]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/file.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/nico/orion into fixes
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42
43
44 /* simple helper to fault in pages and copy. This should go away
45 * and be replaced with calls into generic code.
46 */
47 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
48 int write_bytes,
49 struct page **prepared_pages,
50 struct iov_iter *i)
51 {
52 size_t copied = 0;
53 int pg = 0;
54 int offset = pos & (PAGE_CACHE_SIZE - 1);
55 int total_copied = 0;
56
57 while (write_bytes > 0) {
58 size_t count = min_t(size_t,
59 PAGE_CACHE_SIZE - offset, write_bytes);
60 struct page *page = prepared_pages[pg];
61 /*
62 * Copy data from userspace to the current page
63 *
64 * Disable pagefault to avoid recursive lock since
65 * the pages are already locked
66 */
67 pagefault_disable();
68 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
69 pagefault_enable();
70
71 /* Flush processor's dcache for this page */
72 flush_dcache_page(page);
73
74 /*
75 * if we get a partial write, we can end up with
76 * partially up to date pages. These add
77 * a lot of complexity, so make sure they don't
78 * happen by forcing this copy to be retried.
79 *
80 * The rest of the btrfs_file_write code will fall
81 * back to page at a time copies after we return 0.
82 */
83 if (!PageUptodate(page) && copied < count)
84 copied = 0;
85
86 iov_iter_advance(i, copied);
87 write_bytes -= copied;
88 total_copied += copied;
89
90 /* Return to btrfs_file_aio_write to fault page */
91 if (unlikely(copied == 0)) {
92 break;
93 }
94
95 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
96 offset += copied;
97 } else {
98 pg++;
99 offset = 0;
100 }
101 }
102 return total_copied;
103 }
104
105 /*
106 * unlocks pages after btrfs_file_write is done with them
107 */
108 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
109 {
110 size_t i;
111 for (i = 0; i < num_pages; i++) {
112 if (!pages[i])
113 break;
114 /* page checked is some magic around finding pages that
115 * have been modified without going through btrfs_set_page_dirty
116 * clear it here
117 */
118 ClearPageChecked(pages[i]);
119 unlock_page(pages[i]);
120 mark_page_accessed(pages[i]);
121 page_cache_release(pages[i]);
122 }
123 }
124
125 /*
126 * after copy_from_user, pages need to be dirtied and we need to make
127 * sure holes are created between the current EOF and the start of
128 * any next extents (if required).
129 *
130 * this also makes the decision about creating an inline extent vs
131 * doing real data extents, marking pages dirty and delalloc as required.
132 */
133 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root,
135 struct file *file,
136 struct page **pages,
137 size_t num_pages,
138 loff_t pos,
139 size_t write_bytes)
140 {
141 int err = 0;
142 int i;
143 struct inode *inode = fdentry(file)->d_inode;
144 u64 num_bytes;
145 u64 start_pos;
146 u64 end_of_last_block;
147 u64 end_pos = pos + write_bytes;
148 loff_t isize = i_size_read(inode);
149
150 start_pos = pos & ~((u64)root->sectorsize - 1);
151 num_bytes = (write_bytes + pos - start_pos +
152 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
153
154 end_of_last_block = start_pos + num_bytes - 1;
155 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
156 NULL);
157 BUG_ON(err);
158
159 for (i = 0; i < num_pages; i++) {
160 struct page *p = pages[i];
161 SetPageUptodate(p);
162 ClearPageChecked(p);
163 set_page_dirty(p);
164 }
165 if (end_pos > isize) {
166 i_size_write(inode, end_pos);
167 /* we've only changed i_size in ram, and we haven't updated
168 * the disk i_size. There is no need to log the inode
169 * at this time.
170 */
171 }
172 return 0;
173 }
174
175 /*
176 * this drops all the extents in the cache that intersect the range
177 * [start, end]. Existing extents are split as required.
