]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent_io.c
Merge branch 'foreign/josef/space-updates' into for-chris-4.6
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
215 }
216
217 void extent_io_tree_init(struct extent_io_tree *tree,
218 struct address_space *mapping)
219 {
220 tree->state = RB_ROOT;
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
223 spin_lock_init(&tree->lock);
224 tree->mapping = mapping;
225 }
226
227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229 struct extent_state *state;
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
232 if (!state)
233 return state;
234 state->state = 0;
235 state->private = 0;
236 RB_CLEAR_NODE(&state->rb_node);
237 btrfs_leak_debug_add(&state->leak_list, &states);
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
240 trace_alloc_extent_state(state, mask, _RET_IP_);
241 return state;
242 }
243
244 void free_extent_state(struct extent_state *state)
245 {
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
249 WARN_ON(extent_state_in_tree(state));
250 btrfs_leak_debug_del(&state->leak_list);
251 trace_free_extent_state(state, _RET_IP_);
252 kmem_cache_free(extent_state_cache, state);
253 }
254 }
255
256 static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
262 {
263 struct rb_node **p;
264 struct rb_node *parent = NULL;
265 struct tree_entry *entry;
266
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
273 p = search_start ? &search_start : &root->rb_node;
274 while (*p) {
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
286 do_insert:
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290 }
291
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
297 {
298 struct rb_root *root = &tree->state;
299 struct rb_node **n = &root->rb_node;
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
308 prev_entry = entry;
309
310 if (offset < entry->start)
311 n = &(*n)->rb_left;
312 else if (offset > entry->end)
313 n = &(*n)->rb_right;
314 else
315 return *n;
316 }
317
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
323 if (prev_ret) {
324 orig_prev = prev;
325 while (prev && offset > prev_entry->end) {
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 while (prev && offset < prev_entry->start) {
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342 }
343
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
349 {
350 struct rb_node *prev = NULL;
351 struct rb_node *ret;
352
353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 if (!ret)
355 return prev;
356 return ret;
357 }
358
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361 {
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367 {
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371 }
372
373 /*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
382 static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
384 {
385 struct extent_state *other;
386 struct rb_node *other_node;
387
388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 return;
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
396 merge_cb(tree, state, other);
397 state->start = other->start;
398 rb_erase(&other->rb_node, &tree->state);
399 RB_CLEAR_NODE(&other->rb_node);
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
408 merge_cb(tree, state, other);
409 state->end = other->end;
410 rb_erase(&other->rb_node, &tree->state);
411 RB_CLEAR_NODE(&other->rb_node);
412 free_extent_state(other);
413 }
414 }
415 }
416
417 static void set_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
419 {
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423
424 static void clear_state_cb(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits)
426 {
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430
431 static void set_state_bits(struct extent_io_tree *tree,
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
434
435 /*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445 static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
447 struct rb_node ***p,
448 struct rb_node **parent,
449 unsigned *bits, struct extent_changeset *changeset)
450 {
451 struct rb_node *node;
452
453 if (end < start)
454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 end, start);
456 state->start = start;
457 state->end = end;
458
459 set_state_bits(tree, state, bits, changeset);
460
461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 "%llu %llu\n",
467 found->start, found->end, start, end);
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472 }
473
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 u64 split)
476 {
477 if (tree->ops && tree->ops->split_extent_hook)
478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480
481 /*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497 {
498 struct rb_node *node;
499
500 split_cb(tree, orig, split);
501
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
509 if (node) {
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514 }
515
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523 }
524
525 /*
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
536 {
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
545 clear_state_cb(tree, state, bits);
546 add_extent_changeset(state, bits_to_clear, changeset, 0);
547 state->state &= ~bits_to_clear;
548 if (wake)
549 wake_up(&state->wq);
550 if (state->state == 0) {
551 next = next_state(state);
552 if (extent_state_in_tree(state)) {
553 rb_erase(&state->rb_node, &tree->state);
554 RB_CLEAR_NODE(&state->rb_node);
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
561 next = next_state(state);
562 }
563 return next;
564 }
565
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573 }
574
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580 }
581
582 /*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
593 */
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
598 {
599 struct extent_state *state;
600 struct extent_state *cached;
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
603 u64 last_end;
604 int err;
605 int clear = 0;
606
607 btrfs_debug_check_extent_io_range(tree, start, end);
608
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
618 again:
619 if (!prealloc && gfpflags_allow_blocking(mask)) {
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
627 prealloc = alloc_extent_state(mask);
628 }
629
630 spin_lock(&tree->lock);
631 if (cached_state) {
632 cached = *cached_state;
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
641 if (clear)
642 atomic_dec(&cached->refs);
643 state = cached;
644 goto hit_next;
645 }
646 if (clear)
647 free_extent_state(cached);
648 }
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
653 node = tree_search(tree, start);
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
661 last_end = state->end;
662
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state->state & bits)) {
665 state = next_state(state);
666 goto next;
667 }
668
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, start);
689 if (err)
690 extent_io_tree_panic(tree, err);
691
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
698 goto next;
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
711 err = split_state(tree, state, prealloc, end + 1);
712 if (err)
713 extent_io_tree_panic(tree, err);
714
715 if (wake)
716 wake_up(&state->wq);
717
718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
719
720 prealloc = NULL;
721 goto out;
722 }
723
724 state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
729 if (start <= end && state && !need_resched())
730 goto hit_next;
731 goto search_again;
732
733 out:
734 spin_unlock(&tree->lock);
735 if (prealloc)
736 free_extent_state(prealloc);
737
738 return 0;
739
740 search_again:
741 if (start > end)
742 goto out;
743 spin_unlock(&tree->lock);
744 if (gfpflags_allow_blocking(mask))
745 cond_resched();
746 goto again;
747 }
748
749 static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
751 __releases(tree->lock)
752 __acquires(tree->lock)
753 {
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 spin_unlock(&tree->lock);
757 schedule();
758 spin_lock(&tree->lock);
759 finish_wait(&state->wq, &wait);
760 }
761
762 /*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
769 {
770 struct extent_state *state;
771 struct rb_node *node;
772
773 btrfs_debug_check_extent_io_range(tree, start, end);
774
775 spin_lock(&tree->lock);
776 again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
782 node = tree_search(tree, start);
783 process_node:
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
808 }
809 out:
810 spin_unlock(&tree->lock);
811 }
812
813 static void set_state_bits(struct extent_io_tree *tree,
814 struct extent_state *state,
815 unsigned *bits, struct extent_changeset *changeset)
816 {
817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818
819 set_state_cb(tree, state, bits);
820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
824 add_extent_changeset(state, bits_to_set, changeset, 1);
825 state->state |= bits_to_set;
826 }
827
828 static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
830 unsigned flags)
831 {
832 if (cached_ptr && !(*cached_ptr)) {
833 if (!flags || (state->state & flags)) {
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838 }
839
840 static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842 {
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846
847 /*
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
850 *
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
854 *
855 * [start, end] is inclusive This takes the tree lock.
856 */
857
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 unsigned bits, unsigned exclusive_bits,
861 u64 *failed_start, struct extent_state **cached_state,
862 gfp_t mask, struct extent_changeset *changeset)
863 {
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
867 struct rb_node **p;
868 struct rb_node *parent;
869 int err = 0;
870 u64 last_start;
871 u64 last_end;
872
873 btrfs_debug_check_extent_io_range(tree, start, end);
874
875 bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 if (!prealloc && gfpflags_allow_blocking(mask)) {
878 prealloc = alloc_extent_state(mask);
879 BUG_ON(!prealloc);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044 out:
1045 spin_unlock(&tree->lock);
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051 search_again:
1052 if (start > end)
1053 goto out;
1054 spin_unlock(&tree->lock);
1055 if (gfpflags_allow_blocking(mask))
1056 cond_resched();
1057 goto again;
1058 }
1059
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 unsigned bits, u64 * failed_start,
1062 struct extent_state **cached_state, gfp_t mask)
1063 {
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 cached_state, mask, NULL);
1066 }
1067
1068
1069 /**
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state, gfp_t mask)
1089 {
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102 again:
1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(mask);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270 out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277 search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
1281 if (gfpflags_allow_blocking(mask))
1282 cond_resched();
1283 first_iteration = false;
1284 goto again;
1285 }
1286
1287 /* wrappers around set/clear extent bit */
1288 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1289 unsigned bits, gfp_t mask,
1290 struct extent_changeset *changeset)
1291 {
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1301 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307 {
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, gfp_t mask,
1314 struct extent_changeset *changeset)
1315 {
1316 /*
1317 * Don't support EXTENT_LOCKED case, same reason as
1318 * set_record_extent_bits().
1319 */
1320 BUG_ON(bits & EXTENT_LOCKED);
1321
1322 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1323 changeset);
1324 }
1325
1326 /*
1327 * either insert or lock state struct between start and end use mask to tell
1328 * us if waiting is desired.
1329 */
1330 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1331 struct extent_state **cached_state)
1332 {
1333 int err;
1334 u64 failed_start;
1335
1336 while (1) {
1337 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1338 EXTENT_LOCKED, &failed_start,
1339 cached_state, GFP_NOFS, NULL);
1340 if (err == -EEXIST) {
1341 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1342 start = failed_start;
1343 } else
1344 break;
1345 WARN_ON(start > end);
1346 }
1347 return err;
1348 }
1349
1350 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1351 {
1352 int err;
1353 u64 failed_start;
1354
1355 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1356 &failed_start, NULL, GFP_NOFS, NULL);
1357 if (err == -EEXIST) {
1358 if (failed_start > start)
1359 clear_extent_bit(tree, start, failed_start - 1,
1360 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1361 return 0;
1362 }
1363 return 1;
1364 }
1365
1366 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1367 {
1368 unsigned long index = start >> PAGE_CACHE_SHIFT;
1369 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1370 struct page *page;
1371
1372 while (index <= end_index) {
1373 page = find_get_page(inode->i_mapping, index);
1374 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1375 clear_page_dirty_for_io(page);
1376 page_cache_release(page);
1377 index++;
1378 }
1379 }
1380
1381 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1382 {
1383 unsigned long index = start >> PAGE_CACHE_SHIFT;
1384 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1385 struct page *page;
1386
1387 while (index <= end_index) {
1388 page = find_get_page(inode->i_mapping, index);
1389 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1390 __set_page_dirty_nobuffers(page);
1391 account_page_redirty(page);
1392 page_cache_release(page);
1393 index++;
1394 }
1395 }
1396
1397 /*
1398 * helper function to set both pages and extents in the tree writeback
1399 */
1400 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1401 {
1402 unsigned long index = start >> PAGE_CACHE_SHIFT;
1403 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1404 struct page *page;
1405
1406 while (index <= end_index) {
1407 page = find_get_page(tree->mapping, index);
1408 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1409 set_page_writeback(page);
1410 page_cache_release(page);
1411 index++;
1412 }
1413 }
1414
1415 /* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
1419 static struct extent_state *
1420 find_first_extent_bit_state(struct extent_io_tree *tree,
1421 u64 start, unsigned bits)
1422 {
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
1431 if (!node)
1432 goto out;
1433
1434 while (1) {
1435 state = rb_entry(node, struct extent_state, rb_node);
1436 if (state->end >= start && (state->state & bits))
1437 return state;
1438
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443 out:
1444 return NULL;
1445 }
1446
1447 /*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
1452 * If nothing was found, 1 is returned. If found something, return 0.
1453 */
1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455 u64 *start_ret, u64 *end_ret, unsigned bits,
1456 struct extent_state **cached_state)
1457 {
1458 struct extent_state *state;
1459 struct rb_node *n;
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
1482 state = find_first_extent_bit_state(tree, start, bits);
1483 got_it:
1484 if (state) {
1485 cache_state_if_flags(state, cached_state, 0);
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
1490 out:
1491 spin_unlock(&tree->lock);
1492 return ret;
1493 }
1494
1495 /*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
1504 {
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
1511 spin_lock(&tree->lock);
1512
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
1517 node = tree_search(tree, cur_start);
1518 if (!node) {
1519 if (!found)
1520 *end = (u64)-1;
1521 goto out;
1522 }
1523
1524 while (1) {
1525 state = rb_entry(node, struct extent_state, rb_node);
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
1535 if (!found) {
1536 *start = state->start;
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
1544 total_bytes += state->end - state->start + 1;
1545 if (total_bytes >= max_bytes)
1546 break;
1547 if (!node)
1548 break;
1549 }
1550 out:
1551 spin_unlock(&tree->lock);
1552 return found;
1553 }
1554
1555 static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
1558 {
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
1567 return;
1568
1569 while (nr_pages > 0) {
1570 ret = find_get_pages_contig(inode->i_mapping, index,
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 }
1583
1584 static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588 {
1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
1604 while (nrpages > 0) {
1605 ret = find_get_pages_contig(inode->i_mapping, index,
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
1618 if (pages[i] != locked_page) {
1619 lock_page(pages[i]);
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 page_cache_release(pages[i]);
1625 goto done;
1626 }
1627 }
1628 page_cache_release(pages[i]);
1629 pages_locked++;
1630 }
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636 done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_CACHE_SHIFT);
1642 }
1643 return ret;
1644 }
1645
1646 /*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
1652 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
1656 {
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
1660 struct extent_state *cached_state = NULL;
1661 int ret;
1662 int loops = 0;
1663
1664 again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669 max_bytes, &cached_state);
1670 if (!found || delalloc_end <= *start) {
1671 *start = delalloc_start;
1672 *end = delalloc_end;
1673 free_extent_state(cached_state);
1674 return 0;
1675 }
1676
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
1682 if (delalloc_start < *start)
1683 delalloc_start = *start;
1684
1685 /*
1686 * make sure to limit the number of pages we try to lock down
1687 */
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
1690
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
1698 free_extent_state(cached_state);
1699 cached_state = NULL;
1700 if (!loops) {
1701 max_bytes = PAGE_CACHE_SIZE;
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710
1711 /* step three, lock the state bits for the whole range */
1712 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716 EXTENT_DELALLOC, 1, cached_state);
1717 if (!ret) {
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
1725 free_extent_state(cached_state);
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728 out_failed:
1729 return found;
1730 }
1731
1732 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 struct page *locked_page,
1734 unsigned clear_bits,
1735 unsigned long page_ops)
1736 {
1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
1744
1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746 if (page_ops == 0)
1747 return;
1748
1749 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1750 mapping_set_error(inode->i_mapping, -EIO);
1751
1752 while (nr_pages > 0) {
1753 ret = find_get_pages_contig(inode->i_mapping, index,
1754 min_t(unsigned long,
1755 nr_pages, ARRAY_SIZE(pages)), pages);
1756 for (i = 0; i < ret; i++) {
1757
1758 if (page_ops & PAGE_SET_PRIVATE2)
1759 SetPagePrivate2(pages[i]);
1760
1761 if (pages[i] == locked_page) {
1762 page_cache_release(pages[i]);
1763 continue;
1764 }
1765 if (page_ops & PAGE_CLEAR_DIRTY)
1766 clear_page_dirty_for_io(pages[i]);
1767 if (page_ops & PAGE_SET_WRITEBACK)
1768 set_page_writeback(pages[i]);
1769 if (page_ops & PAGE_SET_ERROR)
1770 SetPageError(pages[i]);
1771 if (page_ops & PAGE_END_WRITEBACK)
1772 end_page_writeback(pages[i]);
1773 if (page_ops & PAGE_UNLOCK)
1774 unlock_page(pages[i]);
1775 page_cache_release(pages[i]);
1776 }
1777 nr_pages -= ret;
1778 index += ret;
1779 cond_resched();
1780 }
1781 }
1782
1783 /*
1784 * count the number of bytes in the tree that have a given bit(s)
1785 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1786 * cached. The total number found is returned.
1787 */
1788 u64 count_range_bits(struct extent_io_tree *tree,
1789 u64 *start, u64 search_end, u64 max_bytes,
1790 unsigned bits, int contig)
1791 {
1792 struct rb_node *node;
1793 struct extent_state *state;
1794 u64 cur_start = *start;
1795 u64 total_bytes = 0;
1796 u64 last = 0;
1797 int found = 0;
1798
1799 if (WARN_ON(search_end <= cur_start))
1800 return 0;
1801
1802 spin_lock(&tree->lock);
1803 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1804 total_bytes = tree->dirty_bytes;
1805 goto out;
1806 }
1807 /*
1808 * this search will find all the extents that end after
1809 * our range starts.
