]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/file.c
btrfs: use BUG() instead of BUG_ON(1)
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29
30 static struct kmem_cache *btrfs_inode_defrag_cachep;
31 /*
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
35 */
36 struct inode_defrag {
37 struct rb_node rb_node;
38 /* objectid */
39 u64 ino;
40 /*
41 * transid where the defrag was added, we search for
42 * extents newer than this
43 */
44 u64 transid;
45
46 /* root objectid */
47 u64 root;
48
49 /* last offset we were able to defrag */
50 u64 last_offset;
51
52 /* if we've wrapped around back to zero once already */
53 int cycled;
54 };
55
56 static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 struct inode_defrag *defrag2)
58 {
59 if (defrag1->root > defrag2->root)
60 return 1;
61 else if (defrag1->root < defrag2->root)
62 return -1;
63 else if (defrag1->ino > defrag2->ino)
64 return 1;
65 else if (defrag1->ino < defrag2->ino)
66 return -1;
67 else
68 return 0;
69 }
70
71 /* pop a record for an inode into the defrag tree. The lock
72 * must be held already
73 *
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
76 *
77 * If an existing record is found the defrag item you
78 * pass in is freed
79 */
80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
81 struct inode_defrag *defrag)
82 {
83 struct btrfs_fs_info *fs_info = inode->root->fs_info;
84 struct inode_defrag *entry;
85 struct rb_node **p;
86 struct rb_node *parent = NULL;
87 int ret;
88
89 p = &fs_info->defrag_inodes.rb_node;
90 while (*p) {
91 parent = *p;
92 entry = rb_entry(parent, struct inode_defrag, rb_node);
93
94 ret = __compare_inode_defrag(defrag, entry);
95 if (ret < 0)
96 p = &parent->rb_left;
97 else if (ret > 0)
98 p = &parent->rb_right;
99 else {
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
103 */
104 if (defrag->transid < entry->transid)
105 entry->transid = defrag->transid;
106 if (defrag->last_offset > entry->last_offset)
107 entry->last_offset = defrag->last_offset;
108 return -EEXIST;
109 }
110 }
111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
112 rb_link_node(&defrag->rb_node, parent, p);
113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
114 return 0;
115 }
116
117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
118 {
119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
120 return 0;
121
122 if (btrfs_fs_closing(fs_info))
123 return 0;
124
125 return 1;
126 }
127
128 /*
129 * insert a defrag record for this inode if auto defrag is
130 * enabled
131 */
132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
133 struct btrfs_inode *inode)
134 {
135 struct btrfs_root *root = inode->root;
136 struct btrfs_fs_info *fs_info = root->fs_info;
137 struct inode_defrag *defrag;
138 u64 transid;
139 int ret;
140
141 if (!__need_auto_defrag(fs_info))
142 return 0;
143
144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
145 return 0;
146
147 if (trans)
148 transid = trans->transid;
149 else
150 transid = inode->root->last_trans;
151
152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
153 if (!defrag)
154 return -ENOMEM;
155
156 defrag->ino = btrfs_ino(inode);
157 defrag->transid = transid;
158 defrag->root = root->root_key.objectid;
159
160 spin_lock(&fs_info->defrag_inodes_lock);
161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
162 /*
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 */
167 ret = __btrfs_add_inode_defrag(inode, defrag);
168 if (ret)
169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 } else {
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 }
173 spin_unlock(&fs_info->defrag_inodes_lock);
174 return 0;
175 }
176
177 /*
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
181 */
182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
183 struct inode_defrag *defrag)
184 {
185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
186 int ret;
187
188 if (!__need_auto_defrag(fs_info))
189 goto out;
190
191 /*
192 * Here we don't check the IN_DEFRAG flag, because we need merge
193 * them together.
194 */
195 spin_lock(&fs_info->defrag_inodes_lock);
196 ret = __btrfs_add_inode_defrag(inode, defrag);
197 spin_unlock(&fs_info->defrag_inodes_lock);
198 if (ret)
199 goto out;
200 return;
201 out:
202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203 }
204
205 /*
206 * pick the defragable inode that we want, if it doesn't exist, we will get
207 * the next one.
208 */
209 static struct inode_defrag *
210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
211 {
212 struct inode_defrag *entry = NULL;
213 struct inode_defrag tmp;
214 struct rb_node *p;
215 struct rb_node *parent = NULL;
216 int ret;
217
218 tmp.ino = ino;
219 tmp.root = root;
220
221 spin_lock(&fs_info->defrag_inodes_lock);
222 p = fs_info->defrag_inodes.rb_node;
223 while (p) {
224 parent = p;
225 entry = rb_entry(parent, struct inode_defrag, rb_node);
226
227 ret = __compare_inode_defrag(&tmp, entry);
228 if (ret < 0)
229 p = parent->rb_left;
230 else if (ret > 0)
231 p = parent->rb_right;
232 else
233 goto out;
234 }
235
236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 parent = rb_next(parent);
238 if (parent)
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 else
241 entry = NULL;
242 }
243 out:
244 if (entry)
245 rb_erase(parent, &fs_info->defrag_inodes);
246 spin_unlock(&fs_info->defrag_inodes_lock);
247 return entry;
248 }
249
250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
251 {
252 struct inode_defrag *defrag;
253 struct rb_node *node;
254
255 spin_lock(&fs_info->defrag_inodes_lock);
256 node = rb_first(&fs_info->defrag_inodes);
257 while (node) {
258 rb_erase(node, &fs_info->defrag_inodes);
259 defrag = rb_entry(node, struct inode_defrag, rb_node);
260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261
262 cond_resched_lock(&fs_info->defrag_inodes_lock);
263
264 node = rb_first(&fs_info->defrag_inodes);
265 }
266 spin_unlock(&fs_info->defrag_inodes_lock);
267 }
268
269 #define BTRFS_DEFRAG_BATCH 1024
270
271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 struct inode_defrag *defrag)
273 {
274 struct btrfs_root *inode_root;
275 struct inode *inode;
276 struct btrfs_key key;
277 struct btrfs_ioctl_defrag_range_args range;
278 int num_defrag;
279 int index;
280 int ret;
281
282 /* get the inode */
283 key.objectid = defrag->root;
284 key.type = BTRFS_ROOT_ITEM_KEY;
285 key.offset = (u64)-1;
286
287 index = srcu_read_lock(&fs_info->subvol_srcu);
288
289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 if (IS_ERR(inode_root)) {
291 ret = PTR_ERR(inode_root);
292 goto cleanup;
293 }
294
295 key.objectid = defrag->ino;
296 key.type = BTRFS_INODE_ITEM_KEY;
297 key.offset = 0;
298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 if (IS_ERR(inode)) {
300 ret = PTR_ERR(inode);
301 goto cleanup;
302 }
303 srcu_read_unlock(&fs_info->subvol_srcu, index);
304
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
307 memset(&range, 0, sizeof(range));
308 range.len = (u64)-1;
309 range.start = defrag->last_offset;
310
311 sb_start_write(fs_info->sb);
312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 BTRFS_DEFRAG_BATCH);
314 sb_end_write(fs_info->sb);
315 /*
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
318 * again
319 */
320 if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 defrag->last_offset = range.start;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 } else if (defrag->last_offset && !defrag->cycled) {
324 /*
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
328 */
329 defrag->last_offset = 0;
330 defrag->cycled = 1;
331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
332 } else {
333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 }
335
336 iput(inode);
337 return 0;
338 cleanup:
339 srcu_read_unlock(&fs_info->subvol_srcu, index);
340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 return ret;
342 }
343
344 /*
345 * run through the list of inodes in the FS that need
346 * defragging
347 */
348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349 {
350 struct inode_defrag *defrag;
351 u64 first_ino = 0;
352 u64 root_objectid = 0;
353
354 atomic_inc(&fs_info->defrag_running);
355 while (1) {
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 &fs_info->fs_state))
359 break;
360
361 if (!__need_auto_defrag(fs_info))
362 break;
363
364 /* find an inode to defrag */
365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 first_ino);
367 if (!defrag) {
368 if (root_objectid || first_ino) {
369 root_objectid = 0;
370 first_ino = 0;
371 continue;
372 } else {
373 break;
374 }
375 }
376
377 first_ino = defrag->ino + 1;
378 root_objectid = defrag->root;
379
380 __btrfs_run_defrag_inode(fs_info, defrag);
381 }
382 atomic_dec(&fs_info->defrag_running);
383
384 /*
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
387 */
388 wake_up(&fs_info->transaction_wait);
389 return 0;
390 }
391
392 /* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
394 */
395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
396 struct page **prepared_pages,
397 struct iov_iter *i)
398 {
399 size_t copied = 0;
400 size_t total_copied = 0;
401 int pg = 0;
402 int offset = offset_in_page(pos);
403
404 while (write_bytes > 0) {
405 size_t count = min_t(size_t,
406 PAGE_SIZE - offset, write_bytes);
407 struct page *page = prepared_pages[pg];
408 /*
409 * Copy data from userspace to the current page
410 */
411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
412
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page);
415
416 /*
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
421 *
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
424 */
425 if (!PageUptodate(page) && copied < count)
426 copied = 0;
427
428 iov_iter_advance(i, copied);
429 write_bytes -= copied;
430 total_copied += copied;
431
432 /* Return to btrfs_file_write_iter to fault page */
433 if (unlikely(copied == 0))
434 break;
435
436 if (copied < PAGE_SIZE - offset) {
437 offset += copied;
438 } else {
439 pg++;
440 offset = 0;
441 }
442 }
443 return total_copied;
444 }
445
446 /*
447 * unlocks pages after btrfs_file_write is done with them
448 */
449 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
450 {
451 size_t i;
452 for (i = 0; i < num_pages; i++) {
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
458 */
459 ClearPageChecked(pages[i]);
460 unlock_page(pages[i]);
461 put_page(pages[i]);
462 }
463 }
464
465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 const u64 start,
467 const u64 len,
468 struct extent_state **cached_state)
469 {
470 u64 search_start = start;
471 const u64 end = start + len - 1;
472
473 while (search_start < end) {
474 const u64 search_len = end - search_start + 1;
475 struct extent_map *em;
476 u64 em_len;
477 int ret = 0;
478
479 em = btrfs_get_extent(inode, NULL, 0, search_start,
480 search_len, 0);
481 if (IS_ERR(em))
482 return PTR_ERR(em);
483
484 if (em->block_start != EXTENT_MAP_HOLE)
485 goto next;
486
487 em_len = em->len;
488 if (em->start < search_start)
489 em_len -= search_start - em->start;
490 if (em_len > search_len)
491 em_len = search_len;
492
493 ret = set_extent_bit(&inode->io_tree, search_start,
494 search_start + em_len - 1,
495 EXTENT_DELALLOC_NEW,
496 NULL, cached_state, GFP_NOFS);
497 next:
498 search_start = extent_map_end(em);
499 free_extent_map(em);
500 if (ret)
501 return ret;
502 }
503 return 0;
504 }
505
506 /*
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
510 *
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
513 */
514 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 size_t num_pages, loff_t pos, size_t write_bytes,
516 struct extent_state **cached)
517 {
518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
519 int err = 0;
520 int i;
521 u64 num_bytes;
522 u64 start_pos;
523 u64 end_of_last_block;
524 u64 end_pos = pos + write_bytes;
525 loff_t isize = i_size_read(inode);
526 unsigned int extra_bits = 0;
527
528 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
529 num_bytes = round_up(write_bytes + pos - start_pos,
530 fs_info->sectorsize);
531
532 end_of_last_block = start_pos + num_bytes - 1;
533
534 /*
535 * The pages may have already been dirty, clear out old accounting so
536 * we can set things up properly
537 */
538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
539 EXTENT_DIRTY | EXTENT_DELALLOC |
540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
541
542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
543 if (start_pos >= isize &&
544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
545 /*
546 * There can't be any extents following eof in this case
547 * so just set the delalloc new bit for the range
548 * directly.
