]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/file.c
btrfs: Get rid of the confusing btrfs_file_extent_inline_len
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73 {
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 struct inode_defrag *defrag)
97 {
98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
103
104 p = &fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
124 }
125 }
126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(fs_info))
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct btrfs_inode *inode)
149 {
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(fs_info))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = inode->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 int ret;
202
203 if (!__need_auto_defrag(fs_info))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
481 const u64 start,
482 const u64 len,
483 struct extent_state **cached_state)
484 {
485 u64 search_start = start;
486 const u64 end = start + len - 1;
487
488 while (search_start < end) {
489 const u64 search_len = end - search_start + 1;
490 struct extent_map *em;
491 u64 em_len;
492 int ret = 0;
493
494 em = btrfs_get_extent(inode, NULL, 0, search_start,
495 search_len, 0);
496 if (IS_ERR(em))
497 return PTR_ERR(em);
498
499 if (em->block_start != EXTENT_MAP_HOLE)
500 goto next;
501
502 em_len = em->len;
503 if (em->start < search_start)
504 em_len -= search_start - em->start;
505 if (em_len > search_len)
506 em_len = search_len;
507
508 ret = set_extent_bit(&inode->io_tree, search_start,
509 search_start + em_len - 1,
510 EXTENT_DELALLOC_NEW,
511 NULL, cached_state, GFP_NOFS);
512 next:
513 search_start = extent_map_end(em);
514 free_extent_map(em);
515 if (ret)
516 return ret;
517 }
518 return 0;
519 }
520
521 /*
522 * after copy_from_user, pages need to be dirtied and we need to make
523 * sure holes are created between the current EOF and the start of
524 * any next extents (if required).
525 *
526 * this also makes the decision about creating an inline extent vs
527 * doing real data extents, marking pages dirty and delalloc as required.
528 */
529 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
530 size_t num_pages, loff_t pos, size_t write_bytes,
531 struct extent_state **cached)
532 {
533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 int err = 0;
535 int i;
536 u64 num_bytes;
537 u64 start_pos;
538 u64 end_of_last_block;
539 u64 end_pos = pos + write_bytes;
540 loff_t isize = i_size_read(inode);
541 unsigned int extra_bits = 0;
542
543 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
544 num_bytes = round_up(write_bytes + pos - start_pos,
545 fs_info->sectorsize);
546
547 end_of_last_block = start_pos + num_bytes - 1;
548
549 /*
550 * The pages may have already been dirty, clear out old accounting so
551 * we can set things up properly
552 */
553 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
554 EXTENT_DIRTY | EXTENT_DELALLOC |
555 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached,
556 GFP_NOFS);
557
558 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
559 if (start_pos >= isize &&
560 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
561 /*
562 * There can't be any extents following eof in this case
563 * so just set the delalloc new bit for the range
564 * directly.
565 */
566 extra_bits |= EXTENT_DELALLOC_NEW;
567 } else {
568 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
569 start_pos,
570 num_bytes, cached);
571 if (err)
572 return err;
573 }
574 }
575
576 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
577 extra_bits, cached, 0);
578 if (err)
579 return err;
580
581 for (i = 0; i < num_pages; i++) {
582 struct page *p = pages[i];
583 SetPageUptodate(p);
584 ClearPageChecked(p);
585 set_page_dirty(p);
586 }
587
588 /*
589 * we've only changed i_size in ram, and we haven't updated
590 * the disk i_size. There is no need to log the inode
591 * at this time.
592 */
593 if (end_pos > isize)
594 i_size_write(inode, end_pos);
595 return 0;
596 }
597
598 /*
599 * this drops all the extents in the cache that intersect the range
600 * [start, end]. Existing extents are split as required.
601 */
602 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
603 int skip_pinned)
604 {
605 struct extent_map *em;
606 struct extent_map *split = NULL;
607 struct extent_map *split2 = NULL;
608 struct extent_map_tree *em_tree = &inode->extent_tree;
609 u64 len = end - start + 1;
610 u64 gen;
611 int ret;
612 int testend = 1;
613 unsigned long flags;
614 int compressed = 0;
615 bool modified;
616
617 WARN_ON(end < start);
618 if (end == (u64)-1) {
619 len = (u64)-1;
620 testend = 0;
621 }
622 while (1) {
623 int no_splits = 0;
624
625 modified = false;
626 if (!split)
627 split = alloc_extent_map();
628 if (!split2)
629 split2 = alloc_extent_map();
630 if (!split || !split2)
631 no_splits = 1;
632
633 write_lock(&em_tree->lock);
634 em = lookup_extent_mapping(em_tree, start, len);
635 if (!em) {
636 write_unlock(&em_tree->lock);
637 break;
638 }
639 flags = em->flags;
640 gen = em->generation;
641 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
642 if (testend && em->start + em->len >= start + len) {
643 free_extent_map(em);
644 write_unlock(&em_tree->lock);
645 break;
646 }
647 start = em->start + em->len;
648 if (testend)
649 len = start + len - (em->start + em->len);
650 free_extent_map(em);
651 write_unlock(&em_tree->lock);
652 continue;
653 }
654 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
655 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
656 clear_bit(EXTENT_FLAG_LOGGING, &flags);
657 modified = !list_empty(&em->list);
658 if (no_splits)
659 goto next;
660
661 if (em->start < start) {
662 split->start = em->start;
663 split->len = start - em->start;
664
665 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
666 split->orig_start = em->orig_start;
667 split->block_start = em->block_start;
668
669 if (compressed)
670 split->block_len = em->block_len;
671 else
672 split->block_len = split->len;
673 split->orig_block_len = max(split->block_len,
674 em->orig_block_len);
675 split->ram_bytes = em->ram_bytes;
676 } else {
677 split->orig_start = split->start;
678 split->block_len = 0;
679 split->block_start = em->block_start;
680 split->orig_block_len = 0;
681 split->ram_bytes = split->len;
682 }
683
684 split->generation = gen;
685 split->bdev = em->bdev;
686 split->flags = flags;
687 split->compress_type = em->compress_type;
688 replace_extent_mapping(em_tree, em, split, modified);
689 free_extent_map(split);
690 split = split2;
691 split2 = NULL;
692 }
693 if (testend && em->start + em->len > start + len) {
694 u64 diff = start + len - em->start;
695
696 split->start = start + len;
697 split->len = em->start + em->len - (start + len);
698 split->bdev = em->bdev;
699 split->flags = flags;
700 split->compress_type = em->compress_type;
701 split->generation = gen;
702
703 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
704 split->orig_block_len = max(em->block_len,
705 em->orig_block_len);
706
707 split->ram_bytes = em->ram_bytes;
708 if (compressed) {
709 split->block_len = em->block_len;
710 split->block_start = em->block_start;
711 split->orig_start = em->orig_start;
712 } else {
713 split->block_len = split->len;
714 split->block_start = em->block_start
715 + diff;
716 split->orig_start = em->orig_start;
717 }
718 } else {
719 split->ram_bytes = split->len;
720 split->orig_start = split->start;
721 split->block_len = 0;
722 split->block_start = em->block_start;
723 split->orig_block_len = 0;
724 }
725
726 if (extent_map_in_tree(em)) {
727 replace_extent_mapping(em_tree, em, split,
728 modified);
729 } else {
730 ret = add_extent_mapping(em_tree, split,
731 modified);
732 ASSERT(ret == 0); /* Logic error */
733 }
734 free_extent_map(split);
735 split = NULL;
736 }
737 next:
738 if (extent_map_in_tree(em))
739 remove_extent_mapping(em_tree, em);
740 write_unlock(&em_tree->lock);
741
742 /* once for us */
743 free_extent_map(em);
744 /* once for the tree*/
745 free_extent_map(em);
746 }
747 if (split)
748 free_extent_map(split);
749 if (split2)
750 free_extent_map(split2);
751 }
752
753 /*
754 * this is very complex, but the basic idea is to drop all extents
755 * in the range start - end. hint_block is filled in with a block number
756 * that would be a good hint to the block allocator for this file.
757 *
758 * If an extent intersects the range but is not entirely inside the range
759 * it is either truncated or split. Anything entirely inside the range
760 * is deleted from the tree.
761 */
762 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
763 struct btrfs_root *root, struct inode *inode,
764 struct btrfs_path *path, u64 start, u64 end,
765 u64 *drop_end, int drop_cache,
766 int replace_extent,
767 u32 extent_item_size,
768 int *key_inserted)
769 {
770 struct btrfs_fs_info *fs_info = root->fs_info;
771 struct extent_buffer *leaf;
772 struct btrfs_file_extent_item *fi;
773 struct btrfs_key key;
774 struct btrfs_key new_key;
775 u64 ino = btrfs_ino(BTRFS_I(inode));
776 u64 search_start = start;
777 u64 disk_bytenr = 0;
778 u64 num_bytes = 0;
779 u64 extent_offset = 0;
780 u64 extent_end = 0;
781 u64 last_end = start;
782 int del_nr = 0;
783 int del_slot = 0;
784 int extent_type;
785 int recow;
786 int ret;
787 int modify_tree = -1;
788 int update_refs;
789 int found = 0;
790 int leafs_visited = 0;
791
792 if (drop_cache)
793 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
794
795 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
796 modify_tree = 0;
797
798 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
799 root == fs_info->tree_root);
800 while (1) {
801 recow = 0;
802 ret = btrfs_lookup_file_extent(trans, root, path, ino,
803 search_start, modify_tree);
804 if (ret < 0)
805 break;
806 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
807 leaf = path->nodes[0];
808 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
809 if (key.objectid == ino &&
810 key.type == BTRFS_EXTENT_DATA_KEY)
811 path->slots[0]--;
812 }
813 ret = 0;
814 leafs_visited++;
815 next_slot:
816 leaf = path->nodes[0];
817 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
818 BUG_ON(del_nr > 0);
819 ret = btrfs_next_leaf(root, path);
820 if (ret < 0)
821 break;
822 if (ret > 0) {
823 ret = 0;
824 break;
825 }
826 leafs_visited++;
827 leaf = path->nodes[0];
828 recow = 1;
829 }
830
831 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
832
833 if (key.objectid > ino)
834 break;
835 if (WARN_ON_ONCE(key.objectid < ino) ||
836 key.type < BTRFS_EXTENT_DATA_KEY) {
837 ASSERT(del_nr == 0);
838 path->slots[0]++;
839 goto next_slot;
840 }
841 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
842 break;
843
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
846 extent_type = btrfs_file_extent_type(leaf, fi);
847
848 if (extent_type == BTRFS_FILE_EXTENT_REG ||
849 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
850 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
851 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
852 extent_offset = btrfs_file_extent_offset(leaf, fi);
853 extent_end = key.offset +
854 btrfs_file_extent_num_bytes(leaf, fi);
855 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
856 extent_end = key.offset +
857 btrfs_file_extent_ram_bytes(leaf, fi);
858 } else {
859 /* can't happen */
860 BUG();
861 }
862
863 /*
864 * Don't skip extent items representing 0 byte lengths. They
865 * used to be created (bug) if while punching holes we hit
866 * -ENOSPC condition. So if we find one here, just ensure we
867 * delete it, otherwise we would insert a new file extent item
868 * with the same key (offset) as that 0 bytes length file
869 * extent item in the call to setup_items_for_insert() later
870 * in this function.
