]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/file.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42
43 /*
44 * when auto defrag is enabled we
45 * queue up these defrag structs to remember which
46 * inodes need defragging passes
47 */
48 struct inode_defrag {
49 struct rb_node rb_node;
50 /* objectid */
51 u64 ino;
52 /*
53 * transid where the defrag was added, we search for
54 * extents newer than this
55 */
56 u64 transid;
57
58 /* root objectid */
59 u64 root;
60
61 /* last offset we were able to defrag */
62 u64 last_offset;
63
64 /* if we've wrapped around back to zero once already */
65 int cycled;
66 };
67
68 /* pop a record for an inode into the defrag tree. The lock
69 * must be held already
70 *
71 * If you're inserting a record for an older transid than an
72 * existing record, the transid already in the tree is lowered
73 *
74 * If an existing record is found the defrag item you
75 * pass in is freed
76 */
77 static void __btrfs_add_inode_defrag(struct inode *inode,
78 struct inode_defrag *defrag)
79 {
80 struct btrfs_root *root = BTRFS_I(inode)->root;
81 struct inode_defrag *entry;
82 struct rb_node **p;
83 struct rb_node *parent = NULL;
84
85 p = &root->fs_info->defrag_inodes.rb_node;
86 while (*p) {
87 parent = *p;
88 entry = rb_entry(parent, struct inode_defrag, rb_node);
89
90 if (defrag->ino < entry->ino)
91 p = &parent->rb_left;
92 else if (defrag->ino > entry->ino)
93 p = &parent->rb_right;
94 else {
95 /* if we're reinserting an entry for
96 * an old defrag run, make sure to
97 * lower the transid of our existing record
98 */
99 if (defrag->transid < entry->transid)
100 entry->transid = defrag->transid;
101 if (defrag->last_offset > entry->last_offset)
102 entry->last_offset = defrag->last_offset;
103 goto exists;
104 }
105 }
106 BTRFS_I(inode)->in_defrag = 1;
107 rb_link_node(&defrag->rb_node, parent, p);
108 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
109 return;
110
111 exists:
112 kfree(defrag);
113 return;
114
115 }
116
117 /*
118 * insert a defrag record for this inode if auto defrag is
119 * enabled
120 */
121 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
122 struct inode *inode)
123 {
124 struct btrfs_root *root = BTRFS_I(inode)->root;
125 struct inode_defrag *defrag;
126 u64 transid;
127
128 if (!btrfs_test_opt(root, AUTO_DEFRAG))
129 return 0;
130
131 if (btrfs_fs_closing(root->fs_info))
132 return 0;
133
134 if (BTRFS_I(inode)->in_defrag)
135 return 0;
136
137 if (trans)
138 transid = trans->transid;
139 else
140 transid = BTRFS_I(inode)->root->last_trans;
141
142 defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
143 if (!defrag)
144 return -ENOMEM;
145
146 defrag->ino = btrfs_ino(inode);
147 defrag->transid = transid;
148 defrag->root = root->root_key.objectid;
149
150 spin_lock(&root->fs_info->defrag_inodes_lock);
151 if (!BTRFS_I(inode)->in_defrag)
152 __btrfs_add_inode_defrag(inode, defrag);
153 else
154 kfree(defrag);
155 spin_unlock(&root->fs_info->defrag_inodes_lock);
156 return 0;
157 }
158
159 /*
160 * must be called with the defrag_inodes lock held
161 */
162 struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
163 struct rb_node **next)
164 {
165 struct inode_defrag *entry = NULL;
166 struct rb_node *p;
167 struct rb_node *parent = NULL;
168
169 p = info->defrag_inodes.rb_node;
170 while (p) {
171 parent = p;
172 entry = rb_entry(parent, struct inode_defrag, rb_node);
173
174 if (ino < entry->ino)
175 p = parent->rb_left;
176 else if (ino > entry->ino)
177 p = parent->rb_right;
178 else
179 return entry;
180 }
181
182 if (next) {
183 while (parent && ino > entry->ino) {
184 parent = rb_next(parent);
185 entry = rb_entry(parent, struct inode_defrag, rb_node);
186 }
187 *next = parent;
188 }
189 return NULL;
190 }
191
192 /*
193 * run through the list of inodes in the FS that need
194 * defragging
195 */
196 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
197 {
198 struct inode_defrag *defrag;
199 struct btrfs_root *inode_root;
200 struct inode *inode;
201 struct rb_node *n;
202 struct btrfs_key key;
203 struct btrfs_ioctl_defrag_range_args range;
204 u64 first_ino = 0;
205 int num_defrag;
206 int defrag_batch = 1024;
207
208 memset(&range, 0, sizeof(range));
209 range.len = (u64)-1;
210
211 atomic_inc(&fs_info->defrag_running);
212 spin_lock(&fs_info->defrag_inodes_lock);
213 while(1) {
214 n = NULL;
215
216 /* find an inode to defrag */
217 defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
218 if (!defrag) {
219 if (n)
220 defrag = rb_entry(n, struct inode_defrag, rb_node);
221 else if (first_ino) {
222 first_ino = 0;
223 continue;
224 } else {
225 break;
226 }
227 }
228
229 /* remove it from the rbtree */
230 first_ino = defrag->ino + 1;
231 rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
232
233 if (btrfs_fs_closing(fs_info))
234 goto next_free;
235
236 spin_unlock(&fs_info->defrag_inodes_lock);
237
238 /* get the inode */
239 key.objectid = defrag->root;
240 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
241 key.offset = (u64)-1;
242 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
243 if (IS_ERR(inode_root))
244 goto next;
245
246 key.objectid = defrag->ino;
247 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
248 key.offset = 0;
249
250 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
251 if (IS_ERR(inode))
252 goto next;
253
254 /* do a chunk of defrag */
255 BTRFS_I(inode)->in_defrag = 0;
256 range.start = defrag->last_offset;
257 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
258 defrag_batch);
259 /*
260 * if we filled the whole defrag batch, there
261 * must be more work to do. Queue this defrag
262 * again
263 */
264 if (num_defrag == defrag_batch) {
265 defrag->last_offset = range.start;
266 __btrfs_add_inode_defrag(inode, defrag);
267 /*
268 * we don't want to kfree defrag, we added it back to
269 * the rbtree
270 */
271 defrag = NULL;
272 } else if (defrag->last_offset && !defrag->cycled) {
273 /*
274 * we didn't fill our defrag batch, but
275 * we didn't start at zero. Make sure we loop
276 * around to the start of the file.
277 */
278 defrag->last_offset = 0;
279 defrag->cycled = 1;
280 __btrfs_add_inode_defrag(inode, defrag);
281 defrag = NULL;
282 }
283
284 iput(inode);
285 next:
286 spin_lock(&fs_info->defrag_inodes_lock);
287 next_free:
288 kfree(defrag);
289 }
290 spin_unlock(&fs_info->defrag_inodes_lock);
291
292 atomic_dec(&fs_info->defrag_running);
293
294 /*
295 * during unmount, we use the transaction_wait queue to
296 * wait for the defragger to stop
297 */
298 wake_up(&fs_info->transaction_wait);
299 return 0;
300 }
301
302 /* simple helper to fault in pages and copy. This should go away
303 * and be replaced with calls into generic code.
