]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/file.c
UBUNTU: [Config] arm64: snapdragon: SND*=m
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73 {
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 struct inode_defrag *defrag)
97 {
98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
103
104 p = &fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
124 }
125 }
126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(fs_info))
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct btrfs_inode *inode)
149 {
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(fs_info))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = inode->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 int ret;
202
203 if (!__need_auto_defrag(fs_info))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
481 const u64 start,
482 const u64 len,
483 struct extent_state **cached_state)
484 {
485 u64 search_start = start;
486 const u64 end = start + len - 1;
487
488 while (search_start < end) {
489 const u64 search_len = end - search_start + 1;
490 struct extent_map *em;
491 u64 em_len;
492 int ret = 0;
493
494 em = btrfs_get_extent(inode, NULL, 0, search_start,
495 search_len, 0);
496 if (IS_ERR(em))
497 return PTR_ERR(em);
498
499 if (em->block_start != EXTENT_MAP_HOLE)
500 goto next;
501
502 em_len = em->len;
503 if (em->start < search_start)
504 em_len -= search_start - em->start;
505 if (em_len > search_len)
506 em_len = search_len;
507
508 ret = set_extent_bit(&inode->io_tree, search_start,
509 search_start + em_len - 1,
510 EXTENT_DELALLOC_NEW,
511 NULL, cached_state, GFP_NOFS);
512 next:
513 search_start = extent_map_end(em);
514 free_extent_map(em);
515 if (ret)
516 return ret;
517 }
518 return 0;
519 }
520
521 /*
522 * after copy_from_user, pages need to be dirtied and we need to make
523 * sure holes are created between the current EOF and the start of
524 * any next extents (if required).
525 *
526 * this also makes the decision about creating an inline extent vs
527 * doing real data extents, marking pages dirty and delalloc as required.
528 */
529 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
530 size_t num_pages, loff_t pos, size_t write_bytes,
531 struct extent_state **cached)
532 {
533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 int err = 0;
535 int i;
536 u64 num_bytes;
537 u64 start_pos;
538 u64 end_of_last_block;
539 u64 end_pos = pos + write_bytes;
540 loff_t isize = i_size_read(inode);
541 unsigned int extra_bits = 0;
542
543 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
544 num_bytes = round_up(write_bytes + pos - start_pos,
545 fs_info->sectorsize);
546
547 end_of_last_block = start_pos + num_bytes - 1;
548
549 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
550 if (start_pos >= isize &&
551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
552 /*
553 * There can't be any extents following eof in this case
554 * so just set the delalloc new bit for the range
555 * directly.
556 */
557 extra_bits |= EXTENT_DELALLOC_NEW;
558 } else {
559 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
560 start_pos,
561 num_bytes, cached);
562 if (err)
563 return err;
564 }
565 }
566
567 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
568 extra_bits, cached, 0);
569 if (err)
570 return err;
571
572 for (i = 0; i < num_pages; i++) {
573 struct page *p = pages[i];
574 SetPageUptodate(p);
575 ClearPageChecked(p);
576 set_page_dirty(p);
577 }
578
579 /*
580 * we've only changed i_size in ram, and we haven't updated
581 * the disk i_size. There is no need to log the inode
582 * at this time.
583 */
584 if (end_pos > isize)
585 i_size_write(inode, end_pos);
586 return 0;
587 }
588
589 /*
590 * this drops all the extents in the cache that intersect the range
591 * [start, end]. Existing extents are split as required.
592 */
593 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
594 int skip_pinned)
595 {
596 struct extent_map *em;
597 struct extent_map *split = NULL;
598 struct extent_map *split2 = NULL;
599 struct extent_map_tree *em_tree = &inode->extent_tree;
600 u64 len = end - start + 1;
601 u64 gen;
602 int ret;
603 int testend = 1;
604 unsigned long flags;
605 int compressed = 0;
606 bool modified;
607
608 WARN_ON(end < start);
609 if (end == (u64)-1) {
610 len = (u64)-1;
611 testend = 0;
612 }
613 while (1) {
614 int no_splits = 0;
615
616 modified = false;
617 if (!split)
618 split = alloc_extent_map();
619 if (!split2)
620 split2 = alloc_extent_map();
621 if (!split || !split2)
622 no_splits = 1;
623
624 write_lock(&em_tree->lock);
625 em = lookup_extent_mapping(em_tree, start, len);
626 if (!em) {
627 write_unlock(&em_tree->lock);
628 break;
629 }
630 flags = em->flags;
631 gen = em->generation;
632 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
633 if (testend && em->start + em->len >= start + len) {
634 free_extent_map(em);
635 write_unlock(&em_tree->lock);
636 break;
637 }
638 start = em->start + em->len;
639 if (testend)
640 len = start + len - (em->start + em->len);
641 free_extent_map(em);
642 write_unlock(&em_tree->lock);
643 continue;
644 }
645 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
647 clear_bit(EXTENT_FLAG_LOGGING, &flags);
648 modified = !list_empty(&em->list);
649 if (no_splits)
650 goto next;
651
652 if (em->start < start) {
653 split->start = em->start;
654 split->len = start - em->start;
655
656 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
657 split->orig_start = em->orig_start;
658 split->block_start = em->block_start;
659
660 if (compressed)
661 split->block_len = em->block_len;
662 else
663 split->block_len = split->len;
664 split->orig_block_len = max(split->block_len,
665 em->orig_block_len);
666 split->ram_bytes = em->ram_bytes;
667 } else {
668 split->orig_start = split->start;
669 split->block_len = 0;
670 split->block_start = em->block_start;
671 split->orig_block_len = 0;
672 split->ram_bytes = split->len;
673 }
674
675 split->generation = gen;
676 split->bdev = em->bdev;
677 split->flags = flags;
678 split->compress_type = em->compress_type;
679 replace_extent_mapping(em_tree, em, split, modified);
680 free_extent_map(split);
681 split = split2;
682 split2 = NULL;
683 }
684 if (testend && em->start + em->len > start + len) {
685 u64 diff = start + len - em->start;
686
687 split->start = start + len;
688 split->len = em->start + em->len - (start + len);
689 split->bdev = em->bdev;
690 split->flags = flags;
691 split->compress_type = em->compress_type;
692 split->generation = gen;
693
694 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
695 split->orig_block_len = max(em->block_len,
696 em->orig_block_len);
697
698 split->ram_bytes = em->ram_bytes;
699 if (compressed) {
700 split->block_len = em->block_len;
701 split->block_start = em->block_start;
702 split->orig_start = em->orig_start;
703 } else {
704 split->block_len = split->len;
705 split->block_start = em->block_start
706 + diff;
707 split->orig_start = em->orig_start;
708 }
709 } else {
710 split->ram_bytes = split->len;
711 split->orig_start = split->start;
712 split->block_len = 0;
713 split->block_start = em->block_start;
714 split->orig_block_len = 0;
715 }
716
717 if (extent_map_in_tree(em)) {
718 replace_extent_mapping(em_tree, em, split,
719 modified);
720 } else {
721 ret = add_extent_mapping(em_tree, split,
722 modified);
723 ASSERT(ret == 0); /* Logic error */
724 }
725 free_extent_map(split);
726 split = NULL;
727 }
728 next:
729 if (extent_map_in_tree(em))
730 remove_extent_mapping(em_tree, em);
731 write_unlock(&em_tree->lock);
732
733 /* once for us */
734 free_extent_map(em);
735 /* once for the tree*/
736 free_extent_map(em);
737 }
738 if (split)
739 free_extent_map(split);
740 if (split2)
741 free_extent_map(split2);
742 }
743
744 /*
745 * this is very complex, but the basic idea is to drop all extents
746 * in the range start - end. hint_block is filled in with a block number
747 * that would be a good hint to the block allocator for this file.
748 *
749 * If an extent intersects the range but is not entirely inside the range
750 * it is either truncated or split. Anything entirely inside the range
751 * is deleted from the tree.
752 */
753 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
754 struct btrfs_root *root, struct inode *inode,
755 struct btrfs_path *path, u64 start, u64 end,
756 u64 *drop_end, int drop_cache,
757 int replace_extent,
758 u32 extent_item_size,
759 int *key_inserted)
760 {
761 struct btrfs_fs_info *fs_info = root->fs_info;
762 struct extent_buffer *leaf;
763 struct btrfs_file_extent_item *fi;
764 struct btrfs_key key;
765 struct btrfs_key new_key;
766 u64 ino = btrfs_ino(BTRFS_I(inode));
767 u64 search_start = start;
768 u64 disk_bytenr = 0;
769 u64 num_bytes = 0;
770 u64 extent_offset = 0;
771 u64 extent_end = 0;
772 u64 last_end = start;
773 int del_nr = 0;
774 int del_slot = 0;
775 int extent_type;
776 int recow;
777 int ret;
778 int modify_tree = -1;
779 int update_refs;
780 int found = 0;
781 int leafs_visited = 0;
782
783 if (drop_cache)
784 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
785
786 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
787 modify_tree = 0;
788
789 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
790 root == fs_info->tree_root);
791 while (1) {
792 recow = 0;
793 ret = btrfs_lookup_file_extent(trans, root, path, ino,
794 search_start, modify_tree);
795 if (ret < 0)
796 break;
797 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
798 leaf = path->nodes[0];
799 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
800 if (key.objectid == ino &&
801 key.type == BTRFS_EXTENT_DATA_KEY)
802 path->slots[0]--;
803 }
804 ret = 0;
805 leafs_visited++;
806 next_slot:
807 leaf = path->nodes[0];
808 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
809 BUG_ON(del_nr > 0);
810 ret = btrfs_next_leaf(root, path);
811 if (ret < 0)
812 break;
813 if (ret > 0) {
814 ret = 0;
815 break;
816 }
817 leafs_visited++;
818 leaf = path->nodes[0];
819 recow = 1;
820 }
821
822 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
823
824 if (key.objectid > ino)
825 break;
826 if (WARN_ON_ONCE(key.objectid < ino) ||
827 key.type < BTRFS_EXTENT_DATA_KEY) {
828 ASSERT(del_nr == 0);
829 path->slots[0]++;
830 goto next_slot;
831 }
832 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
833 break;
834
835 fi = btrfs_item_ptr(leaf, path->slots[0],
836 struct btrfs_file_extent_item);
837 extent_type = btrfs_file_extent_type(leaf, fi);
838
839 if (extent_type == BTRFS_FILE_EXTENT_REG ||
840 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
841 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
842 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
843 extent_offset = btrfs_file_extent_offset(leaf, fi);
844 extent_end = key.offset +
845 btrfs_file_extent_num_bytes(leaf, fi);
846 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
847 extent_end = key.offset +
848 btrfs_file_extent_inline_len(leaf,
849 path->slots[0], fi);
850 } else {
851 /* can't happen */
852 BUG();
853 }
854
855 /*
856 * Don't skip extent items representing 0 byte lengths. They
857 * used to be created (bug) if while punching holes we hit
858 * -ENOSPC condition. So if we find one here, just ensure we
859 * delete it, otherwise we would insert a new file extent item
860 * with the same key (offset) as that 0 bytes length file
861 * extent item in the call to setup_items_for_insert() later
862 * in this function.
