]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: Make get_extent_t take btrfs_inode
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(&changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 /*
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
232 */
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
234 state = kmem_cache_alloc(extent_state_cache, mask);
235 if (!state)
236 return state;
237 state->state = 0;
238 state->failrec = NULL;
239 RB_CLEAR_NODE(&state->rb_node);
240 btrfs_leak_debug_add(&state->leak_list, &states);
241 atomic_set(&state->refs, 1);
242 init_waitqueue_head(&state->wq);
243 trace_alloc_extent_state(state, mask, _RET_IP_);
244 return state;
245 }
246
247 void free_extent_state(struct extent_state *state)
248 {
249 if (!state)
250 return;
251 if (atomic_dec_and_test(&state->refs)) {
252 WARN_ON(extent_state_in_tree(state));
253 btrfs_leak_debug_del(&state->leak_list);
254 trace_free_extent_state(state, _RET_IP_);
255 kmem_cache_free(extent_state_cache, state);
256 }
257 }
258
259 static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
261 u64 offset,
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
265 {
266 struct rb_node **p;
267 struct rb_node *parent = NULL;
268 struct tree_entry *entry;
269
270 if (p_in && parent_in) {
271 p = *p_in;
272 parent = *parent_in;
273 goto do_insert;
274 }
275
276 p = search_start ? &search_start : &root->rb_node;
277 while (*p) {
278 parent = *p;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
280
281 if (offset < entry->start)
282 p = &(*p)->rb_left;
283 else if (offset > entry->end)
284 p = &(*p)->rb_right;
285 else
286 return parent;
287 }
288
289 do_insert:
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
292 return NULL;
293 }
294
295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
300 {
301 struct rb_root *root = &tree->state;
302 struct rb_node **n = &root->rb_node;
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
307
308 while (*n) {
309 prev = *n;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
311 prev_entry = entry;
312
313 if (offset < entry->start)
314 n = &(*n)->rb_left;
315 else if (offset > entry->end)
316 n = &(*n)->rb_right;
317 else
318 return *n;
319 }
320
321 if (p_ret)
322 *p_ret = n;
323 if (parent_ret)
324 *parent_ret = prev;
325
326 if (prev_ret) {
327 orig_prev = prev;
328 while (prev && offset > prev_entry->end) {
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *prev_ret = prev;
333 prev = orig_prev;
334 }
335
336 if (next_ret) {
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 while (prev && offset < prev_entry->start) {
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 }
342 *next_ret = prev;
343 }
344 return NULL;
345 }
346
347 static inline struct rb_node *
348 tree_search_for_insert(struct extent_io_tree *tree,
349 u64 offset,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
352 {
353 struct rb_node *prev = NULL;
354 struct rb_node *ret;
355
356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
357 if (!ret)
358 return prev;
359 return ret;
360 }
361
362 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 u64 offset)
364 {
365 return tree_search_for_insert(tree, offset, NULL, NULL);
366 }
367
368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
370 {
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
373 other);
374 }
375
376 /*
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
382 *
383 * This should be called with the tree lock held.
384 */
385 static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
387 {
388 struct extent_state *other;
389 struct rb_node *other_node;
390
391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
392 return;
393
394 other_node = rb_prev(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
399 merge_cb(tree, state, other);
400 state->start = other->start;
401 rb_erase(&other->rb_node, &tree->state);
402 RB_CLEAR_NODE(&other->rb_node);
403 free_extent_state(other);
404 }
405 }
406 other_node = rb_next(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
411 merge_cb(tree, state, other);
412 state->end = other->end;
413 rb_erase(&other->rb_node, &tree->state);
414 RB_CLEAR_NODE(&other->rb_node);
415 free_extent_state(other);
416 }
417 }
418 }
419
420 static void set_state_cb(struct extent_io_tree *tree,
421 struct extent_state *state, unsigned *bits)
422 {
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
425 }
426
427 static void clear_state_cb(struct extent_io_tree *tree,
428 struct extent_state *state, unsigned *bits)
429 {
430 if (tree->ops && tree->ops->clear_bit_hook)
431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 state, bits);
433 }
434
435 static void set_state_bits(struct extent_io_tree *tree,
436 struct extent_state *state, unsigned *bits,
437 struct extent_changeset *changeset);
438
439 /*
440 * insert an extent_state struct into the tree. 'bits' are set on the
441 * struct before it is inserted.
442 *
443 * This may return -EEXIST if the extent is already there, in which case the
444 * state struct is freed.
445 *
446 * The tree lock is not taken internally. This is a utility function and
447 * probably isn't what you want to call (see set/clear_extent_bit).
448 */
449 static int insert_state(struct extent_io_tree *tree,
450 struct extent_state *state, u64 start, u64 end,
451 struct rb_node ***p,
452 struct rb_node **parent,
453 unsigned *bits, struct extent_changeset *changeset)
454 {
455 struct rb_node *node;
456
457 if (end < start)
458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
459 end, start);
460 state->start = start;
461 state->end = end;
462
463 set_state_bits(tree, state, bits, changeset);
464
465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
466 if (node) {
467 struct extent_state *found;
468 found = rb_entry(node, struct extent_state, rb_node);
469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
470 found->start, found->end, start, end);
471 return -EEXIST;
472 }
473 merge_state(tree, state);
474 return 0;
475 }
476
477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
478 u64 split)
479 {
480 if (tree->ops && tree->ops->split_extent_hook)
481 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 }
483
484 /*
485 * split a given extent state struct in two, inserting the preallocated
486 * struct 'prealloc' as the newly created second half. 'split' indicates an
487 * offset inside 'orig' where it should be split.
488 *
489 * Before calling,
490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
491 * are two extent state structs in the tree:
492 * prealloc: [orig->start, split - 1]
493 * orig: [ split, orig->end ]
494 *
495 * The tree locks are not taken by this function. They need to be held
496 * by the caller.
497 */
498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 struct extent_state *prealloc, u64 split)
500 {
501 struct rb_node *node;
502
503 split_cb(tree, orig, split);
504
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
508 orig->start = split;
509
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
512 if (node) {
513 free_extent_state(prealloc);
514 return -EEXIST;
515 }
516 return 0;
517 }
518
519 static struct extent_state *next_state(struct extent_state *state)
520 {
521 struct rb_node *next = rb_next(&state->rb_node);
522 if (next)
523 return rb_entry(next, struct extent_state, rb_node);
524 else
525 return NULL;
526 }
527
528 /*
529 * utility function to clear some bits in an extent state struct.
530 * it will optionally wake up any one waiting on this state (wake == 1).
531 *
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
534 */
535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
539 {
540 struct extent_state *next;
541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
542
543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
544 u64 range = state->end - state->start + 1;
545 WARN_ON(range > tree->dirty_bytes);
546 tree->dirty_bytes -= range;
547 }
548 clear_state_cb(tree, state, bits);
549 add_extent_changeset(state, bits_to_clear, changeset, 0);
550 state->state &= ~bits_to_clear;
551 if (wake)
552 wake_up(&state->wq);
553 if (state->state == 0) {
554 next = next_state(state);
555 if (extent_state_in_tree(state)) {
556 rb_erase(&state->rb_node, &tree->state);
557 RB_CLEAR_NODE(&state->rb_node);
558 free_extent_state(state);
559 } else {
560 WARN_ON(1);
561 }
562 } else {
563 merge_state(tree, state);
564 next = next_state(state);
565 }
566 return next;
567 }
568
569 static struct extent_state *
570 alloc_extent_state_atomic(struct extent_state *prealloc)
571 {
572 if (!prealloc)
573 prealloc = alloc_extent_state(GFP_ATOMIC);
574
575 return prealloc;
576 }
577
578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
579 {
580 btrfs_panic(tree_fs_info(tree), err,
581 "Locking error: Extent tree was modified by another thread while locked.");
582 }
583
584 /*
585 * clear some bits on a range in the tree. This may require splitting
586 * or inserting elements in the tree, so the gfp mask is used to
587 * indicate which allocations or sleeping are allowed.
588 *
589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590 * the given range from the tree regardless of state (ie for truncate).
591 *
592 * the range [start, end] is inclusive.
593 *
594 * This takes the tree lock, and returns 0 on success and < 0 on error.
595 */
596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 unsigned bits, int wake, int delete,
598 struct extent_state **cached_state,
599 gfp_t mask, struct extent_changeset *changeset)
600 {
601 struct extent_state *state;
602 struct extent_state *cached;
603 struct extent_state *prealloc = NULL;
604 struct rb_node *node;
605 u64 last_end;
606 int err;
607 int clear = 0;
608
609 btrfs_debug_check_extent_io_range(tree, start, end);
610
611 if (bits & EXTENT_DELALLOC)
612 bits |= EXTENT_NORESERVE;
613
614 if (delete)
615 bits |= ~EXTENT_CTLBITS;
616 bits |= EXTENT_FIRST_DELALLOC;
617
618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 clear = 1;
620 again:
621 if (!prealloc && gfpflags_allow_blocking(mask)) {
622 /*
623 * Don't care for allocation failure here because we might end
624 * up not needing the pre-allocated extent state at all, which
625 * is the case if we only have in the tree extent states that
626 * cover our input range and don't cover too any other range.
627 * If we end up needing a new extent state we allocate it later.
628 */
629 prealloc = alloc_extent_state(mask);
630 }
631
632 spin_lock(&tree->lock);
633 if (cached_state) {
634 cached = *cached_state;
635
636 if (clear) {
637 *cached_state = NULL;
638 cached_state = NULL;
639 }
640
641 if (cached && extent_state_in_tree(cached) &&
642 cached->start <= start && cached->end > start) {
643 if (clear)
644 atomic_dec(&cached->refs);
645 state = cached;
646 goto hit_next;
647 }
648 if (clear)
649 free_extent_state(cached);
650 }
651 /*
652 * this search will find the extents that end after
653 * our range starts
654 */
655 node = tree_search(tree, start);
656 if (!node)
657 goto out;
658 state = rb_entry(node, struct extent_state, rb_node);
659 hit_next:
660 if (state->start > end)
661 goto out;
662 WARN_ON(state->end < start);
663 last_end = state->end;
664
665 /* the state doesn't have the wanted bits, go ahead */
666 if (!(state->state & bits)) {
667 state = next_state(state);
668 goto next;
669 }
670
671 /*
672 * | ---- desired range ---- |
673 * | state | or
674 * | ------------- state -------------- |
675 *
676 * We need to split the extent we found, and may flip
677 * bits on second half.
678 *
679 * If the extent we found extends past our range, we
680 * just split and search again. It'll get split again
681 * the next time though.
682 *
683 * If the extent we found is inside our range, we clear
684 * the desired bit on it.
685 */
686
687 if (state->start < start) {
688 prealloc = alloc_extent_state_atomic(prealloc);
689 BUG_ON(!prealloc);
690 err = split_state(tree, state, prealloc, start);
691 if (err)
692 extent_io_tree_panic(tree, err);
693
694 prealloc = NULL;
695 if (err)
696 goto out;
697 if (state->end <= end) {
698 state = clear_state_bit(tree, state, &bits, wake,
699 changeset);
700 goto next;
701 }
702 goto search_again;
703 }
704 /*
705 * | ---- desired range ---- |
706 * | state |
707 * We need to split the extent, and clear the bit
708 * on the first half
709 */
710 if (state->start <= end && state->end > end) {
711 prealloc = alloc_extent_state_atomic(prealloc);
712 BUG_ON(!prealloc);
713 err = split_state(tree, state, prealloc, end + 1);
714 if (err)
715 extent_io_tree_panic(tree, err);
716
717 if (wake)
718 wake_up(&state->wq);
719
720 clear_state_bit(tree, prealloc, &bits, wake, changeset);
721
722 prealloc = NULL;
723 goto out;
724 }
725
726 state = clear_state_bit(tree, state, &bits, wake, changeset);
727 next:
728 if (last_end == (u64)-1)
729 goto out;
730 start = last_end + 1;
731 if (start <= end && state && !need_resched())
732 goto hit_next;
733
734 search_again:
735 if (start > end)
736 goto out;
737 spin_unlock(&tree->lock);
738 if (gfpflags_allow_blocking(mask))
739 cond_resched();
740 goto again;
741
742 out:
743 spin_unlock(&tree->lock);
744 if (prealloc)
745 free_extent_state(prealloc);
746
747 return 0;
748
749 }
750
751 static void wait_on_state(struct extent_io_tree *tree,
752 struct extent_state *state)
753 __releases(tree->lock)
754 __acquires(tree->lock)
755 {
756 DEFINE_WAIT(wait);
757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
758 spin_unlock(&tree->lock);
759 schedule();
760 spin_lock(&tree->lock);
761 finish_wait(&state->wq, &wait);
762 }
763
764 /*
765 * waits for one or more bits to clear on a range in the state tree.
766 * The range [start, end] is inclusive.
767 * The tree lock is taken by this function
768 */
769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 unsigned long bits)
771 {
772 struct extent_state *state;
773 struct rb_node *node;
774
775 btrfs_debug_check_extent_io_range(tree, start, end);
776
777 spin_lock(&tree->lock);
778 again:
779 while (1) {
780 /*
781 * this search will find all the extents that end after
782 * our range starts
783 */
784 node = tree_search(tree, start);
785 process_node:
786 if (!node)
787 break;
788
789 state = rb_entry(node, struct extent_state, rb_node);
790
791 if (state->start > end)
792 goto out;
793
794 if (state->state & bits) {
795 start = state->start;
796 atomic_inc(&state->refs);
797 wait_on_state(tree, state);
798 free_extent_state(state);
799 goto again;
800 }
801 start = state->end + 1;
802
803 if (start > end)
804 break;
805
806 if (!cond_resched_lock(&tree->lock)) {
807 node = rb_next(node);
808 goto process_node;
809 }
810 }
811 out:
812 spin_unlock(&tree->lock);
813 }
814
815 static void set_state_bits(struct extent_io_tree *tree,
816 struct extent_state *state,
817 unsigned *bits, struct extent_changeset *changeset)
818 {
819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
820
821 set_state_cb(tree, state, bits);
822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
823 u64 range = state->end - state->start + 1;
824 tree->dirty_bytes += range;
825 }
826 add_extent_changeset(state, bits_to_set, changeset, 1);
827 state->state |= bits_to_set;
828 }
829
830 static void cache_state_if_flags(struct extent_state *state,
831 struct extent_state **cached_ptr,
832 unsigned flags)
833 {
834 if (cached_ptr && !(*cached_ptr)) {
835 if (!flags || (state->state & flags)) {
836 *cached_ptr = state;
837 atomic_inc(&state->refs);
838 }
839 }
840 }
841
842 static void cache_state(struct extent_state *state,
843 struct extent_state **cached_ptr)
844 {
845 return cache_state_if_flags(state, cached_ptr,
846 EXTENT_IOBITS | EXTENT_BOUNDARY);
847 }
848
849 /*
850 * set some bits on a range in the tree. This may require allocations or
851 * sleeping, so the gfp mask is used to indicate what is allowed.
852 *
853 * If any of the exclusive bits are set, this will fail with -EEXIST if some
854 * part of the range already has the desired bits set. The start of the
855 * existing range is returned in failed_start in this case.
856 *
857 * [start, end] is inclusive This takes the tree lock.
858 */
859
860 static int __must_check
861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
862 unsigned bits, unsigned exclusive_bits,
863 u64 *failed_start, struct extent_state **cached_state,
864 gfp_t mask, struct extent_changeset *changeset)
865 {
866 struct extent_state *state;
867 struct extent_state *prealloc = NULL;
868 struct rb_node *node;
869 struct rb_node **p;
870 struct rb_node *parent;
871 int err = 0;
872 u64 last_start;
873 u64 last_end;
874
875 btrfs_debug_check_extent_io_range(tree, start, end);
876
877 bits |= EXTENT_FIRST_DELALLOC;
878 again:
879 if (!prealloc && gfpflags_allow_blocking(mask)) {
880 /*
881 * Don't care for allocation failure here because we might end
882 * up not needing the pre-allocated extent state at all, which
883 * is the case if we only have in the tree extent states that
884 * cover our input range and don't cover too any other range.
885 * If we end up needing a new extent state we allocate it later.
886 */
887 prealloc = alloc_extent_state(mask);
888 }
889
890 spin_lock(&tree->lock);
891 if (cached_state && *cached_state) {
892 state = *cached_state;
893 if (state->start <= start && state->end > start &&
894 extent_state_in_tree(state)) {
895 node = &state->rb_node;
896 goto hit_next;
897 }
898 }
899 /*
900 * this search will find all the extents that end after
901 * our range starts.
902 */
903 node = tree_search_for_insert(tree, start, &p, &parent);
904 if (!node) {
905 prealloc = alloc_extent_state_atomic(prealloc);
906 BUG_ON(!prealloc);
907 err = insert_state(tree, prealloc, start, end,
908 &p, &parent, &bits, changeset);
909 if (err)
910 extent_io_tree_panic(tree, err);
911
912 cache_state(prealloc, cached_state);
913 prealloc = NULL;
914 goto out;
915 }
916 state = rb_entry(node, struct extent_state, rb_node);
917 hit_next:
918 last_start = state->start;
919 last_end = state->end;
920
921 /*
922 * | ---- desired range ---- |
923 * | state |
924 *
925 * Just lock what we found and keep going
926 */
927 if (state->start == start && state->end <= end) {
928 if (state->state & exclusive_bits) {
929 *failed_start = state->start;
930 err = -EEXIST;
931 goto out;
932 }
933
934 set_state_bits(tree, state, &bits, changeset);
935 cache_state(state, cached_state);
936 merge_state(tree, state);
937 if (last_end == (u64)-1)
938 goto out;
939 start = last_end + 1;
940 state = next_state(state);
941 if (start < end && state && state->start == start &&
942 !need_resched())
943 goto hit_next;
944 goto search_again;
945 }
946
947 /*
948 * | ---- desired range ---- |
949 * | state |
950 * or
951 * | ------------- state -------------- |
952 *
953 * We need to split the extent we found, and may flip bits on
954 * second half.
955 *
956 * If the extent we found extends past our
957 * range, we just split and search again. It'll get split
958 * again the next time though.
959 *
960 * If the extent we found is inside our range, we set the
961 * desired bit on it.
962 */
963 if (state->start < start) {
964 if (state->state & exclusive_bits) {
965 *failed_start = start;
966 err = -EEXIST;
967 goto out;
968 }
969
970 prealloc = alloc_extent_state_atomic(prealloc);
971 BUG_ON(!prealloc);
972 err = split_state(tree, state, prealloc, start);
973 if (err)
974 extent_io_tree_panic(tree, err);
975
976 prealloc = NULL;
977 if (err)
978 goto out;
979 if (state->end <= end) {
980 set_state_bits(tree, state, &bits, changeset);
981 cache_state(state, cached_state);
982 merge_state(tree, state);
983 if (last_end == (u64)-1)
984 goto out;
985 start = last_end + 1;
986 state = next_state(state);
987 if (start < end && state && state->start == start &&
988 !need_resched())
989 goto hit_next;
990 }
991 goto search_again;
992 }
993 /*
994 * | ---- desired range ---- |
995 * | state | or | state |
996 *
997 * There's a hole, we need to insert something in it and
998 * ignore the extent we found.
999 */
1000 if (state->start > start) {
1001 u64 this_end;
1002 if (end < last_start)
1003 this_end = end;
1004 else
1005 this_end = last_start - 1;
1006
1007 prealloc = alloc_extent_state_atomic(prealloc);
1008 BUG_ON(!prealloc);
1009
1010 /*
1011 * Avoid to free 'prealloc' if it can be merged with
1012 * the later extent.
