]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/file.c
btrfs: fallocate: Add support to accurate qgroup reserve
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73 {
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 struct inode_defrag *defrag)
97 {
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
103
104 p = &root->fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
124 }
125 }
126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(root->fs_info))
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct inode *inode)
149 {
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
152 u64 transid;
153 int ret;
154
155 if (!__need_auto_defrag(root))
156 return 0;
157
158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 return 0;
160
161 if (trans)
162 transid = trans->transid;
163 else
164 transid = BTRFS_I(inode)->root->last_trans;
165
166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 if (!defrag)
168 return -ENOMEM;
169
170 defrag->ino = btrfs_ino(inode);
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
173
174 spin_lock(&root->fs_info->defrag_inodes_lock);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 /*
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 */
181 ret = __btrfs_add_inode_defrag(inode, defrag);
182 if (ret)
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 } else {
185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 }
187 spin_unlock(&root->fs_info->defrag_inodes_lock);
188 return 0;
189 }
190
191 /*
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
198 {
199 struct btrfs_root *root = BTRFS_I(inode)->root;
200 int ret;
201
202 if (!__need_auto_defrag(root))
203 goto out;
204
205 /*
206 * Here we don't check the IN_DEFRAG flag, because we need merge
207 * them together.
208 */
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
212 if (ret)
213 goto out;
214 return;
215 out:
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218
219 /*
220 * pick the defragable inode that we want, if it doesn't exist, we will get
221 * the next one.
222 */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 struct inode_defrag *entry = NULL;
227 struct inode_defrag tmp;
228 struct rb_node *p;
229 struct rb_node *parent = NULL;
230 int ret;
231
232 tmp.ino = ino;
233 tmp.root = root;
234
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
237 while (p) {
238 parent = p;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
240
241 ret = __compare_inode_defrag(&tmp, entry);
242 if (ret < 0)
243 p = parent->rb_left;
244 else if (ret > 0)
245 p = parent->rb_right;
246 else
247 goto out;
248 }
249
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
252 if (parent)
253 entry = rb_entry(parent, struct inode_defrag, rb_node);
254 else
255 entry = NULL;
256 }
257 out:
258 if (entry)
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
261 return entry;
262 }
263
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 struct inode_defrag *defrag;
267 struct rb_node *node;
268
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
271 while (node) {
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275
276 cond_resched_lock(&fs_info->defrag_inodes_lock);
277
278 node = rb_first(&fs_info->defrag_inodes);
279 }
280 spin_unlock(&fs_info->defrag_inodes_lock);
281 }
282
283 #define BTRFS_DEFRAG_BATCH 1024
284
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 struct inode_defrag *defrag)
287 {
288 struct btrfs_root *inode_root;
289 struct inode *inode;
290 struct btrfs_key key;
291 struct btrfs_ioctl_defrag_range_args range;
292 int num_defrag;
293 int index;
294 int ret;
295
296 /* get the inode */
297 key.objectid = defrag->root;
298 key.type = BTRFS_ROOT_ITEM_KEY;
299 key.offset = (u64)-1;
300
301 index = srcu_read_lock(&fs_info->subvol_srcu);
302
303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 if (IS_ERR(inode_root)) {
305 ret = PTR_ERR(inode_root);
306 goto cleanup;
307 }
308
309 key.objectid = defrag->ino;
310 key.type = BTRFS_INODE_ITEM_KEY;
311 key.offset = 0;
312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 if (IS_ERR(inode)) {
314 ret = PTR_ERR(inode);
315 goto cleanup;
316 }
317 srcu_read_unlock(&fs_info->subvol_srcu, index);
318
319 /* do a chunk of defrag */
320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 memset(&range, 0, sizeof(range));
322 range.len = (u64)-1;
323 range.start = defrag->last_offset;
324
325 sb_start_write(fs_info->sb);
326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 BTRFS_DEFRAG_BATCH);
328 sb_end_write(fs_info->sb);
329 /*
330 * if we filled the whole defrag batch, there
331 * must be more work to do. Queue this defrag
332 * again
333 */
334 if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 defrag->last_offset = range.start;
336 btrfs_requeue_inode_defrag(inode, defrag);
337 } else if (defrag->last_offset && !defrag->cycled) {
338 /*
339 * we didn't fill our defrag batch, but
340 * we didn't start at zero. Make sure we loop
341 * around to the start of the file.
342 */
343 defrag->last_offset = 0;
344 defrag->cycled = 1;
345 btrfs_requeue_inode_defrag(inode, defrag);
346 } else {
347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 }
349
350 iput(inode);
351 return 0;
352 cleanup:
353 srcu_read_unlock(&fs_info->subvol_srcu, index);
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 return ret;
356 }
357
358 /*
359 * run through the list of inodes in the FS that need
360 * defragging
361 */
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363 {
364 struct inode_defrag *defrag;
365 u64 first_ino = 0;
366 u64 root_objectid = 0;
367
368 atomic_inc(&fs_info->defrag_running);
369 while (1) {
370 /* Pause the auto defragger. */
371 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 &fs_info->fs_state))
373 break;
374
375 if (!__need_auto_defrag(fs_info->tree_root))
376 break;
377
378 /* find an inode to defrag */
379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 first_ino);
381 if (!defrag) {
382 if (root_objectid || first_ino) {
383 root_objectid = 0;
384 first_ino = 0;
385 continue;
386 } else {
387 break;
388 }
389 }
390
391 first_ino = defrag->ino + 1;
392 root_objectid = defrag->root;
393
394 __btrfs_run_defrag_inode(fs_info, defrag);
395 }
396 atomic_dec(&fs_info->defrag_running);
397
398 /*
399 * during unmount, we use the transaction_wait queue to
400 * wait for the defragger to stop
401 */
402 wake_up(&fs_info->transaction_wait);
403 return 0;
404 }
405
406 /* simple helper to fault in pages and copy. This should go away
407 * and be replaced with calls into generic code.
408 */
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410 size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_CACHE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_CACHE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_CACHE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 page_cache_release(pages[i]);
477 }
478 }
479
480 /*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
492 {
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
500
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
503
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached);
507 if (err)
508 return err;
509
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
515 }
516
517 /*
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
521 */
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
525 }
526
527 /*
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
530 */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
533 {
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
545
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
550 }
551 while (1) {
552 int no_splits = 0;
553
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
561
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
567 }
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
575 }
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
582 }
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
589
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
593
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
597
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
611 }
612
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
621 }
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
624
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
631
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
635
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
646 }
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
653 }
654
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
662 }
663 free_extent_map(split);
664 split = NULL;
665 }
666 next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
670
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
675 }
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
680 }
681
682 /*
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
686 *
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
690 */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
698 {
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
718
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
724
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
739 }
740 ret = 0;
741 leafs_visited++;
742 next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
752 }
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 if (key.objectid > ino ||
760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761 break;
762
763 fi = btrfs_item_ptr(leaf, path->slots[0],
764 struct btrfs_file_extent_item);
765 extent_type = btrfs_file_extent_type(leaf, fi);
766
767 if (extent_type == BTRFS_FILE_EXTENT_REG ||
768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771 extent_offset = btrfs_file_extent_offset(leaf, fi);
772 extent_end = key.offset +
773 btrfs_file_extent_num_bytes(leaf, fi);
774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775 extent_end = key.offset +
776 btrfs_file_extent_inline_len(leaf,
777 path->slots[0], fi);
778 } else {
779 WARN_ON(1);
780 extent_end = search_start;
781 }
782
783 /*
784 * Don't skip extent items representing 0 byte lengths. They
785 * used to be created (bug) if while punching holes we hit
786 * -ENOSPC condition. So if we find one here, just ensure we
787 * delete it, otherwise we would insert a new file extent item
788 * with the same key (offset) as that 0 bytes length file
789 * extent item in the call to setup_items_for_insert() later
790 * in this function.
