]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/file.c
Merge tag 'for-rc-adfs' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29
30 static struct kmem_cache *btrfs_inode_defrag_cachep;
31 /*
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
35 */
36 struct inode_defrag {
37 struct rb_node rb_node;
38 /* objectid */
39 u64 ino;
40 /*
41 * transid where the defrag was added, we search for
42 * extents newer than this
43 */
44 u64 transid;
45
46 /* root objectid */
47 u64 root;
48
49 /* last offset we were able to defrag */
50 u64 last_offset;
51
52 /* if we've wrapped around back to zero once already */
53 int cycled;
54 };
55
56 static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 struct inode_defrag *defrag2)
58 {
59 if (defrag1->root > defrag2->root)
60 return 1;
61 else if (defrag1->root < defrag2->root)
62 return -1;
63 else if (defrag1->ino > defrag2->ino)
64 return 1;
65 else if (defrag1->ino < defrag2->ino)
66 return -1;
67 else
68 return 0;
69 }
70
71 /* pop a record for an inode into the defrag tree. The lock
72 * must be held already
73 *
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
76 *
77 * If an existing record is found the defrag item you
78 * pass in is freed
79 */
80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
81 struct inode_defrag *defrag)
82 {
83 struct btrfs_fs_info *fs_info = inode->root->fs_info;
84 struct inode_defrag *entry;
85 struct rb_node **p;
86 struct rb_node *parent = NULL;
87 int ret;
88
89 p = &fs_info->defrag_inodes.rb_node;
90 while (*p) {
91 parent = *p;
92 entry = rb_entry(parent, struct inode_defrag, rb_node);
93
94 ret = __compare_inode_defrag(defrag, entry);
95 if (ret < 0)
96 p = &parent->rb_left;
97 else if (ret > 0)
98 p = &parent->rb_right;
99 else {
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
103 */
104 if (defrag->transid < entry->transid)
105 entry->transid = defrag->transid;
106 if (defrag->last_offset > entry->last_offset)
107 entry->last_offset = defrag->last_offset;
108 return -EEXIST;
109 }
110 }
111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
112 rb_link_node(&defrag->rb_node, parent, p);
113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
114 return 0;
115 }
116
117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
118 {
119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
120 return 0;
121
122 if (btrfs_fs_closing(fs_info))
123 return 0;
124
125 return 1;
126 }
127
128 /*
129 * insert a defrag record for this inode if auto defrag is
130 * enabled
131 */
132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
133 struct btrfs_inode *inode)
134 {
135 struct btrfs_root *root = inode->root;
136 struct btrfs_fs_info *fs_info = root->fs_info;
137 struct inode_defrag *defrag;
138 u64 transid;
139 int ret;
140
141 if (!__need_auto_defrag(fs_info))
142 return 0;
143
144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
145 return 0;
146
147 if (trans)
148 transid = trans->transid;
149 else
150 transid = inode->root->last_trans;
151
152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
153 if (!defrag)
154 return -ENOMEM;
155
156 defrag->ino = btrfs_ino(inode);
157 defrag->transid = transid;
158 defrag->root = root->root_key.objectid;
159
160 spin_lock(&fs_info->defrag_inodes_lock);
161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
162 /*
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 */
167 ret = __btrfs_add_inode_defrag(inode, defrag);
168 if (ret)
169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 } else {
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 }
173 spin_unlock(&fs_info->defrag_inodes_lock);
174 return 0;
175 }
176
177 /*
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
181 */
182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
183 struct inode_defrag *defrag)
184 {
185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
186 int ret;
187
188 if (!__need_auto_defrag(fs_info))
189 goto out;
190
191 /*
192 * Here we don't check the IN_DEFRAG flag, because we need merge
193 * them together.
194 */
195 spin_lock(&fs_info->defrag_inodes_lock);
196 ret = __btrfs_add_inode_defrag(inode, defrag);
197 spin_unlock(&fs_info->defrag_inodes_lock);
198 if (ret)
199 goto out;
200 return;
201 out:
202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203 }
204
205 /*
206 * pick the defragable inode that we want, if it doesn't exist, we will get
207 * the next one.
208 */
209 static struct inode_defrag *
210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
211 {
212 struct inode_defrag *entry = NULL;
213 struct inode_defrag tmp;
214 struct rb_node *p;
215 struct rb_node *parent = NULL;
216 int ret;
217
218 tmp.ino = ino;
219 tmp.root = root;
220
221 spin_lock(&fs_info->defrag_inodes_lock);
222 p = fs_info->defrag_inodes.rb_node;
223 while (p) {
224 parent = p;
225 entry = rb_entry(parent, struct inode_defrag, rb_node);
226
227 ret = __compare_inode_defrag(&tmp, entry);
228 if (ret < 0)
229 p = parent->rb_left;
230 else if (ret > 0)
231 p = parent->rb_right;
232 else
233 goto out;
234 }
235
236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 parent = rb_next(parent);
238 if (parent)
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 else
241 entry = NULL;
242 }
243 out:
244 if (entry)
245 rb_erase(parent, &fs_info->defrag_inodes);
246 spin_unlock(&fs_info->defrag_inodes_lock);
247 return entry;
248 }
249
250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
251 {
252 struct inode_defrag *defrag;
253 struct rb_node *node;
254
255 spin_lock(&fs_info->defrag_inodes_lock);
256 node = rb_first(&fs_info->defrag_inodes);
257 while (node) {
258 rb_erase(node, &fs_info->defrag_inodes);
259 defrag = rb_entry(node, struct inode_defrag, rb_node);
260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261
262 cond_resched_lock(&fs_info->defrag_inodes_lock);
263
264 node = rb_first(&fs_info->defrag_inodes);
265 }
266 spin_unlock(&fs_info->defrag_inodes_lock);
267 }
268
269 #define BTRFS_DEFRAG_BATCH 1024
270
271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 struct inode_defrag *defrag)
273 {
274 struct btrfs_root *inode_root;
275 struct inode *inode;
276 struct btrfs_key key;
277 struct btrfs_ioctl_defrag_range_args range;
278 int num_defrag;
279 int index;
280 int ret;
281
282 /* get the inode */
283 key.objectid = defrag->root;
284 key.type = BTRFS_ROOT_ITEM_KEY;
285 key.offset = (u64)-1;
286
287 index = srcu_read_lock(&fs_info->subvol_srcu);
288
289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 if (IS_ERR(inode_root)) {
291 ret = PTR_ERR(inode_root);
292 goto cleanup;
293 }
294
295 key.objectid = defrag->ino;
296 key.type = BTRFS_INODE_ITEM_KEY;
297 key.offset = 0;
298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 if (IS_ERR(inode)) {
300 ret = PTR_ERR(inode);
301 goto cleanup;
302 }
303 srcu_read_unlock(&fs_info->subvol_srcu, index);
304
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
307 memset(&range, 0, sizeof(range));
308 range.len = (u64)-1;
309 range.start = defrag->last_offset;
310
311 sb_start_write(fs_info->sb);
312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 BTRFS_DEFRAG_BATCH);
314 sb_end_write(fs_info->sb);
315 /*
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
318 * again
319 */
320 if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 defrag->last_offset = range.start;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 } else if (defrag->last_offset && !defrag->cycled) {
324 /*
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
328 */
329 defrag->last_offset = 0;
330 defrag->cycled = 1;
331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
332 } else {
333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 }
335
336 iput(inode);
337 return 0;
338 cleanup:
339 srcu_read_unlock(&fs_info->subvol_srcu, index);
340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 return ret;
342 }
343
344 /*
345 * run through the list of inodes in the FS that need
346 * defragging
347 */
348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349 {
350 struct inode_defrag *defrag;
351 u64 first_ino = 0;
352 u64 root_objectid = 0;
353
354 atomic_inc(&fs_info->defrag_running);
355 while (1) {
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 &fs_info->fs_state))
359 break;
360
361 if (!__need_auto_defrag(fs_info))
362 break;
363
364 /* find an inode to defrag */
365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 first_ino);
367 if (!defrag) {
368 if (root_objectid || first_ino) {
369 root_objectid = 0;
370 first_ino = 0;
371 continue;
372 } else {
373 break;
374 }
375 }
376
377 first_ino = defrag->ino + 1;
378 root_objectid = defrag->root;
379
380 __btrfs_run_defrag_inode(fs_info, defrag);
381 }
382 atomic_dec(&fs_info->defrag_running);
383
384 /*
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
387 */
388 wake_up(&fs_info->transaction_wait);
389 return 0;
390 }
391
392 /* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
394 */
395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
396 struct page **prepared_pages,
397 struct iov_iter *i)
398 {
399 size_t copied = 0;
400 size_t total_copied = 0;
401 int pg = 0;
402 int offset = offset_in_page(pos);
403
404 while (write_bytes > 0) {
405 size_t count = min_t(size_t,
406 PAGE_SIZE - offset, write_bytes);
407 struct page *page = prepared_pages[pg];
408 /*
409 * Copy data from userspace to the current page
410 */
411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
412
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page);
415
416 /*
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
421 *
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
424 */
425 if (!PageUptodate(page) && copied < count)
426 copied = 0;
427
428 iov_iter_advance(i, copied);
429 write_bytes -= copied;
430 total_copied += copied;
431
432 /* Return to btrfs_file_write_iter to fault page */
433 if (unlikely(copied == 0))
434 break;
435
436 if (copied < PAGE_SIZE - offset) {
437 offset += copied;
438 } else {
439 pg++;
440 offset = 0;
441 }
442 }
443 return total_copied;
444 }
445
446 /*
447 * unlocks pages after btrfs_file_write is done with them
448 */
449 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
450 {
451 size_t i;
452 for (i = 0; i < num_pages; i++) {
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
458 */
459 ClearPageChecked(pages[i]);
460 unlock_page(pages[i]);
461 put_page(pages[i]);
462 }
463 }
464
465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 const u64 start,
467 const u64 len,
468 struct extent_state **cached_state)
469 {
470 u64 search_start = start;
471 const u64 end = start + len - 1;
472
473 while (search_start < end) {
474 const u64 search_len = end - search_start + 1;
475 struct extent_map *em;
476 u64 em_len;
477 int ret = 0;
478
479 em = btrfs_get_extent(inode, NULL, 0, search_start,
480 search_len, 0);
481 if (IS_ERR(em))
482 return PTR_ERR(em);
483
484 if (em->block_start != EXTENT_MAP_HOLE)
485 goto next;
486
487 em_len = em->len;
488 if (em->start < search_start)
489 em_len -= search_start - em->start;
490 if (em_len > search_len)
491 em_len = search_len;
492
493 ret = set_extent_bit(&inode->io_tree, search_start,
494 search_start + em_len - 1,
495 EXTENT_DELALLOC_NEW,
496 NULL, cached_state, GFP_NOFS);
497 next:
498 search_start = extent_map_end(em);
499 free_extent_map(em);
500 if (ret)
501 return ret;
502 }
503 return 0;
504 }
505
506 /*
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
510 *
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
513 */
514 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 size_t num_pages, loff_t pos, size_t write_bytes,
516 struct extent_state **cached)
517 {
518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
519 int err = 0;
520 int i;
521 u64 num_bytes;
522 u64 start_pos;
523 u64 end_of_last_block;
524 u64 end_pos = pos + write_bytes;
525 loff_t isize = i_size_read(inode);
526 unsigned int extra_bits = 0;
527
528 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
529 num_bytes = round_up(write_bytes + pos - start_pos,
530 fs_info->sectorsize);
531
532 end_of_last_block = start_pos + num_bytes - 1;
533
534 /*
535 * The pages may have already been dirty, clear out old accounting so
536 * we can set things up properly
537 */
538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
539 EXTENT_DIRTY | EXTENT_DELALLOC |
540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
541
542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
543 if (start_pos >= isize &&
544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
545 /*
546 * There can't be any extents following eof in this case
547 * so just set the delalloc new bit for the range
548 * directly.