1013 */
1014 err = insert_state(tree, prealloc, start, this_end,
1015 NULL, NULL, &bits, changeset);
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1018
1019 cache_state(prealloc, cached_state);
1020 prealloc = NULL;
1021 start = this_end + 1;
1022 goto search_again;
1023 }
1024 /*
1025 * | ---- desired range ---- |
1026 * | state |
1027 * We need to split the extent, and set the bit
1028 * on the first half
1029 */
1030 if (state->start <= end && state->end > end) {
1031 if (state->state & exclusive_bits) {
1032 *failed_start = start;
1033 err = -EEXIST;
1034 goto out;
1035 }
1036
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 BUG_ON(!prealloc);
1039 err = split_state(tree, state, prealloc, end + 1);
1040 if (err)
1041 extent_io_tree_panic(tree, err);
1042
1043 set_state_bits(tree, prealloc, &bits, changeset);
1044 cache_state(prealloc, cached_state);
1045 merge_state(tree, prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049
1050 search_again:
1051 if (start > end)
1052 goto out;
1053 spin_unlock(&tree->lock);
1054 if (gfpflags_allow_blocking(mask))
1055 cond_resched();
1056 goto again;
1057
1058 out:
1059 spin_unlock(&tree->lock);
1060 if (prealloc)
1061 free_extent_state(prealloc);
1062
1063 return err;
1064
1065 }
1066
1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1068 unsigned bits, u64 * failed_start,
1069 struct extent_state **cached_state, gfp_t mask)
1070 {
1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1072 cached_state, mask, NULL);
1073 }
1074
1075
1076 /**
1077 * convert_extent_bit - convert all bits in a given range from one bit to
1078 * another
1079 * @tree: the io tree to search
1080 * @start: the start offset in bytes
1081 * @end: the end offset in bytes (inclusive)
1082 * @bits: the bits to set in this range
1083 * @clear_bits: the bits to clear in this range
1084 * @cached_state: state that we're going to cache
1085 *
1086 * This will go through and set bits for the given range. If any states exist
1087 * already in this range they are set with the given bit and cleared of the
1088 * clear_bits. This is only meant to be used by things that are mergeable, ie
1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1090 * boundary bits like LOCK.
1091 *
1092 * All allocations are done with GFP_NOFS.
1093 */
1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1095 unsigned bits, unsigned clear_bits,
1096 struct extent_state **cached_state)
1097 {
1098 struct extent_state *state;
1099 struct extent_state *prealloc = NULL;
1100 struct rb_node *node;
1101 struct rb_node **p;
1102 struct rb_node *parent;
1103 int err = 0;
1104 u64 last_start;
1105 u64 last_end;
1106 bool first_iteration = true;
1107
1108 btrfs_debug_check_extent_io_range(tree, start, end);
1109
1110 again:
1111 if (!prealloc) {
1112 /*
1113 * Best effort, don't worry if extent state allocation fails
1114 * here for the first iteration. We might have a cached state
1115 * that matches exactly the target range, in which case no
1116 * extent state allocations are needed. We'll only know this
1117 * after locking the tree.
1118 */
1119 prealloc = alloc_extent_state(GFP_NOFS);
1120 if (!prealloc && !first_iteration)
1121 return -ENOMEM;
1122 }
1123
1124 spin_lock(&tree->lock);
1125 if (cached_state && *cached_state) {
1126 state = *cached_state;
1127 if (state->start <= start && state->end > start &&
1128 extent_state_in_tree(state)) {
1129 node = &state->rb_node;
1130 goto hit_next;
1131 }
1132 }
1133
1134 /*
1135 * this search will find all the extents that end after
1136 * our range starts.
1137 */
1138 node = tree_search_for_insert(tree, start, &p, &parent);
1139 if (!node) {
1140 prealloc = alloc_extent_state_atomic(prealloc);
1141 if (!prealloc) {
1142 err = -ENOMEM;
1143 goto out;
1144 }
1145 err = insert_state(tree, prealloc, start, end,
1146 &p, &parent, &bits, NULL);
1147 if (err)
1148 extent_io_tree_panic(tree, err);
1149 cache_state(prealloc, cached_state);
1150 prealloc = NULL;
1151 goto out;
1152 }
1153 state = rb_entry(node, struct extent_state, rb_node);
1154 hit_next:
1155 last_start = state->start;
1156 last_end = state->end;
1157
1158 /*
1159 * | ---- desired range ---- |
1160 * | state |
1161 *
1162 * Just lock what we found and keep going
1163 */
1164 if (state->start == start && state->end <= end) {
1165 set_state_bits(tree, state, &bits, NULL);
1166 cache_state(state, cached_state);
1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1168 if (last_end == (u64)-1)
1169 goto out;
1170 start = last_end + 1;
1171 if (start < end && state && state->start == start &&
1172 !need_resched())
1173 goto hit_next;
1174 goto search_again;
1175 }
1176
1177 /*
1178 * | ---- desired range ---- |
1179 * | state |
1180 * or
1181 * | ------------- state -------------- |
1182 *
1183 * We need to split the extent we found, and may flip bits on
1184 * second half.
1185 *
1186 * If the extent we found extends past our
1187 * range, we just split and search again. It'll get split
1188 * again the next time though.
1189 *
1190 * If the extent we found is inside our range, we set the
1191 * desired bit on it.
1192 */
1193 if (state->start < start) {
1194 prealloc = alloc_extent_state_atomic(prealloc);
1195 if (!prealloc) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
1199 err = split_state(tree, state, prealloc, start);
1200 if (err)
1201 extent_io_tree_panic(tree, err);
1202 prealloc = NULL;
1203 if (err)
1204 goto out;
1205 if (state->end <= end) {
1206 set_state_bits(tree, state, &bits, NULL);
1207 cache_state(state, cached_state);
1208 state = clear_state_bit(tree, state, &clear_bits, 0,
1209 NULL);
1210 if (last_end == (u64)-1)
1211 goto out;
1212 start = last_end + 1;
1213 if (start < end && state && state->start == start &&
1214 !need_resched())
1215 goto hit_next;
1216 }
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state | or | state |
1222 *
1223 * There's a hole, we need to insert something in it and
1224 * ignore the extent we found.
1225 */
1226 if (state->start > start) {
1227 u64 this_end;
1228 if (end < last_start)
1229 this_end = end;
1230 else
1231 this_end = last_start - 1;
1232
1233 prealloc = alloc_extent_state_atomic(prealloc);
1234 if (!prealloc) {
1235 err = -ENOMEM;
1236 goto out;
1237 }
1238
1239 /*
1240 * Avoid to free 'prealloc' if it can be merged with
1241 * the later extent.
1242 */
1243 err = insert_state(tree, prealloc, start, this_end,
1244 NULL, NULL, &bits, NULL);
1245 if (err)
1246 extent_io_tree_panic(tree, err);
1247 cache_state(prealloc, cached_state);
1248 prealloc = NULL;
1249 start = this_end + 1;
1250 goto search_again;
1251 }
1252 /*
1253 * | ---- desired range ---- |
1254 * | state |
1255 * We need to split the extent, and set the bit
1256 * on the first half
1257 */
1258 if (state->start <= end && state->end > end) {
1259 prealloc = alloc_extent_state_atomic(prealloc);
1260 if (!prealloc) {
1261 err = -ENOMEM;
1262 goto out;
1263 }
1264
1265 err = split_state(tree, state, prealloc, end + 1);
1266 if (err)
1267 extent_io_tree_panic(tree, err);
1268
1269 set_state_bits(tree, prealloc, &bits, NULL);
1270 cache_state(prealloc, cached_state);
1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1272 prealloc = NULL;
1273 goto out;
1274 }
1275
1276 search_again:
1277 if (start > end)
1278 goto out;
1279 spin_unlock(&tree->lock);
1280 cond_resched();
1281 first_iteration = false;
1282 goto again;
1283
1284 out:
1285 spin_unlock(&tree->lock);
1286 if (prealloc)
1287 free_extent_state(prealloc);
1288
1289 return err;
1290 }
1291
1292 /* wrappers around set/clear extent bit */
1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1294 unsigned bits, struct extent_changeset *changeset)
1295 {
1296 /*
1297 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 * either fail with -EEXIST or changeset will record the whole
1300 * range.
1301 */
1302 BUG_ON(bits & EXTENT_LOCKED);
1303
1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1305 changeset);
1306 }
1307
1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, int wake, int delete,
1310 struct extent_state **cached, gfp_t mask)
1311 {
1312 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 cached, mask, NULL);
1314 }
1315
1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 unsigned bits, struct extent_changeset *changeset)
1318 {
1319 /*
1320 * Don't support EXTENT_LOCKED case, same reason as
1321 * set_record_extent_bits().
1322 */
1323 BUG_ON(bits & EXTENT_LOCKED);
1324
1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1326 changeset);
1327 }
1328
1329 /*
1330 * either insert or lock state struct between start and end use mask to tell
1331 * us if waiting is desired.
1332 */
1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1334 struct extent_state **cached_state)
1335 {
1336 int err;
1337 u64 failed_start;
1338
1339 while (1) {
1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1341 EXTENT_LOCKED, &failed_start,
1342 cached_state, GFP_NOFS, NULL);
1343 if (err == -EEXIST) {
1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 start = failed_start;
1346 } else
1347 break;
1348 WARN_ON(start > end);
1349 }
1350 return err;
1351 }
1352
1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 {
1355 int err;
1356 u64 failed_start;
1357
1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1359 &failed_start, NULL, GFP_NOFS, NULL);
1360 if (err == -EEXIST) {
1361 if (failed_start > start)
1362 clear_extent_bit(tree, start, failed_start - 1,
1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1364 return 0;
1365 }
1366 return 1;
1367 }
1368
1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371 unsigned long index = start >> PAGE_SHIFT;
1372 unsigned long end_index = end >> PAGE_SHIFT;
1373 struct page *page;
1374
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 clear_page_dirty_for_io(page);
1379 put_page(page);
1380 index++;
1381 }
1382 }
1383
1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1385 {
1386 unsigned long index = start >> PAGE_SHIFT;
1387 unsigned long end_index = end >> PAGE_SHIFT;
1388 struct page *page;
1389
1390 while (index <= end_index) {
1391 page = find_get_page(inode->i_mapping, index);
1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1393 __set_page_dirty_nobuffers(page);
1394 account_page_redirty(page);
1395 put_page(page);
1396 index++;
1397 }
1398 }
1399
1400 /*
1401 * helper function to set both pages and extents in the tree writeback
1402 */
1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1404 {
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
1407 struct page *page;
1408
1409 while (index <= end_index) {
1410 page = find_get_page(tree->mapping, index);
1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 set_page_writeback(page);
1413 put_page(page);
1414 index++;
1415 }
1416 }
1417
1418 /* find the first state struct with 'bits' set after 'start', and
1419 * return it. tree->lock must be held. NULL will returned if
1420 * nothing was found after 'start'
1421 */
1422 static struct extent_state *
1423 find_first_extent_bit_state(struct extent_io_tree *tree,
1424 u64 start, unsigned bits)
1425 {
1426 struct rb_node *node;
1427 struct extent_state *state;
1428
1429 /*
1430 * this search will find all the extents that end after
1431 * our range starts.
1432 */
1433 node = tree_search(tree, start);
1434 if (!node)
1435 goto out;
1436
1437 while (1) {
1438 state = rb_entry(node, struct extent_state, rb_node);
1439 if (state->end >= start && (state->state & bits))
1440 return state;
1441
1442 node = rb_next(node);
1443 if (!node)
1444 break;
1445 }
1446 out:
1447 return NULL;
1448 }
1449
1450 /*
1451 * find the first offset in the io tree with 'bits' set. zero is
1452 * returned if we find something, and *start_ret and *end_ret are
1453 * set to reflect the state struct that was found.
1454 *
1455 * If nothing was found, 1 is returned. If found something, return 0.
1456 */
1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1458 u64 *start_ret, u64 *end_ret, unsigned bits,
1459 struct extent_state **cached_state)
1460 {
1461 struct extent_state *state;
1462 struct rb_node *n;
1463 int ret = 1;
1464
1465 spin_lock(&tree->lock);
1466 if (cached_state && *cached_state) {
1467 state = *cached_state;
1468 if (state->end == start - 1 && extent_state_in_tree(state)) {
1469 n = rb_next(&state->rb_node);
1470 while (n) {
1471 state = rb_entry(n, struct extent_state,
1472 rb_node);
1473 if (state->state & bits)
1474 goto got_it;
1475 n = rb_next(n);
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 goto out;
1480 }
1481 free_extent_state(*cached_state);
1482 *cached_state = NULL;
1483 }
1484
1485 state = find_first_extent_bit_state(tree, start, bits);
1486 got_it:
1487 if (state) {
1488 cache_state_if_flags(state, cached_state, 0);
1489 *start_ret = state->start;
1490 *end_ret = state->end;
1491 ret = 0;
1492 }
1493 out:
1494 spin_unlock(&tree->lock);
1495 return ret;
1496 }
1497
1498 /*
1499 * find a contiguous range of bytes in the file marked as delalloc, not
1500 * more than 'max_bytes'. start and end are used to return the range,
1501 *
1502 * 1 is returned if we find something, 0 if nothing was in the tree
1503 */
1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1505 u64 *start, u64 *end, u64 max_bytes,
1506 struct extent_state **cached_state)
1507 {
1508 struct rb_node *node;
1509 struct extent_state *state;
1510 u64 cur_start = *start;
1511 u64 found = 0;
1512 u64 total_bytes = 0;
1513
1514 spin_lock(&tree->lock);
1515
1516 /*
1517 * this search will find all the extents that end after
1518 * our range starts.
1519 */
1520 node = tree_search(tree, cur_start);
1521 if (!node) {
1522 if (!found)
1523 *end = (u64)-1;
1524 goto out;
1525 }
1526
1527 while (1) {
1528 state = rb_entry(node, struct extent_state, rb_node);
1529 if (found && (state->start != cur_start ||
1530 (state->state & EXTENT_BOUNDARY))) {
1531 goto out;
1532 }
1533 if (!(state->state & EXTENT_DELALLOC)) {
1534 if (!found)
1535 *end = state->end;
1536 goto out;
1537 }
1538 if (!found) {
1539 *start = state->start;
1540 *cached_state = state;
1541 atomic_inc(&state->refs);
1542 }
1543 found++;
1544 *end = state->end;
1545 cur_start = state->end + 1;
1546 node = rb_next(node);
1547 total_bytes += state->end - state->start + 1;
1548 if (total_bytes >= max_bytes)
1549 break;
1550 if (!node)
1551 break;
1552 }
1553 out:
1554 spin_unlock(&tree->lock);
1555 return found;
1556 }
1557
1558 static int __process_pages_contig(struct address_space *mapping,
1559 struct page *locked_page,
1560 pgoff_t start_index, pgoff_t end_index,
1561 unsigned long page_ops, pgoff_t *index_ret);
1562
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
1566 {
1567 unsigned long index = start >> PAGE_SHIFT;
1568 unsigned long end_index = end >> PAGE_SHIFT;
1569
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && end_index == index)
1572 return;
1573
1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 PAGE_UNLOCK, NULL);
1576 }
1577
1578 static noinline int lock_delalloc_pages(struct inode *inode,
1579 struct page *locked_page,
1580 u64 delalloc_start,
1581 u64 delalloc_end)
1582 {
1583 unsigned long index = delalloc_start >> PAGE_SHIFT;
1584 unsigned long index_ret = index;
1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1586 int ret;
1587
1588 ASSERT(locked_page);
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1591
1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 end_index, PAGE_LOCK, &index_ret);
1594 if (ret == -EAGAIN)
1595 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 (u64)index_ret << PAGE_SHIFT);
1597 return ret;
1598 }
1599
1600 /*
1601 * find a contiguous range of bytes in the file marked as delalloc, not
1602 * more than 'max_bytes'. start and end are used to return the range,
1603 *
1604 * 1 is returned if we find something, 0 if nothing was in the tree
1605 */
1606 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 struct extent_io_tree *tree,
1608 struct page *locked_page, u64 *start,
1609 u64 *end, u64 max_bytes)
1610 {
1611 u64 delalloc_start;
1612 u64 delalloc_end;
1613 u64 found;
1614 struct extent_state *cached_state = NULL;
1615 int ret;
1616 int loops = 0;
1617
1618 again:
1619 /* step one, find a bunch of delalloc bytes starting at start */
1620 delalloc_start = *start;
1621 delalloc_end = 0;
1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1623 max_bytes, &cached_state);
1624 if (!found || delalloc_end <= *start) {
1625 *start = delalloc_start;
1626 *end = delalloc_end;
1627 free_extent_state(cached_state);
1628 return 0;
1629 }
1630
1631 /*
1632 * start comes from the offset of locked_page. We have to lock
1633 * pages in order, so we can't process delalloc bytes before
1634 * locked_page
1635 */
1636 if (delalloc_start < *start)
1637 delalloc_start = *start;
1638
1639 /*
1640 * make sure to limit the number of pages we try to lock down
1641 */
1642 if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 delalloc_end = delalloc_start + max_bytes - 1;
1644
1645 /* step two, lock all the pages after the page that has start */
1646 ret = lock_delalloc_pages(inode, locked_page,
1647 delalloc_start, delalloc_end);
1648 if (ret == -EAGAIN) {
1649 /* some of the pages are gone, lets avoid looping by
1650 * shortening the size of the delalloc range we're searching
1651 */
1652 free_extent_state(cached_state);
1653 cached_state = NULL;
1654 if (!loops) {
1655 max_bytes = PAGE_SIZE;
1656 loops = 1;
1657 goto again;
1658 } else {
1659 found = 0;
1660 goto out_failed;
1661 }
1662 }
1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1664
1665 /* step three, lock the state bits for the whole range */
1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1667
1668 /* then test to make sure it is all still delalloc */
1669 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1670 EXTENT_DELALLOC, 1, cached_state);
1671 if (!ret) {
1672 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 &cached_state, GFP_NOFS);
1674 __unlock_for_delalloc(inode, locked_page,
1675 delalloc_start, delalloc_end);
1676 cond_resched();
1677 goto again;
1678 }
1679 free_extent_state(cached_state);
1680 *start = delalloc_start;
1681 *end = delalloc_end;
1682 out_failed:
1683 return found;
1684 }
1685
1686 static int __process_pages_contig(struct address_space *mapping,
1687 struct page *locked_page,
1688 pgoff_t start_index, pgoff_t end_index,
1689 unsigned long page_ops, pgoff_t *index_ret)
1690 {
1691 unsigned long nr_pages = end_index - start_index + 1;
1692 unsigned long pages_locked = 0;
1693 pgoff_t index = start_index;
1694 struct page *pages[16];
1695 unsigned ret;
1696 int err = 0;
1697 int i;
1698
1699 if (page_ops & PAGE_LOCK) {
1700 ASSERT(page_ops == PAGE_LOCK);
1701 ASSERT(index_ret && *index_ret == start_index);
1702 }
1703
1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1705 mapping_set_error(mapping, -EIO);
1706
1707 while (nr_pages > 0) {
1708 ret = find_get_pages_contig(mapping, index,
1709 min_t(unsigned long,
1710 nr_pages, ARRAY_SIZE(pages)), pages);
1711 if (ret == 0) {
1712 /*
1713 * Only if we're going to lock these pages,
1714 * can we find nothing at @index.
