]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent_map.c
Btrfs: Fix bi_end_io() functions on > 2.6.23 kernels
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_map.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include "extent_map.h"
14
15 /* temporary define until extent_map moves out of btrfs */
16 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
17 unsigned long extra_flags,
18 void (*ctor)(void *, struct kmem_cache *,
19 unsigned long));
20
21 static struct kmem_cache *extent_map_cache;
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
24
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
27
28 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
29 #define BUFFER_LRU_MAX 64
30
31 struct tree_entry {
32 u64 start;
33 u64 end;
34 int in_tree;
35 struct rb_node rb_node;
36 };
37
38 void __init extent_map_init(void)
39 {
40 extent_map_cache = btrfs_cache_create("extent_map",
41 sizeof(struct extent_map), 0,
42 NULL);
43 extent_state_cache = btrfs_cache_create("extent_state",
44 sizeof(struct extent_state), 0,
45 NULL);
46 extent_buffer_cache = btrfs_cache_create("extent_buffers",
47 sizeof(struct extent_buffer), 0,
48 NULL);
49 }
50
51 void __exit extent_map_exit(void)
52 {
53 struct extent_state *state;
54
55 while (!list_empty(&states)) {
56 state = list_entry(states.next, struct extent_state, list);
57 printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
58 list_del(&state->list);
59 kmem_cache_free(extent_state_cache, state);
60
61 }
62
63 if (extent_map_cache)
64 kmem_cache_destroy(extent_map_cache);
65 if (extent_state_cache)
66 kmem_cache_destroy(extent_state_cache);
67 if (extent_buffer_cache)
68 kmem_cache_destroy(extent_buffer_cache);
69 }
70
71 void extent_map_tree_init(struct extent_map_tree *tree,
72 struct address_space *mapping, gfp_t mask)
73 {
74 tree->map.rb_node = NULL;
75 tree->state.rb_node = NULL;
76 tree->ops = NULL;
77 rwlock_init(&tree->lock);
78 spin_lock_init(&tree->lru_lock);
79 tree->mapping = mapping;
80 INIT_LIST_HEAD(&tree->buffer_lru);
81 tree->lru_size = 0;
82 }
83 EXPORT_SYMBOL(extent_map_tree_init);
84
85 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
86 {
87 struct extent_buffer *eb;
88 while(!list_empty(&tree->buffer_lru)) {
89 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
90 lru);
91 list_del(&eb->lru);
92 free_extent_buffer(eb);
93 }
94 }
95 EXPORT_SYMBOL(extent_map_tree_empty_lru);
96
97 struct extent_map *alloc_extent_map(gfp_t mask)
98 {
99 struct extent_map *em;
100 em = kmem_cache_alloc(extent_map_cache, mask);
101 if (!em || IS_ERR(em))
102 return em;
103 em->in_tree = 0;
104 atomic_set(&em->refs, 1);
105 return em;
106 }
107 EXPORT_SYMBOL(alloc_extent_map);
108
109 void free_extent_map(struct extent_map *em)
110 {
111 if (!em)
112 return;
113 if (atomic_dec_and_test(&em->refs)) {
114 WARN_ON(em->in_tree);
115 kmem_cache_free(extent_map_cache, em);
116 }
117 }
118 EXPORT_SYMBOL(free_extent_map);
119
120
121 struct extent_state *alloc_extent_state(gfp_t mask)
122 {
123 struct extent_state *state;
124 unsigned long flags;
125
126 state = kmem_cache_alloc(extent_state_cache, mask);
127 if (!state || IS_ERR(state))
128 return state;
129 state->state = 0;
130 state->in_tree = 0;
131 state->private = 0;
132
133 spin_lock_irqsave(&state_lock, flags);
134 list_add(&state->list, &states);
135 spin_unlock_irqrestore(&state_lock, flags);
136
137 atomic_set(&state->refs, 1);
138 init_waitqueue_head(&state->wq);
139 return state;
140 }
141 EXPORT_SYMBOL(alloc_extent_state);
142
143 void free_extent_state(struct extent_state *state)
144 {
145 unsigned long flags;
146 if (!state)
147 return;
148 if (atomic_dec_and_test(&state->refs)) {
149 WARN_ON(state->in_tree);
150 spin_lock_irqsave(&state_lock, flags);
151 list_del(&state->list);
152 spin_unlock_irqrestore(&state_lock, flags);
153 kmem_cache_free(extent_state_cache, state);
154 }
155 }
156 EXPORT_SYMBOL(free_extent_state);
157
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 struct rb_node *node)
160 {
161 struct rb_node ** p = &root->rb_node;
162 struct rb_node * parent = NULL;
163 struct tree_entry *entry;
164
165 while(*p) {
166 parent = *p;
167 entry = rb_entry(parent, struct tree_entry, rb_node);
168
169 if (offset < entry->start)
170 p = &(*p)->rb_left;
171 else if (offset > entry->end)
172 p = &(*p)->rb_right;
173 else
174 return parent;
175 }
176
177 entry = rb_entry(node, struct tree_entry, rb_node);
178 entry->in_tree = 1;
179 rb_link_node(node, parent, p);
180 rb_insert_color(node, root);
181 return NULL;
182 }
183
184 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
185 struct rb_node **prev_ret)
186 {
187 struct rb_node * n = root->rb_node;
188 struct rb_node *prev = NULL;
189 struct tree_entry *entry;
190 struct tree_entry *prev_entry = NULL;
191
192 while(n) {
193 entry = rb_entry(n, struct tree_entry, rb_node);
194 prev = n;
195 prev_entry = entry;
196
197 if (offset < entry->start)
198 n = n->rb_left;
199 else if (offset > entry->end)
200 n = n->rb_right;
201 else
202 return n;
203 }
204 if (!prev_ret)
205 return NULL;
206 while(prev && offset > prev_entry->end) {
207 prev = rb_next(prev);
208 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
209 }
210 *prev_ret = prev;
211 return NULL;
212 }
213
214 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
215 {
216 struct rb_node *prev;
217 struct rb_node *ret;
218 ret = __tree_search(root, offset, &prev);
219 if (!ret)
220 return prev;
221 return ret;
222 }
223
224 static int tree_delete(struct rb_root *root, u64 offset)
225 {
226 struct rb_node *node;
227 struct tree_entry *entry;
228
229 node = __tree_search(root, offset, NULL);
230 if (!node)
231 return -ENOENT;
232 entry = rb_entry(node, struct tree_entry, rb_node);
233 entry->in_tree = 0;
234 rb_erase(node, root);
235 return 0;
236 }
237
238 /*
239 * add_extent_mapping tries a simple backward merge with existing
240 * mappings. The extent_map struct passed in will be inserted into
241 * the tree directly (no copies made, just a reference taken).
242 */
243 int add_extent_mapping(struct extent_map_tree *tree,
244 struct extent_map *em)
245 {
246 int ret = 0;
247 struct extent_map *prev = NULL;
248 struct rb_node *rb;
249
250 write_lock_irq(&tree->lock);
251 rb = tree_insert(&tree->map, em->end, &em->rb_node);
252 if (rb) {
253 prev = rb_entry(rb, struct extent_map, rb_node);
254 printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
255 ret = -EEXIST;
256 goto out;
257 }
258 atomic_inc(&em->refs);
259 if (em->start != 0) {
260 rb = rb_prev(&em->rb_node);
261 if (rb)
262 prev = rb_entry(rb, struct extent_map, rb_node);
263 if (prev && prev->end + 1 == em->start &&
264 ((em->block_start == EXTENT_MAP_HOLE &&
265 prev->block_start == EXTENT_MAP_HOLE) ||
266 (em->block_start == prev->block_end + 1))) {
267 em->start = prev->start;
268 em->block_start = prev->block_start;
269 rb_erase(&prev->rb_node, &tree->map);
270 prev->in_tree = 0;
271 free_extent_map(prev);
272 }
273 }
274 out:
275 write_unlock_irq(&tree->lock);
276 return ret;
277 }
278 EXPORT_SYMBOL(add_extent_mapping);
279
280 /*
281 * lookup_extent_mapping returns the first extent_map struct in the
282 * tree that intersects the [start, end] (inclusive) range. There may
283 * be additional objects in the tree that intersect, so check the object
284 * returned carefully to make sure you don't need additional lookups.
285 */
286 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
287 u64 start, u64 end)
288 {
289 struct extent_map *em;
290 struct rb_node *rb_node;
291
292 read_lock_irq(&tree->lock);
293 rb_node = tree_search(&tree->map, start);
294 if (!rb_node) {
295 em = NULL;
296 goto out;
297 }
298 if (IS_ERR(rb_node)) {
299 em = ERR_PTR(PTR_ERR(rb_node));
300 goto out;
301 }
302 em = rb_entry(rb_node, struct extent_map, rb_node);
303 if (em->end < start || em->start > end) {
304 em = NULL;
305 goto out;
306 }
307 atomic_inc(&em->refs);
308 out:
309 read_unlock_irq(&tree->lock);
310 return em;
311 }
312 EXPORT_SYMBOL(lookup_extent_mapping);
313
314 /*
315 * removes an extent_map struct from the tree. No reference counts are
316 * dropped, and no checks are done to see if the range is in use
317 */
318 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
319 {
320 int ret;
321
322 write_lock_irq(&tree->lock);
323 ret = tree_delete(&tree->map, em->end);
324 write_unlock_irq(&tree->lock);
325 return ret;
326 }
327 EXPORT_SYMBOL(remove_extent_mapping);
328
329 /*
330 * utility function to look for merge candidates inside a given range.
331 * Any extents with matching state are merged together into a single
332 * extent in the tree. Extents with EXTENT_IO in their state field
333 * are not merged because the end_io handlers need to be able to do
334 * operations on them without sleeping (or doing allocations/splits).
335 *
336 * This should be called with the tree lock held.
