]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/file.c
Btrfs: don't clean dirty pages during buffered writes
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73 {
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 struct inode_defrag *defrag)
97 {
98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
103
104 p = &fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
124 }
125 }
126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(fs_info))
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct btrfs_inode *inode)
149 {
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(fs_info))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = inode->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 int ret;
202
203 if (!__need_auto_defrag(fs_info))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
481 const u64 start,
482 const u64 len,
483 struct extent_state **cached_state)
484 {
485 u64 search_start = start;
486 const u64 end = start + len - 1;
487
488 while (search_start < end) {
489 const u64 search_len = end - search_start + 1;
490 struct extent_map *em;
491 u64 em_len;
492 int ret = 0;
493
494 em = btrfs_get_extent(inode, NULL, 0, search_start,
495 search_len, 0);
496 if (IS_ERR(em))
497 return PTR_ERR(em);
498
499 if (em->block_start != EXTENT_MAP_HOLE)
500 goto next;
501
502 em_len = em->len;
503 if (em->start < search_start)
504 em_len -= search_start - em->start;
505 if (em_len > search_len)
506 em_len = search_len;
507
508 ret = set_extent_bit(&inode->io_tree, search_start,
509 search_start + em_len - 1,
510 EXTENT_DELALLOC_NEW,
511 NULL, cached_state, GFP_NOFS);
512 next:
513 search_start = extent_map_end(em);
514 free_extent_map(em);
515 if (ret)
516 return ret;
517 }
518 return 0;
519 }
520
521 /*
522 * after copy_from_user, pages need to be dirtied and we need to make
523 * sure holes are created between the current EOF and the start of
524 * any next extents (if required).
525 *
526 * this also makes the decision about creating an inline extent vs
527 * doing real data extents, marking pages dirty and delalloc as required.
528 */
529 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
530 size_t num_pages, loff_t pos, size_t write_bytes,
531 struct extent_state **cached)
532 {
533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 int err = 0;
535 int i;
536 u64 num_bytes;
537 u64 start_pos;
538 u64 end_of_last_block;
539 u64 end_pos = pos + write_bytes;
540 loff_t isize = i_size_read(inode);
541 unsigned int extra_bits = 0;
542
543 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
544 num_bytes = round_up(write_bytes + pos - start_pos,
545 fs_info->sectorsize);
546
547 end_of_last_block = start_pos + num_bytes - 1;
548
549 /*
550 * The pages may have already been dirty, clear out old accounting so
551 * we can set things up properly
552 */
553 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
554 EXTENT_DIRTY | EXTENT_DELALLOC |
555 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached,
556 GFP_NOFS);
557
558 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
559 if (start_pos >= isize &&
560 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
561 /*
562 * There can't be any extents following eof in this case
563 * so just set the delalloc new bit for the range
564 * directly.
565 */
566 extra_bits |= EXTENT_DELALLOC_NEW;
567 } else {
568 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
569 start_pos,
570 num_bytes, cached);
571 if (err)
572 return err;
573 }
574 }
575
576 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
577 extra_bits, cached, 0);
578 if (err)
579 return err;
580
581 for (i = 0; i < num_pages; i++) {
582 struct page *p = pages[i];
583 SetPageUptodate(p);
584 ClearPageChecked(p);
585 set_page_dirty(p);
586 }
587
588 /*
589 * we've only changed i_size in ram, and we haven't updated
590 * the disk i_size. There is no need to log the inode
591 * at this time.
592 */
593 if (end_pos > isize)
594 i_size_write(inode, end_pos);
595 return 0;
596 }
597
598 /*
599 * this drops all the extents in the cache that intersect the range
600 * [start, end]. Existing extents are split as required.
601 */
602 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
603 int skip_pinned)
604 {
605 struct extent_map *em;
606 struct extent_map *split = NULL;
607 struct extent_map *split2 = NULL;
608 struct extent_map_tree *em_tree = &inode->extent_tree;
609 u64 len = end - start + 1;
610 u64 gen;
611 int ret;
612 int testend = 1;
613 unsigned long flags;
614 int compressed = 0;
615 bool modified;
616
617 WARN_ON(end < start);
618 if (end == (u64)-1) {
619 len = (u64)-1;
620 testend = 0;
621 }
622 while (1) {
623 int no_splits = 0;
624
625 modified = false;
626 if (!split)
627 split = alloc_extent_map();
628 if (!split2)
629 split2 = alloc_extent_map();
630 if (!split || !split2)
631 no_splits = 1;
632
633 write_lock(&em_tree->lock);
634 em = lookup_extent_mapping(em_tree, start, len);
635 if (!em) {
636 write_unlock(&em_tree->lock);
637 break;
638 }
639 flags = em->flags;
640 gen = em->generation;
641 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
642 if (testend && em->start + em->len >= start + len) {
643 free_extent_map(em);
644 write_unlock(&em_tree->lock);
645 break;
646 }
647 start = em->start + em->len;
648 if (testend)
649 len = start + len - (em->start + em->len);
650 free_extent_map(em);
651 write_unlock(&em_tree->lock);
652 continue;
653 }
654 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
655 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
656 clear_bit(EXTENT_FLAG_LOGGING, &flags);
657 modified = !list_empty(&em->list);
658 if (no_splits)
659 goto next;
660
661 if (em->start < start) {
662 split->start = em->start;
663 split->len = start - em->start;
664
665 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
666 split->orig_start = em->orig_start;
667 split->block_start = em->block_start;
668
669 if (compressed)
670 split->block_len = em->block_len;
671 else
672 split->block_len = split->len;
673 split->orig_block_len = max(split->block_len,
674 em->orig_block_len);
675 split->ram_bytes = em->ram_bytes;
676 } else {
677 split->orig_start = split->start;
678 split->block_len = 0;
679 split->block_start = em->block_start;
680 split->orig_block_len = 0;
681 split->ram_bytes = split->len;
682 }
683
684 split->generation = gen;
685 split->bdev = em->bdev;
686 split->flags = flags;
687 split->compress_type = em->compress_type;
688 replace_extent_mapping(em_tree, em, split, modified);
689 free_extent_map(split);
690 split = split2;
691 split2 = NULL;
692 }
693 if (testend && em->start + em->len > start + len) {
694 u64 diff = start + len - em->start;
695
696 split->start = start + len;
697 split->len = em->start + em->len - (start + len);
698 split->bdev = em->bdev;
699 split->flags = flags;
700 split->compress_type = em->compress_type;
701 split->generation = gen;
702
703 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
704 split->orig_block_len = max(em->block_len,
705 em->orig_block_len);
706
707 split->ram_bytes = em->ram_bytes;
708 if (compressed) {
709 split->block_len = em->block_len;
710 split->block_start = em->block_start;
711 split->orig_start = em->orig_start;
712 } else {
713 split->block_len = split->len;
714 split->block_start = em->block_start
715 + diff;
716 split->orig_start = em->orig_start;
717 }
718 } else {
719 split->ram_bytes = split->len;
720 split->orig_start = split->start;
721 split->block_len = 0;
722 split->block_start = em->block_start;
723 split->orig_block_len = 0;
724 }
725
726 if (extent_map_in_tree(em)) {
727 replace_extent_mapping(em_tree, em, split,
728 modified);
729 } else {
730 ret = add_extent_mapping(em_tree, split,
731 modified);
732 ASSERT(ret == 0); /* Logic error */
733 }
734 free_extent_map(split);
735 split = NULL;
736 }
737 next:
738 if (extent_map_in_tree(em))
739 remove_extent_mapping(em_tree, em);
740 write_unlock(&em_tree->lock);
741
742 /* once for us */
743 free_extent_map(em);
744 /* once for the tree*/
745 free_extent_map(em);
746 }
747 if (split)
748 free_extent_map(split);
749 if (split2)
750 free_extent_map(split2);
751 }
752
753 /*
754 * this is very complex, but the basic idea is to drop all extents
755 * in the range start - end. hint_block is filled in with a block number
756 * that would be a good hint to the block allocator for this file.
757 *
758 * If an extent intersects the range but is not entirely inside the range
759 * it is either truncated or split. Anything entirely inside the range
760 * is deleted from the tree.
761 */
762 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
763 struct btrfs_root *root, struct inode *inode,
764 struct btrfs_path *path, u64 start, u64 end,
765 u64 *drop_end, int drop_cache,
766 int replace_extent,
767 u32 extent_item_size,
768 int *key_inserted)
769 {
770 struct btrfs_fs_info *fs_info = root->fs_info;
771 struct extent_buffer *leaf;
772 struct btrfs_file_extent_item *fi;
773 struct btrfs_key key;
774 struct btrfs_key new_key;
775 u64 ino = btrfs_ino(BTRFS_I(inode));
776 u64 search_start = start;
777 u64 disk_bytenr = 0;
778 u64 num_bytes = 0;
779 u64 extent_offset = 0;
780 u64 extent_end = 0;
781 u64 last_end = start;
782 int del_nr = 0;
783 int del_slot = 0;
784 int extent_type;
785 int recow;
786 int ret;
787 int modify_tree = -1;
788 int update_refs;
789 int found = 0;
790 int leafs_visited = 0;
791
792 if (drop_cache)
793 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
794
795 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
796 modify_tree = 0;
797
798 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
799 root == fs_info->tree_root);
800 while (1) {
801 recow = 0;
802 ret = btrfs_lookup_file_extent(trans, root, path, ino,
803 search_start, modify_tree);
804 if (ret < 0)
805 break;
806 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
807 leaf = path->nodes[0];
808 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
809 if (key.objectid == ino &&
810 key.type == BTRFS_EXTENT_DATA_KEY)
811 path->slots[0]--;
812 }
813 ret = 0;
814 leafs_visited++;
815 next_slot:
816 leaf = path->nodes[0];
817 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
818 BUG_ON(del_nr > 0);
819 ret = btrfs_next_leaf(root, path);
820 if (ret < 0)
821 break;
822 if (ret > 0) {
823 ret = 0;
824 break;
825 }
826 leafs_visited++;
827 leaf = path->nodes[0];
828 recow = 1;
829 }
830
831 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
832
833 if (key.objectid > ino)
834 break;
835 if (WARN_ON_ONCE(key.objectid < ino) ||
836 key.type < BTRFS_EXTENT_DATA_KEY) {
837 ASSERT(del_nr == 0);
838 path->slots[0]++;
839 goto next_slot;
840 }
841 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
842 break;
843
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
846 extent_type = btrfs_file_extent_type(leaf, fi);
847
848 if (extent_type == BTRFS_FILE_EXTENT_REG ||
849 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
850 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
851 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
852 extent_offset = btrfs_file_extent_offset(leaf, fi);
853 extent_end = key.offset +
854 btrfs_file_extent_num_bytes(leaf, fi);
855 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
856 extent_end = key.offset +
857 btrfs_file_extent_inline_len(leaf,
858 path->slots[0], fi);
859 } else {
860 /* can't happen */
861 BUG();
862 }
863
864 /*
865 * Don't skip extent items representing 0 byte lengths. They
866 * used to be created (bug) if while punching holes we hit
867 * -ENOSPC condition. So if we find one here, just ensure we
868 * delete it, otherwise we would insert a new file extent item
869 * with the same key (offset) as that 0 bytes length file
870 * extent item in the call to setup_items_for_insert() later
871 * in this function.