863 */
864 if (extent_end == key.offset && extent_end >= search_start) {
865 last_end = extent_end;
866 goto delete_extent_item;
867 }
868
869 if (extent_end <= search_start) {
870 path->slots[0]++;
871 goto next_slot;
872 }
873
874 found = 1;
875 search_start = max(key.offset, start);
876 if (recow || !modify_tree) {
877 modify_tree = -1;
878 btrfs_release_path(path);
879 continue;
880 }
881
882 /*
883 * | - range to drop - |
884 * | -------- extent -------- |
885 */
886 if (start > key.offset && end < extent_end) {
887 BUG_ON(del_nr > 0);
888 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
889 ret = -EOPNOTSUPP;
890 break;
891 }
892
893 memcpy(&new_key, &key, sizeof(new_key));
894 new_key.offset = start;
895 ret = btrfs_duplicate_item(trans, root, path,
896 &new_key);
897 if (ret == -EAGAIN) {
898 btrfs_release_path(path);
899 continue;
900 }
901 if (ret < 0)
902 break;
903
904 leaf = path->nodes[0];
905 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
906 struct btrfs_file_extent_item);
907 btrfs_set_file_extent_num_bytes(leaf, fi,
908 start - key.offset);
909
910 fi = btrfs_item_ptr(leaf, path->slots[0],
911 struct btrfs_file_extent_item);
912
913 extent_offset += start - key.offset;
914 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
915 btrfs_set_file_extent_num_bytes(leaf, fi,
916 extent_end - start);
917 btrfs_mark_buffer_dirty(leaf);
918
919 if (update_refs && disk_bytenr > 0) {
920 ret = btrfs_inc_extent_ref(trans, root,
921 disk_bytenr, num_bytes, 0,
922 root->root_key.objectid,
923 new_key.objectid,
924 start - extent_offset);
925 BUG_ON(ret); /* -ENOMEM */
926 }
927 key.offset = start;
928 }
929 /*
930 * From here on out we will have actually dropped something, so
931 * last_end can be updated.
932 */
933 last_end = extent_end;
934
935 /*
936 * | ---- range to drop ----- |
937 * | -------- extent -------- |
938 */
939 if (start <= key.offset && end < extent_end) {
940 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
941 ret = -EOPNOTSUPP;
942 break;
943 }
944
945 memcpy(&new_key, &key, sizeof(new_key));
946 new_key.offset = end;
947 btrfs_set_item_key_safe(fs_info, path, &new_key);
948
949 extent_offset += end - key.offset;
950 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
951 btrfs_set_file_extent_num_bytes(leaf, fi,
952 extent_end - end);
953 btrfs_mark_buffer_dirty(leaf);
954 if (update_refs && disk_bytenr > 0)
955 inode_sub_bytes(inode, end - key.offset);
956 break;
957 }
958
959 search_start = extent_end;
960 /*
961 * | ---- range to drop ----- |
962 * | -------- extent -------- |
963 */
964 if (start > key.offset && end >= extent_end) {
965 BUG_ON(del_nr > 0);
966 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
967 ret = -EOPNOTSUPP;
968 break;
969 }
970
971 btrfs_set_file_extent_num_bytes(leaf, fi,
972 start - key.offset);
973 btrfs_mark_buffer_dirty(leaf);
974 if (update_refs && disk_bytenr > 0)
975 inode_sub_bytes(inode, extent_end - start);
976 if (end == extent_end)
977 break;
978
979 path->slots[0]++;
980 goto next_slot;
981 }
982
983 /*
984 * | ---- range to drop ----- |
985 * | ------ extent ------ |
986 */
987 if (start <= key.offset && end >= extent_end) {
988 delete_extent_item:
989 if (del_nr == 0) {
990 del_slot = path->slots[0];
991 del_nr = 1;
992 } else {
993 BUG_ON(del_slot + del_nr != path->slots[0]);
994 del_nr++;
995 }
996
997 if (update_refs &&
998 extent_type == BTRFS_FILE_EXTENT_INLINE) {
999 inode_sub_bytes(inode,
1000 extent_end - key.offset);
1001 extent_end = ALIGN(extent_end,
1002 fs_info->sectorsize);
1003 } else if (update_refs && disk_bytenr > 0) {
1004 ret = btrfs_free_extent(trans, root,
1005 disk_bytenr, num_bytes, 0,
1006 root->root_key.objectid,
1007 key.objectid, key.offset -
1008 extent_offset);
1009 BUG_ON(ret); /* -ENOMEM */
1010 inode_sub_bytes(inode,
1011 extent_end - key.offset);
1012 }
1013
1014 if (end == extent_end)
1015 break;
1016
1017 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018 path->slots[0]++;
1019 goto next_slot;
1020 }
1021
1022 ret = btrfs_del_items(trans, root, path, del_slot,
1023 del_nr);
1024 if (ret) {
1025 btrfs_abort_transaction(trans, ret);
1026 break;
1027 }
1028
1029 del_nr = 0;
1030 del_slot = 0;
1031
1032 btrfs_release_path(path);
1033 continue;
1034 }
1035
1036 BUG_ON(1);
1037 }
1038
1039 if (!ret && del_nr > 0) {
1040 /*
1041 * Set path->slots[0] to first slot, so that after the delete
1042 * if items are move off from our leaf to its immediate left or
1043 * right neighbor leafs, we end up with a correct and adjusted
1044 * path->slots[0] for our insertion (if replace_extent != 0).
1045 */
1046 path->slots[0] = del_slot;
1047 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048 if (ret)
1049 btrfs_abort_transaction(trans, ret);
1050 }
1051
1052 leaf = path->nodes[0];
1053 /*
1054 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 * which case it unlocked our path, so check path->locks[0] matches a
1056 * write lock.
1057 */
1058 if (!ret && replace_extent && leafs_visited == 1 &&
1059 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060 path->locks[0] == BTRFS_WRITE_LOCK) &&
1061 btrfs_leaf_free_space(fs_info, leaf) >=
1062 sizeof(struct btrfs_item) + extent_item_size) {
1063
1064 key.objectid = ino;
1065 key.type = BTRFS_EXTENT_DATA_KEY;
1066 key.offset = start;
1067 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068 struct btrfs_key slot_key;
1069
1070 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072 path->slots[0]++;
1073 }
1074 setup_items_for_insert(root, path, &key,
1075 &extent_item_size,
1076 extent_item_size,
1077 sizeof(struct btrfs_item) +
1078 extent_item_size, 1);
1079 *key_inserted = 1;
1080 }
1081
1082 if (!replace_extent || !(*key_inserted))
1083 btrfs_release_path(path);
1084 if (drop_end)
1085 *drop_end = found ? min(end, last_end) : end;
1086 return ret;
1087 }
1088
1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root, struct inode *inode, u64 start,
1091 u64 end, int drop_cache)
1092 {
1093 struct btrfs_path *path;
1094 int ret;
1095
1096 path = btrfs_alloc_path();
1097 if (!path)
1098 return -ENOMEM;
1099 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100 drop_cache, 0, 0, NULL);
1101 btrfs_free_path(path);
1102 return ret;
1103 }
1104
1105 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106 u64 objectid, u64 bytenr, u64 orig_offset,
1107 u64 *start, u64 *end)
1108 {
1109 struct btrfs_file_extent_item *fi;
1110 struct btrfs_key key;
1111 u64 extent_end;
1112
1113 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114 return 0;
1115
1116 btrfs_item_key_to_cpu(leaf, &key, slot);
1117 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118 return 0;
1119
1120 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124 btrfs_file_extent_compression(leaf, fi) ||
1125 btrfs_file_extent_encryption(leaf, fi) ||
1126 btrfs_file_extent_other_encoding(leaf, fi))
1127 return 0;
1128
1129 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131 return 0;
1132
1133 *start = key.offset;
1134 *end = extent_end;
1135 return 1;
1136 }
1137
1138 /*
1139 * Mark extent in the range start - end as written.
1140 *
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1143 * two or three.
