]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/extent_map.c
Btrfs: Remove verbose WARN_ON
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_map.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 unsigned long extra_flags,
20 void (*ctor)(void *, struct kmem_cache *,
21 unsigned long));
22
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32
33 struct tree_entry {
34 u64 start;
35 u64 end;
36 int in_tree;
37 struct rb_node rb_node;
38 };
39
40 struct extent_page_data {
41 struct bio *bio;
42 struct extent_map_tree *tree;
43 get_extent_t *get_extent;
44 };
45
46 int __init extent_map_init(void)
47 {
48 extent_map_cache = btrfs_cache_create("extent_map",
49 sizeof(struct extent_map), 0,
50 NULL);
51 if (!extent_map_cache)
52 return -ENOMEM;
53 extent_state_cache = btrfs_cache_create("extent_state",
54 sizeof(struct extent_state), 0,
55 NULL);
56 if (!extent_state_cache)
57 goto free_map_cache;
58 extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 sizeof(struct extent_buffer), 0,
60 NULL);
61 if (!extent_buffer_cache)
62 goto free_state_cache;
63 return 0;
64
65 free_state_cache:
66 kmem_cache_destroy(extent_state_cache);
67 free_map_cache:
68 kmem_cache_destroy(extent_map_cache);
69 return -ENOMEM;
70 }
71
72 void extent_map_exit(void)
73 {
74 struct extent_state *state;
75
76 while (!list_empty(&states)) {
77 state = list_entry(states.next, struct extent_state, list);
78 printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 list_del(&state->list);
80 kmem_cache_free(extent_state_cache, state);
81
82 }
83
84 if (extent_map_cache)
85 kmem_cache_destroy(extent_map_cache);
86 if (extent_state_cache)
87 kmem_cache_destroy(extent_state_cache);
88 if (extent_buffer_cache)
89 kmem_cache_destroy(extent_buffer_cache);
90 }
91
92 void extent_map_tree_init(struct extent_map_tree *tree,
93 struct address_space *mapping, gfp_t mask)
94 {
95 tree->map.rb_node = NULL;
96 tree->state.rb_node = NULL;
97 tree->ops = NULL;
98 tree->dirty_bytes = 0;
99 rwlock_init(&tree->lock);
100 spin_lock_init(&tree->lru_lock);
101 tree->mapping = mapping;
102 INIT_LIST_HEAD(&tree->buffer_lru);
103 tree->lru_size = 0;
104 }
105 EXPORT_SYMBOL(extent_map_tree_init);
106
107 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108 {
109 struct extent_buffer *eb;
110 while(!list_empty(&tree->buffer_lru)) {
111 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 lru);
113 list_del_init(&eb->lru);
114 free_extent_buffer(eb);
115 }
116 }
117 EXPORT_SYMBOL(extent_map_tree_empty_lru);
118
119 struct extent_map *alloc_extent_map(gfp_t mask)
120 {
121 struct extent_map *em;
122 em = kmem_cache_alloc(extent_map_cache, mask);
123 if (!em || IS_ERR(em))
124 return em;
125 em->in_tree = 0;
126 atomic_set(&em->refs, 1);
127 return em;
128 }
129 EXPORT_SYMBOL(alloc_extent_map);
130
131 void free_extent_map(struct extent_map *em)
132 {
133 if (!em)
134 return;
135 if (atomic_dec_and_test(&em->refs)) {
136 WARN_ON(em->in_tree);
137 kmem_cache_free(extent_map_cache, em);
138 }
139 }
140 EXPORT_SYMBOL(free_extent_map);
141
142
143 struct extent_state *alloc_extent_state(gfp_t mask)
144 {
145 struct extent_state *state;
146 unsigned long flags;
147
148 state = kmem_cache_alloc(extent_state_cache, mask);
149 if (!state || IS_ERR(state))
150 return state;
151 state->state = 0;
152 state->in_tree = 0;
153 state->private = 0;
154
155 spin_lock_irqsave(&state_lock, flags);
156 list_add(&state->list, &states);
157 spin_unlock_irqrestore(&state_lock, flags);
158
159 atomic_set(&state->refs, 1);
160 init_waitqueue_head(&state->wq);
161 return state;
162 }
163 EXPORT_SYMBOL(alloc_extent_state);
164
165 void free_extent_state(struct extent_state *state)
166 {
167 unsigned long flags;
168 if (!state)
169 return;
170 if (atomic_dec_and_test(&state->refs)) {
171 WARN_ON(state->in_tree);
172 spin_lock_irqsave(&state_lock, flags);
173 list_del(&state->list);
174 spin_unlock_irqrestore(&state_lock, flags);
175 kmem_cache_free(extent_state_cache, state);
176 }
177 }
178 EXPORT_SYMBOL(free_extent_state);
179
180 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 struct rb_node *node)
182 {
183 struct rb_node ** p = &root->rb_node;
184 struct rb_node * parent = NULL;
185 struct tree_entry *entry;
186
187 while(*p) {
188 parent = *p;
189 entry = rb_entry(parent, struct tree_entry, rb_node);
190
191 if (offset < entry->start)
192 p = &(*p)->rb_left;
193 else if (offset > entry->end)
194 p = &(*p)->rb_right;
195 else
196 return parent;
197 }
198
199 entry = rb_entry(node, struct tree_entry, rb_node);
200 entry->in_tree = 1;
201 rb_link_node(node, parent, p);
202 rb_insert_color(node, root);
203 return NULL;
204 }
205
206 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
207 struct rb_node **prev_ret)
208 {
209 struct rb_node * n = root->rb_node;
210 struct rb_node *prev = NULL;
211 struct tree_entry *entry;
212 struct tree_entry *prev_entry = NULL;
213
214 while(n) {
215 entry = rb_entry(n, struct tree_entry, rb_node);
216 prev = n;
217 prev_entry = entry;
218
219 if (offset < entry->start)
220 n = n->rb_left;
221 else if (offset > entry->end)
222 n = n->rb_right;
223 else
224 return n;
225 }
226 if (!prev_ret)
227 return NULL;
228 while(prev && offset > prev_entry->end) {
229 prev = rb_next(prev);
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 }
232 *prev_ret = prev;
233 return NULL;
234 }
235
236 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
237 {
238 struct rb_node *prev;
239 struct rb_node *ret;
240 ret = __tree_search(root, offset, &prev);
241 if (!ret)
242 return prev;
243 return ret;
244 }
245
246 static int tree_delete(struct rb_root *root, u64 offset)
247 {
248 struct rb_node *node;
249 struct tree_entry *entry;
250
251 node = __tree_search(root, offset, NULL);
252 if (!node)
253 return -ENOENT;
254 entry = rb_entry(node, struct tree_entry, rb_node);
255 entry->in_tree = 0;
256 rb_erase(node, root);
257 return 0;
258 }
259
260 /*
261 * add_extent_mapping tries a simple backward merge with existing
262 * mappings. The extent_map struct passed in will be inserted into
263 * the tree directly (no copies made, just a reference taken).
264 */
265 int add_extent_mapping(struct extent_map_tree *tree,
266 struct extent_map *em)
267 {
268 int ret = 0;
269 struct extent_map *prev = NULL;
270 struct rb_node *rb;
271
272 write_lock_irq(&tree->lock);
273 rb = tree_insert(&tree->map, em->end, &em->rb_node);
274 if (rb) {
275 prev = rb_entry(rb, struct extent_map, rb_node);
276 ret = -EEXIST;
277 goto out;
278 }
279 atomic_inc(&em->refs);
280 if (em->start != 0) {
281 rb = rb_prev(&em->rb_node);
282 if (rb)
283 prev = rb_entry(rb, struct extent_map, rb_node);
284 if (prev && prev->end + 1 == em->start &&
285 ((em->block_start == EXTENT_MAP_HOLE &&
286 prev->block_start == EXTENT_MAP_HOLE) ||
287 (em->block_start == EXTENT_MAP_INLINE &&
288 prev->block_start == EXTENT_MAP_INLINE) ||
289 (em->block_start == EXTENT_MAP_DELALLOC &&
290 prev->block_start == EXTENT_MAP_DELALLOC) ||
291 (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
292 em->block_start == prev->block_end + 1))) {
293 em->start = prev->start;
294 em->block_start = prev->block_start;
295 rb_erase(&prev->rb_node, &tree->map);
296 prev->in_tree = 0;
297 free_extent_map(prev);
298 }
299 }
300 out:
301 write_unlock_irq(&tree->lock);
302 return ret;
303 }
304 EXPORT_SYMBOL(add_extent_mapping);
305
306 /*
307 * lookup_extent_mapping returns the first extent_map struct in the
308 * tree that intersects the [start, end] (inclusive) range. There may
309 * be additional objects in the tree that intersect, so check the object
310 * returned carefully to make sure you don't need additional lookups.
311 */
312 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
313 u64 start, u64 end)
314 {
315 struct extent_map *em;
316 struct rb_node *rb_node;
317
318 read_lock_irq(&tree->lock);
319 rb_node = tree_search(&tree->map, start);
320 if (!rb_node) {
321 em = NULL;
322 goto out;
323 }
324 if (IS_ERR(rb_node)) {
325 em = ERR_PTR(PTR_ERR(rb_node));
326 goto out;
327 }
328 em = rb_entry(rb_node, struct extent_map, rb_node);
329 if (em->end < start || em->start > end) {
330 em = NULL;
331 goto out;
332 }
333 atomic_inc(&em->refs);
334 out:
335 read_unlock_irq(&tree->lock);
336 return em;
337 }
338 EXPORT_SYMBOL(lookup_extent_mapping);
339
340 /*
341 * removes an extent_map struct from the tree. No reference counts are
342 * dropped, and no checks are done to see if the range is in use
343 */
344 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
345 {
346 int ret;
347
348 write_lock_irq(&tree->lock);
349 ret = tree_delete(&tree->map, em->end);
350 write_unlock_irq(&tree->lock);
351 return ret;
352 }
353 EXPORT_SYMBOL(remove_extent_mapping);
354
355 /*
356 * utility function to look for merge candidates inside a given range.
357 * Any extents with matching state are merged together into a single
358 * extent in the tree. Extents with EXTENT_IO in their state field
359 * are not merged because the end_io handlers need to be able to do
360 * operations on them without sleeping (or doing allocations/splits).
361 *
362 * This should be called with the tree lock held.
363 */
364 static int merge_state(struct extent_map_tree *tree,
365 struct extent_state *state)
366 {
367 struct extent_state *other;
368 struct rb_node *other_node;
369
370 if (state->state & EXTENT_IOBITS)
371 return 0;
372
373 other_node = rb_prev(&state->rb_node);
374 if (other_node) {
375 other = rb_entry(other_node, struct extent_state, rb_node);
376 if (other->end == state->start - 1 &&
377 other->state == state->state) {
378 state->start = other->start;
379 other->in_tree = 0;
380 rb_erase(&other->rb_node, &tree->state);
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
389 other->start = state->start;
390 state->in_tree = 0;
391 rb_erase(&state->rb_node, &tree->state);
392 free_extent_state(state);
393 }
394 }
395 return 0;
396 }
397
398 /*
399 * insert an extent_state struct into the tree. 'bits' are set on the
400 * struct before it is inserted.
401 *
402 * This may return -EEXIST if the extent is already there, in which case the
403 * state struct is freed.
404 *
405 * The tree lock is not taken internally. This is a utility function and
406 * probably isn't what you want to call (see set/clear_extent_bit).