304 */
305 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
306 size_t write_bytes,
307 struct page **prepared_pages,
308 struct iov_iter *i)
309 {
310 size_t copied = 0;
311 size_t total_copied = 0;
312 int pg = 0;
313 int offset = pos & (PAGE_CACHE_SIZE - 1);
314
315 while (write_bytes > 0) {
316 size_t count = min_t(size_t,
317 PAGE_CACHE_SIZE - offset, write_bytes);
318 struct page *page = prepared_pages[pg];
319 /*
320 * Copy data from userspace to the current page
321 *
322 * Disable pagefault to avoid recursive lock since
323 * the pages are already locked
324 */
325 pagefault_disable();
326 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
327 pagefault_enable();
328
329 /* Flush processor's dcache for this page */
330 flush_dcache_page(page);
331
332 /*
333 * if we get a partial write, we can end up with
334 * partially up to date pages. These add
335 * a lot of complexity, so make sure they don't
336 * happen by forcing this copy to be retried.
337 *
338 * The rest of the btrfs_file_write code will fall
339 * back to page at a time copies after we return 0.
340 */
341 if (!PageUptodate(page) && copied < count)
342 copied = 0;
343
344 iov_iter_advance(i, copied);
345 write_bytes -= copied;
346 total_copied += copied;
347
348 /* Return to btrfs_file_aio_write to fault page */
349 if (unlikely(copied == 0))
350 break;
351
352 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
353 offset += copied;
354 } else {
355 pg++;
356 offset = 0;
357 }
358 }
359 return total_copied;
360 }
361
362 /*
363 * unlocks pages after btrfs_file_write is done with them
364 */
365 void btrfs_drop_pages(struct page **pages, size_t num_pages)
366 {
367 size_t i;
368 for (i = 0; i < num_pages; i++) {
369 /* page checked is some magic around finding pages that
370 * have been modified without going through btrfs_set_page_dirty
371 * clear it here
372 */
373 ClearPageChecked(pages[i]);
374 unlock_page(pages[i]);
375 mark_page_accessed(pages[i]);
376 page_cache_release(pages[i]);
377 }
378 }
379
380 /*
381 * after copy_from_user, pages need to be dirtied and we need to make
382 * sure holes are created between the current EOF and the start of
383 * any next extents (if required).
384 *
385 * this also makes the decision about creating an inline extent vs
386 * doing real data extents, marking pages dirty and delalloc as required.
387 */
388 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
389 struct page **pages, size_t num_pages,
390 loff_t pos, size_t write_bytes,
391 struct extent_state **cached)
392 {
393 int err = 0;
394 int i;
395 u64 num_bytes;
396 u64 start_pos;
397 u64 end_of_last_block;
398 u64 end_pos = pos + write_bytes;
399 loff_t isize = i_size_read(inode);
400
401 start_pos = pos & ~((u64)root->sectorsize - 1);
402 num_bytes = (write_bytes + pos - start_pos +
403 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
404
405 end_of_last_block = start_pos + num_bytes - 1;
406 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
407 cached);
408 if (err)
409 return err;
410
411 for (i = 0; i < num_pages; i++) {
412 struct page *p = pages[i];
413 SetPageUptodate(p);
414 ClearPageChecked(p);
415 set_page_dirty(p);
416 }
417
418 /*
419 * we've only changed i_size in ram, and we haven't updated
420 * the disk i_size. There is no need to log the inode
421 * at this time.
422 */
423 if (end_pos > isize)
424 i_size_write(inode, end_pos);
425 return 0;
426 }
427
428 /*
429 * this drops all the extents in the cache that intersect the range
430 * [start, end]. Existing extents are split as required.
431 */
432 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
433 int skip_pinned)
434 {
435 struct extent_map *em;
436 struct extent_map *split = NULL;
437 struct extent_map *split2 = NULL;
438 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
439 u64 len = end - start + 1;
440 int ret;
441 int testend = 1;
442 unsigned long flags;
443 int compressed = 0;
444
445 WARN_ON(end < start);
446 if (end == (u64)-1) {
447 len = (u64)-1;
448 testend = 0;
449 }
450 while (1) {
451 if (!split)
452 split = alloc_extent_map();
453 if (!split2)
454 split2 = alloc_extent_map();
455 BUG_ON(!split || !split2);
456
457 write_lock(&em_tree->lock);
458 em = lookup_extent_mapping(em_tree, start, len);
459 if (!em) {
460 write_unlock(&em_tree->lock);
461 break;
462 }
463 flags = em->flags;
464 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
465 if (testend && em->start + em->len >= start + len) {
466 free_extent_map(em);
467 write_unlock(&em_tree->lock);
468 break;
469 }
470 start = em->start + em->len;
471 if (testend)
472 len = start + len - (em->start + em->len);
473 free_extent_map(em);
474 write_unlock(&em_tree->lock);
475 continue;
476 }
477 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
478 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
479 remove_extent_mapping(em_tree, em);
480
481 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
482 em->start < start) {
483 split->start = em->start;
484 split->len = start - em->start;
485 split->orig_start = em->orig_start;
486 split->block_start = em->block_start;
487
488 if (compressed)
489 split->block_len = em->block_len;
490 else
491 split->block_len = split->len;
492
493 split->bdev = em->bdev;
494 split->flags = flags;
495 split->compress_type = em->compress_type;
496 ret = add_extent_mapping(em_tree, split);
497 BUG_ON(ret);
498 free_extent_map(split);
499 split = split2;
500 split2 = NULL;
501 }
502 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
503 testend && em->start + em->len > start + len) {
504 u64 diff = start + len - em->start;
505
506 split->start = start + len;
507 split->len = em->start + em->len - (start + len);
508 split->bdev = em->bdev;
509 split->flags = flags;
510 split->compress_type = em->compress_type;
511
512 if (compressed) {
513 split->block_len = em->block_len;
514 split->block_start = em->block_start;
515 split->orig_start = em->orig_start;
516 } else {
517 split->block_len = split->len;
518 split->block_start = em->block_start + diff;
519 split->orig_start = split->start;
520 }
521
522 ret = add_extent_mapping(em_tree, split);
523 BUG_ON(ret);
524 free_extent_map(split);
525 split = NULL;
526 }
527 write_unlock(&em_tree->lock);
528
529 /* once for us */
530 free_extent_map(em);
531 /* once for the tree*/
532 free_extent_map(em);
533 }
534 if (split)
535 free_extent_map(split);
536 if (split2)
537 free_extent_map(split2);
538 return 0;
539 }
540
541 /*
542 * this is very complex, but the basic idea is to drop all extents
543 * in the range start - end. hint_block is filled in with a block number
544 * that would be a good hint to the block allocator for this file.