871 */
872 if (extent_end == key.offset && extent_end >= search_start) {
873 last_end = extent_end;
874 goto delete_extent_item;
875 }
876
877 if (extent_end <= search_start) {
878 path->slots[0]++;
879 goto next_slot;
880 }
881
882 found = 1;
883 search_start = max(key.offset, start);
884 if (recow || !modify_tree) {
885 modify_tree = -1;
886 btrfs_release_path(path);
887 continue;
888 }
889
890 /*
891 * | - range to drop - |
892 * | -------- extent -------- |
893 */
894 if (start > key.offset && end < extent_end) {
895 BUG_ON(del_nr > 0);
896 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
897 ret = -EOPNOTSUPP;
898 break;
899 }
900
901 memcpy(&new_key, &key, sizeof(new_key));
902 new_key.offset = start;
903 ret = btrfs_duplicate_item(trans, root, path,
904 &new_key);
905 if (ret == -EAGAIN) {
906 btrfs_release_path(path);
907 continue;
908 }
909 if (ret < 0)
910 break;
911
912 leaf = path->nodes[0];
913 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
914 struct btrfs_file_extent_item);
915 btrfs_set_file_extent_num_bytes(leaf, fi,
916 start - key.offset);
917
918 fi = btrfs_item_ptr(leaf, path->slots[0],
919 struct btrfs_file_extent_item);
920
921 extent_offset += start - key.offset;
922 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
923 btrfs_set_file_extent_num_bytes(leaf, fi,
924 extent_end - start);
925 btrfs_mark_buffer_dirty(leaf);
926
927 if (update_refs && disk_bytenr > 0) {
928 ret = btrfs_inc_extent_ref(trans, root,
929 disk_bytenr, num_bytes, 0,
930 root->root_key.objectid,
931 new_key.objectid,
932 start - extent_offset);
933 BUG_ON(ret); /* -ENOMEM */
934 }
935 key.offset = start;
936 }
937 /*
938 * From here on out we will have actually dropped something, so
939 * last_end can be updated.
940 */
941 last_end = extent_end;
942
943 /*
944 * | ---- range to drop ----- |
945 * | -------- extent -------- |
946 */
947 if (start <= key.offset && end < extent_end) {
948 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
949 ret = -EOPNOTSUPP;
950 break;
951 }
952
953 memcpy(&new_key, &key, sizeof(new_key));
954 new_key.offset = end;
955 btrfs_set_item_key_safe(fs_info, path, &new_key);
956
957 extent_offset += end - key.offset;
958 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
959 btrfs_set_file_extent_num_bytes(leaf, fi,
960 extent_end - end);
961 btrfs_mark_buffer_dirty(leaf);
962 if (update_refs && disk_bytenr > 0)
963 inode_sub_bytes(inode, end - key.offset);
964 break;
965 }
966
967 search_start = extent_end;
968 /*
969 * | ---- range to drop ----- |
970 * | -------- extent -------- |
971 */
972 if (start > key.offset && end >= extent_end) {
973 BUG_ON(del_nr > 0);
974 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
975 ret = -EOPNOTSUPP;
976 break;
977 }
978
979 btrfs_set_file_extent_num_bytes(leaf, fi,
980 start - key.offset);
981 btrfs_mark_buffer_dirty(leaf);
982 if (update_refs && disk_bytenr > 0)
983 inode_sub_bytes(inode, extent_end - start);
984 if (end == extent_end)
985 break;
986
987 path->slots[0]++;
988 goto next_slot;
989 }
990
991 /*
992 * | ---- range to drop ----- |
993 * | ------ extent ------ |
994 */
995 if (start <= key.offset && end >= extent_end) {
996 delete_extent_item:
997 if (del_nr == 0) {
998 del_slot = path->slots[0];
999 del_nr = 1;
1000 } else {
1001 BUG_ON(del_slot + del_nr != path->slots[0]);
1002 del_nr++;
1003 }
1004
1005 if (update_refs &&
1006 extent_type == BTRFS_FILE_EXTENT_INLINE) {
1007 inode_sub_bytes(inode,
1008 extent_end - key.offset);
1009 extent_end = ALIGN(extent_end,
1010 fs_info->sectorsize);
1011 } else if (update_refs && disk_bytenr > 0) {
1012 ret = btrfs_free_extent(trans, root,
1013 disk_bytenr, num_bytes, 0,
1014 root->root_key.objectid,
1015 key.objectid, key.offset -
1016 extent_offset);
1017 BUG_ON(ret); /* -ENOMEM */
1018 inode_sub_bytes(inode,
1019 extent_end - key.offset);
1020 }
1021
1022 if (end == extent_end)
1023 break;
1024
1025 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1026 path->slots[0]++;
1027 goto next_slot;
1028 }
1029
1030 ret = btrfs_del_items(trans, root, path, del_slot,
1031 del_nr);
1032 if (ret) {
1033 btrfs_abort_transaction(trans, ret);
1034 break;
1035 }
1036
1037 del_nr = 0;
1038 del_slot = 0;
1039
1040 btrfs_release_path(path);
1041 continue;
1042 }
1043
1044 BUG_ON(1);
1045 }
1046
1047 if (!ret && del_nr > 0) {
1048 /*
1049 * Set path->slots[0] to first slot, so that after the delete
1050 * if items are move off from our leaf to its immediate left or
1051 * right neighbor leafs, we end up with a correct and adjusted
1052 * path->slots[0] for our insertion (if replace_extent != 0).
1053 */
1054 path->slots[0] = del_slot;
1055 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1056 if (ret)
1057 btrfs_abort_transaction(trans, ret);
1058 }
1059
1060 leaf = path->nodes[0];
1061 /*
1062 * If btrfs_del_items() was called, it might have deleted a leaf, in
1063 * which case it unlocked our path, so check path->locks[0] matches a
1064 * write lock.
1065 */
1066 if (!ret && replace_extent && leafs_visited == 1 &&
1067 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1068 path->locks[0] == BTRFS_WRITE_LOCK) &&
1069 btrfs_leaf_free_space(fs_info, leaf) >=
1070 sizeof(struct btrfs_item) + extent_item_size) {
1071
1072 key.objectid = ino;
1073 key.type = BTRFS_EXTENT_DATA_KEY;
1074 key.offset = start;
1075 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1076 struct btrfs_key slot_key;
1077
1078 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1079 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1080 path->slots[0]++;
1081 }
1082 setup_items_for_insert(root, path, &key,
1083 &extent_item_size,
1084 extent_item_size,
1085 sizeof(struct btrfs_item) +
1086 extent_item_size, 1);
1087 *key_inserted = 1;
1088 }
1089
1090 if (!replace_extent || !(*key_inserted))
1091 btrfs_release_path(path);
1092 if (drop_end)
1093 *drop_end = found ? min(end, last_end) : end;
1094 return ret;
1095 }
1096
1097 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root, struct inode *inode, u64 start,
1099 u64 end, int drop_cache)
1100 {
1101 struct btrfs_path *path;
1102 int ret;
1103
1104 path = btrfs_alloc_path();
1105 if (!path)
1106 return -ENOMEM;
1107 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1108 drop_cache, 0, 0, NULL);
1109 btrfs_free_path(path);
1110 return ret;
1111 }
1112
1113 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1114 u64 objectid, u64 bytenr, u64 orig_offset,
1115 u64 *start, u64 *end)
1116 {
1117 struct btrfs_file_extent_item *fi;
1118 struct btrfs_key key;
1119 u64 extent_end;
1120
1121 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1122 return 0;
1123
1124 btrfs_item_key_to_cpu(leaf, &key, slot);
1125 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1126 return 0;
1127
1128 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1129 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1130 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1131 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1132 btrfs_file_extent_compression(leaf, fi) ||
1133 btrfs_file_extent_encryption(leaf, fi) ||
1134 btrfs_file_extent_other_encoding(leaf, fi))
1135 return 0;
1136
1137 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1138 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1139 return 0;
1140
1141 *start = key.offset;
1142 *end = extent_end;
1143 return 1;
1144 }
1145
1146 /*
1147 * Mark extent in the range start - end as written.
1148 *
1149 * This changes extent type from 'pre-allocated' to 'regular'. If only
1150 * part of extent is marked as written, the extent will be split into
1151 * two or three.
