
2847 start < extent_map_end(em)) {
2848 refcount_inc(&em->refs);
2849 return em;
2850 }
2851
2852 free_extent_map(em);
2853 *em_cached = NULL;
2854 }
2855
2856 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2857 if (em_cached && !IS_ERR_OR_NULL(em)) {
2858 BUG_ON(*em_cached);
2859 refcount_inc(&em->refs);
2860 *em_cached = em;
2861 }
2862 return em;
2863 }
2864 /*
2865 * basic readpage implementation. Locked extent state structs are inserted
2866 * into the tree that are removed when the IO is done (by the end_io
2867 * handlers)
2868 * XXX JDM: This needs looking at to ensure proper page locking
2869 * return 0 on success, otherwise return error
2870 */
2871 static int __do_readpage(struct extent_io_tree *tree,
2872 struct page *page,
2873 get_extent_t *get_extent,
2874 struct extent_map **em_cached,
2875 struct bio **bio, int mirror_num,
2876 unsigned long *bio_flags, int read_flags,
2877 u64 *prev_em_start)
2878 {
2879 struct inode *inode = page->mapping->host;
2880 u64 start = page_offset(page);
2881 u64 page_end = start + PAGE_SIZE - 1;
2882 u64 end;
2883 u64 cur = start;
2884 u64 extent_offset;
2885 u64 last_byte = i_size_read(inode);
2886 u64 block_start;
2887 u64 cur_end;
2888 sector_t sector;
2889 struct extent_map *em;
2890 struct block_device *bdev;
2891 int ret = 0;
2892 int nr = 0;
2893 size_t pg_offset = 0;
2894 size_t iosize;
2895 size_t disk_io_size;
2896 size_t blocksize = inode->i_sb->s_blocksize;
2897 unsigned long this_bio_flag = 0;
2898
2899 set_page_extent_mapped(page);
2900
2901 end = page_end;
2902 if (!PageUptodate(page)) {
2903 if (cleancache_get_page(page) == 0) {
2904 BUG_ON(blocksize != PAGE_SIZE);
2905 unlock_extent(tree, start, end);
2906 goto out;
2907 }
2908 }
2909
2910 if (page->index == last_byte >> PAGE_SHIFT) {
2911 char *userpage;
2912 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2913
2914 if (zero_offset) {
2915 iosize = PAGE_SIZE - zero_offset;
2916 userpage = kmap_atomic(page);
2917 memset(userpage + zero_offset, 0, iosize);
2918 flush_dcache_page(page);
2919 kunmap_atomic(userpage);
2920 }
2921 }
2922 while (cur <= end) {
2923 bool force_bio_submit = false;
2924
2925 if (cur >= last_byte) {
2926 char *userpage;
2927 struct extent_state *cached = NULL;
2928
2929 iosize = PAGE_SIZE - pg_offset;
2930 userpage = kmap_atomic(page);
2931 memset(userpage + pg_offset, 0, iosize);
2932 flush_dcache_page(page);
2933 kunmap_atomic(userpage);
2934 set_extent_uptodate(tree, cur, cur + iosize - 1,
2935 &cached, GFP_NOFS);
2936 unlock_extent_cached(tree, cur,
2937 cur + iosize - 1,
2938 &cached, GFP_NOFS);
2939 break;
2940 }
2941 em = __get_extent_map(inode, page, pg_offset, cur,
2942 end - cur + 1, get_extent, em_cached);
2943 if (IS_ERR_OR_NULL(em)) {
2944 SetPageError(page);
2945 unlock_extent(tree, cur, end);
2946 break;
2947 }
2948 extent_offset = cur - em->start;
2949 BUG_ON(extent_map_end(em) <= cur);
2950 BUG_ON(end < cur);
2951
2952 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2953 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2954 extent_set_compress_type(&this_bio_flag,
2955 em->compress_type);
2956 }
2957
2958 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2959 cur_end = min(extent_map_end(em) - 1, end);
2960 iosize = ALIGN(iosize, blocksize);
2961 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2962 disk_io_size = em->block_len;
2963 sector = em->block_start >> 9;
2964 } else {
2965 sector = (em->block_start + extent_offset) >> 9;
2966 disk_io_size = iosize;
2967 }
2968 bdev = em->bdev;
2969 block_start = em->block_start;
2970 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2971 block_start = EXTENT_MAP_HOLE;
2972
2973 /*
2974 * If we have a file range that points to a compressed extent
2975 * and it's followed by a consecutive file range that points to
2976 * to the same compressed extent (possibly with a different
2977 * offset and/or length, so it either points to the whole extent
2978 * or only part of it), we must make sure we do not submit a
2979 * single bio to populate the pages for the 2 ranges because
2980 * this makes the compressed extent read zero out the pages
2981 * belonging to the 2nd range. Imagine the following scenario:
2982 *
2983 * File layout
2984 * [0 - 8K] [8K - 24K]
2985 * | |
2986 * | |
2987 * points to extent X, points to extent X,
2988 * offset 4K, length of 8K offset 0, length 16K
2989 *
2990 * [extent X, compressed length = 4K uncompressed length = 16K]
2991 *
2992 * If the bio to read the compressed extent covers both ranges,
2993 * it will decompress extent X into the pages belonging to the
2994 * first range and then it will stop, zeroing out the remaining
2995 * pages that belong to the other range that points to extent X.
2996 * So here we make sure we submit 2 bios, one for the first
2997 * range and another one for the third range. Both will target
2998 * the same physical extent from disk, but we can't currently
2999 * make the compressed bio endio callback populate the pages
3000 * for both ranges because each compressed bio is tightly
3001 * coupled with a single extent map, and each range can have
3002 * an extent map with a different offset value relative to the
3003 * uncompressed data of our extent and different lengths. This
3004 * is a corner case so we prioritize correctness over
3005 * non-optimal behavior (submitting 2 bios for the same extent).
3006 */
3007 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3008 prev_em_start && *prev_em_start != (u64)-1 &&
3009 *prev_em_start != em->orig_start)
3010 force_bio_submit = true;
3011
3012 if (prev_em_start)
3013 *prev_em_start = em->orig_start;
3014
3015 free_extent_map(em);
3016 em = NULL;
3017
3018 /* we've found a hole, just zero and go on */
3019 if (block_start == EXTENT_MAP_HOLE) {
3020 char *userpage;
3021 struct extent_state *cached = NULL;
3022
3023 userpage = kmap_atomic(page);
3024 memset(userpage + pg_offset, 0, iosize);
3025 flush_dcache_page(page);
3026 kunmap_atomic(userpage);
3027
3028 set_extent_uptodate(tree, cur, cur + iosize - 1,
3029 &cached, GFP_NOFS);
3030 unlock_extent_cached(tree, cur,
3031 cur + iosize - 1,
3032 &cached, GFP_NOFS);
3033 cur = cur + iosize;
3034 pg_offset += iosize;
3035 continue;
3036 }
3037 /* the get_extent function already copied into the page */
3038 if (test_range_bit(tree, cur, cur_end,
3039 EXTENT_UPTODATE, 1, NULL)) {
3040 check_page_uptodate(tree, page);
3041 unlock_extent(tree, cur, cur + iosize - 1);
3042 cur = cur + iosize;
3043 pg_offset += iosize;
3044 continue;
3045 }
3046 /* we have an inline extent but it didn't get marked up
3047 * to date. Error out
3048 */
3049 if (block_start == EXTENT_MAP_INLINE) {
3050 SetPageError(page);
3051 unlock_extent(tree, cur, cur + iosize - 1);
3052 cur = cur + iosize;
3053 pg_offset += iosize;
3054 continue;
3055 }
3056
3057 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3058 page, sector, disk_io_size, pg_offset,
3059 bdev, bio,
3060 end_bio_extent_readpage, mirror_num,
3061 *bio_flags,
3062 this_bio_flag,
3063 force_bio_submit);
3064 if (!ret) {
3065 nr++;
3066 *bio_flags = this_bio_flag;
3067 } else {
3068 SetPageError(page);
3069 unlock_extent(tree, cur, cur + iosize - 1);
3070 goto out;
3071 }
3072 cur = cur + iosize;
3073 pg_offset += iosize;
3074 }
3075 out:
3076 if (!nr) {
3077 if (!PageError(page))
3078 SetPageUptodate(page);
3079 unlock_page(page);
3080 }
3081 return ret;
3082 }
3083
3084 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3085 struct page *pages[], int nr_pages,
3086 u64 start, u64 end,
3087 get_extent_t *get_extent,
3088 struct extent_map **em_cached,
3089 struct bio **bio, int mirror_num,
3090 unsigned long *bio_flags,
3091 u64 *prev_em_start)
3092 {
3093 struct inode *inode;
3094 struct btrfs_ordered_extent *ordered;
3095 int index;
3096
3097 inode = pages[0]->mapping->host;
3098 while (1) {
3099 lock_extent(tree, start, end);
3100 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3101 end - start + 1);
3102 if (!ordered)
3103 break;
3104 unlock_extent(tree, start, end);
3105 btrfs_start_ordered_extent(inode, ordered, 1);
3106 btrfs_put_ordered_extent(ordered);
3107 }
3108
3109 for (index = 0; index < nr_pages; index++) {
3110 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3111 mirror_num, bio_flags, 0, prev_em_start);
3112 put_page(pages[index]);
3113 }
3114 }
3115
3116 static void __extent_readpages(struct extent_io_tree *tree,
3117 struct page *pages[],
3118 int nr_pages, get_extent_t *get_extent,
3119 struct extent_map **em_cached,
3120 struct bio **bio, int mirror_num,
3121 unsigned long *bio_flags,
3122 u64 *prev_em_start)
3123 {
3124 u64 start = 0;
3125 u64 end = 0;
3126 u64 page_start;
3127 int index;
3128 int first_index = 0;
3129
3130 for (index = 0; index < nr_pages; index++) {
3131 page_start = page_offset(pages[index]);
3132 if (!end) {
3133 start = page_start;
3134 end = start + PAGE_SIZE - 1;
3135 first_index = index;
3136 } else if (end + 1 == page_start) {
3137 end += PAGE_SIZE;
3138 } else {
3139 __do_contiguous_readpages(tree, &pages[first_index],
3140 index - first_index, start,
3141 end, get_extent, em_cached,
3142 bio, mirror_num, bio_flags,
3143 prev_em_start);
3144 start = page_start;
3145 end = start + PAGE_SIZE - 1;
3146 first_index = index;
3147 }
3148 }
3149
3150 if (end)
3151 __do_contiguous_readpages(tree, &pages[first_index],
3152 index - first_index, start,
3153 end, get_extent, em_cached, bio,
3154 mirror_num, bio_flags,
3155 prev_em_start);
3156 }
3157
3158 static int __extent_read_full_page(struct extent_io_tree *tree,
3159 struct page *page,
3160 get_extent_t *get_extent,
3161 struct bio **bio, int mirror_num,
3162 unsigned long *bio_flags, int read_flags)
3163 {
3164 struct inode *inode = page->mapping->host;
3165 struct btrfs_ordered_extent *ordered;
3166 u64 start = page_offset(page);
3167 u64 end = start + PAGE_SIZE - 1;
3168 int ret;
3169
3170 while (1) {
3171 lock_extent(tree, start, end);
3172 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3173 PAGE_SIZE);
3174 if (!ordered)
3175 break;
3176 unlock_extent(tree, start, end);
3177 btrfs_start_ordered_extent(inode, ordered, 1);
3178 btrfs_put_ordered_extent(ordered);
3179 }
3180
3181 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3182 bio_flags, read_flags, NULL);
3183 return ret;
3184 }
3185
3186 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3187 get_extent_t *get_extent, int mirror_num)
3188 {
3189 struct bio *bio = NULL;
3190 unsigned long bio_flags = 0;
3191 int ret;
3192
3193 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3194 &bio_flags, 0);
3195 if (bio)
3196 ret = submit_one_bio(bio, mirror_num, bio_flags);
3197 return ret;
3198 }
3199
3200 static void update_nr_written(struct writeback_control *wbc,
3201 unsigned long nr_written)
3202 {
3203 wbc->nr_to_write -= nr_written;
3204 }
3205
3206 /*
3207 * helper for __extent_writepage, doing all of the delayed allocation setup.