872 */
873 if (extent_end == key.offset && extent_end >= search_start) {
874 last_end = extent_end;
875 goto delete_extent_item;
876 }
877
878 if (extent_end <= search_start) {
879 path->slots[0]++;
880 goto next_slot;
881 }
882
883 found = 1;
884 search_start = max(key.offset, start);
885 if (recow || !modify_tree) {
886 modify_tree = -1;
887 btrfs_release_path(path);
888 continue;
889 }
890
891 /*
892 * | - range to drop - |
893 * | -------- extent -------- |
894 */
895 if (start > key.offset && end < extent_end) {
896 BUG_ON(del_nr > 0);
897 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
898 ret = -EOPNOTSUPP;
899 break;
900 }
901
902 memcpy(&new_key, &key, sizeof(new_key));
903 new_key.offset = start;
904 ret = btrfs_duplicate_item(trans, root, path,
905 &new_key);
906 if (ret == -EAGAIN) {
907 btrfs_release_path(path);
908 continue;
909 }
910 if (ret < 0)
911 break;
912
913 leaf = path->nodes[0];
914 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
915 struct btrfs_file_extent_item);
916 btrfs_set_file_extent_num_bytes(leaf, fi,
917 start - key.offset);
918
919 fi = btrfs_item_ptr(leaf, path->slots[0],
920 struct btrfs_file_extent_item);
921
922 extent_offset += start - key.offset;
923 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
924 btrfs_set_file_extent_num_bytes(leaf, fi,
925 extent_end - start);
926 btrfs_mark_buffer_dirty(leaf);
927
928 if (update_refs && disk_bytenr > 0) {
929 ret = btrfs_inc_extent_ref(trans, root,
930 disk_bytenr, num_bytes, 0,
931 root->root_key.objectid,
932 new_key.objectid,
933 start - extent_offset);
934 BUG_ON(ret); /* -ENOMEM */
935 }
936 key.offset = start;
937 }
938 /*
939 * From here on out we will have actually dropped something, so
940 * last_end can be updated.
941 */
942 last_end = extent_end;
943
944 /*
945 * | ---- range to drop ----- |
946 * | -------- extent -------- |
947 */
948 if (start <= key.offset && end < extent_end) {
949 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
950 ret = -EOPNOTSUPP;
951 break;
952 }
953
954 memcpy(&new_key, &key, sizeof(new_key));
955 new_key.offset = end;
956 btrfs_set_item_key_safe(fs_info, path, &new_key);
957
958 extent_offset += end - key.offset;
959 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
960 btrfs_set_file_extent_num_bytes(leaf, fi,
961 extent_end - end);
962 btrfs_mark_buffer_dirty(leaf);
963 if (update_refs && disk_bytenr > 0)
964 inode_sub_bytes(inode, end - key.offset);
965 break;
966 }
967
968 search_start = extent_end;
969 /*
970 * | ---- range to drop ----- |
971 * | -------- extent -------- |
972 */
973 if (start > key.offset && end >= extent_end) {
974 BUG_ON(del_nr > 0);
975 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
976 ret = -EOPNOTSUPP;
977 break;
978 }
979
980 btrfs_set_file_extent_num_bytes(leaf, fi,
981 start - key.offset);
982 btrfs_mark_buffer_dirty(leaf);
983 if (update_refs && disk_bytenr > 0)
984 inode_sub_bytes(inode, extent_end - start);
985 if (end == extent_end)
986 break;
987
988 path->slots[0]++;
989 goto next_slot;
990 }
991
992 /*
993 * | ---- range to drop ----- |
994 * | ------ extent ------ |
995 */
996 if (start <= key.offset && end >= extent_end) {
997 delete_extent_item:
998 if (del_nr == 0) {
999 del_slot = path->slots[0];
1000 del_nr = 1;
1001 } else {
1002 BUG_ON(del_slot + del_nr != path->slots[0]);
1003 del_nr++;
1004 }
1005
1006 if (update_refs &&
1007 extent_type == BTRFS_FILE_EXTENT_INLINE) {
1008 inode_sub_bytes(inode,
1009 extent_end - key.offset);
1010 extent_end = ALIGN(extent_end,
1011 fs_info->sectorsize);
1012 } else if (update_refs && disk_bytenr > 0) {
1013 ret = btrfs_free_extent(trans, root,
1014 disk_bytenr, num_bytes, 0,
1015 root->root_key.objectid,
1016 key.objectid, key.offset -
1017 extent_offset);
1018 BUG_ON(ret); /* -ENOMEM */
1019 inode_sub_bytes(inode,
1020 extent_end - key.offset);
1021 }
1022
1023 if (end == extent_end)
1024 break;
1025
1026 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1027 path->slots[0]++;
1028 goto next_slot;
1029 }
1030
1031 ret = btrfs_del_items(trans, root, path, del_slot,
1032 del_nr);
1033 if (ret) {
1034 btrfs_abort_transaction(trans, ret);
1035 break;
1036 }
1037
1038 del_nr = 0;
1039 del_slot = 0;
1040
1041 btrfs_release_path(path);
1042 continue;
1043 }
1044
1045 BUG_ON(1);
1046 }
1047
1048 if (!ret && del_nr > 0) {
1049 /*
1050 * Set path->slots[0] to first slot, so that after the delete
1051 * if items are move off from our leaf to its immediate left or
1052 * right neighbor leafs, we end up with a correct and adjusted
1053 * path->slots[0] for our insertion (if replace_extent != 0).
1054 */
1055 path->slots[0] = del_slot;
1056 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1057 if (ret)
1058 btrfs_abort_transaction(trans, ret);
1059 }
1060
1061 leaf = path->nodes[0];
1062 /*
1063 * If btrfs_del_items() was called, it might have deleted a leaf, in
1064 * which case it unlocked our path, so check path->locks[0] matches a
1065 * write lock.
1066 */
1067 if (!ret && replace_extent && leafs_visited == 1 &&
1068 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1069 path->locks[0] == BTRFS_WRITE_LOCK) &&
1070 btrfs_leaf_free_space(fs_info, leaf) >=
1071 sizeof(struct btrfs_item) + extent_item_size) {
1072
1073 key.objectid = ino;
1074 key.type = BTRFS_EXTENT_DATA_KEY;
1075 key.offset = start;
1076 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1077 struct btrfs_key slot_key;
1078
1079 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1080 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1081 path->slots[0]++;
1082 }
1083 setup_items_for_insert(root, path, &key,
1084 &extent_item_size,
1085 extent_item_size,
1086 sizeof(struct btrfs_item) +
1087 extent_item_size, 1);
1088 *key_inserted = 1;
1089 }
1090
1091 if (!replace_extent || !(*key_inserted))
1092 btrfs_release_path(path);
1093 if (drop_end)
1094 *drop_end = found ? min(end, last_end) : end;
1095 return ret;
1096 }
1097
1098 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root, struct inode *inode, u64 start,
1100 u64 end, int drop_cache)
1101 {
1102 struct btrfs_path *path;
1103 int ret;
1104
1105 path = btrfs_alloc_path();
1106 if (!path)
1107 return -ENOMEM;
1108 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1109 drop_cache, 0, 0, NULL);
1110 btrfs_free_path(path);
1111 return ret;
1112 }
1113
1114 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1115 u64 objectid, u64 bytenr, u64 orig_offset,
1116 u64 *start, u64 *end)
1117 {
1118 struct btrfs_file_extent_item *fi;
1119 struct btrfs_key key;
1120 u64 extent_end;
1121
1122 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1123 return 0;
1124
1125 btrfs_item_key_to_cpu(leaf, &key, slot);
1126 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1127 return 0;
1128
1129 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1130 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1131 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1132 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1133 btrfs_file_extent_compression(leaf, fi) ||
1134 btrfs_file_extent_encryption(leaf, fi) ||
1135 btrfs_file_extent_other_encoding(leaf, fi))
1136 return 0;
1137
1138 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1140 return 0;
1141
1142 *start = key.offset;
1143 *end = extent_end;
1144 return 1;
1145 }
1146
1147 /*
1148 * Mark extent in the range start - end as written.
1149 *
1150 * This changes extent type from 'pre-allocated' to 'regular'. If only
1151 * part of extent is marked as written, the extent will be split into
1152 * two or three.