1144 */
1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146 struct btrfs_inode *inode, u64 start, u64 end)
1147 {
1148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1149 struct btrfs_root *root = inode->root;
1150 struct extent_buffer *leaf;
1151 struct btrfs_path *path;
1152 struct btrfs_file_extent_item *fi;
1153 struct btrfs_key key;
1154 struct btrfs_key new_key;
1155 u64 bytenr;
1156 u64 num_bytes;
1157 u64 extent_end;
1158 u64 orig_offset;
1159 u64 other_start;
1160 u64 other_end;
1161 u64 split;
1162 int del_nr = 0;
1163 int del_slot = 0;
1164 int recow;
1165 int ret;
1166 u64 ino = btrfs_ino(inode);
1167
1168 path = btrfs_alloc_path();
1169 if (!path)
1170 return -ENOMEM;
1171 again:
1172 recow = 0;
1173 split = start;
1174 key.objectid = ino;
1175 key.type = BTRFS_EXTENT_DATA_KEY;
1176 key.offset = split;
1177
1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179 if (ret < 0)
1180 goto out;
1181 if (ret > 0 && path->slots[0] > 0)
1182 path->slots[0]--;
1183
1184 leaf = path->nodes[0];
1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1186 if (key.objectid != ino ||
1187 key.type != BTRFS_EXTENT_DATA_KEY) {
1188 ret = -EINVAL;
1189 btrfs_abort_transaction(trans, ret);
1190 goto out;
1191 }
1192 fi = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_file_extent_item);
1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195 ret = -EINVAL;
1196 btrfs_abort_transaction(trans, ret);
1197 goto out;
1198 }
1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1200 if (key.offset > start || extent_end < end) {
1201 ret = -EINVAL;
1202 btrfs_abort_transaction(trans, ret);
1203 goto out;
1204 }
1205
1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1209 memcpy(&new_key, &key, sizeof(new_key));
1210
1211 if (start == key.offset && end < extent_end) {
1212 other_start = 0;
1213 other_end = start;
1214 if (extent_mergeable(leaf, path->slots[0] - 1,
1215 ino, bytenr, orig_offset,
1216 &other_start, &other_end)) {
1217 new_key.offset = end;
1218 btrfs_set_item_key_safe(fs_info, path, &new_key);
1219 fi = btrfs_item_ptr(leaf, path->slots[0],
1220 struct btrfs_file_extent_item);
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 extent_end - end);
1225 btrfs_set_file_extent_offset(leaf, fi,
1226 end - orig_offset);
1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228 struct btrfs_file_extent_item);
1229 btrfs_set_file_extent_generation(leaf, fi,
1230 trans->transid);
1231 btrfs_set_file_extent_num_bytes(leaf, fi,
1232 end - other_start);
1233 btrfs_mark_buffer_dirty(leaf);
1234 goto out;
1235 }
1236 }
1237
1238 if (start > key.offset && end == extent_end) {
1239 other_start = end;
1240 other_end = 0;
1241 if (extent_mergeable(leaf, path->slots[0] + 1,
1242 ino, bytenr, orig_offset,
1243 &other_start, &other_end)) {
1244 fi = btrfs_item_ptr(leaf, path->slots[0],
1245 struct btrfs_file_extent_item);
1246 btrfs_set_file_extent_num_bytes(leaf, fi,
1247 start - key.offset);
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
1250 path->slots[0]++;
1251 new_key.offset = start;
1252 btrfs_set_item_key_safe(fs_info, path, &new_key);
1253
1254 fi = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_file_extent_item);
1256 btrfs_set_file_extent_generation(leaf, fi,
1257 trans->transid);
1258 btrfs_set_file_extent_num_bytes(leaf, fi,
1259 other_end - start);
1260 btrfs_set_file_extent_offset(leaf, fi,
1261 start - orig_offset);
1262 btrfs_mark_buffer_dirty(leaf);
1263 goto out;
1264 }
1265 }
1266
1267 while (start > key.offset || end < extent_end) {
1268 if (key.offset == start)
1269 split = end;
1270
1271 new_key.offset = split;
1272 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273 if (ret == -EAGAIN) {
1274 btrfs_release_path(path);
1275 goto again;
1276 }
1277 if (ret < 0) {
1278 btrfs_abort_transaction(trans, ret);
1279 goto out;
1280 }
1281
1282 leaf = path->nodes[0];
1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1284 struct btrfs_file_extent_item);
1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1286 btrfs_set_file_extent_num_bytes(leaf, fi,
1287 split - key.offset);
1288
1289 fi = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_file_extent_item);
1291
1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294 btrfs_set_file_extent_num_bytes(leaf, fi,
1295 extent_end - split);
1296 btrfs_mark_buffer_dirty(leaf);
1297
1298 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1299 0, root->root_key.objectid,
1300 ino, orig_offset);
1301 if (ret) {
1302 btrfs_abort_transaction(trans, ret);
1303 goto out;
1304 }
1305
1306 if (split == start) {
1307 key.offset = start;
1308 } else {
1309 if (start != key.offset) {
1310 ret = -EINVAL;
1311 btrfs_abort_transaction(trans, ret);
1312 goto out;
1313 }
1314 path->slots[0]--;
1315 extent_end = end;
1316 }
1317 recow = 1;
1318 }
1319
1320 other_start = end;
1321 other_end = 0;
1322 if (extent_mergeable(leaf, path->slots[0] + 1,
1323 ino, bytenr, orig_offset,
1324 &other_start, &other_end)) {
1325 if (recow) {
1326 btrfs_release_path(path);
1327 goto again;
1328 }
1329 extent_end = other_end;
1330 del_slot = path->slots[0] + 1;
1331 del_nr++;
1332 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1333 0, root->root_key.objectid,
1334 ino, orig_offset);
1335 if (ret) {
1336 btrfs_abort_transaction(trans, ret);
1337 goto out;
1338 }
1339 }
1340 other_start = 0;
1341 other_end = start;
1342 if (extent_mergeable(leaf, path->slots[0] - 1,
1343 ino, bytenr, orig_offset,
1344 &other_start, &other_end)) {
1345 if (recow) {
1346 btrfs_release_path(path);
1347 goto again;
1348 }
1349 key.offset = other_start;
1350 del_slot = path->slots[0];
1351 del_nr++;
1352 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1353 0, root->root_key.objectid,
1354 ino, orig_offset);
1355 if (ret) {
1356 btrfs_abort_transaction(trans, ret);
1357 goto out;
1358 }
1359 }
1360 if (del_nr == 0) {
1361 fi = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_file_extent_item);
1363 btrfs_set_file_extent_type(leaf, fi,
1364 BTRFS_FILE_EXTENT_REG);
1365 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1366 btrfs_mark_buffer_dirty(leaf);
1367 } else {
1368 fi = btrfs_item_ptr(leaf, del_slot - 1,
1369 struct btrfs_file_extent_item);
1370 btrfs_set_file_extent_type(leaf, fi,
1371 BTRFS_FILE_EXTENT_REG);
1372 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1373 btrfs_set_file_extent_num_bytes(leaf, fi,
1374 extent_end - key.offset);
1375 btrfs_mark_buffer_dirty(leaf);
1376
1377 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1378 if (ret < 0) {
1379 btrfs_abort_transaction(trans, ret);
1380 goto out;
1381 }
1382 }
1383 out:
1384 btrfs_free_path(path);
1385 return 0;
1386 }
1387
1388 /*
1389 * on error we return an unlocked page and the error value
1390 * on success we return a locked page and 0
1391 */
1392 static int prepare_uptodate_page(struct inode *inode,
1393 struct page *page, u64 pos,
1394 bool force_uptodate)
1395 {
1396 int ret = 0;
1397
1398 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1399 !PageUptodate(page)) {
1400 ret = btrfs_readpage(NULL, page);
1401 if (ret)
1402 return ret;
1403 lock_page(page);
1404 if (!PageUptodate(page)) {
1405 unlock_page(page);
1406 return -EIO;
1407 }
1408 if (page->mapping != inode->i_mapping) {
1409 unlock_page(page);
1410 return -EAGAIN;
1411 }
1412 }
1413 return 0;
1414 }
1415
1416 /*
1417 * this just gets pages into the page cache and locks them down.
1418 */
1419 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1420 size_t num_pages, loff_t pos,
1421 size_t write_bytes, bool force_uptodate)
1422 {
1423 int i;
1424 unsigned long index = pos >> PAGE_SHIFT;
1425 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1426 int err = 0;
1427 int faili;
1428
1429 for (i = 0; i < num_pages; i++) {
1430 again:
1431 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1432 mask | __GFP_WRITE);
1433 if (!pages[i]) {
1434 faili = i - 1;
1435 err = -ENOMEM;
1436 goto fail;
1437 }
1438
1439 if (i == 0)
1440 err = prepare_uptodate_page(inode, pages[i], pos,
1441 force_uptodate);
1442 if (!err && i == num_pages - 1)
1443 err = prepare_uptodate_page(inode, pages[i],
1444 pos + write_bytes, false);
1445 if (err) {
1446 put_page(pages[i]);
1447 if (err == -EAGAIN) {
1448 err = 0;
1449 goto again;
1450 }
1451 faili = i - 1;
1452 goto fail;
1453 }
1454 wait_on_page_writeback(pages[i]);
1455 }
1456
1457 return 0;
1458 fail:
1459 while (faili >= 0) {
1460 unlock_page(pages[faili]);
1461 put_page(pages[faili]);
1462 faili--;
1463 }
1464 return err;
1465
1466 }
1467
1468 /*
1469 * This function locks the extent and properly waits for data=ordered extents
1470 * to finish before allowing the pages to be modified if need.
