]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/file.c
efi/tpm: Fix sanity check of unsigned tbl_size being less than zero
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30
31 static struct kmem_cache *btrfs_inode_defrag_cachep;
32 /*
33 * when auto defrag is enabled we
34 * queue up these defrag structs to remember which
35 * inodes need defragging passes
36 */
37 struct inode_defrag {
38 struct rb_node rb_node;
39 /* objectid */
40 u64 ino;
41 /*
42 * transid where the defrag was added, we search for
43 * extents newer than this
44 */
45 u64 transid;
46
47 /* root objectid */
48 u64 root;
49
50 /* last offset we were able to defrag */
51 u64 last_offset;
52
53 /* if we've wrapped around back to zero once already */
54 int cycled;
55 };
56
57 static int __compare_inode_defrag(struct inode_defrag *defrag1,
58 struct inode_defrag *defrag2)
59 {
60 if (defrag1->root > defrag2->root)
61 return 1;
62 else if (defrag1->root < defrag2->root)
63 return -1;
64 else if (defrag1->ino > defrag2->ino)
65 return 1;
66 else if (defrag1->ino < defrag2->ino)
67 return -1;
68 else
69 return 0;
70 }
71
72 /* pop a record for an inode into the defrag tree. The lock
73 * must be held already
74 *
75 * If you're inserting a record for an older transid than an
76 * existing record, the transid already in the tree is lowered
77 *
78 * If an existing record is found the defrag item you
79 * pass in is freed
80 */
81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
82 struct inode_defrag *defrag)
83 {
84 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85 struct inode_defrag *entry;
86 struct rb_node **p;
87 struct rb_node *parent = NULL;
88 int ret;
89
90 p = &fs_info->defrag_inodes.rb_node;
91 while (*p) {
92 parent = *p;
93 entry = rb_entry(parent, struct inode_defrag, rb_node);
94
95 ret = __compare_inode_defrag(defrag, entry);
96 if (ret < 0)
97 p = &parent->rb_left;
98 else if (ret > 0)
99 p = &parent->rb_right;
100 else {
101 /* if we're reinserting an entry for
102 * an old defrag run, make sure to
103 * lower the transid of our existing record
104 */
105 if (defrag->transid < entry->transid)
106 entry->transid = defrag->transid;
107 if (defrag->last_offset > entry->last_offset)
108 entry->last_offset = defrag->last_offset;
109 return -EEXIST;
110 }
111 }
112 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
113 rb_link_node(&defrag->rb_node, parent, p);
114 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
115 return 0;
116 }
117
118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
119 {
120 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
121 return 0;
122
123 if (btrfs_fs_closing(fs_info))
124 return 0;
125
126 return 1;
127 }
128
129 /*
130 * insert a defrag record for this inode if auto defrag is
131 * enabled
132 */
133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
134 struct btrfs_inode *inode)
135 {
136 struct btrfs_root *root = inode->root;
137 struct btrfs_fs_info *fs_info = root->fs_info;
138 struct inode_defrag *defrag;
139 u64 transid;
140 int ret;
141
142 if (!__need_auto_defrag(fs_info))
143 return 0;
144
145 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
146 return 0;
147
148 if (trans)
149 transid = trans->transid;
150 else
151 transid = inode->root->last_trans;
152
153 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
154 if (!defrag)
155 return -ENOMEM;
156
157 defrag->ino = btrfs_ino(inode);
158 defrag->transid = transid;
159 defrag->root = root->root_key.objectid;
160
161 spin_lock(&fs_info->defrag_inodes_lock);
162 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
163 /*
164 * If we set IN_DEFRAG flag and evict the inode from memory,
165 * and then re-read this inode, this new inode doesn't have
166 * IN_DEFRAG flag. At the case, we may find the existed defrag.
167 */
168 ret = __btrfs_add_inode_defrag(inode, defrag);
169 if (ret)
170 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
171 } else {
172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173 }
174 spin_unlock(&fs_info->defrag_inodes_lock);
175 return 0;
176 }
177
178 /*
179 * Requeue the defrag object. If there is a defrag object that points to
180 * the same inode in the tree, we will merge them together (by
181 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182 */
183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
184 struct inode_defrag *defrag)
185 {
186 struct btrfs_fs_info *fs_info = inode->root->fs_info;
187 int ret;
188
189 if (!__need_auto_defrag(fs_info))
190 goto out;
191
192 /*
193 * Here we don't check the IN_DEFRAG flag, because we need merge
194 * them together.
195 */
196 spin_lock(&fs_info->defrag_inodes_lock);
197 ret = __btrfs_add_inode_defrag(inode, defrag);
198 spin_unlock(&fs_info->defrag_inodes_lock);
199 if (ret)
200 goto out;
201 return;
202 out:
203 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
204 }
205
206 /*
207 * pick the defragable inode that we want, if it doesn't exist, we will get
208 * the next one.
209 */
210 static struct inode_defrag *
211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
212 {
213 struct inode_defrag *entry = NULL;
214 struct inode_defrag tmp;
215 struct rb_node *p;
216 struct rb_node *parent = NULL;
217 int ret;
218
219 tmp.ino = ino;
220 tmp.root = root;
221
222 spin_lock(&fs_info->defrag_inodes_lock);
223 p = fs_info->defrag_inodes.rb_node;
224 while (p) {
225 parent = p;
226 entry = rb_entry(parent, struct inode_defrag, rb_node);
227
228 ret = __compare_inode_defrag(&tmp, entry);
229 if (ret < 0)
230 p = parent->rb_left;
231 else if (ret > 0)
232 p = parent->rb_right;
233 else
234 goto out;
235 }
236
237 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
238 parent = rb_next(parent);
239 if (parent)
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241 else
242 entry = NULL;
243 }
244 out:
245 if (entry)
246 rb_erase(parent, &fs_info->defrag_inodes);
247 spin_unlock(&fs_info->defrag_inodes_lock);
248 return entry;
249 }
250
251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
252 {
253 struct inode_defrag *defrag;
254 struct rb_node *node;
255
256 spin_lock(&fs_info->defrag_inodes_lock);
257 node = rb_first(&fs_info->defrag_inodes);
258 while (node) {
259 rb_erase(node, &fs_info->defrag_inodes);
260 defrag = rb_entry(node, struct inode_defrag, rb_node);
261 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
262
263 cond_resched_lock(&fs_info->defrag_inodes_lock);
264
265 node = rb_first(&fs_info->defrag_inodes);
266 }
267 spin_unlock(&fs_info->defrag_inodes_lock);
268 }
269
270 #define BTRFS_DEFRAG_BATCH 1024
271
272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
273 struct inode_defrag *defrag)
274 {
275 struct btrfs_root *inode_root;
276 struct inode *inode;
277 struct btrfs_key key;
278 struct btrfs_ioctl_defrag_range_args range;
279 int num_defrag;
280 int index;
281 int ret;
282
283 /* get the inode */
284 key.objectid = defrag->root;
285 key.type = BTRFS_ROOT_ITEM_KEY;
286 key.offset = (u64)-1;
287
288 index = srcu_read_lock(&fs_info->subvol_srcu);
289
290 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
291 if (IS_ERR(inode_root)) {
292 ret = PTR_ERR(inode_root);
293 goto cleanup;
294 }
295
296 key.objectid = defrag->ino;
297 key.type = BTRFS_INODE_ITEM_KEY;
298 key.offset = 0;
299 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
300 if (IS_ERR(inode)) {
301 ret = PTR_ERR(inode);
302 goto cleanup;
303 }
304 srcu_read_unlock(&fs_info->subvol_srcu, index);
305
306 /* do a chunk of defrag */
307 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
308 memset(&range, 0, sizeof(range));
309 range.len = (u64)-1;
310 range.start = defrag->last_offset;
311
312 sb_start_write(fs_info->sb);
313 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
314 BTRFS_DEFRAG_BATCH);
315 sb_end_write(fs_info->sb);
316 /*
317 * if we filled the whole defrag batch, there
318 * must be more work to do. Queue this defrag
319 * again
320 */
321 if (num_defrag == BTRFS_DEFRAG_BATCH) {
322 defrag->last_offset = range.start;
323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324 } else if (defrag->last_offset && !defrag->cycled) {
325 /*
326 * we didn't fill our defrag batch, but
327 * we didn't start at zero. Make sure we loop
328 * around to the start of the file.
329 */
330 defrag->last_offset = 0;
331 defrag->cycled = 1;
332 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
333 } else {
334 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335 }
336
337 iput(inode);
338 return 0;
339 cleanup:
340 srcu_read_unlock(&fs_info->subvol_srcu, index);
341 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342 return ret;
343 }
344
345 /*
346 * run through the list of inodes in the FS that need
347 * defragging
348 */
349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
350 {
351 struct inode_defrag *defrag;
352 u64 first_ino = 0;
353 u64 root_objectid = 0;
354
355 atomic_inc(&fs_info->defrag_running);
356 while (1) {
357 /* Pause the auto defragger. */
358 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
359 &fs_info->fs_state))
360 break;
361
362 if (!__need_auto_defrag(fs_info))
363 break;
364
365 /* find an inode to defrag */
366 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
367 first_ino);
368 if (!defrag) {
369 if (root_objectid || first_ino) {
370 root_objectid = 0;
371 first_ino = 0;
372 continue;
373 } else {
374 break;
375 }
376 }
377
378 first_ino = defrag->ino + 1;
379 root_objectid = defrag->root;
380
381 __btrfs_run_defrag_inode(fs_info, defrag);
382 }
383 atomic_dec(&fs_info->defrag_running);
384
385 /*
386 * during unmount, we use the transaction_wait queue to
387 * wait for the defragger to stop
388 */
389 wake_up(&fs_info->transaction_wait);
390 return 0;
391 }
392
393 /* simple helper to fault in pages and copy. This should go away
394 * and be replaced with calls into generic code.
395 */
396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
397 struct page **prepared_pages,
398 struct iov_iter *i)
399 {
400 size_t copied = 0;
401 size_t total_copied = 0;
402 int pg = 0;
403 int offset = offset_in_page(pos);
404
405 while (write_bytes > 0) {
406 size_t count = min_t(size_t,
407 PAGE_SIZE - offset, write_bytes);
408 struct page *page = prepared_pages[pg];
409 /*
410 * Copy data from userspace to the current page
411 */
412 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
413
414 /* Flush processor's dcache for this page */
415 flush_dcache_page(page);
416
417 /*
418 * if we get a partial write, we can end up with
419 * partially up to date pages. These add
420 * a lot of complexity, so make sure they don't
421 * happen by forcing this copy to be retried.
422 *
423 * The rest of the btrfs_file_write code will fall
424 * back to page at a time copies after we return 0.
425 */
426 if (!PageUptodate(page) && copied < count)
427 copied = 0;
428
429 iov_iter_advance(i, copied);
430 write_bytes -= copied;
431 total_copied += copied;
432
433 /* Return to btrfs_file_write_iter to fault page */
434 if (unlikely(copied == 0))
435 break;
436
437 if (copied < PAGE_SIZE - offset) {
438 offset += copied;
439 } else {
440 pg++;
441 offset = 0;
442 }
443 }
444 return total_copied;
445 }
446
447 /*
448 * unlocks pages after btrfs_file_write is done with them
449 */
450 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
451 {
452 size_t i;
453 for (i = 0; i < num_pages; i++) {
454 /* page checked is some magic around finding pages that
455 * have been modified without going through btrfs_set_page_dirty
456 * clear it here. There should be no need to mark the pages
457 * accessed as prepare_pages should have marked them accessed
458 * in prepare_pages via find_or_create_page()
459 */
460 ClearPageChecked(pages[i]);
461 unlock_page(pages[i]);
462 put_page(pages[i]);
463 }
464 }
465
466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
467 const u64 start,
468 const u64 len,
469 struct extent_state **cached_state)
470 {
471 u64 search_start = start;
472 const u64 end = start + len - 1;
473
474 while (search_start < end) {
475 const u64 search_len = end - search_start + 1;
476 struct extent_map *em;
477 u64 em_len;
478 int ret = 0;
479
480 em = btrfs_get_extent(inode, NULL, 0, search_start,
481 search_len, 0);
482 if (IS_ERR(em))
483 return PTR_ERR(em);
484
485 if (em->block_start != EXTENT_MAP_HOLE)
486 goto next;
487
488 em_len = em->len;
489 if (em->start < search_start)
490 em_len -= search_start - em->start;
491 if (em_len > search_len)
492 em_len = search_len;
493
494 ret = set_extent_bit(&inode->io_tree, search_start,
495 search_start + em_len - 1,
496 EXTENT_DELALLOC_NEW,
497 NULL, cached_state, GFP_NOFS);
498 next:
499 search_start = extent_map_end(em);
500 free_extent_map(em);
501 if (ret)
502 return ret;
503 }
504 return 0;
505 }
506
507 /*
508 * after copy_from_user, pages need to be dirtied and we need to make
509 * sure holes are created between the current EOF and the start of
510 * any next extents (if required).
511 *
512 * this also makes the decision about creating an inline extent vs
513 * doing real data extents, marking pages dirty and delalloc as required.