178 */
179 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
180 int skip_pinned)
181 {
182 struct extent_map *em;
183 struct extent_map *split = NULL;
184 struct extent_map *split2 = NULL;
185 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
186 u64 len = end - start + 1;
187 int ret;
188 int testend = 1;
189 unsigned long flags;
190 int compressed = 0;
191
192 WARN_ON(end < start);
193 if (end == (u64)-1) {
194 len = (u64)-1;
195 testend = 0;
196 }
197 while (1) {
198 if (!split)
199 split = alloc_extent_map(GFP_NOFS);
200 if (!split2)
201 split2 = alloc_extent_map(GFP_NOFS);
202 BUG_ON(!split || !split2);
203
204 write_lock(&em_tree->lock);
205 em = lookup_extent_mapping(em_tree, start, len);
206 if (!em) {
207 write_unlock(&em_tree->lock);
208 break;
209 }
210 flags = em->flags;
211 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
212 if (testend && em->start + em->len >= start + len) {
213 free_extent_map(em);
214 write_unlock(&em_tree->lock);
215 break;
216 }
217 start = em->start + em->len;
218 if (testend)
219 len = start + len - (em->start + em->len);
220 free_extent_map(em);
221 write_unlock(&em_tree->lock);
222 continue;
223 }
224 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
225 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
226 remove_extent_mapping(em_tree, em);
227
228 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
229 em->start < start) {
230 split->start = em->start;
231 split->len = start - em->start;
232 split->orig_start = em->orig_start;
233 split->block_start = em->block_start;
234
235 if (compressed)
236 split->block_len = em->block_len;
237 else
238 split->block_len = split->len;
239
240 split->bdev = em->bdev;
241 split->flags = flags;
242 split->compress_type = em->compress_type;
243 ret = add_extent_mapping(em_tree, split);
244 BUG_ON(ret);
245 free_extent_map(split);
246 split = split2;
247 split2 = NULL;
248 }
249 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
250 testend && em->start + em->len > start + len) {
251 u64 diff = start + len - em->start;
252
253 split->start = start + len;
254 split->len = em->start + em->len - (start + len);
255 split->bdev = em->bdev;
256 split->flags = flags;
257 split->compress_type = em->compress_type;
258
259 if (compressed) {
260 split->block_len = em->block_len;
261 split->block_start = em->block_start;
262 split->orig_start = em->orig_start;
263 } else {
264 split->block_len = split->len;
265 split->block_start = em->block_start + diff;
266 split->orig_start = split->start;
267 }
268
269 ret = add_extent_mapping(em_tree, split);
270 BUG_ON(ret);
271 free_extent_map(split);
272 split = NULL;
273 }
274 write_unlock(&em_tree->lock);
275
276 /* once for us */
277 free_extent_map(em);
278 /* once for the tree*/
279 free_extent_map(em);
280 }
281 if (split)
282 free_extent_map(split);
283 if (split2)
284 free_extent_map(split2);
285 return 0;
286 }
287
288 /*
289 * this is very complex, but the basic idea is to drop all extents
290 * in the range start - end. hint_block is filled in with a block number
291 * that would be a good hint to the block allocator for this file.
292 *
293 * If an extent intersects the range but is not entirely inside the range
294 * it is either truncated or split. Anything entirely inside the range
295 * is deleted from the tree.
296 */
297 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
298 u64 start, u64 end, u64 *hint_byte, int drop_cache)
299 {
300 struct btrfs_root *root = BTRFS_I(inode)->root;
301 struct extent_buffer *leaf;
302 struct btrfs_file_extent_item *fi;
303 struct btrfs_path *path;
304 struct btrfs_key key;
305 struct btrfs_key new_key;
306 u64 search_start = start;
307 u64 disk_bytenr = 0;
308 u64 num_bytes = 0;
309 u64 extent_offset = 0;
310 u64 extent_end = 0;
311 int del_nr = 0;
312 int del_slot = 0;
313 int extent_type;
314 int recow;
315 int ret;
316
317 if (drop_cache)
318 btrfs_drop_extent_cache(inode, start, end - 1, 0);
319
320 path = btrfs_alloc_path();
321 if (!path)
322 return -ENOMEM;
323
324 while (1) {
325 recow = 0;
326 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
327 search_start, -1);
328 if (ret < 0)
329 break;
330 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
331 leaf = path->nodes[0];
332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
333 if (key.objectid == inode->i_ino &&
334 key.type == BTRFS_EXTENT_DATA_KEY)
335 path->slots[0]--;
336 }
337 ret = 0;
338 next_slot:
339 leaf = path->nodes[0];
340 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
341 BUG_ON(del_nr > 0);
342 ret = btrfs_next_leaf(root, path);
343 if (ret < 0)
344 break;
345 if (ret > 0) {
346 ret = 0;
347 break;
348 }
349 leaf = path->nodes[0];
350 recow = 1;
351 }
352
353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
354 if (key.objectid > inode->i_ino ||
355 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
356 break;
357
358 fi = btrfs_item_ptr(leaf, path->slots[0],
359 struct btrfs_file_extent_item);
360 extent_type = btrfs_file_extent_type(leaf, fi);
361
362 if (extent_type == BTRFS_FILE_EXTENT_REG ||
363 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
364 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
365 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
366 extent_offset = btrfs_file_extent_offset(leaf, fi);
367 extent_end = key.offset +
368 btrfs_file_extent_num_bytes(leaf, fi);