407 */
408 static int insert_state(struct extent_map_tree *tree,
409 struct extent_state *state, u64 start, u64 end,
410 int bits)
411 {
412 struct rb_node *node;
413
414 if (end < start) {
415 printk("end < start %Lu %Lu\n", end, start);
416 WARN_ON(1);
417 }
418 if (bits & EXTENT_DIRTY)
419 tree->dirty_bytes += end - start + 1;
420 state->state |= bits;
421 state->start = start;
422 state->end = end;
423 node = tree_insert(&tree->state, end, &state->rb_node);
424 if (node) {
425 struct extent_state *found;
426 found = rb_entry(node, struct extent_state, rb_node);
427 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
428 free_extent_state(state);
429 return -EEXIST;
430 }
431 merge_state(tree, state);
432 return 0;
433 }
434
435 /*
436 * split a given extent state struct in two, inserting the preallocated
437 * struct 'prealloc' as the newly created second half. 'split' indicates an
438 * offset inside 'orig' where it should be split.
439 *
440 * Before calling,
441 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
442 * are two extent state structs in the tree:
443 * prealloc: [orig->start, split - 1]
444 * orig: [ split, orig->end ]
445 *
446 * The tree locks are not taken by this function. They need to be held
447 * by the caller.
448 */
449 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
450 struct extent_state *prealloc, u64 split)
451 {
452 struct rb_node *node;
453 prealloc->start = orig->start;
454 prealloc->end = split - 1;
455 prealloc->state = orig->state;
456 orig->start = split;
457
458 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
459 if (node) {
460 struct extent_state *found;
461 found = rb_entry(node, struct extent_state, rb_node);
462 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
463 free_extent_state(prealloc);
464 return -EEXIST;
465 }
466 return 0;
467 }
468
469 /*
470 * utility function to clear some bits in an extent state struct.
471 * it will optionally wake up any one waiting on this state (wake == 1), or
472 * forcibly remove the state from the tree (delete == 1).
473 *
474 * If no bits are set on the state struct after clearing things, the
475 * struct is freed and removed from the tree
476 */
477 static int clear_state_bit(struct extent_map_tree *tree,
478 struct extent_state *state, int bits, int wake,
479 int delete)
480 {
481 int ret = state->state & bits;
482
483 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
484 u64 range = state->end - state->start + 1;
485 WARN_ON(range > tree->dirty_bytes);
486 tree->dirty_bytes -= range;
487 }
488 state->state &= ~bits;
489 if (wake)
490 wake_up(&state->wq);
491 if (delete || state->state == 0) {
492 if (state->in_tree) {
493 rb_erase(&state->rb_node, &tree->state);
494 state->in_tree = 0;
495 free_extent_state(state);
496 } else {
497 WARN_ON(1);
498 }
499 } else {
500 merge_state(tree, state);
501 }
502 return ret;
503 }
504
505 /*
506 * clear some bits on a range in the tree. This may require splitting
507 * or inserting elements in the tree, so the gfp mask is used to
508 * indicate which allocations or sleeping are allowed.
509 *
510 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
511 * the given range from the tree regardless of state (ie for truncate).
512 *
513 * the range [start, end] is inclusive.
514 *
515 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
516 * bits were already set, or zero if none of the bits were already set.
517 */
518 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
519 int bits, int wake, int delete, gfp_t mask)
520 {
521 struct extent_state *state;
522 struct extent_state *prealloc = NULL;
523 struct rb_node *node;
524 unsigned long flags;
525 int err;
526 int set = 0;
527
528 again:
529 if (!prealloc && (mask & __GFP_WAIT)) {
530 prealloc = alloc_extent_state(mask);
531 if (!prealloc)
532 return -ENOMEM;
533 }
534
535 write_lock_irqsave(&tree->lock, flags);
536 /*
537 * this search will find the extents that end after
538 * our range starts
539 */
540 node = tree_search(&tree->state, start);
541 if (!node)
542 goto out;
543 state = rb_entry(node, struct extent_state, rb_node);
544 if (state->start > end)
545 goto out;
546 WARN_ON(state->end < start);
547
548 /*
549 * | ---- desired range ---- |
550 * | state | or
551 * | ------------- state -------------- |
552 *
553 * We need to split the extent we found, and may flip
554 * bits on second half.
555 *
556 * If the extent we found extends past our range, we
557 * just split and search again. It'll get split again
558 * the next time though.
559 *
560 * If the extent we found is inside our range, we clear
561 * the desired bit on it.
562 */
563
564 if (state->start < start) {
565 err = split_state(tree, state, prealloc, start);
566 BUG_ON(err == -EEXIST);
567 prealloc = NULL;
568 if (err)
569 goto out;
570 if (state->end <= end) {
571 start = state->end + 1;
572 set |= clear_state_bit(tree, state, bits,
573 wake, delete);
574 } else {
575 start = state->start;
576 }
577 goto search_again;
578 }
579 /*
580 * | ---- desired range ---- |
581 * | state |
582 * We need to split the extent, and clear the bit
583 * on the first half
584 */
585 if (state->start <= end && state->end > end) {
586 err = split_state(tree, state, prealloc, end + 1);
587 BUG_ON(err == -EEXIST);
588
589 if (wake)
590 wake_up(&state->wq);
591 set |= clear_state_bit(tree, prealloc, bits,
592 wake, delete);
593 prealloc = NULL;
594 goto out;
595 }
596
597 start = state->end + 1;
598 set |= clear_state_bit(tree, state, bits, wake, delete);
599 goto search_again;
600
601 out:
602 write_unlock_irqrestore(&tree->lock, flags);
603 if (prealloc)
604 free_extent_state(prealloc);
605
606 return set;
607
608 search_again:
609 if (start > end)
610 goto out;
611 write_unlock_irqrestore(&tree->lock, flags);
612 if (mask & __GFP_WAIT)
613 cond_resched();
614 goto again;
615 }
616 EXPORT_SYMBOL(clear_extent_bit);
617
618 static int wait_on_state(struct extent_map_tree *tree,
619 struct extent_state *state)
620 {
621 DEFINE_WAIT(wait);
622 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
623 read_unlock_irq(&tree->lock);
624 schedule();
625 read_lock_irq(&tree->lock);
626 finish_wait(&state->wq, &wait);
627 return 0;
628 }
629
630 /*
631 * waits for one or more bits to clear on a range in the state tree.
632 * The range [start, end] is inclusive.
633 * The tree lock is taken by this function
634 */
635 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
636 {
637 struct extent_state *state;
638 struct rb_node *node;
639
640 read_lock_irq(&tree->lock);
641 again:
642 while (1) {
643 /*
644 * this search will find all the extents that end after
645 * our range starts
646 */
647 node = tree_search(&tree->state, start);
648 if (!node)
649 break;
650
651 state = rb_entry(node, struct extent_state, rb_node);
652
653 if (state->start > end)
654 goto out;
655
656 if (state->state & bits) {
657 start = state->start;
658 atomic_inc(&state->refs);
659 wait_on_state(tree, state);
660 free_extent_state(state);
661 goto again;
662 }
663 start = state->end + 1;
664
665 if (start > end)
666 break;
667
668 if (need_resched()) {
669 read_unlock_irq(&tree->lock);
670 cond_resched();
671 read_lock_irq(&tree->lock);
672 }
673 }
674 out:
675 read_unlock_irq(&tree->lock);
676 return 0;
677 }
678 EXPORT_SYMBOL(wait_extent_bit);
679
680 static void set_state_bits(struct extent_map_tree *tree,
681 struct extent_state *state,
682 int bits)
683 {
684 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
685 u64 range = state->end - state->start + 1;
686 tree->dirty_bytes += range;
687 }
688 state->state |= bits;
689 }
690
691 /*
692 * set some bits on a range in the tree. This may require allocations
693 * or sleeping, so the gfp mask is used to indicate what is allowed.
694 *
695 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
696 * range already has the desired bits set. The start of the existing
697 * range is returned in failed_start in this case.
698 *
699 * [start, end] is inclusive
700 * This takes the tree lock.
701 */
702 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
703 int exclusive, u64 *failed_start, gfp_t mask)
704 {
705 struct extent_state *state;
706 struct extent_state *prealloc = NULL;
707 struct rb_node *node;
708 unsigned long flags;
709 int err = 0;
710 int set;
711 u64 last_start;
712 u64 last_end;
713 again:
714 if (!prealloc && (mask & __GFP_WAIT)) {
715 prealloc = alloc_extent_state(mask);
716 if (!prealloc)
717 return -ENOMEM;
718 }
719
720 write_lock_irqsave(&tree->lock, flags);
721 /*
722 * this search will find all the extents that end after
723 * our range starts.
724 */
725 node = tree_search(&tree->state, start);
726 if (!node) {
727 err = insert_state(tree, prealloc, start, end, bits);
728 prealloc = NULL;
729 BUG_ON(err == -EEXIST);
730 goto out;
731 }
732
733 state = rb_entry(node, struct extent_state, rb_node);
734 last_start = state->start;
735 last_end = state->end;
736
737 /*
738 * | ---- desired range ---- |
739 * | state |
740 *
741 * Just lock what we found and keep going
742 */
743 if (state->start == start && state->end <= end) {
744 set = state->state & bits;
745 if (set && exclusive) {
746 *failed_start = state->start;
747 err = -EEXIST;
748 goto out;
749 }
750 set_state_bits(tree, state, bits);
751 start = state->end + 1;
752 merge_state(tree, state);
753 goto search_again;
754 }
755
756 /*
757 * | ---- desired range ---- |
758 * | state |
759 * or
760 * | ------------- state -------------- |
761 *
762 * We need to split the extent we found, and may flip bits on
763 * second half.
764 *
765 * If the extent we found extends past our
766 * range, we just split and search again. It'll get split
767 * again the next time though.
768 *
769 * If the extent we found is inside our range, we set the
770 * desired bit on it.
771 */
772 if (state->start < start) {
773 set = state->state & bits;
774 if (exclusive && set) {
775 *failed_start = start;
776 err = -EEXIST;
777 goto out;
778 }
779 err = split_state(tree, state, prealloc, start);
780 BUG_ON(err == -EEXIST);
781 prealloc = NULL;
782 if (err)
783 goto out;
784 if (state->end <= end) {
785 set_state_bits(tree, state, bits);
786 start = state->end + 1;
787 merge_state(tree, state);
788 } else {
789 start = state->start;
790 }
791 goto search_again;
792 }
793 /*
794 * | ---- desired range ---- |
795 * | state | or | state |
796 *
797 * There's a hole, we need to insert something in it and
798 * ignore the extent we found.