1810 */
1811 node = tree_search(tree, cur_start);
1812 if (!node)
1813 goto out;
1814
1815 while (1) {
1816 state = rb_entry(node, struct extent_state, rb_node);
1817 if (state->start > search_end)
1818 break;
1819 if (contig && found && state->start > last + 1)
1820 break;
1821 if (state->end >= cur_start && (state->state & bits) == bits) {
1822 total_bytes += min(search_end, state->end) + 1 -
1823 max(cur_start, state->start);
1824 if (total_bytes >= max_bytes)
1825 break;
1826 if (!found) {
1827 *start = max(cur_start, state->start);
1828 found = 1;
1829 }
1830 last = state->end;
1831 } else if (contig && found) {
1832 break;
1833 }
1834 node = rb_next(node);
1835 if (!node)
1836 break;
1837 }
1838 out:
1839 spin_unlock(&tree->lock);
1840 return total_bytes;
1841 }
1842
1843 /*
1844 * set the private field for a given byte offset in the tree. If there isn't
1845 * an extent_state there already, this does nothing.
1846 */
1847 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 state->private = private;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1875 {
1876 struct rb_node *node;
1877 struct extent_state *state;
1878 int ret = 0;
1879
1880 spin_lock(&tree->lock);
1881 /*
1882 * this search will find all the extents that end after
1883 * our range starts.
1884 */
1885 node = tree_search(tree, start);
1886 if (!node) {
1887 ret = -ENOENT;
1888 goto out;
1889 }
1890 state = rb_entry(node, struct extent_state, rb_node);
1891 if (state->start != start) {
1892 ret = -ENOENT;
1893 goto out;
1894 }
1895 *private = state->private;
1896 out:
1897 spin_unlock(&tree->lock);
1898 return ret;
1899 }
1900
1901 /*
1902 * searches a range in the state tree for a given mask.
1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
1904 * has the bits set. Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908 unsigned bits, int filled, struct extent_state *cached)
1909 {
1910 struct extent_state *state = NULL;
1911 struct rb_node *node;
1912 int bitset = 0;
1913
1914 spin_lock(&tree->lock);
1915 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916 cached->end > start)
1917 node = &cached->rb_node;
1918 else
1919 node = tree_search(tree, start);
1920 while (node && start <= end) {
1921 state = rb_entry(node, struct extent_state, rb_node);
1922
1923 if (filled && state->start > start) {
1924 bitset = 0;
1925 break;
1926 }
1927
1928 if (state->start > end)
1929 break;
1930
1931 if (state->state & bits) {
1932 bitset = 1;
1933 if (!filled)
1934 break;
1935 } else if (filled) {
1936 bitset = 0;
1937 break;
1938 }
1939
1940 if (state->end == (u64)-1)
1941 break;
1942
1943 start = state->end + 1;
1944 if (start > end)
1945 break;
1946 node = rb_next(node);
1947 if (!node) {
1948 if (filled)
1949 bitset = 0;
1950 break;
1951 }
1952 }
1953 spin_unlock(&tree->lock);
1954 return bitset;
1955 }
1956
1957 /*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
1961 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962 {
1963 u64 start = page_offset(page);
1964 u64 end = start + PAGE_CACHE_SIZE - 1;
1965 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966 SetPageUptodate(page);
1967 }
1968
1969 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970 {
1971 int ret;
1972 int err = 0;
1973 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975 set_state_private(failure_tree, rec->start, 0);
1976 ret = clear_extent_bits(failure_tree, rec->start,
1977 rec->start + rec->len - 1,
1978 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979 if (ret)
1980 err = ret;
1981
1982 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983 rec->start + rec->len - 1,
1984 EXTENT_DAMAGED, GFP_NOFS);
1985 if (ret && !err)
1986 err = ret;
1987
1988 kfree(rec);
1989 return err;
1990 }
1991
1992 /*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
1997 * to avoid any synchronization issues, wait for the data after writing, which
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
2002 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003 struct page *page, unsigned int pg_offset, int mirror_num)
2004 {
2005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006 struct bio *bio;
2007 struct btrfs_device *dev;
2008 u64 map_length = 0;
2009 u64 sector;
2010 struct btrfs_bio *bbio = NULL;
2011 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012 int ret;
2013
2014 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015 BUG_ON(!mirror_num);
2016
2017 /* we can't repair anything in raid56 yet */
2018 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019 return 0;
2020
2021 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022 if (!bio)
2023 return -EIO;
2024 bio->bi_iter.bi_size = 0;
2025 map_length = length;
2026
2027 ret = btrfs_map_block(fs_info, WRITE, logical,
2028 &map_length, &bbio, mirror_num);
2029 if (ret) {
2030 bio_put(bio);
2031 return -EIO;
2032 }
2033 BUG_ON(mirror_num != bbio->mirror_num);
2034 sector = bbio->stripes[mirror_num-1].physical >> 9;
2035 bio->bi_iter.bi_sector = sector;
2036 dev = bbio->stripes[mirror_num-1].dev;
2037 btrfs_put_bbio(bbio);
2038 if (!dev || !dev->bdev || !dev->writeable) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 bio->bi_bdev = dev->bdev;
2043 bio_add_page(bio, page, length, pg_offset);
2044
2045 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046 /* try to remap that extent elsewhere? */
2047 bio_put(bio);
2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 return -EIO;
2050 }
2051
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 btrfs_ino(inode), start,
2055 rcu_str_deref(dev->name), sector);
2056 bio_put(bio);
2057 return 0;
2058 }
2059
2060 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061 int mirror_num)
2062 {
2063 u64 start = eb->start;
2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065 int ret = 0;
2066
2067 if (root->fs_info->sb->s_flags & MS_RDONLY)
2068 return -EROFS;
2069
2070 for (i = 0; i < num_pages; i++) {
2071 struct page *p = eb->pages[i];
2072
2073 ret = repair_io_failure(root->fs_info->btree_inode, start,
2074 PAGE_CACHE_SIZE, start, p,
2075 start - page_offset(p), mirror_num);
2076 if (ret)
2077 break;
2078 start += PAGE_CACHE_SIZE;
2079 }
2080
2081 return ret;
2082 }
2083
2084 /*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089 unsigned int pg_offset)
2090 {
2091 u64 private;
2092 u64 private_failure;
2093 struct io_failure_record *failrec;
2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 struct extent_state *state;
2096 int num_copies;
2097 int ret;
2098
2099 private = 0;
2100 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101 (u64)-1, 1, EXTENT_DIRTY, 0);
2102 if (!ret)
2103 return 0;
2104
2105 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2106 &private_failure);
2107 if (ret)
2108 return 0;
2109
2110 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2111 BUG_ON(!failrec->this_mirror);
2112
2113 if (failrec->in_validation) {
2114 /* there was no real error, just free the record */
2115 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2116 failrec->start);
2117 goto out;
2118 }
2119 if (fs_info->sb->s_flags & MS_RDONLY)
2120 goto out;
2121
2122 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2123 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2124 failrec->start,
2125 EXTENT_LOCKED);
2126 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2127
2128 if (state && state->start <= failrec->start &&
2129 state->end >= failrec->start + failrec->len - 1) {
2130 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2131 failrec->len);
2132 if (num_copies > 1) {
2133 repair_io_failure(inode, start, failrec->len,
2134 failrec->logical, page,
2135 pg_offset, failrec->failed_mirror);
2136 }
2137 }
2138
2139 out:
2140 free_io_failure(inode, failrec);
2141
2142 return 0;
2143 }
2144
2145 /*
2146 * Can be called when
2147 * - hold extent lock
2148 * - under ordered extent
2149 * - the inode is freeing
2150 */
2151 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2152 {
2153 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2154 struct io_failure_record *failrec;
2155 struct extent_state *state, *next;
2156
2157 if (RB_EMPTY_ROOT(&failure_tree->state))
2158 return;
2159
2160 spin_lock(&failure_tree->lock);
2161 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2162 while (state) {
2163 if (state->start > end)
2164 break;
2165
2166 ASSERT(state->end <= end);
2167
2168 next = next_state(state);
2169
2170 failrec = (struct io_failure_record *)(unsigned long)state->private;
2171 free_extent_state(state);
2172 kfree(failrec);
2173
2174 state = next;
2175 }
2176 spin_unlock(&failure_tree->lock);
2177 }
2178
2179 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2180 struct io_failure_record **failrec_ret)
2181 {
2182 struct io_failure_record *failrec;
2183 u64 private;
2184 struct extent_map *em;
2185 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2186 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2187 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2188 int ret;
2189 u64 logical;
2190
2191 ret = get_state_private(failure_tree, start, &private);
2192 if (ret) {
2193 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194 if (!failrec)
2195 return -ENOMEM;
2196
2197 failrec->start = start;
2198 failrec->len = end - start + 1;
2199 failrec->this_mirror = 0;
2200 failrec->bio_flags = 0;
2201 failrec->in_validation = 0;
2202
2203 read_lock(&em_tree->lock);
2204 em = lookup_extent_mapping(em_tree, start, failrec->len);
2205 if (!em) {
2206 read_unlock(&em_tree->lock);
2207 kfree(failrec);
2208 return -EIO;
2209 }
2210
2211 if (em->start > start || em->start + em->len <= start) {
2212 free_extent_map(em);
2213 em = NULL;
2214 }
2215 read_unlock(&em_tree->lock);
2216 if (!em) {
2217 kfree(failrec);
2218 return -EIO;
2219 }
2220
2221 logical = start - em->start;
2222 logical = em->block_start + logical;
2223 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2224 logical = em->block_start;
2225 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2226 extent_set_compress_type(&failrec->bio_flags,
2227 em->compress_type);
2228 }
2229
2230 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2231 logical, start, failrec->len);
2232
2233 failrec->logical = logical;
2234 free_extent_map(em);
2235
2236 /* set the bits in the private failure tree */
2237 ret = set_extent_bits(failure_tree, start, end,
2238 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2239 if (ret >= 0)
2240 ret = set_state_private(failure_tree, start,
2241 (u64)(unsigned long)failrec);
2242 /* set the bits in the inode's tree */
2243 if (ret >= 0)
2244 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2245 GFP_NOFS);
2246 if (ret < 0) {
2247 kfree(failrec);
2248 return ret;
2249 }
2250 } else {
2251 failrec = (struct io_failure_record *)(unsigned long)private;
2252 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2253 failrec->logical, failrec->start, failrec->len,
2254 failrec->in_validation);
2255 /*
2256 * when data can be on disk more than twice, add to failrec here
2257 * (e.g. with a list for failed_mirror) to make
2258 * clean_io_failure() clean all those errors at once.
2259 */
2260 }
2261
2262 *failrec_ret = failrec;
2263
2264 return 0;
2265 }
2266
2267 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2268 struct io_failure_record *failrec, int failed_mirror)
2269 {
2270 int num_copies;
2271
2272 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2273 failrec->logical, failrec->len);
2274 if (num_copies == 1) {
2275 /*
2276 * we only have a single copy of the data, so don't bother with
2277 * all the retry and error correction code that follows. no
2278 * matter what the error is, it is very likely to persist.
2279 */
2280 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2281 num_copies, failrec->this_mirror, failed_mirror);
2282 return 0;
2283 }
2284
2285 /*
2286 * there are two premises:
2287 * a) deliver good data to the caller
2288 * b) correct the bad sectors on disk
2289 */
2290 if (failed_bio->bi_vcnt > 1) {
2291 /*
2292 * to fulfill b), we need to know the exact failing sectors, as
2293 * we don't want to rewrite any more than the failed ones. thus,
2294 * we need separate read requests for the failed bio
2295 *
2296 * if the following BUG_ON triggers, our validation request got
2297 * merged. we need separate requests for our algorithm to work.
2298 */
2299 BUG_ON(failrec->in_validation);
2300 failrec->in_validation = 1;
2301 failrec->this_mirror = failed_mirror;
2302 } else {
2303 /*
2304 * we're ready to fulfill a) and b) alongside. get a good copy
2305 * of the failed sector and if we succeed, we have setup
2306 * everything for repair_io_failure to do the rest for us.
2307 */
2308 if (failrec->in_validation) {
2309 BUG_ON(failrec->this_mirror != failed_mirror);
2310 failrec->in_validation = 0;
2311 failrec->this_mirror = 0;
2312 }
2313 failrec->failed_mirror = failed_mirror;
2314 failrec->this_mirror++;
2315 if (failrec->this_mirror == failed_mirror)
2316 failrec->this_mirror++;
2317 }
2318
2319 if (failrec->this_mirror > num_copies) {
2320 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2321 num_copies, failrec->this_mirror, failed_mirror);
2322 return 0;
2323 }
2324
2325 return 1;
2326 }
2327
2328
2329 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 struct io_failure_record *failrec,
2331 struct page *page, int pg_offset, int icsum,
2332 bio_end_io_t *endio_func, void *data)
2333 {
2334 struct bio *bio;
2335 struct btrfs_io_bio *btrfs_failed_bio;
2336 struct btrfs_io_bio *btrfs_bio;
2337
2338 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2339 if (!bio)
2340 return NULL;
2341
2342 bio->bi_end_io = endio_func;
2343 bio->bi_iter.bi_sector = failrec->logical >> 9;
2344 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2345 bio->bi_iter.bi_size = 0;
2346 bio->bi_private = data;
2347
2348 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2349 if (btrfs_failed_bio->csum) {
2350 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2351 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2352
2353 btrfs_bio = btrfs_io_bio(bio);
2354 btrfs_bio->csum = btrfs_bio->csum_inline;
2355 icsum *= csum_size;
2356 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2357 csum_size);
2358 }
2359
2360 bio_add_page(bio, page, failrec->len, pg_offset);
2361
2362 return bio;
2363 }
2364
2365 /*
2366 * this is a generic handler for readpage errors (default
2367 * readpage_io_failed_hook). if other copies exist, read those and write back
2368 * good data to the failed position. does not investigate in remapping the
2369 * failed extent elsewhere, hoping the device will be smart enough to do this as
2370 * needed
2371 */
2372
2373 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2374 struct page *page, u64 start, u64 end,
2375 int failed_mirror)
2376 {
2377 struct io_failure_record *failrec;
2378 struct inode *inode = page->mapping->host;
2379 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2380 struct bio *bio;
2381 int read_mode;
2382 int ret;
2383
2384 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2385
2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 if (ret)
2388 return ret;
2389
2390 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2391 if (!ret) {
2392 free_io_failure(inode, failrec);
2393 return -EIO;
2394 }
2395
2396 if (failed_bio->bi_vcnt > 1)
2397 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2398 else
2399 read_mode = READ_SYNC;
2400
2401 phy_offset >>= inode->i_sb->s_blocksize_bits;
2402 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2403 start - page_offset(page),
2404 (int)phy_offset, failed_bio->bi_end_io,
2405 NULL);
2406 if (!bio) {
2407 free_io_failure(inode, failrec);
2408 return -EIO;
2409 }
2410
2411 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2412 read_mode, failrec->this_mirror, failrec->in_validation);
2413
2414 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2415 failrec->this_mirror,
2416 failrec->bio_flags, 0);
2417 if (ret) {
2418 free_io_failure(inode, failrec);
2419 bio_put(bio);
2420 }
2421
2422 return ret;
2423 }
2424
2425 /* lots and lots of room for performance fixes in the end_bio funcs */
2426
2427 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2428 {
2429 int uptodate = (err == 0);
2430 struct extent_io_tree *tree;
2431 int ret = 0;
2432
2433 tree = &BTRFS_I(page->mapping->host)->io_tree;
2434
2435 if (tree->ops && tree->ops->writepage_end_io_hook) {
2436 ret = tree->ops->writepage_end_io_hook(page, start,
2437 end, NULL, uptodate);
2438 if (ret)
2439 uptodate = 0;
2440 }
2441
2442 if (!uptodate) {
2443 ClearPageUptodate(page);
2444 SetPageError(page);
2445 ret = ret < 0 ? ret : -EIO;
2446 mapping_set_error(page->mapping, ret);
2447 }
2448 }
2449
2450 /*
2451 * after a writepage IO is done, we need to:
2452 * clear the uptodate bits on error
2453 * clear the writeback bits in the extent tree for this IO
2454 * end_page_writeback if the page has no more pending IO
2455 *
2456 * Scheduling is not allowed, so the extent state tree is expected
2457 * to have one and only one object corresponding to this IO.
2458 */
2459 static void end_bio_extent_writepage(struct bio *bio)
2460 {
2461 struct bio_vec *bvec;
2462 u64 start;
2463 u64 end;
2464 int i;
2465
2466 bio_for_each_segment_all(bvec, bio, i) {
2467 struct page *page = bvec->bv_page;
2468
2469 /* We always issue full-page reads, but if some block
2470 * in a page fails to read, blk_update_request() will
2471 * advance bv_offset and adjust bv_len to compensate.
