]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/file.c
Btrfs: add missing inode version, ctime and mtime updates when punching hole
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73 {
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 struct inode_defrag *defrag)
97 {
98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
103
104 p = &fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
124 }
125 }
126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(fs_info))
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct btrfs_inode *inode)
149 {
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(fs_info))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = inode->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 int ret;
202
203 if (!__need_auto_defrag(fs_info))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
481 const u64 start,
482 const u64 len,
483 struct extent_state **cached_state)
484 {
485 u64 search_start = start;
486 const u64 end = start + len - 1;
487
488 while (search_start < end) {
489 const u64 search_len = end - search_start + 1;
490 struct extent_map *em;
491 u64 em_len;
492 int ret = 0;
493
494 em = btrfs_get_extent(inode, NULL, 0, search_start,
495 search_len, 0);
496 if (IS_ERR(em))
497 return PTR_ERR(em);
498
499 if (em->block_start != EXTENT_MAP_HOLE)
500 goto next;
501
502 em_len = em->len;
503 if (em->start < search_start)
504 em_len -= search_start - em->start;
505 if (em_len > search_len)
506 em_len = search_len;
507
508 ret = set_extent_bit(&inode->io_tree, search_start,
509 search_start + em_len - 1,
510 EXTENT_DELALLOC_NEW,
511 NULL, cached_state, GFP_NOFS);
512 next:
513 search_start = extent_map_end(em);
514 free_extent_map(em);
515 if (ret)
516 return ret;
517 }
518 return 0;
519 }
520
521 /*
522 * after copy_from_user, pages need to be dirtied and we need to make
523 * sure holes are created between the current EOF and the start of
524 * any next extents (if required).
525 *
526 * this also makes the decision about creating an inline extent vs
527 * doing real data extents, marking pages dirty and delalloc as required.
528 */
529 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
530 size_t num_pages, loff_t pos, size_t write_bytes,
531 struct extent_state **cached)
532 {
533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 int err = 0;
535 int i;
536 u64 num_bytes;
537 u64 start_pos;
538 u64 end_of_last_block;
539 u64 end_pos = pos + write_bytes;
540 loff_t isize = i_size_read(inode);
541 unsigned int extra_bits = 0;
542
543 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
544 num_bytes = round_up(write_bytes + pos - start_pos,
545 fs_info->sectorsize);
546
547 end_of_last_block = start_pos + num_bytes - 1;
548
549 /*
550 * The pages may have already been dirty, clear out old accounting so
551 * we can set things up properly
552 */
553 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
554 EXTENT_DIRTY | EXTENT_DELALLOC |
555 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached,
556 GFP_NOFS);
557
558 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
559 if (start_pos >= isize &&
560 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
561 /*
562 * There can't be any extents following eof in this case
563 * so just set the delalloc new bit for the range
564 * directly.
565 */
566 extra_bits |= EXTENT_DELALLOC_NEW;
567 } else {
568 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
569 start_pos,
570 num_bytes, cached);
571 if (err)
572 return err;
573 }
574 }
575
576 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
577 extra_bits, cached, 0);
578 if (err)
579 return err;
580
581 for (i = 0; i < num_pages; i++) {
582 struct page *p = pages[i];
583 SetPageUptodate(p);
584 ClearPageChecked(p);
585 set_page_dirty(p);
586 }
587
588 /*
589 * we've only changed i_size in ram, and we haven't updated
590 * the disk i_size. There is no need to log the inode
591 * at this time.
592 */
593 if (end_pos > isize)
594 i_size_write(inode, end_pos);
595 return 0;
596 }
597
598 /*
599 * this drops all the extents in the cache that intersect the range
600 * [start, end]. Existing extents are split as required.
601 */
602 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
603 int skip_pinned)
604 {
605 struct extent_map *em;
606 struct extent_map *split = NULL;
607 struct extent_map *split2 = NULL;
608 struct extent_map_tree *em_tree = &inode->extent_tree;
609 u64 len = end - start + 1;
610 u64 gen;
611 int ret;
612 int testend = 1;
613 unsigned long flags;
614 int compressed = 0;
615 bool modified;
616
617 WARN_ON(end < start);
618 if (end == (u64)-1) {
619 len = (u64)-1;
620 testend = 0;
621 }
622 while (1) {
623 int no_splits = 0;
624
625 modified = false;
626 if (!split)
627 split = alloc_extent_map();
628 if (!split2)
629 split2 = alloc_extent_map();
630 if (!split || !split2)
631 no_splits = 1;
632
633 write_lock(&em_tree->lock);
634 em = lookup_extent_mapping(em_tree, start, len);
635 if (!em) {
636 write_unlock(&em_tree->lock);
637 break;
638 }
639 flags = em->flags;
640 gen = em->generation;
641 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
642 if (testend && em->start + em->len >= start + len) {
643 free_extent_map(em);
644 write_unlock(&em_tree->lock);
645 break;
646 }
647 start = em->start + em->len;
648 if (testend)
649 len = start + len - (em->start + em->len);
650 free_extent_map(em);
651 write_unlock(&em_tree->lock);
652 continue;
653 }
654 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
655 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
656 clear_bit(EXTENT_FLAG_LOGGING, &flags);
657 modified = !list_empty(&em->list);
658 if (no_splits)
659 goto next;
660
661 if (em->start < start) {
662 split->start = em->start;
663 split->len = start - em->start;
664
665 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
666 split->orig_start = em->orig_start;
667 split->block_start = em->block_start;
668
669 if (compressed)
670 split->block_len = em->block_len;
671 else
672 split->block_len = split->len;
673 split->orig_block_len = max(split->block_len,
674 em->orig_block_len);
675 split->ram_bytes = em->ram_bytes;
676 } else {
677 split->orig_start = split->start;
678 split->block_len = 0;
679 split->block_start = em->block_start;
680 split->orig_block_len = 0;
681 split->ram_bytes = split->len;
682 }
683
684 split->generation = gen;
685 split->bdev = em->bdev;
686 split->flags = flags;
687 split->compress_type = em->compress_type;
688 replace_extent_mapping(em_tree, em, split, modified);
689 free_extent_map(split);
690 split = split2;
691 split2 = NULL;
692 }
693 if (testend && em->start + em->len > start + len) {
694 u64 diff = start + len - em->start;
695
696 split->start = start + len;
697 split->len = em->start + em->len - (start + len);
698 split->bdev = em->bdev;
699 split->flags = flags;
700 split->compress_type = em->compress_type;
701 split->generation = gen;
702
703 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
704 split->orig_block_len = max(em->block_len,
705 em->orig_block_len);
706
707 split->ram_bytes = em->ram_bytes;
708 if (compressed) {
709 split->block_len = em->block_len;
710 split->block_start = em->block_start;
711 split->orig_start = em->orig_start;
712 } else {
713 split->block_len = split->len;
714 split->block_start = em->block_start
715 + diff;
716 split->orig_start = em->orig_start;
717 }
718 } else {
719 split->ram_bytes = split->len;
720 split->orig_start = split->start;
721 split->block_len = 0;
722 split->block_start = em->block_start;
723 split->orig_block_len = 0;
724 }
725
726 if (extent_map_in_tree(em)) {
727 replace_extent_mapping(em_tree, em, split,
728 modified);
729 } else {
730 ret = add_extent_mapping(em_tree, split,
731 modified);
732 ASSERT(ret == 0); /* Logic error */
733 }
734 free_extent_map(split);
735 split = NULL;
736 }
737 next:
738 if (extent_map_in_tree(em))
739 remove_extent_mapping(em_tree, em);
740 write_unlock(&em_tree->lock);
741
742 /* once for us */
743 free_extent_map(em);
744 /* once for the tree*/
745 free_extent_map(em);
746 }
747 if (split)
748 free_extent_map(split);
749 if (split2)
750 free_extent_map(split2);
751 }
752
753 /*
754 * this is very complex, but the basic idea is to drop all extents
755 * in the range start - end. hint_block is filled in with a block number
756 * that would be a good hint to the block allocator for this file.