545 *
546 * If an extent intersects the range but is not entirely inside the range
547 * it is either truncated or split. Anything entirely inside the range
548 * is deleted from the tree.
549 */
550 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
551 u64 start, u64 end, u64 *hint_byte, int drop_cache)
552 {
553 struct btrfs_root *root = BTRFS_I(inode)->root;
554 struct extent_buffer *leaf;
555 struct btrfs_file_extent_item *fi;
556 struct btrfs_path *path;
557 struct btrfs_key key;
558 struct btrfs_key new_key;
559 u64 ino = btrfs_ino(inode);
560 u64 search_start = start;
561 u64 disk_bytenr = 0;
562 u64 num_bytes = 0;
563 u64 extent_offset = 0;
564 u64 extent_end = 0;
565 int del_nr = 0;
566 int del_slot = 0;
567 int extent_type;
568 int recow;
569 int ret;
570
571 if (drop_cache)
572 btrfs_drop_extent_cache(inode, start, end - 1, 0);
573
574 path = btrfs_alloc_path();
575 if (!path)
576 return -ENOMEM;
577
578 while (1) {
579 recow = 0;
580 ret = btrfs_lookup_file_extent(trans, root, path, ino,
581 search_start, -1);
582 if (ret < 0)
583 break;
584 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
585 leaf = path->nodes[0];
586 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
587 if (key.objectid == ino &&
588 key.type == BTRFS_EXTENT_DATA_KEY)
589 path->slots[0]--;
590 }
591 ret = 0;
592 next_slot:
593 leaf = path->nodes[0];
594 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
595 BUG_ON(del_nr > 0);
596 ret = btrfs_next_leaf(root, path);
597 if (ret < 0)
598 break;
599 if (ret > 0) {
600 ret = 0;
601 break;
602 }
603 leaf = path->nodes[0];
604 recow = 1;
605 }
606
607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
608 if (key.objectid > ino ||
609 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
610 break;
611
612 fi = btrfs_item_ptr(leaf, path->slots[0],
613 struct btrfs_file_extent_item);
614 extent_type = btrfs_file_extent_type(leaf, fi);
615
616 if (extent_type == BTRFS_FILE_EXTENT_REG ||
617 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
618 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
619 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
620 extent_offset = btrfs_file_extent_offset(leaf, fi);
621 extent_end = key.offset +
622 btrfs_file_extent_num_bytes(leaf, fi);
623 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
624 extent_end = key.offset +
625 btrfs_file_extent_inline_len(leaf, fi);
626 } else {
627 WARN_ON(1);
628 extent_end = search_start;
629 }
630
631 if (extent_end <= search_start) {
632 path->slots[0]++;
633 goto next_slot;
634 }
635
636 search_start = max(key.offset, start);
637 if (recow) {
638 btrfs_release_path(path);
639 continue;
640 }
641
642 /*
643 * | - range to drop - |
644 * | -------- extent -------- |
645 */
646 if (start > key.offset && end < extent_end) {
647 BUG_ON(del_nr > 0);
648 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
649
650 memcpy(&new_key, &key, sizeof(new_key));
651 new_key.offset = start;
652 ret = btrfs_duplicate_item(trans, root, path,
653 &new_key);
654 if (ret == -EAGAIN) {
655 btrfs_release_path(path);
656 continue;
657 }
658 if (ret < 0)
659 break;
660
661 leaf = path->nodes[0];
662 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
663 struct btrfs_file_extent_item);
664 btrfs_set_file_extent_num_bytes(leaf, fi,
665 start - key.offset);
666
667 fi = btrfs_item_ptr(leaf, path->slots[0],
668 struct btrfs_file_extent_item);
669
670 extent_offset += start - key.offset;
671 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
672 btrfs_set_file_extent_num_bytes(leaf, fi,
673 extent_end - start);
674 btrfs_mark_buffer_dirty(leaf);
675
676 if (disk_bytenr > 0) {
677 ret = btrfs_inc_extent_ref(trans, root,
678 disk_bytenr, num_bytes, 0,
679 root->root_key.objectid,
680 new_key.objectid,
681 start - extent_offset, 0);
682 BUG_ON(ret);
683 *hint_byte = disk_bytenr;
684 }
685 key.offset = start;
686 }
687 /*
688 * | ---- range to drop ----- |
689 * | -------- extent -------- |
690 */
691 if (start <= key.offset && end < extent_end) {
692 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
693
694 memcpy(&new_key, &key, sizeof(new_key));
695 new_key.offset = end;
696 btrfs_set_item_key_safe(trans, root, path, &new_key);
697
698 extent_offset += end - key.offset;
699 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
700 btrfs_set_file_extent_num_bytes(leaf, fi,
701 extent_end - end);
702 btrfs_mark_buffer_dirty(leaf);
703 if (disk_bytenr > 0) {
704 inode_sub_bytes(inode, end - key.offset);
705 *hint_byte = disk_bytenr;
706 }
707 break;
708 }
709
710 search_start = extent_end;
711 /*
712 * | ---- range to drop ----- |
713 * | -------- extent -------- |
714 */
715 if (start > key.offset && end >= extent_end) {
716 BUG_ON(del_nr > 0);
717 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
718
719 btrfs_set_file_extent_num_bytes(leaf, fi,
720 start - key.offset);
721 btrfs_mark_buffer_dirty(leaf);
722 if (disk_bytenr > 0) {
723 inode_sub_bytes(inode, extent_end - start);
724 *hint_byte = disk_bytenr;
725 }
726 if (end == extent_end)
727 break;
728
729 path->slots[0]++;
730 goto next_slot;
731 }
732
733 /*
734 * | ---- range to drop ----- |
735 * | ------ extent ------ |
736 */
737 if (start <= key.offset && end >= extent_end) {
738 if (del_nr == 0) {
739 del_slot = path->slots[0];
740 del_nr = 1;
741 } else {
742 BUG_ON(del_slot + del_nr != path->slots[0]);
743 del_nr++;
744 }
745
746 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
747 inode_sub_bytes(inode,
748 extent_end - key.offset);
749 extent_end = ALIGN(extent_end,
750 root->sectorsize);
751 } else if (disk_bytenr > 0) {
752 ret = btrfs_free_extent(trans, root,
753 disk_bytenr, num_bytes, 0,
754 root->root_key.objectid,
755 key.objectid, key.offset -
756 extent_offset, 0);
757 BUG_ON(ret);
758 inode_sub_bytes(inode,
759 extent_end - key.offset);
760 *hint_byte = disk_bytenr;
761 }
762
763 if (end == extent_end)
764 break;
765
766 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
767 path->slots[0]++;
768 goto next_slot;
769 }
770
771 ret = btrfs_del_items(trans, root, path, del_slot,
772 del_nr);
773 BUG_ON(ret);
774
775 del_nr = 0;
776 del_slot = 0;
777
778 btrfs_release_path(path);
779 continue;
780 }
781
782 BUG_ON(1);
783 }
784
785 if (del_nr > 0) {
786 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
787 BUG_ON(ret);
788 }
789
790 btrfs_free_path(path);
791 return ret;
792 }
793
794 static int extent_mergeable(struct extent_buffer *leaf, int slot,
795 u64 objectid, u64 bytenr, u64 orig_offset,
796 u64 *start, u64 *end)
797 {
798 struct btrfs_file_extent_item *fi;
799 struct btrfs_key key;
800 u64 extent_end;
801
802 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
803 return 0;
804
805 btrfs_item_key_to_cpu(leaf, &key, slot);
806 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
807 return 0;
808
809 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
810 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
811 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
812 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
813 btrfs_file_extent_compression(leaf, fi) ||
814 btrfs_file_extent_encryption(leaf, fi) ||
815 btrfs_file_extent_other_encoding(leaf, fi))
816 return 0;
817
818 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
819 if ((*start && *start != key.offset) || (*end && *end != extent_end))
820 return 0;
821
822 *start = key.offset;
823 *end = extent_end;
824 return 1;
825 }
826
827 /*
828 * Mark extent in the range start - end as written.