549 */
550 extra_bits |= EXTENT_DELALLOC_NEW;
551 } else {
552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
553 start_pos,
554 num_bytes, cached);
555 if (err)
556 return err;
557 }
558 }
559
560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
561 extra_bits, cached, 0);
562 if (err)
563 return err;
564
565 for (i = 0; i < num_pages; i++) {
566 struct page *p = pages[i];
567 SetPageUptodate(p);
568 ClearPageChecked(p);
569 set_page_dirty(p);
570 }
571
572 /*
573 * we've only changed i_size in ram, and we haven't updated
574 * the disk i_size. There is no need to log the inode
575 * at this time.
576 */
577 if (end_pos > isize)
578 i_size_write(inode, end_pos);
579 return 0;
580 }
581
582 /*
583 * this drops all the extents in the cache that intersect the range
584 * [start, end]. Existing extents are split as required.
585 */
586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
587 int skip_pinned)
588 {
589 struct extent_map *em;
590 struct extent_map *split = NULL;
591 struct extent_map *split2 = NULL;
592 struct extent_map_tree *em_tree = &inode->extent_tree;
593 u64 len = end - start + 1;
594 u64 gen;
595 int ret;
596 int testend = 1;
597 unsigned long flags;
598 int compressed = 0;
599 bool modified;
600
601 WARN_ON(end < start);
602 if (end == (u64)-1) {
603 len = (u64)-1;
604 testend = 0;
605 }
606 while (1) {
607 int no_splits = 0;
608
609 modified = false;
610 if (!split)
611 split = alloc_extent_map();
612 if (!split2)
613 split2 = alloc_extent_map();
614 if (!split || !split2)
615 no_splits = 1;
616
617 write_lock(&em_tree->lock);
618 em = lookup_extent_mapping(em_tree, start, len);
619 if (!em) {
620 write_unlock(&em_tree->lock);
621 break;
622 }
623 flags = em->flags;
624 gen = em->generation;
625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
626 if (testend && em->start + em->len >= start + len) {
627 free_extent_map(em);
628 write_unlock(&em_tree->lock);
629 break;
630 }
631 start = em->start + em->len;
632 if (testend)
633 len = start + len - (em->start + em->len);
634 free_extent_map(em);
635 write_unlock(&em_tree->lock);
636 continue;
637 }
638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
639 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
640 clear_bit(EXTENT_FLAG_LOGGING, &flags);
641 modified = !list_empty(&em->list);
642 if (no_splits)
643 goto next;
644
645 if (em->start < start) {
646 split->start = em->start;
647 split->len = start - em->start;
648
649 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
650 split->orig_start = em->orig_start;
651 split->block_start = em->block_start;
652
653 if (compressed)
654 split->block_len = em->block_len;
655 else
656 split->block_len = split->len;
657 split->orig_block_len = max(split->block_len,
658 em->orig_block_len);
659 split->ram_bytes = em->ram_bytes;
660 } else {
661 split->orig_start = split->start;
662 split->block_len = 0;
663 split->block_start = em->block_start;
664 split->orig_block_len = 0;
665 split->ram_bytes = split->len;
666 }
667
668 split->generation = gen;
669 split->bdev = em->bdev;
670 split->flags = flags;
671 split->compress_type = em->compress_type;
672 replace_extent_mapping(em_tree, em, split, modified);
673 free_extent_map(split);
674 split = split2;
675 split2 = NULL;
676 }
677 if (testend && em->start + em->len > start + len) {
678 u64 diff = start + len - em->start;
679
680 split->start = start + len;
681 split->len = em->start + em->len - (start + len);
682 split->bdev = em->bdev;
683 split->flags = flags;
684 split->compress_type = em->compress_type;
685 split->generation = gen;
686
687 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
688 split->orig_block_len = max(em->block_len,
689 em->orig_block_len);
690
691 split->ram_bytes = em->ram_bytes;
692 if (compressed) {
693 split->block_len = em->block_len;
694 split->block_start = em->block_start;
695 split->orig_start = em->orig_start;
696 } else {
697 split->block_len = split->len;
698 split->block_start = em->block_start
699 + diff;
700 split->orig_start = em->orig_start;
701 }
702 } else {
703 split->ram_bytes = split->len;
704 split->orig_start = split->start;
705 split->block_len = 0;
706 split->block_start = em->block_start;
707 split->orig_block_len = 0;
708 }
709
710 if (extent_map_in_tree(em)) {
711 replace_extent_mapping(em_tree, em, split,
712 modified);
713 } else {
714 ret = add_extent_mapping(em_tree, split,
715 modified);
716 ASSERT(ret == 0); /* Logic error */
717 }
718 free_extent_map(split);
719 split = NULL;
720 }
721 next:
722 if (extent_map_in_tree(em))
723 remove_extent_mapping(em_tree, em);
724 write_unlock(&em_tree->lock);
725
726 /* once for us */
727 free_extent_map(em);
728 /* once for the tree*/
729 free_extent_map(em);
730 }
731 if (split)
732 free_extent_map(split);
733 if (split2)
734 free_extent_map(split2);
735 }
736
737 /*
738 * this is very complex, but the basic idea is to drop all extents
739 * in the range start - end. hint_block is filled in with a block number
740 * that would be a good hint to the block allocator for this file.
741 *
742 * If an extent intersects the range but is not entirely inside the range
743 * it is either truncated or split. Anything entirely inside the range
744 * is deleted from the tree.
745 */
746 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, struct inode *inode,
748 struct btrfs_path *path, u64 start, u64 end,
749 u64 *drop_end, int drop_cache,
750 int replace_extent,
751 u32 extent_item_size,
752 int *key_inserted)
753 {
754 struct btrfs_fs_info *fs_info = root->fs_info;
755 struct extent_buffer *leaf;
756 struct btrfs_file_extent_item *fi;
757 struct btrfs_key key;
758 struct btrfs_key new_key;
759 u64 ino = btrfs_ino(BTRFS_I(inode));
760 u64 search_start = start;
761 u64 disk_bytenr = 0;
762 u64 num_bytes = 0;
763 u64 extent_offset = 0;
764 u64 extent_end = 0;
765 u64 last_end = start;
766 int del_nr = 0;
767 int del_slot = 0;
768 int extent_type;
769 int recow;
770 int ret;
771 int modify_tree = -1;
772 int update_refs;
773 int found = 0;
774 int leafs_visited = 0;
775
776 if (drop_cache)
777 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
778
779 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
780 modify_tree = 0;
781
782 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
783 root == fs_info->tree_root);
784 while (1) {
785 recow = 0;
786 ret = btrfs_lookup_file_extent(trans, root, path, ino,
787 search_start, modify_tree);
788 if (ret < 0)
789 break;
790 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
791 leaf = path->nodes[0];
792 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
793 if (key.objectid == ino &&
794 key.type == BTRFS_EXTENT_DATA_KEY)
795 path->slots[0]--;
796 }
797 ret = 0;
798 leafs_visited++;
799 next_slot:
800 leaf = path->nodes[0];
801 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
802 BUG_ON(del_nr > 0);
803 ret = btrfs_next_leaf(root, path);
804 if (ret < 0)
805 break;
806 if (ret > 0) {
807 ret = 0;
808 break;
809 }
810 leafs_visited++;
811 leaf = path->nodes[0];
812 recow = 1;
813 }
814
815 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
816
817 if (key.objectid > ino)
818 break;
819 if (WARN_ON_ONCE(key.objectid < ino) ||
820 key.type < BTRFS_EXTENT_DATA_KEY) {
821 ASSERT(del_nr == 0);
822 path->slots[0]++;
823 goto next_slot;
824 }
825 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
826 break;
827
828 fi = btrfs_item_ptr(leaf, path->slots[0],
829 struct btrfs_file_extent_item);
830 extent_type = btrfs_file_extent_type(leaf, fi);
831
832 if (extent_type == BTRFS_FILE_EXTENT_REG ||
833 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
834 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
835 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
836 extent_offset = btrfs_file_extent_offset(leaf, fi);
837 extent_end = key.offset +
838 btrfs_file_extent_num_bytes(leaf, fi);
839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
840 extent_end = key.offset +
841 btrfs_file_extent_ram_bytes(leaf, fi);
842 } else {
843 /* can't happen */
844 BUG();
845 }
846
847 /*
848 * Don't skip extent items representing 0 byte lengths. They
849 * used to be created (bug) if while punching holes we hit
850 * -ENOSPC condition. So if we find one here, just ensure we
851 * delete it, otherwise we would insert a new file extent item
852 * with the same key (offset) as that 0 bytes length file
853 * extent item in the call to setup_items_for_insert() later
854 * in this function.
855 */
856 if (extent_end == key.offset && extent_end >= search_start) {
857 last_end = extent_end;
858 goto delete_extent_item;
859 }
860
861 if (extent_end <= search_start) {
862 path->slots[0]++;
863 goto next_slot;
864 }
865
866 found = 1;
867 search_start = max(key.offset, start);
868 if (recow || !modify_tree) {
869 modify_tree = -1;
870 btrfs_release_path(path);
871 continue;
872 }
873
874 /*
875 * | - range to drop - |
876 * | -------- extent -------- |
877 */
878 if (start > key.offset && end < extent_end) {
879 BUG_ON(del_nr > 0);
880 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
881 ret = -EOPNOTSUPP;
882 break;
883 }
884
885 memcpy(&new_key, &key, sizeof(new_key));
886 new_key.offset = start;
887 ret = btrfs_duplicate_item(trans, root, path,
888 &new_key);
889 if (ret == -EAGAIN) {
890 btrfs_release_path(path);
891 continue;
892 }
893 if (ret < 0)
894 break;
895
896 leaf = path->nodes[0];
897 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
898 struct btrfs_file_extent_item);
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901
902 fi = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_file_extent_item);
904
905 extent_offset += start - key.offset;
906 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
907 btrfs_set_file_extent_num_bytes(leaf, fi,
908 extent_end - start);
909 btrfs_mark_buffer_dirty(leaf);
910
911 if (update_refs && disk_bytenr > 0) {
912 ret = btrfs_inc_extent_ref(trans, root,
913 disk_bytenr, num_bytes, 0,
914 root->root_key.objectid,
915 new_key.objectid,
916 start - extent_offset);
917 BUG_ON(ret); /* -ENOMEM */
918 }
919 key.offset = start;
920 }
921 /*
922 * From here on out we will have actually dropped something, so
923 * last_end can be updated.
924 */
925 last_end = extent_end;
926
927 /*
928 * | ---- range to drop ----- |
929 * | -------- extent -------- |
930 */
931 if (start <= key.offset && end < extent_end) {
932 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
933 ret = -EOPNOTSUPP;
934 break;
935 }
936
937 memcpy(&new_key, &key, sizeof(new_key));
938 new_key.offset = end;
939 btrfs_set_item_key_safe(fs_info, path, &new_key);
940
941 extent_offset += end - key.offset;
942 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
943 btrfs_set_file_extent_num_bytes(leaf, fi,
944 extent_end - end);
945 btrfs_mark_buffer_dirty(leaf);
946 if (update_refs && disk_bytenr > 0)
947 inode_sub_bytes(inode, end - key.offset);
948 break;
949 }
950
951 search_start = extent_end;
952 /*
953 * | ---- range to drop ----- |
954 * | -------- extent -------- |
955 */
956 if (start > key.offset && end >= extent_end) {
957 BUG_ON(del_nr > 0);
958 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
959 ret = -EOPNOTSUPP;
960 break;
961 }
962
963 btrfs_set_file_extent_num_bytes(leaf, fi,
964 start - key.offset);
965 btrfs_mark_buffer_dirty(leaf);
966 if (update_refs && disk_bytenr > 0)
967 inode_sub_bytes(inode, extent_end - start);
968 if (end == extent_end)
969 break;
970
971 path->slots[0]++;
972 goto next_slot;
973 }
974
975 /*
976 * | ---- range to drop ----- |
977 * | ------ extent ------ |
978 */
979 if (start <= key.offset && end >= extent_end) {
980 delete_extent_item:
981 if (del_nr == 0) {
982 del_slot = path->slots[0];
983 del_nr = 1;
984 } else {
985 BUG_ON(del_slot + del_nr != path->slots[0]);
986 del_nr++;
987 }
988
989 if (update_refs &&
990 extent_type == BTRFS_FILE_EXTENT_INLINE) {
991 inode_sub_bytes(inode,
992 extent_end - key.offset);
993 extent_end = ALIGN(extent_end,
994 fs_info->sectorsize);
995 } else if (update_refs && disk_bytenr > 0) {
996 ret = btrfs_free_extent(trans, root,
997 disk_bytenr, num_bytes, 0,
998 root->root_key.objectid,
999 key.objectid, key.offset -
1000 extent_offset);
1001 BUG_ON(ret); /* -ENOMEM */
1002 inode_sub_bytes(inode,
1003 extent_end - key.offset);
1004 }
1005
1006 if (end == extent_end)
1007 break;
1008
1009 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1010 path->slots[0]++;
1011 goto next_slot;
1012 }
1013
1014 ret = btrfs_del_items(trans, root, path, del_slot,
1015 del_nr);
1016 if (ret) {
1017 btrfs_abort_transaction(trans, ret);
1018 break;
1019 }
1020
1021 del_nr = 0;
1022 del_slot = 0;
1023
1024 btrfs_release_path(path);
1025 continue;
1026 }
1027
1028 BUG();
1029 }
1030
1031 if (!ret && del_nr > 0) {
1032 /*
1033 * Set path->slots[0] to first slot, so that after the delete
1034 * if items are move off from our leaf to its immediate left or
1035 * right neighbor leafs, we end up with a correct and adjusted
1036 * path->slots[0] for our insertion (if replace_extent != 0).