514 */
515 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
516 size_t num_pages, loff_t pos, size_t write_bytes,
517 struct extent_state **cached)
518 {
519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
520 int err = 0;
521 int i;
522 u64 num_bytes;
523 u64 start_pos;
524 u64 end_of_last_block;
525 u64 end_pos = pos + write_bytes;
526 loff_t isize = i_size_read(inode);
527 unsigned int extra_bits = 0;
528
529 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
530 num_bytes = round_up(write_bytes + pos - start_pos,
531 fs_info->sectorsize);
532
533 end_of_last_block = start_pos + num_bytes - 1;
534
535 /*
536 * The pages may have already been dirty, clear out old accounting so
537 * we can set things up properly
538 */
539 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
540 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
541 0, 0, cached);
542
543 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
544 if (start_pos >= isize &&
545 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
546 /*
547 * There can't be any extents following eof in this case
548 * so just set the delalloc new bit for the range
549 * directly.
550 */
551 extra_bits |= EXTENT_DELALLOC_NEW;
552 } else {
553 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
554 start_pos,
555 num_bytes, cached);
556 if (err)
557 return err;
558 }
559 }
560
561 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
562 extra_bits, cached);
563 if (err)
564 return err;
565
566 for (i = 0; i < num_pages; i++) {
567 struct page *p = pages[i];
568 SetPageUptodate(p);
569 ClearPageChecked(p);
570 set_page_dirty(p);
571 }
572
573 /*
574 * we've only changed i_size in ram, and we haven't updated
575 * the disk i_size. There is no need to log the inode
576 * at this time.
577 */
578 if (end_pos > isize)
579 i_size_write(inode, end_pos);
580 return 0;
581 }
582
583 /*
584 * this drops all the extents in the cache that intersect the range
585 * [start, end]. Existing extents are split as required.
586 */
587 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
588 int skip_pinned)
589 {
590 struct extent_map *em;
591 struct extent_map *split = NULL;
592 struct extent_map *split2 = NULL;
593 struct extent_map_tree *em_tree = &inode->extent_tree;
594 u64 len = end - start + 1;
595 u64 gen;
596 int ret;
597 int testend = 1;
598 unsigned long flags;
599 int compressed = 0;
600 bool modified;
601
602 WARN_ON(end < start);
603 if (end == (u64)-1) {
604 len = (u64)-1;
605 testend = 0;
606 }
607 while (1) {
608 int no_splits = 0;
609
610 modified = false;
611 if (!split)
612 split = alloc_extent_map();
613 if (!split2)
614 split2 = alloc_extent_map();
615 if (!split || !split2)
616 no_splits = 1;
617
618 write_lock(&em_tree->lock);
619 em = lookup_extent_mapping(em_tree, start, len);
620 if (!em) {
621 write_unlock(&em_tree->lock);
622 break;
623 }
624 flags = em->flags;
625 gen = em->generation;
626 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
627 if (testend && em->start + em->len >= start + len) {
628 free_extent_map(em);
629 write_unlock(&em_tree->lock);
630 break;
631 }
632 start = em->start + em->len;
633 if (testend)
634 len = start + len - (em->start + em->len);
635 free_extent_map(em);
636 write_unlock(&em_tree->lock);
637 continue;
638 }
639 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
640 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
641 clear_bit(EXTENT_FLAG_LOGGING, &flags);
642 modified = !list_empty(&em->list);
643 if (no_splits)
644 goto next;
645
646 if (em->start < start) {
647 split->start = em->start;
648 split->len = start - em->start;
649
650 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
651 split->orig_start = em->orig_start;
652 split->block_start = em->block_start;
653
654 if (compressed)
655 split->block_len = em->block_len;
656 else
657 split->block_len = split->len;
658 split->orig_block_len = max(split->block_len,
659 em->orig_block_len);
660 split->ram_bytes = em->ram_bytes;
661 } else {
662 split->orig_start = split->start;
663 split->block_len = 0;
664 split->block_start = em->block_start;
665 split->orig_block_len = 0;
666 split->ram_bytes = split->len;
667 }
668
669 split->generation = gen;
670 split->bdev = em->bdev;
671 split->flags = flags;
672 split->compress_type = em->compress_type;
673 replace_extent_mapping(em_tree, em, split, modified);
674 free_extent_map(split);
675 split = split2;
676 split2 = NULL;
677 }
678 if (testend && em->start + em->len > start + len) {
679 u64 diff = start + len - em->start;
680
681 split->start = start + len;
682 split->len = em->start + em->len - (start + len);
683 split->bdev = em->bdev;
684 split->flags = flags;
685 split->compress_type = em->compress_type;
686 split->generation = gen;
687
688 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
689 split->orig_block_len = max(em->block_len,
690 em->orig_block_len);
691
692 split->ram_bytes = em->ram_bytes;
693 if (compressed) {
694 split->block_len = em->block_len;
695 split->block_start = em->block_start;
696 split->orig_start = em->orig_start;
697 } else {
698 split->block_len = split->len;
699 split->block_start = em->block_start
700 + diff;
701 split->orig_start = em->orig_start;
702 }
703 } else {
704 split->ram_bytes = split->len;
705 split->orig_start = split->start;
706 split->block_len = 0;
707 split->block_start = em->block_start;
708 split->orig_block_len = 0;
709 }
710
711 if (extent_map_in_tree(em)) {
712 replace_extent_mapping(em_tree, em, split,
713 modified);
714 } else {
715 ret = add_extent_mapping(em_tree, split,
716 modified);
717 ASSERT(ret == 0); /* Logic error */
718 }
719 free_extent_map(split);
720 split = NULL;
721 }
722 next:
723 if (extent_map_in_tree(em))
724 remove_extent_mapping(em_tree, em);
725 write_unlock(&em_tree->lock);
726
727 /* once for us */
728 free_extent_map(em);
729 /* once for the tree*/
730 free_extent_map(em);
731 }
732 if (split)
733 free_extent_map(split);
734 if (split2)
735 free_extent_map(split2);
736 }
737
738 /*
739 * this is very complex, but the basic idea is to drop all extents
740 * in the range start - end. hint_block is filled in with a block number
741 * that would be a good hint to the block allocator for this file.
742 *
743 * If an extent intersects the range but is not entirely inside the range
744 * it is either truncated or split. Anything entirely inside the range
745 * is deleted from the tree.
746 */
747 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, struct inode *inode,
749 struct btrfs_path *path, u64 start, u64 end,
750 u64 *drop_end, int drop_cache,
751 int replace_extent,
752 u32 extent_item_size,
753 int *key_inserted)
754 {
755 struct btrfs_fs_info *fs_info = root->fs_info;
756 struct extent_buffer *leaf;
757 struct btrfs_file_extent_item *fi;
758 struct btrfs_ref ref = { 0 };
759 struct btrfs_key key;
760 struct btrfs_key new_key;
761 u64 ino = btrfs_ino(BTRFS_I(inode));
762 u64 search_start = start;
763 u64 disk_bytenr = 0;
764 u64 num_bytes = 0;
765 u64 extent_offset = 0;
766 u64 extent_end = 0;
767 u64 last_end = start;
768 int del_nr = 0;
769 int del_slot = 0;
770 int extent_type;
771 int recow;
772 int ret;
773 int modify_tree = -1;
774 int update_refs;
775 int found = 0;
776 int leafs_visited = 0;
777
778 if (drop_cache)
779 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
780
781 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
782 modify_tree = 0;
783
784 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
785 root == fs_info->tree_root);
786 while (1) {
787 recow = 0;
788 ret = btrfs_lookup_file_extent(trans, root, path, ino,
789 search_start, modify_tree);
790 if (ret < 0)
791 break;
792 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
793 leaf = path->nodes[0];
794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
795 if (key.objectid == ino &&
796 key.type == BTRFS_EXTENT_DATA_KEY)
797 path->slots[0]--;
798 }
799 ret = 0;
800 leafs_visited++;
801 next_slot:
802 leaf = path->nodes[0];
803 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
804 BUG_ON(del_nr > 0);
805 ret = btrfs_next_leaf(root, path);
806 if (ret < 0)
807 break;
808 if (ret > 0) {
809 ret = 0;
810 break;
811 }
812 leafs_visited++;
813 leaf = path->nodes[0];
814 recow = 1;
815 }
816
817 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
818
819 if (key.objectid > ino)
820 break;
821 if (WARN_ON_ONCE(key.objectid < ino) ||
822 key.type < BTRFS_EXTENT_DATA_KEY) {
823 ASSERT(del_nr == 0);
824 path->slots[0]++;
825 goto next_slot;
826 }
827 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
828 break;
829
830 fi = btrfs_item_ptr(leaf, path->slots[0],
831 struct btrfs_file_extent_item);
832 extent_type = btrfs_file_extent_type(leaf, fi);
833
834 if (extent_type == BTRFS_FILE_EXTENT_REG ||
835 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
836 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
837 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
838 extent_offset = btrfs_file_extent_offset(leaf, fi);
839 extent_end = key.offset +
840 btrfs_file_extent_num_bytes(leaf, fi);
841 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842 extent_end = key.offset +
843 btrfs_file_extent_ram_bytes(leaf, fi);
844 } else {
845 /* can't happen */
846 BUG();
847 }
848
849 /*
850 * Don't skip extent items representing 0 byte lengths. They
851 * used to be created (bug) if while punching holes we hit
852 * -ENOSPC condition. So if we find one here, just ensure we
853 * delete it, otherwise we would insert a new file extent item
854 * with the same key (offset) as that 0 bytes length file
855 * extent item in the call to setup_items_for_insert() later
856 * in this function.
857 */
858 if (extent_end == key.offset && extent_end >= search_start) {
859 last_end = extent_end;
860 goto delete_extent_item;
861 }
862
863 if (extent_end <= search_start) {
864 path->slots[0]++;
865 goto next_slot;
866 }
867
868 found = 1;
869 search_start = max(key.offset, start);
870 if (recow || !modify_tree) {
871 modify_tree = -1;
872 btrfs_release_path(path);
873 continue;
874 }
875
876 /*
877 * | - range to drop - |
878 * | -------- extent -------- |
879 */
880 if (start > key.offset && end < extent_end) {
881 BUG_ON(del_nr > 0);
882 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
883 ret = -EOPNOTSUPP;
884 break;
885 }
886
887 memcpy(&new_key, &key, sizeof(new_key));
888 new_key.offset = start;
889 ret = btrfs_duplicate_item(trans, root, path,
890 &new_key);
891 if (ret == -EAGAIN) {
892 btrfs_release_path(path);
893 continue;
894 }
895 if (ret < 0)
896 break;
897
898 leaf = path->nodes[0];
899 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
900 struct btrfs_file_extent_item);
901 btrfs_set_file_extent_num_bytes(leaf, fi,
902 start - key.offset);
903
904 fi = btrfs_item_ptr(leaf, path->slots[0],
905 struct btrfs_file_extent_item);
906
907 extent_offset += start - key.offset;
908 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
909 btrfs_set_file_extent_num_bytes(leaf, fi,
910 extent_end - start);
911 btrfs_mark_buffer_dirty(leaf);
912
913 if (update_refs && disk_bytenr > 0) {
914 btrfs_init_generic_ref(&ref,
915 BTRFS_ADD_DELAYED_REF,
916 disk_bytenr, num_bytes, 0);
917 btrfs_init_data_ref(&ref,
918 root->root_key.objectid,
919 new_key.objectid,
920 start - extent_offset);
921 ret = btrfs_inc_extent_ref(trans, &ref);
922 BUG_ON(ret); /* -ENOMEM */
923 }
924 key.offset = start;
925 }
926 /*
927 * From here on out we will have actually dropped something, so
928 * last_end can be updated.