1715 */
1716 ASSERT(page_ops & PAGE_LOCK);
1717 return ret;
1718 }
1719
1720 for (i = 0; i < ret; i++) {
1721 if (page_ops & PAGE_SET_PRIVATE2)
1722 SetPagePrivate2(pages[i]);
1723
1724 if (pages[i] == locked_page) {
1725 put_page(pages[i]);
1726 pages_locked++;
1727 continue;
1728 }
1729 if (page_ops & PAGE_CLEAR_DIRTY)
1730 clear_page_dirty_for_io(pages[i]);
1731 if (page_ops & PAGE_SET_WRITEBACK)
1732 set_page_writeback(pages[i]);
1733 if (page_ops & PAGE_SET_ERROR)
1734 SetPageError(pages[i]);
1735 if (page_ops & PAGE_END_WRITEBACK)
1736 end_page_writeback(pages[i]);
1737 if (page_ops & PAGE_UNLOCK)
1738 unlock_page(pages[i]);
1739 if (page_ops & PAGE_LOCK) {
1740 lock_page(pages[i]);
1741 if (!PageDirty(pages[i]) ||
1742 pages[i]->mapping != mapping) {
1743 unlock_page(pages[i]);
1744 put_page(pages[i]);
1745 err = -EAGAIN;
1746 goto out;
1747 }
1748 }
1749 put_page(pages[i]);
1750 pages_locked++;
1751 }
1752 nr_pages -= ret;
1753 index += ret;
1754 cond_resched();
1755 }
1756 out:
1757 if (err && index_ret)
1758 *index_ret = start_index + pages_locked - 1;
1759 return err;
1760 }
1761
1762 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1763 u64 delalloc_end, struct page *locked_page,
1764 unsigned clear_bits,
1765 unsigned long page_ops)
1766 {
1767 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1768 NULL, GFP_NOFS);
1769
1770 __process_pages_contig(inode->i_mapping, locked_page,
1771 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1772 page_ops, NULL);
1773 }
1774
1775 /*
1776 * count the number of bytes in the tree that have a given bit(s)
1777 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1778 * cached. The total number found is returned.
1779 */
1780 u64 count_range_bits(struct extent_io_tree *tree,
1781 u64 *start, u64 search_end, u64 max_bytes,
1782 unsigned bits, int contig)
1783 {
1784 struct rb_node *node;
1785 struct extent_state *state;
1786 u64 cur_start = *start;
1787 u64 total_bytes = 0;
1788 u64 last = 0;
1789 int found = 0;
1790
1791 if (WARN_ON(search_end <= cur_start))
1792 return 0;
1793
1794 spin_lock(&tree->lock);
1795 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796 total_bytes = tree->dirty_bytes;
1797 goto out;
1798 }
1799 /*
1800 * this search will find all the extents that end after
1801 * our range starts.
1802 */
1803 node = tree_search(tree, cur_start);
1804 if (!node)
1805 goto out;
1806
1807 while (1) {
1808 state = rb_entry(node, struct extent_state, rb_node);
1809 if (state->start > search_end)
1810 break;
1811 if (contig && found && state->start > last + 1)
1812 break;
1813 if (state->end >= cur_start && (state->state & bits) == bits) {
1814 total_bytes += min(search_end, state->end) + 1 -
1815 max(cur_start, state->start);
1816 if (total_bytes >= max_bytes)
1817 break;
1818 if (!found) {
1819 *start = max(cur_start, state->start);
1820 found = 1;
1821 }
1822 last = state->end;
1823 } else if (contig && found) {
1824 break;
1825 }
1826 node = rb_next(node);
1827 if (!node)
1828 break;
1829 }
1830 out:
1831 spin_unlock(&tree->lock);
1832 return total_bytes;
1833 }
1834
1835 /*
1836 * set the private field for a given byte offset in the tree. If there isn't
1837 * an extent_state there already, this does nothing.
1838 */
1839 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1840 struct io_failure_record *failrec)
1841 {
1842 struct rb_node *node;
1843 struct extent_state *state;
1844 int ret = 0;
1845
1846 spin_lock(&tree->lock);
1847 /*
1848 * this search will find all the extents that end after
1849 * our range starts.
1850 */
1851 node = tree_search(tree, start);
1852 if (!node) {
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state->failrec = failrec;
1862 out:
1863 spin_unlock(&tree->lock);
1864 return ret;
1865 }
1866
1867 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1868 struct io_failure_record **failrec)
1869 {
1870 struct rb_node *node;
1871 struct extent_state *state;
1872 int ret = 0;
1873
1874 spin_lock(&tree->lock);
1875 /*
1876 * this search will find all the extents that end after
1877 * our range starts.
1878 */
1879 node = tree_search(tree, start);
1880 if (!node) {
1881 ret = -ENOENT;
1882 goto out;
1883 }
1884 state = rb_entry(node, struct extent_state, rb_node);
1885 if (state->start != start) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 *failrec = state->failrec;
1890 out:
1891 spin_unlock(&tree->lock);
1892 return ret;
1893 }
1894
1895 /*
1896 * searches a range in the state tree for a given mask.
1897 * If 'filled' == 1, this returns 1 only if every extent in the tree
1898 * has the bits set. Otherwise, 1 is returned if any bit in the
1899 * range is found set.
1900 */
1901 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1902 unsigned bits, int filled, struct extent_state *cached)
1903 {
1904 struct extent_state *state = NULL;
1905 struct rb_node *node;
1906 int bitset = 0;
1907
1908 spin_lock(&tree->lock);
1909 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1910 cached->end > start)
1911 node = &cached->rb_node;
1912 else
1913 node = tree_search(tree, start);
1914 while (node && start <= end) {
1915 state = rb_entry(node, struct extent_state, rb_node);
1916
1917 if (filled && state->start > start) {
1918 bitset = 0;
1919 break;
1920 }
1921
1922 if (state->start > end)
1923 break;
1924
1925 if (state->state & bits) {
1926 bitset = 1;
1927 if (!filled)
1928 break;
1929 } else if (filled) {
1930 bitset = 0;
1931 break;
1932 }
1933
1934 if (state->end == (u64)-1)
1935 break;
1936
1937 start = state->end + 1;
1938 if (start > end)
1939 break;
1940 node = rb_next(node);
1941 if (!node) {
1942 if (filled)
1943 bitset = 0;
1944 break;
1945 }
1946 }
1947 spin_unlock(&tree->lock);
1948 return bitset;
1949 }
1950
1951 /*
1952 * helper function to set a given page up to date if all the
1953 * extents in the tree for that page are up to date
1954 */
1955 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1956 {
1957 u64 start = page_offset(page);
1958 u64 end = start + PAGE_SIZE - 1;
1959 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1960 SetPageUptodate(page);
1961 }
1962
1963 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1964 {
1965 int ret;
1966 int err = 0;
1967 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1968
1969 set_state_failrec(failure_tree, rec->start, NULL);
1970 ret = clear_extent_bits(failure_tree, rec->start,
1971 rec->start + rec->len - 1,
1972 EXTENT_LOCKED | EXTENT_DIRTY);
1973 if (ret)
1974 err = ret;
1975
1976 ret = clear_extent_bits(&inode->io_tree, rec->start,
1977 rec->start + rec->len - 1,
1978 EXTENT_DAMAGED);
1979 if (ret && !err)
1980 err = ret;
1981
1982 kfree(rec);
1983 return err;
1984 }
1985
1986 /*
1987 * this bypasses the standard btrfs submit functions deliberately, as
1988 * the standard behavior is to write all copies in a raid setup. here we only
1989 * want to write the one bad copy. so we do the mapping for ourselves and issue
1990 * submit_bio directly.
1991 * to avoid any synchronization issues, wait for the data after writing, which
1992 * actually prevents the read that triggered the error from finishing.
1993 * currently, there can be no more than two copies of every data bit. thus,
1994 * exactly one rewrite is required.
1995 */
1996 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1997 u64 logical, struct page *page,
1998 unsigned int pg_offset, int mirror_num)
1999 {
2000 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2001 struct bio *bio;
2002 struct btrfs_device *dev;
2003 u64 map_length = 0;
2004 u64 sector;
2005 struct btrfs_bio *bbio = NULL;
2006 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2007 int ret;
2008
2009 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2010 BUG_ON(!mirror_num);
2011
2012 /* we can't repair anything in raid56 yet */
2013 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2014 return 0;
2015
2016 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2017 if (!bio)
2018 return -EIO;
2019 bio->bi_iter.bi_size = 0;
2020 map_length = length;
2021
2022 /*
2023 * Avoid races with device replace and make sure our bbio has devices
2024 * associated to its stripes that don't go away while we are doing the
2025 * read repair operation.
2026 */
2027 btrfs_bio_counter_inc_blocked(fs_info);
2028 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2029 &map_length, &bbio, mirror_num);
2030 if (ret) {
2031 btrfs_bio_counter_dec(fs_info);
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 BUG_ON(mirror_num != bbio->mirror_num);
2036 sector = bbio->stripes[mirror_num-1].physical >> 9;
2037 bio->bi_iter.bi_sector = sector;
2038 dev = bbio->stripes[mirror_num-1].dev;
2039 btrfs_put_bbio(bbio);
2040 if (!dev || !dev->bdev || !dev->writeable) {
2041 btrfs_bio_counter_dec(fs_info);
2042 bio_put(bio);
2043 return -EIO;
2044 }
2045 bio->bi_bdev = dev->bdev;
2046 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2047 bio_add_page(bio, page, length, pg_offset);
2048
2049 if (btrfsic_submit_bio_wait(bio)) {
2050 /* try to remap that extent elsewhere? */
2051 btrfs_bio_counter_dec(fs_info);
2052 bio_put(bio);
2053 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054 return -EIO;
2055 }
2056
2057 btrfs_info_rl_in_rcu(fs_info,
2058 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2059 btrfs_ino(inode), start,
2060 rcu_str_deref(dev->name), sector);
2061 btrfs_bio_counter_dec(fs_info);
2062 bio_put(bio);
2063 return 0;
2064 }
2065
2066 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2067 struct extent_buffer *eb, int mirror_num)
2068 {
2069 u64 start = eb->start;
2070 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2071 int ret = 0;
2072
2073 if (fs_info->sb->s_flags & MS_RDONLY)
2074 return -EROFS;
2075
2076 for (i = 0; i < num_pages; i++) {
2077 struct page *p = eb->pages[i];
2078
2079 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2080 PAGE_SIZE, start, p,
2081 start - page_offset(p), mirror_num);
2082 if (ret)
2083 break;
2084 start += PAGE_SIZE;
2085 }
2086
2087 return ret;
2088 }
2089
2090 /*
2091 * each time an IO finishes, we do a fast check in the IO failure tree
2092 * to see if we need to process or clean up an io_failure_record
2093 */
2094 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2095 unsigned int pg_offset)
2096 {
2097 u64 private;
2098 struct io_failure_record *failrec;
2099 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2100 struct extent_state *state;
2101 int num_copies;
2102 int ret;
2103
2104 private = 0;
2105 ret = count_range_bits(&inode->io_failure_tree, &private,
2106 (u64)-1, 1, EXTENT_DIRTY, 0);
2107 if (!ret)
2108 return 0;
2109
2110 ret = get_state_failrec(&inode->io_failure_tree, start,
2111 &failrec);
2112 if (ret)
2113 return 0;
2114
2115 BUG_ON(!failrec->this_mirror);
2116
2117 if (failrec->in_validation) {
2118 /* there was no real error, just free the record */
2119 btrfs_debug(fs_info,
2120 "clean_io_failure: freeing dummy error at %llu",
2121 failrec->start);
2122 goto out;
2123 }
2124 if (fs_info->sb->s_flags & MS_RDONLY)
2125 goto out;
2126
2127 spin_lock(&inode->io_tree.lock);
2128 state = find_first_extent_bit_state(&inode->io_tree,
2129 failrec->start,
2130 EXTENT_LOCKED);
2131 spin_unlock(&inode->io_tree.lock);
2132
2133 if (state && state->start <= failrec->start &&
2134 state->end >= failrec->start + failrec->len - 1) {
2135 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2136 failrec->len);
2137 if (num_copies > 1) {
2138 repair_io_failure(inode, start, failrec->len,
2139 failrec->logical, page,
2140 pg_offset, failrec->failed_mirror);
2141 }
2142 }
2143
2144 out:
2145 free_io_failure(inode, failrec);
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * Can be called when
2152 * - hold extent lock
2153 * - under ordered extent
2154 * - the inode is freeing
2155 */
2156 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2157 {
2158 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2159 struct io_failure_record *failrec;
2160 struct extent_state *state, *next;
2161
2162 if (RB_EMPTY_ROOT(&failure_tree->state))
2163 return;
2164
2165 spin_lock(&failure_tree->lock);
2166 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2167 while (state) {
2168 if (state->start > end)
2169 break;
2170
2171 ASSERT(state->end <= end);
2172
2173 next = next_state(state);
2174
2175 failrec = state->failrec;
2176 free_extent_state(state);
2177 kfree(failrec);
2178
2179 state = next;
2180 }
2181 spin_unlock(&failure_tree->lock);
2182 }
2183
2184 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2185 struct io_failure_record **failrec_ret)
2186 {
2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2188 struct io_failure_record *failrec;
2189 struct extent_map *em;
2190 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2191 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2193 int ret;
2194 u64 logical;
2195
2196 ret = get_state_failrec(failure_tree, start, &failrec);
2197 if (ret) {
2198 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2199 if (!failrec)
2200 return -ENOMEM;
2201
2202 failrec->start = start;
2203 failrec->len = end - start + 1;
2204 failrec->this_mirror = 0;
2205 failrec->bio_flags = 0;
2206 failrec->in_validation = 0;
2207
2208 read_lock(&em_tree->lock);
2209 em = lookup_extent_mapping(em_tree, start, failrec->len);
2210 if (!em) {
2211 read_unlock(&em_tree->lock);
2212 kfree(failrec);
2213 return -EIO;
2214 }
2215
2216 if (em->start > start || em->start + em->len <= start) {
2217 free_extent_map(em);
2218 em = NULL;
2219 }
2220 read_unlock(&em_tree->lock);
2221 if (!em) {
2222 kfree(failrec);
2223 return -EIO;
2224 }
2225
2226 logical = start - em->start;
2227 logical = em->block_start + logical;
2228 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2229 logical = em->block_start;
2230 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2231 extent_set_compress_type(&failrec->bio_flags,
2232 em->compress_type);
2233 }
2234
2235 btrfs_debug(fs_info,
2236 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2237 logical, start, failrec->len);
2238
2239 failrec->logical = logical;
2240 free_extent_map(em);
2241
2242 /* set the bits in the private failure tree */
2243 ret = set_extent_bits(failure_tree, start, end,
2244 EXTENT_LOCKED | EXTENT_DIRTY);
2245 if (ret >= 0)
2246 ret = set_state_failrec(failure_tree, start, failrec);
2247 /* set the bits in the inode's tree */
2248 if (ret >= 0)
2249 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2250 if (ret < 0) {
2251 kfree(failrec);
2252 return ret;
2253 }
2254 } else {
2255 btrfs_debug(fs_info,
2256 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2257 failrec->logical, failrec->start, failrec->len,
2258 failrec->in_validation);
2259 /*
2260 * when data can be on disk more than twice, add to failrec here
2261 * (e.g. with a list for failed_mirror) to make
2262 * clean_io_failure() clean all those errors at once.
2263 */
2264 }
2265
2266 *failrec_ret = failrec;
2267
2268 return 0;
2269 }
2270
2271 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2272 struct io_failure_record *failrec, int failed_mirror)
2273 {
2274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2275 int num_copies;
2276
2277 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2278 if (num_copies == 1) {
2279 /*
2280 * we only have a single copy of the data, so don't bother with
2281 * all the retry and error correction code that follows. no
2282 * matter what the error is, it is very likely to persist.
2283 */
2284 btrfs_debug(fs_info,
2285 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2286 num_copies, failrec->this_mirror, failed_mirror);
2287 return 0;
2288 }
2289
2290 /*
2291 * there are two premises:
2292 * a) deliver good data to the caller
2293 * b) correct the bad sectors on disk
2294 */
2295 if (failed_bio->bi_vcnt > 1) {
2296 /*
2297 * to fulfill b), we need to know the exact failing sectors, as
2298 * we don't want to rewrite any more than the failed ones. thus,
2299 * we need separate read requests for the failed bio
2300 *
2301 * if the following BUG_ON triggers, our validation request got
2302 * merged. we need separate requests for our algorithm to work.
2303 */
2304 BUG_ON(failrec->in_validation);
2305 failrec->in_validation = 1;
2306 failrec->this_mirror = failed_mirror;
2307 } else {
2308 /*
2309 * we're ready to fulfill a) and b) alongside. get a good copy
2310 * of the failed sector and if we succeed, we have setup
2311 * everything for repair_io_failure to do the rest for us.
2312 */
2313 if (failrec->in_validation) {
2314 BUG_ON(failrec->this_mirror != failed_mirror);
2315 failrec->in_validation = 0;
2316 failrec->this_mirror = 0;
2317 }
2318 failrec->failed_mirror = failed_mirror;
2319 failrec->this_mirror++;
2320 if (failrec->this_mirror == failed_mirror)
2321 failrec->this_mirror++;
2322 }
2323
2324 if (failrec->this_mirror > num_copies) {
2325 btrfs_debug(fs_info,
2326 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2327 num_copies, failrec->this_mirror, failed_mirror);
2328 return 0;
2329 }
2330
2331 return 1;
2332 }
2333
2334
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
2338 bio_end_io_t *endio_func, void *data)
2339 {
2340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2341 struct bio *bio;
2342 struct btrfs_io_bio *btrfs_failed_bio;
2343 struct btrfs_io_bio *btrfs_bio;
2344
2345 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2346 if (!bio)
2347 return NULL;
2348
2349 bio->bi_end_io = endio_func;
2350 bio->bi_iter.bi_sector = failrec->logical >> 9;
2351 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2352 bio->bi_iter.bi_size = 0;
2353 bio->bi_private = data;
2354
2355 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2356 if (btrfs_failed_bio->csum) {
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2363 csum_size);
2364 }
2365
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369 }
2370
2371 /*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382 {
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode = 0;
2388 int ret;
2389
2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(BTRFS_I(inode), failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode |= REQ_FAILFAST_DEV;
2404
2405 phy_offset >>= inode->i_sb->s_blocksize_bits;
2406 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2407 start - page_offset(page),
2408 (int)phy_offset, failed_bio->bi_end_io,
2409 NULL);
2410 if (!bio) {
2411 free_io_failure(BTRFS_I(inode), failrec);
2412 return -EIO;
2413 }
2414 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2415
2416 btrfs_debug(btrfs_sb(inode->i_sb),
2417 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2418 read_mode, failrec->this_mirror, failrec->in_validation);
2419
2420 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2421 failrec->bio_flags, 0);
2422 if (ret) {
2423 free_io_failure(BTRFS_I(inode), failrec);
2424 bio_put(bio);
2425 }
2426
2427 return ret;
2428 }
2429
2430 /* lots and lots of room for performance fixes in the end_bio funcs */
2431
2432 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2433 {
2434 int uptodate = (err == 0);
2435 struct extent_io_tree *tree;
2436 int ret = 0;
2437
2438 tree = &BTRFS_I(page->mapping->host)->io_tree;
2439
2440 if (tree->ops && tree->ops->writepage_end_io_hook) {
2441 ret = tree->ops->writepage_end_io_hook(page, start,
2442 end, NULL, uptodate);
2443 if (ret)
2444 uptodate = 0;
2445 }
2446
2447 if (!uptodate) {
2448 ClearPageUptodate(page);
2449 SetPageError(page);
2450 ret = ret < 0 ? ret : -EIO;
2451 mapping_set_error(page->mapping, ret);
2452 }
2453 }
2454
2455 /*
2456 * after a writepage IO is done, we need to:
2457 * clear the uptodate bits on error
2458 * clear the writeback bits in the extent tree for this IO
2459 * end_page_writeback if the page has no more pending IO
2460 *
2461 * Scheduling is not allowed, so the extent state tree is expected
2462 * to have one and only one object corresponding to this IO.
2463 */
2464 static void end_bio_extent_writepage(struct bio *bio)
2465 {
2466 struct bio_vec *bvec;
2467 u64 start;
2468 u64 end;
2469 int i;
2470
2471 bio_for_each_segment_all(bvec, bio, i) {
2472 struct page *page = bvec->bv_page;
2473 struct inode *inode = page->mapping->host;
2474 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2475
2476 /* We always issue full-page reads, but if some block
2477 * in a page fails to read, blk_update_request() will
2478 * advance bv_offset and adjust bv_len to compensate.