791 */
792 if (extent_end == key.offset && extent_end >= search_start)
793 goto delete_extent_item;
794
795 if (extent_end <= search_start) {
796 path->slots[0]++;
797 goto next_slot;
798 }
799
800 found = 1;
801 search_start = max(key.offset, start);
802 if (recow || !modify_tree) {
803 modify_tree = -1;
804 btrfs_release_path(path);
805 continue;
806 }
807
808 /*
809 * | - range to drop - |
810 * | -------- extent -------- |
811 */
812 if (start > key.offset && end < extent_end) {
813 BUG_ON(del_nr > 0);
814 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
815 ret = -EOPNOTSUPP;
816 break;
817 }
818
819 memcpy(&new_key, &key, sizeof(new_key));
820 new_key.offset = start;
821 ret = btrfs_duplicate_item(trans, root, path,
822 &new_key);
823 if (ret == -EAGAIN) {
824 btrfs_release_path(path);
825 continue;
826 }
827 if (ret < 0)
828 break;
829
830 leaf = path->nodes[0];
831 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
832 struct btrfs_file_extent_item);
833 btrfs_set_file_extent_num_bytes(leaf, fi,
834 start - key.offset);
835
836 fi = btrfs_item_ptr(leaf, path->slots[0],
837 struct btrfs_file_extent_item);
838
839 extent_offset += start - key.offset;
840 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 extent_end - start);
843 btrfs_mark_buffer_dirty(leaf);
844
845 if (update_refs && disk_bytenr > 0) {
846 ret = btrfs_inc_extent_ref(trans, root,
847 disk_bytenr, num_bytes, 0,
848 root->root_key.objectid,
849 new_key.objectid,
850 start - extent_offset, 1);
851 BUG_ON(ret); /* -ENOMEM */
852 }
853 key.offset = start;
854 }
855 /*
856 * | ---- range to drop ----- |
857 * | -------- extent -------- |
858 */
859 if (start <= key.offset && end < extent_end) {
860 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
861 ret = -EOPNOTSUPP;
862 break;
863 }
864
865 memcpy(&new_key, &key, sizeof(new_key));
866 new_key.offset = end;
867 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
868
869 extent_offset += end - key.offset;
870 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
871 btrfs_set_file_extent_num_bytes(leaf, fi,
872 extent_end - end);
873 btrfs_mark_buffer_dirty(leaf);
874 if (update_refs && disk_bytenr > 0)
875 inode_sub_bytes(inode, end - key.offset);
876 break;
877 }
878
879 search_start = extent_end;
880 /*
881 * | ---- range to drop ----- |
882 * | -------- extent -------- |
883 */
884 if (start > key.offset && end >= extent_end) {
885 BUG_ON(del_nr > 0);
886 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
887 ret = -EOPNOTSUPP;
888 break;
889 }
890
891 btrfs_set_file_extent_num_bytes(leaf, fi,
892 start - key.offset);
893 btrfs_mark_buffer_dirty(leaf);
894 if (update_refs && disk_bytenr > 0)
895 inode_sub_bytes(inode, extent_end - start);
896 if (end == extent_end)
897 break;
898
899 path->slots[0]++;
900 goto next_slot;
901 }
902
903 /*
904 * | ---- range to drop ----- |
905 * | ------ extent ------ |
906 */
907 if (start <= key.offset && end >= extent_end) {
908 delete_extent_item:
909 if (del_nr == 0) {
910 del_slot = path->slots[0];
911 del_nr = 1;
912 } else {
913 BUG_ON(del_slot + del_nr != path->slots[0]);
914 del_nr++;
915 }
916
917 if (update_refs &&
918 extent_type == BTRFS_FILE_EXTENT_INLINE) {
919 inode_sub_bytes(inode,
920 extent_end - key.offset);
921 extent_end = ALIGN(extent_end,
922 root->sectorsize);
923 } else if (update_refs && disk_bytenr > 0) {
924 ret = btrfs_free_extent(trans, root,
925 disk_bytenr, num_bytes, 0,
926 root->root_key.objectid,
927 key.objectid, key.offset -
928 extent_offset, 0);
929 BUG_ON(ret); /* -ENOMEM */
930 inode_sub_bytes(inode,
931 extent_end - key.offset);
932 }
933
934 if (end == extent_end)
935 break;
936
937 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
938 path->slots[0]++;
939 goto next_slot;
940 }
941
942 ret = btrfs_del_items(trans, root, path, del_slot,
943 del_nr);
944 if (ret) {
945 btrfs_abort_transaction(trans, root, ret);
946 break;
947 }
948
949 del_nr = 0;
950 del_slot = 0;
951
952 btrfs_release_path(path);
953 continue;
954 }
955
956 BUG_ON(1);
957 }
958
959 if (!ret && del_nr > 0) {
960 /*
961 * Set path->slots[0] to first slot, so that after the delete
962 * if items are move off from our leaf to its immediate left or
963 * right neighbor leafs, we end up with a correct and adjusted
964 * path->slots[0] for our insertion (if replace_extent != 0).
965 */
966 path->slots[0] = del_slot;
967 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
968 if (ret)
969 btrfs_abort_transaction(trans, root, ret);
970 }
971
972 leaf = path->nodes[0];
973 /*
974 * If btrfs_del_items() was called, it might have deleted a leaf, in
975 * which case it unlocked our path, so check path->locks[0] matches a
976 * write lock.
977 */
978 if (!ret && replace_extent && leafs_visited == 1 &&
979 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
980 path->locks[0] == BTRFS_WRITE_LOCK) &&
981 btrfs_leaf_free_space(root, leaf) >=
982 sizeof(struct btrfs_item) + extent_item_size) {
983
984 key.objectid = ino;
985 key.type = BTRFS_EXTENT_DATA_KEY;
986 key.offset = start;
987 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
988 struct btrfs_key slot_key;
989
990 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
991 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
992 path->slots[0]++;
993 }
994 setup_items_for_insert(root, path, &key,
995 &extent_item_size,
996 extent_item_size,
997 sizeof(struct btrfs_item) +
998 extent_item_size, 1);
999 *key_inserted = 1;
1000 }
1001
1002 if (!replace_extent || !(*key_inserted))
1003 btrfs_release_path(path);
1004 if (drop_end)
1005 *drop_end = found ? min(end, extent_end) : end;
1006 return ret;
1007 }
1008
1009 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1010 struct btrfs_root *root, struct inode *inode, u64 start,
1011 u64 end, int drop_cache)
1012 {
1013 struct btrfs_path *path;
1014 int ret;
1015
1016 path = btrfs_alloc_path();
1017 if (!path)
1018 return -ENOMEM;
1019 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1020 drop_cache, 0, 0, NULL);
1021 btrfs_free_path(path);
1022 return ret;
1023 }
1024
1025 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1026 u64 objectid, u64 bytenr, u64 orig_offset,
1027 u64 *start, u64 *end)
1028 {
1029 struct btrfs_file_extent_item *fi;
1030 struct btrfs_key key;
1031 u64 extent_end;
1032
1033 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1034 return 0;
1035
1036 btrfs_item_key_to_cpu(leaf, &key, slot);
1037 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1038 return 0;
1039
1040 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1041 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1042 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1043 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1044 btrfs_file_extent_compression(leaf, fi) ||
1045 btrfs_file_extent_encryption(leaf, fi) ||
1046 btrfs_file_extent_other_encoding(leaf, fi))
1047 return 0;
1048
1049 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1050 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1051 return 0;
1052
1053 *start = key.offset;
1054 *end = extent_end;
1055 return 1;
1056 }
1057
1058 /*
1059 * Mark extent in the range start - end as written.
1060 *
1061 * This changes extent type from 'pre-allocated' to 'regular'. If only
1062 * part of extent is marked as written, the extent will be split into
1063 * two or three.
1064 */
1065 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1066 struct inode *inode, u64 start, u64 end)
1067 {
1068 struct btrfs_root *root = BTRFS_I(inode)->root;
1069 struct extent_buffer *leaf;
1070 struct btrfs_path *path;
1071 struct btrfs_file_extent_item *fi;
1072 struct btrfs_key key;
1073 struct btrfs_key new_key;
1074 u64 bytenr;
1075 u64 num_bytes;
1076 u64 extent_end;
1077 u64 orig_offset;
1078 u64 other_start;
1079 u64 other_end;
1080 u64 split;
1081 int del_nr = 0;
1082 int del_slot = 0;
1083 int recow;
1084 int ret;
1085 u64 ino = btrfs_ino(inode);
1086
1087 path = btrfs_alloc_path();
1088 if (!path)
1089 return -ENOMEM;
1090 again:
1091 recow = 0;
1092 split = start;
1093 key.objectid = ino;
1094 key.type = BTRFS_EXTENT_DATA_KEY;
1095 key.offset = split;
1096
1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 if (ret < 0)
1099 goto out;
1100 if (ret > 0 && path->slots[0] > 0)
1101 path->slots[0]--;
1102
1103 leaf = path->nodes[0];
1104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1106 fi = btrfs_item_ptr(leaf, path->slots[0],
1107 struct btrfs_file_extent_item);
1108 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1109 BTRFS_FILE_EXTENT_PREALLOC);
1110 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1111 BUG_ON(key.offset > start || extent_end < end);
1112
1113 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1114 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1115 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1116 memcpy(&new_key, &key, sizeof(new_key));
1117
1118 if (start == key.offset && end < extent_end) {
1119 other_start = 0;
1120 other_end = start;
1121 if (extent_mergeable(leaf, path->slots[0] - 1,
1122 ino, bytenr, orig_offset,
1123 &other_start, &other_end)) {
1124 new_key.offset = end;
1125 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 btrfs_set_file_extent_generation(leaf, fi,
1129 trans->transid);
1130 btrfs_set_file_extent_num_bytes(leaf, fi,
1131 extent_end - end);
1132 btrfs_set_file_extent_offset(leaf, fi,
1133 end - orig_offset);
1134 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1135 struct btrfs_file_extent_item);
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 end - other_start);
1140 btrfs_mark_buffer_dirty(leaf);
1141 goto out;
1142 }
1143 }
1144
1145 if (start > key.offset && end == extent_end) {
1146 other_start = end;
1147 other_end = 0;
1148 if (extent_mergeable(leaf, path->slots[0] + 1,
1149 ino, bytenr, orig_offset,
1150 &other_start, &other_end)) {
1151 fi = btrfs_item_ptr(leaf, path->slots[0],
1152 struct btrfs_file_extent_item);
1153 btrfs_set_file_extent_num_bytes(leaf, fi,
1154 start - key.offset);
1155 btrfs_set_file_extent_generation(leaf, fi,
1156 trans->transid);
1157 path->slots[0]++;