929 */
930 last_end = extent_end;
931
932 /*
933 * | ---- range to drop ----- |
934 * | -------- extent -------- |
935 */
936 if (start <= key.offset && end < extent_end) {
937 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
938 ret = -EOPNOTSUPP;
939 break;
940 }
941
942 memcpy(&new_key, &key, sizeof(new_key));
943 new_key.offset = end;
944 btrfs_set_item_key_safe(fs_info, path, &new_key);
945
946 extent_offset += end - key.offset;
947 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
948 btrfs_set_file_extent_num_bytes(leaf, fi,
949 extent_end - end);
950 btrfs_mark_buffer_dirty(leaf);
951 if (update_refs && disk_bytenr > 0)
952 inode_sub_bytes(inode, end - key.offset);
953 break;
954 }
955
956 search_start = extent_end;
957 /*
958 * | ---- range to drop ----- |
959 * | -------- extent -------- |
960 */
961 if (start > key.offset && end >= extent_end) {
962 BUG_ON(del_nr > 0);
963 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
964 ret = -EOPNOTSUPP;
965 break;
966 }
967
968 btrfs_set_file_extent_num_bytes(leaf, fi,
969 start - key.offset);
970 btrfs_mark_buffer_dirty(leaf);
971 if (update_refs && disk_bytenr > 0)
972 inode_sub_bytes(inode, extent_end - start);
973 if (end == extent_end)
974 break;
975
976 path->slots[0]++;
977 goto next_slot;
978 }
979
980 /*
981 * | ---- range to drop ----- |
982 * | ------ extent ------ |
983 */
984 if (start <= key.offset && end >= extent_end) {
985 delete_extent_item:
986 if (del_nr == 0) {
987 del_slot = path->slots[0];
988 del_nr = 1;
989 } else {
990 BUG_ON(del_slot + del_nr != path->slots[0]);
991 del_nr++;
992 }
993
994 if (update_refs &&
995 extent_type == BTRFS_FILE_EXTENT_INLINE) {
996 inode_sub_bytes(inode,
997 extent_end - key.offset);
998 extent_end = ALIGN(extent_end,
999 fs_info->sectorsize);
1000 } else if (update_refs && disk_bytenr > 0) {
1001 btrfs_init_generic_ref(&ref,
1002 BTRFS_DROP_DELAYED_REF,
1003 disk_bytenr, num_bytes, 0);
1004 btrfs_init_data_ref(&ref,
1005 root->root_key.objectid,
1006 key.objectid,
1007 key.offset - extent_offset);
1008 ret = btrfs_free_extent(trans, &ref);
1009 BUG_ON(ret); /* -ENOMEM */
1010 inode_sub_bytes(inode,
1011 extent_end - key.offset);
1012 }
1013
1014 if (end == extent_end)
1015 break;
1016
1017 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018 path->slots[0]++;
1019 goto next_slot;
1020 }
1021
1022 ret = btrfs_del_items(trans, root, path, del_slot,
1023 del_nr);
1024 if (ret) {
1025 btrfs_abort_transaction(trans, ret);
1026 break;
1027 }
1028
1029 del_nr = 0;
1030 del_slot = 0;
1031
1032 btrfs_release_path(path);
1033 continue;
1034 }
1035
1036 BUG();
1037 }
1038
1039 if (!ret && del_nr > 0) {
1040 /*
1041 * Set path->slots[0] to first slot, so that after the delete
1042 * if items are move off from our leaf to its immediate left or
1043 * right neighbor leafs, we end up with a correct and adjusted
1044 * path->slots[0] for our insertion (if replace_extent != 0).
1045 */
1046 path->slots[0] = del_slot;
1047 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048 if (ret)
1049 btrfs_abort_transaction(trans, ret);
1050 }
1051
1052 leaf = path->nodes[0];
1053 /*
1054 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 * which case it unlocked our path, so check path->locks[0] matches a
1056 * write lock.
1057 */
1058 if (!ret && replace_extent && leafs_visited == 1 &&
1059 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060 path->locks[0] == BTRFS_WRITE_LOCK) &&
1061 btrfs_leaf_free_space(leaf) >=
1062 sizeof(struct btrfs_item) + extent_item_size) {
1063
1064 key.objectid = ino;
1065 key.type = BTRFS_EXTENT_DATA_KEY;
1066 key.offset = start;
1067 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068 struct btrfs_key slot_key;
1069
1070 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072 path->slots[0]++;
1073 }
1074 setup_items_for_insert(root, path, &key,
1075 &extent_item_size,
1076 extent_item_size,
1077 sizeof(struct btrfs_item) +
1078 extent_item_size, 1);
1079 *key_inserted = 1;
1080 }
1081
1082 if (!replace_extent || !(*key_inserted))
1083 btrfs_release_path(path);
1084 if (drop_end)
1085 *drop_end = found ? min(end, last_end) : end;
1086 return ret;
1087 }
1088
1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root, struct inode *inode, u64 start,
1091 u64 end, int drop_cache)
1092 {
1093 struct btrfs_path *path;
1094 int ret;
1095
1096 path = btrfs_alloc_path();
1097 if (!path)
1098 return -ENOMEM;
1099 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100 drop_cache, 0, 0, NULL);
1101 btrfs_free_path(path);
1102 return ret;
1103 }
1104
1105 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106 u64 objectid, u64 bytenr, u64 orig_offset,
1107 u64 *start, u64 *end)
1108 {
1109 struct btrfs_file_extent_item *fi;
1110 struct btrfs_key key;
1111 u64 extent_end;
1112
1113 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114 return 0;
1115
1116 btrfs_item_key_to_cpu(leaf, &key, slot);
1117 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118 return 0;
1119
1120 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124 btrfs_file_extent_compression(leaf, fi) ||
1125 btrfs_file_extent_encryption(leaf, fi) ||
1126 btrfs_file_extent_other_encoding(leaf, fi))
1127 return 0;
1128
1129 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131 return 0;
1132
1133 *start = key.offset;
1134 *end = extent_end;
1135 return 1;
1136 }
1137
1138 /*
1139 * Mark extent in the range start - end as written.
1140 *
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1143 * two or three.
1144 */
1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146 struct btrfs_inode *inode, u64 start, u64 end)
1147 {
1148 struct btrfs_fs_info *fs_info = trans->fs_info;
1149 struct btrfs_root *root = inode->root;
1150 struct extent_buffer *leaf;
1151 struct btrfs_path *path;
1152 struct btrfs_file_extent_item *fi;
1153 struct btrfs_ref ref = { 0 };
1154 struct btrfs_key key;
1155 struct btrfs_key new_key;
1156 u64 bytenr;
1157 u64 num_bytes;
1158 u64 extent_end;
1159 u64 orig_offset;
1160 u64 other_start;
1161 u64 other_end;
1162 u64 split;
1163 int del_nr = 0;
1164 int del_slot = 0;
1165 int recow;
1166 int ret;
1167 u64 ino = btrfs_ino(inode);
1168
1169 path = btrfs_alloc_path();
1170 if (!path)
1171 return -ENOMEM;
1172 again:
1173 recow = 0;
1174 split = start;
1175 key.objectid = ino;
1176 key.type = BTRFS_EXTENT_DATA_KEY;
1177 key.offset = split;
1178
1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180 if (ret < 0)
1181 goto out;
1182 if (ret > 0 && path->slots[0] > 0)
1183 path->slots[0]--;
1184
1185 leaf = path->nodes[0];
1186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187 if (key.objectid != ino ||
1188 key.type != BTRFS_EXTENT_DATA_KEY) {
1189 ret = -EINVAL;
1190 btrfs_abort_transaction(trans, ret);
1191 goto out;
1192 }
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
1195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196 ret = -EINVAL;
1197 btrfs_abort_transaction(trans, ret);
1198 goto out;
1199 }
1200 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201 if (key.offset > start || extent_end < end) {
1202 ret = -EINVAL;
1203 btrfs_abort_transaction(trans, ret);
1204 goto out;
1205 }
1206
1207 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210 memcpy(&new_key, &key, sizeof(new_key));
1211
1212 if (start == key.offset && end < extent_end) {
1213 other_start = 0;
1214 other_end = start;
1215 if (extent_mergeable(leaf, path->slots[0] - 1,
1216 ino, bytenr, orig_offset,
1217 &other_start, &other_end)) {
1218 new_key.offset = end;
1219 btrfs_set_item_key_safe(fs_info, path, &new_key);
1220 fi = btrfs_item_ptr(leaf, path->slots[0],
1221 struct btrfs_file_extent_item);
1222 btrfs_set_file_extent_generation(leaf, fi,
1223 trans->transid);
1224 btrfs_set_file_extent_num_bytes(leaf, fi,
1225 extent_end - end);
1226 btrfs_set_file_extent_offset(leaf, fi,
1227 end - orig_offset);
1228 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229 struct btrfs_file_extent_item);
1230 btrfs_set_file_extent_generation(leaf, fi,
1231 trans->transid);
1232 btrfs_set_file_extent_num_bytes(leaf, fi,
1233 end - other_start);
1234 btrfs_mark_buffer_dirty(leaf);
1235 goto out;
1236 }
1237 }
1238
1239 if (start > key.offset && end == extent_end) {
1240 other_start = end;
1241 other_end = 0;
1242 if (extent_mergeable(leaf, path->slots[0] + 1,
1243 ino, bytenr, orig_offset,
1244 &other_start, &other_end)) {
1245 fi = btrfs_item_ptr(leaf, path->slots[0],
1246 struct btrfs_file_extent_item);
1247 btrfs_set_file_extent_num_bytes(leaf, fi,
1248 start - key.offset);
1249 btrfs_set_file_extent_generation(leaf, fi,
1250 trans->transid);
1251 path->slots[0]++;
1252 new_key.offset = start;
1253 btrfs_set_item_key_safe(fs_info, path, &new_key);
1254
1255 fi = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_file_extent_item);
1257 btrfs_set_file_extent_generation(leaf, fi,
1258 trans->transid);
1259 btrfs_set_file_extent_num_bytes(leaf, fi,
1260 other_end - start);
1261 btrfs_set_file_extent_offset(leaf, fi,
1262 start - orig_offset);
1263 btrfs_mark_buffer_dirty(leaf);
1264 goto out;
1265 }
1266 }
1267
1268 while (start > key.offset || end < extent_end) {
1269 if (key.offset == start)
1270 split = end;
1271
1272 new_key.offset = split;
1273 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274 if (ret == -EAGAIN) {
1275 btrfs_release_path(path);
1276 goto again;
1277 }
1278 if (ret < 0) {
1279 btrfs_abort_transaction(trans, ret);
1280 goto out;
1281 }
1282
1283 leaf = path->nodes[0];
1284 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285 struct btrfs_file_extent_item);
1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287 btrfs_set_file_extent_num_bytes(leaf, fi,
1288 split - key.offset);
1289
1290 fi = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_file_extent_item);
1292
1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295 btrfs_set_file_extent_num_bytes(leaf, fi,
1296 extent_end - split);
1297 btrfs_mark_buffer_dirty(leaf);
1298
1299 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1300 num_bytes, 0);
1301 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1302 orig_offset);
1303 ret = btrfs_inc_extent_ref(trans, &ref);
1304 if (ret) {
1305 btrfs_abort_transaction(trans, ret);
1306 goto out;
1307 }
1308
1309 if (split == start) {
1310 key.offset = start;
1311 } else {
1312 if (start != key.offset) {
1313 ret = -EINVAL;
1314 btrfs_abort_transaction(trans, ret);
1315 goto out;
1316 }
1317 path->slots[0]--;
1318 extent_end = end;
1319 }
1320 recow = 1;
1321 }
1322
1323 other_start = end;
1324 other_end = 0;
1325 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1326 num_bytes, 0);
1327 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1328 if (extent_mergeable(leaf, path->slots[0] + 1,
1329 ino, bytenr, orig_offset,
1330 &other_start, &other_end)) {
1331 if (recow) {
1332 btrfs_release_path(path);
1333 goto again;
1334 }
1335 extent_end = other_end;
1336 del_slot = path->slots[0] + 1;
1337 del_nr++;
1338 ret = btrfs_free_extent(trans, &ref);
1339 if (ret) {
1340 btrfs_abort_transaction(trans, ret);
1341 goto out;
1342 }
1343 }
1344 other_start = 0;
1345 other_end = start;
1346 if (extent_mergeable(leaf, path->slots[0] - 1,
1347 ino, bytenr, orig_offset,
1348 &other_start, &other_end)) {
1349 if (recow) {
1350 btrfs_release_path(path);
1351 goto again;
1352 }
1353 key.offset = other_start;
1354 del_slot = path->slots[0];
1355 del_nr++;
1356 ret = btrfs_free_extent(trans, &ref);
1357 if (ret) {
1358 btrfs_abort_transaction(trans, ret);
1359 goto out;
1360 }
1361 }
1362 if (del_nr == 0) {
1363 fi = btrfs_item_ptr(leaf, path->slots[0],
1364 struct btrfs_file_extent_item);
1365 btrfs_set_file_extent_type(leaf, fi,
1366 BTRFS_FILE_EXTENT_REG);
1367 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1368 btrfs_mark_buffer_dirty(leaf);
1369 } else {
1370 fi = btrfs_item_ptr(leaf, del_slot - 1,
1371 struct btrfs_file_extent_item);
1372 btrfs_set_file_extent_type(leaf, fi,
1373 BTRFS_FILE_EXTENT_REG);
1374 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1375 btrfs_set_file_extent_num_bytes(leaf, fi,
1376 extent_end - key.offset);
1377 btrfs_mark_buffer_dirty(leaf);
1378
1379 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1380 if (ret < 0) {
1381 btrfs_abort_transaction(trans, ret);
1382 goto out;
1383 }
1384 }
1385 out:
1386 btrfs_free_path(path);
1387 return 0;
1388 }
1389
1390 /*
1391 * on error we return an unlocked page and the error value
1392 * on success we return a locked page and 0
1393 */
1394 static int prepare_uptodate_page(struct inode *inode,
1395 struct page *page, u64 pos,
1396 bool force_uptodate)
1397 {
1398 int ret = 0;
1399
1400 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1401 !PageUptodate(page)) {
1402 ret = btrfs_readpage(NULL, page);
1403 if (ret)
1404 return ret;
1405 lock_page(page);
1406 if (!PageUptodate(page)) {
1407 unlock_page(page);
1408 return -EIO;
1409 }
1410 if (page->mapping != inode->i_mapping) {
1411 unlock_page(page);
1412 return -EAGAIN;
1413 }
1414 }
1415 return 0;
1416 }
1417
1418 /*
1419 * this just gets pages into the page cache and locks them down.