1037 */
1038 path->slots[0] = del_slot;
1039 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1040 if (ret)
1041 btrfs_abort_transaction(trans, ret);
1042 }
1043
1044 leaf = path->nodes[0];
1045 /*
1046 * If btrfs_del_items() was called, it might have deleted a leaf, in
1047 * which case it unlocked our path, so check path->locks[0] matches a
1048 * write lock.
1049 */
1050 if (!ret && replace_extent && leafs_visited == 1 &&
1051 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1052 path->locks[0] == BTRFS_WRITE_LOCK) &&
1053 btrfs_leaf_free_space(fs_info, leaf) >=
1054 sizeof(struct btrfs_item) + extent_item_size) {
1055
1056 key.objectid = ino;
1057 key.type = BTRFS_EXTENT_DATA_KEY;
1058 key.offset = start;
1059 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1060 struct btrfs_key slot_key;
1061
1062 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1063 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1064 path->slots[0]++;
1065 }
1066 setup_items_for_insert(root, path, &key,
1067 &extent_item_size,
1068 extent_item_size,
1069 sizeof(struct btrfs_item) +
1070 extent_item_size, 1);
1071 *key_inserted = 1;
1072 }
1073
1074 if (!replace_extent || !(*key_inserted))
1075 btrfs_release_path(path);
1076 if (drop_end)
1077 *drop_end = found ? min(end, last_end) : end;
1078 return ret;
1079 }
1080
1081 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1082 struct btrfs_root *root, struct inode *inode, u64 start,
1083 u64 end, int drop_cache)
1084 {
1085 struct btrfs_path *path;
1086 int ret;
1087
1088 path = btrfs_alloc_path();
1089 if (!path)
1090 return -ENOMEM;
1091 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1092 drop_cache, 0, 0, NULL);
1093 btrfs_free_path(path);
1094 return ret;
1095 }
1096
1097 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1098 u64 objectid, u64 bytenr, u64 orig_offset,
1099 u64 *start, u64 *end)
1100 {
1101 struct btrfs_file_extent_item *fi;
1102 struct btrfs_key key;
1103 u64 extent_end;
1104
1105 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1106 return 0;
1107
1108 btrfs_item_key_to_cpu(leaf, &key, slot);
1109 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1110 return 0;
1111
1112 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1113 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1114 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1115 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1116 btrfs_file_extent_compression(leaf, fi) ||
1117 btrfs_file_extent_encryption(leaf, fi) ||
1118 btrfs_file_extent_other_encoding(leaf, fi))
1119 return 0;
1120
1121 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1122 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1123 return 0;
1124
1125 *start = key.offset;
1126 *end = extent_end;
1127 return 1;
1128 }
1129
1130 /*
1131 * Mark extent in the range start - end as written.
1132 *
1133 * This changes extent type from 'pre-allocated' to 'regular'. If only
1134 * part of extent is marked as written, the extent will be split into
1135 * two or three.
1136 */
1137 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1138 struct btrfs_inode *inode, u64 start, u64 end)
1139 {
1140 struct btrfs_fs_info *fs_info = trans->fs_info;
1141 struct btrfs_root *root = inode->root;
1142 struct extent_buffer *leaf;
1143 struct btrfs_path *path;
1144 struct btrfs_file_extent_item *fi;
1145 struct btrfs_key key;
1146 struct btrfs_key new_key;
1147 u64 bytenr;
1148 u64 num_bytes;
1149 u64 extent_end;
1150 u64 orig_offset;
1151 u64 other_start;
1152 u64 other_end;
1153 u64 split;
1154 int del_nr = 0;
1155 int del_slot = 0;
1156 int recow;
1157 int ret;
1158 u64 ino = btrfs_ino(inode);
1159
1160 path = btrfs_alloc_path();
1161 if (!path)
1162 return -ENOMEM;
1163 again:
1164 recow = 0;
1165 split = start;
1166 key.objectid = ino;
1167 key.type = BTRFS_EXTENT_DATA_KEY;
1168 key.offset = split;
1169
1170 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1171 if (ret < 0)
1172 goto out;
1173 if (ret > 0 && path->slots[0] > 0)
1174 path->slots[0]--;
1175
1176 leaf = path->nodes[0];
1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1178 if (key.objectid != ino ||
1179 key.type != BTRFS_EXTENT_DATA_KEY) {
1180 ret = -EINVAL;
1181 btrfs_abort_transaction(trans, ret);
1182 goto out;
1183 }
1184 fi = btrfs_item_ptr(leaf, path->slots[0],
1185 struct btrfs_file_extent_item);
1186 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1187 ret = -EINVAL;
1188 btrfs_abort_transaction(trans, ret);
1189 goto out;
1190 }
1191 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1192 if (key.offset > start || extent_end < end) {
1193 ret = -EINVAL;
1194 btrfs_abort_transaction(trans, ret);
1195 goto out;
1196 }
1197
1198 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1199 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1200 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1201 memcpy(&new_key, &key, sizeof(new_key));
1202
1203 if (start == key.offset && end < extent_end) {
1204 other_start = 0;
1205 other_end = start;
1206 if (extent_mergeable(leaf, path->slots[0] - 1,
1207 ino, bytenr, orig_offset,
1208 &other_start, &other_end)) {
1209 new_key.offset = end;
1210 btrfs_set_item_key_safe(fs_info, path, &new_key);
1211 fi = btrfs_item_ptr(leaf, path->slots[0],
1212 struct btrfs_file_extent_item);
1213 btrfs_set_file_extent_generation(leaf, fi,
1214 trans->transid);
1215 btrfs_set_file_extent_num_bytes(leaf, fi,
1216 extent_end - end);
1217 btrfs_set_file_extent_offset(leaf, fi,
1218 end - orig_offset);
1219 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1220 struct btrfs_file_extent_item);
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 end - other_start);
1225 btrfs_mark_buffer_dirty(leaf);
1226 goto out;
1227 }
1228 }
1229
1230 if (start > key.offset && end == extent_end) {
1231 other_start = end;
1232 other_end = 0;
1233 if (extent_mergeable(leaf, path->slots[0] + 1,
1234 ino, bytenr, orig_offset,
1235 &other_start, &other_end)) {
1236 fi = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_file_extent_item);
1238 btrfs_set_file_extent_num_bytes(leaf, fi,
1239 start - key.offset);
1240 btrfs_set_file_extent_generation(leaf, fi,
1241 trans->transid);
1242 path->slots[0]++;
1243 new_key.offset = start;
1244 btrfs_set_item_key_safe(fs_info, path, &new_key);
1245
1246 fi = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_file_extent_item);
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
1250 btrfs_set_file_extent_num_bytes(leaf, fi,
1251 other_end - start);
1252 btrfs_set_file_extent_offset(leaf, fi,
1253 start - orig_offset);
1254 btrfs_mark_buffer_dirty(leaf);
1255 goto out;
1256 }
1257 }
1258
1259 while (start > key.offset || end < extent_end) {
1260 if (key.offset == start)
1261 split = end;
1262
1263 new_key.offset = split;
1264 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1265 if (ret == -EAGAIN) {
1266 btrfs_release_path(path);
1267 goto again;
1268 }
1269 if (ret < 0) {
1270 btrfs_abort_transaction(trans, ret);
1271 goto out;
1272 }
1273
1274 leaf = path->nodes[0];
1275 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1276 struct btrfs_file_extent_item);
1277 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1278 btrfs_set_file_extent_num_bytes(leaf, fi,
1279 split - key.offset);
1280
1281 fi = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_file_extent_item);
1283
1284 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1285 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1286 btrfs_set_file_extent_num_bytes(leaf, fi,
1287 extent_end - split);
1288 btrfs_mark_buffer_dirty(leaf);
1289
1290 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1291 0, root->root_key.objectid,
1292 ino, orig_offset);
1293 if (ret) {
1294 btrfs_abort_transaction(trans, ret);
1295 goto out;
1296 }
1297
1298 if (split == start) {
1299 key.offset = start;
1300 } else {
1301 if (start != key.offset) {
1302 ret = -EINVAL;
1303 btrfs_abort_transaction(trans, ret);
1304 goto out;
1305 }
1306 path->slots[0]--;
1307 extent_end = end;
1308 }
1309 recow = 1;
1310 }
1311
1312 other_start = end;
1313 other_end = 0;
1314 if (extent_mergeable(leaf, path->slots[0] + 1,
1315 ino, bytenr, orig_offset,
1316 &other_start, &other_end)) {
1317 if (recow) {
1318 btrfs_release_path(path);
1319 goto again;
1320 }
1321 extent_end = other_end;
1322 del_slot = path->slots[0] + 1;
1323 del_nr++;
1324 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1325 0, root->root_key.objectid,
1326 ino, orig_offset);
1327 if (ret) {
1328 btrfs_abort_transaction(trans, ret);
1329 goto out;
1330 }
1331 }
1332 other_start = 0;
1333 other_end = start;
1334 if (extent_mergeable(leaf, path->slots[0] - 1,
1335 ino, bytenr, orig_offset,
1336 &other_start, &other_end)) {
1337 if (recow) {
1338 btrfs_release_path(path);
1339 goto again;
1340 }
1341 key.offset = other_start;
1342 del_slot = path->slots[0];
1343 del_nr++;
1344 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1345 0, root->root_key.objectid,
1346 ino, orig_offset);
1347 if (ret) {
1348 btrfs_abort_transaction(trans, ret);
1349 goto out;
1350 }
1351 }
1352 if (del_nr == 0) {
1353 fi = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_file_extent_item);
1355 btrfs_set_file_extent_type(leaf, fi,
1356 BTRFS_FILE_EXTENT_REG);
1357 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1358 btrfs_mark_buffer_dirty(leaf);
1359 } else {
1360 fi = btrfs_item_ptr(leaf, del_slot - 1,
1361 struct btrfs_file_extent_item);
1362 btrfs_set_file_extent_type(leaf, fi,
1363 BTRFS_FILE_EXTENT_REG);
1364 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1365 btrfs_set_file_extent_num_bytes(leaf, fi,
1366 extent_end - key.offset);
1367 btrfs_mark_buffer_dirty(leaf);
1368
1369 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1370 if (ret < 0) {
1371 btrfs_abort_transaction(trans, ret);
1372 goto out;
1373 }
1374 }
1375 out:
1376 btrfs_free_path(path);
1377 return 0;
1378 }
1379
1380 /*
1381 * on error we return an unlocked page and the error value
1382 * on success we return a locked page and 0
1383 */
1384 static int prepare_uptodate_page(struct inode *inode,
1385 struct page *page, u64 pos,
1386 bool force_uptodate)
1387 {
1388 int ret = 0;
1389
1390 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1391 !PageUptodate(page)) {
1392 ret = btrfs_readpage(NULL, page);
1393 if (ret)
1394 return ret;
1395 lock_page(page);
1396 if (!PageUptodate(page)) {
1397 unlock_page(page);
1398 return -EIO;
1399 }
1400 if (page->mapping != inode->i_mapping) {
1401 unlock_page(page);
1402 return -EAGAIN;
1403 }
1404 }
1405 return 0;
1406 }
1407
1408 /*
1409 * this just gets pages into the page cache and locks them down.