1153 */
1154 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1155 struct btrfs_inode *inode, u64 start, u64 end)
1156 {
1157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1158 struct btrfs_root *root = inode->root;
1159 struct extent_buffer *leaf;
1160 struct btrfs_path *path;
1161 struct btrfs_file_extent_item *fi;
1162 struct btrfs_key key;
1163 struct btrfs_key new_key;
1164 u64 bytenr;
1165 u64 num_bytes;
1166 u64 extent_end;
1167 u64 orig_offset;
1168 u64 other_start;
1169 u64 other_end;
1170 u64 split;
1171 int del_nr = 0;
1172 int del_slot = 0;
1173 int recow;
1174 int ret;
1175 u64 ino = btrfs_ino(inode);
1176
1177 path = btrfs_alloc_path();
1178 if (!path)
1179 return -ENOMEM;
1180 again:
1181 recow = 0;
1182 split = start;
1183 key.objectid = ino;
1184 key.type = BTRFS_EXTENT_DATA_KEY;
1185 key.offset = split;
1186
1187 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1188 if (ret < 0)
1189 goto out;
1190 if (ret > 0 && path->slots[0] > 0)
1191 path->slots[0]--;
1192
1193 leaf = path->nodes[0];
1194 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1195 if (key.objectid != ino ||
1196 key.type != BTRFS_EXTENT_DATA_KEY) {
1197 ret = -EINVAL;
1198 btrfs_abort_transaction(trans, ret);
1199 goto out;
1200 }
1201 fi = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_file_extent_item);
1203 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1204 ret = -EINVAL;
1205 btrfs_abort_transaction(trans, ret);
1206 goto out;
1207 }
1208 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1209 if (key.offset > start || extent_end < end) {
1210 ret = -EINVAL;
1211 btrfs_abort_transaction(trans, ret);
1212 goto out;
1213 }
1214
1215 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1216 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1217 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1218 memcpy(&new_key, &key, sizeof(new_key));
1219
1220 if (start == key.offset && end < extent_end) {
1221 other_start = 0;
1222 other_end = start;
1223 if (extent_mergeable(leaf, path->slots[0] - 1,
1224 ino, bytenr, orig_offset,
1225 &other_start, &other_end)) {
1226 new_key.offset = end;
1227 btrfs_set_item_key_safe(fs_info, path, &new_key);
1228 fi = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_file_extent_item);
1230 btrfs_set_file_extent_generation(leaf, fi,
1231 trans->transid);
1232 btrfs_set_file_extent_num_bytes(leaf, fi,
1233 extent_end - end);
1234 btrfs_set_file_extent_offset(leaf, fi,
1235 end - orig_offset);
1236 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1237 struct btrfs_file_extent_item);
1238 btrfs_set_file_extent_generation(leaf, fi,
1239 trans->transid);
1240 btrfs_set_file_extent_num_bytes(leaf, fi,
1241 end - other_start);
1242 btrfs_mark_buffer_dirty(leaf);
1243 goto out;
1244 }
1245 }
1246
1247 if (start > key.offset && end == extent_end) {
1248 other_start = end;
1249 other_end = 0;
1250 if (extent_mergeable(leaf, path->slots[0] + 1,
1251 ino, bytenr, orig_offset,
1252 &other_start, &other_end)) {
1253 fi = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_file_extent_item);
1255 btrfs_set_file_extent_num_bytes(leaf, fi,
1256 start - key.offset);
1257 btrfs_set_file_extent_generation(leaf, fi,
1258 trans->transid);
1259 path->slots[0]++;
1260 new_key.offset = start;
1261 btrfs_set_item_key_safe(fs_info, path, &new_key);
1262
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_generation(leaf, fi,
1266 trans->transid);
1267 btrfs_set_file_extent_num_bytes(leaf, fi,
1268 other_end - start);
1269 btrfs_set_file_extent_offset(leaf, fi,
1270 start - orig_offset);
1271 btrfs_mark_buffer_dirty(leaf);
1272 goto out;
1273 }
1274 }
1275
1276 while (start > key.offset || end < extent_end) {
1277 if (key.offset == start)
1278 split = end;
1279
1280 new_key.offset = split;
1281 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1282 if (ret == -EAGAIN) {
1283 btrfs_release_path(path);
1284 goto again;
1285 }
1286 if (ret < 0) {
1287 btrfs_abort_transaction(trans, ret);
1288 goto out;
1289 }
1290
1291 leaf = path->nodes[0];
1292 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1293 struct btrfs_file_extent_item);
1294 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1295 btrfs_set_file_extent_num_bytes(leaf, fi,
1296 split - key.offset);
1297
1298 fi = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_file_extent_item);
1300
1301 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1302 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1303 btrfs_set_file_extent_num_bytes(leaf, fi,
1304 extent_end - split);
1305 btrfs_mark_buffer_dirty(leaf);
1306
1307 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1308 0, root->root_key.objectid,
1309 ino, orig_offset);
1310 if (ret) {
1311 btrfs_abort_transaction(trans, ret);
1312 goto out;
1313 }
1314
1315 if (split == start) {
1316 key.offset = start;
1317 } else {
1318 if (start != key.offset) {
1319 ret = -EINVAL;
1320 btrfs_abort_transaction(trans, ret);
1321 goto out;
1322 }
1323 path->slots[0]--;
1324 extent_end = end;
1325 }
1326 recow = 1;
1327 }
1328
1329 other_start = end;
1330 other_end = 0;
1331 if (extent_mergeable(leaf, path->slots[0] + 1,
1332 ino, bytenr, orig_offset,
1333 &other_start, &other_end)) {
1334 if (recow) {
1335 btrfs_release_path(path);
1336 goto again;
1337 }
1338 extent_end = other_end;
1339 del_slot = path->slots[0] + 1;
1340 del_nr++;
1341 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1342 0, root->root_key.objectid,
1343 ino, orig_offset);
1344 if (ret) {
1345 btrfs_abort_transaction(trans, ret);
1346 goto out;
1347 }
1348 }
1349 other_start = 0;
1350 other_end = start;
1351 if (extent_mergeable(leaf, path->slots[0] - 1,
1352 ino, bytenr, orig_offset,
1353 &other_start, &other_end)) {
1354 if (recow) {
1355 btrfs_release_path(path);
1356 goto again;
1357 }
1358 key.offset = other_start;
1359 del_slot = path->slots[0];
1360 del_nr++;
1361 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1362 0, root->root_key.objectid,
1363 ino, orig_offset);
1364 if (ret) {
1365 btrfs_abort_transaction(trans, ret);
1366 goto out;
1367 }
1368 }
1369 if (del_nr == 0) {
1370 fi = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_file_extent_item);
1372 btrfs_set_file_extent_type(leaf, fi,
1373 BTRFS_FILE_EXTENT_REG);
1374 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1375 btrfs_mark_buffer_dirty(leaf);
1376 } else {
1377 fi = btrfs_item_ptr(leaf, del_slot - 1,
1378 struct btrfs_file_extent_item);
1379 btrfs_set_file_extent_type(leaf, fi,
1380 BTRFS_FILE_EXTENT_REG);
1381 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1382 btrfs_set_file_extent_num_bytes(leaf, fi,
1383 extent_end - key.offset);
1384 btrfs_mark_buffer_dirty(leaf);
1385
1386 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1387 if (ret < 0) {
1388 btrfs_abort_transaction(trans, ret);
1389 goto out;
1390 }
1391 }
1392 out:
1393 btrfs_free_path(path);
1394 return 0;
1395 }
1396
1397 /*
1398 * on error we return an unlocked page and the error value
1399 * on success we return a locked page and 0
1400 */
1401 static int prepare_uptodate_page(struct inode *inode,
1402 struct page *page, u64 pos,
1403 bool force_uptodate)
1404 {
1405 int ret = 0;
1406
1407 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1408 !PageUptodate(page)) {
1409 ret = btrfs_readpage(NULL, page);
1410 if (ret)
1411 return ret;
1412 lock_page(page);
1413 if (!PageUptodate(page)) {
1414 unlock_page(page);
1415 return -EIO;
1416 }
1417 if (page->mapping != inode->i_mapping) {
1418 unlock_page(page);
1419 return -EAGAIN;
1420 }
1421 }
1422 return 0;
1423 }
1424
1425 /*
1426 * this just gets pages into the page cache and locks them down.
1427 */
1428 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1429 size_t num_pages, loff_t pos,
1430 size_t write_bytes, bool force_uptodate)
1431 {
1432 int i;
1433 unsigned long index = pos >> PAGE_SHIFT;
1434 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1435 int err = 0;
1436 int faili;
1437
1438 for (i = 0; i < num_pages; i++) {
1439 again:
1440 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1441 mask | __GFP_WRITE);
1442 if (!pages[i]) {
1443 faili = i - 1;
1444 err = -ENOMEM;
1445 goto fail;
1446 }
1447
1448 if (i == 0)
1449 err = prepare_uptodate_page(inode, pages[i], pos,
1450 force_uptodate);
1451 if (!err && i == num_pages - 1)
1452 err = prepare_uptodate_page(inode, pages[i],
1453 pos + write_bytes, false);
1454 if (err) {
1455 put_page(pages[i]);
1456 if (err == -EAGAIN) {
1457 err = 0;
1458 goto again;
1459 }
1460 faili = i - 1;
1461 goto fail;
1462 }
1463 wait_on_page_writeback(pages[i]);
1464 }
1465
1466 return 0;
1467 fail:
1468 while (faili >= 0) {
1469 unlock_page(pages[faili]);
1470 put_page(pages[faili]);
1471 faili--;
1472 }
1473 return err;
1474
1475 }
1476
1477 /*
1478 * This function locks the extent and properly waits for data=ordered extents
1479 * to finish before allowing the pages to be modified if need.
1480 *
1481 * The return value:
1482 * 1 - the extent is locked
1483 * 0 - the extent is not locked, and everything is OK
1484 * -EAGAIN - need re-prepare the pages
1485 * the other < 0 number - Something wrong happens
1486 */
1487 static noinline int
1488 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1489 size_t num_pages, loff_t pos,
1490 size_t write_bytes,
1491 u64 *lockstart, u64 *lockend,
1492 struct extent_state **cached_state)
1493 {
1494 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1495 u64 start_pos;
1496 u64 last_pos;
1497 int i;
1498 int ret = 0;
1499
1500 start_pos = round_down(pos, fs_info->sectorsize);
1501 last_pos = start_pos
1502 + round_up(pos + write_bytes - start_pos,
1503 fs_info->sectorsize) - 1;
1504
1505 if (start_pos < inode->vfs_inode.i_size) {
1506 struct btrfs_ordered_extent *ordered;
1507
1508 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1509 cached_state);
1510 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1511 last_pos - start_pos + 1);
1512 if (ordered &&
1513 ordered->file_offset + ordered->len > start_pos &&
1514 ordered->file_offset <= last_pos) {
1515 unlock_extent_cached(&inode->io_tree, start_pos,
1516 last_pos, cached_state, GFP_NOFS);
1517 for (i = 0; i < num_pages; i++) {
1518 unlock_page(pages[i]);
1519 put_page(pages[i]);
1520 }
1521 btrfs_start_ordered_extent(&inode->vfs_inode,
1522 ordered, 1);
1523 btrfs_put_ordered_extent(ordered);
1524 return -EAGAIN;
1525 }
1526 if (ordered)
1527 btrfs_put_ordered_extent(ordered);
1528
1529 *lockstart = start_pos;
1530 *lockend = last_pos;
1531 ret = 1;
1532 }
1533
1534 /*
1535 * It's possible the pages are dirty right now, but we don't want
1536 * to clean them yet because copy_from_user may catch a page fault
1537 * and we might have to fall back to one page at a time. If that
1538 * happens, we'll unlock these pages and we'd have a window where
1539 * reclaim could sneak in and drop the once-dirty page on the floor
1540 * without writing it.
1541 *
1542 * We have the pages locked and the extent range locked, so there's
1543 * no way someone can start IO on any dirty pages in this range.
1544 *
1545 * We'll call btrfs_dirty_pages() later on, and that will flip around
1546 * delalloc bits and dirty the pages as required.