1420 */
1421 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1422 size_t num_pages, loff_t pos,
1423 size_t write_bytes, bool force_uptodate)
1424 {
1425 int i;
1426 unsigned long index = pos >> PAGE_SHIFT;
1427 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1428 int err = 0;
1429 int faili;
1430
1431 for (i = 0; i < num_pages; i++) {
1432 again:
1433 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1434 mask | __GFP_WRITE);
1435 if (!pages[i]) {
1436 faili = i - 1;
1437 err = -ENOMEM;
1438 goto fail;
1439 }
1440
1441 if (i == 0)
1442 err = prepare_uptodate_page(inode, pages[i], pos,
1443 force_uptodate);
1444 if (!err && i == num_pages - 1)
1445 err = prepare_uptodate_page(inode, pages[i],
1446 pos + write_bytes, false);
1447 if (err) {
1448 put_page(pages[i]);
1449 if (err == -EAGAIN) {
1450 err = 0;
1451 goto again;
1452 }
1453 faili = i - 1;
1454 goto fail;
1455 }
1456 wait_on_page_writeback(pages[i]);
1457 }
1458
1459 return 0;
1460 fail:
1461 while (faili >= 0) {
1462 unlock_page(pages[faili]);
1463 put_page(pages[faili]);
1464 faili--;
1465 }
1466 return err;
1467
1468 }
1469
1470 /*
1471 * This function locks the extent and properly waits for data=ordered extents
1472 * to finish before allowing the pages to be modified if need.
1473 *
1474 * The return value:
1475 * 1 - the extent is locked
1476 * 0 - the extent is not locked, and everything is OK
1477 * -EAGAIN - need re-prepare the pages
1478 * the other < 0 number - Something wrong happens
1479 */
1480 static noinline int
1481 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1482 size_t num_pages, loff_t pos,
1483 size_t write_bytes,
1484 u64 *lockstart, u64 *lockend,
1485 struct extent_state **cached_state)
1486 {
1487 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488 u64 start_pos;
1489 u64 last_pos;
1490 int i;
1491 int ret = 0;
1492
1493 start_pos = round_down(pos, fs_info->sectorsize);
1494 last_pos = start_pos
1495 + round_up(pos + write_bytes - start_pos,
1496 fs_info->sectorsize) - 1;
1497
1498 if (start_pos < inode->vfs_inode.i_size) {
1499 struct btrfs_ordered_extent *ordered;
1500
1501 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1502 cached_state);
1503 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1504 last_pos - start_pos + 1);
1505 if (ordered &&
1506 ordered->file_offset + ordered->len > start_pos &&
1507 ordered->file_offset <= last_pos) {
1508 unlock_extent_cached(&inode->io_tree, start_pos,
1509 last_pos, cached_state);
1510 for (i = 0; i < num_pages; i++) {
1511 unlock_page(pages[i]);
1512 put_page(pages[i]);
1513 }
1514 btrfs_start_ordered_extent(&inode->vfs_inode,
1515 ordered, 1);
1516 btrfs_put_ordered_extent(ordered);
1517 return -EAGAIN;
1518 }
1519 if (ordered)
1520 btrfs_put_ordered_extent(ordered);
1521
1522 *lockstart = start_pos;
1523 *lockend = last_pos;
1524 ret = 1;
1525 }
1526
1527 /*
1528 * It's possible the pages are dirty right now, but we don't want
1529 * to clean them yet because copy_from_user may catch a page fault
1530 * and we might have to fall back to one page at a time. If that
1531 * happens, we'll unlock these pages and we'd have a window where
1532 * reclaim could sneak in and drop the once-dirty page on the floor
1533 * without writing it.
1534 *
1535 * We have the pages locked and the extent range locked, so there's
1536 * no way someone can start IO on any dirty pages in this range.
1537 *
1538 * We'll call btrfs_dirty_pages() later on, and that will flip around
1539 * delalloc bits and dirty the pages as required.
1540 */
1541 for (i = 0; i < num_pages; i++) {
1542 set_page_extent_mapped(pages[i]);
1543 WARN_ON(!PageLocked(pages[i]));
1544 }
1545
1546 return ret;
1547 }
1548
1549 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1550 size_t *write_bytes)
1551 {
1552 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1553 struct btrfs_root *root = inode->root;
1554 u64 lockstart, lockend;
1555 u64 num_bytes;
1556 int ret;
1557
1558 ret = btrfs_start_write_no_snapshotting(root);
1559 if (!ret)
1560 return -EAGAIN;
1561
1562 lockstart = round_down(pos, fs_info->sectorsize);
1563 lockend = round_up(pos + *write_bytes,
1564 fs_info->sectorsize) - 1;
1565
1566 btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1567 lockend, NULL);
1568
1569 num_bytes = lockend - lockstart + 1;
1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 NULL, NULL, NULL);
1572 if (ret <= 0) {
1573 ret = 0;
1574 btrfs_end_write_no_snapshotting(root);
1575 } else {
1576 *write_bytes = min_t(size_t, *write_bytes ,
1577 num_bytes - pos + lockstart);
1578 }
1579
1580 unlock_extent(&inode->io_tree, lockstart, lockend);
1581
1582 return ret;
1583 }
1584
1585 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586 struct iov_iter *i)
1587 {
1588 struct file *file = iocb->ki_filp;
1589 loff_t pos = iocb->ki_pos;
1590 struct inode *inode = file_inode(file);
1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 struct page **pages = NULL;
1594 struct extent_state *cached_state = NULL;
1595 struct extent_changeset *data_reserved = NULL;
1596 u64 release_bytes = 0;
1597 u64 lockstart;
1598 u64 lockend;
1599 size_t num_written = 0;
1600 int nrptrs;
1601 int ret = 0;
1602 bool only_release_metadata = false;
1603 bool force_page_uptodate = false;
1604
1605 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1606 PAGE_SIZE / (sizeof(struct page *)));
1607 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1608 nrptrs = max(nrptrs, 8);
1609 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1610 if (!pages)
1611 return -ENOMEM;
1612
1613 while (iov_iter_count(i) > 0) {
1614 size_t offset = offset_in_page(pos);
1615 size_t sector_offset;
1616 size_t write_bytes = min(iov_iter_count(i),
1617 nrptrs * (size_t)PAGE_SIZE -
1618 offset);
1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620 PAGE_SIZE);
1621 size_t reserve_bytes;
1622 size_t dirty_pages;
1623 size_t copied;
1624 size_t dirty_sectors;
1625 size_t num_sectors;
1626 int extents_locked;
1627
1628 WARN_ON(num_pages > nrptrs);
1629
1630 /*
1631 * Fault pages before locking them in prepare_pages
1632 * to avoid recursive lock
1633 */
1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1635 ret = -EFAULT;
1636 break;
1637 }
1638
1639 sector_offset = pos & (fs_info->sectorsize - 1);
1640 reserve_bytes = round_up(write_bytes + sector_offset,
1641 fs_info->sectorsize);
1642
1643 extent_changeset_release(data_reserved);
1644 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1645 write_bytes);
1646 if (ret < 0) {
1647 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1648 BTRFS_INODE_PREALLOC)) &&
1649 check_can_nocow(BTRFS_I(inode), pos,
1650 &write_bytes) > 0) {
1651 /*
1652 * For nodata cow case, no need to reserve
1653 * data space.
1654 */
1655 only_release_metadata = true;
1656 /*
1657 * our prealloc extent may be smaller than
1658 * write_bytes, so scale down.
1659 */
1660 num_pages = DIV_ROUND_UP(write_bytes + offset,
1661 PAGE_SIZE);
1662 reserve_bytes = round_up(write_bytes +
1663 sector_offset,
1664 fs_info->sectorsize);
1665 } else {
1666 break;
1667 }
1668 }
1669
1670 WARN_ON(reserve_bytes == 0);
1671 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1672 reserve_bytes);
1673 if (ret) {
1674 if (!only_release_metadata)
1675 btrfs_free_reserved_data_space(inode,
1676 data_reserved, pos,
1677 write_bytes);
1678 else
1679 btrfs_end_write_no_snapshotting(root);
1680 break;
1681 }
1682
1683 release_bytes = reserve_bytes;
1684 again:
1685 /*
1686 * This is going to setup the pages array with the number of
1687 * pages we want, so we don't really need to worry about the
1688 * contents of pages from loop to loop
1689 */
1690 ret = prepare_pages(inode, pages, num_pages,
1691 pos, write_bytes,
1692 force_page_uptodate);
1693 if (ret) {
1694 btrfs_delalloc_release_extents(BTRFS_I(inode),
1695 reserve_bytes, true);
1696 break;
1697 }
1698
1699 extents_locked = lock_and_cleanup_extent_if_need(
1700 BTRFS_I(inode), pages,
1701 num_pages, pos, write_bytes, &lockstart,
1702 &lockend, &cached_state);
1703 if (extents_locked < 0) {
1704 if (extents_locked == -EAGAIN)
1705 goto again;
1706 btrfs_delalloc_release_extents(BTRFS_I(inode),
1707 reserve_bytes, true);
1708 ret = extents_locked;
1709 break;
1710 }
1711
1712 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1713
1714 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1715 dirty_sectors = round_up(copied + sector_offset,
1716 fs_info->sectorsize);
1717 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1718
1719 /*
1720 * if we have trouble faulting in the pages, fall
1721 * back to one page at a time
1722 */
1723 if (copied < write_bytes)
1724 nrptrs = 1;
1725
1726 if (copied == 0) {
1727 force_page_uptodate = true;
1728 dirty_sectors = 0;
1729 dirty_pages = 0;
1730 } else {
1731 force_page_uptodate = false;
1732 dirty_pages = DIV_ROUND_UP(copied + offset,
1733 PAGE_SIZE);
1734 }
1735
1736 if (num_sectors > dirty_sectors) {
1737 /* release everything except the sectors we dirtied */
1738 release_bytes -= dirty_sectors <<
1739 fs_info->sb->s_blocksize_bits;
1740 if (only_release_metadata) {
1741 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1742 release_bytes, true);
1743 } else {
1744 u64 __pos;
1745
1746 __pos = round_down(pos,
1747 fs_info->sectorsize) +
1748 (dirty_pages << PAGE_SHIFT);
1749 btrfs_delalloc_release_space(inode,
1750 data_reserved, __pos,
1751 release_bytes, true);
1752 }
1753 }
1754
1755 release_bytes = round_up(copied + sector_offset,
1756 fs_info->sectorsize);
1757
1758 if (copied > 0)
1759 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1760 pos, copied, &cached_state);
1761 if (extents_locked)
1762 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1763 lockstart, lockend, &cached_state);
1764 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1765 true);
1766 if (ret) {
1767 btrfs_drop_pages(pages, num_pages);
1768 break;
1769 }
1770
1771 release_bytes = 0;
1772 if (only_release_metadata)
1773 btrfs_end_write_no_snapshotting(root);
1774
1775 if (only_release_metadata && copied > 0) {
1776 lockstart = round_down(pos,
1777 fs_info->sectorsize);
1778 lockend = round_up(pos + copied,
1779 fs_info->sectorsize) - 1;
1780
1781 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1782 lockend, EXTENT_NORESERVE, NULL,
1783 NULL, GFP_NOFS);
1784 only_release_metadata = false;
1785 }
1786
1787 btrfs_drop_pages(pages, num_pages);
1788
1789 cond_resched();
1790
1791 balance_dirty_pages_ratelimited(inode->i_mapping);
1792 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1793 btrfs_btree_balance_dirty(fs_info);
1794
1795 pos += copied;
1796 num_written += copied;
1797 }
1798
1799 kfree(pages);
1800
1801 if (release_bytes) {
1802 if (only_release_metadata) {
1803 btrfs_end_write_no_snapshotting(root);
1804 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1805 release_bytes, true);
1806 } else {
1807 btrfs_delalloc_release_space(inode, data_reserved,
1808 round_down(pos, fs_info->sectorsize),
1809 release_bytes, true);
1810 }
1811 }
1812
1813 extent_changeset_free(data_reserved);
1814 return num_written ? num_written : ret;
1815 }
1816
1817 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1818 {
1819 struct file *file = iocb->ki_filp;
1820 struct inode *inode = file_inode(file);
1821 loff_t pos;
1822 ssize_t written;
1823 ssize_t written_buffered;
1824 loff_t endbyte;
1825 int err;
1826
1827 written = generic_file_direct_write(iocb, from);
1828
1829 if (written < 0 || !iov_iter_count(from))
1830 return written;
1831
1832 pos = iocb->ki_pos;
1833 written_buffered = btrfs_buffered_write(iocb, from);
1834 if (written_buffered < 0) {
1835 err = written_buffered;
1836 goto out;
1837 }
1838 /*
1839 * Ensure all data is persisted. We want the next direct IO read to be
1840 * able to read what was just written.