2472 * Print a warning for nonzero offsets, and an error
2473 * if they don't add up to a full page. */
2474 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2475 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2476 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2477 "partial page write in btrfs with offset %u and length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 else
2480 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2481 "incomplete page write in btrfs with offset %u and "
2482 "length %u",
2483 bvec->bv_offset, bvec->bv_len);
2484 }
2485
2486 start = page_offset(page);
2487 end = start + bvec->bv_offset + bvec->bv_len - 1;
2488
2489 end_extent_writepage(page, bio->bi_error, start, end);
2490 end_page_writeback(page);
2491 }
2492
2493 bio_put(bio);
2494 }
2495
2496 static void
2497 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2498 int uptodate)
2499 {
2500 struct extent_state *cached = NULL;
2501 u64 end = start + len - 1;
2502
2503 if (uptodate && tree->track_uptodate)
2504 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2505 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2506 }
2507
2508 /*
2509 * after a readpage IO is done, we need to:
2510 * clear the uptodate bits on error
2511 * set the uptodate bits if things worked
2512 * set the page up to date if all extents in the tree are uptodate
2513 * clear the lock bit in the extent tree
2514 * unlock the page if there are no other extents locked for it
2515 *
2516 * Scheduling is not allowed, so the extent state tree is expected
2517 * to have one and only one object corresponding to this IO.
2518 */
2519 static void end_bio_extent_readpage(struct bio *bio)
2520 {
2521 struct bio_vec *bvec;
2522 int uptodate = !bio->bi_error;
2523 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2524 struct extent_io_tree *tree;
2525 u64 offset = 0;
2526 u64 start;
2527 u64 end;
2528 u64 len;
2529 u64 extent_start = 0;
2530 u64 extent_len = 0;
2531 int mirror;
2532 int ret;
2533 int i;
2534
2535 bio_for_each_segment_all(bvec, bio, i) {
2536 struct page *page = bvec->bv_page;
2537 struct inode *inode = page->mapping->host;
2538
2539 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2540 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2541 bio->bi_error, io_bio->mirror_num);
2542 tree = &BTRFS_I(inode)->io_tree;
2543
2544 /* We always issue full-page reads, but if some block
2545 * in a page fails to read, blk_update_request() will
2546 * advance bv_offset and adjust bv_len to compensate.
2547 * Print a warning for nonzero offsets, and an error
2548 * if they don't add up to a full page. */
2549 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2550 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2551 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2552 "partial page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 else
2555 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2556 "incomplete page read in btrfs with offset %u and "
2557 "length %u",
2558 bvec->bv_offset, bvec->bv_len);
2559 }
2560
2561 start = page_offset(page);
2562 end = start + bvec->bv_offset + bvec->bv_len - 1;
2563 len = bvec->bv_len;
2564
2565 mirror = io_bio->mirror_num;
2566 if (likely(uptodate && tree->ops &&
2567 tree->ops->readpage_end_io_hook)) {
2568 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2569 page, start, end,
2570 mirror);
2571 if (ret)
2572 uptodate = 0;
2573 else
2574 clean_io_failure(inode, start, page, 0);
2575 }
2576
2577 if (likely(uptodate))
2578 goto readpage_ok;
2579
2580 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2581 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2582 if (!ret && !bio->bi_error)
2583 uptodate = 1;
2584 } else {
2585 /*
2586 * The generic bio_readpage_error handles errors the
2587 * following way: If possible, new read requests are
2588 * created and submitted and will end up in
2589 * end_bio_extent_readpage as well (if we're lucky, not
2590 * in the !uptodate case). In that case it returns 0 and
2591 * we just go on with the next page in our bio. If it
2592 * can't handle the error it will return -EIO and we
2593 * remain responsible for that page.
2594 */
2595 ret = bio_readpage_error(bio, offset, page, start, end,
2596 mirror);
2597 if (ret == 0) {
2598 uptodate = !bio->bi_error;
2599 offset += len;
2600 continue;
2601 }
2602 }
2603 readpage_ok:
2604 if (likely(uptodate)) {
2605 loff_t i_size = i_size_read(inode);
2606 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2607 unsigned off;
2608
2609 /* Zero out the end if this page straddles i_size */
2610 off = i_size & (PAGE_CACHE_SIZE-1);
2611 if (page->index == end_index && off)
2612 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2613 SetPageUptodate(page);
2614 } else {
2615 ClearPageUptodate(page);
2616 SetPageError(page);
2617 }
2618 unlock_page(page);
2619 offset += len;
2620
2621 if (unlikely(!uptodate)) {
2622 if (extent_len) {
2623 endio_readpage_release_extent(tree,
2624 extent_start,
2625 extent_len, 1);
2626 extent_start = 0;
2627 extent_len = 0;
2628 }
2629 endio_readpage_release_extent(tree, start,
2630 end - start + 1, 0);
2631 } else if (!extent_len) {
2632 extent_start = start;
2633 extent_len = end + 1 - start;
2634 } else if (extent_start + extent_len == start) {
2635 extent_len += end + 1 - start;
2636 } else {
2637 endio_readpage_release_extent(tree, extent_start,
2638 extent_len, uptodate);
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 }
2642 }
2643
2644 if (extent_len)
2645 endio_readpage_release_extent(tree, extent_start, extent_len,
2646 uptodate);
2647 if (io_bio->end_io)
2648 io_bio->end_io(io_bio, bio->bi_error);
2649 bio_put(bio);
2650 }
2651
2652 /*
2653 * this allocates from the btrfs_bioset. We're returning a bio right now
2654 * but you can call btrfs_io_bio for the appropriate container_of magic
2655 */
2656 struct bio *
2657 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2658 gfp_t gfp_flags)
2659 {
2660 struct btrfs_io_bio *btrfs_bio;
2661 struct bio *bio;
2662
2663 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2664
2665 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2666 while (!bio && (nr_vecs /= 2)) {
2667 bio = bio_alloc_bioset(gfp_flags,
2668 nr_vecs, btrfs_bioset);
2669 }
2670 }
2671
2672 if (bio) {
2673 bio->bi_bdev = bdev;
2674 bio->bi_iter.bi_sector = first_sector;
2675 btrfs_bio = btrfs_io_bio(bio);
2676 btrfs_bio->csum = NULL;
2677 btrfs_bio->csum_allocated = NULL;
2678 btrfs_bio->end_io = NULL;
2679 }
2680 return bio;
2681 }
2682
2683 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2684 {
2685 struct btrfs_io_bio *btrfs_bio;
2686 struct bio *new;
2687
2688 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2689 if (new) {
2690 btrfs_bio = btrfs_io_bio(new);
2691 btrfs_bio->csum = NULL;
2692 btrfs_bio->csum_allocated = NULL;
2693 btrfs_bio->end_io = NULL;
2694
2695 #ifdef CONFIG_BLK_CGROUP
2696 /* FIXME, put this into bio_clone_bioset */
2697 if (bio->bi_css)
2698 bio_associate_blkcg(new, bio->bi_css);
2699 #endif
2700 }
2701 return new;
2702 }
2703
2704 /* this also allocates from the btrfs_bioset */
2705 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706 {
2707 struct btrfs_io_bio *btrfs_bio;
2708 struct bio *bio;
2709
2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 if (bio) {
2712 btrfs_bio = btrfs_io_bio(bio);
2713 btrfs_bio->csum = NULL;
2714 btrfs_bio->csum_allocated = NULL;
2715 btrfs_bio->end_io = NULL;
2716 }
2717 return bio;
2718 }
2719
2720
2721 static int __must_check submit_one_bio(int rw, struct bio *bio,
2722 int mirror_num, unsigned long bio_flags)
2723 {
2724 int ret = 0;
2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 struct page *page = bvec->bv_page;
2727 struct extent_io_tree *tree = bio->bi_private;
2728 u64 start;
2729
2730 start = page_offset(page) + bvec->bv_offset;
2731
2732 bio->bi_private = NULL;
2733
2734 bio_get(bio);
2735
2736 if (tree->ops && tree->ops->submit_bio_hook)
2737 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2738 mirror_num, bio_flags, start);
2739 else
2740 btrfsic_submit_bio(rw, bio);
2741
2742 bio_put(bio);
2743 return ret;
2744 }
2745
2746 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2747 unsigned long offset, size_t size, struct bio *bio,
2748 unsigned long bio_flags)
2749 {
2750 int ret = 0;
2751 if (tree->ops && tree->ops->merge_bio_hook)
2752 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2753 bio_flags);
2754 BUG_ON(ret < 0);
2755 return ret;
2756
2757 }
2758
2759 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2760 struct writeback_control *wbc,
2761 struct page *page, sector_t sector,
2762 size_t size, unsigned long offset,
2763 struct block_device *bdev,
2764 struct bio **bio_ret,
2765 unsigned long max_pages,
2766 bio_end_io_t end_io_func,
2767 int mirror_num,
2768 unsigned long prev_bio_flags,
2769 unsigned long bio_flags,
2770 bool force_bio_submit)
2771 {
2772 int ret = 0;
2773 struct bio *bio;
2774 int contig = 0;
2775 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2776 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2777
2778 if (bio_ret && *bio_ret) {
2779 bio = *bio_ret;
2780 if (old_compressed)
2781 contig = bio->bi_iter.bi_sector == sector;
2782 else
2783 contig = bio_end_sector(bio) == sector;
2784
2785 if (prev_bio_flags != bio_flags || !contig ||
2786 force_bio_submit ||
2787 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2788 bio_add_page(bio, page, page_size, offset) < page_size) {
2789 ret = submit_one_bio(rw, bio, mirror_num,
2790 prev_bio_flags);
2791 if (ret < 0) {
2792 *bio_ret = NULL;
2793 return ret;
2794 }
2795 bio = NULL;
2796 } else {
2797 if (wbc)
2798 wbc_account_io(wbc, page, page_size);
2799 return 0;
2800 }
2801 }
2802
2803 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2804 GFP_NOFS | __GFP_HIGH);
2805 if (!bio)
2806 return -ENOMEM;
2807
2808 bio_add_page(bio, page, page_size, offset);
2809 bio->bi_end_io = end_io_func;
2810 bio->bi_private = tree;
2811 if (wbc) {
2812 wbc_init_bio(wbc, bio);
2813 wbc_account_io(wbc, page, page_size);
2814 }
2815
2816 if (bio_ret)
2817 *bio_ret = bio;
2818 else
2819 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2820
2821 return ret;
2822 }
2823
2824 static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 struct page *page)
2826 {
2827 if (!PagePrivate(page)) {
2828 SetPagePrivate(page);
2829 page_cache_get(page);
2830 set_page_private(page, (unsigned long)eb);
2831 } else {
2832 WARN_ON(page->private != (unsigned long)eb);
2833 }
2834 }
2835
2836 void set_page_extent_mapped(struct page *page)
2837 {
2838 if (!PagePrivate(page)) {
2839 SetPagePrivate(page);
2840 page_cache_get(page);
2841 set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 }
2843 }
2844
2845 static struct extent_map *
2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 u64 start, u64 len, get_extent_t *get_extent,
2848 struct extent_map **em_cached)
2849 {
2850 struct extent_map *em;
2851
2852 if (em_cached && *em_cached) {
2853 em = *em_cached;
2854 if (extent_map_in_tree(em) && start >= em->start &&
2855 start < extent_map_end(em)) {
2856 atomic_inc(&em->refs);
2857 return em;
2858 }
2859
2860 free_extent_map(em);
2861 *em_cached = NULL;
2862 }
2863
2864 em = get_extent(inode, page, pg_offset, start, len, 0);
2865 if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 BUG_ON(*em_cached);
2867 atomic_inc(&em->refs);
2868 *em_cached = em;
2869 }
2870 return em;
2871 }
2872 /*
2873 * basic readpage implementation. Locked extent state structs are inserted
2874 * into the tree that are removed when the IO is done (by the end_io
2875 * handlers)
2876 * XXX JDM: This needs looking at to ensure proper page locking
2877 */
2878 static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
2881 struct extent_map **em_cached,
2882 struct bio **bio, int mirror_num,
2883 unsigned long *bio_flags, int rw,
2884 u64 *prev_em_start)
2885 {
2886 struct inode *inode = page->mapping->host;
2887 u64 start = page_offset(page);
2888 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
2895 sector_t sector;
2896 struct extent_map *em;
2897 struct block_device *bdev;
2898 int ret;
2899 int nr = 0;
2900 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2901 size_t pg_offset = 0;
2902 size_t iosize;
2903 size_t disk_io_size;
2904 size_t blocksize = inode->i_sb->s_blocksize;
2905 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2906
2907 set_page_extent_mapped(page);
2908
2909 end = page_end;
2910 if (!PageUptodate(page)) {
2911 if (cleancache_get_page(page) == 0) {
2912 BUG_ON(blocksize != PAGE_SIZE);
2913 unlock_extent(tree, start, end);
2914 goto out;
2915 }
2916 }
2917
2918 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2919 char *userpage;
2920 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2921
2922 if (zero_offset) {
2923 iosize = PAGE_CACHE_SIZE - zero_offset;
2924 userpage = kmap_atomic(page);
2925 memset(userpage + zero_offset, 0, iosize);
2926 flush_dcache_page(page);
2927 kunmap_atomic(userpage);
2928 }
2929 }
2930 while (cur <= end) {
2931 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2932 bool force_bio_submit = false;
2933
2934 if (cur >= last_byte) {
2935 char *userpage;
2936 struct extent_state *cached = NULL;
2937
2938 iosize = PAGE_CACHE_SIZE - pg_offset;
2939 userpage = kmap_atomic(page);
2940 memset(userpage + pg_offset, 0, iosize);
2941 flush_dcache_page(page);
2942 kunmap_atomic(userpage);
2943 set_extent_uptodate(tree, cur, cur + iosize - 1,
2944 &cached, GFP_NOFS);
2945 if (!parent_locked)
2946 unlock_extent_cached(tree, cur,
2947 cur + iosize - 1,
2948 &cached, GFP_NOFS);
2949 break;
2950 }
2951 em = __get_extent_map(inode, page, pg_offset, cur,
2952 end - cur + 1, get_extent, em_cached);
2953 if (IS_ERR_OR_NULL(em)) {
2954 SetPageError(page);
2955 if (!parent_locked)
2956 unlock_extent(tree, cur, end);
2957 break;
2958 }
2959 extent_offset = cur - em->start;
2960 BUG_ON(extent_map_end(em) <= cur);
2961 BUG_ON(end < cur);
2962
2963 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2964 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2965 extent_set_compress_type(&this_bio_flag,
2966 em->compress_type);
2967 }
2968
2969 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2970 cur_end = min(extent_map_end(em) - 1, end);
2971 iosize = ALIGN(iosize, blocksize);
2972 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2973 disk_io_size = em->block_len;
2974 sector = em->block_start >> 9;
2975 } else {
2976 sector = (em->block_start + extent_offset) >> 9;
2977 disk_io_size = iosize;
2978 }
2979 bdev = em->bdev;
2980 block_start = em->block_start;
2981 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2982 block_start = EXTENT_MAP_HOLE;
2983
2984 /*
2985 * If we have a file range that points to a compressed extent
2986 * and it's followed by a consecutive file range that points to
2987 * to the same compressed extent (possibly with a different
2988 * offset and/or length, so it either points to the whole extent
2989 * or only part of it), we must make sure we do not submit a
2990 * single bio to populate the pages for the 2 ranges because
2991 * this makes the compressed extent read zero out the pages
2992 * belonging to the 2nd range. Imagine the following scenario:
2993 *
2994 * File layout
2995 * [0 - 8K] [8K - 24K]
2996 * | |
2997 * | |
2998 * points to extent X, points to extent X,
2999 * offset 4K, length of 8K offset 0, length 16K
3000 *
3001 * [extent X, compressed length = 4K uncompressed length = 16K]
3002 *
3003 * If the bio to read the compressed extent covers both ranges,
3004 * it will decompress extent X into the pages belonging to the
3005 * first range and then it will stop, zeroing out the remaining
3006 * pages that belong to the other range that points to extent X.
3007 * So here we make sure we submit 2 bios, one for the first
3008 * range and another one for the third range. Both will target
3009 * the same physical extent from disk, but we can't currently
3010 * make the compressed bio endio callback populate the pages
3011 * for both ranges because each compressed bio is tightly
3012 * coupled with a single extent map, and each range can have
3013 * an extent map with a different offset value relative to the
3014 * uncompressed data of our extent and different lengths. This
3015 * is a corner case so we prioritize correctness over
3016 * non-optimal behavior (submitting 2 bios for the same extent).