549 */
550 extra_bits |= EXTENT_DELALLOC_NEW;
551 } else {
552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
553 start_pos,
554 num_bytes, cached);
555 if (err)
556 return err;
557 }
558 }
559
560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
561 extra_bits, cached, 0);
562 if (err)
563 return err;
564
565 for (i = 0; i < num_pages; i++) {
566 struct page *p = pages[i];
567 SetPageUptodate(p);
568 ClearPageChecked(p);
569 set_page_dirty(p);
570 }
571
572 /*
573 * we've only changed i_size in ram, and we haven't updated
574 * the disk i_size. There is no need to log the inode
575 * at this time.
576 */
577 if (end_pos > isize)
578 i_size_write(inode, end_pos);
579 return 0;
580 }
581
582 /*
583 * this drops all the extents in the cache that intersect the range
584 * [start, end]. Existing extents are split as required.
585 */
586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
587 int skip_pinned)
588 {
589 struct extent_map *em;
590 struct extent_map *split = NULL;
591 struct extent_map *split2 = NULL;
592 struct extent_map_tree *em_tree = &inode->extent_tree;
593 u64 len = end - start + 1;
594 u64 gen;
595 int ret;
596 int testend = 1;
597 unsigned long flags;
598 int compressed = 0;
599 bool modified;
600
601 WARN_ON(end < start);
602 if (end == (u64)-1) {
603 len = (u64)-1;
604 testend = 0;
605 }
606 while (1) {
607 int no_splits = 0;
608
609 modified = false;
610 if (!split)
611 split = alloc_extent_map();
612 if (!split2)
613 split2 = alloc_extent_map();
614 if (!split || !split2)
615 no_splits = 1;
616
617 write_lock(&em_tree->lock);
618 em = lookup_extent_mapping(em_tree, start, len);
619 if (!em) {
620 write_unlock(&em_tree->lock);
621 break;
622 }
623 flags = em->flags;
624 gen = em->generation;
625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
626 if (testend && em->start + em->len >= start + len) {
627 free_extent_map(em);
628 write_unlock(&em_tree->lock);
629 break;
630 }
631 start = em->start + em->len;
632 if (testend)
633 len = start + len - (em->start + em->len);
634 free_extent_map(em);
635 write_unlock(&em_tree->lock);
636 continue;
637 }
638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
639 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
640 clear_bit(EXTENT_FLAG_LOGGING, &flags);
641 modified = !list_empty(&em->list);
642 if (no_splits)
643 goto next;
644
645 if (em->start < start) {
646 split->start = em->start;
647 split->len = start - em->start;
648
649 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
650 split->orig_start = em->orig_start;
651 split->block_start = em->block_start;
652
653 if (compressed)
654 split->block_len = em->block_len;
655 else
656 split->block_len = split->len;
657 split->orig_block_len = max(split->block_len,
658 em->orig_block_len);
659 split->ram_bytes = em->ram_bytes;
660 } else {
661 split->orig_start = split->start;
662 split->block_len = 0;
663 split->block_start = em->block_start;
664 split->orig_block_len = 0;
665 split->ram_bytes = split->len;
666 }
667
668 split->generation = gen;
669 split->bdev = em->bdev;
670 split->flags = flags;
671 split->compress_type = em->compress_type;
672 replace_extent_mapping(em_tree, em, split, modified);
673 free_extent_map(split);
674 split = split2;
675 split2 = NULL;
676 }
677 if (testend && em->start + em->len > start + len) {
678 u64 diff = start + len - em->start;
679
680 split->start = start + len;
681 split->len = em->start + em->len - (start + len);
682 split->bdev = em->bdev;
683 split->flags = flags;
684 split->compress_type = em->compress_type;
685 split->generation = gen;
686
687 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
688 split->orig_block_len = max(em->block_len,
689 em->orig_block_len);
690
691 split->ram_bytes = em->ram_bytes;
692 if (compressed) {
693 split->block_len = em->block_len;
694 split->block_start = em->block_start;
695 split->orig_start = em->orig_start;
696 } else {
697 split->block_len = split->len;
698 split->block_start = em->block_start
699 + diff;
700 split->orig_start = em->orig_start;
701 }
702 } else {
703 split->ram_bytes = split->len;
704 split->orig_start = split->start;
705 split->block_len = 0;
706 split->block_start = em->block_start;
707 split->orig_block_len = 0;
708 }
709
710 if (extent_map_in_tree(em)) {
711 replace_extent_mapping(em_tree, em, split,
712 modified);
713 } else {
714 ret = add_extent_mapping(em_tree, split,
715 modified);
716 ASSERT(ret == 0); /* Logic error */
717 }
718 free_extent_map(split);
719 split = NULL;
720 }
721 next:
722 if (extent_map_in_tree(em))
723 remove_extent_mapping(em_tree, em);
724 write_unlock(&em_tree->lock);
725
726 /* once for us */
727 free_extent_map(em);
728 /* once for the tree*/
729 free_extent_map(em);
730 }
731 if (split)
732 free_extent_map(split);
733 if (split2)
734 free_extent_map(split2);
735 }
736
737 /*
738 * this is very complex, but the basic idea is to drop all extents
739 * in the range start - end. hint_block is filled in with a block number
740 * that would be a good hint to the block allocator for this file.
741 *
742 * If an extent intersects the range but is not entirely inside the range
743 * it is either truncated or split. Anything entirely inside the range
744 * is deleted from the tree.
745 */
746 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, struct inode *inode,
748 struct btrfs_path *path, u64 start, u64 end,
749 u64 *drop_end, int drop_cache,
750 int replace_extent,
751 u32 extent_item_size,
752 int *key_inserted)
753 {
754 struct btrfs_fs_info *fs_info = root->fs_info;
755 struct extent_buffer *leaf;
756 struct btrfs_file_extent_item *fi;
757 struct btrfs_ref ref = { 0 };
758 struct btrfs_key key;
759 struct btrfs_key new_key;
760 u64 ino = btrfs_ino(BTRFS_I(inode));
761 u64 search_start = start;
762 u64 disk_bytenr = 0;
763 u64 num_bytes = 0;
764 u64 extent_offset = 0;
765 u64 extent_end = 0;
766 u64 last_end = start;
767 int del_nr = 0;
768 int del_slot = 0;
769 int extent_type;
770 int recow;
771 int ret;
772 int modify_tree = -1;
773 int update_refs;
774 int found = 0;
775 int leafs_visited = 0;
776
777 if (drop_cache)
778 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
779
780 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
781 modify_tree = 0;
782
783 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
784 root == fs_info->tree_root);
785 while (1) {
786 recow = 0;
787 ret = btrfs_lookup_file_extent(trans, root, path, ino,
788 search_start, modify_tree);
789 if (ret < 0)
790 break;
791 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
792 leaf = path->nodes[0];
793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
794 if (key.objectid == ino &&
795 key.type == BTRFS_EXTENT_DATA_KEY)
796 path->slots[0]--;
797 }
798 ret = 0;
799 leafs_visited++;
800 next_slot:
801 leaf = path->nodes[0];
802 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
803 BUG_ON(del_nr > 0);
804 ret = btrfs_next_leaf(root, path);
805 if (ret < 0)
806 break;
807 if (ret > 0) {
808 ret = 0;
809 break;
810 }
811 leafs_visited++;
812 leaf = path->nodes[0];
813 recow = 1;
814 }
815
816 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
817
818 if (key.objectid > ino)
819 break;
820 if (WARN_ON_ONCE(key.objectid < ino) ||
821 key.type < BTRFS_EXTENT_DATA_KEY) {
822 ASSERT(del_nr == 0);
823 path->slots[0]++;
824 goto next_slot;
825 }
826 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
827 break;
828
829 fi = btrfs_item_ptr(leaf, path->slots[0],
830 struct btrfs_file_extent_item);
831 extent_type = btrfs_file_extent_type(leaf, fi);
832
833 if (extent_type == BTRFS_FILE_EXTENT_REG ||
834 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
835 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
836 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
837 extent_offset = btrfs_file_extent_offset(leaf, fi);
838 extent_end = key.offset +
839 btrfs_file_extent_num_bytes(leaf, fi);
840 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
841 extent_end = key.offset +
842 btrfs_file_extent_ram_bytes(leaf, fi);
843 } else {
844 /* can't happen */
845 BUG();
846 }
847
848 /*
849 * Don't skip extent items representing 0 byte lengths. They
850 * used to be created (bug) if while punching holes we hit
851 * -ENOSPC condition. So if we find one here, just ensure we
852 * delete it, otherwise we would insert a new file extent item
853 * with the same key (offset) as that 0 bytes length file
854 * extent item in the call to setup_items_for_insert() later
855 * in this function.
856 */
857 if (extent_end == key.offset && extent_end >= search_start) {
858 last_end = extent_end;
859 goto delete_extent_item;
860 }
861
862 if (extent_end <= search_start) {
863 path->slots[0]++;
864 goto next_slot;
865 }
866
867 found = 1;
868 search_start = max(key.offset, start);
869 if (recow || !modify_tree) {
870 modify_tree = -1;
871 btrfs_release_path(path);
872 continue;
873 }
874
875 /*
876 * | - range to drop - |
877 * | -------- extent -------- |
878 */
879 if (start > key.offset && end < extent_end) {
880 BUG_ON(del_nr > 0);
881 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
882 ret = -EOPNOTSUPP;
883 break;
884 }
885
886 memcpy(&new_key, &key, sizeof(new_key));
887 new_key.offset = start;
888 ret = btrfs_duplicate_item(trans, root, path,
889 &new_key);
890 if (ret == -EAGAIN) {
891 btrfs_release_path(path);
892 continue;
893 }
894 if (ret < 0)
895 break;
896
897 leaf = path->nodes[0];
898 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
899 struct btrfs_file_extent_item);
900 btrfs_set_file_extent_num_bytes(leaf, fi,
901 start - key.offset);
902
903 fi = btrfs_item_ptr(leaf, path->slots[0],
904 struct btrfs_file_extent_item);
905
906 extent_offset += start - key.offset;
907 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908 btrfs_set_file_extent_num_bytes(leaf, fi,
909 extent_end - start);
910 btrfs_mark_buffer_dirty(leaf);
911
912 if (update_refs && disk_bytenr > 0) {
913 btrfs_init_generic_ref(&ref,
914 BTRFS_ADD_DELAYED_REF,
915 disk_bytenr, num_bytes, 0);
916 btrfs_init_data_ref(&ref,
917 root->root_key.objectid,
918 new_key.objectid,
919 start - extent_offset);
920 ret = btrfs_inc_extent_ref(trans, &ref);
921 BUG_ON(ret); /* -ENOMEM */
922 }
923 key.offset = start;
924 }
925 /*
926 * From here on out we will have actually dropped something, so
927 * last_end can be updated.