829 *
830 * This changes extent type from 'pre-allocated' to 'regular'. If only
831 * part of extent is marked as written, the extent will be split into
832 * two or three.
833 */
834 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
835 struct inode *inode, u64 start, u64 end)
836 {
837 struct btrfs_root *root = BTRFS_I(inode)->root;
838 struct extent_buffer *leaf;
839 struct btrfs_path *path;
840 struct btrfs_file_extent_item *fi;
841 struct btrfs_key key;
842 struct btrfs_key new_key;
843 u64 bytenr;
844 u64 num_bytes;
845 u64 extent_end;
846 u64 orig_offset;
847 u64 other_start;
848 u64 other_end;
849 u64 split;
850 int del_nr = 0;
851 int del_slot = 0;
852 int recow;
853 int ret;
854 u64 ino = btrfs_ino(inode);
855
856 btrfs_drop_extent_cache(inode, start, end - 1, 0);
857
858 path = btrfs_alloc_path();
859 if (!path)
860 return -ENOMEM;
861 again:
862 recow = 0;
863 split = start;
864 key.objectid = ino;
865 key.type = BTRFS_EXTENT_DATA_KEY;
866 key.offset = split;
867
868 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
869 if (ret < 0)
870 goto out;
871 if (ret > 0 && path->slots[0] > 0)
872 path->slots[0]--;
873
874 leaf = path->nodes[0];
875 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
876 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
877 fi = btrfs_item_ptr(leaf, path->slots[0],
878 struct btrfs_file_extent_item);
879 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
880 BTRFS_FILE_EXTENT_PREALLOC);
881 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
882 BUG_ON(key.offset > start || extent_end < end);
883
884 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
885 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
886 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
887 memcpy(&new_key, &key, sizeof(new_key));
888
889 if (start == key.offset && end < extent_end) {
890 other_start = 0;
891 other_end = start;
892 if (extent_mergeable(leaf, path->slots[0] - 1,
893 ino, bytenr, orig_offset,
894 &other_start, &other_end)) {
895 new_key.offset = end;
896 btrfs_set_item_key_safe(trans, root, path, &new_key);
897 fi = btrfs_item_ptr(leaf, path->slots[0],
898 struct btrfs_file_extent_item);
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 extent_end - end);
901 btrfs_set_file_extent_offset(leaf, fi,
902 end - orig_offset);
903 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
904 struct btrfs_file_extent_item);
905 btrfs_set_file_extent_num_bytes(leaf, fi,
906 end - other_start);
907 btrfs_mark_buffer_dirty(leaf);
908 goto out;
909 }
910 }
911
912 if (start > key.offset && end == extent_end) {
913 other_start = end;
914 other_end = 0;
915 if (extent_mergeable(leaf, path->slots[0] + 1,
916 ino, bytenr, orig_offset,
917 &other_start, &other_end)) {
918 fi = btrfs_item_ptr(leaf, path->slots[0],
919 struct btrfs_file_extent_item);
920 btrfs_set_file_extent_num_bytes(leaf, fi,
921 start - key.offset);
922 path->slots[0]++;
923 new_key.offset = start;
924 btrfs_set_item_key_safe(trans, root, path, &new_key);
925
926 fi = btrfs_item_ptr(leaf, path->slots[0],
927 struct btrfs_file_extent_item);
928 btrfs_set_file_extent_num_bytes(leaf, fi,
929 other_end - start);
930 btrfs_set_file_extent_offset(leaf, fi,
931 start - orig_offset);
932 btrfs_mark_buffer_dirty(leaf);
933 goto out;
934 }
935 }
936
937 while (start > key.offset || end < extent_end) {
938 if (key.offset == start)
939 split = end;
940
941 new_key.offset = split;
942 ret = btrfs_duplicate_item(trans, root, path, &new_key);
943 if (ret == -EAGAIN) {
944 btrfs_release_path(path);
945 goto again;
946 }
947 BUG_ON(ret < 0);
948
949 leaf = path->nodes[0];
950 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
951 struct btrfs_file_extent_item);
952 btrfs_set_file_extent_num_bytes(leaf, fi,
953 split - key.offset);
954
955 fi = btrfs_item_ptr(leaf, path->slots[0],
956 struct btrfs_file_extent_item);
957
958 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
959 btrfs_set_file_extent_num_bytes(leaf, fi,
960 extent_end - split);
961 btrfs_mark_buffer_dirty(leaf);
962
963 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
964 root->root_key.objectid,
965 ino, orig_offset, 0);
966 BUG_ON(ret);
967
968 if (split == start) {
969 key.offset = start;
970 } else {
971 BUG_ON(start != key.offset);
972 path->slots[0]--;
973 extent_end = end;
974 }
975 recow = 1;
976 }
977
978 other_start = end;
979 other_end = 0;
980 if (extent_mergeable(leaf, path->slots[0] + 1,
981 ino, bytenr, orig_offset,
982 &other_start, &other_end)) {
983 if (recow) {
984 btrfs_release_path(path);
985 goto again;
986 }
987 extent_end = other_end;
988 del_slot = path->slots[0] + 1;
989 del_nr++;
990 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
991 0, root->root_key.objectid,
992 ino, orig_offset, 0);
993 BUG_ON(ret);
994 }
995 other_start = 0;
996 other_end = start;
997 if (extent_mergeable(leaf, path->slots[0] - 1,
998 ino, bytenr, orig_offset,
999 &other_start, &other_end)) {
1000 if (recow) {
1001 btrfs_release_path(path);
1002 goto again;
1003 }
1004 key.offset = other_start;
1005 del_slot = path->slots[0];
1006 del_nr++;
1007 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1008 0, root->root_key.objectid,
1009 ino, orig_offset, 0);
1010 BUG_ON(ret);
1011 }
1012 if (del_nr == 0) {
1013 fi = btrfs_item_ptr(leaf, path->slots[0],
1014 struct btrfs_file_extent_item);
1015 btrfs_set_file_extent_type(leaf, fi,
1016 BTRFS_FILE_EXTENT_REG);
1017 btrfs_mark_buffer_dirty(leaf);
1018 } else {
1019 fi = btrfs_item_ptr(leaf, del_slot - 1,
1020 struct btrfs_file_extent_item);
1021 btrfs_set_file_extent_type(leaf, fi,
1022 BTRFS_FILE_EXTENT_REG);
1023 btrfs_set_file_extent_num_bytes(leaf, fi,
1024 extent_end - key.offset);
1025 btrfs_mark_buffer_dirty(leaf);
1026
1027 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1028 BUG_ON(ret);
1029 }
1030 out:
1031 btrfs_free_path(path);
1032 return 0;
1033 }
1034
1035 /*
1036 * on error we return an unlocked page and the error value
1037 * on success we return a locked page and 0
1038 */
1039 static int prepare_uptodate_page(struct page *page, u64 pos,
1040 bool force_uptodate)
1041 {
1042 int ret = 0;
1043
1044 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1045 !PageUptodate(page)) {
1046 ret = btrfs_readpage(NULL, page);
1047 if (ret)
1048 return ret;
1049 lock_page(page);
1050 if (!PageUptodate(page)) {
1051 unlock_page(page);
1052 return -EIO;
1053 }
1054 }
1055 return 0;
1056 }
1057
1058 /*
1059 * this gets pages into the page cache and locks them down, it also properly
1060 * waits for data=ordered extents to finish before allowing the pages to be
1061 * modified.