3017 */
3018 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3019 prev_em_start && *prev_em_start != (u64)-1 &&
3020 *prev_em_start != em->orig_start)
3021 force_bio_submit = true;
3022
3023 if (prev_em_start)
3024 *prev_em_start = em->orig_start;
3025
3026 free_extent_map(em);
3027 em = NULL;
3028
3029 /* we've found a hole, just zero and go on */
3030 if (block_start == EXTENT_MAP_HOLE) {
3031 char *userpage;
3032 struct extent_state *cached = NULL;
3033
3034 userpage = kmap_atomic(page);
3035 memset(userpage + pg_offset, 0, iosize);
3036 flush_dcache_page(page);
3037 kunmap_atomic(userpage);
3038
3039 set_extent_uptodate(tree, cur, cur + iosize - 1,
3040 &cached, GFP_NOFS);
3041 if (parent_locked)
3042 free_extent_state(cached);
3043 else
3044 unlock_extent_cached(tree, cur,
3045 cur + iosize - 1,
3046 &cached, GFP_NOFS);
3047 cur = cur + iosize;
3048 pg_offset += iosize;
3049 continue;
3050 }
3051 /* the get_extent function already copied into the page */
3052 if (test_range_bit(tree, cur, cur_end,
3053 EXTENT_UPTODATE, 1, NULL)) {
3054 check_page_uptodate(tree, page);
3055 if (!parent_locked)
3056 unlock_extent(tree, cur, cur + iosize - 1);
3057 cur = cur + iosize;
3058 pg_offset += iosize;
3059 continue;
3060 }
3061 /* we have an inline extent but it didn't get marked up
3062 * to date. Error out
3063 */
3064 if (block_start == EXTENT_MAP_INLINE) {
3065 SetPageError(page);
3066 if (!parent_locked)
3067 unlock_extent(tree, cur, cur + iosize - 1);
3068 cur = cur + iosize;
3069 pg_offset += iosize;
3070 continue;
3071 }
3072
3073 pnr -= page->index;
3074 ret = submit_extent_page(rw, tree, NULL, page,
3075 sector, disk_io_size, pg_offset,
3076 bdev, bio, pnr,
3077 end_bio_extent_readpage, mirror_num,
3078 *bio_flags,
3079 this_bio_flag,
3080 force_bio_submit);
3081 if (!ret) {
3082 nr++;
3083 *bio_flags = this_bio_flag;
3084 } else {
3085 SetPageError(page);
3086 if (!parent_locked)
3087 unlock_extent(tree, cur, cur + iosize - 1);
3088 }
3089 cur = cur + iosize;
3090 pg_offset += iosize;
3091 }
3092 out:
3093 if (!nr) {
3094 if (!PageError(page))
3095 SetPageUptodate(page);
3096 unlock_page(page);
3097 }
3098 return 0;
3099 }
3100
3101 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3102 struct page *pages[], int nr_pages,
3103 u64 start, u64 end,
3104 get_extent_t *get_extent,
3105 struct extent_map **em_cached,
3106 struct bio **bio, int mirror_num,
3107 unsigned long *bio_flags, int rw,
3108 u64 *prev_em_start)
3109 {
3110 struct inode *inode;
3111 struct btrfs_ordered_extent *ordered;
3112 int index;
3113
3114 inode = pages[0]->mapping->host;
3115 while (1) {
3116 lock_extent(tree, start, end);
3117 ordered = btrfs_lookup_ordered_range(inode, start,
3118 end - start + 1);
3119 if (!ordered)
3120 break;
3121 unlock_extent(tree, start, end);
3122 btrfs_start_ordered_extent(inode, ordered, 1);
3123 btrfs_put_ordered_extent(ordered);
3124 }
3125
3126 for (index = 0; index < nr_pages; index++) {
3127 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3128 mirror_num, bio_flags, rw, prev_em_start);
3129 page_cache_release(pages[index]);
3130 }
3131 }
3132
3133 static void __extent_readpages(struct extent_io_tree *tree,
3134 struct page *pages[],
3135 int nr_pages, get_extent_t *get_extent,
3136 struct extent_map **em_cached,
3137 struct bio **bio, int mirror_num,
3138 unsigned long *bio_flags, int rw,
3139 u64 *prev_em_start)
3140 {
3141 u64 start = 0;
3142 u64 end = 0;
3143 u64 page_start;
3144 int index;
3145 int first_index = 0;
3146
3147 for (index = 0; index < nr_pages; index++) {
3148 page_start = page_offset(pages[index]);
3149 if (!end) {
3150 start = page_start;
3151 end = start + PAGE_CACHE_SIZE - 1;
3152 first_index = index;
3153 } else if (end + 1 == page_start) {
3154 end += PAGE_CACHE_SIZE;
3155 } else {
3156 __do_contiguous_readpages(tree, &pages[first_index],
3157 index - first_index, start,
3158 end, get_extent, em_cached,
3159 bio, mirror_num, bio_flags,
3160 rw, prev_em_start);
3161 start = page_start;
3162 end = start + PAGE_CACHE_SIZE - 1;
3163 first_index = index;
3164 }
3165 }
3166
3167 if (end)
3168 __do_contiguous_readpages(tree, &pages[first_index],
3169 index - first_index, start,
3170 end, get_extent, em_cached, bio,
3171 mirror_num, bio_flags, rw,
3172 prev_em_start);
3173 }
3174
3175 static int __extent_read_full_page(struct extent_io_tree *tree,
3176 struct page *page,
3177 get_extent_t *get_extent,
3178 struct bio **bio, int mirror_num,
3179 unsigned long *bio_flags, int rw)
3180 {
3181 struct inode *inode = page->mapping->host;
3182 struct btrfs_ordered_extent *ordered;
3183 u64 start = page_offset(page);
3184 u64 end = start + PAGE_CACHE_SIZE - 1;
3185 int ret;
3186
3187 while (1) {
3188 lock_extent(tree, start, end);
3189 ordered = btrfs_lookup_ordered_range(inode, start,
3190 PAGE_CACHE_SIZE);
3191 if (!ordered)
3192 break;
3193 unlock_extent(tree, start, end);
3194 btrfs_start_ordered_extent(inode, ordered, 1);
3195 btrfs_put_ordered_extent(ordered);
3196 }
3197
3198 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3199 bio_flags, rw, NULL);
3200 return ret;
3201 }
3202
3203 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3204 get_extent_t *get_extent, int mirror_num)
3205 {
3206 struct bio *bio = NULL;
3207 unsigned long bio_flags = 0;
3208 int ret;
3209
3210 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3211 &bio_flags, READ);
3212 if (bio)
3213 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3214 return ret;
3215 }
3216
3217 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3218 get_extent_t *get_extent, int mirror_num)
3219 {
3220 struct bio *bio = NULL;
3221 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3222 int ret;
3223
3224 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3225 &bio_flags, READ, NULL);
3226 if (bio)
3227 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3228 return ret;
3229 }
3230
3231 static noinline void update_nr_written(struct page *page,
3232 struct writeback_control *wbc,
3233 unsigned long nr_written)
3234 {
3235 wbc->nr_to_write -= nr_written;
3236 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3237 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3238 page->mapping->writeback_index = page->index + nr_written;
3239 }
3240
3241 /*
3242 * helper for __extent_writepage, doing all of the delayed allocation setup.
3243 *
3244 * This returns 1 if our fill_delalloc function did all the work required
3245 * to write the page (copy into inline extent). In this case the IO has
3246 * been started and the page is already unlocked.
3247 *
3248 * This returns 0 if all went well (page still locked)
3249 * This returns < 0 if there were errors (page still locked)
3250 */
3251 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3252 struct page *page, struct writeback_control *wbc,
3253 struct extent_page_data *epd,
3254 u64 delalloc_start,
3255 unsigned long *nr_written)
3256 {
3257 struct extent_io_tree *tree = epd->tree;
3258 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3259 u64 nr_delalloc;
3260 u64 delalloc_to_write = 0;
3261 u64 delalloc_end = 0;
3262 int ret;
3263 int page_started = 0;
3264
3265 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3266 return 0;
3267
3268 while (delalloc_end < page_end) {
3269 nr_delalloc = find_lock_delalloc_range(inode, tree,
3270 page,
3271 &delalloc_start,
3272 &delalloc_end,
3273 BTRFS_MAX_EXTENT_SIZE);
3274 if (nr_delalloc == 0) {
3275 delalloc_start = delalloc_end + 1;
3276 continue;
3277 }
3278 ret = tree->ops->fill_delalloc(inode, page,
3279 delalloc_start,
3280 delalloc_end,
3281 &page_started,
3282 nr_written);
3283 /* File system has been set read-only */
3284 if (ret) {
3285 SetPageError(page);
3286 /* fill_delalloc should be return < 0 for error
3287 * but just in case, we use > 0 here meaning the
3288 * IO is started, so we don't want to return > 0
3289 * unless things are going well.
3290 */
3291 ret = ret < 0 ? ret : -EIO;
3292 goto done;
3293 }
3294 /*
3295 * delalloc_end is already one less than the total
3296 * length, so we don't subtract one from
3297 * PAGE_CACHE_SIZE
3298 */
3299 delalloc_to_write += (delalloc_end - delalloc_start +
3300 PAGE_CACHE_SIZE) >>
3301 PAGE_CACHE_SHIFT;
3302 delalloc_start = delalloc_end + 1;
3303 }
3304 if (wbc->nr_to_write < delalloc_to_write) {
3305 int thresh = 8192;
3306
3307 if (delalloc_to_write < thresh * 2)
3308 thresh = delalloc_to_write;
3309 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3310 thresh);
3311 }
3312
3313 /* did the fill delalloc function already unlock and start
3314 * the IO?
3315 */
3316 if (page_started) {
3317 /*
3318 * we've unlocked the page, so we can't update
3319 * the mapping's writeback index, just update
3320 * nr_to_write.
3321 */
3322 wbc->nr_to_write -= *nr_written;
3323 return 1;
3324 }
3325
3326 ret = 0;
3327
3328 done:
3329 return ret;
3330 }
3331
3332 /*
3333 * helper for __extent_writepage. This calls the writepage start hooks,
3334 * and does the loop to map the page into extents and bios.
3335 *
3336 * We return 1 if the IO is started and the page is unlocked,
3337 * 0 if all went well (page still locked)
3338 * < 0 if there were errors (page still locked)
3339 */
3340 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3341 struct page *page,
3342 struct writeback_control *wbc,
3343 struct extent_page_data *epd,
3344 loff_t i_size,
3345 unsigned long nr_written,
3346 int write_flags, int *nr_ret)
3347 {
3348 struct extent_io_tree *tree = epd->tree;
3349 u64 start = page_offset(page);
3350 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3351 u64 end;
3352 u64 cur = start;
3353 u64 extent_offset;
3354 u64 block_start;
3355 u64 iosize;
3356 sector_t sector;
3357 struct extent_state *cached_state = NULL;
3358 struct extent_map *em;
3359 struct block_device *bdev;
3360 size_t pg_offset = 0;
3361 size_t blocksize;
3362 int ret = 0;
3363 int nr = 0;
3364 bool compressed;
3365
3366 if (tree->ops && tree->ops->writepage_start_hook) {
3367 ret = tree->ops->writepage_start_hook(page, start,
3368 page_end);
3369 if (ret) {
3370 /* Fixup worker will requeue */
3371 if (ret == -EBUSY)
3372 wbc->pages_skipped++;
3373 else
3374 redirty_page_for_writepage(wbc, page);
3375
3376 update_nr_written(page, wbc, nr_written);
3377 unlock_page(page);
3378 ret = 1;
3379 goto done_unlocked;
3380 }
3381 }
3382
3383 /*
3384 * we don't want to touch the inode after unlocking the page,
3385 * so we update the mapping writeback index now
3386 */
3387 update_nr_written(page, wbc, nr_written + 1);
3388
3389 end = page_end;
3390 if (i_size <= start) {
3391 if (tree->ops && tree->ops->writepage_end_io_hook)
3392 tree->ops->writepage_end_io_hook(page, start,
3393 page_end, NULL, 1);
3394 goto done;
3395 }
3396
3397 blocksize = inode->i_sb->s_blocksize;
3398
3399 while (cur <= end) {
3400 u64 em_end;
3401 if (cur >= i_size) {
3402 if (tree->ops && tree->ops->writepage_end_io_hook)
3403 tree->ops->writepage_end_io_hook(page, cur,
3404 page_end, NULL, 1);
3405 break;
3406 }
3407 em = epd->get_extent(inode, page, pg_offset, cur,
3408 end - cur + 1, 1);
3409 if (IS_ERR_OR_NULL(em)) {
3410 SetPageError(page);
3411 ret = PTR_ERR_OR_ZERO(em);
3412 break;
3413 }
3414
3415 extent_offset = cur - em->start;
3416 em_end = extent_map_end(em);
3417 BUG_ON(em_end <= cur);
3418 BUG_ON(end < cur);
3419 iosize = min(em_end - cur, end - cur + 1);
3420 iosize = ALIGN(iosize, blocksize);
3421 sector = (em->block_start + extent_offset) >> 9;
3422 bdev = em->bdev;
3423 block_start = em->block_start;
3424 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3425 free_extent_map(em);
3426 em = NULL;
3427
3428 /*
3429 * compressed and inline extents are written through other
3430 * paths in the FS
3431 */
3432 if (compressed || block_start == EXTENT_MAP_HOLE ||
3433 block_start == EXTENT_MAP_INLINE) {
3434 /*
3435 * end_io notification does not happen here for
3436 * compressed extents
3437 */
3438 if (!compressed && tree->ops &&
3439 tree->ops->writepage_end_io_hook)
3440 tree->ops->writepage_end_io_hook(page, cur,
3441 cur + iosize - 1,
3442 NULL, 1);
3443 else if (compressed) {
3444 /* we don't want to end_page_writeback on
3445 * a compressed extent. this happens
3446 * elsewhere
3447 */
3448 nr++;
3449 }
3450
3451 cur += iosize;
3452 pg_offset += iosize;
3453 continue;
3454 }
3455
3456 if (tree->ops && tree->ops->writepage_io_hook) {
3457 ret = tree->ops->writepage_io_hook(page, cur,
3458 cur + iosize - 1);
3459 } else {
3460 ret = 0;
3461 }
3462 if (ret) {
3463 SetPageError(page);
3464 } else {
3465 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3466
3467 set_range_writeback(tree, cur, cur + iosize - 1);
3468 if (!PageWriteback(page)) {
3469 btrfs_err(BTRFS_I(inode)->root->fs_info,
3470 "page %lu not writeback, cur %llu end %llu",
3471 page->index, cur, end);
3472 }
3473
3474 ret = submit_extent_page(write_flags, tree, wbc, page,
3475 sector, iosize, pg_offset,
3476 bdev, &epd->bio, max_nr,
3477 end_bio_extent_writepage,
3478 0, 0, 0, false);
3479 if (ret)
3480 SetPageError(page);
3481 }
3482 cur = cur + iosize;
3483 pg_offset += iosize;
3484 nr++;
3485 }
3486 done:
3487 *nr_ret = nr;
3488
3489 done_unlocked:
3490
3491 /* drop our reference on any cached states */
3492 free_extent_state(cached_state);
3493 return ret;
3494 }
3495
3496 /*
3497 * the writepage semantics are similar to regular writepage. extent
3498 * records are inserted to lock ranges in the tree, and as dirty areas
3499 * are found, they are marked writeback. Then the lock bits are removed
3500 * and the end_io handler clears the writeback ranges
3501 */
3502 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3503 void *data)
3504 {
3505 struct inode *inode = page->mapping->host;
3506 struct extent_page_data *epd = data;
3507 u64 start = page_offset(page);
3508 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3509 int ret;
3510 int nr = 0;
3511 size_t pg_offset = 0;
3512 loff_t i_size = i_size_read(inode);
3513 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3514 int write_flags;
3515 unsigned long nr_written = 0;
3516
3517 if (wbc->sync_mode == WB_SYNC_ALL)
3518 write_flags = WRITE_SYNC;
3519 else
3520 write_flags = WRITE;
3521
3522 trace___extent_writepage(page, inode, wbc);
3523
3524 WARN_ON(!PageLocked(page));
3525
3526 ClearPageError(page);
3527
3528 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3529 if (page->index > end_index ||
3530 (page->index == end_index && !pg_offset)) {
3531 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3532 unlock_page(page);
3533 return 0;
3534 }
3535
3536 if (page->index == end_index) {
3537 char *userpage;
3538
3539 userpage = kmap_atomic(page);
3540 memset(userpage + pg_offset, 0,
3541 PAGE_CACHE_SIZE - pg_offset);
3542 kunmap_atomic(userpage);
3543 flush_dcache_page(page);
3544 }
3545
3546 pg_offset = 0;
3547
3548 set_page_extent_mapped(page);
3549
3550 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3551 if (ret == 1)
3552 goto done_unlocked;
3553 if (ret)
3554 goto done;
3555
3556 ret = __extent_writepage_io(inode, page, wbc, epd,
3557 i_size, nr_written, write_flags, &nr);
3558 if (ret == 1)
3559 goto done_unlocked;
3560
3561 done:
3562 if (nr == 0) {
3563 /* make sure the mapping tag for page dirty gets cleared */
3564 set_page_writeback(page);
3565 end_page_writeback(page);
3566 }
3567 if (PageError(page)) {
3568 ret = ret < 0 ? ret : -EIO;
3569 end_extent_writepage(page, ret, start, page_end);
3570 }
3571 unlock_page(page);
3572 return ret;
3573
3574 done_unlocked:
3575 return 0;
3576 }
3577
3578 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3579 {
3580 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3581 TASK_UNINTERRUPTIBLE);
3582 }
3583
3584 static noinline_for_stack int
3585 lock_extent_buffer_for_io(struct extent_buffer *eb,
3586 struct btrfs_fs_info *fs_info,
3587 struct extent_page_data *epd)
3588 {
3589 unsigned long i, num_pages;
3590 int flush = 0;
3591 int ret = 0;
3592
3593 if (!btrfs_try_tree_write_lock(eb)) {
3594 flush = 1;
3595 flush_write_bio(epd);
3596 btrfs_tree_lock(eb);
3597 }
3598
3599 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3600 btrfs_tree_unlock(eb);
3601 if (!epd->sync_io)
3602 return 0;
3603 if (!flush) {
3604 flush_write_bio(epd);
3605 flush = 1;
3606 }
3607 while (1) {
3608 wait_on_extent_buffer_writeback(eb);
3609 btrfs_tree_lock(eb);
3610 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3611 break;
3612 btrfs_tree_unlock(eb);
3613 }
3614 }
3615
3616 /*
3617 * We need to do this to prevent races in people who check if the eb is
3618 * under IO since we can end up having no IO bits set for a short period
3619 * of time.