1841 */
1842 endbyte = pos + written_buffered - 1;
1843 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1844 if (err)
1845 goto out;
1846 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1847 if (err)
1848 goto out;
1849 written += written_buffered;
1850 iocb->ki_pos = pos + written_buffered;
1851 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1852 endbyte >> PAGE_SHIFT);
1853 out:
1854 return written ? written : err;
1855 }
1856
1857 static void update_time_for_write(struct inode *inode)
1858 {
1859 struct timespec64 now;
1860
1861 if (IS_NOCMTIME(inode))
1862 return;
1863
1864 now = current_time(inode);
1865 if (!timespec64_equal(&inode->i_mtime, &now))
1866 inode->i_mtime = now;
1867
1868 if (!timespec64_equal(&inode->i_ctime, &now))
1869 inode->i_ctime = now;
1870
1871 if (IS_I_VERSION(inode))
1872 inode_inc_iversion(inode);
1873 }
1874
1875 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1876 struct iov_iter *from)
1877 {
1878 struct file *file = iocb->ki_filp;
1879 struct inode *inode = file_inode(file);
1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1881 struct btrfs_root *root = BTRFS_I(inode)->root;
1882 u64 start_pos;
1883 u64 end_pos;
1884 ssize_t num_written = 0;
1885 const bool sync = iocb->ki_flags & IOCB_DSYNC;
1886 ssize_t err;
1887 loff_t pos;
1888 size_t count;
1889 loff_t oldsize;
1890 int clean_page = 0;
1891
1892 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1893 (iocb->ki_flags & IOCB_NOWAIT))
1894 return -EOPNOTSUPP;
1895
1896 if (!inode_trylock(inode)) {
1897 if (iocb->ki_flags & IOCB_NOWAIT)
1898 return -EAGAIN;
1899 inode_lock(inode);
1900 }
1901
1902 err = generic_write_checks(iocb, from);
1903 if (err <= 0) {
1904 inode_unlock(inode);
1905 return err;
1906 }
1907
1908 pos = iocb->ki_pos;
1909 count = iov_iter_count(from);
1910 if (iocb->ki_flags & IOCB_NOWAIT) {
1911 /*
1912 * We will allocate space in case nodatacow is not set,
1913 * so bail
1914 */
1915 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1916 BTRFS_INODE_PREALLOC)) ||
1917 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1918 inode_unlock(inode);
1919 return -EAGAIN;
1920 }
1921 }
1922
1923 current->backing_dev_info = inode_to_bdi(inode);
1924 err = file_remove_privs(file);
1925 if (err) {
1926 inode_unlock(inode);
1927 goto out;
1928 }
1929
1930 /*
1931 * If BTRFS flips readonly due to some impossible error
1932 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1933 * although we have opened a file as writable, we have
1934 * to stop this write operation to ensure FS consistency.
1935 */
1936 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1937 inode_unlock(inode);
1938 err = -EROFS;
1939 goto out;
1940 }
1941
1942 /*
1943 * We reserve space for updating the inode when we reserve space for the
1944 * extent we are going to write, so we will enospc out there. We don't
1945 * need to start yet another transaction to update the inode as we will
1946 * update the inode when we finish writing whatever data we write.
1947 */
1948 update_time_for_write(inode);
1949
1950 start_pos = round_down(pos, fs_info->sectorsize);
1951 oldsize = i_size_read(inode);
1952 if (start_pos > oldsize) {
1953 /* Expand hole size to cover write data, preventing empty gap */
1954 end_pos = round_up(pos + count,
1955 fs_info->sectorsize);
1956 err = btrfs_cont_expand(inode, oldsize, end_pos);
1957 if (err) {
1958 inode_unlock(inode);
1959 goto out;
1960 }
1961 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1962 clean_page = 1;
1963 }
1964
1965 if (sync)
1966 atomic_inc(&BTRFS_I(inode)->sync_writers);
1967
1968 if (iocb->ki_flags & IOCB_DIRECT) {
1969 num_written = __btrfs_direct_write(iocb, from);
1970 } else {
1971 num_written = btrfs_buffered_write(iocb, from);
1972 if (num_written > 0)
1973 iocb->ki_pos = pos + num_written;
1974 if (clean_page)
1975 pagecache_isize_extended(inode, oldsize,
1976 i_size_read(inode));
1977 }
1978
1979 inode_unlock(inode);
1980
1981 /*
1982 * We also have to set last_sub_trans to the current log transid,
1983 * otherwise subsequent syncs to a file that's been synced in this
1984 * transaction will appear to have already occurred.
1985 */
1986 spin_lock(&BTRFS_I(inode)->lock);
1987 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1988 spin_unlock(&BTRFS_I(inode)->lock);
1989 if (num_written > 0)
1990 num_written = generic_write_sync(iocb, num_written);
1991
1992 if (sync)
1993 atomic_dec(&BTRFS_I(inode)->sync_writers);
1994 out:
1995 current->backing_dev_info = NULL;
1996 return num_written ? num_written : err;
1997 }
1998
1999 int btrfs_release_file(struct inode *inode, struct file *filp)
2000 {
2001 struct btrfs_file_private *private = filp->private_data;
2002
2003 if (private && private->filldir_buf)
2004 kfree(private->filldir_buf);
2005 kfree(private);
2006 filp->private_data = NULL;
2007
2008 /*
2009 * ordered_data_close is set by setattr when we are about to truncate
2010 * a file from a non-zero size to a zero size. This tries to
2011 * flush down new bytes that may have been written if the
2012 * application were using truncate to replace a file in place.
2013 */
2014 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2015 &BTRFS_I(inode)->runtime_flags))
2016 filemap_flush(inode->i_mapping);
2017 return 0;
2018 }
2019
2020 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2021 {
2022 int ret;
2023 struct blk_plug plug;
2024
2025 /*
2026 * This is only called in fsync, which would do synchronous writes, so
2027 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2028 * multiple disks using raid profile, a large IO can be split to
2029 * several segments of stripe length (currently 64K).
2030 */
2031 blk_start_plug(&plug);
2032 atomic_inc(&BTRFS_I(inode)->sync_writers);
2033 ret = btrfs_fdatawrite_range(inode, start, end);
2034 atomic_dec(&BTRFS_I(inode)->sync_writers);
2035 blk_finish_plug(&plug);
2036
2037 return ret;
2038 }
2039
2040 /*
2041 * fsync call for both files and directories. This logs the inode into
2042 * the tree log instead of forcing full commits whenever possible.
2043 *
2044 * It needs to call filemap_fdatawait so that all ordered extent updates are
2045 * in the metadata btree are up to date for copying to the log.
2046 *
2047 * It drops the inode mutex before doing the tree log commit. This is an
2048 * important optimization for directories because holding the mutex prevents
2049 * new operations on the dir while we write to disk.
2050 */
2051 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2052 {
2053 struct dentry *dentry = file_dentry(file);
2054 struct inode *inode = d_inode(dentry);
2055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2056 struct btrfs_root *root = BTRFS_I(inode)->root;
2057 struct btrfs_trans_handle *trans;
2058 struct btrfs_log_ctx ctx;
2059 int ret = 0, err;
2060 u64 len;
2061
2062 /*
2063 * If the inode needs a full sync, make sure we use a full range to
2064 * avoid log tree corruption, due to hole detection racing with ordered
2065 * extent completion for adjacent ranges, and assertion failures during
2066 * hole detection.
2067 */
2068 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2069 &BTRFS_I(inode)->runtime_flags)) {
2070 start = 0;
2071 end = LLONG_MAX;
2072 }
2073
2074 /*
2075 * The range length can be represented by u64, we have to do the typecasts
2076 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2077 */
2078 len = (u64)end - (u64)start + 1;
2079 trace_btrfs_sync_file(file, datasync);
2080
2081 btrfs_init_log_ctx(&ctx, inode);
2082
2083 /*
2084 * We write the dirty pages in the range and wait until they complete
2085 * out of the ->i_mutex. If so, we can flush the dirty pages by
2086 * multi-task, and make the performance up. See
2087 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2088 */
2089 ret = start_ordered_ops(inode, start, end);
2090 if (ret)
2091 goto out;
2092
2093 inode_lock(inode);
2094
2095 /*
2096 * We take the dio_sem here because the tree log stuff can race with
2097 * lockless dio writes and get an extent map logged for an extent we
2098 * never waited on. We need it this high up for lockdep reasons.
2099 */
2100 down_write(&BTRFS_I(inode)->dio_sem);
2101
2102 atomic_inc(&root->log_batch);
2103
2104 /*
2105 * Before we acquired the inode's lock, someone may have dirtied more
2106 * pages in the target range. We need to make sure that writeback for
2107 * any such pages does not start while we are logging the inode, because
2108 * if it does, any of the following might happen when we are not doing a
2109 * full inode sync:
2110 *
2111 * 1) We log an extent after its writeback finishes but before its
2112 * checksums are added to the csum tree, leading to -EIO errors
2113 * when attempting to read the extent after a log replay.
2114 *
2115 * 2) We can end up logging an extent before its writeback finishes.
2116 * Therefore after the log replay we will have a file extent item
2117 * pointing to an unwritten extent (and no data checksums as well).
2118 *
2119 * So trigger writeback for any eventual new dirty pages and then we
2120 * wait for all ordered extents to complete below.
2121 */
2122 ret = start_ordered_ops(inode, start, end);
2123 if (ret) {
2124 inode_unlock(inode);
2125 goto out;
2126 }
2127
2128 /*
2129 * We have to do this here to avoid the priority inversion of waiting on
2130 * IO of a lower priority task while holding a transaction open.
2131 */
2132 ret = btrfs_wait_ordered_range(inode, start, len);
2133 if (ret) {
2134 up_write(&BTRFS_I(inode)->dio_sem);
2135 inode_unlock(inode);
2136 goto out;
2137 }
2138 atomic_inc(&root->log_batch);
2139
2140 smp_mb();
2141 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2142 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2143 /*
2144 * We've had everything committed since the last time we were
2145 * modified so clear this flag in case it was set for whatever
2146 * reason, it's no longer relevant.
2147 */
2148 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2149 &BTRFS_I(inode)->runtime_flags);
2150 /*
2151 * An ordered extent might have started before and completed
2152 * already with io errors, in which case the inode was not
2153 * updated and we end up here. So check the inode's mapping
2154 * for any errors that might have happened since we last
2155 * checked called fsync.
2156 */
2157 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2158 up_write(&BTRFS_I(inode)->dio_sem);
2159 inode_unlock(inode);
2160 goto out;
2161 }
2162
2163 /*
2164 * We use start here because we will need to wait on the IO to complete
2165 * in btrfs_sync_log, which could require joining a transaction (for
2166 * example checking cross references in the nocow path). If we use join
2167 * here we could get into a situation where we're waiting on IO to
2168 * happen that is blocked on a transaction trying to commit. With start
2169 * we inc the extwriter counter, so we wait for all extwriters to exit
2170 * before we start blocking joiners. This comment is to keep somebody
2171 * from thinking they are super smart and changing this to
2172 * btrfs_join_transaction *cough*Josef*cough*.
2173 */
2174 trans = btrfs_start_transaction(root, 0);
2175 if (IS_ERR(trans)) {
2176 ret = PTR_ERR(trans);
2177 up_write(&BTRFS_I(inode)->dio_sem);
2178 inode_unlock(inode);
2179 goto out;
2180 }
2181
2182 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2183 if (ret < 0) {
2184 /* Fallthrough and commit/free transaction. */
2185 ret = 1;
2186 }
2187
2188 /* we've logged all the items and now have a consistent
2189 * version of the file in the log. It is possible that
2190 * someone will come in and modify the file, but that's
2191 * fine because the log is consistent on disk, and we
2192 * have references to all of the file's extents
2193 *
2194 * It is possible that someone will come in and log the
2195 * file again, but that will end up using the synchronization
2196 * inside btrfs_sync_log to keep things safe.