1062 */
1063 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1064 struct page **pages, size_t num_pages,
1065 loff_t pos, unsigned long first_index,
1066 size_t write_bytes, bool force_uptodate)
1067 {
1068 struct extent_state *cached_state = NULL;
1069 int i;
1070 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1071 struct inode *inode = fdentry(file)->d_inode;
1072 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1073 int err = 0;
1074 int faili = 0;
1075 u64 start_pos;
1076 u64 last_pos;
1077
1078 start_pos = pos & ~((u64)root->sectorsize - 1);
1079 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1080
1081 again:
1082 for (i = 0; i < num_pages; i++) {
1083 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1084 mask | __GFP_WRITE);
1085 if (!pages[i]) {
1086 faili = i - 1;
1087 err = -ENOMEM;
1088 goto fail;
1089 }
1090
1091 if (i == 0)
1092 err = prepare_uptodate_page(pages[i], pos,
1093 force_uptodate);
1094 if (i == num_pages - 1)
1095 err = prepare_uptodate_page(pages[i],
1096 pos + write_bytes, false);
1097 if (err) {
1098 page_cache_release(pages[i]);
1099 faili = i - 1;
1100 goto fail;
1101 }
1102 wait_on_page_writeback(pages[i]);
1103 }
1104 err = 0;
1105 if (start_pos < inode->i_size) {
1106 struct btrfs_ordered_extent *ordered;
1107 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1108 start_pos, last_pos - 1, 0, &cached_state,
1109 GFP_NOFS);
1110 ordered = btrfs_lookup_first_ordered_extent(inode,
1111 last_pos - 1);
1112 if (ordered &&
1113 ordered->file_offset + ordered->len > start_pos &&
1114 ordered->file_offset < last_pos) {
1115 btrfs_put_ordered_extent(ordered);
1116 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1117 start_pos, last_pos - 1,
1118 &cached_state, GFP_NOFS);
1119 for (i = 0; i < num_pages; i++) {
1120 unlock_page(pages[i]);
1121 page_cache_release(pages[i]);
1122 }
1123 btrfs_wait_ordered_range(inode, start_pos,
1124 last_pos - start_pos);
1125 goto again;
1126 }
1127 if (ordered)
1128 btrfs_put_ordered_extent(ordered);
1129
1130 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1131 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1132 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1133 GFP_NOFS);
1134 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1135 start_pos, last_pos - 1, &cached_state,
1136 GFP_NOFS);
1137 }
1138 for (i = 0; i < num_pages; i++) {
1139 if (clear_page_dirty_for_io(pages[i]))
1140 account_page_redirty(pages[i]);
1141 set_page_extent_mapped(pages[i]);
1142 WARN_ON(!PageLocked(pages[i]));
1143 }
1144 return 0;
1145 fail:
1146 while (faili >= 0) {
1147 unlock_page(pages[faili]);
1148 page_cache_release(pages[faili]);
1149 faili--;
1150 }
1151 return err;
1152
1153 }
1154
1155 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1156 struct iov_iter *i,
1157 loff_t pos)
1158 {
1159 struct inode *inode = fdentry(file)->d_inode;
1160 struct btrfs_root *root = BTRFS_I(inode)->root;
1161 struct page **pages = NULL;
1162 unsigned long first_index;
1163 size_t num_written = 0;
1164 int nrptrs;
1165 int ret = 0;
1166 bool force_page_uptodate = false;
1167
1168 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1169 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1170 (sizeof(struct page *)));
1171 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1172 nrptrs = max(nrptrs, 8);
1173 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1174 if (!pages)
1175 return -ENOMEM;
1176
1177 first_index = pos >> PAGE_CACHE_SHIFT;
1178
1179 while (iov_iter_count(i) > 0) {
1180 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1181 size_t write_bytes = min(iov_iter_count(i),
1182 nrptrs * (size_t)PAGE_CACHE_SIZE -
1183 offset);
1184 size_t num_pages = (write_bytes + offset +
1185 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1186 size_t dirty_pages;
1187 size_t copied;
1188
1189 WARN_ON(num_pages > nrptrs);
1190
1191 /*
1192 * Fault pages before locking them in prepare_pages
1193 * to avoid recursive lock
1194 */
1195 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1196 ret = -EFAULT;
1197 break;
1198 }
1199
1200 ret = btrfs_delalloc_reserve_space(inode,
1201 num_pages << PAGE_CACHE_SHIFT);
1202 if (ret)
1203 break;
1204
1205 /*
1206 * This is going to setup the pages array with the number of
1207 * pages we want, so we don't really need to worry about the
1208 * contents of pages from loop to loop
1209 */
1210 ret = prepare_pages(root, file, pages, num_pages,
1211 pos, first_index, write_bytes,
1212 force_page_uptodate);
1213 if (ret) {
1214 btrfs_delalloc_release_space(inode,
1215 num_pages << PAGE_CACHE_SHIFT);
1216 break;
1217 }
1218
1219 copied = btrfs_copy_from_user(pos, num_pages,
1220 write_bytes, pages, i);
1221
1222 /*
1223 * if we have trouble faulting in the pages, fall
1224 * back to one page at a time
1225 */
1226 if (copied < write_bytes)
1227 nrptrs = 1;
1228
1229 if (copied == 0) {
1230 force_page_uptodate = true;
1231 dirty_pages = 0;
1232 } else {
1233 force_page_uptodate = false;
1234 dirty_pages = (copied + offset +
1235 PAGE_CACHE_SIZE - 1) >>
1236 PAGE_CACHE_SHIFT;
1237 }
1238
1239 /*
1240 * If we had a short copy we need to release the excess delaloc
1241 * bytes we reserved. We need to increment outstanding_extents
1242 * because btrfs_delalloc_release_space will decrement it, but
1243 * we still have an outstanding extent for the chunk we actually
1244 * managed to copy.