799 */
800 if (state->start > start) {
801 u64 this_end;
802 if (end < last_start)
803 this_end = end;
804 else
805 this_end = last_start -1;
806 err = insert_state(tree, prealloc, start, this_end,
807 bits);
808 prealloc = NULL;
809 BUG_ON(err == -EEXIST);
810 if (err)
811 goto out;
812 start = this_end + 1;
813 goto search_again;
814 }
815 /*
816 * | ---- desired range ---- |
817 * | state |
818 * We need to split the extent, and set the bit
819 * on the first half
820 */
821 if (state->start <= end && state->end > end) {
822 set = state->state & bits;
823 if (exclusive && set) {
824 *failed_start = start;
825 err = -EEXIST;
826 goto out;
827 }
828 err = split_state(tree, state, prealloc, end + 1);
829 BUG_ON(err == -EEXIST);
830
831 set_state_bits(tree, prealloc, bits);
832 merge_state(tree, prealloc);
833 prealloc = NULL;
834 goto out;
835 }
836
837 goto search_again;
838
839 out:
840 write_unlock_irqrestore(&tree->lock, flags);
841 if (prealloc)
842 free_extent_state(prealloc);
843
844 return err;
845
846 search_again:
847 if (start > end)
848 goto out;
849 write_unlock_irqrestore(&tree->lock, flags);
850 if (mask & __GFP_WAIT)
851 cond_resched();
852 goto again;
853 }
854 EXPORT_SYMBOL(set_extent_bit);
855
856 /* wrappers around set/clear extent bit */
857 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
858 gfp_t mask)
859 {
860 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
861 mask);
862 }
863 EXPORT_SYMBOL(set_extent_dirty);
864
865 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
866 int bits, gfp_t mask)
867 {
868 return set_extent_bit(tree, start, end, bits, 0, NULL,
869 mask);
870 }
871 EXPORT_SYMBOL(set_extent_bits);
872
873 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
874 int bits, gfp_t mask)
875 {
876 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
877 }
878 EXPORT_SYMBOL(clear_extent_bits);
879
880 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
881 gfp_t mask)
882 {
883 return set_extent_bit(tree, start, end,
884 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
885 mask);
886 }
887 EXPORT_SYMBOL(set_extent_delalloc);
888
889 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
890 gfp_t mask)
891 {
892 return clear_extent_bit(tree, start, end,
893 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
894 }
895 EXPORT_SYMBOL(clear_extent_dirty);
896
897 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
898 gfp_t mask)
899 {
900 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
901 mask);
902 }
903 EXPORT_SYMBOL(set_extent_new);
904
905 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
906 gfp_t mask)
907 {
908 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
909 }
910 EXPORT_SYMBOL(clear_extent_new);
911
912 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
913 gfp_t mask)
914 {
915 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
916 mask);
917 }
918 EXPORT_SYMBOL(set_extent_uptodate);
919
920 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
921 gfp_t mask)
922 {
923 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
924 }
925 EXPORT_SYMBOL(clear_extent_uptodate);
926
927 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
928 gfp_t mask)
929 {
930 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
931 0, NULL, mask);
932 }
933 EXPORT_SYMBOL(set_extent_writeback);
934
935 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
936 gfp_t mask)
937 {
938 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
939 }
940 EXPORT_SYMBOL(clear_extent_writeback);
941
942 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
943 {
944 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
945 }
946 EXPORT_SYMBOL(wait_on_extent_writeback);
947
948 /*
949 * locks a range in ascending order, waiting for any locked regions
950 * it hits on the way. [start,end] are inclusive, and this will sleep.
951 */
952 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
953 {
954 int err;
955 u64 failed_start;
956 while (1) {
957 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
958 &failed_start, mask);
959 if (err == -EEXIST && (mask & __GFP_WAIT)) {
960 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
961 start = failed_start;
962 } else {
963 break;
964 }
965 WARN_ON(start > end);
966 }
967 return err;
968 }
969 EXPORT_SYMBOL(lock_extent);
970
971 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
972 gfp_t mask)
973 {
974 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
975 }
976 EXPORT_SYMBOL(unlock_extent);
977
978 /*
979 * helper function to set pages and extents in the tree dirty
980 */
981 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
982 {
983 unsigned long index = start >> PAGE_CACHE_SHIFT;
984 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
985 struct page *page;
986
987 while (index <= end_index) {
988 page = find_get_page(tree->mapping, index);
989 BUG_ON(!page);
990 __set_page_dirty_nobuffers(page);
991 page_cache_release(page);
992 index++;
993 }
994 set_extent_dirty(tree, start, end, GFP_NOFS);
995 return 0;
996 }
997 EXPORT_SYMBOL(set_range_dirty);
998
999 /*
1000 * helper function to set both pages and extents in the tree writeback
1001 */
1002 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1003 {
1004 unsigned long index = start >> PAGE_CACHE_SHIFT;
1005 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1006 struct page *page;
1007
1008 while (index <= end_index) {
1009 page = find_get_page(tree->mapping, index);
1010 BUG_ON(!page);
1011 set_page_writeback(page);
1012 page_cache_release(page);
1013 index++;
1014 }
1015 set_extent_writeback(tree, start, end, GFP_NOFS);
1016 return 0;
1017 }
1018 EXPORT_SYMBOL(set_range_writeback);
1019
1020 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1021 u64 *start_ret, u64 *end_ret, int bits)
1022 {
1023 struct rb_node *node;
1024 struct extent_state *state;
1025 int ret = 1;
1026
1027 read_lock_irq(&tree->lock);
1028 /*
1029 * this search will find all the extents that end after
1030 * our range starts.
1031 */
1032 node = tree_search(&tree->state, start);
1033 if (!node || IS_ERR(node)) {
1034 goto out;
1035 }
1036
1037 while(1) {
1038 state = rb_entry(node, struct extent_state, rb_node);
1039 if (state->end >= start && (state->state & bits)) {
1040 *start_ret = state->start;
1041 *end_ret = state->end;
1042 ret = 0;
1043 break;
1044 }
1045 node = rb_next(node);
1046 if (!node)
1047 break;
1048 }
1049 out:
1050 read_unlock_irq(&tree->lock);
1051 return ret;
1052 }
1053 EXPORT_SYMBOL(find_first_extent_bit);
1054
1055 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1056 u64 *start, u64 *end, u64 max_bytes)
1057 {
1058 struct rb_node *node;
1059 struct extent_state *state;
1060 u64 cur_start = *start;
1061 u64 found = 0;
1062 u64 total_bytes = 0;
1063
1064 write_lock_irq(&tree->lock);
1065 /*
1066 * this search will find all the extents that end after
1067 * our range starts.
1068 */
1069 search_again:
1070 node = tree_search(&tree->state, cur_start);
1071 if (!node || IS_ERR(node)) {
1072 *end = (u64)-1;
1073 goto out;
1074 }
1075
1076 while(1) {
1077 state = rb_entry(node, struct extent_state, rb_node);
1078 if (found && state->start != cur_start) {
1079 goto out;
1080 }
1081 if (!(state->state & EXTENT_DELALLOC)) {
1082 if (!found)
1083 *end = state->end;
1084 goto out;
1085 }
1086 if (!found) {
1087 struct extent_state *prev_state;
1088 struct rb_node *prev_node = node;
1089 while(1) {
1090 prev_node = rb_prev(prev_node);
1091 if (!prev_node)
1092 break;
1093 prev_state = rb_entry(prev_node,
1094 struct extent_state,
1095 rb_node);
1096 if (!(prev_state->state & EXTENT_DELALLOC))
1097 break;
1098 state = prev_state;
1099 node = prev_node;
1100 }
1101 }
1102 if (state->state & EXTENT_LOCKED) {
1103 DEFINE_WAIT(wait);
1104 atomic_inc(&state->refs);
1105 prepare_to_wait(&state->wq, &wait,
1106 TASK_UNINTERRUPTIBLE);
1107 write_unlock_irq(&tree->lock);
1108 schedule();
1109 write_lock_irq(&tree->lock);
1110 finish_wait(&state->wq, &wait);
1111 free_extent_state(state);
1112 goto search_again;
1113 }
1114 state->state |= EXTENT_LOCKED;
1115 if (!found)
1116 *start = state->start;
1117 found++;
1118 *end = state->end;
1119 cur_start = state->end + 1;
1120 node = rb_next(node);
1121 if (!node)
1122 break;
1123 total_bytes += state->end - state->start + 1;
1124 if (total_bytes >= max_bytes)
1125 break;
1126 }
1127 out:
1128 write_unlock_irq(&tree->lock);
1129 return found;
1130 }
1131
1132 u64 count_range_bits(struct extent_map_tree *tree,
1133 u64 *start, u64 search_end, u64 max_bytes,
1134 unsigned long bits)
1135 {
1136 struct rb_node *node;
1137 struct extent_state *state;
1138 u64 cur_start = *start;
1139 u64 total_bytes = 0;
1140 int found = 0;
1141
1142 if (search_end <= cur_start) {
1143 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1144 WARN_ON(1);
1145 return 0;
1146 }
1147
1148 write_lock_irq(&tree->lock);
1149 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1150 total_bytes = tree->dirty_bytes;
1151 goto out;
1152 }
1153 /*
1154 * this search will find all the extents that end after
1155 * our range starts.
1156 */
1157 node = tree_search(&tree->state, cur_start);
1158 if (!node || IS_ERR(node)) {
1159 goto out;
1160 }
1161
1162 while(1) {
1163 state = rb_entry(node, struct extent_state, rb_node);
1164 if (state->start > search_end)
1165 break;
1166 if (state->end >= cur_start && (state->state & bits)) {
1167 total_bytes += min(search_end, state->end) + 1 -
1168 max(cur_start, state->start);
1169 if (total_bytes >= max_bytes)
1170 break;
1171 if (!found) {
1172 *start = state->start;
1173 found = 1;
1174 }
1175 }
1176 node = rb_next(node);
1177 if (!node)
1178 break;
1179 }
1180 out:
1181 write_unlock_irq(&tree->lock);
1182 return total_bytes;
1183 }
1184 /*
1185 * helper function to lock both pages and extents in the tree.
1186 * pages must be locked first.
1187 */
1188 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1189 {
1190 unsigned long index = start >> PAGE_CACHE_SHIFT;
1191 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1192 struct page *page;
1193 int err;
1194
1195 while (index <= end_index) {
1196 page = grab_cache_page(tree->mapping, index);
1197 if (!page) {
1198 err = -ENOMEM;
1199 goto failed;
1200 }
1201 if (IS_ERR(page)) {
1202 err = PTR_ERR(page);
1203 goto failed;
1204 }
1205 index++;
1206 }
1207 lock_extent(tree, start, end, GFP_NOFS);
1208 return 0;
1209
1210 failed:
1211 /*
1212 * we failed above in getting the page at 'index', so we undo here
1213 * up to but not including the page at 'index'
1214 */
1215 end_index = index;
1216 index = start >> PAGE_CACHE_SHIFT;
1217 while (index < end_index) {
1218 page = find_get_page(tree->mapping, index);
1219 unlock_page(page);
1220 page_cache_release(page);
1221 index++;
1222 }
1223 return err;
1224 }
1225 EXPORT_SYMBOL(lock_range);
1226
1227 /*
1228 * helper function to unlock both pages and extents in the tree.
1229 */
1230 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1231 {
1232 unsigned long index = start >> PAGE_CACHE_SHIFT;
1233 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1234 struct page *page;
1235
1236 while (index <= end_index) {
1237 page = find_get_page(tree->mapping, index);
1238 unlock_page(page);
1239 page_cache_release(page);
1240 index++;
1241 }
1242 unlock_extent(tree, start, end, GFP_NOFS);
1243 return 0;
1244 }
1245 EXPORT_SYMBOL(unlock_range);
1246
1247 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1248 {
1249 struct rb_node *node;
1250 struct extent_state *state;
1251 int ret = 0;
1252
1253 write_lock_irq(&tree->lock);
1254 /*
1255 * this search will find all the extents that end after
1256 * our range starts.
1257 */
1258 node = tree_search(&tree->state, start);
1259 if (!node || IS_ERR(node)) {
1260 ret = -ENOENT;
1261 goto out;
1262 }
1263 state = rb_entry(node, struct extent_state, rb_node);
1264 if (state->start != start) {
1265 ret = -ENOENT;
1266 goto out;
1267 }
1268 state->private = private;
1269 out:
1270 write_unlock_irq(&tree->lock);
1271 return ret;
1272 }
1273
1274 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1275 {
1276 struct rb_node *node;
1277 struct extent_state *state;
1278 int ret = 0;
1279
1280 read_lock_irq(&tree->lock);
1281 /*
1282 * this search will find all the extents that end after
1283 * our range starts.