928 */
929 last_end = extent_end;
930
931 /*
932 * | ---- range to drop ----- |
933 * | -------- extent -------- |
934 */
935 if (start <= key.offset && end < extent_end) {
936 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
937 ret = -EOPNOTSUPP;
938 break;
939 }
940
941 memcpy(&new_key, &key, sizeof(new_key));
942 new_key.offset = end;
943 btrfs_set_item_key_safe(fs_info, path, &new_key);
944
945 extent_offset += end - key.offset;
946 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
947 btrfs_set_file_extent_num_bytes(leaf, fi,
948 extent_end - end);
949 btrfs_mark_buffer_dirty(leaf);
950 if (update_refs && disk_bytenr > 0)
951 inode_sub_bytes(inode, end - key.offset);
952 break;
953 }
954
955 search_start = extent_end;
956 /*
957 * | ---- range to drop ----- |
958 * | -------- extent -------- |
959 */
960 if (start > key.offset && end >= extent_end) {
961 BUG_ON(del_nr > 0);
962 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
963 ret = -EOPNOTSUPP;
964 break;
965 }
966
967 btrfs_set_file_extent_num_bytes(leaf, fi,
968 start - key.offset);
969 btrfs_mark_buffer_dirty(leaf);
970 if (update_refs && disk_bytenr > 0)
971 inode_sub_bytes(inode, extent_end - start);
972 if (end == extent_end)
973 break;
974
975 path->slots[0]++;
976 goto next_slot;
977 }
978
979 /*
980 * | ---- range to drop ----- |
981 * | ------ extent ------ |
982 */
983 if (start <= key.offset && end >= extent_end) {
984 delete_extent_item:
985 if (del_nr == 0) {
986 del_slot = path->slots[0];
987 del_nr = 1;
988 } else {
989 BUG_ON(del_slot + del_nr != path->slots[0]);
990 del_nr++;
991 }
992
993 if (update_refs &&
994 extent_type == BTRFS_FILE_EXTENT_INLINE) {
995 inode_sub_bytes(inode,
996 extent_end - key.offset);
997 extent_end = ALIGN(extent_end,
998 fs_info->sectorsize);
999 } else if (update_refs && disk_bytenr > 0) {
1000 btrfs_init_generic_ref(&ref,
1001 BTRFS_DROP_DELAYED_REF,
1002 disk_bytenr, num_bytes, 0);
1003 btrfs_init_data_ref(&ref,
1004 root->root_key.objectid,
1005 key.objectid,
1006 key.offset - extent_offset);
1007 ret = btrfs_free_extent(trans, &ref);
1008 BUG_ON(ret); /* -ENOMEM */
1009 inode_sub_bytes(inode,
1010 extent_end - key.offset);
1011 }
1012
1013 if (end == extent_end)
1014 break;
1015
1016 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1017 path->slots[0]++;
1018 goto next_slot;
1019 }
1020
1021 ret = btrfs_del_items(trans, root, path, del_slot,
1022 del_nr);
1023 if (ret) {
1024 btrfs_abort_transaction(trans, ret);
1025 break;
1026 }
1027
1028 del_nr = 0;
1029 del_slot = 0;
1030
1031 btrfs_release_path(path);
1032 continue;
1033 }
1034
1035 BUG();
1036 }
1037
1038 if (!ret && del_nr > 0) {
1039 /*
1040 * Set path->slots[0] to first slot, so that after the delete
1041 * if items are move off from our leaf to its immediate left or
1042 * right neighbor leafs, we end up with a correct and adjusted
1043 * path->slots[0] for our insertion (if replace_extent != 0).
1044 */
1045 path->slots[0] = del_slot;
1046 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1047 if (ret)
1048 btrfs_abort_transaction(trans, ret);
1049 }
1050
1051 leaf = path->nodes[0];
1052 /*
1053 * If btrfs_del_items() was called, it might have deleted a leaf, in
1054 * which case it unlocked our path, so check path->locks[0] matches a
1055 * write lock.
1056 */
1057 if (!ret && replace_extent && leafs_visited == 1 &&
1058 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1059 path->locks[0] == BTRFS_WRITE_LOCK) &&
1060 btrfs_leaf_free_space(leaf) >=
1061 sizeof(struct btrfs_item) + extent_item_size) {
1062
1063 key.objectid = ino;
1064 key.type = BTRFS_EXTENT_DATA_KEY;
1065 key.offset = start;
1066 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1067 struct btrfs_key slot_key;
1068
1069 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1070 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1071 path->slots[0]++;
1072 }
1073 setup_items_for_insert(root, path, &key,
1074 &extent_item_size,
1075 extent_item_size,
1076 sizeof(struct btrfs_item) +
1077 extent_item_size, 1);
1078 *key_inserted = 1;
1079 }
1080
1081 if (!replace_extent || !(*key_inserted))
1082 btrfs_release_path(path);
1083 if (drop_end)
1084 *drop_end = found ? min(end, last_end) : end;
1085 return ret;
1086 }
1087
1088 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root, struct inode *inode, u64 start,
1090 u64 end, int drop_cache)
1091 {
1092 struct btrfs_path *path;
1093 int ret;
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1099 drop_cache, 0, 0, NULL);
1100 btrfs_free_path(path);
1101 return ret;
1102 }
1103
1104 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1105 u64 objectid, u64 bytenr, u64 orig_offset,
1106 u64 *start, u64 *end)
1107 {
1108 struct btrfs_file_extent_item *fi;
1109 struct btrfs_key key;
1110 u64 extent_end;
1111
1112 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1113 return 0;
1114
1115 btrfs_item_key_to_cpu(leaf, &key, slot);
1116 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1117 return 0;
1118
1119 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1120 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1121 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1122 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1123 btrfs_file_extent_compression(leaf, fi) ||
1124 btrfs_file_extent_encryption(leaf, fi) ||
1125 btrfs_file_extent_other_encoding(leaf, fi))
1126 return 0;
1127
1128 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1129 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1130 return 0;
1131
1132 *start = key.offset;
1133 *end = extent_end;
1134 return 1;
1135 }
1136
1137 /*
1138 * Mark extent in the range start - end as written.
1139 *
1140 * This changes extent type from 'pre-allocated' to 'regular'. If only
1141 * part of extent is marked as written, the extent will be split into
1142 * two or three.
1143 */
1144 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1145 struct btrfs_inode *inode, u64 start, u64 end)
1146 {
1147 struct btrfs_fs_info *fs_info = trans->fs_info;
1148 struct btrfs_root *root = inode->root;
1149 struct extent_buffer *leaf;
1150 struct btrfs_path *path;
1151 struct btrfs_file_extent_item *fi;
1152 struct btrfs_ref ref = { 0 };
1153 struct btrfs_key key;
1154 struct btrfs_key new_key;
1155 u64 bytenr;
1156 u64 num_bytes;
1157 u64 extent_end;
1158 u64 orig_offset;
1159 u64 other_start;
1160 u64 other_end;
1161 u64 split;
1162 int del_nr = 0;
1163 int del_slot = 0;
1164 int recow;
1165 int ret;
1166 u64 ino = btrfs_ino(inode);
1167
1168 path = btrfs_alloc_path();
1169 if (!path)
1170 return -ENOMEM;
1171 again:
1172 recow = 0;
1173 split = start;
1174 key.objectid = ino;
1175 key.type = BTRFS_EXTENT_DATA_KEY;
1176 key.offset = split;
1177
1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179 if (ret < 0)
1180 goto out;
1181 if (ret > 0 && path->slots[0] > 0)
1182 path->slots[0]--;
1183
1184 leaf = path->nodes[0];
1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1186 if (key.objectid != ino ||
1187 key.type != BTRFS_EXTENT_DATA_KEY) {
1188 ret = -EINVAL;
1189 btrfs_abort_transaction(trans, ret);
1190 goto out;
1191 }
1192 fi = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_file_extent_item);
1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195 ret = -EINVAL;
1196 btrfs_abort_transaction(trans, ret);
1197 goto out;
1198 }
1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1200 if (key.offset > start || extent_end < end) {
1201 ret = -EINVAL;
1202 btrfs_abort_transaction(trans, ret);
1203 goto out;
1204 }
1205
1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1209 memcpy(&new_key, &key, sizeof(new_key));
1210
1211 if (start == key.offset && end < extent_end) {
1212 other_start = 0;
1213 other_end = start;
1214 if (extent_mergeable(leaf, path->slots[0] - 1,
1215 ino, bytenr, orig_offset,
1216 &other_start, &other_end)) {
1217 new_key.offset = end;
1218 btrfs_set_item_key_safe(fs_info, path, &new_key);
1219 fi = btrfs_item_ptr(leaf, path->slots[0],
1220 struct btrfs_file_extent_item);
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 extent_end - end);
1225 btrfs_set_file_extent_offset(leaf, fi,
1226 end - orig_offset);
1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228 struct btrfs_file_extent_item);
1229 btrfs_set_file_extent_generation(leaf, fi,
1230 trans->transid);
1231 btrfs_set_file_extent_num_bytes(leaf, fi,
1232 end - other_start);
1233 btrfs_mark_buffer_dirty(leaf);
1234 goto out;
1235 }
1236 }
1237
1238 if (start > key.offset && end == extent_end) {
1239 other_start = end;
1240 other_end = 0;
1241 if (extent_mergeable(leaf, path->slots[0] + 1,
1242 ino, bytenr, orig_offset,
1243 &other_start, &other_end)) {
1244 fi = btrfs_item_ptr(leaf, path->slots[0],
1245 struct btrfs_file_extent_item);
1246 btrfs_set_file_extent_num_bytes(leaf, fi,
1247 start - key.offset);
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
1250 path->slots[0]++;
1251 new_key.offset = start;
1252 btrfs_set_item_key_safe(fs_info, path, &new_key);
1253
1254 fi = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_file_extent_item);
1256 btrfs_set_file_extent_generation(leaf, fi,
1257 trans->transid);
1258 btrfs_set_file_extent_num_bytes(leaf, fi,
1259 other_end - start);
1260 btrfs_set_file_extent_offset(leaf, fi,
1261 start - orig_offset);
1262 btrfs_mark_buffer_dirty(leaf);
1263 goto out;
1264 }
1265 }
1266
1267 while (start > key.offset || end < extent_end) {
1268 if (key.offset == start)
1269 split = end;
1270
1271 new_key.offset = split;
1272 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273 if (ret == -EAGAIN) {
1274 btrfs_release_path(path);
1275 goto again;
1276 }
1277 if (ret < 0) {
1278 btrfs_abort_transaction(trans, ret);
1279 goto out;
1280 }
1281
1282 leaf = path->nodes[0];
1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1284 struct btrfs_file_extent_item);
1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1286 btrfs_set_file_extent_num_bytes(leaf, fi,
1287 split - key.offset);
1288
1289 fi = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_file_extent_item);
1291
1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294 btrfs_set_file_extent_num_bytes(leaf, fi,
1295 extent_end - split);
1296 btrfs_mark_buffer_dirty(leaf);
1297
1298 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1299 num_bytes, 0);
1300 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1301 orig_offset);
1302 ret = btrfs_inc_extent_ref(trans, &ref);
1303 if (ret) {
1304 btrfs_abort_transaction(trans, ret);
1305 goto out;
1306 }
1307
1308 if (split == start) {
1309 key.offset = start;
1310 } else {
1311 if (start != key.offset) {
1312 ret = -EINVAL;
1313 btrfs_abort_transaction(trans, ret);
1314 goto out;
1315 }
1316 path->slots[0]--;
1317 extent_end = end;
1318 }
1319 recow = 1;
1320 }
1321
1322 other_start = end;
1323 other_end = 0;
1324 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1325 num_bytes, 0);
1326 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1327 if (extent_mergeable(leaf, path->slots[0] + 1,
1328 ino, bytenr, orig_offset,
1329 &other_start, &other_end)) {
1330 if (recow) {
1331 btrfs_release_path(path);
1332 goto again;
1333 }
1334 extent_end = other_end;
1335 del_slot = path->slots[0] + 1;
1336 del_nr++;
1337 ret = btrfs_free_extent(trans, &ref);
1338 if (ret) {
1339 btrfs_abort_transaction(trans, ret);
1340 goto out;
1341 }
1342 }
1343 other_start = 0;
1344 other_end = start;
1345 if (extent_mergeable(leaf, path->slots[0] - 1,
1346 ino, bytenr, orig_offset,
1347 &other_start, &other_end)) {
1348 if (recow) {
1349 btrfs_release_path(path);
1350 goto again;
1351 }
1352 key.offset = other_start;
1353 del_slot = path->slots[0];
1354 del_nr++;
1355 ret = btrfs_free_extent(trans, &ref);
1356 if (ret) {
1357 btrfs_abort_transaction(trans, ret);
1358 goto out;
1359 }
1360 }
1361 if (del_nr == 0) {
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
1364 btrfs_set_file_extent_type(leaf, fi,
1365 BTRFS_FILE_EXTENT_REG);
1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1367 btrfs_mark_buffer_dirty(leaf);
1368 } else {
1369 fi = btrfs_item_ptr(leaf, del_slot - 1,
1370 struct btrfs_file_extent_item);
1371 btrfs_set_file_extent_type(leaf, fi,
1372 BTRFS_FILE_EXTENT_REG);
1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1374 btrfs_set_file_extent_num_bytes(leaf, fi,
1375 extent_end - key.offset);
1376 btrfs_mark_buffer_dirty(leaf);
1377
1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1379 if (ret < 0) {
1380 btrfs_abort_transaction(trans, ret);
1381 goto out;
1382 }
1383 }
1384 out:
1385 btrfs_free_path(path);
1386 return 0;
1387 }
1388
1389 /*
1390 * on error we return an unlocked page and the error value
1391 * on success we return a locked page and 0
1392 */
1393 static int prepare_uptodate_page(struct inode *inode,
1394 struct page *page, u64 pos,
1395 bool force_uptodate)
1396 {
1397 int ret = 0;
1398
1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1400 !PageUptodate(page)) {
1401 ret = btrfs_readpage(NULL, page);
1402 if (ret)
1403 return ret;
1404 lock_page(page);
1405 if (!PageUptodate(page)) {
1406 unlock_page(page);
1407 return -EIO;
1408 }
1409 if (page->mapping != inode->i_mapping) {
1410 unlock_page(page);
1411 return -EAGAIN;
1412 }
1413 }
1414 return 0;
1415 }
1416
1417 /*
1418 * this just gets pages into the page cache and locks them down.