337 */
338 static int merge_state(struct extent_map_tree *tree,
339 struct extent_state *state)
340 {
341 struct extent_state *other;
342 struct rb_node *other_node;
343
344 if (state->state & EXTENT_IOBITS)
345 return 0;
346
347 other_node = rb_prev(&state->rb_node);
348 if (other_node) {
349 other = rb_entry(other_node, struct extent_state, rb_node);
350 if (other->end == state->start - 1 &&
351 other->state == state->state) {
352 state->start = other->start;
353 other->in_tree = 0;
354 rb_erase(&other->rb_node, &tree->state);
355 free_extent_state(other);
356 }
357 }
358 other_node = rb_next(&state->rb_node);
359 if (other_node) {
360 other = rb_entry(other_node, struct extent_state, rb_node);
361 if (other->start == state->end + 1 &&
362 other->state == state->state) {
363 other->start = state->start;
364 state->in_tree = 0;
365 rb_erase(&state->rb_node, &tree->state);
366 free_extent_state(state);
367 }
368 }
369 return 0;
370 }
371
372 /*
373 * insert an extent_state struct into the tree. 'bits' are set on the
374 * struct before it is inserted.
375 *
376 * This may return -EEXIST if the extent is already there, in which case the
377 * state struct is freed.
378 *
379 * The tree lock is not taken internally. This is a utility function and
380 * probably isn't what you want to call (see set/clear_extent_bit).
381 */
382 static int insert_state(struct extent_map_tree *tree,
383 struct extent_state *state, u64 start, u64 end,
384 int bits)
385 {
386 struct rb_node *node;
387
388 if (end < start) {
389 printk("end < start %Lu %Lu\n", end, start);
390 WARN_ON(1);
391 }
392 state->state |= bits;
393 state->start = start;
394 state->end = end;
395 node = tree_insert(&tree->state, end, &state->rb_node);
396 if (node) {
397 struct extent_state *found;
398 found = rb_entry(node, struct extent_state, rb_node);
399 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
400 free_extent_state(state);
401 return -EEXIST;
402 }
403 merge_state(tree, state);
404 return 0;
405 }
406
407 /*
408 * split a given extent state struct in two, inserting the preallocated
409 * struct 'prealloc' as the newly created second half. 'split' indicates an
410 * offset inside 'orig' where it should be split.
411 *
412 * Before calling,
413 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
414 * are two extent state structs in the tree:
415 * prealloc: [orig->start, split - 1]
416 * orig: [ split, orig->end ]
417 *
418 * The tree locks are not taken by this function. They need to be held
419 * by the caller.
420 */
421 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
422 struct extent_state *prealloc, u64 split)
423 {
424 struct rb_node *node;
425 prealloc->start = orig->start;
426 prealloc->end = split - 1;
427 prealloc->state = orig->state;
428 orig->start = split;
429
430 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
431 if (node) {
432 struct extent_state *found;
433 found = rb_entry(node, struct extent_state, rb_node);
434 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
435 free_extent_state(prealloc);
436 return -EEXIST;
437 }
438 return 0;
439 }
440
441 /*
442 * utility function to clear some bits in an extent state struct.
443 * it will optionally wake up any one waiting on this state (wake == 1), or
444 * forcibly remove the state from the tree (delete == 1).
445 *
446 * If no bits are set on the state struct after clearing things, the
447 * struct is freed and removed from the tree
448 */
449 static int clear_state_bit(struct extent_map_tree *tree,
450 struct extent_state *state, int bits, int wake,
451 int delete)
452 {
453 int ret = state->state & bits;
454 state->state &= ~bits;
455 if (wake)
456 wake_up(&state->wq);
457 if (delete || state->state == 0) {
458 if (state->in_tree) {
459 rb_erase(&state->rb_node, &tree->state);
460 state->in_tree = 0;
461 free_extent_state(state);
462 } else {
463 WARN_ON(1);
464 }
465 } else {
466 merge_state(tree, state);
467 }
468 return ret;
469 }
470
471 /*
472 * clear some bits on a range in the tree. This may require splitting
473 * or inserting elements in the tree, so the gfp mask is used to
474 * indicate which allocations or sleeping are allowed.
475 *
476 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
477 * the given range from the tree regardless of state (ie for truncate).
478 *
479 * the range [start, end] is inclusive.
480 *
481 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
482 * bits were already set, or zero if none of the bits were already set.
483 */
484 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
485 int bits, int wake, int delete, gfp_t mask)
486 {
487 struct extent_state *state;
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
490 unsigned long flags;
491 int err;
492 int set = 0;
493
494 again:
495 if (!prealloc && (mask & __GFP_WAIT)) {
496 prealloc = alloc_extent_state(mask);
497 if (!prealloc)
498 return -ENOMEM;
499 }
500
501 write_lock_irqsave(&tree->lock, flags);
502 /*
503 * this search will find the extents that end after
504 * our range starts
505 */
506 node = tree_search(&tree->state, start);
507 if (!node)
508 goto out;
509 state = rb_entry(node, struct extent_state, rb_node);
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513
514 /*
515 * | ---- desired range ---- |
516 * | state | or
517 * | ------------- state -------------- |
518 *
519 * We need to split the extent we found, and may flip
520 * bits on second half.
521 *
522 * If the extent we found extends past our range, we
523 * just split and search again. It'll get split again
524 * the next time though.
525 *
526 * If the extent we found is inside our range, we clear
527 * the desired bit on it.
528 */
529
530 if (state->start < start) {
531 err = split_state(tree, state, prealloc, start);
532 BUG_ON(err == -EEXIST);
533 prealloc = NULL;
534 if (err)
535 goto out;
536 if (state->end <= end) {
537 start = state->end + 1;
538 set |= clear_state_bit(tree, state, bits,
539 wake, delete);
540 } else {
541 start = state->start;
542 }
543 goto search_again;
544 }
545 /*
546 * | ---- desired range ---- |
547 * | state |
548 * We need to split the extent, and clear the bit
549 * on the first half
550 */
551 if (state->start <= end && state->end > end) {
552 err = split_state(tree, state, prealloc, end + 1);
553 BUG_ON(err == -EEXIST);
554
555 if (wake)
556 wake_up(&state->wq);
557 set |= clear_state_bit(tree, prealloc, bits,
558 wake, delete);
559 prealloc = NULL;
560 goto out;
561 }
562
563 start = state->end + 1;
564 set |= clear_state_bit(tree, state, bits, wake, delete);
565 goto search_again;
566
567 out:
568 write_unlock_irqrestore(&tree->lock, flags);
569 if (prealloc)
570 free_extent_state(prealloc);
571
572 return set;
573
574 search_again:
575 if (start > end)
576 goto out;
577 write_unlock_irqrestore(&tree->lock, flags);
578 if (mask & __GFP_WAIT)
579 cond_resched();
580 goto again;
581 }
582 EXPORT_SYMBOL(clear_extent_bit);
583
584 static int wait_on_state(struct extent_map_tree *tree,
585 struct extent_state *state)
586 {
587 DEFINE_WAIT(wait);
588 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
589 read_unlock_irq(&tree->lock);
590 schedule();
591 read_lock_irq(&tree->lock);
592 finish_wait(&state->wq, &wait);
593 return 0;
594 }
595
596 /*
597 * waits for one or more bits to clear on a range in the state tree.
598 * The range [start, end] is inclusive.
599 * The tree lock is taken by this function
600 */
601 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
602 {
603 struct extent_state *state;
604 struct rb_node *node;
605
606 read_lock_irq(&tree->lock);
607 again:
608 while (1) {
609 /*
610 * this search will find all the extents that end after
611 * our range starts
612 */
613 node = tree_search(&tree->state, start);
614 if (!node)
615 break;
616
617 state = rb_entry(node, struct extent_state, rb_node);
618
619 if (state->start > end)
620 goto out;
621
622 if (state->state & bits) {
623 start = state->start;
624 atomic_inc(&state->refs);
625 wait_on_state(tree, state);
626 free_extent_state(state);
627 goto again;
628 }
629 start = state->end + 1;
630
631 if (start > end)
632 break;
633
634 if (need_resched()) {
635 read_unlock_irq(&tree->lock);
636 cond_resched();
637 read_lock_irq(&tree->lock);
638 }
639 }
640 out:
641 read_unlock_irq(&tree->lock);
642 return 0;
643 }
644 EXPORT_SYMBOL(wait_extent_bit);
645
646 /*
647 * set some bits on a range in the tree. This may require allocations
648 * or sleeping, so the gfp mask is used to indicate what is allowed.
649 *
650 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
651 * range already has the desired bits set. The start of the existing
652 * range is returned in failed_start in this case.
653 *
654 * [start, end] is inclusive
655 * This takes the tree lock.
656 */
657 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
658 int exclusive, u64 *failed_start, gfp_t mask)
659 {
660 struct extent_state *state;
661 struct extent_state *prealloc = NULL;
662 struct rb_node *node;
663 unsigned long flags;
664 int err = 0;
665 int set;
666 u64 last_start;
667 u64 last_end;
668 again:
669 if (!prealloc && (mask & __GFP_WAIT)) {
670 prealloc = alloc_extent_state(mask);
671 if (!prealloc)
672 return -ENOMEM;
673 }
674
675 write_lock_irqsave(&tree->lock, flags);
676 /*
677 * this search will find all the extents that end after
678 * our range starts.
679 */
680 node = tree_search(&tree->state, start);
681 if (!node) {
682 err = insert_state(tree, prealloc, start, end, bits);
683 prealloc = NULL;
684 BUG_ON(err == -EEXIST);
685 goto out;
686 }
687
688 state = rb_entry(node, struct extent_state, rb_node);
689 last_start = state->start;
690 last_end = state->end;
691
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 *
696 * Just lock what we found and keep going
697 */
698 if (state->start == start && state->end <= end) {
699 set = state->state & bits;
700 if (set && exclusive) {
701 *failed_start = state->start;
702 err = -EEXIST;
703 goto out;
704 }
705 state->state |= bits;
706 start = state->end + 1;
707 merge_state(tree, state);
708 goto search_again;
709 }
710
711 /*
712 * | ---- desired range ---- |
713 * | state |
714 * or
715 * | ------------- state -------------- |
716 *
717 * We need to split the extent we found, and may flip bits on
718 * second half.