1152 */
1153 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1154 struct btrfs_inode *inode, u64 start, u64 end)
1155 {
1156 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1157 struct btrfs_root *root = inode->root;
1158 struct extent_buffer *leaf;
1159 struct btrfs_path *path;
1160 struct btrfs_file_extent_item *fi;
1161 struct btrfs_key key;
1162 struct btrfs_key new_key;
1163 u64 bytenr;
1164 u64 num_bytes;
1165 u64 extent_end;
1166 u64 orig_offset;
1167 u64 other_start;
1168 u64 other_end;
1169 u64 split;
1170 int del_nr = 0;
1171 int del_slot = 0;
1172 int recow;
1173 int ret;
1174 u64 ino = btrfs_ino(inode);
1175
1176 path = btrfs_alloc_path();
1177 if (!path)
1178 return -ENOMEM;
1179 again:
1180 recow = 0;
1181 split = start;
1182 key.objectid = ino;
1183 key.type = BTRFS_EXTENT_DATA_KEY;
1184 key.offset = split;
1185
1186 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1187 if (ret < 0)
1188 goto out;
1189 if (ret > 0 && path->slots[0] > 0)
1190 path->slots[0]--;
1191
1192 leaf = path->nodes[0];
1193 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1194 if (key.objectid != ino ||
1195 key.type != BTRFS_EXTENT_DATA_KEY) {
1196 ret = -EINVAL;
1197 btrfs_abort_transaction(trans, ret);
1198 goto out;
1199 }
1200 fi = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_file_extent_item);
1202 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1203 ret = -EINVAL;
1204 btrfs_abort_transaction(trans, ret);
1205 goto out;
1206 }
1207 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1208 if (key.offset > start || extent_end < end) {
1209 ret = -EINVAL;
1210 btrfs_abort_transaction(trans, ret);
1211 goto out;
1212 }
1213
1214 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1215 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1216 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1217 memcpy(&new_key, &key, sizeof(new_key));
1218
1219 if (start == key.offset && end < extent_end) {
1220 other_start = 0;
1221 other_end = start;
1222 if (extent_mergeable(leaf, path->slots[0] - 1,
1223 ino, bytenr, orig_offset,
1224 &other_start, &other_end)) {
1225 new_key.offset = end;
1226 btrfs_set_item_key_safe(fs_info, path, &new_key);
1227 fi = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_file_extent_item);
1229 btrfs_set_file_extent_generation(leaf, fi,
1230 trans->transid);
1231 btrfs_set_file_extent_num_bytes(leaf, fi,
1232 extent_end - end);
1233 btrfs_set_file_extent_offset(leaf, fi,
1234 end - orig_offset);
1235 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1236 struct btrfs_file_extent_item);
1237 btrfs_set_file_extent_generation(leaf, fi,
1238 trans->transid);
1239 btrfs_set_file_extent_num_bytes(leaf, fi,
1240 end - other_start);
1241 btrfs_mark_buffer_dirty(leaf);
1242 goto out;
1243 }
1244 }
1245
1246 if (start > key.offset && end == extent_end) {
1247 other_start = end;
1248 other_end = 0;
1249 if (extent_mergeable(leaf, path->slots[0] + 1,
1250 ino, bytenr, orig_offset,
1251 &other_start, &other_end)) {
1252 fi = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_file_extent_item);
1254 btrfs_set_file_extent_num_bytes(leaf, fi,
1255 start - key.offset);
1256 btrfs_set_file_extent_generation(leaf, fi,
1257 trans->transid);
1258 path->slots[0]++;
1259 new_key.offset = start;
1260 btrfs_set_item_key_safe(fs_info, path, &new_key);
1261
1262 fi = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_file_extent_item);
1264 btrfs_set_file_extent_generation(leaf, fi,
1265 trans->transid);
1266 btrfs_set_file_extent_num_bytes(leaf, fi,
1267 other_end - start);
1268 btrfs_set_file_extent_offset(leaf, fi,
1269 start - orig_offset);
1270 btrfs_mark_buffer_dirty(leaf);
1271 goto out;
1272 }
1273 }
1274
1275 while (start > key.offset || end < extent_end) {
1276 if (key.offset == start)
1277 split = end;
1278
1279 new_key.offset = split;
1280 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1281 if (ret == -EAGAIN) {
1282 btrfs_release_path(path);
1283 goto again;
1284 }
1285 if (ret < 0) {
1286 btrfs_abort_transaction(trans, ret);
1287 goto out;
1288 }
1289
1290 leaf = path->nodes[0];
1291 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1292 struct btrfs_file_extent_item);
1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294 btrfs_set_file_extent_num_bytes(leaf, fi,
1295 split - key.offset);
1296
1297 fi = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_file_extent_item);
1299
1300 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1301 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1302 btrfs_set_file_extent_num_bytes(leaf, fi,
1303 extent_end - split);
1304 btrfs_mark_buffer_dirty(leaf);
1305
1306 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1307 0, root->root_key.objectid,
1308 ino, orig_offset);
1309 if (ret) {
1310 btrfs_abort_transaction(trans, ret);
1311 goto out;
1312 }
1313
1314 if (split == start) {
1315 key.offset = start;
1316 } else {
1317 if (start != key.offset) {
1318 ret = -EINVAL;
1319 btrfs_abort_transaction(trans, ret);
1320 goto out;
1321 }
1322 path->slots[0]--;
1323 extent_end = end;
1324 }
1325 recow = 1;
1326 }
1327
1328 other_start = end;
1329 other_end = 0;
1330 if (extent_mergeable(leaf, path->slots[0] + 1,
1331 ino, bytenr, orig_offset,
1332 &other_start, &other_end)) {
1333 if (recow) {
1334 btrfs_release_path(path);
1335 goto again;
1336 }
1337 extent_end = other_end;
1338 del_slot = path->slots[0] + 1;
1339 del_nr++;
1340 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1341 0, root->root_key.objectid,
1342 ino, orig_offset);
1343 if (ret) {
1344 btrfs_abort_transaction(trans, ret);
1345 goto out;
1346 }
1347 }
1348 other_start = 0;
1349 other_end = start;
1350 if (extent_mergeable(leaf, path->slots[0] - 1,
1351 ino, bytenr, orig_offset,
1352 &other_start, &other_end)) {
1353 if (recow) {
1354 btrfs_release_path(path);
1355 goto again;
1356 }
1357 key.offset = other_start;
1358 del_slot = path->slots[0];
1359 del_nr++;
1360 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1361 0, root->root_key.objectid,
1362 ino, orig_offset);
1363 if (ret) {
1364 btrfs_abort_transaction(trans, ret);
1365 goto out;
1366 }
1367 }
1368 if (del_nr == 0) {
1369 fi = btrfs_item_ptr(leaf, path->slots[0],
1370 struct btrfs_file_extent_item);
1371 btrfs_set_file_extent_type(leaf, fi,
1372 BTRFS_FILE_EXTENT_REG);
1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1374 btrfs_mark_buffer_dirty(leaf);
1375 } else {
1376 fi = btrfs_item_ptr(leaf, del_slot - 1,
1377 struct btrfs_file_extent_item);
1378 btrfs_set_file_extent_type(leaf, fi,
1379 BTRFS_FILE_EXTENT_REG);
1380 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1381 btrfs_set_file_extent_num_bytes(leaf, fi,
1382 extent_end - key.offset);
1383 btrfs_mark_buffer_dirty(leaf);
1384
1385 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1386 if (ret < 0) {
1387 btrfs_abort_transaction(trans, ret);
1388 goto out;
1389 }
1390 }
1391 out:
1392 btrfs_free_path(path);
1393 return 0;
1394 }
1395
1396 /*
1397 * on error we return an unlocked page and the error value
1398 * on success we return a locked page and 0
1399 */
1400 static int prepare_uptodate_page(struct inode *inode,
1401 struct page *page, u64 pos,
1402 bool force_uptodate)
1403 {
1404 int ret = 0;
1405
1406 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1407 !PageUptodate(page)) {
1408 ret = btrfs_readpage(NULL, page);
1409 if (ret)
1410 return ret;
1411 lock_page(page);
1412 if (!PageUptodate(page)) {
1413 unlock_page(page);
1414 return -EIO;
1415 }
1416 if (page->mapping != inode->i_mapping) {
1417 unlock_page(page);
1418 return -EAGAIN;
1419 }
1420 }
1421 return 0;
1422 }
1423
1424 /*
1425 * this just gets pages into the page cache and locks them down.
1426 */
1427 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1428 size_t num_pages, loff_t pos,
1429 size_t write_bytes, bool force_uptodate)
1430 {
1431 int i;
1432 unsigned long index = pos >> PAGE_SHIFT;
1433 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1434 int err = 0;
1435 int faili;
1436
1437 for (i = 0; i < num_pages; i++) {
1438 again:
1439 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1440 mask | __GFP_WRITE);
1441 if (!pages[i]) {
1442 faili = i - 1;
1443 err = -ENOMEM;
1444 goto fail;
1445 }
1446
1447 if (i == 0)
1448 err = prepare_uptodate_page(inode, pages[i], pos,
1449 force_uptodate);
1450 if (!err && i == num_pages - 1)
1451 err = prepare_uptodate_page(inode, pages[i],
1452 pos + write_bytes, false);
1453 if (err) {
1454 put_page(pages[i]);
1455 if (err == -EAGAIN) {
1456 err = 0;
1457 goto again;
1458 }
1459 faili = i - 1;
1460 goto fail;
1461 }
1462 wait_on_page_writeback(pages[i]);
1463 }
1464
1465 return 0;
1466 fail:
1467 while (faili >= 0) {
1468 unlock_page(pages[faili]);
1469 put_page(pages[faili]);
1470 faili--;
1471 }
1472 return err;
1473
1474 }
1475
1476 /*
1477 * This function locks the extent and properly waits for data=ordered extents
1478 * to finish before allowing the pages to be modified if need.
1479 *
1480 * The return value:
1481 * 1 - the extent is locked
1482 * 0 - the extent is not locked, and everything is OK
1483 * -EAGAIN - need re-prepare the pages
1484 * the other < 0 number - Something wrong happens
1485 */
1486 static noinline int
1487 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1488 size_t num_pages, loff_t pos,
1489 size_t write_bytes,
1490 u64 *lockstart, u64 *lockend,
1491 struct extent_state **cached_state)
1492 {
1493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1494 u64 start_pos;
1495 u64 last_pos;
1496 int i;
1497 int ret = 0;
1498
1499 start_pos = round_down(pos, fs_info->sectorsize);
1500 last_pos = start_pos
1501 + round_up(pos + write_bytes - start_pos,
1502 fs_info->sectorsize) - 1;
1503
1504 if (start_pos < inode->vfs_inode.i_size) {
1505 struct btrfs_ordered_extent *ordered;
1506
1507 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1508 cached_state);
1509 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1510 last_pos - start_pos + 1);
1511 if (ordered &&
1512 ordered->file_offset + ordered->len > start_pos &&
1513 ordered->file_offset <= last_pos) {
1514 unlock_extent_cached(&inode->io_tree, start_pos,
1515 last_pos, cached_state, GFP_NOFS);
1516 for (i = 0; i < num_pages; i++) {
1517 unlock_page(pages[i]);
1518 put_page(pages[i]);
1519 }
1520 btrfs_start_ordered_extent(&inode->vfs_inode,
1521 ordered, 1);
1522 btrfs_put_ordered_extent(ordered);
1523 return -EAGAIN;
1524 }
1525 if (ordered)
1526 btrfs_put_ordered_extent(ordered);
1527
1528 *lockstart = start_pos;
1529 *lockend = last_pos;
1530 ret = 1;
1531 }
1532
1533 /*
1534 * It's possible the pages are dirty right now, but we don't want
1535 * to clean them yet because copy_from_user may catch a page fault
1536 * and we might have to fall back to one page at a time. If that
1537 * happens, we'll unlock these pages and we'd have a window where
1538 * reclaim could sneak in and drop the once-dirty page on the floor
1539 * without writing it.
1540 *
1541 * We have the pages locked and the extent range locked, so there's
1542 * no way someone can start IO on any dirty pages in this range.
1543 *
1544 * We'll call btrfs_dirty_pages() later on, and that will flip around
1545 * delalloc bits and dirty the pages as required.
