]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: Drop EXTENT_UPTODATE check in hole punching and direct locking
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78 }
79
80 #define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct extent_io_tree *tree, u64 start, u64 end)
84 {
85 struct inode *inode;
86 u64 isize;
87
88 if (!tree->mapping)
89 return;
90
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 caller, btrfs_ino(inode), isize, start, end);
97 }
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry) do {} while (0)
102 #define btrfs_leak_debug_check() do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
104 #endif
105
106 #define BUFFER_LRU_MAX 64
107
108 struct tree_entry {
109 u64 start;
110 u64 end;
111 struct rb_node rb_node;
112 };
113
114 struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
118 unsigned long bio_flags;
119
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
122 */
123 unsigned int extent_locked:1;
124
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
127 };
128
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133 if (!tree->mapping)
134 return NULL;
135 return btrfs_sb(tree->mapping->host->i_sb);
136 }
137
138 int __init extent_io_init(void)
139 {
140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 if (!extent_state_cache)
144 return -ENOMEM;
145
146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 if (!extent_buffer_cache)
150 goto free_state_cache;
151
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
156
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
159
160 return 0;
161
162 free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
165
166 free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
169
170 free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
172 extent_state_cache = NULL;
173 return -ENOMEM;
174 }
175
176 void extent_io_exit(void)
177 {
178 btrfs_leak_debug_check();
179
180 /*
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
183 */
184 rcu_barrier();
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
191 }
192
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 struct address_space *mapping)
195 {
196 tree->state = RB_ROOT;
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
199 spin_lock_init(&tree->lock);
200 tree->mapping = mapping;
201 }
202
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205 struct extent_state *state;
206
207 state = kmem_cache_alloc(extent_state_cache, mask);
208 if (!state)
209 return state;
210 state->state = 0;
211 state->private = 0;
212 state->tree = NULL;
213 btrfs_leak_debug_add(&state->leak_list, &states);
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
216 trace_alloc_extent_state(state, mask, _RET_IP_);
217 return state;
218 }
219
220 void free_extent_state(struct extent_state *state)
221 {
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
225 WARN_ON(state->tree);
226 btrfs_leak_debug_del(&state->leak_list);
227 trace_free_extent_state(state, _RET_IP_);
228 kmem_cache_free(extent_state_cache, state);
229 }
230 }
231
232 static struct rb_node *tree_insert(struct rb_root *root,
233 struct rb_node *search_start,
234 u64 offset,
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
238 {
239 struct rb_node **p;
240 struct rb_node *parent = NULL;
241 struct tree_entry *entry;
242
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
247 }
248
249 p = search_start ? &search_start : &root->rb_node;
250 while (*p) {
251 parent = *p;
252 entry = rb_entry(parent, struct tree_entry, rb_node);
253
254 if (offset < entry->start)
255 p = &(*p)->rb_left;
256 else if (offset > entry->end)
257 p = &(*p)->rb_right;
258 else
259 return parent;
260 }
261
262 do_insert:
263 rb_link_node(node, parent, p);
264 rb_insert_color(node, root);
265 return NULL;
266 }
267
268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
269 struct rb_node **prev_ret,
270 struct rb_node **next_ret,
271 struct rb_node ***p_ret,
272 struct rb_node **parent_ret)
273 {
274 struct rb_root *root = &tree->state;
275 struct rb_node **n = &root->rb_node;
276 struct rb_node *prev = NULL;
277 struct rb_node *orig_prev = NULL;
278 struct tree_entry *entry;
279 struct tree_entry *prev_entry = NULL;
280
281 while (*n) {
282 prev = *n;
283 entry = rb_entry(prev, struct tree_entry, rb_node);
284 prev_entry = entry;
285
286 if (offset < entry->start)
287 n = &(*n)->rb_left;
288 else if (offset > entry->end)
289 n = &(*n)->rb_right;
290 else
291 return *n;
292 }
293
294 if (p_ret)
295 *p_ret = n;
296 if (parent_ret)
297 *parent_ret = prev;
298
299 if (prev_ret) {
300 orig_prev = prev;
301 while (prev && offset > prev_entry->end) {
302 prev = rb_next(prev);
303 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
304 }
305 *prev_ret = prev;
306 prev = orig_prev;
307 }
308
309 if (next_ret) {
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 while (prev && offset < prev_entry->start) {
312 prev = rb_prev(prev);
313 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
314 }
315 *next_ret = prev;
316 }
317 return NULL;
318 }
319
320 static inline struct rb_node *
321 tree_search_for_insert(struct extent_io_tree *tree,
322 u64 offset,
323 struct rb_node ***p_ret,
324 struct rb_node **parent_ret)
325 {
326 struct rb_node *prev = NULL;
327 struct rb_node *ret;
328
329 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
330 if (!ret)
331 return prev;
332 return ret;
333 }
334
335 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336 u64 offset)
337 {
338 return tree_search_for_insert(tree, offset, NULL, NULL);
339 }
340
341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342 struct extent_state *other)
343 {
344 if (tree->ops && tree->ops->merge_extent_hook)
345 tree->ops->merge_extent_hook(tree->mapping->host, new,
346 other);
347 }
348
349 /*
350 * utility function to look for merge candidates inside a given range.
351 * Any extents with matching state are merged together into a single
352 * extent in the tree. Extents with EXTENT_IO in their state field
353 * are not merged because the end_io handlers need to be able to do
354 * operations on them without sleeping (or doing allocations/splits).
355 *
356 * This should be called with the tree lock held.
357 */
358 static void merge_state(struct extent_io_tree *tree,
359 struct extent_state *state)
360 {
361 struct extent_state *other;
362 struct rb_node *other_node;
363
364 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
365 return;
366
367 other_node = rb_prev(&state->rb_node);
368 if (other_node) {
369 other = rb_entry(other_node, struct extent_state, rb_node);
370 if (other->end == state->start - 1 &&
371 other->state == state->state) {
372 merge_cb(tree, state, other);
373 state->start = other->start;
374 other->tree = NULL;
375 rb_erase(&other->rb_node, &tree->state);
376 free_extent_state(other);
377 }
378 }
379 other_node = rb_next(&state->rb_node);
380 if (other_node) {
381 other = rb_entry(other_node, struct extent_state, rb_node);
382 if (other->start == state->end + 1 &&
383 other->state == state->state) {
384 merge_cb(tree, state, other);
385 state->end = other->end;
386 other->tree = NULL;
387 rb_erase(&other->rb_node, &tree->state);
388 free_extent_state(other);
389 }
390 }
391 }
392
393 static void set_state_cb(struct extent_io_tree *tree,
394 struct extent_state *state, unsigned long *bits)
395 {
396 if (tree->ops && tree->ops->set_bit_hook)
397 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
398 }
399
400 static void clear_state_cb(struct extent_io_tree *tree,
401 struct extent_state *state, unsigned long *bits)
402 {
403 if (tree->ops && tree->ops->clear_bit_hook)
404 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
405 }
406
407 static void set_state_bits(struct extent_io_tree *tree,
408 struct extent_state *state, unsigned long *bits);
409
410 /*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420 static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
422 struct rb_node ***p,
423 struct rb_node **parent,
424 unsigned long *bits)
425 {
426 struct rb_node *node;
427
428 if (end < start)
429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430 end, start);
431 state->start = start;
432 state->end = end;
433
434 set_state_bits(tree, state, bits);
435
436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
440 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
441 "%llu %llu\n",
442 found->start, found->end, start, end);
443 return -EEXIST;
444 }
445 state->tree = tree;
446 merge_state(tree, state);
447 return 0;
448 }
449
450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
451 u64 split)
452 {
453 if (tree->ops && tree->ops->split_extent_hook)
454 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
455 }
456
457 /*
458 * split a given extent state struct in two, inserting the preallocated
459 * struct 'prealloc' as the newly created second half. 'split' indicates an
460 * offset inside 'orig' where it should be split.
461 *
462 * Before calling,
463 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
464 * are two extent state structs in the tree:
465 * prealloc: [orig->start, split - 1]
466 * orig: [ split, orig->end ]
467 *
468 * The tree locks are not taken by this function. They need to be held
469 * by the caller.
470 */
471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472 struct extent_state *prealloc, u64 split)
473 {
474 struct rb_node *node;
475
476 split_cb(tree, orig, split);
477
478 prealloc->start = orig->start;
479 prealloc->end = split - 1;
480 prealloc->state = orig->state;
481 orig->start = split;
482
483 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484 &prealloc->rb_node, NULL, NULL);
485 if (node) {
486 free_extent_state(prealloc);
487 return -EEXIST;
488 }
489 prealloc->tree = tree;
490 return 0;
491 }
492
493 static struct extent_state *next_state(struct extent_state *state)
494 {
495 struct rb_node *next = rb_next(&state->rb_node);
496 if (next)
497 return rb_entry(next, struct extent_state, rb_node);
498 else
499 return NULL;
500 }
501
502 /*
503 * utility function to clear some bits in an extent state struct.
504 * it will optionally wake up any one waiting on this state (wake == 1).
505 *
506 * If no bits are set on the state struct after clearing things, the
507 * struct is freed and removed from the tree
508 */
509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510 struct extent_state *state,
511 unsigned long *bits, int wake)
512 {
513 struct extent_state *next;
514 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
515
516 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
517 u64 range = state->end - state->start + 1;
518 WARN_ON(range > tree->dirty_bytes);
519 tree->dirty_bytes -= range;
520 }
521 clear_state_cb(tree, state, bits);
522 state->state &= ~bits_to_clear;
523 if (wake)
524 wake_up(&state->wq);
525 if (state->state == 0) {
526 next = next_state(state);
527 if (state->tree) {
528 rb_erase(&state->rb_node, &tree->state);
529 state->tree = NULL;
530 free_extent_state(state);
531 } else {
532 WARN_ON(1);
533 }
534 } else {
535 merge_state(tree, state);
536 next = next_state(state);
537 }
538 return next;
539 }
540
541 static struct extent_state *
542 alloc_extent_state_atomic(struct extent_state *prealloc)
543 {
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546
547 return prealloc;
548 }
549
550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
551 {
552 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553 "Extent tree was modified by another "
554 "thread while locked.");
555 }
556
557 /*
558 * clear some bits on a range in the tree. This may require splitting
559 * or inserting elements in the tree, so the gfp mask is used to
560 * indicate which allocations or sleeping are allowed.
561 *
562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563 * the given range from the tree regardless of state (ie for truncate).
564 *
565 * the range [start, end] is inclusive.
566 *
567 * This takes the tree lock, and returns 0 on success and < 0 on error.
568 */
569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
570 unsigned long bits, int wake, int delete,
571 struct extent_state **cached_state,
572 gfp_t mask)
573 {
574 struct extent_state *state;
575 struct extent_state *cached;
576 struct extent_state *prealloc = NULL;
577 struct rb_node *node;
578 u64 last_end;
579 int err;
580 int clear = 0;
581
582 btrfs_debug_check_extent_io_range(tree, start, end);
583
584 if (bits & EXTENT_DELALLOC)
585 bits |= EXTENT_NORESERVE;
586
587 if (delete)
588 bits |= ~EXTENT_CTLBITS;
589 bits |= EXTENT_FIRST_DELALLOC;
590
591 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592 clear = 1;
593 again:
594 if (!prealloc && (mask & __GFP_WAIT)) {
595 prealloc = alloc_extent_state(mask);
596 if (!prealloc)
597 return -ENOMEM;
598 }
599
600 spin_lock(&tree->lock);
601 if (cached_state) {
602 cached = *cached_state;
603
604 if (clear) {
605 *cached_state = NULL;
606 cached_state = NULL;
607 }
608
609 if (cached && cached->tree && cached->start <= start &&
610 cached->end > start) {
611 if (clear)
612 atomic_dec(&cached->refs);
613 state = cached;
614 goto hit_next;
615 }
616 if (clear)
617 free_extent_state(cached);
618 }
619 /*
620 * this search will find the extents that end after
621 * our range starts
622 */
623 node = tree_search(tree, start);
624 if (!node)
625 goto out;
626 state = rb_entry(node, struct extent_state, rb_node);
627 hit_next:
628 if (state->start > end)
629 goto out;
630 WARN_ON(state->end < start);
631 last_end = state->end;
632
633 /* the state doesn't have the wanted bits, go ahead */
634 if (!(state->state & bits)) {
635 state = next_state(state);
636 goto next;
637 }
638
639 /*
640 * | ---- desired range ---- |
641 * | state | or
642 * | ------------- state -------------- |
643 *
644 * We need to split the extent we found, and may flip
645 * bits on second half.
646 *
647 * If the extent we found extends past our range, we
648 * just split and search again. It'll get split again
649 * the next time though.
650 *
651 * If the extent we found is inside our range, we clear
652 * the desired bit on it.
653 */
654
655 if (state->start < start) {
656 prealloc = alloc_extent_state_atomic(prealloc);
657 BUG_ON(!prealloc);
658 err = split_state(tree, state, prealloc, start);
659 if (err)
660 extent_io_tree_panic(tree, err);
661
662 prealloc = NULL;
663 if (err)
664 goto out;
665 if (state->end <= end) {
666 state = clear_state_bit(tree, state, &bits, wake);
667 goto next;
668 }
669 goto search_again;
670 }
671 /*
672 * | ---- desired range ---- |
673 * | state |
674 * We need to split the extent, and clear the bit
675 * on the first half
676 */
677 if (state->start <= end && state->end > end) {
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
680 err = split_state(tree, state, prealloc, end + 1);
681 if (err)
682 extent_io_tree_panic(tree, err);
683
684 if (wake)
685 wake_up(&state->wq);
686
687 clear_state_bit(tree, prealloc, &bits, wake);
688
689 prealloc = NULL;
690 goto out;
691 }
692
693 state = clear_state_bit(tree, state, &bits, wake);
694 next:
695 if (last_end == (u64)-1)
696 goto out;
697 start = last_end + 1;
698 if (start <= end && state && !need_resched())
699 goto hit_next;
700 goto search_again;
701
702 out:
703 spin_unlock(&tree->lock);
704 if (prealloc)
705 free_extent_state(prealloc);
706
707 return 0;
708
709 search_again:
710 if (start > end)
711 goto out;
712 spin_unlock(&tree->lock);
713 if (mask & __GFP_WAIT)
714 cond_resched();
715 goto again;
716 }
717
718 static void wait_on_state(struct extent_io_tree *tree,
719 struct extent_state *state)
720 __releases(tree->lock)
721 __acquires(tree->lock)
722 {
723 DEFINE_WAIT(wait);
724 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
725 spin_unlock(&tree->lock);
726 schedule();
727 spin_lock(&tree->lock);
728 finish_wait(&state->wq, &wait);
729 }
730
731 /*
732 * waits for one or more bits to clear on a range in the state tree.
733 * The range [start, end] is inclusive.
734 * The tree lock is taken by this function
735 */
736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 unsigned long bits)
738 {
739 struct extent_state *state;
740 struct rb_node *node;
741
742 btrfs_debug_check_extent_io_range(tree, start, end);
743
744 spin_lock(&tree->lock);
745 again:
746 while (1) {
747 /*
748 * this search will find all the extents that end after
749 * our range starts
750 */
751 node = tree_search(tree, start);
752 process_node:
753 if (!node)
754 break;
755
756 state = rb_entry(node, struct extent_state, rb_node);
757
758 if (state->start > end)
759 goto out;
760
761 if (state->state & bits) {
762 start = state->start;
763 atomic_inc(&state->refs);
764 wait_on_state(tree, state);
765 free_extent_state(state);
766 goto again;
767 }
768 start = state->end + 1;
769
770 if (start > end)
771 break;
772
773 if (!cond_resched_lock(&tree->lock)) {
774 node = rb_next(node);
775 goto process_node;
776 }
777 }
778 out:
779 spin_unlock(&tree->lock);
780 }
781
782 static void set_state_bits(struct extent_io_tree *tree,
783 struct extent_state *state,
784 unsigned long *bits)
785 {
786 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
787
788 set_state_cb(tree, state, bits);
789 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
790 u64 range = state->end - state->start + 1;
791 tree->dirty_bytes += range;
792 }
793 state->state |= bits_to_set;
794 }
795
796 static void cache_state(struct extent_state *state,
797 struct extent_state **cached_ptr)
798 {
799 if (cached_ptr && !(*cached_ptr)) {
800 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
801 *cached_ptr = state;
802 atomic_inc(&state->refs);
803 }
804 }
805 }
806
807 /*
808 * set some bits on a range in the tree. This may require allocations or
809 * sleeping, so the gfp mask is used to indicate what is allowed.
810 *
811 * If any of the exclusive bits are set, this will fail with -EEXIST if some
812 * part of the range already has the desired bits set. The start of the
813 * existing range is returned in failed_start in this case.
814 *
815 * [start, end] is inclusive This takes the tree lock.
816 */
817
818 static int __must_check
819 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
820 unsigned long bits, unsigned long exclusive_bits,
821 u64 *failed_start, struct extent_state **cached_state,
822 gfp_t mask)
823 {
824 struct extent_state *state;
825 struct extent_state *prealloc = NULL;
826 struct rb_node *node;
827 struct rb_node **p;
828 struct rb_node *parent;
829 int err = 0;
830 u64 last_start;
831 u64 last_end;
832
833 btrfs_debug_check_extent_io_range(tree, start, end);
834
835 bits |= EXTENT_FIRST_DELALLOC;
836 again:
837 if (!prealloc && (mask & __GFP_WAIT)) {
838 prealloc = alloc_extent_state(mask);
839 BUG_ON(!prealloc);
840 }
841
842 spin_lock(&tree->lock);
843 if (cached_state && *cached_state) {
844 state = *cached_state;
845 if (state->start <= start && state->end > start &&
846 state->tree) {
847 node = &state->rb_node;
848 goto hit_next;
849 }
850 }
851 /*
852 * this search will find all the extents that end after
853 * our range starts.