2197 */
2198 up_write(&BTRFS_I(inode)->dio_sem);
2199 inode_unlock(inode);
2200
2201 if (ret != BTRFS_NO_LOG_SYNC) {
2202 if (!ret) {
2203 ret = btrfs_sync_log(trans, root, &ctx);
2204 if (!ret) {
2205 ret = btrfs_end_transaction(trans);
2206 goto out;
2207 }
2208 }
2209 ret = btrfs_commit_transaction(trans);
2210 } else {
2211 ret = btrfs_end_transaction(trans);
2212 }
2213 out:
2214 ASSERT(list_empty(&ctx.list));
2215 err = file_check_and_advance_wb_err(file);
2216 if (!ret)
2217 ret = err;
2218 return ret > 0 ? -EIO : ret;
2219 }
2220
2221 static const struct vm_operations_struct btrfs_file_vm_ops = {
2222 .fault = filemap_fault,
2223 .map_pages = filemap_map_pages,
2224 .page_mkwrite = btrfs_page_mkwrite,
2225 };
2226
2227 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2228 {
2229 struct address_space *mapping = filp->f_mapping;
2230
2231 if (!mapping->a_ops->readpage)
2232 return -ENOEXEC;
2233
2234 file_accessed(filp);
2235 vma->vm_ops = &btrfs_file_vm_ops;
2236
2237 return 0;
2238 }
2239
2240 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2241 int slot, u64 start, u64 end)
2242 {
2243 struct btrfs_file_extent_item *fi;
2244 struct btrfs_key key;
2245
2246 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2247 return 0;
2248
2249 btrfs_item_key_to_cpu(leaf, &key, slot);
2250 if (key.objectid != btrfs_ino(inode) ||
2251 key.type != BTRFS_EXTENT_DATA_KEY)
2252 return 0;
2253
2254 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2255
2256 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2257 return 0;
2258
2259 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2260 return 0;
2261
2262 if (key.offset == end)
2263 return 1;
2264 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2265 return 1;
2266 return 0;
2267 }
2268
2269 static int fill_holes(struct btrfs_trans_handle *trans,
2270 struct btrfs_inode *inode,
2271 struct btrfs_path *path, u64 offset, u64 end)
2272 {
2273 struct btrfs_fs_info *fs_info = trans->fs_info;
2274 struct btrfs_root *root = inode->root;
2275 struct extent_buffer *leaf;
2276 struct btrfs_file_extent_item *fi;
2277 struct extent_map *hole_em;
2278 struct extent_map_tree *em_tree = &inode->extent_tree;
2279 struct btrfs_key key;
2280 int ret;
2281
2282 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2283 goto out;
2284
2285 key.objectid = btrfs_ino(inode);
2286 key.type = BTRFS_EXTENT_DATA_KEY;
2287 key.offset = offset;
2288
2289 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2290 if (ret <= 0) {
2291 /*
2292 * We should have dropped this offset, so if we find it then
2293 * something has gone horribly wrong.
2294 */
2295 if (ret == 0)
2296 ret = -EINVAL;
2297 return ret;
2298 }
2299
2300 leaf = path->nodes[0];
2301 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2302 u64 num_bytes;
2303
2304 path->slots[0]--;
2305 fi = btrfs_item_ptr(leaf, path->slots[0],
2306 struct btrfs_file_extent_item);
2307 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2308 end - offset;
2309 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2310 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2311 btrfs_set_file_extent_offset(leaf, fi, 0);
2312 btrfs_mark_buffer_dirty(leaf);
2313 goto out;
2314 }
2315
2316 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2317 u64 num_bytes;
2318
2319 key.offset = offset;
2320 btrfs_set_item_key_safe(fs_info, path, &key);
2321 fi = btrfs_item_ptr(leaf, path->slots[0],
2322 struct btrfs_file_extent_item);
2323 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2324 offset;
2325 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2326 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2327 btrfs_set_file_extent_offset(leaf, fi, 0);
2328 btrfs_mark_buffer_dirty(leaf);
2329 goto out;
2330 }
2331 btrfs_release_path(path);
2332
2333 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2334 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2335 if (ret)
2336 return ret;
2337
2338 out:
2339 btrfs_release_path(path);
2340
2341 hole_em = alloc_extent_map();
2342 if (!hole_em) {
2343 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2345 } else {
2346 hole_em->start = offset;
2347 hole_em->len = end - offset;
2348 hole_em->ram_bytes = hole_em->len;
2349 hole_em->orig_start = offset;
2350
2351 hole_em->block_start = EXTENT_MAP_HOLE;
2352 hole_em->block_len = 0;
2353 hole_em->orig_block_len = 0;
2354 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2355 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2356 hole_em->generation = trans->transid;
2357
2358 do {
2359 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2360 write_lock(&em_tree->lock);
2361 ret = add_extent_mapping(em_tree, hole_em, 1);
2362 write_unlock(&em_tree->lock);
2363 } while (ret == -EEXIST);
2364 free_extent_map(hole_em);
2365 if (ret)
2366 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2367 &inode->runtime_flags);
2368 }
2369
2370 return 0;
2371 }
2372
2373 /*
2374 * Find a hole extent on given inode and change start/len to the end of hole
2375 * extent.(hole/vacuum extent whose em->start <= start &&
2376 * em->start + em->len > start)
2377 * When a hole extent is found, return 1 and modify start/len.
2378 */
2379 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2380 {
2381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2382 struct extent_map *em;
2383 int ret = 0;
2384
2385 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2386 round_down(*start, fs_info->sectorsize),
2387 round_up(*len, fs_info->sectorsize), 0);
2388 if (IS_ERR(em))
2389 return PTR_ERR(em);
2390
2391 /* Hole or vacuum extent(only exists in no-hole mode) */
2392 if (em->block_start == EXTENT_MAP_HOLE) {
2393 ret = 1;
2394 *len = em->start + em->len > *start + *len ?
2395 0 : *start + *len - em->start - em->len;
2396 *start = em->start + em->len;
2397 }
2398 free_extent_map(em);
2399 return ret;
2400 }
2401
2402 static int btrfs_punch_hole_lock_range(struct inode *inode,
2403 const u64 lockstart,
2404 const u64 lockend,
2405 struct extent_state **cached_state)
2406 {
2407 while (1) {
2408 struct btrfs_ordered_extent *ordered;
2409 int ret;
2410
2411 truncate_pagecache_range(inode, lockstart, lockend);
2412
2413 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2414 cached_state);
2415 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2416
2417 /*
2418 * We need to make sure we have no ordered extents in this range
2419 * and nobody raced in and read a page in this range, if we did
2420 * we need to try again.
2421 */
2422 if ((!ordered ||
2423 (ordered->file_offset + ordered->len <= lockstart ||
2424 ordered->file_offset > lockend)) &&
2425 !filemap_range_has_page(inode->i_mapping,
2426 lockstart, lockend)) {
2427 if (ordered)
2428 btrfs_put_ordered_extent(ordered);
2429 break;
2430 }
2431 if (ordered)
2432 btrfs_put_ordered_extent(ordered);
2433 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2434 lockend, cached_state);
2435 ret = btrfs_wait_ordered_range(inode, lockstart,
2436 lockend - lockstart + 1);
2437 if (ret)
2438 return ret;
2439 }
2440 return 0;
2441 }
2442
2443 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2444 struct inode *inode,
2445 struct btrfs_path *path,
2446 struct btrfs_clone_extent_info *clone_info,
2447 const u64 clone_len)
2448 {
2449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2450 struct btrfs_root *root = BTRFS_I(inode)->root;
2451 struct btrfs_file_extent_item *extent;
2452 struct extent_buffer *leaf;
2453 struct btrfs_key key;
2454 int slot;
2455 struct btrfs_ref ref = { 0 };
2456 u64 ref_offset;
2457 int ret;
2458
2459 if (clone_len == 0)
2460 return 0;
2461
2462 if (clone_info->disk_offset == 0 &&
2463 btrfs_fs_incompat(fs_info, NO_HOLES))
2464 return 0;
2465
2466 key.objectid = btrfs_ino(BTRFS_I(inode));
2467 key.type = BTRFS_EXTENT_DATA_KEY;
2468 key.offset = clone_info->file_offset;
2469 ret = btrfs_insert_empty_item(trans, root, path, &key,
2470 clone_info->item_size);
2471 if (ret)
2472 return ret;
2473 leaf = path->nodes[0];
2474 slot = path->slots[0];
2475 write_extent_buffer(leaf, clone_info->extent_buf,
2476 btrfs_item_ptr_offset(leaf, slot),
2477 clone_info->item_size);
2478 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2479 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2480 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2481 btrfs_mark_buffer_dirty(leaf);
2482 btrfs_release_path(path);
2483
2484 /* If it's a hole, nothing more needs to be done. */
2485 if (clone_info->disk_offset == 0)
2486 return 0;
2487
2488 inode_add_bytes(inode, clone_len);
2489 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2490 clone_info->disk_offset,
2491 clone_info->disk_len, 0);
2492 ref_offset = clone_info->file_offset - clone_info->data_offset;
2493 btrfs_init_data_ref(&ref, root->root_key.objectid,
2494 btrfs_ino(BTRFS_I(inode)), ref_offset);
2495 ret = btrfs_inc_extent_ref(trans, &ref);
2496
2497 return ret;
2498 }
2499
2500 /*
2501 * The respective range must have been previously locked, as well as the inode.
2502 * The end offset is inclusive (last byte of the range).
2503 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2504 * cloning.
2505 * When cloning, we don't want to end up in a state where we dropped extents
2506 * without inserting a new one, so we must abort the transaction to avoid a
2507 * corruption.
2508 */
2509 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2510 const u64 start, const u64 end,
2511 struct btrfs_clone_extent_info *clone_info,
2512 struct btrfs_trans_handle **trans_out)
2513 {
2514 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2515 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2516 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2517 struct btrfs_root *root = BTRFS_I(inode)->root;
2518 struct btrfs_trans_handle *trans = NULL;
2519 struct btrfs_block_rsv *rsv;
2520 unsigned int rsv_count;
2521 u64 cur_offset;
2522 u64 drop_end;
2523 u64 len = end - start;
2524 int ret = 0;
2525
2526 if (end <= start)
2527 return -EINVAL;
2528
2529 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2530 if (!rsv) {
2531 ret = -ENOMEM;
2532 goto out;
2533 }
2534 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2535 rsv->failfast = 1;
2536
2537 /*
2538 * 1 - update the inode
2539 * 1 - removing the extents in the range
2540 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2541 * an extent
2542 */
2543 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2544 rsv_count = 3;
2545 else
2546 rsv_count = 2;
2547
2548 trans = btrfs_start_transaction(root, rsv_count);
2549 if (IS_ERR(trans)) {
2550 ret = PTR_ERR(trans);
2551 trans = NULL;
2552 goto out_free;
2553 }
2554
2555 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2556 min_size, false);
2557 BUG_ON(ret);
2558 trans->block_rsv = rsv;
2559
2560 cur_offset = start;
2561 while (cur_offset < end) {
2562 ret = __btrfs_drop_extents(trans, root, inode, path,
2563 cur_offset, end + 1, &drop_end,
2564 1, 0, 0, NULL);
2565 if (ret != -ENOSPC) {
2566 /*
2567 * When cloning we want to avoid transaction aborts when
2568 * nothing was done and we are attempting to clone parts
2569 * of inline extents, in such cases -EOPNOTSUPP is
2570 * returned by __btrfs_drop_extents() without having
2571 * changed anything in the file.
2572 */
2573 if (clone_info && ret && ret != -EOPNOTSUPP)
2574 btrfs_abort_transaction(trans, ret);
2575 break;
2576 }
2577
2578 trans->block_rsv = &fs_info->trans_block_rsv;
2579
2580 if (!clone_info && cur_offset < drop_end &&
2581 cur_offset < ino_size) {
2582 ret = fill_holes(trans, BTRFS_I(inode), path,
2583 cur_offset, drop_end);
2584 if (ret) {
2585 /*
2586 * If we failed then we didn't insert our hole
2587 * entries for the area we dropped, so now the
2588 * fs is corrupted, so we must abort the
2589 * transaction.
2590 */
2591 btrfs_abort_transaction(trans, ret);
2592 break;
2593 }
2594 }
2595
2596 if (clone_info) {
2597 u64 clone_len = drop_end - cur_offset;
2598
2599 ret = btrfs_insert_clone_extent(trans, inode, path,
2600 clone_info, clone_len);
2601 if (ret) {
2602 btrfs_abort_transaction(trans, ret);
2603 break;
2604 }
2605 clone_info->data_len -= clone_len;
2606 clone_info->data_offset += clone_len;
2607 clone_info->file_offset += clone_len;
2608 }
2609
2610 cur_offset = drop_end;
2611
2612 ret = btrfs_update_inode(trans, root, inode);
2613 if (ret)
2614 break;
2615
2616 btrfs_end_transaction(trans);
2617 btrfs_btree_balance_dirty(fs_info);
2618
2619 trans = btrfs_start_transaction(root, rsv_count);
2620 if (IS_ERR(trans)) {
2621 ret = PTR_ERR(trans);
2622 trans = NULL;
2623 break;
2624 }
2625
2626 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2627 rsv, min_size, false);
2628 BUG_ON(ret); /* shouldn't happen */
2629 trans->block_rsv = rsv;
2630
2631 if (!clone_info) {
2632 ret = find_first_non_hole(inode, &cur_offset, &len);
2633 if (unlikely(ret < 0))
2634 break;
2635 if (ret && !len) {
2636 ret = 0;
2637 break;
2638 }
2639 }
2640 }
2641
2642 /*
2643 * If we were cloning, force the next fsync to be a full one since we
2644 * we replaced (or just dropped in the case of cloning holes when
2645 * NO_HOLES is enabled) extents and extent maps.
2646 * This is for the sake of simplicity, and cloning into files larger
2647 * than 16Mb would force the full fsync any way (when
2648 * try_release_extent_mapping() is invoked during page cache truncation.