3208 *
3209 * This returns 1 if our fill_delalloc function did all the work required
3210 * to write the page (copy into inline extent). In this case the IO has
3211 * been started and the page is already unlocked.
3212 *
3213 * This returns 0 if all went well (page still locked)
3214 * This returns < 0 if there were errors (page still locked)
3215 */
3216 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3217 struct page *page, struct writeback_control *wbc,
3218 struct extent_page_data *epd,
3219 u64 delalloc_start,
3220 unsigned long *nr_written)
3221 {
3222 struct extent_io_tree *tree = epd->tree;
3223 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3224 u64 nr_delalloc;
3225 u64 delalloc_to_write = 0;
3226 u64 delalloc_end = 0;
3227 int ret;
3228 int page_started = 0;
3229
3230 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3231 return 0;
3232
3233 while (delalloc_end < page_end) {
3234 nr_delalloc = find_lock_delalloc_range(inode, tree,
3235 page,
3236 &delalloc_start,
3237 &delalloc_end,
3238 BTRFS_MAX_EXTENT_SIZE);
3239 if (nr_delalloc == 0) {
3240 delalloc_start = delalloc_end + 1;
3241 continue;
3242 }
3243 ret = tree->ops->fill_delalloc(inode, page,
3244 delalloc_start,
3245 delalloc_end,
3246 &page_started,
3247 nr_written);
3248 /* File system has been set read-only */
3249 if (ret) {
3250 SetPageError(page);
3251 /* fill_delalloc should be return < 0 for error
3252 * but just in case, we use > 0 here meaning the
3253 * IO is started, so we don't want to return > 0
3254 * unless things are going well.
3255 */
3256 ret = ret < 0 ? ret : -EIO;
3257 goto done;
3258 }
3259 /*
3260 * delalloc_end is already one less than the total length, so
3261 * we don't subtract one from PAGE_SIZE
3262 */
3263 delalloc_to_write += (delalloc_end - delalloc_start +
3264 PAGE_SIZE) >> PAGE_SHIFT;
3265 delalloc_start = delalloc_end + 1;
3266 }
3267 if (wbc->nr_to_write < delalloc_to_write) {
3268 int thresh = 8192;
3269
3270 if (delalloc_to_write < thresh * 2)
3271 thresh = delalloc_to_write;
3272 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3273 thresh);
3274 }
3275
3276 /* did the fill delalloc function already unlock and start
3277 * the IO?
3278 */
3279 if (page_started) {
3280 /*
3281 * we've unlocked the page, so we can't update
3282 * the mapping's writeback index, just update
3283 * nr_to_write.
3284 */
3285 wbc->nr_to_write -= *nr_written;
3286 return 1;
3287 }
3288
3289 ret = 0;
3290
3291 done:
3292 return ret;
3293 }
3294
3295 /*
3296 * helper for __extent_writepage. This calls the writepage start hooks,
3297 * and does the loop to map the page into extents and bios.
3298 *
3299 * We return 1 if the IO is started and the page is unlocked,
3300 * 0 if all went well (page still locked)
3301 * < 0 if there were errors (page still locked)
3302 */
3303 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3304 struct page *page,
3305 struct writeback_control *wbc,
3306 struct extent_page_data *epd,
3307 loff_t i_size,
3308 unsigned long nr_written,
3309 int write_flags, int *nr_ret)
3310 {
3311 struct extent_io_tree *tree = epd->tree;
3312 u64 start = page_offset(page);
3313 u64 page_end = start + PAGE_SIZE - 1;
3314 u64 end;
3315 u64 cur = start;
3316 u64 extent_offset;
3317 u64 block_start;
3318 u64 iosize;
3319 sector_t sector;
3320 struct extent_map *em;
3321 struct block_device *bdev;
3322 size_t pg_offset = 0;
3323 size_t blocksize;
3324 int ret = 0;
3325 int nr = 0;
3326 bool compressed;
3327
3328 if (tree->ops && tree->ops->writepage_start_hook) {
3329 ret = tree->ops->writepage_start_hook(page, start,
3330 page_end);
3331 if (ret) {
3332 /* Fixup worker will requeue */
3333 if (ret == -EBUSY)
3334 wbc->pages_skipped++;
3335 else
3336 redirty_page_for_writepage(wbc, page);
3337
3338 update_nr_written(wbc, nr_written);
3339 unlock_page(page);
3340 return 1;
3341 }
3342 }
3343
3344 /*
3345 * we don't want to touch the inode after unlocking the page,
3346 * so we update the mapping writeback index now
3347 */
3348 update_nr_written(wbc, nr_written + 1);
3349
3350 end = page_end;
3351 if (i_size <= start) {
3352 if (tree->ops && tree->ops->writepage_end_io_hook)
3353 tree->ops->writepage_end_io_hook(page, start,
3354 page_end, NULL, 1);
3355 goto done;
3356 }
3357
3358 blocksize = inode->i_sb->s_blocksize;
3359
3360 while (cur <= end) {
3361 u64 em_end;
3362
3363 if (cur >= i_size) {
3364 if (tree->ops && tree->ops->writepage_end_io_hook)
3365 tree->ops->writepage_end_io_hook(page, cur,
3366 page_end, NULL, 1);
3367 break;
3368 }
3369 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3370 end - cur + 1, 1);
3371 if (IS_ERR_OR_NULL(em)) {
3372 SetPageError(page);
3373 ret = PTR_ERR_OR_ZERO(em);
3374 break;
3375 }
3376
3377 extent_offset = cur - em->start;
3378 em_end = extent_map_end(em);
3379 BUG_ON(em_end <= cur);
3380 BUG_ON(end < cur);
3381 iosize = min(em_end - cur, end - cur + 1);
3382 iosize = ALIGN(iosize, blocksize);
3383 sector = (em->block_start + extent_offset) >> 9;
3384 bdev = em->bdev;
3385 block_start = em->block_start;
3386 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3387 free_extent_map(em);
3388 em = NULL;
3389
3390 /*
3391 * compressed and inline extents are written through other
3392 * paths in the FS
3393 */
3394 if (compressed || block_start == EXTENT_MAP_HOLE ||
3395 block_start == EXTENT_MAP_INLINE) {
3396 /*
3397 * end_io notification does not happen here for
3398 * compressed extents
3399 */
3400 if (!compressed && tree->ops &&
3401 tree->ops->writepage_end_io_hook)
3402 tree->ops->writepage_end_io_hook(page, cur,
3403 cur + iosize - 1,
3404 NULL, 1);
3405 else if (compressed) {
3406 /* we don't want to end_page_writeback on
3407 * a compressed extent. this happens
3408 * elsewhere
3409 */
3410 nr++;
3411 }
3412
3413 cur += iosize;
3414 pg_offset += iosize;
3415 continue;
3416 }
3417
3418 set_range_writeback(tree, cur, cur + iosize - 1);
3419 if (!PageWriteback(page)) {
3420 btrfs_err(BTRFS_I(inode)->root->fs_info,
3421 "page %lu not writeback, cur %llu end %llu",
3422 page->index, cur, end);
3423 }
3424
3425 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3426 page, sector, iosize, pg_offset,
3427 bdev, &epd->bio,
3428 end_bio_extent_writepage,
3429 0, 0, 0, false);
3430 if (ret) {
3431 SetPageError(page);
3432 if (PageWriteback(page))
3433 end_page_writeback(page);
3434 }
3435
3436 cur = cur + iosize;
3437 pg_offset += iosize;
3438 nr++;
3439 }
3440 done:
3441 *nr_ret = nr;
3442 return ret;
3443 }
3444
3445 /*
3446 * the writepage semantics are similar to regular writepage. extent
3447 * records are inserted to lock ranges in the tree, and as dirty areas
3448 * are found, they are marked writeback. Then the lock bits are removed
3449 * and the end_io handler clears the writeback ranges
3450 */
3451 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3452 void *data)
3453 {
3454 struct inode *inode = page->mapping->host;
3455 struct extent_page_data *epd = data;
3456 u64 start = page_offset(page);
3457 u64 page_end = start + PAGE_SIZE - 1;
3458 int ret;
3459 int nr = 0;
3460 size_t pg_offset = 0;
3461 loff_t i_size = i_size_read(inode);
3462 unsigned long end_index = i_size >> PAGE_SHIFT;
3463 int write_flags = 0;
3464 unsigned long nr_written = 0;
3465
3466 if (wbc->sync_mode == WB_SYNC_ALL)
3467 write_flags = REQ_SYNC;
3468
3469 trace___extent_writepage(page, inode, wbc);
3470
3471 WARN_ON(!PageLocked(page));
3472
3473 ClearPageError(page);
3474
3475 pg_offset = i_size & (PAGE_SIZE - 1);
3476 if (page->index > end_index ||
3477 (page->index == end_index && !pg_offset)) {
3478 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3479 unlock_page(page);
3480 return 0;
3481 }
3482
3483 if (page->index == end_index) {
3484 char *userpage;
3485
3486 userpage = kmap_atomic(page);
3487 memset(userpage + pg_offset, 0,
3488 PAGE_SIZE - pg_offset);
3489 kunmap_atomic(userpage);
3490 flush_dcache_page(page);
3491 }
3492
3493 pg_offset = 0;
3494
3495 set_page_extent_mapped(page);
3496
3497 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3498 if (ret == 1)
3499 goto done_unlocked;
3500 if (ret)
3501 goto done;
3502
3503 ret = __extent_writepage_io(inode, page, wbc, epd,
3504 i_size, nr_written, write_flags, &nr);
3505 if (ret == 1)
3506 goto done_unlocked;
3507
3508 done:
3509 if (nr == 0) {
3510 /* make sure the mapping tag for page dirty gets cleared */
3511 set_page_writeback(page);
3512 end_page_writeback(page);
3513 }
3514 if (PageError(page)) {
3515 ret = ret < 0 ? ret : -EIO;
3516 end_extent_writepage(page, ret, start, page_end);
3517 }
3518 unlock_page(page);
3519 return ret;
3520
3521 done_unlocked:
3522 return 0;
3523 }
3524
3525 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3526 {
3527 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3528 TASK_UNINTERRUPTIBLE);
3529 }
3530
3531 static noinline_for_stack int
3532 lock_extent_buffer_for_io(struct extent_buffer *eb,
3533 struct btrfs_fs_info *fs_info,
3534 struct extent_page_data *epd)
3535 {
3536 unsigned long i, num_pages;
3537 int flush = 0;
3538 int ret = 0;
3539
3540 if (!btrfs_try_tree_write_lock(eb)) {
3541 flush = 1;
3542 flush_write_bio(epd);
3543 btrfs_tree_lock(eb);
3544 }
3545
3546 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3547 btrfs_tree_unlock(eb);
3548 if (!epd->sync_io)
3549 return 0;
3550 if (!flush) {
3551 flush_write_bio(epd);
3552 flush = 1;
3553 }
3554 while (1) {
3555 wait_on_extent_buffer_writeback(eb);
3556 btrfs_tree_lock(eb);
3557 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3558 break;
3559 btrfs_tree_unlock(eb);
3560 }
3561 }
3562
3563 /*
3564 * We need to do this to prevent races in people who check if the eb is
3565 * under IO since we can end up having no IO bits set for a short period
3566 * of time.