854 */
855 node = tree_search_for_insert(tree, start, &p, &parent);
856 if (!node) {
857 prealloc = alloc_extent_state_atomic(prealloc);
858 BUG_ON(!prealloc);
859 err = insert_state(tree, prealloc, start, end,
860 &p, &parent, &bits);
861 if (err)
862 extent_io_tree_panic(tree, err);
863
864 cache_state(prealloc, cached_state);
865 prealloc = NULL;
866 goto out;
867 }
868 state = rb_entry(node, struct extent_state, rb_node);
869 hit_next:
870 last_start = state->start;
871 last_end = state->end;
872
873 /*
874 * | ---- desired range ---- |
875 * | state |
876 *
877 * Just lock what we found and keep going
878 */
879 if (state->start == start && state->end <= end) {
880 if (state->state & exclusive_bits) {
881 *failed_start = state->start;
882 err = -EEXIST;
883 goto out;
884 }
885
886 set_state_bits(tree, state, &bits);
887 cache_state(state, cached_state);
888 merge_state(tree, state);
889 if (last_end == (u64)-1)
890 goto out;
891 start = last_end + 1;
892 state = next_state(state);
893 if (start < end && state && state->start == start &&
894 !need_resched())
895 goto hit_next;
896 goto search_again;
897 }
898
899 /*
900 * | ---- desired range ---- |
901 * | state |
902 * or
903 * | ------------- state -------------- |
904 *
905 * We need to split the extent we found, and may flip bits on
906 * second half.
907 *
908 * If the extent we found extends past our
909 * range, we just split and search again. It'll get split
910 * again the next time though.
911 *
912 * If the extent we found is inside our range, we set the
913 * desired bit on it.
914 */
915 if (state->start < start) {
916 if (state->state & exclusive_bits) {
917 *failed_start = start;
918 err = -EEXIST;
919 goto out;
920 }
921
922 prealloc = alloc_extent_state_atomic(prealloc);
923 BUG_ON(!prealloc);
924 err = split_state(tree, state, prealloc, start);
925 if (err)
926 extent_io_tree_panic(tree, err);
927
928 prealloc = NULL;
929 if (err)
930 goto out;
931 if (state->end <= end) {
932 set_state_bits(tree, state, &bits);
933 cache_state(state, cached_state);
934 merge_state(tree, state);
935 if (last_end == (u64)-1)
936 goto out;
937 start = last_end + 1;
938 state = next_state(state);
939 if (start < end && state && state->start == start &&
940 !need_resched())
941 goto hit_next;
942 }
943 goto search_again;
944 }
945 /*
946 * | ---- desired range ---- |
947 * | state | or | state |
948 *
949 * There's a hole, we need to insert something in it and
950 * ignore the extent we found.
951 */
952 if (state->start > start) {
953 u64 this_end;
954 if (end < last_start)
955 this_end = end;
956 else
957 this_end = last_start - 1;
958
959 prealloc = alloc_extent_state_atomic(prealloc);
960 BUG_ON(!prealloc);
961
962 /*
963 * Avoid to free 'prealloc' if it can be merged with
964 * the later extent.
965 */
966 err = insert_state(tree, prealloc, start, this_end,
967 NULL, NULL, &bits);
968 if (err)
969 extent_io_tree_panic(tree, err);
970
971 cache_state(prealloc, cached_state);
972 prealloc = NULL;
973 start = this_end + 1;
974 goto search_again;
975 }
976 /*
977 * | ---- desired range ---- |
978 * | state |
979 * We need to split the extent, and set the bit
980 * on the first half
981 */
982 if (state->start <= end && state->end > end) {
983 if (state->state & exclusive_bits) {
984 *failed_start = start;
985 err = -EEXIST;
986 goto out;
987 }
988
989 prealloc = alloc_extent_state_atomic(prealloc);
990 BUG_ON(!prealloc);
991 err = split_state(tree, state, prealloc, end + 1);
992 if (err)
993 extent_io_tree_panic(tree, err);
994
995 set_state_bits(tree, prealloc, &bits);
996 cache_state(prealloc, cached_state);
997 merge_state(tree, prealloc);
998 prealloc = NULL;
999 goto out;
1000 }
1001
1002 goto search_again;
1003
1004 out:
1005 spin_unlock(&tree->lock);
1006 if (prealloc)
1007 free_extent_state(prealloc);
1008
1009 return err;
1010
1011 search_again:
1012 if (start > end)
1013 goto out;
1014 spin_unlock(&tree->lock);
1015 if (mask & __GFP_WAIT)
1016 cond_resched();
1017 goto again;
1018 }
1019
1020 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021 unsigned long bits, u64 * failed_start,
1022 struct extent_state **cached_state, gfp_t mask)
1023 {
1024 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025 cached_state, mask);
1026 }
1027
1028
1029 /**
1030 * convert_extent_bit - convert all bits in a given range from one bit to
1031 * another
1032 * @tree: the io tree to search
1033 * @start: the start offset in bytes
1034 * @end: the end offset in bytes (inclusive)
1035 * @bits: the bits to set in this range
1036 * @clear_bits: the bits to clear in this range
1037 * @cached_state: state that we're going to cache
1038 * @mask: the allocation mask
1039 *
1040 * This will go through and set bits for the given range. If any states exist
1041 * already in this range they are set with the given bit and cleared of the
1042 * clear_bits. This is only meant to be used by things that are mergeable, ie
1043 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1044 * boundary bits like LOCK.
1045 */
1046 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1047 unsigned long bits, unsigned long clear_bits,
1048 struct extent_state **cached_state, gfp_t mask)
1049 {
1050 struct extent_state *state;
1051 struct extent_state *prealloc = NULL;
1052 struct rb_node *node;
1053 struct rb_node **p;
1054 struct rb_node *parent;
1055 int err = 0;
1056 u64 last_start;
1057 u64 last_end;
1058
1059 btrfs_debug_check_extent_io_range(tree, start, end);
1060
1061 again:
1062 if (!prealloc && (mask & __GFP_WAIT)) {
1063 prealloc = alloc_extent_state(mask);
1064 if (!prealloc)
1065 return -ENOMEM;
1066 }
1067
1068 spin_lock(&tree->lock);
1069 if (cached_state && *cached_state) {
1070 state = *cached_state;
1071 if (state->start <= start && state->end > start &&
1072 state->tree) {
1073 node = &state->rb_node;
1074 goto hit_next;
1075 }
1076 }
1077
1078 /*
1079 * this search will find all the extents that end after
1080 * our range starts.
1081 */
1082 node = tree_search_for_insert(tree, start, &p, &parent);
1083 if (!node) {
1084 prealloc = alloc_extent_state_atomic(prealloc);
1085 if (!prealloc) {
1086 err = -ENOMEM;
1087 goto out;
1088 }
1089 err = insert_state(tree, prealloc, start, end,
1090 &p, &parent, &bits);
1091 if (err)
1092 extent_io_tree_panic(tree, err);
1093 cache_state(prealloc, cached_state);
1094 prealloc = NULL;
1095 goto out;
1096 }
1097 state = rb_entry(node, struct extent_state, rb_node);
1098 hit_next:
1099 last_start = state->start;
1100 last_end = state->end;
1101
1102 /*
1103 * | ---- desired range ---- |
1104 * | state |
1105 *
1106 * Just lock what we found and keep going
1107 */
1108 if (state->start == start && state->end <= end) {
1109 set_state_bits(tree, state, &bits);
1110 cache_state(state, cached_state);
1111 state = clear_state_bit(tree, state, &clear_bits, 0);
1112 if (last_end == (u64)-1)
1113 goto out;
1114 start = last_end + 1;
1115 if (start < end && state && state->start == start &&
1116 !need_resched())
1117 goto hit_next;
1118 goto search_again;
1119 }
1120
1121 /*
1122 * | ---- desired range ---- |
1123 * | state |
1124 * or
1125 * | ------------- state -------------- |
1126 *
1127 * We need to split the extent we found, and may flip bits on
1128 * second half.
1129 *
1130 * If the extent we found extends past our
1131 * range, we just split and search again. It'll get split
1132 * again the next time though.
1133 *
1134 * If the extent we found is inside our range, we set the
1135 * desired bit on it.
1136 */
1137 if (state->start < start) {
1138 prealloc = alloc_extent_state_atomic(prealloc);
1139 if (!prealloc) {
1140 err = -ENOMEM;
1141 goto out;
1142 }
1143 err = split_state(tree, state, prealloc, start);
1144 if (err)
1145 extent_io_tree_panic(tree, err);
1146 prealloc = NULL;
1147 if (err)
1148 goto out;
1149 if (state->end <= end) {
1150 set_state_bits(tree, state, &bits);
1151 cache_state(state, cached_state);
1152 state = clear_state_bit(tree, state, &clear_bits, 0);
1153 if (last_end == (u64)-1)
1154 goto out;
1155 start = last_end + 1;
1156 if (start < end && state && state->start == start &&
1157 !need_resched())
1158 goto hit_next;
1159 }
1160 goto search_again;
1161 }
1162 /*
1163 * | ---- desired range ---- |
1164 * | state | or | state |
1165 *
1166 * There's a hole, we need to insert something in it and
1167 * ignore the extent we found.
1168 */
1169 if (state->start > start) {
1170 u64 this_end;
1171 if (end < last_start)
1172 this_end = end;
1173 else
1174 this_end = last_start - 1;
1175
1176 prealloc = alloc_extent_state_atomic(prealloc);
1177 if (!prealloc) {
1178 err = -ENOMEM;
1179 goto out;
1180 }
1181
1182 /*
1183 * Avoid to free 'prealloc' if it can be merged with
1184 * the later extent.
1185 */
1186 err = insert_state(tree, prealloc, start, this_end,
1187 NULL, NULL, &bits);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 cache_state(prealloc, cached_state);
1191 prealloc = NULL;
1192 start = this_end + 1;
1193 goto search_again;
1194 }
1195 /*
1196 * | ---- desired range ---- |
1197 * | state |
1198 * We need to split the extent, and set the bit
1199 * on the first half
1200 */
1201 if (state->start <= end && state->end > end) {
1202 prealloc = alloc_extent_state_atomic(prealloc);
1203 if (!prealloc) {
1204 err = -ENOMEM;
1205 goto out;
1206 }
1207
1208 err = split_state(tree, state, prealloc, end + 1);
1209 if (err)
1210 extent_io_tree_panic(tree, err);
1211
1212 set_state_bits(tree, prealloc, &bits);
1213 cache_state(prealloc, cached_state);
1214 clear_state_bit(tree, prealloc, &clear_bits, 0);
1215 prealloc = NULL;
1216 goto out;
1217 }
1218
1219 goto search_again;
1220
1221 out:
1222 spin_unlock(&tree->lock);
1223 if (prealloc)
1224 free_extent_state(prealloc);
1225
1226 return err;
1227
1228 search_again:
1229 if (start > end)
1230 goto out;
1231 spin_unlock(&tree->lock);
1232 if (mask & __GFP_WAIT)
1233 cond_resched();
1234 goto again;
1235 }
1236
1237 /* wrappers around set/clear extent bit */
1238 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239 gfp_t mask)
1240 {
1241 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1242 NULL, mask);
1243 }
1244
1245 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246 unsigned long bits, gfp_t mask)
1247 {
1248 return set_extent_bit(tree, start, end, bits, NULL,
1249 NULL, mask);
1250 }
1251
1252 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1253 unsigned long bits, gfp_t mask)
1254 {
1255 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1256 }
1257
1258 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1259 struct extent_state **cached_state, gfp_t mask)
1260 {
1261 return set_extent_bit(tree, start, end,
1262 EXTENT_DELALLOC | EXTENT_UPTODATE,
1263 NULL, cached_state, mask);
1264 }
1265
1266 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267 struct extent_state **cached_state, gfp_t mask)
1268 {
1269 return set_extent_bit(tree, start, end,
1270 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271 NULL, cached_state, mask);
1272 }
1273
1274 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275 gfp_t mask)
1276 {
1277 return clear_extent_bit(tree, start, end,
1278 EXTENT_DIRTY | EXTENT_DELALLOC |
1279 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1280 }
1281
1282 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283 gfp_t mask)
1284 {
1285 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1286 NULL, mask);
1287 }
1288
1289 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290 struct extent_state **cached_state, gfp_t mask)
1291 {
1292 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1293 cached_state, mask);
1294 }
1295
1296 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297 struct extent_state **cached_state, gfp_t mask)
1298 {
1299 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1300 cached_state, mask);
1301 }
1302
1303 /*
1304 * either insert or lock state struct between start and end use mask to tell
1305 * us if waiting is desired.
1306 */
1307 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1308 unsigned long bits, struct extent_state **cached_state)
1309 {
1310 int err;
1311 u64 failed_start;
1312 while (1) {
1313 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314 EXTENT_LOCKED, &failed_start,
1315 cached_state, GFP_NOFS);
1316 if (err == -EEXIST) {
1317 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318 start = failed_start;
1319 } else
1320 break;
1321 WARN_ON(start > end);
1322 }
1323 return err;
1324 }
1325
1326 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1327 {
1328 return lock_extent_bits(tree, start, end, 0, NULL);
1329 }
1330
1331 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1332 {
1333 int err;
1334 u64 failed_start;
1335
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337 &failed_start, NULL, GFP_NOFS);
1338 if (err == -EEXIST) {
1339 if (failed_start > start)
1340 clear_extent_bit(tree, start, failed_start - 1,
1341 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1342 return 0;
1343 }
1344 return 1;
1345 }
1346
1347 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348 struct extent_state **cached, gfp_t mask)
1349 {
1350 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351 mask);
1352 }
1353
1354 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1355 {
1356 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1357 GFP_NOFS);
1358 }
1359
1360 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362 unsigned long index = start >> PAGE_CACHE_SHIFT;
1363 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364 struct page *page;
1365
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 clear_page_dirty_for_io(page);
1370 page_cache_release(page);
1371 index++;
1372 }
1373 return 0;
1374 }
1375
1376 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377 {
1378 unsigned long index = start >> PAGE_CACHE_SHIFT;
1379 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380 struct page *page;
1381
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 account_page_redirty(page);
1386 __set_page_dirty_nobuffers(page);
1387 page_cache_release(page);
1388 index++;
1389 }
1390 return 0;
1391 }
1392
1393 /*
1394 * helper function to set both pages and extents in the tree writeback
1395 */
1396 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1397 {
1398 unsigned long index = start >> PAGE_CACHE_SHIFT;
1399 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400 struct page *page;
1401
1402 while (index <= end_index) {
1403 page = find_get_page(tree->mapping, index);
1404 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1405 set_page_writeback(page);
1406 page_cache_release(page);
1407 index++;
1408 }
1409 return 0;
1410 }
1411
1412 /* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1415 */
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418 u64 start, unsigned long bits)
1419 {
1420 struct rb_node *node;
1421 struct extent_state *state;
1422
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
1428 if (!node)
1429 goto out;
1430
1431 while (1) {
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->end >= start && (state->state & bits))
1434 return state;
1435
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1439 }
1440 out:
1441 return NULL;
1442 }
1443
1444 /*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
1449 * If nothing was found, 1 is returned. If found something, return 0.
1450 */
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 u64 *start_ret, u64 *end_ret, unsigned long bits,
1453 struct extent_state **cached_state)
1454 {
1455 struct extent_state *state;
1456 struct rb_node *n;
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && state->tree) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1474 }
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1477 }
1478
1479 state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481 if (state) {
1482 cache_state(state, cached_state);
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1486 }
1487 out:
1488 spin_unlock(&tree->lock);
1489 return ret;
1490 }
1491
1492 /*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
1501 {
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1507
1508 spin_lock(&tree->lock);
1509
1510 /*
1511 * this search will find all the extents that end after
1512 * our range starts.