1547 */
1548 for (i = 0; i < num_pages; i++) {
1549 set_page_extent_mapped(pages[i]);
1550 WARN_ON(!PageLocked(pages[i]));
1551 }
1552
1553 return ret;
1554 }
1555
1556 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1557 size_t *write_bytes)
1558 {
1559 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1560 struct btrfs_root *root = inode->root;
1561 struct btrfs_ordered_extent *ordered;
1562 u64 lockstart, lockend;
1563 u64 num_bytes;
1564 int ret;
1565
1566 ret = btrfs_start_write_no_snapshotting(root);
1567 if (!ret)
1568 return -ENOSPC;
1569
1570 lockstart = round_down(pos, fs_info->sectorsize);
1571 lockend = round_up(pos + *write_bytes,
1572 fs_info->sectorsize) - 1;
1573
1574 while (1) {
1575 lock_extent(&inode->io_tree, lockstart, lockend);
1576 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1577 lockend - lockstart + 1);
1578 if (!ordered) {
1579 break;
1580 }
1581 unlock_extent(&inode->io_tree, lockstart, lockend);
1582 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1583 btrfs_put_ordered_extent(ordered);
1584 }
1585
1586 num_bytes = lockend - lockstart + 1;
1587 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1588 NULL, NULL, NULL);
1589 if (ret <= 0) {
1590 ret = 0;
1591 btrfs_end_write_no_snapshotting(root);
1592 } else {
1593 *write_bytes = min_t(size_t, *write_bytes ,
1594 num_bytes - pos + lockstart);
1595 }
1596
1597 unlock_extent(&inode->io_tree, lockstart, lockend);
1598
1599 return ret;
1600 }
1601
1602 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1603 struct iov_iter *i,
1604 loff_t pos)
1605 {
1606 struct inode *inode = file_inode(file);
1607 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
1609 struct page **pages = NULL;
1610 struct extent_state *cached_state = NULL;
1611 struct extent_changeset *data_reserved = NULL;
1612 u64 release_bytes = 0;
1613 u64 lockstart;
1614 u64 lockend;
1615 size_t num_written = 0;
1616 int nrptrs;
1617 int ret = 0;
1618 bool only_release_metadata = false;
1619 bool force_page_uptodate = false;
1620
1621 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1622 PAGE_SIZE / (sizeof(struct page *)));
1623 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1624 nrptrs = max(nrptrs, 8);
1625 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1626 if (!pages)
1627 return -ENOMEM;
1628
1629 while (iov_iter_count(i) > 0) {
1630 size_t offset = pos & (PAGE_SIZE - 1);
1631 size_t sector_offset;
1632 size_t write_bytes = min(iov_iter_count(i),
1633 nrptrs * (size_t)PAGE_SIZE -
1634 offset);
1635 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1636 PAGE_SIZE);
1637 size_t reserve_bytes;
1638 size_t dirty_pages;
1639 size_t copied;
1640 size_t dirty_sectors;
1641 size_t num_sectors;
1642 int extents_locked;
1643
1644 WARN_ON(num_pages > nrptrs);
1645
1646 /*
1647 * Fault pages before locking them in prepare_pages
1648 * to avoid recursive lock
1649 */
1650 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1651 ret = -EFAULT;
1652 break;
1653 }
1654
1655 sector_offset = pos & (fs_info->sectorsize - 1);
1656 reserve_bytes = round_up(write_bytes + sector_offset,
1657 fs_info->sectorsize);
1658
1659 extent_changeset_release(data_reserved);
1660 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1661 write_bytes);
1662 if (ret < 0) {
1663 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1664 BTRFS_INODE_PREALLOC)) &&
1665 check_can_nocow(BTRFS_I(inode), pos,
1666 &write_bytes) > 0) {
1667 /*
1668 * For nodata cow case, no need to reserve
1669 * data space.
1670 */
1671 only_release_metadata = true;
1672 /*
1673 * our prealloc extent may be smaller than
1674 * write_bytes, so scale down.
1675 */
1676 num_pages = DIV_ROUND_UP(write_bytes + offset,
1677 PAGE_SIZE);
1678 reserve_bytes = round_up(write_bytes +
1679 sector_offset,
1680 fs_info->sectorsize);
1681 } else {
1682 break;
1683 }
1684 }
1685
1686 WARN_ON(reserve_bytes == 0);
1687 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1688 reserve_bytes);
1689 if (ret) {
1690 if (!only_release_metadata)
1691 btrfs_free_reserved_data_space(inode,
1692 data_reserved, pos,
1693 write_bytes);
1694 else
1695 btrfs_end_write_no_snapshotting(root);
1696 break;
1697 }
1698
1699 release_bytes = reserve_bytes;
1700 again:
1701 /*
1702 * This is going to setup the pages array with the number of
1703 * pages we want, so we don't really need to worry about the
1704 * contents of pages from loop to loop
1705 */
1706 ret = prepare_pages(inode, pages, num_pages,
1707 pos, write_bytes,
1708 force_page_uptodate);
1709 if (ret) {
1710 btrfs_delalloc_release_extents(BTRFS_I(inode),
1711 reserve_bytes);
1712 break;
1713 }
1714
1715 extents_locked = lock_and_cleanup_extent_if_need(
1716 BTRFS_I(inode), pages,
1717 num_pages, pos, write_bytes, &lockstart,
1718 &lockend, &cached_state);
1719 if (extents_locked < 0) {
1720 if (extents_locked == -EAGAIN)
1721 goto again;
1722 btrfs_delalloc_release_extents(BTRFS_I(inode),
1723 reserve_bytes);
1724 ret = extents_locked;
1725 break;
1726 }
1727
1728 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1729
1730 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1731 dirty_sectors = round_up(copied + sector_offset,
1732 fs_info->sectorsize);
1733 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1734
1735 /*
1736 * if we have trouble faulting in the pages, fall
1737 * back to one page at a time
1738 */
1739 if (copied < write_bytes)
1740 nrptrs = 1;
1741
1742 if (copied == 0) {
1743 force_page_uptodate = true;
1744 dirty_sectors = 0;
1745 dirty_pages = 0;
1746 } else {
1747 force_page_uptodate = false;
1748 dirty_pages = DIV_ROUND_UP(copied + offset,
1749 PAGE_SIZE);
1750 }
1751
1752 if (num_sectors > dirty_sectors) {
1753 /* release everything except the sectors we dirtied */
1754 release_bytes -= dirty_sectors <<
1755 fs_info->sb->s_blocksize_bits;
1756 if (only_release_metadata) {
1757 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1758 release_bytes);
1759 } else {
1760 u64 __pos;
1761
1762 __pos = round_down(pos,
1763 fs_info->sectorsize) +
1764 (dirty_pages << PAGE_SHIFT);
1765 btrfs_delalloc_release_space(inode,
1766 data_reserved, __pos,
1767 release_bytes);
1768 }
1769 }
1770
1771 release_bytes = round_up(copied + sector_offset,
1772 fs_info->sectorsize);
1773
1774 if (copied > 0)
1775 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1776 pos, copied, NULL);
1777 if (extents_locked)
1778 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1779 lockstart, lockend, &cached_state,
1780 GFP_NOFS);
1781 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1782 if (ret) {
1783 btrfs_drop_pages(pages, num_pages);
1784 break;
1785 }
1786
1787 release_bytes = 0;
1788 if (only_release_metadata)
1789 btrfs_end_write_no_snapshotting(root);
1790
1791 if (only_release_metadata && copied > 0) {
1792 lockstart = round_down(pos,
1793 fs_info->sectorsize);
1794 lockend = round_up(pos + copied,
1795 fs_info->sectorsize) - 1;
1796
1797 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1798 lockend, EXTENT_NORESERVE, NULL,
1799 NULL, GFP_NOFS);
1800 only_release_metadata = false;
1801 }
1802
1803 btrfs_drop_pages(pages, num_pages);
1804
1805 cond_resched();
1806
1807 balance_dirty_pages_ratelimited(inode->i_mapping);
1808 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1809 btrfs_btree_balance_dirty(fs_info);
1810
1811 pos += copied;
1812 num_written += copied;
1813 }
1814
1815 kfree(pages);
1816
1817 if (release_bytes) {
1818 if (only_release_metadata) {
1819 btrfs_end_write_no_snapshotting(root);
1820 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1821 release_bytes);
1822 } else {
1823 btrfs_delalloc_release_space(inode, data_reserved,
1824 round_down(pos, fs_info->sectorsize),
1825 release_bytes);
1826 }
1827 }
1828
1829 extent_changeset_free(data_reserved);
1830 return num_written ? num_written : ret;
1831 }
1832
1833 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1834 {
1835 struct file *file = iocb->ki_filp;
1836 struct inode *inode = file_inode(file);
1837 loff_t pos = iocb->ki_pos;
1838 ssize_t written;
1839 ssize_t written_buffered;
1840 loff_t endbyte;
1841 int err;
1842
1843 written = generic_file_direct_write(iocb, from);
1844
1845 if (written < 0 || !iov_iter_count(from))
1846 return written;
1847
1848 pos += written;
1849 written_buffered = __btrfs_buffered_write(file, from, pos);
1850 if (written_buffered < 0) {
1851 err = written_buffered;
1852 goto out;
1853 }
1854 /*
1855 * Ensure all data is persisted. We want the next direct IO read to be
1856 * able to read what was just written.
1857 */
1858 endbyte = pos + written_buffered - 1;
1859 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1860 if (err)
1861 goto out;
1862 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1863 if (err)
1864 goto out;
1865 written += written_buffered;
1866 iocb->ki_pos = pos + written_buffered;
1867 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1868 endbyte >> PAGE_SHIFT);
1869 out:
1870 return written ? written : err;
1871 }
1872
1873 static void update_time_for_write(struct inode *inode)
1874 {
1875 struct timespec now;
1876
1877 if (IS_NOCMTIME(inode))
1878 return;
1879
1880 now = current_time(inode);
1881 if (!timespec_equal(&inode->i_mtime, &now))
1882 inode->i_mtime = now;
1883
1884 if (!timespec_equal(&inode->i_ctime, &now))
1885 inode->i_ctime = now;
1886
1887 if (IS_I_VERSION(inode))
1888 inode_inc_iversion(inode);
1889 }
1890
1891 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1892 struct iov_iter *from)
1893 {
1894 struct file *file = iocb->ki_filp;
1895 struct inode *inode = file_inode(file);
1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897 struct btrfs_root *root = BTRFS_I(inode)->root;
1898 u64 start_pos;
1899 u64 end_pos;
1900 ssize_t num_written = 0;
1901 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1902 ssize_t err;
1903 loff_t pos;
1904 size_t count = iov_iter_count(from);
1905 loff_t oldsize;
1906 int clean_page = 0;
1907
1908 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1909 (iocb->ki_flags & IOCB_NOWAIT))
1910 return -EOPNOTSUPP;
1911
1912 if (!inode_trylock(inode)) {
1913 if (iocb->ki_flags & IOCB_NOWAIT)
1914 return -EAGAIN;
1915 inode_lock(inode);
1916 }
1917
1918 err = generic_write_checks(iocb, from);
1919 if (err <= 0) {
1920 inode_unlock(inode);
1921 return err;
1922 }
1923
1924 pos = iocb->ki_pos;
1925 if (iocb->ki_flags & IOCB_NOWAIT) {
1926 /*
1927 * We will allocate space in case nodatacow is not set,
1928 * so bail
1929 */
1930 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1931 BTRFS_INODE_PREALLOC)) ||
1932 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1933 inode_unlock(inode);
1934 return -EAGAIN;
1935 }
1936 }
1937
1938 current->backing_dev_info = inode_to_bdi(inode);
1939 err = file_remove_privs(file);
1940 if (err) {
1941 inode_unlock(inode);
1942 goto out;
1943 }
1944
1945 /*
1946 * If BTRFS flips readonly due to some impossible error
1947 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1948 * although we have opened a file as writable, we have
1949 * to stop this write operation to ensure FS consistency.