2479 * Print a warning for nonzero offsets, and an error
2480 * if they don't add up to a full page. */
2481 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2482 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2483 btrfs_err(fs_info,
2484 "partial page write in btrfs with offset %u and length %u",
2485 bvec->bv_offset, bvec->bv_len);
2486 else
2487 btrfs_info(fs_info,
2488 "incomplete page write in btrfs with offset %u and length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 }
2491
2492 start = page_offset(page);
2493 end = start + bvec->bv_offset + bvec->bv_len - 1;
2494
2495 end_extent_writepage(page, bio->bi_error, start, end);
2496 end_page_writeback(page);
2497 }
2498
2499 bio_put(bio);
2500 }
2501
2502 static void
2503 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2504 int uptodate)
2505 {
2506 struct extent_state *cached = NULL;
2507 u64 end = start + len - 1;
2508
2509 if (uptodate && tree->track_uptodate)
2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512 }
2513
2514 /*
2515 * after a readpage IO is done, we need to:
2516 * clear the uptodate bits on error
2517 * set the uptodate bits if things worked
2518 * set the page up to date if all extents in the tree are uptodate
2519 * clear the lock bit in the extent tree
2520 * unlock the page if there are no other extents locked for it
2521 *
2522 * Scheduling is not allowed, so the extent state tree is expected
2523 * to have one and only one object corresponding to this IO.
2524 */
2525 static void end_bio_extent_readpage(struct bio *bio)
2526 {
2527 struct bio_vec *bvec;
2528 int uptodate = !bio->bi_error;
2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2530 struct extent_io_tree *tree;
2531 u64 offset = 0;
2532 u64 start;
2533 u64 end;
2534 u64 len;
2535 u64 extent_start = 0;
2536 u64 extent_len = 0;
2537 int mirror;
2538 int ret;
2539 int i;
2540
2541 bio_for_each_segment_all(bvec, bio, i) {
2542 struct page *page = bvec->bv_page;
2543 struct inode *inode = page->mapping->host;
2544 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2545
2546 btrfs_debug(fs_info,
2547 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2548 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2549 io_bio->mirror_num);
2550 tree = &BTRFS_I(inode)->io_tree;
2551
2552 /* We always issue full-page reads, but if some block
2553 * in a page fails to read, blk_update_request() will
2554 * advance bv_offset and adjust bv_len to compensate.
2555 * Print a warning for nonzero offsets, and an error
2556 * if they don't add up to a full page. */
2557 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2558 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2559 btrfs_err(fs_info,
2560 "partial page read in btrfs with offset %u and length %u",
2561 bvec->bv_offset, bvec->bv_len);
2562 else
2563 btrfs_info(fs_info,
2564 "incomplete page read in btrfs with offset %u and length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 }
2567
2568 start = page_offset(page);
2569 end = start + bvec->bv_offset + bvec->bv_len - 1;
2570 len = bvec->bv_len;
2571
2572 mirror = io_bio->mirror_num;
2573 if (likely(uptodate && tree->ops &&
2574 tree->ops->readpage_end_io_hook)) {
2575 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2576 page, start, end,
2577 mirror);
2578 if (ret)
2579 uptodate = 0;
2580 else
2581 clean_io_failure(BTRFS_I(inode), start,
2582 page, 0);
2583 }
2584
2585 if (likely(uptodate))
2586 goto readpage_ok;
2587
2588 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2589 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2590 if (!ret && !bio->bi_error)
2591 uptodate = 1;
2592 } else {
2593 /*
2594 * The generic bio_readpage_error handles errors the
2595 * following way: If possible, new read requests are
2596 * created and submitted and will end up in
2597 * end_bio_extent_readpage as well (if we're lucky, not
2598 * in the !uptodate case). In that case it returns 0 and
2599 * we just go on with the next page in our bio. If it
2600 * can't handle the error it will return -EIO and we
2601 * remain responsible for that page.
2602 */
2603 ret = bio_readpage_error(bio, offset, page, start, end,
2604 mirror);
2605 if (ret == 0) {
2606 uptodate = !bio->bi_error;
2607 offset += len;
2608 continue;
2609 }
2610 }
2611 readpage_ok:
2612 if (likely(uptodate)) {
2613 loff_t i_size = i_size_read(inode);
2614 pgoff_t end_index = i_size >> PAGE_SHIFT;
2615 unsigned off;
2616
2617 /* Zero out the end if this page straddles i_size */
2618 off = i_size & (PAGE_SIZE-1);
2619 if (page->index == end_index && off)
2620 zero_user_segment(page, off, PAGE_SIZE);
2621 SetPageUptodate(page);
2622 } else {
2623 ClearPageUptodate(page);
2624 SetPageError(page);
2625 }
2626 unlock_page(page);
2627 offset += len;
2628
2629 if (unlikely(!uptodate)) {
2630 if (extent_len) {
2631 endio_readpage_release_extent(tree,
2632 extent_start,
2633 extent_len, 1);
2634 extent_start = 0;
2635 extent_len = 0;
2636 }
2637 endio_readpage_release_extent(tree, start,
2638 end - start + 1, 0);
2639 } else if (!extent_len) {
2640 extent_start = start;
2641 extent_len = end + 1 - start;
2642 } else if (extent_start + extent_len == start) {
2643 extent_len += end + 1 - start;
2644 } else {
2645 endio_readpage_release_extent(tree, extent_start,
2646 extent_len, uptodate);
2647 extent_start = start;
2648 extent_len = end + 1 - start;
2649 }
2650 }
2651
2652 if (extent_len)
2653 endio_readpage_release_extent(tree, extent_start, extent_len,
2654 uptodate);
2655 if (io_bio->end_io)
2656 io_bio->end_io(io_bio, bio->bi_error);
2657 bio_put(bio);
2658 }
2659
2660 /*
2661 * this allocates from the btrfs_bioset. We're returning a bio right now
2662 * but you can call btrfs_io_bio for the appropriate container_of magic
2663 */
2664 struct bio *
2665 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2666 gfp_t gfp_flags)
2667 {
2668 struct btrfs_io_bio *btrfs_bio;
2669 struct bio *bio;
2670
2671 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2672
2673 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2674 while (!bio && (nr_vecs /= 2)) {
2675 bio = bio_alloc_bioset(gfp_flags,
2676 nr_vecs, btrfs_bioset);
2677 }
2678 }
2679
2680 if (bio) {
2681 bio->bi_bdev = bdev;
2682 bio->bi_iter.bi_sector = first_sector;
2683 btrfs_bio = btrfs_io_bio(bio);
2684 btrfs_bio->csum = NULL;
2685 btrfs_bio->csum_allocated = NULL;
2686 btrfs_bio->end_io = NULL;
2687 }
2688 return bio;
2689 }
2690
2691 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2692 {
2693 struct btrfs_io_bio *btrfs_bio;
2694 struct bio *new;
2695
2696 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2697 if (new) {
2698 btrfs_bio = btrfs_io_bio(new);
2699 btrfs_bio->csum = NULL;
2700 btrfs_bio->csum_allocated = NULL;
2701 btrfs_bio->end_io = NULL;
2702 }
2703 return new;
2704 }
2705
2706 /* this also allocates from the btrfs_bioset */
2707 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2708 {
2709 struct btrfs_io_bio *btrfs_bio;
2710 struct bio *bio;
2711
2712 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2713 if (bio) {
2714 btrfs_bio = btrfs_io_bio(bio);
2715 btrfs_bio->csum = NULL;
2716 btrfs_bio->csum_allocated = NULL;
2717 btrfs_bio->end_io = NULL;
2718 }
2719 return bio;
2720 }
2721
2722
2723 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2724 unsigned long bio_flags)
2725 {
2726 int ret = 0;
2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2728 struct page *page = bvec->bv_page;
2729 struct extent_io_tree *tree = bio->bi_private;
2730 u64 start;
2731
2732 start = page_offset(page) + bvec->bv_offset;
2733
2734 bio->bi_private = NULL;
2735 bio_get(bio);
2736
2737 if (tree->ops && tree->ops->submit_bio_hook)
2738 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2739 mirror_num, bio_flags, start);
2740 else
2741 btrfsic_submit_bio(bio);
2742
2743 bio_put(bio);
2744 return ret;
2745 }
2746
2747 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2748 unsigned long offset, size_t size, struct bio *bio,
2749 unsigned long bio_flags)
2750 {
2751 int ret = 0;
2752 if (tree->ops && tree->ops->merge_bio_hook)
2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2754 bio_flags);
2755 return ret;
2756
2757 }
2758
2759 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2760 struct writeback_control *wbc,
2761 struct page *page, sector_t sector,
2762 size_t size, unsigned long offset,
2763 struct block_device *bdev,
2764 struct bio **bio_ret,
2765 bio_end_io_t end_io_func,
2766 int mirror_num,
2767 unsigned long prev_bio_flags,
2768 unsigned long bio_flags,
2769 bool force_bio_submit)
2770 {
2771 int ret = 0;
2772 struct bio *bio;
2773 int contig = 0;
2774 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2775 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2776
2777 if (bio_ret && *bio_ret) {
2778 bio = *bio_ret;
2779 if (old_compressed)
2780 contig = bio->bi_iter.bi_sector == sector;
2781 else
2782 contig = bio_end_sector(bio) == sector;
2783
2784 if (prev_bio_flags != bio_flags || !contig ||
2785 force_bio_submit ||
2786 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2787 bio_add_page(bio, page, page_size, offset) < page_size) {
2788 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2789 if (ret < 0) {
2790 *bio_ret = NULL;
2791 return ret;
2792 }
2793 bio = NULL;
2794 } else {
2795 if (wbc)
2796 wbc_account_io(wbc, page, page_size);
2797 return 0;
2798 }
2799 }
2800
2801 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2802 GFP_NOFS | __GFP_HIGH);
2803 if (!bio)
2804 return -ENOMEM;
2805
2806 bio_add_page(bio, page, page_size, offset);
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
2809 bio_set_op_attrs(bio, op, op_flags);
2810 if (wbc) {
2811 wbc_init_bio(wbc, bio);
2812 wbc_account_io(wbc, page, page_size);
2813 }
2814
2815 if (bio_ret)
2816 *bio_ret = bio;
2817 else
2818 ret = submit_one_bio(bio, mirror_num, bio_flags);
2819
2820 return ret;
2821 }
2822
2823 static void attach_extent_buffer_page(struct extent_buffer *eb,
2824 struct page *page)
2825 {
2826 if (!PagePrivate(page)) {
2827 SetPagePrivate(page);
2828 get_page(page);
2829 set_page_private(page, (unsigned long)eb);
2830 } else {
2831 WARN_ON(page->private != (unsigned long)eb);
2832 }
2833 }
2834
2835 void set_page_extent_mapped(struct page *page)
2836 {
2837 if (!PagePrivate(page)) {
2838 SetPagePrivate(page);
2839 get_page(page);
2840 set_page_private(page, EXTENT_PAGE_PRIVATE);
2841 }
2842 }
2843
2844 static struct extent_map *
2845 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2846 u64 start, u64 len, get_extent_t *get_extent,
2847 struct extent_map **em_cached)
2848 {
2849 struct extent_map *em;
2850
2851 if (em_cached && *em_cached) {
2852 em = *em_cached;
2853 if (extent_map_in_tree(em) && start >= em->start &&
2854 start < extent_map_end(em)) {
2855 atomic_inc(&em->refs);
2856 return em;
2857 }
2858
2859 free_extent_map(em);
2860 *em_cached = NULL;
2861 }
2862
2863 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2864 if (em_cached && !IS_ERR_OR_NULL(em)) {
2865 BUG_ON(*em_cached);
2866 atomic_inc(&em->refs);
2867 *em_cached = em;
2868 }
2869 return em;
2870 }
2871 /*
2872 * basic readpage implementation. Locked extent state structs are inserted
2873 * into the tree that are removed when the IO is done (by the end_io
2874 * handlers)
2875 * XXX JDM: This needs looking at to ensure proper page locking
2876 * return 0 on success, otherwise return error
2877 */
2878 static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
2881 struct extent_map **em_cached,
2882 struct bio **bio, int mirror_num,
2883 unsigned long *bio_flags, int read_flags,
2884 u64 *prev_em_start)
2885 {
2886 struct inode *inode = page->mapping->host;
2887 u64 start = page_offset(page);
2888 u64 page_end = start + PAGE_SIZE - 1;
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
2895 sector_t sector;
2896 struct extent_map *em;
2897 struct block_device *bdev;
2898 int ret = 0;
2899 int nr = 0;
2900 size_t pg_offset = 0;
2901 size_t iosize;
2902 size_t disk_io_size;
2903 size_t blocksize = inode->i_sb->s_blocksize;
2904 unsigned long this_bio_flag = 0;
2905
2906 set_page_extent_mapped(page);
2907
2908 end = page_end;
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
2912 unlock_extent(tree, start, end);
2913 goto out;
2914 }
2915 }
2916
2917 if (page->index == last_byte >> PAGE_SHIFT) {
2918 char *userpage;
2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2920
2921 if (zero_offset) {
2922 iosize = PAGE_SIZE - zero_offset;
2923 userpage = kmap_atomic(page);
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
2926 kunmap_atomic(userpage);
2927 }
2928 }
2929 while (cur <= end) {
2930 bool force_bio_submit = false;
2931
2932 if (cur >= last_byte) {
2933 char *userpage;
2934 struct extent_state *cached = NULL;
2935
2936 iosize = PAGE_SIZE - pg_offset;
2937 userpage = kmap_atomic(page);
2938 memset(userpage + pg_offset, 0, iosize);
2939 flush_dcache_page(page);
2940 kunmap_atomic(userpage);
2941 set_extent_uptodate(tree, cur, cur + iosize - 1,
2942 &cached, GFP_NOFS);
2943 unlock_extent_cached(tree, cur,
2944 cur + iosize - 1,
2945 &cached, GFP_NOFS);
2946 break;
2947 }
2948 em = __get_extent_map(inode, page, pg_offset, cur,
2949 end - cur + 1, get_extent, em_cached);
2950 if (IS_ERR_OR_NULL(em)) {
2951 SetPageError(page);
2952 unlock_extent(tree, cur, end);
2953 break;
2954 }
2955 extent_offset = cur - em->start;
2956 BUG_ON(extent_map_end(em) <= cur);
2957 BUG_ON(end < cur);
2958
2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2960 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2961 extent_set_compress_type(&this_bio_flag,
2962 em->compress_type);
2963 }
2964
2965 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 cur_end = min(extent_map_end(em) - 1, end);
2967 iosize = ALIGN(iosize, blocksize);
2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 disk_io_size = em->block_len;
2970 sector = em->block_start >> 9;
2971 } else {
2972 sector = (em->block_start + extent_offset) >> 9;
2973 disk_io_size = iosize;
2974 }
2975 bdev = em->bdev;
2976 block_start = em->block_start;
2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 block_start = EXTENT_MAP_HOLE;
2979
2980 /*
2981 * If we have a file range that points to a compressed extent
2982 * and it's followed by a consecutive file range that points to
2983 * to the same compressed extent (possibly with a different
2984 * offset and/or length, so it either points to the whole extent
2985 * or only part of it), we must make sure we do not submit a
2986 * single bio to populate the pages for the 2 ranges because
2987 * this makes the compressed extent read zero out the pages
2988 * belonging to the 2nd range. Imagine the following scenario:
2989 *
2990 * File layout
2991 * [0 - 8K] [8K - 24K]
2992 * | |
2993 * | |
2994 * points to extent X, points to extent X,
2995 * offset 4K, length of 8K offset 0, length 16K
2996 *
2997 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 *
2999 * If the bio to read the compressed extent covers both ranges,
3000 * it will decompress extent X into the pages belonging to the
3001 * first range and then it will stop, zeroing out the remaining
3002 * pages that belong to the other range that points to extent X.
3003 * So here we make sure we submit 2 bios, one for the first
3004 * range and another one for the third range. Both will target
3005 * the same physical extent from disk, but we can't currently
3006 * make the compressed bio endio callback populate the pages
3007 * for both ranges because each compressed bio is tightly
3008 * coupled with a single extent map, and each range can have
3009 * an extent map with a different offset value relative to the
3010 * uncompressed data of our extent and different lengths. This
3011 * is a corner case so we prioritize correctness over
3012 * non-optimal behavior (submitting 2 bios for the same extent).