369 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
370 extent_end = key.offset +
371 btrfs_file_extent_inline_len(leaf, fi);
372 } else {
373 WARN_ON(1);
374 extent_end = search_start;
375 }
376
377 if (extent_end <= search_start) {
378 path->slots[0]++;
379 goto next_slot;
380 }
381
382 search_start = max(key.offset, start);
383 if (recow) {
384 btrfs_release_path(root, path);
385 continue;
386 }
387
388 /*
389 * | - range to drop - |
390 * | -------- extent -------- |
391 */
392 if (start > key.offset && end < extent_end) {
393 BUG_ON(del_nr > 0);
394 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
395
396 memcpy(&new_key, &key, sizeof(new_key));
397 new_key.offset = start;
398 ret = btrfs_duplicate_item(trans, root, path,
399 &new_key);
400 if (ret == -EAGAIN) {
401 btrfs_release_path(root, path);
402 continue;
403 }
404 if (ret < 0)
405 break;
406
407 leaf = path->nodes[0];
408 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
409 struct btrfs_file_extent_item);
410 btrfs_set_file_extent_num_bytes(leaf, fi,
411 start - key.offset);
412
413 fi = btrfs_item_ptr(leaf, path->slots[0],
414 struct btrfs_file_extent_item);
415
416 extent_offset += start - key.offset;
417 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
418 btrfs_set_file_extent_num_bytes(leaf, fi,
419 extent_end - start);
420 btrfs_mark_buffer_dirty(leaf);
421
422 if (disk_bytenr > 0) {
423 ret = btrfs_inc_extent_ref(trans, root,
424 disk_bytenr, num_bytes, 0,
425 root->root_key.objectid,
426 new_key.objectid,
427 start - extent_offset);
428 BUG_ON(ret);
429 *hint_byte = disk_bytenr;
430 }
431 key.offset = start;
432 }
433 /*
434 * | ---- range to drop ----- |
435 * | -------- extent -------- |
436 */
437 if (start <= key.offset && end < extent_end) {
438 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
439
440 memcpy(&new_key, &key, sizeof(new_key));
441 new_key.offset = end;
442 btrfs_set_item_key_safe(trans, root, path, &new_key);
443
444 extent_offset += end - key.offset;
445 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
446 btrfs_set_file_extent_num_bytes(leaf, fi,
447 extent_end - end);
448 btrfs_mark_buffer_dirty(leaf);
449 if (disk_bytenr > 0) {
450 inode_sub_bytes(inode, end - key.offset);
451 *hint_byte = disk_bytenr;
452 }
453 break;
454 }
455
456 search_start = extent_end;
457 /*
458 * | ---- range to drop ----- |
459 * | -------- extent -------- |
460 */
461 if (start > key.offset && end >= extent_end) {
462 BUG_ON(del_nr > 0);
463 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
464
465 btrfs_set_file_extent_num_bytes(leaf, fi,
466 start - key.offset);
467 btrfs_mark_buffer_dirty(leaf);
468 if (disk_bytenr > 0) {
469 inode_sub_bytes(inode, extent_end - start);
470 *hint_byte = disk_bytenr;
471 }
472 if (end == extent_end)
473 break;
474
475 path->slots[0]++;
476 goto next_slot;
477 }
478
479 /*
480 * | ---- range to drop ----- |
481 * | ------ extent ------ |
482 */
483 if (start <= key.offset && end >= extent_end) {
484 if (del_nr == 0) {
485 del_slot = path->slots[0];
486 del_nr = 1;
487 } else {
488 BUG_ON(del_slot + del_nr != path->slots[0]);
489 del_nr++;
490 }
491
492 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
493 inode_sub_bytes(inode,
494 extent_end - key.offset);
495 extent_end = ALIGN(extent_end,
496 root->sectorsize);
497 } else if (disk_bytenr > 0) {
498 ret = btrfs_free_extent(trans, root,
499 disk_bytenr, num_bytes, 0,
500 root->root_key.objectid,
501 key.objectid, key.offset -
502 extent_offset);
503 BUG_ON(ret);
504 inode_sub_bytes(inode,
505 extent_end - key.offset);
506 *hint_byte = disk_bytenr;
507 }
508
509 if (end == extent_end)
510 break;
511
512 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
513 path->slots[0]++;
514 goto next_slot;
515 }
516
517 ret = btrfs_del_items(trans, root, path, del_slot,
518 del_nr);
519 BUG_ON(ret);
520
521 del_nr = 0;
522 del_slot = 0;
523
524 btrfs_release_path(root, path);
525 continue;
526 }
527
528 BUG_ON(1);
529 }
530
531 if (del_nr > 0) {
532 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
533 BUG_ON(ret);
534 }
535
536 btrfs_free_path(path);
537 return ret;
538 }
539
540 static int extent_mergeable(struct extent_buffer *leaf, int slot,
541 u64 objectid, u64 bytenr, u64 orig_offset,
542 u64 *start, u64 *end)
543 {
544 struct btrfs_file_extent_item *fi;
545 struct btrfs_key key;
546 u64 extent_end;
547
548 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
549 return 0;
550
551 btrfs_item_key_to_cpu(leaf, &key, slot);
552 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
553 return 0;
554
555 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
556 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
557 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
558 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
559 btrfs_file_extent_compression(leaf, fi) ||
560 btrfs_file_extent_encryption(leaf, fi) ||
561 btrfs_file_extent_other_encoding(leaf, fi))
562 return 0;
563
564 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
565 if ((*start && *start != key.offset) || (*end && *end != extent_end))
566 return 0;
567
568 *start = key.offset;
569 *end = extent_end;
570 return 1;
571 }
572
573 /*
574 * Mark extent in the range start - end as written.
575 *
576 * This changes extent type from 'pre-allocated' to 'regular'. If only
577 * part of extent is marked as written, the extent will be split into
578 * two or three.