1513 */
1514 node = tree_search(tree, cur_start);
1515 if (!node) {
1516 if (!found)
1517 *end = (u64)-1;
1518 goto out;
1519 }
1520
1521 while (1) {
1522 state = rb_entry(node, struct extent_state, rb_node);
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
1525 goto out;
1526 }
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1531 }
1532 if (!found) {
1533 *start = state->start;
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1536 }
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
1541 total_bytes += state->end - state->start + 1;
1542 if (total_bytes >= max_bytes)
1543 break;
1544 if (!node)
1545 break;
1546 }
1547 out:
1548 spin_unlock(&tree->lock);
1549 return found;
1550 }
1551
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
1555 {
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_CACHE_SHIFT;
1559 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1562
1563 if (index == locked_page->index && end_index == index)
1564 return;
1565
1566 while (nr_pages > 0) {
1567 ret = find_get_pages_contig(inode->i_mapping, index,
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 page_cache_release(pages[i]);
1574 }
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1578 }
1579 }
1580
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1585 {
1586 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1594
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1598
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
1601 while (nrpages > 0) {
1602 ret = find_get_pages_contig(inode->i_mapping, index,
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1608 }
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1611 /*
1612 * the caller is taking responsibility for
1613 * locked_page
1614 */
1615 if (pages[i] != locked_page) {
1616 lock_page(pages[i]);
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 page_cache_release(pages[i]);
1622 goto done;
1623 }
1624 }
1625 page_cache_release(pages[i]);
1626 pages_locked++;
1627 }
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1631 }
1632 ret = 0;
1633 done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_CACHE_SHIFT);
1639 }
1640 return ret;
1641 }
1642
1643 /*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1648 */
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
1653 {
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
1657 struct extent_state *cached_state = NULL;
1658 int ret;
1659 int loops = 0;
1660
1661 again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 max_bytes, &cached_state);
1667 if (!found || delalloc_end <= *start) {
1668 *start = delalloc_start;
1669 *end = delalloc_end;
1670 free_extent_state(cached_state);
1671 return 0;
1672 }
1673
1674 /*
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1678 */
1679 if (delalloc_start < *start)
1680 delalloc_start = *start;
1681
1682 /*
1683 * make sure to limit the number of pages we try to lock down
1684 */
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
1695 free_extent_state(cached_state);
1696 cached_state = NULL;
1697 if (!loops) {
1698 max_bytes = PAGE_CACHE_SIZE;
1699 loops = 1;
1700 goto again;
1701 } else {
1702 found = 0;
1703 goto out_failed;
1704 }
1705 }
1706 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708 /* step three, lock the state bits for the whole range */
1709 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1710
1711 /* then test to make sure it is all still delalloc */
1712 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 EXTENT_DELALLOC, 1, cached_state);
1714 if (!ret) {
1715 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 &cached_state, GFP_NOFS);
1717 __unlock_for_delalloc(inode, locked_page,
1718 delalloc_start, delalloc_end);
1719 cond_resched();
1720 goto again;
1721 }
1722 free_extent_state(cached_state);
1723 *start = delalloc_start;
1724 *end = delalloc_end;
1725 out_failed:
1726 return found;
1727 }
1728
1729 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 struct page *locked_page,
1731 unsigned long clear_bits,
1732 unsigned long page_ops)
1733 {
1734 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 int ret;
1736 struct page *pages[16];
1737 unsigned long index = start >> PAGE_CACHE_SHIFT;
1738 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1739 unsigned long nr_pages = end_index - index + 1;
1740 int i;
1741
1742 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 if (page_ops == 0)
1744 return 0;
1745
1746 while (nr_pages > 0) {
1747 ret = find_get_pages_contig(inode->i_mapping, index,
1748 min_t(unsigned long,
1749 nr_pages, ARRAY_SIZE(pages)), pages);
1750 for (i = 0; i < ret; i++) {
1751
1752 if (page_ops & PAGE_SET_PRIVATE2)
1753 SetPagePrivate2(pages[i]);
1754
1755 if (pages[i] == locked_page) {
1756 page_cache_release(pages[i]);
1757 continue;
1758 }
1759 if (page_ops & PAGE_CLEAR_DIRTY)
1760 clear_page_dirty_for_io(pages[i]);
1761 if (page_ops & PAGE_SET_WRITEBACK)
1762 set_page_writeback(pages[i]);
1763 if (page_ops & PAGE_END_WRITEBACK)
1764 end_page_writeback(pages[i]);
1765 if (page_ops & PAGE_UNLOCK)
1766 unlock_page(pages[i]);
1767 page_cache_release(pages[i]);
1768 }
1769 nr_pages -= ret;
1770 index += ret;
1771 cond_resched();
1772 }
1773 return 0;
1774 }
1775
1776 /*
1777 * count the number of bytes in the tree that have a given bit(s)
1778 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1779 * cached. The total number found is returned.
1780 */
1781 u64 count_range_bits(struct extent_io_tree *tree,
1782 u64 *start, u64 search_end, u64 max_bytes,
1783 unsigned long bits, int contig)
1784 {
1785 struct rb_node *node;
1786 struct extent_state *state;
1787 u64 cur_start = *start;
1788 u64 total_bytes = 0;
1789 u64 last = 0;
1790 int found = 0;
1791
1792 if (WARN_ON(search_end <= cur_start))
1793 return 0;
1794
1795 spin_lock(&tree->lock);
1796 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 total_bytes = tree->dirty_bytes;
1798 goto out;
1799 }
1800 /*
1801 * this search will find all the extents that end after
1802 * our range starts.
1803 */
1804 node = tree_search(tree, cur_start);
1805 if (!node)
1806 goto out;
1807
1808 while (1) {
1809 state = rb_entry(node, struct extent_state, rb_node);
1810 if (state->start > search_end)
1811 break;
1812 if (contig && found && state->start > last + 1)
1813 break;
1814 if (state->end >= cur_start && (state->state & bits) == bits) {
1815 total_bytes += min(search_end, state->end) + 1 -
1816 max(cur_start, state->start);
1817 if (total_bytes >= max_bytes)
1818 break;
1819 if (!found) {
1820 *start = max(cur_start, state->start);
1821 found = 1;
1822 }
1823 last = state->end;
1824 } else if (contig && found) {
1825 break;
1826 }
1827 node = rb_next(node);
1828 if (!node)
1829 break;
1830 }
1831 out:
1832 spin_unlock(&tree->lock);
1833 return total_bytes;
1834 }
1835
1836 /*
1837 * set the private field for a given byte offset in the tree. If there isn't
1838 * an extent_state there already, this does nothing.
1839 */
1840 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1841 {
1842 struct rb_node *node;
1843 struct extent_state *state;
1844 int ret = 0;
1845
1846 spin_lock(&tree->lock);
1847 /*
1848 * this search will find all the extents that end after
1849 * our range starts.
1850 */
1851 node = tree_search(tree, start);
1852 if (!node) {
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state->private = private;
1862 out:
1863 spin_unlock(&tree->lock);
1864 return ret;
1865 }
1866
1867 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1868 {
1869 struct rb_node *node;
1870 struct extent_state *state;
1871 int ret = 0;
1872
1873 spin_lock(&tree->lock);
1874 /*
1875 * this search will find all the extents that end after
1876 * our range starts.
1877 */
1878 node = tree_search(tree, start);
1879 if (!node) {
1880 ret = -ENOENT;
1881 goto out;
1882 }
1883 state = rb_entry(node, struct extent_state, rb_node);
1884 if (state->start != start) {
1885 ret = -ENOENT;
1886 goto out;
1887 }
1888 *private = state->private;
1889 out:
1890 spin_unlock(&tree->lock);
1891 return ret;
1892 }
1893
1894 /*
1895 * searches a range in the state tree for a given mask.
1896 * If 'filled' == 1, this returns 1 only if every extent in the tree
1897 * has the bits set. Otherwise, 1 is returned if any bit in the
1898 * range is found set.
1899 */
1900 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1901 unsigned long bits, int filled, struct extent_state *cached)
1902 {
1903 struct extent_state *state = NULL;
1904 struct rb_node *node;
1905 int bitset = 0;
1906
1907 spin_lock(&tree->lock);
1908 if (cached && cached->tree && cached->start <= start &&
1909 cached->end > start)
1910 node = &cached->rb_node;
1911 else
1912 node = tree_search(tree, start);
1913 while (node && start <= end) {
1914 state = rb_entry(node, struct extent_state, rb_node);
1915
1916 if (filled && state->start > start) {
1917 bitset = 0;
1918 break;
1919 }
1920
1921 if (state->start > end)
1922 break;
1923
1924 if (state->state & bits) {
1925 bitset = 1;
1926 if (!filled)
1927 break;
1928 } else if (filled) {
1929 bitset = 0;
1930 break;
1931 }
1932
1933 if (state->end == (u64)-1)
1934 break;
1935
1936 start = state->end + 1;
1937 if (start > end)
1938 break;
1939 node = rb_next(node);
1940 if (!node) {
1941 if (filled)
1942 bitset = 0;
1943 break;
1944 }
1945 }
1946 spin_unlock(&tree->lock);
1947 return bitset;
1948 }
1949
1950 /*
1951 * helper function to set a given page up to date if all the
1952 * extents in the tree for that page are up to date
1953 */
1954 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1955 {
1956 u64 start = page_offset(page);
1957 u64 end = start + PAGE_CACHE_SIZE - 1;
1958 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1959 SetPageUptodate(page);
1960 }
1961
1962 /*
1963 * When IO fails, either with EIO or csum verification fails, we
1964 * try other mirrors that might have a good copy of the data. This
1965 * io_failure_record is used to record state as we go through all the
1966 * mirrors. If another mirror has good data, the page is set up to date
1967 * and things continue. If a good mirror can't be found, the original
1968 * bio end_io callback is called to indicate things have failed.
1969 */
1970 struct io_failure_record {
1971 struct page *page;
1972 u64 start;
1973 u64 len;
1974 u64 logical;
1975 unsigned long bio_flags;
1976 int this_mirror;
1977 int failed_mirror;
1978 int in_validation;
1979 };
1980
1981 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1982 int did_repair)
1983 {
1984 int ret;
1985 int err = 0;
1986 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1987
1988 set_state_private(failure_tree, rec->start, 0);
1989 ret = clear_extent_bits(failure_tree, rec->start,
1990 rec->start + rec->len - 1,
1991 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1992 if (ret)
1993 err = ret;
1994
1995 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1996 rec->start + rec->len - 1,
1997 EXTENT_DAMAGED, GFP_NOFS);
1998 if (ret && !err)
1999 err = ret;
2000
2001 kfree(rec);
2002 return err;
2003 }
2004
2005 /*
2006 * this bypasses the standard btrfs submit functions deliberately, as
2007 * the standard behavior is to write all copies in a raid setup. here we only
2008 * want to write the one bad copy. so we do the mapping for ourselves and issue
2009 * submit_bio directly.
2010 * to avoid any synchronization issues, wait for the data after writing, which
2011 * actually prevents the read that triggered the error from finishing.
2012 * currently, there can be no more than two copies of every data bit. thus,
2013 * exactly one rewrite is required.
2014 */
2015 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2016 u64 length, u64 logical, struct page *page,
2017 int mirror_num)
2018 {
2019 struct bio *bio;
2020 struct btrfs_device *dev;
2021 u64 map_length = 0;
2022 u64 sector;
2023 struct btrfs_bio *bbio = NULL;
2024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2025 int ret;
2026
2027 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2028 BUG_ON(!mirror_num);
2029
2030 /* we can't repair anything in raid56 yet */
2031 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2032 return 0;
2033
2034 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2035 if (!bio)
2036 return -EIO;
2037 bio->bi_iter.bi_size = 0;
2038 map_length = length;
2039
2040 ret = btrfs_map_block(fs_info, WRITE, logical,
2041 &map_length, &bbio, mirror_num);
2042 if (ret) {
2043 bio_put(bio);
2044 return -EIO;
2045 }
2046 BUG_ON(mirror_num != bbio->mirror_num);
2047 sector = bbio->stripes[mirror_num-1].physical >> 9;
2048 bio->bi_iter.bi_sector = sector;
2049 dev = bbio->stripes[mirror_num-1].dev;
2050 kfree(bbio);
2051 if (!dev || !dev->bdev || !dev->writeable) {
2052 bio_put(bio);
2053 return -EIO;
2054 }
2055 bio->bi_bdev = dev->bdev;
2056 bio_add_page(bio, page, length, start - page_offset(page));
2057
2058 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2059 /* try to remap that extent elsewhere? */
2060 bio_put(bio);
2061 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2062 return -EIO;
2063 }
2064
2065 printk_ratelimited_in_rcu(KERN_INFO
2066 "BTRFS: read error corrected: ino %lu off %llu "
2067 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2068 start, rcu_str_deref(dev->name), sector);
2069
2070 bio_put(bio);
2071 return 0;
2072 }
2073
2074 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2075 int mirror_num)
2076 {
2077 u64 start = eb->start;
2078 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2079 int ret = 0;
2080
2081 if (root->fs_info->sb->s_flags & MS_RDONLY)
2082 return -EROFS;
2083
2084 for (i = 0; i < num_pages; i++) {
2085 struct page *p = extent_buffer_page(eb, i);
2086 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2087 start, p, mirror_num);
2088 if (ret)
2089 break;
2090 start += PAGE_CACHE_SIZE;
2091 }
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2099 */
2100 static int clean_io_failure(u64 start, struct page *page)
2101 {
2102 u64 private;
2103 u64 private_failure;
2104 struct io_failure_record *failrec;
2105 struct inode *inode = page->mapping->host;
2106 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2107 struct extent_state *state;
2108 int num_copies;
2109 int did_repair = 0;
2110 int ret;
2111
2112 private = 0;
2113 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2114 (u64)-1, 1, EXTENT_DIRTY, 0);
2115 if (!ret)
2116 return 0;
2117
2118 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2119 &private_failure);
2120 if (ret)
2121 return 0;
2122
2123 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2124 BUG_ON(!failrec->this_mirror);
2125
2126 if (failrec->in_validation) {
2127 /* there was no real error, just free the record */
2128 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2129 failrec->start);
2130 did_repair = 1;
2131 goto out;
2132 }
2133 if (fs_info->sb->s_flags & MS_RDONLY)
2134 goto out;
2135
2136 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2137 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2138 failrec->start,
2139 EXTENT_LOCKED);
2140 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2141
2142 if (state && state->start <= failrec->start &&
2143 state->end >= failrec->start + failrec->len - 1) {
2144 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2145 failrec->len);
2146 if (num_copies > 1) {
2147 ret = repair_io_failure(fs_info, start, failrec->len,
2148 failrec->logical, page,
2149 failrec->failed_mirror);
2150 did_repair = !ret;
2151 }
2152 ret = 0;
2153 }
2154
2155 out:
2156 if (!ret)
2157 ret = free_io_failure(inode, failrec, did_repair);
2158
2159 return ret;
2160 }
2161
2162 /*
2163 * this is a generic handler for readpage errors (default
2164 * readpage_io_failed_hook). if other copies exist, read those and write back
2165 * good data to the failed position. does not investigate in remapping the
2166 * failed extent elsewhere, hoping the device will be smart enough to do this as
2167 * needed
2168 */
2169
2170 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2171 struct page *page, u64 start, u64 end,
2172 int failed_mirror)
2173 {
2174 struct io_failure_record *failrec = NULL;
2175 u64 private;
2176 struct extent_map *em;
2177 struct inode *inode = page->mapping->host;
2178 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2179 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2180 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2181 struct bio *bio;
2182 struct btrfs_io_bio *btrfs_failed_bio;
2183 struct btrfs_io_bio *btrfs_bio;
2184 int num_copies;
2185 int ret;
2186 int read_mode;
2187 u64 logical;
2188
2189 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2190
2191 ret = get_state_private(failure_tree, start, &private);
2192 if (ret) {
2193 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194 if (!failrec)
2195 return -ENOMEM;
2196 failrec->start = start;
2197 failrec->len = end - start + 1;
2198 failrec->this_mirror = 0;
2199 failrec->bio_flags = 0;
2200 failrec->in_validation = 0;
2201
2202 read_lock(&em_tree->lock);
2203 em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 if (!em) {
2205 read_unlock(&em_tree->lock);
2206 kfree(failrec);
2207 return -EIO;
2208 }
2209
2210 if (em->start > start || em->start + em->len <= start) {
2211 free_extent_map(em);
2212 em = NULL;
2213 }
2214 read_unlock(&em_tree->lock);
2215
2216 if (!em) {
2217 kfree(failrec);
2218 return -EIO;
2219 }
2220 logical = start - em->start;
2221 logical = em->block_start + logical;
2222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 logical = em->block_start;
2224 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 extent_set_compress_type(&failrec->bio_flags,
2226 em->compress_type);
2227 }
2228 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2229 "len=%llu\n", logical, start, failrec->len);
2230 failrec->logical = logical;
2231 free_extent_map(em);
2232
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
2235 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236 if (ret >= 0)
2237 ret = set_state_private(failure_tree, start,
2238 (u64)(unsigned long)failrec);
2239 /* set the bits in the inode's tree */
2240 if (ret >= 0)
2241 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2242 GFP_NOFS);
2243 if (ret < 0) {
2244 kfree(failrec);
2245 return ret;
2246 }
2247 } else {
2248 failrec = (struct io_failure_record *)(unsigned long)private;
2249 pr_debug("bio_readpage_error: (found) logical=%llu, "
2250 "start=%llu, len=%llu, validation=%d\n",
2251 failrec->logical, failrec->start, failrec->len,
2252 failrec->in_validation);
2253 /*
2254 * when data can be on disk more than twice, add to failrec here
2255 * (e.g. with a list for failed_mirror) to make
2256 * clean_io_failure() clean all those errors at once.
2257 */
2258 }
2259 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2260 failrec->logical, failrec->len);
2261 if (num_copies == 1) {
2262 /*
2263 * we only have a single copy of the data, so don't bother with
2264 * all the retry and error correction code that follows. no
2265 * matter what the error is, it is very likely to persist.
2266 */
2267 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2268 num_copies, failrec->this_mirror, failed_mirror);
2269 free_io_failure(inode, failrec, 0);
2270 return -EIO;
2271 }
2272
2273 /*
2274 * there are two premises:
2275 * a) deliver good data to the caller
2276 * b) correct the bad sectors on disk
2277 */
2278 if (failed_bio->bi_vcnt > 1) {
2279 /*
2280 * to fulfill b), we need to know the exact failing sectors, as
2281 * we don't want to rewrite any more than the failed ones. thus,
2282 * we need separate read requests for the failed bio
2283 *
2284 * if the following BUG_ON triggers, our validation request got
2285 * merged. we need separate requests for our algorithm to work.
2286 */
2287 BUG_ON(failrec->in_validation);
2288 failrec->in_validation = 1;
2289 failrec->this_mirror = failed_mirror;
2290 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2291 } else {
2292 /*
2293 * we're ready to fulfill a) and b) alongside. get a good copy
2294 * of the failed sector and if we succeed, we have setup
2295 * everything for repair_io_failure to do the rest for us.