2649 */
2650 if (clone_info)
2651 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2652 &BTRFS_I(inode)->runtime_flags);
2653
2654 if (ret)
2655 goto out_trans;
2656
2657 trans->block_rsv = &fs_info->trans_block_rsv;
2658 /*
2659 * If we are using the NO_HOLES feature we might have had already an
2660 * hole that overlaps a part of the region [lockstart, lockend] and
2661 * ends at (or beyond) lockend. Since we have no file extent items to
2662 * represent holes, drop_end can be less than lockend and so we must
2663 * make sure we have an extent map representing the existing hole (the
2664 * call to __btrfs_drop_extents() might have dropped the existing extent
2665 * map representing the existing hole), otherwise the fast fsync path
2666 * will not record the existence of the hole region
2667 * [existing_hole_start, lockend].
2668 */
2669 if (drop_end <= end)
2670 drop_end = end + 1;
2671 /*
2672 * Don't insert file hole extent item if it's for a range beyond eof
2673 * (because it's useless) or if it represents a 0 bytes range (when
2674 * cur_offset == drop_end).
2675 */
2676 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2677 ret = fill_holes(trans, BTRFS_I(inode), path,
2678 cur_offset, drop_end);
2679 if (ret) {
2680 /* Same comment as above. */
2681 btrfs_abort_transaction(trans, ret);
2682 goto out_trans;
2683 }
2684 }
2685 if (clone_info) {
2686 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2687 clone_info->data_len);
2688 if (ret) {
2689 btrfs_abort_transaction(trans, ret);
2690 goto out_trans;
2691 }
2692 }
2693
2694 out_trans:
2695 if (!trans)
2696 goto out_free;
2697
2698 trans->block_rsv = &fs_info->trans_block_rsv;
2699 if (ret)
2700 btrfs_end_transaction(trans);
2701 else
2702 *trans_out = trans;
2703 out_free:
2704 btrfs_free_block_rsv(fs_info, rsv);
2705 out:
2706 return ret;
2707 }
2708
2709 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2710 {
2711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2712 struct btrfs_root *root = BTRFS_I(inode)->root;
2713 struct extent_state *cached_state = NULL;
2714 struct btrfs_path *path;
2715 struct btrfs_trans_handle *trans = NULL;
2716 u64 lockstart;
2717 u64 lockend;
2718 u64 tail_start;
2719 u64 tail_len;
2720 u64 orig_start = offset;
2721 int ret = 0;
2722 bool same_block;
2723 u64 ino_size;
2724 bool truncated_block = false;
2725 bool updated_inode = false;
2726
2727 ret = btrfs_wait_ordered_range(inode, offset, len);
2728 if (ret)
2729 return ret;
2730
2731 inode_lock(inode);
2732 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2733 ret = find_first_non_hole(inode, &offset, &len);
2734 if (ret < 0)
2735 goto out_only_mutex;
2736 if (ret && !len) {
2737 /* Already in a large hole */
2738 ret = 0;
2739 goto out_only_mutex;
2740 }
2741
2742 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2743 lockend = round_down(offset + len,
2744 btrfs_inode_sectorsize(inode)) - 1;
2745 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2746 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2747 /*
2748 * We needn't truncate any block which is beyond the end of the file
2749 * because we are sure there is no data there.
2750 */
2751 /*
2752 * Only do this if we are in the same block and we aren't doing the
2753 * entire block.
2754 */
2755 if (same_block && len < fs_info->sectorsize) {
2756 if (offset < ino_size) {
2757 truncated_block = true;
2758 ret = btrfs_truncate_block(inode, offset, len, 0);
2759 } else {
2760 ret = 0;
2761 }
2762 goto out_only_mutex;
2763 }
2764
2765 /* zero back part of the first block */
2766 if (offset < ino_size) {
2767 truncated_block = true;
2768 ret = btrfs_truncate_block(inode, offset, 0, 0);
2769 if (ret) {
2770 inode_unlock(inode);
2771 return ret;
2772 }
2773 }
2774
2775 /* Check the aligned pages after the first unaligned page,
2776 * if offset != orig_start, which means the first unaligned page
2777 * including several following pages are already in holes,
2778 * the extra check can be skipped */
2779 if (offset == orig_start) {
2780 /* after truncate page, check hole again */
2781 len = offset + len - lockstart;
2782 offset = lockstart;
2783 ret = find_first_non_hole(inode, &offset, &len);
2784 if (ret < 0)
2785 goto out_only_mutex;
2786 if (ret && !len) {
2787 ret = 0;
2788 goto out_only_mutex;
2789 }
2790 lockstart = offset;
2791 }
2792
2793 /* Check the tail unaligned part is in a hole */
2794 tail_start = lockend + 1;
2795 tail_len = offset + len - tail_start;
2796 if (tail_len) {
2797 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2798 if (unlikely(ret < 0))
2799 goto out_only_mutex;
2800 if (!ret) {
2801 /* zero the front end of the last page */
2802 if (tail_start + tail_len < ino_size) {
2803 truncated_block = true;
2804 ret = btrfs_truncate_block(inode,
2805 tail_start + tail_len,
2806 0, 1);
2807 if (ret)
2808 goto out_only_mutex;
2809 }
2810 }
2811 }
2812
2813 if (lockend < lockstart) {
2814 ret = 0;
2815 goto out_only_mutex;
2816 }
2817
2818 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2819 &cached_state);
2820 if (ret)
2821 goto out_only_mutex;
2822
2823 path = btrfs_alloc_path();
2824 if (!path) {
2825 ret = -ENOMEM;
2826 goto out;
2827 }
2828
2829 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2830 &trans);
2831 btrfs_free_path(path);
2832 if (ret)
2833 goto out;
2834
2835 ASSERT(trans != NULL);
2836 inode_inc_iversion(inode);
2837 inode->i_mtime = inode->i_ctime = current_time(inode);
2838 ret = btrfs_update_inode(trans, root, inode);
2839 updated_inode = true;
2840 btrfs_end_transaction(trans);
2841 btrfs_btree_balance_dirty(fs_info);
2842 out:
2843 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2844 &cached_state);
2845 out_only_mutex:
2846 if (!updated_inode && truncated_block && !ret) {
2847 /*
2848 * If we only end up zeroing part of a page, we still need to
2849 * update the inode item, so that all the time fields are
2850 * updated as well as the necessary btrfs inode in memory fields
2851 * for detecting, at fsync time, if the inode isn't yet in the
2852 * log tree or it's there but not up to date.
2853 */
2854 struct timespec64 now = current_time(inode);
2855
2856 inode_inc_iversion(inode);
2857 inode->i_mtime = now;
2858 inode->i_ctime = now;
2859 trans = btrfs_start_transaction(root, 1);
2860 if (IS_ERR(trans)) {
2861 ret = PTR_ERR(trans);
2862 } else {
2863 int ret2;
2864
2865 ret = btrfs_update_inode(trans, root, inode);
2866 ret2 = btrfs_end_transaction(trans);
2867 if (!ret)
2868 ret = ret2;
2869 }
2870 }
2871 inode_unlock(inode);
2872 return ret;
2873 }
2874
2875 /* Helper structure to record which range is already reserved */
2876 struct falloc_range {
2877 struct list_head list;
2878 u64 start;
2879 u64 len;
2880 };
2881
2882 /*
2883 * Helper function to add falloc range
2884 *
2885 * Caller should have locked the larger range of extent containing
2886 * [start, len)
2887 */
2888 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2889 {
2890 struct falloc_range *prev = NULL;
2891 struct falloc_range *range = NULL;
2892
2893 if (list_empty(head))
2894 goto insert;
2895
2896 /*
2897 * As fallocate iterate by bytenr order, we only need to check
2898 * the last range.
2899 */
2900 prev = list_entry(head->prev, struct falloc_range, list);
2901 if (prev->start + prev->len == start) {
2902 prev->len += len;
2903 return 0;
2904 }
2905 insert:
2906 range = kmalloc(sizeof(*range), GFP_KERNEL);
2907 if (!range)
2908 return -ENOMEM;
2909 range->start = start;
2910 range->len = len;
2911 list_add_tail(&range->list, head);
2912 return 0;
2913 }
2914
2915 static int btrfs_fallocate_update_isize(struct inode *inode,
2916 const u64 end,
2917 const int mode)
2918 {
2919 struct btrfs_trans_handle *trans;
2920 struct btrfs_root *root = BTRFS_I(inode)->root;
2921 int ret;
2922 int ret2;
2923
2924 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2925 return 0;
2926
2927 trans = btrfs_start_transaction(root, 1);
2928 if (IS_ERR(trans))
2929 return PTR_ERR(trans);
2930
2931 inode->i_ctime = current_time(inode);
2932 i_size_write(inode, end);
2933 btrfs_ordered_update_i_size(inode, end, NULL);
2934 ret = btrfs_update_inode(trans, root, inode);
2935 ret2 = btrfs_end_transaction(trans);
2936
2937 return ret ? ret : ret2;
2938 }
2939
2940 enum {
2941 RANGE_BOUNDARY_WRITTEN_EXTENT,
2942 RANGE_BOUNDARY_PREALLOC_EXTENT,
2943 RANGE_BOUNDARY_HOLE,
2944 };
2945
2946 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2947 u64 offset)
2948 {
2949 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2950 struct extent_map *em;
2951 int ret;
2952
2953 offset = round_down(offset, sectorsize);
2954 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2955 if (IS_ERR(em))
2956 return PTR_ERR(em);
2957
2958 if (em->block_start == EXTENT_MAP_HOLE)
2959 ret = RANGE_BOUNDARY_HOLE;
2960 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2961 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2962 else
2963 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2964
2965 free_extent_map(em);
2966 return ret;
2967 }
2968
2969 static int btrfs_zero_range(struct inode *inode,
2970 loff_t offset,
2971 loff_t len,
2972 const int mode)
2973 {
2974 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2975 struct extent_map *em;
2976 struct extent_changeset *data_reserved = NULL;
2977 int ret;
2978 u64 alloc_hint = 0;
2979 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2980 u64 alloc_start = round_down(offset, sectorsize);
2981 u64 alloc_end = round_up(offset + len, sectorsize);
2982 u64 bytes_to_reserve = 0;
2983 bool space_reserved = false;
2984
2985 inode_dio_wait(inode);
2986
2987 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2988 alloc_start, alloc_end - alloc_start, 0);
2989 if (IS_ERR(em)) {
2990 ret = PTR_ERR(em);
2991 goto out;
2992 }
2993
2994 /*
2995 * Avoid hole punching and extent allocation for some cases. More cases
2996 * could be considered, but these are unlikely common and we keep things
2997 * as simple as possible for now. Also, intentionally, if the target
2998 * range contains one or more prealloc extents together with regular
2999 * extents and holes, we drop all the existing extents and allocate a
3000 * new prealloc extent, so that we get a larger contiguous disk extent.
3001 */
3002 if (em->start <= alloc_start &&
3003 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3004 const u64 em_end = em->start + em->len;
3005
3006 if (em_end >= offset + len) {
3007 /*
3008 * The whole range is already a prealloc extent,
3009 * do nothing except updating the inode's i_size if
3010 * needed.
3011 */
3012 free_extent_map(em);
3013 ret = btrfs_fallocate_update_isize(inode, offset + len,
3014 mode);
3015 goto out;
3016 }
3017 /*
3018 * Part of the range is already a prealloc extent, so operate
3019 * only on the remaining part of the range.
3020 */
3021 alloc_start = em_end;
3022 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3023 len = offset + len - alloc_start;
3024 offset = alloc_start;
3025 alloc_hint = em->block_start + em->len;
3026 }
3027 free_extent_map(em);
3028
3029 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3030 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3031 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
3032 alloc_start, sectorsize, 0);
3033 if (IS_ERR(em)) {
3034 ret = PTR_ERR(em);
3035 goto out;
3036 }
3037
3038 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3039 free_extent_map(em);
3040 ret = btrfs_fallocate_update_isize(inode, offset + len,
3041 mode);
3042 goto out;
3043 }
3044 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3045 free_extent_map(em);
3046 ret = btrfs_truncate_block(inode, offset, len, 0);
3047 if (!ret)
3048 ret = btrfs_fallocate_update_isize(inode,
3049 offset + len,
3050 mode);
3051 return ret;
3052 }
3053 free_extent_map(em);
3054 alloc_start = round_down(offset, sectorsize);
3055 alloc_end = alloc_start + sectorsize;
3056 goto reserve_space;
3057 }
3058
3059 alloc_start = round_up(offset, sectorsize);
3060 alloc_end = round_down(offset + len, sectorsize);
3061
3062 /*
3063 * For unaligned ranges, check the pages at the boundaries, they might
3064 * map to an extent, in which case we need to partially zero them, or
3065 * they might map to a hole, in which case we need our allocation range
3066 * to cover them.