579 */
580 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
581 struct inode *inode, u64 start, u64 end)
582 {
583 struct btrfs_root *root = BTRFS_I(inode)->root;
584 struct extent_buffer *leaf;
585 struct btrfs_path *path;
586 struct btrfs_file_extent_item *fi;
587 struct btrfs_key key;
588 struct btrfs_key new_key;
589 u64 bytenr;
590 u64 num_bytes;
591 u64 extent_end;
592 u64 orig_offset;
593 u64 other_start;
594 u64 other_end;
595 u64 split;
596 int del_nr = 0;
597 int del_slot = 0;
598 int recow;
599 int ret;
600
601 btrfs_drop_extent_cache(inode, start, end - 1, 0);
602
603 path = btrfs_alloc_path();
604 BUG_ON(!path);
605 again:
606 recow = 0;
607 split = start;
608 key.objectid = inode->i_ino;
609 key.type = BTRFS_EXTENT_DATA_KEY;
610 key.offset = split;
611
612 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
613 if (ret > 0 && path->slots[0] > 0)
614 path->slots[0]--;
615
616 leaf = path->nodes[0];
617 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
618 BUG_ON(key.objectid != inode->i_ino ||
619 key.type != BTRFS_EXTENT_DATA_KEY);
620 fi = btrfs_item_ptr(leaf, path->slots[0],
621 struct btrfs_file_extent_item);
622 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
623 BTRFS_FILE_EXTENT_PREALLOC);
624 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
625 BUG_ON(key.offset > start || extent_end < end);
626
627 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
628 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
629 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
630 memcpy(&new_key, &key, sizeof(new_key));
631
632 if (start == key.offset && end < extent_end) {
633 other_start = 0;
634 other_end = start;
635 if (extent_mergeable(leaf, path->slots[0] - 1,
636 inode->i_ino, bytenr, orig_offset,
637 &other_start, &other_end)) {
638 new_key.offset = end;
639 btrfs_set_item_key_safe(trans, root, path, &new_key);
640 fi = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
642 btrfs_set_file_extent_num_bytes(leaf, fi,
643 extent_end - end);
644 btrfs_set_file_extent_offset(leaf, fi,
645 end - orig_offset);
646 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
647 struct btrfs_file_extent_item);
648 btrfs_set_file_extent_num_bytes(leaf, fi,
649 end - other_start);
650 btrfs_mark_buffer_dirty(leaf);
651 goto out;
652 }
653 }
654
655 if (start > key.offset && end == extent_end) {
656 other_start = end;
657 other_end = 0;
658 if (extent_mergeable(leaf, path->slots[0] + 1,
659 inode->i_ino, bytenr, orig_offset,
660 &other_start, &other_end)) {
661 fi = btrfs_item_ptr(leaf, path->slots[0],
662 struct btrfs_file_extent_item);
663 btrfs_set_file_extent_num_bytes(leaf, fi,
664 start - key.offset);
665 path->slots[0]++;
666 new_key.offset = start;
667 btrfs_set_item_key_safe(trans, root, path, &new_key);
668
669 fi = btrfs_item_ptr(leaf, path->slots[0],
670 struct btrfs_file_extent_item);
671 btrfs_set_file_extent_num_bytes(leaf, fi,
672 other_end - start);
673 btrfs_set_file_extent_offset(leaf, fi,
674 start - orig_offset);
675 btrfs_mark_buffer_dirty(leaf);
676 goto out;
677 }
678 }
679
680 while (start > key.offset || end < extent_end) {
681 if (key.offset == start)
682 split = end;
683
684 new_key.offset = split;
685 ret = btrfs_duplicate_item(trans, root, path, &new_key);
686 if (ret == -EAGAIN) {
687 btrfs_release_path(root, path);
688 goto again;
689 }
690 BUG_ON(ret < 0);
691
692 leaf = path->nodes[0];
693 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
694 struct btrfs_file_extent_item);
695 btrfs_set_file_extent_num_bytes(leaf, fi,
696 split - key.offset);
697
698 fi = btrfs_item_ptr(leaf, path->slots[0],
699 struct btrfs_file_extent_item);
700
701 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
702 btrfs_set_file_extent_num_bytes(leaf, fi,
703 extent_end - split);
704 btrfs_mark_buffer_dirty(leaf);
705
706 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
707 root->root_key.objectid,
708 inode->i_ino, orig_offset);
709 BUG_ON(ret);
710
711 if (split == start) {
712 key.offset = start;
713 } else {
714 BUG_ON(start != key.offset);
715 path->slots[0]--;
716 extent_end = end;
717 }
718 recow = 1;
719 }
720
721 other_start = end;
722 other_end = 0;
723 if (extent_mergeable(leaf, path->slots[0] + 1,
724 inode->i_ino, bytenr, orig_offset,
725 &other_start, &other_end)) {
726 if (recow) {
727 btrfs_release_path(root, path);
728 goto again;
729 }
730 extent_end = other_end;
731 del_slot = path->slots[0] + 1;
732 del_nr++;
733 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
734 0, root->root_key.objectid,
735 inode->i_ino, orig_offset);
736 BUG_ON(ret);
737 }
738 other_start = 0;
739 other_end = start;
740 if (extent_mergeable(leaf, path->slots[0] - 1,
741 inode->i_ino, bytenr, orig_offset,
742 &other_start, &other_end)) {
743 if (recow) {
744 btrfs_release_path(root, path);
745 goto again;
746 }
747 key.offset = other_start;
748 del_slot = path->slots[0];
749 del_nr++;
750 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
751 0, root->root_key.objectid,
752 inode->i_ino, orig_offset);
753 BUG_ON(ret);
754 }
755 if (del_nr == 0) {
756 fi = btrfs_item_ptr(leaf, path->slots[0],
757 struct btrfs_file_extent_item);
758 btrfs_set_file_extent_type(leaf, fi,
759 BTRFS_FILE_EXTENT_REG);
760 btrfs_mark_buffer_dirty(leaf);
761 } else {
762 fi = btrfs_item_ptr(leaf, del_slot - 1,
763 struct btrfs_file_extent_item);
764 btrfs_set_file_extent_type(leaf, fi,
765 BTRFS_FILE_EXTENT_REG);
766 btrfs_set_file_extent_num_bytes(leaf, fi,
767 extent_end - key.offset);
768 btrfs_mark_buffer_dirty(leaf);
769
770 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
771 BUG_ON(ret);
772 }
773 out:
774 btrfs_free_path(path);
775 return 0;
776 }
777
778 /*
779 * on error we return an unlocked page and the error value
780 * on success we return a locked page and 0
781 */
782 static int prepare_uptodate_page(struct page *page, u64 pos)
783 {
784 int ret = 0;
785
786 if ((pos & (PAGE_CACHE_SIZE - 1)) && !PageUptodate(page)) {
787 ret = btrfs_readpage(NULL, page);
788 if (ret)
789 return ret;
790 lock_page(page);
791 if (!PageUptodate(page)) {
792 unlock_page(page);
793 return -EIO;
794 }
795 }
796 return 0;
797 }
798
799 /*
800 * this gets pages into the page cache and locks them down, it also properly
801 * waits for data=ordered extents to finish before allowing the pages to be
802 * modified.