2296 */
2297 if (failrec->in_validation) {
2298 BUG_ON(failrec->this_mirror != failed_mirror);
2299 failrec->in_validation = 0;
2300 failrec->this_mirror = 0;
2301 }
2302 failrec->failed_mirror = failed_mirror;
2303 failrec->this_mirror++;
2304 if (failrec->this_mirror == failed_mirror)
2305 failrec->this_mirror++;
2306 read_mode = READ_SYNC;
2307 }
2308
2309 if (failrec->this_mirror > num_copies) {
2310 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2311 num_copies, failrec->this_mirror, failed_mirror);
2312 free_io_failure(inode, failrec, 0);
2313 return -EIO;
2314 }
2315
2316 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2317 if (!bio) {
2318 free_io_failure(inode, failrec, 0);
2319 return -EIO;
2320 }
2321 bio->bi_end_io = failed_bio->bi_end_io;
2322 bio->bi_iter.bi_sector = failrec->logical >> 9;
2323 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2324 bio->bi_iter.bi_size = 0;
2325
2326 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2327 if (btrfs_failed_bio->csum) {
2328 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2329 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2330
2331 btrfs_bio = btrfs_io_bio(bio);
2332 btrfs_bio->csum = btrfs_bio->csum_inline;
2333 phy_offset >>= inode->i_sb->s_blocksize_bits;
2334 phy_offset *= csum_size;
2335 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2336 csum_size);
2337 }
2338
2339 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2340
2341 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2342 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2343 failrec->this_mirror, num_copies, failrec->in_validation);
2344
2345 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2346 failrec->this_mirror,
2347 failrec->bio_flags, 0);
2348 return ret;
2349 }
2350
2351 /* lots and lots of room for performance fixes in the end_bio funcs */
2352
2353 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2354 {
2355 int uptodate = (err == 0);
2356 struct extent_io_tree *tree;
2357 int ret;
2358
2359 tree = &BTRFS_I(page->mapping->host)->io_tree;
2360
2361 if (tree->ops && tree->ops->writepage_end_io_hook) {
2362 ret = tree->ops->writepage_end_io_hook(page, start,
2363 end, NULL, uptodate);
2364 if (ret)
2365 uptodate = 0;
2366 }
2367
2368 if (!uptodate) {
2369 ClearPageUptodate(page);
2370 SetPageError(page);
2371 ret = ret < 0 ? ret : -EIO;
2372 mapping_set_error(page->mapping, ret);
2373 }
2374 return 0;
2375 }
2376
2377 /*
2378 * after a writepage IO is done, we need to:
2379 * clear the uptodate bits on error
2380 * clear the writeback bits in the extent tree for this IO
2381 * end_page_writeback if the page has no more pending IO
2382 *
2383 * Scheduling is not allowed, so the extent state tree is expected
2384 * to have one and only one object corresponding to this IO.
2385 */
2386 static void end_bio_extent_writepage(struct bio *bio, int err)
2387 {
2388 struct bio_vec *bvec;
2389 u64 start;
2390 u64 end;
2391 int i;
2392
2393 bio_for_each_segment_all(bvec, bio, i) {
2394 struct page *page = bvec->bv_page;
2395
2396 /* We always issue full-page reads, but if some block
2397 * in a page fails to read, blk_update_request() will
2398 * advance bv_offset and adjust bv_len to compensate.
2399 * Print a warning for nonzero offsets, and an error
2400 * if they don't add up to a full page. */
2401 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2402 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2403 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2404 "partial page write in btrfs with offset %u and length %u",
2405 bvec->bv_offset, bvec->bv_len);
2406 else
2407 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2408 "incomplete page write in btrfs with offset %u and "
2409 "length %u",
2410 bvec->bv_offset, bvec->bv_len);
2411 }
2412
2413 start = page_offset(page);
2414 end = start + bvec->bv_offset + bvec->bv_len - 1;
2415
2416 if (end_extent_writepage(page, err, start, end))
2417 continue;
2418
2419 end_page_writeback(page);
2420 }
2421
2422 bio_put(bio);
2423 }
2424
2425 static void
2426 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2427 int uptodate)
2428 {
2429 struct extent_state *cached = NULL;
2430 u64 end = start + len - 1;
2431
2432 if (uptodate && tree->track_uptodate)
2433 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2434 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2435 }
2436
2437 /*
2438 * after a readpage IO is done, we need to:
2439 * clear the uptodate bits on error
2440 * set the uptodate bits if things worked
2441 * set the page up to date if all extents in the tree are uptodate
2442 * clear the lock bit in the extent tree
2443 * unlock the page if there are no other extents locked for it
2444 *
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2447 */
2448 static void end_bio_extent_readpage(struct bio *bio, int err)
2449 {
2450 struct bio_vec *bvec;
2451 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2452 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453 struct extent_io_tree *tree;
2454 u64 offset = 0;
2455 u64 start;
2456 u64 end;
2457 u64 len;
2458 u64 extent_start = 0;
2459 u64 extent_len = 0;
2460 int mirror;
2461 int ret;
2462 int i;
2463
2464 if (err)
2465 uptodate = 0;
2466
2467 bio_for_each_segment_all(bvec, bio, i) {
2468 struct page *page = bvec->bv_page;
2469 struct inode *inode = page->mapping->host;
2470
2471 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2472 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2473 io_bio->mirror_num);
2474 tree = &BTRFS_I(inode)->io_tree;
2475
2476 /* We always issue full-page reads, but if some block
2477 * in a page fails to read, blk_update_request() will
2478 * advance bv_offset and adjust bv_len to compensate.
2479 * Print a warning for nonzero offsets, and an error
2480 * if they don't add up to a full page. */
2481 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2482 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2483 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2484 "partial page read in btrfs with offset %u and length %u",
2485 bvec->bv_offset, bvec->bv_len);
2486 else
2487 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2488 "incomplete page read in btrfs with offset %u and "
2489 "length %u",
2490 bvec->bv_offset, bvec->bv_len);
2491 }
2492
2493 start = page_offset(page);
2494 end = start + bvec->bv_offset + bvec->bv_len - 1;
2495 len = bvec->bv_len;
2496
2497 mirror = io_bio->mirror_num;
2498 if (likely(uptodate && tree->ops &&
2499 tree->ops->readpage_end_io_hook)) {
2500 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2501 page, start, end,
2502 mirror);
2503 if (ret)
2504 uptodate = 0;
2505 else
2506 clean_io_failure(start, page);
2507 }
2508
2509 if (likely(uptodate))
2510 goto readpage_ok;
2511
2512 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2513 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2514 if (!ret && !err &&
2515 test_bit(BIO_UPTODATE, &bio->bi_flags))
2516 uptodate = 1;
2517 } else {
2518 /*
2519 * The generic bio_readpage_error handles errors the
2520 * following way: If possible, new read requests are
2521 * created and submitted and will end up in
2522 * end_bio_extent_readpage as well (if we're lucky, not
2523 * in the !uptodate case). In that case it returns 0 and
2524 * we just go on with the next page in our bio. If it
2525 * can't handle the error it will return -EIO and we
2526 * remain responsible for that page.
2527 */
2528 ret = bio_readpage_error(bio, offset, page, start, end,
2529 mirror);
2530 if (ret == 0) {
2531 uptodate =
2532 test_bit(BIO_UPTODATE, &bio->bi_flags);
2533 if (err)
2534 uptodate = 0;
2535 continue;
2536 }
2537 }
2538 readpage_ok:
2539 if (likely(uptodate)) {
2540 loff_t i_size = i_size_read(inode);
2541 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2542 unsigned offset;
2543
2544 /* Zero out the end if this page straddles i_size */
2545 offset = i_size & (PAGE_CACHE_SIZE-1);
2546 if (page->index == end_index && offset)
2547 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2548 SetPageUptodate(page);
2549 } else {
2550 ClearPageUptodate(page);
2551 SetPageError(page);
2552 }
2553 unlock_page(page);
2554 offset += len;
2555
2556 if (unlikely(!uptodate)) {
2557 if (extent_len) {
2558 endio_readpage_release_extent(tree,
2559 extent_start,
2560 extent_len, 1);
2561 extent_start = 0;
2562 extent_len = 0;
2563 }
2564 endio_readpage_release_extent(tree, start,
2565 end - start + 1, 0);
2566 } else if (!extent_len) {
2567 extent_start = start;
2568 extent_len = end + 1 - start;
2569 } else if (extent_start + extent_len == start) {
2570 extent_len += end + 1 - start;
2571 } else {
2572 endio_readpage_release_extent(tree, extent_start,
2573 extent_len, uptodate);
2574 extent_start = start;
2575 extent_len = end + 1 - start;
2576 }
2577 }
2578
2579 if (extent_len)
2580 endio_readpage_release_extent(tree, extent_start, extent_len,
2581 uptodate);
2582 if (io_bio->end_io)
2583 io_bio->end_io(io_bio, err);
2584 bio_put(bio);
2585 }
2586
2587 /*
2588 * this allocates from the btrfs_bioset. We're returning a bio right now
2589 * but you can call btrfs_io_bio for the appropriate container_of magic
2590 */
2591 struct bio *
2592 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2593 gfp_t gfp_flags)
2594 {
2595 struct btrfs_io_bio *btrfs_bio;
2596 struct bio *bio;
2597
2598 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2599
2600 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2601 while (!bio && (nr_vecs /= 2)) {
2602 bio = bio_alloc_bioset(gfp_flags,
2603 nr_vecs, btrfs_bioset);
2604 }
2605 }
2606
2607 if (bio) {
2608 bio->bi_bdev = bdev;
2609 bio->bi_iter.bi_sector = first_sector;
2610 btrfs_bio = btrfs_io_bio(bio);
2611 btrfs_bio->csum = NULL;
2612 btrfs_bio->csum_allocated = NULL;
2613 btrfs_bio->end_io = NULL;
2614 }
2615 return bio;
2616 }
2617
2618 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2619 {
2620 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2621 }
2622
2623
2624 /* this also allocates from the btrfs_bioset */
2625 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2626 {
2627 struct btrfs_io_bio *btrfs_bio;
2628 struct bio *bio;
2629
2630 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2631 if (bio) {
2632 btrfs_bio = btrfs_io_bio(bio);
2633 btrfs_bio->csum = NULL;
2634 btrfs_bio->csum_allocated = NULL;
2635 btrfs_bio->end_io = NULL;
2636 }
2637 return bio;
2638 }
2639
2640
2641 static int __must_check submit_one_bio(int rw, struct bio *bio,
2642 int mirror_num, unsigned long bio_flags)
2643 {
2644 int ret = 0;
2645 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2646 struct page *page = bvec->bv_page;
2647 struct extent_io_tree *tree = bio->bi_private;
2648 u64 start;
2649
2650 start = page_offset(page) + bvec->bv_offset;
2651
2652 bio->bi_private = NULL;
2653
2654 bio_get(bio);
2655
2656 if (tree->ops && tree->ops->submit_bio_hook)
2657 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2658 mirror_num, bio_flags, start);
2659 else
2660 btrfsic_submit_bio(rw, bio);
2661
2662 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2663 ret = -EOPNOTSUPP;
2664 bio_put(bio);
2665 return ret;
2666 }
2667
2668 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2669 unsigned long offset, size_t size, struct bio *bio,
2670 unsigned long bio_flags)
2671 {
2672 int ret = 0;
2673 if (tree->ops && tree->ops->merge_bio_hook)
2674 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2675 bio_flags);
2676 BUG_ON(ret < 0);
2677 return ret;
2678
2679 }
2680
2681 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2682 struct page *page, sector_t sector,
2683 size_t size, unsigned long offset,
2684 struct block_device *bdev,
2685 struct bio **bio_ret,
2686 unsigned long max_pages,
2687 bio_end_io_t end_io_func,
2688 int mirror_num,
2689 unsigned long prev_bio_flags,
2690 unsigned long bio_flags)
2691 {
2692 int ret = 0;
2693 struct bio *bio;
2694 int nr;
2695 int contig = 0;
2696 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2697 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2698 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2699
2700 if (bio_ret && *bio_ret) {
2701 bio = *bio_ret;
2702 if (old_compressed)
2703 contig = bio->bi_iter.bi_sector == sector;
2704 else
2705 contig = bio_end_sector(bio) == sector;
2706
2707 if (prev_bio_flags != bio_flags || !contig ||
2708 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2709 bio_add_page(bio, page, page_size, offset) < page_size) {
2710 ret = submit_one_bio(rw, bio, mirror_num,
2711 prev_bio_flags);
2712 if (ret < 0)
2713 return ret;
2714 bio = NULL;
2715 } else {
2716 return 0;
2717 }
2718 }
2719 if (this_compressed)
2720 nr = BIO_MAX_PAGES;
2721 else
2722 nr = bio_get_nr_vecs(bdev);
2723
2724 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2725 if (!bio)
2726 return -ENOMEM;
2727
2728 bio_add_page(bio, page, page_size, offset);
2729 bio->bi_end_io = end_io_func;
2730 bio->bi_private = tree;
2731
2732 if (bio_ret)
2733 *bio_ret = bio;
2734 else
2735 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2736
2737 return ret;
2738 }
2739
2740 static void attach_extent_buffer_page(struct extent_buffer *eb,
2741 struct page *page)
2742 {
2743 if (!PagePrivate(page)) {
2744 SetPagePrivate(page);
2745 page_cache_get(page);
2746 set_page_private(page, (unsigned long)eb);
2747 } else {
2748 WARN_ON(page->private != (unsigned long)eb);
2749 }
2750 }
2751
2752 void set_page_extent_mapped(struct page *page)
2753 {
2754 if (!PagePrivate(page)) {
2755 SetPagePrivate(page);
2756 page_cache_get(page);
2757 set_page_private(page, EXTENT_PAGE_PRIVATE);
2758 }
2759 }
2760
2761 static struct extent_map *
2762 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2763 u64 start, u64 len, get_extent_t *get_extent,
2764 struct extent_map **em_cached)
2765 {
2766 struct extent_map *em;
2767
2768 if (em_cached && *em_cached) {
2769 em = *em_cached;
2770 if (extent_map_in_tree(em) && start >= em->start &&
2771 start < extent_map_end(em)) {
2772 atomic_inc(&em->refs);
2773 return em;
2774 }
2775
2776 free_extent_map(em);
2777 *em_cached = NULL;
2778 }
2779
2780 em = get_extent(inode, page, pg_offset, start, len, 0);
2781 if (em_cached && !IS_ERR_OR_NULL(em)) {
2782 BUG_ON(*em_cached);
2783 atomic_inc(&em->refs);
2784 *em_cached = em;
2785 }
2786 return em;
2787 }
2788 /*
2789 * basic readpage implementation. Locked extent state structs are inserted
2790 * into the tree that are removed when the IO is done (by the end_io
2791 * handlers)
2792 * XXX JDM: This needs looking at to ensure proper page locking
2793 */
2794 static int __do_readpage(struct extent_io_tree *tree,
2795 struct page *page,
2796 get_extent_t *get_extent,
2797 struct extent_map **em_cached,
2798 struct bio **bio, int mirror_num,
2799 unsigned long *bio_flags, int rw)
2800 {
2801 struct inode *inode = page->mapping->host;
2802 u64 start = page_offset(page);
2803 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2804 u64 end;
2805 u64 cur = start;
2806 u64 extent_offset;
2807 u64 last_byte = i_size_read(inode);
2808 u64 block_start;
2809 u64 cur_end;
2810 sector_t sector;
2811 struct extent_map *em;
2812 struct block_device *bdev;
2813 int ret;
2814 int nr = 0;
2815 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2816 size_t pg_offset = 0;
2817 size_t iosize;
2818 size_t disk_io_size;
2819 size_t blocksize = inode->i_sb->s_blocksize;
2820 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2821
2822 set_page_extent_mapped(page);
2823
2824 end = page_end;
2825 if (!PageUptodate(page)) {
2826 if (cleancache_get_page(page) == 0) {
2827 BUG_ON(blocksize != PAGE_SIZE);
2828 unlock_extent(tree, start, end);
2829 goto out;
2830 }
2831 }
2832
2833 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2834 char *userpage;
2835 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2836
2837 if (zero_offset) {
2838 iosize = PAGE_CACHE_SIZE - zero_offset;
2839 userpage = kmap_atomic(page);
2840 memset(userpage + zero_offset, 0, iosize);
2841 flush_dcache_page(page);
2842 kunmap_atomic(userpage);
2843 }
2844 }
2845 while (cur <= end) {
2846 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2847