719 *
720 * If the extent we found extends past our
721 * range, we just split and search again. It'll get split
722 * again the next time though.
723 *
724 * If the extent we found is inside our range, we set the
725 * desired bit on it.
726 */
727 if (state->start < start) {
728 set = state->state & bits;
729 if (exclusive && set) {
730 *failed_start = start;
731 err = -EEXIST;
732 goto out;
733 }
734 err = split_state(tree, state, prealloc, start);
735 BUG_ON(err == -EEXIST);
736 prealloc = NULL;
737 if (err)
738 goto out;
739 if (state->end <= end) {
740 state->state |= bits;
741 start = state->end + 1;
742 merge_state(tree, state);
743 } else {
744 start = state->start;
745 }
746 goto search_again;
747 }
748 /*
749 * | ---- desired range ---- |
750 * | state | or | state |
751 *
752 * There's a hole, we need to insert something in it and
753 * ignore the extent we found.
754 */
755 if (state->start > start) {
756 u64 this_end;
757 if (end < last_start)
758 this_end = end;
759 else
760 this_end = last_start -1;
761 err = insert_state(tree, prealloc, start, this_end,
762 bits);
763 prealloc = NULL;
764 BUG_ON(err == -EEXIST);
765 if (err)
766 goto out;
767 start = this_end + 1;
768 goto search_again;
769 }
770 /*
771 * | ---- desired range ---- |
772 * | state |
773 * We need to split the extent, and set the bit
774 * on the first half
775 */
776 if (state->start <= end && state->end > end) {
777 set = state->state & bits;
778 if (exclusive && set) {
779 *failed_start = start;
780 err = -EEXIST;
781 goto out;
782 }
783 err = split_state(tree, state, prealloc, end + 1);
784 BUG_ON(err == -EEXIST);
785
786 prealloc->state |= bits;
787 merge_state(tree, prealloc);
788 prealloc = NULL;
789 goto out;
790 }
791
792 goto search_again;
793
794 out:
795 write_unlock_irqrestore(&tree->lock, flags);
796 if (prealloc)
797 free_extent_state(prealloc);
798
799 return err;
800
801 search_again:
802 if (start > end)
803 goto out;
804 write_unlock_irqrestore(&tree->lock, flags);
805 if (mask & __GFP_WAIT)
806 cond_resched();
807 goto again;
808 }
809 EXPORT_SYMBOL(set_extent_bit);
810
811 /* wrappers around set/clear extent bit */
812 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
813 gfp_t mask)
814 {
815 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
816 mask);
817 }
818 EXPORT_SYMBOL(set_extent_dirty);
819
820 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
821 int bits, gfp_t mask)
822 {
823 return set_extent_bit(tree, start, end, bits, 0, NULL,
824 mask);
825 }
826 EXPORT_SYMBOL(set_extent_bits);
827
828 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
829 int bits, gfp_t mask)
830 {
831 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
832 }
833 EXPORT_SYMBOL(clear_extent_bits);
834
835 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
836 gfp_t mask)
837 {
838 return set_extent_bit(tree, start, end,
839 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
840 mask);
841 }
842 EXPORT_SYMBOL(set_extent_delalloc);
843
844 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
845 gfp_t mask)
846 {
847 return clear_extent_bit(tree, start, end,
848 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
849 }
850 EXPORT_SYMBOL(clear_extent_dirty);
851
852 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
853 gfp_t mask)
854 {
855 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
856 mask);
857 }
858 EXPORT_SYMBOL(set_extent_new);
859
860 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
861 gfp_t mask)
862 {
863 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
864 }
865 EXPORT_SYMBOL(clear_extent_new);
866
867 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
868 gfp_t mask)
869 {
870 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
871 mask);
872 }
873 EXPORT_SYMBOL(set_extent_uptodate);
874
875 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
876 gfp_t mask)
877 {
878 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
879 }
880 EXPORT_SYMBOL(clear_extent_uptodate);
881
882 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
883 gfp_t mask)
884 {
885 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
886 0, NULL, mask);
887 }
888 EXPORT_SYMBOL(set_extent_writeback);
889
890 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
891 gfp_t mask)
892 {
893 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
894 }
895 EXPORT_SYMBOL(clear_extent_writeback);
896
897 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
898 {
899 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
900 }
901 EXPORT_SYMBOL(wait_on_extent_writeback);
902
903 /*
904 * locks a range in ascending order, waiting for any locked regions
905 * it hits on the way. [start,end] are inclusive, and this will sleep.
906 */
907 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
908 {
909 int err;
910 u64 failed_start;
911 while (1) {
912 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
913 &failed_start, mask);
914 if (err == -EEXIST && (mask & __GFP_WAIT)) {
915 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
916 start = failed_start;
917 } else {
918 break;
919 }
920 WARN_ON(start > end);
921 }
922 return err;
923 }
924 EXPORT_SYMBOL(lock_extent);
925
926 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
927 gfp_t mask)
928 {
929 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
930 }
931 EXPORT_SYMBOL(unlock_extent);
932
933 /*
934 * helper function to set pages and extents in the tree dirty
935 */
936 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
937 {
938 unsigned long index = start >> PAGE_CACHE_SHIFT;
939 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
940 struct page *page;
941
942 while (index <= end_index) {
943 page = find_get_page(tree->mapping, index);
944 BUG_ON(!page);
945 __set_page_dirty_nobuffers(page);
946 page_cache_release(page);
947 index++;
948 }
949 set_extent_dirty(tree, start, end, GFP_NOFS);
950 return 0;
951 }
952 EXPORT_SYMBOL(set_range_dirty);
953
954 /*
955 * helper function to set both pages and extents in the tree writeback
956 */
957 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
958 {
959 unsigned long index = start >> PAGE_CACHE_SHIFT;
960 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
961 struct page *page;
962
963 while (index <= end_index) {
964 page = find_get_page(tree->mapping, index);
965 BUG_ON(!page);
966 set_page_writeback(page);
967 page_cache_release(page);
968 index++;
969 }
970 set_extent_writeback(tree, start, end, GFP_NOFS);
971 return 0;
972 }
973 EXPORT_SYMBOL(set_range_writeback);
974
975 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
976 u64 *start_ret, u64 *end_ret, int bits)
977 {
978 struct rb_node *node;
979 struct extent_state *state;
980 int ret = 1;
981
982 read_lock_irq(&tree->lock);
983 /*
984 * this search will find all the extents that end after
985 * our range starts.
986 */
987 node = tree_search(&tree->state, start);
988 if (!node || IS_ERR(node)) {
989 goto out;
990 }
991
992 while(1) {
993 state = rb_entry(node, struct extent_state, rb_node);
994 if (state->end >= start && (state->state & bits)) {
995 *start_ret = state->start;
996 *end_ret = state->end;
997 ret = 0;
998 break;
999 }
1000 node = rb_next(node);
1001 if (!node)
1002 break;
1003 }
1004 out:
1005 read_unlock_irq(&tree->lock);
1006 return ret;
1007 }
1008 EXPORT_SYMBOL(find_first_extent_bit);
1009
1010 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1011 u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1012 {
1013 struct rb_node *node;
1014 struct extent_state *state;
1015 u64 cur_start = start;
1016 u64 found = 0;
1017 u64 total_bytes = 0;
1018
1019 write_lock_irq(&tree->lock);
1020 /*
1021 * this search will find all the extents that end after
1022 * our range starts.
1023 */
1024 search_again:
1025 node = tree_search(&tree->state, cur_start);
1026 if (!node || IS_ERR(node)) {
1027 goto out;
1028 }
1029
1030 while(1) {
1031 state = rb_entry(node, struct extent_state, rb_node);
1032 if (state->start != cur_start) {
1033 goto out;
1034 }
1035 if (!(state->state & EXTENT_DELALLOC)) {
1036 goto out;
1037 }
1038 if (state->start >= lock_start) {
1039 if (state->state & EXTENT_LOCKED) {
1040 DEFINE_WAIT(wait);
1041 atomic_inc(&state->refs);
1042 write_unlock_irq(&tree->lock);
1043 schedule();
1044 write_lock_irq(&tree->lock);
1045 finish_wait(&state->wq, &wait);
1046 free_extent_state(state);
1047 goto search_again;
1048 }
1049 state->state |= EXTENT_LOCKED;
1050 }
1051 found++;
1052 *end = state->end;
1053 cur_start = state->end + 1;
1054 node = rb_next(node);
1055 if (!node)
1056 break;
1057 total_bytes = state->end - state->start + 1;
1058 if (total_bytes >= max_bytes)
1059 break;
1060 }
1061 out:
1062 write_unlock_irq(&tree->lock);
1063 return found;
1064 }
1065
1066 /*
1067 * helper function to lock both pages and extents in the tree.
1068 * pages must be locked first.
1069 */
1070 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1071 {
1072 unsigned long index = start >> PAGE_CACHE_SHIFT;
1073 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1074 struct page *page;
1075 int err;
1076
1077 while (index <= end_index) {
1078 page = grab_cache_page(tree->mapping, index);
1079 if (!page) {
1080 err = -ENOMEM;
1081 goto failed;
1082 }
1083 if (IS_ERR(page)) {
1084 err = PTR_ERR(page);
1085 goto failed;
1086 }
1087 index++;
1088 }
1089 lock_extent(tree, start, end, GFP_NOFS);
1090 return 0;
1091
1092 failed:
1093 /*
1094 * we failed above in getting the page at 'index', so we undo here
1095 * up to but not including the page at 'index'
1096 */
1097 end_index = index;
1098 index = start >> PAGE_CACHE_SHIFT;
1099 while (index < end_index) {
1100 page = find_get_page(tree->mapping, index);
1101 unlock_page(page);
1102 page_cache_release(page);
1103 index++;
1104 }
1105 return err;
1106 }
1107 EXPORT_SYMBOL(lock_range);
1108
1109 /*
1110 * helper function to unlock both pages and extents in the tree.