803 */
804 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
805 struct page **pages, size_t num_pages,
806 loff_t pos, unsigned long first_index,
807 unsigned long last_index, size_t write_bytes)
808 {
809 struct extent_state *cached_state = NULL;
810 int i;
811 unsigned long index = pos >> PAGE_CACHE_SHIFT;
812 struct inode *inode = fdentry(file)->d_inode;
813 int err = 0;
814 int faili = 0;
815 u64 start_pos;
816 u64 last_pos;
817
818 start_pos = pos & ~((u64)root->sectorsize - 1);
819 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
820
821 if (start_pos > inode->i_size) {
822 err = btrfs_cont_expand(inode, start_pos);
823 if (err)
824 return err;
825 }
826
827 memset(pages, 0, num_pages * sizeof(struct page *));
828 again:
829 for (i = 0; i < num_pages; i++) {
830 pages[i] = grab_cache_page(inode->i_mapping, index + i);
831 if (!pages[i]) {
832 faili = i - 1;
833 err = -ENOMEM;
834 goto fail;
835 }
836
837 if (i == 0)
838 err = prepare_uptodate_page(pages[i], pos);
839 if (i == num_pages - 1)
840 err = prepare_uptodate_page(pages[i],
841 pos + write_bytes);
842 if (err) {
843 page_cache_release(pages[i]);
844 faili = i - 1;
845 goto fail;
846 }
847 wait_on_page_writeback(pages[i]);
848 }
849 err = 0;
850 if (start_pos < inode->i_size) {
851 struct btrfs_ordered_extent *ordered;
852 lock_extent_bits(&BTRFS_I(inode)->io_tree,
853 start_pos, last_pos - 1, 0, &cached_state,
854 GFP_NOFS);
855 ordered = btrfs_lookup_first_ordered_extent(inode,
856 last_pos - 1);
857 if (ordered &&
858 ordered->file_offset + ordered->len > start_pos &&
859 ordered->file_offset < last_pos) {
860 btrfs_put_ordered_extent(ordered);
861 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
862 start_pos, last_pos - 1,
863 &cached_state, GFP_NOFS);
864 for (i = 0; i < num_pages; i++) {
865 unlock_page(pages[i]);
866 page_cache_release(pages[i]);
867 }
868 btrfs_wait_ordered_range(inode, start_pos,
869 last_pos - start_pos);
870 goto again;
871 }
872 if (ordered)
873 btrfs_put_ordered_extent(ordered);
874
875 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
876 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
877 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
878 GFP_NOFS);
879 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
880 start_pos, last_pos - 1, &cached_state,
881 GFP_NOFS);
882 }
883 for (i = 0; i < num_pages; i++) {
884 clear_page_dirty_for_io(pages[i]);
885 set_page_extent_mapped(pages[i]);
886 WARN_ON(!PageLocked(pages[i]));
887 }
888 return 0;
889 fail:
890 while (faili >= 0) {
891 unlock_page(pages[faili]);
892 page_cache_release(pages[faili]);
893 faili--;
894 }
895 return err;
896
897 }
898
899 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
900 const struct iovec *iov,
901 unsigned long nr_segs, loff_t pos)
902 {
903 struct file *file = iocb->ki_filp;
904 struct inode *inode = fdentry(file)->d_inode;
905 struct btrfs_root *root = BTRFS_I(inode)->root;
906 struct page **pages = NULL;
907 struct iov_iter i;
908 loff_t *ppos = &iocb->ki_pos;
909 loff_t start_pos;
910 ssize_t num_written = 0;
911 ssize_t err = 0;
912 size_t count;
913 size_t ocount;
914 int ret = 0;
915 int nrptrs;
916 unsigned long first_index;
917 unsigned long last_index;
918 int will_write;
919 int buffered = 0;
920 int copied = 0;
921 int dirty_pages = 0;
922
923 will_write = ((file->f_flags & O_DSYNC) || IS_SYNC(inode) ||
924 (file->f_flags & O_DIRECT));
925
926 start_pos = pos;
927
928 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
929
930 mutex_lock(&inode->i_mutex);
931
932 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
933 if (err)
934 goto out;
935 count = ocount;
936
937 current->backing_dev_info = inode->i_mapping->backing_dev_info;
938 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
939 if (err)
940 goto out;
941
942 if (count == 0)
943 goto out;
944
945 err = file_remove_suid(file);
946 if (err)
947 goto out;
948
949 /*
950 * If BTRFS flips readonly due to some impossible error
951 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
952 * although we have opened a file as writable, we have
953 * to stop this write operation to ensure FS consistency.