3567 */
3568 spin_lock(&eb->refs_lock);
3569 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3570 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3571 spin_unlock(&eb->refs_lock);
3572 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3573 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3574 -eb->len,
3575 fs_info->dirty_metadata_batch);
3576 ret = 1;
3577 } else {
3578 spin_unlock(&eb->refs_lock);
3579 }
3580
3581 btrfs_tree_unlock(eb);
3582
3583 if (!ret)
3584 return ret;
3585
3586 num_pages = num_extent_pages(eb->start, eb->len);
3587 for (i = 0; i < num_pages; i++) {
3588 struct page *p = eb->pages[i];
3589
3590 if (!trylock_page(p)) {
3591 if (!flush) {
3592 flush_write_bio(epd);
3593 flush = 1;
3594 }
3595 lock_page(p);
3596 }
3597 }
3598
3599 return ret;
3600 }
3601
3602 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3603 {
3604 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3605 smp_mb__after_atomic();
3606 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3607 }
3608
3609 static void set_btree_ioerr(struct page *page)
3610 {
3611 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3612
3613 SetPageError(page);
3614 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3615 return;
3616
3617 /*
3618 * If writeback for a btree extent that doesn't belong to a log tree
3619 * failed, increment the counter transaction->eb_write_errors.
3620 * We do this because while the transaction is running and before it's
3621 * committing (when we call filemap_fdata[write|wait]_range against
3622 * the btree inode), we might have
3623 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3624 * returns an error or an error happens during writeback, when we're
3625 * committing the transaction we wouldn't know about it, since the pages
3626 * can be no longer dirty nor marked anymore for writeback (if a
3627 * subsequent modification to the extent buffer didn't happen before the
3628 * transaction commit), which makes filemap_fdata[write|wait]_range not
3629 * able to find the pages tagged with SetPageError at transaction
3630 * commit time. So if this happens we must abort the transaction,
3631 * otherwise we commit a super block with btree roots that point to
3632 * btree nodes/leafs whose content on disk is invalid - either garbage
3633 * or the content of some node/leaf from a past generation that got
3634 * cowed or deleted and is no longer valid.
3635 *
3636 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3637 * not be enough - we need to distinguish between log tree extents vs
3638 * non-log tree extents, and the next filemap_fdatawait_range() call
3639 * will catch and clear such errors in the mapping - and that call might
3640 * be from a log sync and not from a transaction commit. Also, checking
3641 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3642 * not done and would not be reliable - the eb might have been released
3643 * from memory and reading it back again means that flag would not be
3644 * set (since it's a runtime flag, not persisted on disk).
3645 *
3646 * Using the flags below in the btree inode also makes us achieve the
3647 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3648 * writeback for all dirty pages and before filemap_fdatawait_range()
3649 * is called, the writeback for all dirty pages had already finished
3650 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3651 * filemap_fdatawait_range() would return success, as it could not know
3652 * that writeback errors happened (the pages were no longer tagged for
3653 * writeback).
3654 */
3655 switch (eb->log_index) {
3656 case -1:
3657 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3658 break;
3659 case 0:
3660 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3661 break;
3662 case 1:
3663 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3664 break;
3665 default:
3666 BUG(); /* unexpected, logic error */
3667 }
3668 }
3669
3670 static void end_bio_extent_buffer_writepage(struct bio *bio)
3671 {
3672 struct bio_vec *bvec;
3673 struct extent_buffer *eb;
3674 int i, done;
3675
3676 ASSERT(!bio_flagged(bio, BIO_CLONED));
3677 bio_for_each_segment_all(bvec, bio, i) {
3678 struct page *page = bvec->bv_page;
3679
3680 eb = (struct extent_buffer *)page->private;
3681 BUG_ON(!eb);
3682 done = atomic_dec_and_test(&eb->io_pages);
3683
3684 if (bio->bi_error ||
3685 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3686 ClearPageUptodate(page);
3687 set_btree_ioerr(page);
3688 }
3689
3690 end_page_writeback(page);
3691
3692 if (!done)
3693 continue;
3694
3695 end_extent_buffer_writeback(eb);
3696 }
3697
3698 bio_put(bio);
3699 }
3700
3701 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3702 struct btrfs_fs_info *fs_info,
3703 struct writeback_control *wbc,
3704 struct extent_page_data *epd)
3705 {
3706 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3707 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3708 u64 offset = eb->start;
3709 u32 nritems;
3710 unsigned long i, num_pages;
3711 unsigned long bio_flags = 0;
3712 unsigned long start, end;
3713 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3714 int ret = 0;
3715
3716 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3717 num_pages = num_extent_pages(eb->start, eb->len);
3718 atomic_set(&eb->io_pages, num_pages);
3719 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3720 bio_flags = EXTENT_BIO_TREE_LOG;
3721
3722 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3723 nritems = btrfs_header_nritems(eb);
3724 if (btrfs_header_level(eb) > 0) {
3725 end = btrfs_node_key_ptr_offset(nritems);
3726
3727 memzero_extent_buffer(eb, end, eb->len - end);
3728 } else {
3729 /*
3730 * leaf:
3731 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3732 */
3733 start = btrfs_item_nr_offset(nritems);
3734 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3735 memzero_extent_buffer(eb, start, end - start);
3736 }
3737
3738 for (i = 0; i < num_pages; i++) {
3739 struct page *p = eb->pages[i];
3740
3741 clear_page_dirty_for_io(p);
3742 set_page_writeback(p);
3743 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3744 p, offset >> 9, PAGE_SIZE, 0, bdev,
3745 &epd->bio,
3746 end_bio_extent_buffer_writepage,
3747 0, epd->bio_flags, bio_flags, false);
3748 epd->bio_flags = bio_flags;
3749 if (ret) {
3750 set_btree_ioerr(p);
3751 if (PageWriteback(p))
3752 end_page_writeback(p);
3753 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3754 end_extent_buffer_writeback(eb);
3755 ret = -EIO;
3756 break;
3757 }
3758 offset += PAGE_SIZE;
3759 update_nr_written(wbc, 1);
3760 unlock_page(p);
3761 }
3762
3763 if (unlikely(ret)) {
3764 for (; i < num_pages; i++) {
3765 struct page *p = eb->pages[i];
3766 clear_page_dirty_for_io(p);
3767 unlock_page(p);
3768 }
3769 }
3770
3771 return ret;
3772 }
3773
3774 int btree_write_cache_pages(struct address_space *mapping,
3775 struct writeback_control *wbc)
3776 {
3777 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3778 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3779 struct extent_buffer *eb, *prev_eb = NULL;
3780 struct extent_page_data epd = {
3781 .bio = NULL,
3782 .tree = tree,
3783 .extent_locked = 0,
3784 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3785 .bio_flags = 0,
3786 };
3787 int ret = 0;
3788 int done = 0;
3789 int nr_to_write_done = 0;
3790 struct pagevec pvec;
3791 int nr_pages;
3792 pgoff_t index;
3793 pgoff_t end; /* Inclusive */
3794 int scanned = 0;
3795 int tag;
3796
3797 pagevec_init(&pvec, 0);
3798 if (wbc->range_cyclic) {
3799 index = mapping->writeback_index; /* Start from prev offset */
3800 end = -1;
3801 } else {
3802 index = wbc->range_start >> PAGE_SHIFT;
3803 end = wbc->range_end >> PAGE_SHIFT;
3804 scanned = 1;
3805 }
3806 if (wbc->sync_mode == WB_SYNC_ALL)
3807 tag = PAGECACHE_TAG_TOWRITE;
3808 else
3809 tag = PAGECACHE_TAG_DIRTY;
3810 retry:
3811 if (wbc->sync_mode == WB_SYNC_ALL)
3812 tag_pages_for_writeback(mapping, index, end);
3813 while (!done && !nr_to_write_done && (index <= end) &&
3814 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3815 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3816 unsigned i;
3817
3818 scanned = 1;
3819 for (i = 0; i < nr_pages; i++) {
3820 struct page *page = pvec.pages[i];
3821
3822 if (!PagePrivate(page))
3823 continue;
3824
3825 if (!wbc->range_cyclic && page->index > end) {
3826 done = 1;
3827 break;
3828 }
3829
3830 spin_lock(&mapping->private_lock);
3831 if (!PagePrivate(page)) {
3832 spin_unlock(&mapping->private_lock);
3833 continue;
3834 }
3835
3836 eb = (struct extent_buffer *)page->private;
3837
3838 /*
3839 * Shouldn't happen and normally this would be a BUG_ON
3840 * but no sense in crashing the users box for something
3841 * we can survive anyway.
3842 */
3843 if (WARN_ON(!eb)) {
3844 spin_unlock(&mapping->private_lock);
3845 continue;
3846 }
3847
3848 if (eb == prev_eb) {
3849 spin_unlock(&mapping->private_lock);
3850 continue;
3851 }
3852
3853 ret = atomic_inc_not_zero(&eb->refs);
3854 spin_unlock(&mapping->private_lock);
3855 if (!ret)
3856 continue;
3857
3858 prev_eb = eb;
3859 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3860 if (!ret) {
3861 free_extent_buffer(eb);
3862 continue;
3863 }
3864
3865 ret = write_one_eb(eb, fs_info, wbc, &epd);
3866 if (ret) {
3867 done = 1;
3868 free_extent_buffer(eb);
3869 break;
3870 }
3871 free_extent_buffer(eb);
3872
3873 /*
3874 * the filesystem may choose to bump up nr_to_write.
3875 * We have to make sure to honor the new nr_to_write
3876 * at any time
3877 */
3878 nr_to_write_done = wbc->nr_to_write <= 0;
3879 }
3880 pagevec_release(&pvec);
3881 cond_resched();
3882 }
3883 if (!scanned && !done) {
3884 /*
3885 * We hit the last page and there is more work to be done: wrap
3886 * back to the start of the file
3887 */
3888 scanned = 1;
3889 index = 0;
3890 goto retry;
3891 }
3892 flush_write_bio(&epd);
3893 return ret;
3894 }
3895
3896 /**
3897 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3898 * @mapping: address space structure to write
3899 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3900 * @writepage: function called for each page
3901 * @data: data passed to writepage function
3902 *
3903 * If a page is already under I/O, write_cache_pages() skips it, even
3904 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3905 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3906 * and msync() need to guarantee that all the data which was dirty at the time
3907 * the call was made get new I/O started against them. If wbc->sync_mode is
3908 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3909 * existing IO to complete.
3910 */
3911 static int extent_write_cache_pages(struct address_space *mapping,
3912 struct writeback_control *wbc,
3913 writepage_t writepage, void *data,
3914 void (*flush_fn)(void *))
3915 {
3916 struct inode *inode = mapping->host;
3917 int ret = 0;
3918 int done = 0;
3919 int nr_to_write_done = 0;
3920 struct pagevec pvec;
3921 int nr_pages;
3922 pgoff_t index;
3923 pgoff_t end; /* Inclusive */
3924 pgoff_t done_index;
3925 int range_whole = 0;
3926 int scanned = 0;
3927 int tag;
3928
3929 /*
3930 * We have to hold onto the inode so that ordered extents can do their
3931 * work when the IO finishes. The alternative to this is failing to add
3932 * an ordered extent if the igrab() fails there and that is a huge pain
3933 * to deal with, so instead just hold onto the inode throughout the
3934 * writepages operation. If it fails here we are freeing up the inode
3935 * anyway and we'd rather not waste our time writing out stuff that is
3936 * going to be truncated anyway.