1419 */
1420 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1421 size_t num_pages, loff_t pos,
1422 size_t write_bytes, bool force_uptodate)
1423 {
1424 int i;
1425 unsigned long index = pos >> PAGE_SHIFT;
1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1427 int err = 0;
1428 int faili;
1429
1430 for (i = 0; i < num_pages; i++) {
1431 again:
1432 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1433 mask | __GFP_WRITE);
1434 if (!pages[i]) {
1435 faili = i - 1;
1436 err = -ENOMEM;
1437 goto fail;
1438 }
1439
1440 if (i == 0)
1441 err = prepare_uptodate_page(inode, pages[i], pos,
1442 force_uptodate);
1443 if (!err && i == num_pages - 1)
1444 err = prepare_uptodate_page(inode, pages[i],
1445 pos + write_bytes, false);
1446 if (err) {
1447 put_page(pages[i]);
1448 if (err == -EAGAIN) {
1449 err = 0;
1450 goto again;
1451 }
1452 faili = i - 1;
1453 goto fail;
1454 }
1455 wait_on_page_writeback(pages[i]);
1456 }
1457
1458 return 0;
1459 fail:
1460 while (faili >= 0) {
1461 unlock_page(pages[faili]);
1462 put_page(pages[faili]);
1463 faili--;
1464 }
1465 return err;
1466
1467 }
1468
1469 /*
1470 * This function locks the extent and properly waits for data=ordered extents
1471 * to finish before allowing the pages to be modified if need.
1472 *
1473 * The return value:
1474 * 1 - the extent is locked
1475 * 0 - the extent is not locked, and everything is OK
1476 * -EAGAIN - need re-prepare the pages
1477 * the other < 0 number - Something wrong happens
1478 */
1479 static noinline int
1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1481 size_t num_pages, loff_t pos,
1482 size_t write_bytes,
1483 u64 *lockstart, u64 *lockend,
1484 struct extent_state **cached_state)
1485 {
1486 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1487 u64 start_pos;
1488 u64 last_pos;
1489 int i;
1490 int ret = 0;
1491
1492 start_pos = round_down(pos, fs_info->sectorsize);
1493 last_pos = start_pos
1494 + round_up(pos + write_bytes - start_pos,
1495 fs_info->sectorsize) - 1;
1496
1497 if (start_pos < inode->vfs_inode.i_size) {
1498 struct btrfs_ordered_extent *ordered;
1499
1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1501 cached_state);
1502 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1503 last_pos - start_pos + 1);
1504 if (ordered &&
1505 ordered->file_offset + ordered->len > start_pos &&
1506 ordered->file_offset <= last_pos) {
1507 unlock_extent_cached(&inode->io_tree, start_pos,
1508 last_pos, cached_state);
1509 for (i = 0; i < num_pages; i++) {
1510 unlock_page(pages[i]);
1511 put_page(pages[i]);
1512 }
1513 btrfs_start_ordered_extent(&inode->vfs_inode,
1514 ordered, 1);
1515 btrfs_put_ordered_extent(ordered);
1516 return -EAGAIN;
1517 }
1518 if (ordered)
1519 btrfs_put_ordered_extent(ordered);
1520
1521 *lockstart = start_pos;
1522 *lockend = last_pos;
1523 ret = 1;
1524 }
1525
1526 /*
1527 * It's possible the pages are dirty right now, but we don't want
1528 * to clean them yet because copy_from_user may catch a page fault
1529 * and we might have to fall back to one page at a time. If that
1530 * happens, we'll unlock these pages and we'd have a window where
1531 * reclaim could sneak in and drop the once-dirty page on the floor
1532 * without writing it.
1533 *
1534 * We have the pages locked and the extent range locked, so there's
1535 * no way someone can start IO on any dirty pages in this range.
1536 *
1537 * We'll call btrfs_dirty_pages() later on, and that will flip around
1538 * delalloc bits and dirty the pages as required.
1539 */
1540 for (i = 0; i < num_pages; i++) {
1541 set_page_extent_mapped(pages[i]);
1542 WARN_ON(!PageLocked(pages[i]));
1543 }
1544
1545 return ret;
1546 }
1547
1548 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1549 size_t *write_bytes)
1550 {
1551 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1552 struct btrfs_root *root = inode->root;
1553 struct btrfs_ordered_extent *ordered;
1554 u64 lockstart, lockend;
1555 u64 num_bytes;
1556 int ret;
1557
1558 ret = btrfs_start_write_no_snapshotting(root);
1559 if (!ret)
1560 return -ENOSPC;
1561
1562 lockstart = round_down(pos, fs_info->sectorsize);
1563 lockend = round_up(pos + *write_bytes,
1564 fs_info->sectorsize) - 1;
1565
1566 while (1) {
1567 lock_extent(&inode->io_tree, lockstart, lockend);
1568 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1569 lockend - lockstart + 1);
1570 if (!ordered) {
1571 break;
1572 }
1573 unlock_extent(&inode->io_tree, lockstart, lockend);
1574 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1575 btrfs_put_ordered_extent(ordered);
1576 }
1577
1578 num_bytes = lockend - lockstart + 1;
1579 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1580 NULL, NULL, NULL);
1581 if (ret <= 0) {
1582 ret = 0;
1583 btrfs_end_write_no_snapshotting(root);
1584 } else {
1585 *write_bytes = min_t(size_t, *write_bytes ,
1586 num_bytes - pos + lockstart);
1587 }
1588
1589 unlock_extent(&inode->io_tree, lockstart, lockend);
1590
1591 return ret;
1592 }
1593
1594 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1595 struct iov_iter *i)
1596 {
1597 struct file *file = iocb->ki_filp;
1598 loff_t pos = iocb->ki_pos;
1599 struct inode *inode = file_inode(file);
1600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1601 struct btrfs_root *root = BTRFS_I(inode)->root;
1602 struct page **pages = NULL;
1603 struct extent_state *cached_state = NULL;
1604 struct extent_changeset *data_reserved = NULL;
1605 u64 release_bytes = 0;
1606 u64 lockstart;
1607 u64 lockend;
1608 size_t num_written = 0;
1609 int nrptrs;
1610 int ret = 0;
1611 bool only_release_metadata = false;
1612 bool force_page_uptodate = false;
1613
1614 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1615 PAGE_SIZE / (sizeof(struct page *)));
1616 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1617 nrptrs = max(nrptrs, 8);
1618 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1619 if (!pages)
1620 return -ENOMEM;
1621
1622 while (iov_iter_count(i) > 0) {
1623 size_t offset = offset_in_page(pos);
1624 size_t sector_offset;
1625 size_t write_bytes = min(iov_iter_count(i),
1626 nrptrs * (size_t)PAGE_SIZE -
1627 offset);
1628 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1629 PAGE_SIZE);
1630 size_t reserve_bytes;
1631 size_t dirty_pages;
1632 size_t copied;
1633 size_t dirty_sectors;
1634 size_t num_sectors;
1635 int extents_locked;
1636
1637 WARN_ON(num_pages > nrptrs);
1638
1639 /*
1640 * Fault pages before locking them in prepare_pages
1641 * to avoid recursive lock
1642 */
1643 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1644 ret = -EFAULT;
1645 break;
1646 }
1647
1648 sector_offset = pos & (fs_info->sectorsize - 1);
1649 reserve_bytes = round_up(write_bytes + sector_offset,
1650 fs_info->sectorsize);
1651
1652 extent_changeset_release(data_reserved);
1653 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1654 write_bytes);
1655 if (ret < 0) {
1656 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1657 BTRFS_INODE_PREALLOC)) &&
1658 check_can_nocow(BTRFS_I(inode), pos,
1659 &write_bytes) > 0) {
1660 /*
1661 * For nodata cow case, no need to reserve
1662 * data space.
1663 */
1664 only_release_metadata = true;
1665 /*
1666 * our prealloc extent may be smaller than
1667 * write_bytes, so scale down.
1668 */
1669 num_pages = DIV_ROUND_UP(write_bytes + offset,
1670 PAGE_SIZE);
1671 reserve_bytes = round_up(write_bytes +
1672 sector_offset,
1673 fs_info->sectorsize);
1674 } else {
1675 break;
1676 }
1677 }
1678
1679 WARN_ON(reserve_bytes == 0);
1680 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1681 reserve_bytes);
1682 if (ret) {
1683 if (!only_release_metadata)
1684 btrfs_free_reserved_data_space(inode,
1685 data_reserved, pos,
1686 write_bytes);
1687 else
1688 btrfs_end_write_no_snapshotting(root);
1689 break;
1690 }
1691
1692 release_bytes = reserve_bytes;
1693 again:
1694 /*
1695 * This is going to setup the pages array with the number of
1696 * pages we want, so we don't really need to worry about the
1697 * contents of pages from loop to loop
1698 */
1699 ret = prepare_pages(inode, pages, num_pages,
1700 pos, write_bytes,
1701 force_page_uptodate);
1702 if (ret) {
1703 btrfs_delalloc_release_extents(BTRFS_I(inode),
1704 reserve_bytes, true);
1705 break;
1706 }
1707
1708 extents_locked = lock_and_cleanup_extent_if_need(
1709 BTRFS_I(inode), pages,
1710 num_pages, pos, write_bytes, &lockstart,
1711 &lockend, &cached_state);
1712 if (extents_locked < 0) {
1713 if (extents_locked == -EAGAIN)
1714 goto again;
1715 btrfs_delalloc_release_extents(BTRFS_I(inode),
1716 reserve_bytes, true);
1717 ret = extents_locked;
1718 break;
1719 }
1720
1721 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1722
1723 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1724 dirty_sectors = round_up(copied + sector_offset,
1725 fs_info->sectorsize);
1726 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1727
1728 /*
1729 * if we have trouble faulting in the pages, fall
1730 * back to one page at a time
1731 */
1732 if (copied < write_bytes)
1733 nrptrs = 1;
1734
1735 if (copied == 0) {
1736 force_page_uptodate = true;
1737 dirty_sectors = 0;
1738 dirty_pages = 0;
1739 } else {
1740 force_page_uptodate = false;
1741 dirty_pages = DIV_ROUND_UP(copied + offset,
1742 PAGE_SIZE);
1743 }
1744
1745 if (num_sectors > dirty_sectors) {
1746 /* release everything except the sectors we dirtied */
1747 release_bytes -= dirty_sectors <<
1748 fs_info->sb->s_blocksize_bits;
1749 if (only_release_metadata) {
1750 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1751 release_bytes, true);
1752 } else {
1753 u64 __pos;
1754
1755 __pos = round_down(pos,
1756 fs_info->sectorsize) +
1757 (dirty_pages << PAGE_SHIFT);
1758 btrfs_delalloc_release_space(inode,
1759 data_reserved, __pos,
1760 release_bytes, true);
1761 }
1762 }
1763
1764 release_bytes = round_up(copied + sector_offset,
1765 fs_info->sectorsize);
1766
1767 if (copied > 0)
1768 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1769 pos, copied, &cached_state);
1770 if (extents_locked)
1771 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1772 lockstart, lockend, &cached_state);
1773 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1774 true);
1775 if (ret) {
1776 btrfs_drop_pages(pages, num_pages);
1777 break;
1778 }
1779
1780 release_bytes = 0;
1781 if (only_release_metadata)
1782 btrfs_end_write_no_snapshotting(root);
1783
1784 if (only_release_metadata && copied > 0) {
1785 lockstart = round_down(pos,
1786 fs_info->sectorsize);
1787 lockend = round_up(pos + copied,
1788 fs_info->sectorsize) - 1;
1789
1790 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1791 lockend, EXTENT_NORESERVE, NULL,
1792 NULL, GFP_NOFS);
1793 only_release_metadata = false;
1794 }
1795
1796 btrfs_drop_pages(pages, num_pages);
1797
1798 cond_resched();
1799
1800 balance_dirty_pages_ratelimited(inode->i_mapping);
1801 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1802 btrfs_btree_balance_dirty(fs_info);
1803
1804 pos += copied;
1805 num_written += copied;
1806 }
1807
1808 kfree(pages);
1809
1810 if (release_bytes) {
1811 if (only_release_metadata) {
1812 btrfs_end_write_no_snapshotting(root);
1813 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1814 release_bytes, true);
1815 } else {
1816 btrfs_delalloc_release_space(inode, data_reserved,
1817 round_down(pos, fs_info->sectorsize),
1818 release_bytes, true);
1819 }
1820 }
1821
1822 extent_changeset_free(data_reserved);
1823 return num_written ? num_written : ret;
1824 }
1825
1826 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1827 {
1828 struct file *file = iocb->ki_filp;
1829 struct inode *inode = file_inode(file);
1830 loff_t pos;
1831 ssize_t written;
1832 ssize_t written_buffered;
1833 loff_t endbyte;
1834 int err;
1835
1836 written = generic_file_direct_write(iocb, from);
1837
1838 if (written < 0 || !iov_iter_count(from))
1839 return written;
1840
1841 pos = iocb->ki_pos;
1842 written_buffered = btrfs_buffered_write(iocb, from);
1843 if (written_buffered < 0) {
1844 err = written_buffered;
1845 goto out;
1846 }
1847 /*
1848 * Ensure all data is persisted. We want the next direct IO read to be
1849 * able to read what was just written.