1410 */
1411 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1412 size_t num_pages, loff_t pos,
1413 size_t write_bytes, bool force_uptodate)
1414 {
1415 int i;
1416 unsigned long index = pos >> PAGE_SHIFT;
1417 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1418 int err = 0;
1419 int faili;
1420
1421 for (i = 0; i < num_pages; i++) {
1422 again:
1423 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1424 mask | __GFP_WRITE);
1425 if (!pages[i]) {
1426 faili = i - 1;
1427 err = -ENOMEM;
1428 goto fail;
1429 }
1430
1431 if (i == 0)
1432 err = prepare_uptodate_page(inode, pages[i], pos,
1433 force_uptodate);
1434 if (!err && i == num_pages - 1)
1435 err = prepare_uptodate_page(inode, pages[i],
1436 pos + write_bytes, false);
1437 if (err) {
1438 put_page(pages[i]);
1439 if (err == -EAGAIN) {
1440 err = 0;
1441 goto again;
1442 }
1443 faili = i - 1;
1444 goto fail;
1445 }
1446 wait_on_page_writeback(pages[i]);
1447 }
1448
1449 return 0;
1450 fail:
1451 while (faili >= 0) {
1452 unlock_page(pages[faili]);
1453 put_page(pages[faili]);
1454 faili--;
1455 }
1456 return err;
1457
1458 }
1459
1460 /*
1461 * This function locks the extent and properly waits for data=ordered extents
1462 * to finish before allowing the pages to be modified if need.
1463 *
1464 * The return value:
1465 * 1 - the extent is locked
1466 * 0 - the extent is not locked, and everything is OK
1467 * -EAGAIN - need re-prepare the pages
1468 * the other < 0 number - Something wrong happens
1469 */
1470 static noinline int
1471 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1472 size_t num_pages, loff_t pos,
1473 size_t write_bytes,
1474 u64 *lockstart, u64 *lockend,
1475 struct extent_state **cached_state)
1476 {
1477 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1478 u64 start_pos;
1479 u64 last_pos;
1480 int i;
1481 int ret = 0;
1482
1483 start_pos = round_down(pos, fs_info->sectorsize);
1484 last_pos = start_pos
1485 + round_up(pos + write_bytes - start_pos,
1486 fs_info->sectorsize) - 1;
1487
1488 if (start_pos < inode->vfs_inode.i_size) {
1489 struct btrfs_ordered_extent *ordered;
1490
1491 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1492 cached_state);
1493 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1494 last_pos - start_pos + 1);
1495 if (ordered &&
1496 ordered->file_offset + ordered->len > start_pos &&
1497 ordered->file_offset <= last_pos) {
1498 unlock_extent_cached(&inode->io_tree, start_pos,
1499 last_pos, cached_state);
1500 for (i = 0; i < num_pages; i++) {
1501 unlock_page(pages[i]);
1502 put_page(pages[i]);
1503 }
1504 btrfs_start_ordered_extent(&inode->vfs_inode,
1505 ordered, 1);
1506 btrfs_put_ordered_extent(ordered);
1507 return -EAGAIN;
1508 }
1509 if (ordered)
1510 btrfs_put_ordered_extent(ordered);
1511
1512 *lockstart = start_pos;
1513 *lockend = last_pos;
1514 ret = 1;
1515 }
1516
1517 /*
1518 * It's possible the pages are dirty right now, but we don't want
1519 * to clean them yet because copy_from_user may catch a page fault
1520 * and we might have to fall back to one page at a time. If that
1521 * happens, we'll unlock these pages and we'd have a window where
1522 * reclaim could sneak in and drop the once-dirty page on the floor
1523 * without writing it.
1524 *
1525 * We have the pages locked and the extent range locked, so there's
1526 * no way someone can start IO on any dirty pages in this range.
1527 *
1528 * We'll call btrfs_dirty_pages() later on, and that will flip around
1529 * delalloc bits and dirty the pages as required.
1530 */
1531 for (i = 0; i < num_pages; i++) {
1532 set_page_extent_mapped(pages[i]);
1533 WARN_ON(!PageLocked(pages[i]));
1534 }
1535
1536 return ret;
1537 }
1538
1539 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1540 size_t *write_bytes)
1541 {
1542 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1543 struct btrfs_root *root = inode->root;
1544 struct btrfs_ordered_extent *ordered;
1545 u64 lockstart, lockend;
1546 u64 num_bytes;
1547 int ret;
1548
1549 ret = btrfs_start_write_no_snapshotting(root);
1550 if (!ret)
1551 return -ENOSPC;
1552
1553 lockstart = round_down(pos, fs_info->sectorsize);
1554 lockend = round_up(pos + *write_bytes,
1555 fs_info->sectorsize) - 1;
1556
1557 while (1) {
1558 lock_extent(&inode->io_tree, lockstart, lockend);
1559 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1560 lockend - lockstart + 1);
1561 if (!ordered) {
1562 break;
1563 }
1564 unlock_extent(&inode->io_tree, lockstart, lockend);
1565 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1566 btrfs_put_ordered_extent(ordered);
1567 }
1568
1569 num_bytes = lockend - lockstart + 1;
1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 NULL, NULL, NULL);
1572 if (ret <= 0) {
1573 ret = 0;
1574 btrfs_end_write_no_snapshotting(root);
1575 } else {
1576 *write_bytes = min_t(size_t, *write_bytes ,
1577 num_bytes - pos + lockstart);
1578 }
1579
1580 unlock_extent(&inode->io_tree, lockstart, lockend);
1581
1582 return ret;
1583 }
1584
1585 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586 struct iov_iter *i)
1587 {
1588 struct file *file = iocb->ki_filp;
1589 loff_t pos = iocb->ki_pos;
1590 struct inode *inode = file_inode(file);
1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 struct page **pages = NULL;
1594 struct extent_state *cached_state = NULL;
1595 struct extent_changeset *data_reserved = NULL;
1596 u64 release_bytes = 0;
1597 u64 lockstart;
1598 u64 lockend;
1599 size_t num_written = 0;
1600 int nrptrs;
1601 int ret = 0;
1602 bool only_release_metadata = false;
1603 bool force_page_uptodate = false;
1604
1605 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1606 PAGE_SIZE / (sizeof(struct page *)));
1607 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1608 nrptrs = max(nrptrs, 8);
1609 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1610 if (!pages)
1611 return -ENOMEM;
1612
1613 while (iov_iter_count(i) > 0) {
1614 size_t offset = offset_in_page(pos);
1615 size_t sector_offset;
1616 size_t write_bytes = min(iov_iter_count(i),
1617 nrptrs * (size_t)PAGE_SIZE -
1618 offset);
1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620 PAGE_SIZE);
1621 size_t reserve_bytes;
1622 size_t dirty_pages;
1623 size_t copied;
1624 size_t dirty_sectors;
1625 size_t num_sectors;
1626 int extents_locked;
1627
1628 WARN_ON(num_pages > nrptrs);
1629
1630 /*
1631 * Fault pages before locking them in prepare_pages
1632 * to avoid recursive lock
1633 */
1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1635 ret = -EFAULT;
1636 break;
1637 }
1638
1639 sector_offset = pos & (fs_info->sectorsize - 1);
1640 reserve_bytes = round_up(write_bytes + sector_offset,
1641 fs_info->sectorsize);
1642
1643 extent_changeset_release(data_reserved);
1644 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1645 write_bytes);
1646 if (ret < 0) {
1647 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1648 BTRFS_INODE_PREALLOC)) &&
1649 check_can_nocow(BTRFS_I(inode), pos,
1650 &write_bytes) > 0) {
1651 /*
1652 * For nodata cow case, no need to reserve
1653 * data space.
1654 */
1655 only_release_metadata = true;
1656 /*
1657 * our prealloc extent may be smaller than
1658 * write_bytes, so scale down.
1659 */
1660 num_pages = DIV_ROUND_UP(write_bytes + offset,
1661 PAGE_SIZE);
1662 reserve_bytes = round_up(write_bytes +
1663 sector_offset,
1664 fs_info->sectorsize);
1665 } else {
1666 break;
1667 }
1668 }
1669
1670 WARN_ON(reserve_bytes == 0);
1671 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1672 reserve_bytes);
1673 if (ret) {
1674 if (!only_release_metadata)
1675 btrfs_free_reserved_data_space(inode,
1676 data_reserved, pos,
1677 write_bytes);
1678 else
1679 btrfs_end_write_no_snapshotting(root);
1680 break;
1681 }
1682
1683 release_bytes = reserve_bytes;
1684 again:
1685 /*
1686 * This is going to setup the pages array with the number of
1687 * pages we want, so we don't really need to worry about the
1688 * contents of pages from loop to loop
1689 */
1690 ret = prepare_pages(inode, pages, num_pages,
1691 pos, write_bytes,
1692 force_page_uptodate);
1693 if (ret) {
1694 btrfs_delalloc_release_extents(BTRFS_I(inode),
1695 reserve_bytes, true);
1696 break;
1697 }
1698
1699 extents_locked = lock_and_cleanup_extent_if_need(
1700 BTRFS_I(inode), pages,
1701 num_pages, pos, write_bytes, &lockstart,
1702 &lockend, &cached_state);
1703 if (extents_locked < 0) {
1704 if (extents_locked == -EAGAIN)
1705 goto again;
1706 btrfs_delalloc_release_extents(BTRFS_I(inode),
1707 reserve_bytes, true);
1708 ret = extents_locked;
1709 break;
1710 }
1711
1712 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1713
1714 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1715 dirty_sectors = round_up(copied + sector_offset,
1716 fs_info->sectorsize);
1717 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1718
1719 /*
1720 * if we have trouble faulting in the pages, fall
1721 * back to one page at a time
1722 */
1723 if (copied < write_bytes)
1724 nrptrs = 1;
1725
1726 if (copied == 0) {
1727 force_page_uptodate = true;
1728 dirty_sectors = 0;
1729 dirty_pages = 0;
1730 } else {
1731 force_page_uptodate = false;
1732 dirty_pages = DIV_ROUND_UP(copied + offset,
1733 PAGE_SIZE);
1734 }
1735
1736 if (num_sectors > dirty_sectors) {
1737 /* release everything except the sectors we dirtied */
1738 release_bytes -= dirty_sectors <<
1739 fs_info->sb->s_blocksize_bits;
1740 if (only_release_metadata) {
1741 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1742 release_bytes, true);
1743 } else {
1744 u64 __pos;
1745
1746 __pos = round_down(pos,
1747 fs_info->sectorsize) +
1748 (dirty_pages << PAGE_SHIFT);
1749 btrfs_delalloc_release_space(inode,
1750 data_reserved, __pos,
1751 release_bytes, true);
1752 }
1753 }
1754
1755 release_bytes = round_up(copied + sector_offset,
1756 fs_info->sectorsize);
1757
1758 if (copied > 0)
1759 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1760 pos, copied, &cached_state);
1761 if (extents_locked)
1762 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1763 lockstart, lockend, &cached_state);
1764 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1765 true);
1766 if (ret) {
1767 btrfs_drop_pages(pages, num_pages);
1768 break;
1769 }
1770
1771 release_bytes = 0;
1772 if (only_release_metadata)
1773 btrfs_end_write_no_snapshotting(root);
1774
1775 if (only_release_metadata && copied > 0) {
1776 lockstart = round_down(pos,
1777 fs_info->sectorsize);
1778 lockend = round_up(pos + copied,
1779 fs_info->sectorsize) - 1;
1780
1781 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1782 lockend, EXTENT_NORESERVE, NULL,
1783 NULL, GFP_NOFS);
1784 only_release_metadata = false;
1785 }
1786
1787 btrfs_drop_pages(pages, num_pages);
1788
1789 cond_resched();
1790
1791 balance_dirty_pages_ratelimited(inode->i_mapping);
1792 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1793 btrfs_btree_balance_dirty(fs_info);
1794
1795 pos += copied;
1796 num_written += copied;
1797 }
1798
1799 kfree(pages);
1800
1801 if (release_bytes) {
1802 if (only_release_metadata) {
1803 btrfs_end_write_no_snapshotting(root);
1804 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1805 release_bytes, true);
1806 } else {
1807 btrfs_delalloc_release_space(inode, data_reserved,
1808 round_down(pos, fs_info->sectorsize),
1809 release_bytes, true);
1810 }
1811 }
1812
1813 extent_changeset_free(data_reserved);
1814 return num_written ? num_written : ret;
1815 }
1816
1817 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1818 {
1819 struct file *file = iocb->ki_filp;
1820 struct inode *inode = file_inode(file);
1821 loff_t pos;
1822 ssize_t written;
1823 ssize_t written_buffered;
1824 loff_t endbyte;
1825 int err;
1826
1827 written = generic_file_direct_write(iocb, from);
1828
1829 if (written < 0 || !iov_iter_count(from))
1830 return written;
1831
1832 pos = iocb->ki_pos;
1833 written_buffered = btrfs_buffered_write(iocb, from);
1834 if (written_buffered < 0) {
1835 err = written_buffered;
1836 goto out;
1837 }
1838 /*
1839 * Ensure all data is persisted. We want the next direct IO read to be
1840 * able to read what was just written.