1245 */
1246 if (num_pages > dirty_pages) {
1247 if (copied > 0) {
1248 spin_lock(&BTRFS_I(inode)->lock);
1249 BTRFS_I(inode)->outstanding_extents++;
1250 spin_unlock(&BTRFS_I(inode)->lock);
1251 }
1252 btrfs_delalloc_release_space(inode,
1253 (num_pages - dirty_pages) <<
1254 PAGE_CACHE_SHIFT);
1255 }
1256
1257 if (copied > 0) {
1258 ret = btrfs_dirty_pages(root, inode, pages,
1259 dirty_pages, pos, copied,
1260 NULL);
1261 if (ret) {
1262 btrfs_delalloc_release_space(inode,
1263 dirty_pages << PAGE_CACHE_SHIFT);
1264 btrfs_drop_pages(pages, num_pages);
1265 break;
1266 }
1267 }
1268
1269 btrfs_drop_pages(pages, num_pages);
1270
1271 cond_resched();
1272
1273 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1274 dirty_pages);
1275 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1276 btrfs_btree_balance_dirty(root, 1);
1277
1278 pos += copied;
1279 num_written += copied;
1280 }
1281
1282 kfree(pages);
1283
1284 return num_written ? num_written : ret;
1285 }
1286
1287 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1288 const struct iovec *iov,
1289 unsigned long nr_segs, loff_t pos,
1290 loff_t *ppos, size_t count, size_t ocount)
1291 {
1292 struct file *file = iocb->ki_filp;
1293 struct inode *inode = fdentry(file)->d_inode;
1294 struct iov_iter i;
1295 ssize_t written;
1296 ssize_t written_buffered;
1297 loff_t endbyte;
1298 int err;
1299
1300 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1301 count, ocount);
1302
1303 /*
1304 * the generic O_DIRECT will update in-memory i_size after the
1305 * DIOs are done. But our endio handlers that update the on
1306 * disk i_size never update past the in memory i_size. So we
1307 * need one more update here to catch any additions to the
1308 * file
1309 */
1310 if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1311 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1312 mark_inode_dirty(inode);
1313 }
1314
1315 if (written < 0 || written == count)
1316 return written;
1317
1318 pos += written;
1319 count -= written;
1320 iov_iter_init(&i, iov, nr_segs, count, written);
1321 written_buffered = __btrfs_buffered_write(file, &i, pos);
1322 if (written_buffered < 0) {
1323 err = written_buffered;
1324 goto out;
1325 }
1326 endbyte = pos + written_buffered - 1;
1327 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1328 if (err)
1329 goto out;
1330 written += written_buffered;
1331 *ppos = pos + written_buffered;
1332 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1333 endbyte >> PAGE_CACHE_SHIFT);
1334 out:
1335 return written ? written : err;
1336 }
1337
1338 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1339 const struct iovec *iov,
1340 unsigned long nr_segs, loff_t pos)
1341 {
1342 struct file *file = iocb->ki_filp;
1343 struct inode *inode = fdentry(file)->d_inode;
1344 struct btrfs_root *root = BTRFS_I(inode)->root;
1345 loff_t *ppos = &iocb->ki_pos;
1346 u64 start_pos;
1347 ssize_t num_written = 0;
1348 ssize_t err = 0;
1349 size_t count, ocount;
1350
1351 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1352
1353 mutex_lock(&inode->i_mutex);
1354
1355 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1356 if (err) {
1357 mutex_unlock(&inode->i_mutex);
1358 goto out;
1359 }
1360 count = ocount;
1361
1362 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1363 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1364 if (err) {
1365 mutex_unlock(&inode->i_mutex);
1366 goto out;
1367 }
1368
1369 if (count == 0) {
1370 mutex_unlock(&inode->i_mutex);
1371 goto out;
1372 }
1373
1374 err = file_remove_suid(file);
1375 if (err) {
1376 mutex_unlock(&inode->i_mutex);
1377 goto out;
1378 }
1379
1380 /*
1381 * If BTRFS flips readonly due to some impossible error
1382 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1383 * although we have opened a file as writable, we have
1384 * to stop this write operation to ensure FS consistency.
1385 */
1386 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1387 mutex_unlock(&inode->i_mutex);
1388 err = -EROFS;
1389 goto out;
1390 }
1391
1392 err = btrfs_update_time(file);
1393 if (err) {
1394 mutex_unlock(&inode->i_mutex);
1395 goto out;
1396 }
1397 BTRFS_I(inode)->sequence++;
1398
1399 start_pos = round_down(pos, root->sectorsize);
1400 if (start_pos > i_size_read(inode)) {
1401 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1402 if (err) {
1403 mutex_unlock(&inode->i_mutex);
1404 goto out;
1405 }
1406 }
1407
1408 if (unlikely(file->f_flags & O_DIRECT)) {
1409 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1410 pos, ppos, count, ocount);
1411 } else {
1412 struct iov_iter i;
1413
1414 iov_iter_init(&i, iov, nr_segs, count, num_written);
1415
1416 num_written = __btrfs_buffered_write(file, &i, pos);
1417 if (num_written > 0)
1418 *ppos = pos + num_written;
1419 }
1420
1421 mutex_unlock(&inode->i_mutex);
1422
1423 /*
1424 * we want to make sure fsync finds this change
1425 * but we haven't joined a transaction running right now.
1426 *
1427 * Later on, someone is sure to update the inode and get the
1428 * real transid recorded.
1429 *
1430 * We set last_trans now to the fs_info generation + 1,
1431 * this will either be one more than the running transaction
1432 * or the generation used for the next transaction if there isn't
1433 * one running right now.
1434 */
1435 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1436 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1437 err = generic_write_sync(file, pos, num_written);
1438 if (err < 0 && num_written > 0)
1439 num_written = err;
1440 }
1441 out:
1442 current->backing_dev_info = NULL;
1443 return num_written ? num_written : err;
1444 }
1445
1446 int btrfs_release_file(struct inode *inode, struct file *filp)
1447 {
1448 /*
1449 * ordered_data_close is set by settattr when we are about to truncate
1450 * a file from a non-zero size to a zero size. This tries to
1451 * flush down new bytes that may have been written if the
1452 * application were using truncate to replace a file in place.
1453 */
1454 if (BTRFS_I(inode)->ordered_data_close) {
1455 BTRFS_I(inode)->ordered_data_close = 0;
1456 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1457 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1458 filemap_flush(inode->i_mapping);
1459 }
1460 if (filp->private_data)
1461 btrfs_ioctl_trans_end(filp);
1462 return 0;
1463 }
1464
1465 /*
1466 * fsync call for both files and directories. This logs the inode into
1467 * the tree log instead of forcing full commits whenever possible.