1850 */
1851 endbyte = pos + written_buffered - 1;
1852 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1853 if (err)
1854 goto out;
1855 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1856 if (err)
1857 goto out;
1858 written += written_buffered;
1859 iocb->ki_pos = pos + written_buffered;
1860 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1861 endbyte >> PAGE_SHIFT);
1862 out:
1863 return written ? written : err;
1864 }
1865
1866 static void update_time_for_write(struct inode *inode)
1867 {
1868 struct timespec64 now;
1869
1870 if (IS_NOCMTIME(inode))
1871 return;
1872
1873 now = current_time(inode);
1874 if (!timespec64_equal(&inode->i_mtime, &now))
1875 inode->i_mtime = now;
1876
1877 if (!timespec64_equal(&inode->i_ctime, &now))
1878 inode->i_ctime = now;
1879
1880 if (IS_I_VERSION(inode))
1881 inode_inc_iversion(inode);
1882 }
1883
1884 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1885 struct iov_iter *from)
1886 {
1887 struct file *file = iocb->ki_filp;
1888 struct inode *inode = file_inode(file);
1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 u64 start_pos;
1892 u64 end_pos;
1893 ssize_t num_written = 0;
1894 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1895 ssize_t err;
1896 loff_t pos;
1897 size_t count = iov_iter_count(from);
1898 loff_t oldsize;
1899 int clean_page = 0;
1900
1901 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1902 (iocb->ki_flags & IOCB_NOWAIT))
1903 return -EOPNOTSUPP;
1904
1905 if (!inode_trylock(inode)) {
1906 if (iocb->ki_flags & IOCB_NOWAIT)
1907 return -EAGAIN;
1908 inode_lock(inode);
1909 }
1910
1911 err = generic_write_checks(iocb, from);
1912 if (err <= 0) {
1913 inode_unlock(inode);
1914 return err;
1915 }
1916
1917 pos = iocb->ki_pos;
1918 if (iocb->ki_flags & IOCB_NOWAIT) {
1919 /*
1920 * We will allocate space in case nodatacow is not set,
1921 * so bail
1922 */
1923 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1924 BTRFS_INODE_PREALLOC)) ||
1925 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1926 inode_unlock(inode);
1927 return -EAGAIN;
1928 }
1929 }
1930
1931 current->backing_dev_info = inode_to_bdi(inode);
1932 err = file_remove_privs(file);
1933 if (err) {
1934 inode_unlock(inode);
1935 goto out;
1936 }
1937
1938 /*
1939 * If BTRFS flips readonly due to some impossible error
1940 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1941 * although we have opened a file as writable, we have
1942 * to stop this write operation to ensure FS consistency.
1943 */
1944 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1945 inode_unlock(inode);
1946 err = -EROFS;
1947 goto out;
1948 }
1949
1950 /*
1951 * We reserve space for updating the inode when we reserve space for the
1952 * extent we are going to write, so we will enospc out there. We don't
1953 * need to start yet another transaction to update the inode as we will
1954 * update the inode when we finish writing whatever data we write.
1955 */
1956 update_time_for_write(inode);
1957
1958 start_pos = round_down(pos, fs_info->sectorsize);
1959 oldsize = i_size_read(inode);
1960 if (start_pos > oldsize) {
1961 /* Expand hole size to cover write data, preventing empty gap */
1962 end_pos = round_up(pos + count,
1963 fs_info->sectorsize);
1964 err = btrfs_cont_expand(inode, oldsize, end_pos);
1965 if (err) {
1966 inode_unlock(inode);
1967 goto out;
1968 }
1969 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1970 clean_page = 1;
1971 }
1972
1973 if (sync)
1974 atomic_inc(&BTRFS_I(inode)->sync_writers);
1975
1976 if (iocb->ki_flags & IOCB_DIRECT) {
1977 num_written = __btrfs_direct_write(iocb, from);
1978 } else {
1979 num_written = btrfs_buffered_write(iocb, from);
1980 if (num_written > 0)
1981 iocb->ki_pos = pos + num_written;
1982 if (clean_page)
1983 pagecache_isize_extended(inode, oldsize,
1984 i_size_read(inode));
1985 }
1986
1987 inode_unlock(inode);
1988
1989 /*
1990 * We also have to set last_sub_trans to the current log transid,
1991 * otherwise subsequent syncs to a file that's been synced in this
1992 * transaction will appear to have already occurred.
1993 */
1994 spin_lock(&BTRFS_I(inode)->lock);
1995 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1996 spin_unlock(&BTRFS_I(inode)->lock);
1997 if (num_written > 0)
1998 num_written = generic_write_sync(iocb, num_written);
1999
2000 if (sync)
2001 atomic_dec(&BTRFS_I(inode)->sync_writers);
2002 out:
2003 current->backing_dev_info = NULL;
2004 return num_written ? num_written : err;
2005 }
2006
2007 int btrfs_release_file(struct inode *inode, struct file *filp)
2008 {
2009 struct btrfs_file_private *private = filp->private_data;
2010
2011 if (private && private->filldir_buf)
2012 kfree(private->filldir_buf);
2013 kfree(private);
2014 filp->private_data = NULL;
2015
2016 /*
2017 * ordered_data_close is set by setattr when we are about to truncate
2018 * a file from a non-zero size to a zero size. This tries to
2019 * flush down new bytes that may have been written if the
2020 * application were using truncate to replace a file in place.
2021 */
2022 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2023 &BTRFS_I(inode)->runtime_flags))
2024 filemap_flush(inode->i_mapping);
2025 return 0;
2026 }
2027
2028 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2029 {
2030 int ret;
2031 struct blk_plug plug;
2032
2033 /*
2034 * This is only called in fsync, which would do synchronous writes, so
2035 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2036 * multiple disks using raid profile, a large IO can be split to
2037 * several segments of stripe length (currently 64K).
2038 */
2039 blk_start_plug(&plug);
2040 atomic_inc(&BTRFS_I(inode)->sync_writers);
2041 ret = btrfs_fdatawrite_range(inode, start, end);
2042 atomic_dec(&BTRFS_I(inode)->sync_writers);
2043 blk_finish_plug(&plug);
2044
2045 return ret;
2046 }
2047
2048 /*
2049 * fsync call for both files and directories. This logs the inode into
2050 * the tree log instead of forcing full commits whenever possible.
2051 *
2052 * It needs to call filemap_fdatawait so that all ordered extent updates are
2053 * in the metadata btree are up to date for copying to the log.
2054 *
2055 * It drops the inode mutex before doing the tree log commit. This is an
2056 * important optimization for directories because holding the mutex prevents
2057 * new operations on the dir while we write to disk.
2058 */
2059 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2060 {
2061 struct dentry *dentry = file_dentry(file);
2062 struct inode *inode = d_inode(dentry);
2063 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2064 struct btrfs_root *root = BTRFS_I(inode)->root;
2065 struct btrfs_trans_handle *trans;
2066 struct btrfs_log_ctx ctx;
2067 int ret = 0, err;
2068 u64 len;
2069
2070 /*
2071 * If the inode needs a full sync, make sure we use a full range to
2072 * avoid log tree corruption, due to hole detection racing with ordered
2073 * extent completion for adjacent ranges, and assertion failures during
2074 * hole detection.
2075 */
2076 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2077 &BTRFS_I(inode)->runtime_flags)) {
2078 start = 0;
2079 end = LLONG_MAX;
2080 }
2081
2082 /*
2083 * The range length can be represented by u64, we have to do the typecasts
2084 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2085 */
2086 len = (u64)end - (u64)start + 1;
2087 trace_btrfs_sync_file(file, datasync);
2088
2089 btrfs_init_log_ctx(&ctx, inode);
2090
2091 /*
2092 * We write the dirty pages in the range and wait until they complete
2093 * out of the ->i_mutex. If so, we can flush the dirty pages by
2094 * multi-task, and make the performance up. See
2095 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2096 */
2097 ret = start_ordered_ops(inode, start, end);
2098 if (ret)
2099 goto out;
2100
2101 inode_lock(inode);
2102
2103 /*
2104 * We take the dio_sem here because the tree log stuff can race with
2105 * lockless dio writes and get an extent map logged for an extent we
2106 * never waited on. We need it this high up for lockdep reasons.
2107 */
2108 down_write(&BTRFS_I(inode)->dio_sem);
2109
2110 atomic_inc(&root->log_batch);
2111
2112 /*
2113 * Before we acquired the inode's lock, someone may have dirtied more
2114 * pages in the target range. We need to make sure that writeback for
2115 * any such pages does not start while we are logging the inode, because
2116 * if it does, any of the following might happen when we are not doing a
2117 * full inode sync:
2118 *
2119 * 1) We log an extent after its writeback finishes but before its
2120 * checksums are added to the csum tree, leading to -EIO errors
2121 * when attempting to read the extent after a log replay.
2122 *
2123 * 2) We can end up logging an extent before its writeback finishes.
2124 * Therefore after the log replay we will have a file extent item
2125 * pointing to an unwritten extent (and no data checksums as well).
2126 *
2127 * So trigger writeback for any eventual new dirty pages and then we
2128 * wait for all ordered extents to complete below.
2129 */
2130 ret = start_ordered_ops(inode, start, end);
2131 if (ret) {
2132 inode_unlock(inode);
2133 goto out;
2134 }
2135
2136 /*
2137 * We have to do this here to avoid the priority inversion of waiting on
2138 * IO of a lower priority task while holding a transaction open.
2139 */
2140 ret = btrfs_wait_ordered_range(inode, start, len);
2141 if (ret) {
2142 up_write(&BTRFS_I(inode)->dio_sem);
2143 inode_unlock(inode);
2144 goto out;
2145 }
2146 atomic_inc(&root->log_batch);
2147
2148 smp_mb();
2149 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2150 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2151 /*
2152 * We've had everything committed since the last time we were
2153 * modified so clear this flag in case it was set for whatever
2154 * reason, it's no longer relevant.
2155 */
2156 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2157 &BTRFS_I(inode)->runtime_flags);
2158 /*
2159 * An ordered extent might have started before and completed
2160 * already with io errors, in which case the inode was not
2161 * updated and we end up here. So check the inode's mapping
2162 * for any errors that might have happened since we last
2163 * checked called fsync.
2164 */
2165 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2166 up_write(&BTRFS_I(inode)->dio_sem);
2167 inode_unlock(inode);
2168 goto out;
2169 }
2170
2171 /*
2172 * We use start here because we will need to wait on the IO to complete
2173 * in btrfs_sync_log, which could require joining a transaction (for
2174 * example checking cross references in the nocow path). If we use join
2175 * here we could get into a situation where we're waiting on IO to
2176 * happen that is blocked on a transaction trying to commit. With start
2177 * we inc the extwriter counter, so we wait for all extwriters to exit
2178 * before we start blocking joiners. This comment is to keep somebody
2179 * from thinking they are super smart and changing this to
2180 * btrfs_join_transaction *cough*Josef*cough*.