2848 if (cur >= last_byte) {
2849 char *userpage;
2850 struct extent_state *cached = NULL;
2851
2852 iosize = PAGE_CACHE_SIZE - pg_offset;
2853 userpage = kmap_atomic(page);
2854 memset(userpage + pg_offset, 0, iosize);
2855 flush_dcache_page(page);
2856 kunmap_atomic(userpage);
2857 set_extent_uptodate(tree, cur, cur + iosize - 1,
2858 &cached, GFP_NOFS);
2859 if (!parent_locked)
2860 unlock_extent_cached(tree, cur,
2861 cur + iosize - 1,
2862 &cached, GFP_NOFS);
2863 break;
2864 }
2865 em = __get_extent_map(inode, page, pg_offset, cur,
2866 end - cur + 1, get_extent, em_cached);
2867 if (IS_ERR_OR_NULL(em)) {
2868 SetPageError(page);
2869 if (!parent_locked)
2870 unlock_extent(tree, cur, end);
2871 break;
2872 }
2873 extent_offset = cur - em->start;
2874 BUG_ON(extent_map_end(em) <= cur);
2875 BUG_ON(end < cur);
2876
2877 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2878 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2879 extent_set_compress_type(&this_bio_flag,
2880 em->compress_type);
2881 }
2882
2883 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2884 cur_end = min(extent_map_end(em) - 1, end);
2885 iosize = ALIGN(iosize, blocksize);
2886 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2887 disk_io_size = em->block_len;
2888 sector = em->block_start >> 9;
2889 } else {
2890 sector = (em->block_start + extent_offset) >> 9;
2891 disk_io_size = iosize;
2892 }
2893 bdev = em->bdev;
2894 block_start = em->block_start;
2895 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2896 block_start = EXTENT_MAP_HOLE;
2897 free_extent_map(em);
2898 em = NULL;
2899
2900 /* we've found a hole, just zero and go on */
2901 if (block_start == EXTENT_MAP_HOLE) {
2902 char *userpage;
2903 struct extent_state *cached = NULL;
2904
2905 userpage = kmap_atomic(page);
2906 memset(userpage + pg_offset, 0, iosize);
2907 flush_dcache_page(page);
2908 kunmap_atomic(userpage);
2909
2910 set_extent_uptodate(tree, cur, cur + iosize - 1,
2911 &cached, GFP_NOFS);
2912 unlock_extent_cached(tree, cur, cur + iosize - 1,
2913 &cached, GFP_NOFS);
2914 cur = cur + iosize;
2915 pg_offset += iosize;
2916 continue;
2917 }
2918 /* the get_extent function already copied into the page */
2919 if (test_range_bit(tree, cur, cur_end,
2920 EXTENT_UPTODATE, 1, NULL)) {
2921 check_page_uptodate(tree, page);
2922 if (!parent_locked)
2923 unlock_extent(tree, cur, cur + iosize - 1);
2924 cur = cur + iosize;
2925 pg_offset += iosize;
2926 continue;
2927 }
2928 /* we have an inline extent but it didn't get marked up
2929 * to date. Error out
2930 */
2931 if (block_start == EXTENT_MAP_INLINE) {
2932 SetPageError(page);
2933 if (!parent_locked)
2934 unlock_extent(tree, cur, cur + iosize - 1);
2935 cur = cur + iosize;
2936 pg_offset += iosize;
2937 continue;
2938 }
2939
2940 pnr -= page->index;
2941 ret = submit_extent_page(rw, tree, page,
2942 sector, disk_io_size, pg_offset,
2943 bdev, bio, pnr,
2944 end_bio_extent_readpage, mirror_num,
2945 *bio_flags,
2946 this_bio_flag);
2947 if (!ret) {
2948 nr++;
2949 *bio_flags = this_bio_flag;
2950 } else {
2951 SetPageError(page);
2952 if (!parent_locked)
2953 unlock_extent(tree, cur, cur + iosize - 1);
2954 }
2955 cur = cur + iosize;
2956 pg_offset += iosize;
2957 }
2958 out:
2959 if (!nr) {
2960 if (!PageError(page))
2961 SetPageUptodate(page);
2962 unlock_page(page);
2963 }
2964 return 0;
2965 }
2966
2967 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2968 struct page *pages[], int nr_pages,
2969 u64 start, u64 end,
2970 get_extent_t *get_extent,
2971 struct extent_map **em_cached,
2972 struct bio **bio, int mirror_num,
2973 unsigned long *bio_flags, int rw)
2974 {
2975 struct inode *inode;
2976 struct btrfs_ordered_extent *ordered;
2977 int index;
2978
2979 inode = pages[0]->mapping->host;
2980 while (1) {
2981 lock_extent(tree, start, end);
2982 ordered = btrfs_lookup_ordered_range(inode, start,
2983 end - start + 1);
2984 if (!ordered)
2985 break;
2986 unlock_extent(tree, start, end);
2987 btrfs_start_ordered_extent(inode, ordered, 1);
2988 btrfs_put_ordered_extent(ordered);
2989 }
2990
2991 for (index = 0; index < nr_pages; index++) {
2992 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2993 mirror_num, bio_flags, rw);
2994 page_cache_release(pages[index]);
2995 }
2996 }
2997
2998 static void __extent_readpages(struct extent_io_tree *tree,
2999 struct page *pages[],
3000 int nr_pages, get_extent_t *get_extent,
3001 struct extent_map **em_cached,
3002 struct bio **bio, int mirror_num,
3003 unsigned long *bio_flags, int rw)
3004 {
3005 u64 start = 0;
3006 u64 end = 0;
3007 u64 page_start;
3008 int index;
3009 int first_index = 0;
3010
3011 for (index = 0; index < nr_pages; index++) {
3012 page_start = page_offset(pages[index]);
3013 if (!end) {
3014 start = page_start;
3015 end = start + PAGE_CACHE_SIZE - 1;
3016 first_index = index;
3017 } else if (end + 1 == page_start) {
3018 end += PAGE_CACHE_SIZE;
3019 } else {
3020 __do_contiguous_readpages(tree, &pages[first_index],
3021 index - first_index, start,
3022 end, get_extent, em_cached,
3023 bio, mirror_num, bio_flags,
3024 rw);
3025 start = page_start;
3026 end = start + PAGE_CACHE_SIZE - 1;
3027 first_index = index;
3028 }
3029 }
3030
3031 if (end)
3032 __do_contiguous_readpages(tree, &pages[first_index],
3033 index - first_index, start,
3034 end, get_extent, em_cached, bio,
3035 mirror_num, bio_flags, rw);
3036 }
3037
3038 static int __extent_read_full_page(struct extent_io_tree *tree,
3039 struct page *page,
3040 get_extent_t *get_extent,
3041 struct bio **bio, int mirror_num,
3042 unsigned long *bio_flags, int rw)
3043 {
3044 struct inode *inode = page->mapping->host;
3045 struct btrfs_ordered_extent *ordered;
3046 u64 start = page_offset(page);
3047 u64 end = start + PAGE_CACHE_SIZE - 1;
3048 int ret;
3049
3050 while (1) {
3051 lock_extent(tree, start, end);
3052 ordered = btrfs_lookup_ordered_extent(inode, start);
3053 if (!ordered)
3054 break;
3055 unlock_extent(tree, start, end);
3056 btrfs_start_ordered_extent(inode, ordered, 1);
3057 btrfs_put_ordered_extent(ordered);
3058 }
3059
3060 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3061 bio_flags, rw);
3062 return ret;
3063 }
3064
3065 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3066 get_extent_t *get_extent, int mirror_num)
3067 {
3068 struct bio *bio = NULL;
3069 unsigned long bio_flags = 0;
3070 int ret;
3071
3072 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3073 &bio_flags, READ);
3074 if (bio)
3075 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3076 return ret;
3077 }
3078
3079 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3080 get_extent_t *get_extent, int mirror_num)
3081 {
3082 struct bio *bio = NULL;
3083 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3084 int ret;
3085
3086 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3087 &bio_flags, READ);
3088 if (bio)
3089 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3090 return ret;
3091 }
3092
3093 static noinline void update_nr_written(struct page *page,
3094 struct writeback_control *wbc,
3095 unsigned long nr_written)
3096 {
3097 wbc->nr_to_write -= nr_written;
3098 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3099 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3100 page->mapping->writeback_index = page->index + nr_written;
3101 }
3102
3103 /*
3104 * the writepage semantics are similar to regular writepage. extent
3105 * records are inserted to lock ranges in the tree, and as dirty areas
3106 * are found, they are marked writeback. Then the lock bits are removed
3107 * and the end_io handler clears the writeback ranges
3108 */
3109 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3110 void *data)
3111 {
3112 struct inode *inode = page->mapping->host;
3113 struct extent_page_data *epd = data;
3114 struct extent_io_tree *tree = epd->tree;
3115 u64 start = page_offset(page);
3116 u64 delalloc_start;
3117 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3118 u64 end;
3119 u64 cur = start;
3120 u64 extent_offset;
3121 u64 last_byte = i_size_read(inode);
3122 u64 block_start;
3123 u64 iosize;
3124 sector_t sector;
3125 struct extent_state *cached_state = NULL;
3126 struct extent_map *em;
3127 struct block_device *bdev;
3128 int ret;
3129 int nr = 0;
3130 size_t pg_offset = 0;
3131 size_t blocksize;
3132 loff_t i_size = i_size_read(inode);
3133 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3134 u64 nr_delalloc;
3135 u64 delalloc_end;
3136 int page_started;
3137 int compressed;
3138 int write_flags;
3139 unsigned long nr_written = 0;
3140 bool fill_delalloc = true;
3141
3142 if (wbc->sync_mode == WB_SYNC_ALL)
3143 write_flags = WRITE_SYNC;
3144 else
3145 write_flags = WRITE;
3146
3147 trace___extent_writepage(page, inode, wbc);
3148
3149 WARN_ON(!PageLocked(page));
3150
3151 ClearPageError(page);
3152
3153 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3154 if (page->index > end_index ||
3155 (page->index == end_index && !pg_offset)) {
3156 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3157 unlock_page(page);
3158 return 0;
3159 }
3160
3161 if (page->index == end_index) {
3162 char *userpage;
3163
3164 userpage = kmap_atomic(page);
3165 memset(userpage + pg_offset, 0,
3166 PAGE_CACHE_SIZE - pg_offset);
3167 kunmap_atomic(userpage);
3168 flush_dcache_page(page);
3169 }
3170 pg_offset = 0;
3171
3172 set_page_extent_mapped(page);
3173
3174 if (!tree->ops || !tree->ops->fill_delalloc)
3175 fill_delalloc = false;
3176
3177 delalloc_start = start;
3178 delalloc_end = 0;
3179 page_started = 0;
3180 if (!epd->extent_locked && fill_delalloc) {
3181 u64 delalloc_to_write = 0;
3182 /*
3183 * make sure the wbc mapping index is at least updated
3184 * to this page.
3185 */
3186 update_nr_written(page, wbc, 0);
3187
3188 while (delalloc_end < page_end) {
3189 nr_delalloc = find_lock_delalloc_range(inode, tree,
3190 page,
3191 &delalloc_start,
3192 &delalloc_end,
3193 128 * 1024 * 1024);
3194 if (nr_delalloc == 0) {
3195 delalloc_start = delalloc_end + 1;
3196 continue;
3197 }
3198 ret = tree->ops->fill_delalloc(inode, page,
3199 delalloc_start,
3200 delalloc_end,
3201 &page_started,
3202 &nr_written);
3203 /* File system has been set read-only */
3204 if (ret) {
3205 SetPageError(page);
3206 goto done;
3207 }
3208 /*
3209 * delalloc_end is already one less than the total
3210 * length, so we don't subtract one from
3211 * PAGE_CACHE_SIZE
3212 */
3213 delalloc_to_write += (delalloc_end - delalloc_start +
3214 PAGE_CACHE_SIZE) >>
3215 PAGE_CACHE_SHIFT;
3216 delalloc_start = delalloc_end + 1;
3217 }
3218 if (wbc->nr_to_write < delalloc_to_write) {
3219 int thresh = 8192;
3220
3221 if (delalloc_to_write < thresh * 2)
3222 thresh = delalloc_to_write;
3223 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3224 thresh);
3225 }
3226
3227 /* did the fill delalloc function already unlock and start
3228 * the IO?
3229 */
3230 if (page_started) {
3231 ret = 0;
3232 /*
3233 * we've unlocked the page, so we can't update
3234 * the mapping's writeback index, just update
3235 * nr_to_write.
3236 */
3237 wbc->nr_to_write -= nr_written;
3238 goto done_unlocked;
3239 }
3240 }
3241 if (tree->ops && tree->ops->writepage_start_hook) {
3242 ret = tree->ops->writepage_start_hook(page, start,
3243 page_end);
3244 if (ret) {
3245 /* Fixup worker will requeue */
3246 if (ret == -EBUSY)
3247 wbc->pages_skipped++;
3248 else
3249 redirty_page_for_writepage(wbc, page);
3250 update_nr_written(page, wbc, nr_written);
3251 unlock_page(page);
3252 ret = 0;
3253 goto done_unlocked;
3254 }
3255 }
3256
3257 /*
3258 * we don't want to touch the inode after unlocking the page,
3259 * so we update the mapping writeback index now
3260 */
3261 update_nr_written(page, wbc, nr_written + 1);
3262
3263 end = page_end;
3264 if (last_byte <= start) {
3265 if (tree->ops && tree->ops->writepage_end_io_hook)
3266 tree->ops->writepage_end_io_hook(page, start,
3267 page_end, NULL, 1);
3268 goto done;
3269 }
3270
3271 blocksize = inode->i_sb->s_blocksize;
3272
3273 while (cur <= end) {
3274 if (cur >= last_byte) {
3275 if (tree->ops && tree->ops->writepage_end_io_hook)
3276 tree->ops->writepage_end_io_hook(page, cur,
3277 page_end, NULL, 1);
3278 break;
3279 }
3280 em = epd->get_extent(inode, page, pg_offset, cur,
3281 end - cur + 1, 1);
3282 if (IS_ERR_OR_NULL(em)) {
3283 SetPageError(page);
3284 ret = PTR_ERR_OR_ZERO(em);
3285 break;
3286 }
3287
3288 extent_offset = cur - em->start;
3289 BUG_ON(extent_map_end(em) <= cur);
3290 BUG_ON(end < cur);
3291 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3292 iosize = ALIGN(iosize, blocksize);
3293 sector = (em->block_start + extent_offset) >> 9;
3294 bdev = em->bdev;
3295 block_start = em->block_start;
3296 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3297 free_extent_map(em);
3298 em = NULL;
3299
3300 /*
3301 * compressed and inline extents are written through other
3302 * paths in the FS
3303 */
3304 if (compressed || block_start == EXTENT_MAP_HOLE ||
3305 block_start == EXTENT_MAP_INLINE) {
3306 /*
3307 * end_io notification does not happen here for
3308 * compressed extents
3309 */
3310 if (!compressed && tree->ops &&
3311 tree->ops->writepage_end_io_hook)
3312 tree->ops->writepage_end_io_hook(page, cur,
3313 cur + iosize - 1,
3314 NULL, 1);
3315 else if (compressed) {
3316 /* we don't want to end_page_writeback on
3317 * a compressed extent. this happens
3318 * elsewhere
3319 */
3320 nr++;
3321 }
3322
3323 cur += iosize;
3324 pg_offset += iosize;
3325 continue;
3326 }
3327 /* leave this out until we have a page_mkwrite call */
3328 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3329 EXTENT_DIRTY, 0, NULL)) {
3330 cur = cur + iosize;
3331 pg_offset += iosize;
3332 continue;
3333 }
3334
3335 if (tree->ops && tree->ops->writepage_io_hook) {
3336 ret = tree->ops->writepage_io_hook(page, cur,
3337 cur + iosize - 1);
3338 } else {
3339 ret = 0;
3340 }
3341 if (ret) {
3342 SetPageError(page);
3343 } else {
3344 unsigned long max_nr = end_index + 1;
3345
3346 set_range_writeback(tree, cur, cur + iosize - 1);
3347 if (!PageWriteback(page)) {
3348 btrfs_err(BTRFS_I(inode)->root->fs_info,
3349 "page %lu not writeback, cur %llu end %llu",
3350 page->index, cur, end);
3351 }
3352
3353 ret = submit_extent_page(write_flags, tree, page,
3354 sector, iosize, pg_offset,
3355 bdev, &epd->bio, max_nr,
3356 end_bio_extent_writepage,
3357 0, 0, 0);
3358 if (ret)
3359 SetPageError(page);
3360 }
3361 cur = cur + iosize;
3362 pg_offset += iosize;
3363 nr++;
3364 }
3365 done:
3366 if (nr == 0) {
3367 /* make sure the mapping tag for page dirty gets cleared */
3368 set_page_writeback(page);
3369 end_page_writeback(page);
3370 }
3371 if (PageError(page)) {
3372 ret = ret < 0 ? ret : -EIO;
3373 end_extent_writepage(page, ret, start, page_end);
3374 }
3375 unlock_page(page);
3376
3377 done_unlocked:
3378
3379 /* drop our reference on any cached states */
3380 free_extent_state(cached_state);
3381 return ret;
3382 }
3383
3384 static int eb_wait(void *word)
3385 {
3386 io_schedule();
3387 return 0;
3388 }
3389
3390 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3391 {
3392 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3393 TASK_UNINTERRUPTIBLE);
3394 }
3395
3396 static noinline_for_stack int
3397 lock_extent_buffer_for_io(struct extent_buffer *eb,
3398 struct btrfs_fs_info *fs_info,
3399 struct extent_page_data *epd)
3400 {
3401 unsigned long i, num_pages;
3402 int flush = 0;
3403 int ret = 0;
3404
3405 if (!btrfs_try_tree_write_lock(eb)) {
3406 flush = 1;
3407 flush_write_bio(epd);
3408 btrfs_tree_lock(eb);
3409 }
3410
3411 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3412 btrfs_tree_unlock(eb);
3413 if (!epd->sync_io)
3414 return 0;
3415 if (!flush) {
3416 flush_write_bio(epd);
3417 flush = 1;
3418 }
3419 while (1) {
3420 wait_on_extent_buffer_writeback(eb);
3421 btrfs_tree_lock(eb);
3422 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3423 break;
3424 btrfs_tree_unlock(eb);
3425 }
3426 }
3427
3428 /*
3429 * We need to do this to prevent races in people who check if the eb is
3430 * under IO since we can end up having no IO bits set for a short period
3431 * of time.