3937 */
3938 if (!igrab(inode))
3939 return 0;
3940
3941 pagevec_init(&pvec, 0);
3942 if (wbc->range_cyclic) {
3943 index = mapping->writeback_index; /* Start from prev offset */
3944 end = -1;
3945 } else {
3946 index = wbc->range_start >> PAGE_SHIFT;
3947 end = wbc->range_end >> PAGE_SHIFT;
3948 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3949 range_whole = 1;
3950 scanned = 1;
3951 }
3952 if (wbc->sync_mode == WB_SYNC_ALL)
3953 tag = PAGECACHE_TAG_TOWRITE;
3954 else
3955 tag = PAGECACHE_TAG_DIRTY;
3956 retry:
3957 if (wbc->sync_mode == WB_SYNC_ALL)
3958 tag_pages_for_writeback(mapping, index, end);
3959 done_index = index;
3960 while (!done && !nr_to_write_done && (index <= end) &&
3961 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3962 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3963 unsigned i;
3964
3965 scanned = 1;
3966 for (i = 0; i < nr_pages; i++) {
3967 struct page *page = pvec.pages[i];
3968
3969 done_index = page->index;
3970 /*
3971 * At this point we hold neither mapping->tree_lock nor
3972 * lock on the page itself: the page may be truncated or
3973 * invalidated (changing page->mapping to NULL), or even
3974 * swizzled back from swapper_space to tmpfs file
3975 * mapping
3976 */
3977 if (!trylock_page(page)) {
3978 flush_fn(data);
3979 lock_page(page);
3980 }
3981
3982 if (unlikely(page->mapping != mapping)) {
3983 unlock_page(page);
3984 continue;
3985 }
3986
3987 if (!wbc->range_cyclic && page->index > end) {
3988 done = 1;
3989 unlock_page(page);
3990 continue;
3991 }
3992
3993 if (wbc->sync_mode != WB_SYNC_NONE) {
3994 if (PageWriteback(page))
3995 flush_fn(data);
3996 wait_on_page_writeback(page);
3997 }
3998
3999 if (PageWriteback(page) ||
4000 !clear_page_dirty_for_io(page)) {
4001 unlock_page(page);
4002 continue;
4003 }
4004
4005 ret = (*writepage)(page, wbc, data);
4006
4007 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4008 unlock_page(page);
4009 ret = 0;
4010 }
4011 if (ret < 0) {
4012 /*
4013 * done_index is set past this page,
4014 * so media errors will not choke
4015 * background writeout for the entire
4016 * file. This has consequences for
4017 * range_cyclic semantics (ie. it may
4018 * not be suitable for data integrity
4019 * writeout).
4020 */
4021 done_index = page->index + 1;
4022 done = 1;
4023 break;
4024 }
4025
4026 /*
4027 * the filesystem may choose to bump up nr_to_write.
4028 * We have to make sure to honor the new nr_to_write
4029 * at any time
4030 */
4031 nr_to_write_done = wbc->nr_to_write <= 0;
4032 }
4033 pagevec_release(&pvec);
4034 cond_resched();
4035 }
4036 if (!scanned && !done) {
4037 /*
4038 * We hit the last page and there is more work to be done: wrap
4039 * back to the start of the file
4040 */
4041 scanned = 1;
4042 index = 0;
4043 goto retry;
4044 }
4045
4046 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4047 mapping->writeback_index = done_index;
4048
4049 btrfs_add_delayed_iput(inode);
4050 return ret;
4051 }
4052
4053 static void flush_epd_write_bio(struct extent_page_data *epd)
4054 {
4055 if (epd->bio) {
4056 int ret;
4057
4058 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4059 epd->sync_io ? REQ_SYNC : 0);
4060
4061 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4062 BUG_ON(ret < 0); /* -ENOMEM */
4063 epd->bio = NULL;
4064 }
4065 }
4066
4067 static noinline void flush_write_bio(void *data)
4068 {
4069 struct extent_page_data *epd = data;
4070 flush_epd_write_bio(epd);
4071 }
4072
4073 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4074 get_extent_t *get_extent,
4075 struct writeback_control *wbc)
4076 {
4077 int ret;
4078 struct extent_page_data epd = {
4079 .bio = NULL,
4080 .tree = tree,
4081 .get_extent = get_extent,
4082 .extent_locked = 0,
4083 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4084 .bio_flags = 0,
4085 };
4086
4087 ret = __extent_writepage(page, wbc, &epd);
4088
4089 flush_epd_write_bio(&epd);
4090 return ret;
4091 }
4092
4093 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4094 u64 start, u64 end, get_extent_t *get_extent,
4095 int mode)
4096 {
4097 int ret = 0;
4098 struct address_space *mapping = inode->i_mapping;
4099 struct page *page;
4100 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4101 PAGE_SHIFT;
4102
4103 struct extent_page_data epd = {
4104 .bio = NULL,
4105 .tree = tree,
4106 .get_extent = get_extent,
4107 .extent_locked = 1,
4108 .sync_io = mode == WB_SYNC_ALL,
4109 .bio_flags = 0,
4110 };
4111 struct writeback_control wbc_writepages = {
4112 .sync_mode = mode,
4113 .nr_to_write = nr_pages * 2,
4114 .range_start = start,
4115 .range_end = end + 1,
4116 };
4117
4118 while (start <= end) {
4119 page = find_get_page(mapping, start >> PAGE_SHIFT);
4120 if (clear_page_dirty_for_io(page))
4121 ret = __extent_writepage(page, &wbc_writepages, &epd);
4122 else {
4123 if (tree->ops && tree->ops->writepage_end_io_hook)
4124 tree->ops->writepage_end_io_hook(page, start,
4125 start + PAGE_SIZE - 1,
4126 NULL, 1);
4127 unlock_page(page);
4128 }
4129 put_page(page);
4130 start += PAGE_SIZE;
4131 }
4132
4133 flush_epd_write_bio(&epd);
4134 return ret;
4135 }
4136
4137 int extent_writepages(struct extent_io_tree *tree,
4138 struct address_space *mapping,
4139 get_extent_t *get_extent,
4140 struct writeback_control *wbc)
4141 {
4142 int ret = 0;
4143 struct extent_page_data epd = {
4144 .bio = NULL,
4145 .tree = tree,
4146 .get_extent = get_extent,
4147 .extent_locked = 0,
4148 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4149 .bio_flags = 0,
4150 };
4151
4152 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4153 flush_write_bio);
4154 flush_epd_write_bio(&epd);
4155 return ret;
4156 }
4157
4158 int extent_readpages(struct extent_io_tree *tree,
4159 struct address_space *mapping,
4160 struct list_head *pages, unsigned nr_pages,
4161 get_extent_t get_extent)
4162 {
4163 struct bio *bio = NULL;
4164 unsigned page_idx;
4165 unsigned long bio_flags = 0;
4166 struct page *pagepool[16];
4167 struct page *page;
4168 struct extent_map *em_cached = NULL;
4169 int nr = 0;
4170 u64 prev_em_start = (u64)-1;
4171
4172 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4173 page = list_entry(pages->prev, struct page, lru);
4174
4175 prefetchw(&page->flags);
4176 list_del(&page->lru);
4177 if (add_to_page_cache_lru(page, mapping,
4178 page->index,
4179 readahead_gfp_mask(mapping))) {
4180 put_page(page);
4181 continue;
4182 }
4183
4184 pagepool[nr++] = page;
4185 if (nr < ARRAY_SIZE(pagepool))
4186 continue;
4187 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4188 &bio, 0, &bio_flags, &prev_em_start);
4189 nr = 0;
4190 }
4191 if (nr)
4192 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4193 &bio, 0, &bio_flags, &prev_em_start);
4194
4195 if (em_cached)
4196 free_extent_map(em_cached);
4197
4198 BUG_ON(!list_empty(pages));
4199 if (bio)
4200 return submit_one_bio(bio, 0, bio_flags);
4201 return 0;
4202 }
4203
4204 /*
4205 * basic invalidatepage code, this waits on any locked or writeback
4206 * ranges corresponding to the page, and then deletes any extent state
4207 * records from the tree
4208 */
4209 int extent_invalidatepage(struct extent_io_tree *tree,
4210 struct page *page, unsigned long offset)
4211 {
4212 struct extent_state *cached_state = NULL;
4213 u64 start = page_offset(page);
4214 u64 end = start + PAGE_SIZE - 1;
4215 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4216
4217 start += ALIGN(offset, blocksize);
4218 if (start > end)
4219 return 0;
4220
4221 lock_extent_bits(tree, start, end, &cached_state);
4222 wait_on_page_writeback(page);
4223 clear_extent_bit(tree, start, end,
4224 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4225 EXTENT_DO_ACCOUNTING,
4226 1, 1, &cached_state, GFP_NOFS);
4227 return 0;
4228 }
4229
4230 /*
4231 * a helper for releasepage, this tests for areas of the page that
4232 * are locked or under IO and drops the related state bits if it is safe
4233 * to drop the page.
4234 */
4235 static int try_release_extent_state(struct extent_map_tree *map,
4236 struct extent_io_tree *tree,
4237 struct page *page, gfp_t mask)
4238 {
4239 u64 start = page_offset(page);
4240 u64 end = start + PAGE_SIZE - 1;
4241 int ret = 1;
4242
4243 if (test_range_bit(tree, start, end,
4244 EXTENT_IOBITS, 0, NULL))
4245 ret = 0;
4246 else {
4247 /*
4248 * at this point we can safely clear everything except the
4249 * locked bit and the nodatasum bit
4250 */
4251 ret = clear_extent_bit(tree, start, end,
4252 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4253 0, 0, NULL, mask);
4254
4255 /* if clear_extent_bit failed for enomem reasons,
4256 * we can't allow the release to continue.
4257 */
4258 if (ret < 0)
4259 ret = 0;
4260 else
4261 ret = 1;
4262 }
4263 return ret;
4264 }
4265
4266 /*
4267 * a helper for releasepage. As long as there are no locked extents
4268 * in the range corresponding to the page, both state records and extent
4269 * map records are removed
4270 */
4271 int try_release_extent_mapping(struct extent_map_tree *map,
4272 struct extent_io_tree *tree, struct page *page,
4273 gfp_t mask)
4274 {
4275 struct extent_map *em;
4276 u64 start = page_offset(page);
4277 u64 end = start + PAGE_SIZE - 1;
4278
4279 if (gfpflags_allow_blocking(mask) &&
4280 page->mapping->host->i_size > SZ_16M) {
4281 u64 len;
4282 while (start <= end) {
4283 len = end - start + 1;
4284 write_lock(&map->lock);
4285 em = lookup_extent_mapping(map, start, len);
4286 if (!em) {
4287 write_unlock(&map->lock);
4288 break;
4289 }
4290 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4291 em->start != start) {
4292 write_unlock(&map->lock);
4293 free_extent_map(em);
4294 break;
4295 }
4296 if (!test_range_bit(tree, em->start,
4297 extent_map_end(em) - 1,
4298 EXTENT_LOCKED | EXTENT_WRITEBACK,
4299 0, NULL)) {
4300 remove_extent_mapping(map, em);
4301 /* once for the rb tree */
4302 free_extent_map(em);
4303 }
4304 start = extent_map_end(em);
4305 write_unlock(&map->lock);
4306
4307 /* once for us */
4308 free_extent_map(em);
4309 }
4310 }
4311 return try_release_extent_state(map, tree, page, mask);
4312 }
4313
4314 /*
4315 * helper function for fiemap, which doesn't want to see any holes.
4316 * This maps until we find something past 'last'
4317 */
4318 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4319 u64 offset,
4320 u64 last,
4321 get_extent_t *get_extent)
4322 {
4323 u64 sectorsize = btrfs_inode_sectorsize(inode);
4324 struct extent_map *em;
4325 u64 len;
4326
4327 if (offset >= last)
4328 return NULL;
4329
4330 while (1) {
4331 len = last - offset;
4332 if (len == 0)
4333 break;
4334 len = ALIGN(len, sectorsize);
4335 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4336 if (IS_ERR_OR_NULL(em))
4337 return em;
4338
4339 /* if this isn't a hole return it */
4340 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4341 em->block_start != EXTENT_MAP_HOLE) {
4342 return em;
4343 }
4344
4345 /* this is a hole, advance to the next extent */
4346 offset = extent_map_end(em);
4347 free_extent_map(em);
4348 if (offset >= last)
4349 break;
4350 }
4351 return NULL;
4352 }
4353
4354 /*
4355 * To cache previous fiemap extent
4356 *
4357 * Will be used for merging fiemap extent
4358 */
4359 struct fiemap_cache {
4360 u64 offset;
4361 u64 phys;
4362 u64 len;
4363 u32 flags;
4364 bool cached;
4365 };
4366
4367 /*
4368 * Helper to submit fiemap extent.
4369 *
4370 * Will try to merge current fiemap extent specified by @offset, @phys,
4371 * @len and @flags with cached one.
4372 * And only when we fails to merge, cached one will be submitted as
4373 * fiemap extent.
4374 *
4375 * Return value is the same as fiemap_fill_next_extent().