3067 */
3068 if (!IS_ALIGNED(offset, sectorsize)) {
3069 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3070 if (ret < 0)
3071 goto out;
3072 if (ret == RANGE_BOUNDARY_HOLE) {
3073 alloc_start = round_down(offset, sectorsize);
3074 ret = 0;
3075 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3076 ret = btrfs_truncate_block(inode, offset, 0, 0);
3077 if (ret)
3078 goto out;
3079 } else {
3080 ret = 0;
3081 }
3082 }
3083
3084 if (!IS_ALIGNED(offset + len, sectorsize)) {
3085 ret = btrfs_zero_range_check_range_boundary(inode,
3086 offset + len);
3087 if (ret < 0)
3088 goto out;
3089 if (ret == RANGE_BOUNDARY_HOLE) {
3090 alloc_end = round_up(offset + len, sectorsize);
3091 ret = 0;
3092 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3093 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3094 if (ret)
3095 goto out;
3096 } else {
3097 ret = 0;
3098 }
3099 }
3100
3101 reserve_space:
3102 if (alloc_start < alloc_end) {
3103 struct extent_state *cached_state = NULL;
3104 const u64 lockstart = alloc_start;
3105 const u64 lockend = alloc_end - 1;
3106
3107 bytes_to_reserve = alloc_end - alloc_start;
3108 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3109 bytes_to_reserve);
3110 if (ret < 0)
3111 goto out;
3112 space_reserved = true;
3113 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3114 alloc_start, bytes_to_reserve);
3115 if (ret)
3116 goto out;
3117 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3118 &cached_state);
3119 if (ret)
3120 goto out;
3121 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3122 alloc_end - alloc_start,
3123 i_blocksize(inode),
3124 offset + len, &alloc_hint);
3125 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3126 lockend, &cached_state);
3127 /* btrfs_prealloc_file_range releases reserved space on error */
3128 if (ret) {
3129 space_reserved = false;
3130 goto out;
3131 }
3132 }
3133 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3134 out:
3135 if (ret && space_reserved)
3136 btrfs_free_reserved_data_space(inode, data_reserved,
3137 alloc_start, bytes_to_reserve);
3138 extent_changeset_free(data_reserved);
3139
3140 return ret;
3141 }
3142
3143 static long btrfs_fallocate(struct file *file, int mode,
3144 loff_t offset, loff_t len)
3145 {
3146 struct inode *inode = file_inode(file);
3147 struct extent_state *cached_state = NULL;
3148 struct extent_changeset *data_reserved = NULL;
3149 struct falloc_range *range;
3150 struct falloc_range *tmp;
3151 struct list_head reserve_list;
3152 u64 cur_offset;
3153 u64 last_byte;
3154 u64 alloc_start;
3155 u64 alloc_end;
3156 u64 alloc_hint = 0;
3157 u64 locked_end;
3158 u64 actual_end = 0;
3159 struct extent_map *em;
3160 int blocksize = btrfs_inode_sectorsize(inode);
3161 int ret;
3162
3163 alloc_start = round_down(offset, blocksize);
3164 alloc_end = round_up(offset + len, blocksize);
3165 cur_offset = alloc_start;
3166
3167 /* Make sure we aren't being give some crap mode */
3168 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3169 FALLOC_FL_ZERO_RANGE))
3170 return -EOPNOTSUPP;
3171
3172 if (mode & FALLOC_FL_PUNCH_HOLE)
3173 return btrfs_punch_hole(inode, offset, len);
3174
3175 /*
3176 * Only trigger disk allocation, don't trigger qgroup reserve
3177 *
3178 * For qgroup space, it will be checked later.
3179 */
3180 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3181 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3182 alloc_end - alloc_start);
3183 if (ret < 0)
3184 return ret;
3185 }
3186
3187 inode_lock(inode);
3188
3189 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3190 ret = inode_newsize_ok(inode, offset + len);
3191 if (ret)
3192 goto out;
3193 }
3194
3195 /*
3196 * TODO: Move these two operations after we have checked
3197 * accurate reserved space, or fallocate can still fail but
3198 * with page truncated or size expanded.
3199 *
3200 * But that's a minor problem and won't do much harm BTW.
3201 */
3202 if (alloc_start > inode->i_size) {
3203 ret = btrfs_cont_expand(inode, i_size_read(inode),
3204 alloc_start);
3205 if (ret)
3206 goto out;
3207 } else if (offset + len > inode->i_size) {
3208 /*
3209 * If we are fallocating from the end of the file onward we
3210 * need to zero out the end of the block if i_size lands in the
3211 * middle of a block.
3212 */
3213 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3214 if (ret)
3215 goto out;
3216 }
3217
3218 /*
3219 * wait for ordered IO before we have any locks. We'll loop again
3220 * below with the locks held.
3221 */
3222 ret = btrfs_wait_ordered_range(inode, alloc_start,
3223 alloc_end - alloc_start);
3224 if (ret)
3225 goto out;
3226
3227 if (mode & FALLOC_FL_ZERO_RANGE) {
3228 ret = btrfs_zero_range(inode, offset, len, mode);
3229 inode_unlock(inode);
3230 return ret;
3231 }
3232
3233 locked_end = alloc_end - 1;
3234 while (1) {
3235 struct btrfs_ordered_extent *ordered;
3236
3237 /* the extent lock is ordered inside the running
3238 * transaction
3239 */
3240 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3241 locked_end, &cached_state);
3242 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3243
3244 if (ordered &&
3245 ordered->file_offset + ordered->len > alloc_start &&
3246 ordered->file_offset < alloc_end) {
3247 btrfs_put_ordered_extent(ordered);
3248 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3249 alloc_start, locked_end,
3250 &cached_state);
3251 /*
3252 * we can't wait on the range with the transaction
3253 * running or with the extent lock held
3254 */
3255 ret = btrfs_wait_ordered_range(inode, alloc_start,
3256 alloc_end - alloc_start);
3257 if (ret)
3258 goto out;
3259 } else {
3260 if (ordered)
3261 btrfs_put_ordered_extent(ordered);
3262 break;
3263 }
3264 }
3265
3266 /* First, check if we exceed the qgroup limit */
3267 INIT_LIST_HEAD(&reserve_list);
3268 while (cur_offset < alloc_end) {
3269 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3270 alloc_end - cur_offset, 0);
3271 if (IS_ERR(em)) {
3272 ret = PTR_ERR(em);
3273 break;
3274 }
3275 last_byte = min(extent_map_end(em), alloc_end);
3276 actual_end = min_t(u64, extent_map_end(em), offset + len);
3277 last_byte = ALIGN(last_byte, blocksize);
3278 if (em->block_start == EXTENT_MAP_HOLE ||
3279 (cur_offset >= inode->i_size &&
3280 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3281 ret = add_falloc_range(&reserve_list, cur_offset,
3282 last_byte - cur_offset);
3283 if (ret < 0) {
3284 free_extent_map(em);
3285 break;
3286 }
3287 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3288 cur_offset, last_byte - cur_offset);
3289 if (ret < 0) {
3290 cur_offset = last_byte;
3291 free_extent_map(em);
3292 break;
3293 }
3294 } else {
3295 /*
3296 * Do not need to reserve unwritten extent for this
3297 * range, free reserved data space first, otherwise
3298 * it'll result in false ENOSPC error.
3299 */
3300 btrfs_free_reserved_data_space(inode, data_reserved,
3301 cur_offset, last_byte - cur_offset);
3302 }
3303 free_extent_map(em);
3304 cur_offset = last_byte;
3305 }
3306
3307 /*
3308 * If ret is still 0, means we're OK to fallocate.
3309 * Or just cleanup the list and exit.
3310 */
3311 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3312 if (!ret)
3313 ret = btrfs_prealloc_file_range(inode, mode,
3314 range->start,
3315 range->len, i_blocksize(inode),
3316 offset + len, &alloc_hint);
3317 else
3318 btrfs_free_reserved_data_space(inode,
3319 data_reserved, range->start,
3320 range->len);
3321 list_del(&range->list);
3322 kfree(range);
3323 }
3324 if (ret < 0)
3325 goto out_unlock;
3326
3327 /*
3328 * We didn't need to allocate any more space, but we still extended the
3329 * size of the file so we need to update i_size and the inode item.
3330 */
3331 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3332 out_unlock:
3333 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3334 &cached_state);
3335 out:
3336 inode_unlock(inode);
3337 /* Let go of our reservation. */
3338 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3339 btrfs_free_reserved_data_space(inode, data_reserved,
3340 cur_offset, alloc_end - cur_offset);
3341 extent_changeset_free(data_reserved);
3342 return ret;
3343 }
3344
3345 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3346 {
3347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3348 struct extent_map *em = NULL;
3349 struct extent_state *cached_state = NULL;
3350 u64 lockstart;
3351 u64 lockend;
3352 u64 start;
3353 u64 len;
3354 int ret = 0;
3355
3356 if (inode->i_size == 0)
3357 return -ENXIO;
3358
3359 /*
3360 * *offset can be negative, in this case we start finding DATA/HOLE from
3361 * the very start of the file.
3362 */
3363 start = max_t(loff_t, 0, *offset);
3364
3365 lockstart = round_down(start, fs_info->sectorsize);
3366 lockend = round_up(i_size_read(inode),
3367 fs_info->sectorsize);
3368 if (lockend <= lockstart)
3369 lockend = lockstart + fs_info->sectorsize;
3370 lockend--;
3371 len = lockend - lockstart + 1;
3372
3373 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3374 &cached_state);
3375
3376 while (start < inode->i_size) {
3377 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3378 if (IS_ERR(em)) {
3379 ret = PTR_ERR(em);
3380 em = NULL;
3381 break;
3382 }
3383
3384 if (whence == SEEK_HOLE &&
3385 (em->block_start == EXTENT_MAP_HOLE ||
3386 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3387 break;
3388 else if (whence == SEEK_DATA &&
3389 (em->block_start != EXTENT_MAP_HOLE &&
3390 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3391 break;
3392
3393 start = em->start + em->len;
3394 free_extent_map(em);
3395 em = NULL;
3396 cond_resched();
3397 }
3398 free_extent_map(em);
3399 if (!ret) {
3400 if (whence == SEEK_DATA && start >= inode->i_size)
3401 ret = -ENXIO;
3402 else
3403 *offset = min_t(loff_t, start, inode->i_size);
3404 }
3405 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3406 &cached_state);
3407 return ret;
3408 }
3409
3410 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3411 {
3412 struct inode *inode = file->f_mapping->host;
3413 int ret;
3414
3415 inode_lock(inode);
3416 switch (whence) {
3417 case SEEK_END:
3418 case SEEK_CUR:
3419 offset = generic_file_llseek(file, offset, whence);
3420 goto out;
3421 case SEEK_DATA:
3422 case SEEK_HOLE:
3423 if (offset >= i_size_read(inode)) {
3424 inode_unlock(inode);
3425 return -ENXIO;
3426 }
3427
3428 ret = find_desired_extent(inode, &offset, whence);
3429 if (ret) {
3430 inode_unlock(inode);
3431 return ret;
3432 }
3433 }
3434
3435 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3436 out:
3437 inode_unlock(inode);
3438 return offset;
3439 }
3440
3441 static int btrfs_file_open(struct inode *inode, struct file *filp)
3442 {
3443 filp->f_mode |= FMODE_NOWAIT;
3444 return generic_file_open(inode, filp);
3445 }
3446
3447 const struct file_operations btrfs_file_operations = {
3448 .llseek = btrfs_file_llseek,
3449 .read_iter = generic_file_read_iter,
3450 .splice_read = generic_file_splice_read,
3451 .write_iter = btrfs_file_write_iter,
3452 .mmap = btrfs_file_mmap,
3453 .open = btrfs_file_open,
3454 .release = btrfs_release_file,
3455 .fsync = btrfs_sync_file,
3456 .fallocate = btrfs_fallocate,
3457 .unlocked_ioctl = btrfs_ioctl,
3458 #ifdef CONFIG_COMPAT
3459 .compat_ioctl = btrfs_compat_ioctl,
3460 #endif
3461 .remap_file_range = btrfs_remap_file_range,
3462 };
3463
3464 void __cold btrfs_auto_defrag_exit(void)
3465 {
3466 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3467 }
3468
3469 int __init btrfs_auto_defrag_init(void)
3470 {
3471 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3472 sizeof(struct inode_defrag), 0,
3473 SLAB_MEM_SPREAD,
3474 NULL);
3475 if (!btrfs_inode_defrag_cachep)
3476 return -ENOMEM;
3477
3478 return 0;
3479 }
3480
3481 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3482 {
3483 int ret;
3484
3485 /*
3486 * So with compression we will find and lock a dirty page and clear the
3487 * first one as dirty, setup an async extent, and immediately return
3488 * with the entire range locked but with nobody actually marked with
3489 * writeback. So we can't just filemap_write_and_wait_range() and
3490 * expect it to work since it will just kick off a thread to do the
3491 * actual work. So we need to call filemap_fdatawrite_range _again_
3492 * since it will wait on the page lock, which won't be unlocked until
3493 * after the pages have been marked as writeback and so we're good to go
3494 * from there. We have to do this otherwise we'll miss the ordered
3495 * extents and that results in badness. Please Josef, do not think you
3496 * know better and pull this out at some point in the future, it is
3497 * right and you are wrong.
3498 */
3499 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3500 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3501 &BTRFS_I(inode)->runtime_flags))
3502 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3503
3504 return ret;
3505 }