3432 */
3433 spin_lock(&eb->refs_lock);
3434 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3435 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3436 spin_unlock(&eb->refs_lock);
3437 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3438 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3439 -eb->len,
3440 fs_info->dirty_metadata_batch);
3441 ret = 1;
3442 } else {
3443 spin_unlock(&eb->refs_lock);
3444 }
3445
3446 btrfs_tree_unlock(eb);
3447
3448 if (!ret)
3449 return ret;
3450
3451 num_pages = num_extent_pages(eb->start, eb->len);
3452 for (i = 0; i < num_pages; i++) {
3453 struct page *p = extent_buffer_page(eb, i);
3454
3455 if (!trylock_page(p)) {
3456 if (!flush) {
3457 flush_write_bio(epd);
3458 flush = 1;
3459 }
3460 lock_page(p);
3461 }
3462 }
3463
3464 return ret;
3465 }
3466
3467 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3468 {
3469 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3470 smp_mb__after_clear_bit();
3471 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3472 }
3473
3474 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3475 {
3476 struct bio_vec *bvec;
3477 struct extent_buffer *eb;
3478 int i, done;
3479
3480 bio_for_each_segment_all(bvec, bio, i) {
3481 struct page *page = bvec->bv_page;
3482
3483 eb = (struct extent_buffer *)page->private;
3484 BUG_ON(!eb);
3485 done = atomic_dec_and_test(&eb->io_pages);
3486
3487 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3488 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3489 ClearPageUptodate(page);
3490 SetPageError(page);
3491 }
3492
3493 end_page_writeback(page);
3494
3495 if (!done)
3496 continue;
3497
3498 end_extent_buffer_writeback(eb);
3499 }
3500
3501 bio_put(bio);
3502 }
3503
3504 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3505 struct btrfs_fs_info *fs_info,
3506 struct writeback_control *wbc,
3507 struct extent_page_data *epd)
3508 {
3509 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3510 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3511 u64 offset = eb->start;
3512 unsigned long i, num_pages;
3513 unsigned long bio_flags = 0;
3514 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3515 int ret = 0;
3516
3517 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3518 num_pages = num_extent_pages(eb->start, eb->len);
3519 atomic_set(&eb->io_pages, num_pages);
3520 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3521 bio_flags = EXTENT_BIO_TREE_LOG;
3522
3523 for (i = 0; i < num_pages; i++) {
3524 struct page *p = extent_buffer_page(eb, i);
3525
3526 clear_page_dirty_for_io(p);
3527 set_page_writeback(p);
3528 ret = submit_extent_page(rw, tree, p, offset >> 9,
3529 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3530 -1, end_bio_extent_buffer_writepage,
3531 0, epd->bio_flags, bio_flags);
3532 epd->bio_flags = bio_flags;
3533 if (ret) {
3534 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3535 SetPageError(p);
3536 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3537 end_extent_buffer_writeback(eb);
3538 ret = -EIO;
3539 break;
3540 }
3541 offset += PAGE_CACHE_SIZE;
3542 update_nr_written(p, wbc, 1);
3543 unlock_page(p);
3544 }
3545
3546 if (unlikely(ret)) {
3547 for (; i < num_pages; i++) {
3548 struct page *p = extent_buffer_page(eb, i);
3549 unlock_page(p);
3550 }
3551 }
3552
3553 return ret;
3554 }
3555
3556 int btree_write_cache_pages(struct address_space *mapping,
3557 struct writeback_control *wbc)
3558 {
3559 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3560 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3561 struct extent_buffer *eb, *prev_eb = NULL;
3562 struct extent_page_data epd = {
3563 .bio = NULL,
3564 .tree = tree,
3565 .extent_locked = 0,
3566 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3567 .bio_flags = 0,
3568 };
3569 int ret = 0;
3570 int done = 0;
3571 int nr_to_write_done = 0;
3572 struct pagevec pvec;
3573 int nr_pages;
3574 pgoff_t index;
3575 pgoff_t end; /* Inclusive */
3576 int scanned = 0;
3577 int tag;
3578
3579 pagevec_init(&pvec, 0);
3580 if (wbc->range_cyclic) {
3581 index = mapping->writeback_index; /* Start from prev offset */
3582 end = -1;
3583 } else {
3584 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3585 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3586 scanned = 1;
3587 }
3588 if (wbc->sync_mode == WB_SYNC_ALL)
3589 tag = PAGECACHE_TAG_TOWRITE;
3590 else
3591 tag = PAGECACHE_TAG_DIRTY;
3592 retry:
3593 if (wbc->sync_mode == WB_SYNC_ALL)
3594 tag_pages_for_writeback(mapping, index, end);
3595 while (!done && !nr_to_write_done && (index <= end) &&
3596 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3597 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3598 unsigned i;
3599
3600 scanned = 1;
3601 for (i = 0; i < nr_pages; i++) {
3602 struct page *page = pvec.pages[i];
3603
3604 if (!PagePrivate(page))
3605 continue;
3606
3607 if (!wbc->range_cyclic && page->index > end) {
3608 done = 1;
3609 break;
3610 }
3611
3612 spin_lock(&mapping->private_lock);
3613 if (!PagePrivate(page)) {
3614 spin_unlock(&mapping->private_lock);
3615 continue;
3616 }
3617
3618 eb = (struct extent_buffer *)page->private;
3619
3620 /*
3621 * Shouldn't happen and normally this would be a BUG_ON
3622 * but no sense in crashing the users box for something
3623 * we can survive anyway.
3624 */
3625 if (WARN_ON(!eb)) {
3626 spin_unlock(&mapping->private_lock);
3627 continue;
3628 }
3629
3630 if (eb == prev_eb) {
3631 spin_unlock(&mapping->private_lock);
3632 continue;
3633 }
3634
3635 ret = atomic_inc_not_zero(&eb->refs);
3636 spin_unlock(&mapping->private_lock);
3637 if (!ret)
3638 continue;
3639
3640 prev_eb = eb;
3641 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3642 if (!ret) {
3643 free_extent_buffer(eb);
3644 continue;
3645 }
3646
3647 ret = write_one_eb(eb, fs_info, wbc, &epd);
3648 if (ret) {
3649 done = 1;
3650 free_extent_buffer(eb);
3651 break;
3652 }
3653 free_extent_buffer(eb);
3654
3655 /*
3656 * the filesystem may choose to bump up nr_to_write.
3657 * We have to make sure to honor the new nr_to_write
3658 * at any time
3659 */
3660 nr_to_write_done = wbc->nr_to_write <= 0;
3661 }
3662 pagevec_release(&pvec);
3663 cond_resched();
3664 }
3665 if (!scanned && !done) {
3666 /*
3667 * We hit the last page and there is more work to be done: wrap
3668 * back to the start of the file
3669 */
3670 scanned = 1;
3671 index = 0;
3672 goto retry;
3673 }
3674 flush_write_bio(&epd);
3675 return ret;
3676 }
3677
3678 /**
3679 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3680 * @mapping: address space structure to write
3681 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3682 * @writepage: function called for each page
3683 * @data: data passed to writepage function
3684 *
3685 * If a page is already under I/O, write_cache_pages() skips it, even
3686 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3687 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3688 * and msync() need to guarantee that all the data which was dirty at the time
3689 * the call was made get new I/O started against them. If wbc->sync_mode is
3690 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3691 * existing IO to complete.
3692 */
3693 static int extent_write_cache_pages(struct extent_io_tree *tree,
3694 struct address_space *mapping,
3695 struct writeback_control *wbc,
3696 writepage_t writepage, void *data,
3697 void (*flush_fn)(void *))
3698 {
3699 struct inode *inode = mapping->host;
3700 int ret = 0;
3701 int done = 0;
3702 int err = 0;
3703 int nr_to_write_done = 0;
3704 struct pagevec pvec;
3705 int nr_pages;
3706 pgoff_t index;
3707 pgoff_t end; /* Inclusive */
3708 int scanned = 0;
3709 int tag;
3710
3711 /*
3712 * We have to hold onto the inode so that ordered extents can do their
3713 * work when the IO finishes. The alternative to this is failing to add
3714 * an ordered extent if the igrab() fails there and that is a huge pain
3715 * to deal with, so instead just hold onto the inode throughout the
3716 * writepages operation. If it fails here we are freeing up the inode
3717 * anyway and we'd rather not waste our time writing out stuff that is
3718 * going to be truncated anyway.
3719 */
3720 if (!igrab(inode))
3721 return 0;
3722
3723 pagevec_init(&pvec, 0);
3724 if (wbc->range_cyclic) {
3725 index = mapping->writeback_index; /* Start from prev offset */
3726 end = -1;
3727 } else {
3728 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3729 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3730 scanned = 1;
3731 }
3732 if (wbc->sync_mode == WB_SYNC_ALL)
3733 tag = PAGECACHE_TAG_TOWRITE;
3734 else
3735 tag = PAGECACHE_TAG_DIRTY;
3736 retry:
3737 if (wbc->sync_mode == WB_SYNC_ALL)
3738 tag_pages_for_writeback(mapping, index, end);
3739 while (!done && !nr_to_write_done && (index <= end) &&
3740 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3741 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3742 unsigned i;
3743
3744 scanned = 1;
3745 for (i = 0; i < nr_pages; i++) {
3746 struct page *page = pvec.pages[i];
3747
3748 /*
3749 * At this point we hold neither mapping->tree_lock nor
3750 * lock on the page itself: the page may be truncated or
3751 * invalidated (changing page->mapping to NULL), or even
3752 * swizzled back from swapper_space to tmpfs file
3753 * mapping
3754 */
3755 if (!trylock_page(page)) {
3756 flush_fn(data);
3757 lock_page(page);
3758 }
3759
3760 if (unlikely(page->mapping != mapping)) {
3761 unlock_page(page);
3762 continue;
3763 }
3764
3765 if (!wbc->range_cyclic && page->index > end) {
3766 done = 1;
3767 unlock_page(page);
3768 continue;
3769 }
3770
3771 if (wbc->sync_mode != WB_SYNC_NONE) {
3772 if (PageWriteback(page))
3773 flush_fn(data);
3774 wait_on_page_writeback(page);
3775 }
3776
3777 if (PageWriteback(page) ||
3778 !clear_page_dirty_for_io(page)) {
3779 unlock_page(page);
3780 continue;
3781 }
3782
3783 ret = (*writepage)(page, wbc, data);
3784
3785 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3786 unlock_page(page);
3787 ret = 0;
3788 }
3789 if (!err && ret < 0)
3790 err = ret;
3791
3792 /*
3793 * the filesystem may choose to bump up nr_to_write.
3794 * We have to make sure to honor the new nr_to_write
3795 * at any time
3796 */
3797 nr_to_write_done = wbc->nr_to_write <= 0;
3798 }
3799 pagevec_release(&pvec);
3800 cond_resched();
3801 }
3802 if (!scanned && !done && !err) {
3803 /*
3804 * We hit the last page and there is more work to be done: wrap
3805 * back to the start of the file
3806 */
3807 scanned = 1;
3808 index = 0;
3809 goto retry;
3810 }
3811 btrfs_add_delayed_iput(inode);
3812 return err;
3813 }
3814
3815 static void flush_epd_write_bio(struct extent_page_data *epd)
3816 {
3817 if (epd->bio) {
3818 int rw = WRITE;
3819 int ret;
3820
3821 if (epd->sync_io)
3822 rw = WRITE_SYNC;
3823
3824 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3825 BUG_ON(ret < 0); /* -ENOMEM */
3826 epd->bio = NULL;
3827 }
3828 }
3829
3830 static noinline void flush_write_bio(void *data)
3831 {
3832 struct extent_page_data *epd = data;
3833 flush_epd_write_bio(epd);
3834 }
3835
3836 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3837 get_extent_t *get_extent,
3838 struct writeback_control *wbc)
3839 {
3840 int ret;
3841 struct extent_page_data epd = {
3842 .bio = NULL,
3843 .tree = tree,
3844 .get_extent = get_extent,
3845 .extent_locked = 0,
3846 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3847 .bio_flags = 0,
3848 };
3849
3850 ret = __extent_writepage(page, wbc, &epd);
3851
3852 flush_epd_write_bio(&epd);
3853 return ret;
3854 }
3855
3856 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3857 u64 start, u64 end, get_extent_t *get_extent,
3858 int mode)
3859 {
3860 int ret = 0;
3861 struct address_space *mapping = inode->i_mapping;
3862 struct page *page;
3863 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3864 PAGE_CACHE_SHIFT;
3865
3866 struct extent_page_data epd = {
3867 .bio = NULL,
3868 .tree = tree,
3869 .get_extent = get_extent,
3870 .extent_locked = 1,
3871 .sync_io = mode == WB_SYNC_ALL,
3872 .bio_flags = 0,
3873 };
3874 struct writeback_control wbc_writepages = {
3875 .sync_mode = mode,
3876 .nr_to_write = nr_pages * 2,
3877 .range_start = start,
3878 .range_end = end + 1,
3879 };
3880
3881 while (start <= end) {
3882 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3883 if (clear_page_dirty_for_io(page))
3884 ret = __extent_writepage(page, &wbc_writepages, &epd);
3885 else {
3886 if (tree->ops && tree->ops->writepage_end_io_hook)
3887 tree->ops->writepage_end_io_hook(page, start,
3888 start + PAGE_CACHE_SIZE - 1,
3889 NULL, 1);
3890 unlock_page(page);
3891 }
3892 page_cache_release(page);
3893 start += PAGE_CACHE_SIZE;
3894 }
3895
3896 flush_epd_write_bio(&epd);
3897 return ret;
3898 }
3899
3900 int extent_writepages(struct extent_io_tree *tree,
3901 struct address_space *mapping,
3902 get_extent_t *get_extent,
3903 struct writeback_control *wbc)
3904 {
3905 int ret = 0;
3906 struct extent_page_data epd = {
3907 .bio = NULL,
3908 .tree = tree,
3909 .get_extent = get_extent,
3910 .extent_locked = 0,
3911 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3912 .bio_flags = 0,
3913 };
3914
3915 ret = extent_write_cache_pages(tree, mapping, wbc,
3916 __extent_writepage, &epd,
3917 flush_write_bio);
3918 flush_epd_write_bio(&epd);
3919 return ret;
3920 }
3921
3922 int extent_readpages(struct extent_io_tree *tree,
3923 struct address_space *mapping,
3924 struct list_head *pages, unsigned nr_pages,
3925 get_extent_t get_extent)
3926 {
3927 struct bio *bio = NULL;
3928 unsigned page_idx;
3929 unsigned long bio_flags = 0;
3930 struct page *pagepool[16];
3931 struct page *page;
3932 struct extent_map *em_cached = NULL;
3933 int nr = 0;
3934
3935 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3936 page = list_entry(pages->prev, struct page, lru);
3937
3938 prefetchw(&page->flags);
3939 list_del(&page->lru);
3940 if (add_to_page_cache_lru(page, mapping,
3941 page->index, GFP_NOFS)) {
3942 page_cache_release(page);
3943 continue;
3944 }
3945
3946 pagepool[nr++] = page;
3947 if (nr < ARRAY_SIZE(pagepool))
3948 continue;
3949 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3950 &bio, 0, &bio_flags, READ);
3951 nr = 0;
3952 }
3953 if (nr)
3954 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3955 &bio, 0, &bio_flags, READ);
3956
3957 if (em_cached)
3958 free_extent_map(em_cached);
3959
3960 BUG_ON(!list_empty(pages));
3961 if (bio)
3962 return submit_one_bio(READ, bio, 0, bio_flags);
3963 return 0;
3964 }
3965
3966 /*
3967 * basic invalidatepage code, this waits on any locked or writeback
3968 * ranges corresponding to the page, and then deletes any extent state
3969 * records from the tree
3970 */
3971 int extent_invalidatepage(struct extent_io_tree *tree,
3972 struct page *page, unsigned long offset)
3973 {
3974 struct extent_state *cached_state = NULL;
3975 u64 start = page_offset(page);
3976 u64 end = start + PAGE_CACHE_SIZE - 1;
3977 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3978
3979 start += ALIGN(offset, blocksize);
3980 if (start > end)
3981 return 0;
3982
3983 lock_extent_bits(tree, start, end, 0, &cached_state);
3984 wait_on_page_writeback(page);
3985 clear_extent_bit(tree, start, end,
3986 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3987 EXTENT_DO_ACCOUNTING,
3988 1, 1, &cached_state, GFP_NOFS);
3989 return 0;
3990 }
3991
3992 /*
3993 * a helper for releasepage, this tests for areas of the page that
3994 * are locked or under IO and drops the related state bits if it is safe
3995 * to drop the page.
3996 */
3997 static int try_release_extent_state(struct extent_map_tree *map,
3998 struct extent_io_tree *tree,
3999 struct page *page, gfp_t mask)
4000 {
4001 u64 start = page_offset(page);
4002 u64 end = start + PAGE_CACHE_SIZE - 1;
4003 int ret = 1;
4004
4005 if (test_range_bit(tree, start, end,
4006 EXTENT_IOBITS, 0, NULL))
4007 ret = 0;
4008 else {
4009 if ((mask & GFP_NOFS) == GFP_NOFS)
4010 mask = GFP_NOFS;
4011 /*
4012 * at this point we can safely clear everything except the
4013 * locked bit and the nodatasum bit
4014 */
4015 ret = clear_extent_bit(tree, start, end,
4016 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4017 0, 0, NULL, mask);
4018
4019 /* if clear_extent_bit failed for enomem reasons,
4020 * we can't allow the release to continue.
4021 */
4022 if (ret < 0)
4023 ret = 0;
4024 else
4025 ret = 1;
4026 }
4027 return ret;
4028 }
4029
4030 /*
4031 * a helper for releasepage. As long as there are no locked extents
4032 * in the range corresponding to the page, both state records and extent
4033 * map records are removed
4034 */
4035 int try_release_extent_mapping(struct extent_map_tree *map,
4036 struct extent_io_tree *tree, struct page *page,
4037 gfp_t mask)
4038 {
4039 struct extent_map *em;
4040 u64 start = page_offset(page);
4041 u64 end = start + PAGE_CACHE_SIZE - 1;
4042
4043 if ((mask & __GFP_WAIT) &&
4044 page->mapping->host->i_size > 16 * 1024 * 1024) {
4045 u64 len;
4046 while (start <= end) {
4047 len = end - start + 1;
4048 write_lock(&map->lock);
4049 em = lookup_extent_mapping(map, start, len);
4050 if (!em) {
4051 write_unlock(&map->lock);
4052 break;
4053 }
4054 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4055 em->start != start) {
4056 write_unlock(&map->lock);
4057 free_extent_map(em);
4058 break;
4059 }
4060 if (!test_range_bit(tree, em->start,
4061 extent_map_end(em) - 1,
4062 EXTENT_LOCKED | EXTENT_WRITEBACK,
4063 0, NULL)) {
4064 remove_extent_mapping(map, em);
4065 /* once for the rb tree */
4066 free_extent_map(em);
4067 }
4068 start = extent_map_end(em);
4069 write_unlock(&map->lock);
4070
4071 /* once for us */
4072 free_extent_map(em);
4073 }
4074 }
4075 return try_release_extent_state(map, tree, page, mask);
4076 }
4077
4078 /*
4079 * helper function for fiemap, which doesn't want to see any holes.