1471 *
1472 * The return value:
1473 * 1 - the extent is locked
1474 * 0 - the extent is not locked, and everything is OK
1475 * -EAGAIN - need re-prepare the pages
1476 * the other < 0 number - Something wrong happens
1477 */
1478 static noinline int
1479 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1480 size_t num_pages, loff_t pos,
1481 size_t write_bytes,
1482 u64 *lockstart, u64 *lockend,
1483 struct extent_state **cached_state)
1484 {
1485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1486 u64 start_pos;
1487 u64 last_pos;
1488 int i;
1489 int ret = 0;
1490
1491 start_pos = round_down(pos, fs_info->sectorsize);
1492 last_pos = start_pos
1493 + round_up(pos + write_bytes - start_pos,
1494 fs_info->sectorsize) - 1;
1495
1496 if (start_pos < inode->vfs_inode.i_size) {
1497 struct btrfs_ordered_extent *ordered;
1498
1499 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1500 cached_state);
1501 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1502 last_pos - start_pos + 1);
1503 if (ordered &&
1504 ordered->file_offset + ordered->len > start_pos &&
1505 ordered->file_offset <= last_pos) {
1506 unlock_extent_cached(&inode->io_tree, start_pos,
1507 last_pos, cached_state, GFP_NOFS);
1508 for (i = 0; i < num_pages; i++) {
1509 unlock_page(pages[i]);
1510 put_page(pages[i]);
1511 }
1512 btrfs_start_ordered_extent(&inode->vfs_inode,
1513 ordered, 1);
1514 btrfs_put_ordered_extent(ordered);
1515 return -EAGAIN;
1516 }
1517 if (ordered)
1518 btrfs_put_ordered_extent(ordered);
1519 clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1520 EXTENT_DIRTY | EXTENT_DELALLOC |
1521 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1522 0, 0, cached_state, GFP_NOFS);
1523 *lockstart = start_pos;
1524 *lockend = last_pos;
1525 ret = 1;
1526 }
1527
1528 for (i = 0; i < num_pages; i++) {
1529 if (clear_page_dirty_for_io(pages[i]))
1530 account_page_redirty(pages[i]);
1531 set_page_extent_mapped(pages[i]);
1532 WARN_ON(!PageLocked(pages[i]));
1533 }
1534
1535 return ret;
1536 }
1537
1538 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1539 size_t *write_bytes)
1540 {
1541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1542 struct btrfs_root *root = inode->root;
1543 struct btrfs_ordered_extent *ordered;
1544 u64 lockstart, lockend;
1545 u64 num_bytes;
1546 int ret;
1547
1548 ret = btrfs_start_write_no_snapshotting(root);
1549 if (!ret)
1550 return -ENOSPC;
1551
1552 lockstart = round_down(pos, fs_info->sectorsize);
1553 lockend = round_up(pos + *write_bytes,
1554 fs_info->sectorsize) - 1;
1555
1556 while (1) {
1557 lock_extent(&inode->io_tree, lockstart, lockend);
1558 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1559 lockend - lockstart + 1);
1560 if (!ordered) {
1561 break;
1562 }
1563 unlock_extent(&inode->io_tree, lockstart, lockend);
1564 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1565 btrfs_put_ordered_extent(ordered);
1566 }
1567
1568 num_bytes = lockend - lockstart + 1;
1569 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1570 NULL, NULL, NULL);
1571 if (ret <= 0) {
1572 ret = 0;
1573 btrfs_end_write_no_snapshotting(root);
1574 } else {
1575 *write_bytes = min_t(size_t, *write_bytes ,
1576 num_bytes - pos + lockstart);
1577 }
1578
1579 unlock_extent(&inode->io_tree, lockstart, lockend);
1580
1581 return ret;
1582 }
1583
1584 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1585 struct iov_iter *i,
1586 loff_t pos)
1587 {
1588 struct inode *inode = file_inode(file);
1589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1590 struct btrfs_root *root = BTRFS_I(inode)->root;
1591 struct page **pages = NULL;
1592 struct extent_state *cached_state = NULL;
1593 struct extent_changeset *data_reserved = NULL;
1594 u64 release_bytes = 0;
1595 u64 lockstart;
1596 u64 lockend;
1597 size_t num_written = 0;
1598 int nrptrs;
1599 int ret = 0;
1600 bool only_release_metadata = false;
1601 bool force_page_uptodate = false;
1602
1603 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1604 PAGE_SIZE / (sizeof(struct page *)));
1605 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1606 nrptrs = max(nrptrs, 8);
1607 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1608 if (!pages)
1609 return -ENOMEM;
1610
1611 while (iov_iter_count(i) > 0) {
1612 size_t offset = pos & (PAGE_SIZE - 1);
1613 size_t sector_offset;
1614 size_t write_bytes = min(iov_iter_count(i),
1615 nrptrs * (size_t)PAGE_SIZE -
1616 offset);
1617 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1618 PAGE_SIZE);
1619 size_t reserve_bytes;
1620 size_t dirty_pages;
1621 size_t copied;
1622 size_t dirty_sectors;
1623 size_t num_sectors;
1624 int extents_locked;
1625
1626 WARN_ON(num_pages > nrptrs);
1627
1628 /*
1629 * Fault pages before locking them in prepare_pages
1630 * to avoid recursive lock
1631 */
1632 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1633 ret = -EFAULT;
1634 break;
1635 }
1636
1637 sector_offset = pos & (fs_info->sectorsize - 1);
1638 reserve_bytes = round_up(write_bytes + sector_offset,
1639 fs_info->sectorsize);
1640
1641 extent_changeset_release(data_reserved);
1642 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1643 write_bytes);
1644 if (ret < 0) {
1645 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1646 BTRFS_INODE_PREALLOC)) &&
1647 check_can_nocow(BTRFS_I(inode), pos,
1648 &write_bytes) > 0) {
1649 /*
1650 * For nodata cow case, no need to reserve
1651 * data space.
1652 */
1653 only_release_metadata = true;
1654 /*
1655 * our prealloc extent may be smaller than
1656 * write_bytes, so scale down.
1657 */
1658 num_pages = DIV_ROUND_UP(write_bytes + offset,
1659 PAGE_SIZE);
1660 reserve_bytes = round_up(write_bytes +
1661 sector_offset,
1662 fs_info->sectorsize);
1663 } else {
1664 break;
1665 }
1666 }
1667
1668 WARN_ON(reserve_bytes == 0);
1669 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1670 reserve_bytes);
1671 if (ret) {
1672 if (!only_release_metadata)
1673 btrfs_free_reserved_data_space(inode,
1674 data_reserved, pos,
1675 write_bytes);
1676 else
1677 btrfs_end_write_no_snapshotting(root);
1678 break;
1679 }
1680
1681 release_bytes = reserve_bytes;
1682 again:
1683 /*
1684 * This is going to setup the pages array with the number of
1685 * pages we want, so we don't really need to worry about the
1686 * contents of pages from loop to loop
1687 */
1688 ret = prepare_pages(inode, pages, num_pages,
1689 pos, write_bytes,
1690 force_page_uptodate);
1691 if (ret) {
1692 btrfs_delalloc_release_extents(BTRFS_I(inode),
1693 reserve_bytes);
1694 break;
1695 }
1696
1697 extents_locked = lock_and_cleanup_extent_if_need(
1698 BTRFS_I(inode), pages,
1699 num_pages, pos, write_bytes, &lockstart,
1700 &lockend, &cached_state);
1701 if (extents_locked < 0) {
1702 if (extents_locked == -EAGAIN)
1703 goto again;
1704 btrfs_delalloc_release_extents(BTRFS_I(inode),
1705 reserve_bytes);
1706 ret = extents_locked;
1707 break;
1708 }
1709
1710 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1711
1712 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1713 dirty_sectors = round_up(copied + sector_offset,
1714 fs_info->sectorsize);
1715 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1716
1717 /*
1718 * if we have trouble faulting in the pages, fall
1719 * back to one page at a time
1720 */
1721 if (copied < write_bytes)
1722 nrptrs = 1;
1723
1724 if (copied == 0) {
1725 force_page_uptodate = true;
1726 dirty_sectors = 0;
1727 dirty_pages = 0;
1728 } else {
1729 force_page_uptodate = false;
1730 dirty_pages = DIV_ROUND_UP(copied + offset,
1731 PAGE_SIZE);
1732 }
1733
1734 if (num_sectors > dirty_sectors) {
1735 /* release everything except the sectors we dirtied */
1736 release_bytes -= dirty_sectors <<
1737 fs_info->sb->s_blocksize_bits;
1738 if (only_release_metadata) {
1739 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1740 release_bytes);
1741 } else {
1742 u64 __pos;
1743
1744 __pos = round_down(pos,
1745 fs_info->sectorsize) +
1746 (dirty_pages << PAGE_SHIFT);
1747 btrfs_delalloc_release_space(inode,
1748 data_reserved, __pos,
1749 release_bytes);
1750 }
1751 }
1752
1753 release_bytes = round_up(copied + sector_offset,
1754 fs_info->sectorsize);
1755
1756 if (copied > 0)
1757 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1758 pos, copied, NULL);
1759 if (extents_locked)
1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1761 lockstart, lockend, &cached_state,
1762 GFP_NOFS);
1763 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1764 if (ret) {
1765 btrfs_drop_pages(pages, num_pages);
1766 break;
1767 }
1768
1769 release_bytes = 0;
1770 if (only_release_metadata)
1771 btrfs_end_write_no_snapshotting(root);
1772
1773 if (only_release_metadata && copied > 0) {
1774 lockstart = round_down(pos,
1775 fs_info->sectorsize);
1776 lockend = round_up(pos + copied,
1777 fs_info->sectorsize) - 1;
1778
1779 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1780 lockend, EXTENT_NORESERVE, NULL,
1781 NULL, GFP_NOFS);
1782 only_release_metadata = false;
1783 }
1784
1785 btrfs_drop_pages(pages, num_pages);
1786
1787 cond_resched();
1788
1789 balance_dirty_pages_ratelimited(inode->i_mapping);
1790 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1791 btrfs_btree_balance_dirty(fs_info);
1792
1793 pos += copied;
1794 num_written += copied;
1795 }
1796
1797 kfree(pages);
1798
1799 if (release_bytes) {
1800 if (only_release_metadata) {
1801 btrfs_end_write_no_snapshotting(root);
1802 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1803 release_bytes);
1804 } else {
1805 btrfs_delalloc_release_space(inode, data_reserved,
1806 round_down(pos, fs_info->sectorsize),
1807 release_bytes);
1808 }
1809 }
1810
1811 extent_changeset_free(data_reserved);
1812 return num_written ? num_written : ret;
1813 }
1814
1815 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1816 {
1817 struct file *file = iocb->ki_filp;
1818 struct inode *inode = file_inode(file);
1819 loff_t pos = iocb->ki_pos;
1820 ssize_t written;
1821 ssize_t written_buffered;
1822 loff_t endbyte;
1823 int err;
1824
1825 written = generic_file_direct_write(iocb, from);
1826
1827 if (written < 0 || !iov_iter_count(from))
1828 return written;
1829
1830 pos += written;
1831 written_buffered = __btrfs_buffered_write(file, from, pos);
1832 if (written_buffered < 0) {
1833 err = written_buffered;
1834 goto out;
1835 }
1836 /*
1837 * Ensure all data is persisted. We want the next direct IO read to be
1838 * able to read what was just written.
1839 */
1840 endbyte = pos + written_buffered - 1;
1841 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1842 if (err)
1843 goto out;
1844 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1845 if (err)
1846 goto out;
1847 written += written_buffered;
1848 iocb->ki_pos = pos + written_buffered;
1849 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1850 endbyte >> PAGE_SHIFT);
1851 out:
1852 return written ? written : err;
1853 }
1854
1855 static void update_time_for_write(struct inode *inode)
1856 {
1857 struct timespec now;
1858
1859 if (IS_NOCMTIME(inode))
1860 return;
1861
1862 now = current_time(inode);
1863 if (!timespec_equal(&inode->i_mtime, &now))
1864 inode->i_mtime = now;
1865
1866 if (!timespec_equal(&inode->i_ctime, &now))
1867 inode->i_ctime = now;
1868
1869 if (IS_I_VERSION(inode))
1870 inode_inc_iversion(inode);
1871 }
1872
1873 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1874 struct iov_iter *from)
1875 {
1876 struct file *file = iocb->ki_filp;
1877 struct inode *inode = file_inode(file);
1878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1879 struct btrfs_root *root = BTRFS_I(inode)->root;
1880 u64 start_pos;
1881 u64 end_pos;
1882 ssize_t num_written = 0;
1883 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1884 ssize_t err;
1885 loff_t pos;
1886 size_t count = iov_iter_count(from);
1887 loff_t oldsize;
1888 int clean_page = 0;
1889
1890 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1891 (iocb->ki_flags & IOCB_NOWAIT))
1892 return -EOPNOTSUPP;
1893
1894 if (!inode_trylock(inode)) {
1895 if (iocb->ki_flags & IOCB_NOWAIT)
1896 return -EAGAIN;
1897 inode_lock(inode);
1898 }
1899
1900 err = generic_write_checks(iocb, from);
1901 if (err <= 0) {
1902 inode_unlock(inode);
1903 return err;
1904 }
1905
1906 pos = iocb->ki_pos;
1907 if (iocb->ki_flags & IOCB_NOWAIT) {
1908 /*
1909 * We will allocate space in case nodatacow is not set,
1910 * so bail
1911 */
1912 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1913 BTRFS_INODE_PREALLOC)) ||
1914 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1915 inode_unlock(inode);
1916 return -EAGAIN;
1917 }
1918 }
1919
1920 current->backing_dev_info = inode_to_bdi(inode);
1921 err = file_remove_privs(file);
1922 if (err) {
1923 inode_unlock(inode);
1924 goto out;
1925 }
1926
1927 /*
1928 * If BTRFS flips readonly due to some impossible error
1929 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930 * although we have opened a file as writable, we have
1931 * to stop this write operation to ensure FS consistency.