757 *
758 * If an extent intersects the range but is not entirely inside the range
759 * it is either truncated or split. Anything entirely inside the range
760 * is deleted from the tree.
761 */
762 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
763 struct btrfs_root *root, struct inode *inode,
764 struct btrfs_path *path, u64 start, u64 end,
765 u64 *drop_end, int drop_cache,
766 int replace_extent,
767 u32 extent_item_size,
768 int *key_inserted)
769 {
770 struct btrfs_fs_info *fs_info = root->fs_info;
771 struct extent_buffer *leaf;
772 struct btrfs_file_extent_item *fi;
773 struct btrfs_key key;
774 struct btrfs_key new_key;
775 u64 ino = btrfs_ino(BTRFS_I(inode));
776 u64 search_start = start;
777 u64 disk_bytenr = 0;
778 u64 num_bytes = 0;
779 u64 extent_offset = 0;
780 u64 extent_end = 0;
781 u64 last_end = start;
782 int del_nr = 0;
783 int del_slot = 0;
784 int extent_type;
785 int recow;
786 int ret;
787 int modify_tree = -1;
788 int update_refs;
789 int found = 0;
790 int leafs_visited = 0;
791
792 if (drop_cache)
793 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
794
795 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
796 modify_tree = 0;
797
798 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
799 root == fs_info->tree_root);
800 while (1) {
801 recow = 0;
802 ret = btrfs_lookup_file_extent(trans, root, path, ino,
803 search_start, modify_tree);
804 if (ret < 0)
805 break;
806 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
807 leaf = path->nodes[0];
808 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
809 if (key.objectid == ino &&
810 key.type == BTRFS_EXTENT_DATA_KEY)
811 path->slots[0]--;
812 }
813 ret = 0;
814 leafs_visited++;
815 next_slot:
816 leaf = path->nodes[0];
817 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
818 BUG_ON(del_nr > 0);
819 ret = btrfs_next_leaf(root, path);
820 if (ret < 0)
821 break;
822 if (ret > 0) {
823 ret = 0;
824 break;
825 }
826 leafs_visited++;
827 leaf = path->nodes[0];
828 recow = 1;
829 }
830
831 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
832
833 if (key.objectid > ino)
834 break;
835 if (WARN_ON_ONCE(key.objectid < ino) ||
836 key.type < BTRFS_EXTENT_DATA_KEY) {
837 ASSERT(del_nr == 0);
838 path->slots[0]++;
839 goto next_slot;
840 }
841 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
842 break;
843
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
846 extent_type = btrfs_file_extent_type(leaf, fi);
847
848 if (extent_type == BTRFS_FILE_EXTENT_REG ||
849 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
850 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
851 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
852 extent_offset = btrfs_file_extent_offset(leaf, fi);
853 extent_end = key.offset +
854 btrfs_file_extent_num_bytes(leaf, fi);
855 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
856 extent_end = key.offset +
857 btrfs_file_extent_inline_len(leaf,
858 path->slots[0], fi);
859 } else {
860 /* can't happen */
861 BUG();
862 }
863
864 /*
865 * Don't skip extent items representing 0 byte lengths. They
866 * used to be created (bug) if while punching holes we hit
867 * -ENOSPC condition. So if we find one here, just ensure we
868 * delete it, otherwise we would insert a new file extent item
869 * with the same key (offset) as that 0 bytes length file
870 * extent item in the call to setup_items_for_insert() later
871 * in this function.