4080 * This maps until we find something past 'last'
4081 */
4082 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4083 u64 offset,
4084 u64 last,
4085 get_extent_t *get_extent)
4086 {
4087 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4088 struct extent_map *em;
4089 u64 len;
4090
4091 if (offset >= last)
4092 return NULL;
4093
4094 while (1) {
4095 len = last - offset;
4096 if (len == 0)
4097 break;
4098 len = ALIGN(len, sectorsize);
4099 em = get_extent(inode, NULL, 0, offset, len, 0);
4100 if (IS_ERR_OR_NULL(em))
4101 return em;
4102
4103 /* if this isn't a hole return it */
4104 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4105 em->block_start != EXTENT_MAP_HOLE) {
4106 return em;
4107 }
4108
4109 /* this is a hole, advance to the next extent */
4110 offset = extent_map_end(em);
4111 free_extent_map(em);
4112 if (offset >= last)
4113 break;
4114 }
4115 return NULL;
4116 }
4117
4118 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4119 {
4120 unsigned long cnt = *((unsigned long *)ctx);
4121
4122 cnt++;
4123 *((unsigned long *)ctx) = cnt;
4124
4125 /* Now we're sure that the extent is shared. */
4126 if (cnt > 1)
4127 return 1;
4128 return 0;
4129 }
4130
4131 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4132 __u64 start, __u64 len, get_extent_t *get_extent)
4133 {
4134 int ret = 0;
4135 u64 off = start;
4136 u64 max = start + len;
4137 u32 flags = 0;
4138 u32 found_type;
4139 u64 last;
4140 u64 last_for_get_extent = 0;
4141 u64 disko = 0;
4142 u64 isize = i_size_read(inode);
4143 struct btrfs_key found_key;
4144 struct extent_map *em = NULL;
4145 struct extent_state *cached_state = NULL;
4146 struct btrfs_path *path;
4147 int end = 0;
4148 u64 em_start = 0;
4149 u64 em_len = 0;
4150 u64 em_end = 0;
4151
4152 if (len == 0)
4153 return -EINVAL;
4154
4155 path = btrfs_alloc_path();
4156 if (!path)
4157 return -ENOMEM;
4158 path->leave_spinning = 1;
4159
4160 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4161 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4162
4163 /*
4164 * lookup the last file extent. We're not using i_size here
4165 * because there might be preallocation past i_size
4166 */
4167 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4168 path, btrfs_ino(inode), -1, 0);
4169 if (ret < 0) {
4170 btrfs_free_path(path);
4171 return ret;
4172 }
4173 WARN_ON(!ret);
4174 path->slots[0]--;
4175 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4176 found_type = btrfs_key_type(&found_key);
4177
4178 /* No extents, but there might be delalloc bits */
4179 if (found_key.objectid != btrfs_ino(inode) ||
4180 found_type != BTRFS_EXTENT_DATA_KEY) {
4181 /* have to trust i_size as the end */
4182 last = (u64)-1;
4183 last_for_get_extent = isize;
4184 } else {
4185 /*
4186 * remember the start of the last extent. There are a
4187 * bunch of different factors that go into the length of the
4188 * extent, so its much less complex to remember where it started
4189 */
4190 last = found_key.offset;
4191 last_for_get_extent = last + 1;
4192 }
4193 btrfs_release_path(path);
4194
4195 /*
4196 * we might have some extents allocated but more delalloc past those
4197 * extents. so, we trust isize unless the start of the last extent is
4198 * beyond isize
4199 */
4200 if (last < isize) {
4201 last = (u64)-1;
4202 last_for_get_extent = isize;
4203 }
4204
4205 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4206 &cached_state);
4207
4208 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4209 get_extent);
4210 if (!em)
4211 goto out;
4212 if (IS_ERR(em)) {
4213 ret = PTR_ERR(em);
4214 goto out;
4215 }
4216
4217 while (!end) {
4218 u64 offset_in_extent = 0;
4219
4220 /* break if the extent we found is outside the range */
4221 if (em->start >= max || extent_map_end(em) < off)
4222 break;
4223
4224 /*
4225 * get_extent may return an extent that starts before our
4226 * requested range. We have to make sure the ranges
4227 * we return to fiemap always move forward and don't
4228 * overlap, so adjust the offsets here
4229 */
4230 em_start = max(em->start, off);
4231
4232 /*
4233 * record the offset from the start of the extent
4234 * for adjusting the disk offset below. Only do this if the
4235 * extent isn't compressed since our in ram offset may be past
4236 * what we have actually allocated on disk.
4237 */
4238 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4239 offset_in_extent = em_start - em->start;
4240 em_end = extent_map_end(em);
4241 em_len = em_end - em_start;
4242 disko = 0;
4243 flags = 0;
4244
4245 /*
4246 * bump off for our next call to get_extent
4247 */
4248 off = extent_map_end(em);
4249 if (off >= max)
4250 end = 1;
4251
4252 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4253 end = 1;
4254 flags |= FIEMAP_EXTENT_LAST;
4255 } else if (em->block_start == EXTENT_MAP_INLINE) {
4256 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4257 FIEMAP_EXTENT_NOT_ALIGNED);
4258 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4259 flags |= (FIEMAP_EXTENT_DELALLOC |
4260 FIEMAP_EXTENT_UNKNOWN);
4261 } else {
4262 unsigned long ref_cnt = 0;
4263
4264 disko = em->block_start + offset_in_extent;
4265
4266 /*
4267 * As btrfs supports shared space, this information
4268 * can be exported to userspace tools via
4269 * flag FIEMAP_EXTENT_SHARED.
4270 */
4271 ret = iterate_inodes_from_logical(
4272 em->block_start,
4273 BTRFS_I(inode)->root->fs_info,
4274 path, count_ext_ref, &ref_cnt);
4275 if (ret < 0 && ret != -ENOENT)
4276 goto out_free;
4277
4278 if (ref_cnt > 1)
4279 flags |= FIEMAP_EXTENT_SHARED;
4280 }
4281 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4282 flags |= FIEMAP_EXTENT_ENCODED;
4283
4284 free_extent_map(em);
4285 em = NULL;
4286 if ((em_start >= last) || em_len == (u64)-1 ||
4287 (last == (u64)-1 && isize <= em_end)) {
4288 flags |= FIEMAP_EXTENT_LAST;
4289 end = 1;
4290 }
4291
4292 /* now scan forward to see if this is really the last extent. */
4293 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4294 get_extent);
4295 if (IS_ERR(em)) {
4296 ret = PTR_ERR(em);
4297 goto out;
4298 }
4299 if (!em) {
4300 flags |= FIEMAP_EXTENT_LAST;
4301 end = 1;
4302 }
4303 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4304 em_len, flags);
4305 if (ret)
4306 goto out_free;
4307 }
4308 out_free:
4309 free_extent_map(em);
4310 out:
4311 btrfs_free_path(path);
4312 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4313 &cached_state, GFP_NOFS);
4314 return ret;
4315 }
4316
4317 static void __free_extent_buffer(struct extent_buffer *eb)
4318 {
4319 btrfs_leak_debug_del(&eb->leak_list);
4320 kmem_cache_free(extent_buffer_cache, eb);
4321 }
4322
4323 int extent_buffer_under_io(struct extent_buffer *eb)
4324 {
4325 return (atomic_read(&eb->io_pages) ||
4326 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4327 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4328 }
4329
4330 /*
4331 * Helper for releasing extent buffer page.
4332 */
4333 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4334 unsigned long start_idx)
4335 {
4336 unsigned long index;
4337 unsigned long num_pages;
4338 struct page *page;
4339 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4340
4341 BUG_ON(extent_buffer_under_io(eb));
4342
4343 num_pages = num_extent_pages(eb->start, eb->len);
4344 index = start_idx + num_pages;
4345 if (start_idx >= index)
4346 return;
4347
4348 do {
4349 index--;
4350 page = extent_buffer_page(eb, index);
4351 if (page && mapped) {
4352 spin_lock(&page->mapping->private_lock);
4353 /*
4354 * We do this since we'll remove the pages after we've
4355 * removed the eb from the radix tree, so we could race
4356 * and have this page now attached to the new eb. So
4357 * only clear page_private if it's still connected to
4358 * this eb.
4359 */
4360 if (PagePrivate(page) &&
4361 page->private == (unsigned long)eb) {
4362 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4363 BUG_ON(PageDirty(page));
4364 BUG_ON(PageWriteback(page));
4365 /*
4366 * We need to make sure we haven't be attached
4367 * to a new eb.
4368 */
4369 ClearPagePrivate(page);
4370 set_page_private(page, 0);
4371 /* One for the page private */
4372 page_cache_release(page);
4373 }
4374 spin_unlock(&page->mapping->private_lock);
4375
4376 }
4377 if (page) {
4378 /* One for when we alloced the page */
4379 page_cache_release(page);
4380 }
4381 } while (index != start_idx);
4382 }
4383
4384 /*
4385 * Helper for releasing the extent buffer.
4386 */
4387 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4388 {
4389 btrfs_release_extent_buffer_page(eb, 0);
4390 __free_extent_buffer(eb);
4391 }
4392
4393 static struct extent_buffer *
4394 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4395 unsigned long len, gfp_t mask)
4396 {
4397 struct extent_buffer *eb = NULL;
4398
4399 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4400 if (eb == NULL)
4401 return NULL;
4402 eb->start = start;
4403 eb->len = len;
4404 eb->fs_info = fs_info;
4405 eb->bflags = 0;
4406 rwlock_init(&eb->lock);
4407 atomic_set(&eb->write_locks, 0);
4408 atomic_set(&eb->read_locks, 0);
4409 atomic_set(&eb->blocking_readers, 0);
4410 atomic_set(&eb->blocking_writers, 0);
4411 atomic_set(&eb->spinning_readers, 0);
4412 atomic_set(&eb->spinning_writers, 0);
4413 eb->lock_nested = 0;
4414 init_waitqueue_head(&eb->write_lock_wq);
4415 init_waitqueue_head(&eb->read_lock_wq);
4416
4417 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4418
4419 spin_lock_init(&eb->refs_lock);
4420 atomic_set(&eb->refs, 1);
4421 atomic_set(&eb->io_pages, 0);
4422
4423 /*
4424 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4425 */
4426 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4427 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4428 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4429
4430 return eb;
4431 }
4432
4433 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4434 {
4435 unsigned long i;
4436 struct page *p;
4437 struct extent_buffer *new;
4438 unsigned long num_pages = num_extent_pages(src->start, src->len);
4439
4440 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4441 if (new == NULL)
4442 return NULL;
4443
4444 for (i = 0; i < num_pages; i++) {
4445 p = alloc_page(GFP_NOFS);
4446 if (!p) {
4447 btrfs_release_extent_buffer(new);
4448 return NULL;
4449 }
4450 attach_extent_buffer_page(new, p);
4451 WARN_ON(PageDirty(p));
4452 SetPageUptodate(p);
4453 new->pages[i] = p;
4454 }
4455
4456 copy_extent_buffer(new, src, 0, 0, src->len);
4457 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4458 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4459
4460 return new;
4461 }
4462
4463 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4464 {
4465 struct extent_buffer *eb;
4466 unsigned long num_pages = num_extent_pages(0, len);
4467 unsigned long i;
4468
4469 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4470 if (!eb)
4471 return NULL;
4472
4473 for (i = 0; i < num_pages; i++) {
4474 eb->pages[i] = alloc_page(GFP_NOFS);
4475 if (!eb->pages[i])
4476 goto err;
4477 }
4478 set_extent_buffer_uptodate(eb);
4479 btrfs_set_header_nritems(eb, 0);
4480 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4481
4482 return eb;
4483 err:
4484 for (; i > 0; i--)
4485 __free_page(eb->pages[i - 1]);
4486 __free_extent_buffer(eb);
4487 return NULL;
4488 }
4489
4490 static void check_buffer_tree_ref(struct extent_buffer *eb)
4491 {
4492 int refs;
4493 /* the ref bit is tricky. We have to make sure it is set
4494 * if we have the buffer dirty. Otherwise the
4495 * code to free a buffer can end up dropping a dirty
4496 * page
4497 *
4498 * Once the ref bit is set, it won't go away while the
4499 * buffer is dirty or in writeback, and it also won't
4500 * go away while we have the reference count on the
4501 * eb bumped.
4502 *
4503 * We can't just set the ref bit without bumping the
4504 * ref on the eb because free_extent_buffer might
4505 * see the ref bit and try to clear it. If this happens
4506 * free_extent_buffer might end up dropping our original
4507 * ref by mistake and freeing the page before we are able
4508 * to add one more ref.
4509 *
4510 * So bump the ref count first, then set the bit. If someone
4511 * beat us to it, drop the ref we added.
4512 */
4513 refs = atomic_read(&eb->refs);
4514 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4515 return;
4516
4517 spin_lock(&eb->refs_lock);
4518 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4519 atomic_inc(&eb->refs);
4520 spin_unlock(&eb->refs_lock);
4521 }
4522
4523 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4524 {
4525 unsigned long num_pages, i;
4526
4527 check_buffer_tree_ref(eb);
4528
4529 num_pages = num_extent_pages(eb->start, eb->len);
4530 for (i = 0; i < num_pages; i++) {
4531 struct page *p = extent_buffer_page(eb, i);
4532 mark_page_accessed(p);
4533 }
4534 }
4535
4536 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4537 u64 start)
4538 {
4539 struct extent_buffer *eb;
4540
4541 rcu_read_lock();
4542 eb = radix_tree_lookup(&fs_info->buffer_radix,
4543 start >> PAGE_CACHE_SHIFT);
4544 if (eb && atomic_inc_not_zero(&eb->refs)) {
4545 rcu_read_unlock();
4546 mark_extent_buffer_accessed(eb);
4547 return eb;
4548 }
4549 rcu_read_unlock();
4550
4551 return NULL;
4552 }
4553
4554 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4555 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4556 u64 start, unsigned long len)
4557 {
4558 struct extent_buffer *eb, *exists = NULL;
4559 int ret;
4560
4561 eb = find_extent_buffer(fs_info, start);
4562 if (eb)
4563 return eb;
4564 eb = alloc_dummy_extent_buffer(start, len);
4565 if (!eb)
4566 return NULL;
4567 eb->fs_info = fs_info;
4568 again:
4569 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4570 if (ret)
4571 goto free_eb;
4572 spin_lock(&fs_info->buffer_lock);
4573 ret = radix_tree_insert(&fs_info->buffer_radix,
4574 start >> PAGE_CACHE_SHIFT, eb);
4575 spin_unlock(&fs_info->buffer_lock);
4576 radix_tree_preload_end();
4577 if (ret == -EEXIST) {
4578 exists = find_extent_buffer(fs_info, start);
4579 if (exists)
4580 goto free_eb;
4581 else
4582 goto again;
4583 }
4584 check_buffer_tree_ref(eb);
4585 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4586
4587 /*
4588 * We will free dummy extent buffer's if they come into
4589 * free_extent_buffer with a ref count of 2, but if we are using this we
4590 * want the buffers to stay in memory until we're done with them, so
4591 * bump the ref count again.
4592 */
4593 atomic_inc(&eb->refs);
4594 return eb;
4595 free_eb:
4596 btrfs_release_extent_buffer(eb);
4597 return exists;
4598 }
4599 #endif
4600
4601 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4602 u64 start, unsigned long len)
4603 {
4604 unsigned long num_pages = num_extent_pages(start, len);
4605 unsigned long i;
4606 unsigned long index = start >> PAGE_CACHE_SHIFT;
4607 struct extent_buffer *eb;
4608 struct extent_buffer *exists = NULL;
4609 struct page *p;
4610 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4611 int uptodate = 1;
4612 int ret;
4613
4614 eb = find_extent_buffer(fs_info, start);
4615 if (eb)
4616 return eb;
4617
4618 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4619 if (!eb)
4620 return NULL;
4621
4622 for (i = 0; i < num_pages; i++, index++) {
4623 p = find_or_create_page(mapping, index, GFP_NOFS);
4624 if (!p)
4625 goto free_eb;
4626
4627 spin_lock(&mapping->private_lock);
4628 if (PagePrivate(p)) {
4629 /*
4630 * We could have already allocated an eb for this page
4631 * and attached one so lets see if we can get a ref on
4632 * the existing eb, and if we can we know it's good and
4633 * we can just return that one, else we know we can just
4634 * overwrite page->private.
4635 */
4636 exists = (struct extent_buffer *)p->private;
4637 if (atomic_inc_not_zero(&exists->refs)) {
4638 spin_unlock(&mapping->private_lock);
4639 unlock_page(p);
4640 page_cache_release(p);
4641 mark_extent_buffer_accessed(exists);
4642 goto free_eb;
4643 }
4644
4645 /*
4646 * Do this so attach doesn't complain and we need to
4647 * drop the ref the old guy had.
4648 */
4649 ClearPagePrivate(p);
4650 WARN_ON(PageDirty(p));
4651 page_cache_release(p);
4652 }
4653 attach_extent_buffer_page(eb, p);
4654 spin_unlock(&mapping->private_lock);
4655 WARN_ON(PageDirty(p));
4656 mark_page_accessed(p);
4657 eb->pages[i] = p;
4658 if (!PageUptodate(p))
4659 uptodate = 0;
4660
4661 /*
4662 * see below about how we avoid a nasty race with release page
4663 * and why we unlock later
4664 */
4665 }
4666 if (uptodate)
4667 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4668 again:
4669 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4670 if (ret)
4671 goto free_eb;
4672
4673 spin_lock(&fs_info->buffer_lock);
4674 ret = radix_tree_insert(&fs_info->buffer_radix,
4675 start >> PAGE_CACHE_SHIFT, eb);
4676 spin_unlock(&fs_info->buffer_lock);
4677 radix_tree_preload_end();
4678 if (ret == -EEXIST) {
4679 exists = find_extent_buffer(fs_info, start);
4680 if (exists)
4681 goto free_eb;
4682 else
4683 goto again;
4684 }
4685 /* add one reference for the tree */
4686 check_buffer_tree_ref(eb);
4687 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4688
4689 /*
4690 * there is a race where release page may have
4691 * tried to find this extent buffer in the radix
4692 * but failed. It will tell the VM it is safe to
4693 * reclaim the, and it will clear the page private bit.