1284 */
1285 node = tree_search(&tree->state, start);
1286 if (!node || IS_ERR(node)) {
1287 ret = -ENOENT;
1288 goto out;
1289 }
1290 state = rb_entry(node, struct extent_state, rb_node);
1291 if (state->start != start) {
1292 ret = -ENOENT;
1293 goto out;
1294 }
1295 *private = state->private;
1296 out:
1297 read_unlock_irq(&tree->lock);
1298 return ret;
1299 }
1300
1301 /*
1302 * searches a range in the state tree for a given mask.
1303 * If 'filled' == 1, this returns 1 only if ever extent in the tree
1304 * has the bits set. Otherwise, 1 is returned if any bit in the
1305 * range is found set.
1306 */
1307 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1308 int bits, int filled)
1309 {
1310 struct extent_state *state = NULL;
1311 struct rb_node *node;
1312 int bitset = 0;
1313
1314 read_lock_irq(&tree->lock);
1315 node = tree_search(&tree->state, start);
1316 while (node && start <= end) {
1317 state = rb_entry(node, struct extent_state, rb_node);
1318
1319 if (filled && state->start > start) {
1320 bitset = 0;
1321 break;
1322 }
1323
1324 if (state->start > end)
1325 break;
1326
1327 if (state->state & bits) {
1328 bitset = 1;
1329 if (!filled)
1330 break;
1331 } else if (filled) {
1332 bitset = 0;
1333 break;
1334 }
1335 start = state->end + 1;
1336 if (start > end)
1337 break;
1338 node = rb_next(node);
1339 }
1340 read_unlock_irq(&tree->lock);
1341 return bitset;
1342 }
1343 EXPORT_SYMBOL(test_range_bit);
1344
1345 /*
1346 * helper function to set a given page up to date if all the
1347 * extents in the tree for that page are up to date
1348 */
1349 static int check_page_uptodate(struct extent_map_tree *tree,
1350 struct page *page)
1351 {
1352 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1353 u64 end = start + PAGE_CACHE_SIZE - 1;
1354 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1355 SetPageUptodate(page);
1356 return 0;
1357 }
1358
1359 /*
1360 * helper function to unlock a page if all the extents in the tree
1361 * for that page are unlocked
1362 */
1363 static int check_page_locked(struct extent_map_tree *tree,
1364 struct page *page)
1365 {
1366 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1367 u64 end = start + PAGE_CACHE_SIZE - 1;
1368 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1369 unlock_page(page);
1370 return 0;
1371 }
1372
1373 /*
1374 * helper function to end page writeback if all the extents
1375 * in the tree for that page are done with writeback
1376 */
1377 static int check_page_writeback(struct extent_map_tree *tree,
1378 struct page *page)
1379 {
1380 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1381 u64 end = start + PAGE_CACHE_SIZE - 1;
1382 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1383 end_page_writeback(page);
1384 return 0;
1385 }
1386
1387 /* lots and lots of room for performance fixes in the end_bio funcs */
1388
1389 /*
1390 * after a writepage IO is done, we need to:
1391 * clear the uptodate bits on error
1392 * clear the writeback bits in the extent tree for this IO
1393 * end_page_writeback if the page has no more pending IO
1394 *
1395 * Scheduling is not allowed, so the extent state tree is expected
1396 * to have one and only one object corresponding to this IO.
1397 */
1398 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1399 static void end_bio_extent_writepage(struct bio *bio, int err)
1400 #else
1401 static int end_bio_extent_writepage(struct bio *bio,
1402 unsigned int bytes_done, int err)
1403 #endif
1404 {
1405 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1406 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1407 struct extent_map_tree *tree = bio->bi_private;
1408 u64 start;
1409 u64 end;
1410 int whole_page;
1411
1412 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1413 if (bio->bi_size)
1414 return 1;
1415 #endif
1416
1417 do {
1418 struct page *page = bvec->bv_page;
1419 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1420 bvec->bv_offset;
1421 end = start + bvec->bv_len - 1;
1422
1423 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1424 whole_page = 1;
1425 else
1426 whole_page = 0;
1427
1428 if (--bvec >= bio->bi_io_vec)
1429 prefetchw(&bvec->bv_page->flags);
1430
1431 if (!uptodate) {
1432 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1433 ClearPageUptodate(page);
1434 SetPageError(page);
1435 }
1436 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1437
1438 if (whole_page)
1439 end_page_writeback(page);
1440 else
1441 check_page_writeback(tree, page);
1442 if (tree->ops && tree->ops->writepage_end_io_hook)
1443 tree->ops->writepage_end_io_hook(page, start, end);
1444 } while (bvec >= bio->bi_io_vec);
1445
1446 bio_put(bio);
1447 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1448 return 0;
1449 #endif
1450 }
1451
1452 /*
1453 * after a readpage IO is done, we need to:
1454 * clear the uptodate bits on error
1455 * set the uptodate bits if things worked
1456 * set the page up to date if all extents in the tree are uptodate
1457 * clear the lock bit in the extent tree
1458 * unlock the page if there are no other extents locked for it
1459 *
1460 * Scheduling is not allowed, so the extent state tree is expected
1461 * to have one and only one object corresponding to this IO.
1462 */
1463 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1464 static void end_bio_extent_readpage(struct bio *bio, int err)
1465 #else
1466 static int end_bio_extent_readpage(struct bio *bio,
1467 unsigned int bytes_done, int err)
1468 #endif
1469 {
1470 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1471 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1472 struct extent_map_tree *tree = bio->bi_private;
1473 u64 start;
1474 u64 end;
1475 int whole_page;
1476 int ret;
1477
1478 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1479 if (bio->bi_size)
1480 return 1;
1481 #endif
1482
1483 do {
1484 struct page *page = bvec->bv_page;
1485 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1486 bvec->bv_offset;
1487 end = start + bvec->bv_len - 1;
1488
1489 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1490 whole_page = 1;
1491 else
1492 whole_page = 0;
1493
1494 if (--bvec >= bio->bi_io_vec)
1495 prefetchw(&bvec->bv_page->flags);
1496
1497 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1498 ret = tree->ops->readpage_end_io_hook(page, start, end);
1499 if (ret)
1500 uptodate = 0;
1501 }
1502 if (uptodate) {
1503 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1504 if (whole_page)
1505 SetPageUptodate(page);
1506 else
1507 check_page_uptodate(tree, page);
1508 } else {
1509 ClearPageUptodate(page);
1510 SetPageError(page);
1511 }
1512
1513 unlock_extent(tree, start, end, GFP_ATOMIC);
1514
1515 if (whole_page)
1516 unlock_page(page);
1517 else
1518 check_page_locked(tree, page);
1519 } while (bvec >= bio->bi_io_vec);
1520
1521 bio_put(bio);
1522 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1523 return 0;
1524 #endif
1525 }
1526
1527 /*
1528 * IO done from prepare_write is pretty simple, we just unlock
1529 * the structs in the extent tree when done, and set the uptodate bits
1530 * as appropriate.
1531 */
1532 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1533 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1534 #else
1535 static int end_bio_extent_preparewrite(struct bio *bio,
1536 unsigned int bytes_done, int err)
1537 #endif
1538 {
1539 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1540 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1541 struct extent_map_tree *tree = bio->bi_private;
1542 u64 start;
1543 u64 end;
1544
1545 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1546 if (bio->bi_size)
1547 return 1;
1548 #endif
1549
1550 do {
1551 struct page *page = bvec->bv_page;
1552 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1553 bvec->bv_offset;
1554 end = start + bvec->bv_len - 1;
1555
1556 if (--bvec >= bio->bi_io_vec)
1557 prefetchw(&bvec->bv_page->flags);
1558
1559 if (uptodate) {
1560 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1561 } else {
1562 ClearPageUptodate(page);
1563 SetPageError(page);
1564 }
1565
1566 unlock_extent(tree, start, end, GFP_ATOMIC);
1567
1568 } while (bvec >= bio->bi_io_vec);
1569
1570 bio_put(bio);
1571 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1572 return 0;
1573 #endif
1574 }
1575
1576 static struct bio *
1577 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1578 gfp_t gfp_flags)
1579 {
1580 struct bio *bio;
1581
1582 bio = bio_alloc(gfp_flags, nr_vecs);
1583
1584 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1585 while (!bio && (nr_vecs /= 2))
1586 bio = bio_alloc(gfp_flags, nr_vecs);
1587 }
1588
1589 if (bio) {
1590 bio->bi_bdev = bdev;
1591 bio->bi_sector = first_sector;
1592 }
1593 return bio;
1594 }
1595
1596 static int submit_one_bio(int rw, struct bio *bio)
1597 {
1598 u64 maxsector;
1599 int ret = 0;
1600
1601 bio_get(bio);
1602
1603 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1604 if (maxsector < bio->bi_sector) {
1605 printk("sector too large max %Lu got %llu\n", maxsector,
1606 (unsigned long long)bio->bi_sector);
1607 WARN_ON(1);
1608 }
1609
1610 submit_bio(rw, bio);
1611 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1612 ret = -EOPNOTSUPP;
1613 bio_put(bio);
1614 return ret;
1615 }
1616
1617 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1618 struct page *page, sector_t sector,
1619 size_t size, unsigned long offset,
1620 struct block_device *bdev,
1621 struct bio **bio_ret,
1622 unsigned long max_pages,
1623 bio_end_io_t end_io_func)
1624 {
1625 int ret = 0;
1626 struct bio *bio;
1627 int nr;
1628
1629 if (bio_ret && *bio_ret) {
1630 bio = *bio_ret;
1631 if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1632 bio_add_page(bio, page, size, offset) < size) {
1633 ret = submit_one_bio(rw, bio);
1634 bio = NULL;
1635 } else {
1636 return 0;
1637 }
1638 }
1639 nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1640 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1641 if (!bio) {
1642 printk("failed to allocate bio nr %d\n", nr);
1643 }
1644 bio_add_page(bio, page, size, offset);