3013 */
3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 prev_em_start && *prev_em_start != (u64)-1 &&
3016 *prev_em_start != em->orig_start)
3017 force_bio_submit = true;
3018
3019 if (prev_em_start)
3020 *prev_em_start = em->orig_start;
3021
3022 free_extent_map(em);
3023 em = NULL;
3024
3025 /* we've found a hole, just zero and go on */
3026 if (block_start == EXTENT_MAP_HOLE) {
3027 char *userpage;
3028 struct extent_state *cached = NULL;
3029
3030 userpage = kmap_atomic(page);
3031 memset(userpage + pg_offset, 0, iosize);
3032 flush_dcache_page(page);
3033 kunmap_atomic(userpage);
3034
3035 set_extent_uptodate(tree, cur, cur + iosize - 1,
3036 &cached, GFP_NOFS);
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1,
3039 &cached, GFP_NOFS);
3040 cur = cur + iosize;
3041 pg_offset += iosize;
3042 continue;
3043 }
3044 /* the get_extent function already copied into the page */
3045 if (test_range_bit(tree, cur, cur_end,
3046 EXTENT_UPTODATE, 1, NULL)) {
3047 check_page_uptodate(tree, page);
3048 unlock_extent(tree, cur, cur + iosize - 1);
3049 cur = cur + iosize;
3050 pg_offset += iosize;
3051 continue;
3052 }
3053 /* we have an inline extent but it didn't get marked up
3054 * to date. Error out
3055 */
3056 if (block_start == EXTENT_MAP_INLINE) {
3057 SetPageError(page);
3058 unlock_extent(tree, cur, cur + iosize - 1);
3059 cur = cur + iosize;
3060 pg_offset += iosize;
3061 continue;
3062 }
3063
3064 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3065 page, sector, disk_io_size, pg_offset,
3066 bdev, bio,
3067 end_bio_extent_readpage, mirror_num,
3068 *bio_flags,
3069 this_bio_flag,
3070 force_bio_submit);
3071 if (!ret) {
3072 nr++;
3073 *bio_flags = this_bio_flag;
3074 } else {
3075 SetPageError(page);
3076 unlock_extent(tree, cur, cur + iosize - 1);
3077 goto out;
3078 }
3079 cur = cur + iosize;
3080 pg_offset += iosize;
3081 }
3082 out:
3083 if (!nr) {
3084 if (!PageError(page))
3085 SetPageUptodate(page);
3086 unlock_page(page);
3087 }
3088 return ret;
3089 }
3090
3091 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3092 struct page *pages[], int nr_pages,
3093 u64 start, u64 end,
3094 get_extent_t *get_extent,
3095 struct extent_map **em_cached,
3096 struct bio **bio, int mirror_num,
3097 unsigned long *bio_flags,
3098 u64 *prev_em_start)
3099 {
3100 struct inode *inode;
3101 struct btrfs_ordered_extent *ordered;
3102 int index;
3103
3104 inode = pages[0]->mapping->host;
3105 while (1) {
3106 lock_extent(tree, start, end);
3107 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3108 end - start + 1);
3109 if (!ordered)
3110 break;
3111 unlock_extent(tree, start, end);
3112 btrfs_start_ordered_extent(inode, ordered, 1);
3113 btrfs_put_ordered_extent(ordered);
3114 }
3115
3116 for (index = 0; index < nr_pages; index++) {
3117 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3118 mirror_num, bio_flags, 0, prev_em_start);
3119 put_page(pages[index]);
3120 }
3121 }
3122
3123 static void __extent_readpages(struct extent_io_tree *tree,
3124 struct page *pages[],
3125 int nr_pages, get_extent_t *get_extent,
3126 struct extent_map **em_cached,
3127 struct bio **bio, int mirror_num,
3128 unsigned long *bio_flags,
3129 u64 *prev_em_start)
3130 {
3131 u64 start = 0;
3132 u64 end = 0;
3133 u64 page_start;
3134 int index;
3135 int first_index = 0;
3136
3137 for (index = 0; index < nr_pages; index++) {
3138 page_start = page_offset(pages[index]);
3139 if (!end) {
3140 start = page_start;
3141 end = start + PAGE_SIZE - 1;
3142 first_index = index;
3143 } else if (end + 1 == page_start) {
3144 end += PAGE_SIZE;
3145 } else {
3146 __do_contiguous_readpages(tree, &pages[first_index],
3147 index - first_index, start,
3148 end, get_extent, em_cached,
3149 bio, mirror_num, bio_flags,
3150 prev_em_start);
3151 start = page_start;
3152 end = start + PAGE_SIZE - 1;
3153 first_index = index;
3154 }
3155 }
3156
3157 if (end)
3158 __do_contiguous_readpages(tree, &pages[first_index],
3159 index - first_index, start,
3160 end, get_extent, em_cached, bio,
3161 mirror_num, bio_flags,
3162 prev_em_start);
3163 }
3164
3165 static int __extent_read_full_page(struct extent_io_tree *tree,
3166 struct page *page,
3167 get_extent_t *get_extent,
3168 struct bio **bio, int mirror_num,
3169 unsigned long *bio_flags, int read_flags)
3170 {
3171 struct inode *inode = page->mapping->host;
3172 struct btrfs_ordered_extent *ordered;
3173 u64 start = page_offset(page);
3174 u64 end = start + PAGE_SIZE - 1;
3175 int ret;
3176
3177 while (1) {
3178 lock_extent(tree, start, end);
3179 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3180 PAGE_SIZE);
3181 if (!ordered)
3182 break;
3183 unlock_extent(tree, start, end);
3184 btrfs_start_ordered_extent(inode, ordered, 1);
3185 btrfs_put_ordered_extent(ordered);
3186 }
3187
3188 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3189 bio_flags, read_flags, NULL);
3190 return ret;
3191 }
3192
3193 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3194 get_extent_t *get_extent, int mirror_num)
3195 {
3196 struct bio *bio = NULL;
3197 unsigned long bio_flags = 0;
3198 int ret;
3199
3200 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3201 &bio_flags, 0);
3202 if (bio)
3203 ret = submit_one_bio(bio, mirror_num, bio_flags);
3204 return ret;
3205 }
3206
3207 static void update_nr_written(struct writeback_control *wbc,
3208 unsigned long nr_written)
3209 {
3210 wbc->nr_to_write -= nr_written;
3211 }
3212
3213 /*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228 {
3229 struct extent_io_tree *tree = epd->tree;
3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
3245 BTRFS_MAX_EXTENT_SIZE);
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
3271 PAGE_SIZE) >> PAGE_SHIFT;
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298 done:
3299 return ret;
3300 }
3301
3302 /*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 int write_flags, int *nr_ret)
3317 {
3318 struct extent_io_tree *tree = epd->tree;
3319 u64 start = page_offset(page);
3320 u64 page_end = start + PAGE_SIZE - 1;
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
3324 u64 block_start;
3325 u64 iosize;
3326 sector_t sector;
3327 struct extent_map *em;
3328 struct block_device *bdev;
3329 size_t pg_offset = 0;
3330 size_t blocksize;
3331 int ret = 0;
3332 int nr = 0;
3333 bool compressed;
3334
3335 if (tree->ops && tree->ops->writepage_start_hook) {
3336 ret = tree->ops->writepage_start_hook(page, start,
3337 page_end);
3338 if (ret) {
3339 /* Fixup worker will requeue */
3340 if (ret == -EBUSY)
3341 wbc->pages_skipped++;
3342 else
3343 redirty_page_for_writepage(wbc, page);
3344
3345 update_nr_written(wbc, nr_written);
3346 unlock_page(page);
3347 return 1;
3348 }
3349 }
3350
3351 /*
3352 * we don't want to touch the inode after unlocking the page,
3353 * so we update the mapping writeback index now
3354 */
3355 update_nr_written(wbc, nr_written + 1);
3356
3357 end = page_end;
3358 if (i_size <= start) {
3359 if (tree->ops && tree->ops->writepage_end_io_hook)
3360 tree->ops->writepage_end_io_hook(page, start,
3361 page_end, NULL, 1);
3362 goto done;
3363 }
3364
3365 blocksize = inode->i_sb->s_blocksize;
3366
3367 while (cur <= end) {
3368 u64 em_end;
3369
3370 if (cur >= i_size) {
3371 if (tree->ops && tree->ops->writepage_end_io_hook)
3372 tree->ops->writepage_end_io_hook(page, cur,
3373 page_end, NULL, 1);
3374 break;
3375 }
3376 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3377 end - cur + 1, 1);
3378 if (IS_ERR_OR_NULL(em)) {
3379 SetPageError(page);
3380 ret = PTR_ERR_OR_ZERO(em);
3381 break;
3382 }
3383
3384 extent_offset = cur - em->start;
3385 em_end = extent_map_end(em);
3386 BUG_ON(em_end <= cur);
3387 BUG_ON(end < cur);
3388 iosize = min(em_end - cur, end - cur + 1);
3389 iosize = ALIGN(iosize, blocksize);
3390 sector = (em->block_start + extent_offset) >> 9;
3391 bdev = em->bdev;
3392 block_start = em->block_start;
3393 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3394 free_extent_map(em);
3395 em = NULL;
3396
3397 /*
3398 * compressed and inline extents are written through other
3399 * paths in the FS
3400 */
3401 if (compressed || block_start == EXTENT_MAP_HOLE ||
3402 block_start == EXTENT_MAP_INLINE) {
3403 /*
3404 * end_io notification does not happen here for
3405 * compressed extents
3406 */
3407 if (!compressed && tree->ops &&
3408 tree->ops->writepage_end_io_hook)
3409 tree->ops->writepage_end_io_hook(page, cur,
3410 cur + iosize - 1,
3411 NULL, 1);
3412 else if (compressed) {
3413 /* we don't want to end_page_writeback on
3414 * a compressed extent. this happens
3415 * elsewhere
3416 */
3417 nr++;
3418 }
3419
3420 cur += iosize;
3421 pg_offset += iosize;
3422 continue;
3423 }
3424
3425 set_range_writeback(tree, cur, cur + iosize - 1);
3426 if (!PageWriteback(page)) {
3427 btrfs_err(BTRFS_I(inode)->root->fs_info,
3428 "page %lu not writeback, cur %llu end %llu",
3429 page->index, cur, end);
3430 }
3431
3432 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3433 page, sector, iosize, pg_offset,
3434 bdev, &epd->bio,
3435 end_bio_extent_writepage,
3436 0, 0, 0, false);
3437 if (ret) {
3438 SetPageError(page);
3439 if (PageWriteback(page))
3440 end_page_writeback(page);
3441 }
3442
3443 cur = cur + iosize;
3444 pg_offset += iosize;
3445 nr++;
3446 }
3447 done:
3448 *nr_ret = nr;
3449 return ret;
3450 }
3451
3452 /*
3453 * the writepage semantics are similar to regular writepage. extent
3454 * records are inserted to lock ranges in the tree, and as dirty areas
3455 * are found, they are marked writeback. Then the lock bits are removed
3456 * and the end_io handler clears the writeback ranges
3457 */
3458 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3459 void *data)
3460 {
3461 struct inode *inode = page->mapping->host;
3462 struct extent_page_data *epd = data;
3463 u64 start = page_offset(page);
3464 u64 page_end = start + PAGE_SIZE - 1;
3465 int ret;
3466 int nr = 0;
3467 size_t pg_offset = 0;
3468 loff_t i_size = i_size_read(inode);
3469 unsigned long end_index = i_size >> PAGE_SHIFT;
3470 int write_flags = 0;
3471 unsigned long nr_written = 0;
3472
3473 if (wbc->sync_mode == WB_SYNC_ALL)
3474 write_flags = REQ_SYNC;
3475
3476 trace___extent_writepage(page, inode, wbc);
3477
3478 WARN_ON(!PageLocked(page));
3479
3480 ClearPageError(page);
3481
3482 pg_offset = i_size & (PAGE_SIZE - 1);
3483 if (page->index > end_index ||
3484 (page->index == end_index && !pg_offset)) {
3485 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3486 unlock_page(page);
3487 return 0;
3488 }
3489
3490 if (page->index == end_index) {
3491 char *userpage;
3492
3493 userpage = kmap_atomic(page);
3494 memset(userpage + pg_offset, 0,
3495 PAGE_SIZE - pg_offset);
3496 kunmap_atomic(userpage);
3497 flush_dcache_page(page);
3498 }
3499
3500 pg_offset = 0;
3501
3502 set_page_extent_mapped(page);
3503
3504 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3505 if (ret == 1)
3506 goto done_unlocked;
3507 if (ret)
3508 goto done;
3509
3510 ret = __extent_writepage_io(inode, page, wbc, epd,
3511 i_size, nr_written, write_flags, &nr);
3512 if (ret == 1)
3513 goto done_unlocked;
3514
3515 done:
3516 if (nr == 0) {
3517 /* make sure the mapping tag for page dirty gets cleared */
3518 set_page_writeback(page);
3519 end_page_writeback(page);
3520 }
3521 if (PageError(page)) {
3522 ret = ret < 0 ? ret : -EIO;
3523 end_extent_writepage(page, ret, start, page_end);
3524 }
3525 unlock_page(page);
3526 return ret;
3527
3528 done_unlocked:
3529 return 0;
3530 }
3531
3532 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3533 {
3534 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3535 TASK_UNINTERRUPTIBLE);
3536 }
3537
3538 static noinline_for_stack int
3539 lock_extent_buffer_for_io(struct extent_buffer *eb,
3540 struct btrfs_fs_info *fs_info,
3541 struct extent_page_data *epd)
3542 {
3543 unsigned long i, num_pages;
3544 int flush = 0;
3545 int ret = 0;
3546
3547 if (!btrfs_try_tree_write_lock(eb)) {
3548 flush = 1;
3549 flush_write_bio(epd);
3550 btrfs_tree_lock(eb);
3551 }
3552
3553 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3554 btrfs_tree_unlock(eb);
3555 if (!epd->sync_io)
3556 return 0;
3557 if (!flush) {
3558 flush_write_bio(epd);
3559 flush = 1;
3560 }
3561 while (1) {
3562 wait_on_extent_buffer_writeback(eb);
3563 btrfs_tree_lock(eb);
3564 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3565 break;
3566 btrfs_tree_unlock(eb);
3567 }
3568 }
3569
3570 /*
3571 * We need to do this to prevent races in people who check if the eb is
3572 * under IO since we can end up having no IO bits set for a short period
3573 * of time.
3574 */
3575 spin_lock(&eb->refs_lock);
3576 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3577 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3578 spin_unlock(&eb->refs_lock);
3579 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3580 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3581 -eb->len,
3582 fs_info->dirty_metadata_batch);
3583 ret = 1;
3584 } else {
3585 spin_unlock(&eb->refs_lock);
3586 }
3587
3588 btrfs_tree_unlock(eb);
3589
3590 if (!ret)
3591 return ret;
3592
3593 num_pages = num_extent_pages(eb->start, eb->len);
3594 for (i = 0; i < num_pages; i++) {
3595 struct page *p = eb->pages[i];
3596
3597 if (!trylock_page(p)) {
3598 if (!flush) {
3599 flush_write_bio(epd);
3600 flush = 1;
3601 }
3602 lock_page(p);
3603 }
3604 }
3605
3606 return ret;
3607 }
3608
3609 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3610 {
3611 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3612 smp_mb__after_atomic();
3613 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3614 }
3615
3616 static void set_btree_ioerr(struct page *page)
3617 {
3618 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3619
3620 SetPageError(page);
3621 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3622 return;
3623
3624 /*
3625 * If writeback for a btree extent that doesn't belong to a log tree
3626 * failed, increment the counter transaction->eb_write_errors.
3627 * We do this because while the transaction is running and before it's
3628 * committing (when we call filemap_fdata[write|wait]_range against
3629 * the btree inode), we might have
3630 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3631 * returns an error or an error happens during writeback, when we're
3632 * committing the transaction we wouldn't know about it, since the pages
3633 * can be no longer dirty nor marked anymore for writeback (if a
3634 * subsequent modification to the extent buffer didn't happen before the
3635 * transaction commit), which makes filemap_fdata[write|wait]_range not
3636 * able to find the pages tagged with SetPageError at transaction
3637 * commit time. So if this happens we must abort the transaction,
3638 * otherwise we commit a super block with btree roots that point to
3639 * btree nodes/leafs whose content on disk is invalid - either garbage
3640 * or the content of some node/leaf from a past generation that got
3641 * cowed or deleted and is no longer valid.
3642 *
3643 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3644 * not be enough - we need to distinguish between log tree extents vs
3645 * non-log tree extents, and the next filemap_fdatawait_range() call
3646 * will catch and clear such errors in the mapping - and that call might
3647 * be from a log sync and not from a transaction commit. Also, checking
3648 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3649 * not done and would not be reliable - the eb might have been released
3650 * from memory and reading it back again means that flag would not be
3651 * set (since it's a runtime flag, not persisted on disk).
3652 *
3653 * Using the flags below in the btree inode also makes us achieve the
3654 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3655 * writeback for all dirty pages and before filemap_fdatawait_range()
3656 * is called, the writeback for all dirty pages had already finished
3657 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3658 * filemap_fdatawait_range() would return success, as it could not know
3659 * that writeback errors happened (the pages were no longer tagged for
3660 * writeback).
3661 */
3662 switch (eb->log_index) {
3663 case -1:
3664 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3665 break;
3666 case 0:
3667 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3668 break;
3669 case 1:
3670 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3671 break;
3672 default:
3673 BUG(); /* unexpected, logic error */
3674 }
3675 }
3676
3677 static void end_bio_extent_buffer_writepage(struct bio *bio)
3678 {
3679 struct bio_vec *bvec;
3680 struct extent_buffer *eb;
3681 int i, done;
3682
3683 bio_for_each_segment_all(bvec, bio, i) {
3684 struct page *page = bvec->bv_page;
3685
3686 eb = (struct extent_buffer *)page->private;
3687 BUG_ON(!eb);
3688 done = atomic_dec_and_test(&eb->io_pages);
3689
3690 if (bio->bi_error ||
3691 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3692 ClearPageUptodate(page);
3693 set_btree_ioerr(page);
3694 }
3695
3696 end_page_writeback(page);
3697
3698 if (!done)
3699 continue;
3700
3701 end_extent_buffer_writeback(eb);
3702 }
3703
3704 bio_put(bio);
3705 }
3706
3707 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3708 struct btrfs_fs_info *fs_info,
3709 struct writeback_control *wbc,
3710 struct extent_page_data *epd)
3711 {
3712 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3713 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3714 u64 offset = eb->start;
3715 u32 nritems;
3716 unsigned long i, num_pages;
3717 unsigned long bio_flags = 0;
3718 unsigned long start, end;
3719 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3720 int ret = 0;
3721
3722 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3723 num_pages = num_extent_pages(eb->start, eb->len);
3724 atomic_set(&eb->io_pages, num_pages);
3725 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3726 bio_flags = EXTENT_BIO_TREE_LOG;
3727
3728 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3729 nritems = btrfs_header_nritems(eb);
3730 if (btrfs_header_level(eb) > 0) {
3731 end = btrfs_node_key_ptr_offset(nritems);
3732
3733 memzero_extent_buffer(eb, end, eb->len - end);
3734 } else {
3735 /*
3736 * leaf:
3737 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3738 */
3739 start = btrfs_item_nr_offset(nritems);
3740 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3741 memzero_extent_buffer(eb, start, end - start);
3742 }
3743
3744 for (i = 0; i < num_pages; i++) {
3745 struct page *p = eb->pages[i];
3746
3747 clear_page_dirty_for_io(p);
3748 set_page_writeback(p);
3749 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3750 p, offset >> 9, PAGE_SIZE, 0, bdev,
3751 &epd->bio,
3752 end_bio_extent_buffer_writepage,
3753 0, epd->bio_flags, bio_flags, false);
3754 epd->bio_flags = bio_flags;
3755 if (ret) {
3756 set_btree_ioerr(p);
3757 if (PageWriteback(p))
3758 end_page_writeback(p);
3759 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3760 end_extent_buffer_writeback(eb);
3761 ret = -EIO;
3762 break;
3763 }
3764 offset += PAGE_SIZE;
3765 update_nr_written(wbc, 1);
3766 unlock_page(p);
3767 }
3768
3769 if (unlikely(ret)) {
3770 for (; i < num_pages; i++) {
3771 struct page *p = eb->pages[i];
3772 clear_page_dirty_for_io(p);
3773 unlock_page(p);
3774 }
3775 }
3776
3777 return ret;
3778 }
3779
3780 int btree_write_cache_pages(struct address_space *mapping,
3781 struct writeback_control *wbc)
3782 {
3783 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3784 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3785 struct extent_buffer *eb, *prev_eb = NULL;
3786 struct extent_page_data epd = {
3787 .bio = NULL,
3788 .tree = tree,
3789 .extent_locked = 0,
3790 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3791 .bio_flags = 0,
3792 };
3793 int ret = 0;
3794 int done = 0;
3795 int nr_to_write_done = 0;
3796 struct pagevec pvec;
3797 int nr_pages;
3798 pgoff_t index;
3799 pgoff_t end; /* Inclusive */
3800 int scanned = 0;
3801 int tag;
3802
3803 pagevec_init(&pvec, 0);
3804 if (wbc->range_cyclic) {
3805 index = mapping->writeback_index; /* Start from prev offset */
3806 end = -1;
3807 } else {
3808 index = wbc->range_start >> PAGE_SHIFT;
3809 end = wbc->range_end >> PAGE_SHIFT;
3810 scanned = 1;
3811 }
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag = PAGECACHE_TAG_TOWRITE;
3814 else
3815 tag = PAGECACHE_TAG_DIRTY;
3816 retry:
3817 if (wbc->sync_mode == WB_SYNC_ALL)
3818 tag_pages_for_writeback(mapping, index, end);
3819 while (!done && !nr_to_write_done && (index <= end) &&
3820 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3821 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3822 unsigned i;
3823
3824 scanned = 1;
3825 for (i = 0; i < nr_pages; i++) {
3826 struct page *page = pvec.pages[i];
3827
3828 if (!PagePrivate(page))
3829 continue;
3830
3831 if (!wbc->range_cyclic && page->index > end) {
3832 done = 1;
3833 break;
3834 }
3835
3836 spin_lock(&mapping->private_lock);
3837 if (!PagePrivate(page)) {
3838 spin_unlock(&mapping->private_lock);
3839 continue;
3840 }
3841
3842 eb = (struct extent_buffer *)page->private;
3843
3844 /*
3845 * Shouldn't happen and normally this would be a BUG_ON
3846 * but no sense in crashing the users box for something
3847 * we can survive anyway.
3848 */
3849 if (WARN_ON(!eb)) {
3850 spin_unlock(&mapping->private_lock);
3851 continue;
3852 }
3853
3854 if (eb == prev_eb) {
3855 spin_unlock(&mapping->private_lock);
3856 continue;
3857 }
3858
3859 ret = atomic_inc_not_zero(&eb->refs);
3860 spin_unlock(&mapping->private_lock);
3861 if (!ret)
3862 continue;
3863
3864 prev_eb = eb;
3865 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3866 if (!ret) {
3867 free_extent_buffer(eb);
3868 continue;
3869 }
3870
3871 ret = write_one_eb(eb, fs_info, wbc, &epd);
3872 if (ret) {
3873 done = 1;
3874 free_extent_buffer(eb);
3875 break;
3876 }
3877 free_extent_buffer(eb);
3878
3879 /*
3880 * the filesystem may choose to bump up nr_to_write.