3620 */
3621 spin_lock(&eb->refs_lock);
3622 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3623 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3624 spin_unlock(&eb->refs_lock);
3625 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3626 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3627 -eb->len,
3628 fs_info->dirty_metadata_batch);
3629 ret = 1;
3630 } else {
3631 spin_unlock(&eb->refs_lock);
3632 }
3633
3634 btrfs_tree_unlock(eb);
3635
3636 if (!ret)
3637 return ret;
3638
3639 num_pages = num_extent_pages(eb->start, eb->len);
3640 for (i = 0; i < num_pages; i++) {
3641 struct page *p = eb->pages[i];
3642
3643 if (!trylock_page(p)) {
3644 if (!flush) {
3645 flush_write_bio(epd);
3646 flush = 1;
3647 }
3648 lock_page(p);
3649 }
3650 }
3651
3652 return ret;
3653 }
3654
3655 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3656 {
3657 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3658 smp_mb__after_atomic();
3659 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3660 }
3661
3662 static void set_btree_ioerr(struct page *page)
3663 {
3664 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3665 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3666
3667 SetPageError(page);
3668 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3669 return;
3670
3671 /*
3672 * If writeback for a btree extent that doesn't belong to a log tree
3673 * failed, increment the counter transaction->eb_write_errors.
3674 * We do this because while the transaction is running and before it's
3675 * committing (when we call filemap_fdata[write|wait]_range against
3676 * the btree inode), we might have
3677 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3678 * returns an error or an error happens during writeback, when we're
3679 * committing the transaction we wouldn't know about it, since the pages
3680 * can be no longer dirty nor marked anymore for writeback (if a
3681 * subsequent modification to the extent buffer didn't happen before the
3682 * transaction commit), which makes filemap_fdata[write|wait]_range not
3683 * able to find the pages tagged with SetPageError at transaction
3684 * commit time. So if this happens we must abort the transaction,
3685 * otherwise we commit a super block with btree roots that point to
3686 * btree nodes/leafs whose content on disk is invalid - either garbage
3687 * or the content of some node/leaf from a past generation that got
3688 * cowed or deleted and is no longer valid.
3689 *
3690 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3691 * not be enough - we need to distinguish between log tree extents vs
3692 * non-log tree extents, and the next filemap_fdatawait_range() call
3693 * will catch and clear such errors in the mapping - and that call might
3694 * be from a log sync and not from a transaction commit. Also, checking
3695 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3696 * not done and would not be reliable - the eb might have been released
3697 * from memory and reading it back again means that flag would not be
3698 * set (since it's a runtime flag, not persisted on disk).
3699 *
3700 * Using the flags below in the btree inode also makes us achieve the
3701 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3702 * writeback for all dirty pages and before filemap_fdatawait_range()
3703 * is called, the writeback for all dirty pages had already finished
3704 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3705 * filemap_fdatawait_range() would return success, as it could not know
3706 * that writeback errors happened (the pages were no longer tagged for
3707 * writeback).
3708 */
3709 switch (eb->log_index) {
3710 case -1:
3711 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3712 break;
3713 case 0:
3714 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3715 break;
3716 case 1:
3717 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3718 break;
3719 default:
3720 BUG(); /* unexpected, logic error */
3721 }
3722 }
3723
3724 static void end_bio_extent_buffer_writepage(struct bio *bio)
3725 {
3726 struct bio_vec *bvec;
3727 struct extent_buffer *eb;
3728 int i, done;
3729
3730 bio_for_each_segment_all(bvec, bio, i) {
3731 struct page *page = bvec->bv_page;
3732
3733 eb = (struct extent_buffer *)page->private;
3734 BUG_ON(!eb);
3735 done = atomic_dec_and_test(&eb->io_pages);
3736
3737 if (bio->bi_error ||
3738 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3739 ClearPageUptodate(page);
3740 set_btree_ioerr(page);
3741 }
3742
3743 end_page_writeback(page);
3744
3745 if (!done)
3746 continue;
3747
3748 end_extent_buffer_writeback(eb);
3749 }
3750
3751 bio_put(bio);
3752 }
3753
3754 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3755 struct btrfs_fs_info *fs_info,
3756 struct writeback_control *wbc,
3757 struct extent_page_data *epd)
3758 {
3759 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3760 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3761 u64 offset = eb->start;
3762 unsigned long i, num_pages;
3763 unsigned long bio_flags = 0;
3764 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3765 int ret = 0;
3766
3767 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3768 num_pages = num_extent_pages(eb->start, eb->len);
3769 atomic_set(&eb->io_pages, num_pages);
3770 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3771 bio_flags = EXTENT_BIO_TREE_LOG;
3772
3773 for (i = 0; i < num_pages; i++) {
3774 struct page *p = eb->pages[i];
3775
3776 clear_page_dirty_for_io(p);
3777 set_page_writeback(p);
3778 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3779 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3780 -1, end_bio_extent_buffer_writepage,
3781 0, epd->bio_flags, bio_flags, false);
3782 epd->bio_flags = bio_flags;
3783 if (ret) {
3784 set_btree_ioerr(p);
3785 end_page_writeback(p);
3786 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3787 end_extent_buffer_writeback(eb);
3788 ret = -EIO;
3789 break;
3790 }
3791 offset += PAGE_CACHE_SIZE;
3792 update_nr_written(p, wbc, 1);
3793 unlock_page(p);
3794 }
3795
3796 if (unlikely(ret)) {
3797 for (; i < num_pages; i++) {
3798 struct page *p = eb->pages[i];
3799 clear_page_dirty_for_io(p);
3800 unlock_page(p);
3801 }
3802 }
3803
3804 return ret;
3805 }
3806
3807 int btree_write_cache_pages(struct address_space *mapping,
3808 struct writeback_control *wbc)
3809 {
3810 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3811 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3812 struct extent_buffer *eb, *prev_eb = NULL;
3813 struct extent_page_data epd = {
3814 .bio = NULL,
3815 .tree = tree,
3816 .extent_locked = 0,
3817 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3818 .bio_flags = 0,
3819 };
3820 int ret = 0;
3821 int done = 0;
3822 int nr_to_write_done = 0;
3823 struct pagevec pvec;
3824 int nr_pages;
3825 pgoff_t index;
3826 pgoff_t end; /* Inclusive */
3827 int scanned = 0;
3828 int tag;
3829
3830 pagevec_init(&pvec, 0);
3831 if (wbc->range_cyclic) {
3832 index = mapping->writeback_index; /* Start from prev offset */
3833 end = -1;
3834 } else {
3835 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3836 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3837 scanned = 1;
3838 }
3839 if (wbc->sync_mode == WB_SYNC_ALL)
3840 tag = PAGECACHE_TAG_TOWRITE;
3841 else
3842 tag = PAGECACHE_TAG_DIRTY;
3843 retry:
3844 if (wbc->sync_mode == WB_SYNC_ALL)
3845 tag_pages_for_writeback(mapping, index, end);
3846 while (!done && !nr_to_write_done && (index <= end) &&
3847 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3848 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3849 unsigned i;
3850
3851 scanned = 1;
3852 for (i = 0; i < nr_pages; i++) {
3853 struct page *page = pvec.pages[i];
3854
3855 if (!PagePrivate(page))
3856 continue;
3857
3858 if (!wbc->range_cyclic && page->index > end) {
3859 done = 1;
3860 break;
3861 }
3862
3863 spin_lock(&mapping->private_lock);
3864 if (!PagePrivate(page)) {
3865 spin_unlock(&mapping->private_lock);
3866 continue;
3867 }
3868
3869 eb = (struct extent_buffer *)page->private;
3870
3871 /*
3872 * Shouldn't happen and normally this would be a BUG_ON
3873 * but no sense in crashing the users box for something
3874 * we can survive anyway.
3875 */
3876 if (WARN_ON(!eb)) {
3877 spin_unlock(&mapping->private_lock);
3878 continue;
3879 }
3880
3881 if (eb == prev_eb) {
3882 spin_unlock(&mapping->private_lock);
3883 continue;
3884 }
3885
3886 ret = atomic_inc_not_zero(&eb->refs);
3887 spin_unlock(&mapping->private_lock);
3888 if (!ret)
3889 continue;
3890
3891 prev_eb = eb;
3892 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3893 if (!ret) {
3894 free_extent_buffer(eb);
3895 continue;
3896 }
3897
3898 ret = write_one_eb(eb, fs_info, wbc, &epd);
3899 if (ret) {
3900 done = 1;
3901 free_extent_buffer(eb);
3902 break;
3903 }
3904 free_extent_buffer(eb);
3905
3906 /*
3907 * the filesystem may choose to bump up nr_to_write.
3908 * We have to make sure to honor the new nr_to_write
3909 * at any time
3910 */
3911 nr_to_write_done = wbc->nr_to_write <= 0;
3912 }
3913 pagevec_release(&pvec);
3914 cond_resched();
3915 }
3916 if (!scanned && !done) {
3917 /*
3918 * We hit the last page and there is more work to be done: wrap
3919 * back to the start of the file
3920 */
3921 scanned = 1;
3922 index = 0;
3923 goto retry;
3924 }
3925 flush_write_bio(&epd);
3926 return ret;
3927 }
3928
3929 /**
3930 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3931 * @mapping: address space structure to write
3932 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3933 * @writepage: function called for each page
3934 * @data: data passed to writepage function
3935 *
3936 * If a page is already under I/O, write_cache_pages() skips it, even
3937 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3938 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3939 * and msync() need to guarantee that all the data which was dirty at the time
3940 * the call was made get new I/O started against them. If wbc->sync_mode is
3941 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3942 * existing IO to complete.
3943 */
3944 static int extent_write_cache_pages(struct extent_io_tree *tree,
3945 struct address_space *mapping,
3946 struct writeback_control *wbc,
3947 writepage_t writepage, void *data,
3948 void (*flush_fn)(void *))
3949 {
3950 struct inode *inode = mapping->host;
3951 int ret = 0;
3952 int done = 0;
3953 int err = 0;
3954 int nr_to_write_done = 0;
3955 struct pagevec pvec;
3956 int nr_pages;
3957 pgoff_t index;
3958 pgoff_t end; /* Inclusive */
3959 int scanned = 0;
3960 int tag;
3961
3962 /*
3963 * We have to hold onto the inode so that ordered extents can do their
3964 * work when the IO finishes. The alternative to this is failing to add
3965 * an ordered extent if the igrab() fails there and that is a huge pain
3966 * to deal with, so instead just hold onto the inode throughout the
3967 * writepages operation. If it fails here we are freeing up the inode
3968 * anyway and we'd rather not waste our time writing out stuff that is
3969 * going to be truncated anyway.
3970 */
3971 if (!igrab(inode))
3972 return 0;
3973
3974 pagevec_init(&pvec, 0);
3975 if (wbc->range_cyclic) {
3976 index = mapping->writeback_index; /* Start from prev offset */
3977 end = -1;
3978 } else {
3979 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3980 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3981 scanned = 1;
3982 }
3983 if (wbc->sync_mode == WB_SYNC_ALL)
3984 tag = PAGECACHE_TAG_TOWRITE;
3985 else
3986 tag = PAGECACHE_TAG_DIRTY;
3987 retry:
3988 if (wbc->sync_mode == WB_SYNC_ALL)
3989 tag_pages_for_writeback(mapping, index, end);
3990 while (!done && !nr_to_write_done && (index <= end) &&
3991 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3992 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3993 unsigned i;
3994
3995 scanned = 1;
3996 for (i = 0; i < nr_pages; i++) {
3997 struct page *page = pvec.pages[i];
3998
3999 /*
4000 * At this point we hold neither mapping->tree_lock nor
4001 * lock on the page itself: the page may be truncated or
4002 * invalidated (changing page->mapping to NULL), or even
4003 * swizzled back from swapper_space to tmpfs file
4004 * mapping
4005 */
4006 if (!trylock_page(page)) {
4007 flush_fn(data);
4008 lock_page(page);
4009 }
4010
4011 if (unlikely(page->mapping != mapping)) {
4012 unlock_page(page);
4013 continue;
4014 }
4015
4016 if (!wbc->range_cyclic && page->index > end) {
4017 done = 1;
4018 unlock_page(page);
4019 continue;
4020 }
4021
4022 if (wbc->sync_mode != WB_SYNC_NONE) {
4023 if (PageWriteback(page))
4024 flush_fn(data);
4025 wait_on_page_writeback(page);
4026 }
4027
4028 if (PageWriteback(page) ||
4029 !clear_page_dirty_for_io(page)) {
4030 unlock_page(page);
4031 continue;
4032 }
4033
4034 ret = (*writepage)(page, wbc, data);
4035
4036 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4037 unlock_page(page);
4038 ret = 0;
4039 }
4040 if (!err && ret < 0)
4041 err = ret;
4042
4043 /*
4044 * the filesystem may choose to bump up nr_to_write.