1111 */
1112 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1113 {
1114 unsigned long index = start >> PAGE_CACHE_SHIFT;
1115 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1116 struct page *page;
1117
1118 while (index <= end_index) {
1119 page = find_get_page(tree->mapping, index);
1120 unlock_page(page);
1121 page_cache_release(page);
1122 index++;
1123 }
1124 unlock_extent(tree, start, end, GFP_NOFS);
1125 return 0;
1126 }
1127 EXPORT_SYMBOL(unlock_range);
1128
1129 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1130 {
1131 struct rb_node *node;
1132 struct extent_state *state;
1133 int ret = 0;
1134
1135 write_lock_irq(&tree->lock);
1136 /*
1137 * this search will find all the extents that end after
1138 * our range starts.
1139 */
1140 node = tree_search(&tree->state, start);
1141 if (!node || IS_ERR(node)) {
1142 ret = -ENOENT;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146 if (state->start != start) {
1147 ret = -ENOENT;
1148 goto out;
1149 }
1150 state->private = private;
1151 out:
1152 write_unlock_irq(&tree->lock);
1153 return ret;
1154 }
1155
1156 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1157 {
1158 struct rb_node *node;
1159 struct extent_state *state;
1160 int ret = 0;
1161
1162 read_lock_irq(&tree->lock);
1163 /*
1164 * this search will find all the extents that end after
1165 * our range starts.
1166 */
1167 node = tree_search(&tree->state, start);
1168 if (!node || IS_ERR(node)) {
1169 ret = -ENOENT;
1170 goto out;
1171 }
1172 state = rb_entry(node, struct extent_state, rb_node);
1173 if (state->start != start) {
1174 ret = -ENOENT;
1175 goto out;
1176 }
1177 *private = state->private;
1178 out:
1179 read_unlock_irq(&tree->lock);
1180 return ret;
1181 }
1182
1183 /*
1184 * searches a range in the state tree for a given mask.
1185 * If 'filled' == 1, this returns 1 only if ever extent in the tree
1186 * has the bits set. Otherwise, 1 is returned if any bit in the
1187 * range is found set.
1188 */
1189 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1190 int bits, int filled)
1191 {
1192 struct extent_state *state = NULL;
1193 struct rb_node *node;
1194 int bitset = 0;
1195
1196 read_lock_irq(&tree->lock);
1197 node = tree_search(&tree->state, start);
1198 while (node && start <= end) {
1199 state = rb_entry(node, struct extent_state, rb_node);
1200 if (state->start > end)
1201 break;
1202
1203 if (filled && state->start > start) {
1204 bitset = 0;
1205 break;
1206 }
1207 if (state->state & bits) {
1208 bitset = 1;
1209 if (!filled)
1210 break;
1211 } else if (filled) {
1212 bitset = 0;
1213 break;
1214 }
1215 start = state->end + 1;
1216 if (start > end)
1217 break;
1218 node = rb_next(node);
1219 }
1220 read_unlock_irq(&tree->lock);
1221 return bitset;
1222 }
1223 EXPORT_SYMBOL(test_range_bit);
1224
1225 /*
1226 * helper function to set a given page up to date if all the
1227 * extents in the tree for that page are up to date
1228 */
1229 static int check_page_uptodate(struct extent_map_tree *tree,
1230 struct page *page)
1231 {
1232 u64 start = page->index << PAGE_CACHE_SHIFT;
1233 u64 end = start + PAGE_CACHE_SIZE - 1;
1234 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1235 SetPageUptodate(page);
1236 return 0;
1237 }
1238
1239 /*
1240 * helper function to unlock a page if all the extents in the tree
1241 * for that page are unlocked
1242 */
1243 static int check_page_locked(struct extent_map_tree *tree,
1244 struct page *page)
1245 {
1246 u64 start = page->index << PAGE_CACHE_SHIFT;
1247 u64 end = start + PAGE_CACHE_SIZE - 1;
1248 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1249 unlock_page(page);
1250 return 0;
1251 }
1252
1253 /*
1254 * helper function to end page writeback if all the extents
1255 * in the tree for that page are done with writeback
1256 */
1257 static int check_page_writeback(struct extent_map_tree *tree,
1258 struct page *page)
1259 {
1260 u64 start = page->index << PAGE_CACHE_SHIFT;
1261 u64 end = start + PAGE_CACHE_SIZE - 1;
1262 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1263 end_page_writeback(page);
1264 return 0;
1265 }
1266
1267 /* lots and lots of room for performance fixes in the end_bio funcs */
1268
1269 /*
1270 * after a writepage IO is done, we need to:
1271 * clear the uptodate bits on error
1272 * clear the writeback bits in the extent tree for this IO
1273 * end_page_writeback if the page has no more pending IO
1274 *
1275 * Scheduling is not allowed, so the extent state tree is expected
1276 * to have one and only one object corresponding to this IO.
1277 */
1278 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1279 static void end_bio_extent_writepage(struct bio *bio, int err)
1280 #else
1281 static int end_bio_extent_writepage(struct bio *bio,
1282 unsigned int bytes_done, int err)
1283 #endif
1284 {
1285 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1286 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1287 struct extent_map_tree *tree = bio->bi_private;
1288 u64 start;
1289 u64 end;
1290 int whole_page;
1291
1292 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1293 if (bio->bi_size)
1294 return 1;
1295 #endif
1296
1297 do {
1298 struct page *page = bvec->bv_page;
1299 start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1300 end = start + bvec->bv_len - 1;
1301
1302 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1303 whole_page = 1;
1304 else
1305 whole_page = 0;
1306
1307 if (--bvec >= bio->bi_io_vec)
1308 prefetchw(&bvec->bv_page->flags);
1309
1310 if (!uptodate) {
1311 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1312 ClearPageUptodate(page);
1313 SetPageError(page);
1314 }
1315 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1316
1317 if (whole_page)
1318 end_page_writeback(page);
1319 else
1320 check_page_writeback(tree, page);
1321 if (tree->ops && tree->ops->writepage_end_io_hook)
1322 tree->ops->writepage_end_io_hook(page, start, end);
1323 } while (bvec >= bio->bi_io_vec);
1324
1325 bio_put(bio);
1326 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1327 return 0;
1328 #endif
1329 }
1330
1331 /*
1332 * after a readpage IO is done, we need to:
1333 * clear the uptodate bits on error
1334 * set the uptodate bits if things worked
1335 * set the page up to date if all extents in the tree are uptodate
1336 * clear the lock bit in the extent tree
1337 * unlock the page if there are no other extents locked for it
1338 *
1339 * Scheduling is not allowed, so the extent state tree is expected
1340 * to have one and only one object corresponding to this IO.
1341 */
1342 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1343 static void end_bio_extent_readpage(struct bio *bio, int err)
1344 #else
1345 static int end_bio_extent_readpage(struct bio *bio,
1346 unsigned int bytes_done, int err)
1347 #endif
1348 {
1349 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1350 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1351 struct extent_map_tree *tree = bio->bi_private;
1352 u64 start;
1353 u64 end;
1354 int whole_page;
1355 int ret;
1356
1357 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1358 if (bio->bi_size)
1359 return 1;
1360 #endif
1361
1362 do {
1363 struct page *page = bvec->bv_page;
1364 start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1365 end = start + bvec->bv_len - 1;
1366
1367 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1368 whole_page = 1;
1369 else
1370 whole_page = 0;
1371
1372 if (--bvec >= bio->bi_io_vec)
1373 prefetchw(&bvec->bv_page->flags);
1374
1375 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1376 ret = tree->ops->readpage_end_io_hook(page, start, end);
1377 if (ret)
1378 uptodate = 0;
1379 }
1380 if (uptodate) {
1381 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1382 if (whole_page)
1383 SetPageUptodate(page);
1384 else
1385 check_page_uptodate(tree, page);
1386 } else {
1387 ClearPageUptodate(page);
1388 SetPageError(page);
1389 }
1390
1391 unlock_extent(tree, start, end, GFP_ATOMIC);
1392
1393 if (whole_page)
1394 unlock_page(page);
1395 else
1396 check_page_locked(tree, page);
1397 } while (bvec >= bio->bi_io_vec);
1398
1399 bio_put(bio);
1400 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1401 return 0;
1402 #endif
1403 }
1404
1405 /*
1406 * IO done from prepare_write is pretty simple, we just unlock
1407 * the structs in the extent tree when done, and set the uptodate bits
1408 * as appropriate.