1158 new_key.offset = start;
1159 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1160
1161 fi = btrfs_item_ptr(leaf, path->slots[0],
1162 struct btrfs_file_extent_item);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 btrfs_set_file_extent_num_bytes(leaf, fi,
1166 other_end - start);
1167 btrfs_set_file_extent_offset(leaf, fi,
1168 start - orig_offset);
1169 btrfs_mark_buffer_dirty(leaf);
1170 goto out;
1171 }
1172 }
1173
1174 while (start > key.offset || end < extent_end) {
1175 if (key.offset == start)
1176 split = end;
1177
1178 new_key.offset = split;
1179 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1180 if (ret == -EAGAIN) {
1181 btrfs_release_path(path);
1182 goto again;
1183 }
1184 if (ret < 0) {
1185 btrfs_abort_transaction(trans, root, ret);
1186 goto out;
1187 }
1188
1189 leaf = path->nodes[0];
1190 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1191 struct btrfs_file_extent_item);
1192 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193 btrfs_set_file_extent_num_bytes(leaf, fi,
1194 split - key.offset);
1195
1196 fi = btrfs_item_ptr(leaf, path->slots[0],
1197 struct btrfs_file_extent_item);
1198
1199 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 extent_end - split);
1203 btrfs_mark_buffer_dirty(leaf);
1204
1205 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1206 root->root_key.objectid,
1207 ino, orig_offset, 1);
1208 BUG_ON(ret); /* -ENOMEM */
1209
1210 if (split == start) {
1211 key.offset = start;
1212 } else {
1213 BUG_ON(start != key.offset);
1214 path->slots[0]--;
1215 extent_end = end;
1216 }
1217 recow = 1;
1218 }
1219
1220 other_start = end;
1221 other_end = 0;
1222 if (extent_mergeable(leaf, path->slots[0] + 1,
1223 ino, bytenr, orig_offset,
1224 &other_start, &other_end)) {
1225 if (recow) {
1226 btrfs_release_path(path);
1227 goto again;
1228 }
1229 extent_end = other_end;
1230 del_slot = path->slots[0] + 1;
1231 del_nr++;
1232 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1233 0, root->root_key.objectid,
1234 ino, orig_offset, 0);
1235 BUG_ON(ret); /* -ENOMEM */
1236 }
1237 other_start = 0;
1238 other_end = start;
1239 if (extent_mergeable(leaf, path->slots[0] - 1,
1240 ino, bytenr, orig_offset,
1241 &other_start, &other_end)) {
1242 if (recow) {
1243 btrfs_release_path(path);
1244 goto again;
1245 }
1246 key.offset = other_start;
1247 del_slot = path->slots[0];
1248 del_nr++;
1249 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1250 0, root->root_key.objectid,
1251 ino, orig_offset, 0);
1252 BUG_ON(ret); /* -ENOMEM */
1253 }
1254 if (del_nr == 0) {
1255 fi = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_file_extent_item);
1257 btrfs_set_file_extent_type(leaf, fi,
1258 BTRFS_FILE_EXTENT_REG);
1259 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1260 btrfs_mark_buffer_dirty(leaf);
1261 } else {
1262 fi = btrfs_item_ptr(leaf, del_slot - 1,
1263 struct btrfs_file_extent_item);
1264 btrfs_set_file_extent_type(leaf, fi,
1265 BTRFS_FILE_EXTENT_REG);
1266 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1267 btrfs_set_file_extent_num_bytes(leaf, fi,
1268 extent_end - key.offset);
1269 btrfs_mark_buffer_dirty(leaf);
1270
1271 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1272 if (ret < 0) {
1273 btrfs_abort_transaction(trans, root, ret);
1274 goto out;
1275 }
1276 }
1277 out:
1278 btrfs_free_path(path);
1279 return 0;
1280 }
1281
1282 /*
1283 * on error we return an unlocked page and the error value
1284 * on success we return a locked page and 0
1285 */
1286 static int prepare_uptodate_page(struct page *page, u64 pos,
1287 bool force_uptodate)
1288 {
1289 int ret = 0;
1290
1291 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1292 !PageUptodate(page)) {
1293 ret = btrfs_readpage(NULL, page);
1294 if (ret)
1295 return ret;
1296 lock_page(page);
1297 if (!PageUptodate(page)) {
1298 unlock_page(page);
1299 return -EIO;
1300 }
1301 }
1302 return 0;
1303 }
1304
1305 /*
1306 * this just gets pages into the page cache and locks them down.
1307 */
1308 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1309 size_t num_pages, loff_t pos,
1310 size_t write_bytes, bool force_uptodate)
1311 {
1312 int i;
1313 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1314 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1315 int err = 0;
1316 int faili;
1317
1318 for (i = 0; i < num_pages; i++) {
1319 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1320 mask | __GFP_WRITE);
1321 if (!pages[i]) {
1322 faili = i - 1;
1323 err = -ENOMEM;
1324 goto fail;
1325 }
1326
1327 if (i == 0)
1328 err = prepare_uptodate_page(pages[i], pos,
1329 force_uptodate);
1330 if (i == num_pages - 1)
1331 err = prepare_uptodate_page(pages[i],
1332 pos + write_bytes, false);
1333 if (err) {
1334 page_cache_release(pages[i]);
1335 faili = i - 1;
1336 goto fail;
1337 }
1338 wait_on_page_writeback(pages[i]);
1339 }
1340
1341 return 0;
1342 fail:
1343 while (faili >= 0) {
1344 unlock_page(pages[faili]);
1345 page_cache_release(pages[faili]);
1346 faili--;
1347 }
1348 return err;
1349
1350 }
1351
1352 /*
1353 * This function locks the extent and properly waits for data=ordered extents
1354 * to finish before allowing the pages to be modified if need.
1355 *
1356 * The return value:
1357 * 1 - the extent is locked
1358 * 0 - the extent is not locked, and everything is OK
1359 * -EAGAIN - need re-prepare the pages
1360 * the other < 0 number - Something wrong happens
1361 */
1362 static noinline int
1363 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1364 size_t num_pages, loff_t pos,
1365 u64 *lockstart, u64 *lockend,
1366 struct extent_state **cached_state)
1367 {
1368 u64 start_pos;
1369 u64 last_pos;
1370 int i;
1371 int ret = 0;
1372
1373 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1374 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1375
1376 if (start_pos < inode->i_size) {
1377 struct btrfs_ordered_extent *ordered;
1378 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1379 start_pos, last_pos, 0, cached_state);
1380 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1381 last_pos - start_pos + 1);
1382 if (ordered &&
1383 ordered->file_offset + ordered->len > start_pos &&
1384 ordered->file_offset <= last_pos) {
1385 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1386 start_pos, last_pos,
1387 cached_state, GFP_NOFS);
1388 for (i = 0; i < num_pages; i++) {
1389 unlock_page(pages[i]);
1390 page_cache_release(pages[i]);
1391 }
1392 btrfs_start_ordered_extent(inode, ordered, 1);
1393 btrfs_put_ordered_extent(ordered);
1394 return -EAGAIN;
1395 }
1396 if (ordered)
1397 btrfs_put_ordered_extent(ordered);
1398
1399 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1400 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1401 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1402 0, 0, cached_state, GFP_NOFS);
1403 *lockstart = start_pos;
1404 *lockend = last_pos;
1405 ret = 1;
1406 }
1407
1408 for (i = 0; i < num_pages; i++) {
1409 if (clear_page_dirty_for_io(pages[i]))
1410 account_page_redirty(pages[i]);
1411 set_page_extent_mapped(pages[i]);
1412 WARN_ON(!PageLocked(pages[i]));
1413 }
1414
1415 return ret;
1416 }
1417
1418 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1419 size_t *write_bytes)
1420 {
1421 struct btrfs_root *root = BTRFS_I(inode)->root;
1422 struct btrfs_ordered_extent *ordered;
1423 u64 lockstart, lockend;
1424 u64 num_bytes;
1425 int ret;
1426
1427 ret = btrfs_start_write_no_snapshoting(root);
1428 if (!ret)
1429 return -ENOSPC;
1430
1431 lockstart = round_down(pos, root->sectorsize);
1432 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1433
1434 while (1) {
1435 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1436 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1437 lockend - lockstart + 1);
1438 if (!ordered) {
1439 break;
1440 }
1441 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1442 btrfs_start_ordered_extent(inode, ordered, 1);
1443 btrfs_put_ordered_extent(ordered);
1444 }
1445
1446 num_bytes = lockend - lockstart + 1;
1447 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1448 if (ret <= 0) {
1449 ret = 0;
1450 btrfs_end_write_no_snapshoting(root);
1451 } else {
1452 *write_bytes = min_t(size_t, *write_bytes ,
1453 num_bytes - pos + lockstart);
1454 }
1455
1456 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457
1458 return ret;
1459 }
1460
1461 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1462 struct iov_iter *i,
1463 loff_t pos)
1464 {
1465 struct inode *inode = file_inode(file);
1466 struct btrfs_root *root = BTRFS_I(inode)->root;
1467 struct page **pages = NULL;
1468 struct extent_state *cached_state = NULL;
1469 u64 release_bytes = 0;
1470 u64 lockstart;
1471 u64 lockend;
1472 size_t num_written = 0;
1473 int nrptrs;
1474 int ret = 0;
1475 bool only_release_metadata = false;
1476 bool force_page_uptodate = false;
1477 bool need_unlock;
1478
1479 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1480 PAGE_CACHE_SIZE / (sizeof(struct page *)));
1481 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1482 nrptrs = max(nrptrs, 8);
1483 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1484 if (!pages)
1485 return -ENOMEM;
1486
1487 while (iov_iter_count(i) > 0) {
1488 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1489 size_t write_bytes = min(iov_iter_count(i),
1490 nrptrs * (size_t)PAGE_CACHE_SIZE -
1491 offset);
1492 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1493 PAGE_CACHE_SIZE);
1494 size_t reserve_bytes;
1495 size_t dirty_pages;
1496 size_t copied;
1497
1498 WARN_ON(num_pages > nrptrs);
1499
1500 /*
1501 * Fault pages before locking them in prepare_pages
1502 * to avoid recursive lock
1503 */
1504 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1505 ret = -EFAULT;
1506 break;
1507 }
1508
1509 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1510
1511 if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1512 BTRFS_INODE_PREALLOC)) {
1513 ret = check_can_nocow(inode, pos, &write_bytes);
1514 if (ret < 0)
1515 break;
1516 if (ret > 0) {
1517 /*
1518 * For nodata cow case, no need to reserve
1519 * data space.