1950 */
1951 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1952 inode_unlock(inode);
1953 err = -EROFS;
1954 goto out;
1955 }
1956
1957 /*
1958 * We reserve space for updating the inode when we reserve space for the
1959 * extent we are going to write, so we will enospc out there. We don't
1960 * need to start yet another transaction to update the inode as we will
1961 * update the inode when we finish writing whatever data we write.
1962 */
1963 update_time_for_write(inode);
1964
1965 start_pos = round_down(pos, fs_info->sectorsize);
1966 oldsize = i_size_read(inode);
1967 if (start_pos > oldsize) {
1968 /* Expand hole size to cover write data, preventing empty gap */
1969 end_pos = round_up(pos + count,
1970 fs_info->sectorsize);
1971 err = btrfs_cont_expand(inode, oldsize, end_pos);
1972 if (err) {
1973 inode_unlock(inode);
1974 goto out;
1975 }
1976 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1977 clean_page = 1;
1978 }
1979
1980 if (sync)
1981 atomic_inc(&BTRFS_I(inode)->sync_writers);
1982
1983 if (iocb->ki_flags & IOCB_DIRECT) {
1984 num_written = __btrfs_direct_write(iocb, from);
1985 } else {
1986 num_written = __btrfs_buffered_write(file, from, pos);
1987 if (num_written > 0)
1988 iocb->ki_pos = pos + num_written;
1989 if (clean_page)
1990 pagecache_isize_extended(inode, oldsize,
1991 i_size_read(inode));
1992 }
1993
1994 inode_unlock(inode);
1995
1996 /*
1997 * We also have to set last_sub_trans to the current log transid,
1998 * otherwise subsequent syncs to a file that's been synced in this
1999 * transaction will appear to have already occurred.
2000 */
2001 spin_lock(&BTRFS_I(inode)->lock);
2002 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2003 spin_unlock(&BTRFS_I(inode)->lock);
2004 if (num_written > 0)
2005 num_written = generic_write_sync(iocb, num_written);
2006
2007 if (sync)
2008 atomic_dec(&BTRFS_I(inode)->sync_writers);
2009 out:
2010 current->backing_dev_info = NULL;
2011 return num_written ? num_written : err;
2012 }
2013
2014 int btrfs_release_file(struct inode *inode, struct file *filp)
2015 {
2016 struct btrfs_file_private *private = filp->private_data;
2017
2018 if (private && private->trans)
2019 btrfs_ioctl_trans_end(filp);
2020 if (private && private->filldir_buf)
2021 kfree(private->filldir_buf);
2022 kfree(private);
2023 filp->private_data = NULL;
2024
2025 /*
2026 * ordered_data_close is set by settattr when we are about to truncate
2027 * a file from a non-zero size to a zero size. This tries to
2028 * flush down new bytes that may have been written if the
2029 * application were using truncate to replace a file in place.
2030 */
2031 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2032 &BTRFS_I(inode)->runtime_flags))
2033 filemap_flush(inode->i_mapping);
2034 return 0;
2035 }
2036
2037 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2038 {
2039 int ret;
2040 struct blk_plug plug;
2041
2042 /*
2043 * This is only called in fsync, which would do synchronous writes, so
2044 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2045 * multiple disks using raid profile, a large IO can be split to
2046 * several segments of stripe length (currently 64K).
2047 */
2048 blk_start_plug(&plug);
2049 atomic_inc(&BTRFS_I(inode)->sync_writers);
2050 ret = btrfs_fdatawrite_range(inode, start, end);
2051 atomic_dec(&BTRFS_I(inode)->sync_writers);
2052 blk_finish_plug(&plug);
2053
2054 return ret;
2055 }
2056
2057 /*
2058 * fsync call for both files and directories. This logs the inode into
2059 * the tree log instead of forcing full commits whenever possible.
2060 *
2061 * It needs to call filemap_fdatawait so that all ordered extent updates are
2062 * in the metadata btree are up to date for copying to the log.
2063 *
2064 * It drops the inode mutex before doing the tree log commit. This is an
2065 * important optimization for directories because holding the mutex prevents
2066 * new operations on the dir while we write to disk.
2067 */
2068 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2069 {
2070 struct dentry *dentry = file_dentry(file);
2071 struct inode *inode = d_inode(dentry);
2072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2073 struct btrfs_root *root = BTRFS_I(inode)->root;
2074 struct btrfs_trans_handle *trans;
2075 struct btrfs_log_ctx ctx;
2076 int ret = 0, err;
2077 bool full_sync = false;
2078 u64 len;
2079
2080 /*
2081 * The range length can be represented by u64, we have to do the typecasts
2082 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2083 */
2084 len = (u64)end - (u64)start + 1;
2085 trace_btrfs_sync_file(file, datasync);
2086
2087 btrfs_init_log_ctx(&ctx, inode);
2088
2089 /*
2090 * We write the dirty pages in the range and wait until they complete
2091 * out of the ->i_mutex. If so, we can flush the dirty pages by
2092 * multi-task, and make the performance up. See
2093 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2094 */
2095 ret = start_ordered_ops(inode, start, end);
2096 if (ret)
2097 goto out;
2098
2099 inode_lock(inode);
2100
2101 /*
2102 * We take the dio_sem here because the tree log stuff can race with
2103 * lockless dio writes and get an extent map logged for an extent we
2104 * never waited on. We need it this high up for lockdep reasons.
2105 */
2106 down_write(&BTRFS_I(inode)->dio_sem);
2107
2108 atomic_inc(&root->log_batch);
2109 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2110 &BTRFS_I(inode)->runtime_flags);
2111 /*
2112 * We might have have had more pages made dirty after calling
2113 * start_ordered_ops and before acquiring the inode's i_mutex.
2114 */
2115 if (full_sync) {
2116 /*
2117 * For a full sync, we need to make sure any ordered operations
2118 * start and finish before we start logging the inode, so that
2119 * all extents are persisted and the respective file extent
2120 * items are in the fs/subvol btree.
2121 */
2122 ret = btrfs_wait_ordered_range(inode, start, len);
2123 } else {
2124 /*
2125 * Start any new ordered operations before starting to log the
2126 * inode. We will wait for them to finish in btrfs_sync_log().
2127 *
2128 * Right before acquiring the inode's mutex, we might have new
2129 * writes dirtying pages, which won't immediately start the
2130 * respective ordered operations - that is done through the
2131 * fill_delalloc callbacks invoked from the writepage and
2132 * writepages address space operations. So make sure we start
2133 * all ordered operations before starting to log our inode. Not
2134 * doing this means that while logging the inode, writeback
2135 * could start and invoke writepage/writepages, which would call
2136 * the fill_delalloc callbacks (cow_file_range,
2137 * submit_compressed_extents). These callbacks add first an
2138 * extent map to the modified list of extents and then create
2139 * the respective ordered operation, which means in
2140 * tree-log.c:btrfs_log_inode() we might capture all existing
2141 * ordered operations (with btrfs_get_logged_extents()) before
2142 * the fill_delalloc callback adds its ordered operation, and by
2143 * the time we visit the modified list of extent maps (with
2144 * btrfs_log_changed_extents()), we see and process the extent
2145 * map they created. We then use the extent map to construct a
2146 * file extent item for logging without waiting for the
2147 * respective ordered operation to finish - this file extent
2148 * item points to a disk location that might not have yet been
2149 * written to, containing random data - so after a crash a log
2150 * replay will make our inode have file extent items that point
2151 * to disk locations containing invalid data, as we returned
2152 * success to userspace without waiting for the respective
2153 * ordered operation to finish, because it wasn't captured by
2154 * btrfs_get_logged_extents().
2155 */
2156 ret = start_ordered_ops(inode, start, end);
2157 }
2158 if (ret) {
2159 up_write(&BTRFS_I(inode)->dio_sem);
2160 inode_unlock(inode);
2161 goto out;
2162 }
2163 atomic_inc(&root->log_batch);
2164
2165 /*
2166 * If the last transaction that changed this file was before the current
2167 * transaction and we have the full sync flag set in our inode, we can
2168 * bail out now without any syncing.
2169 *
2170 * Note that we can't bail out if the full sync flag isn't set. This is
2171 * because when the full sync flag is set we start all ordered extents
2172 * and wait for them to fully complete - when they complete they update
2173 * the inode's last_trans field through:
2174 *
2175 * btrfs_finish_ordered_io() ->
2176 * btrfs_update_inode_fallback() ->
2177 * btrfs_update_inode() ->
2178 * btrfs_set_inode_last_trans()
2179 *
2180 * So we are sure that last_trans is up to date and can do this check to
2181 * bail out safely. For the fast path, when the full sync flag is not
2182 * set in our inode, we can not do it because we start only our ordered
2183 * extents and don't wait for them to complete (that is when
2184 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2185 * value might be less than or equals to fs_info->last_trans_committed,
2186 * and setting a speculative last_trans for an inode when a buffered
2187 * write is made (such as fs_info->generation + 1 for example) would not
2188 * be reliable since after setting the value and before fsync is called
2189 * any number of transactions can start and commit (transaction kthread
2190 * commits the current transaction periodically), and a transaction
2191 * commit does not start nor waits for ordered extents to complete.
2192 */
2193 smp_mb();
2194 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2195 (full_sync && BTRFS_I(inode)->last_trans <=
2196 fs_info->last_trans_committed) ||
2197 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2198 BTRFS_I(inode)->last_trans
2199 <= fs_info->last_trans_committed)) {
2200 /*
2201 * We've had everything committed since the last time we were
2202 * modified so clear this flag in case it was set for whatever
2203 * reason, it's no longer relevant.
2204 */
2205 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2206 &BTRFS_I(inode)->runtime_flags);
2207 /*
2208 * An ordered extent might have started before and completed
2209 * already with io errors, in which case the inode was not
2210 * updated and we end up here. So check the inode's mapping
2211 * for any errors that might have happened since we last
2212 * checked called fsync.