4045 * We have to make sure to honor the new nr_to_write
4046 * at any time
4047 */
4048 nr_to_write_done = wbc->nr_to_write <= 0;
4049 }
4050 pagevec_release(&pvec);
4051 cond_resched();
4052 }
4053 if (!scanned && !done && !err) {
4054 /*
4055 * We hit the last page and there is more work to be done: wrap
4056 * back to the start of the file
4057 */
4058 scanned = 1;
4059 index = 0;
4060 goto retry;
4061 }
4062 btrfs_add_delayed_iput(inode);
4063 return err;
4064 }
4065
4066 static void flush_epd_write_bio(struct extent_page_data *epd)
4067 {
4068 if (epd->bio) {
4069 int rw = WRITE;
4070 int ret;
4071
4072 if (epd->sync_io)
4073 rw = WRITE_SYNC;
4074
4075 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4076 BUG_ON(ret < 0); /* -ENOMEM */
4077 epd->bio = NULL;
4078 }
4079 }
4080
4081 static noinline void flush_write_bio(void *data)
4082 {
4083 struct extent_page_data *epd = data;
4084 flush_epd_write_bio(epd);
4085 }
4086
4087 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4088 get_extent_t *get_extent,
4089 struct writeback_control *wbc)
4090 {
4091 int ret;
4092 struct extent_page_data epd = {
4093 .bio = NULL,
4094 .tree = tree,
4095 .get_extent = get_extent,
4096 .extent_locked = 0,
4097 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4098 .bio_flags = 0,
4099 };
4100
4101 ret = __extent_writepage(page, wbc, &epd);
4102
4103 flush_epd_write_bio(&epd);
4104 return ret;
4105 }
4106
4107 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4108 u64 start, u64 end, get_extent_t *get_extent,
4109 int mode)
4110 {
4111 int ret = 0;
4112 struct address_space *mapping = inode->i_mapping;
4113 struct page *page;
4114 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4115 PAGE_CACHE_SHIFT;
4116
4117 struct extent_page_data epd = {
4118 .bio = NULL,
4119 .tree = tree,
4120 .get_extent = get_extent,
4121 .extent_locked = 1,
4122 .sync_io = mode == WB_SYNC_ALL,
4123 .bio_flags = 0,
4124 };
4125 struct writeback_control wbc_writepages = {
4126 .sync_mode = mode,
4127 .nr_to_write = nr_pages * 2,
4128 .range_start = start,
4129 .range_end = end + 1,
4130 };
4131
4132 while (start <= end) {
4133 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4134 if (clear_page_dirty_for_io(page))
4135 ret = __extent_writepage(page, &wbc_writepages, &epd);
4136 else {
4137 if (tree->ops && tree->ops->writepage_end_io_hook)
4138 tree->ops->writepage_end_io_hook(page, start,
4139 start + PAGE_CACHE_SIZE - 1,
4140 NULL, 1);
4141 unlock_page(page);
4142 }
4143 page_cache_release(page);
4144 start += PAGE_CACHE_SIZE;
4145 }
4146
4147 flush_epd_write_bio(&epd);
4148 return ret;
4149 }
4150
4151 int extent_writepages(struct extent_io_tree *tree,
4152 struct address_space *mapping,
4153 get_extent_t *get_extent,
4154 struct writeback_control *wbc)
4155 {
4156 int ret = 0;
4157 struct extent_page_data epd = {
4158 .bio = NULL,
4159 .tree = tree,
4160 .get_extent = get_extent,
4161 .extent_locked = 0,
4162 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4163 .bio_flags = 0,
4164 };
4165
4166 ret = extent_write_cache_pages(tree, mapping, wbc,
4167 __extent_writepage, &epd,
4168 flush_write_bio);
4169 flush_epd_write_bio(&epd);
4170 return ret;
4171 }
4172
4173 int extent_readpages(struct extent_io_tree *tree,
4174 struct address_space *mapping,
4175 struct list_head *pages, unsigned nr_pages,
4176 get_extent_t get_extent)
4177 {
4178 struct bio *bio = NULL;
4179 unsigned page_idx;
4180 unsigned long bio_flags = 0;
4181 struct page *pagepool[16];
4182 struct page *page;
4183 struct extent_map *em_cached = NULL;
4184 int nr = 0;
4185 u64 prev_em_start = (u64)-1;
4186
4187 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4188 page = list_entry(pages->prev, struct page, lru);
4189
4190 prefetchw(&page->flags);
4191 list_del(&page->lru);
4192 if (add_to_page_cache_lru(page, mapping,
4193 page->index, GFP_NOFS)) {
4194 page_cache_release(page);
4195 continue;
4196 }
4197
4198 pagepool[nr++] = page;
4199 if (nr < ARRAY_SIZE(pagepool))
4200 continue;
4201 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4202 &bio, 0, &bio_flags, READ, &prev_em_start);
4203 nr = 0;
4204 }
4205 if (nr)
4206 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4207 &bio, 0, &bio_flags, READ, &prev_em_start);
4208
4209 if (em_cached)
4210 free_extent_map(em_cached);
4211
4212 BUG_ON(!list_empty(pages));
4213 if (bio)
4214 return submit_one_bio(READ, bio, 0, bio_flags);
4215 return 0;
4216 }
4217
4218 /*
4219 * basic invalidatepage code, this waits on any locked or writeback
4220 * ranges corresponding to the page, and then deletes any extent state
4221 * records from the tree
4222 */
4223 int extent_invalidatepage(struct extent_io_tree *tree,
4224 struct page *page, unsigned long offset)
4225 {
4226 struct extent_state *cached_state = NULL;
4227 u64 start = page_offset(page);
4228 u64 end = start + PAGE_CACHE_SIZE - 1;
4229 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4230
4231 start += ALIGN(offset, blocksize);
4232 if (start > end)
4233 return 0;
4234
4235 lock_extent_bits(tree, start, end, &cached_state);
4236 wait_on_page_writeback(page);
4237 clear_extent_bit(tree, start, end,
4238 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4239 EXTENT_DO_ACCOUNTING,
4240 1, 1, &cached_state, GFP_NOFS);
4241 return 0;
4242 }
4243
4244 /*
4245 * a helper for releasepage, this tests for areas of the page that
4246 * are locked or under IO and drops the related state bits if it is safe
4247 * to drop the page.
4248 */
4249 static int try_release_extent_state(struct extent_map_tree *map,
4250 struct extent_io_tree *tree,
4251 struct page *page, gfp_t mask)
4252 {
4253 u64 start = page_offset(page);
4254 u64 end = start + PAGE_CACHE_SIZE - 1;
4255 int ret = 1;
4256
4257 if (test_range_bit(tree, start, end,
4258 EXTENT_IOBITS, 0, NULL))
4259 ret = 0;
4260 else {
4261 if ((mask & GFP_NOFS) == GFP_NOFS)
4262 mask = GFP_NOFS;
4263 /*
4264 * at this point we can safely clear everything except the
4265 * locked bit and the nodatasum bit
4266 */
4267 ret = clear_extent_bit(tree, start, end,
4268 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4269 0, 0, NULL, mask);
4270
4271 /* if clear_extent_bit failed for enomem reasons,
4272 * we can't allow the release to continue.
4273 */
4274 if (ret < 0)
4275 ret = 0;
4276 else
4277 ret = 1;
4278 }
4279 return ret;
4280 }
4281
4282 /*
4283 * a helper for releasepage. As long as there are no locked extents
4284 * in the range corresponding to the page, both state records and extent
4285 * map records are removed
4286 */
4287 int try_release_extent_mapping(struct extent_map_tree *map,
4288 struct extent_io_tree *tree, struct page *page,
4289 gfp_t mask)
4290 {
4291 struct extent_map *em;
4292 u64 start = page_offset(page);
4293 u64 end = start + PAGE_CACHE_SIZE - 1;
4294
4295 if (gfpflags_allow_blocking(mask) &&
4296 page->mapping->host->i_size > SZ_16M) {
4297 u64 len;
4298 while (start <= end) {
4299 len = end - start + 1;
4300 write_lock(&map->lock);
4301 em = lookup_extent_mapping(map, start, len);
4302 if (!em) {
4303 write_unlock(&map->lock);
4304 break;
4305 }
4306 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4307 em->start != start) {
4308 write_unlock(&map->lock);
4309 free_extent_map(em);
4310 break;
4311 }
4312 if (!test_range_bit(tree, em->start,
4313 extent_map_end(em) - 1,
4314 EXTENT_LOCKED | EXTENT_WRITEBACK,
4315 0, NULL)) {
4316 remove_extent_mapping(map, em);
4317 /* once for the rb tree */
4318 free_extent_map(em);
4319 }
4320 start = extent_map_end(em);
4321 write_unlock(&map->lock);
4322
4323 /* once for us */
4324 free_extent_map(em);
4325 }
4326 }
4327 return try_release_extent_state(map, tree, page, mask);
4328 }
4329
4330 /*
4331 * helper function for fiemap, which doesn't want to see any holes.
4332 * This maps until we find something past 'last'
4333 */
4334 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4335 u64 offset,
4336 u64 last,
4337 get_extent_t *get_extent)
4338 {
4339 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4340 struct extent_map *em;
4341 u64 len;
4342
4343 if (offset >= last)
4344 return NULL;
4345
4346 while (1) {
4347 len = last - offset;
4348 if (len == 0)
4349 break;
4350 len = ALIGN(len, sectorsize);
4351 em = get_extent(inode, NULL, 0, offset, len, 0);
4352 if (IS_ERR_OR_NULL(em))
4353 return em;
4354
4355 /* if this isn't a hole return it */
4356 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4357 em->block_start != EXTENT_MAP_HOLE) {
4358 return em;
4359 }
4360
4361 /* this is a hole, advance to the next extent */
4362 offset = extent_map_end(em);
4363 free_extent_map(em);
4364 if (offset >= last)
4365 break;
4366 }
4367 return NULL;
4368 }
4369
4370 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4371 __u64 start, __u64 len, get_extent_t *get_extent)
4372 {
4373 int ret = 0;
4374 u64 off = start;
4375 u64 max = start + len;
4376 u32 flags = 0;
4377 u32 found_type;
4378 u64 last;
4379 u64 last_for_get_extent = 0;
4380 u64 disko = 0;
4381 u64 isize = i_size_read(inode);
4382 struct btrfs_key found_key;
4383 struct extent_map *em = NULL;
4384 struct extent_state *cached_state = NULL;
4385 struct btrfs_path *path;
4386 struct btrfs_root *root = BTRFS_I(inode)->root;
4387 int end = 0;
4388 u64 em_start = 0;
4389 u64 em_len = 0;
4390 u64 em_end = 0;
4391
4392 if (len == 0)
4393 return -EINVAL;
4394
4395 path = btrfs_alloc_path();
4396 if (!path)
4397 return -ENOMEM;
4398 path->leave_spinning = 1;
4399
4400 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4401 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4402
4403 /*
4404 * lookup the last file extent. We're not using i_size here
4405 * because there might be preallocation past i_size
4406 */
4407 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4408 0);
4409 if (ret < 0) {
4410 btrfs_free_path(path);
4411 return ret;
4412 }
4413 WARN_ON(!ret);
4414 path->slots[0]--;
4415 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4416 found_type = found_key.type;
4417
4418 /* No extents, but there might be delalloc bits */
4419 if (found_key.objectid != btrfs_ino(inode) ||
4420 found_type != BTRFS_EXTENT_DATA_KEY) {
4421 /* have to trust i_size as the end */
4422 last = (u64)-1;
4423 last_for_get_extent = isize;
4424 } else {
4425 /*
4426 * remember the start of the last extent. There are a
4427 * bunch of different factors that go into the length of the
4428 * extent, so its much less complex to remember where it started
4429 */
4430 last = found_key.offset;
4431 last_for_get_extent = last + 1;
4432 }
4433 btrfs_release_path(path);
4434
4435 /*
4436 * we might have some extents allocated but more delalloc past those
4437 * extents. so, we trust isize unless the start of the last extent is
4438 * beyond isize
4439 */
4440 if (last < isize) {
4441 last = (u64)-1;
4442 last_for_get_extent = isize;
4443 }
4444
4445 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4446 &cached_state);
4447
4448 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4449 get_extent);
4450 if (!em)
4451 goto out;
4452 if (IS_ERR(em)) {
4453 ret = PTR_ERR(em);
4454 goto out;
4455 }
4456
4457 while (!end) {
4458 u64 offset_in_extent = 0;
4459
4460 /* break if the extent we found is outside the range */
4461 if (em->start >= max || extent_map_end(em) < off)
4462 break;
4463
4464 /*
4465 * get_extent may return an extent that starts before our
4466 * requested range. We have to make sure the ranges
4467 * we return to fiemap always move forward and don't
4468 * overlap, so adjust the offsets here
4469 */
4470 em_start = max(em->start, off);
4471
4472 /*
4473 * record the offset from the start of the extent
4474 * for adjusting the disk offset below. Only do this if the
4475 * extent isn't compressed since our in ram offset may be past
4476 * what we have actually allocated on disk.
4477 */
4478 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4479 offset_in_extent = em_start - em->start;
4480 em_end = extent_map_end(em);
4481 em_len = em_end - em_start;
4482 disko = 0;
4483 flags = 0;
4484
4485 /*
4486 * bump off for our next call to get_extent
4487 */
4488 off = extent_map_end(em);
4489 if (off >= max)
4490 end = 1;
4491
4492 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4493 end = 1;
4494 flags |= FIEMAP_EXTENT_LAST;
4495 } else if (em->block_start == EXTENT_MAP_INLINE) {
4496 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4497 FIEMAP_EXTENT_NOT_ALIGNED);
4498 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4499 flags |= (FIEMAP_EXTENT_DELALLOC |
4500 FIEMAP_EXTENT_UNKNOWN);
4501 } else if (fieinfo->fi_extents_max) {
4502 u64 bytenr = em->block_start -
4503 (em->start - em->orig_start);
4504
4505 disko = em->block_start + offset_in_extent;
4506
4507 /*
4508 * As btrfs supports shared space, this information
4509 * can be exported to userspace tools via
4510 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4511 * then we're just getting a count and we can skip the
4512 * lookup stuff.
4513 */
4514 ret = btrfs_check_shared(NULL, root->fs_info,
4515 root->objectid,
4516 btrfs_ino(inode), bytenr);
4517 if (ret < 0)
4518 goto out_free;
4519 if (ret)
4520 flags |= FIEMAP_EXTENT_SHARED;
4521 ret = 0;
4522 }
4523 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4524 flags |= FIEMAP_EXTENT_ENCODED;
4525 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4526 flags |= FIEMAP_EXTENT_UNWRITTEN;
4527
4528 free_extent_map(em);
4529 em = NULL;
4530 if ((em_start >= last) || em_len == (u64)-1 ||
4531 (last == (u64)-1 && isize <= em_end)) {
4532 flags |= FIEMAP_EXTENT_LAST;
4533 end = 1;
4534 }
4535
4536 /* now scan forward to see if this is really the last extent. */
4537 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4538 get_extent);
4539 if (IS_ERR(em)) {
4540 ret = PTR_ERR(em);
4541 goto out;
4542 }
4543 if (!em) {
4544 flags |= FIEMAP_EXTENT_LAST;
4545 end = 1;
4546 }
4547 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4548 em_len, flags);
4549 if (ret) {
4550 if (ret == 1)
4551 ret = 0;
4552 goto out_free;
4553 }
4554 }
4555 out_free:
4556 free_extent_map(em);
4557 out:
4558 btrfs_free_path(path);
4559 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4560 &cached_state, GFP_NOFS);
4561 return ret;
4562 }
4563
4564 static void __free_extent_buffer(struct extent_buffer *eb)
4565 {
4566 btrfs_leak_debug_del(&eb->leak_list);
4567 kmem_cache_free(extent_buffer_cache, eb);
4568 }
4569
4570 int extent_buffer_under_io(struct extent_buffer *eb)
4571 {
4572 return (atomic_read(&eb->io_pages) ||
4573 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4574 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4575 }
4576
4577 /*
4578 * Helper for releasing extent buffer page.
4579 */
4580 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4581 {
4582 unsigned long index;
4583 struct page *page;
4584 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4585
4586 BUG_ON(extent_buffer_under_io(eb));
4587
4588 index = num_extent_pages(eb->start, eb->len);
4589 if (index == 0)
4590 return;
4591
4592 do {
4593 index--;
4594 page = eb->pages[index];
4595 if (!page)
4596 continue;
4597 if (mapped)
4598 spin_lock(&page->mapping->private_lock);
4599 /*
4600 * We do this since we'll remove the pages after we've
4601 * removed the eb from the radix tree, so we could race
4602 * and have this page now attached to the new eb. So
4603 * only clear page_private if it's still connected to
4604 * this eb.
4605 */
4606 if (PagePrivate(page) &&
4607 page->private == (unsigned long)eb) {
4608 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4609 BUG_ON(PageDirty(page));
4610 BUG_ON(PageWriteback(page));
4611 /*
4612 * We need to make sure we haven't be attached
4613 * to a new eb.
4614 */
4615 ClearPagePrivate(page);
4616 set_page_private(page, 0);
4617 /* One for the page private */
4618 page_cache_release(page);
4619 }
4620
4621 if (mapped)
4622 spin_unlock(&page->mapping->private_lock);
4623
4624 /* One for when we alloced the page */
4625 page_cache_release(page);
4626 } while (index != 0);
4627 }
4628
4629 /*
4630 * Helper for releasing the extent buffer.