1546 */
1547 for (i = 0; i < num_pages; i++) {
1548 set_page_extent_mapped(pages[i]);
1549 WARN_ON(!PageLocked(pages[i]));
1550 }
1551
1552 return ret;
1553 }
1554
1555 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1556 size_t *write_bytes)
1557 {
1558 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1559 struct btrfs_root *root = inode->root;
1560 struct btrfs_ordered_extent *ordered;
1561 u64 lockstart, lockend;
1562 u64 num_bytes;
1563 int ret;
1564
1565 ret = btrfs_start_write_no_snapshotting(root);
1566 if (!ret)
1567 return -ENOSPC;
1568
1569 lockstart = round_down(pos, fs_info->sectorsize);
1570 lockend = round_up(pos + *write_bytes,
1571 fs_info->sectorsize) - 1;
1572
1573 while (1) {
1574 lock_extent(&inode->io_tree, lockstart, lockend);
1575 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1576 lockend - lockstart + 1);
1577 if (!ordered) {
1578 break;
1579 }
1580 unlock_extent(&inode->io_tree, lockstart, lockend);
1581 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1582 btrfs_put_ordered_extent(ordered);
1583 }
1584
1585 num_bytes = lockend - lockstart + 1;
1586 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1587 NULL, NULL, NULL);
1588 if (ret <= 0) {
1589 ret = 0;
1590 btrfs_end_write_no_snapshotting(root);
1591 } else {
1592 *write_bytes = min_t(size_t, *write_bytes ,
1593 num_bytes - pos + lockstart);
1594 }
1595
1596 unlock_extent(&inode->io_tree, lockstart, lockend);
1597
1598 return ret;
1599 }
1600
1601 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1602 struct iov_iter *i,
1603 loff_t pos)
1604 {
1605 struct inode *inode = file_inode(file);
1606 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1607 struct btrfs_root *root = BTRFS_I(inode)->root;
1608 struct page **pages = NULL;
1609 struct extent_changeset *data_reserved = NULL;
1610 u64 release_bytes = 0;
1611 u64 lockstart;
1612 u64 lockend;
1613 size_t num_written = 0;
1614 int nrptrs;
1615 int ret = 0;
1616 bool only_release_metadata = false;
1617 bool force_page_uptodate = false;
1618
1619 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1620 PAGE_SIZE / (sizeof(struct page *)));
1621 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1622 nrptrs = max(nrptrs, 8);
1623 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1624 if (!pages)
1625 return -ENOMEM;
1626
1627 while (iov_iter_count(i) > 0) {
1628 size_t offset = pos & (PAGE_SIZE - 1);
1629 struct extent_state *cached_state = NULL;
1630 size_t sector_offset;
1631 size_t write_bytes = min(iov_iter_count(i),
1632 nrptrs * (size_t)PAGE_SIZE -
1633 offset);
1634 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1635 PAGE_SIZE);
1636 size_t reserve_bytes;
1637 size_t dirty_pages;
1638 size_t copied;
1639 size_t dirty_sectors;
1640 size_t num_sectors;
1641 int extents_locked;
1642
1643 WARN_ON(num_pages > nrptrs);
1644
1645 /*
1646 * Fault pages before locking them in prepare_pages
1647 * to avoid recursive lock
1648 */
1649 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1650 ret = -EFAULT;
1651 break;
1652 }
1653
1654 only_release_metadata = false;
1655 sector_offset = pos & (fs_info->sectorsize - 1);
1656 reserve_bytes = round_up(write_bytes + sector_offset,
1657 fs_info->sectorsize);
1658
1659 extent_changeset_release(data_reserved);
1660 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1661 write_bytes);
1662 if (ret < 0) {
1663 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1664 BTRFS_INODE_PREALLOC)) &&
1665 check_can_nocow(BTRFS_I(inode), pos,
1666 &write_bytes) > 0) {
1667 /*
1668 * For nodata cow case, no need to reserve
1669 * data space.
1670 */
1671 only_release_metadata = true;
1672 /*
1673 * our prealloc extent may be smaller than
1674 * write_bytes, so scale down.
1675 */
1676 num_pages = DIV_ROUND_UP(write_bytes + offset,
1677 PAGE_SIZE);
1678 reserve_bytes = round_up(write_bytes +
1679 sector_offset,
1680 fs_info->sectorsize);
1681 } else {
1682 break;
1683 }
1684 }
1685
1686 WARN_ON(reserve_bytes == 0);
1687 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1688 reserve_bytes);
1689 if (ret) {
1690 if (!only_release_metadata)
1691 btrfs_free_reserved_data_space(inode,
1692 data_reserved, pos,
1693 write_bytes);
1694 else
1695 btrfs_end_write_no_snapshotting(root);
1696 break;
1697 }
1698
1699 release_bytes = reserve_bytes;
1700 again:
1701 /*
1702 * This is going to setup the pages array with the number of
1703 * pages we want, so we don't really need to worry about the
1704 * contents of pages from loop to loop
1705 */
1706 ret = prepare_pages(inode, pages, num_pages,
1707 pos, write_bytes,
1708 force_page_uptodate);
1709 if (ret) {
1710 btrfs_delalloc_release_extents(BTRFS_I(inode),
1711 reserve_bytes);
1712 break;
1713 }
1714
1715 extents_locked = lock_and_cleanup_extent_if_need(
1716 BTRFS_I(inode), pages,
1717 num_pages, pos, write_bytes, &lockstart,
1718 &lockend, &cached_state);
1719 if (extents_locked < 0) {
1720 if (extents_locked == -EAGAIN)
1721 goto again;
1722 btrfs_delalloc_release_extents(BTRFS_I(inode),
1723 reserve_bytes);
1724 ret = extents_locked;
1725 break;
1726 }
1727
1728 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1729
1730 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1731 dirty_sectors = round_up(copied + sector_offset,
1732 fs_info->sectorsize);
1733 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1734
1735 /*
1736 * if we have trouble faulting in the pages, fall
1737 * back to one page at a time
1738 */
1739 if (copied < write_bytes)
1740 nrptrs = 1;
1741
1742 if (copied == 0) {
1743 force_page_uptodate = true;
1744 dirty_sectors = 0;
1745 dirty_pages = 0;
1746 } else {
1747 force_page_uptodate = false;
1748 dirty_pages = DIV_ROUND_UP(copied + offset,
1749 PAGE_SIZE);
1750 }
1751
1752 if (num_sectors > dirty_sectors) {
1753 /* release everything except the sectors we dirtied */
1754 release_bytes -= dirty_sectors <<
1755 fs_info->sb->s_blocksize_bits;
1756 if (only_release_metadata) {
1757 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1758 release_bytes);
1759 } else {
1760 u64 __pos;
1761
1762 __pos = round_down(pos,
1763 fs_info->sectorsize) +
1764 (dirty_pages << PAGE_SHIFT);
1765 btrfs_delalloc_release_space(inode,
1766 data_reserved, __pos,
1767 release_bytes);
1768 }
1769 }
1770
1771 release_bytes = round_up(copied + sector_offset,
1772 fs_info->sectorsize);
1773
1774 if (copied > 0)
1775 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1776 pos, copied, NULL);
1777
1778 /*
1779 * If we have not locked the extent range, because the range's
1780 * start offset is >= i_size, we might still have a non-NULL
1781 * cached extent state, acquired while marking the extent range
1782 * as delalloc through btrfs_dirty_pages(). Therefore free any
1783 * possible cached extent state to avoid a memory leak.
1784 */
1785 if (extents_locked)
1786 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1787 lockstart, lockend, &cached_state,
1788 GFP_NOFS);
1789 else
1790 free_extent_state(cached_state);
1791
1792 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1793 if (ret) {
1794 btrfs_drop_pages(pages, num_pages);
1795 break;
1796 }
1797
1798 release_bytes = 0;
1799 if (only_release_metadata)
1800 btrfs_end_write_no_snapshotting(root);
1801
1802 if (only_release_metadata && copied > 0) {
1803 lockstart = round_down(pos,
1804 fs_info->sectorsize);
1805 lockend = round_up(pos + copied,
1806 fs_info->sectorsize) - 1;
1807
1808 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1809 lockend, EXTENT_NORESERVE, NULL,
1810 NULL, GFP_NOFS);
1811 }
1812
1813 btrfs_drop_pages(pages, num_pages);
1814
1815 cond_resched();
1816
1817 balance_dirty_pages_ratelimited(inode->i_mapping);
1818 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1819 btrfs_btree_balance_dirty(fs_info);
1820
1821 pos += copied;
1822 num_written += copied;
1823 }
1824
1825 kfree(pages);
1826
1827 if (release_bytes) {
1828 if (only_release_metadata) {
1829 btrfs_end_write_no_snapshotting(root);
1830 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1831 release_bytes);
1832 } else {
1833 btrfs_delalloc_release_space(inode, data_reserved,
1834 round_down(pos, fs_info->sectorsize),
1835 release_bytes);
1836 }
1837 }
1838
1839 extent_changeset_free(data_reserved);
1840 return num_written ? num_written : ret;
1841 }
1842
1843 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1844 {
1845 struct file *file = iocb->ki_filp;
1846 struct inode *inode = file_inode(file);
1847 loff_t pos = iocb->ki_pos;
1848 ssize_t written;
1849 ssize_t written_buffered;
1850 loff_t endbyte;
1851 int err;
1852
1853 written = generic_file_direct_write(iocb, from);
1854
1855 if (written < 0 || !iov_iter_count(from))
1856 return written;
1857
1858 pos += written;
1859 written_buffered = __btrfs_buffered_write(file, from, pos);
1860 if (written_buffered < 0) {
1861 err = written_buffered;
1862 goto out;
1863 }
1864 /*
1865 * Ensure all data is persisted. We want the next direct IO read to be
1866 * able to read what was just written.
1867 */
1868 endbyte = pos + written_buffered - 1;
1869 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1870 if (err)
1871 goto out;
1872 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1873 if (err)
1874 goto out;
1875 written += written_buffered;
1876 iocb->ki_pos = pos + written_buffered;
1877 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1878 endbyte >> PAGE_SHIFT);
1879 out:
1880 return written ? written : err;
1881 }
1882
1883 static void update_time_for_write(struct inode *inode)
1884 {
1885 struct timespec now;
1886
1887 if (IS_NOCMTIME(inode))
1888 return;
1889
1890 now = current_time(inode);
1891 if (!timespec_equal(&inode->i_mtime, &now))
1892 inode->i_mtime = now;
1893
1894 if (!timespec_equal(&inode->i_ctime, &now))
1895 inode->i_ctime = now;
1896
1897 if (IS_I_VERSION(inode))
1898 inode_inc_iversion(inode);
1899 }
1900
1901 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1902 struct iov_iter *from)
1903 {
1904 struct file *file = iocb->ki_filp;
1905 struct inode *inode = file_inode(file);
1906 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1907 struct btrfs_root *root = BTRFS_I(inode)->root;
1908 u64 start_pos;
1909 u64 end_pos;
1910 ssize_t num_written = 0;
1911 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1912 ssize_t err;
1913 loff_t pos;
1914 size_t count;
1915 loff_t oldsize;
1916 int clean_page = 0;
1917
1918 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1919 (iocb->ki_flags & IOCB_NOWAIT))
1920 return -EOPNOTSUPP;
1921
1922 if (iocb->ki_flags & IOCB_NOWAIT) {
1923 if (!inode_trylock(inode))
1924 return -EAGAIN;
1925 } else {
1926 inode_lock(inode);
1927 }
1928
1929 err = generic_write_checks(iocb, from);
1930 if (err <= 0) {
1931 inode_unlock(inode);
1932 return err;
1933 }
1934
1935 pos = iocb->ki_pos;
1936 count = iov_iter_count(from);
1937 if (iocb->ki_flags & IOCB_NOWAIT) {
1938 /*
1939 * We will allocate space in case nodatacow is not set,
1940 * so bail
1941 */
1942 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1943 BTRFS_INODE_PREALLOC)) ||
1944 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1945 inode_unlock(inode);
1946 return -EAGAIN;
1947 }
1948 }
1949
1950 current->backing_dev_info = inode_to_bdi(inode);
1951 err = file_remove_privs(file);
1952 if (err) {
1953 inode_unlock(inode);
1954 goto out;
1955 }
1956
1957 /*
1958 * If BTRFS flips readonly due to some impossible error
1959 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1960 * although we have opened a file as writable, we have
1961 * to stop this write operation to ensure FS consistency.