1645 bio->bi_end_io = end_io_func;
1646 bio->bi_private = tree;
1647 if (bio_ret) {
1648 *bio_ret = bio;
1649 } else {
1650 ret = submit_one_bio(rw, bio);
1651 }
1652
1653 return ret;
1654 }
1655
1656 void set_page_extent_mapped(struct page *page)
1657 {
1658 if (!PagePrivate(page)) {
1659 SetPagePrivate(page);
1660 WARN_ON(!page->mapping->a_ops->invalidatepage);
1661 set_page_private(page, EXTENT_PAGE_PRIVATE);
1662 page_cache_get(page);
1663 }
1664 }
1665
1666 void set_page_extent_head(struct page *page, unsigned long len)
1667 {
1668 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1669 }
1670
1671 /*
1672 * basic readpage implementation. Locked extent state structs are inserted
1673 * into the tree that are removed when the IO is done (by the end_io
1674 * handlers)
1675 */
1676 static int __extent_read_full_page(struct extent_map_tree *tree,
1677 struct page *page,
1678 get_extent_t *get_extent,
1679 struct bio **bio)
1680 {
1681 struct inode *inode = page->mapping->host;
1682 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1683 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1684 u64 end;
1685 u64 cur = start;
1686 u64 extent_offset;
1687 u64 last_byte = i_size_read(inode);
1688 u64 block_start;
1689 u64 cur_end;
1690 sector_t sector;
1691 struct extent_map *em;
1692 struct block_device *bdev;
1693 int ret;
1694 int nr = 0;
1695 size_t page_offset = 0;
1696 size_t iosize;
1697 size_t blocksize = inode->i_sb->s_blocksize;
1698
1699 set_page_extent_mapped(page);
1700
1701 end = page_end;
1702 lock_extent(tree, start, end, GFP_NOFS);
1703
1704 while (cur <= end) {
1705 if (cur >= last_byte) {
1706 char *userpage;
1707 iosize = PAGE_CACHE_SIZE - page_offset;
1708 userpage = kmap_atomic(page, KM_USER0);
1709 memset(userpage + page_offset, 0, iosize);
1710 flush_dcache_page(page);
1711 kunmap_atomic(userpage, KM_USER0);
1712 set_extent_uptodate(tree, cur, cur + iosize - 1,
1713 GFP_NOFS);
1714 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1715 break;
1716 }
1717 em = get_extent(inode, page, page_offset, cur, end, 0);
1718 if (IS_ERR(em) || !em) {
1719 SetPageError(page);
1720 unlock_extent(tree, cur, end, GFP_NOFS);
1721 break;
1722 }
1723
1724 extent_offset = cur - em->start;
1725 BUG_ON(em->end < cur);
1726 BUG_ON(end < cur);
1727
1728 iosize = min(em->end - cur, end - cur) + 1;
1729 cur_end = min(em->end, end);
1730 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1731 sector = (em->block_start + extent_offset) >> 9;
1732 bdev = em->bdev;
1733 block_start = em->block_start;
1734 free_extent_map(em);
1735 em = NULL;
1736
1737 /* we've found a hole, just zero and go on */
1738 if (block_start == EXTENT_MAP_HOLE) {
1739 char *userpage;
1740 userpage = kmap_atomic(page, KM_USER0);
1741 memset(userpage + page_offset, 0, iosize);
1742 flush_dcache_page(page);
1743 kunmap_atomic(userpage, KM_USER0);
1744
1745 set_extent_uptodate(tree, cur, cur + iosize - 1,
1746 GFP_NOFS);
1747 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1748 cur = cur + iosize;
1749 page_offset += iosize;
1750 continue;
1751 }
1752 /* the get_extent function already copied into the page */
1753 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1754 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1755 cur = cur + iosize;
1756 page_offset += iosize;
1757 continue;
1758 }
1759
1760 ret = 0;
1761 if (tree->ops && tree->ops->readpage_io_hook) {
1762 ret = tree->ops->readpage_io_hook(page, cur,
1763 cur + iosize - 1);
1764 }
1765 if (!ret) {
1766 unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1767 nr -= page->index;
1768 ret = submit_extent_page(READ, tree, page,
1769 sector, iosize, page_offset,
1770 bdev, bio, nr,
1771 end_bio_extent_readpage);
1772 }
1773 if (ret)
1774 SetPageError(page);
1775 cur = cur + iosize;
1776 page_offset += iosize;
1777 nr++;
1778 }
1779 if (!nr) {
1780 if (!PageError(page))
1781 SetPageUptodate(page);
1782 unlock_page(page);
1783 }
1784 return 0;
1785 }
1786
1787 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1788 get_extent_t *get_extent)
1789 {
1790 struct bio *bio = NULL;
1791 int ret;
1792
1793 ret = __extent_read_full_page(tree, page, get_extent, &bio);
1794 if (bio)
1795 submit_one_bio(READ, bio);
1796 return ret;
1797 }
1798 EXPORT_SYMBOL(extent_read_full_page);
1799
1800 /*
1801 * the writepage semantics are similar to regular writepage. extent
1802 * records are inserted to lock ranges in the tree, and as dirty areas
1803 * are found, they are marked writeback. Then the lock bits are removed
1804 * and the end_io handler clears the writeback ranges
1805 */
1806 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1807 void *data)
1808 {
1809 struct inode *inode = page->mapping->host;
1810 struct extent_page_data *epd = data;
1811 struct extent_map_tree *tree = epd->tree;
1812 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1813 u64 delalloc_start;
1814 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1815 u64 end;
1816 u64 cur = start;
1817 u64 extent_offset;
1818 u64 last_byte = i_size_read(inode);
1819 u64 block_start;
1820 u64 iosize;
1821 sector_t sector;
1822 struct extent_map *em;
1823 struct block_device *bdev;
1824 int ret;
1825 int nr = 0;
1826 size_t page_offset = 0;
1827 size_t blocksize;
1828 loff_t i_size = i_size_read(inode);
1829 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1830 u64 nr_delalloc;
1831 u64 delalloc_end;
1832
1833 WARN_ON(!PageLocked(page));
1834 if (page->index > end_index) {
1835 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1836 unlock_page(page);
1837 return 0;
1838 }
1839
1840 if (page->index == end_index) {
1841 char *userpage;
1842
1843 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1844
1845 userpage = kmap_atomic(page, KM_USER0);
1846 memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1847 flush_dcache_page(page);
1848 kunmap_atomic(userpage, KM_USER0);
1849 }
1850
1851 set_page_extent_mapped(page);
1852
1853 delalloc_start = start;
1854 delalloc_end = 0;
1855 while(delalloc_end < page_end) {
1856 nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1857 &delalloc_end,
1858 128 * 1024 * 1024);
1859 if (nr_delalloc == 0) {
1860 delalloc_start = delalloc_end + 1;
1861 continue;
1862 }
1863 tree->ops->fill_delalloc(inode, delalloc_start,
1864 delalloc_end);
1865 clear_extent_bit(tree, delalloc_start,
1866 delalloc_end,
1867 EXTENT_LOCKED | EXTENT_DELALLOC,
1868 1, 0, GFP_NOFS);
1869 delalloc_start = delalloc_end + 1;
1870 }
1871 lock_extent(tree, start, page_end, GFP_NOFS);
1872
1873 end = page_end;
1874 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1875 printk("found delalloc bits after lock_extent\n");
1876 }
1877
1878 if (last_byte <= start) {
1879 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1880 goto done;
1881 }
1882
1883 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1884 blocksize = inode->i_sb->s_blocksize;
1885
1886 while (cur <= end) {
1887 if (cur >= last_byte) {
1888 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1889 break;
1890 }
1891 em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1892 if (IS_ERR(em) || !em) {
1893 SetPageError(page);
1894 break;
1895 }
1896
1897 extent_offset = cur - em->start;
1898 BUG_ON(em->end < cur);
1899 BUG_ON(end < cur);
1900 iosize = min(em->end - cur, end - cur) + 1;
1901 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1902 sector = (em->block_start + extent_offset) >> 9;
1903 bdev = em->bdev;
1904 block_start = em->block_start;
1905 free_extent_map(em);
1906 em = NULL;
1907
1908 if (block_start == EXTENT_MAP_HOLE ||
1909 block_start == EXTENT_MAP_INLINE) {
1910 clear_extent_dirty(tree, cur,
1911 cur + iosize - 1, GFP_NOFS);
1912 cur = cur + iosize;
1913 page_offset += iosize;
1914 continue;
1915 }
1916
1917 /* leave this out until we have a page_mkwrite call */
1918 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1919 EXTENT_DIRTY, 0)) {
1920 cur = cur + iosize;
1921 page_offset += iosize;
1922 continue;
1923 }
1924 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1925 if (tree->ops && tree->ops->writepage_io_hook) {
1926 ret = tree->ops->writepage_io_hook(page, cur,
1927 cur + iosize - 1);
1928 } else {
1929 ret = 0;
1930 }
1931 if (ret)
1932 SetPageError(page);
1933 else {
1934 unsigned long max_nr = end_index + 1;
1935 set_range_writeback(tree, cur, cur + iosize - 1);
1936 if (!PageWriteback(page)) {
1937 printk("warning page %lu not writeback, "
1938 "cur %llu end %llu\n", page->index,
1939 (unsigned long long)cur,
1940 (unsigned long long)end);
1941 }
1942
1943 ret = submit_extent_page(WRITE, tree, page, sector,
1944 iosize, page_offset, bdev,
1945 &epd->bio, max_nr,
1946 end_bio_extent_writepage);
1947 if (ret)
1948 SetPageError(page);
1949 }
1950 cur = cur + iosize;
1951 page_offset += iosize;
1952 nr++;
1953 }
1954 done:
1955 if (nr == 0) {
1956 /* make sure the mapping tag for page dirty gets cleared */
1957 set_page_writeback(page);
1958 end_page_writeback(page);
1959 }
1960 unlock_extent(tree, start, page_end, GFP_NOFS);
1961 unlock_page(page);
1962 return 0;
1963 }
1964
1965 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1966
1967 /* Taken directly from 2.6.23 for 2.6.18 back port */
1968 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
1969 void *data);
1970
1971 /**
1972 * write_cache_pages - walk the list of dirty pages of the given address space
1973 * and write all of them.
1974 * @mapping: address space structure to write
1975 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1976 * @writepage: function called for each page
1977 * @data: data passed to writepage function
1978 *
1979 * If a page is already under I/O, write_cache_pages() skips it, even
1980 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1981 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1982 * and msync() need to guarantee that all the data which was dirty at the time
1983 * the call was made get new I/O started against them. If wbc->sync_mode is
1984 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1985 * existing IO to complete.