4631 */
4632 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4633 {
4634 btrfs_release_extent_buffer_page(eb);
4635 __free_extent_buffer(eb);
4636 }
4637
4638 static struct extent_buffer *
4639 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4640 unsigned long len)
4641 {
4642 struct extent_buffer *eb = NULL;
4643
4644 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4645 eb->start = start;
4646 eb->len = len;
4647 eb->fs_info = fs_info;
4648 eb->bflags = 0;
4649 rwlock_init(&eb->lock);
4650 atomic_set(&eb->write_locks, 0);
4651 atomic_set(&eb->read_locks, 0);
4652 atomic_set(&eb->blocking_readers, 0);
4653 atomic_set(&eb->blocking_writers, 0);
4654 atomic_set(&eb->spinning_readers, 0);
4655 atomic_set(&eb->spinning_writers, 0);
4656 eb->lock_nested = 0;
4657 init_waitqueue_head(&eb->write_lock_wq);
4658 init_waitqueue_head(&eb->read_lock_wq);
4659
4660 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4661
4662 spin_lock_init(&eb->refs_lock);
4663 atomic_set(&eb->refs, 1);
4664 atomic_set(&eb->io_pages, 0);
4665
4666 /*
4667 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4668 */
4669 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4670 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4671 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4672
4673 return eb;
4674 }
4675
4676 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4677 {
4678 unsigned long i;
4679 struct page *p;
4680 struct extent_buffer *new;
4681 unsigned long num_pages = num_extent_pages(src->start, src->len);
4682
4683 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4684 if (new == NULL)
4685 return NULL;
4686
4687 for (i = 0; i < num_pages; i++) {
4688 p = alloc_page(GFP_NOFS);
4689 if (!p) {
4690 btrfs_release_extent_buffer(new);
4691 return NULL;
4692 }
4693 attach_extent_buffer_page(new, p);
4694 WARN_ON(PageDirty(p));
4695 SetPageUptodate(p);
4696 new->pages[i] = p;
4697 }
4698
4699 copy_extent_buffer(new, src, 0, 0, src->len);
4700 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4701 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4702
4703 return new;
4704 }
4705
4706 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4707 u64 start, unsigned long len)
4708 {
4709 struct extent_buffer *eb;
4710 unsigned long num_pages;
4711 unsigned long i;
4712
4713 num_pages = num_extent_pages(start, len);
4714
4715 eb = __alloc_extent_buffer(fs_info, start, len);
4716 if (!eb)
4717 return NULL;
4718
4719 for (i = 0; i < num_pages; i++) {
4720 eb->pages[i] = alloc_page(GFP_NOFS);
4721 if (!eb->pages[i])
4722 goto err;
4723 }
4724 set_extent_buffer_uptodate(eb);
4725 btrfs_set_header_nritems(eb, 0);
4726 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4727
4728 return eb;
4729 err:
4730 for (; i > 0; i--)
4731 __free_page(eb->pages[i - 1]);
4732 __free_extent_buffer(eb);
4733 return NULL;
4734 }
4735
4736 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4737 u64 start)
4738 {
4739 unsigned long len;
4740
4741 if (!fs_info) {
4742 /*
4743 * Called only from tests that don't always have a fs_info
4744 * available, but we know that nodesize is 4096
4745 */
4746 len = 4096;
4747 } else {
4748 len = fs_info->tree_root->nodesize;
4749 }
4750
4751 return __alloc_dummy_extent_buffer(fs_info, start, len);
4752 }
4753
4754 static void check_buffer_tree_ref(struct extent_buffer *eb)
4755 {
4756 int refs;
4757 /* the ref bit is tricky. We have to make sure it is set
4758 * if we have the buffer dirty. Otherwise the
4759 * code to free a buffer can end up dropping a dirty
4760 * page
4761 *
4762 * Once the ref bit is set, it won't go away while the
4763 * buffer is dirty or in writeback, and it also won't
4764 * go away while we have the reference count on the
4765 * eb bumped.
4766 *
4767 * We can't just set the ref bit without bumping the
4768 * ref on the eb because free_extent_buffer might
4769 * see the ref bit and try to clear it. If this happens
4770 * free_extent_buffer might end up dropping our original
4771 * ref by mistake and freeing the page before we are able
4772 * to add one more ref.
4773 *
4774 * So bump the ref count first, then set the bit. If someone
4775 * beat us to it, drop the ref we added.
4776 */
4777 refs = atomic_read(&eb->refs);
4778 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4779 return;
4780
4781 spin_lock(&eb->refs_lock);
4782 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4783 atomic_inc(&eb->refs);
4784 spin_unlock(&eb->refs_lock);
4785 }
4786
4787 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4788 struct page *accessed)
4789 {
4790 unsigned long num_pages, i;
4791
4792 check_buffer_tree_ref(eb);
4793
4794 num_pages = num_extent_pages(eb->start, eb->len);
4795 for (i = 0; i < num_pages; i++) {
4796 struct page *p = eb->pages[i];
4797
4798 if (p != accessed)
4799 mark_page_accessed(p);
4800 }
4801 }
4802
4803 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4804 u64 start)
4805 {
4806 struct extent_buffer *eb;
4807
4808 rcu_read_lock();
4809 eb = radix_tree_lookup(&fs_info->buffer_radix,
4810 start >> PAGE_CACHE_SHIFT);
4811 if (eb && atomic_inc_not_zero(&eb->refs)) {
4812 rcu_read_unlock();
4813 /*
4814 * Lock our eb's refs_lock to avoid races with
4815 * free_extent_buffer. When we get our eb it might be flagged
4816 * with EXTENT_BUFFER_STALE and another task running
4817 * free_extent_buffer might have seen that flag set,
4818 * eb->refs == 2, that the buffer isn't under IO (dirty and
4819 * writeback flags not set) and it's still in the tree (flag
4820 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4821 * of decrementing the extent buffer's reference count twice.
4822 * So here we could race and increment the eb's reference count,
4823 * clear its stale flag, mark it as dirty and drop our reference
4824 * before the other task finishes executing free_extent_buffer,
4825 * which would later result in an attempt to free an extent
4826 * buffer that is dirty.
4827 */
4828 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4829 spin_lock(&eb->refs_lock);
4830 spin_unlock(&eb->refs_lock);
4831 }
4832 mark_extent_buffer_accessed(eb, NULL);
4833 return eb;
4834 }
4835 rcu_read_unlock();
4836
4837 return NULL;
4838 }
4839
4840 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4841 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4842 u64 start)
4843 {
4844 struct extent_buffer *eb, *exists = NULL;
4845 int ret;
4846
4847 eb = find_extent_buffer(fs_info, start);
4848 if (eb)
4849 return eb;
4850 eb = alloc_dummy_extent_buffer(fs_info, start);
4851 if (!eb)
4852 return NULL;
4853 eb->fs_info = fs_info;
4854 again:
4855 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4856 if (ret)
4857 goto free_eb;
4858 spin_lock(&fs_info->buffer_lock);
4859 ret = radix_tree_insert(&fs_info->buffer_radix,
4860 start >> PAGE_CACHE_SHIFT, eb);
4861 spin_unlock(&fs_info->buffer_lock);
4862 radix_tree_preload_end();
4863 if (ret == -EEXIST) {
4864 exists = find_extent_buffer(fs_info, start);
4865 if (exists)
4866 goto free_eb;
4867 else
4868 goto again;
4869 }
4870 check_buffer_tree_ref(eb);
4871 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4872
4873 /*
4874 * We will free dummy extent buffer's if they come into
4875 * free_extent_buffer with a ref count of 2, but if we are using this we
4876 * want the buffers to stay in memory until we're done with them, so
4877 * bump the ref count again.
4878 */
4879 atomic_inc(&eb->refs);
4880 return eb;
4881 free_eb:
4882 btrfs_release_extent_buffer(eb);
4883 return exists;
4884 }
4885 #endif
4886
4887 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4888 u64 start)
4889 {
4890 unsigned long len = fs_info->tree_root->nodesize;
4891 unsigned long num_pages = num_extent_pages(start, len);
4892 unsigned long i;
4893 unsigned long index = start >> PAGE_CACHE_SHIFT;
4894 struct extent_buffer *eb;
4895 struct extent_buffer *exists = NULL;
4896 struct page *p;
4897 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4898 int uptodate = 1;
4899 int ret;
4900
4901 eb = find_extent_buffer(fs_info, start);
4902 if (eb)
4903 return eb;
4904
4905 eb = __alloc_extent_buffer(fs_info, start, len);
4906 if (!eb)
4907 return NULL;
4908
4909 for (i = 0; i < num_pages; i++, index++) {
4910 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4911 if (!p)
4912 goto free_eb;
4913
4914 spin_lock(&mapping->private_lock);
4915 if (PagePrivate(p)) {
4916 /*
4917 * We could have already allocated an eb for this page
4918 * and attached one so lets see if we can get a ref on
4919 * the existing eb, and if we can we know it's good and
4920 * we can just return that one, else we know we can just
4921 * overwrite page->private.
4922 */
4923 exists = (struct extent_buffer *)p->private;
4924 if (atomic_inc_not_zero(&exists->refs)) {
4925 spin_unlock(&mapping->private_lock);
4926 unlock_page(p);
4927 page_cache_release(p);
4928 mark_extent_buffer_accessed(exists, p);
4929 goto free_eb;
4930 }
4931 exists = NULL;
4932
4933 /*
4934 * Do this so attach doesn't complain and we need to
4935 * drop the ref the old guy had.
4936 */
4937 ClearPagePrivate(p);
4938 WARN_ON(PageDirty(p));
4939 page_cache_release(p);
4940 }
4941 attach_extent_buffer_page(eb, p);
4942 spin_unlock(&mapping->private_lock);
4943 WARN_ON(PageDirty(p));
4944 eb->pages[i] = p;
4945 if (!PageUptodate(p))
4946 uptodate = 0;
4947
4948 /*
4949 * see below about how we avoid a nasty race with release page
4950 * and why we unlock later
4951 */
4952 }
4953 if (uptodate)
4954 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4955 again:
4956 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4957 if (ret)
4958 goto free_eb;
4959
4960 spin_lock(&fs_info->buffer_lock);
4961 ret = radix_tree_insert(&fs_info->buffer_radix,
4962 start >> PAGE_CACHE_SHIFT, eb);
4963 spin_unlock(&fs_info->buffer_lock);
4964 radix_tree_preload_end();
4965 if (ret == -EEXIST) {
4966 exists = find_extent_buffer(fs_info, start);
4967 if (exists)
4968 goto free_eb;
4969 else
4970 goto again;
4971 }
4972 /* add one reference for the tree */
4973 check_buffer_tree_ref(eb);
4974 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4975
4976 /*
4977 * there is a race where release page may have
4978 * tried to find this extent buffer in the radix
4979 * but failed. It will tell the VM it is safe to
4980 * reclaim the, and it will clear the page private bit.
4981 * We must make sure to set the page private bit properly
4982 * after the extent buffer is in the radix tree so
4983 * it doesn't get lost
4984 */
4985 SetPageChecked(eb->pages[0]);
4986 for (i = 1; i < num_pages; i++) {
4987 p = eb->pages[i];
4988 ClearPageChecked(p);
4989 unlock_page(p);
4990 }
4991 unlock_page(eb->pages[0]);
4992 return eb;
4993
4994 free_eb:
4995 WARN_ON(!atomic_dec_and_test(&eb->refs));
4996 for (i = 0; i < num_pages; i++) {
4997 if (eb->pages[i])
4998 unlock_page(eb->pages[i]);
4999 }
5000
5001 btrfs_release_extent_buffer(eb);
5002 return exists;
5003 }
5004
5005 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5006 {
5007 struct extent_buffer *eb =
5008 container_of(head, struct extent_buffer, rcu_head);
5009
5010 __free_extent_buffer(eb);
5011 }
5012
5013 /* Expects to have eb->eb_lock already held */
5014 static int release_extent_buffer(struct extent_buffer *eb)
5015 {
5016 WARN_ON(atomic_read(&eb->refs) == 0);
5017 if (atomic_dec_and_test(&eb->refs)) {
5018 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5019 struct btrfs_fs_info *fs_info = eb->fs_info;
5020
5021 spin_unlock(&eb->refs_lock);
5022
5023 spin_lock(&fs_info->buffer_lock);
5024 radix_tree_delete(&fs_info->buffer_radix,
5025 eb->start >> PAGE_CACHE_SHIFT);
5026 spin_unlock(&fs_info->buffer_lock);
5027 } else {
5028 spin_unlock(&eb->refs_lock);
5029 }
5030
5031 /* Should be safe to release our pages at this point */
5032 btrfs_release_extent_buffer_page(eb);
5033 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5034 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5035 __free_extent_buffer(eb);
5036 return 1;
5037 }
5038 #endif
5039 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5040 return 1;
5041 }
5042 spin_unlock(&eb->refs_lock);
5043
5044 return 0;
5045 }
5046
5047 void free_extent_buffer(struct extent_buffer *eb)
5048 {
5049 int refs;
5050 int old;
5051 if (!eb)
5052 return;
5053
5054 while (1) {
5055 refs = atomic_read(&eb->refs);
5056 if (refs <= 3)
5057 break;
5058 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5059 if (old == refs)
5060 return;
5061 }
5062
5063 spin_lock(&eb->refs_lock);
5064 if (atomic_read(&eb->refs) == 2 &&
5065 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5066 atomic_dec(&eb->refs);
5067
5068 if (atomic_read(&eb->refs) == 2 &&
5069 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5070 !extent_buffer_under_io(eb) &&
5071 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5072 atomic_dec(&eb->refs);
5073
5074 /*
5075 * I know this is terrible, but it's temporary until we stop tracking
5076 * the uptodate bits and such for the extent buffers.