4376 */
4377 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4378 struct fiemap_cache *cache,
4379 u64 offset, u64 phys, u64 len, u32 flags)
4380 {
4381 int ret = 0;
4382
4383 if (!cache->cached)
4384 goto assign;
4385
4386 /*
4387 * Sanity check, extent_fiemap() should have ensured that new
4388 * fiemap extent won't overlap with cahced one.
4389 * Not recoverable.
4390 *
4391 * NOTE: Physical address can overlap, due to compression
4392 */
4393 if (cache->offset + cache->len > offset) {
4394 WARN_ON(1);
4395 return -EINVAL;
4396 }
4397
4398 /*
4399 * Only merges fiemap extents if
4400 * 1) Their logical addresses are continuous
4401 *
4402 * 2) Their physical addresses are continuous
4403 * So truly compressed (physical size smaller than logical size)
4404 * extents won't get merged with each other
4405 *
4406 * 3) Share same flags except FIEMAP_EXTENT_LAST
4407 * So regular extent won't get merged with prealloc extent
4408 */
4409 if (cache->offset + cache->len == offset &&
4410 cache->phys + cache->len == phys &&
4411 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4412 (flags & ~FIEMAP_EXTENT_LAST)) {
4413 cache->len += len;
4414 cache->flags |= flags;
4415 goto try_submit_last;
4416 }
4417
4418 /* Not mergeable, need to submit cached one */
4419 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4420 cache->len, cache->flags);
4421 cache->cached = false;
4422 if (ret)
4423 return ret;
4424 assign:
4425 cache->cached = true;
4426 cache->offset = offset;
4427 cache->phys = phys;
4428 cache->len = len;
4429 cache->flags = flags;
4430 try_submit_last:
4431 if (cache->flags & FIEMAP_EXTENT_LAST) {
4432 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4433 cache->phys, cache->len, cache->flags);
4434 cache->cached = false;
4435 }
4436 return ret;
4437 }
4438
4439 /*
4440 * Emit last fiemap cache
4441 *
4442 * The last fiemap cache may still be cached in the following case:
4443 * 0 4k 8k
4444 * |<- Fiemap range ->|
4445 * |<------------ First extent ----------->|
4446 *
4447 * In this case, the first extent range will be cached but not emitted.
4448 * So we must emit it before ending extent_fiemap().
4449 */
4450 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4451 struct fiemap_extent_info *fieinfo,
4452 struct fiemap_cache *cache)
4453 {
4454 int ret;
4455
4456 if (!cache->cached)
4457 return 0;
4458
4459 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4460 cache->len, cache->flags);
4461 cache->cached = false;
4462 if (ret > 0)
4463 ret = 0;
4464 return ret;
4465 }
4466
4467 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4468 __u64 start, __u64 len, get_extent_t *get_extent)
4469 {
4470 int ret = 0;
4471 u64 off = start;
4472 u64 max = start + len;
4473 u32 flags = 0;
4474 u32 found_type;
4475 u64 last;
4476 u64 last_for_get_extent = 0;
4477 u64 disko = 0;
4478 u64 isize = i_size_read(inode);
4479 struct btrfs_key found_key;
4480 struct extent_map *em = NULL;
4481 struct extent_state *cached_state = NULL;
4482 struct btrfs_path *path;
4483 struct btrfs_root *root = BTRFS_I(inode)->root;
4484 struct fiemap_cache cache = { 0 };
4485 int end = 0;
4486 u64 em_start = 0;
4487 u64 em_len = 0;
4488 u64 em_end = 0;
4489
4490 if (len == 0)
4491 return -EINVAL;
4492
4493 path = btrfs_alloc_path();
4494 if (!path)
4495 return -ENOMEM;
4496 path->leave_spinning = 1;
4497
4498 start = round_down(start, btrfs_inode_sectorsize(inode));
4499 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4500
4501 /*
4502 * lookup the last file extent. We're not using i_size here
4503 * because there might be preallocation past i_size
4504 */
4505 ret = btrfs_lookup_file_extent(NULL, root, path,
4506 btrfs_ino(BTRFS_I(inode)), -1, 0);
4507 if (ret < 0) {
4508 btrfs_free_path(path);
4509 return ret;
4510 } else {
4511 WARN_ON(!ret);
4512 if (ret == 1)
4513 ret = 0;
4514 }
4515
4516 path->slots[0]--;
4517 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4518 found_type = found_key.type;
4519
4520 /* No extents, but there might be delalloc bits */
4521 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4522 found_type != BTRFS_EXTENT_DATA_KEY) {
4523 /* have to trust i_size as the end */
4524 last = (u64)-1;
4525 last_for_get_extent = isize;
4526 } else {
4527 /*
4528 * remember the start of the last extent. There are a
4529 * bunch of different factors that go into the length of the
4530 * extent, so its much less complex to remember where it started
4531 */
4532 last = found_key.offset;
4533 last_for_get_extent = last + 1;
4534 }
4535 btrfs_release_path(path);
4536
4537 /*
4538 * we might have some extents allocated but more delalloc past those
4539 * extents. so, we trust isize unless the start of the last extent is
4540 * beyond isize
4541 */
4542 if (last < isize) {
4543 last = (u64)-1;
4544 last_for_get_extent = isize;
4545 }
4546
4547 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4548 &cached_state);
4549
4550 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4551 get_extent);
4552 if (!em)
4553 goto out;
4554 if (IS_ERR(em)) {
4555 ret = PTR_ERR(em);
4556 goto out;
4557 }
4558
4559 while (!end) {
4560 u64 offset_in_extent = 0;
4561
4562 /* break if the extent we found is outside the range */
4563 if (em->start >= max || extent_map_end(em) < off)
4564 break;
4565
4566 /*
4567 * get_extent may return an extent that starts before our
4568 * requested range. We have to make sure the ranges
4569 * we return to fiemap always move forward and don't
4570 * overlap, so adjust the offsets here
4571 */
4572 em_start = max(em->start, off);
4573
4574 /*
4575 * record the offset from the start of the extent
4576 * for adjusting the disk offset below. Only do this if the
4577 * extent isn't compressed since our in ram offset may be past
4578 * what we have actually allocated on disk.
4579 */
4580 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4581 offset_in_extent = em_start - em->start;
4582 em_end = extent_map_end(em);
4583 em_len = em_end - em_start;
4584 disko = 0;
4585 flags = 0;
4586
4587 /*
4588 * bump off for our next call to get_extent
4589 */
4590 off = extent_map_end(em);
4591 if (off >= max)
4592 end = 1;
4593
4594 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4595 end = 1;
4596 flags |= FIEMAP_EXTENT_LAST;
4597 } else if (em->block_start == EXTENT_MAP_INLINE) {
4598 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4599 FIEMAP_EXTENT_NOT_ALIGNED);
4600 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4601 flags |= (FIEMAP_EXTENT_DELALLOC |
4602 FIEMAP_EXTENT_UNKNOWN);
4603 } else if (fieinfo->fi_extents_max) {
4604 struct btrfs_trans_handle *trans;
4605
4606 u64 bytenr = em->block_start -
4607 (em->start - em->orig_start);
4608
4609 disko = em->block_start + offset_in_extent;
4610
4611 /*
4612 * We need a trans handle to get delayed refs
4613 */
4614 trans = btrfs_join_transaction(root);
4615 /*
4616 * It's OK if we can't start a trans we can still check
4617 * from commit_root
4618 */
4619 if (IS_ERR(trans))
4620 trans = NULL;
4621
4622 /*
4623 * As btrfs supports shared space, this information
4624 * can be exported to userspace tools via
4625 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4626 * then we're just getting a count and we can skip the
4627 * lookup stuff.
4628 */
4629 ret = btrfs_check_shared(trans, root->fs_info,
4630 root->objectid,
4631 btrfs_ino(BTRFS_I(inode)), bytenr);
4632 if (trans)
4633 btrfs_end_transaction(trans);
4634 if (ret < 0)
4635 goto out_free;
4636 if (ret)
4637 flags |= FIEMAP_EXTENT_SHARED;
4638 ret = 0;
4639 }
4640 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4641 flags |= FIEMAP_EXTENT_ENCODED;
4642 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4643 flags |= FIEMAP_EXTENT_UNWRITTEN;
4644
4645 free_extent_map(em);
4646 em = NULL;
4647 if ((em_start >= last) || em_len == (u64)-1 ||
4648 (last == (u64)-1 && isize <= em_end)) {
4649 flags |= FIEMAP_EXTENT_LAST;
4650 end = 1;
4651 }
4652
4653 /* now scan forward to see if this is really the last extent. */
4654 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4655 get_extent);
4656 if (IS_ERR(em)) {
4657 ret = PTR_ERR(em);
4658 goto out;
4659 }
4660 if (!em) {
4661 flags |= FIEMAP_EXTENT_LAST;
4662 end = 1;
4663 }
4664 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4665 em_len, flags);
4666 if (ret) {
4667 if (ret == 1)
4668 ret = 0;
4669 goto out_free;
4670 }
4671 }
4672 out_free:
4673 if (!ret)
4674 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4675 free_extent_map(em);
4676 out:
4677 btrfs_free_path(path);
4678 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4679 &cached_state, GFP_NOFS);
4680 return ret;
4681 }
4682
4683 static void __free_extent_buffer(struct extent_buffer *eb)
4684 {
4685 btrfs_leak_debug_del(&eb->leak_list);
4686 kmem_cache_free(extent_buffer_cache, eb);
4687 }
4688
4689 int extent_buffer_under_io(struct extent_buffer *eb)
4690 {
4691 return (atomic_read(&eb->io_pages) ||
4692 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4693 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4694 }
4695
4696 /*
4697 * Helper for releasing extent buffer page.
4698 */
4699 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4700 {
4701 unsigned long index;
4702 struct page *page;
4703 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4704
4705 BUG_ON(extent_buffer_under_io(eb));
4706
4707 index = num_extent_pages(eb->start, eb->len);
4708 if (index == 0)
4709 return;
4710
4711 do {
4712 index--;
4713 page = eb->pages[index];
4714 if (!page)
4715 continue;
4716 if (mapped)
4717 spin_lock(&page->mapping->private_lock);
4718 /*
4719 * We do this since we'll remove the pages after we've
4720 * removed the eb from the radix tree, so we could race
4721 * and have this page now attached to the new eb. So
4722 * only clear page_private if it's still connected to
4723 * this eb.
4724 */
4725 if (PagePrivate(page) &&
4726 page->private == (unsigned long)eb) {
4727 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4728 BUG_ON(PageDirty(page));
4729 BUG_ON(PageWriteback(page));
4730 /*
4731 * We need to make sure we haven't be attached
4732 * to a new eb.
4733 */
4734 ClearPagePrivate(page);
4735 set_page_private(page, 0);
4736 /* One for the page private */
4737 put_page(page);
4738 }
4739
4740 if (mapped)
4741 spin_unlock(&page->mapping->private_lock);
4742
4743 /* One for when we allocated the page */
4744 put_page(page);
4745 } while (index != 0);
4746 }
4747
4748 /*
4749 * Helper for releasing the extent buffer.