1409 */
1410 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1411 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1412 #else
1413 static int end_bio_extent_preparewrite(struct bio *bio,
1414 unsigned int bytes_done, int err)
1415 #endif
1416 {
1417 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1418 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1419 struct extent_map_tree *tree = bio->bi_private;
1420 u64 start;
1421 u64 end;
1422
1423 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1424 if (bio->bi_size)
1425 return 1;
1426 #endif
1427
1428 do {
1429 struct page *page = bvec->bv_page;
1430 start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1431 end = start + bvec->bv_len - 1;
1432
1433 if (--bvec >= bio->bi_io_vec)
1434 prefetchw(&bvec->bv_page->flags);
1435
1436 if (uptodate) {
1437 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1438 } else {
1439 ClearPageUptodate(page);
1440 SetPageError(page);
1441 }
1442
1443 unlock_extent(tree, start, end, GFP_ATOMIC);
1444
1445 } while (bvec >= bio->bi_io_vec);
1446
1447 bio_put(bio);
1448 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1449 return 0;
1450 #endif
1451 }
1452
1453 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1454 struct page *page, sector_t sector,
1455 size_t size, unsigned long offset,
1456 struct block_device *bdev,
1457 bio_end_io_t end_io_func)
1458 {
1459 struct bio *bio;
1460 int ret = 0;
1461
1462 bio = bio_alloc(GFP_NOIO, 1);
1463
1464 bio->bi_sector = sector;
1465 bio->bi_bdev = bdev;
1466 bio->bi_io_vec[0].bv_page = page;
1467 bio->bi_io_vec[0].bv_len = size;
1468 bio->bi_io_vec[0].bv_offset = offset;
1469
1470 bio->bi_vcnt = 1;
1471 bio->bi_idx = 0;
1472 bio->bi_size = size;
1473
1474 bio->bi_end_io = end_io_func;
1475 bio->bi_private = tree;
1476
1477 bio_get(bio);
1478 submit_bio(rw, bio);
1479
1480 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1481 ret = -EOPNOTSUPP;
1482
1483 bio_put(bio);
1484 return ret;
1485 }
1486
1487 void set_page_extent_mapped(struct page *page)
1488 {
1489 if (!PagePrivate(page)) {
1490 SetPagePrivate(page);
1491 WARN_ON(!page->mapping->a_ops->invalidatepage);
1492 set_page_private(page, EXTENT_PAGE_PRIVATE);
1493 page_cache_get(page);
1494 }
1495 }
1496
1497 /*
1498 * basic readpage implementation. Locked extent state structs are inserted
1499 * into the tree that are removed when the IO is done (by the end_io
1500 * handlers)
1501 */
1502 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1503 get_extent_t *get_extent)
1504 {
1505 struct inode *inode = page->mapping->host;
1506 u64 start = page->index << PAGE_CACHE_SHIFT;
1507 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1508 u64 end;
1509 u64 cur = start;
1510 u64 extent_offset;
1511 u64 last_byte = i_size_read(inode);
1512 u64 block_start;
1513 u64 cur_end;
1514 sector_t sector;
1515 struct extent_map *em;
1516 struct block_device *bdev;
1517 int ret;
1518 int nr = 0;
1519 size_t page_offset = 0;
1520 size_t iosize;
1521 size_t blocksize = inode->i_sb->s_blocksize;
1522
1523 set_page_extent_mapped(page);
1524
1525 end = page_end;
1526 lock_extent(tree, start, end, GFP_NOFS);
1527
1528 while (cur <= end) {
1529 if (cur >= last_byte) {
1530 iosize = PAGE_CACHE_SIZE - page_offset;
1531 zero_user_page(page, page_offset, iosize, KM_USER0);
1532 set_extent_uptodate(tree, cur, cur + iosize - 1,
1533 GFP_NOFS);
1534 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1535 break;
1536 }
1537 em = get_extent(inode, page, page_offset, cur, end, 0);
1538 if (IS_ERR(em) || !em) {
1539 SetPageError(page);
1540 unlock_extent(tree, cur, end, GFP_NOFS);
1541 break;
1542 }
1543
1544 extent_offset = cur - em->start;
1545 BUG_ON(em->end < cur);
1546 BUG_ON(end < cur);
1547
1548 iosize = min(em->end - cur, end - cur) + 1;
1549 cur_end = min(em->end, end);
1550 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1551 sector = (em->block_start + extent_offset) >> 9;
1552 bdev = em->bdev;
1553 block_start = em->block_start;
1554 free_extent_map(em);
1555 em = NULL;
1556
1557 /* we've found a hole, just zero and go on */
1558 if (block_start == EXTENT_MAP_HOLE) {
1559 zero_user_page(page, page_offset, iosize, KM_USER0);
1560 set_extent_uptodate(tree, cur, cur + iosize - 1,
1561 GFP_NOFS);
1562 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1563 cur = cur + iosize;
1564 page_offset += iosize;
1565 continue;
1566 }
1567 /* the get_extent function already copied into the page */
1568 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1569 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1570 cur = cur + iosize;
1571 page_offset += iosize;
1572 continue;
1573 }
1574
1575 ret = 0;
1576 if (tree->ops && tree->ops->readpage_io_hook) {
1577 ret = tree->ops->readpage_io_hook(page, cur,
1578 cur + iosize - 1);
1579 }
1580 if (!ret) {
1581 ret = submit_extent_page(READ, tree, page,
1582 sector, iosize, page_offset,
1583 bdev, end_bio_extent_readpage);
1584 }
1585 if (ret)
1586 SetPageError(page);
1587 cur = cur + iosize;
1588 page_offset += iosize;
1589 nr++;
1590 }
1591 if (!nr) {
1592 if (!PageError(page))
1593 SetPageUptodate(page);
1594 unlock_page(page);
1595 }
1596 return 0;
1597 }
1598 EXPORT_SYMBOL(extent_read_full_page);
1599
1600 /*
1601 * the writepage semantics are similar to regular writepage. extent
1602 * records are inserted to lock ranges in the tree, and as dirty areas
1603 * are found, they are marked writeback. Then the lock bits are removed
1604 * and the end_io handler clears the writeback ranges
1605 */
1606 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1607 get_extent_t *get_extent,
1608 struct writeback_control *wbc)
1609 {
1610 struct inode *inode = page->mapping->host;
1611 u64 start = page->index << PAGE_CACHE_SHIFT;
1612 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1613 u64 end;
1614 u64 cur = start;
1615 u64 extent_offset;
1616 u64 last_byte = i_size_read(inode);
1617 u64 block_start;
1618 sector_t sector;
1619 struct extent_map *em;
1620 struct block_device *bdev;
1621 int ret;
1622 int nr = 0;
1623 size_t page_offset = 0;
1624 size_t iosize;
1625 size_t blocksize;
1626 loff_t i_size = i_size_read(inode);
1627 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1628 u64 nr_delalloc;
1629 u64 delalloc_end;
1630
1631 WARN_ON(!PageLocked(page));
1632 if (page->index > end_index) {
1633 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1634 unlock_page(page);
1635 return 0;
1636 }
1637
1638 if (page->index == end_index) {
1639 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1640 zero_user_page(page, offset,
1641 PAGE_CACHE_SIZE - offset, KM_USER0);
1642 }
1643
1644 set_page_extent_mapped(page);
1645
1646 lock_extent(tree, start, page_end, GFP_NOFS);
1647 nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1648 &delalloc_end,
1649 128 * 1024 * 1024);
1650 if (nr_delalloc) {
1651 tree->ops->fill_delalloc(inode, start, delalloc_end);
1652 if (delalloc_end >= page_end + 1) {
1653 clear_extent_bit(tree, page_end + 1, delalloc_end,
1654 EXTENT_LOCKED | EXTENT_DELALLOC,
1655 1, 0, GFP_NOFS);
1656 }
1657 clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1658 0, 0, GFP_NOFS);
1659 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1660 printk("found delalloc bits after clear extent_bit\n");
1661 }
1662 } else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1663 printk("found delalloc bits after find_delalloc_range returns 0\n");
1664 }
1665
1666 end = page_end;
1667 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1668 printk("found delalloc bits after lock_extent\n");
1669 }
1670
1671 if (last_byte <= start) {
1672 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1673 goto done;
1674 }
1675
1676 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1677 blocksize = inode->i_sb->s_blocksize;
1678
1679 while (cur <= end) {
1680 if (cur >= last_byte) {
1681 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1682 break;
1683 }
1684 em = get_extent(inode, page, page_offset, cur, end, 0);
1685 if (IS_ERR(em) || !em) {
1686 SetPageError(page);
1687 break;
1688 }
1689
1690 extent_offset = cur - em->start;
1691 BUG_ON(em->end < cur);
1692 BUG_ON(end < cur);
1693 iosize = min(em->end - cur, end - cur) + 1;
1694 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1695 sector = (em->block_start + extent_offset) >> 9;
1696 bdev = em->bdev;
1697 block_start = em->block_start;
1698 free_extent_map(em);
1699 em = NULL;
1700
1701 if (block_start == EXTENT_MAP_HOLE ||
1702 block_start == EXTENT_MAP_INLINE) {
1703 clear_extent_dirty(tree, cur,
1704 cur + iosize - 1, GFP_NOFS);
1705 cur = cur + iosize;
1706 page_offset += iosize;
1707 continue;
1708 }
1709
1710 /* leave this out until we have a page_mkwrite call */
1711 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1712 EXTENT_DIRTY, 0)) {
1713 cur = cur + iosize;
1714 page_offset += iosize;
1715 continue;
1716 }
1717 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1718 if (tree->ops && tree->ops->writepage_io_hook) {
1719 ret = tree->ops->writepage_io_hook(page, cur,
1720 cur + iosize - 1);
1721 } else {
1722 ret = 0;
1723 }
1724 if (ret)
1725 SetPageError(page);
1726 else {
1727 set_range_writeback(tree, cur, cur + iosize - 1);
1728 ret = submit_extent_page(WRITE, tree, page, sector,
1729 iosize, page_offset, bdev,
1730 end_bio_extent_writepage);
1731 if (ret)
1732 SetPageError(page);
1733 }
1734 cur = cur + iosize;
1735 page_offset += iosize;
1736 nr++;
1737 }
1738 done:
1739 unlock_extent(tree, start, page_end, GFP_NOFS);
1740 unlock_page(page);
1741 return 0;
1742 }
1743 EXPORT_SYMBOL(extent_write_full_page);
1744
1745 /*
1746 * basic invalidatepage code, this waits on any locked or writeback
1747 * ranges corresponding to the page, and then deletes any extent state
1748 * records from the tree
1749 */
1750 int extent_invalidatepage(struct extent_map_tree *tree,
1751 struct page *page, unsigned long offset)
1752 {
1753 u64 start = (page->index << PAGE_CACHE_SHIFT);
1754 u64 end = start + PAGE_CACHE_SIZE - 1;
1755 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1756
1757 start += (offset + blocksize -1) & ~(blocksize - 1);
1758 if (start > end)
1759 return 0;
1760
1761 lock_extent(tree, start, end, GFP_NOFS);
1762 wait_on_extent_writeback(tree, start, end);
1763 clear_extent_bit(tree, start, end,
1764 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1765 1, 1, GFP_NOFS);
1766 return 0;
1767 }
1768 EXPORT_SYMBOL(extent_invalidatepage);
1769
1770 /*
1771 * simple commit_write call, set_range_dirty is used to mark both
1772 * the pages and the extent records as dirty
1773 */
1774 int extent_commit_write(struct extent_map_tree *tree,
1775 struct inode *inode, struct page *page,
1776 unsigned from, unsigned to)
1777 {
1778 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1779
1780 set_page_extent_mapped(page);
1781 set_page_dirty(page);
1782
1783 if (pos > inode->i_size) {
1784 i_size_write(inode, pos);
1785 mark_inode_dirty(inode);
1786 }
1787 return 0;
1788 }
1789 EXPORT_SYMBOL(extent_commit_write);
1790
1791 int extent_prepare_write(struct extent_map_tree *tree,
1792 struct inode *inode, struct page *page,
1793 unsigned from, unsigned to, get_extent_t *get_extent)
1794 {
1795 u64 page_start = page->index << PAGE_CACHE_SHIFT;
1796 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1797 u64 block_start;
1798 u64 orig_block_start;
1799 u64 block_end;
1800 u64 cur_end;
1801 struct extent_map *em;
1802 unsigned blocksize = 1 << inode->i_blkbits;
1803 size_t page_offset = 0;
1804 size_t block_off_start;
1805 size_t block_off_end;
1806 int err = 0;
1807 int iocount = 0;
1808 int ret = 0;
1809 int isnew;
1810
1811 set_page_extent_mapped(page);
1812
1813 block_start = (page_start + from) & ~((u64)blocksize - 1);
1814 block_end = (page_start + to - 1) | (blocksize - 1);
1815 orig_block_start = block_start;
1816
1817 lock_extent(tree, page_start, page_end, GFP_NOFS);
1818 while(block_start <= block_end) {
1819 em = get_extent(inode, page, page_offset, block_start,
1820 block_end, 1);
1821 if (IS_ERR(em) || !em) {
1822 goto err;
1823 }
1824 cur_end = min(block_end, em->end);
1825 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1826 block_off_end = block_off_start + blocksize;
1827 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1828
1829 if (!PageUptodate(page) && isnew &&
1830 (block_off_end > to || block_off_start < from)) {
1831 void *kaddr;
1832
1833 kaddr = kmap_atomic(page, KM_USER0);
1834 if (block_off_end > to)
1835 memset(kaddr + to, 0, block_off_end - to);
1836 if (block_off_start < from)
1837 memset(kaddr + block_off_start, 0,
1838 from - block_off_start);
1839 flush_dcache_page(page);
1840 kunmap_atomic(kaddr, KM_USER0);
1841 }
1842 if (!isnew && !PageUptodate(page) &&
1843 (block_off_end > to || block_off_start < from) &&
1844 !test_range_bit(tree, block_start, cur_end,
1845 EXTENT_UPTODATE, 1)) {
1846 u64 sector;
1847 u64 extent_offset = block_start - em->start;
1848 size_t iosize;
1849 sector = (em->block_start + extent_offset) >> 9;
1850 iosize = (cur_end - block_start + blocksize - 1) &
1851 ~((u64)blocksize - 1);
1852 /*
1853 * we've already got the extent locked, but we
1854 * need to split the state such that our end_bio
1855 * handler can clear the lock.