1962 */
1963 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1964 inode_unlock(inode);
1965 err = -EROFS;
1966 goto out;
1967 }
1968
1969 /*
1970 * We reserve space for updating the inode when we reserve space for the
1971 * extent we are going to write, so we will enospc out there. We don't
1972 * need to start yet another transaction to update the inode as we will
1973 * update the inode when we finish writing whatever data we write.
1974 */
1975 update_time_for_write(inode);
1976
1977 start_pos = round_down(pos, fs_info->sectorsize);
1978 oldsize = i_size_read(inode);
1979 if (start_pos > oldsize) {
1980 /* Expand hole size to cover write data, preventing empty gap */
1981 end_pos = round_up(pos + count,
1982 fs_info->sectorsize);
1983 err = btrfs_cont_expand(inode, oldsize, end_pos);
1984 if (err) {
1985 inode_unlock(inode);
1986 goto out;
1987 }
1988 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1989 clean_page = 1;
1990 }
1991
1992 if (sync)
1993 atomic_inc(&BTRFS_I(inode)->sync_writers);
1994
1995 if (iocb->ki_flags & IOCB_DIRECT) {
1996 num_written = __btrfs_direct_write(iocb, from);
1997 } else {
1998 num_written = __btrfs_buffered_write(file, from, pos);
1999 if (num_written > 0)
2000 iocb->ki_pos = pos + num_written;
2001 if (clean_page)
2002 pagecache_isize_extended(inode, oldsize,
2003 i_size_read(inode));
2004 }
2005
2006 inode_unlock(inode);
2007
2008 /*
2009 * We also have to set last_sub_trans to the current log transid,
2010 * otherwise subsequent syncs to a file that's been synced in this
2011 * transaction will appear to have already occurred.
2012 */
2013 spin_lock(&BTRFS_I(inode)->lock);
2014 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2015 spin_unlock(&BTRFS_I(inode)->lock);
2016 if (num_written > 0)
2017 num_written = generic_write_sync(iocb, num_written);
2018
2019 if (sync)
2020 atomic_dec(&BTRFS_I(inode)->sync_writers);
2021 out:
2022 current->backing_dev_info = NULL;
2023 return num_written ? num_written : err;
2024 }
2025
2026 int btrfs_release_file(struct inode *inode, struct file *filp)
2027 {
2028 struct btrfs_file_private *private = filp->private_data;
2029
2030 if (private && private->trans)
2031 btrfs_ioctl_trans_end(filp);
2032 if (private && private->filldir_buf)
2033 kfree(private->filldir_buf);
2034 kfree(private);
2035 filp->private_data = NULL;
2036
2037 /*
2038 * ordered_data_close is set by settattr when we are about to truncate
2039 * a file from a non-zero size to a zero size. This tries to
2040 * flush down new bytes that may have been written if the
2041 * application were using truncate to replace a file in place.
2042 */
2043 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2044 &BTRFS_I(inode)->runtime_flags))
2045 filemap_flush(inode->i_mapping);
2046 return 0;
2047 }
2048
2049 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2050 {
2051 int ret;
2052 struct blk_plug plug;
2053
2054 /*
2055 * This is only called in fsync, which would do synchronous writes, so
2056 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2057 * multiple disks using raid profile, a large IO can be split to
2058 * several segments of stripe length (currently 64K).
2059 */
2060 blk_start_plug(&plug);
2061 atomic_inc(&BTRFS_I(inode)->sync_writers);
2062 ret = btrfs_fdatawrite_range(inode, start, end);
2063 atomic_dec(&BTRFS_I(inode)->sync_writers);
2064 blk_finish_plug(&plug);
2065
2066 return ret;
2067 }
2068
2069 /*
2070 * fsync call for both files and directories. This logs the inode into
2071 * the tree log instead of forcing full commits whenever possible.
2072 *
2073 * It needs to call filemap_fdatawait so that all ordered extent updates are
2074 * in the metadata btree are up to date for copying to the log.
2075 *
2076 * It drops the inode mutex before doing the tree log commit. This is an
2077 * important optimization for directories because holding the mutex prevents
2078 * new operations on the dir while we write to disk.
2079 */
2080 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2081 {
2082 struct dentry *dentry = file_dentry(file);
2083 struct inode *inode = d_inode(dentry);
2084 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2085 struct btrfs_root *root = BTRFS_I(inode)->root;
2086 struct btrfs_trans_handle *trans;
2087 struct btrfs_log_ctx ctx;
2088 int ret = 0, err;
2089 bool full_sync = false;
2090 u64 len;
2091
2092 /*
2093 * If the inode needs a full sync, make sure we use a full range to
2094 * avoid log tree corruption, due to hole detection racing with ordered
2095 * extent completion for adjacent ranges, and assertion failures during
2096 * hole detection.
2097 */
2098 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2099 &BTRFS_I(inode)->runtime_flags)) {
2100 start = 0;
2101 end = LLONG_MAX;
2102 }
2103
2104 /*
2105 * The range length can be represented by u64, we have to do the typecasts
2106 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2107 */
2108 len = (u64)end - (u64)start + 1;
2109 trace_btrfs_sync_file(file, datasync);
2110
2111 btrfs_init_log_ctx(&ctx, inode);
2112
2113 /*
2114 * Before we acquired the inode's lock, someone may have dirtied more
2115 * pages in the target range. We need to make sure that writeback for
2116 * any such pages does not start while we are logging the inode, because
2117 * if it does, any of the following might happen when we are not doing a
2118 * full inode sync:
2119 *
2120 * 1) We log an extent after its writeback finishes but before its
2121 * checksums are added to the csum tree, leading to -EIO errors
2122 * when attempting to read the extent after a log replay.
2123 *
2124 * 2) We can end up logging an extent before its writeback finishes.
2125 * Therefore after the log replay we will have a file extent item
2126 * pointing to an unwritten extent (and no data checksums as well).
2127 *
2128 * So trigger writeback for any eventual new dirty pages and then we
2129 * wait for all ordered extents to complete below.
2130 */
2131 ret = start_ordered_ops(inode, start, end);
2132 if (ret) {
2133 inode_unlock(inode);
2134 goto out;
2135 }
2136
2137 /*
2138 * We write the dirty pages in the range and wait until they complete
2139 * out of the ->i_mutex. If so, we can flush the dirty pages by
2140 * multi-task, and make the performance up. See
2141 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2142 */
2143 ret = start_ordered_ops(inode, start, end);
2144 if (ret)
2145 goto out;
2146
2147 inode_lock(inode);
2148
2149 /*
2150 * We take the dio_sem here because the tree log stuff can race with
2151 * lockless dio writes and get an extent map logged for an extent we
2152 * never waited on. We need it this high up for lockdep reasons.
2153 */
2154 down_write(&BTRFS_I(inode)->dio_sem);
2155
2156 atomic_inc(&root->log_batch);
2157 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2158 &BTRFS_I(inode)->runtime_flags);
2159 /*
2160 * We might have have had more pages made dirty after calling
2161 * start_ordered_ops and before acquiring the inode's i_mutex.
2162 */
2163 if (full_sync) {
2164 /*
2165 * For a full sync, we need to make sure any ordered operations
2166 * start and finish before we start logging the inode, so that
2167 * all extents are persisted and the respective file extent
2168 * items are in the fs/subvol btree.
2169 */
2170 ret = btrfs_wait_ordered_range(inode, start, len);
2171 } else {
2172 /*
2173 * Start any new ordered operations before starting to log the
2174 * inode. We will wait for them to finish in btrfs_sync_log().
2175 *
2176 * Right before acquiring the inode's mutex, we might have new
2177 * writes dirtying pages, which won't immediately start the
2178 * respective ordered operations - that is done through the
2179 * fill_delalloc callbacks invoked from the writepage and
2180 * writepages address space operations. So make sure we start
2181 * all ordered operations before starting to log our inode. Not
2182 * doing this means that while logging the inode, writeback
2183 * could start and invoke writepage/writepages, which would call
2184 * the fill_delalloc callbacks (cow_file_range,
2185 * submit_compressed_extents). These callbacks add first an
2186 * extent map to the modified list of extents and then create
2187 * the respective ordered operation, which means in
2188 * tree-log.c:btrfs_log_inode() we might capture all existing
2189 * ordered operations (with btrfs_get_logged_extents()) before
2190 * the fill_delalloc callback adds its ordered operation, and by
2191 * the time we visit the modified list of extent maps (with
2192 * btrfs_log_changed_extents()), we see and process the extent
2193 * map they created. We then use the extent map to construct a
2194 * file extent item for logging without waiting for the
2195 * respective ordered operation to finish - this file extent
2196 * item points to a disk location that might not have yet been
2197 * written to, containing random data - so after a crash a log
2198 * replay will make our inode have file extent items that point
2199 * to disk locations containing invalid data, as we returned
2200 * success to userspace without waiting for the respective
2201 * ordered operation to finish, because it wasn't captured by
2202 * btrfs_get_logged_extents().
2203 */
2204 ret = start_ordered_ops(inode, start, end);
2205 }
2206 if (ret) {
2207 up_write(&BTRFS_I(inode)->dio_sem);
2208 inode_unlock(inode);
2209 goto out;
2210 }
2211 atomic_inc(&root->log_batch);
2212
2213 /*
2214 * If the last transaction that changed this file was before the current
2215 * transaction and we have the full sync flag set in our inode, we can
2216 * bail out now without any syncing.
2217 *
2218 * Note that we can't bail out if the full sync flag isn't set. This is
2219 * because when the full sync flag is set we start all ordered extents
2220 * and wait for them to fully complete - when they complete they update
2221 * the inode's last_trans field through:
2222 *
2223 * btrfs_finish_ordered_io() ->
2224 * btrfs_update_inode_fallback() ->
2225 * btrfs_update_inode() ->
2226 * btrfs_set_inode_last_trans()
2227 *
2228 * So we are sure that last_trans is up to date and can do this check to
2229 * bail out safely. For the fast path, when the full sync flag is not
2230 * set in our inode, we can not do it because we start only our ordered
2231 * extents and don't wait for them to complete (that is when
2232 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2233 * value might be less than or equals to fs_info->last_trans_committed,
2234 * and setting a speculative last_trans for an inode when a buffered
2235 * write is made (such as fs_info->generation + 1 for example) would not
2236 * be reliable since after setting the value and before fsync is called
2237 * any number of transactions can start and commit (transaction kthread
2238 * commits the current transaction periodically), and a transaction
2239 * commit does not start nor waits for ordered extents to complete.