4750 */
4751 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4752 {
4753 btrfs_release_extent_buffer_page(eb);
4754 __free_extent_buffer(eb);
4755 }
4756
4757 static struct extent_buffer *
4758 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4759 unsigned long len)
4760 {
4761 struct extent_buffer *eb = NULL;
4762
4763 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4764 eb->start = start;
4765 eb->len = len;
4766 eb->fs_info = fs_info;
4767 eb->bflags = 0;
4768 rwlock_init(&eb->lock);
4769 atomic_set(&eb->write_locks, 0);
4770 atomic_set(&eb->read_locks, 0);
4771 atomic_set(&eb->blocking_readers, 0);
4772 atomic_set(&eb->blocking_writers, 0);
4773 atomic_set(&eb->spinning_readers, 0);
4774 atomic_set(&eb->spinning_writers, 0);
4775 eb->lock_nested = 0;
4776 init_waitqueue_head(&eb->write_lock_wq);
4777 init_waitqueue_head(&eb->read_lock_wq);
4778
4779 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4780
4781 spin_lock_init(&eb->refs_lock);
4782 atomic_set(&eb->refs, 1);
4783 atomic_set(&eb->io_pages, 0);
4784
4785 /*
4786 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4787 */
4788 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4789 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4790 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4791
4792 return eb;
4793 }
4794
4795 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4796 {
4797 unsigned long i;
4798 struct page *p;
4799 struct extent_buffer *new;
4800 unsigned long num_pages = num_extent_pages(src->start, src->len);
4801
4802 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4803 if (new == NULL)
4804 return NULL;
4805
4806 for (i = 0; i < num_pages; i++) {
4807 p = alloc_page(GFP_NOFS);
4808 if (!p) {
4809 btrfs_release_extent_buffer(new);
4810 return NULL;
4811 }
4812 attach_extent_buffer_page(new, p);
4813 WARN_ON(PageDirty(p));
4814 SetPageUptodate(p);
4815 new->pages[i] = p;
4816 copy_page(page_address(p), page_address(src->pages[i]));
4817 }
4818
4819 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4820 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4821
4822 return new;
4823 }
4824
4825 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4826 u64 start, unsigned long len)
4827 {
4828 struct extent_buffer *eb;
4829 unsigned long num_pages;
4830 unsigned long i;
4831
4832 num_pages = num_extent_pages(start, len);
4833
4834 eb = __alloc_extent_buffer(fs_info, start, len);
4835 if (!eb)
4836 return NULL;
4837
4838 for (i = 0; i < num_pages; i++) {
4839 eb->pages[i] = alloc_page(GFP_NOFS);
4840 if (!eb->pages[i])
4841 goto err;
4842 }
4843 set_extent_buffer_uptodate(eb);
4844 btrfs_set_header_nritems(eb, 0);
4845 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4846
4847 return eb;
4848 err:
4849 for (; i > 0; i--)
4850 __free_page(eb->pages[i - 1]);
4851 __free_extent_buffer(eb);
4852 return NULL;
4853 }
4854
4855 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4856 u64 start)
4857 {
4858 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4859 }
4860
4861 static void check_buffer_tree_ref(struct extent_buffer *eb)
4862 {
4863 int refs;
4864 /* the ref bit is tricky. We have to make sure it is set
4865 * if we have the buffer dirty. Otherwise the
4866 * code to free a buffer can end up dropping a dirty
4867 * page
4868 *
4869 * Once the ref bit is set, it won't go away while the
4870 * buffer is dirty or in writeback, and it also won't
4871 * go away while we have the reference count on the
4872 * eb bumped.
4873 *
4874 * We can't just set the ref bit without bumping the
4875 * ref on the eb because free_extent_buffer might
4876 * see the ref bit and try to clear it. If this happens
4877 * free_extent_buffer might end up dropping our original
4878 * ref by mistake and freeing the page before we are able
4879 * to add one more ref.
4880 *
4881 * So bump the ref count first, then set the bit. If someone
4882 * beat us to it, drop the ref we added.
4883 */
4884 refs = atomic_read(&eb->refs);
4885 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4886 return;
4887
4888 spin_lock(&eb->refs_lock);
4889 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4890 atomic_inc(&eb->refs);
4891 spin_unlock(&eb->refs_lock);
4892 }
4893
4894 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4895 struct page *accessed)
4896 {
4897 unsigned long num_pages, i;
4898
4899 check_buffer_tree_ref(eb);
4900
4901 num_pages = num_extent_pages(eb->start, eb->len);
4902 for (i = 0; i < num_pages; i++) {
4903 struct page *p = eb->pages[i];
4904
4905 if (p != accessed)
4906 mark_page_accessed(p);
4907 }
4908 }
4909
4910 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4911 u64 start)
4912 {
4913 struct extent_buffer *eb;
4914
4915 rcu_read_lock();
4916 eb = radix_tree_lookup(&fs_info->buffer_radix,
4917 start >> PAGE_SHIFT);
4918 if (eb && atomic_inc_not_zero(&eb->refs)) {
4919 rcu_read_unlock();
4920 /*
4921 * Lock our eb's refs_lock to avoid races with
4922 * free_extent_buffer. When we get our eb it might be flagged
4923 * with EXTENT_BUFFER_STALE and another task running
4924 * free_extent_buffer might have seen that flag set,
4925 * eb->refs == 2, that the buffer isn't under IO (dirty and
4926 * writeback flags not set) and it's still in the tree (flag
4927 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4928 * of decrementing the extent buffer's reference count twice.
4929 * So here we could race and increment the eb's reference count,
4930 * clear its stale flag, mark it as dirty and drop our reference
4931 * before the other task finishes executing free_extent_buffer,
4932 * which would later result in an attempt to free an extent
4933 * buffer that is dirty.
4934 */
4935 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4936 spin_lock(&eb->refs_lock);
4937 spin_unlock(&eb->refs_lock);
4938 }
4939 mark_extent_buffer_accessed(eb, NULL);
4940 return eb;
4941 }
4942 rcu_read_unlock();
4943
4944 return NULL;
4945 }
4946
4947 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4948 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4949 u64 start)
4950 {
4951 struct extent_buffer *eb, *exists = NULL;
4952 int ret;
4953
4954 eb = find_extent_buffer(fs_info, start);
4955 if (eb)
4956 return eb;
4957 eb = alloc_dummy_extent_buffer(fs_info, start);
4958 if (!eb)
4959 return NULL;
4960 eb->fs_info = fs_info;
4961 again:
4962 ret = radix_tree_preload(GFP_NOFS);
4963 if (ret)
4964 goto free_eb;
4965 spin_lock(&fs_info->buffer_lock);
4966 ret = radix_tree_insert(&fs_info->buffer_radix,
4967 start >> PAGE_SHIFT, eb);
4968 spin_unlock(&fs_info->buffer_lock);
4969 radix_tree_preload_end();
4970 if (ret == -EEXIST) {
4971 exists = find_extent_buffer(fs_info, start);
4972 if (exists)
4973 goto free_eb;
4974 else
4975 goto again;
4976 }
4977 check_buffer_tree_ref(eb);
4978 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4979
4980 /*
4981 * We will free dummy extent buffer's if they come into
4982 * free_extent_buffer with a ref count of 2, but if we are using this we
4983 * want the buffers to stay in memory until we're done with them, so
4984 * bump the ref count again.
4985 */
4986 atomic_inc(&eb->refs);
4987 return eb;
4988 free_eb:
4989 btrfs_release_extent_buffer(eb);
4990 return exists;
4991 }
4992 #endif
4993
4994 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4995 u64 start)
4996 {
4997 unsigned long len = fs_info->nodesize;
4998 unsigned long num_pages = num_extent_pages(start, len);
4999 unsigned long i;
5000 unsigned long index = start >> PAGE_SHIFT;
5001 struct extent_buffer *eb;
5002 struct extent_buffer *exists = NULL;
5003 struct page *p;
5004 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5005 int uptodate = 1;
5006 int ret;
5007
5008 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5009 btrfs_err(fs_info, "bad tree block start %llu", start);
5010 return ERR_PTR(-EINVAL);
5011 }
5012
5013 eb = find_extent_buffer(fs_info, start);
5014 if (eb)
5015 return eb;
5016
5017 eb = __alloc_extent_buffer(fs_info, start, len);
5018 if (!eb)
5019 return ERR_PTR(-ENOMEM);
5020
5021 for (i = 0; i < num_pages; i++, index++) {
5022 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5023 if (!p) {
5024 exists = ERR_PTR(-ENOMEM);
5025 goto free_eb;
5026 }
5027
5028 spin_lock(&mapping->private_lock);
5029 if (PagePrivate(p)) {
5030 /*
5031 * We could have already allocated an eb for this page
5032 * and attached one so lets see if we can get a ref on
5033 * the existing eb, and if we can we know it's good and
5034 * we can just return that one, else we know we can just
5035 * overwrite page->private.
5036 */
5037 exists = (struct extent_buffer *)p->private;
5038 if (atomic_inc_not_zero(&exists->refs)) {
5039 spin_unlock(&mapping->private_lock);
5040 unlock_page(p);
5041 put_page(p);
5042 mark_extent_buffer_accessed(exists, p);
5043 goto free_eb;
5044 }
5045 exists = NULL;
5046
5047 /*
5048 * Do this so attach doesn't complain and we need to
5049 * drop the ref the old guy had.
5050 */
5051 ClearPagePrivate(p);
5052 WARN_ON(PageDirty(p));
5053 put_page(p);
5054 }
5055 attach_extent_buffer_page(eb, p);
5056 spin_unlock(&mapping->private_lock);
5057 WARN_ON(PageDirty(p));
5058 eb->pages[i] = p;
5059 if (!PageUptodate(p))
5060 uptodate = 0;
5061
5062 /*
5063 * see below about how we avoid a nasty race with release page
5064 * and why we unlock later
5065 */
5066 }
5067 if (uptodate)
5068 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5069 again:
5070 ret = radix_tree_preload(GFP_NOFS);
5071 if (ret) {
5072 exists = ERR_PTR(ret);
5073 goto free_eb;
5074 }
5075
5076 spin_lock(&fs_info->buffer_lock);
5077 ret = radix_tree_insert(&fs_info->buffer_radix,
5078 start >> PAGE_SHIFT, eb);
5079 spin_unlock(&fs_info->buffer_lock);
5080 radix_tree_preload_end();
5081 if (ret == -EEXIST) {
5082 exists = find_extent_buffer(fs_info, start);
5083 if (exists)
5084 goto free_eb;
5085 else
5086 goto again;
5087 }
5088 /* add one reference for the tree */
5089 check_buffer_tree_ref(eb);
5090 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5091
5092 /*
5093 * there is a race where release page may have
5094 * tried to find this extent buffer in the radix
5095 * but failed. It will tell the VM it is safe to
5096 * reclaim the, and it will clear the page private bit.
5097 * We must make sure to set the page private bit properly
5098 * after the extent buffer is in the radix tree so
5099 * it doesn't get lost
5100 */
5101 SetPageChecked(eb->pages[0]);
5102 for (i = 1; i < num_pages; i++) {
5103 p = eb->pages[i];
5104 ClearPageChecked(p);
5105 unlock_page(p);
5106 }
5107 unlock_page(eb->pages[0]);
5108 return eb;
5109
5110 free_eb:
5111 WARN_ON(!atomic_dec_and_test(&eb->refs));
5112 for (i = 0; i < num_pages; i++) {
5113 if (eb->pages[i])
5114 unlock_page(eb->pages[i]);
5115 }
5116
5117 btrfs_release_extent_buffer(eb);
5118 return exists;
5119 }
5120
5121 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5122 {
5123 struct extent_buffer *eb =
5124 container_of(head, struct extent_buffer, rcu_head);
5125
5126 __free_extent_buffer(eb);
5127 }
5128
5129 /* Expects to have eb->eb_lock already held */
5130 static int release_extent_buffer(struct extent_buffer *eb)
5131 {
5132 WARN_ON(atomic_read(&eb->refs) == 0);
5133 if (atomic_dec_and_test(&eb->refs)) {
5134 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5135 struct btrfs_fs_info *fs_info = eb->fs_info;
5136
5137 spin_unlock(&eb->refs_lock);
5138
5139 spin_lock(&fs_info->buffer_lock);
5140 radix_tree_delete(&fs_info->buffer_radix,
5141 eb->start >> PAGE_SHIFT);
5142 spin_unlock(&fs_info->buffer_lock);
5143 } else {
5144 spin_unlock(&eb->refs_lock);
5145 }
5146
5147 /* Should be safe to release our pages at this point */
5148 btrfs_release_extent_buffer_page(eb);
5149 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5150 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5151 __free_extent_buffer(eb);
5152 return 1;
5153 }
5154 #endif
5155 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5156 return 1;
5157 }
5158 spin_unlock(&eb->refs_lock);
5159
5160 return 0;
5161 }
5162
5163 void free_extent_buffer(struct extent_buffer *eb)
5164 {
5165 int refs;
5166 int old;
5167 if (!eb)
5168 return;
5169
5170 while (1) {
5171 refs = atomic_read(&eb->refs);
5172 if (refs <= 3)
5173 break;
5174 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5175 if (old == refs)
5176 return;
5177 }
5178
5179 spin_lock(&eb->refs_lock);
5180 if (atomic_read(&eb->refs) == 2 &&
5181 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5182 atomic_dec(&eb->refs);
5183
5184 if (atomic_read(&eb->refs) == 2 &&
5185 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5186 !extent_buffer_under_io(eb) &&
5187 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5188 atomic_dec(&eb->refs);
5189
5190 /*
5191 * I know this is terrible, but it's temporary until we stop tracking
5192 * the uptodate bits and such for the extent buffers.