872 */
873 if (extent_end == key.offset && extent_end >= search_start) {
874 last_end = extent_end;
875 goto delete_extent_item;
876 }
877
878 if (extent_end <= search_start) {
879 path->slots[0]++;
880 goto next_slot;
881 }
882
883 found = 1;
884 search_start = max(key.offset, start);
885 if (recow || !modify_tree) {
886 modify_tree = -1;
887 btrfs_release_path(path);
888 continue;
889 }
890
891 /*
892 * | - range to drop - |
893 * | -------- extent -------- |
894 */
895 if (start > key.offset && end < extent_end) {
896 BUG_ON(del_nr > 0);
897 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
898 ret = -EOPNOTSUPP;
899 break;
900 }
901
902 memcpy(&new_key, &key, sizeof(new_key));
903 new_key.offset = start;
904 ret = btrfs_duplicate_item(trans, root, path,
905 &new_key);
906 if (ret == -EAGAIN) {
907 btrfs_release_path(path);
908 continue;
909 }
910 if (ret < 0)
911 break;
912
913 leaf = path->nodes[0];
914 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
915 struct btrfs_file_extent_item);
916 btrfs_set_file_extent_num_bytes(leaf, fi,
917 start - key.offset);
918
919 fi = btrfs_item_ptr(leaf, path->slots[0],
920 struct btrfs_file_extent_item);
921
922 extent_offset += start - key.offset;
923 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
924 btrfs_set_file_extent_num_bytes(leaf, fi,
925 extent_end - start);
926 btrfs_mark_buffer_dirty(leaf);
927
928 if (update_refs && disk_bytenr > 0) {
929 ret = btrfs_inc_extent_ref(trans, root,
930 disk_bytenr, num_bytes, 0,
931 root->root_key.objectid,
932 new_key.objectid,
933 start - extent_offset);
934 BUG_ON(ret); /* -ENOMEM */
935 }
936 key.offset = start;
937 }
938 /*
939 * From here on out we will have actually dropped something, so
940 * last_end can be updated.
941 */
942 last_end = extent_end;
943
944 /*
945 * | ---- range to drop ----- |
946 * | -------- extent -------- |
947 */
948 if (start <= key.offset && end < extent_end) {
949 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
950 ret = -EOPNOTSUPP;
951 break;
952 }
953
954 memcpy(&new_key, &key, sizeof(new_key));
955 new_key.offset = end;
956 btrfs_set_item_key_safe(fs_info, path, &new_key);
957
958 extent_offset += end - key.offset;
959 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
960 btrfs_set_file_extent_num_bytes(leaf, fi,
961 extent_end - end);
962 btrfs_mark_buffer_dirty(leaf);
963 if (update_refs && disk_bytenr > 0)
964 inode_sub_bytes(inode, end - key.offset);
965 break;
966 }
967
968 search_start = extent_end;
969 /*
970 * | ---- range to drop ----- |
971 * | -------- extent -------- |
972 */
973 if (start > key.offset && end >= extent_end) {
974 BUG_ON(del_nr > 0);
975 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
976 ret = -EOPNOTSUPP;
977 break;
978 }
979
980 btrfs_set_file_extent_num_bytes(leaf, fi,
981 start - key.offset);
982 btrfs_mark_buffer_dirty(leaf);
983 if (update_refs && disk_bytenr > 0)
984 inode_sub_bytes(inode, extent_end - start);
985 if (end == extent_end)
986 break;
987
988 path->slots[0]++;
989 goto next_slot;
990 }
991
992 /*
993 * | ---- range to drop ----- |
994 * | ------ extent ------ |
995 */
996 if (start <= key.offset && end >= extent_end) {
997 delete_extent_item:
998 if (del_nr == 0) {
999 del_slot = path->slots[0];
1000 del_nr = 1;
1001 } else {
1002 BUG_ON(del_slot + del_nr != path->slots[0]);
1003 del_nr++;
1004 }
1005
1006 if (update_refs &&
1007 extent_type == BTRFS_FILE_EXTENT_INLINE) {
1008 inode_sub_bytes(inode,
1009 extent_end - key.offset);
1010 extent_end = ALIGN(extent_end,
1011 fs_info->sectorsize);
1012 } else if (update_refs && disk_bytenr > 0) {
1013 ret = btrfs_free_extent(trans, root,
1014 disk_bytenr, num_bytes, 0,
1015 root->root_key.objectid,
1016 key.objectid, key.offset -
1017 extent_offset);
1018 BUG_ON(ret); /* -ENOMEM */
1019 inode_sub_bytes(inode,
1020 extent_end - key.offset);
1021 }
1022
1023 if (end == extent_end)
1024 break;
1025
1026 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1027 path->slots[0]++;
1028 goto next_slot;
1029 }
1030
1031 ret = btrfs_del_items(trans, root, path, del_slot,
1032 del_nr);
1033 if (ret) {
1034 btrfs_abort_transaction(trans, ret);
1035 break;
1036 }
1037
1038 del_nr = 0;
1039 del_slot = 0;
1040
1041 btrfs_release_path(path);
1042 continue;
1043 }
1044
1045 BUG_ON(1);
1046 }
1047
1048 if (!ret && del_nr > 0) {
1049 /*
1050 * Set path->slots[0] to first slot, so that after the delete
1051 * if items are move off from our leaf to its immediate left or
1052 * right neighbor leafs, we end up with a correct and adjusted
1053 * path->slots[0] for our insertion (if replace_extent != 0).
1054 */
1055 path->slots[0] = del_slot;
1056 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1057 if (ret)
1058 btrfs_abort_transaction(trans, ret);
1059 }
1060
1061 leaf = path->nodes[0];
1062 /*
1063 * If btrfs_del_items() was called, it might have deleted a leaf, in
1064 * which case it unlocked our path, so check path->locks[0] matches a
1065 * write lock.
1066 */
1067 if (!ret && replace_extent && leafs_visited == 1 &&
1068 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1069 path->locks[0] == BTRFS_WRITE_LOCK) &&
1070 btrfs_leaf_free_space(fs_info, leaf) >=
1071 sizeof(struct btrfs_item) + extent_item_size) {
1072
1073 key.objectid = ino;
1074 key.type = BTRFS_EXTENT_DATA_KEY;
1075 key.offset = start;
1076 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1077 struct btrfs_key slot_key;
1078
1079 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1080 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1081 path->slots[0]++;
1082 }
1083 setup_items_for_insert(root, path, &key,
1084 &extent_item_size,
1085 extent_item_size,
1086 sizeof(struct btrfs_item) +
1087 extent_item_size, 1);
1088 *key_inserted = 1;
1089 }
1090
1091 if (!replace_extent || !(*key_inserted))
1092 btrfs_release_path(path);
1093 if (drop_end)
1094 *drop_end = found ? min(end, last_end) : end;
1095 return ret;
1096 }
1097
1098 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root, struct inode *inode, u64 start,
1100 u64 end, int drop_cache)
1101 {
1102 struct btrfs_path *path;
1103 int ret;
1104
1105 path = btrfs_alloc_path();
1106 if (!path)
1107 return -ENOMEM;
1108 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1109 drop_cache, 0, 0, NULL);
1110 btrfs_free_path(path);
1111 return ret;
1112 }
1113
1114 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1115 u64 objectid, u64 bytenr, u64 orig_offset,
1116 u64 *start, u64 *end)
1117 {
1118 struct btrfs_file_extent_item *fi;
1119 struct btrfs_key key;
1120 u64 extent_end;
1121
1122 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1123 return 0;
1124
1125 btrfs_item_key_to_cpu(leaf, &key, slot);
1126 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1127 return 0;
1128
1129 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1130 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1131 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1132 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1133 btrfs_file_extent_compression(leaf, fi) ||
1134 btrfs_file_extent_encryption(leaf, fi) ||
1135 btrfs_file_extent_other_encoding(leaf, fi))
1136 return 0;
1137
1138 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1140 return 0;
1141
1142 *start = key.offset;
1143 *end = extent_end;
1144 return 1;
1145 }
1146
1147 /*
1148 * Mark extent in the range start - end as written.