5077 */
5078 release_extent_buffer(eb);
5079 }
5080
5081 void free_extent_buffer_stale(struct extent_buffer *eb)
5082 {
5083 if (!eb)
5084 return;
5085
5086 spin_lock(&eb->refs_lock);
5087 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5088
5089 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5090 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5091 atomic_dec(&eb->refs);
5092 release_extent_buffer(eb);
5093 }
5094
5095 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5096 {
5097 unsigned long i;
5098 unsigned long num_pages;
5099 struct page *page;
5100
5101 num_pages = num_extent_pages(eb->start, eb->len);
5102
5103 for (i = 0; i < num_pages; i++) {
5104 page = eb->pages[i];
5105 if (!PageDirty(page))
5106 continue;
5107
5108 lock_page(page);
5109 WARN_ON(!PagePrivate(page));
5110
5111 clear_page_dirty_for_io(page);
5112 spin_lock_irq(&page->mapping->tree_lock);
5113 if (!PageDirty(page)) {
5114 radix_tree_tag_clear(&page->mapping->page_tree,
5115 page_index(page),
5116 PAGECACHE_TAG_DIRTY);
5117 }
5118 spin_unlock_irq(&page->mapping->tree_lock);
5119 ClearPageError(page);
5120 unlock_page(page);
5121 }
5122 WARN_ON(atomic_read(&eb->refs) == 0);
5123 }
5124
5125 int set_extent_buffer_dirty(struct extent_buffer *eb)
5126 {
5127 unsigned long i;
5128 unsigned long num_pages;
5129 int was_dirty = 0;
5130
5131 check_buffer_tree_ref(eb);
5132
5133 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5134
5135 num_pages = num_extent_pages(eb->start, eb->len);
5136 WARN_ON(atomic_read(&eb->refs) == 0);
5137 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5138
5139 for (i = 0; i < num_pages; i++)
5140 set_page_dirty(eb->pages[i]);
5141 return was_dirty;
5142 }
5143
5144 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5145 {
5146 unsigned long i;
5147 struct page *page;
5148 unsigned long num_pages;
5149
5150 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5151 num_pages = num_extent_pages(eb->start, eb->len);
5152 for (i = 0; i < num_pages; i++) {
5153 page = eb->pages[i];
5154 if (page)
5155 ClearPageUptodate(page);
5156 }
5157 }
5158
5159 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5160 {
5161 unsigned long i;
5162 struct page *page;
5163 unsigned long num_pages;
5164
5165 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5166 num_pages = num_extent_pages(eb->start, eb->len);
5167 for (i = 0; i < num_pages; i++) {
5168 page = eb->pages[i];
5169 SetPageUptodate(page);
5170 }
5171 }
5172
5173 int extent_buffer_uptodate(struct extent_buffer *eb)
5174 {
5175 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5176 }
5177
5178 int read_extent_buffer_pages(struct extent_io_tree *tree,
5179 struct extent_buffer *eb, u64 start, int wait,
5180 get_extent_t *get_extent, int mirror_num)
5181 {
5182 unsigned long i;
5183 unsigned long start_i;
5184 struct page *page;
5185 int err;
5186 int ret = 0;
5187 int locked_pages = 0;
5188 int all_uptodate = 1;
5189 unsigned long num_pages;
5190 unsigned long num_reads = 0;
5191 struct bio *bio = NULL;
5192 unsigned long bio_flags = 0;
5193
5194 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5195 return 0;
5196
5197 if (start) {
5198 WARN_ON(start < eb->start);
5199 start_i = (start >> PAGE_CACHE_SHIFT) -
5200 (eb->start >> PAGE_CACHE_SHIFT);
5201 } else {
5202 start_i = 0;
5203 }
5204
5205 num_pages = num_extent_pages(eb->start, eb->len);
5206 for (i = start_i; i < num_pages; i++) {
5207 page = eb->pages[i];
5208 if (wait == WAIT_NONE) {
5209 if (!trylock_page(page))
5210 goto unlock_exit;
5211 } else {
5212 lock_page(page);
5213 }
5214 locked_pages++;
5215 if (!PageUptodate(page)) {
5216 num_reads++;
5217 all_uptodate = 0;
5218 }
5219 }
5220 if (all_uptodate) {
5221 if (start_i == 0)
5222 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5223 goto unlock_exit;
5224 }
5225
5226 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5227 eb->read_mirror = 0;
5228 atomic_set(&eb->io_pages, num_reads);
5229 for (i = start_i; i < num_pages; i++) {
5230 page = eb->pages[i];
5231 if (!PageUptodate(page)) {
5232 ClearPageError(page);
5233 err = __extent_read_full_page(tree, page,
5234 get_extent, &bio,
5235 mirror_num, &bio_flags,
5236 READ | REQ_META);
5237 if (err)
5238 ret = err;
5239 } else {
5240 unlock_page(page);
5241 }
5242 }
5243
5244 if (bio) {
5245 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5246 bio_flags);
5247 if (err)
5248 return err;
5249 }
5250
5251 if (ret || wait != WAIT_COMPLETE)
5252 return ret;
5253
5254 for (i = start_i; i < num_pages; i++) {
5255 page = eb->pages[i];
5256 wait_on_page_locked(page);
5257 if (!PageUptodate(page))
5258 ret = -EIO;
5259 }
5260
5261 return ret;
5262
5263 unlock_exit:
5264 i = start_i;
5265 while (locked_pages > 0) {
5266 page = eb->pages[i];
5267 i++;
5268 unlock_page(page);
5269 locked_pages--;
5270 }
5271 return ret;
5272 }
5273
5274 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5275 unsigned long start,
5276 unsigned long len)
5277 {
5278 size_t cur;
5279 size_t offset;
5280 struct page *page;
5281 char *kaddr;
5282 char *dst = (char *)dstv;
5283 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5284 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5285
5286 WARN_ON(start > eb->len);
5287 WARN_ON(start + len > eb->start + eb->len);
5288
5289 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5290
5291 while (len > 0) {
5292 page = eb->pages[i];
5293
5294 cur = min(len, (PAGE_CACHE_SIZE - offset));
5295 kaddr = page_address(page);
5296 memcpy(dst, kaddr + offset, cur);
5297
5298 dst += cur;
5299 len -= cur;
5300 offset = 0;
5301 i++;
5302 }
5303 }
5304
5305 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5306 unsigned long start,
5307 unsigned long len)
5308 {
5309 size_t cur;
5310 size_t offset;
5311 struct page *page;
5312 char *kaddr;
5313 char __user *dst = (char __user *)dstv;
5314 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5315 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5316 int ret = 0;
5317
5318 WARN_ON(start > eb->len);
5319 WARN_ON(start + len > eb->start + eb->len);
5320
5321 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5322
5323 while (len > 0) {
5324 page = eb->pages[i];
5325
5326 cur = min(len, (PAGE_CACHE_SIZE - offset));
5327 kaddr = page_address(page);
5328 if (copy_to_user(dst, kaddr + offset, cur)) {
5329 ret = -EFAULT;
5330 break;
5331 }
5332
5333 dst += cur;
5334 len -= cur;
5335 offset = 0;
5336 i++;
5337 }
5338
5339 return ret;
5340 }
5341
5342 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5343 unsigned long min_len, char **map,
5344 unsigned long *map_start,
5345 unsigned long *map_len)
5346 {
5347 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5348 char *kaddr;
5349 struct page *p;
5350 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5351 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5352 unsigned long end_i = (start_offset + start + min_len - 1) >>
5353 PAGE_CACHE_SHIFT;
5354
5355 if (i != end_i)
5356 return -EINVAL;
5357
5358 if (i == 0) {
5359 offset = start_offset;
5360 *map_start = 0;
5361 } else {
5362 offset = 0;
5363 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5364 }
5365
5366 if (start + min_len > eb->len) {
5367 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5368 "wanted %lu %lu\n",
5369 eb->start, eb->len, start, min_len);
5370 return -EINVAL;
5371 }
5372
5373 p = eb->pages[i];
5374 kaddr = page_address(p);
5375 *map = kaddr + offset;
5376 *map_len = PAGE_CACHE_SIZE - offset;
5377 return 0;
5378 }
5379
5380 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5381 unsigned long start,
5382 unsigned long len)
5383 {
5384 size_t cur;
5385 size_t offset;
5386 struct page *page;
5387 char *kaddr;
5388 char *ptr = (char *)ptrv;
5389 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5390 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5391 int ret = 0;
5392
5393 WARN_ON(start > eb->len);
5394 WARN_ON(start + len > eb->start + eb->len);
5395
5396 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5397
5398 while (len > 0) {
5399 page = eb->pages[i];
5400
5401 cur = min(len, (PAGE_CACHE_SIZE - offset));
5402
5403 kaddr = page_address(page);
5404 ret = memcmp(ptr, kaddr + offset, cur);
5405 if (ret)
5406 break;
5407
5408 ptr += cur;
5409 len -= cur;
5410 offset = 0;
5411 i++;
5412 }
5413 return ret;
5414 }
5415
5416 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5417 unsigned long start, unsigned long len)
5418 {
5419 size_t cur;
5420 size_t offset;
5421 struct page *page;
5422 char *kaddr;
5423 char *src = (char *)srcv;
5424 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5425 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5426
5427 WARN_ON(start > eb->len);
5428 WARN_ON(start + len > eb->start + eb->len);
5429
5430 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5431
5432 while (len > 0) {
5433 page = eb->pages[i];
5434 WARN_ON(!PageUptodate(page));
5435
5436 cur = min(len, PAGE_CACHE_SIZE - offset);
5437 kaddr = page_address(page);
5438 memcpy(kaddr + offset, src, cur);
5439
5440 src += cur;
5441 len -= cur;
5442 offset = 0;
5443 i++;
5444 }
5445 }
5446
5447 void memset_extent_buffer(struct extent_buffer *eb, char c,
5448 unsigned long start, unsigned long len)
5449 {
5450 size_t cur;
5451 size_t offset;
5452 struct page *page;
5453 char *kaddr;
5454 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5455 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5456
5457 WARN_ON(start > eb->len);
5458 WARN_ON(start + len > eb->start + eb->len);
5459
5460 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5461
5462 while (len > 0) {
5463 page = eb->pages[i];
5464 WARN_ON(!PageUptodate(page));
5465
5466 cur = min(len, PAGE_CACHE_SIZE - offset);
5467 kaddr = page_address(page);
5468 memset(kaddr + offset, c, cur);
5469
5470 len -= cur;
5471 offset = 0;
5472 i++;
5473 }
5474 }
5475
5476 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5477 unsigned long dst_offset, unsigned long src_offset,
5478 unsigned long len)
5479 {
5480 u64 dst_len = dst->len;
5481 size_t cur;
5482 size_t offset;
5483 struct page *page;
5484 char *kaddr;
5485 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5486 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5487
5488 WARN_ON(src->len != dst_len);
5489
5490 offset = (start_offset + dst_offset) &
5491 (PAGE_CACHE_SIZE - 1);
5492
5493 while (len > 0) {
5494 page = dst->pages[i];
5495 WARN_ON(!PageUptodate(page));
5496
5497 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5498
5499 kaddr = page_address(page);
5500 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5501
5502 src_offset += cur;
5503 len -= cur;
5504 offset = 0;
5505 i++;
5506 }
5507 }
5508
5509 /*
5510 * The extent buffer bitmap operations are done with byte granularity because
5511 * bitmap items are not guaranteed to be aligned to a word and therefore a
5512 * single word in a bitmap may straddle two pages in the extent buffer.
5513 */
5514 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5515 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5516 #define BITMAP_FIRST_BYTE_MASK(start) \
5517 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5518 #define BITMAP_LAST_BYTE_MASK(nbits) \
5519 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5520
5521 /*
5522 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5523 * given bit number
5524 * @eb: the extent buffer
5525 * @start: offset of the bitmap item in the extent buffer
5526 * @nr: bit number
5527 * @page_index: return index of the page in the extent buffer that contains the
5528 * given bit number
5529 * @page_offset: return offset into the page given by page_index
5530 *
5531 * This helper hides the ugliness of finding the byte in an extent buffer which
5532 * contains a given bit.
5533 */
5534 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5535 unsigned long start, unsigned long nr,
5536 unsigned long *page_index,
5537 size_t *page_offset)
5538 {
5539 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5540 size_t byte_offset = BIT_BYTE(nr);
5541 size_t offset;
5542
5543 /*
5544 * The byte we want is the offset of the extent buffer + the offset of
5545 * the bitmap item in the extent buffer + the offset of the byte in the
5546 * bitmap item.
5547 */
5548 offset = start_offset + start + byte_offset;
5549
5550 *page_index = offset >> PAGE_CACHE_SHIFT;
5551 *page_offset = offset & (PAGE_CACHE_SIZE - 1);
5552 }
5553
5554 /**
5555 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5556 * @eb: the extent buffer
5557 * @start: offset of the bitmap item in the extent buffer
5558 * @nr: bit number to test
5559 */
5560 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5561 unsigned long nr)
5562 {
5563 char *kaddr;
5564 struct page *page;
5565 unsigned long i;
5566 size_t offset;
5567
5568 eb_bitmap_offset(eb, start, nr, &i, &offset);
5569 page = eb->pages[i];
5570 WARN_ON(!PageUptodate(page));
5571 kaddr = page_address(page);
5572 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5573 }
5574
5575 /**
5576 * extent_buffer_bitmap_set - set an area of a bitmap
5577 * @eb: the extent buffer
5578 * @start: offset of the bitmap item in the extent buffer
5579 * @pos: bit number of the first bit
5580 * @len: number of bits to set
5581 */
5582 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5583 unsigned long pos, unsigned long len)
5584 {
5585 char *kaddr;
5586 struct page *page;
5587 unsigned long i;
5588 size_t offset;
5589 const unsigned int size = pos + len;
5590 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5591 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5592
5593 eb_bitmap_offset(eb, start, pos, &i, &offset);
5594 page = eb->pages[i];
5595 WARN_ON(!PageUptodate(page));
5596 kaddr = page_address(page);
5597
5598 while (len >= bits_to_set) {
5599 kaddr[offset] |= mask_to_set;
5600 len -= bits_to_set;
5601 bits_to_set = BITS_PER_BYTE;
5602 mask_to_set = ~0U;
5603 if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5604 offset = 0;
5605 page = eb->pages[++i];
5606 WARN_ON(!PageUptodate(page));
5607 kaddr = page_address(page);
5608 }
5609 }
5610 if (len) {
5611 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5612 kaddr[offset] |= mask_to_set;
5613 }
5614 }
5615
5616
5617 /**
5618 * extent_buffer_bitmap_clear - clear an area of a bitmap
5619 * @eb: the extent buffer
5620 * @start: offset of the bitmap item in the extent buffer
5621 * @pos: bit number of the first bit
5622 * @len: number of bits to clear
5623 */
5624 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5625 unsigned long pos, unsigned long len)
5626 {
5627 char *kaddr;
5628 struct page *page;
5629 unsigned long i;
5630 size_t offset;
5631 const unsigned int size = pos + len;
5632 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5633 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5634
5635 eb_bitmap_offset(eb, start, pos, &i, &offset);
5636 page = eb->pages[i];
5637 WARN_ON(!PageUptodate(page));
5638 kaddr = page_address(page);
5639
5640 while (len >= bits_to_clear) {
5641 kaddr[offset] &= ~mask_to_clear;
5642 len -= bits_to_clear;
5643 bits_to_clear = BITS_PER_BYTE;
5644 mask_to_clear = ~0U;
5645 if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5646 offset = 0;
5647 page = eb->pages[++i];
5648 WARN_ON(!PageUptodate(page));
5649 kaddr = page_address(page);
5650 }
5651 }
5652 if (len) {
5653 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5654 kaddr[offset] &= ~mask_to_clear;
5655 }
5656 }
5657
5658 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5659 {
5660 unsigned long distance = (src > dst) ? src - dst : dst - src;
5661 return distance < len;
5662 }
5663
5664 static void copy_pages(struct page *dst_page, struct page *src_page,
5665 unsigned long dst_off, unsigned long src_off,
5666 unsigned long len)
5667 {
5668 char *dst_kaddr = page_address(dst_page);
5669 char *src_kaddr;
5670 int must_memmove = 0;
5671
5672 if (dst_page != src_page) {
5673 src_kaddr = page_address(src_page);
5674 } else {
5675 src_kaddr = dst_kaddr;
5676 if (areas_overlap(src_off, dst_off, len))
5677 must_memmove = 1;
5678 }
5679
5680 if (must_memmove)
5681 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5682 else
5683 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5684 }
5685
5686 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5687 unsigned long src_offset, unsigned long len)
5688 {
5689 size_t cur;
5690 size_t dst_off_in_page;
5691 size_t src_off_in_page;
5692 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5693 unsigned long dst_i;
5694 unsigned long src_i;
5695
5696 if (src_offset + len > dst->len) {
5697 btrfs_err(dst->fs_info,
5698 "memmove bogus src_offset %lu move "
5699 "len %lu dst len %lu", src_offset, len, dst->len);
5700 BUG_ON(1);
5701 }
5702 if (dst_offset + len > dst->len) {
5703 btrfs_err(dst->fs_info,
5704 "memmove bogus dst_offset %lu move "
5705 "len %lu dst len %lu", dst_offset, len, dst->len);
5706 BUG_ON(1);
5707 }
5708
5709 while (len > 0) {
5710 dst_off_in_page = (start_offset + dst_offset) &
5711 (PAGE_CACHE_SIZE - 1);
5712 src_off_in_page = (start_offset + src_offset) &
5713 (PAGE_CACHE_SIZE - 1);
5714
5715 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5716 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5717
5718 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5719 src_off_in_page));
5720 cur = min_t(unsigned long, cur,
5721 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5722
5723 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5724 dst_off_in_page, src_off_in_page, cur);
5725
5726 src_offset += cur;
5727 dst_offset += cur;
5728 len -= cur;
5729 }
5730 }
5731
5732 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5733 unsigned long src_offset, unsigned long len)
5734 {
5735 size_t cur;
5736 size_t dst_off_in_page;
5737 size_t src_off_in_page;
5738 unsigned long dst_end = dst_offset + len - 1;
5739 unsigned long src_end = src_offset + len - 1;
5740 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5741 unsigned long dst_i;
5742 unsigned long src_i;
5743
5744 if (src_offset + len > dst->len) {
5745 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5746 "len %lu len %lu", src_offset, len, dst->len);
5747 BUG_ON(1);
5748 }
5749 if (dst_offset + len > dst->len) {
5750 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5751 "len %lu len %lu", dst_offset, len, dst->len);
5752 BUG_ON(1);
5753 }
5754 if (dst_offset < src_offset) {
5755 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5756 return;
5757 }
5758 while (len > 0) {
5759 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5760 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5761
5762 dst_off_in_page = (start_offset + dst_end) &
5763 (PAGE_CACHE_SIZE - 1);
5764 src_off_in_page = (start_offset + src_end) &
5765 (PAGE_CACHE_SIZE - 1);
5766
5767 cur = min_t(unsigned long, len, src_off_in_page + 1);
5768 cur = min(cur, dst_off_in_page + 1);
5769 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5770 dst_off_in_page - cur + 1,
5771 src_off_in_page - cur + 1, cur);
5772
5773 dst_end -= cur;
5774 src_end -= cur;
5775 len -= cur;
5776 }
5777 }
5778
5779 int try_release_extent_buffer(struct page *page)
5780 {
5781 struct extent_buffer *eb;
5782
5783 /*
5784 * We need to make sure noboody is attaching this page to an eb right
5785 * now.
5786 */
5787 spin_lock(&page->mapping->private_lock);
5788 if (!PagePrivate(page)) {
5789 spin_unlock(&page->mapping->private_lock);
5790 return 1;
5791 }
5792
5793 eb = (struct extent_buffer *)page->private;
5794 BUG_ON(!eb);
5795
5796 /*
5797 * This is a little awful but should be ok, we need to make sure that
5798 * the eb doesn't disappear out from under us while we're looking at
5799 * this page.
5800 */
5801 spin_lock(&eb->refs_lock);
5802 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5803 spin_unlock(&eb->refs_lock);
5804 spin_unlock(&page->mapping->private_lock);
5805 return 0;
5806 }
5807 spin_unlock(&page->mapping->private_lock);
5808
5809 /*
5810 * If tree ref isn't set then we know the ref on this eb is a real ref,
5811 * so just return, this page will likely be freed soon anyway.
5812 */
5813 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5814 spin_unlock(&eb->refs_lock);
5815 return 0;
5816 }
5817
5818 return release_extent_buffer(eb);
5819 }