1841 */
1842 endbyte = pos + written_buffered - 1;
1843 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1844 if (err)
1845 goto out;
1846 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1847 if (err)
1848 goto out;
1849 written += written_buffered;
1850 iocb->ki_pos = pos + written_buffered;
1851 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1852 endbyte >> PAGE_SHIFT);
1853 out:
1854 return written ? written : err;
1855 }
1856
1857 static void update_time_for_write(struct inode *inode)
1858 {
1859 struct timespec64 now;
1860
1861 if (IS_NOCMTIME(inode))
1862 return;
1863
1864 now = current_time(inode);
1865 if (!timespec64_equal(&inode->i_mtime, &now))
1866 inode->i_mtime = now;
1867
1868 if (!timespec64_equal(&inode->i_ctime, &now))
1869 inode->i_ctime = now;
1870
1871 if (IS_I_VERSION(inode))
1872 inode_inc_iversion(inode);
1873 }
1874
1875 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1876 struct iov_iter *from)
1877 {
1878 struct file *file = iocb->ki_filp;
1879 struct inode *inode = file_inode(file);
1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1881 struct btrfs_root *root = BTRFS_I(inode)->root;
1882 u64 start_pos;
1883 u64 end_pos;
1884 ssize_t num_written = 0;
1885 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1886 ssize_t err;
1887 loff_t pos;
1888 size_t count = iov_iter_count(from);
1889 loff_t oldsize;
1890 int clean_page = 0;
1891
1892 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1893 (iocb->ki_flags & IOCB_NOWAIT))
1894 return -EOPNOTSUPP;
1895
1896 if (!inode_trylock(inode)) {
1897 if (iocb->ki_flags & IOCB_NOWAIT)
1898 return -EAGAIN;
1899 inode_lock(inode);
1900 }
1901
1902 err = generic_write_checks(iocb, from);
1903 if (err <= 0) {
1904 inode_unlock(inode);
1905 return err;
1906 }
1907
1908 pos = iocb->ki_pos;
1909 if (iocb->ki_flags & IOCB_NOWAIT) {
1910 /*
1911 * We will allocate space in case nodatacow is not set,
1912 * so bail
1913 */
1914 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1915 BTRFS_INODE_PREALLOC)) ||
1916 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1917 inode_unlock(inode);
1918 return -EAGAIN;
1919 }
1920 }
1921
1922 current->backing_dev_info = inode_to_bdi(inode);
1923 err = file_remove_privs(file);
1924 if (err) {
1925 inode_unlock(inode);
1926 goto out;
1927 }
1928
1929 /*
1930 * If BTRFS flips readonly due to some impossible error
1931 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1932 * although we have opened a file as writable, we have
1933 * to stop this write operation to ensure FS consistency.
1934 */
1935 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1936 inode_unlock(inode);
1937 err = -EROFS;
1938 goto out;
1939 }
1940
1941 /*
1942 * We reserve space for updating the inode when we reserve space for the
1943 * extent we are going to write, so we will enospc out there. We don't
1944 * need to start yet another transaction to update the inode as we will
1945 * update the inode when we finish writing whatever data we write.
1946 */
1947 update_time_for_write(inode);
1948
1949 start_pos = round_down(pos, fs_info->sectorsize);
1950 oldsize = i_size_read(inode);
1951 if (start_pos > oldsize) {
1952 /* Expand hole size to cover write data, preventing empty gap */
1953 end_pos = round_up(pos + count,
1954 fs_info->sectorsize);
1955 err = btrfs_cont_expand(inode, oldsize, end_pos);
1956 if (err) {
1957 inode_unlock(inode);
1958 goto out;
1959 }
1960 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1961 clean_page = 1;
1962 }
1963
1964 if (sync)
1965 atomic_inc(&BTRFS_I(inode)->sync_writers);
1966
1967 if (iocb->ki_flags & IOCB_DIRECT) {
1968 num_written = __btrfs_direct_write(iocb, from);
1969 } else {
1970 num_written = btrfs_buffered_write(iocb, from);
1971 if (num_written > 0)
1972 iocb->ki_pos = pos + num_written;
1973 if (clean_page)
1974 pagecache_isize_extended(inode, oldsize,
1975 i_size_read(inode));
1976 }
1977
1978 inode_unlock(inode);
1979
1980 /*
1981 * We also have to set last_sub_trans to the current log transid,
1982 * otherwise subsequent syncs to a file that's been synced in this
1983 * transaction will appear to have already occurred.
1984 */
1985 spin_lock(&BTRFS_I(inode)->lock);
1986 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1987 spin_unlock(&BTRFS_I(inode)->lock);
1988 if (num_written > 0)
1989 num_written = generic_write_sync(iocb, num_written);
1990
1991 if (sync)
1992 atomic_dec(&BTRFS_I(inode)->sync_writers);
1993 out:
1994 current->backing_dev_info = NULL;
1995 return num_written ? num_written : err;
1996 }
1997
1998 int btrfs_release_file(struct inode *inode, struct file *filp)
1999 {
2000 struct btrfs_file_private *private = filp->private_data;
2001
2002 if (private && private->filldir_buf)
2003 kfree(private->filldir_buf);
2004 kfree(private);
2005 filp->private_data = NULL;
2006
2007 /*
2008 * ordered_data_close is set by setattr when we are about to truncate
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2012 */
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 &BTRFS_I(inode)->runtime_flags))
2015 filemap_flush(inode->i_mapping);
2016 return 0;
2017 }
2018
2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020 {
2021 int ret;
2022 struct blk_plug plug;
2023
2024 /*
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2029 */
2030 blk_start_plug(&plug);
2031 atomic_inc(&BTRFS_I(inode)->sync_writers);
2032 ret = btrfs_fdatawrite_range(inode, start, end);
2033 atomic_dec(&BTRFS_I(inode)->sync_writers);
2034 blk_finish_plug(&plug);
2035
2036 return ret;
2037 }
2038
2039 /*
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2042 *
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2045 *
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2049 */
2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2051 {
2052 struct dentry *dentry = file_dentry(file);
2053 struct inode *inode = d_inode(dentry);
2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055 struct btrfs_root *root = BTRFS_I(inode)->root;
2056 struct btrfs_trans_handle *trans;
2057 struct btrfs_log_ctx ctx;
2058 int ret = 0, err;
2059 u64 len;
2060
2061 /*
2062 * The range length can be represented by u64, we have to do the typecasts
2063 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2064 */
2065 len = (u64)end - (u64)start + 1;
2066 trace_btrfs_sync_file(file, datasync);
2067
2068 btrfs_init_log_ctx(&ctx, inode);
2069
2070 /*
2071 * We write the dirty pages in the range and wait until they complete
2072 * out of the ->i_mutex. If so, we can flush the dirty pages by
2073 * multi-task, and make the performance up. See
2074 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2075 */
2076 ret = start_ordered_ops(inode, start, end);
2077 if (ret)
2078 goto out;
2079
2080 inode_lock(inode);
2081
2082 /*
2083 * We take the dio_sem here because the tree log stuff can race with
2084 * lockless dio writes and get an extent map logged for an extent we
2085 * never waited on. We need it this high up for lockdep reasons.
2086 */
2087 down_write(&BTRFS_I(inode)->dio_sem);
2088
2089 atomic_inc(&root->log_batch);
2090
2091 /*
2092 * Before we acquired the inode's lock, someone may have dirtied more
2093 * pages in the target range. We need to make sure that writeback for
2094 * any such pages does not start while we are logging the inode, because
2095 * if it does, any of the following might happen when we are not doing a
2096 * full inode sync:
2097 *
2098 * 1) We log an extent after its writeback finishes but before its
2099 * checksums are added to the csum tree, leading to -EIO errors
2100 * when attempting to read the extent after a log replay.
2101 *
2102 * 2) We can end up logging an extent before its writeback finishes.
2103 * Therefore after the log replay we will have a file extent item
2104 * pointing to an unwritten extent (and no data checksums as well).
2105 *
2106 * So trigger writeback for any eventual new dirty pages and then we
2107 * wait for all ordered extents to complete below.
2108 */
2109 ret = start_ordered_ops(inode, start, end);
2110 if (ret) {
2111 inode_unlock(inode);
2112 goto out;
2113 }
2114
2115 /*
2116 * We have to do this here to avoid the priority inversion of waiting on
2117 * IO of a lower priority task while holding a transaction open.
2118 */
2119 ret = btrfs_wait_ordered_range(inode, start, len);
2120 if (ret) {
2121 up_write(&BTRFS_I(inode)->dio_sem);
2122 inode_unlock(inode);
2123 goto out;
2124 }
2125 atomic_inc(&root->log_batch);
2126
2127 smp_mb();
2128 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2129 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2130 /*
2131 * We've had everything committed since the last time we were
2132 * modified so clear this flag in case it was set for whatever
2133 * reason, it's no longer relevant.
2134 */
2135 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2136 &BTRFS_I(inode)->runtime_flags);
2137 /*
2138 * An ordered extent might have started before and completed
2139 * already with io errors, in which case the inode was not
2140 * updated and we end up here. So check the inode's mapping
2141 * for any errors that might have happened since we last
2142 * checked called fsync.
2143 */
2144 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2145 up_write(&BTRFS_I(inode)->dio_sem);
2146 inode_unlock(inode);
2147 goto out;
2148 }
2149
2150 /*
2151 * We use start here because we will need to wait on the IO to complete
2152 * in btrfs_sync_log, which could require joining a transaction (for
2153 * example checking cross references in the nocow path). If we use join
2154 * here we could get into a situation where we're waiting on IO to
2155 * happen that is blocked on a transaction trying to commit. With start
2156 * we inc the extwriter counter, so we wait for all extwriters to exit
2157 * before we start blocking joiners. This comment is to keep somebody
2158 * from thinking they are super smart and changing this to
2159 * btrfs_join_transaction *cough*Josef*cough*.