3881 * We have to make sure to honor the new nr_to_write
3882 * at any time
3883 */
3884 nr_to_write_done = wbc->nr_to_write <= 0;
3885 }
3886 pagevec_release(&pvec);
3887 cond_resched();
3888 }
3889 if (!scanned && !done) {
3890 /*
3891 * We hit the last page and there is more work to be done: wrap
3892 * back to the start of the file
3893 */
3894 scanned = 1;
3895 index = 0;
3896 goto retry;
3897 }
3898 flush_write_bio(&epd);
3899 return ret;
3900 }
3901
3902 /**
3903 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3904 * @mapping: address space structure to write
3905 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3906 * @writepage: function called for each page
3907 * @data: data passed to writepage function
3908 *
3909 * If a page is already under I/O, write_cache_pages() skips it, even
3910 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3911 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3912 * and msync() need to guarantee that all the data which was dirty at the time
3913 * the call was made get new I/O started against them. If wbc->sync_mode is
3914 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3915 * existing IO to complete.
3916 */
3917 static int extent_write_cache_pages(struct address_space *mapping,
3918 struct writeback_control *wbc,
3919 writepage_t writepage, void *data,
3920 void (*flush_fn)(void *))
3921 {
3922 struct inode *inode = mapping->host;
3923 int ret = 0;
3924 int done = 0;
3925 int nr_to_write_done = 0;
3926 struct pagevec pvec;
3927 int nr_pages;
3928 pgoff_t index;
3929 pgoff_t end; /* Inclusive */
3930 pgoff_t done_index;
3931 int range_whole = 0;
3932 int scanned = 0;
3933 int tag;
3934
3935 /*
3936 * We have to hold onto the inode so that ordered extents can do their
3937 * work when the IO finishes. The alternative to this is failing to add
3938 * an ordered extent if the igrab() fails there and that is a huge pain
3939 * to deal with, so instead just hold onto the inode throughout the
3940 * writepages operation. If it fails here we are freeing up the inode
3941 * anyway and we'd rather not waste our time writing out stuff that is
3942 * going to be truncated anyway.
3943 */
3944 if (!igrab(inode))
3945 return 0;
3946
3947 pagevec_init(&pvec, 0);
3948 if (wbc->range_cyclic) {
3949 index = mapping->writeback_index; /* Start from prev offset */
3950 end = -1;
3951 } else {
3952 index = wbc->range_start >> PAGE_SHIFT;
3953 end = wbc->range_end >> PAGE_SHIFT;
3954 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3955 range_whole = 1;
3956 scanned = 1;
3957 }
3958 if (wbc->sync_mode == WB_SYNC_ALL)
3959 tag = PAGECACHE_TAG_TOWRITE;
3960 else
3961 tag = PAGECACHE_TAG_DIRTY;
3962 retry:
3963 if (wbc->sync_mode == WB_SYNC_ALL)
3964 tag_pages_for_writeback(mapping, index, end);
3965 done_index = index;
3966 while (!done && !nr_to_write_done && (index <= end) &&
3967 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3968 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3969 unsigned i;
3970
3971 scanned = 1;
3972 for (i = 0; i < nr_pages; i++) {
3973 struct page *page = pvec.pages[i];
3974
3975 done_index = page->index;
3976 /*
3977 * At this point we hold neither mapping->tree_lock nor
3978 * lock on the page itself: the page may be truncated or
3979 * invalidated (changing page->mapping to NULL), or even
3980 * swizzled back from swapper_space to tmpfs file
3981 * mapping
3982 */
3983 if (!trylock_page(page)) {
3984 flush_fn(data);
3985 lock_page(page);
3986 }
3987
3988 if (unlikely(page->mapping != mapping)) {
3989 unlock_page(page);
3990 continue;
3991 }
3992
3993 if (!wbc->range_cyclic && page->index > end) {
3994 done = 1;
3995 unlock_page(page);
3996 continue;
3997 }
3998
3999 if (wbc->sync_mode != WB_SYNC_NONE) {
4000 if (PageWriteback(page))
4001 flush_fn(data);
4002 wait_on_page_writeback(page);
4003 }
4004
4005 if (PageWriteback(page) ||
4006 !clear_page_dirty_for_io(page)) {
4007 unlock_page(page);
4008 continue;
4009 }
4010
4011 ret = (*writepage)(page, wbc, data);
4012
4013 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4014 unlock_page(page);
4015 ret = 0;
4016 }
4017 if (ret < 0) {
4018 /*
4019 * done_index is set past this page,
4020 * so media errors will not choke
4021 * background writeout for the entire
4022 * file. This has consequences for
4023 * range_cyclic semantics (ie. it may
4024 * not be suitable for data integrity
4025 * writeout).
4026 */
4027 done_index = page->index + 1;
4028 done = 1;
4029 break;
4030 }
4031
4032 /*
4033 * the filesystem may choose to bump up nr_to_write.
4034 * We have to make sure to honor the new nr_to_write
4035 * at any time
4036 */
4037 nr_to_write_done = wbc->nr_to_write <= 0;
4038 }
4039 pagevec_release(&pvec);
4040 cond_resched();
4041 }
4042 if (!scanned && !done) {
4043 /*
4044 * We hit the last page and there is more work to be done: wrap
4045 * back to the start of the file
4046 */
4047 scanned = 1;
4048 index = 0;
4049 goto retry;
4050 }
4051
4052 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4053 mapping->writeback_index = done_index;
4054
4055 btrfs_add_delayed_iput(inode);
4056 return ret;
4057 }
4058
4059 static void flush_epd_write_bio(struct extent_page_data *epd)
4060 {
4061 if (epd->bio) {
4062 int ret;
4063
4064 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4065 epd->sync_io ? REQ_SYNC : 0);
4066
4067 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4068 BUG_ON(ret < 0); /* -ENOMEM */
4069 epd->bio = NULL;
4070 }
4071 }
4072
4073 static noinline void flush_write_bio(void *data)
4074 {
4075 struct extent_page_data *epd = data;
4076 flush_epd_write_bio(epd);
4077 }
4078
4079 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4080 get_extent_t *get_extent,
4081 struct writeback_control *wbc)
4082 {
4083 int ret;
4084 struct extent_page_data epd = {
4085 .bio = NULL,
4086 .tree = tree,
4087 .get_extent = get_extent,
4088 .extent_locked = 0,
4089 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4090 .bio_flags = 0,
4091 };
4092
4093 ret = __extent_writepage(page, wbc, &epd);
4094
4095 flush_epd_write_bio(&epd);
4096 return ret;
4097 }
4098
4099 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4100 u64 start, u64 end, get_extent_t *get_extent,
4101 int mode)
4102 {
4103 int ret = 0;
4104 struct address_space *mapping = inode->i_mapping;
4105 struct page *page;
4106 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4107 PAGE_SHIFT;
4108
4109 struct extent_page_data epd = {
4110 .bio = NULL,
4111 .tree = tree,
4112 .get_extent = get_extent,
4113 .extent_locked = 1,
4114 .sync_io = mode == WB_SYNC_ALL,
4115 .bio_flags = 0,
4116 };
4117 struct writeback_control wbc_writepages = {
4118 .sync_mode = mode,
4119 .nr_to_write = nr_pages * 2,
4120 .range_start = start,
4121 .range_end = end + 1,
4122 };
4123
4124 while (start <= end) {
4125 page = find_get_page(mapping, start >> PAGE_SHIFT);
4126 if (clear_page_dirty_for_io(page))
4127 ret = __extent_writepage(page, &wbc_writepages, &epd);
4128 else {
4129 if (tree->ops && tree->ops->writepage_end_io_hook)
4130 tree->ops->writepage_end_io_hook(page, start,
4131 start + PAGE_SIZE - 1,
4132 NULL, 1);
4133 unlock_page(page);
4134 }
4135 put_page(page);
4136 start += PAGE_SIZE;
4137 }
4138
4139 flush_epd_write_bio(&epd);
4140 return ret;
4141 }
4142
4143 int extent_writepages(struct extent_io_tree *tree,
4144 struct address_space *mapping,
4145 get_extent_t *get_extent,
4146 struct writeback_control *wbc)
4147 {
4148 int ret = 0;
4149 struct extent_page_data epd = {
4150 .bio = NULL,
4151 .tree = tree,
4152 .get_extent = get_extent,
4153 .extent_locked = 0,
4154 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4155 .bio_flags = 0,
4156 };
4157
4158 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4159 flush_write_bio);
4160 flush_epd_write_bio(&epd);
4161 return ret;
4162 }
4163
4164 int extent_readpages(struct extent_io_tree *tree,
4165 struct address_space *mapping,
4166 struct list_head *pages, unsigned nr_pages,
4167 get_extent_t get_extent)
4168 {
4169 struct bio *bio = NULL;
4170 unsigned page_idx;
4171 unsigned long bio_flags = 0;
4172 struct page *pagepool[16];
4173 struct page *page;
4174 struct extent_map *em_cached = NULL;
4175 int nr = 0;
4176 u64 prev_em_start = (u64)-1;
4177
4178 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4179 page = list_entry(pages->prev, struct page, lru);
4180
4181 prefetchw(&page->flags);
4182 list_del(&page->lru);
4183 if (add_to_page_cache_lru(page, mapping,
4184 page->index,
4185 readahead_gfp_mask(mapping))) {
4186 put_page(page);
4187 continue;
4188 }
4189
4190 pagepool[nr++] = page;
4191 if (nr < ARRAY_SIZE(pagepool))
4192 continue;
4193 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4194 &bio, 0, &bio_flags, &prev_em_start);
4195 nr = 0;
4196 }
4197 if (nr)
4198 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4199 &bio, 0, &bio_flags, &prev_em_start);
4200
4201 if (em_cached)
4202 free_extent_map(em_cached);
4203
4204 BUG_ON(!list_empty(pages));
4205 if (bio)
4206 return submit_one_bio(bio, 0, bio_flags);
4207 return 0;
4208 }
4209
4210 /*
4211 * basic invalidatepage code, this waits on any locked or writeback
4212 * ranges corresponding to the page, and then deletes any extent state
4213 * records from the tree
4214 */
4215 int extent_invalidatepage(struct extent_io_tree *tree,
4216 struct page *page, unsigned long offset)
4217 {
4218 struct extent_state *cached_state = NULL;
4219 u64 start = page_offset(page);
4220 u64 end = start + PAGE_SIZE - 1;
4221 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4222
4223 start += ALIGN(offset, blocksize);
4224 if (start > end)
4225 return 0;
4226
4227 lock_extent_bits(tree, start, end, &cached_state);
4228 wait_on_page_writeback(page);
4229 clear_extent_bit(tree, start, end,
4230 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4231 EXTENT_DO_ACCOUNTING,
4232 1, 1, &cached_state, GFP_NOFS);
4233 return 0;
4234 }
4235
4236 /*
4237 * a helper for releasepage, this tests for areas of the page that
4238 * are locked or under IO and drops the related state bits if it is safe
4239 * to drop the page.
4240 */
4241 static int try_release_extent_state(struct extent_map_tree *map,
4242 struct extent_io_tree *tree,
4243 struct page *page, gfp_t mask)
4244 {
4245 u64 start = page_offset(page);
4246 u64 end = start + PAGE_SIZE - 1;
4247 int ret = 1;
4248
4249 if (test_range_bit(tree, start, end,
4250 EXTENT_IOBITS, 0, NULL))
4251 ret = 0;
4252 else {
4253 /*
4254 * at this point we can safely clear everything except the
4255 * locked bit and the nodatasum bit
4256 */
4257 ret = clear_extent_bit(tree, start, end,
4258 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4259 0, 0, NULL, mask);
4260
4261 /* if clear_extent_bit failed for enomem reasons,
4262 * we can't allow the release to continue.
4263 */
4264 if (ret < 0)
4265 ret = 0;
4266 else
4267 ret = 1;
4268 }
4269 return ret;
4270 }
4271
4272 /*
4273 * a helper for releasepage. As long as there are no locked extents
4274 * in the range corresponding to the page, both state records and extent
4275 * map records are removed
4276 */
4277 int try_release_extent_mapping(struct extent_map_tree *map,
4278 struct extent_io_tree *tree, struct page *page,
4279 gfp_t mask)
4280 {
4281 struct extent_map *em;
4282 u64 start = page_offset(page);
4283 u64 end = start + PAGE_SIZE - 1;
4284
4285 if (gfpflags_allow_blocking(mask) &&
4286 page->mapping->host->i_size > SZ_16M) {
4287 u64 len;
4288 while (start <= end) {
4289 len = end - start + 1;
4290 write_lock(&map->lock);
4291 em = lookup_extent_mapping(map, start, len);
4292 if (!em) {
4293 write_unlock(&map->lock);
4294 break;
4295 }
4296 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4297 em->start != start) {
4298 write_unlock(&map->lock);
4299 free_extent_map(em);
4300 break;
4301 }
4302 if (!test_range_bit(tree, em->start,
4303 extent_map_end(em) - 1,
4304 EXTENT_LOCKED | EXTENT_WRITEBACK,
4305 0, NULL)) {
4306 remove_extent_mapping(map, em);
4307 /* once for the rb tree */
4308 free_extent_map(em);
4309 }
4310 start = extent_map_end(em);
4311 write_unlock(&map->lock);
4312
4313 /* once for us */
4314 free_extent_map(em);
4315 }
4316 }
4317 return try_release_extent_state(map, tree, page, mask);
4318 }
4319
4320 /*
4321 * helper function for fiemap, which doesn't want to see any holes.
4322 * This maps until we find something past 'last'
4323 */
4324 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4325 u64 offset,
4326 u64 last,
4327 get_extent_t *get_extent)
4328 {
4329 u64 sectorsize = btrfs_inode_sectorsize(inode);
4330 struct extent_map *em;
4331 u64 len;
4332
4333 if (offset >= last)
4334 return NULL;
4335
4336 while (1) {
4337 len = last - offset;
4338 if (len == 0)
4339 break;
4340 len = ALIGN(len, sectorsize);
4341 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4342 if (IS_ERR_OR_NULL(em))
4343 return em;
4344
4345 /* if this isn't a hole return it */
4346 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4347 em->block_start != EXTENT_MAP_HOLE) {
4348 return em;
4349 }
4350
4351 /* this is a hole, advance to the next extent */
4352 offset = extent_map_end(em);
4353 free_extent_map(em);
4354 if (offset >= last)
4355 break;
4356 }
4357 return NULL;
4358 }
4359
4360 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4361 __u64 start, __u64 len, get_extent_t *get_extent)
4362 {
4363 int ret = 0;
4364 u64 off = start;
4365 u64 max = start + len;
4366 u32 flags = 0;
4367 u32 found_type;
4368 u64 last;
4369 u64 last_for_get_extent = 0;
4370 u64 disko = 0;
4371 u64 isize = i_size_read(inode);
4372 struct btrfs_key found_key;
4373 struct extent_map *em = NULL;
4374 struct extent_state *cached_state = NULL;
4375 struct btrfs_path *path;
4376 struct btrfs_root *root = BTRFS_I(inode)->root;
4377 int end = 0;
4378 u64 em_start = 0;
4379 u64 em_len = 0;
4380 u64 em_end = 0;
4381
4382 if (len == 0)
4383 return -EINVAL;
4384
4385 path = btrfs_alloc_path();
4386 if (!path)
4387 return -ENOMEM;
4388 path->leave_spinning = 1;
4389
4390 start = round_down(start, btrfs_inode_sectorsize(inode));
4391 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4392
4393 /*
4394 * lookup the last file extent. We're not using i_size here
4395 * because there might be preallocation past i_size
4396 */
4397 ret = btrfs_lookup_file_extent(NULL, root, path,
4398 btrfs_ino(BTRFS_I(inode)), -1, 0);
4399 if (ret < 0) {
4400 btrfs_free_path(path);
4401 return ret;
4402 } else {
4403 WARN_ON(!ret);
4404 if (ret == 1)
4405 ret = 0;
4406 }
4407
4408 path->slots[0]--;
4409 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4410 found_type = found_key.type;
4411
4412 /* No extents, but there might be delalloc bits */
4413 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4414 found_type != BTRFS_EXTENT_DATA_KEY) {
4415 /* have to trust i_size as the end */
4416 last = (u64)-1;
4417 last_for_get_extent = isize;
4418 } else {
4419 /*
4420 * remember the start of the last extent. There are a
4421 * bunch of different factors that go into the length of the
4422 * extent, so its much less complex to remember where it started
4423 */
4424 last = found_key.offset;
4425 last_for_get_extent = last + 1;
4426 }
4427 btrfs_release_path(path);
4428
4429 /*
4430 * we might have some extents allocated but more delalloc past those
4431 * extents. so, we trust isize unless the start of the last extent is
4432 * beyond isize
4433 */
4434 if (last < isize) {
4435 last = (u64)-1;
4436 last_for_get_extent = isize;
4437 }
4438
4439 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4440 &cached_state);
4441
4442 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4443 get_extent);
4444 if (!em)
4445 goto out;
4446 if (IS_ERR(em)) {
4447 ret = PTR_ERR(em);
4448 goto out;
4449 }
4450
4451 while (!end) {
4452 u64 offset_in_extent = 0;
4453
4454 /* break if the extent we found is outside the range */
4455 if (em->start >= max || extent_map_end(em) < off)
4456 break;
4457
4458 /*
4459 * get_extent may return an extent that starts before our
4460 * requested range. We have to make sure the ranges
4461 * we return to fiemap always move forward and don't
4462 * overlap, so adjust the offsets here
4463 */
4464 em_start = max(em->start, off);
4465
4466 /*
4467 * record the offset from the start of the extent
4468 * for adjusting the disk offset below. Only do this if the
4469 * extent isn't compressed since our in ram offset may be past
4470 * what we have actually allocated on disk.
4471 */
4472 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4473 offset_in_extent = em_start - em->start;
4474 em_end = extent_map_end(em);
4475 em_len = em_end - em_start;
4476 disko = 0;
4477 flags = 0;
4478
4479 /*
4480 * bump off for our next call to get_extent
4481 */
4482 off = extent_map_end(em);
4483 if (off >= max)
4484 end = 1;
4485
4486 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4487 end = 1;
4488 flags |= FIEMAP_EXTENT_LAST;
4489 } else if (em->block_start == EXTENT_MAP_INLINE) {
4490 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4491 FIEMAP_EXTENT_NOT_ALIGNED);
4492 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4493 flags |= (FIEMAP_EXTENT_DELALLOC |
4494 FIEMAP_EXTENT_UNKNOWN);
4495 } else if (fieinfo->fi_extents_max) {
4496 struct btrfs_trans_handle *trans;
4497
4498 u64 bytenr = em->block_start -
4499 (em->start - em->orig_start);
4500
4501 disko = em->block_start + offset_in_extent;
4502
4503 /*
4504 * We need a trans handle to get delayed refs
4505 */
4506 trans = btrfs_join_transaction(root);
4507 /*
4508 * It's OK if we can't start a trans we can still check
4509 * from commit_root
4510 */
4511 if (IS_ERR(trans))
4512 trans = NULL;
4513
4514 /*
4515 * As btrfs supports shared space, this information
4516 * can be exported to userspace tools via
4517 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4518 * then we're just getting a count and we can skip the
4519 * lookup stuff.