2181 */
2182 trans = btrfs_start_transaction(root, 0);
2183 if (IS_ERR(trans)) {
2184 ret = PTR_ERR(trans);
2185 up_write(&BTRFS_I(inode)->dio_sem);
2186 inode_unlock(inode);
2187 goto out;
2188 }
2189
2190 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2191 if (ret < 0) {
2192 /* Fallthrough and commit/free transaction. */
2193 ret = 1;
2194 }
2195
2196 /* we've logged all the items and now have a consistent
2197 * version of the file in the log. It is possible that
2198 * someone will come in and modify the file, but that's
2199 * fine because the log is consistent on disk, and we
2200 * have references to all of the file's extents
2201 *
2202 * It is possible that someone will come in and log the
2203 * file again, but that will end up using the synchronization
2204 * inside btrfs_sync_log to keep things safe.
2205 */
2206 up_write(&BTRFS_I(inode)->dio_sem);
2207 inode_unlock(inode);
2208
2209 if (ret != BTRFS_NO_LOG_SYNC) {
2210 if (!ret) {
2211 ret = btrfs_sync_log(trans, root, &ctx);
2212 if (!ret) {
2213 ret = btrfs_end_transaction(trans);
2214 goto out;
2215 }
2216 }
2217 ret = btrfs_commit_transaction(trans);
2218 } else {
2219 ret = btrfs_end_transaction(trans);
2220 }
2221 out:
2222 ASSERT(list_empty(&ctx.list));
2223 err = file_check_and_advance_wb_err(file);
2224 if (!ret)
2225 ret = err;
2226 return ret > 0 ? -EIO : ret;
2227 }
2228
2229 static const struct vm_operations_struct btrfs_file_vm_ops = {
2230 .fault = filemap_fault,
2231 .map_pages = filemap_map_pages,
2232 .page_mkwrite = btrfs_page_mkwrite,
2233 };
2234
2235 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2236 {
2237 struct address_space *mapping = filp->f_mapping;
2238
2239 if (!mapping->a_ops->readpage)
2240 return -ENOEXEC;
2241
2242 file_accessed(filp);
2243 vma->vm_ops = &btrfs_file_vm_ops;
2244
2245 return 0;
2246 }
2247
2248 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2249 int slot, u64 start, u64 end)
2250 {
2251 struct btrfs_file_extent_item *fi;
2252 struct btrfs_key key;
2253
2254 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2255 return 0;
2256
2257 btrfs_item_key_to_cpu(leaf, &key, slot);
2258 if (key.objectid != btrfs_ino(inode) ||
2259 key.type != BTRFS_EXTENT_DATA_KEY)
2260 return 0;
2261
2262 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2263
2264 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2265 return 0;
2266
2267 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2268 return 0;
2269
2270 if (key.offset == end)
2271 return 1;
2272 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2273 return 1;
2274 return 0;
2275 }
2276
2277 static int fill_holes(struct btrfs_trans_handle *trans,
2278 struct btrfs_inode *inode,
2279 struct btrfs_path *path, u64 offset, u64 end)
2280 {
2281 struct btrfs_fs_info *fs_info = trans->fs_info;
2282 struct btrfs_root *root = inode->root;
2283 struct extent_buffer *leaf;
2284 struct btrfs_file_extent_item *fi;
2285 struct extent_map *hole_em;
2286 struct extent_map_tree *em_tree = &inode->extent_tree;
2287 struct btrfs_key key;
2288 int ret;
2289
2290 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2291 goto out;
2292
2293 key.objectid = btrfs_ino(inode);
2294 key.type = BTRFS_EXTENT_DATA_KEY;
2295 key.offset = offset;
2296
2297 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2298 if (ret <= 0) {
2299 /*
2300 * We should have dropped this offset, so if we find it then
2301 * something has gone horribly wrong.
2302 */
2303 if (ret == 0)
2304 ret = -EINVAL;
2305 return ret;
2306 }
2307
2308 leaf = path->nodes[0];
2309 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2310 u64 num_bytes;
2311
2312 path->slots[0]--;
2313 fi = btrfs_item_ptr(leaf, path->slots[0],
2314 struct btrfs_file_extent_item);
2315 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2316 end - offset;
2317 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2318 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2319 btrfs_set_file_extent_offset(leaf, fi, 0);
2320 btrfs_mark_buffer_dirty(leaf);
2321 goto out;
2322 }
2323
2324 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2325 u64 num_bytes;
2326
2327 key.offset = offset;
2328 btrfs_set_item_key_safe(fs_info, path, &key);
2329 fi = btrfs_item_ptr(leaf, path->slots[0],
2330 struct btrfs_file_extent_item);
2331 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2332 offset;
2333 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2334 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2335 btrfs_set_file_extent_offset(leaf, fi, 0);
2336 btrfs_mark_buffer_dirty(leaf);
2337 goto out;
2338 }
2339 btrfs_release_path(path);
2340
2341 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2342 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2343 if (ret)
2344 return ret;
2345
2346 out:
2347 btrfs_release_path(path);
2348
2349 hole_em = alloc_extent_map();
2350 if (!hole_em) {
2351 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2352 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2353 } else {
2354 hole_em->start = offset;
2355 hole_em->len = end - offset;
2356 hole_em->ram_bytes = hole_em->len;
2357 hole_em->orig_start = offset;
2358
2359 hole_em->block_start = EXTENT_MAP_HOLE;
2360 hole_em->block_len = 0;
2361 hole_em->orig_block_len = 0;
2362 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2363 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2364 hole_em->generation = trans->transid;
2365
2366 do {
2367 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2368 write_lock(&em_tree->lock);
2369 ret = add_extent_mapping(em_tree, hole_em, 1);
2370 write_unlock(&em_tree->lock);
2371 } while (ret == -EEXIST);
2372 free_extent_map(hole_em);
2373 if (ret)
2374 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2375 &inode->runtime_flags);
2376 }
2377
2378 return 0;
2379 }
2380
2381 /*
2382 * Find a hole extent on given inode and change start/len to the end of hole
2383 * extent.(hole/vacuum extent whose em->start <= start &&
2384 * em->start + em->len > start)
2385 * When a hole extent is found, return 1 and modify start/len.
2386 */
2387 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2388 {
2389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2390 struct extent_map *em;
2391 int ret = 0;
2392
2393 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2394 round_down(*start, fs_info->sectorsize),
2395 round_up(*len, fs_info->sectorsize), 0);
2396 if (IS_ERR(em))
2397 return PTR_ERR(em);
2398
2399 /* Hole or vacuum extent(only exists in no-hole mode) */
2400 if (em->block_start == EXTENT_MAP_HOLE) {
2401 ret = 1;
2402 *len = em->start + em->len > *start + *len ?
2403 0 : *start + *len - em->start - em->len;
2404 *start = em->start + em->len;
2405 }
2406 free_extent_map(em);
2407 return ret;
2408 }
2409
2410 static int btrfs_punch_hole_lock_range(struct inode *inode,
2411 const u64 lockstart,
2412 const u64 lockend,
2413 struct extent_state **cached_state)
2414 {
2415 while (1) {
2416 struct btrfs_ordered_extent *ordered;
2417 int ret;
2418
2419 truncate_pagecache_range(inode, lockstart, lockend);
2420
2421 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422 cached_state);
2423 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424
2425 /*
2426 * We need to make sure we have no ordered extents in this range
2427 * and nobody raced in and read a page in this range, if we did
2428 * we need to try again.
2429 */
2430 if ((!ordered ||
2431 (ordered->file_offset + ordered->len <= lockstart ||
2432 ordered->file_offset > lockend)) &&
2433 !filemap_range_has_page(inode->i_mapping,
2434 lockstart, lockend)) {
2435 if (ordered)
2436 btrfs_put_ordered_extent(ordered);
2437 break;
2438 }
2439 if (ordered)
2440 btrfs_put_ordered_extent(ordered);
2441 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2442 lockend, cached_state);
2443 ret = btrfs_wait_ordered_range(inode, lockstart,
2444 lockend - lockstart + 1);
2445 if (ret)
2446 return ret;
2447 }
2448 return 0;
2449 }
2450
2451 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2452 {
2453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2454 struct btrfs_root *root = BTRFS_I(inode)->root;
2455 struct extent_state *cached_state = NULL;
2456 struct btrfs_path *path;
2457 struct btrfs_block_rsv *rsv;
2458 struct btrfs_trans_handle *trans;
2459 u64 lockstart;
2460 u64 lockend;
2461 u64 tail_start;
2462 u64 tail_len;
2463 u64 orig_start = offset;
2464 u64 cur_offset;
2465 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2466 u64 drop_end;
2467 int ret = 0;
2468 int err = 0;
2469 unsigned int rsv_count;
2470 bool same_block;
2471 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2472 u64 ino_size;
2473 bool truncated_block = false;
2474 bool updated_inode = false;
2475
2476 ret = btrfs_wait_ordered_range(inode, offset, len);
2477 if (ret)
2478 return ret;
2479
2480 inode_lock(inode);
2481 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2482 ret = find_first_non_hole(inode, &offset, &len);
2483 if (ret < 0)
2484 goto out_only_mutex;
2485 if (ret && !len) {
2486 /* Already in a large hole */
2487 ret = 0;
2488 goto out_only_mutex;
2489 }
2490
2491 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2492 lockend = round_down(offset + len,
2493 btrfs_inode_sectorsize(inode)) - 1;
2494 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2495 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2496 /*
2497 * We needn't truncate any block which is beyond the end of the file
2498 * because we are sure there is no data there.
2499 */
2500 /*
2501 * Only do this if we are in the same block and we aren't doing the
2502 * entire block.
2503 */
2504 if (same_block && len < fs_info->sectorsize) {
2505 if (offset < ino_size) {
2506 truncated_block = true;
2507 ret = btrfs_truncate_block(inode, offset, len, 0);
2508 } else {
2509 ret = 0;
2510 }
2511 goto out_only_mutex;
2512 }
2513
2514 /* zero back part of the first block */
2515 if (offset < ino_size) {
2516 truncated_block = true;
2517 ret = btrfs_truncate_block(inode, offset, 0, 0);
2518 if (ret) {
2519 inode_unlock(inode);
2520 return ret;
2521 }
2522 }
2523
2524 /* Check the aligned pages after the first unaligned page,
2525 * if offset != orig_start, which means the first unaligned page
2526 * including several following pages are already in holes,
2527 * the extra check can be skipped */
2528 if (offset == orig_start) {
2529 /* after truncate page, check hole again */
2530 len = offset + len - lockstart;
2531 offset = lockstart;
2532 ret = find_first_non_hole(inode, &offset, &len);
2533 if (ret < 0)
2534 goto out_only_mutex;
2535 if (ret && !len) {
2536 ret = 0;
2537 goto out_only_mutex;
2538 }
2539 lockstart = offset;
2540 }
2541
2542 /* Check the tail unaligned part is in a hole */
2543 tail_start = lockend + 1;
2544 tail_len = offset + len - tail_start;
2545 if (tail_len) {
2546 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2547 if (unlikely(ret < 0))
2548 goto out_only_mutex;
2549 if (!ret) {
2550 /* zero the front end of the last page */
2551 if (tail_start + tail_len < ino_size) {
2552 truncated_block = true;
2553 ret = btrfs_truncate_block(inode,
2554 tail_start + tail_len,
2555 0, 1);
2556 if (ret)
2557 goto out_only_mutex;
2558 }
2559 }
2560 }
2561
2562 if (lockend < lockstart) {
2563 ret = 0;
2564 goto out_only_mutex;
2565 }
2566
2567 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2568 &cached_state);
2569 if (ret)
2570 goto out_only_mutex;
2571
2572 path = btrfs_alloc_path();
2573 if (!path) {
2574 ret = -ENOMEM;
2575 goto out;
2576 }
2577
2578 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2579 if (!rsv) {
2580 ret = -ENOMEM;
2581 goto out_free;
2582 }
2583 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2584 rsv->failfast = 1;
2585
2586 /*
2587 * 1 - update the inode
2588 * 1 - removing the extents in the range
2589 * 1 - adding the hole extent if no_holes isn't set
2590 */
2591 rsv_count = no_holes ? 2 : 3;
2592 trans = btrfs_start_transaction(root, rsv_count);
2593 if (IS_ERR(trans)) {
2594 err = PTR_ERR(trans);
2595 goto out_free;
2596 }
2597
2598 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2599 min_size, false);
2600 BUG_ON(ret);
2601 trans->block_rsv = rsv;
2602
2603 cur_offset = lockstart;
2604 len = lockend - cur_offset;
2605 while (cur_offset < lockend) {
2606 ret = __btrfs_drop_extents(trans, root, inode, path,
2607 cur_offset, lockend + 1,
2608 &drop_end, 1, 0, 0, NULL);
2609 if (ret != -ENOSPC)
2610 break;
2611
2612 trans->block_rsv = &fs_info->trans_block_rsv;
2613
2614 if (cur_offset < drop_end && cur_offset < ino_size) {
2615 ret = fill_holes(trans, BTRFS_I(inode), path,
2616 cur_offset, drop_end);
2617 if (ret) {
2618 /*
2619 * If we failed then we didn't insert our hole
2620 * entries for the area we dropped, so now the
2621 * fs is corrupted, so we must abort the
2622 * transaction.