2160 */
2161 trans = btrfs_start_transaction(root, 0);
2162 if (IS_ERR(trans)) {
2163 ret = PTR_ERR(trans);
2164 up_write(&BTRFS_I(inode)->dio_sem);
2165 inode_unlock(inode);
2166 goto out;
2167 }
2168
2169 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2170 if (ret < 0) {
2171 /* Fallthrough and commit/free transaction. */
2172 ret = 1;
2173 }
2174
2175 /* we've logged all the items and now have a consistent
2176 * version of the file in the log. It is possible that
2177 * someone will come in and modify the file, but that's
2178 * fine because the log is consistent on disk, and we
2179 * have references to all of the file's extents
2180 *
2181 * It is possible that someone will come in and log the
2182 * file again, but that will end up using the synchronization
2183 * inside btrfs_sync_log to keep things safe.
2184 */
2185 up_write(&BTRFS_I(inode)->dio_sem);
2186 inode_unlock(inode);
2187
2188 if (ret != BTRFS_NO_LOG_SYNC) {
2189 if (!ret) {
2190 ret = btrfs_sync_log(trans, root, &ctx);
2191 if (!ret) {
2192 ret = btrfs_end_transaction(trans);
2193 goto out;
2194 }
2195 }
2196 ret = btrfs_commit_transaction(trans);
2197 } else {
2198 ret = btrfs_end_transaction(trans);
2199 }
2200 out:
2201 ASSERT(list_empty(&ctx.list));
2202 err = file_check_and_advance_wb_err(file);
2203 if (!ret)
2204 ret = err;
2205 return ret > 0 ? -EIO : ret;
2206 }
2207
2208 static const struct vm_operations_struct btrfs_file_vm_ops = {
2209 .fault = filemap_fault,
2210 .map_pages = filemap_map_pages,
2211 .page_mkwrite = btrfs_page_mkwrite,
2212 };
2213
2214 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2215 {
2216 struct address_space *mapping = filp->f_mapping;
2217
2218 if (!mapping->a_ops->readpage)
2219 return -ENOEXEC;
2220
2221 file_accessed(filp);
2222 vma->vm_ops = &btrfs_file_vm_ops;
2223
2224 return 0;
2225 }
2226
2227 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2228 int slot, u64 start, u64 end)
2229 {
2230 struct btrfs_file_extent_item *fi;
2231 struct btrfs_key key;
2232
2233 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2234 return 0;
2235
2236 btrfs_item_key_to_cpu(leaf, &key, slot);
2237 if (key.objectid != btrfs_ino(inode) ||
2238 key.type != BTRFS_EXTENT_DATA_KEY)
2239 return 0;
2240
2241 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2242
2243 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2244 return 0;
2245
2246 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2247 return 0;
2248
2249 if (key.offset == end)
2250 return 1;
2251 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2252 return 1;
2253 return 0;
2254 }
2255
2256 static int fill_holes(struct btrfs_trans_handle *trans,
2257 struct btrfs_inode *inode,
2258 struct btrfs_path *path, u64 offset, u64 end)
2259 {
2260 struct btrfs_fs_info *fs_info = trans->fs_info;
2261 struct btrfs_root *root = inode->root;
2262 struct extent_buffer *leaf;
2263 struct btrfs_file_extent_item *fi;
2264 struct extent_map *hole_em;
2265 struct extent_map_tree *em_tree = &inode->extent_tree;
2266 struct btrfs_key key;
2267 int ret;
2268
2269 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2270 goto out;
2271
2272 key.objectid = btrfs_ino(inode);
2273 key.type = BTRFS_EXTENT_DATA_KEY;
2274 key.offset = offset;
2275
2276 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2277 if (ret <= 0) {
2278 /*
2279 * We should have dropped this offset, so if we find it then
2280 * something has gone horribly wrong.
2281 */
2282 if (ret == 0)
2283 ret = -EINVAL;
2284 return ret;
2285 }
2286
2287 leaf = path->nodes[0];
2288 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2289 u64 num_bytes;
2290
2291 path->slots[0]--;
2292 fi = btrfs_item_ptr(leaf, path->slots[0],
2293 struct btrfs_file_extent_item);
2294 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2295 end - offset;
2296 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2297 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2298 btrfs_set_file_extent_offset(leaf, fi, 0);
2299 btrfs_mark_buffer_dirty(leaf);
2300 goto out;
2301 }
2302
2303 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2304 u64 num_bytes;
2305
2306 key.offset = offset;
2307 btrfs_set_item_key_safe(fs_info, path, &key);
2308 fi = btrfs_item_ptr(leaf, path->slots[0],
2309 struct btrfs_file_extent_item);
2310 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2311 offset;
2312 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2313 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2314 btrfs_set_file_extent_offset(leaf, fi, 0);
2315 btrfs_mark_buffer_dirty(leaf);
2316 goto out;
2317 }
2318 btrfs_release_path(path);
2319
2320 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2321 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2322 if (ret)
2323 return ret;
2324
2325 out:
2326 btrfs_release_path(path);
2327
2328 hole_em = alloc_extent_map();
2329 if (!hole_em) {
2330 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2331 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2332 } else {
2333 hole_em->start = offset;
2334 hole_em->len = end - offset;
2335 hole_em->ram_bytes = hole_em->len;
2336 hole_em->orig_start = offset;
2337
2338 hole_em->block_start = EXTENT_MAP_HOLE;
2339 hole_em->block_len = 0;
2340 hole_em->orig_block_len = 0;
2341 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2342 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2343 hole_em->generation = trans->transid;
2344
2345 do {
2346 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2347 write_lock(&em_tree->lock);
2348 ret = add_extent_mapping(em_tree, hole_em, 1);
2349 write_unlock(&em_tree->lock);
2350 } while (ret == -EEXIST);
2351 free_extent_map(hole_em);
2352 if (ret)
2353 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2354 &inode->runtime_flags);
2355 }
2356
2357 return 0;
2358 }
2359
2360 /*
2361 * Find a hole extent on given inode and change start/len to the end of hole
2362 * extent.(hole/vacuum extent whose em->start <= start &&
2363 * em->start + em->len > start)
2364 * When a hole extent is found, return 1 and modify start/len.
2365 */
2366 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2367 {
2368 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2369 struct extent_map *em;
2370 int ret = 0;
2371
2372 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2373 round_down(*start, fs_info->sectorsize),
2374 round_up(*len, fs_info->sectorsize), 0);
2375 if (IS_ERR(em))
2376 return PTR_ERR(em);
2377
2378 /* Hole or vacuum extent(only exists in no-hole mode) */
2379 if (em->block_start == EXTENT_MAP_HOLE) {
2380 ret = 1;
2381 *len = em->start + em->len > *start + *len ?
2382 0 : *start + *len - em->start - em->len;
2383 *start = em->start + em->len;
2384 }
2385 free_extent_map(em);
2386 return ret;
2387 }
2388
2389 static int btrfs_punch_hole_lock_range(struct inode *inode,
2390 const u64 lockstart,
2391 const u64 lockend,
2392 struct extent_state **cached_state)
2393 {
2394 while (1) {
2395 struct btrfs_ordered_extent *ordered;
2396 int ret;
2397
2398 truncate_pagecache_range(inode, lockstart, lockend);
2399
2400 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2401 cached_state);
2402 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2403
2404 /*
2405 * We need to make sure we have no ordered extents in this range
2406 * and nobody raced in and read a page in this range, if we did
2407 * we need to try again.
2408 */
2409 if ((!ordered ||
2410 (ordered->file_offset + ordered->len <= lockstart ||
2411 ordered->file_offset > lockend)) &&
2412 !filemap_range_has_page(inode->i_mapping,
2413 lockstart, lockend)) {
2414 if (ordered)
2415 btrfs_put_ordered_extent(ordered);
2416 break;
2417 }
2418 if (ordered)
2419 btrfs_put_ordered_extent(ordered);
2420 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2421 lockend, cached_state);
2422 ret = btrfs_wait_ordered_range(inode, lockstart,
2423 lockend - lockstart + 1);
2424 if (ret)
2425 return ret;
2426 }
2427 return 0;
2428 }
2429
2430 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2431 {
2432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2433 struct btrfs_root *root = BTRFS_I(inode)->root;
2434 struct extent_state *cached_state = NULL;
2435 struct btrfs_path *path;
2436 struct btrfs_block_rsv *rsv;
2437 struct btrfs_trans_handle *trans;
2438 u64 lockstart;
2439 u64 lockend;
2440 u64 tail_start;
2441 u64 tail_len;
2442 u64 orig_start = offset;
2443 u64 cur_offset;
2444 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2445 u64 drop_end;
2446 int ret = 0;
2447 int err = 0;
2448 unsigned int rsv_count;
2449 bool same_block;
2450 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2451 u64 ino_size;
2452 bool truncated_block = false;
2453 bool updated_inode = false;
2454
2455 ret = btrfs_wait_ordered_range(inode, offset, len);
2456 if (ret)
2457 return ret;
2458
2459 inode_lock(inode);
2460 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2461 ret = find_first_non_hole(inode, &offset, &len);
2462 if (ret < 0)
2463 goto out_only_mutex;
2464 if (ret && !len) {
2465 /* Already in a large hole */
2466 ret = 0;
2467 goto out_only_mutex;
2468 }
2469
2470 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2471 lockend = round_down(offset + len,
2472 btrfs_inode_sectorsize(inode)) - 1;
2473 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2474 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2475 /*
2476 * We needn't truncate any block which is beyond the end of the file
2477 * because we are sure there is no data there.
2478 */
2479 /*
2480 * Only do this if we are in the same block and we aren't doing the
2481 * entire block.
2482 */
2483 if (same_block && len < fs_info->sectorsize) {
2484 if (offset < ino_size) {
2485 truncated_block = true;
2486 ret = btrfs_truncate_block(inode, offset, len, 0);
2487 } else {
2488 ret = 0;
2489 }
2490 goto out_only_mutex;
2491 }
2492
2493 /* zero back part of the first block */
2494 if (offset < ino_size) {
2495 truncated_block = true;
2496 ret = btrfs_truncate_block(inode, offset, 0, 0);
2497 if (ret) {
2498 inode_unlock(inode);
2499 return ret;
2500 }
2501 }
2502
2503 /* Check the aligned pages after the first unaligned page,
2504 * if offset != orig_start, which means the first unaligned page
2505 * including several following pages are already in holes,
2506 * the extra check can be skipped */
2507 if (offset == orig_start) {
2508 /* after truncate page, check hole again */
2509 len = offset + len - lockstart;
2510 offset = lockstart;
2511 ret = find_first_non_hole(inode, &offset, &len);
2512 if (ret < 0)
2513 goto out_only_mutex;
2514 if (ret && !len) {
2515 ret = 0;
2516 goto out_only_mutex;
2517 }
2518 lockstart = offset;
2519 }
2520
2521 /* Check the tail unaligned part is in a hole */
2522 tail_start = lockend + 1;
2523 tail_len = offset + len - tail_start;
2524 if (tail_len) {
2525 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2526 if (unlikely(ret < 0))
2527 goto out_only_mutex;
2528 if (!ret) {
2529 /* zero the front end of the last page */
2530 if (tail_start + tail_len < ino_size) {
2531 truncated_block = true;
2532 ret = btrfs_truncate_block(inode,
2533 tail_start + tail_len,
2534 0, 1);
2535 if (ret)
2536 goto out_only_mutex;
2537 }
2538 }
2539 }
2540
2541 if (lockend < lockstart) {
2542 ret = 0;
2543 goto out_only_mutex;
2544 }
2545
2546 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2547 &cached_state);
2548 if (ret) {
2549 inode_unlock(inode);
2550 goto out_only_mutex;
2551 }
2552
2553 path = btrfs_alloc_path();
2554 if (!path) {
2555 ret = -ENOMEM;
2556 goto out;
2557 }
2558
2559 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2560 if (!rsv) {
2561 ret = -ENOMEM;
2562 goto out_free;
2563 }
2564 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2565 rsv->failfast = 1;
2566
2567 /*
2568 * 1 - update the inode
2569 * 1 - removing the extents in the range
2570 * 1 - adding the hole extent if no_holes isn't set
2571 */
2572 rsv_count = no_holes ? 2 : 3;
2573 trans = btrfs_start_transaction(root, rsv_count);
2574 if (IS_ERR(trans)) {
2575 err = PTR_ERR(trans);
2576 goto out_free;
2577 }
2578
2579 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2580 min_size, false);
2581 BUG_ON(ret);
2582 trans->block_rsv = rsv;
2583
2584 cur_offset = lockstart;
2585 len = lockend - cur_offset;
2586 while (cur_offset < lockend) {
2587 ret = __btrfs_drop_extents(trans, root, inode, path,
2588 cur_offset, lockend + 1,
2589 &drop_end, 1, 0, 0, NULL);
2590 if (ret != -ENOSPC)
2591 break;
2592
2593 trans->block_rsv = &fs_info->trans_block_rsv;
2594
2595 if (cur_offset < drop_end && cur_offset < ino_size) {
2596 ret = fill_holes(trans, BTRFS_I(inode), path,
2597 cur_offset, drop_end);
2598 if (ret) {
2599 /*
2600 * If we failed then we didn't insert our hole
2601 * entries for the area we dropped, so now the
2602 * fs is corrupted, so we must abort the
2603 * transaction.