954 */
955 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
956 err = -EROFS;
957 goto out;
958 }
959
960 file_update_time(file);
961 BTRFS_I(inode)->sequence++;
962
963 if (unlikely(file->f_flags & O_DIRECT)) {
964 num_written = generic_file_direct_write(iocb, iov, &nr_segs,
965 pos, ppos, count,
966 ocount);
967 /*
968 * the generic O_DIRECT will update in-memory i_size after the
969 * DIOs are done. But our endio handlers that update the on
970 * disk i_size never update past the in memory i_size. So we
971 * need one more update here to catch any additions to the
972 * file
973 */
974 if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
975 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
976 mark_inode_dirty(inode);
977 }
978
979 if (num_written < 0) {
980 ret = num_written;
981 num_written = 0;
982 goto out;
983 } else if (num_written == count) {
984 /* pick up pos changes done by the generic code */
985 pos = *ppos;
986 goto out;
987 }
988 /*
989 * We are going to do buffered for the rest of the range, so we
990 * need to make sure to invalidate the buffered pages when we're
991 * done.
992 */
993 buffered = 1;
994 pos += num_written;
995 }
996
997 iov_iter_init(&i, iov, nr_segs, count, num_written);
998 nrptrs = min((iov_iter_count(&i) + PAGE_CACHE_SIZE - 1) /
999 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1000 (sizeof(struct page *)));
1001 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1002 if (!pages) {
1003 ret = -ENOMEM;
1004 goto out;
1005 }
1006
1007 /* generic_write_checks can change our pos */
1008 start_pos = pos;
1009
1010 first_index = pos >> PAGE_CACHE_SHIFT;
1011 last_index = (pos + iov_iter_count(&i)) >> PAGE_CACHE_SHIFT;
1012
1013 while (iov_iter_count(&i) > 0) {
1014 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1015 size_t write_bytes = min(iov_iter_count(&i),
1016 nrptrs * (size_t)PAGE_CACHE_SIZE -
1017 offset);
1018 size_t num_pages = (write_bytes + offset +
1019 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1020
1021 WARN_ON(num_pages > nrptrs);
1022 memset(pages, 0, sizeof(struct page *) * nrptrs);
1023
1024 /*
1025 * Fault pages before locking them in prepare_pages
1026 * to avoid recursive lock
1027 */
1028 if (unlikely(iov_iter_fault_in_readable(&i, write_bytes))) {
1029 ret = -EFAULT;
1030 goto out;
1031 }
1032
1033 ret = btrfs_delalloc_reserve_space(inode,
1034 num_pages << PAGE_CACHE_SHIFT);
1035 if (ret)
1036 goto out;
1037
1038 ret = prepare_pages(root, file, pages, num_pages,
1039 pos, first_index, last_index,
1040 write_bytes);
1041 if (ret) {
1042 btrfs_delalloc_release_space(inode,
1043 num_pages << PAGE_CACHE_SHIFT);
1044 goto out;
1045 }
1046
1047 copied = btrfs_copy_from_user(pos, num_pages,
1048 write_bytes, pages, &i);
1049
1050 /*
1051 * if we have trouble faulting in the pages, fall
1052 * back to one page at a time
1053 */
1054 if (copied < write_bytes)
1055 nrptrs = 1;
1056
1057 if (copied == 0)
1058 dirty_pages = 0;
1059 else
1060 dirty_pages = (copied + offset +
1061 PAGE_CACHE_SIZE - 1) >>
1062 PAGE_CACHE_SHIFT;
1063
1064 if (num_pages > dirty_pages) {
1065 if (copied > 0)
1066 atomic_inc(
1067 &BTRFS_I(inode)->outstanding_extents);
1068 btrfs_delalloc_release_space(inode,
1069 (num_pages - dirty_pages) <<
1070 PAGE_CACHE_SHIFT);
1071 }
1072
1073 if (copied > 0) {
1074 dirty_and_release_pages(NULL, root, file, pages,
1075 dirty_pages, pos, copied);
1076 }
1077
1078 btrfs_drop_pages(pages, num_pages);
1079
1080 if (copied > 0) {
1081 if (will_write) {
1082 filemap_fdatawrite_range(inode->i_mapping, pos,
1083 pos + copied - 1);
1084 } else {
1085 balance_dirty_pages_ratelimited_nr(
1086 inode->i_mapping,
1087 dirty_pages);
1088 if (dirty_pages <
1089 (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1090 btrfs_btree_balance_dirty(root, 1);
1091 btrfs_throttle(root);
1092 }
1093 }
1094
1095 pos += copied;
1096 num_written += copied;
1097
1098 cond_resched();
1099 }
1100 out:
1101 mutex_unlock(&inode->i_mutex);
1102 if (ret)
1103 err = ret;
1104
1105 kfree(pages);
1106 *ppos = pos;
1107
1108 /*
1109 * we want to make sure fsync finds this change
1110 * but we haven't joined a transaction running right now.