5193 */
5194 release_extent_buffer(eb);
5195 }
5196
5197 void free_extent_buffer_stale(struct extent_buffer *eb)
5198 {
5199 if (!eb)
5200 return;
5201
5202 spin_lock(&eb->refs_lock);
5203 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5204
5205 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5206 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5207 atomic_dec(&eb->refs);
5208 release_extent_buffer(eb);
5209 }
5210
5211 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5212 {
5213 unsigned long i;
5214 unsigned long num_pages;
5215 struct page *page;
5216
5217 num_pages = num_extent_pages(eb->start, eb->len);
5218
5219 for (i = 0; i < num_pages; i++) {
5220 page = eb->pages[i];
5221 if (!PageDirty(page))
5222 continue;
5223
5224 lock_page(page);
5225 WARN_ON(!PagePrivate(page));
5226
5227 clear_page_dirty_for_io(page);
5228 spin_lock_irq(&page->mapping->tree_lock);
5229 if (!PageDirty(page)) {
5230 radix_tree_tag_clear(&page->mapping->page_tree,
5231 page_index(page),
5232 PAGECACHE_TAG_DIRTY);
5233 }
5234 spin_unlock_irq(&page->mapping->tree_lock);
5235 ClearPageError(page);
5236 unlock_page(page);
5237 }
5238 WARN_ON(atomic_read(&eb->refs) == 0);
5239 }
5240
5241 int set_extent_buffer_dirty(struct extent_buffer *eb)
5242 {
5243 unsigned long i;
5244 unsigned long num_pages;
5245 int was_dirty = 0;
5246
5247 check_buffer_tree_ref(eb);
5248
5249 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5250
5251 num_pages = num_extent_pages(eb->start, eb->len);
5252 WARN_ON(atomic_read(&eb->refs) == 0);
5253 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5254
5255 for (i = 0; i < num_pages; i++)
5256 set_page_dirty(eb->pages[i]);
5257 return was_dirty;
5258 }
5259
5260 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5261 {
5262 unsigned long i;
5263 struct page *page;
5264 unsigned long num_pages;
5265
5266 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5267 num_pages = num_extent_pages(eb->start, eb->len);
5268 for (i = 0; i < num_pages; i++) {
5269 page = eb->pages[i];
5270 if (page)
5271 ClearPageUptodate(page);
5272 }
5273 }
5274
5275 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5276 {
5277 unsigned long i;
5278 struct page *page;
5279 unsigned long num_pages;
5280
5281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282 num_pages = num_extent_pages(eb->start, eb->len);
5283 for (i = 0; i < num_pages; i++) {
5284 page = eb->pages[i];
5285 SetPageUptodate(page);
5286 }
5287 }
5288
5289 int extent_buffer_uptodate(struct extent_buffer *eb)
5290 {
5291 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5292 }
5293
5294 int read_extent_buffer_pages(struct extent_io_tree *tree,
5295 struct extent_buffer *eb, int wait,
5296 get_extent_t *get_extent, int mirror_num)
5297 {
5298 unsigned long i;
5299 struct page *page;
5300 int err;
5301 int ret = 0;
5302 int locked_pages = 0;
5303 int all_uptodate = 1;
5304 unsigned long num_pages;
5305 unsigned long num_reads = 0;
5306 struct bio *bio = NULL;
5307 unsigned long bio_flags = 0;
5308
5309 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5310 return 0;
5311
5312 num_pages = num_extent_pages(eb->start, eb->len);
5313 for (i = 0; i < num_pages; i++) {
5314 page = eb->pages[i];
5315 if (wait == WAIT_NONE) {
5316 if (!trylock_page(page))
5317 goto unlock_exit;
5318 } else {
5319 lock_page(page);
5320 }
5321 locked_pages++;
5322 }
5323 /*
5324 * We need to firstly lock all pages to make sure that
5325 * the uptodate bit of our pages won't be affected by
5326 * clear_extent_buffer_uptodate().
5327 */
5328 for (i = 0; i < num_pages; i++) {
5329 page = eb->pages[i];
5330 if (!PageUptodate(page)) {
5331 num_reads++;
5332 all_uptodate = 0;
5333 }
5334 }
5335
5336 if (all_uptodate) {
5337 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5338 goto unlock_exit;
5339 }
5340
5341 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5342 eb->read_mirror = 0;
5343 atomic_set(&eb->io_pages, num_reads);
5344 for (i = 0; i < num_pages; i++) {
5345 page = eb->pages[i];
5346
5347 if (!PageUptodate(page)) {
5348 if (ret) {
5349 atomic_dec(&eb->io_pages);
5350 unlock_page(page);
5351 continue;
5352 }
5353
5354 ClearPageError(page);
5355 err = __extent_read_full_page(tree, page,
5356 get_extent, &bio,
5357 mirror_num, &bio_flags,
5358 REQ_META);
5359 if (err) {
5360 ret = err;
5361 /*
5362 * We use &bio in above __extent_read_full_page,
5363 * so we ensure that if it returns error, the
5364 * current page fails to add itself to bio and
5365 * it's been unlocked.
5366 *
5367 * We must dec io_pages by ourselves.
5368 */
5369 atomic_dec(&eb->io_pages);
5370 }
5371 } else {
5372 unlock_page(page);
5373 }
5374 }
5375
5376 if (bio) {
5377 err = submit_one_bio(bio, mirror_num, bio_flags);
5378 if (err)
5379 return err;
5380 }
5381
5382 if (ret || wait != WAIT_COMPLETE)
5383 return ret;
5384
5385 for (i = 0; i < num_pages; i++) {
5386 page = eb->pages[i];
5387 wait_on_page_locked(page);
5388 if (!PageUptodate(page))
5389 ret = -EIO;
5390 }
5391
5392 return ret;
5393
5394 unlock_exit:
5395 while (locked_pages > 0) {
5396 locked_pages--;
5397 page = eb->pages[locked_pages];
5398 unlock_page(page);
5399 }
5400 return ret;
5401 }
5402
5403 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5404 unsigned long start,
5405 unsigned long len)
5406 {
5407 size_t cur;
5408 size_t offset;
5409 struct page *page;
5410 char *kaddr;
5411 char *dst = (char *)dstv;
5412 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5413 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5414
5415 WARN_ON(start > eb->len);
5416 WARN_ON(start + len > eb->start + eb->len);
5417
5418 offset = (start_offset + start) & (PAGE_SIZE - 1);
5419
5420 while (len > 0) {
5421 page = eb->pages[i];
5422
5423 cur = min(len, (PAGE_SIZE - offset));
5424 kaddr = page_address(page);
5425 memcpy(dst, kaddr + offset, cur);
5426
5427 dst += cur;
5428 len -= cur;
5429 offset = 0;
5430 i++;
5431 }
5432 }
5433
5434 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5435 unsigned long start,
5436 unsigned long len)
5437 {
5438 size_t cur;
5439 size_t offset;
5440 struct page *page;
5441 char *kaddr;
5442 char __user *dst = (char __user *)dstv;
5443 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5444 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5445 int ret = 0;
5446
5447 WARN_ON(start > eb->len);
5448 WARN_ON(start + len > eb->start + eb->len);
5449
5450 offset = (start_offset + start) & (PAGE_SIZE - 1);
5451
5452 while (len > 0) {
5453 page = eb->pages[i];
5454
5455 cur = min(len, (PAGE_SIZE - offset));
5456 kaddr = page_address(page);
5457 if (copy_to_user(dst, kaddr + offset, cur)) {
5458 ret = -EFAULT;
5459 break;
5460 }
5461
5462 dst += cur;
5463 len -= cur;
5464 offset = 0;
5465 i++;
5466 }
5467
5468 return ret;
5469 }
5470
5471 /*
5472 * return 0 if the item is found within a page.
5473 * return 1 if the item spans two pages.
5474 * return -EINVAL otherwise.
5475 */
5476 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5477 unsigned long min_len, char **map,
5478 unsigned long *map_start,
5479 unsigned long *map_len)
5480 {
5481 size_t offset = start & (PAGE_SIZE - 1);
5482 char *kaddr;
5483 struct page *p;
5484 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5486 unsigned long end_i = (start_offset + start + min_len - 1) >>
5487 PAGE_SHIFT;
5488
5489 if (i != end_i)
5490 return 1;
5491
5492 if (i == 0) {
5493 offset = start_offset;
5494 *map_start = 0;
5495 } else {
5496 offset = 0;
5497 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5498 }
5499
5500 if (start + min_len > eb->len) {
5501 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5502 eb->start, eb->len, start, min_len);
5503 return -EINVAL;
5504 }
5505
5506 p = eb->pages[i];
5507 kaddr = page_address(p);
5508 *map = kaddr + offset;
5509 *map_len = PAGE_SIZE - offset;
5510 return 0;
5511 }
5512
5513 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5514 unsigned long start,
5515 unsigned long len)
5516 {
5517 size_t cur;
5518 size_t offset;
5519 struct page *page;
5520 char *kaddr;
5521 char *ptr = (char *)ptrv;
5522 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5523 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5524 int ret = 0;
5525
5526 WARN_ON(start > eb->len);
5527 WARN_ON(start + len > eb->start + eb->len);
5528
5529 offset = (start_offset + start) & (PAGE_SIZE - 1);
5530
5531 while (len > 0) {
5532 page = eb->pages[i];
5533
5534 cur = min(len, (PAGE_SIZE - offset));
5535
5536 kaddr = page_address(page);
5537 ret = memcmp(ptr, kaddr + offset, cur);
5538 if (ret)
5539 break;
5540
5541 ptr += cur;
5542 len -= cur;
5543 offset = 0;
5544 i++;
5545 }
5546 return ret;
5547 }
5548
5549 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5550 const void *srcv)
5551 {
5552 char *kaddr;
5553
5554 WARN_ON(!PageUptodate(eb->pages[0]));
5555 kaddr = page_address(eb->pages[0]);
5556 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5557 BTRFS_FSID_SIZE);
5558 }
5559
5560 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5561 {
5562 char *kaddr;
5563
5564 WARN_ON(!PageUptodate(eb->pages[0]));
5565 kaddr = page_address(eb->pages[0]);
5566 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5567 BTRFS_FSID_SIZE);
5568 }
5569
5570 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5571 unsigned long start, unsigned long len)
5572 {
5573 size_t cur;
5574 size_t offset;
5575 struct page *page;
5576 char *kaddr;
5577 char *src = (char *)srcv;
5578 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5579 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5580
5581 WARN_ON(start > eb->len);
5582 WARN_ON(start + len > eb->start + eb->len);
5583
5584 offset = (start_offset + start) & (PAGE_SIZE - 1);
5585
5586 while (len > 0) {
5587 page = eb->pages[i];
5588 WARN_ON(!PageUptodate(page));
5589
5590 cur = min(len, PAGE_SIZE - offset);
5591 kaddr = page_address(page);
5592 memcpy(kaddr + offset, src, cur);
5593
5594 src += cur;
5595 len -= cur;
5596 offset = 0;
5597 i++;
5598 }
5599 }
5600
5601 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5602 unsigned long len)
5603 {
5604 size_t cur;
5605 size_t offset;
5606 struct page *page;
5607 char *kaddr;
5608 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5609 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5610
5611 WARN_ON(start > eb->len);
5612 WARN_ON(start + len > eb->start + eb->len);
5613
5614 offset = (start_offset + start) & (PAGE_SIZE - 1);
5615
5616 while (len > 0) {
5617 page = eb->pages[i];
5618 WARN_ON(!PageUptodate(page));
5619
5620 cur = min(len, PAGE_SIZE - offset);
5621 kaddr = page_address(page);
5622 memset(kaddr + offset, 0, cur);
5623
5624 len -= cur;
5625 offset = 0;
5626 i++;
5627 }
5628 }
5629
5630 void copy_extent_buffer_full(struct extent_buffer *dst,
5631 struct extent_buffer *src)
5632 {
5633 int i;
5634 unsigned num_pages;
5635
5636 ASSERT(dst->len == src->len);
5637
5638 num_pages = num_extent_pages(dst->start, dst->len);
5639 for (i = 0; i < num_pages; i++)
5640 copy_page(page_address(dst->pages[i]),
5641 page_address(src->pages[i]));
5642 }
5643
5644 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5645 unsigned long dst_offset, unsigned long src_offset,
5646 unsigned long len)
5647 {
5648 u64 dst_len = dst->len;
5649 size_t cur;
5650 size_t offset;
5651 struct page *page;
5652 char *kaddr;
5653 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5654 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5655
5656 WARN_ON(src->len != dst_len);
5657
5658 offset = (start_offset + dst_offset) &
5659 (PAGE_SIZE - 1);
5660
5661 while (len > 0) {
5662 page = dst->pages[i];
5663 WARN_ON(!PageUptodate(page));
5664
5665 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5666
5667 kaddr = page_address(page);
5668 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5669
5670 src_offset += cur;
5671 len -= cur;
5672 offset = 0;
5673 i++;
5674 }
5675 }
5676
5677 void le_bitmap_set(u8 *map, unsigned int start, int len)
5678 {
5679 u8 *p = map + BIT_BYTE(start);
5680 const unsigned int size = start + len;
5681 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5682 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5683
5684 while (len - bits_to_set >= 0) {
5685 *p |= mask_to_set;
5686 len -= bits_to_set;
5687 bits_to_set = BITS_PER_BYTE;
5688 mask_to_set = ~0;
5689 p++;
5690 }
5691 if (len) {
5692 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5693 *p |= mask_to_set;
5694 }
5695 }
5696
5697 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5698 {
5699 u8 *p = map + BIT_BYTE(start);
5700 const unsigned int size = start + len;
5701 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5702 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5703
5704 while (len - bits_to_clear >= 0) {
5705 *p &= ~mask_to_clear;
5706 len -= bits_to_clear;
5707 bits_to_clear = BITS_PER_BYTE;
5708 mask_to_clear = ~0;
5709 p++;
5710 }
5711 if (len) {
5712 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5713 *p &= ~mask_to_clear;
5714 }
5715 }
5716
5717 /*
5718 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5719 * given bit number
5720 * @eb: the extent buffer
5721 * @start: offset of the bitmap item in the extent buffer
5722 * @nr: bit number
5723 * @page_index: return index of the page in the extent buffer that contains the
5724 * given bit number
5725 * @page_offset: return offset into the page given by page_index
5726 *
5727 * This helper hides the ugliness of finding the byte in an extent buffer which
5728 * contains a given bit.