1149 *
1150 * This changes extent type from 'pre-allocated' to 'regular'. If only
1151 * part of extent is marked as written, the extent will be split into
1152 * two or three.
1153 */
1154 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1155 struct btrfs_inode *inode, u64 start, u64 end)
1156 {
1157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1158 struct btrfs_root *root = inode->root;
1159 struct extent_buffer *leaf;
1160 struct btrfs_path *path;
1161 struct btrfs_file_extent_item *fi;
1162 struct btrfs_key key;
1163 struct btrfs_key new_key;
1164 u64 bytenr;
1165 u64 num_bytes;
1166 u64 extent_end;
1167 u64 orig_offset;
1168 u64 other_start;
1169 u64 other_end;
1170 u64 split;
1171 int del_nr = 0;
1172 int del_slot = 0;
1173 int recow;
1174 int ret;
1175 u64 ino = btrfs_ino(inode);
1176
1177 path = btrfs_alloc_path();
1178 if (!path)
1179 return -ENOMEM;
1180 again:
1181 recow = 0;
1182 split = start;
1183 key.objectid = ino;
1184 key.type = BTRFS_EXTENT_DATA_KEY;
1185 key.offset = split;
1186
1187 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1188 if (ret < 0)
1189 goto out;
1190 if (ret > 0 && path->slots[0] > 0)
1191 path->slots[0]--;
1192
1193 leaf = path->nodes[0];
1194 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1195 if (key.objectid != ino ||
1196 key.type != BTRFS_EXTENT_DATA_KEY) {
1197 ret = -EINVAL;
1198 btrfs_abort_transaction(trans, ret);
1199 goto out;
1200 }
1201 fi = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_file_extent_item);
1203 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1204 ret = -EINVAL;
1205 btrfs_abort_transaction(trans, ret);
1206 goto out;
1207 }
1208 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1209 if (key.offset > start || extent_end < end) {
1210 ret = -EINVAL;
1211 btrfs_abort_transaction(trans, ret);
1212 goto out;
1213 }
1214
1215 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1216 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1217 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1218 memcpy(&new_key, &key, sizeof(new_key));
1219
1220 if (start == key.offset && end < extent_end) {
1221 other_start = 0;
1222 other_end = start;
1223 if (extent_mergeable(leaf, path->slots[0] - 1,
1224 ino, bytenr, orig_offset,
1225 &other_start, &other_end)) {
1226 new_key.offset = end;
1227 btrfs_set_item_key_safe(fs_info, path, &new_key);
1228 fi = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_file_extent_item);
1230 btrfs_set_file_extent_generation(leaf, fi,
1231 trans->transid);
1232 btrfs_set_file_extent_num_bytes(leaf, fi,
1233 extent_end - end);
1234 btrfs_set_file_extent_offset(leaf, fi,
1235 end - orig_offset);
1236 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1237 struct btrfs_file_extent_item);
1238 btrfs_set_file_extent_generation(leaf, fi,
1239 trans->transid);
1240 btrfs_set_file_extent_num_bytes(leaf, fi,
1241 end - other_start);
1242 btrfs_mark_buffer_dirty(leaf);
1243 goto out;
1244 }
1245 }
1246
1247 if (start > key.offset && end == extent_end) {
1248 other_start = end;
1249 other_end = 0;
1250 if (extent_mergeable(leaf, path->slots[0] + 1,
1251 ino, bytenr, orig_offset,
1252 &other_start, &other_end)) {
1253 fi = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_file_extent_item);
1255 btrfs_set_file_extent_num_bytes(leaf, fi,
1256 start - key.offset);
1257 btrfs_set_file_extent_generation(leaf, fi,
1258 trans->transid);
1259 path->slots[0]++;
1260 new_key.offset = start;
1261 btrfs_set_item_key_safe(fs_info, path, &new_key);
1262
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_generation(leaf, fi,
1266 trans->transid);
1267 btrfs_set_file_extent_num_bytes(leaf, fi,
1268 other_end - start);
1269 btrfs_set_file_extent_offset(leaf, fi,
1270 start - orig_offset);
1271 btrfs_mark_buffer_dirty(leaf);
1272 goto out;
1273 }
1274 }
1275
1276 while (start > key.offset || end < extent_end) {
1277 if (key.offset == start)
1278 split = end;
1279
1280 new_key.offset = split;
1281 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1282 if (ret == -EAGAIN) {
1283 btrfs_release_path(path);
1284 goto again;
1285 }
1286 if (ret < 0) {
1287 btrfs_abort_transaction(trans, ret);
1288 goto out;
1289 }
1290
1291 leaf = path->nodes[0];
1292 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1293 struct btrfs_file_extent_item);
1294 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1295 btrfs_set_file_extent_num_bytes(leaf, fi,
1296 split - key.offset);
1297
1298 fi = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_file_extent_item);
1300
1301 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1302 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1303 btrfs_set_file_extent_num_bytes(leaf, fi,
1304 extent_end - split);
1305 btrfs_mark_buffer_dirty(leaf);
1306
1307 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1308 0, root->root_key.objectid,
1309 ino, orig_offset);
1310 if (ret) {
1311 btrfs_abort_transaction(trans, ret);
1312 goto out;
1313 }
1314
1315 if (split == start) {
1316 key.offset = start;
1317 } else {
1318 if (start != key.offset) {
1319 ret = -EINVAL;
1320 btrfs_abort_transaction(trans, ret);
1321 goto out;
1322 }
1323 path->slots[0]--;
1324 extent_end = end;
1325 }
1326 recow = 1;
1327 }
1328
1329 other_start = end;
1330 other_end = 0;
1331 if (extent_mergeable(leaf, path->slots[0] + 1,
1332 ino, bytenr, orig_offset,
1333 &other_start, &other_end)) {
1334 if (recow) {
1335 btrfs_release_path(path);
1336 goto again;
1337 }
1338 extent_end = other_end;
1339 del_slot = path->slots[0] + 1;
1340 del_nr++;