1520 */
1521 only_release_metadata = true;
1522 /*
1523 * our prealloc extent may be smaller than
1524 * write_bytes, so scale down.
1525 */
1526 num_pages = DIV_ROUND_UP(write_bytes + offset,
1527 PAGE_CACHE_SIZE);
1528 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1529 goto reserve_metadata;
1530 }
1531 }
1532 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1533 if (ret < 0)
1534 break;
1535
1536 reserve_metadata:
1537 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1538 if (ret) {
1539 if (!only_release_metadata)
1540 btrfs_free_reserved_data_space(inode, pos,
1541 write_bytes);
1542 else
1543 btrfs_end_write_no_snapshoting(root);
1544 break;
1545 }
1546
1547 release_bytes = reserve_bytes;
1548 need_unlock = false;
1549 again:
1550 /*
1551 * This is going to setup the pages array with the number of
1552 * pages we want, so we don't really need to worry about the
1553 * contents of pages from loop to loop
1554 */
1555 ret = prepare_pages(inode, pages, num_pages,
1556 pos, write_bytes,
1557 force_page_uptodate);
1558 if (ret)
1559 break;
1560
1561 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1562 pos, &lockstart, &lockend,
1563 &cached_state);
1564 if (ret < 0) {
1565 if (ret == -EAGAIN)
1566 goto again;
1567 break;
1568 } else if (ret > 0) {
1569 need_unlock = true;
1570 ret = 0;
1571 }
1572
1573 copied = btrfs_copy_from_user(pos, num_pages,
1574 write_bytes, pages, i);
1575
1576 /*
1577 * if we have trouble faulting in the pages, fall
1578 * back to one page at a time
1579 */
1580 if (copied < write_bytes)
1581 nrptrs = 1;
1582
1583 if (copied == 0) {
1584 force_page_uptodate = true;
1585 dirty_pages = 0;
1586 } else {
1587 force_page_uptodate = false;
1588 dirty_pages = DIV_ROUND_UP(copied + offset,
1589 PAGE_CACHE_SIZE);
1590 }
1591
1592 /*
1593 * If we had a short copy we need to release the excess delaloc
1594 * bytes we reserved. We need to increment outstanding_extents
1595 * because btrfs_delalloc_release_space will decrement it, but
1596 * we still have an outstanding extent for the chunk we actually
1597 * managed to copy.
1598 */
1599 if (num_pages > dirty_pages) {
1600 release_bytes = (num_pages - dirty_pages) <<
1601 PAGE_CACHE_SHIFT;
1602 if (copied > 0) {
1603 spin_lock(&BTRFS_I(inode)->lock);
1604 BTRFS_I(inode)->outstanding_extents++;
1605 spin_unlock(&BTRFS_I(inode)->lock);
1606 }
1607 if (only_release_metadata)
1608 btrfs_delalloc_release_metadata(inode,
1609 release_bytes);
1610 else
1611 btrfs_delalloc_release_space(inode, pos,
1612 release_bytes);
1613 }
1614
1615 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1616
1617 if (copied > 0)
1618 ret = btrfs_dirty_pages(root, inode, pages,
1619 dirty_pages, pos, copied,
1620 NULL);
1621 if (need_unlock)
1622 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1623 lockstart, lockend, &cached_state,
1624 GFP_NOFS);
1625 if (ret) {
1626 btrfs_drop_pages(pages, num_pages);
1627 break;
1628 }
1629
1630 release_bytes = 0;
1631 if (only_release_metadata)
1632 btrfs_end_write_no_snapshoting(root);
1633
1634 if (only_release_metadata && copied > 0) {
1635 lockstart = round_down(pos, root->sectorsize);
1636 lockend = lockstart +
1637 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1638
1639 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1640 lockend, EXTENT_NORESERVE, NULL,
1641 NULL, GFP_NOFS);
1642 only_release_metadata = false;
1643 }
1644
1645 btrfs_drop_pages(pages, num_pages);
1646
1647 cond_resched();
1648
1649 balance_dirty_pages_ratelimited(inode->i_mapping);
1650 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1651 btrfs_btree_balance_dirty(root);
1652
1653 pos += copied;
1654 num_written += copied;
1655 }
1656
1657 kfree(pages);
1658
1659 if (release_bytes) {
1660 if (only_release_metadata) {
1661 btrfs_end_write_no_snapshoting(root);
1662 btrfs_delalloc_release_metadata(inode, release_bytes);
1663 } else {
1664 btrfs_delalloc_release_space(inode, pos, release_bytes);
1665 }
1666 }
1667
1668 return num_written ? num_written : ret;
1669 }
1670
1671 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1672 struct iov_iter *from,
1673 loff_t pos)
1674 {
1675 struct file *file = iocb->ki_filp;
1676 struct inode *inode = file_inode(file);
1677 ssize_t written;
1678 ssize_t written_buffered;
1679 loff_t endbyte;
1680 int err;
1681
1682 written = generic_file_direct_write(iocb, from, pos);
1683
1684 if (written < 0 || !iov_iter_count(from))
1685 return written;
1686
1687 pos += written;
1688 written_buffered = __btrfs_buffered_write(file, from, pos);
1689 if (written_buffered < 0) {
1690 err = written_buffered;
1691 goto out;
1692 }
1693 /*
1694 * Ensure all data is persisted. We want the next direct IO read to be
1695 * able to read what was just written.
1696 */
1697 endbyte = pos + written_buffered - 1;
1698 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1699 if (err)
1700 goto out;
1701 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1702 if (err)
1703 goto out;
1704 written += written_buffered;
1705 iocb->ki_pos = pos + written_buffered;
1706 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1707 endbyte >> PAGE_CACHE_SHIFT);
1708 out:
1709 return written ? written : err;
1710 }
1711
1712 static void update_time_for_write(struct inode *inode)
1713 {
1714 struct timespec now;
1715
1716 if (IS_NOCMTIME(inode))
1717 return;
1718
1719 now = current_fs_time(inode->i_sb);
1720 if (!timespec_equal(&inode->i_mtime, &now))
1721 inode->i_mtime = now;
1722
1723 if (!timespec_equal(&inode->i_ctime, &now))
1724 inode->i_ctime = now;
1725
1726 if (IS_I_VERSION(inode))
1727 inode_inc_iversion(inode);
1728 }
1729
1730 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1731 struct iov_iter *from)
1732 {
1733 struct file *file = iocb->ki_filp;
1734 struct inode *inode = file_inode(file);
1735 struct btrfs_root *root = BTRFS_I(inode)->root;
1736 u64 start_pos;
1737 u64 end_pos;
1738 ssize_t num_written = 0;
1739 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1740 ssize_t err;
1741 loff_t pos;
1742 size_t count;
1743
1744 mutex_lock(&inode->i_mutex);
1745 err = generic_write_checks(iocb, from);
1746 if (err <= 0) {
1747 mutex_unlock(&inode->i_mutex);
1748 return err;
1749 }
1750
1751 current->backing_dev_info = inode_to_bdi(inode);
1752 err = file_remove_privs(file);
1753 if (err) {
1754 mutex_unlock(&inode->i_mutex);
1755 goto out;
1756 }
1757
1758 /*
1759 * If BTRFS flips readonly due to some impossible error
1760 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1761 * although we have opened a file as writable, we have
1762 * to stop this write operation to ensure FS consistency.
1763 */
1764 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1765 mutex_unlock(&inode->i_mutex);
1766 err = -EROFS;
1767 goto out;
1768 }
1769
1770 /*
1771 * We reserve space for updating the inode when we reserve space for the
1772 * extent we are going to write, so we will enospc out there. We don't
1773 * need to start yet another transaction to update the inode as we will
1774 * update the inode when we finish writing whatever data we write.