2213 */
2214 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2215 up_write(&BTRFS_I(inode)->dio_sem);
2216 inode_unlock(inode);
2217 goto out;
2218 }
2219
2220 /*
2221 * ok we haven't committed the transaction yet, lets do a commit
2222 */
2223 if (file->private_data)
2224 btrfs_ioctl_trans_end(file);
2225
2226 /*
2227 * We use start here because we will need to wait on the IO to complete
2228 * in btrfs_sync_log, which could require joining a transaction (for
2229 * example checking cross references in the nocow path). If we use join
2230 * here we could get into a situation where we're waiting on IO to
2231 * happen that is blocked on a transaction trying to commit. With start
2232 * we inc the extwriter counter, so we wait for all extwriters to exit
2233 * before we start blocking join'ers. This comment is to keep somebody
2234 * from thinking they are super smart and changing this to
2235 * btrfs_join_transaction *cough*Josef*cough*.
2236 */
2237 trans = btrfs_start_transaction(root, 0);
2238 if (IS_ERR(trans)) {
2239 ret = PTR_ERR(trans);
2240 up_write(&BTRFS_I(inode)->dio_sem);
2241 inode_unlock(inode);
2242 goto out;
2243 }
2244 trans->sync = true;
2245
2246 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2247 if (ret < 0) {
2248 /* Fallthrough and commit/free transaction. */
2249 ret = 1;
2250 }
2251
2252 /* we've logged all the items and now have a consistent
2253 * version of the file in the log. It is possible that
2254 * someone will come in and modify the file, but that's
2255 * fine because the log is consistent on disk, and we
2256 * have references to all of the file's extents
2257 *
2258 * It is possible that someone will come in and log the
2259 * file again, but that will end up using the synchronization
2260 * inside btrfs_sync_log to keep things safe.
2261 */
2262 up_write(&BTRFS_I(inode)->dio_sem);
2263 inode_unlock(inode);
2264
2265 /*
2266 * If any of the ordered extents had an error, just return it to user
2267 * space, so that the application knows some writes didn't succeed and
2268 * can take proper action (retry for e.g.). Blindly committing the
2269 * transaction in this case, would fool userspace that everything was
2270 * successful. And we also want to make sure our log doesn't contain
2271 * file extent items pointing to extents that weren't fully written to -
2272 * just like in the non fast fsync path, where we check for the ordered
2273 * operation's error flag before writing to the log tree and return -EIO
2274 * if any of them had this flag set (btrfs_wait_ordered_range) -
2275 * therefore we need to check for errors in the ordered operations,
2276 * which are indicated by ctx.io_err.
2277 */
2278 if (ctx.io_err) {
2279 btrfs_end_transaction(trans);
2280 ret = ctx.io_err;
2281 goto out;
2282 }
2283
2284 if (ret != BTRFS_NO_LOG_SYNC) {
2285 if (!ret) {
2286 ret = btrfs_sync_log(trans, root, &ctx);
2287 if (!ret) {
2288 ret = btrfs_end_transaction(trans);
2289 goto out;
2290 }
2291 }
2292 if (!full_sync) {
2293 ret = btrfs_wait_ordered_range(inode, start, len);
2294 if (ret) {
2295 btrfs_end_transaction(trans);
2296 goto out;
2297 }
2298 }
2299 ret = btrfs_commit_transaction(trans);
2300 } else {
2301 ret = btrfs_end_transaction(trans);
2302 }
2303 out:
2304 ASSERT(list_empty(&ctx.list));
2305 err = file_check_and_advance_wb_err(file);
2306 if (!ret)
2307 ret = err;
2308 return ret > 0 ? -EIO : ret;
2309 }
2310
2311 static const struct vm_operations_struct btrfs_file_vm_ops = {
2312 .fault = filemap_fault,
2313 .map_pages = filemap_map_pages,
2314 .page_mkwrite = btrfs_page_mkwrite,
2315 };
2316
2317 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2318 {
2319 struct address_space *mapping = filp->f_mapping;
2320
2321 if (!mapping->a_ops->readpage)
2322 return -ENOEXEC;
2323
2324 file_accessed(filp);
2325 vma->vm_ops = &btrfs_file_vm_ops;
2326
2327 return 0;
2328 }
2329
2330 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2331 int slot, u64 start, u64 end)
2332 {
2333 struct btrfs_file_extent_item *fi;
2334 struct btrfs_key key;
2335
2336 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2337 return 0;
2338
2339 btrfs_item_key_to_cpu(leaf, &key, slot);
2340 if (key.objectid != btrfs_ino(inode) ||
2341 key.type != BTRFS_EXTENT_DATA_KEY)
2342 return 0;
2343
2344 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2345
2346 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2347 return 0;
2348
2349 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2350 return 0;
2351
2352 if (key.offset == end)
2353 return 1;
2354 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2355 return 1;
2356 return 0;
2357 }
2358
2359 static int fill_holes(struct btrfs_trans_handle *trans,
2360 struct btrfs_inode *inode,
2361 struct btrfs_path *path, u64 offset, u64 end)
2362 {
2363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2364 struct btrfs_root *root = inode->root;
2365 struct extent_buffer *leaf;
2366 struct btrfs_file_extent_item *fi;
2367 struct extent_map *hole_em;
2368 struct extent_map_tree *em_tree = &inode->extent_tree;
2369 struct btrfs_key key;
2370 int ret;
2371
2372 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2373 goto out;
2374
2375 key.objectid = btrfs_ino(inode);
2376 key.type = BTRFS_EXTENT_DATA_KEY;
2377 key.offset = offset;
2378
2379 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2380 if (ret <= 0) {
2381 /*
2382 * We should have dropped this offset, so if we find it then
2383 * something has gone horribly wrong.
2384 */
2385 if (ret == 0)
2386 ret = -EINVAL;
2387 return ret;
2388 }
2389
2390 leaf = path->nodes[0];
2391 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2392 u64 num_bytes;
2393
2394 path->slots[0]--;
2395 fi = btrfs_item_ptr(leaf, path->slots[0],
2396 struct btrfs_file_extent_item);
2397 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2398 end - offset;
2399 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2400 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2401 btrfs_set_file_extent_offset(leaf, fi, 0);
2402 btrfs_mark_buffer_dirty(leaf);
2403 goto out;
2404 }
2405
2406 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2407 u64 num_bytes;
2408
2409 key.offset = offset;
2410 btrfs_set_item_key_safe(fs_info, path, &key);
2411 fi = btrfs_item_ptr(leaf, path->slots[0],
2412 struct btrfs_file_extent_item);
2413 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2414 offset;
2415 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2416 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2417 btrfs_set_file_extent_offset(leaf, fi, 0);
2418 btrfs_mark_buffer_dirty(leaf);
2419 goto out;
2420 }
2421 btrfs_release_path(path);
2422
2423 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2424 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2425 if (ret)
2426 return ret;
2427
2428 out:
2429 btrfs_release_path(path);
2430
2431 hole_em = alloc_extent_map();
2432 if (!hole_em) {
2433 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2434 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2435 } else {
2436 hole_em->start = offset;
2437 hole_em->len = end - offset;
2438 hole_em->ram_bytes = hole_em->len;
2439 hole_em->orig_start = offset;
2440
2441 hole_em->block_start = EXTENT_MAP_HOLE;
2442 hole_em->block_len = 0;
2443 hole_em->orig_block_len = 0;
2444 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2445 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2446 hole_em->generation = trans->transid;
2447
2448 do {
2449 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2450 write_lock(&em_tree->lock);
2451 ret = add_extent_mapping(em_tree, hole_em, 1);
2452 write_unlock(&em_tree->lock);
2453 } while (ret == -EEXIST);
2454 free_extent_map(hole_em);
2455 if (ret)
2456 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2457 &inode->runtime_flags);
2458 }
2459
2460 return 0;
2461 }
2462
2463 /*
2464 * Find a hole extent on given inode and change start/len to the end of hole
2465 * extent.(hole/vacuum extent whose em->start <= start &&
2466 * em->start + em->len > start)
2467 * When a hole extent is found, return 1 and modify start/len.
2468 */
2469 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2470 {
2471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2472 struct extent_map *em;
2473 int ret = 0;
2474
2475 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2476 round_down(*start, fs_info->sectorsize),
2477 round_up(*len, fs_info->sectorsize), 0);
2478 if (IS_ERR(em))
2479 return PTR_ERR(em);
2480
2481 /* Hole or vacuum extent(only exists in no-hole mode) */
2482 if (em->block_start == EXTENT_MAP_HOLE) {
2483 ret = 1;
2484 *len = em->start + em->len > *start + *len ?
2485 0 : *start + *len - em->start - em->len;
2486 *start = em->start + em->len;
2487 }
2488 free_extent_map(em);
2489 return ret;
2490 }
2491
2492 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2493 {
2494 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2495 struct btrfs_root *root = BTRFS_I(inode)->root;
2496 struct extent_state *cached_state = NULL;
2497 struct btrfs_path *path;
2498 struct btrfs_block_rsv *rsv;
2499 struct btrfs_trans_handle *trans;
2500 u64 lockstart;
2501 u64 lockend;
2502 u64 tail_start;
2503 u64 tail_len;
2504 u64 orig_start = offset;
2505 u64 cur_offset;
2506 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2507 u64 drop_end;
2508 int ret = 0;
2509 int err = 0;
2510 unsigned int rsv_count;
2511 bool same_block;
2512 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2513 u64 ino_size;
2514 bool truncated_block = false;
2515 bool updated_inode = false;
2516
2517 ret = btrfs_wait_ordered_range(inode, offset, len);
2518 if (ret)
2519 return ret;
2520
2521 inode_lock(inode);
2522 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2523 ret = find_first_non_hole(inode, &offset, &len);
2524 if (ret < 0)
2525 goto out_only_mutex;
2526 if (ret && !len) {
2527 /* Already in a large hole */
2528 ret = 0;
2529 goto out_only_mutex;
2530 }
2531
2532 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2533 lockend = round_down(offset + len,
2534 btrfs_inode_sectorsize(inode)) - 1;
2535 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2536 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2537 /*
2538 * We needn't truncate any block which is beyond the end of the file
2539 * because we are sure there is no data there.
2540 */
2541 /*
2542 * Only do this if we are in the same block and we aren't doing the
2543 * entire block.