2240 */
2241 smp_mb();
2242 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2243 (full_sync && BTRFS_I(inode)->last_trans <=
2244 fs_info->last_trans_committed) ||
2245 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2246 BTRFS_I(inode)->last_trans
2247 <= fs_info->last_trans_committed)) {
2248 /*
2249 * We've had everything committed since the last time we were
2250 * modified so clear this flag in case it was set for whatever
2251 * reason, it's no longer relevant.
2252 */
2253 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2254 &BTRFS_I(inode)->runtime_flags);
2255 /*
2256 * An ordered extent might have started before and completed
2257 * already with io errors, in which case the inode was not
2258 * updated and we end up here. So check the inode's mapping
2259 * for any errors that might have happened since we last
2260 * checked called fsync.
2261 */
2262 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2263 up_write(&BTRFS_I(inode)->dio_sem);
2264 inode_unlock(inode);
2265 goto out;
2266 }
2267
2268 /*
2269 * ok we haven't committed the transaction yet, lets do a commit
2270 */
2271 if (file->private_data)
2272 btrfs_ioctl_trans_end(file);
2273
2274 /*
2275 * We use start here because we will need to wait on the IO to complete
2276 * in btrfs_sync_log, which could require joining a transaction (for
2277 * example checking cross references in the nocow path). If we use join
2278 * here we could get into a situation where we're waiting on IO to
2279 * happen that is blocked on a transaction trying to commit. With start
2280 * we inc the extwriter counter, so we wait for all extwriters to exit
2281 * before we start blocking join'ers. This comment is to keep somebody
2282 * from thinking they are super smart and changing this to
2283 * btrfs_join_transaction *cough*Josef*cough*.
2284 */
2285 trans = btrfs_start_transaction(root, 0);
2286 if (IS_ERR(trans)) {
2287 ret = PTR_ERR(trans);
2288 up_write(&BTRFS_I(inode)->dio_sem);
2289 inode_unlock(inode);
2290 goto out;
2291 }
2292 trans->sync = true;
2293
2294 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2295 if (ret < 0) {
2296 /* Fallthrough and commit/free transaction. */
2297 ret = 1;
2298 }
2299
2300 /* we've logged all the items and now have a consistent
2301 * version of the file in the log. It is possible that
2302 * someone will come in and modify the file, but that's
2303 * fine because the log is consistent on disk, and we
2304 * have references to all of the file's extents
2305 *
2306 * It is possible that someone will come in and log the
2307 * file again, but that will end up using the synchronization
2308 * inside btrfs_sync_log to keep things safe.
2309 */
2310 up_write(&BTRFS_I(inode)->dio_sem);
2311 inode_unlock(inode);
2312
2313 /*
2314 * If any of the ordered extents had an error, just return it to user
2315 * space, so that the application knows some writes didn't succeed and
2316 * can take proper action (retry for e.g.). Blindly committing the
2317 * transaction in this case, would fool userspace that everything was
2318 * successful. And we also want to make sure our log doesn't contain
2319 * file extent items pointing to extents that weren't fully written to -
2320 * just like in the non fast fsync path, where we check for the ordered
2321 * operation's error flag before writing to the log tree and return -EIO
2322 * if any of them had this flag set (btrfs_wait_ordered_range) -
2323 * therefore we need to check for errors in the ordered operations,
2324 * which are indicated by ctx.io_err.
2325 */
2326 if (ctx.io_err) {
2327 btrfs_end_transaction(trans);
2328 ret = ctx.io_err;
2329 goto out;
2330 }
2331
2332 if (ret != BTRFS_NO_LOG_SYNC) {
2333 if (!ret) {
2334 ret = btrfs_sync_log(trans, root, &ctx);
2335 if (!ret) {
2336 ret = btrfs_end_transaction(trans);
2337 goto out;
2338 }
2339 }
2340 if (!full_sync) {
2341 ret = btrfs_wait_ordered_range(inode, start, len);
2342 if (ret) {
2343 btrfs_end_transaction(trans);
2344 goto out;
2345 }
2346 }
2347 ret = btrfs_commit_transaction(trans);
2348 } else {
2349 ret = btrfs_end_transaction(trans);
2350 }
2351 out:
2352 ASSERT(list_empty(&ctx.list));
2353 err = file_check_and_advance_wb_err(file);
2354 if (!ret)
2355 ret = err;
2356 return ret > 0 ? -EIO : ret;
2357 }
2358
2359 static const struct vm_operations_struct btrfs_file_vm_ops = {
2360 .fault = filemap_fault,
2361 .map_pages = filemap_map_pages,
2362 .page_mkwrite = btrfs_page_mkwrite,
2363 };
2364
2365 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2366 {
2367 struct address_space *mapping = filp->f_mapping;
2368
2369 if (!mapping->a_ops->readpage)
2370 return -ENOEXEC;
2371
2372 file_accessed(filp);
2373 vma->vm_ops = &btrfs_file_vm_ops;
2374
2375 return 0;
2376 }
2377
2378 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2379 int slot, u64 start, u64 end)
2380 {
2381 struct btrfs_file_extent_item *fi;
2382 struct btrfs_key key;
2383
2384 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2385 return 0;
2386
2387 btrfs_item_key_to_cpu(leaf, &key, slot);
2388 if (key.objectid != btrfs_ino(inode) ||
2389 key.type != BTRFS_EXTENT_DATA_KEY)
2390 return 0;
2391
2392 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2393
2394 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2395 return 0;
2396
2397 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2398 return 0;
2399
2400 if (key.offset == end)
2401 return 1;
2402 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2403 return 1;
2404 return 0;
2405 }
2406
2407 static int fill_holes(struct btrfs_trans_handle *trans,
2408 struct btrfs_inode *inode,
2409 struct btrfs_path *path, u64 offset, u64 end)
2410 {
2411 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2412 struct btrfs_root *root = inode->root;
2413 struct extent_buffer *leaf;
2414 struct btrfs_file_extent_item *fi;
2415 struct extent_map *hole_em;
2416 struct extent_map_tree *em_tree = &inode->extent_tree;
2417 struct btrfs_key key;
2418 int ret;
2419
2420 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2421 goto out;
2422
2423 key.objectid = btrfs_ino(inode);
2424 key.type = BTRFS_EXTENT_DATA_KEY;
2425 key.offset = offset;
2426
2427 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2428 if (ret <= 0) {
2429 /*
2430 * We should have dropped this offset, so if we find it then
2431 * something has gone horribly wrong.
2432 */
2433 if (ret == 0)
2434 ret = -EINVAL;
2435 return ret;
2436 }
2437
2438 leaf = path->nodes[0];
2439 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2440 u64 num_bytes;
2441
2442 path->slots[0]--;
2443 fi = btrfs_item_ptr(leaf, path->slots[0],
2444 struct btrfs_file_extent_item);
2445 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2446 end - offset;
2447 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2448 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2449 btrfs_set_file_extent_offset(leaf, fi, 0);
2450 btrfs_mark_buffer_dirty(leaf);
2451 goto out;
2452 }
2453
2454 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2455 u64 num_bytes;
2456
2457 key.offset = offset;
2458 btrfs_set_item_key_safe(fs_info, path, &key);
2459 fi = btrfs_item_ptr(leaf, path->slots[0],
2460 struct btrfs_file_extent_item);
2461 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2462 offset;
2463 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2464 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2465 btrfs_set_file_extent_offset(leaf, fi, 0);
2466 btrfs_mark_buffer_dirty(leaf);
2467 goto out;
2468 }
2469 btrfs_release_path(path);
2470
2471 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2472 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2473 if (ret)
2474 return ret;
2475
2476 out:
2477 btrfs_release_path(path);
2478
2479 hole_em = alloc_extent_map();
2480 if (!hole_em) {
2481 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2482 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2483 } else {
2484 hole_em->start = offset;
2485 hole_em->len = end - offset;
2486 hole_em->ram_bytes = hole_em->len;
2487 hole_em->orig_start = offset;
2488
2489 hole_em->block_start = EXTENT_MAP_HOLE;
2490 hole_em->block_len = 0;
2491 hole_em->orig_block_len = 0;
2492 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2493 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2494 hole_em->generation = trans->transid;
2495
2496 do {
2497 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2498 write_lock(&em_tree->lock);
2499 ret = add_extent_mapping(em_tree, hole_em, 1);
2500 write_unlock(&em_tree->lock);
2501 } while (ret == -EEXIST);
2502 free_extent_map(hole_em);
2503 if (ret)
2504 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2505 &inode->runtime_flags);
2506 }
2507
2508 return 0;
2509 }
2510
2511 /*
2512 * Find a hole extent on given inode and change start/len to the end of hole
2513 * extent.(hole/vacuum extent whose em->start <= start &&
2514 * em->start + em->len > start)
2515 * When a hole extent is found, return 1 and modify start/len.
2516 */
2517 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2518 {
2519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2520 struct extent_map *em;
2521 int ret = 0;
2522
2523 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2524 round_down(*start, fs_info->sectorsize),
2525 round_up(*len, fs_info->sectorsize), 0);
2526 if (IS_ERR(em))
2527 return PTR_ERR(em);
2528
2529 /* Hole or vacuum extent(only exists in no-hole mode) */
2530 if (em->block_start == EXTENT_MAP_HOLE) {
2531 ret = 1;
2532 *len = em->start + em->len > *start + *len ?
2533 0 : *start + *len - em->start - em->len;
2534 *start = em->start + em->len;
2535 }
2536 free_extent_map(em);
2537 return ret;
2538 }
2539
2540 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2541 {
2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543 struct btrfs_root *root = BTRFS_I(inode)->root;
2544 struct extent_state *cached_state = NULL;
2545 struct btrfs_path *path;
2546 struct btrfs_block_rsv *rsv;
2547 struct btrfs_trans_handle *trans;
2548 u64 lockstart;
2549 u64 lockend;
2550 u64 tail_start;
2551 u64 tail_len;
2552 u64 orig_start = offset;
2553 u64 cur_offset;
2554 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2555 u64 drop_end;
2556 int ret = 0;
2557 int err = 0;
2558 unsigned int rsv_count;
2559 bool same_block;
2560 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2561 u64 ino_size;
2562 bool truncated_block = false;
2563 bool updated_inode = false;
2564
2565 ret = btrfs_wait_ordered_range(inode, offset, len);
2566 if (ret)
2567 return ret;
2568
2569 inode_lock(inode);
2570 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2571 ret = find_first_non_hole(inode, &offset, &len);
2572 if (ret < 0)
2573 goto out_only_mutex;
2574 if (ret && !len) {
2575 /* Already in a large hole */
2576 ret = 0;
2577 goto out_only_mutex;
2578 }
2579
2580 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2581 lockend = round_down(offset + len,
2582 btrfs_inode_sectorsize(inode)) - 1;
2583 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2584 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2585 /*
2586 * We needn't truncate any block which is beyond the end of the file
2587 * because we are sure there is no data there.