1986 */
1987 static int write_cache_pages(struct address_space *mapping,
1988 struct writeback_control *wbc, writepage_t writepage,
1989 void *data)
1990 {
1991 struct backing_dev_info *bdi = mapping->backing_dev_info;
1992 int ret = 0;
1993 int done = 0;
1994 struct pagevec pvec;
1995 int nr_pages;
1996 pgoff_t index;
1997 pgoff_t end; /* Inclusive */
1998 int scanned = 0;
1999 int range_whole = 0;
2000
2001 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2002 wbc->encountered_congestion = 1;
2003 return 0;
2004 }
2005
2006 pagevec_init(&pvec, 0);
2007 if (wbc->range_cyclic) {
2008 index = mapping->writeback_index; /* Start from prev offset */
2009 end = -1;
2010 } else {
2011 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2012 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2013 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2014 range_whole = 1;
2015 scanned = 1;
2016 }
2017 retry:
2018 while (!done && (index <= end) &&
2019 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2020 PAGECACHE_TAG_DIRTY,
2021 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2022 unsigned i;
2023
2024 scanned = 1;
2025 for (i = 0; i < nr_pages; i++) {
2026 struct page *page = pvec.pages[i];
2027
2028 /*
2029 * At this point we hold neither mapping->tree_lock nor
2030 * lock on the page itself: the page may be truncated or
2031 * invalidated (changing page->mapping to NULL), or even
2032 * swizzled back from swapper_space to tmpfs file
2033 * mapping
2034 */
2035 lock_page(page);
2036
2037 if (unlikely(page->mapping != mapping)) {
2038 unlock_page(page);
2039 continue;
2040 }
2041
2042 if (!wbc->range_cyclic && page->index > end) {
2043 done = 1;
2044 unlock_page(page);
2045 continue;
2046 }
2047
2048 if (wbc->sync_mode != WB_SYNC_NONE)
2049 wait_on_page_writeback(page);
2050
2051 if (PageWriteback(page) ||
2052 !clear_page_dirty_for_io(page)) {
2053 unlock_page(page);
2054 continue;
2055 }
2056
2057 ret = (*writepage)(page, wbc, data);
2058
2059 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2060 unlock_page(page);
2061 ret = 0;
2062 }
2063 if (ret || (--(wbc->nr_to_write) <= 0))
2064 done = 1;
2065 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2066 wbc->encountered_congestion = 1;
2067 done = 1;
2068 }
2069 }
2070 pagevec_release(&pvec);
2071 cond_resched();
2072 }
2073 if (!scanned && !done) {
2074 /*
2075 * We hit the last page and there is more work to be done: wrap
2076 * back to the start of the file
2077 */
2078 scanned = 1;
2079 index = 0;
2080 goto retry;
2081 }
2082 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2083 mapping->writeback_index = index;
2084 return ret;
2085 }
2086 #endif
2087
2088 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
2089 get_extent_t *get_extent,
2090 struct writeback_control *wbc)
2091 {
2092 int ret;
2093 struct address_space *mapping = page->mapping;
2094 struct extent_page_data epd = {
2095 .bio = NULL,
2096 .tree = tree,
2097 .get_extent = get_extent,
2098 };
2099 struct writeback_control wbc_writepages = {
2100 .bdi = wbc->bdi,
2101 .sync_mode = WB_SYNC_NONE,
2102 .older_than_this = NULL,
2103 .nr_to_write = 64,
2104 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2105 .range_end = (loff_t)-1,
2106 };
2107
2108
2109 ret = __extent_writepage(page, wbc, &epd);
2110
2111 write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2112 if (epd.bio) {
2113 submit_one_bio(WRITE, epd.bio);
2114 }
2115 return ret;
2116 }
2117 EXPORT_SYMBOL(extent_write_full_page);
2118
2119
2120 int extent_writepages(struct extent_map_tree *tree,
2121 struct address_space *mapping,
2122 get_extent_t *get_extent,
2123 struct writeback_control *wbc)
2124 {
2125 int ret = 0;
2126 struct extent_page_data epd = {
2127 .bio = NULL,
2128 .tree = tree,
2129 .get_extent = get_extent,
2130 };
2131
2132 ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2133 if (epd.bio) {
2134 submit_one_bio(WRITE, epd.bio);
2135 }
2136 return ret;
2137 }
2138 EXPORT_SYMBOL(extent_writepages);
2139
2140 int extent_readpages(struct extent_map_tree *tree,
2141 struct address_space *mapping,
2142 struct list_head *pages, unsigned nr_pages,
2143 get_extent_t get_extent)
2144 {
2145 struct bio *bio = NULL;
2146 unsigned page_idx;
2147 struct pagevec pvec;
2148
2149 pagevec_init(&pvec, 0);
2150 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2151 struct page *page = list_entry(pages->prev, struct page, lru);
2152
2153 prefetchw(&page->flags);
2154 list_del(&page->lru);
2155 /*
2156 * what we want to do here is call add_to_page_cache_lru,
2157 * but that isn't exported, so we reproduce it here
2158 */
2159 if (!add_to_page_cache(page, mapping,
2160 page->index, GFP_KERNEL)) {
2161
2162 /* open coding of lru_cache_add, also not exported */
2163 page_cache_get(page);
2164 if (!pagevec_add(&pvec, page))
2165 __pagevec_lru_add(&pvec);
2166 __extent_read_full_page(tree, page, get_extent, &bio);
2167 }
2168 page_cache_release(page);
2169 }
2170 if (pagevec_count(&pvec))
2171 __pagevec_lru_add(&pvec);
2172 BUG_ON(!list_empty(pages));
2173 if (bio)
2174 submit_one_bio(READ, bio);
2175 return 0;
2176 }
2177 EXPORT_SYMBOL(extent_readpages);
2178
2179 /*
2180 * basic invalidatepage code, this waits on any locked or writeback
2181 * ranges corresponding to the page, and then deletes any extent state
2182 * records from the tree
2183 */
2184 int extent_invalidatepage(struct extent_map_tree *tree,
2185 struct page *page, unsigned long offset)
2186 {
2187 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2188 u64 end = start + PAGE_CACHE_SIZE - 1;
2189 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2190
2191 start += (offset + blocksize -1) & ~(blocksize - 1);
2192 if (start > end)
2193 return 0;
2194
2195 lock_extent(tree, start, end, GFP_NOFS);
2196 wait_on_extent_writeback(tree, start, end);
2197 clear_extent_bit(tree, start, end,
2198 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2199 1, 1, GFP_NOFS);
2200 return 0;
2201 }
2202 EXPORT_SYMBOL(extent_invalidatepage);
2203
2204 /*
2205 * simple commit_write call, set_range_dirty is used to mark both
2206 * the pages and the extent records as dirty
2207 */
2208 int extent_commit_write(struct extent_map_tree *tree,
2209 struct inode *inode, struct page *page,
2210 unsigned from, unsigned to)
2211 {
2212 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2213
2214 set_page_extent_mapped(page);
2215 set_page_dirty(page);
2216
2217 if (pos > inode->i_size) {
2218 i_size_write(inode, pos);
2219 mark_inode_dirty(inode);
2220 }
2221 return 0;
2222 }
2223 EXPORT_SYMBOL(extent_commit_write);
2224
2225 int extent_prepare_write(struct extent_map_tree *tree,
2226 struct inode *inode, struct page *page,
2227 unsigned from, unsigned to, get_extent_t *get_extent)
2228 {
2229 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2230 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2231 u64 block_start;
2232 u64 orig_block_start;
2233 u64 block_end;
2234 u64 cur_end;
2235 struct extent_map *em;
2236 unsigned blocksize = 1 << inode->i_blkbits;
2237 size_t page_offset = 0;
2238 size_t block_off_start;
2239 size_t block_off_end;
2240 int err = 0;
2241 int iocount = 0;
2242 int ret = 0;
2243 int isnew;
2244
2245 set_page_extent_mapped(page);
2246
2247 block_start = (page_start + from) & ~((u64)blocksize - 1);
2248 block_end = (page_start + to - 1) | (blocksize - 1);
2249 orig_block_start = block_start;
2250
2251 lock_extent(tree, page_start, page_end, GFP_NOFS);
2252 while(block_start <= block_end) {
2253 em = get_extent(inode, page, page_offset, block_start,
2254 block_end, 1);
2255 if (IS_ERR(em) || !em) {
2256 goto err;
2257 }
2258 cur_end = min(block_end, em->end);
2259 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2260 block_off_end = block_off_start + blocksize;
2261 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2262
2263 if (!PageUptodate(page) && isnew &&
2264 (block_off_end > to || block_off_start < from)) {
2265 void *kaddr;
2266
2267 kaddr = kmap_atomic(page, KM_USER0);
2268 if (block_off_end > to)
2269 memset(kaddr + to, 0, block_off_end - to);
2270 if (block_off_start < from)
2271 memset(kaddr + block_off_start, 0,
2272 from - block_off_start);
2273 flush_dcache_page(page);
2274 kunmap_atomic(kaddr, KM_USER0);
2275 }
2276 if ((em->block_start != EXTENT_MAP_HOLE &&
2277 em->block_start != EXTENT_MAP_INLINE) &&
2278 !isnew && !PageUptodate(page) &&
2279 (block_off_end > to || block_off_start < from) &&
2280 !test_range_bit(tree, block_start, cur_end,
2281 EXTENT_UPTODATE, 1)) {
2282 u64 sector;
2283 u64 extent_offset = block_start - em->start;
2284 size_t iosize;
2285 sector = (em->block_start + extent_offset) >> 9;
2286 iosize = (cur_end - block_start + blocksize) &
2287 ~((u64)blocksize - 1);
2288 /*
2289 * we've already got the extent locked, but we
2290 * need to split the state such that our end_bio
2291 * handler can clear the lock.
2292 */
2293 set_extent_bit(tree, block_start,
2294 block_start + iosize - 1,
2295 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2296 ret = submit_extent_page(READ, tree, page,
2297 sector, iosize, page_offset, em->bdev,
2298 NULL, 1,
2299 end_bio_extent_preparewrite);
2300 iocount++;
2301 block_start = block_start + iosize;
2302 } else {
2303 set_extent_uptodate(tree, block_start, cur_end,
2304 GFP_NOFS);
2305 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2306 block_start = cur_end + 1;
2307 }
2308 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2309 free_extent_map(em);
2310 }
2311 if (iocount) {
2312 wait_extent_bit(tree, orig_block_start,
2313 block_end, EXTENT_LOCKED);
2314 }
2315 check_page_uptodate(tree, page);
2316 err:
2317 /* FIXME, zero out newly allocated blocks on error */
2318 return err;
2319 }
2320 EXPORT_SYMBOL(extent_prepare_write);
2321
2322 /*
2323 * a helper for releasepage. As long as there are no locked extents
2324 * in the range corresponding to the page, both state records and extent
2325 * map records are removed
2326 */
2327 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2328 {
2329 struct extent_map *em;