2604 */
2605 btrfs_abort_transaction(trans, ret);
2606 err = ret;
2607 break;
2608 }
2609 }
2610
2611 cur_offset = drop_end;
2612
2613 ret = btrfs_update_inode(trans, root, inode);
2614 if (ret) {
2615 err = ret;
2616 break;
2617 }
2618
2619 btrfs_end_transaction(trans);
2620 btrfs_btree_balance_dirty(fs_info);
2621
2622 trans = btrfs_start_transaction(root, rsv_count);
2623 if (IS_ERR(trans)) {
2624 ret = PTR_ERR(trans);
2625 trans = NULL;
2626 break;
2627 }
2628
2629 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2630 rsv, min_size, false);
2631 BUG_ON(ret); /* shouldn't happen */
2632 trans->block_rsv = rsv;
2633
2634 ret = find_first_non_hole(inode, &cur_offset, &len);
2635 if (unlikely(ret < 0))
2636 break;
2637 if (ret && !len) {
2638 ret = 0;
2639 break;
2640 }
2641 }
2642
2643 if (ret) {
2644 err = ret;
2645 goto out_trans;
2646 }
2647
2648 trans->block_rsv = &fs_info->trans_block_rsv;
2649 /*
2650 * If we are using the NO_HOLES feature we might have had already an
2651 * hole that overlaps a part of the region [lockstart, lockend] and
2652 * ends at (or beyond) lockend. Since we have no file extent items to
2653 * represent holes, drop_end can be less than lockend and so we must
2654 * make sure we have an extent map representing the existing hole (the
2655 * call to __btrfs_drop_extents() might have dropped the existing extent
2656 * map representing the existing hole), otherwise the fast fsync path
2657 * will not record the existence of the hole region
2658 * [existing_hole_start, lockend].
2659 */
2660 if (drop_end <= lockend)
2661 drop_end = lockend + 1;
2662 /*
2663 * Don't insert file hole extent item if it's for a range beyond eof
2664 * (because it's useless) or if it represents a 0 bytes range (when
2665 * cur_offset == drop_end).
2666 */
2667 if (cur_offset < ino_size && cur_offset < drop_end) {
2668 ret = fill_holes(trans, BTRFS_I(inode), path,
2669 cur_offset, drop_end);
2670 if (ret) {
2671 /* Same comment as above. */
2672 btrfs_abort_transaction(trans, ret);
2673 err = ret;
2674 goto out_trans;
2675 }
2676 }
2677
2678 out_trans:
2679 if (!trans)
2680 goto out_free;
2681
2682 inode_inc_iversion(inode);
2683 inode->i_mtime = inode->i_ctime = current_time(inode);
2684
2685 trans->block_rsv = &fs_info->trans_block_rsv;
2686 ret = btrfs_update_inode(trans, root, inode);
2687 updated_inode = true;
2688 btrfs_end_transaction(trans);
2689 btrfs_btree_balance_dirty(fs_info);
2690 out_free:
2691 btrfs_free_path(path);
2692 btrfs_free_block_rsv(fs_info, rsv);
2693 out:
2694 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2695 &cached_state);
2696 out_only_mutex:
2697 if (!updated_inode && truncated_block && !ret && !err) {
2698 /*
2699 * If we only end up zeroing part of a page, we still need to
2700 * update the inode item, so that all the time fields are
2701 * updated as well as the necessary btrfs inode in memory fields
2702 * for detecting, at fsync time, if the inode isn't yet in the
2703 * log tree or it's there but not up to date.
2704 */
2705 trans = btrfs_start_transaction(root, 1);
2706 if (IS_ERR(trans)) {
2707 err = PTR_ERR(trans);
2708 } else {
2709 err = btrfs_update_inode(trans, root, inode);
2710 ret = btrfs_end_transaction(trans);
2711 }
2712 }
2713 inode_unlock(inode);
2714 if (ret && !err)
2715 err = ret;
2716 return err;
2717 }
2718
2719 /* Helper structure to record which range is already reserved */
2720 struct falloc_range {
2721 struct list_head list;
2722 u64 start;
2723 u64 len;
2724 };
2725
2726 /*
2727 * Helper function to add falloc range
2728 *
2729 * Caller should have locked the larger range of extent containing
2730 * [start, len)
2731 */
2732 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2733 {
2734 struct falloc_range *prev = NULL;
2735 struct falloc_range *range = NULL;
2736
2737 if (list_empty(head))
2738 goto insert;
2739
2740 /*
2741 * As fallocate iterate by bytenr order, we only need to check
2742 * the last range.
2743 */
2744 prev = list_entry(head->prev, struct falloc_range, list);
2745 if (prev->start + prev->len == start) {
2746 prev->len += len;
2747 return 0;
2748 }
2749 insert:
2750 range = kmalloc(sizeof(*range), GFP_KERNEL);
2751 if (!range)
2752 return -ENOMEM;
2753 range->start = start;
2754 range->len = len;
2755 list_add_tail(&range->list, head);
2756 return 0;
2757 }
2758
2759 static int btrfs_fallocate_update_isize(struct inode *inode,
2760 const u64 end,
2761 const int mode)
2762 {
2763 struct btrfs_trans_handle *trans;
2764 struct btrfs_root *root = BTRFS_I(inode)->root;
2765 int ret;
2766 int ret2;
2767
2768 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2769 return 0;
2770
2771 trans = btrfs_start_transaction(root, 1);
2772 if (IS_ERR(trans))
2773 return PTR_ERR(trans);
2774
2775 inode->i_ctime = current_time(inode);
2776 i_size_write(inode, end);
2777 btrfs_ordered_update_i_size(inode, end, NULL);
2778 ret = btrfs_update_inode(trans, root, inode);
2779 ret2 = btrfs_end_transaction(trans);
2780
2781 return ret ? ret : ret2;
2782 }
2783
2784 enum {
2785 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2786 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2787 RANGE_BOUNDARY_HOLE = 2,
2788 };
2789
2790 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2791 u64 offset)
2792 {
2793 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2794 struct extent_map *em;
2795 int ret;
2796
2797 offset = round_down(offset, sectorsize);
2798 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2799 if (IS_ERR(em))
2800 return PTR_ERR(em);
2801
2802 if (em->block_start == EXTENT_MAP_HOLE)
2803 ret = RANGE_BOUNDARY_HOLE;
2804 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2805 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2806 else
2807 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2808
2809 free_extent_map(em);
2810 return ret;
2811 }
2812
2813 static int btrfs_zero_range(struct inode *inode,
2814 loff_t offset,
2815 loff_t len,
2816 const int mode)
2817 {
2818 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2819 struct extent_map *em;
2820 struct extent_changeset *data_reserved = NULL;
2821 int ret;
2822 u64 alloc_hint = 0;
2823 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2824 u64 alloc_start = round_down(offset, sectorsize);
2825 u64 alloc_end = round_up(offset + len, sectorsize);
2826 u64 bytes_to_reserve = 0;
2827 bool space_reserved = false;
2828
2829 inode_dio_wait(inode);
2830
2831 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2832 alloc_start, alloc_end - alloc_start, 0);
2833 if (IS_ERR(em)) {
2834 ret = PTR_ERR(em);
2835 goto out;
2836 }
2837
2838 /*
2839 * Avoid hole punching and extent allocation for some cases. More cases
2840 * could be considered, but these are unlikely common and we keep things
2841 * as simple as possible for now. Also, intentionally, if the target
2842 * range contains one or more prealloc extents together with regular
2843 * extents and holes, we drop all the existing extents and allocate a
2844 * new prealloc extent, so that we get a larger contiguous disk extent.
2845 */
2846 if (em->start <= alloc_start &&
2847 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2848 const u64 em_end = em->start + em->len;
2849
2850 if (em_end >= offset + len) {
2851 /*
2852 * The whole range is already a prealloc extent,
2853 * do nothing except updating the inode's i_size if
2854 * needed.
2855 */
2856 free_extent_map(em);
2857 ret = btrfs_fallocate_update_isize(inode, offset + len,
2858 mode);
2859 goto out;
2860 }
2861 /*
2862 * Part of the range is already a prealloc extent, so operate
2863 * only on the remaining part of the range.
2864 */
2865 alloc_start = em_end;
2866 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2867 len = offset + len - alloc_start;
2868 offset = alloc_start;
2869 alloc_hint = em->block_start + em->len;
2870 }
2871 free_extent_map(em);
2872
2873 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2874 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2875 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2876 alloc_start, sectorsize, 0);
2877 if (IS_ERR(em)) {
2878 ret = PTR_ERR(em);
2879 goto out;
2880 }
2881
2882 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2883 free_extent_map(em);
2884 ret = btrfs_fallocate_update_isize(inode, offset + len,
2885 mode);
2886 goto out;
2887 }
2888 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2889 free_extent_map(em);
2890 ret = btrfs_truncate_block(inode, offset, len, 0);
2891 if (!ret)
2892 ret = btrfs_fallocate_update_isize(inode,
2893 offset + len,
2894 mode);
2895 return ret;
2896 }
2897 free_extent_map(em);
2898 alloc_start = round_down(offset, sectorsize);
2899 alloc_end = alloc_start + sectorsize;
2900 goto reserve_space;
2901 }
2902
2903 alloc_start = round_up(offset, sectorsize);
2904 alloc_end = round_down(offset + len, sectorsize);
2905
2906 /*
2907 * For unaligned ranges, check the pages at the boundaries, they might
2908 * map to an extent, in which case we need to partially zero them, or
2909 * they might map to a hole, in which case we need our allocation range
2910 * to cover them.