1341 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1342 0, root->root_key.objectid,
1343 ino, orig_offset);
1344 if (ret) {
1345 btrfs_abort_transaction(trans, ret);
1346 goto out;
1347 }
1348 }
1349 other_start = 0;
1350 other_end = start;
1351 if (extent_mergeable(leaf, path->slots[0] - 1,
1352 ino, bytenr, orig_offset,
1353 &other_start, &other_end)) {
1354 if (recow) {
1355 btrfs_release_path(path);
1356 goto again;
1357 }
1358 key.offset = other_start;
1359 del_slot = path->slots[0];
1360 del_nr++;
1361 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1362 0, root->root_key.objectid,
1363 ino, orig_offset);
1364 if (ret) {
1365 btrfs_abort_transaction(trans, ret);
1366 goto out;
1367 }
1368 }
1369 if (del_nr == 0) {
1370 fi = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_file_extent_item);
1372 btrfs_set_file_extent_type(leaf, fi,
1373 BTRFS_FILE_EXTENT_REG);
1374 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1375 btrfs_mark_buffer_dirty(leaf);
1376 } else {
1377 fi = btrfs_item_ptr(leaf, del_slot - 1,
1378 struct btrfs_file_extent_item);
1379 btrfs_set_file_extent_type(leaf, fi,
1380 BTRFS_FILE_EXTENT_REG);
1381 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1382 btrfs_set_file_extent_num_bytes(leaf, fi,
1383 extent_end - key.offset);
1384 btrfs_mark_buffer_dirty(leaf);
1385
1386 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1387 if (ret < 0) {
1388 btrfs_abort_transaction(trans, ret);
1389 goto out;
1390 }
1391 }
1392 out:
1393 btrfs_free_path(path);
1394 return 0;
1395 }
1396
1397 /*
1398 * on error we return an unlocked page and the error value
1399 * on success we return a locked page and 0
1400 */
1401 static int prepare_uptodate_page(struct inode *inode,
1402 struct page *page, u64 pos,
1403 bool force_uptodate)
1404 {
1405 int ret = 0;
1406
1407 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1408 !PageUptodate(page)) {
1409 ret = btrfs_readpage(NULL, page);
1410 if (ret)
1411 return ret;
1412 lock_page(page);
1413 if (!PageUptodate(page)) {
1414 unlock_page(page);
1415 return -EIO;
1416 }
1417 if (page->mapping != inode->i_mapping) {
1418 unlock_page(page);
1419 return -EAGAIN;
1420 }
1421 }
1422 return 0;
1423 }
1424
1425 /*
1426 * this just gets pages into the page cache and locks them down.
1427 */
1428 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1429 size_t num_pages, loff_t pos,
1430 size_t write_bytes, bool force_uptodate)
1431 {
1432 int i;
1433 unsigned long index = pos >> PAGE_SHIFT;
1434 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1435 int err = 0;
1436 int faili;
1437
1438 for (i = 0; i < num_pages; i++) {
1439 again:
1440 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1441 mask | __GFP_WRITE);
1442 if (!pages[i]) {
1443 faili = i - 1;
1444 err = -ENOMEM;
1445 goto fail;
1446 }
1447
1448 if (i == 0)
1449 err = prepare_uptodate_page(inode, pages[i], pos,
1450 force_uptodate);
1451 if (!err && i == num_pages - 1)
1452 err = prepare_uptodate_page(inode, pages[i],
1453 pos + write_bytes, false);
1454 if (err) {
1455 put_page(pages[i]);
1456 if (err == -EAGAIN) {
1457 err = 0;
1458 goto again;
1459 }
1460 faili = i - 1;
1461 goto fail;
1462 }
1463 wait_on_page_writeback(pages[i]);
1464 }
1465
1466 return 0;
1467 fail:
1468 while (faili >= 0) {
1469 unlock_page(pages[faili]);
1470 put_page(pages[faili]);
1471 faili--;
1472 }
1473 return err;
1474
1475 }
1476
1477 /*
1478 * This function locks the extent and properly waits for data=ordered extents
1479 * to finish before allowing the pages to be modified if need.
1480 *
1481 * The return value:
1482 * 1 - the extent is locked
1483 * 0 - the extent is not locked, and everything is OK
1484 * -EAGAIN - need re-prepare the pages
1485 * the other < 0 number - Something wrong happens
1486 */
1487 static noinline int
1488 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1489 size_t num_pages, loff_t pos,
1490 size_t write_bytes,
1491 u64 *lockstart, u64 *lockend,
1492 struct extent_state **cached_state)
1493 {
1494 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1495 u64 start_pos;
1496 u64 last_pos;
1497 int i;
1498 int ret = 0;
1499
1500 start_pos = round_down(pos, fs_info->sectorsize);
1501 last_pos = start_pos
1502 + round_up(pos + write_bytes - start_pos,
1503 fs_info->sectorsize) - 1;
1504
1505 if (start_pos < inode->vfs_inode.i_size) {
1506 struct btrfs_ordered_extent *ordered;
1507
1508 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1509 cached_state);
1510 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1511 last_pos - start_pos + 1);
1512 if (ordered &&
1513 ordered->file_offset + ordered->len > start_pos &&
1514 ordered->file_offset <= last_pos) {
1515 unlock_extent_cached(&inode->io_tree, start_pos,
1516 last_pos, cached_state, GFP_NOFS);
1517 for (i = 0; i < num_pages; i++) {
1518 unlock_page(pages[i]);
1519 put_page(pages[i]);
1520 }
1521 btrfs_start_ordered_extent(&inode->vfs_inode,
1522 ordered, 1);
1523 btrfs_put_ordered_extent(ordered);
1524 return -EAGAIN;
1525 }
1526 if (ordered)
1527 btrfs_put_ordered_extent(ordered);
1528
1529 *lockstart = start_pos;
1530 *lockend = last_pos;
1531 ret = 1;
1532 }
1533
1534 /*
1535 * It's possible the pages are dirty right now, but we don't want
1536 * to clean them yet because copy_from_user may catch a page fault
1537 * and we might have to fall back to one page at a time. If that
1538 * happens, we'll unlock these pages and we'd have a window where
1539 * reclaim could sneak in and drop the once-dirty page on the floor
1540 * without writing it.