4694 * We must make sure to set the page private bit properly
4695 * after the extent buffer is in the radix tree so
4696 * it doesn't get lost
4697 */
4698 SetPageChecked(eb->pages[0]);
4699 for (i = 1; i < num_pages; i++) {
4700 p = extent_buffer_page(eb, i);
4701 ClearPageChecked(p);
4702 unlock_page(p);
4703 }
4704 unlock_page(eb->pages[0]);
4705 return eb;
4706
4707 free_eb:
4708 for (i = 0; i < num_pages; i++) {
4709 if (eb->pages[i])
4710 unlock_page(eb->pages[i]);
4711 }
4712
4713 WARN_ON(!atomic_dec_and_test(&eb->refs));
4714 btrfs_release_extent_buffer(eb);
4715 return exists;
4716 }
4717
4718 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4719 {
4720 struct extent_buffer *eb =
4721 container_of(head, struct extent_buffer, rcu_head);
4722
4723 __free_extent_buffer(eb);
4724 }
4725
4726 /* Expects to have eb->eb_lock already held */
4727 static int release_extent_buffer(struct extent_buffer *eb)
4728 {
4729 WARN_ON(atomic_read(&eb->refs) == 0);
4730 if (atomic_dec_and_test(&eb->refs)) {
4731 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4732 struct btrfs_fs_info *fs_info = eb->fs_info;
4733
4734 spin_unlock(&eb->refs_lock);
4735
4736 spin_lock(&fs_info->buffer_lock);
4737 radix_tree_delete(&fs_info->buffer_radix,
4738 eb->start >> PAGE_CACHE_SHIFT);
4739 spin_unlock(&fs_info->buffer_lock);
4740 } else {
4741 spin_unlock(&eb->refs_lock);
4742 }
4743
4744 /* Should be safe to release our pages at this point */
4745 btrfs_release_extent_buffer_page(eb, 0);
4746 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4747 return 1;
4748 }
4749 spin_unlock(&eb->refs_lock);
4750
4751 return 0;
4752 }
4753
4754 void free_extent_buffer(struct extent_buffer *eb)
4755 {
4756 int refs;
4757 int old;
4758 if (!eb)
4759 return;
4760
4761 while (1) {
4762 refs = atomic_read(&eb->refs);
4763 if (refs <= 3)
4764 break;
4765 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4766 if (old == refs)
4767 return;
4768 }
4769
4770 spin_lock(&eb->refs_lock);
4771 if (atomic_read(&eb->refs) == 2 &&
4772 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4773 atomic_dec(&eb->refs);
4774
4775 if (atomic_read(&eb->refs) == 2 &&
4776 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4777 !extent_buffer_under_io(eb) &&
4778 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4779 atomic_dec(&eb->refs);
4780
4781 /*
4782 * I know this is terrible, but it's temporary until we stop tracking
4783 * the uptodate bits and such for the extent buffers.
4784 */
4785 release_extent_buffer(eb);
4786 }
4787
4788 void free_extent_buffer_stale(struct extent_buffer *eb)
4789 {
4790 if (!eb)
4791 return;
4792
4793 spin_lock(&eb->refs_lock);
4794 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4795
4796 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4797 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4798 atomic_dec(&eb->refs);
4799 release_extent_buffer(eb);
4800 }
4801
4802 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4803 {
4804 unsigned long i;
4805 unsigned long num_pages;
4806 struct page *page;
4807
4808 num_pages = num_extent_pages(eb->start, eb->len);
4809
4810 for (i = 0; i < num_pages; i++) {
4811 page = extent_buffer_page(eb, i);
4812 if (!PageDirty(page))
4813 continue;
4814
4815 lock_page(page);
4816 WARN_ON(!PagePrivate(page));
4817
4818 clear_page_dirty_for_io(page);
4819 spin_lock_irq(&page->mapping->tree_lock);
4820 if (!PageDirty(page)) {
4821 radix_tree_tag_clear(&page->mapping->page_tree,
4822 page_index(page),
4823 PAGECACHE_TAG_DIRTY);
4824 }
4825 spin_unlock_irq(&page->mapping->tree_lock);
4826 ClearPageError(page);
4827 unlock_page(page);
4828 }
4829 WARN_ON(atomic_read(&eb->refs) == 0);
4830 }
4831
4832 int set_extent_buffer_dirty(struct extent_buffer *eb)
4833 {
4834 unsigned long i;
4835 unsigned long num_pages;
4836 int was_dirty = 0;
4837
4838 check_buffer_tree_ref(eb);
4839
4840 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4841
4842 num_pages = num_extent_pages(eb->start, eb->len);
4843 WARN_ON(atomic_read(&eb->refs) == 0);
4844 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4845
4846 for (i = 0; i < num_pages; i++)
4847 set_page_dirty(extent_buffer_page(eb, i));
4848 return was_dirty;
4849 }
4850
4851 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4852 {
4853 unsigned long i;
4854 struct page *page;
4855 unsigned long num_pages;
4856
4857 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4858 num_pages = num_extent_pages(eb->start, eb->len);
4859 for (i = 0; i < num_pages; i++) {
4860 page = extent_buffer_page(eb, i);
4861 if (page)
4862 ClearPageUptodate(page);
4863 }
4864 return 0;
4865 }
4866
4867 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4868 {
4869 unsigned long i;
4870 struct page *page;
4871 unsigned long num_pages;
4872
4873 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4874 num_pages = num_extent_pages(eb->start, eb->len);
4875 for (i = 0; i < num_pages; i++) {
4876 page = extent_buffer_page(eb, i);
4877 SetPageUptodate(page);
4878 }
4879 return 0;
4880 }
4881
4882 int extent_buffer_uptodate(struct extent_buffer *eb)
4883 {
4884 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4885 }
4886
4887 int read_extent_buffer_pages(struct extent_io_tree *tree,
4888 struct extent_buffer *eb, u64 start, int wait,
4889 get_extent_t *get_extent, int mirror_num)
4890 {
4891 unsigned long i;
4892 unsigned long start_i;
4893 struct page *page;
4894 int err;
4895 int ret = 0;
4896 int locked_pages = 0;
4897 int all_uptodate = 1;
4898 unsigned long num_pages;
4899 unsigned long num_reads = 0;
4900 struct bio *bio = NULL;
4901 unsigned long bio_flags = 0;
4902
4903 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4904 return 0;
4905
4906 if (start) {
4907 WARN_ON(start < eb->start);
4908 start_i = (start >> PAGE_CACHE_SHIFT) -
4909 (eb->start >> PAGE_CACHE_SHIFT);
4910 } else {
4911 start_i = 0;
4912 }
4913
4914 num_pages = num_extent_pages(eb->start, eb->len);
4915 for (i = start_i; i < num_pages; i++) {
4916 page = extent_buffer_page(eb, i);
4917 if (wait == WAIT_NONE) {
4918 if (!trylock_page(page))
4919 goto unlock_exit;
4920 } else {
4921 lock_page(page);
4922 }
4923 locked_pages++;
4924 if (!PageUptodate(page)) {
4925 num_reads++;
4926 all_uptodate = 0;
4927 }
4928 }
4929 if (all_uptodate) {
4930 if (start_i == 0)
4931 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4932 goto unlock_exit;
4933 }
4934
4935 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4936 eb->read_mirror = 0;
4937 atomic_set(&eb->io_pages, num_reads);
4938 for (i = start_i; i < num_pages; i++) {
4939 page = extent_buffer_page(eb, i);
4940 if (!PageUptodate(page)) {
4941 ClearPageError(page);
4942 err = __extent_read_full_page(tree, page,
4943 get_extent, &bio,
4944 mirror_num, &bio_flags,
4945 READ | REQ_META);
4946 if (err)
4947 ret = err;
4948 } else {
4949 unlock_page(page);
4950 }
4951 }
4952
4953 if (bio) {
4954 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4955 bio_flags);
4956 if (err)
4957 return err;
4958 }
4959
4960 if (ret || wait != WAIT_COMPLETE)
4961 return ret;
4962
4963 for (i = start_i; i < num_pages; i++) {
4964 page = extent_buffer_page(eb, i);
4965 wait_on_page_locked(page);
4966 if (!PageUptodate(page))
4967 ret = -EIO;
4968 }
4969
4970 return ret;
4971
4972 unlock_exit:
4973 i = start_i;
4974 while (locked_pages > 0) {
4975 page = extent_buffer_page(eb, i);
4976 i++;
4977 unlock_page(page);
4978 locked_pages--;
4979 }
4980 return ret;
4981 }
4982
4983 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4984 unsigned long start,
4985 unsigned long len)
4986 {
4987 size_t cur;
4988 size_t offset;
4989 struct page *page;
4990 char *kaddr;
4991 char *dst = (char *)dstv;
4992 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4993 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4994
4995 WARN_ON(start > eb->len);
4996 WARN_ON(start + len > eb->start + eb->len);
4997
4998 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4999
5000 while (len > 0) {
5001 page = extent_buffer_page(eb, i);
5002
5003 cur = min(len, (PAGE_CACHE_SIZE - offset));
5004 kaddr = page_address(page);
5005 memcpy(dst, kaddr + offset, cur);
5006
5007 dst += cur;
5008 len -= cur;
5009 offset = 0;
5010 i++;
5011 }
5012 }
5013
5014 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5015 unsigned long min_len, char **map,
5016 unsigned long *map_start,
5017 unsigned long *map_len)
5018 {
5019 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5020 char *kaddr;
5021 struct page *p;
5022 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5023 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5024 unsigned long end_i = (start_offset + start + min_len - 1) >>
5025 PAGE_CACHE_SHIFT;
5026
5027 if (i != end_i)
5028 return -EINVAL;
5029
5030 if (i == 0) {
5031 offset = start_offset;
5032 *map_start = 0;
5033 } else {
5034 offset = 0;
5035 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5036 }
5037
5038 if (start + min_len > eb->len) {
5039 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5040 "wanted %lu %lu\n",
5041 eb->start, eb->len, start, min_len);
5042 return -EINVAL;
5043 }
5044
5045 p = extent_buffer_page(eb, i);
5046 kaddr = page_address(p);
5047 *map = kaddr + offset;
5048 *map_len = PAGE_CACHE_SIZE - offset;
5049 return 0;
5050 }
5051
5052 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5053 unsigned long start,
5054 unsigned long len)
5055 {
5056 size_t cur;
5057 size_t offset;
5058 struct page *page;
5059 char *kaddr;
5060 char *ptr = (char *)ptrv;
5061 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5062 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5063 int ret = 0;
5064
5065 WARN_ON(start > eb->len);
5066 WARN_ON(start + len > eb->start + eb->len);
5067
5068 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5069
5070 while (len > 0) {
5071 page = extent_buffer_page(eb, i);
5072
5073 cur = min(len, (PAGE_CACHE_SIZE - offset));
5074
5075 kaddr = page_address(page);
5076 ret = memcmp(ptr, kaddr + offset, cur);
5077 if (ret)
5078 break;
5079
5080 ptr += cur;
5081 len -= cur;
5082 offset = 0;
5083 i++;
5084 }
5085 return ret;
5086 }
5087
5088 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5089 unsigned long start, unsigned long len)
5090 {
5091 size_t cur;
5092 size_t offset;
5093 struct page *page;
5094 char *kaddr;
5095 char *src = (char *)srcv;
5096 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5097 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5098
5099 WARN_ON(start > eb->len);
5100 WARN_ON(start + len > eb->start + eb->len);
5101
5102 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5103
5104 while (len > 0) {
5105 page = extent_buffer_page(eb, i);
5106 WARN_ON(!PageUptodate(page));
5107
5108 cur = min(len, PAGE_CACHE_SIZE - offset);
5109 kaddr = page_address(page);
5110 memcpy(kaddr + offset, src, cur);
5111
5112 src += cur;
5113 len -= cur;
5114 offset = 0;
5115 i++;
5116 }
5117 }
5118
5119 void memset_extent_buffer(struct extent_buffer *eb, char c,
5120 unsigned long start, unsigned long len)
5121 {
5122 size_t cur;
5123 size_t offset;
5124 struct page *page;
5125 char *kaddr;
5126 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5127 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5128
5129 WARN_ON(start > eb->len);
5130 WARN_ON(start + len > eb->start + eb->len);
5131
5132 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5133
5134 while (len > 0) {
5135 page = extent_buffer_page(eb, i);
5136 WARN_ON(!PageUptodate(page));
5137
5138 cur = min(len, PAGE_CACHE_SIZE - offset);
5139 kaddr = page_address(page);
5140 memset(kaddr + offset, c, cur);
5141
5142 len -= cur;
5143 offset = 0;
5144 i++;
5145 }
5146 }
5147
5148 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5149 unsigned long dst_offset, unsigned long src_offset,
5150 unsigned long len)
5151 {
5152 u64 dst_len = dst->len;
5153 size_t cur;
5154 size_t offset;
5155 struct page *page;
5156 char *kaddr;
5157 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5158 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5159
5160 WARN_ON(src->len != dst_len);
5161
5162 offset = (start_offset + dst_offset) &
5163 (PAGE_CACHE_SIZE - 1);
5164
5165 while (len > 0) {
5166 page = extent_buffer_page(dst, i);
5167 WARN_ON(!PageUptodate(page));
5168
5169 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5170
5171 kaddr = page_address(page);
5172 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5173
5174 src_offset += cur;
5175 len -= cur;
5176 offset = 0;
5177 i++;
5178 }
5179 }
5180
5181 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5182 {
5183 unsigned long distance = (src > dst) ? src - dst : dst - src;
5184 return distance < len;
5185 }
5186
5187 static void copy_pages(struct page *dst_page, struct page *src_page,
5188 unsigned long dst_off, unsigned long src_off,
5189 unsigned long len)
5190 {
5191 char *dst_kaddr = page_address(dst_page);
5192 char *src_kaddr;
5193 int must_memmove = 0;
5194
5195 if (dst_page != src_page) {
5196 src_kaddr = page_address(src_page);
5197 } else {
5198 src_kaddr = dst_kaddr;
5199 if (areas_overlap(src_off, dst_off, len))
5200 must_memmove = 1;
5201 }
5202
5203 if (must_memmove)
5204 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5205 else
5206 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5207 }
5208
5209 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5210 unsigned long src_offset, unsigned long len)
5211 {
5212 size_t cur;
5213 size_t dst_off_in_page;
5214 size_t src_off_in_page;
5215 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5216 unsigned long dst_i;
5217 unsigned long src_i;
5218
5219 if (src_offset + len > dst->len) {
5220 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5221 "len %lu dst len %lu\n", src_offset, len, dst->len);
5222 BUG_ON(1);
5223 }
5224 if (dst_offset + len > dst->len) {
5225 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5226 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5227 BUG_ON(1);
5228 }
5229
5230 while (len > 0) {
5231 dst_off_in_page = (start_offset + dst_offset) &
5232 (PAGE_CACHE_SIZE - 1);
5233 src_off_in_page = (start_offset + src_offset) &
5234 (PAGE_CACHE_SIZE - 1);
5235
5236 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5237 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5238
5239 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5240 src_off_in_page));
5241 cur = min_t(unsigned long, cur,
5242 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5243
5244 copy_pages(extent_buffer_page(dst, dst_i),
5245 extent_buffer_page(dst, src_i),
5246 dst_off_in_page, src_off_in_page, cur);
5247
5248 src_offset += cur;
5249 dst_offset += cur;
5250 len -= cur;
5251 }
5252 }
5253
5254 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5255 unsigned long src_offset, unsigned long len)
5256 {
5257 size_t cur;
5258 size_t dst_off_in_page;
5259 size_t src_off_in_page;
5260 unsigned long dst_end = dst_offset + len - 1;
5261 unsigned long src_end = src_offset + len - 1;
5262 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5263 unsigned long dst_i;
5264 unsigned long src_i;
5265
5266 if (src_offset + len > dst->len) {
5267 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5268 "len %lu len %lu\n", src_offset, len, dst->len);
5269 BUG_ON(1);
5270 }
5271 if (dst_offset + len > dst->len) {
5272 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5273 "len %lu len %lu\n", dst_offset, len, dst->len);
5274 BUG_ON(1);
5275 }
5276 if (dst_offset < src_offset) {
5277 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5278 return;
5279 }
5280 while (len > 0) {
5281 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5282 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5283
5284 dst_off_in_page = (start_offset + dst_end) &
5285 (PAGE_CACHE_SIZE - 1);
5286 src_off_in_page = (start_offset + src_end) &
5287 (PAGE_CACHE_SIZE - 1);
5288
5289 cur = min_t(unsigned long, len, src_off_in_page + 1);
5290 cur = min(cur, dst_off_in_page + 1);
5291 copy_pages(extent_buffer_page(dst, dst_i),
5292 extent_buffer_page(dst, src_i),
5293 dst_off_in_page - cur + 1,
5294 src_off_in_page - cur + 1, cur);
5295
5296 dst_end -= cur;
5297 src_end -= cur;
5298 len -= cur;
5299 }
5300 }
5301
5302 int try_release_extent_buffer(struct page *page)
5303 {
5304 struct extent_buffer *eb;
5305
5306 /*
5307 * We need to make sure noboody is attaching this page to an eb right
5308 * now.
5309 */
5310 spin_lock(&page->mapping->private_lock);
5311 if (!PagePrivate(page)) {
5312 spin_unlock(&page->mapping->private_lock);
5313 return 1;
5314 }
5315
5316 eb = (struct extent_buffer *)page->private;
5317 BUG_ON(!eb);
5318
5319 /*
5320 * This is a little awful but should be ok, we need to make sure that
5321 * the eb doesn't disappear out from under us while we're looking at
5322 * this page.
5323 */
5324 spin_lock(&eb->refs_lock);
5325 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5326 spin_unlock(&eb->refs_lock);
5327 spin_unlock(&page->mapping->private_lock);
5328 return 0;
5329 }
5330 spin_unlock(&page->mapping->private_lock);
5331
5332 /*
5333 * If tree ref isn't set then we know the ref on this eb is a real ref,
5334 * so just return, this page will likely be freed soon anyway.
5335 */
5336 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5337 spin_unlock(&eb->refs_lock);
5338 return 0;
5339 }
5340
5341 return release_extent_buffer(eb);
5342 }