2911 */
2912 if (!IS_ALIGNED(offset, sectorsize)) {
2913 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2914 if (ret < 0)
2915 goto out;
2916 if (ret == RANGE_BOUNDARY_HOLE) {
2917 alloc_start = round_down(offset, sectorsize);
2918 ret = 0;
2919 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2920 ret = btrfs_truncate_block(inode, offset, 0, 0);
2921 if (ret)
2922 goto out;
2923 } else {
2924 ret = 0;
2925 }
2926 }
2927
2928 if (!IS_ALIGNED(offset + len, sectorsize)) {
2929 ret = btrfs_zero_range_check_range_boundary(inode,
2930 offset + len);
2931 if (ret < 0)
2932 goto out;
2933 if (ret == RANGE_BOUNDARY_HOLE) {
2934 alloc_end = round_up(offset + len, sectorsize);
2935 ret = 0;
2936 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2937 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2938 if (ret)
2939 goto out;
2940 } else {
2941 ret = 0;
2942 }
2943 }
2944
2945 reserve_space:
2946 if (alloc_start < alloc_end) {
2947 struct extent_state *cached_state = NULL;
2948 const u64 lockstart = alloc_start;
2949 const u64 lockend = alloc_end - 1;
2950
2951 bytes_to_reserve = alloc_end - alloc_start;
2952 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2953 bytes_to_reserve);
2954 if (ret < 0)
2955 goto out;
2956 space_reserved = true;
2957 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2958 alloc_start, bytes_to_reserve);
2959 if (ret)
2960 goto out;
2961 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2962 &cached_state);
2963 if (ret)
2964 goto out;
2965 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2966 alloc_end - alloc_start,
2967 i_blocksize(inode),
2968 offset + len, &alloc_hint);
2969 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2970 lockend, &cached_state);
2971 /* btrfs_prealloc_file_range releases reserved space on error */
2972 if (ret) {
2973 space_reserved = false;
2974 goto out;
2975 }
2976 }
2977 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2978 out:
2979 if (ret && space_reserved)
2980 btrfs_free_reserved_data_space(inode, data_reserved,
2981 alloc_start, bytes_to_reserve);
2982 extent_changeset_free(data_reserved);
2983
2984 return ret;
2985 }
2986
2987 static long btrfs_fallocate(struct file *file, int mode,
2988 loff_t offset, loff_t len)
2989 {
2990 struct inode *inode = file_inode(file);
2991 struct extent_state *cached_state = NULL;
2992 struct extent_changeset *data_reserved = NULL;
2993 struct falloc_range *range;
2994 struct falloc_range *tmp;
2995 struct list_head reserve_list;
2996 u64 cur_offset;
2997 u64 last_byte;
2998 u64 alloc_start;
2999 u64 alloc_end;
3000 u64 alloc_hint = 0;
3001 u64 locked_end;
3002 u64 actual_end = 0;
3003 struct extent_map *em;
3004 int blocksize = btrfs_inode_sectorsize(inode);
3005 int ret;
3006
3007 alloc_start = round_down(offset, blocksize);
3008 alloc_end = round_up(offset + len, blocksize);
3009 cur_offset = alloc_start;
3010
3011 /* Make sure we aren't being give some crap mode */
3012 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3013 FALLOC_FL_ZERO_RANGE))
3014 return -EOPNOTSUPP;
3015
3016 if (mode & FALLOC_FL_PUNCH_HOLE)
3017 return btrfs_punch_hole(inode, offset, len);
3018
3019 /*
3020 * Only trigger disk allocation, don't trigger qgroup reserve
3021 *
3022 * For qgroup space, it will be checked later.
3023 */
3024 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3025 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3026 alloc_end - alloc_start);
3027 if (ret < 0)
3028 return ret;
3029 }
3030
3031 inode_lock(inode);
3032
3033 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3034 ret = inode_newsize_ok(inode, offset + len);
3035 if (ret)
3036 goto out;
3037 }
3038
3039 /*
3040 * TODO: Move these two operations after we have checked
3041 * accurate reserved space, or fallocate can still fail but
3042 * with page truncated or size expanded.
3043 *
3044 * But that's a minor problem and won't do much harm BTW.
3045 */
3046 if (alloc_start > inode->i_size) {
3047 ret = btrfs_cont_expand(inode, i_size_read(inode),
3048 alloc_start);
3049 if (ret)
3050 goto out;
3051 } else if (offset + len > inode->i_size) {
3052 /*
3053 * If we are fallocating from the end of the file onward we
3054 * need to zero out the end of the block if i_size lands in the
3055 * middle of a block.
3056 */
3057 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3058 if (ret)
3059 goto out;
3060 }
3061
3062 /*
3063 * wait for ordered IO before we have any locks. We'll loop again
3064 * below with the locks held.
3065 */
3066 ret = btrfs_wait_ordered_range(inode, alloc_start,
3067 alloc_end - alloc_start);
3068 if (ret)
3069 goto out;
3070
3071 if (mode & FALLOC_FL_ZERO_RANGE) {
3072 ret = btrfs_zero_range(inode, offset, len, mode);
3073 inode_unlock(inode);
3074 return ret;
3075 }
3076
3077 locked_end = alloc_end - 1;
3078 while (1) {
3079 struct btrfs_ordered_extent *ordered;
3080
3081 /* the extent lock is ordered inside the running
3082 * transaction
3083 */
3084 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3085 locked_end, &cached_state);
3086 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3087
3088 if (ordered &&
3089 ordered->file_offset + ordered->len > alloc_start &&
3090 ordered->file_offset < alloc_end) {
3091 btrfs_put_ordered_extent(ordered);
3092 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3093 alloc_start, locked_end,
3094 &cached_state);
3095 /*
3096 * we can't wait on the range with the transaction
3097 * running or with the extent lock held
3098 */
3099 ret = btrfs_wait_ordered_range(inode, alloc_start,
3100 alloc_end - alloc_start);
3101 if (ret)
3102 goto out;
3103 } else {
3104 if (ordered)
3105 btrfs_put_ordered_extent(ordered);
3106 break;
3107 }
3108 }
3109
3110 /* First, check if we exceed the qgroup limit */
3111 INIT_LIST_HEAD(&reserve_list);
3112 while (cur_offset < alloc_end) {
3113 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3114 alloc_end - cur_offset, 0);
3115 if (IS_ERR(em)) {
3116 ret = PTR_ERR(em);
3117 break;
3118 }
3119 last_byte = min(extent_map_end(em), alloc_end);
3120 actual_end = min_t(u64, extent_map_end(em), offset + len);
3121 last_byte = ALIGN(last_byte, blocksize);
3122 if (em->block_start == EXTENT_MAP_HOLE ||
3123 (cur_offset >= inode->i_size &&
3124 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3125 ret = add_falloc_range(&reserve_list, cur_offset,
3126 last_byte - cur_offset);
3127 if (ret < 0) {
3128 free_extent_map(em);
3129 break;
3130 }
3131 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3132 cur_offset, last_byte - cur_offset);
3133 if (ret < 0) {
3134 free_extent_map(em);
3135 break;
3136 }
3137 } else {
3138 /*
3139 * Do not need to reserve unwritten extent for this
3140 * range, free reserved data space first, otherwise
3141 * it'll result in false ENOSPC error.
3142 */
3143 btrfs_free_reserved_data_space(inode, data_reserved,
3144 cur_offset, last_byte - cur_offset);
3145 }
3146 free_extent_map(em);
3147 cur_offset = last_byte;
3148 }
3149
3150 /*
3151 * If ret is still 0, means we're OK to fallocate.
3152 * Or just cleanup the list and exit.
3153 */
3154 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3155 if (!ret)
3156 ret = btrfs_prealloc_file_range(inode, mode,
3157 range->start,
3158 range->len, i_blocksize(inode),
3159 offset + len, &alloc_hint);
3160 else
3161 btrfs_free_reserved_data_space(inode,
3162 data_reserved, range->start,
3163 range->len);
3164 list_del(&range->list);
3165 kfree(range);
3166 }
3167 if (ret < 0)
3168 goto out_unlock;
3169
3170 /*
3171 * We didn't need to allocate any more space, but we still extended the
3172 * size of the file so we need to update i_size and the inode item.
3173 */
3174 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3175 out_unlock:
3176 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3177 &cached_state);
3178 out:
3179 inode_unlock(inode);
3180 /* Let go of our reservation. */
3181 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3182 btrfs_free_reserved_data_space(inode, data_reserved,
3183 alloc_start, alloc_end - cur_offset);
3184 extent_changeset_free(data_reserved);
3185 return ret;
3186 }
3187
3188 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3189 {
3190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3191 struct extent_map *em = NULL;
3192 struct extent_state *cached_state = NULL;
3193 u64 lockstart;
3194 u64 lockend;
3195 u64 start;
3196 u64 len;
3197 int ret = 0;
3198
3199 if (inode->i_size == 0)
3200 return -ENXIO;
3201
3202 /*
3203 * *offset can be negative, in this case we start finding DATA/HOLE from
3204 * the very start of the file.
3205 */
3206 start = max_t(loff_t, 0, *offset);
3207
3208 lockstart = round_down(start, fs_info->sectorsize);
3209 lockend = round_up(i_size_read(inode),
3210 fs_info->sectorsize);
3211 if (lockend <= lockstart)
3212 lockend = lockstart + fs_info->sectorsize;
3213 lockend--;
3214 len = lockend - lockstart + 1;
3215
3216 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3217 &cached_state);
3218
3219 while (start < inode->i_size) {
3220 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3221 if (IS_ERR(em)) {
3222 ret = PTR_ERR(em);
3223 em = NULL;
3224 break;
3225 }
3226
3227 if (whence == SEEK_HOLE &&
3228 (em->block_start == EXTENT_MAP_HOLE ||
3229 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3230 break;
3231 else if (whence == SEEK_DATA &&
3232 (em->block_start != EXTENT_MAP_HOLE &&
3233 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3234 break;
3235
3236 start = em->start + em->len;
3237 free_extent_map(em);
3238 em = NULL;
3239 cond_resched();
3240 }
3241 free_extent_map(em);
3242 if (!ret) {
3243 if (whence == SEEK_DATA && start >= inode->i_size)
3244 ret = -ENXIO;
3245 else
3246 *offset = min_t(loff_t, start, inode->i_size);
3247 }
3248 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3249 &cached_state);
3250 return ret;
3251 }
3252
3253 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3254 {
3255 struct inode *inode = file->f_mapping->host;
3256 int ret;
3257
3258 inode_lock(inode);
3259 switch (whence) {
3260 case SEEK_END:
3261 case SEEK_CUR:
3262 offset = generic_file_llseek(file, offset, whence);
3263 goto out;
3264 case SEEK_DATA:
3265 case SEEK_HOLE:
3266 if (offset >= i_size_read(inode)) {
3267 inode_unlock(inode);
3268 return -ENXIO;
3269 }
3270
3271 ret = find_desired_extent(inode, &offset, whence);
3272 if (ret) {
3273 inode_unlock(inode);
3274 return ret;
3275 }
3276 }
3277
3278 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3279 out:
3280 inode_unlock(inode);
3281 return offset;
3282 }
3283
3284 static int btrfs_file_open(struct inode *inode, struct file *filp)
3285 {
3286 filp->f_mode |= FMODE_NOWAIT;
3287 return generic_file_open(inode, filp);
3288 }
3289
3290 const struct file_operations btrfs_file_operations = {
3291 .llseek = btrfs_file_llseek,
3292 .read_iter = generic_file_read_iter,
3293 .splice_read = generic_file_splice_read,
3294 .write_iter = btrfs_file_write_iter,
3295 .mmap = btrfs_file_mmap,
3296 .open = btrfs_file_open,
3297 .release = btrfs_release_file,
3298 .fsync = btrfs_sync_file,
3299 .fallocate = btrfs_fallocate,
3300 .unlocked_ioctl = btrfs_ioctl,
3301 #ifdef CONFIG_COMPAT
3302 .compat_ioctl = btrfs_compat_ioctl,
3303 #endif
3304 .remap_file_range = btrfs_remap_file_range,
3305 };
3306
3307 void __cold btrfs_auto_defrag_exit(void)
3308 {
3309 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3310 }
3311
3312 int __init btrfs_auto_defrag_init(void)
3313 {
3314 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3315 sizeof(struct inode_defrag), 0,
3316 SLAB_MEM_SPREAD,
3317 NULL);
3318 if (!btrfs_inode_defrag_cachep)
3319 return -ENOMEM;
3320
3321 return 0;
3322 }
3323
3324 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3325 {
3326 int ret;
3327
3328 /*
3329 * So with compression we will find and lock a dirty page and clear the
3330 * first one as dirty, setup an async extent, and immediately return
3331 * with the entire range locked but with nobody actually marked with
3332 * writeback. So we can't just filemap_write_and_wait_range() and
3333 * expect it to work since it will just kick off a thread to do the
3334 * actual work. So we need to call filemap_fdatawrite_range _again_
3335 * since it will wait on the page lock, which won't be unlocked until
3336 * after the pages have been marked as writeback and so we're good to go
3337 * from there. We have to do this otherwise we'll miss the ordered
3338 * extents and that results in badness. Please Josef, do not think you
3339 * know better and pull this out at some point in the future, it is
3340 * right and you are wrong.
3341 */
3342 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3343 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3344 &BTRFS_I(inode)->runtime_flags))
3345 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3346
3347 return ret;
3348 }