1856 */
1857 set_extent_bit(tree, block_start,
1858 block_start + iosize - 1,
1859 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1860 ret = submit_extent_page(READ, tree, page,
1861 sector, iosize, page_offset, em->bdev,
1862 end_bio_extent_preparewrite);
1863 iocount++;
1864 block_start = block_start + iosize;
1865 } else {
1866 set_extent_uptodate(tree, block_start, cur_end,
1867 GFP_NOFS);
1868 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1869 block_start = cur_end + 1;
1870 }
1871 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1872 free_extent_map(em);
1873 }
1874 if (iocount) {
1875 wait_extent_bit(tree, orig_block_start,
1876 block_end, EXTENT_LOCKED);
1877 }
1878 check_page_uptodate(tree, page);
1879 err:
1880 /* FIXME, zero out newly allocated blocks on error */
1881 return err;
1882 }
1883 EXPORT_SYMBOL(extent_prepare_write);
1884
1885 /*
1886 * a helper for releasepage. As long as there are no locked extents
1887 * in the range corresponding to the page, both state records and extent
1888 * map records are removed
1889 */
1890 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1891 {
1892 struct extent_map *em;
1893 u64 start = page->index << PAGE_CACHE_SHIFT;
1894 u64 end = start + PAGE_CACHE_SIZE - 1;
1895 u64 orig_start = start;
1896 int ret = 1;
1897
1898 while (start <= end) {
1899 em = lookup_extent_mapping(tree, start, end);
1900 if (!em || IS_ERR(em))
1901 break;
1902 if (!test_range_bit(tree, em->start, em->end,
1903 EXTENT_LOCKED, 0)) {
1904 remove_extent_mapping(tree, em);
1905 /* once for the rb tree */
1906 free_extent_map(em);
1907 }
1908 start = em->end + 1;
1909 /* once for us */
1910 free_extent_map(em);
1911 }
1912 if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1913 ret = 0;
1914 else
1915 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1916 1, 1, GFP_NOFS);
1917 return ret;
1918 }
1919 EXPORT_SYMBOL(try_release_extent_mapping);
1920
1921 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1922 get_extent_t *get_extent)
1923 {
1924 struct inode *inode = mapping->host;
1925 u64 start = iblock << inode->i_blkbits;
1926 u64 end = start + (1 << inode->i_blkbits) - 1;
1927 struct extent_map *em;
1928
1929 em = get_extent(inode, NULL, 0, start, end, 0);
1930 if (!em || IS_ERR(em))
1931 return 0;
1932
1933 if (em->block_start == EXTENT_MAP_INLINE ||
1934 em->block_start == EXTENT_MAP_HOLE)
1935 return 0;
1936
1937 return (em->block_start + start - em->start) >> inode->i_blkbits;
1938 }
1939
1940 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
1941 {
1942 if (list_empty(&eb->lru)) {
1943 extent_buffer_get(eb);
1944 list_add(&eb->lru, &tree->buffer_lru);
1945 tree->lru_size++;
1946 if (tree->lru_size >= BUFFER_LRU_MAX) {
1947 struct extent_buffer *rm;
1948 rm = list_entry(tree->buffer_lru.prev,
1949 struct extent_buffer, lru);
1950 tree->lru_size--;
1951 list_del(&rm->lru);
1952 free_extent_buffer(rm);
1953 }
1954 } else
1955 list_move(&eb->lru, &tree->buffer_lru);
1956 return 0;
1957 }
1958 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
1959 u64 start, unsigned long len)
1960 {
1961 struct list_head *lru = &tree->buffer_lru;
1962 struct list_head *cur = lru->next;
1963 struct extent_buffer *eb;
1964
1965 if (list_empty(lru))
1966 return NULL;
1967
1968 do {
1969 eb = list_entry(cur, struct extent_buffer, lru);
1970 if (eb->start == start && eb->len == len) {
1971 extent_buffer_get(eb);
1972 return eb;
1973 }
1974 cur = cur->next;
1975 } while (cur != lru);
1976 return NULL;
1977 }
1978
1979 static inline unsigned long num_extent_pages(u64 start, u64 len)
1980 {
1981 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
1982 (start >> PAGE_CACHE_SHIFT);
1983 }
1984
1985 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
1986 unsigned long i)
1987 {
1988 struct page *p;
1989
1990 if (i == 0)
1991 return eb->first_page;
1992 i += eb->start >> PAGE_CACHE_SHIFT;
1993 p = find_get_page(eb->first_page->mapping, i);
1994 page_cache_release(p);
1995 return p;
1996 }
1997
1998 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
1999 u64 start,
2000 unsigned long len,
2001 gfp_t mask)
2002 {
2003 struct extent_buffer *eb = NULL;
2004
2005 spin_lock(&tree->lru_lock);
2006 eb = find_lru(tree, start, len);
2007 if (eb) {
2008 goto lru_add;
2009 }
2010 spin_unlock(&tree->lru_lock);
2011
2012 if (eb) {
2013 memset(eb, 0, sizeof(*eb));
2014 } else {
2015 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2016 }
2017 INIT_LIST_HEAD(&eb->lru);
2018 eb->start = start;
2019 eb->len = len;
2020 atomic_set(&eb->refs, 1);
2021
2022 spin_lock(&tree->lru_lock);
2023 lru_add:
2024 add_lru(tree, eb);
2025 spin_unlock(&tree->lru_lock);
2026 return eb;
2027 }
2028
2029 static void __free_extent_buffer(struct extent_buffer *eb)
2030 {
2031 kmem_cache_free(extent_buffer_cache, eb);
2032 }
2033
2034 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2035 u64 start, unsigned long len,
2036 struct page *page0,
2037 gfp_t mask)
2038 {
2039 unsigned long num_pages = num_extent_pages(start, len);
2040 unsigned long i;
2041 unsigned long index = start >> PAGE_CACHE_SHIFT;
2042 struct extent_buffer *eb;
2043 struct page *p;
2044 struct address_space *mapping = tree->mapping;
2045 int uptodate = 0;
2046
2047 eb = __alloc_extent_buffer(tree, start, len, mask);
2048 if (!eb || IS_ERR(eb))
2049 return NULL;
2050
2051 if (eb->flags & EXTENT_BUFFER_FILLED)
2052 return eb;
2053
2054 if (page0) {
2055 eb->first_page = page0;
2056 i = 1;
2057 index++;
2058 page_cache_get(page0);
2059 mark_page_accessed(page0);
2060 set_page_extent_mapped(page0);
2061 set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2062 len << 2);
2063 } else {
2064 i = 0;
2065 }
2066 for (; i < num_pages; i++, index++) {
2067 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2068 if (!p) {
2069 WARN_ON(1);
2070 /* make sure the free only frees the pages we've
2071 * grabbed a reference on
2072 */
2073 eb->len = i << PAGE_CACHE_SHIFT;
2074 eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2075 goto fail;
2076 }
2077 set_page_extent_mapped(p);
2078 mark_page_accessed(p);
2079 if (i == 0) {
2080 eb->first_page = p;
2081 set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2082 len << 2);
2083 } else {
2084 set_page_private(p, EXTENT_PAGE_PRIVATE);
2085 }
2086 if (!PageUptodate(p))
2087 uptodate = 0;
2088 unlock_page(p);
2089 }
2090 if (uptodate)
2091 eb->flags |= EXTENT_UPTODATE;
2092 eb->flags |= EXTENT_BUFFER_FILLED;
2093 return eb;
2094 fail:
2095 free_extent_buffer(eb);
2096 return NULL;
2097 }
2098 EXPORT_SYMBOL(alloc_extent_buffer);
2099
2100 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2101 u64 start, unsigned long len,
2102 gfp_t mask)
2103 {
2104 unsigned long num_pages = num_extent_pages(start, len);
2105 unsigned long i; unsigned long index = start >> PAGE_CACHE_SHIFT;
2106 struct extent_buffer *eb;
2107 struct page *p;
2108 struct address_space *mapping = tree->mapping;
2109 int uptodate = 1;
2110
2111 eb = __alloc_extent_buffer(tree, start, len, mask);
2112 if (!eb || IS_ERR(eb))
2113 return NULL;
2114
2115 if (eb->flags & EXTENT_BUFFER_FILLED)
2116 return eb;
2117
2118 for (i = 0; i < num_pages; i++, index++) {
2119 p = find_lock_page(mapping, index);
2120 if (!p) {
2121 /* make sure the free only frees the pages we've
2122 * grabbed a reference on
2123 */
2124 eb->len = i << PAGE_CACHE_SHIFT;
2125 eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2126 goto fail;
2127 }
2128 set_page_extent_mapped(p);
2129 mark_page_accessed(p);
2130
2131 if (i == 0) {
2132 eb->first_page = p;
2133 set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2134 len << 2);
2135 } else {
2136 set_page_private(p, EXTENT_PAGE_PRIVATE);
2137 }
2138
2139 if (!PageUptodate(p))
2140 uptodate = 0;
2141 unlock_page(p);
2142 }
2143 if (uptodate)
2144 eb->flags |= EXTENT_UPTODATE;
2145 eb->flags |= EXTENT_BUFFER_FILLED;
2146 return eb;
2147 fail:
2148 free_extent_buffer(eb);
2149 return NULL;
2150 }
2151 EXPORT_SYMBOL(find_extent_buffer);
2152
2153 void free_extent_buffer(struct extent_buffer *eb)
2154 {
2155 unsigned long i;
2156 unsigned long num_pages;
2157
2158 if (!eb)