2588 */
2589 /*
2590 * Only do this if we are in the same block and we aren't doing the
2591 * entire block.
2592 */
2593 if (same_block && len < fs_info->sectorsize) {
2594 if (offset < ino_size) {
2595 truncated_block = true;
2596 ret = btrfs_truncate_block(inode, offset, len, 0);
2597 } else {
2598 ret = 0;
2599 }
2600 goto out_only_mutex;
2601 }
2602
2603 /* zero back part of the first block */
2604 if (offset < ino_size) {
2605 truncated_block = true;
2606 ret = btrfs_truncate_block(inode, offset, 0, 0);
2607 if (ret) {
2608 inode_unlock(inode);
2609 return ret;
2610 }
2611 }
2612
2613 /* Check the aligned pages after the first unaligned page,
2614 * if offset != orig_start, which means the first unaligned page
2615 * including several following pages are already in holes,
2616 * the extra check can be skipped */
2617 if (offset == orig_start) {
2618 /* after truncate page, check hole again */
2619 len = offset + len - lockstart;
2620 offset = lockstart;
2621 ret = find_first_non_hole(inode, &offset, &len);
2622 if (ret < 0)
2623 goto out_only_mutex;
2624 if (ret && !len) {
2625 ret = 0;
2626 goto out_only_mutex;
2627 }
2628 lockstart = offset;
2629 }
2630
2631 /* Check the tail unaligned part is in a hole */
2632 tail_start = lockend + 1;
2633 tail_len = offset + len - tail_start;
2634 if (tail_len) {
2635 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2636 if (unlikely(ret < 0))
2637 goto out_only_mutex;
2638 if (!ret) {
2639 /* zero the front end of the last page */
2640 if (tail_start + tail_len < ino_size) {
2641 truncated_block = true;
2642 ret = btrfs_truncate_block(inode,
2643 tail_start + tail_len,
2644 0, 1);
2645 if (ret)
2646 goto out_only_mutex;
2647 }
2648 }
2649 }
2650
2651 if (lockend < lockstart) {
2652 ret = 0;
2653 goto out_only_mutex;
2654 }
2655
2656 while (1) {
2657 struct btrfs_ordered_extent *ordered;
2658
2659 truncate_pagecache_range(inode, lockstart, lockend);
2660
2661 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2662 &cached_state);
2663 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2664
2665 /*
2666 * We need to make sure we have no ordered extents in this range
2667 * and nobody raced in and read a page in this range, if we did
2668 * we need to try again.
2669 */
2670 if ((!ordered ||
2671 (ordered->file_offset + ordered->len <= lockstart ||
2672 ordered->file_offset > lockend)) &&
2673 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2674 if (ordered)
2675 btrfs_put_ordered_extent(ordered);
2676 break;
2677 }
2678 if (ordered)
2679 btrfs_put_ordered_extent(ordered);
2680 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2681 lockend, &cached_state, GFP_NOFS);
2682 ret = btrfs_wait_ordered_range(inode, lockstart,
2683 lockend - lockstart + 1);
2684 if (ret) {
2685 inode_unlock(inode);
2686 return ret;
2687 }
2688 }
2689
2690 path = btrfs_alloc_path();
2691 if (!path) {
2692 ret = -ENOMEM;
2693 goto out;
2694 }
2695
2696 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2697 if (!rsv) {
2698 ret = -ENOMEM;
2699 goto out_free;
2700 }
2701 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2702 rsv->failfast = 1;
2703
2704 /*
2705 * 1 - update the inode
2706 * 1 - removing the extents in the range
2707 * 1 - adding the hole extent if no_holes isn't set
2708 */
2709 rsv_count = no_holes ? 2 : 3;
2710 trans = btrfs_start_transaction(root, rsv_count);
2711 if (IS_ERR(trans)) {
2712 err = PTR_ERR(trans);
2713 goto out_free;
2714 }
2715
2716 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2717 min_size, 0);
2718 BUG_ON(ret);
2719 trans->block_rsv = rsv;
2720
2721 cur_offset = lockstart;
2722 len = lockend - cur_offset;
2723 while (cur_offset < lockend) {
2724 ret = __btrfs_drop_extents(trans, root, inode, path,
2725 cur_offset, lockend + 1,
2726 &drop_end, 1, 0, 0, NULL);
2727 if (ret != -ENOSPC)
2728 break;
2729
2730 trans->block_rsv = &fs_info->trans_block_rsv;
2731
2732 if (cur_offset < drop_end && cur_offset < ino_size) {
2733 ret = fill_holes(trans, BTRFS_I(inode), path,
2734 cur_offset, drop_end);
2735 if (ret) {
2736 /*
2737 * If we failed then we didn't insert our hole
2738 * entries for the area we dropped, so now the
2739 * fs is corrupted, so we must abort the
2740 * transaction.
2741 */
2742 btrfs_abort_transaction(trans, ret);
2743 err = ret;
2744 break;
2745 }
2746 }
2747
2748 cur_offset = drop_end;
2749
2750 ret = btrfs_update_inode(trans, root, inode);
2751 if (ret) {
2752 err = ret;
2753 break;
2754 }
2755
2756 btrfs_end_transaction(trans);
2757 btrfs_btree_balance_dirty(fs_info);
2758
2759 trans = btrfs_start_transaction(root, rsv_count);
2760 if (IS_ERR(trans)) {
2761 ret = PTR_ERR(trans);
2762 trans = NULL;
2763 break;
2764 }
2765
2766 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2767 rsv, min_size, 0);
2768 BUG_ON(ret); /* shouldn't happen */
2769 trans->block_rsv = rsv;
2770
2771 ret = find_first_non_hole(inode, &cur_offset, &len);
2772 if (unlikely(ret < 0))
2773 break;
2774 if (ret && !len) {
2775 ret = 0;
2776 break;
2777 }
2778 }
2779
2780 if (ret) {
2781 err = ret;
2782 goto out_trans;
2783 }
2784
2785 trans->block_rsv = &fs_info->trans_block_rsv;
2786 /*
2787 * If we are using the NO_HOLES feature we might have had already an
2788 * hole that overlaps a part of the region [lockstart, lockend] and
2789 * ends at (or beyond) lockend. Since we have no file extent items to
2790 * represent holes, drop_end can be less than lockend and so we must
2791 * make sure we have an extent map representing the existing hole (the
2792 * call to __btrfs_drop_extents() might have dropped the existing extent
2793 * map representing the existing hole), otherwise the fast fsync path
2794 * will not record the existence of the hole region
2795 * [existing_hole_start, lockend].
2796 */
2797 if (drop_end <= lockend)
2798 drop_end = lockend + 1;
2799 /*
2800 * Don't insert file hole extent item if it's for a range beyond eof
2801 * (because it's useless) or if it represents a 0 bytes range (when
2802 * cur_offset == drop_end).
2803 */
2804 if (cur_offset < ino_size && cur_offset < drop_end) {
2805 ret = fill_holes(trans, BTRFS_I(inode), path,
2806 cur_offset, drop_end);
2807 if (ret) {
2808 /* Same comment as above. */
2809 btrfs_abort_transaction(trans, ret);
2810 err = ret;
2811 goto out_trans;
2812 }
2813 }
2814
2815 out_trans:
2816 if (!trans)
2817 goto out_free;
2818
2819 inode_inc_iversion(inode);
2820 inode->i_mtime = inode->i_ctime = current_time(inode);
2821
2822 trans->block_rsv = &fs_info->trans_block_rsv;
2823 ret = btrfs_update_inode(trans, root, inode);
2824 updated_inode = true;
2825 btrfs_end_transaction(trans);
2826 btrfs_btree_balance_dirty(fs_info);
2827 out_free:
2828 btrfs_free_path(path);
2829 btrfs_free_block_rsv(fs_info, rsv);
2830 out:
2831 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2832 &cached_state, GFP_NOFS);
2833 out_only_mutex:
2834 if (!updated_inode && truncated_block && !ret && !err) {
2835 /*
2836 * If we only end up zeroing part of a page, we still need to
2837 * update the inode item, so that all the time fields are
2838 * updated as well as the necessary btrfs inode in memory fields
2839 * for detecting, at fsync time, if the inode isn't yet in the
2840 * log tree or it's there but not up to date.
2841 */
2842 struct timespec now = current_time(inode);
2843
2844 inode_inc_iversion(inode);
2845 inode->i_mtime = now;
2846 inode->i_ctime = now;
2847 trans = btrfs_start_transaction(root, 1);
2848 if (IS_ERR(trans)) {
2849 err = PTR_ERR(trans);
2850 } else {
2851 err = btrfs_update_inode(trans, root, inode);
2852 ret = btrfs_end_transaction(trans);
2853 }
2854 }
2855 inode_unlock(inode);
2856 if (ret && !err)
2857 err = ret;
2858 return err;
2859 }
2860
2861 /* Helper structure to record which range is already reserved */
2862 struct falloc_range {
2863 struct list_head list;
2864 u64 start;
2865 u64 len;
2866 };
2867
2868 /*
2869 * Helper function to add falloc range
2870 *
2871 * Caller should have locked the larger range of extent containing
2872 * [start, len)
2873 */
2874 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2875 {
2876 struct falloc_range *prev = NULL;
2877 struct falloc_range *range = NULL;
2878
2879 if (list_empty(head))
2880 goto insert;
2881
2882 /*
2883 * As fallocate iterate by bytenr order, we only need to check
2884 * the last range.
2885 */
2886 prev = list_entry(head->prev, struct falloc_range, list);
2887 if (prev->start + prev->len == start) {
2888 prev->len += len;
2889 return 0;
2890 }
2891 insert:
2892 range = kmalloc(sizeof(*range), GFP_KERNEL);
2893 if (!range)
2894 return -ENOMEM;
2895 range->start = start;
2896 range->len = len;
2897 list_add_tail(&range->list, head);
2898 return 0;
2899 }
2900
2901 static long btrfs_fallocate(struct file *file, int mode,
2902 loff_t offset, loff_t len)
2903 {
2904 struct inode *inode = file_inode(file);
2905 struct extent_state *cached_state = NULL;
2906 struct extent_changeset *data_reserved = NULL;
2907 struct falloc_range *range;
2908 struct falloc_range *tmp;
2909 struct list_head reserve_list;
2910 u64 cur_offset;
2911 u64 last_byte;
2912 u64 alloc_start;
2913 u64 alloc_end;
2914 u64 alloc_hint = 0;
2915 u64 locked_end;
2916 u64 actual_end = 0;
2917 struct extent_map *em;
2918 int blocksize = btrfs_inode_sectorsize(inode);
2919 int ret;
2920
2921 alloc_start = round_down(offset, blocksize);
2922 alloc_end = round_up(offset + len, blocksize);
2923 cur_offset = alloc_start;
2924
2925 /* Make sure we aren't being give some crap mode */
2926 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2927 return -EOPNOTSUPP;
2928
2929 if (mode & FALLOC_FL_PUNCH_HOLE)
2930 return btrfs_punch_hole(inode, offset, len);
2931
2932 /*
2933 * Only trigger disk allocation, don't trigger qgroup reserve
2934 *
2935 * For qgroup space, it will be checked later.