2330 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2331 u64 end = start + PAGE_CACHE_SIZE - 1;
2332 u64 orig_start = start;
2333 int ret = 1;
2334
2335 while (start <= end) {
2336 em = lookup_extent_mapping(tree, start, end);
2337 if (!em || IS_ERR(em))
2338 break;
2339 if (!test_range_bit(tree, em->start, em->end,
2340 EXTENT_LOCKED, 0)) {
2341 remove_extent_mapping(tree, em);
2342 /* once for the rb tree */
2343 free_extent_map(em);
2344 }
2345 start = em->end + 1;
2346 /* once for us */
2347 free_extent_map(em);
2348 }
2349 if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2350 ret = 0;
2351 else
2352 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2353 1, 1, GFP_NOFS);
2354 return ret;
2355 }
2356 EXPORT_SYMBOL(try_release_extent_mapping);
2357
2358 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2359 get_extent_t *get_extent)
2360 {
2361 struct inode *inode = mapping->host;
2362 u64 start = iblock << inode->i_blkbits;
2363 u64 end = start + (1 << inode->i_blkbits) - 1;
2364 sector_t sector = 0;
2365 struct extent_map *em;
2366
2367 em = get_extent(inode, NULL, 0, start, end, 0);
2368 if (!em || IS_ERR(em))
2369 return 0;
2370
2371 if (em->block_start == EXTENT_MAP_INLINE ||
2372 em->block_start == EXTENT_MAP_HOLE)
2373 goto out;
2374
2375 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2376 out:
2377 free_extent_map(em);
2378 return sector;
2379 }
2380
2381 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2382 {
2383 if (list_empty(&eb->lru)) {
2384 extent_buffer_get(eb);
2385 list_add(&eb->lru, &tree->buffer_lru);
2386 tree->lru_size++;
2387 if (tree->lru_size >= BUFFER_LRU_MAX) {
2388 struct extent_buffer *rm;
2389 rm = list_entry(tree->buffer_lru.prev,
2390 struct extent_buffer, lru);
2391 tree->lru_size--;
2392 list_del_init(&rm->lru);
2393 free_extent_buffer(rm);
2394 }
2395 } else
2396 list_move(&eb->lru, &tree->buffer_lru);
2397 return 0;
2398 }
2399 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2400 u64 start, unsigned long len)
2401 {
2402 struct list_head *lru = &tree->buffer_lru;
2403 struct list_head *cur = lru->next;
2404 struct extent_buffer *eb;
2405
2406 if (list_empty(lru))
2407 return NULL;
2408
2409 do {
2410 eb = list_entry(cur, struct extent_buffer, lru);
2411 if (eb->start == start && eb->len == len) {
2412 extent_buffer_get(eb);
2413 return eb;
2414 }
2415 cur = cur->next;
2416 } while (cur != lru);
2417 return NULL;
2418 }
2419
2420 static inline unsigned long num_extent_pages(u64 start, u64 len)
2421 {
2422 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2423 (start >> PAGE_CACHE_SHIFT);
2424 }
2425
2426 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2427 unsigned long i)
2428 {
2429 struct page *p;
2430 struct address_space *mapping;
2431
2432 if (i == 0)
2433 return eb->first_page;
2434 i += eb->start >> PAGE_CACHE_SHIFT;
2435 mapping = eb->first_page->mapping;
2436 read_lock_irq(&mapping->tree_lock);
2437 p = radix_tree_lookup(&mapping->page_tree, i);
2438 read_unlock_irq(&mapping->tree_lock);
2439 return p;
2440 }
2441
2442 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2443 u64 start,
2444 unsigned long len,
2445 gfp_t mask)
2446 {
2447 struct extent_buffer *eb = NULL;
2448
2449 spin_lock(&tree->lru_lock);
2450 eb = find_lru(tree, start, len);
2451 spin_unlock(&tree->lru_lock);
2452 if (eb) {
2453 return eb;
2454 }
2455
2456 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2457 INIT_LIST_HEAD(&eb->lru);
2458 eb->start = start;
2459 eb->len = len;
2460 atomic_set(&eb->refs, 1);
2461
2462 return eb;
2463 }
2464
2465 static void __free_extent_buffer(struct extent_buffer *eb)
2466 {
2467 kmem_cache_free(extent_buffer_cache, eb);
2468 }
2469
2470 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2471 u64 start, unsigned long len,
2472 struct page *page0,
2473 gfp_t mask)
2474 {
2475 unsigned long num_pages = num_extent_pages(start, len);
2476 unsigned long i;
2477 unsigned long index = start >> PAGE_CACHE_SHIFT;
2478 struct extent_buffer *eb;
2479 struct page *p;
2480 struct address_space *mapping = tree->mapping;
2481 int uptodate = 1;
2482
2483 eb = __alloc_extent_buffer(tree, start, len, mask);
2484 if (!eb || IS_ERR(eb))
2485 return NULL;
2486
2487 if (eb->flags & EXTENT_BUFFER_FILLED)
2488 goto lru_add;
2489
2490 if (page0) {
2491 eb->first_page = page0;
2492 i = 1;
2493 index++;
2494 page_cache_get(page0);
2495 mark_page_accessed(page0);
2496 set_page_extent_mapped(page0);
2497 WARN_ON(!PageUptodate(page0));
2498 set_page_extent_head(page0, len);
2499 } else {
2500 i = 0;
2501 }
2502 for (; i < num_pages; i++, index++) {
2503 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2504 if (!p) {
2505 WARN_ON(1);
2506 goto fail;
2507 }
2508 set_page_extent_mapped(p);
2509 mark_page_accessed(p);
2510 if (i == 0) {
2511 eb->first_page = p;
2512 set_page_extent_head(p, len);
2513 } else {
2514 set_page_private(p, EXTENT_PAGE_PRIVATE);
2515 }
2516 if (!PageUptodate(p))
2517 uptodate = 0;
2518 unlock_page(p);
2519 }
2520 if (uptodate)
2521 eb->flags |= EXTENT_UPTODATE;
2522 eb->flags |= EXTENT_BUFFER_FILLED;
2523
2524 lru_add:
2525 spin_lock(&tree->lru_lock);
2526 add_lru(tree, eb);
2527 spin_unlock(&tree->lru_lock);
2528 return eb;
2529
2530 fail:
2531 spin_lock(&tree->lru_lock);
2532 list_del_init(&eb->lru);
2533 spin_unlock(&tree->lru_lock);
2534 if (!atomic_dec_and_test(&eb->refs))
2535 return NULL;
2536 for (index = 1; index < i; index++) {
2537 page_cache_release(extent_buffer_page(eb, index));
2538 }
2539 if (i > 0)
2540 page_cache_release(extent_buffer_page(eb, 0));
2541 __free_extent_buffer(eb);
2542 return NULL;
2543 }
2544 EXPORT_SYMBOL(alloc_extent_buffer);
2545
2546 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2547 u64 start, unsigned long len,
2548 gfp_t mask)
2549 {
2550 unsigned long num_pages = num_extent_pages(start, len);
2551 unsigned long i;
2552 unsigned long index = start >> PAGE_CACHE_SHIFT;
2553 struct extent_buffer *eb;
2554 struct page *p;
2555 struct address_space *mapping = tree->mapping;
2556 int uptodate = 1;
2557
2558 eb = __alloc_extent_buffer(tree, start, len, mask);
2559 if (!eb || IS_ERR(eb))
2560 return NULL;
2561
2562 if (eb->flags & EXTENT_BUFFER_FILLED)
2563 goto lru_add;
2564
2565 for (i = 0; i < num_pages; i++, index++) {
2566 p = find_lock_page(mapping, index);
2567 if (!p) {
2568 goto fail;
2569 }
2570 set_page_extent_mapped(p);
2571 mark_page_accessed(p);
2572
2573 if (i == 0) {
2574 eb->first_page = p;
2575 set_page_extent_head(p, len);
2576 } else {
2577 set_page_private(p, EXTENT_PAGE_PRIVATE);
2578 }
2579
2580 if (!PageUptodate(p))
2581 uptodate = 0;
2582 unlock_page(p);
2583 }
2584 if (uptodate)
2585 eb->flags |= EXTENT_UPTODATE;
2586 eb->flags |= EXTENT_BUFFER_FILLED;
2587
2588 lru_add:
2589 spin_lock(&tree->lru_lock);
2590 add_lru(tree, eb);
2591 spin_unlock(&tree->lru_lock);
2592 return eb;
2593 fail:
2594 spin_lock(&tree->lru_lock);
2595 list_del_init(&eb->lru);
2596 spin_unlock(&tree->lru_lock);
2597 if (!atomic_dec_and_test(&eb->refs))
2598 return NULL;
2599 for (index = 1; index < i; index++) {
2600 page_cache_release(extent_buffer_page(eb, index));
2601 }
2602 if (i > 0)
2603 page_cache_release(extent_buffer_page(eb, 0));
2604 __free_extent_buffer(eb);
2605 return NULL;
2606 }
2607 EXPORT_SYMBOL(find_extent_buffer);
2608
2609 void free_extent_buffer(struct extent_buffer *eb)
2610 {
2611 unsigned long i;
2612 unsigned long num_pages;
2613
2614 if (!eb)
2615 return;
2616
2617 if (!atomic_dec_and_test(&eb->refs))
2618 return;
2619
2620 WARN_ON(!list_empty(&eb->lru));
2621 num_pages = num_extent_pages(eb->start, eb->len);
2622
2623 for (i = 1; i < num_pages; i++) {
2624 page_cache_release(extent_buffer_page(eb, i));
2625 }
2626 page_cache_release(extent_buffer_page(eb, 0));
2627 __free_extent_buffer(eb);
2628 }
2629 EXPORT_SYMBOL(free_extent_buffer);
2630
2631 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2632 struct extent_buffer *eb)
2633 {
2634 int set;
2635 unsigned long i;
2636 unsigned long num_pages;
2637 struct page *page;
2638
2639 u64 start = eb->start;
2640 u64 end = start + eb->len - 1;
2641
2642 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2643 num_pages = num_extent_pages(eb->start, eb->len);
2644
2645 for (i = 0; i < num_pages; i++) {
2646 page = extent_buffer_page(eb, i);
2647 lock_page(page);
2648 if (i == 0)
2649 set_page_extent_head(page, eb->len);
2650 else
2651 set_page_private(page, EXTENT_PAGE_PRIVATE);
2652
2653 /*
2654 * if we're on the last page or the first page and the
2655 * block isn't aligned on a page boundary, do extra checks
2656 * to make sure we don't clean page that is partially dirty
2657 */
2658 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2659 ((i == num_pages - 1) &&
2660 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2661 start = (u64)page->index << PAGE_CACHE_SHIFT;
2662 end = start + PAGE_CACHE_SIZE - 1;
2663 if (test_range_bit(tree, start, end,
2664 EXTENT_DIRTY, 0)) {
2665 unlock_page(page);
2666 continue;
2667 }
2668 }
2669 clear_page_dirty_for_io(page);
2670 write_lock_irq(&page->mapping->tree_lock);
2671 if (!PageDirty(page)) {
2672 radix_tree_tag_clear(&page->mapping->page_tree,
2673 page_index(page),
2674 PAGECACHE_TAG_DIRTY);
2675 }
2676 write_unlock_irq(&page->mapping->tree_lock);
2677 unlock_page(page);
2678 }
2679 return 0;
2680 }
2681 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2682
2683 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2684 struct extent_buffer *eb)
2685 {
2686 return wait_on_extent_writeback(tree, eb->start,
2687 eb->start + eb->len - 1);
2688 }
2689 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2690
2691 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2692 struct extent_buffer *eb)
2693 {
2694 unsigned long i;
2695 unsigned long num_pages;
2696
2697 num_pages = num_extent_pages(eb->start, eb->len);
2698 for (i = 0; i < num_pages; i++) {
2699 struct page *page = extent_buffer_page(eb, i);
2700 /* writepage may need to do something special for the
2701 * first page, we have to make sure page->private is
2702 * properly set. releasepage may drop page->private
2703 * on us if the page isn't already dirty.