2623 */
2624 btrfs_abort_transaction(trans, ret);
2625 err = ret;
2626 break;
2627 }
2628 }
2629
2630 cur_offset = drop_end;
2631
2632 ret = btrfs_update_inode(trans, root, inode);
2633 if (ret) {
2634 err = ret;
2635 break;
2636 }
2637
2638 btrfs_end_transaction(trans);
2639 btrfs_btree_balance_dirty(fs_info);
2640
2641 trans = btrfs_start_transaction(root, rsv_count);
2642 if (IS_ERR(trans)) {
2643 ret = PTR_ERR(trans);
2644 trans = NULL;
2645 break;
2646 }
2647
2648 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2649 rsv, min_size, false);
2650 BUG_ON(ret); /* shouldn't happen */
2651 trans->block_rsv = rsv;
2652
2653 ret = find_first_non_hole(inode, &cur_offset, &len);
2654 if (unlikely(ret < 0))
2655 break;
2656 if (ret && !len) {
2657 ret = 0;
2658 break;
2659 }
2660 }
2661
2662 if (ret) {
2663 err = ret;
2664 goto out_trans;
2665 }
2666
2667 trans->block_rsv = &fs_info->trans_block_rsv;
2668 /*
2669 * If we are using the NO_HOLES feature we might have had already an
2670 * hole that overlaps a part of the region [lockstart, lockend] and
2671 * ends at (or beyond) lockend. Since we have no file extent items to
2672 * represent holes, drop_end can be less than lockend and so we must
2673 * make sure we have an extent map representing the existing hole (the
2674 * call to __btrfs_drop_extents() might have dropped the existing extent
2675 * map representing the existing hole), otherwise the fast fsync path
2676 * will not record the existence of the hole region
2677 * [existing_hole_start, lockend].
2678 */
2679 if (drop_end <= lockend)
2680 drop_end = lockend + 1;
2681 /*
2682 * Don't insert file hole extent item if it's for a range beyond eof
2683 * (because it's useless) or if it represents a 0 bytes range (when
2684 * cur_offset == drop_end).
2685 */
2686 if (cur_offset < ino_size && cur_offset < drop_end) {
2687 ret = fill_holes(trans, BTRFS_I(inode), path,
2688 cur_offset, drop_end);
2689 if (ret) {
2690 /* Same comment as above. */
2691 btrfs_abort_transaction(trans, ret);
2692 err = ret;
2693 goto out_trans;
2694 }
2695 }
2696
2697 out_trans:
2698 if (!trans)
2699 goto out_free;
2700
2701 inode_inc_iversion(inode);
2702 inode->i_mtime = inode->i_ctime = current_time(inode);
2703
2704 trans->block_rsv = &fs_info->trans_block_rsv;
2705 ret = btrfs_update_inode(trans, root, inode);
2706 updated_inode = true;
2707 btrfs_end_transaction(trans);
2708 btrfs_btree_balance_dirty(fs_info);
2709 out_free:
2710 btrfs_free_path(path);
2711 btrfs_free_block_rsv(fs_info, rsv);
2712 out:
2713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2714 &cached_state);
2715 out_only_mutex:
2716 if (!updated_inode && truncated_block && !ret && !err) {
2717 /*
2718 * If we only end up zeroing part of a page, we still need to
2719 * update the inode item, so that all the time fields are
2720 * updated as well as the necessary btrfs inode in memory fields
2721 * for detecting, at fsync time, if the inode isn't yet in the
2722 * log tree or it's there but not up to date.
2723 */
2724 trans = btrfs_start_transaction(root, 1);
2725 if (IS_ERR(trans)) {
2726 err = PTR_ERR(trans);
2727 } else {
2728 err = btrfs_update_inode(trans, root, inode);
2729 ret = btrfs_end_transaction(trans);
2730 }
2731 }
2732 inode_unlock(inode);
2733 if (ret && !err)
2734 err = ret;
2735 return err;
2736 }
2737
2738 /* Helper structure to record which range is already reserved */
2739 struct falloc_range {
2740 struct list_head list;
2741 u64 start;
2742 u64 len;
2743 };
2744
2745 /*
2746 * Helper function to add falloc range
2747 *
2748 * Caller should have locked the larger range of extent containing
2749 * [start, len)
2750 */
2751 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2752 {
2753 struct falloc_range *prev = NULL;
2754 struct falloc_range *range = NULL;
2755
2756 if (list_empty(head))
2757 goto insert;
2758
2759 /*
2760 * As fallocate iterate by bytenr order, we only need to check
2761 * the last range.
2762 */
2763 prev = list_entry(head->prev, struct falloc_range, list);
2764 if (prev->start + prev->len == start) {
2765 prev->len += len;
2766 return 0;
2767 }
2768 insert:
2769 range = kmalloc(sizeof(*range), GFP_KERNEL);
2770 if (!range)
2771 return -ENOMEM;
2772 range->start = start;
2773 range->len = len;
2774 list_add_tail(&range->list, head);
2775 return 0;
2776 }
2777
2778 static int btrfs_fallocate_update_isize(struct inode *inode,
2779 const u64 end,
2780 const int mode)
2781 {
2782 struct btrfs_trans_handle *trans;
2783 struct btrfs_root *root = BTRFS_I(inode)->root;
2784 int ret;
2785 int ret2;
2786
2787 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2788 return 0;
2789
2790 trans = btrfs_start_transaction(root, 1);
2791 if (IS_ERR(trans))
2792 return PTR_ERR(trans);
2793
2794 inode->i_ctime = current_time(inode);
2795 i_size_write(inode, end);
2796 btrfs_ordered_update_i_size(inode, end, NULL);
2797 ret = btrfs_update_inode(trans, root, inode);
2798 ret2 = btrfs_end_transaction(trans);
2799
2800 return ret ? ret : ret2;
2801 }
2802
2803 enum {
2804 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2805 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2806 RANGE_BOUNDARY_HOLE = 2,
2807 };
2808
2809 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2810 u64 offset)
2811 {
2812 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2813 struct extent_map *em;
2814 int ret;
2815
2816 offset = round_down(offset, sectorsize);
2817 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2818 if (IS_ERR(em))
2819 return PTR_ERR(em);
2820
2821 if (em->block_start == EXTENT_MAP_HOLE)
2822 ret = RANGE_BOUNDARY_HOLE;
2823 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2824 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2825 else
2826 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2827
2828 free_extent_map(em);
2829 return ret;
2830 }
2831
2832 static int btrfs_zero_range(struct inode *inode,
2833 loff_t offset,
2834 loff_t len,
2835 const int mode)
2836 {
2837 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2838 struct extent_map *em;
2839 struct extent_changeset *data_reserved = NULL;
2840 int ret;
2841 u64 alloc_hint = 0;
2842 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2843 u64 alloc_start = round_down(offset, sectorsize);
2844 u64 alloc_end = round_up(offset + len, sectorsize);
2845 u64 bytes_to_reserve = 0;
2846 bool space_reserved = false;
2847
2848 inode_dio_wait(inode);
2849
2850 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2851 alloc_start, alloc_end - alloc_start, 0);
2852 if (IS_ERR(em)) {
2853 ret = PTR_ERR(em);
2854 goto out;
2855 }
2856
2857 /*
2858 * Avoid hole punching and extent allocation for some cases. More cases
2859 * could be considered, but these are unlikely common and we keep things
2860 * as simple as possible for now. Also, intentionally, if the target
2861 * range contains one or more prealloc extents together with regular
2862 * extents and holes, we drop all the existing extents and allocate a
2863 * new prealloc extent, so that we get a larger contiguous disk extent.
2864 */
2865 if (em->start <= alloc_start &&
2866 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2867 const u64 em_end = em->start + em->len;
2868
2869 if (em_end >= offset + len) {
2870 /*
2871 * The whole range is already a prealloc extent,
2872 * do nothing except updating the inode's i_size if
2873 * needed.
2874 */
2875 free_extent_map(em);
2876 ret = btrfs_fallocate_update_isize(inode, offset + len,
2877 mode);
2878 goto out;
2879 }
2880 /*
2881 * Part of the range is already a prealloc extent, so operate
2882 * only on the remaining part of the range.
2883 */
2884 alloc_start = em_end;
2885 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2886 len = offset + len - alloc_start;
2887 offset = alloc_start;
2888 alloc_hint = em->block_start + em->len;
2889 }
2890 free_extent_map(em);
2891
2892 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2893 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2894 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2895 alloc_start, sectorsize, 0);
2896 if (IS_ERR(em)) {
2897 ret = PTR_ERR(em);
2898 goto out;
2899 }
2900
2901 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2902 free_extent_map(em);
2903 ret = btrfs_fallocate_update_isize(inode, offset + len,
2904 mode);
2905 goto out;
2906 }
2907 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2908 free_extent_map(em);
2909 ret = btrfs_truncate_block(inode, offset, len, 0);
2910 if (!ret)
2911 ret = btrfs_fallocate_update_isize(inode,
2912 offset + len,
2913 mode);
2914 return ret;
2915 }
2916 free_extent_map(em);
2917 alloc_start = round_down(offset, sectorsize);
2918 alloc_end = alloc_start + sectorsize;
2919 goto reserve_space;
2920 }
2921
2922 alloc_start = round_up(offset, sectorsize);
2923 alloc_end = round_down(offset + len, sectorsize);
2924
2925 /*
2926 * For unaligned ranges, check the pages at the boundaries, they might
2927 * map to an extent, in which case we need to partially zero them, or
2928 * they might map to a hole, in which case we need our allocation range
2929 * to cover them.