1468 *
1469 * It needs to call filemap_fdatawait so that all ordered extent updates are
1470 * in the metadata btree are up to date for copying to the log.
1471 *
1472 * It drops the inode mutex before doing the tree log commit. This is an
1473 * important optimization for directories because holding the mutex prevents
1474 * new operations on the dir while we write to disk.
1475 */
1476 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1477 {
1478 struct dentry *dentry = file->f_path.dentry;
1479 struct inode *inode = dentry->d_inode;
1480 struct btrfs_root *root = BTRFS_I(inode)->root;
1481 int ret = 0;
1482 struct btrfs_trans_handle *trans;
1483
1484 trace_btrfs_sync_file(file, datasync);
1485
1486 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1487 if (ret)
1488 return ret;
1489 mutex_lock(&inode->i_mutex);
1490
1491 /* we wait first, since the writeback may change the inode */
1492 root->log_batch++;
1493 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1494 root->log_batch++;
1495
1496 /*
1497 * check the transaction that last modified this inode
1498 * and see if its already been committed
1499 */
1500 if (!BTRFS_I(inode)->last_trans) {
1501 mutex_unlock(&inode->i_mutex);
1502 goto out;
1503 }
1504
1505 /*
1506 * if the last transaction that changed this file was before
1507 * the current transaction, we can bail out now without any
1508 * syncing
1509 */
1510 smp_mb();
1511 if (BTRFS_I(inode)->last_trans <=
1512 root->fs_info->last_trans_committed) {
1513 BTRFS_I(inode)->last_trans = 0;
1514 mutex_unlock(&inode->i_mutex);
1515 goto out;
1516 }
1517
1518 /*
1519 * ok we haven't committed the transaction yet, lets do a commit
1520 */
1521 if (file->private_data)
1522 btrfs_ioctl_trans_end(file);
1523
1524 trans = btrfs_start_transaction(root, 0);
1525 if (IS_ERR(trans)) {
1526 ret = PTR_ERR(trans);
1527 mutex_unlock(&inode->i_mutex);
1528 goto out;
1529 }
1530
1531 ret = btrfs_log_dentry_safe(trans, root, dentry);
1532 if (ret < 0) {
1533 mutex_unlock(&inode->i_mutex);
1534 goto out;
1535 }
1536
1537 /* we've logged all the items and now have a consistent
1538 * version of the file in the log. It is possible that
1539 * someone will come in and modify the file, but that's
1540 * fine because the log is consistent on disk, and we
1541 * have references to all of the file's extents
1542 *
1543 * It is possible that someone will come in and log the
1544 * file again, but that will end up using the synchronization
1545 * inside btrfs_sync_log to keep things safe.
1546 */
1547 mutex_unlock(&inode->i_mutex);
1548
1549 if (ret != BTRFS_NO_LOG_SYNC) {
1550 if (ret > 0) {
1551 ret = btrfs_commit_transaction(trans, root);
1552 } else {
1553 ret = btrfs_sync_log(trans, root);
1554 if (ret == 0)
1555 ret = btrfs_end_transaction(trans, root);
1556 else
1557 ret = btrfs_commit_transaction(trans, root);
1558 }
1559 } else {
1560 ret = btrfs_end_transaction(trans, root);
1561 }
1562 out:
1563 return ret > 0 ? -EIO : ret;
1564 }
1565
1566 static const struct vm_operations_struct btrfs_file_vm_ops = {
1567 .fault = filemap_fault,
1568 .page_mkwrite = btrfs_page_mkwrite,
1569 };
1570
1571 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1572 {
1573 struct address_space *mapping = filp->f_mapping;
1574
1575 if (!mapping->a_ops->readpage)
1576 return -ENOEXEC;
1577
1578 file_accessed(filp);
1579 vma->vm_ops = &btrfs_file_vm_ops;
1580 vma->vm_flags |= VM_CAN_NONLINEAR;
1581
1582 return 0;
1583 }
1584
1585 static long btrfs_fallocate(struct file *file, int mode,
1586 loff_t offset, loff_t len)
1587 {
1588 struct inode *inode = file->f_path.dentry->d_inode;
1589 struct extent_state *cached_state = NULL;
1590 u64 cur_offset;
1591 u64 last_byte;
1592 u64 alloc_start;
1593 u64 alloc_end;
1594 u64 alloc_hint = 0;
1595 u64 locked_end;
1596 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1597 struct extent_map *em;
1598 int ret;
1599
1600 alloc_start = offset & ~mask;
1601 alloc_end = (offset + len + mask) & ~mask;
1602
1603 /* We only support the FALLOC_FL_KEEP_SIZE mode */
1604 if (mode & ~FALLOC_FL_KEEP_SIZE)
1605 return -EOPNOTSUPP;
1606
1607 /*
1608 * wait for ordered IO before we have any locks. We'll loop again
1609 * below with the locks held.
1610 */
1611 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1612
1613 mutex_lock(&inode->i_mutex);
1614 ret = inode_newsize_ok(inode, alloc_end);
1615 if (ret)
1616 goto out;
1617
1618 if (alloc_start > inode->i_size) {
1619 ret = btrfs_cont_expand(inode, i_size_read(inode),
1620 alloc_start);
1621 if (ret)
1622 goto out;
1623 }
1624
1625 locked_end = alloc_end - 1;
1626 while (1) {
1627 struct btrfs_ordered_extent *ordered;
1628
1629 /* the extent lock is ordered inside the running
1630 * transaction
1631 */
1632 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1633 locked_end, 0, &cached_state, GFP_NOFS);
1634 ordered = btrfs_lookup_first_ordered_extent(inode,
1635 alloc_end - 1);
1636 if (ordered &&
1637 ordered->file_offset + ordered->len > alloc_start &&
1638 ordered->file_offset < alloc_end) {
1639 btrfs_put_ordered_extent(ordered);
1640 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1641 alloc_start, locked_end,
1642 &cached_state, GFP_NOFS);
1643 /*
1644 * we can't wait on the range with the transaction
1645 * running or with the extent lock held
1646 */
1647 btrfs_wait_ordered_range(inode, alloc_start,
1648 alloc_end - alloc_start);
1649 } else {
1650 if (ordered)
1651 btrfs_put_ordered_extent(ordered);
1652 break;
1653 }
1654 }
1655
1656 cur_offset = alloc_start;
1657 while (1) {
1658 u64 actual_end;
1659
1660 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1661 alloc_end - cur_offset, 0);
1662 BUG_ON(IS_ERR_OR_NULL(em));
1663 last_byte = min(extent_map_end(em), alloc_end);
1664 actual_end = min_t(u64, extent_map_end(em), offset + len);
1665 last_byte = (last_byte + mask) & ~mask;
1666
1667 if (em->block_start == EXTENT_MAP_HOLE ||
1668 (cur_offset >= inode->i_size &&
1669 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1670
1671 /*
1672 * Make sure we have enough space before we do the
1673 * allocation.