1541 *
1542 * We have the pages locked and the extent range locked, so there's
1543 * no way someone can start IO on any dirty pages in this range.
1544 *
1545 * We'll call btrfs_dirty_pages() later on, and that will flip around
1546 * delalloc bits and dirty the pages as required.
1547 */
1548 for (i = 0; i < num_pages; i++) {
1549 set_page_extent_mapped(pages[i]);
1550 WARN_ON(!PageLocked(pages[i]));
1551 }
1552
1553 return ret;
1554 }
1555
1556 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1557 size_t *write_bytes)
1558 {
1559 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1560 struct btrfs_root *root = inode->root;
1561 struct btrfs_ordered_extent *ordered;
1562 u64 lockstart, lockend;
1563 u64 num_bytes;
1564 int ret;
1565
1566 ret = btrfs_start_write_no_snapshotting(root);
1567 if (!ret)
1568 return -ENOSPC;
1569
1570 lockstart = round_down(pos, fs_info->sectorsize);
1571 lockend = round_up(pos + *write_bytes,
1572 fs_info->sectorsize) - 1;
1573
1574 while (1) {
1575 lock_extent(&inode->io_tree, lockstart, lockend);
1576 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1577 lockend - lockstart + 1);
1578 if (!ordered) {
1579 break;
1580 }
1581 unlock_extent(&inode->io_tree, lockstart, lockend);
1582 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1583 btrfs_put_ordered_extent(ordered);
1584 }
1585
1586 num_bytes = lockend - lockstart + 1;
1587 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1588 NULL, NULL, NULL);
1589 if (ret <= 0) {
1590 ret = 0;
1591 btrfs_end_write_no_snapshotting(root);
1592 } else {
1593 *write_bytes = min_t(size_t, *write_bytes ,
1594 num_bytes - pos + lockstart);
1595 }
1596
1597 unlock_extent(&inode->io_tree, lockstart, lockend);
1598
1599 return ret;
1600 }
1601
1602 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1603 struct iov_iter *i,
1604 loff_t pos)
1605 {
1606 struct inode *inode = file_inode(file);
1607 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
1609 struct page **pages = NULL;
1610 struct extent_state *cached_state = NULL;
1611 struct extent_changeset *data_reserved = NULL;
1612 u64 release_bytes = 0;
1613 u64 lockstart;
1614 u64 lockend;
1615 size_t num_written = 0;
1616 int nrptrs;
1617 int ret = 0;
1618 bool only_release_metadata = false;
1619 bool force_page_uptodate = false;
1620
1621 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1622 PAGE_SIZE / (sizeof(struct page *)));
1623 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1624 nrptrs = max(nrptrs, 8);
1625 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1626 if (!pages)
1627 return -ENOMEM;
1628
1629 while (iov_iter_count(i) > 0) {
1630 size_t offset = pos & (PAGE_SIZE - 1);
1631 size_t sector_offset;
1632 size_t write_bytes = min(iov_iter_count(i),
1633 nrptrs * (size_t)PAGE_SIZE -
1634 offset);
1635 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1636 PAGE_SIZE);
1637 size_t reserve_bytes;
1638 size_t dirty_pages;
1639 size_t copied;
1640 size_t dirty_sectors;
1641 size_t num_sectors;
1642 int extents_locked;
1643
1644 WARN_ON(num_pages > nrptrs);
1645
1646 /*
1647 * Fault pages before locking them in prepare_pages
1648 * to avoid recursive lock
1649 */
1650 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1651 ret = -EFAULT;
1652 break;
1653 }
1654
1655 sector_offset = pos & (fs_info->sectorsize - 1);
1656 reserve_bytes = round_up(write_bytes + sector_offset,
1657 fs_info->sectorsize);
1658
1659 extent_changeset_release(data_reserved);
1660 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1661 write_bytes);
1662 if (ret < 0) {
1663 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1664 BTRFS_INODE_PREALLOC)) &&
1665 check_can_nocow(BTRFS_I(inode), pos,
1666 &write_bytes) > 0) {
1667 /*
1668 * For nodata cow case, no need to reserve
1669 * data space.
1670 */
1671 only_release_metadata = true;
1672 /*
1673 * our prealloc extent may be smaller than
1674 * write_bytes, so scale down.