2544 */
2545 if (same_block && len < fs_info->sectorsize) {
2546 if (offset < ino_size) {
2547 truncated_block = true;
2548 ret = btrfs_truncate_block(inode, offset, len, 0);
2549 } else {
2550 ret = 0;
2551 }
2552 goto out_only_mutex;
2553 }
2554
2555 /* zero back part of the first block */
2556 if (offset < ino_size) {
2557 truncated_block = true;
2558 ret = btrfs_truncate_block(inode, offset, 0, 0);
2559 if (ret) {
2560 inode_unlock(inode);
2561 return ret;
2562 }
2563 }
2564
2565 /* Check the aligned pages after the first unaligned page,
2566 * if offset != orig_start, which means the first unaligned page
2567 * including several following pages are already in holes,
2568 * the extra check can be skipped */
2569 if (offset == orig_start) {
2570 /* after truncate page, check hole again */
2571 len = offset + len - lockstart;
2572 offset = lockstart;
2573 ret = find_first_non_hole(inode, &offset, &len);
2574 if (ret < 0)
2575 goto out_only_mutex;
2576 if (ret && !len) {
2577 ret = 0;
2578 goto out_only_mutex;
2579 }
2580 lockstart = offset;
2581 }
2582
2583 /* Check the tail unaligned part is in a hole */
2584 tail_start = lockend + 1;
2585 tail_len = offset + len - tail_start;
2586 if (tail_len) {
2587 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2588 if (unlikely(ret < 0))
2589 goto out_only_mutex;
2590 if (!ret) {
2591 /* zero the front end of the last page */
2592 if (tail_start + tail_len < ino_size) {
2593 truncated_block = true;
2594 ret = btrfs_truncate_block(inode,
2595 tail_start + tail_len,
2596 0, 1);
2597 if (ret)
2598 goto out_only_mutex;
2599 }
2600 }
2601 }
2602
2603 if (lockend < lockstart) {
2604 ret = 0;
2605 goto out_only_mutex;
2606 }
2607
2608 while (1) {
2609 struct btrfs_ordered_extent *ordered;
2610
2611 truncate_pagecache_range(inode, lockstart, lockend);
2612
2613 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2614 &cached_state);
2615 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2616
2617 /*
2618 * We need to make sure we have no ordered extents in this range
2619 * and nobody raced in and read a page in this range, if we did
2620 * we need to try again.
2621 */
2622 if ((!ordered ||
2623 (ordered->file_offset + ordered->len <= lockstart ||
2624 ordered->file_offset > lockend)) &&
2625 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2626 if (ordered)
2627 btrfs_put_ordered_extent(ordered);
2628 break;
2629 }
2630 if (ordered)
2631 btrfs_put_ordered_extent(ordered);
2632 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2633 lockend, &cached_state, GFP_NOFS);
2634 ret = btrfs_wait_ordered_range(inode, lockstart,
2635 lockend - lockstart + 1);
2636 if (ret) {
2637 inode_unlock(inode);
2638 return ret;
2639 }
2640 }
2641
2642 path = btrfs_alloc_path();
2643 if (!path) {
2644 ret = -ENOMEM;
2645 goto out;
2646 }
2647
2648 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2649 if (!rsv) {
2650 ret = -ENOMEM;
2651 goto out_free;
2652 }
2653 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2654 rsv->failfast = 1;
2655
2656 /*
2657 * 1 - update the inode
2658 * 1 - removing the extents in the range
2659 * 1 - adding the hole extent if no_holes isn't set
2660 */
2661 rsv_count = no_holes ? 2 : 3;
2662 trans = btrfs_start_transaction(root, rsv_count);
2663 if (IS_ERR(trans)) {
2664 err = PTR_ERR(trans);
2665 goto out_free;
2666 }
2667
2668 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2669 min_size, 0);
2670 BUG_ON(ret);
2671 trans->block_rsv = rsv;
2672
2673 cur_offset = lockstart;
2674 len = lockend - cur_offset;
2675 while (cur_offset < lockend) {
2676 ret = __btrfs_drop_extents(trans, root, inode, path,
2677 cur_offset, lockend + 1,
2678 &drop_end, 1, 0, 0, NULL);
2679 if (ret != -ENOSPC)
2680 break;
2681
2682 trans->block_rsv = &fs_info->trans_block_rsv;
2683
2684 if (cur_offset < drop_end && cur_offset < ino_size) {
2685 ret = fill_holes(trans, BTRFS_I(inode), path,
2686 cur_offset, drop_end);
2687 if (ret) {
2688 /*
2689 * If we failed then we didn't insert our hole
2690 * entries for the area we dropped, so now the
2691 * fs is corrupted, so we must abort the
2692 * transaction.
2693 */
2694 btrfs_abort_transaction(trans, ret);
2695 err = ret;
2696 break;
2697 }
2698 }
2699
2700 cur_offset = drop_end;
2701
2702 ret = btrfs_update_inode(trans, root, inode);
2703 if (ret) {
2704 err = ret;
2705 break;
2706 }
2707
2708 btrfs_end_transaction(trans);
2709 btrfs_btree_balance_dirty(fs_info);
2710
2711 trans = btrfs_start_transaction(root, rsv_count);
2712 if (IS_ERR(trans)) {
2713 ret = PTR_ERR(trans);
2714 trans = NULL;
2715 break;
2716 }
2717
2718 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2719 rsv, min_size, 0);
2720 BUG_ON(ret); /* shouldn't happen */
2721 trans->block_rsv = rsv;
2722
2723 ret = find_first_non_hole(inode, &cur_offset, &len);
2724 if (unlikely(ret < 0))
2725 break;
2726 if (ret && !len) {
2727 ret = 0;
2728 break;
2729 }
2730 }
2731
2732 if (ret) {
2733 err = ret;
2734 goto out_trans;
2735 }
2736
2737 trans->block_rsv = &fs_info->trans_block_rsv;
2738 /*
2739 * If we are using the NO_HOLES feature we might have had already an
2740 * hole that overlaps a part of the region [lockstart, lockend] and
2741 * ends at (or beyond) lockend. Since we have no file extent items to
2742 * represent holes, drop_end can be less than lockend and so we must
2743 * make sure we have an extent map representing the existing hole (the
2744 * call to __btrfs_drop_extents() might have dropped the existing extent
2745 * map representing the existing hole), otherwise the fast fsync path
2746 * will not record the existence of the hole region
2747 * [existing_hole_start, lockend].
2748 */
2749 if (drop_end <= lockend)
2750 drop_end = lockend + 1;
2751 /*
2752 * Don't insert file hole extent item if it's for a range beyond eof
2753 * (because it's useless) or if it represents a 0 bytes range (when
2754 * cur_offset == drop_end).
2755 */
2756 if (cur_offset < ino_size && cur_offset < drop_end) {
2757 ret = fill_holes(trans, BTRFS_I(inode), path,
2758 cur_offset, drop_end);
2759 if (ret) {
2760 /* Same comment as above. */
2761 btrfs_abort_transaction(trans, ret);
2762 err = ret;
2763 goto out_trans;
2764 }
2765 }
2766
2767 out_trans:
2768 if (!trans)
2769 goto out_free;
2770
2771 inode_inc_iversion(inode);
2772 inode->i_mtime = inode->i_ctime = current_time(inode);
2773
2774 trans->block_rsv = &fs_info->trans_block_rsv;
2775 ret = btrfs_update_inode(trans, root, inode);
2776 updated_inode = true;
2777 btrfs_end_transaction(trans);
2778 btrfs_btree_balance_dirty(fs_info);
2779 out_free:
2780 btrfs_free_path(path);
2781 btrfs_free_block_rsv(fs_info, rsv);
2782 out:
2783 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2784 &cached_state, GFP_NOFS);
2785 out_only_mutex:
2786 if (!updated_inode && truncated_block && !ret && !err) {
2787 /*
2788 * If we only end up zeroing part of a page, we still need to
2789 * update the inode item, so that all the time fields are
2790 * updated as well as the necessary btrfs inode in memory fields
2791 * for detecting, at fsync time, if the inode isn't yet in the
2792 * log tree or it's there but not up to date.
2793 */
2794 trans = btrfs_start_transaction(root, 1);
2795 if (IS_ERR(trans)) {
2796 err = PTR_ERR(trans);
2797 } else {
2798 err = btrfs_update_inode(trans, root, inode);
2799 ret = btrfs_end_transaction(trans);
2800 }
2801 }
2802 inode_unlock(inode);
2803 if (ret && !err)
2804 err = ret;
2805 return err;
2806 }
2807
2808 /* Helper structure to record which range is already reserved */
2809 struct falloc_range {
2810 struct list_head list;
2811 u64 start;
2812 u64 len;
2813 };
2814
2815 /*
2816 * Helper function to add falloc range
2817 *
2818 * Caller should have locked the larger range of extent containing
2819 * [start, len)
2820 */
2821 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2822 {
2823 struct falloc_range *prev = NULL;
2824 struct falloc_range *range = NULL;
2825
2826 if (list_empty(head))
2827 goto insert;
2828
2829 /*
2830 * As fallocate iterate by bytenr order, we only need to check
2831 * the last range.
2832 */
2833 prev = list_entry(head->prev, struct falloc_range, list);
2834 if (prev->start + prev->len == start) {
2835 prev->len += len;
2836 return 0;
2837 }
2838 insert:
2839 range = kmalloc(sizeof(*range), GFP_KERNEL);
2840 if (!range)
2841 return -ENOMEM;
2842 range->start = start;
2843 range->len = len;
2844 list_add_tail(&range->list, head);
2845 return 0;
2846 }
2847
2848 static long btrfs_fallocate(struct file *file, int mode,
2849 loff_t offset, loff_t len)
2850 {
2851 struct inode *inode = file_inode(file);
2852 struct extent_state *cached_state = NULL;
2853 struct extent_changeset *data_reserved = NULL;
2854 struct falloc_range *range;
2855 struct falloc_range *tmp;
2856 struct list_head reserve_list;
2857 u64 cur_offset;
2858 u64 last_byte;
2859 u64 alloc_start;
2860 u64 alloc_end;
2861 u64 alloc_hint = 0;
2862 u64 locked_end;
2863 u64 actual_end = 0;
2864 struct extent_map *em;
2865 int blocksize = btrfs_inode_sectorsize(inode);
2866 int ret;
2867
2868 alloc_start = round_down(offset, blocksize);
2869 alloc_end = round_up(offset + len, blocksize);
2870 cur_offset = alloc_start;
2871
2872 /* Make sure we aren't being give some crap mode */
2873 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2874 return -EOPNOTSUPP;
2875
2876 if (mode & FALLOC_FL_PUNCH_HOLE)
2877 return btrfs_punch_hole(inode, offset, len);
2878
2879 /*
2880 * Only trigger disk allocation, don't trigger qgroup reserve
2881 *
2882 * For qgroup space, it will be checked later.