1932 */
1933 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934 inode_unlock(inode);
1935 err = -EROFS;
1936 goto out;
1937 }
1938
1939 /*
1940 * We reserve space for updating the inode when we reserve space for the
1941 * extent we are going to write, so we will enospc out there. We don't
1942 * need to start yet another transaction to update the inode as we will
1943 * update the inode when we finish writing whatever data we write.
1944 */
1945 update_time_for_write(inode);
1946
1947 start_pos = round_down(pos, fs_info->sectorsize);
1948 oldsize = i_size_read(inode);
1949 if (start_pos > oldsize) {
1950 /* Expand hole size to cover write data, preventing empty gap */
1951 end_pos = round_up(pos + count,
1952 fs_info->sectorsize);
1953 err = btrfs_cont_expand(inode, oldsize, end_pos);
1954 if (err) {
1955 inode_unlock(inode);
1956 goto out;
1957 }
1958 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1959 clean_page = 1;
1960 }
1961
1962 if (sync)
1963 atomic_inc(&BTRFS_I(inode)->sync_writers);
1964
1965 if (iocb->ki_flags & IOCB_DIRECT) {
1966 num_written = __btrfs_direct_write(iocb, from);
1967 } else {
1968 num_written = __btrfs_buffered_write(file, from, pos);
1969 if (num_written > 0)
1970 iocb->ki_pos = pos + num_written;
1971 if (clean_page)
1972 pagecache_isize_extended(inode, oldsize,
1973 i_size_read(inode));
1974 }
1975
1976 inode_unlock(inode);
1977
1978 /*
1979 * We also have to set last_sub_trans to the current log transid,
1980 * otherwise subsequent syncs to a file that's been synced in this
1981 * transaction will appear to have already occurred.
1982 */
1983 spin_lock(&BTRFS_I(inode)->lock);
1984 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1985 spin_unlock(&BTRFS_I(inode)->lock);
1986 if (num_written > 0)
1987 num_written = generic_write_sync(iocb, num_written);
1988
1989 if (sync)
1990 atomic_dec(&BTRFS_I(inode)->sync_writers);
1991 out:
1992 current->backing_dev_info = NULL;
1993 return num_written ? num_written : err;
1994 }
1995
1996 int btrfs_release_file(struct inode *inode, struct file *filp)
1997 {
1998 struct btrfs_file_private *private = filp->private_data;
1999
2000 if (private && private->trans)
2001 btrfs_ioctl_trans_end(filp);
2002 if (private && private->filldir_buf)
2003 kfree(private->filldir_buf);
2004 kfree(private);
2005 filp->private_data = NULL;
2006
2007 /*
2008 * ordered_data_close is set by settattr when we are about to truncate
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2012 */
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 &BTRFS_I(inode)->runtime_flags))
2015 filemap_flush(inode->i_mapping);
2016 return 0;
2017 }
2018
2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020 {
2021 int ret;
2022 struct blk_plug plug;
2023
2024 /*
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2029 */
2030 blk_start_plug(&plug);
2031 atomic_inc(&BTRFS_I(inode)->sync_writers);
2032 ret = btrfs_fdatawrite_range(inode, start, end);
2033 atomic_dec(&BTRFS_I(inode)->sync_writers);
2034 blk_finish_plug(&plug);
2035
2036 return ret;
2037 }
2038
2039 /*
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2042 *
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2045 *
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2049 */
2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2051 {
2052 struct dentry *dentry = file_dentry(file);
2053 struct inode *inode = d_inode(dentry);
2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055 struct btrfs_root *root = BTRFS_I(inode)->root;
2056 struct btrfs_trans_handle *trans;
2057 struct btrfs_log_ctx ctx;
2058 int ret = 0, err;
2059 bool full_sync = false;
2060 u64 len;
2061
2062 /*
2063 * The range length can be represented by u64, we have to do the typecasts
2064 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2065 */
2066 len = (u64)end - (u64)start + 1;
2067 trace_btrfs_sync_file(file, datasync);
2068
2069 btrfs_init_log_ctx(&ctx, inode);
2070
2071 /*
2072 * We write the dirty pages in the range and wait until they complete
2073 * out of the ->i_mutex. If so, we can flush the dirty pages by
2074 * multi-task, and make the performance up. See
2075 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2076 */
2077 ret = start_ordered_ops(inode, start, end);
2078 if (ret)
2079 goto out;
2080
2081 inode_lock(inode);
2082 atomic_inc(&root->log_batch);
2083 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2084 &BTRFS_I(inode)->runtime_flags);
2085 /*
2086 * We might have have had more pages made dirty after calling
2087 * start_ordered_ops and before acquiring the inode's i_mutex.
2088 */
2089 if (full_sync) {
2090 /*
2091 * For a full sync, we need to make sure any ordered operations
2092 * start and finish before we start logging the inode, so that
2093 * all extents are persisted and the respective file extent
2094 * items are in the fs/subvol btree.
2095 */
2096 ret = btrfs_wait_ordered_range(inode, start, len);
2097 } else {
2098 /*
2099 * Start any new ordered operations before starting to log the
2100 * inode. We will wait for them to finish in btrfs_sync_log().
2101 *
2102 * Right before acquiring the inode's mutex, we might have new
2103 * writes dirtying pages, which won't immediately start the
2104 * respective ordered operations - that is done through the
2105 * fill_delalloc callbacks invoked from the writepage and
2106 * writepages address space operations. So make sure we start
2107 * all ordered operations before starting to log our inode. Not
2108 * doing this means that while logging the inode, writeback
2109 * could start and invoke writepage/writepages, which would call
2110 * the fill_delalloc callbacks (cow_file_range,
2111 * submit_compressed_extents). These callbacks add first an
2112 * extent map to the modified list of extents and then create
2113 * the respective ordered operation, which means in
2114 * tree-log.c:btrfs_log_inode() we might capture all existing
2115 * ordered operations (with btrfs_get_logged_extents()) before
2116 * the fill_delalloc callback adds its ordered operation, and by
2117 * the time we visit the modified list of extent maps (with
2118 * btrfs_log_changed_extents()), we see and process the extent
2119 * map they created. We then use the extent map to construct a
2120 * file extent item for logging without waiting for the
2121 * respective ordered operation to finish - this file extent
2122 * item points to a disk location that might not have yet been
2123 * written to, containing random data - so after a crash a log
2124 * replay will make our inode have file extent items that point
2125 * to disk locations containing invalid data, as we returned
2126 * success to userspace without waiting for the respective
2127 * ordered operation to finish, because it wasn't captured by
2128 * btrfs_get_logged_extents().
2129 */
2130 ret = start_ordered_ops(inode, start, end);
2131 }
2132 if (ret) {
2133 inode_unlock(inode);
2134 goto out;
2135 }
2136 atomic_inc(&root->log_batch);
2137
2138 /*
2139 * If the last transaction that changed this file was before the current
2140 * transaction and we have the full sync flag set in our inode, we can
2141 * bail out now without any syncing.
2142 *
2143 * Note that we can't bail out if the full sync flag isn't set. This is
2144 * because when the full sync flag is set we start all ordered extents
2145 * and wait for them to fully complete - when they complete they update
2146 * the inode's last_trans field through:
2147 *
2148 * btrfs_finish_ordered_io() ->
2149 * btrfs_update_inode_fallback() ->
2150 * btrfs_update_inode() ->
2151 * btrfs_set_inode_last_trans()
2152 *
2153 * So we are sure that last_trans is up to date and can do this check to
2154 * bail out safely. For the fast path, when the full sync flag is not
2155 * set in our inode, we can not do it because we start only our ordered
2156 * extents and don't wait for them to complete (that is when
2157 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2158 * value might be less than or equals to fs_info->last_trans_committed,
2159 * and setting a speculative last_trans for an inode when a buffered
2160 * write is made (such as fs_info->generation + 1 for example) would not
2161 * be reliable since after setting the value and before fsync is called
2162 * any number of transactions can start and commit (transaction kthread
2163 * commits the current transaction periodically), and a transaction
2164 * commit does not start nor waits for ordered extents to complete.
2165 */
2166 smp_mb();
2167 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2168 (full_sync && BTRFS_I(inode)->last_trans <=
2169 fs_info->last_trans_committed) ||
2170 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2171 BTRFS_I(inode)->last_trans
2172 <= fs_info->last_trans_committed)) {
2173 /*
2174 * We've had everything committed since the last time we were
2175 * modified so clear this flag in case it was set for whatever
2176 * reason, it's no longer relevant.
2177 */
2178 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2179 &BTRFS_I(inode)->runtime_flags);
2180 /*
2181 * An ordered extent might have started before and completed
2182 * already with io errors, in which case the inode was not
2183 * updated and we end up here. So check the inode's mapping
2184 * for any errors that might have happened since we last
2185 * checked called fsync.
2186 */
2187 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2188 inode_unlock(inode);
2189 goto out;
2190 }
2191
2192 /*
2193 * ok we haven't committed the transaction yet, lets do a commit
2194 */
2195 if (file->private_data)
2196 btrfs_ioctl_trans_end(file);
2197
2198 /*
2199 * We use start here because we will need to wait on the IO to complete
2200 * in btrfs_sync_log, which could require joining a transaction (for
2201 * example checking cross references in the nocow path). If we use join
2202 * here we could get into a situation where we're waiting on IO to
2203 * happen that is blocked on a transaction trying to commit. With start
2204 * we inc the extwriter counter, so we wait for all extwriters to exit
2205 * before we start blocking join'ers. This comment is to keep somebody
2206 * from thinking they are super smart and changing this to
2207 * btrfs_join_transaction *cough*Josef*cough*.