1775 */
1776 update_time_for_write(inode);
1777
1778 pos = iocb->ki_pos;
1779 count = iov_iter_count(from);
1780 start_pos = round_down(pos, root->sectorsize);
1781 if (start_pos > i_size_read(inode)) {
1782 /* Expand hole size to cover write data, preventing empty gap */
1783 end_pos = round_up(pos + count, root->sectorsize);
1784 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1785 if (err) {
1786 mutex_unlock(&inode->i_mutex);
1787 goto out;
1788 }
1789 }
1790
1791 if (sync)
1792 atomic_inc(&BTRFS_I(inode)->sync_writers);
1793
1794 if (iocb->ki_flags & IOCB_DIRECT) {
1795 num_written = __btrfs_direct_write(iocb, from, pos);
1796 } else {
1797 num_written = __btrfs_buffered_write(file, from, pos);
1798 if (num_written > 0)
1799 iocb->ki_pos = pos + num_written;
1800 }
1801
1802 mutex_unlock(&inode->i_mutex);
1803
1804 /*
1805 * We also have to set last_sub_trans to the current log transid,
1806 * otherwise subsequent syncs to a file that's been synced in this
1807 * transaction will appear to have already occured.
1808 */
1809 spin_lock(&BTRFS_I(inode)->lock);
1810 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1811 spin_unlock(&BTRFS_I(inode)->lock);
1812 if (num_written > 0) {
1813 err = generic_write_sync(file, pos, num_written);
1814 if (err < 0)
1815 num_written = err;
1816 }
1817
1818 if (sync)
1819 atomic_dec(&BTRFS_I(inode)->sync_writers);
1820 out:
1821 current->backing_dev_info = NULL;
1822 return num_written ? num_written : err;
1823 }
1824
1825 int btrfs_release_file(struct inode *inode, struct file *filp)
1826 {
1827 if (filp->private_data)
1828 btrfs_ioctl_trans_end(filp);
1829 /*
1830 * ordered_data_close is set by settattr when we are about to truncate
1831 * a file from a non-zero size to a zero size. This tries to
1832 * flush down new bytes that may have been written if the
1833 * application were using truncate to replace a file in place.
1834 */
1835 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1836 &BTRFS_I(inode)->runtime_flags))
1837 filemap_flush(inode->i_mapping);
1838 return 0;
1839 }
1840
1841 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1842 {
1843 int ret;
1844
1845 atomic_inc(&BTRFS_I(inode)->sync_writers);
1846 ret = btrfs_fdatawrite_range(inode, start, end);
1847 atomic_dec(&BTRFS_I(inode)->sync_writers);
1848
1849 return ret;
1850 }
1851
1852 /*
1853 * fsync call for both files and directories. This logs the inode into
1854 * the tree log instead of forcing full commits whenever possible.
1855 *
1856 * It needs to call filemap_fdatawait so that all ordered extent updates are
1857 * in the metadata btree are up to date for copying to the log.
1858 *
1859 * It drops the inode mutex before doing the tree log commit. This is an
1860 * important optimization for directories because holding the mutex prevents
1861 * new operations on the dir while we write to disk.
1862 */
1863 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1864 {
1865 struct dentry *dentry = file->f_path.dentry;
1866 struct inode *inode = d_inode(dentry);
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1868 struct btrfs_trans_handle *trans;
1869 struct btrfs_log_ctx ctx;
1870 int ret = 0;
1871 bool full_sync = 0;
1872 const u64 len = end - start + 1;
1873
1874 trace_btrfs_sync_file(file, datasync);
1875
1876 /*
1877 * We write the dirty pages in the range and wait until they complete
1878 * out of the ->i_mutex. If so, we can flush the dirty pages by
1879 * multi-task, and make the performance up. See
1880 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1881 */
1882 ret = start_ordered_ops(inode, start, end);
1883 if (ret)
1884 return ret;
1885
1886 mutex_lock(&inode->i_mutex);
1887 atomic_inc(&root->log_batch);
1888 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1889 &BTRFS_I(inode)->runtime_flags);
1890 /*
1891 * We might have have had more pages made dirty after calling
1892 * start_ordered_ops and before acquiring the inode's i_mutex.
1893 */
1894 if (full_sync) {
1895 /*
1896 * For a full sync, we need to make sure any ordered operations
1897 * start and finish before we start logging the inode, so that
1898 * all extents are persisted and the respective file extent
1899 * items are in the fs/subvol btree.
1900 */
1901 ret = btrfs_wait_ordered_range(inode, start, len);
1902 } else {
1903 /*
1904 * Start any new ordered operations before starting to log the
1905 * inode. We will wait for them to finish in btrfs_sync_log().
1906 *
1907 * Right before acquiring the inode's mutex, we might have new
1908 * writes dirtying pages, which won't immediately start the
1909 * respective ordered operations - that is done through the
1910 * fill_delalloc callbacks invoked from the writepage and
1911 * writepages address space operations. So make sure we start
1912 * all ordered operations before starting to log our inode. Not
1913 * doing this means that while logging the inode, writeback
1914 * could start and invoke writepage/writepages, which would call
1915 * the fill_delalloc callbacks (cow_file_range,
1916 * submit_compressed_extents). These callbacks add first an
1917 * extent map to the modified list of extents and then create
1918 * the respective ordered operation, which means in
1919 * tree-log.c:btrfs_log_inode() we might capture all existing
1920 * ordered operations (with btrfs_get_logged_extents()) before
1921 * the fill_delalloc callback adds its ordered operation, and by
1922 * the time we visit the modified list of extent maps (with
1923 * btrfs_log_changed_extents()), we see and process the extent
1924 * map they created. We then use the extent map to construct a
1925 * file extent item for logging without waiting for the
1926 * respective ordered operation to finish - this file extent
1927 * item points to a disk location that might not have yet been
1928 * written to, containing random data - so after a crash a log
1929 * replay will make our inode have file extent items that point
1930 * to disk locations containing invalid data, as we returned
1931 * success to userspace without waiting for the respective
1932 * ordered operation to finish, because it wasn't captured by
1933 * btrfs_get_logged_extents().
1934 */
1935 ret = start_ordered_ops(inode, start, end);
1936 }
1937 if (ret) {
1938 mutex_unlock(&inode->i_mutex);
1939 goto out;
1940 }
1941 atomic_inc(&root->log_batch);
1942
1943 /*
1944 * If the last transaction that changed this file was before the current
1945 * transaction and we have the full sync flag set in our inode, we can
1946 * bail out now without any syncing.
1947 *
1948 * Note that we can't bail out if the full sync flag isn't set. This is
1949 * because when the full sync flag is set we start all ordered extents
1950 * and wait for them to fully complete - when they complete they update
1951 * the inode's last_trans field through:
1952 *
1953 * btrfs_finish_ordered_io() ->
1954 * btrfs_update_inode_fallback() ->
1955 * btrfs_update_inode() ->
1956 * btrfs_set_inode_last_trans()
1957 *
1958 * So we are sure that last_trans is up to date and can do this check to
1959 * bail out safely. For the fast path, when the full sync flag is not
1960 * set in our inode, we can not do it because we start only our ordered
1961 * extents and don't wait for them to complete (that is when
1962 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1963 * value might be less than or equals to fs_info->last_trans_committed,
1964 * and setting a speculative last_trans for an inode when a buffered
1965 * write is made (such as fs_info->generation + 1 for example) would not
1966 * be reliable since after setting the value and before fsync is called
1967 * any number of transactions can start and commit (transaction kthread
1968 * commits the current transaction periodically), and a transaction
1969 * commit does not start nor waits for ordered extents to complete.
1970 */
1971 smp_mb();
1972 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1973 (BTRFS_I(inode)->last_trans <=
1974 root->fs_info->last_trans_committed &&
1975 (full_sync ||
1976 !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
1977 /*
1978 * We'v had everything committed since the last time we were
1979 * modified so clear this flag in case it was set for whatever
1980 * reason, it's no longer relevant.
1981 */
1982 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1983 &BTRFS_I(inode)->runtime_flags);
1984 mutex_unlock(&inode->i_mutex);
1985 goto out;
1986 }
1987
1988 /*
1989 * ok we haven't committed the transaction yet, lets do a commit
1990 */
1991 if (file->private_data)
1992 btrfs_ioctl_trans_end(file);
1993
1994 /*
1995 * We use start here because we will need to wait on the IO to complete
1996 * in btrfs_sync_log, which could require joining a transaction (for
1997 * example checking cross references in the nocow path). If we use join
1998 * here we could get into a situation where we're waiting on IO to
1999 * happen that is blocked on a transaction trying to commit. With start
2000 * we inc the extwriter counter, so we wait for all extwriters to exit
2001 * before we start blocking join'ers. This comment is to keep somebody
2002 * from thinking they are super smart and changing this to
2003 * btrfs_join_transaction *cough*Josef*cough*.
2004 */
2005 trans = btrfs_start_transaction(root, 0);
2006 if (IS_ERR(trans)) {
2007 ret = PTR_ERR(trans);
2008 mutex_unlock(&inode->i_mutex);
2009 goto out;
2010 }
2011 trans->sync = true;
2012
2013 btrfs_init_log_ctx(&ctx);
2014
2015 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2016 if (ret < 0) {
2017 /* Fallthrough and commit/free transaction. */
2018 ret = 1;
2019 }
2020
2021 /* we've logged all the items and now have a consistent
2022 * version of the file in the log. It is possible that
2023 * someone will come in and modify the file, but that's
2024 * fine because the log is consistent on disk, and we
2025 * have references to all of the file's extents
2026 *
2027 * It is possible that someone will come in and log the
2028 * file again, but that will end up using the synchronization
2029 * inside btrfs_sync_log to keep things safe.