2159 return;
2160
2161 if (!atomic_dec_and_test(&eb->refs))
2162 return;
2163
2164 num_pages = num_extent_pages(eb->start, eb->len);
2165
2166 for (i = 0; i < num_pages; i++) {
2167 page_cache_release(extent_buffer_page(eb, i));
2168 }
2169 __free_extent_buffer(eb);
2170 }
2171 EXPORT_SYMBOL(free_extent_buffer);
2172
2173 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2174 struct extent_buffer *eb)
2175 {
2176 int set;
2177 unsigned long i;
2178 unsigned long num_pages;
2179 struct page *page;
2180
2181 u64 start = eb->start;
2182 u64 end = start + eb->len - 1;
2183
2184 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2185 num_pages = num_extent_pages(eb->start, eb->len);
2186
2187 for (i = 0; i < num_pages; i++) {
2188 page = extent_buffer_page(eb, i);
2189 lock_page(page);
2190 /*
2191 * if we're on the last page or the first page and the
2192 * block isn't aligned on a page boundary, do extra checks
2193 * to make sure we don't clean page that is partially dirty
2194 */
2195 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2196 ((i == num_pages - 1) &&
2197 ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2198 start = page->index << PAGE_CACHE_SHIFT;
2199 end = start + PAGE_CACHE_SIZE - 1;
2200 if (test_range_bit(tree, start, end,
2201 EXTENT_DIRTY, 0)) {
2202 unlock_page(page);
2203 continue;
2204 }
2205 }
2206 clear_page_dirty_for_io(page);
2207 unlock_page(page);
2208 }
2209 return 0;
2210 }
2211 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2212
2213 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2214 struct extent_buffer *eb)
2215 {
2216 return wait_on_extent_writeback(tree, eb->start,
2217 eb->start + eb->len - 1);
2218 }
2219 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2220
2221 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2222 struct extent_buffer *eb)
2223 {
2224 unsigned long i;
2225 unsigned long num_pages;
2226
2227 num_pages = num_extent_pages(eb->start, eb->len);
2228 for (i = 0; i < num_pages; i++) {
2229 struct page *page = extent_buffer_page(eb, i);
2230 /* writepage may need to do something special for the
2231 * first page, we have to make sure page->private is
2232 * properly set. releasepage may drop page->private
2233 * on us if the page isn't already dirty.
2234 */
2235 if (i == 0) {
2236 lock_page(page);
2237 set_page_private(page,
2238 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2239 eb->len << 2);
2240 }
2241 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2242 if (i == 0)
2243 unlock_page(page);
2244 }
2245 return set_extent_dirty(tree, eb->start,
2246 eb->start + eb->len - 1, GFP_NOFS);
2247 }
2248 EXPORT_SYMBOL(set_extent_buffer_dirty);
2249
2250 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2251 struct extent_buffer *eb)
2252 {
2253 unsigned long i;
2254 struct page *page;
2255 unsigned long num_pages;
2256
2257 num_pages = num_extent_pages(eb->start, eb->len);
2258
2259 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2260 GFP_NOFS);
2261 for (i = 0; i < num_pages; i++) {
2262 page = extent_buffer_page(eb, i);
2263 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2264 ((i == num_pages - 1) &&
2265 ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2266 check_page_uptodate(tree, page);
2267 continue;
2268 }
2269 SetPageUptodate(page);
2270 }
2271 return 0;
2272 }
2273 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2274
2275 int extent_buffer_uptodate(struct extent_map_tree *tree,
2276 struct extent_buffer *eb)
2277 {
2278 if (eb->flags & EXTENT_UPTODATE)
2279 return 1;
2280 return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2281 EXTENT_UPTODATE, 1);
2282 }
2283 EXPORT_SYMBOL(extent_buffer_uptodate);
2284
2285 int read_extent_buffer_pages(struct extent_map_tree *tree,
2286 struct extent_buffer *eb,
2287 u64 start,
2288 int wait)
2289 {
2290 unsigned long i;
2291 unsigned long start_i;
2292 struct page *page;
2293 int err;
2294 int ret = 0;
2295 unsigned long num_pages;
2296
2297 if (eb->flags & EXTENT_UPTODATE)
2298 return 0;
2299
2300 if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2301 EXTENT_UPTODATE, 1)) {
2302 return 0;
2303 }
2304 if (start) {
2305 WARN_ON(start < eb->start);
2306 start_i = (start >> PAGE_CACHE_SHIFT) -
2307 (eb->start >> PAGE_CACHE_SHIFT);
2308 } else {
2309 start_i = 0;
2310 }
2311
2312 num_pages = num_extent_pages(eb->start, eb->len);
2313 for (i = start_i; i < num_pages; i++) {
2314 page = extent_buffer_page(eb, i);
2315 if (PageUptodate(page)) {
2316 continue;
2317 }
2318 if (!wait) {
2319 if (TestSetPageLocked(page)) {
2320 continue;
2321 }
2322 } else {
2323 lock_page(page);
2324 }
2325 if (!PageUptodate(page)) {
2326 err = page->mapping->a_ops->readpage(NULL, page);
2327 if (err) {
2328 ret = err;
2329 }
2330 } else {
2331 unlock_page(page);
2332 }
2333 }
2334
2335 if (ret || !wait) {
2336 return ret;
2337 }
2338
2339 for (i = start_i; i < num_pages; i++) {
2340 page = extent_buffer_page(eb, i);
2341 wait_on_page_locked(page);
2342 if (!PageUptodate(page)) {
2343 ret = -EIO;
2344 }
2345 }
2346 if (!ret)
2347 eb->flags |= EXTENT_UPTODATE;
2348 return ret;
2349 }
2350 EXPORT_SYMBOL(read_extent_buffer_pages);
2351
2352 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2353 unsigned long start,
2354 unsigned long len)
2355 {
2356 size_t cur;
2357 size_t offset;
2358 struct page *page;
2359 char *kaddr;
2360 char *dst = (char *)dstv;
2361 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2362 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2363 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2364
2365 WARN_ON(start > eb->len);
2366 WARN_ON(start + len > eb->start + eb->len);
2367
2368 offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2369 if (i == 0)
2370 offset += start_offset;
2371
2372 while(len > 0) {
2373 page = extent_buffer_page(eb, i);
2374 if (!PageUptodate(page)) {
2375 printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2376 WARN_ON(1);
2377 }
2378 WARN_ON(!PageUptodate(page));
2379
2380 cur = min(len, (PAGE_CACHE_SIZE - offset));
2381 kaddr = kmap_atomic(page, KM_USER0);
2382 memcpy(dst, kaddr + offset, cur);
2383 kunmap_atomic(kaddr, KM_USER0);
2384
2385 dst += cur;
2386 len -= cur;
2387 offset = 0;
2388 i++;
2389 }
2390 }
2391 EXPORT_SYMBOL(read_extent_buffer);
2392
2393 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2394 unsigned long min_len, char **token, char **map,
2395 unsigned long *map_start,
2396 unsigned long *map_len, int km)
2397 {
2398 size_t offset = start & (PAGE_CACHE_SIZE - 1);
2399 char *kaddr;
2400 struct page *p;
2401 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2402 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2403 unsigned long end_i = (start_offset + start + min_len) >>
2404 PAGE_CACHE_SHIFT;
2405
2406 if (i != end_i)
2407 return -EINVAL;
2408
2409 if (i == 0) {
2410 offset = start_offset;
2411 *map_start = 0;
2412 } else {
2413 offset = 0;
2414 *map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2415 }
2416 if (start + min_len >= eb->len) {
2417 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2418 WARN_ON(1);
2419 }
2420
2421 p = extent_buffer_page(eb, i);
2422 WARN_ON(!PageUptodate(p));
2423 kaddr = kmap_atomic(p, km);
2424 *token = kaddr;
2425 *map = kaddr + offset;
2426 *map_len = PAGE_CACHE_SIZE - offset;
2427 return 0;
2428 }
2429 EXPORT_SYMBOL(map_private_extent_buffer);
2430
2431 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2432 unsigned long min_len,
2433 char **token, char **map,
2434 unsigned long *map_start,
2435 unsigned long *map_len, int km)
2436 {
2437 int err;
2438 int save = 0;
2439 if (eb->map_token) {
2440 unmap_extent_buffer(eb, eb->map_token, km);
2441 eb->map_token = NULL;
2442 save = 1;
2443 }
2444 err = map_private_extent_buffer(eb, start, min_len, token, map,
2445 map_start, map_len, km);
2446 if (!err && save) {
2447 eb->map_token = *token;
2448 eb->kaddr = *map;
2449 eb->map_start = *map_start;
2450 eb->map_len = *map_len;
2451 }
2452 return err;
2453 }
2454 EXPORT_SYMBOL(map_extent_buffer);
2455
2456 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2457 {
2458 kunmap_atomic(token, km);