2208 */
2209 trans = btrfs_start_transaction(root, 0);
2210 if (IS_ERR(trans)) {
2211 ret = PTR_ERR(trans);
2212 inode_unlock(inode);
2213 goto out;
2214 }
2215 trans->sync = true;
2216
2217 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2218 if (ret < 0) {
2219 /* Fallthrough and commit/free transaction. */
2220 ret = 1;
2221 }
2222
2223 /* we've logged all the items and now have a consistent
2224 * version of the file in the log. It is possible that
2225 * someone will come in and modify the file, but that's
2226 * fine because the log is consistent on disk, and we
2227 * have references to all of the file's extents
2228 *
2229 * It is possible that someone will come in and log the
2230 * file again, but that will end up using the synchronization
2231 * inside btrfs_sync_log to keep things safe.
2232 */
2233 inode_unlock(inode);
2234
2235 /*
2236 * If any of the ordered extents had an error, just return it to user
2237 * space, so that the application knows some writes didn't succeed and
2238 * can take proper action (retry for e.g.). Blindly committing the
2239 * transaction in this case, would fool userspace that everything was
2240 * successful. And we also want to make sure our log doesn't contain
2241 * file extent items pointing to extents that weren't fully written to -
2242 * just like in the non fast fsync path, where we check for the ordered
2243 * operation's error flag before writing to the log tree and return -EIO
2244 * if any of them had this flag set (btrfs_wait_ordered_range) -
2245 * therefore we need to check for errors in the ordered operations,
2246 * which are indicated by ctx.io_err.
2247 */
2248 if (ctx.io_err) {
2249 btrfs_end_transaction(trans);
2250 ret = ctx.io_err;
2251 goto out;
2252 }
2253
2254 if (ret != BTRFS_NO_LOG_SYNC) {
2255 if (!ret) {
2256 ret = btrfs_sync_log(trans, root, &ctx);
2257 if (!ret) {
2258 ret = btrfs_end_transaction(trans);
2259 goto out;
2260 }
2261 }
2262 if (!full_sync) {
2263 ret = btrfs_wait_ordered_range(inode, start, len);
2264 if (ret) {
2265 btrfs_end_transaction(trans);
2266 goto out;
2267 }
2268 }
2269 ret = btrfs_commit_transaction(trans);
2270 } else {
2271 ret = btrfs_end_transaction(trans);
2272 }
2273 out:
2274 ASSERT(list_empty(&ctx.list));
2275 err = file_check_and_advance_wb_err(file);
2276 if (!ret)
2277 ret = err;
2278 return ret > 0 ? -EIO : ret;
2279 }
2280
2281 static const struct vm_operations_struct btrfs_file_vm_ops = {
2282 .fault = filemap_fault,
2283 .map_pages = filemap_map_pages,
2284 .page_mkwrite = btrfs_page_mkwrite,
2285 };
2286
2287 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2288 {
2289 struct address_space *mapping = filp->f_mapping;
2290
2291 if (!mapping->a_ops->readpage)
2292 return -ENOEXEC;
2293
2294 file_accessed(filp);
2295 vma->vm_ops = &btrfs_file_vm_ops;
2296
2297 return 0;
2298 }
2299
2300 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2301 int slot, u64 start, u64 end)
2302 {
2303 struct btrfs_file_extent_item *fi;
2304 struct btrfs_key key;
2305
2306 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2307 return 0;
2308
2309 btrfs_item_key_to_cpu(leaf, &key, slot);
2310 if (key.objectid != btrfs_ino(inode) ||
2311 key.type != BTRFS_EXTENT_DATA_KEY)
2312 return 0;
2313
2314 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2315
2316 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2317 return 0;
2318
2319 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2320 return 0;
2321
2322 if (key.offset == end)
2323 return 1;
2324 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2325 return 1;
2326 return 0;
2327 }
2328
2329 static int fill_holes(struct btrfs_trans_handle *trans,
2330 struct btrfs_inode *inode,
2331 struct btrfs_path *path, u64 offset, u64 end)
2332 {
2333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2334 struct btrfs_root *root = inode->root;
2335 struct extent_buffer *leaf;
2336 struct btrfs_file_extent_item *fi;
2337 struct extent_map *hole_em;
2338 struct extent_map_tree *em_tree = &inode->extent_tree;
2339 struct btrfs_key key;
2340 int ret;
2341
2342 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2343 goto out;
2344
2345 key.objectid = btrfs_ino(inode);
2346 key.type = BTRFS_EXTENT_DATA_KEY;
2347 key.offset = offset;
2348
2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2350 if (ret <= 0) {
2351 /*
2352 * We should have dropped this offset, so if we find it then
2353 * something has gone horribly wrong.
2354 */
2355 if (ret == 0)
2356 ret = -EINVAL;
2357 return ret;
2358 }
2359
2360 leaf = path->nodes[0];
2361 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2362 u64 num_bytes;
2363
2364 path->slots[0]--;
2365 fi = btrfs_item_ptr(leaf, path->slots[0],
2366 struct btrfs_file_extent_item);
2367 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2368 end - offset;
2369 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2370 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2371 btrfs_set_file_extent_offset(leaf, fi, 0);
2372 btrfs_mark_buffer_dirty(leaf);
2373 goto out;
2374 }
2375
2376 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2377 u64 num_bytes;
2378
2379 key.offset = offset;
2380 btrfs_set_item_key_safe(fs_info, path, &key);
2381 fi = btrfs_item_ptr(leaf, path->slots[0],
2382 struct btrfs_file_extent_item);
2383 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2384 offset;
2385 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2386 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2387 btrfs_set_file_extent_offset(leaf, fi, 0);
2388 btrfs_mark_buffer_dirty(leaf);
2389 goto out;
2390 }
2391 btrfs_release_path(path);
2392
2393 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2394 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2395 if (ret)
2396 return ret;
2397
2398 out:
2399 btrfs_release_path(path);
2400
2401 hole_em = alloc_extent_map();
2402 if (!hole_em) {
2403 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2405 } else {
2406 hole_em->start = offset;
2407 hole_em->len = end - offset;
2408 hole_em->ram_bytes = hole_em->len;
2409 hole_em->orig_start = offset;
2410
2411 hole_em->block_start = EXTENT_MAP_HOLE;
2412 hole_em->block_len = 0;
2413 hole_em->orig_block_len = 0;
2414 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2415 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2416 hole_em->generation = trans->transid;
2417
2418 do {
2419 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2420 write_lock(&em_tree->lock);
2421 ret = add_extent_mapping(em_tree, hole_em, 1);
2422 write_unlock(&em_tree->lock);
2423 } while (ret == -EEXIST);
2424 free_extent_map(hole_em);
2425 if (ret)
2426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2427 &inode->runtime_flags);
2428 }
2429
2430 return 0;
2431 }
2432
2433 /*
2434 * Find a hole extent on given inode and change start/len to the end of hole
2435 * extent.(hole/vacuum extent whose em->start <= start &&
2436 * em->start + em->len > start)
2437 * When a hole extent is found, return 1 and modify start/len.
2438 */
2439 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2440 {
2441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2442 struct extent_map *em;
2443 int ret = 0;
2444
2445 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2446 round_down(*start, fs_info->sectorsize),
2447 round_up(*len, fs_info->sectorsize), 0);
2448 if (IS_ERR(em))
2449 return PTR_ERR(em);
2450
2451 /* Hole or vacuum extent(only exists in no-hole mode) */
2452 if (em->block_start == EXTENT_MAP_HOLE) {
2453 ret = 1;
2454 *len = em->start + em->len > *start + *len ?
2455 0 : *start + *len - em->start - em->len;
2456 *start = em->start + em->len;
2457 }
2458 free_extent_map(em);
2459 return ret;
2460 }
2461
2462 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2463 {
2464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2465 struct btrfs_root *root = BTRFS_I(inode)->root;
2466 struct extent_state *cached_state = NULL;
2467 struct btrfs_path *path;
2468 struct btrfs_block_rsv *rsv;
2469 struct btrfs_trans_handle *trans;
2470 u64 lockstart;
2471 u64 lockend;
2472 u64 tail_start;
2473 u64 tail_len;
2474 u64 orig_start = offset;
2475 u64 cur_offset;
2476 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2477 u64 drop_end;
2478 int ret = 0;
2479 int err = 0;
2480 unsigned int rsv_count;
2481 bool same_block;
2482 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2483 u64 ino_size;
2484 bool truncated_block = false;
2485 bool updated_inode = false;
2486
2487 ret = btrfs_wait_ordered_range(inode, offset, len);
2488 if (ret)
2489 return ret;
2490
2491 inode_lock(inode);
2492 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2493 ret = find_first_non_hole(inode, &offset, &len);
2494 if (ret < 0)
2495 goto out_only_mutex;
2496 if (ret && !len) {
2497 /* Already in a large hole */
2498 ret = 0;
2499 goto out_only_mutex;
2500 }
2501
2502 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2503 lockend = round_down(offset + len,
2504 btrfs_inode_sectorsize(inode)) - 1;
2505 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2506 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2507 /*
2508 * We needn't truncate any block which is beyond the end of the file
2509 * because we are sure there is no data there.
2510 */
2511 /*
2512 * Only do this if we are in the same block and we aren't doing the
2513 * entire block.