4520 */
4521 ret = btrfs_check_shared(trans, root->fs_info,
4522 root->objectid,
4523 btrfs_ino(BTRFS_I(inode)), bytenr);
4524 if (trans)
4525 btrfs_end_transaction(trans);
4526 if (ret < 0)
4527 goto out_free;
4528 if (ret)
4529 flags |= FIEMAP_EXTENT_SHARED;
4530 ret = 0;
4531 }
4532 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4533 flags |= FIEMAP_EXTENT_ENCODED;
4534 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4535 flags |= FIEMAP_EXTENT_UNWRITTEN;
4536
4537 free_extent_map(em);
4538 em = NULL;
4539 if ((em_start >= last) || em_len == (u64)-1 ||
4540 (last == (u64)-1 && isize <= em_end)) {
4541 flags |= FIEMAP_EXTENT_LAST;
4542 end = 1;
4543 }
4544
4545 /* now scan forward to see if this is really the last extent. */
4546 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4547 get_extent);
4548 if (IS_ERR(em)) {
4549 ret = PTR_ERR(em);
4550 goto out;
4551 }
4552 if (!em) {
4553 flags |= FIEMAP_EXTENT_LAST;
4554 end = 1;
4555 }
4556 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4557 em_len, flags);
4558 if (ret) {
4559 if (ret == 1)
4560 ret = 0;
4561 goto out_free;
4562 }
4563 }
4564 out_free:
4565 free_extent_map(em);
4566 out:
4567 btrfs_free_path(path);
4568 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4569 &cached_state, GFP_NOFS);
4570 return ret;
4571 }
4572
4573 static void __free_extent_buffer(struct extent_buffer *eb)
4574 {
4575 btrfs_leak_debug_del(&eb->leak_list);
4576 kmem_cache_free(extent_buffer_cache, eb);
4577 }
4578
4579 int extent_buffer_under_io(struct extent_buffer *eb)
4580 {
4581 return (atomic_read(&eb->io_pages) ||
4582 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4583 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4584 }
4585
4586 /*
4587 * Helper for releasing extent buffer page.
4588 */
4589 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4590 {
4591 unsigned long index;
4592 struct page *page;
4593 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4594
4595 BUG_ON(extent_buffer_under_io(eb));
4596
4597 index = num_extent_pages(eb->start, eb->len);
4598 if (index == 0)
4599 return;
4600
4601 do {
4602 index--;
4603 page = eb->pages[index];
4604 if (!page)
4605 continue;
4606 if (mapped)
4607 spin_lock(&page->mapping->private_lock);
4608 /*
4609 * We do this since we'll remove the pages after we've
4610 * removed the eb from the radix tree, so we could race
4611 * and have this page now attached to the new eb. So
4612 * only clear page_private if it's still connected to
4613 * this eb.
4614 */
4615 if (PagePrivate(page) &&
4616 page->private == (unsigned long)eb) {
4617 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4618 BUG_ON(PageDirty(page));
4619 BUG_ON(PageWriteback(page));
4620 /*
4621 * We need to make sure we haven't be attached
4622 * to a new eb.
4623 */
4624 ClearPagePrivate(page);
4625 set_page_private(page, 0);
4626 /* One for the page private */
4627 put_page(page);
4628 }
4629
4630 if (mapped)
4631 spin_unlock(&page->mapping->private_lock);
4632
4633 /* One for when we allocated the page */
4634 put_page(page);
4635 } while (index != 0);
4636 }
4637
4638 /*
4639 * Helper for releasing the extent buffer.
4640 */
4641 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4642 {
4643 btrfs_release_extent_buffer_page(eb);
4644 __free_extent_buffer(eb);
4645 }
4646
4647 static struct extent_buffer *
4648 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4649 unsigned long len)
4650 {
4651 struct extent_buffer *eb = NULL;
4652
4653 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4654 eb->start = start;
4655 eb->len = len;
4656 eb->fs_info = fs_info;
4657 eb->bflags = 0;
4658 rwlock_init(&eb->lock);
4659 atomic_set(&eb->write_locks, 0);
4660 atomic_set(&eb->read_locks, 0);
4661 atomic_set(&eb->blocking_readers, 0);
4662 atomic_set(&eb->blocking_writers, 0);
4663 atomic_set(&eb->spinning_readers, 0);
4664 atomic_set(&eb->spinning_writers, 0);
4665 eb->lock_nested = 0;
4666 init_waitqueue_head(&eb->write_lock_wq);
4667 init_waitqueue_head(&eb->read_lock_wq);
4668
4669 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4670
4671 spin_lock_init(&eb->refs_lock);
4672 atomic_set(&eb->refs, 1);
4673 atomic_set(&eb->io_pages, 0);
4674
4675 /*
4676 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4677 */
4678 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4679 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4680 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4681
4682 return eb;
4683 }
4684
4685 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4686 {
4687 unsigned long i;
4688 struct page *p;
4689 struct extent_buffer *new;
4690 unsigned long num_pages = num_extent_pages(src->start, src->len);
4691
4692 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4693 if (new == NULL)
4694 return NULL;
4695
4696 for (i = 0; i < num_pages; i++) {
4697 p = alloc_page(GFP_NOFS);
4698 if (!p) {
4699 btrfs_release_extent_buffer(new);
4700 return NULL;
4701 }
4702 attach_extent_buffer_page(new, p);
4703 WARN_ON(PageDirty(p));
4704 SetPageUptodate(p);
4705 new->pages[i] = p;
4706 copy_page(page_address(p), page_address(src->pages[i]));
4707 }
4708
4709 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4710 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4711
4712 return new;
4713 }
4714
4715 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4716 u64 start, unsigned long len)
4717 {
4718 struct extent_buffer *eb;
4719 unsigned long num_pages;
4720 unsigned long i;
4721
4722 num_pages = num_extent_pages(start, len);
4723
4724 eb = __alloc_extent_buffer(fs_info, start, len);
4725 if (!eb)
4726 return NULL;
4727
4728 for (i = 0; i < num_pages; i++) {
4729 eb->pages[i] = alloc_page(GFP_NOFS);
4730 if (!eb->pages[i])
4731 goto err;
4732 }
4733 set_extent_buffer_uptodate(eb);
4734 btrfs_set_header_nritems(eb, 0);
4735 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4736
4737 return eb;
4738 err:
4739 for (; i > 0; i--)
4740 __free_page(eb->pages[i - 1]);
4741 __free_extent_buffer(eb);
4742 return NULL;
4743 }
4744
4745 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4746 u64 start)
4747 {
4748 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4749 }
4750
4751 static void check_buffer_tree_ref(struct extent_buffer *eb)
4752 {
4753 int refs;
4754 /* the ref bit is tricky. We have to make sure it is set
4755 * if we have the buffer dirty. Otherwise the
4756 * code to free a buffer can end up dropping a dirty
4757 * page
4758 *
4759 * Once the ref bit is set, it won't go away while the
4760 * buffer is dirty or in writeback, and it also won't
4761 * go away while we have the reference count on the
4762 * eb bumped.
4763 *
4764 * We can't just set the ref bit without bumping the
4765 * ref on the eb because free_extent_buffer might
4766 * see the ref bit and try to clear it. If this happens
4767 * free_extent_buffer might end up dropping our original
4768 * ref by mistake and freeing the page before we are able
4769 * to add one more ref.
4770 *
4771 * So bump the ref count first, then set the bit. If someone
4772 * beat us to it, drop the ref we added.
4773 */
4774 refs = atomic_read(&eb->refs);
4775 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4776 return;
4777
4778 spin_lock(&eb->refs_lock);
4779 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4780 atomic_inc(&eb->refs);
4781 spin_unlock(&eb->refs_lock);
4782 }
4783
4784 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4785 struct page *accessed)
4786 {
4787 unsigned long num_pages, i;
4788
4789 check_buffer_tree_ref(eb);
4790
4791 num_pages = num_extent_pages(eb->start, eb->len);
4792 for (i = 0; i < num_pages; i++) {
4793 struct page *p = eb->pages[i];
4794
4795 if (p != accessed)
4796 mark_page_accessed(p);
4797 }
4798 }
4799
4800 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4801 u64 start)
4802 {
4803 struct extent_buffer *eb;
4804
4805 rcu_read_lock();
4806 eb = radix_tree_lookup(&fs_info->buffer_radix,
4807 start >> PAGE_SHIFT);
4808 if (eb && atomic_inc_not_zero(&eb->refs)) {
4809 rcu_read_unlock();
4810 /*
4811 * Lock our eb's refs_lock to avoid races with
4812 * free_extent_buffer. When we get our eb it might be flagged
4813 * with EXTENT_BUFFER_STALE and another task running
4814 * free_extent_buffer might have seen that flag set,
4815 * eb->refs == 2, that the buffer isn't under IO (dirty and
4816 * writeback flags not set) and it's still in the tree (flag
4817 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4818 * of decrementing the extent buffer's reference count twice.
4819 * So here we could race and increment the eb's reference count,
4820 * clear its stale flag, mark it as dirty and drop our reference
4821 * before the other task finishes executing free_extent_buffer,
4822 * which would later result in an attempt to free an extent
4823 * buffer that is dirty.
4824 */
4825 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4826 spin_lock(&eb->refs_lock);
4827 spin_unlock(&eb->refs_lock);
4828 }
4829 mark_extent_buffer_accessed(eb, NULL);
4830 return eb;
4831 }
4832 rcu_read_unlock();
4833
4834 return NULL;
4835 }
4836
4837 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4838 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4839 u64 start)
4840 {
4841 struct extent_buffer *eb, *exists = NULL;
4842 int ret;
4843
4844 eb = find_extent_buffer(fs_info, start);
4845 if (eb)
4846 return eb;
4847 eb = alloc_dummy_extent_buffer(fs_info, start);
4848 if (!eb)
4849 return NULL;
4850 eb->fs_info = fs_info;
4851 again:
4852 ret = radix_tree_preload(GFP_NOFS);
4853 if (ret)
4854 goto free_eb;
4855 spin_lock(&fs_info->buffer_lock);
4856 ret = radix_tree_insert(&fs_info->buffer_radix,
4857 start >> PAGE_SHIFT, eb);
4858 spin_unlock(&fs_info->buffer_lock);
4859 radix_tree_preload_end();
4860 if (ret == -EEXIST) {
4861 exists = find_extent_buffer(fs_info, start);
4862 if (exists)
4863 goto free_eb;
4864 else
4865 goto again;
4866 }
4867 check_buffer_tree_ref(eb);
4868 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4869
4870 /*
4871 * We will free dummy extent buffer's if they come into
4872 * free_extent_buffer with a ref count of 2, but if we are using this we
4873 * want the buffers to stay in memory until we're done with them, so
4874 * bump the ref count again.
4875 */
4876 atomic_inc(&eb->refs);
4877 return eb;
4878 free_eb:
4879 btrfs_release_extent_buffer(eb);
4880 return exists;
4881 }
4882 #endif
4883
4884 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4885 u64 start)
4886 {
4887 unsigned long len = fs_info->nodesize;
4888 unsigned long num_pages = num_extent_pages(start, len);
4889 unsigned long i;
4890 unsigned long index = start >> PAGE_SHIFT;
4891 struct extent_buffer *eb;
4892 struct extent_buffer *exists = NULL;
4893 struct page *p;
4894 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4895 int uptodate = 1;
4896 int ret;
4897
4898 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4899 btrfs_err(fs_info, "bad tree block start %llu", start);
4900 return ERR_PTR(-EINVAL);
4901 }
4902
4903 eb = find_extent_buffer(fs_info, start);
4904 if (eb)
4905 return eb;
4906
4907 eb = __alloc_extent_buffer(fs_info, start, len);
4908 if (!eb)
4909 return ERR_PTR(-ENOMEM);
4910
4911 for (i = 0; i < num_pages; i++, index++) {
4912 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4913 if (!p) {
4914 exists = ERR_PTR(-ENOMEM);
4915 goto free_eb;
4916 }
4917
4918 spin_lock(&mapping->private_lock);
4919 if (PagePrivate(p)) {
4920 /*
4921 * We could have already allocated an eb for this page
4922 * and attached one so lets see if we can get a ref on
4923 * the existing eb, and if we can we know it's good and
4924 * we can just return that one, else we know we can just
4925 * overwrite page->private.
4926 */
4927 exists = (struct extent_buffer *)p->private;
4928 if (atomic_inc_not_zero(&exists->refs)) {
4929 spin_unlock(&mapping->private_lock);
4930 unlock_page(p);
4931 put_page(p);
4932 mark_extent_buffer_accessed(exists, p);
4933 goto free_eb;
4934 }
4935 exists = NULL;
4936
4937 /*
4938 * Do this so attach doesn't complain and we need to
4939 * drop the ref the old guy had.
4940 */
4941 ClearPagePrivate(p);
4942 WARN_ON(PageDirty(p));
4943 put_page(p);
4944 }
4945 attach_extent_buffer_page(eb, p);
4946 spin_unlock(&mapping->private_lock);
4947 WARN_ON(PageDirty(p));
4948 eb->pages[i] = p;
4949 if (!PageUptodate(p))
4950 uptodate = 0;
4951
4952 /*
4953 * see below about how we avoid a nasty race with release page
4954 * and why we unlock later
4955 */
4956 }
4957 if (uptodate)
4958 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4959 again:
4960 ret = radix_tree_preload(GFP_NOFS);
4961 if (ret) {
4962 exists = ERR_PTR(ret);
4963 goto free_eb;
4964 }
4965
4966 spin_lock(&fs_info->buffer_lock);
4967 ret = radix_tree_insert(&fs_info->buffer_radix,
4968 start >> PAGE_SHIFT, eb);
4969 spin_unlock(&fs_info->buffer_lock);
4970 radix_tree_preload_end();
4971 if (ret == -EEXIST) {
4972 exists = find_extent_buffer(fs_info, start);
4973 if (exists)
4974 goto free_eb;
4975 else
4976 goto again;
4977 }
4978 /* add one reference for the tree */
4979 check_buffer_tree_ref(eb);
4980 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4981
4982 /*
4983 * there is a race where release page may have
4984 * tried to find this extent buffer in the radix
4985 * but failed. It will tell the VM it is safe to
4986 * reclaim the, and it will clear the page private bit.
4987 * We must make sure to set the page private bit properly
4988 * after the extent buffer is in the radix tree so
4989 * it doesn't get lost
4990 */
4991 SetPageChecked(eb->pages[0]);
4992 for (i = 1; i < num_pages; i++) {
4993 p = eb->pages[i];
4994 ClearPageChecked(p);
4995 unlock_page(p);
4996 }
4997 unlock_page(eb->pages[0]);
4998 return eb;
4999
5000 free_eb:
5001 WARN_ON(!atomic_dec_and_test(&eb->refs));
5002 for (i = 0; i < num_pages; i++) {
5003 if (eb->pages[i])
5004 unlock_page(eb->pages[i]);
5005 }
5006
5007 btrfs_release_extent_buffer(eb);
5008 return exists;
5009 }
5010
5011 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5012 {
5013 struct extent_buffer *eb =
5014 container_of(head, struct extent_buffer, rcu_head);
5015
5016 __free_extent_buffer(eb);
5017 }
5018
5019 /* Expects to have eb->eb_lock already held */
5020 static int release_extent_buffer(struct extent_buffer *eb)
5021 {
5022 WARN_ON(atomic_read(&eb->refs) == 0);
5023 if (atomic_dec_and_test(&eb->refs)) {
5024 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5025 struct btrfs_fs_info *fs_info = eb->fs_info;
5026
5027 spin_unlock(&eb->refs_lock);
5028
5029 spin_lock(&fs_info->buffer_lock);
5030 radix_tree_delete(&fs_info->buffer_radix,
5031 eb->start >> PAGE_SHIFT);
5032 spin_unlock(&fs_info->buffer_lock);
5033 } else {
5034 spin_unlock(&eb->refs_lock);
5035 }
5036
5037 /* Should be safe to release our pages at this point */
5038 btrfs_release_extent_buffer_page(eb);
5039 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5040 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5041 __free_extent_buffer(eb);
5042 return 1;
5043 }
5044 #endif
5045 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5046 return 1;
5047 }
5048 spin_unlock(&eb->refs_lock);
5049
5050 return 0;
5051 }
5052
5053 void free_extent_buffer(struct extent_buffer *eb)
5054 {
5055 int refs;
5056 int old;
5057 if (!eb)
5058 return;
5059
5060 while (1) {
5061 refs = atomic_read(&eb->refs);
5062 if (refs <= 3)
5063 break;
5064 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5065 if (old == refs)
5066 return;
5067 }
5068
5069 spin_lock(&eb->refs_lock);
5070 if (atomic_read(&eb->refs) == 2 &&
5071 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5072 atomic_dec(&eb->refs);
5073
5074 if (atomic_read(&eb->refs) == 2 &&
5075 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5076 !extent_buffer_under_io(eb) &&
5077 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5078 atomic_dec(&eb->refs);
5079
5080 /*
5081 * I know this is terrible, but it's temporary until we stop tracking
5082 * the uptodate bits and such for the extent buffers.
5083 */
5084 release_extent_buffer(eb);
5085 }
5086
5087 void free_extent_buffer_stale(struct extent_buffer *eb)
5088 {
5089 if (!eb)
5090 return;
5091
5092 spin_lock(&eb->refs_lock);
5093 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5094
5095 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5096 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5097 atomic_dec(&eb->refs);
5098 release_extent_buffer(eb);
5099 }
5100
5101 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5102 {
5103 unsigned long i;
5104 unsigned long num_pages;
5105 struct page *page;
5106
5107 num_pages = num_extent_pages(eb->start, eb->len);
5108
5109 for (i = 0; i < num_pages; i++) {
5110 page = eb->pages[i];
5111 if (!PageDirty(page))
5112 continue;
5113
5114 lock_page(page);
5115 WARN_ON(!PagePrivate(page));
5116
5117 clear_page_dirty_for_io(page);
5118 spin_lock_irq(&page->mapping->tree_lock);
5119 if (!PageDirty(page)) {
5120 radix_tree_tag_clear(&page->mapping->page_tree,
5121 page_index(page),
5122 PAGECACHE_TAG_DIRTY);
5123 }
5124 spin_unlock_irq(&page->mapping->tree_lock);
5125 ClearPageError(page);
5126 unlock_page(page);
5127 }
5128 WARN_ON(atomic_read(&eb->refs) == 0);
5129 }
5130
5131 int set_extent_buffer_dirty(struct extent_buffer *eb)
5132 {
5133 unsigned long i;
5134 unsigned long num_pages;
5135 int was_dirty = 0;
5136
5137 check_buffer_tree_ref(eb);
5138
5139 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5140
5141 num_pages = num_extent_pages(eb->start, eb->len);
5142 WARN_ON(atomic_read(&eb->refs) == 0);
5143 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5144
5145 for (i = 0; i < num_pages; i++)
5146 set_page_dirty(eb->pages[i]);
5147 return was_dirty;
5148 }
5149
5150 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5151 {
5152 unsigned long i;
5153 struct page *page;
5154 unsigned long num_pages;
5155
5156 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5157 num_pages = num_extent_pages(eb->start, eb->len);
5158 for (i = 0; i < num_pages; i++) {
5159 page = eb->pages[i];
5160 if (page)
5161 ClearPageUptodate(page);
5162 }
5163 }
5164
5165 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5166 {
5167 unsigned long i;
5168 struct page *page;
5169 unsigned long num_pages;
5170
5171 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5172 num_pages = num_extent_pages(eb->start, eb->len);
5173 for (i = 0; i < num_pages; i++) {
5174 page = eb->pages[i];
5175 SetPageUptodate(page);
5176 }
5177 }
5178
5179 int extent_buffer_uptodate(struct extent_buffer *eb)
5180 {
5181 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5182 }
5183
5184 int read_extent_buffer_pages(struct extent_io_tree *tree,
5185 struct extent_buffer *eb, int wait,
5186 get_extent_t *get_extent, int mirror_num)
5187 {
5188 unsigned long i;
5189 struct page *page;
5190 int err;
5191 int ret = 0;
5192 int locked_pages = 0;
5193 int all_uptodate = 1;
5194 unsigned long num_pages;
5195 unsigned long num_reads = 0;
5196 struct bio *bio = NULL;
5197 unsigned long bio_flags = 0;
5198
5199 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5200 return 0;
5201
5202 num_pages = num_extent_pages(eb->start, eb->len);
5203 for (i = 0; i < num_pages; i++) {
5204 page = eb->pages[i];
5205 if (wait == WAIT_NONE) {
5206 if (!trylock_page(page))
5207 goto unlock_exit;
5208 } else {
5209 lock_page(page);
5210 }
5211 locked_pages++;
5212 }
5213 /*
5214 * We need to firstly lock all pages to make sure that
5215 * the uptodate bit of our pages won't be affected by
5216 * clear_extent_buffer_uptodate().