1674 */
1675 ret = btrfs_check_data_free_space(inode, last_byte -
1676 cur_offset);
1677 if (ret) {
1678 free_extent_map(em);
1679 break;
1680 }
1681
1682 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1683 last_byte - cur_offset,
1684 1 << inode->i_blkbits,
1685 offset + len,
1686 &alloc_hint);
1687
1688 /* Let go of our reservation. */
1689 btrfs_free_reserved_data_space(inode, last_byte -
1690 cur_offset);
1691 if (ret < 0) {
1692 free_extent_map(em);
1693 break;
1694 }
1695 } else if (actual_end > inode->i_size &&
1696 !(mode & FALLOC_FL_KEEP_SIZE)) {
1697 /*
1698 * We didn't need to allocate any more space, but we
1699 * still extended the size of the file so we need to
1700 * update i_size.
1701 */
1702 inode->i_ctime = CURRENT_TIME;
1703 i_size_write(inode, actual_end);
1704 btrfs_ordered_update_i_size(inode, actual_end, NULL);
1705 }
1706 free_extent_map(em);
1707
1708 cur_offset = last_byte;
1709 if (cur_offset >= alloc_end) {
1710 ret = 0;
1711 break;
1712 }
1713 }
1714 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1715 &cached_state, GFP_NOFS);
1716 out:
1717 mutex_unlock(&inode->i_mutex);
1718 return ret;
1719 }
1720
1721 static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
1722 {
1723 struct btrfs_root *root = BTRFS_I(inode)->root;
1724 struct extent_map *em;
1725 struct extent_state *cached_state = NULL;
1726 u64 lockstart = *offset;
1727 u64 lockend = i_size_read(inode);
1728 u64 start = *offset;
1729 u64 orig_start = *offset;
1730 u64 len = i_size_read(inode);
1731 u64 last_end = 0;
1732 int ret = 0;
1733
1734 lockend = max_t(u64, root->sectorsize, lockend);
1735 if (lockend <= lockstart)
1736 lockend = lockstart + root->sectorsize;
1737
1738 len = lockend - lockstart + 1;
1739
1740 len = max_t(u64, len, root->sectorsize);
1741 if (inode->i_size == 0)
1742 return -ENXIO;
1743
1744 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1745 &cached_state, GFP_NOFS);
1746
1747 /*
1748 * Delalloc is such a pain. If we have a hole and we have pending
1749 * delalloc for a portion of the hole we will get back a hole that
1750 * exists for the entire range since it hasn't been actually written
1751 * yet. So to take care of this case we need to look for an extent just
1752 * before the position we want in case there is outstanding delalloc
1753 * going on here.
1754 */
1755 if (origin == SEEK_HOLE && start != 0) {
1756 if (start <= root->sectorsize)
1757 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1758 root->sectorsize, 0);
1759 else
1760 em = btrfs_get_extent_fiemap(inode, NULL, 0,
1761 start - root->sectorsize,
1762 root->sectorsize, 0);
1763 if (IS_ERR(em)) {
1764 ret = -ENXIO;
1765 goto out;
1766 }
1767 last_end = em->start + em->len;
1768 if (em->block_start == EXTENT_MAP_DELALLOC)
1769 last_end = min_t(u64, last_end, inode->i_size);
1770 free_extent_map(em);
1771 }
1772
1773 while (1) {
1774 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
1775 if (IS_ERR(em)) {
1776 ret = -ENXIO;
1777 break;
1778 }
1779
1780 if (em->block_start == EXTENT_MAP_HOLE) {
1781 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1782 if (last_end <= orig_start) {
1783 free_extent_map(em);
1784 ret = -ENXIO;
1785 break;
1786 }
1787 }
1788
1789 if (origin == SEEK_HOLE) {
1790 *offset = start;
1791 free_extent_map(em);
1792 break;
1793 }
1794 } else {
1795 if (origin == SEEK_DATA) {
1796 if (em->block_start == EXTENT_MAP_DELALLOC) {
1797 if (start >= inode->i_size) {
1798 free_extent_map(em);
1799 ret = -ENXIO;
1800 break;
1801 }
1802 }
1803
1804 *offset = start;
1805 free_extent_map(em);
1806 break;
1807 }
1808 }
1809
1810 start = em->start + em->len;
1811 last_end = em->start + em->len;
1812
1813 if (em->block_start == EXTENT_MAP_DELALLOC)
1814 last_end = min_t(u64, last_end, inode->i_size);
1815
1816 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1817 free_extent_map(em);
1818 ret = -ENXIO;
1819 break;
1820 }
1821 free_extent_map(em);
1822 cond_resched();
1823 }
1824 if (!ret)
1825 *offset = min(*offset, inode->i_size);
1826 out:
1827 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1828 &cached_state, GFP_NOFS);
1829 return ret;
1830 }
1831
1832 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1833 {
1834 struct inode *inode = file->f_mapping->host;
1835 int ret;
1836
1837 mutex_lock(&inode->i_mutex);
1838 switch (origin) {
1839 case SEEK_END:
1840 case SEEK_CUR:
1841 offset = generic_file_llseek(file, offset, origin);
1842 goto out;
1843 case SEEK_DATA:
1844 case SEEK_HOLE:
1845 if (offset >= i_size_read(inode)) {
1846 mutex_unlock(&inode->i_mutex);
1847 return -ENXIO;
1848 }
1849
1850 ret = find_desired_extent(inode, &offset, origin);
1851 if (ret) {
1852 mutex_unlock(&inode->i_mutex);
1853 return ret;
1854 }
1855 }
1856
1857 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
1858 offset = -EINVAL;
1859 goto out;
1860 }
1861 if (offset > inode->i_sb->s_maxbytes) {
1862 offset = -EINVAL;
1863 goto out;
1864 }
1865
1866 /* Special lock needed here? */
1867 if (offset != file->f_pos) {
1868 file->f_pos = offset;
1869 file->f_version = 0;
1870 }
1871 out:
1872 mutex_unlock(&inode->i_mutex);
1873 return offset;
1874 }
1875
1876 const struct file_operations btrfs_file_operations = {
1877 .llseek = btrfs_file_llseek,
1878 .read = do_sync_read,
1879 .write = do_sync_write,
1880 .aio_read = generic_file_aio_read,
1881 .splice_read = generic_file_splice_read,
1882 .aio_write = btrfs_file_aio_write,
1883 .mmap = btrfs_file_mmap,
1884 .open = generic_file_open,
1885 .release = btrfs_release_file,
1886 .fsync = btrfs_sync_file,
1887 .fallocate = btrfs_fallocate,
1888 .unlocked_ioctl = btrfs_ioctl,
1889 #ifdef CONFIG_COMPAT
1890 .compat_ioctl = btrfs_ioctl,
1891 #endif
1892 };