2030 */
2031 mutex_unlock(&inode->i_mutex);
2032
2033 /*
2034 * If any of the ordered extents had an error, just return it to user
2035 * space, so that the application knows some writes didn't succeed and
2036 * can take proper action (retry for e.g.). Blindly committing the
2037 * transaction in this case, would fool userspace that everything was
2038 * successful. And we also want to make sure our log doesn't contain
2039 * file extent items pointing to extents that weren't fully written to -
2040 * just like in the non fast fsync path, where we check for the ordered
2041 * operation's error flag before writing to the log tree and return -EIO
2042 * if any of them had this flag set (btrfs_wait_ordered_range) -
2043 * therefore we need to check for errors in the ordered operations,
2044 * which are indicated by ctx.io_err.
2045 */
2046 if (ctx.io_err) {
2047 btrfs_end_transaction(trans, root);
2048 ret = ctx.io_err;
2049 goto out;
2050 }
2051
2052 if (ret != BTRFS_NO_LOG_SYNC) {
2053 if (!ret) {
2054 ret = btrfs_sync_log(trans, root, &ctx);
2055 if (!ret) {
2056 ret = btrfs_end_transaction(trans, root);
2057 goto out;
2058 }
2059 }
2060 if (!full_sync) {
2061 ret = btrfs_wait_ordered_range(inode, start,
2062 end - start + 1);
2063 if (ret) {
2064 btrfs_end_transaction(trans, root);
2065 goto out;
2066 }
2067 }
2068 ret = btrfs_commit_transaction(trans, root);
2069 } else {
2070 ret = btrfs_end_transaction(trans, root);
2071 }
2072 out:
2073 return ret > 0 ? -EIO : ret;
2074 }
2075
2076 static const struct vm_operations_struct btrfs_file_vm_ops = {
2077 .fault = filemap_fault,
2078 .map_pages = filemap_map_pages,
2079 .page_mkwrite = btrfs_page_mkwrite,
2080 };
2081
2082 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2083 {
2084 struct address_space *mapping = filp->f_mapping;
2085
2086 if (!mapping->a_ops->readpage)
2087 return -ENOEXEC;
2088
2089 file_accessed(filp);
2090 vma->vm_ops = &btrfs_file_vm_ops;
2091
2092 return 0;
2093 }
2094
2095 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2096 int slot, u64 start, u64 end)
2097 {
2098 struct btrfs_file_extent_item *fi;
2099 struct btrfs_key key;
2100
2101 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2102 return 0;
2103
2104 btrfs_item_key_to_cpu(leaf, &key, slot);
2105 if (key.objectid != btrfs_ino(inode) ||
2106 key.type != BTRFS_EXTENT_DATA_KEY)
2107 return 0;
2108
2109 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2110
2111 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2112 return 0;
2113
2114 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2115 return 0;
2116
2117 if (key.offset == end)
2118 return 1;
2119 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2120 return 1;
2121 return 0;
2122 }
2123
2124 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2125 struct btrfs_path *path, u64 offset, u64 end)
2126 {
2127 struct btrfs_root *root = BTRFS_I(inode)->root;
2128 struct extent_buffer *leaf;
2129 struct btrfs_file_extent_item *fi;
2130 struct extent_map *hole_em;
2131 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2132 struct btrfs_key key;
2133 int ret;
2134
2135 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2136 goto out;
2137
2138 key.objectid = btrfs_ino(inode);
2139 key.type = BTRFS_EXTENT_DATA_KEY;
2140 key.offset = offset;
2141
2142 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2143 if (ret < 0)
2144 return ret;
2145 BUG_ON(!ret);
2146
2147 leaf = path->nodes[0];
2148 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2149 u64 num_bytes;
2150
2151 path->slots[0]--;
2152 fi = btrfs_item_ptr(leaf, path->slots[0],
2153 struct btrfs_file_extent_item);
2154 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2155 end - offset;
2156 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2157 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2158 btrfs_set_file_extent_offset(leaf, fi, 0);
2159 btrfs_mark_buffer_dirty(leaf);
2160 goto out;
2161 }
2162
2163 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2164 u64 num_bytes;
2165
2166 key.offset = offset;
2167 btrfs_set_item_key_safe(root->fs_info, path, &key);
2168 fi = btrfs_item_ptr(leaf, path->slots[0],
2169 struct btrfs_file_extent_item);
2170 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2171 offset;
2172 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2173 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2174 btrfs_set_file_extent_offset(leaf, fi, 0);
2175 btrfs_mark_buffer_dirty(leaf);
2176 goto out;
2177 }
2178 btrfs_release_path(path);
2179
2180 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2181 0, 0, end - offset, 0, end - offset,
2182 0, 0, 0);
2183 if (ret)
2184 return ret;
2185
2186 out:
2187 btrfs_release_path(path);
2188
2189 hole_em = alloc_extent_map();
2190 if (!hole_em) {
2191 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2192 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2193 &BTRFS_I(inode)->runtime_flags);
2194 } else {
2195 hole_em->start = offset;
2196 hole_em->len = end - offset;
2197 hole_em->ram_bytes = hole_em->len;
2198 hole_em->orig_start = offset;
2199
2200 hole_em->block_start = EXTENT_MAP_HOLE;
2201 hole_em->block_len = 0;
2202 hole_em->orig_block_len = 0;
2203 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2204 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2205 hole_em->generation = trans->transid;
2206
2207 do {
2208 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2209 write_lock(&em_tree->lock);
2210 ret = add_extent_mapping(em_tree, hole_em, 1);
2211 write_unlock(&em_tree->lock);
2212 } while (ret == -EEXIST);
2213 free_extent_map(hole_em);
2214 if (ret)
2215 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2216 &BTRFS_I(inode)->runtime_flags);
2217 }
2218
2219 return 0;
2220 }
2221
2222 /*
2223 * Find a hole extent on given inode and change start/len to the end of hole
2224 * extent.(hole/vacuum extent whose em->start <= start &&
2225 * em->start + em->len > start)
2226 * When a hole extent is found, return 1 and modify start/len.
2227 */
2228 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2229 {
2230 struct extent_map *em;
2231 int ret = 0;
2232
2233 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2234 if (IS_ERR_OR_NULL(em)) {
2235 if (!em)
2236 ret = -ENOMEM;
2237 else
2238 ret = PTR_ERR(em);
2239 return ret;
2240 }
2241
2242 /* Hole or vacuum extent(only exists in no-hole mode) */
2243 if (em->block_start == EXTENT_MAP_HOLE) {
2244 ret = 1;
2245 *len = em->start + em->len > *start + *len ?
2246 0 : *start + *len - em->start - em->len;
2247 *start = em->start + em->len;
2248 }
2249 free_extent_map(em);
2250 return ret;
2251 }
2252
2253 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2254 {
2255 struct btrfs_root *root = BTRFS_I(inode)->root;
2256 struct extent_state *cached_state = NULL;
2257 struct btrfs_path *path;
2258 struct btrfs_block_rsv *rsv;
2259 struct btrfs_trans_handle *trans;
2260 u64 lockstart;
2261 u64 lockend;
2262 u64 tail_start;
2263 u64 tail_len;
2264 u64 orig_start = offset;
2265 u64 cur_offset;
2266 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2267 u64 drop_end;
2268 int ret = 0;
2269 int err = 0;
2270 unsigned int rsv_count;
2271 bool same_page;
2272 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2273 u64 ino_size;
2274 bool truncated_page = false;
2275 bool updated_inode = false;
2276
2277 ret = btrfs_wait_ordered_range(inode, offset, len);
2278 if (ret)
2279 return ret;
2280
2281 mutex_lock(&inode->i_mutex);
2282 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2283 ret = find_first_non_hole(inode, &offset, &len);
2284 if (ret < 0)
2285 goto out_only_mutex;
2286 if (ret && !len) {
2287 /* Already in a large hole */
2288 ret = 0;
2289 goto out_only_mutex;
2290 }
2291
2292 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2293 lockend = round_down(offset + len,
2294 BTRFS_I(inode)->root->sectorsize) - 1;
2295 same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2296 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2297
2298 /*
2299 * We needn't truncate any page which is beyond the end of the file
2300 * because we are sure there is no data there.
2301 */
2302 /*
2303 * Only do this if we are in the same page and we aren't doing the
2304 * entire page.
2305 */
2306 if (same_page && len < PAGE_CACHE_SIZE) {
2307 if (offset < ino_size) {
2308 truncated_page = true;
2309 ret = btrfs_truncate_page(inode, offset, len, 0);
2310 } else {
2311 ret = 0;
2312 }
2313 goto out_only_mutex;
2314 }
2315
2316 /* zero back part of the first page */
2317 if (offset < ino_size) {
2318 truncated_page = true;
2319 ret = btrfs_truncate_page(inode, offset, 0, 0);
2320 if (ret) {
2321 mutex_unlock(&inode->i_mutex);
2322 return ret;
2323 }
2324 }
2325
2326 /* Check the aligned pages after the first unaligned page,
2327 * if offset != orig_start, which means the first unaligned page
2328 * including serveral following pages are already in holes,
2329 * the extra check can be skipped */
2330 if (offset == orig_start) {
2331 /* after truncate page, check hole again */
2332 len = offset + len - lockstart;
2333 offset = lockstart;
2334 ret = find_first_non_hole(inode, &offset, &len);
2335 if (ret < 0)
2336 goto out_only_mutex;
2337 if (ret && !len) {
2338 ret = 0;
2339 goto out_only_mutex;
2340 }
2341 lockstart = offset;
2342 }
2343
2344 /* Check the tail unaligned part is in a hole */
2345 tail_start = lockend + 1;
2346 tail_len = offset + len - tail_start;
2347 if (tail_len) {
2348 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2349 if (unlikely(ret < 0))
2350 goto out_only_mutex;
2351 if (!ret) {
2352 /* zero the front end of the last page */
2353 if (tail_start + tail_len < ino_size) {
2354 truncated_page = true;
2355 ret = btrfs_truncate_page(inode,
2356 tail_start + tail_len, 0, 1);
2357 if (ret)
2358 goto out_only_mutex;
2359 }
2360 }
2361 }
2362
2363 if (lockend < lockstart) {
2364 ret = 0;
2365 goto out_only_mutex;
2366 }
2367
2368 while (1) {
2369 struct btrfs_ordered_extent *ordered;
2370
2371 truncate_pagecache_range(inode, lockstart, lockend);
2372
2373 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2374 0, &cached_state);
2375 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2376
2377 /*
2378 * We need to make sure we have no ordered extents in this range
2379 * and nobody raced in and read a page in this range, if we did
2380 * we need to try again.