2459 }
2460 EXPORT_SYMBOL(unmap_extent_buffer);
2461
2462 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2463 unsigned long start,
2464 unsigned long len)
2465 {
2466 size_t cur;
2467 size_t offset;
2468 struct page *page;
2469 char *kaddr;
2470 char *ptr = (char *)ptrv;
2471 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2472 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2473 int ret = 0;
2474
2475 WARN_ON(start > eb->len);
2476 WARN_ON(start + len > eb->start + eb->len);
2477
2478 offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2479 if (i == 0)
2480 offset += start_offset;
2481
2482 while(len > 0) {
2483 page = extent_buffer_page(eb, i);
2484 WARN_ON(!PageUptodate(page));
2485
2486 cur = min(len, (PAGE_CACHE_SIZE - offset));
2487
2488 kaddr = kmap_atomic(page, KM_USER0);
2489 ret = memcmp(ptr, kaddr + offset, cur);
2490 kunmap_atomic(kaddr, KM_USER0);
2491 if (ret)
2492 break;
2493
2494 ptr += cur;
2495 len -= cur;
2496 offset = 0;
2497 i++;
2498 }
2499 return ret;
2500 }
2501 EXPORT_SYMBOL(memcmp_extent_buffer);
2502
2503 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2504 unsigned long start, unsigned long len)
2505 {
2506 size_t cur;
2507 size_t offset;
2508 struct page *page;
2509 char *kaddr;
2510 char *src = (char *)srcv;
2511 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2512 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2513
2514 WARN_ON(start > eb->len);
2515 WARN_ON(start + len > eb->start + eb->len);
2516
2517 offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2518 if (i == 0)
2519 offset += start_offset;
2520
2521 while(len > 0) {
2522 page = extent_buffer_page(eb, i);
2523 WARN_ON(!PageUptodate(page));
2524
2525 cur = min(len, PAGE_CACHE_SIZE - offset);
2526 kaddr = kmap_atomic(page, KM_USER0);
2527 memcpy(kaddr + offset, src, cur);
2528 kunmap_atomic(kaddr, KM_USER0);
2529
2530 src += cur;
2531 len -= cur;
2532 offset = 0;
2533 i++;
2534 }
2535 }
2536 EXPORT_SYMBOL(write_extent_buffer);
2537
2538 void memset_extent_buffer(struct extent_buffer *eb, char c,
2539 unsigned long start, unsigned long len)
2540 {
2541 size_t cur;
2542 size_t offset;
2543 struct page *page;
2544 char *kaddr;
2545 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2546 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2547
2548 WARN_ON(start > eb->len);
2549 WARN_ON(start + len > eb->start + eb->len);
2550
2551 offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2552 if (i == 0)
2553 offset += start_offset;
2554
2555 while(len > 0) {
2556 page = extent_buffer_page(eb, i);
2557 WARN_ON(!PageUptodate(page));
2558
2559 cur = min(len, PAGE_CACHE_SIZE - offset);
2560 kaddr = kmap_atomic(page, KM_USER0);
2561 memset(kaddr + offset, c, cur);
2562 kunmap_atomic(kaddr, KM_USER0);
2563
2564 len -= cur;
2565 offset = 0;
2566 i++;
2567 }
2568 }
2569 EXPORT_SYMBOL(memset_extent_buffer);
2570
2571 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2572 unsigned long dst_offset, unsigned long src_offset,
2573 unsigned long len)
2574 {
2575 u64 dst_len = dst->len;
2576 size_t cur;
2577 size_t offset;
2578 struct page *page;
2579 char *kaddr;
2580 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2581 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2582
2583 WARN_ON(src->len != dst_len);
2584
2585 offset = dst_offset & ((unsigned long)PAGE_CACHE_SIZE - 1);
2586 if (i == 0)
2587 offset += start_offset;
2588
2589 while(len > 0) {
2590 page = extent_buffer_page(dst, i);
2591 WARN_ON(!PageUptodate(page));
2592
2593 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2594
2595 kaddr = kmap_atomic(page, KM_USER1);
2596 read_extent_buffer(src, kaddr + offset, src_offset, cur);
2597 kunmap_atomic(kaddr, KM_USER1);
2598
2599 src_offset += cur;
2600 len -= cur;
2601 offset = 0;
2602 i++;
2603 }
2604 }
2605 EXPORT_SYMBOL(copy_extent_buffer);
2606
2607 static void move_pages(struct page *dst_page, struct page *src_page,
2608 unsigned long dst_off, unsigned long src_off,
2609 unsigned long len)
2610 {
2611 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2612 if (dst_page == src_page) {
2613 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2614 } else {
2615 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2616 char *p = dst_kaddr + dst_off + len;
2617 char *s = src_kaddr + src_off + len;
2618
2619 while (len--)
2620 *--p = *--s;
2621
2622 kunmap_atomic(src_kaddr, KM_USER1);
2623 }
2624 kunmap_atomic(dst_kaddr, KM_USER0);
2625 }
2626
2627 static void copy_pages(struct page *dst_page, struct page *src_page,
2628 unsigned long dst_off, unsigned long src_off,
2629 unsigned long len)
2630 {
2631 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2632 char *src_kaddr;
2633
2634 if (dst_page != src_page)
2635 src_kaddr = kmap_atomic(src_page, KM_USER1);
2636 else
2637 src_kaddr = dst_kaddr;
2638
2639 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2640 kunmap_atomic(dst_kaddr, KM_USER0);
2641 if (dst_page != src_page)
2642 kunmap_atomic(src_kaddr, KM_USER1);
2643 }
2644
2645 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2646 unsigned long src_offset, unsigned long len)
2647 {
2648 size_t cur;
2649 size_t dst_off_in_page;
2650 size_t src_off_in_page;
2651 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2652 unsigned long dst_i;
2653 unsigned long src_i;
2654
2655 if (src_offset + len > dst->len) {
2656 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2657 src_offset, len, dst->len);
2658 BUG_ON(1);
2659 }
2660 if (dst_offset + len > dst->len) {
2661 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2662 dst_offset, len, dst->len);
2663 BUG_ON(1);
2664 }
2665
2666 while(len > 0) {
2667 dst_off_in_page = dst_offset &
2668 ((unsigned long)PAGE_CACHE_SIZE - 1);
2669 src_off_in_page = src_offset &
2670 ((unsigned long)PAGE_CACHE_SIZE - 1);
2671
2672 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2673 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2674
2675 if (src_i == 0)
2676 src_off_in_page += start_offset;
2677 if (dst_i == 0)
2678 dst_off_in_page += start_offset;
2679
2680 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2681 src_off_in_page));
2682 cur = min_t(unsigned long, cur,
2683 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2684
2685 copy_pages(extent_buffer_page(dst, dst_i),
2686 extent_buffer_page(dst, src_i),
2687 dst_off_in_page, src_off_in_page, cur);
2688
2689 src_offset += cur;
2690 dst_offset += cur;
2691 len -= cur;
2692 }
2693 }
2694 EXPORT_SYMBOL(memcpy_extent_buffer);
2695
2696 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2697 unsigned long src_offset, unsigned long len)
2698 {
2699 size_t cur;
2700 size_t dst_off_in_page;
2701 size_t src_off_in_page;
2702 unsigned long dst_end = dst_offset + len - 1;
2703 unsigned long src_end = src_offset + len - 1;
2704 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2705 unsigned long dst_i;
2706 unsigned long src_i;
2707
2708 if (src_offset + len > dst->len) {
2709 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2710 src_offset, len, dst->len);
2711 BUG_ON(1);
2712 }
2713 if (dst_offset + len > dst->len) {
2714 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2715 dst_offset, len, dst->len);
2716 BUG_ON(1);
2717 }
2718 if (dst_offset < src_offset) {
2719 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2720 return;
2721 }
2722 while(len > 0) {
2723 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2724 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2725
2726 dst_off_in_page = dst_end &
2727 ((unsigned long)PAGE_CACHE_SIZE - 1);
2728 src_off_in_page = src_end &
2729 ((unsigned long)PAGE_CACHE_SIZE - 1);
2730 if (src_i == 0)
2731 src_off_in_page += start_offset;
2732 if (dst_i == 0)
2733 dst_off_in_page += start_offset;
2734
2735 cur = min_t(unsigned long, len, src_off_in_page + 1);
2736 cur = min(cur, dst_off_in_page + 1);
2737 move_pages(extent_buffer_page(dst, dst_i),
2738 extent_buffer_page(dst, src_i),
2739 dst_off_in_page - cur + 1,
2740 src_off_in_page - cur + 1, cur);
2741
2742 dst_end -= cur;
2743 src_end -= cur;
2744 len -= cur;
2745 }
2746 }
2747 EXPORT_SYMBOL(memmove_extent_buffer);