1675 */
1676 num_pages = DIV_ROUND_UP(write_bytes + offset,
1677 PAGE_SIZE);
1678 reserve_bytes = round_up(write_bytes +
1679 sector_offset,
1680 fs_info->sectorsize);
1681 } else {
1682 break;
1683 }
1684 }
1685
1686 WARN_ON(reserve_bytes == 0);
1687 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1688 reserve_bytes);
1689 if (ret) {
1690 if (!only_release_metadata)
1691 btrfs_free_reserved_data_space(inode,
1692 data_reserved, pos,
1693 write_bytes);
1694 else
1695 btrfs_end_write_no_snapshotting(root);
1696 break;
1697 }
1698
1699 release_bytes = reserve_bytes;
1700 again:
1701 /*
1702 * This is going to setup the pages array with the number of
1703 * pages we want, so we don't really need to worry about the
1704 * contents of pages from loop to loop
1705 */
1706 ret = prepare_pages(inode, pages, num_pages,
1707 pos, write_bytes,
1708 force_page_uptodate);
1709 if (ret) {
1710 btrfs_delalloc_release_extents(BTRFS_I(inode),
1711 reserve_bytes);
1712 break;
1713 }
1714
1715 extents_locked = lock_and_cleanup_extent_if_need(
1716 BTRFS_I(inode), pages,
1717 num_pages, pos, write_bytes, &lockstart,
1718 &lockend, &cached_state);
1719 if (extents_locked < 0) {
1720 if (extents_locked == -EAGAIN)
1721 goto again;
1722 btrfs_delalloc_release_extents(BTRFS_I(inode),
1723 reserve_bytes);
1724 ret = extents_locked;
1725 break;
1726 }
1727
1728 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1729
1730 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1731 dirty_sectors = round_up(copied + sector_offset,
1732 fs_info->sectorsize);
1733 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1734
1735 /*
1736 * if we have trouble faulting in the pages, fall
1737 * back to one page at a time
1738 */
1739 if (copied < write_bytes)
1740 nrptrs = 1;
1741
1742 if (copied == 0) {
1743 force_page_uptodate = true;
1744 dirty_sectors = 0;
1745 dirty_pages = 0;
1746 } else {
1747 force_page_uptodate = false;
1748 dirty_pages = DIV_ROUND_UP(copied + offset,
1749 PAGE_SIZE);
1750 }
1751
1752 if (num_sectors > dirty_sectors) {
1753 /* release everything except the sectors we dirtied */
1754 release_bytes -= dirty_sectors <<
1755 fs_info->sb->s_blocksize_bits;
1756 if (only_release_metadata) {
1757 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1758 release_bytes);
1759 } else {
1760 u64 __pos;
1761
1762 __pos = round_down(pos,
1763 fs_info->sectorsize) +
1764 (dirty_pages << PAGE_SHIFT);
1765 btrfs_delalloc_release_space(inode,
1766 data_reserved, __pos,
1767 release_bytes);
1768 }
1769 }
1770
1771 release_bytes = round_up(copied + sector_offset,
1772 fs_info->sectorsize);
1773
1774 if (copied > 0)
1775 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1776 pos, copied, NULL);
1777 if (extents_locked)
1778 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1779 lockstart, lockend, &cached_state,
1780 GFP_NOFS);
1781 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1782 if (ret) {
1783 btrfs_drop_pages(pages, num_pages);
1784 break;
1785 }
1786
1787 release_bytes = 0;
1788 if (only_release_metadata)
1789 btrfs_end_write_no_snapshotting(root);
1790
1791 if (only_release_metadata && copied > 0) {
1792 lockstart = round_down(pos,
1793 fs_info->sectorsize);
1794 lockend = round_up(pos + copied,
1795 fs_info->sectorsize) - 1;
1796
1797 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1798 lockend, EXTENT_NORESERVE, NULL,
1799 NULL, GFP_NOFS);
1800 only_release_metadata = false;
1801 }
1802
1803 btrfs_drop_pages(pages, num_pages);
1804
1805 cond_resched();
1806
1807 balance_dirty_pages_ratelimited(inode->i_mapping);
1808 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1809 btrfs_btree_balance_dirty(fs_info);
1810
1811 pos += copied;
1812 num_written += copied;
1813 }
1814
1815 kfree(pages);
1816
1817 if (release_bytes) {
1818 if (only_release_metadata) {
1819 btrfs_end_write_no_snapshotting(root);
1820 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1821 release_bytes);
1822 } else {
1823 btrfs_delalloc_release_space(inode, data_reserved,
1824 round_down(pos, fs_info->sectorsize),
1825 release_bytes);
1826 }
1827 }
1828
1829 extent_changeset_free(data_reserved);
1830 return num_written ? num_written : ret;
1831 }
1832
1833 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1834 {
1835 struct file *file = iocb->ki_filp;
1836 struct inode *inode = file_inode(file);
1837 loff_t pos = iocb->ki_pos;
1838 ssize_t written;
1839 ssize_t written_buffered;
1840 loff_t endbyte;
1841 int err;
1842
1843 written = generic_file_direct_write(iocb, from);
1844
1845 if (written < 0 || !iov_iter_count(from))
1846 return written;
1847
1848 pos += written;
1849 written_buffered = __btrfs_buffered_write(file, from, pos);
1850 if (written_buffered < 0) {
1851 err = written_buffered;
1852 goto out;
1853 }
1854 /*
1855 * Ensure all data is persisted. We want the next direct IO read to be
1856 * able to read what was just written.
1857 */
1858 endbyte = pos + written_buffered - 1;
1859 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1860 if (err)
1861 goto out;
1862 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1863 if (err)
1864 goto out;
1865 written += written_buffered;
1866 iocb->ki_pos = pos + written_buffered;
1867 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1868 endbyte >> PAGE_SHIFT);
1869 out:
1870 return written ? written : err;
1871 }
1872
1873 static void update_time_for_write(struct inode *inode)
1874 {
1875 struct timespec now;
1876
1877 if (IS_NOCMTIME(inode))
1878 return;
1879
1880 now = current_time(inode);
1881 if (!timespec_equal(&inode->i_mtime, &now))
1882 inode->i_mtime = now;
1883
1884 if (!timespec_equal(&inode->i_ctime, &now))
1885 inode->i_ctime = now;
1886
1887 if (IS_I_VERSION(inode))
1888 inode_inc_iversion(inode);
1889 }
1890
1891 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1892 struct iov_iter *from)
1893 {
1894 struct file *file = iocb->ki_filp;
1895 struct inode *inode = file_inode(file);
1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897 struct btrfs_root *root = BTRFS_I(inode)->root;
1898 u64 start_pos;
1899 u64 end_pos;
1900 ssize_t num_written = 0;
1901 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1902 ssize_t err;
1903 loff_t pos;
1904 size_t count = iov_iter_count(from);
1905 loff_t oldsize;
1906 int clean_page = 0;
1907
1908 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1909 (iocb->ki_flags & IOCB_NOWAIT))
1910 return -EOPNOTSUPP;
1911
1912 if (!inode_trylock(inode)) {
1913 if (iocb->ki_flags & IOCB_NOWAIT)
1914 return -EAGAIN;
1915 inode_lock(inode);
1916 }
1917
1918 err = generic_write_checks(iocb, from);
1919 if (err <= 0) {
1920 inode_unlock(inode);
1921 return err;
1922 }
1923
1924 pos = iocb->ki_pos;
1925 if (iocb->ki_flags & IOCB_NOWAIT) {
1926 /*
1927 * We will allocate space in case nodatacow is not set,
1928 * so bail
1929 */
1930 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1931 BTRFS_INODE_PREALLOC)) ||
1932 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1933 inode_unlock(inode);
1934 return -EAGAIN;
1935 }
1936 }
1937
1938 current->backing_dev_info = inode_to_bdi(inode);
1939 err = file_remove_privs(file);
1940 if (err) {
1941 inode_unlock(inode);
1942 goto out;
1943 }
1944
1945 /*
1946 * If BTRFS flips readonly due to some impossible error
1947 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1948 * although we have opened a file as writable, we have
1949 * to stop this write operation to ensure FS consistency.