2704 */
2705 if (i == 0) {
2706 lock_page(page);
2707 set_page_extent_head(page, eb->len);
2708 } else if (PagePrivate(page) &&
2709 page->private != EXTENT_PAGE_PRIVATE) {
2710 lock_page(page);
2711 set_page_extent_mapped(page);
2712 unlock_page(page);
2713 }
2714 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2715 if (i == 0)
2716 unlock_page(page);
2717 }
2718 return set_extent_dirty(tree, eb->start,
2719 eb->start + eb->len - 1, GFP_NOFS);
2720 }
2721 EXPORT_SYMBOL(set_extent_buffer_dirty);
2722
2723 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2724 struct extent_buffer *eb)
2725 {
2726 unsigned long i;
2727 struct page *page;
2728 unsigned long num_pages;
2729
2730 num_pages = num_extent_pages(eb->start, eb->len);
2731
2732 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2733 GFP_NOFS);
2734 for (i = 0; i < num_pages; i++) {
2735 page = extent_buffer_page(eb, i);
2736 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2737 ((i == num_pages - 1) &&
2738 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2739 check_page_uptodate(tree, page);
2740 continue;
2741 }
2742 SetPageUptodate(page);
2743 }
2744 return 0;
2745 }
2746 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2747
2748 int extent_buffer_uptodate(struct extent_map_tree *tree,
2749 struct extent_buffer *eb)
2750 {
2751 if (eb->flags & EXTENT_UPTODATE)
2752 return 1;
2753 return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2754 EXTENT_UPTODATE, 1);
2755 }
2756 EXPORT_SYMBOL(extent_buffer_uptodate);
2757
2758 int read_extent_buffer_pages(struct extent_map_tree *tree,
2759 struct extent_buffer *eb,
2760 u64 start,
2761 int wait)
2762 {
2763 unsigned long i;
2764 unsigned long start_i;
2765 struct page *page;
2766 int err;
2767 int ret = 0;
2768 unsigned long num_pages;
2769
2770 if (eb->flags & EXTENT_UPTODATE)
2771 return 0;
2772
2773 if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2774 EXTENT_UPTODATE, 1)) {
2775 return 0;
2776 }
2777
2778 if (start) {
2779 WARN_ON(start < eb->start);
2780 start_i = (start >> PAGE_CACHE_SHIFT) -
2781 (eb->start >> PAGE_CACHE_SHIFT);
2782 } else {
2783 start_i = 0;
2784 }
2785
2786 num_pages = num_extent_pages(eb->start, eb->len);
2787 for (i = start_i; i < num_pages; i++) {
2788 page = extent_buffer_page(eb, i);
2789 if (PageUptodate(page)) {
2790 continue;
2791 }
2792 if (!wait) {
2793 if (TestSetPageLocked(page)) {
2794 continue;
2795 }
2796 } else {
2797 lock_page(page);
2798 }
2799 if (!PageUptodate(page)) {
2800 err = page->mapping->a_ops->readpage(NULL, page);
2801 if (err) {
2802 ret = err;
2803 }
2804 } else {
2805 unlock_page(page);
2806 }
2807 }
2808
2809 if (ret || !wait) {
2810 return ret;
2811 }
2812
2813 for (i = start_i; i < num_pages; i++) {
2814 page = extent_buffer_page(eb, i);
2815 wait_on_page_locked(page);
2816 if (!PageUptodate(page)) {
2817 ret = -EIO;
2818 }
2819 }
2820 if (!ret)
2821 eb->flags |= EXTENT_UPTODATE;
2822 return ret;
2823 }
2824 EXPORT_SYMBOL(read_extent_buffer_pages);
2825
2826 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2827 unsigned long start,
2828 unsigned long len)
2829 {
2830 size_t cur;
2831 size_t offset;
2832 struct page *page;
2833 char *kaddr;
2834 char *dst = (char *)dstv;
2835 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2836 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2837 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2838
2839 WARN_ON(start > eb->len);
2840 WARN_ON(start + len > eb->start + eb->len);
2841
2842 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2843
2844 while(len > 0) {
2845 page = extent_buffer_page(eb, i);
2846 if (!PageUptodate(page)) {
2847 printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2848 WARN_ON(1);
2849 }
2850 WARN_ON(!PageUptodate(page));
2851
2852 cur = min(len, (PAGE_CACHE_SIZE - offset));
2853 kaddr = kmap_atomic(page, KM_USER1);
2854 memcpy(dst, kaddr + offset, cur);
2855 kunmap_atomic(kaddr, KM_USER1);
2856
2857 dst += cur;
2858 len -= cur;
2859 offset = 0;
2860 i++;
2861 }
2862 }
2863 EXPORT_SYMBOL(read_extent_buffer);
2864
2865 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2866 unsigned long min_len, char **token, char **map,
2867 unsigned long *map_start,
2868 unsigned long *map_len, int km)
2869 {
2870 size_t offset = start & (PAGE_CACHE_SIZE - 1);
2871 char *kaddr;
2872 struct page *p;
2873 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2874 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2875 unsigned long end_i = (start_offset + start + min_len - 1) >>
2876 PAGE_CACHE_SHIFT;
2877
2878 if (i != end_i)
2879 return -EINVAL;
2880
2881 if (i == 0) {
2882 offset = start_offset;
2883 *map_start = 0;
2884 } else {
2885 offset = 0;
2886 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2887 }
2888 if (start + min_len > eb->len) {
2889 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2890 WARN_ON(1);
2891 }
2892
2893 p = extent_buffer_page(eb, i);
2894 WARN_ON(!PageUptodate(p));
2895 kaddr = kmap_atomic(p, km);
2896 *token = kaddr;
2897 *map = kaddr + offset;
2898 *map_len = PAGE_CACHE_SIZE - offset;
2899 return 0;
2900 }
2901 EXPORT_SYMBOL(map_private_extent_buffer);
2902
2903 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2904 unsigned long min_len,
2905 char **token, char **map,
2906 unsigned long *map_start,
2907 unsigned long *map_len, int km)
2908 {
2909 int err;
2910 int save = 0;
2911 if (eb->map_token) {
2912 unmap_extent_buffer(eb, eb->map_token, km);
2913 eb->map_token = NULL;
2914 save = 1;
2915 }
2916 err = map_private_extent_buffer(eb, start, min_len, token, map,
2917 map_start, map_len, km);
2918 if (!err && save) {
2919 eb->map_token = *token;
2920 eb->kaddr = *map;
2921 eb->map_start = *map_start;
2922 eb->map_len = *map_len;
2923 }
2924 return err;
2925 }
2926 EXPORT_SYMBOL(map_extent_buffer);
2927
2928 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2929 {
2930 kunmap_atomic(token, km);
2931 }
2932 EXPORT_SYMBOL(unmap_extent_buffer);
2933
2934 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2935 unsigned long start,
2936 unsigned long len)
2937 {
2938 size_t cur;
2939 size_t offset;
2940 struct page *page;
2941 char *kaddr;
2942 char *ptr = (char *)ptrv;
2943 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2944 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2945 int ret = 0;
2946
2947 WARN_ON(start > eb->len);
2948 WARN_ON(start + len > eb->start + eb->len);
2949
2950 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2951
2952 while(len > 0) {
2953 page = extent_buffer_page(eb, i);
2954 WARN_ON(!PageUptodate(page));
2955
2956 cur = min(len, (PAGE_CACHE_SIZE - offset));
2957
2958 kaddr = kmap_atomic(page, KM_USER0);
2959 ret = memcmp(ptr, kaddr + offset, cur);
2960 kunmap_atomic(kaddr, KM_USER0);
2961 if (ret)
2962 break;
2963
2964 ptr += cur;
2965 len -= cur;
2966 offset = 0;
2967 i++;
2968 }
2969 return ret;
2970 }
2971 EXPORT_SYMBOL(memcmp_extent_buffer);
2972
2973 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2974 unsigned long start, unsigned long len)
2975 {
2976 size_t cur;
2977 size_t offset;
2978 struct page *page;
2979 char *kaddr;
2980 char *src = (char *)srcv;
2981 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2982 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2983
2984 WARN_ON(start > eb->len);
2985 WARN_ON(start + len > eb->start + eb->len);
2986
2987 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2988
2989 while(len > 0) {
2990 page = extent_buffer_page(eb, i);
2991 WARN_ON(!PageUptodate(page));
2992
2993 cur = min(len, PAGE_CACHE_SIZE - offset);
2994 kaddr = kmap_atomic(page, KM_USER1);
2995 memcpy(kaddr + offset, src, cur);
2996 kunmap_atomic(kaddr, KM_USER1);
2997
2998 src += cur;
2999 len -= cur;
3000 offset = 0;
3001 i++;
3002 }
3003 }
3004 EXPORT_SYMBOL(write_extent_buffer);
3005
3006 void memset_extent_buffer(struct extent_buffer *eb, char c,
3007 unsigned long start, unsigned long len)
3008 {
3009 size_t cur;
3010 size_t offset;
3011 struct page *page;
3012 char *kaddr;
3013 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3014 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3015
3016 WARN_ON(start > eb->len);
3017 WARN_ON(start + len > eb->start + eb->len);
3018
3019 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3020
3021 while(len > 0) {
3022 page = extent_buffer_page(eb, i);
3023 WARN_ON(!PageUptodate(page));
3024
3025 cur = min(len, PAGE_CACHE_SIZE - offset);
3026 kaddr = kmap_atomic(page, KM_USER0);
3027 memset(kaddr + offset, c, cur);
3028 kunmap_atomic(kaddr, KM_USER0);
3029
3030 len -= cur;
3031 offset = 0;
3032 i++;
3033 }
3034 }
3035 EXPORT_SYMBOL(memset_extent_buffer);
3036
3037 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3038 unsigned long dst_offset, unsigned long src_offset,
3039 unsigned long len)
3040 {
3041 u64 dst_len = dst->len;
3042 size_t cur;
3043 size_t offset;
3044 struct page *page;
3045 char *kaddr;
3046 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3047 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3048
3049 WARN_ON(src->len != dst_len);
3050
3051 offset = (start_offset + dst_offset) &
3052 ((unsigned long)PAGE_CACHE_SIZE - 1);
3053
3054 while(len > 0) {
3055 page = extent_buffer_page(dst, i);
3056 WARN_ON(!PageUptodate(page));
3057
3058 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3059
3060 kaddr = kmap_atomic(page, KM_USER0);
3061 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3062 kunmap_atomic(kaddr, KM_USER0);
3063
3064 src_offset += cur;
3065 len -= cur;
3066 offset = 0;
3067 i++;
3068 }
3069 }
3070 EXPORT_SYMBOL(copy_extent_buffer);
3071
3072 static void move_pages(struct page *dst_page, struct page *src_page,
3073 unsigned long dst_off, unsigned long src_off,
3074 unsigned long len)
3075 {
3076 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3077 if (dst_page == src_page) {
3078 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3079 } else {
3080 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3081 char *p = dst_kaddr + dst_off + len;
3082 char *s = src_kaddr + src_off + len;
3083
3084 while (len--)
3085 *--p = *--s;
3086
3087 kunmap_atomic(src_kaddr, KM_USER1);
3088 }
3089 kunmap_atomic(dst_kaddr, KM_USER0);
3090 }
3091
3092 static void copy_pages(struct page *dst_page, struct page *src_page,
3093 unsigned long dst_off, unsigned long src_off,
3094 unsigned long len)
3095 {
3096 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3097 char *src_kaddr;
3098
3099 if (dst_page != src_page)
3100 src_kaddr = kmap_atomic(src_page, KM_USER1);
3101 else
3102 src_kaddr = dst_kaddr;
3103
3104 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3105 kunmap_atomic(dst_kaddr, KM_USER0);
3106 if (dst_page != src_page)
3107 kunmap_atomic(src_kaddr, KM_USER1);
3108 }
3109
3110 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3111 unsigned long src_offset, unsigned long len)
3112 {
3113 size_t cur;
3114 size_t dst_off_in_page;
3115 size_t src_off_in_page;
3116 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3117 unsigned long dst_i;
3118 unsigned long src_i;
3119
3120 if (src_offset + len > dst->len) {
3121 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3122 src_offset, len, dst->len);
3123 BUG_ON(1);
3124 }
3125 if (dst_offset + len > dst->len) {
3126 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3127 dst_offset, len, dst->len);
3128 BUG_ON(1);
3129 }
3130
3131 while(len > 0) {
3132 dst_off_in_page = (start_offset + dst_offset) &
3133 ((unsigned long)PAGE_CACHE_SIZE - 1);
3134 src_off_in_page = (start_offset + src_offset) &
3135 ((unsigned long)PAGE_CACHE_SIZE - 1);
3136
3137 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3138 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3139
3140 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3141 src_off_in_page));
3142 cur = min_t(unsigned long, cur,
3143 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3144
3145 copy_pages(extent_buffer_page(dst, dst_i),
3146 extent_buffer_page(dst, src_i),
3147 dst_off_in_page, src_off_in_page, cur);
3148
3149 src_offset += cur;
3150 dst_offset += cur;
3151 len -= cur;
3152 }
3153 }
3154 EXPORT_SYMBOL(memcpy_extent_buffer);
3155
3156 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3157 unsigned long src_offset, unsigned long len)
3158 {
3159 size_t cur;
3160 size_t dst_off_in_page;
3161 size_t src_off_in_page;
3162 unsigned long dst_end = dst_offset + len - 1;
3163 unsigned long src_end = src_offset + len - 1;
3164 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3165 unsigned long dst_i;
3166 unsigned long src_i;
3167
3168 if (src_offset + len > dst->len) {
3169 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3170 src_offset, len, dst->len);
3171 BUG_ON(1);
3172 }
3173 if (dst_offset + len > dst->len) {
3174 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3175 dst_offset, len, dst->len);
3176 BUG_ON(1);
3177 }
3178 if (dst_offset < src_offset) {
3179 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3180 return;
3181 }
3182 while(len > 0) {
3183 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3184 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3185
3186 dst_off_in_page = (start_offset + dst_end) &
3187 ((unsigned long)PAGE_CACHE_SIZE - 1);
3188 src_off_in_page = (start_offset + src_end) &
3189 ((unsigned long)PAGE_CACHE_SIZE - 1);
3190
3191 cur = min_t(unsigned long, len, src_off_in_page + 1);
3192 cur = min(cur, dst_off_in_page + 1);
3193 move_pages(extent_buffer_page(dst, dst_i),
3194 extent_buffer_page(dst, src_i),
3195 dst_off_in_page - cur + 1,
3196 src_off_in_page - cur + 1, cur);
3197
3198 dst_end -= cur;
3199 src_end -= cur;
3200 len -= cur;
3201 }
3202 }
3203 EXPORT_SYMBOL(memmove_extent_buffer);