2381 */
2382 if ((!ordered ||
2383 (ordered->file_offset + ordered->len <= lockstart ||
2384 ordered->file_offset > lockend)) &&
2385 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2386 if (ordered)
2387 btrfs_put_ordered_extent(ordered);
2388 break;
2389 }
2390 if (ordered)
2391 btrfs_put_ordered_extent(ordered);
2392 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2393 lockend, &cached_state, GFP_NOFS);
2394 ret = btrfs_wait_ordered_range(inode, lockstart,
2395 lockend - lockstart + 1);
2396 if (ret) {
2397 mutex_unlock(&inode->i_mutex);
2398 return ret;
2399 }
2400 }
2401
2402 path = btrfs_alloc_path();
2403 if (!path) {
2404 ret = -ENOMEM;
2405 goto out;
2406 }
2407
2408 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2409 if (!rsv) {
2410 ret = -ENOMEM;
2411 goto out_free;
2412 }
2413 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2414 rsv->failfast = 1;
2415
2416 /*
2417 * 1 - update the inode
2418 * 1 - removing the extents in the range
2419 * 1 - adding the hole extent if no_holes isn't set
2420 */
2421 rsv_count = no_holes ? 2 : 3;
2422 trans = btrfs_start_transaction(root, rsv_count);
2423 if (IS_ERR(trans)) {
2424 err = PTR_ERR(trans);
2425 goto out_free;
2426 }
2427
2428 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2429 min_size);
2430 BUG_ON(ret);
2431 trans->block_rsv = rsv;
2432
2433 cur_offset = lockstart;
2434 len = lockend - cur_offset;
2435 while (cur_offset < lockend) {
2436 ret = __btrfs_drop_extents(trans, root, inode, path,
2437 cur_offset, lockend + 1,
2438 &drop_end, 1, 0, 0, NULL);
2439 if (ret != -ENOSPC)
2440 break;
2441
2442 trans->block_rsv = &root->fs_info->trans_block_rsv;
2443
2444 if (cur_offset < ino_size) {
2445 ret = fill_holes(trans, inode, path, cur_offset,
2446 drop_end);
2447 if (ret) {
2448 err = ret;
2449 break;
2450 }
2451 }
2452
2453 cur_offset = drop_end;
2454
2455 ret = btrfs_update_inode(trans, root, inode);
2456 if (ret) {
2457 err = ret;
2458 break;
2459 }
2460
2461 btrfs_end_transaction(trans, root);
2462 btrfs_btree_balance_dirty(root);
2463
2464 trans = btrfs_start_transaction(root, rsv_count);
2465 if (IS_ERR(trans)) {
2466 ret = PTR_ERR(trans);
2467 trans = NULL;
2468 break;
2469 }
2470
2471 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2472 rsv, min_size);
2473 BUG_ON(ret); /* shouldn't happen */
2474 trans->block_rsv = rsv;
2475
2476 ret = find_first_non_hole(inode, &cur_offset, &len);
2477 if (unlikely(ret < 0))
2478 break;
2479 if (ret && !len) {
2480 ret = 0;
2481 break;
2482 }
2483 }
2484
2485 if (ret) {
2486 err = ret;
2487 goto out_trans;
2488 }
2489
2490 trans->block_rsv = &root->fs_info->trans_block_rsv;
2491 /*
2492 * Don't insert file hole extent item if it's for a range beyond eof
2493 * (because it's useless) or if it represents a 0 bytes range (when
2494 * cur_offset == drop_end).
2495 */
2496 if (cur_offset < ino_size && cur_offset < drop_end) {
2497 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2498 if (ret) {
2499 err = ret;
2500 goto out_trans;
2501 }
2502 }
2503
2504 out_trans:
2505 if (!trans)
2506 goto out_free;
2507
2508 inode_inc_iversion(inode);
2509 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2510
2511 trans->block_rsv = &root->fs_info->trans_block_rsv;
2512 ret = btrfs_update_inode(trans, root, inode);
2513 updated_inode = true;
2514 btrfs_end_transaction(trans, root);
2515 btrfs_btree_balance_dirty(root);
2516 out_free:
2517 btrfs_free_path(path);
2518 btrfs_free_block_rsv(root, rsv);
2519 out:
2520 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2521 &cached_state, GFP_NOFS);
2522 out_only_mutex:
2523 if (!updated_inode && truncated_page && !ret && !err) {
2524 /*
2525 * If we only end up zeroing part of a page, we still need to
2526 * update the inode item, so that all the time fields are
2527 * updated as well as the necessary btrfs inode in memory fields
2528 * for detecting, at fsync time, if the inode isn't yet in the
2529 * log tree or it's there but not up to date.
2530 */
2531 trans = btrfs_start_transaction(root, 1);
2532 if (IS_ERR(trans)) {
2533 err = PTR_ERR(trans);
2534 } else {
2535 err = btrfs_update_inode(trans, root, inode);
2536 ret = btrfs_end_transaction(trans, root);
2537 }
2538 }
2539 mutex_unlock(&inode->i_mutex);
2540 if (ret && !err)
2541 err = ret;
2542 return err;
2543 }
2544
2545 /* Helper structure to record which range is already reserved */
2546 struct falloc_range {
2547 struct list_head list;
2548 u64 start;
2549 u64 len;
2550 };
2551
2552 /*
2553 * Helper function to add falloc range
2554 *
2555 * Caller should have locked the larger range of extent containing
2556 * [start, len)
2557 */
2558 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2559 {
2560 struct falloc_range *prev = NULL;
2561 struct falloc_range *range = NULL;
2562
2563 if (list_empty(head))
2564 goto insert;
2565
2566 /*
2567 * As fallocate iterate by bytenr order, we only need to check
2568 * the last range.
2569 */
2570 prev = list_entry(head->prev, struct falloc_range, list);
2571 if (prev->start + prev->len == start) {
2572 prev->len += len;
2573 return 0;
2574 }
2575 insert:
2576 range = kmalloc(sizeof(*range), GFP_NOFS);
2577 if (!range)
2578 return -ENOMEM;
2579 range->start = start;
2580 range->len = len;
2581 list_add_tail(&range->list, head);
2582 return 0;
2583 }
2584
2585 static long btrfs_fallocate(struct file *file, int mode,
2586 loff_t offset, loff_t len)
2587 {
2588 struct inode *inode = file_inode(file);
2589 struct extent_state *cached_state = NULL;
2590 struct falloc_range *range;
2591 struct falloc_range *tmp;
2592 struct list_head reserve_list;
2593 u64 cur_offset;
2594 u64 last_byte;
2595 u64 alloc_start;
2596 u64 alloc_end;
2597 u64 alloc_hint = 0;
2598 u64 locked_end;
2599 u64 actual_end = 0;
2600 struct extent_map *em;
2601 int blocksize = BTRFS_I(inode)->root->sectorsize;
2602 int ret;
2603
2604 alloc_start = round_down(offset, blocksize);
2605 alloc_end = round_up(offset + len, blocksize);
2606
2607 /* Make sure we aren't being give some crap mode */
2608 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2609 return -EOPNOTSUPP;
2610
2611 if (mode & FALLOC_FL_PUNCH_HOLE)
2612 return btrfs_punch_hole(inode, offset, len);
2613
2614 /*
2615 * Only trigger disk allocation, don't trigger qgroup reserve
2616 *
2617 * For qgroup space, it will be checked later.
2618 */
2619 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2620 if (ret < 0)
2621 return ret;
2622
2623 mutex_lock(&inode->i_mutex);
2624 ret = inode_newsize_ok(inode, alloc_end);
2625 if (ret)
2626 goto out;
2627
2628 /*
2629 * TODO: Move these two operations after we have checked
2630 * accurate reserved space, or fallocate can still fail but
2631 * with page truncated or size expanded.
2632 *
2633 * But that's a minor problem and won't do much harm BTW.
2634 */
2635 if (alloc_start > inode->i_size) {
2636 ret = btrfs_cont_expand(inode, i_size_read(inode),
2637 alloc_start);
2638 if (ret)
2639 goto out;
2640 } else {
2641 /*
2642 * If we are fallocating from the end of the file onward we
2643 * need to zero out the end of the page if i_size lands in the
2644 * middle of a page.