2514 */
2515 if (same_block && len < fs_info->sectorsize) {
2516 if (offset < ino_size) {
2517 truncated_block = true;
2518 ret = btrfs_truncate_block(inode, offset, len, 0);
2519 } else {
2520 ret = 0;
2521 }
2522 goto out_only_mutex;
2523 }
2524
2525 /* zero back part of the first block */
2526 if (offset < ino_size) {
2527 truncated_block = true;
2528 ret = btrfs_truncate_block(inode, offset, 0, 0);
2529 if (ret) {
2530 inode_unlock(inode);
2531 return ret;
2532 }
2533 }
2534
2535 /* Check the aligned pages after the first unaligned page,
2536 * if offset != orig_start, which means the first unaligned page
2537 * including several following pages are already in holes,
2538 * the extra check can be skipped */
2539 if (offset == orig_start) {
2540 /* after truncate page, check hole again */
2541 len = offset + len - lockstart;
2542 offset = lockstart;
2543 ret = find_first_non_hole(inode, &offset, &len);
2544 if (ret < 0)
2545 goto out_only_mutex;
2546 if (ret && !len) {
2547 ret = 0;
2548 goto out_only_mutex;
2549 }
2550 lockstart = offset;
2551 }
2552
2553 /* Check the tail unaligned part is in a hole */
2554 tail_start = lockend + 1;
2555 tail_len = offset + len - tail_start;
2556 if (tail_len) {
2557 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2558 if (unlikely(ret < 0))
2559 goto out_only_mutex;
2560 if (!ret) {
2561 /* zero the front end of the last page */
2562 if (tail_start + tail_len < ino_size) {
2563 truncated_block = true;
2564 ret = btrfs_truncate_block(inode,
2565 tail_start + tail_len,
2566 0, 1);
2567 if (ret)
2568 goto out_only_mutex;
2569 }
2570 }
2571 }
2572
2573 if (lockend < lockstart) {
2574 ret = 0;
2575 goto out_only_mutex;
2576 }
2577
2578 while (1) {
2579 struct btrfs_ordered_extent *ordered;
2580
2581 truncate_pagecache_range(inode, lockstart, lockend);
2582
2583 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2584 &cached_state);
2585 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2586
2587 /*
2588 * We need to make sure we have no ordered extents in this range
2589 * and nobody raced in and read a page in this range, if we did
2590 * we need to try again.
2591 */
2592 if ((!ordered ||
2593 (ordered->file_offset + ordered->len <= lockstart ||
2594 ordered->file_offset > lockend)) &&
2595 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2596 if (ordered)
2597 btrfs_put_ordered_extent(ordered);
2598 break;
2599 }
2600 if (ordered)
2601 btrfs_put_ordered_extent(ordered);
2602 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2603 lockend, &cached_state, GFP_NOFS);
2604 ret = btrfs_wait_ordered_range(inode, lockstart,
2605 lockend - lockstart + 1);
2606 if (ret) {
2607 inode_unlock(inode);
2608 return ret;
2609 }
2610 }
2611
2612 path = btrfs_alloc_path();
2613 if (!path) {
2614 ret = -ENOMEM;
2615 goto out;
2616 }
2617
2618 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2619 if (!rsv) {
2620 ret = -ENOMEM;
2621 goto out_free;
2622 }
2623 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2624 rsv->failfast = 1;
2625
2626 /*
2627 * 1 - update the inode
2628 * 1 - removing the extents in the range
2629 * 1 - adding the hole extent if no_holes isn't set
2630 */
2631 rsv_count = no_holes ? 2 : 3;
2632 trans = btrfs_start_transaction(root, rsv_count);
2633 if (IS_ERR(trans)) {
2634 err = PTR_ERR(trans);
2635 goto out_free;
2636 }
2637
2638 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2639 min_size, 0);
2640 BUG_ON(ret);
2641 trans->block_rsv = rsv;
2642
2643 cur_offset = lockstart;
2644 len = lockend - cur_offset;
2645 while (cur_offset < lockend) {
2646 ret = __btrfs_drop_extents(trans, root, inode, path,
2647 cur_offset, lockend + 1,
2648 &drop_end, 1, 0, 0, NULL);
2649 if (ret != -ENOSPC)
2650 break;
2651
2652 trans->block_rsv = &fs_info->trans_block_rsv;
2653
2654 if (cur_offset < drop_end && cur_offset < ino_size) {
2655 ret = fill_holes(trans, BTRFS_I(inode), path,
2656 cur_offset, drop_end);
2657 if (ret) {
2658 /*
2659 * If we failed then we didn't insert our hole
2660 * entries for the area we dropped, so now the
2661 * fs is corrupted, so we must abort the
2662 * transaction.
2663 */
2664 btrfs_abort_transaction(trans, ret);
2665 err = ret;
2666 break;
2667 }
2668 }
2669
2670 cur_offset = drop_end;
2671
2672 ret = btrfs_update_inode(trans, root, inode);
2673 if (ret) {
2674 err = ret;
2675 break;
2676 }
2677
2678 btrfs_end_transaction(trans);
2679 btrfs_btree_balance_dirty(fs_info);
2680
2681 trans = btrfs_start_transaction(root, rsv_count);
2682 if (IS_ERR(trans)) {
2683 ret = PTR_ERR(trans);
2684 trans = NULL;
2685 break;
2686 }
2687
2688 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2689 rsv, min_size, 0);
2690 BUG_ON(ret); /* shouldn't happen */
2691 trans->block_rsv = rsv;
2692
2693 ret = find_first_non_hole(inode, &cur_offset, &len);
2694 if (unlikely(ret < 0))
2695 break;
2696 if (ret && !len) {
2697 ret = 0;
2698 break;
2699 }
2700 }
2701
2702 if (ret) {
2703 err = ret;
2704 goto out_trans;
2705 }
2706
2707 trans->block_rsv = &fs_info->trans_block_rsv;
2708 /*
2709 * If we are using the NO_HOLES feature we might have had already an
2710 * hole that overlaps a part of the region [lockstart, lockend] and
2711 * ends at (or beyond) lockend. Since we have no file extent items to
2712 * represent holes, drop_end can be less than lockend and so we must
2713 * make sure we have an extent map representing the existing hole (the
2714 * call to __btrfs_drop_extents() might have dropped the existing extent
2715 * map representing the existing hole), otherwise the fast fsync path
2716 * will not record the existence of the hole region
2717 * [existing_hole_start, lockend].
2718 */
2719 if (drop_end <= lockend)
2720 drop_end = lockend + 1;
2721 /*
2722 * Don't insert file hole extent item if it's for a range beyond eof
2723 * (because it's useless) or if it represents a 0 bytes range (when
2724 * cur_offset == drop_end).
2725 */
2726 if (cur_offset < ino_size && cur_offset < drop_end) {
2727 ret = fill_holes(trans, BTRFS_I(inode), path,
2728 cur_offset, drop_end);
2729 if (ret) {
2730 /* Same comment as above. */
2731 btrfs_abort_transaction(trans, ret);
2732 err = ret;
2733 goto out_trans;
2734 }
2735 }
2736
2737 out_trans:
2738 if (!trans)
2739 goto out_free;
2740
2741 inode_inc_iversion(inode);
2742 inode->i_mtime = inode->i_ctime = current_time(inode);
2743
2744 trans->block_rsv = &fs_info->trans_block_rsv;
2745 ret = btrfs_update_inode(trans, root, inode);
2746 updated_inode = true;
2747 btrfs_end_transaction(trans);
2748 btrfs_btree_balance_dirty(fs_info);
2749 out_free:
2750 btrfs_free_path(path);
2751 btrfs_free_block_rsv(fs_info, rsv);
2752 out:
2753 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2754 &cached_state, GFP_NOFS);
2755 out_only_mutex:
2756 if (!updated_inode && truncated_block && !ret && !err) {
2757 /*
2758 * If we only end up zeroing part of a page, we still need to
2759 * update the inode item, so that all the time fields are
2760 * updated as well as the necessary btrfs inode in memory fields
2761 * for detecting, at fsync time, if the inode isn't yet in the
2762 * log tree or it's there but not up to date.
2763 */
2764 trans = btrfs_start_transaction(root, 1);
2765 if (IS_ERR(trans)) {
2766 err = PTR_ERR(trans);
2767 } else {
2768 err = btrfs_update_inode(trans, root, inode);
2769 ret = btrfs_end_transaction(trans);
2770 }
2771 }
2772 inode_unlock(inode);
2773 if (ret && !err)
2774 err = ret;
2775 return err;
2776 }
2777
2778 /* Helper structure to record which range is already reserved */
2779 struct falloc_range {
2780 struct list_head list;
2781 u64 start;
2782 u64 len;
2783 };
2784
2785 /*
2786 * Helper function to add falloc range
2787 *
2788 * Caller should have locked the larger range of extent containing
2789 * [start, len)
2790 */
2791 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2792 {
2793 struct falloc_range *prev = NULL;
2794 struct falloc_range *range = NULL;
2795
2796 if (list_empty(head))
2797 goto insert;
2798
2799 /*
2800 * As fallocate iterate by bytenr order, we only need to check
2801 * the last range.
2802 */
2803 prev = list_entry(head->prev, struct falloc_range, list);
2804 if (prev->start + prev->len == start) {
2805 prev->len += len;
2806 return 0;
2807 }
2808 insert:
2809 range = kmalloc(sizeof(*range), GFP_KERNEL);
2810 if (!range)
2811 return -ENOMEM;
2812 range->start = start;
2813 range->len = len;
2814 list_add_tail(&range->list, head);
2815 return 0;
2816 }
2817
2818 static long btrfs_fallocate(struct file *file, int mode,
2819 loff_t offset, loff_t len)
2820 {
2821 struct inode *inode = file_inode(file);
2822 struct extent_state *cached_state = NULL;
2823 struct extent_changeset *data_reserved = NULL;
2824 struct falloc_range *range;
2825 struct falloc_range *tmp;
2826 struct list_head reserve_list;
2827 u64 cur_offset;
2828 u64 last_byte;
2829 u64 alloc_start;
2830 u64 alloc_end;
2831 u64 alloc_hint = 0;
2832 u64 locked_end;
2833 u64 actual_end = 0;
2834 struct extent_map *em;
2835 int blocksize = btrfs_inode_sectorsize(inode);
2836 int ret;
2837
2838 alloc_start = round_down(offset, blocksize);
2839 alloc_end = round_up(offset + len, blocksize);
2840 cur_offset = alloc_start;
2841
2842 /* Make sure we aren't being give some crap mode */
2843 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2844 return -EOPNOTSUPP;
2845
2846 if (mode & FALLOC_FL_PUNCH_HOLE)
2847 return btrfs_punch_hole(inode, offset, len);
2848
2849 /*
2850 * Only trigger disk allocation, don't trigger qgroup reserve
2851 *
2852 * For qgroup space, it will be checked later.
2853 */
2854 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2855 alloc_end - alloc_start);
2856 if (ret < 0)
2857 return ret;
2858
2859 inode_lock(inode);
2860
2861 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2862 ret = inode_newsize_ok(inode, offset + len);
2863 if (ret)
2864 goto out;
2865 }
2866
2867 /*
2868 * TODO: Move these two operations after we have checked
2869 * accurate reserved space, or fallocate can still fail but
2870 * with page truncated or size expanded.