2930 */
2931 if (!IS_ALIGNED(offset, sectorsize)) {
2932 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2933 if (ret < 0)
2934 goto out;
2935 if (ret == RANGE_BOUNDARY_HOLE) {
2936 alloc_start = round_down(offset, sectorsize);
2937 ret = 0;
2938 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2939 ret = btrfs_truncate_block(inode, offset, 0, 0);
2940 if (ret)
2941 goto out;
2942 } else {
2943 ret = 0;
2944 }
2945 }
2946
2947 if (!IS_ALIGNED(offset + len, sectorsize)) {
2948 ret = btrfs_zero_range_check_range_boundary(inode,
2949 offset + len);
2950 if (ret < 0)
2951 goto out;
2952 if (ret == RANGE_BOUNDARY_HOLE) {
2953 alloc_end = round_up(offset + len, sectorsize);
2954 ret = 0;
2955 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2956 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2957 if (ret)
2958 goto out;
2959 } else {
2960 ret = 0;
2961 }
2962 }
2963
2964 reserve_space:
2965 if (alloc_start < alloc_end) {
2966 struct extent_state *cached_state = NULL;
2967 const u64 lockstart = alloc_start;
2968 const u64 lockend = alloc_end - 1;
2969
2970 bytes_to_reserve = alloc_end - alloc_start;
2971 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2972 bytes_to_reserve);
2973 if (ret < 0)
2974 goto out;
2975 space_reserved = true;
2976 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2977 alloc_start, bytes_to_reserve);
2978 if (ret)
2979 goto out;
2980 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2981 &cached_state);
2982 if (ret)
2983 goto out;
2984 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2985 alloc_end - alloc_start,
2986 i_blocksize(inode),
2987 offset + len, &alloc_hint);
2988 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2989 lockend, &cached_state);
2990 /* btrfs_prealloc_file_range releases reserved space on error */
2991 if (ret) {
2992 space_reserved = false;
2993 goto out;
2994 }
2995 }
2996 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2997 out:
2998 if (ret && space_reserved)
2999 btrfs_free_reserved_data_space(inode, data_reserved,
3000 alloc_start, bytes_to_reserve);
3001 extent_changeset_free(data_reserved);
3002
3003 return ret;
3004 }
3005
3006 static long btrfs_fallocate(struct file *file, int mode,
3007 loff_t offset, loff_t len)
3008 {
3009 struct inode *inode = file_inode(file);
3010 struct extent_state *cached_state = NULL;
3011 struct extent_changeset *data_reserved = NULL;
3012 struct falloc_range *range;
3013 struct falloc_range *tmp;
3014 struct list_head reserve_list;
3015 u64 cur_offset;
3016 u64 last_byte;
3017 u64 alloc_start;
3018 u64 alloc_end;
3019 u64 alloc_hint = 0;
3020 u64 locked_end;
3021 u64 actual_end = 0;
3022 struct extent_map *em;
3023 int blocksize = btrfs_inode_sectorsize(inode);
3024 int ret;
3025
3026 alloc_start = round_down(offset, blocksize);
3027 alloc_end = round_up(offset + len, blocksize);
3028 cur_offset = alloc_start;
3029
3030 /* Make sure we aren't being give some crap mode */
3031 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3032 FALLOC_FL_ZERO_RANGE))
3033 return -EOPNOTSUPP;
3034
3035 if (mode & FALLOC_FL_PUNCH_HOLE)
3036 return btrfs_punch_hole(inode, offset, len);
3037
3038 /*
3039 * Only trigger disk allocation, don't trigger qgroup reserve
3040 *
3041 * For qgroup space, it will be checked later.
3042 */
3043 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3044 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3045 alloc_end - alloc_start);
3046 if (ret < 0)
3047 return ret;
3048 }
3049
3050 inode_lock(inode);
3051
3052 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3053 ret = inode_newsize_ok(inode, offset + len);
3054 if (ret)
3055 goto out;
3056 }
3057
3058 /*
3059 * TODO: Move these two operations after we have checked
3060 * accurate reserved space, or fallocate can still fail but
3061 * with page truncated or size expanded.
3062 *
3063 * But that's a minor problem and won't do much harm BTW.
3064 */
3065 if (alloc_start > inode->i_size) {
3066 ret = btrfs_cont_expand(inode, i_size_read(inode),
3067 alloc_start);
3068 if (ret)
3069 goto out;
3070 } else if (offset + len > inode->i_size) {
3071 /*
3072 * If we are fallocating from the end of the file onward we
3073 * need to zero out the end of the block if i_size lands in the
3074 * middle of a block.
3075 */
3076 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3077 if (ret)
3078 goto out;
3079 }
3080
3081 /*
3082 * wait for ordered IO before we have any locks. We'll loop again
3083 * below with the locks held.
3084 */
3085 ret = btrfs_wait_ordered_range(inode, alloc_start,
3086 alloc_end - alloc_start);
3087 if (ret)
3088 goto out;
3089
3090 if (mode & FALLOC_FL_ZERO_RANGE) {
3091 ret = btrfs_zero_range(inode, offset, len, mode);
3092 inode_unlock(inode);
3093 return ret;
3094 }
3095
3096 locked_end = alloc_end - 1;
3097 while (1) {
3098 struct btrfs_ordered_extent *ordered;
3099
3100 /* the extent lock is ordered inside the running
3101 * transaction
3102 */
3103 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3104 locked_end, &cached_state);
3105 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3106
3107 if (ordered &&
3108 ordered->file_offset + ordered->len > alloc_start &&
3109 ordered->file_offset < alloc_end) {
3110 btrfs_put_ordered_extent(ordered);
3111 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3112 alloc_start, locked_end,
3113 &cached_state);
3114 /*
3115 * we can't wait on the range with the transaction
3116 * running or with the extent lock held
3117 */
3118 ret = btrfs_wait_ordered_range(inode, alloc_start,
3119 alloc_end - alloc_start);
3120 if (ret)
3121 goto out;
3122 } else {
3123 if (ordered)
3124 btrfs_put_ordered_extent(ordered);
3125 break;
3126 }
3127 }
3128
3129 /* First, check if we exceed the qgroup limit */
3130 INIT_LIST_HEAD(&reserve_list);
3131 while (cur_offset < alloc_end) {
3132 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3133 alloc_end - cur_offset, 0);
3134 if (IS_ERR(em)) {
3135 ret = PTR_ERR(em);
3136 break;
3137 }
3138 last_byte = min(extent_map_end(em), alloc_end);
3139 actual_end = min_t(u64, extent_map_end(em), offset + len);
3140 last_byte = ALIGN(last_byte, blocksize);
3141 if (em->block_start == EXTENT_MAP_HOLE ||
3142 (cur_offset >= inode->i_size &&
3143 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3144 ret = add_falloc_range(&reserve_list, cur_offset,
3145 last_byte - cur_offset);
3146 if (ret < 0) {
3147 free_extent_map(em);
3148 break;
3149 }
3150 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3151 cur_offset, last_byte - cur_offset);
3152 if (ret < 0) {
3153 cur_offset = last_byte;
3154 free_extent_map(em);
3155 break;
3156 }
3157 } else {
3158 /*
3159 * Do not need to reserve unwritten extent for this
3160 * range, free reserved data space first, otherwise
3161 * it'll result in false ENOSPC error.
3162 */
3163 btrfs_free_reserved_data_space(inode, data_reserved,
3164 cur_offset, last_byte - cur_offset);
3165 }
3166 free_extent_map(em);
3167 cur_offset = last_byte;
3168 }
3169
3170 /*
3171 * If ret is still 0, means we're OK to fallocate.
3172 * Or just cleanup the list and exit.
3173 */
3174 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3175 if (!ret)
3176 ret = btrfs_prealloc_file_range(inode, mode,
3177 range->start,
3178 range->len, i_blocksize(inode),
3179 offset + len, &alloc_hint);
3180 else
3181 btrfs_free_reserved_data_space(inode,
3182 data_reserved, range->start,
3183 range->len);
3184 list_del(&range->list);
3185 kfree(range);
3186 }
3187 if (ret < 0)
3188 goto out_unlock;
3189
3190 /*
3191 * We didn't need to allocate any more space, but we still extended the
3192 * size of the file so we need to update i_size and the inode item.
3193 */
3194 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3195 out_unlock:
3196 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3197 &cached_state);
3198 out:
3199 inode_unlock(inode);
3200 /* Let go of our reservation. */
3201 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3202 btrfs_free_reserved_data_space(inode, data_reserved,
3203 cur_offset, alloc_end - cur_offset);
3204 extent_changeset_free(data_reserved);
3205 return ret;
3206 }
3207
3208 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3209 {
3210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3211 struct extent_map *em = NULL;
3212 struct extent_state *cached_state = NULL;
3213 u64 lockstart;
3214 u64 lockend;
3215 u64 start;
3216 u64 len;
3217 int ret = 0;
3218
3219 if (inode->i_size == 0)
3220 return -ENXIO;
3221
3222 /*
3223 * *offset can be negative, in this case we start finding DATA/HOLE from
3224 * the very start of the file.
3225 */
3226 start = max_t(loff_t, 0, *offset);
3227
3228 lockstart = round_down(start, fs_info->sectorsize);
3229 lockend = round_up(i_size_read(inode),
3230 fs_info->sectorsize);
3231 if (lockend <= lockstart)
3232 lockend = lockstart + fs_info->sectorsize;
3233 lockend--;
3234 len = lockend - lockstart + 1;
3235
3236 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3237 &cached_state);
3238
3239 while (start < inode->i_size) {
3240 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3241 if (IS_ERR(em)) {
3242 ret = PTR_ERR(em);
3243 em = NULL;
3244 break;
3245 }
3246
3247 if (whence == SEEK_HOLE &&
3248 (em->block_start == EXTENT_MAP_HOLE ||
3249 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3250 break;
3251 else if (whence == SEEK_DATA &&
3252 (em->block_start != EXTENT_MAP_HOLE &&
3253 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3254 break;
3255
3256 start = em->start + em->len;
3257 free_extent_map(em);
3258 em = NULL;
3259 cond_resched();
3260 }
3261 free_extent_map(em);
3262 if (!ret) {
3263 if (whence == SEEK_DATA && start >= inode->i_size)
3264 ret = -ENXIO;
3265 else
3266 *offset = min_t(loff_t, start, inode->i_size);
3267 }
3268 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3269 &cached_state);
3270 return ret;
3271 }
3272
3273 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3274 {
3275 struct inode *inode = file->f_mapping->host;
3276 int ret;
3277
3278 inode_lock(inode);
3279 switch (whence) {
3280 case SEEK_END:
3281 case SEEK_CUR:
3282 offset = generic_file_llseek(file, offset, whence);
3283 goto out;
3284 case SEEK_DATA:
3285 case SEEK_HOLE:
3286 if (offset >= i_size_read(inode)) {
3287 inode_unlock(inode);
3288 return -ENXIO;
3289 }
3290
3291 ret = find_desired_extent(inode, &offset, whence);
3292 if (ret) {
3293 inode_unlock(inode);
3294 return ret;
3295 }
3296 }
3297
3298 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3299 out:
3300 inode_unlock(inode);
3301 return offset;
3302 }
3303
3304 static int btrfs_file_open(struct inode *inode, struct file *filp)
3305 {
3306 filp->f_mode |= FMODE_NOWAIT;
3307 return generic_file_open(inode, filp);
3308 }
3309
3310 const struct file_operations btrfs_file_operations = {
3311 .llseek = btrfs_file_llseek,
3312 .read_iter = generic_file_read_iter,
3313 .splice_read = generic_file_splice_read,
3314 .write_iter = btrfs_file_write_iter,
3315 .mmap = btrfs_file_mmap,
3316 .open = btrfs_file_open,
3317 .release = btrfs_release_file,
3318 .fsync = btrfs_sync_file,
3319 .fallocate = btrfs_fallocate,
3320 .unlocked_ioctl = btrfs_ioctl,
3321 #ifdef CONFIG_COMPAT
3322 .compat_ioctl = btrfs_compat_ioctl,
3323 #endif
3324 .remap_file_range = btrfs_remap_file_range,
3325 };
3326
3327 void __cold btrfs_auto_defrag_exit(void)
3328 {
3329 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3330 }
3331
3332 int __init btrfs_auto_defrag_init(void)
3333 {
3334 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3335 sizeof(struct inode_defrag), 0,
3336 SLAB_MEM_SPREAD,
3337 NULL);
3338 if (!btrfs_inode_defrag_cachep)
3339 return -ENOMEM;
3340
3341 return 0;
3342 }
3343
3344 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3345 {
3346 int ret;
3347
3348 /*
3349 * So with compression we will find and lock a dirty page and clear the
3350 * first one as dirty, setup an async extent, and immediately return
3351 * with the entire range locked but with nobody actually marked with
3352 * writeback. So we can't just filemap_write_and_wait_range() and
3353 * expect it to work since it will just kick off a thread to do the
3354 * actual work. So we need to call filemap_fdatawrite_range _again_
3355 * since it will wait on the page lock, which won't be unlocked until
3356 * after the pages have been marked as writeback and so we're good to go
3357 * from there. We have to do this otherwise we'll miss the ordered
3358 * extents and that results in badness. Please Josef, do not think you
3359 * know better and pull this out at some point in the future, it is
3360 * right and you are wrong.
3361 */
3362 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3363 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3364 &BTRFS_I(inode)->runtime_flags))
3365 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3366
3367 return ret;
3368 }