5729 */
5730 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5731 unsigned long start, unsigned long nr,
5732 unsigned long *page_index,
5733 size_t *page_offset)
5734 {
5735 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5736 size_t byte_offset = BIT_BYTE(nr);
5737 size_t offset;
5738
5739 /*
5740 * The byte we want is the offset of the extent buffer + the offset of
5741 * the bitmap item in the extent buffer + the offset of the byte in the
5742 * bitmap item.
5743 */
5744 offset = start_offset + start + byte_offset;
5745
5746 *page_index = offset >> PAGE_SHIFT;
5747 *page_offset = offset & (PAGE_SIZE - 1);
5748 }
5749
5750 /**
5751 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5752 * @eb: the extent buffer
5753 * @start: offset of the bitmap item in the extent buffer
5754 * @nr: bit number to test
5755 */
5756 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5757 unsigned long nr)
5758 {
5759 u8 *kaddr;
5760 struct page *page;
5761 unsigned long i;
5762 size_t offset;
5763
5764 eb_bitmap_offset(eb, start, nr, &i, &offset);
5765 page = eb->pages[i];
5766 WARN_ON(!PageUptodate(page));
5767 kaddr = page_address(page);
5768 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5769 }
5770
5771 /**
5772 * extent_buffer_bitmap_set - set an area of a bitmap
5773 * @eb: the extent buffer
5774 * @start: offset of the bitmap item in the extent buffer
5775 * @pos: bit number of the first bit
5776 * @len: number of bits to set
5777 */
5778 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5779 unsigned long pos, unsigned long len)
5780 {
5781 u8 *kaddr;
5782 struct page *page;
5783 unsigned long i;
5784 size_t offset;
5785 const unsigned int size = pos + len;
5786 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5787 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5788
5789 eb_bitmap_offset(eb, start, pos, &i, &offset);
5790 page = eb->pages[i];
5791 WARN_ON(!PageUptodate(page));
5792 kaddr = page_address(page);
5793
5794 while (len >= bits_to_set) {
5795 kaddr[offset] |= mask_to_set;
5796 len -= bits_to_set;
5797 bits_to_set = BITS_PER_BYTE;
5798 mask_to_set = ~0;
5799 if (++offset >= PAGE_SIZE && len > 0) {
5800 offset = 0;
5801 page = eb->pages[++i];
5802 WARN_ON(!PageUptodate(page));
5803 kaddr = page_address(page);
5804 }
5805 }
5806 if (len) {
5807 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5808 kaddr[offset] |= mask_to_set;
5809 }
5810 }
5811
5812
5813 /**
5814 * extent_buffer_bitmap_clear - clear an area of a bitmap
5815 * @eb: the extent buffer
5816 * @start: offset of the bitmap item in the extent buffer
5817 * @pos: bit number of the first bit
5818 * @len: number of bits to clear
5819 */
5820 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5821 unsigned long pos, unsigned long len)
5822 {
5823 u8 *kaddr;
5824 struct page *page;
5825 unsigned long i;
5826 size_t offset;
5827 const unsigned int size = pos + len;
5828 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5829 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5830
5831 eb_bitmap_offset(eb, start, pos, &i, &offset);
5832 page = eb->pages[i];
5833 WARN_ON(!PageUptodate(page));
5834 kaddr = page_address(page);
5835
5836 while (len >= bits_to_clear) {
5837 kaddr[offset] &= ~mask_to_clear;
5838 len -= bits_to_clear;
5839 bits_to_clear = BITS_PER_BYTE;
5840 mask_to_clear = ~0;
5841 if (++offset >= PAGE_SIZE && len > 0) {
5842 offset = 0;
5843 page = eb->pages[++i];
5844 WARN_ON(!PageUptodate(page));
5845 kaddr = page_address(page);
5846 }
5847 }
5848 if (len) {
5849 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5850 kaddr[offset] &= ~mask_to_clear;
5851 }
5852 }
5853
5854 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5855 {
5856 unsigned long distance = (src > dst) ? src - dst : dst - src;
5857 return distance < len;
5858 }
5859
5860 static void copy_pages(struct page *dst_page, struct page *src_page,
5861 unsigned long dst_off, unsigned long src_off,
5862 unsigned long len)
5863 {
5864 char *dst_kaddr = page_address(dst_page);
5865 char *src_kaddr;
5866 int must_memmove = 0;
5867
5868 if (dst_page != src_page) {
5869 src_kaddr = page_address(src_page);
5870 } else {
5871 src_kaddr = dst_kaddr;
5872 if (areas_overlap(src_off, dst_off, len))
5873 must_memmove = 1;
5874 }
5875
5876 if (must_memmove)
5877 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5878 else
5879 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5880 }
5881
5882 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5883 unsigned long src_offset, unsigned long len)
5884 {
5885 struct btrfs_fs_info *fs_info = dst->fs_info;
5886 size_t cur;
5887 size_t dst_off_in_page;
5888 size_t src_off_in_page;
5889 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5890 unsigned long dst_i;
5891 unsigned long src_i;
5892
5893 if (src_offset + len > dst->len) {
5894 btrfs_err(fs_info,
5895 "memmove bogus src_offset %lu move len %lu dst len %lu",
5896 src_offset, len, dst->len);
5897 BUG_ON(1);
5898 }
5899 if (dst_offset + len > dst->len) {
5900 btrfs_err(fs_info,
5901 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5902 dst_offset, len, dst->len);
5903 BUG_ON(1);
5904 }
5905
5906 while (len > 0) {
5907 dst_off_in_page = (start_offset + dst_offset) &
5908 (PAGE_SIZE - 1);
5909 src_off_in_page = (start_offset + src_offset) &
5910 (PAGE_SIZE - 1);
5911
5912 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5913 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5914
5915 cur = min(len, (unsigned long)(PAGE_SIZE -
5916 src_off_in_page));
5917 cur = min_t(unsigned long, cur,
5918 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5919
5920 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5921 dst_off_in_page, src_off_in_page, cur);
5922
5923 src_offset += cur;
5924 dst_offset += cur;
5925 len -= cur;
5926 }
5927 }
5928
5929 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5930 unsigned long src_offset, unsigned long len)
5931 {
5932 struct btrfs_fs_info *fs_info = dst->fs_info;
5933 size_t cur;
5934 size_t dst_off_in_page;
5935 size_t src_off_in_page;
5936 unsigned long dst_end = dst_offset + len - 1;
5937 unsigned long src_end = src_offset + len - 1;
5938 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5939 unsigned long dst_i;
5940 unsigned long src_i;
5941
5942 if (src_offset + len > dst->len) {
5943 btrfs_err(fs_info,
5944 "memmove bogus src_offset %lu move len %lu len %lu",
5945 src_offset, len, dst->len);
5946 BUG_ON(1);
5947 }
5948 if (dst_offset + len > dst->len) {
5949 btrfs_err(fs_info,
5950 "memmove bogus dst_offset %lu move len %lu len %lu",
5951 dst_offset, len, dst->len);
5952 BUG_ON(1);
5953 }
5954 if (dst_offset < src_offset) {
5955 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5956 return;
5957 }
5958 while (len > 0) {
5959 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5960 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5961
5962 dst_off_in_page = (start_offset + dst_end) &
5963 (PAGE_SIZE - 1);
5964 src_off_in_page = (start_offset + src_end) &
5965 (PAGE_SIZE - 1);
5966
5967 cur = min_t(unsigned long, len, src_off_in_page + 1);
5968 cur = min(cur, dst_off_in_page + 1);
5969 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5970 dst_off_in_page - cur + 1,
5971 src_off_in_page - cur + 1, cur);
5972
5973 dst_end -= cur;
5974 src_end -= cur;
5975 len -= cur;
5976 }
5977 }
5978
5979 int try_release_extent_buffer(struct page *page)
5980 {
5981 struct extent_buffer *eb;
5982
5983 /*
5984 * We need to make sure nobody is attaching this page to an eb right
5985 * now.
5986 */
5987 spin_lock(&page->mapping->private_lock);
5988 if (!PagePrivate(page)) {
5989 spin_unlock(&page->mapping->private_lock);
5990 return 1;
5991 }
5992
5993 eb = (struct extent_buffer *)page->private;
5994 BUG_ON(!eb);
5995
5996 /*
5997 * This is a little awful but should be ok, we need to make sure that
5998 * the eb doesn't disappear out from under us while we're looking at
5999 * this page.
6000 */
6001 spin_lock(&eb->refs_lock);
6002 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6003 spin_unlock(&eb->refs_lock);
6004 spin_unlock(&page->mapping->private_lock);
6005 return 0;
6006 }
6007 spin_unlock(&page->mapping->private_lock);
6008
6009 /*
6010 * If tree ref isn't set then we know the ref on this eb is a real ref,
6011 * so just return, this page will likely be freed soon anyway.
6012 */
6013 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6014 spin_unlock(&eb->refs_lock);
6015 return 0;
6016 }
6017
6018 return release_extent_buffer(eb);
6019 }