1111 *
1112 * Later on, someone is sure to update the inode and get the
1113 * real transid recorded.
1114 *
1115 * We set last_trans now to the fs_info generation + 1,
1116 * this will either be one more than the running transaction
1117 * or the generation used for the next transaction if there isn't
1118 * one running right now.
1119 */
1120 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1121
1122 if (num_written > 0 && will_write) {
1123 struct btrfs_trans_handle *trans;
1124
1125 err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1126 if (err)
1127 num_written = err;
1128
1129 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
1130 trans = btrfs_start_transaction(root, 0);
1131 if (IS_ERR(trans)) {
1132 num_written = PTR_ERR(trans);
1133 goto done;
1134 }
1135 mutex_lock(&inode->i_mutex);
1136 ret = btrfs_log_dentry_safe(trans, root,
1137 file->f_dentry);
1138 mutex_unlock(&inode->i_mutex);
1139 if (ret == 0) {
1140 ret = btrfs_sync_log(trans, root);
1141 if (ret == 0)
1142 btrfs_end_transaction(trans, root);
1143 else
1144 btrfs_commit_transaction(trans, root);
1145 } else if (ret != BTRFS_NO_LOG_SYNC) {
1146 btrfs_commit_transaction(trans, root);
1147 } else {
1148 btrfs_end_transaction(trans, root);
1149 }
1150 }
1151 if (file->f_flags & O_DIRECT && buffered) {
1152 invalidate_mapping_pages(inode->i_mapping,
1153 start_pos >> PAGE_CACHE_SHIFT,
1154 (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1155 }
1156 }
1157 done:
1158 current->backing_dev_info = NULL;
1159 return num_written ? num_written : err;
1160 }
1161
1162 int btrfs_release_file(struct inode *inode, struct file *filp)
1163 {
1164 /*
1165 * ordered_data_close is set by settattr when we are about to truncate
1166 * a file from a non-zero size to a zero size. This tries to
1167 * flush down new bytes that may have been written if the
1168 * application were using truncate to replace a file in place.
1169 */
1170 if (BTRFS_I(inode)->ordered_data_close) {
1171 BTRFS_I(inode)->ordered_data_close = 0;
1172 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1173 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1174 filemap_flush(inode->i_mapping);
1175 }
1176 if (filp->private_data)
1177 btrfs_ioctl_trans_end(filp);
1178 return 0;
1179 }
1180
1181 /*
1182 * fsync call for both files and directories. This logs the inode into
1183 * the tree log instead of forcing full commits whenever possible.
1184 *
1185 * It needs to call filemap_fdatawait so that all ordered extent updates are
1186 * in the metadata btree are up to date for copying to the log.
1187 *
1188 * It drops the inode mutex before doing the tree log commit. This is an
1189 * important optimization for directories because holding the mutex prevents
1190 * new operations on the dir while we write to disk.
1191 */
1192 int btrfs_sync_file(struct file *file, int datasync)
1193 {
1194 struct dentry *dentry = file->f_path.dentry;
1195 struct inode *inode = dentry->d_inode;
1196 struct btrfs_root *root = BTRFS_I(inode)->root;
1197 int ret = 0;
1198 struct btrfs_trans_handle *trans;
1199
1200
1201 /* we wait first, since the writeback may change the inode */
1202 root->log_batch++;
1203 /* the VFS called filemap_fdatawrite for us */
1204 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1205 root->log_batch++;
1206
1207 /*
1208 * check the transaction that last modified this inode
1209 * and see if its already been committed
1210 */
1211 if (!BTRFS_I(inode)->last_trans)
1212 goto out;
1213
1214 /*
1215 * if the last transaction that changed this file was before
1216 * the current transaction, we can bail out now without any
1217 * syncing
1218 */
1219 mutex_lock(&root->fs_info->trans_mutex);
1220 if (BTRFS_I(inode)->last_trans <=
1221 root->fs_info->last_trans_committed) {
1222 BTRFS_I(inode)->last_trans = 0;
1223 mutex_unlock(&root->fs_info->trans_mutex);
1224 goto out;
1225 }
1226 mutex_unlock(&root->fs_info->trans_mutex);
1227
1228 /*
1229 * ok we haven't committed the transaction yet, lets do a commit
1230 */
1231 if (file->private_data)
1232 btrfs_ioctl_trans_end(file);
1233
1234 trans = btrfs_start_transaction(root, 0);
1235 if (IS_ERR(trans)) {
1236 ret = PTR_ERR(trans);
1237 goto out;
1238 }
1239
1240 ret = btrfs_log_dentry_safe(trans, root, dentry);
1241 if (ret < 0)
1242 goto out;
1243
1244 /* we've logged all the items and now have a consistent
1245 * version of the file in the log. It is possible that
1246 * someone will come in and modify the file, but that's
1247 * fine because the log is consistent on disk, and we
1248 * have references to all of the file's extents
1249 *
1250 * It is possible that someone will come in and log the
1251 * file again, but that will end up using the synchronization
1252 * inside btrfs_sync_log to keep things safe.