2883 */
2884 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2885 alloc_end - alloc_start);
2886 if (ret < 0)
2887 return ret;
2888
2889 inode_lock(inode);
2890
2891 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2892 ret = inode_newsize_ok(inode, offset + len);
2893 if (ret)
2894 goto out;
2895 }
2896
2897 /*
2898 * TODO: Move these two operations after we have checked
2899 * accurate reserved space, or fallocate can still fail but
2900 * with page truncated or size expanded.
2901 *
2902 * But that's a minor problem and won't do much harm BTW.
2903 */
2904 if (alloc_start > inode->i_size) {
2905 ret = btrfs_cont_expand(inode, i_size_read(inode),
2906 alloc_start);
2907 if (ret)
2908 goto out;
2909 } else if (offset + len > inode->i_size) {
2910 /*
2911 * If we are fallocating from the end of the file onward we
2912 * need to zero out the end of the block if i_size lands in the
2913 * middle of a block.
2914 */
2915 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2916 if (ret)
2917 goto out;
2918 }
2919
2920 /*
2921 * wait for ordered IO before we have any locks. We'll loop again
2922 * below with the locks held.
2923 */
2924 ret = btrfs_wait_ordered_range(inode, alloc_start,
2925 alloc_end - alloc_start);
2926 if (ret)
2927 goto out;
2928
2929 locked_end = alloc_end - 1;
2930 while (1) {
2931 struct btrfs_ordered_extent *ordered;
2932
2933 /* the extent lock is ordered inside the running
2934 * transaction
2935 */
2936 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2937 locked_end, &cached_state);
2938 ordered = btrfs_lookup_first_ordered_extent(inode,
2939 alloc_end - 1);
2940 if (ordered &&
2941 ordered->file_offset + ordered->len > alloc_start &&
2942 ordered->file_offset < alloc_end) {
2943 btrfs_put_ordered_extent(ordered);
2944 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2945 alloc_start, locked_end,
2946 &cached_state, GFP_KERNEL);
2947 /*
2948 * we can't wait on the range with the transaction
2949 * running or with the extent lock held
2950 */
2951 ret = btrfs_wait_ordered_range(inode, alloc_start,
2952 alloc_end - alloc_start);
2953 if (ret)
2954 goto out;
2955 } else {
2956 if (ordered)
2957 btrfs_put_ordered_extent(ordered);
2958 break;
2959 }
2960 }
2961
2962 /* First, check if we exceed the qgroup limit */
2963 INIT_LIST_HEAD(&reserve_list);
2964 while (1) {
2965 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2966 alloc_end - cur_offset, 0);
2967 if (IS_ERR(em)) {
2968 ret = PTR_ERR(em);
2969 break;
2970 }
2971 last_byte = min(extent_map_end(em), alloc_end);
2972 actual_end = min_t(u64, extent_map_end(em), offset + len);
2973 last_byte = ALIGN(last_byte, blocksize);
2974 if (em->block_start == EXTENT_MAP_HOLE ||
2975 (cur_offset >= inode->i_size &&
2976 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2977 ret = add_falloc_range(&reserve_list, cur_offset,
2978 last_byte - cur_offset);
2979 if (ret < 0) {
2980 free_extent_map(em);
2981 break;
2982 }
2983 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2984 cur_offset, last_byte - cur_offset);
2985 if (ret < 0) {
2986 free_extent_map(em);
2987 break;
2988 }
2989 } else {
2990 /*
2991 * Do not need to reserve unwritten extent for this
2992 * range, free reserved data space first, otherwise
2993 * it'll result in false ENOSPC error.
2994 */
2995 btrfs_free_reserved_data_space(inode, data_reserved,
2996 cur_offset, last_byte - cur_offset);
2997 }
2998 free_extent_map(em);
2999 cur_offset = last_byte;
3000 if (cur_offset >= alloc_end)
3001 break;
3002 }
3003
3004 /*
3005 * If ret is still 0, means we're OK to fallocate.
3006 * Or just cleanup the list and exit.
3007 */
3008 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3009 if (!ret)
3010 ret = btrfs_prealloc_file_range(inode, mode,
3011 range->start,
3012 range->len, i_blocksize(inode),
3013 offset + len, &alloc_hint);
3014 else
3015 btrfs_free_reserved_data_space(inode,
3016 data_reserved, range->start,
3017 range->len);
3018 list_del(&range->list);
3019 kfree(range);
3020 }
3021 if (ret < 0)
3022 goto out_unlock;
3023
3024 if (actual_end > inode->i_size &&
3025 !(mode & FALLOC_FL_KEEP_SIZE)) {
3026 struct btrfs_trans_handle *trans;
3027 struct btrfs_root *root = BTRFS_I(inode)->root;
3028
3029 /*
3030 * We didn't need to allocate any more space, but we
3031 * still extended the size of the file so we need to
3032 * update i_size and the inode item.
3033 */
3034 trans = btrfs_start_transaction(root, 1);
3035 if (IS_ERR(trans)) {
3036 ret = PTR_ERR(trans);
3037 } else {
3038 inode->i_ctime = current_time(inode);
3039 i_size_write(inode, actual_end);
3040 btrfs_ordered_update_i_size(inode, actual_end, NULL);
3041 ret = btrfs_update_inode(trans, root, inode);
3042 if (ret)
3043 btrfs_end_transaction(trans);
3044 else
3045 ret = btrfs_end_transaction(trans);
3046 }
3047 }
3048 out_unlock:
3049 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3050 &cached_state, GFP_KERNEL);
3051 out:
3052 inode_unlock(inode);
3053 /* Let go of our reservation. */
3054 if (ret != 0)
3055 btrfs_free_reserved_data_space(inode, data_reserved,
3056 alloc_start, alloc_end - cur_offset);
3057 extent_changeset_free(data_reserved);
3058 return ret;
3059 }
3060
3061 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3062 {
3063 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3064 struct extent_map *em = NULL;
3065 struct extent_state *cached_state = NULL;
3066 u64 lockstart;
3067 u64 lockend;
3068 u64 start;
3069 u64 len;
3070 int ret = 0;
3071
3072 if (inode->i_size == 0)
3073 return -ENXIO;
3074
3075 /*
3076 * *offset can be negative, in this case we start finding DATA/HOLE from
3077 * the very start of the file.
3078 */
3079 start = max_t(loff_t, 0, *offset);
3080
3081 lockstart = round_down(start, fs_info->sectorsize);
3082 lockend = round_up(i_size_read(inode),
3083 fs_info->sectorsize);
3084 if (lockend <= lockstart)
3085 lockend = lockstart + fs_info->sectorsize;
3086 lockend--;
3087 len = lockend - lockstart + 1;
3088
3089 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3090 &cached_state);
3091
3092 while (start < inode->i_size) {
3093 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3094 start, len, 0);
3095 if (IS_ERR(em)) {
3096 ret = PTR_ERR(em);
3097 em = NULL;
3098 break;
3099 }
3100
3101 if (whence == SEEK_HOLE &&
3102 (em->block_start == EXTENT_MAP_HOLE ||
3103 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3104 break;
3105 else if (whence == SEEK_DATA &&
3106 (em->block_start != EXTENT_MAP_HOLE &&
3107 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3108 break;
3109
3110 start = em->start + em->len;
3111 free_extent_map(em);
3112 em = NULL;
3113 cond_resched();
3114 }
3115 free_extent_map(em);
3116 if (!ret) {
3117 if (whence == SEEK_DATA && start >= inode->i_size)
3118 ret = -ENXIO;
3119 else
3120 *offset = min_t(loff_t, start, inode->i_size);
3121 }
3122 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3123 &cached_state, GFP_NOFS);
3124 return ret;
3125 }
3126
3127 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3128 {
3129 struct inode *inode = file->f_mapping->host;
3130 int ret;
3131
3132 inode_lock(inode);
3133 switch (whence) {
3134 case SEEK_END:
3135 case SEEK_CUR:
3136 offset = generic_file_llseek(file, offset, whence);
3137 goto out;
3138 case SEEK_DATA:
3139 case SEEK_HOLE:
3140 if (offset >= i_size_read(inode)) {
3141 inode_unlock(inode);
3142 return -ENXIO;
3143 }
3144
3145 ret = find_desired_extent(inode, &offset, whence);
3146 if (ret) {
3147 inode_unlock(inode);
3148 return ret;
3149 }
3150 }
3151
3152 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3153 out:
3154 inode_unlock(inode);
3155 return offset;
3156 }
3157
3158 static int btrfs_file_open(struct inode *inode, struct file *filp)
3159 {
3160 filp->f_mode |= FMODE_NOWAIT;
3161 return generic_file_open(inode, filp);
3162 }
3163
3164 const struct file_operations btrfs_file_operations = {
3165 .llseek = btrfs_file_llseek,
3166 .read_iter = generic_file_read_iter,
3167 .splice_read = generic_file_splice_read,
3168 .write_iter = btrfs_file_write_iter,
3169 .mmap = btrfs_file_mmap,
3170 .open = btrfs_file_open,
3171 .release = btrfs_release_file,
3172 .fsync = btrfs_sync_file,
3173 .fallocate = btrfs_fallocate,
3174 .unlocked_ioctl = btrfs_ioctl,
3175 #ifdef CONFIG_COMPAT
3176 .compat_ioctl = btrfs_compat_ioctl,
3177 #endif
3178 .clone_file_range = btrfs_clone_file_range,
3179 .dedupe_file_range = btrfs_dedupe_file_range,
3180 };
3181
3182 void btrfs_auto_defrag_exit(void)
3183 {
3184 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3185 }
3186
3187 int btrfs_auto_defrag_init(void)
3188 {
3189 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3190 sizeof(struct inode_defrag), 0,
3191 SLAB_MEM_SPREAD,
3192 NULL);
3193 if (!btrfs_inode_defrag_cachep)
3194 return -ENOMEM;
3195
3196 return 0;
3197 }
3198
3199 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3200 {
3201 int ret;
3202
3203 /*
3204 * So with compression we will find and lock a dirty page and clear the
3205 * first one as dirty, setup an async extent, and immediately return
3206 * with the entire range locked but with nobody actually marked with
3207 * writeback. So we can't just filemap_write_and_wait_range() and
3208 * expect it to work since it will just kick off a thread to do the
3209 * actual work. So we need to call filemap_fdatawrite_range _again_
3210 * since it will wait on the page lock, which won't be unlocked until
3211 * after the pages have been marked as writeback and so we're good to go
3212 * from there. We have to do this otherwise we'll miss the ordered
3213 * extents and that results in badness. Please Josef, do not think you
3214 * know better and pull this out at some point in the future, it is
3215 * right and you are wrong.
3216 */
3217 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3218 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3219 &BTRFS_I(inode)->runtime_flags))
3220 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3221
3222 return ret;
3223 }