2871 *
2872 * But that's a minor problem and won't do much harm BTW.
2873 */
2874 if (alloc_start > inode->i_size) {
2875 ret = btrfs_cont_expand(inode, i_size_read(inode),
2876 alloc_start);
2877 if (ret)
2878 goto out;
2879 } else if (offset + len > inode->i_size) {
2880 /*
2881 * If we are fallocating from the end of the file onward we
2882 * need to zero out the end of the block if i_size lands in the
2883 * middle of a block.
2884 */
2885 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2886 if (ret)
2887 goto out;
2888 }
2889
2890 /*
2891 * wait for ordered IO before we have any locks. We'll loop again
2892 * below with the locks held.
2893 */
2894 ret = btrfs_wait_ordered_range(inode, alloc_start,
2895 alloc_end - alloc_start);
2896 if (ret)
2897 goto out;
2898
2899 locked_end = alloc_end - 1;
2900 while (1) {
2901 struct btrfs_ordered_extent *ordered;
2902
2903 /* the extent lock is ordered inside the running
2904 * transaction
2905 */
2906 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2907 locked_end, &cached_state);
2908 ordered = btrfs_lookup_first_ordered_extent(inode,
2909 alloc_end - 1);
2910 if (ordered &&
2911 ordered->file_offset + ordered->len > alloc_start &&
2912 ordered->file_offset < alloc_end) {
2913 btrfs_put_ordered_extent(ordered);
2914 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2915 alloc_start, locked_end,
2916 &cached_state, GFP_KERNEL);
2917 /*
2918 * we can't wait on the range with the transaction
2919 * running or with the extent lock held
2920 */
2921 ret = btrfs_wait_ordered_range(inode, alloc_start,
2922 alloc_end - alloc_start);
2923 if (ret)
2924 goto out;
2925 } else {
2926 if (ordered)
2927 btrfs_put_ordered_extent(ordered);
2928 break;
2929 }
2930 }
2931
2932 /* First, check if we exceed the qgroup limit */
2933 INIT_LIST_HEAD(&reserve_list);
2934 while (1) {
2935 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2936 alloc_end - cur_offset, 0);
2937 if (IS_ERR(em)) {
2938 ret = PTR_ERR(em);
2939 break;
2940 }
2941 last_byte = min(extent_map_end(em), alloc_end);
2942 actual_end = min_t(u64, extent_map_end(em), offset + len);
2943 last_byte = ALIGN(last_byte, blocksize);
2944 if (em->block_start == EXTENT_MAP_HOLE ||
2945 (cur_offset >= inode->i_size &&
2946 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2947 ret = add_falloc_range(&reserve_list, cur_offset,
2948 last_byte - cur_offset);
2949 if (ret < 0) {
2950 free_extent_map(em);
2951 break;
2952 }
2953 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2954 cur_offset, last_byte - cur_offset);
2955 if (ret < 0) {
2956 free_extent_map(em);
2957 break;
2958 }
2959 } else {
2960 /*
2961 * Do not need to reserve unwritten extent for this
2962 * range, free reserved data space first, otherwise
2963 * it'll result in false ENOSPC error.
2964 */
2965 btrfs_free_reserved_data_space(inode, data_reserved,
2966 cur_offset, last_byte - cur_offset);
2967 }
2968 free_extent_map(em);
2969 cur_offset = last_byte;
2970 if (cur_offset >= alloc_end)
2971 break;
2972 }
2973
2974 /*
2975 * If ret is still 0, means we're OK to fallocate.
2976 * Or just cleanup the list and exit.
2977 */
2978 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2979 if (!ret)
2980 ret = btrfs_prealloc_file_range(inode, mode,
2981 range->start,
2982 range->len, i_blocksize(inode),
2983 offset + len, &alloc_hint);
2984 else
2985 btrfs_free_reserved_data_space(inode,
2986 data_reserved, range->start,
2987 range->len);
2988 list_del(&range->list);
2989 kfree(range);
2990 }
2991 if (ret < 0)
2992 goto out_unlock;
2993
2994 if (actual_end > inode->i_size &&
2995 !(mode & FALLOC_FL_KEEP_SIZE)) {
2996 struct btrfs_trans_handle *trans;
2997 struct btrfs_root *root = BTRFS_I(inode)->root;
2998
2999 /*
3000 * We didn't need to allocate any more space, but we
3001 * still extended the size of the file so we need to
3002 * update i_size and the inode item.
3003 */
3004 trans = btrfs_start_transaction(root, 1);
3005 if (IS_ERR(trans)) {
3006 ret = PTR_ERR(trans);
3007 } else {
3008 inode->i_ctime = current_time(inode);
3009 i_size_write(inode, actual_end);
3010 btrfs_ordered_update_i_size(inode, actual_end, NULL);
3011 ret = btrfs_update_inode(trans, root, inode);
3012 if (ret)
3013 btrfs_end_transaction(trans);
3014 else
3015 ret = btrfs_end_transaction(trans);
3016 }
3017 }
3018 out_unlock:
3019 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3020 &cached_state, GFP_KERNEL);
3021 out:
3022 inode_unlock(inode);
3023 /* Let go of our reservation. */
3024 if (ret != 0)
3025 btrfs_free_reserved_data_space(inode, data_reserved,
3026 alloc_start, alloc_end - cur_offset);
3027 extent_changeset_free(data_reserved);
3028 return ret;
3029 }
3030
3031 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3032 {
3033 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3034 struct extent_map *em = NULL;
3035 struct extent_state *cached_state = NULL;
3036 u64 lockstart;
3037 u64 lockend;
3038 u64 start;
3039 u64 len;
3040 int ret = 0;
3041
3042 if (inode->i_size == 0)
3043 return -ENXIO;
3044
3045 /*
3046 * *offset can be negative, in this case we start finding DATA/HOLE from
3047 * the very start of the file.
3048 */
3049 start = max_t(loff_t, 0, *offset);
3050
3051 lockstart = round_down(start, fs_info->sectorsize);
3052 lockend = round_up(i_size_read(inode),
3053 fs_info->sectorsize);
3054 if (lockend <= lockstart)
3055 lockend = lockstart + fs_info->sectorsize;
3056 lockend--;
3057 len = lockend - lockstart + 1;
3058
3059 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3060 &cached_state);
3061
3062 while (start < inode->i_size) {
3063 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3064 start, len, 0);
3065 if (IS_ERR(em)) {
3066 ret = PTR_ERR(em);
3067 em = NULL;
3068 break;
3069 }
3070
3071 if (whence == SEEK_HOLE &&
3072 (em->block_start == EXTENT_MAP_HOLE ||
3073 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3074 break;
3075 else if (whence == SEEK_DATA &&
3076 (em->block_start != EXTENT_MAP_HOLE &&
3077 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3078 break;
3079
3080 start = em->start + em->len;
3081 free_extent_map(em);
3082 em = NULL;
3083 cond_resched();
3084 }
3085 free_extent_map(em);
3086 if (!ret) {
3087 if (whence == SEEK_DATA && start >= inode->i_size)
3088 ret = -ENXIO;
3089 else
3090 *offset = min_t(loff_t, start, inode->i_size);
3091 }
3092 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3093 &cached_state, GFP_NOFS);
3094 return ret;
3095 }
3096
3097 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3098 {
3099 struct inode *inode = file->f_mapping->host;
3100 int ret;
3101
3102 inode_lock(inode);
3103 switch (whence) {
3104 case SEEK_END:
3105 case SEEK_CUR:
3106 offset = generic_file_llseek(file, offset, whence);
3107 goto out;
3108 case SEEK_DATA:
3109 case SEEK_HOLE:
3110 if (offset >= i_size_read(inode)) {
3111 inode_unlock(inode);
3112 return -ENXIO;
3113 }
3114
3115 ret = find_desired_extent(inode, &offset, whence);
3116 if (ret) {
3117 inode_unlock(inode);
3118 return ret;
3119 }
3120 }
3121
3122 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3123 out:
3124 inode_unlock(inode);
3125 return offset;
3126 }
3127
3128 static int btrfs_file_open(struct inode *inode, struct file *filp)
3129 {
3130 filp->f_mode |= FMODE_NOWAIT;
3131 return generic_file_open(inode, filp);
3132 }
3133
3134 const struct file_operations btrfs_file_operations = {
3135 .llseek = btrfs_file_llseek,
3136 .read_iter = generic_file_read_iter,
3137 .splice_read = generic_file_splice_read,
3138 .write_iter = btrfs_file_write_iter,
3139 .mmap = btrfs_file_mmap,
3140 .open = btrfs_file_open,
3141 .release = btrfs_release_file,
3142 .fsync = btrfs_sync_file,
3143 .fallocate = btrfs_fallocate,
3144 .unlocked_ioctl = btrfs_ioctl,
3145 #ifdef CONFIG_COMPAT
3146 .compat_ioctl = btrfs_compat_ioctl,
3147 #endif
3148 .clone_file_range = btrfs_clone_file_range,
3149 .dedupe_file_range = btrfs_dedupe_file_range,
3150 };
3151
3152 void btrfs_auto_defrag_exit(void)
3153 {
3154 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3155 }
3156
3157 int btrfs_auto_defrag_init(void)
3158 {
3159 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3160 sizeof(struct inode_defrag), 0,
3161 SLAB_MEM_SPREAD,
3162 NULL);
3163 if (!btrfs_inode_defrag_cachep)
3164 return -ENOMEM;
3165
3166 return 0;
3167 }
3168
3169 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3170 {
3171 int ret;
3172
3173 /*
3174 * So with compression we will find and lock a dirty page and clear the
3175 * first one as dirty, setup an async extent, and immediately return
3176 * with the entire range locked but with nobody actually marked with
3177 * writeback. So we can't just filemap_write_and_wait_range() and
3178 * expect it to work since it will just kick off a thread to do the
3179 * actual work. So we need to call filemap_fdatawrite_range _again_
3180 * since it will wait on the page lock, which won't be unlocked until
3181 * after the pages have been marked as writeback and so we're good to go
3182 * from there. We have to do this otherwise we'll miss the ordered
3183 * extents and that results in badness. Please Josef, do not think you
3184 * know better and pull this out at some point in the future, it is
3185 * right and you are wrong.
3186 */
3187 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3188 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3189 &BTRFS_I(inode)->runtime_flags))
3190 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3191
3192 return ret;
3193 }