1253 */
1254 mutex_unlock(&dentry->d_inode->i_mutex);
1255
1256 if (ret != BTRFS_NO_LOG_SYNC) {
1257 if (ret > 0) {
1258 ret = btrfs_commit_transaction(trans, root);
1259 } else {
1260 ret = btrfs_sync_log(trans, root);
1261 if (ret == 0)
1262 ret = btrfs_end_transaction(trans, root);
1263 else
1264 ret = btrfs_commit_transaction(trans, root);
1265 }
1266 } else {
1267 ret = btrfs_end_transaction(trans, root);
1268 }
1269 mutex_lock(&dentry->d_inode->i_mutex);
1270 out:
1271 return ret > 0 ? -EIO : ret;
1272 }
1273
1274 static const struct vm_operations_struct btrfs_file_vm_ops = {
1275 .fault = filemap_fault,
1276 .page_mkwrite = btrfs_page_mkwrite,
1277 };
1278
1279 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1280 {
1281 struct address_space *mapping = filp->f_mapping;
1282
1283 if (!mapping->a_ops->readpage)
1284 return -ENOEXEC;
1285
1286 file_accessed(filp);
1287 vma->vm_ops = &btrfs_file_vm_ops;
1288 vma->vm_flags |= VM_CAN_NONLINEAR;
1289
1290 return 0;
1291 }
1292
1293 static long btrfs_fallocate(struct file *file, int mode,
1294 loff_t offset, loff_t len)
1295 {
1296 struct inode *inode = file->f_path.dentry->d_inode;
1297 struct extent_state *cached_state = NULL;
1298 u64 cur_offset;
1299 u64 last_byte;
1300 u64 alloc_start;
1301 u64 alloc_end;
1302 u64 alloc_hint = 0;
1303 u64 locked_end;
1304 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1305 struct extent_map *em;
1306 int ret;
1307
1308 alloc_start = offset & ~mask;
1309 alloc_end = (offset + len + mask) & ~mask;
1310
1311 /* We only support the FALLOC_FL_KEEP_SIZE mode */
1312 if (mode & ~FALLOC_FL_KEEP_SIZE)
1313 return -EOPNOTSUPP;
1314
1315 /*
1316 * wait for ordered IO before we have any locks. We'll loop again
1317 * below with the locks held.
1318 */
1319 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1320
1321 mutex_lock(&inode->i_mutex);
1322 ret = inode_newsize_ok(inode, alloc_end);
1323 if (ret)
1324 goto out;
1325
1326 if (alloc_start > inode->i_size) {
1327 ret = btrfs_cont_expand(inode, alloc_start);
1328 if (ret)
1329 goto out;
1330 }
1331
1332 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1333 if (ret)
1334 goto out;
1335
1336 locked_end = alloc_end - 1;
1337 while (1) {
1338 struct btrfs_ordered_extent *ordered;
1339
1340 /* the extent lock is ordered inside the running
1341 * transaction
1342 */
1343 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1344 locked_end, 0, &cached_state, GFP_NOFS);
1345 ordered = btrfs_lookup_first_ordered_extent(inode,
1346 alloc_end - 1);
1347 if (ordered &&
1348 ordered->file_offset + ordered->len > alloc_start &&
1349 ordered->file_offset < alloc_end) {
1350 btrfs_put_ordered_extent(ordered);
1351 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1352 alloc_start, locked_end,
1353 &cached_state, GFP_NOFS);
1354 /*
1355 * we can't wait on the range with the transaction
1356 * running or with the extent lock held
1357 */
1358 btrfs_wait_ordered_range(inode, alloc_start,
1359 alloc_end - alloc_start);
1360 } else {
1361 if (ordered)
1362 btrfs_put_ordered_extent(ordered);
1363 break;
1364 }
1365 }
1366
1367 cur_offset = alloc_start;
1368 while (1) {
1369 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1370 alloc_end - cur_offset, 0);
1371 BUG_ON(IS_ERR(em) || !em);
1372 last_byte = min(extent_map_end(em), alloc_end);
1373 last_byte = (last_byte + mask) & ~mask;
1374 if (em->block_start == EXTENT_MAP_HOLE ||
1375 (cur_offset >= inode->i_size &&
1376 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1377 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1378 last_byte - cur_offset,
1379 1 << inode->i_blkbits,
1380 offset + len,
1381 &alloc_hint);
1382 if (ret < 0) {
1383 free_extent_map(em);
1384 break;
1385 }
1386 }
1387 free_extent_map(em);
1388
1389 cur_offset = last_byte;
1390 if (cur_offset >= alloc_end) {
1391 ret = 0;
1392 break;
1393 }
1394 }
1395 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1396 &cached_state, GFP_NOFS);
1397
1398 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1399 out:
1400 mutex_unlock(&inode->i_mutex);
1401 return ret;
1402 }
1403
1404 const struct file_operations btrfs_file_operations = {
1405 .llseek = generic_file_llseek,
1406 .read = do_sync_read,
1407 .write = do_sync_write,
1408 .aio_read = generic_file_aio_read,
1409 .splice_read = generic_file_splice_read,
1410 .aio_write = btrfs_file_aio_write,
1411 .mmap = btrfs_file_mmap,
1412 .open = generic_file_open,
1413 .release = btrfs_release_file,
1414 .fsync = btrfs_sync_file,
1415 .fallocate = btrfs_fallocate,
1416 .unlocked_ioctl = btrfs_ioctl,
1417 #ifdef CONFIG_COMPAT
1418 .compat_ioctl = btrfs_ioctl,
1419 #endif
1420 };