5217 */
5218 for (i = 0; i < num_pages; i++) {
5219 page = eb->pages[i];
5220 if (!PageUptodate(page)) {
5221 num_reads++;
5222 all_uptodate = 0;
5223 }
5224 }
5225
5226 if (all_uptodate) {
5227 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5228 goto unlock_exit;
5229 }
5230
5231 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5232 eb->read_mirror = 0;
5233 atomic_set(&eb->io_pages, num_reads);
5234 for (i = 0; i < num_pages; i++) {
5235 page = eb->pages[i];
5236
5237 if (!PageUptodate(page)) {
5238 if (ret) {
5239 atomic_dec(&eb->io_pages);
5240 unlock_page(page);
5241 continue;
5242 }
5243
5244 ClearPageError(page);
5245 err = __extent_read_full_page(tree, page,
5246 get_extent, &bio,
5247 mirror_num, &bio_flags,
5248 REQ_META);
5249 if (err) {
5250 ret = err;
5251 /*
5252 * We use &bio in above __extent_read_full_page,
5253 * so we ensure that if it returns error, the
5254 * current page fails to add itself to bio and
5255 * it's been unlocked.
5256 *
5257 * We must dec io_pages by ourselves.
5258 */
5259 atomic_dec(&eb->io_pages);
5260 }
5261 } else {
5262 unlock_page(page);
5263 }
5264 }
5265
5266 if (bio) {
5267 err = submit_one_bio(bio, mirror_num, bio_flags);
5268 if (err)
5269 return err;
5270 }
5271
5272 if (ret || wait != WAIT_COMPLETE)
5273 return ret;
5274
5275 for (i = 0; i < num_pages; i++) {
5276 page = eb->pages[i];
5277 wait_on_page_locked(page);
5278 if (!PageUptodate(page))
5279 ret = -EIO;
5280 }
5281
5282 return ret;
5283
5284 unlock_exit:
5285 while (locked_pages > 0) {
5286 locked_pages--;
5287 page = eb->pages[locked_pages];
5288 unlock_page(page);
5289 }
5290 return ret;
5291 }
5292
5293 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5294 unsigned long start,
5295 unsigned long len)
5296 {
5297 size_t cur;
5298 size_t offset;
5299 struct page *page;
5300 char *kaddr;
5301 char *dst = (char *)dstv;
5302 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5303 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5304
5305 WARN_ON(start > eb->len);
5306 WARN_ON(start + len > eb->start + eb->len);
5307
5308 offset = (start_offset + start) & (PAGE_SIZE - 1);
5309
5310 while (len > 0) {
5311 page = eb->pages[i];
5312
5313 cur = min(len, (PAGE_SIZE - offset));
5314 kaddr = page_address(page);
5315 memcpy(dst, kaddr + offset, cur);
5316
5317 dst += cur;
5318 len -= cur;
5319 offset = 0;
5320 i++;
5321 }
5322 }
5323
5324 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5325 unsigned long start,
5326 unsigned long len)
5327 {
5328 size_t cur;
5329 size_t offset;
5330 struct page *page;
5331 char *kaddr;
5332 char __user *dst = (char __user *)dstv;
5333 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5334 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5335 int ret = 0;
5336
5337 WARN_ON(start > eb->len);
5338 WARN_ON(start + len > eb->start + eb->len);
5339
5340 offset = (start_offset + start) & (PAGE_SIZE - 1);
5341
5342 while (len > 0) {
5343 page = eb->pages[i];
5344
5345 cur = min(len, (PAGE_SIZE - offset));
5346 kaddr = page_address(page);
5347 if (copy_to_user(dst, kaddr + offset, cur)) {
5348 ret = -EFAULT;
5349 break;
5350 }
5351
5352 dst += cur;
5353 len -= cur;
5354 offset = 0;
5355 i++;
5356 }
5357
5358 return ret;
5359 }
5360
5361 /*
5362 * return 0 if the item is found within a page.
5363 * return 1 if the item spans two pages.
5364 * return -EINVAL otherwise.
5365 */
5366 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5367 unsigned long min_len, char **map,
5368 unsigned long *map_start,
5369 unsigned long *map_len)
5370 {
5371 size_t offset = start & (PAGE_SIZE - 1);
5372 char *kaddr;
5373 struct page *p;
5374 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5375 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5376 unsigned long end_i = (start_offset + start + min_len - 1) >>
5377 PAGE_SHIFT;
5378
5379 if (i != end_i)
5380 return 1;
5381
5382 if (i == 0) {
5383 offset = start_offset;
5384 *map_start = 0;
5385 } else {
5386 offset = 0;
5387 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5388 }
5389
5390 if (start + min_len > eb->len) {
5391 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5392 eb->start, eb->len, start, min_len);
5393 return -EINVAL;
5394 }
5395
5396 p = eb->pages[i];
5397 kaddr = page_address(p);
5398 *map = kaddr + offset;
5399 *map_len = PAGE_SIZE - offset;
5400 return 0;
5401 }
5402
5403 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5404 unsigned long start,
5405 unsigned long len)
5406 {
5407 size_t cur;
5408 size_t offset;
5409 struct page *page;
5410 char *kaddr;
5411 char *ptr = (char *)ptrv;
5412 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5413 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5414 int ret = 0;
5415
5416 WARN_ON(start > eb->len);
5417 WARN_ON(start + len > eb->start + eb->len);
5418
5419 offset = (start_offset + start) & (PAGE_SIZE - 1);
5420
5421 while (len > 0) {
5422 page = eb->pages[i];
5423
5424 cur = min(len, (PAGE_SIZE - offset));
5425
5426 kaddr = page_address(page);
5427 ret = memcmp(ptr, kaddr + offset, cur);
5428 if (ret)
5429 break;
5430
5431 ptr += cur;
5432 len -= cur;
5433 offset = 0;
5434 i++;
5435 }
5436 return ret;
5437 }
5438
5439 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5440 const void *srcv)
5441 {
5442 char *kaddr;
5443
5444 WARN_ON(!PageUptodate(eb->pages[0]));
5445 kaddr = page_address(eb->pages[0]);
5446 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5447 BTRFS_FSID_SIZE);
5448 }
5449
5450 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5451 {
5452 char *kaddr;
5453
5454 WARN_ON(!PageUptodate(eb->pages[0]));
5455 kaddr = page_address(eb->pages[0]);
5456 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5457 BTRFS_FSID_SIZE);
5458 }
5459
5460 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5461 unsigned long start, unsigned long len)
5462 {
5463 size_t cur;
5464 size_t offset;
5465 struct page *page;
5466 char *kaddr;
5467 char *src = (char *)srcv;
5468 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5470
5471 WARN_ON(start > eb->len);
5472 WARN_ON(start + len > eb->start + eb->len);
5473
5474 offset = (start_offset + start) & (PAGE_SIZE - 1);
5475
5476 while (len > 0) {
5477 page = eb->pages[i];
5478 WARN_ON(!PageUptodate(page));
5479
5480 cur = min(len, PAGE_SIZE - offset);
5481 kaddr = page_address(page);
5482 memcpy(kaddr + offset, src, cur);
5483
5484 src += cur;
5485 len -= cur;
5486 offset = 0;
5487 i++;
5488 }
5489 }
5490
5491 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5492 unsigned long len)
5493 {
5494 size_t cur;
5495 size_t offset;
5496 struct page *page;
5497 char *kaddr;
5498 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5499 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5500
5501 WARN_ON(start > eb->len);
5502 WARN_ON(start + len > eb->start + eb->len);
5503
5504 offset = (start_offset + start) & (PAGE_SIZE - 1);
5505
5506 while (len > 0) {
5507 page = eb->pages[i];
5508 WARN_ON(!PageUptodate(page));
5509
5510 cur = min(len, PAGE_SIZE - offset);
5511 kaddr = page_address(page);
5512 memset(kaddr + offset, 0, cur);
5513
5514 len -= cur;
5515 offset = 0;
5516 i++;
5517 }
5518 }
5519
5520 void copy_extent_buffer_full(struct extent_buffer *dst,
5521 struct extent_buffer *src)
5522 {
5523 int i;
5524 unsigned num_pages;
5525
5526 ASSERT(dst->len == src->len);
5527
5528 num_pages = num_extent_pages(dst->start, dst->len);
5529 for (i = 0; i < num_pages; i++)
5530 copy_page(page_address(dst->pages[i]),
5531 page_address(src->pages[i]));
5532 }
5533
5534 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5535 unsigned long dst_offset, unsigned long src_offset,
5536 unsigned long len)
5537 {
5538 u64 dst_len = dst->len;
5539 size_t cur;
5540 size_t offset;
5541 struct page *page;
5542 char *kaddr;
5543 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5544 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5545
5546 WARN_ON(src->len != dst_len);
5547
5548 offset = (start_offset + dst_offset) &
5549 (PAGE_SIZE - 1);
5550
5551 while (len > 0) {
5552 page = dst->pages[i];
5553 WARN_ON(!PageUptodate(page));
5554
5555 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5556
5557 kaddr = page_address(page);
5558 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5559
5560 src_offset += cur;
5561 len -= cur;
5562 offset = 0;
5563 i++;
5564 }
5565 }
5566
5567 void le_bitmap_set(u8 *map, unsigned int start, int len)
5568 {
5569 u8 *p = map + BIT_BYTE(start);
5570 const unsigned int size = start + len;
5571 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5572 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5573
5574 while (len - bits_to_set >= 0) {
5575 *p |= mask_to_set;
5576 len -= bits_to_set;
5577 bits_to_set = BITS_PER_BYTE;
5578 mask_to_set = ~0;
5579 p++;
5580 }
5581 if (len) {
5582 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5583 *p |= mask_to_set;
5584 }
5585 }
5586
5587 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5588 {
5589 u8 *p = map + BIT_BYTE(start);
5590 const unsigned int size = start + len;
5591 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5592 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5593
5594 while (len - bits_to_clear >= 0) {
5595 *p &= ~mask_to_clear;
5596 len -= bits_to_clear;
5597 bits_to_clear = BITS_PER_BYTE;
5598 mask_to_clear = ~0;
5599 p++;
5600 }
5601 if (len) {
5602 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5603 *p &= ~mask_to_clear;
5604 }
5605 }
5606
5607 /*
5608 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5609 * given bit number
5610 * @eb: the extent buffer
5611 * @start: offset of the bitmap item in the extent buffer
5612 * @nr: bit number
5613 * @page_index: return index of the page in the extent buffer that contains the
5614 * given bit number
5615 * @page_offset: return offset into the page given by page_index
5616 *
5617 * This helper hides the ugliness of finding the byte in an extent buffer which
5618 * contains a given bit.
5619 */
5620 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5621 unsigned long start, unsigned long nr,
5622 unsigned long *page_index,
5623 size_t *page_offset)
5624 {
5625 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5626 size_t byte_offset = BIT_BYTE(nr);
5627 size_t offset;
5628
5629 /*
5630 * The byte we want is the offset of the extent buffer + the offset of
5631 * the bitmap item in the extent buffer + the offset of the byte in the
5632 * bitmap item.
5633 */
5634 offset = start_offset + start + byte_offset;
5635
5636 *page_index = offset >> PAGE_SHIFT;
5637 *page_offset = offset & (PAGE_SIZE - 1);
5638 }
5639
5640 /**
5641 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5642 * @eb: the extent buffer
5643 * @start: offset of the bitmap item in the extent buffer
5644 * @nr: bit number to test
5645 */
5646 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5647 unsigned long nr)
5648 {
5649 u8 *kaddr;
5650 struct page *page;
5651 unsigned long i;
5652 size_t offset;
5653
5654 eb_bitmap_offset(eb, start, nr, &i, &offset);
5655 page = eb->pages[i];
5656 WARN_ON(!PageUptodate(page));
5657 kaddr = page_address(page);
5658 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5659 }
5660
5661 /**
5662 * extent_buffer_bitmap_set - set an area of a bitmap
5663 * @eb: the extent buffer
5664 * @start: offset of the bitmap item in the extent buffer
5665 * @pos: bit number of the first bit
5666 * @len: number of bits to set
5667 */
5668 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5669 unsigned long pos, unsigned long len)
5670 {
5671 u8 *kaddr;
5672 struct page *page;
5673 unsigned long i;
5674 size_t offset;
5675 const unsigned int size = pos + len;
5676 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5677 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5678
5679 eb_bitmap_offset(eb, start, pos, &i, &offset);
5680 page = eb->pages[i];
5681 WARN_ON(!PageUptodate(page));
5682 kaddr = page_address(page);
5683
5684 while (len >= bits_to_set) {
5685 kaddr[offset] |= mask_to_set;
5686 len -= bits_to_set;
5687 bits_to_set = BITS_PER_BYTE;
5688 mask_to_set = ~0;
5689 if (++offset >= PAGE_SIZE && len > 0) {
5690 offset = 0;
5691 page = eb->pages[++i];
5692 WARN_ON(!PageUptodate(page));
5693 kaddr = page_address(page);
5694 }
5695 }
5696 if (len) {
5697 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5698 kaddr[offset] |= mask_to_set;
5699 }
5700 }
5701
5702
5703 /**
5704 * extent_buffer_bitmap_clear - clear an area of a bitmap
5705 * @eb: the extent buffer
5706 * @start: offset of the bitmap item in the extent buffer
5707 * @pos: bit number of the first bit
5708 * @len: number of bits to clear
5709 */
5710 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5711 unsigned long pos, unsigned long len)
5712 {
5713 u8 *kaddr;
5714 struct page *page;
5715 unsigned long i;
5716 size_t offset;
5717 const unsigned int size = pos + len;
5718 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5719 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5720
5721 eb_bitmap_offset(eb, start, pos, &i, &offset);
5722 page = eb->pages[i];
5723 WARN_ON(!PageUptodate(page));
5724 kaddr = page_address(page);
5725
5726 while (len >= bits_to_clear) {
5727 kaddr[offset] &= ~mask_to_clear;
5728 len -= bits_to_clear;
5729 bits_to_clear = BITS_PER_BYTE;
5730 mask_to_clear = ~0;
5731 if (++offset >= PAGE_SIZE && len > 0) {
5732 offset = 0;
5733 page = eb->pages[++i];
5734 WARN_ON(!PageUptodate(page));
5735 kaddr = page_address(page);
5736 }
5737 }
5738 if (len) {
5739 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5740 kaddr[offset] &= ~mask_to_clear;
5741 }
5742 }
5743
5744 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5745 {
5746 unsigned long distance = (src > dst) ? src - dst : dst - src;
5747 return distance < len;
5748 }
5749
5750 static void copy_pages(struct page *dst_page, struct page *src_page,
5751 unsigned long dst_off, unsigned long src_off,
5752 unsigned long len)
5753 {
5754 char *dst_kaddr = page_address(dst_page);
5755 char *src_kaddr;
5756 int must_memmove = 0;
5757
5758 if (dst_page != src_page) {
5759 src_kaddr = page_address(src_page);
5760 } else {
5761 src_kaddr = dst_kaddr;
5762 if (areas_overlap(src_off, dst_off, len))
5763 must_memmove = 1;
5764 }
5765
5766 if (must_memmove)
5767 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5768 else
5769 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5770 }
5771
5772 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5773 unsigned long src_offset, unsigned long len)
5774 {
5775 struct btrfs_fs_info *fs_info = dst->fs_info;
5776 size_t cur;
5777 size_t dst_off_in_page;
5778 size_t src_off_in_page;
5779 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5780 unsigned long dst_i;
5781 unsigned long src_i;
5782
5783 if (src_offset + len > dst->len) {
5784 btrfs_err(fs_info,
5785 "memmove bogus src_offset %lu move len %lu dst len %lu",
5786 src_offset, len, dst->len);
5787 BUG_ON(1);
5788 }
5789 if (dst_offset + len > dst->len) {
5790 btrfs_err(fs_info,
5791 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5792 dst_offset, len, dst->len);
5793 BUG_ON(1);
5794 }
5795
5796 while (len > 0) {
5797 dst_off_in_page = (start_offset + dst_offset) &
5798 (PAGE_SIZE - 1);
5799 src_off_in_page = (start_offset + src_offset) &
5800 (PAGE_SIZE - 1);
5801
5802 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5803 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5804
5805 cur = min(len, (unsigned long)(PAGE_SIZE -
5806 src_off_in_page));
5807 cur = min_t(unsigned long, cur,
5808 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5809
5810 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5811 dst_off_in_page, src_off_in_page, cur);
5812
5813 src_offset += cur;
5814 dst_offset += cur;
5815 len -= cur;
5816 }
5817 }
5818
5819 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5820 unsigned long src_offset, unsigned long len)
5821 {
5822 struct btrfs_fs_info *fs_info = dst->fs_info;
5823 size_t cur;
5824 size_t dst_off_in_page;
5825 size_t src_off_in_page;
5826 unsigned long dst_end = dst_offset + len - 1;
5827 unsigned long src_end = src_offset + len - 1;
5828 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5829 unsigned long dst_i;
5830 unsigned long src_i;
5831
5832 if (src_offset + len > dst->len) {
5833 btrfs_err(fs_info,
5834 "memmove bogus src_offset %lu move len %lu len %lu",
5835 src_offset, len, dst->len);
5836 BUG_ON(1);
5837 }
5838 if (dst_offset + len > dst->len) {
5839 btrfs_err(fs_info,
5840 "memmove bogus dst_offset %lu move len %lu len %lu",
5841 dst_offset, len, dst->len);
5842 BUG_ON(1);
5843 }
5844 if (dst_offset < src_offset) {
5845 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5846 return;
5847 }
5848 while (len > 0) {
5849 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5850 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5851
5852 dst_off_in_page = (start_offset + dst_end) &
5853 (PAGE_SIZE - 1);
5854 src_off_in_page = (start_offset + src_end) &
5855 (PAGE_SIZE - 1);
5856
5857 cur = min_t(unsigned long, len, src_off_in_page + 1);
5858 cur = min(cur, dst_off_in_page + 1);
5859 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5860 dst_off_in_page - cur + 1,
5861 src_off_in_page - cur + 1, cur);
5862
5863 dst_end -= cur;
5864 src_end -= cur;
5865 len -= cur;
5866 }
5867 }
5868
5869 int try_release_extent_buffer(struct page *page)
5870 {
5871 struct extent_buffer *eb;
5872
5873 /*
5874 * We need to make sure nobody is attaching this page to an eb right
5875 * now.
5876 */
5877 spin_lock(&page->mapping->private_lock);
5878 if (!PagePrivate(page)) {
5879 spin_unlock(&page->mapping->private_lock);
5880 return 1;
5881 }
5882
5883 eb = (struct extent_buffer *)page->private;
5884 BUG_ON(!eb);
5885
5886 /*
5887 * This is a little awful but should be ok, we need to make sure that
5888 * the eb doesn't disappear out from under us while we're looking at
5889 * this page.
5890 */
5891 spin_lock(&eb->refs_lock);
5892 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5893 spin_unlock(&eb->refs_lock);
5894 spin_unlock(&page->mapping->private_lock);
5895 return 0;
5896 }
5897 spin_unlock(&page->mapping->private_lock);
5898
5899 /*
5900 * If tree ref isn't set then we know the ref on this eb is a real ref,
5901 * so just return, this page will likely be freed soon anyway.
5902 */
5903 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5904 spin_unlock(&eb->refs_lock);
5905 return 0;
5906 }
5907
5908 return release_extent_buffer(eb);
5909 }