2645 */
2646 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2647 if (ret)
2648 goto out;
2649 }
2650
2651 /*
2652 * wait for ordered IO before we have any locks. We'll loop again
2653 * below with the locks held.
2654 */
2655 ret = btrfs_wait_ordered_range(inode, alloc_start,
2656 alloc_end - alloc_start);
2657 if (ret)
2658 goto out;
2659
2660 locked_end = alloc_end - 1;
2661 while (1) {
2662 struct btrfs_ordered_extent *ordered;
2663
2664 /* the extent lock is ordered inside the running
2665 * transaction
2666 */
2667 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2668 locked_end, 0, &cached_state);
2669 ordered = btrfs_lookup_first_ordered_extent(inode,
2670 alloc_end - 1);
2671 if (ordered &&
2672 ordered->file_offset + ordered->len > alloc_start &&
2673 ordered->file_offset < alloc_end) {
2674 btrfs_put_ordered_extent(ordered);
2675 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2676 alloc_start, locked_end,
2677 &cached_state, GFP_NOFS);
2678 /*
2679 * we can't wait on the range with the transaction
2680 * running or with the extent lock held
2681 */
2682 ret = btrfs_wait_ordered_range(inode, alloc_start,
2683 alloc_end - alloc_start);
2684 if (ret)
2685 goto out;
2686 } else {
2687 if (ordered)
2688 btrfs_put_ordered_extent(ordered);
2689 break;
2690 }
2691 }
2692
2693 /* First, check if we exceed the qgroup limit */
2694 INIT_LIST_HEAD(&reserve_list);
2695 cur_offset = alloc_start;
2696 while (1) {
2697 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2698 alloc_end - cur_offset, 0);
2699 if (IS_ERR_OR_NULL(em)) {
2700 if (!em)
2701 ret = -ENOMEM;
2702 else
2703 ret = PTR_ERR(em);
2704 break;
2705 }
2706 last_byte = min(extent_map_end(em), alloc_end);
2707 actual_end = min_t(u64, extent_map_end(em), offset + len);
2708 last_byte = ALIGN(last_byte, blocksize);
2709 if (em->block_start == EXTENT_MAP_HOLE ||
2710 (cur_offset >= inode->i_size &&
2711 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2712 ret = add_falloc_range(&reserve_list, cur_offset,
2713 last_byte - cur_offset);
2714 if (ret < 0) {
2715 free_extent_map(em);
2716 break;
2717 }
2718 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2719 last_byte - cur_offset);
2720 if (ret < 0)
2721 break;
2722 }
2723 free_extent_map(em);
2724 cur_offset = last_byte;
2725 if (cur_offset >= alloc_end)
2726 break;
2727 }
2728
2729 /*
2730 * If ret is still 0, means we're OK to fallocate.
2731 * Or just cleanup the list and exit.
2732 */
2733 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2734 if (!ret)
2735 ret = btrfs_prealloc_file_range(inode, mode,
2736 range->start,
2737 range->len, 1 << inode->i_blkbits,
2738 offset + len, &alloc_hint);
2739 list_del(&range->list);
2740 kfree(range);
2741 }
2742 if (ret < 0)
2743 goto out_unlock;
2744
2745 if (actual_end > inode->i_size &&
2746 !(mode & FALLOC_FL_KEEP_SIZE)) {
2747 struct btrfs_trans_handle *trans;
2748 struct btrfs_root *root = BTRFS_I(inode)->root;
2749
2750 /*
2751 * We didn't need to allocate any more space, but we
2752 * still extended the size of the file so we need to
2753 * update i_size and the inode item.
2754 */
2755 trans = btrfs_start_transaction(root, 1);
2756 if (IS_ERR(trans)) {
2757 ret = PTR_ERR(trans);
2758 } else {
2759 inode->i_ctime = CURRENT_TIME;
2760 i_size_write(inode, actual_end);
2761 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2762 ret = btrfs_update_inode(trans, root, inode);
2763 if (ret)
2764 btrfs_end_transaction(trans, root);
2765 else
2766 ret = btrfs_end_transaction(trans, root);
2767 }
2768 }
2769 out_unlock:
2770 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2771 &cached_state, GFP_NOFS);
2772 out:
2773 /*
2774 * As we waited the extent range, the data_rsv_map must be empty
2775 * in the range, as written data range will be released from it.
2776 * And for prealloacted extent, it will also be released when
2777 * its metadata is written.
2778 * So this is completely used as cleanup.
2779 */
2780 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2781 mutex_unlock(&inode->i_mutex);
2782 /* Let go of our reservation. */
2783 btrfs_free_reserved_data_space(inode, alloc_start,
2784 alloc_end - alloc_start);
2785 return ret;
2786 }
2787
2788 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2789 {
2790 struct btrfs_root *root = BTRFS_I(inode)->root;
2791 struct extent_map *em = NULL;
2792 struct extent_state *cached_state = NULL;
2793 u64 lockstart;
2794 u64 lockend;
2795 u64 start;
2796 u64 len;
2797 int ret = 0;
2798
2799 if (inode->i_size == 0)
2800 return -ENXIO;
2801
2802 /*
2803 * *offset can be negative, in this case we start finding DATA/HOLE from
2804 * the very start of the file.
2805 */
2806 start = max_t(loff_t, 0, *offset);
2807
2808 lockstart = round_down(start, root->sectorsize);
2809 lockend = round_up(i_size_read(inode), root->sectorsize);
2810 if (lockend <= lockstart)
2811 lockend = lockstart + root->sectorsize;
2812 lockend--;
2813 len = lockend - lockstart + 1;
2814
2815 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2816 &cached_state);
2817
2818 while (start < inode->i_size) {
2819 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2820 if (IS_ERR(em)) {
2821 ret = PTR_ERR(em);
2822 em = NULL;
2823 break;
2824 }
2825
2826 if (whence == SEEK_HOLE &&
2827 (em->block_start == EXTENT_MAP_HOLE ||
2828 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2829 break;
2830 else if (whence == SEEK_DATA &&
2831 (em->block_start != EXTENT_MAP_HOLE &&
2832 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2833 break;
2834
2835 start = em->start + em->len;
2836 free_extent_map(em);
2837 em = NULL;
2838 cond_resched();
2839 }
2840 free_extent_map(em);
2841 if (!ret) {
2842 if (whence == SEEK_DATA && start >= inode->i_size)
2843 ret = -ENXIO;
2844 else
2845 *offset = min_t(loff_t, start, inode->i_size);
2846 }
2847 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2848 &cached_state, GFP_NOFS);
2849 return ret;
2850 }
2851
2852 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2853 {
2854 struct inode *inode = file->f_mapping->host;
2855 int ret;
2856
2857 mutex_lock(&inode->i_mutex);
2858 switch (whence) {
2859 case SEEK_END:
2860 case SEEK_CUR:
2861 offset = generic_file_llseek(file, offset, whence);
2862 goto out;
2863 case SEEK_DATA:
2864 case SEEK_HOLE:
2865 if (offset >= i_size_read(inode)) {
2866 mutex_unlock(&inode->i_mutex);
2867 return -ENXIO;
2868 }
2869
2870 ret = find_desired_extent(inode, &offset, whence);
2871 if (ret) {
2872 mutex_unlock(&inode->i_mutex);
2873 return ret;
2874 }
2875 }
2876
2877 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2878 out:
2879 mutex_unlock(&inode->i_mutex);
2880 return offset;
2881 }
2882
2883 const struct file_operations btrfs_file_operations = {
2884 .llseek = btrfs_file_llseek,
2885 .read_iter = generic_file_read_iter,
2886 .splice_read = generic_file_splice_read,
2887 .write_iter = btrfs_file_write_iter,
2888 .mmap = btrfs_file_mmap,
2889 .open = generic_file_open,
2890 .release = btrfs_release_file,
2891 .fsync = btrfs_sync_file,
2892 .fallocate = btrfs_fallocate,
2893 .unlocked_ioctl = btrfs_ioctl,
2894 #ifdef CONFIG_COMPAT
2895 .compat_ioctl = btrfs_ioctl,
2896 #endif
2897 };
2898
2899 void btrfs_auto_defrag_exit(void)
2900 {
2901 if (btrfs_inode_defrag_cachep)
2902 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2903 }
2904
2905 int btrfs_auto_defrag_init(void)
2906 {
2907 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2908 sizeof(struct inode_defrag), 0,
2909 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2910 NULL);
2911 if (!btrfs_inode_defrag_cachep)
2912 return -ENOMEM;
2913
2914 return 0;
2915 }
2916
2917 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2918 {
2919 int ret;
2920
2921 /*
2922 * So with compression we will find and lock a dirty page and clear the
2923 * first one as dirty, setup an async extent, and immediately return
2924 * with the entire range locked but with nobody actually marked with
2925 * writeback. So we can't just filemap_write_and_wait_range() and
2926 * expect it to work since it will just kick off a thread to do the
2927 * actual work. So we need to call filemap_fdatawrite_range _again_
2928 * since it will wait on the page lock, which won't be unlocked until
2929 * after the pages have been marked as writeback and so we're good to go
2930 * from there. We have to do this otherwise we'll miss the ordered
2931 * extents and that results in badness. Please Josef, do not think you
2932 * know better and pull this out at some point in the future, it is
2933 * right and you are wrong.
2934 */
2935 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2936 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2937 &BTRFS_I(inode)->runtime_flags))
2938 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2939
2940 return ret;
2941 }