2936 */
2937 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2938 alloc_end - alloc_start);
2939 if (ret < 0)
2940 return ret;
2941
2942 inode_lock(inode);
2943
2944 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2945 ret = inode_newsize_ok(inode, offset + len);
2946 if (ret)
2947 goto out;
2948 }
2949
2950 /*
2951 * TODO: Move these two operations after we have checked
2952 * accurate reserved space, or fallocate can still fail but
2953 * with page truncated or size expanded.
2954 *
2955 * But that's a minor problem and won't do much harm BTW.
2956 */
2957 if (alloc_start > inode->i_size) {
2958 ret = btrfs_cont_expand(inode, i_size_read(inode),
2959 alloc_start);
2960 if (ret)
2961 goto out;
2962 } else if (offset + len > inode->i_size) {
2963 /*
2964 * If we are fallocating from the end of the file onward we
2965 * need to zero out the end of the block if i_size lands in the
2966 * middle of a block.
2967 */
2968 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2969 if (ret)
2970 goto out;
2971 }
2972
2973 /*
2974 * wait for ordered IO before we have any locks. We'll loop again
2975 * below with the locks held.
2976 */
2977 ret = btrfs_wait_ordered_range(inode, alloc_start,
2978 alloc_end - alloc_start);
2979 if (ret)
2980 goto out;
2981
2982 locked_end = alloc_end - 1;
2983 while (1) {
2984 struct btrfs_ordered_extent *ordered;
2985
2986 /* the extent lock is ordered inside the running
2987 * transaction
2988 */
2989 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2990 locked_end, &cached_state);
2991 ordered = btrfs_lookup_first_ordered_extent(inode,
2992 alloc_end - 1);
2993 if (ordered &&
2994 ordered->file_offset + ordered->len > alloc_start &&
2995 ordered->file_offset < alloc_end) {
2996 btrfs_put_ordered_extent(ordered);
2997 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2998 alloc_start, locked_end,
2999 &cached_state, GFP_KERNEL);
3000 /*
3001 * we can't wait on the range with the transaction
3002 * running or with the extent lock held
3003 */
3004 ret = btrfs_wait_ordered_range(inode, alloc_start,
3005 alloc_end - alloc_start);
3006 if (ret)
3007 goto out;
3008 } else {
3009 if (ordered)
3010 btrfs_put_ordered_extent(ordered);
3011 break;
3012 }
3013 }
3014
3015 /* First, check if we exceed the qgroup limit */
3016 INIT_LIST_HEAD(&reserve_list);
3017 while (1) {
3018 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3019 alloc_end - cur_offset, 0);
3020 if (IS_ERR(em)) {
3021 ret = PTR_ERR(em);
3022 break;
3023 }
3024 last_byte = min(extent_map_end(em), alloc_end);
3025 actual_end = min_t(u64, extent_map_end(em), offset + len);
3026 last_byte = ALIGN(last_byte, blocksize);
3027 if (em->block_start == EXTENT_MAP_HOLE ||
3028 (cur_offset >= inode->i_size &&
3029 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3030 ret = add_falloc_range(&reserve_list, cur_offset,
3031 last_byte - cur_offset);
3032 if (ret < 0) {
3033 free_extent_map(em);
3034 break;
3035 }
3036 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3037 cur_offset, last_byte - cur_offset);
3038 if (ret < 0) {
3039 cur_offset = last_byte;
3040 free_extent_map(em);
3041 break;
3042 }
3043 } else {
3044 /*
3045 * Do not need to reserve unwritten extent for this
3046 * range, free reserved data space first, otherwise
3047 * it'll result in false ENOSPC error.
3048 */
3049 btrfs_free_reserved_data_space(inode, data_reserved,
3050 cur_offset, last_byte - cur_offset);
3051 }
3052 free_extent_map(em);
3053 cur_offset = last_byte;
3054 if (cur_offset >= alloc_end)
3055 break;
3056 }
3057
3058 /*
3059 * If ret is still 0, means we're OK to fallocate.
3060 * Or just cleanup the list and exit.
3061 */
3062 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3063 if (!ret)
3064 ret = btrfs_prealloc_file_range(inode, mode,
3065 range->start,
3066 range->len, i_blocksize(inode),
3067 offset + len, &alloc_hint);
3068 else
3069 btrfs_free_reserved_data_space(inode,
3070 data_reserved, range->start,
3071 range->len);
3072 list_del(&range->list);
3073 kfree(range);
3074 }
3075 if (ret < 0)
3076 goto out_unlock;
3077
3078 if (actual_end > inode->i_size &&
3079 !(mode & FALLOC_FL_KEEP_SIZE)) {
3080 struct btrfs_trans_handle *trans;
3081 struct btrfs_root *root = BTRFS_I(inode)->root;
3082
3083 /*
3084 * We didn't need to allocate any more space, but we
3085 * still extended the size of the file so we need to
3086 * update i_size and the inode item.
3087 */
3088 trans = btrfs_start_transaction(root, 1);
3089 if (IS_ERR(trans)) {
3090 ret = PTR_ERR(trans);
3091 } else {
3092 inode->i_ctime = current_time(inode);
3093 i_size_write(inode, actual_end);
3094 btrfs_ordered_update_i_size(inode, actual_end, NULL);
3095 ret = btrfs_update_inode(trans, root, inode);
3096 if (ret)
3097 btrfs_end_transaction(trans);
3098 else
3099 ret = btrfs_end_transaction(trans);
3100 }
3101 }
3102 out_unlock:
3103 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3104 &cached_state, GFP_KERNEL);
3105 out:
3106 inode_unlock(inode);
3107 /* Let go of our reservation. */
3108 if (ret != 0)
3109 btrfs_free_reserved_data_space(inode, data_reserved,
3110 cur_offset, alloc_end - cur_offset);
3111 extent_changeset_free(data_reserved);
3112 return ret;
3113 }
3114
3115 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3116 {
3117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3118 struct extent_map *em = NULL;
3119 struct extent_state *cached_state = NULL;
3120 u64 lockstart;
3121 u64 lockend;
3122 u64 start;
3123 u64 len;
3124 int ret = 0;
3125
3126 if (inode->i_size == 0)
3127 return -ENXIO;
3128
3129 /*
3130 * *offset can be negative, in this case we start finding DATA/HOLE from
3131 * the very start of the file.
3132 */
3133 start = max_t(loff_t, 0, *offset);
3134
3135 lockstart = round_down(start, fs_info->sectorsize);
3136 lockend = round_up(i_size_read(inode),
3137 fs_info->sectorsize);
3138 if (lockend <= lockstart)
3139 lockend = lockstart + fs_info->sectorsize;
3140 lockend--;
3141 len = lockend - lockstart + 1;
3142
3143 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3144 &cached_state);
3145
3146 while (start < inode->i_size) {
3147 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3148 start, len, 0);
3149 if (IS_ERR(em)) {
3150 ret = PTR_ERR(em);
3151 em = NULL;
3152 break;
3153 }
3154
3155 if (whence == SEEK_HOLE &&
3156 (em->block_start == EXTENT_MAP_HOLE ||
3157 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3158 break;
3159 else if (whence == SEEK_DATA &&
3160 (em->block_start != EXTENT_MAP_HOLE &&
3161 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3162 break;
3163
3164 start = em->start + em->len;
3165 free_extent_map(em);
3166 em = NULL;
3167 cond_resched();
3168 }
3169 free_extent_map(em);
3170 if (!ret) {
3171 if (whence == SEEK_DATA && start >= inode->i_size)
3172 ret = -ENXIO;
3173 else
3174 *offset = min_t(loff_t, start, inode->i_size);
3175 }
3176 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3177 &cached_state, GFP_NOFS);
3178 return ret;
3179 }
3180
3181 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3182 {
3183 struct inode *inode = file->f_mapping->host;
3184 int ret;
3185
3186 inode_lock(inode);
3187 switch (whence) {
3188 case SEEK_END:
3189 case SEEK_CUR:
3190 offset = generic_file_llseek(file, offset, whence);
3191 goto out;
3192 case SEEK_DATA:
3193 case SEEK_HOLE:
3194 if (offset >= i_size_read(inode)) {
3195 inode_unlock(inode);
3196 return -ENXIO;
3197 }
3198
3199 ret = find_desired_extent(inode, &offset, whence);
3200 if (ret) {
3201 inode_unlock(inode);
3202 return ret;
3203 }
3204 }
3205
3206 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3207 out:
3208 inode_unlock(inode);
3209 return offset;
3210 }
3211
3212 static int btrfs_file_open(struct inode *inode, struct file *filp)
3213 {
3214 filp->f_mode |= FMODE_NOWAIT;
3215 return generic_file_open(inode, filp);
3216 }
3217
3218 const struct file_operations btrfs_file_operations = {
3219 .llseek = btrfs_file_llseek,
3220 .read_iter = generic_file_read_iter,
3221 .splice_read = generic_file_splice_read,
3222 .write_iter = btrfs_file_write_iter,
3223 .mmap = btrfs_file_mmap,
3224 .open = btrfs_file_open,
3225 .release = btrfs_release_file,
3226 .fsync = btrfs_sync_file,
3227 .fallocate = btrfs_fallocate,
3228 .unlocked_ioctl = btrfs_ioctl,
3229 #ifdef CONFIG_COMPAT
3230 .compat_ioctl = btrfs_compat_ioctl,
3231 #endif
3232 .clone_file_range = btrfs_clone_file_range,
3233 .dedupe_file_range = btrfs_dedupe_file_range,
3234 };
3235
3236 void btrfs_auto_defrag_exit(void)
3237 {
3238 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3239 }
3240
3241 int btrfs_auto_defrag_init(void)
3242 {
3243 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3244 sizeof(struct inode_defrag), 0,
3245 SLAB_MEM_SPREAD,
3246 NULL);
3247 if (!btrfs_inode_defrag_cachep)
3248 return -ENOMEM;
3249
3250 return 0;
3251 }
3252
3253 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3254 {
3255 int ret;
3256
3257 /*
3258 * So with compression we will find and lock a dirty page and clear the
3259 * first one as dirty, setup an async extent, and immediately return
3260 * with the entire range locked but with nobody actually marked with
3261 * writeback. So we can't just filemap_write_and_wait_range() and
3262 * expect it to work since it will just kick off a thread to do the
3263 * actual work. So we need to call filemap_fdatawrite_range _again_
3264 * since it will wait on the page lock, which won't be unlocked until
3265 * after the pages have been marked as writeback and so we're good to go
3266 * from there. We have to do this otherwise we'll miss the ordered
3267 * extents and that results in badness. Please Josef, do not think you
3268 * know better and pull this out at some point in the future, it is
3269 * right and you are wrong.
3270 */
3271 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3272 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3273 &BTRFS_I(inode)->runtime_flags))
3274 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3275
3276 return ret;
3277 }