1950 */
1951 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1952 inode_unlock(inode);
1953 err = -EROFS;
1954 goto out;
1955 }
1956
1957 /*
1958 * We reserve space for updating the inode when we reserve space for the
1959 * extent we are going to write, so we will enospc out there. We don't
1960 * need to start yet another transaction to update the inode as we will
1961 * update the inode when we finish writing whatever data we write.
1962 */
1963 update_time_for_write(inode);
1964
1965 start_pos = round_down(pos, fs_info->sectorsize);
1966 oldsize = i_size_read(inode);
1967 if (start_pos > oldsize) {
1968 /* Expand hole size to cover write data, preventing empty gap */
1969 end_pos = round_up(pos + count,
1970 fs_info->sectorsize);
1971 err = btrfs_cont_expand(inode, oldsize, end_pos);
1972 if (err) {
1973 inode_unlock(inode);
1974 goto out;
1975 }
1976 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1977 clean_page = 1;
1978 }
1979
1980 if (sync)
1981 atomic_inc(&BTRFS_I(inode)->sync_writers);
1982
1983 if (iocb->ki_flags & IOCB_DIRECT) {
1984 num_written = __btrfs_direct_write(iocb, from);
1985 } else {
1986 num_written = __btrfs_buffered_write(file, from, pos);
1987 if (num_written > 0)
1988 iocb->ki_pos = pos + num_written;
1989 if (clean_page)
1990 pagecache_isize_extended(inode, oldsize,
1991 i_size_read(inode));
1992 }
1993
1994 inode_unlock(inode);
1995
1996 /*
1997 * We also have to set last_sub_trans to the current log transid,
1998 * otherwise subsequent syncs to a file that's been synced in this
1999 * transaction will appear to have already occurred.
2000 */
2001 spin_lock(&BTRFS_I(inode)->lock);
2002 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2003 spin_unlock(&BTRFS_I(inode)->lock);
2004 if (num_written > 0)
2005 num_written = generic_write_sync(iocb, num_written);
2006
2007 if (sync)
2008 atomic_dec(&BTRFS_I(inode)->sync_writers);
2009 out:
2010 current->backing_dev_info = NULL;
2011 return num_written ? num_written : err;
2012 }
2013
2014 int btrfs_release_file(struct inode *inode, struct file *filp)
2015 {
2016 struct btrfs_file_private *private = filp->private_data;
2017
2018 if (private && private->trans)
2019 btrfs_ioctl_trans_end(filp);
2020 if (private && private->filldir_buf)
2021 kfree(private->filldir_buf);
2022 kfree(private);
2023 filp->private_data = NULL;
2024
2025 /*
2026 * ordered_data_close is set by settattr when we are about to truncate
2027 * a file from a non-zero size to a zero size. This tries to
2028 * flush down new bytes that may have been written if the
2029 * application were using truncate to replace a file in place.
2030 */
2031 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2032 &BTRFS_I(inode)->runtime_flags))
2033 filemap_flush(inode->i_mapping);
2034 return 0;
2035 }
2036
2037 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2038 {
2039 int ret;
2040 struct blk_plug plug;
2041
2042 /*
2043 * This is only called in fsync, which would do synchronous writes, so
2044 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2045 * multiple disks using raid profile, a large IO can be split to
2046 * several segments of stripe length (currently 64K).
2047 */
2048 blk_start_plug(&plug);
2049 atomic_inc(&BTRFS_I(inode)->sync_writers);
2050 ret = btrfs_fdatawrite_range(inode, start, end);
2051 atomic_dec(&BTRFS_I(inode)->sync_writers);
2052 blk_finish_plug(&plug);
2053
2054 return ret;
2055 }
2056
2057 /*
2058 * fsync call for both files and directories. This logs the inode into
2059 * the tree log instead of forcing full commits whenever possible.
2060 *
2061 * It needs to call filemap_fdatawait so that all ordered extent updates are
2062 * in the metadata btree are up to date for copying to the log.
2063 *
2064 * It drops the inode mutex before doing the tree log commit. This is an
2065 * important optimization for directories because holding the mutex prevents
2066 * new operations on the dir while we write to disk.
2067 */
2068 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2069 {
2070 struct dentry *dentry = file_dentry(file);
2071 struct inode *inode = d_inode(dentry);
2072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2073 struct btrfs_root *root = BTRFS_I(inode)->root;
2074 struct btrfs_trans_handle *trans;
2075 struct btrfs_log_ctx ctx;
2076 int ret = 0, err;
2077 bool full_sync = false;
2078 u64 len;
2079
2080 /*
2081 * If the inode needs a full sync, make sure we use a full range to
2082 * avoid log tree corruption, due to hole detection racing with ordered
2083 * extent completion for adjacent ranges, and assertion failures during
2084 * hole detection.
2085 */
2086 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2087 &BTRFS_I(inode)->runtime_flags)) {
2088 start = 0;
2089 end = LLONG_MAX;
2090 }
2091
2092 /*
2093 * The range length can be represented by u64, we have to do the typecasts
2094 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2095 */
2096 len = (u64)end - (u64)start + 1;
2097 trace_btrfs_sync_file(file, datasync);
2098
2099 btrfs_init_log_ctx(&ctx, inode);
2100
2101 /*
2102 * Before we acquired the inode's lock, someone may have dirtied more
2103 * pages in the target range. We need to make sure that writeback for
2104 * any such pages does not start while we are logging the inode, because
2105 * if it does, any of the following might happen when we are not doing a
2106 * full inode sync:
2107 *
2108 * 1) We log an extent after its writeback finishes but before its
2109 * checksums are added to the csum tree, leading to -EIO errors
2110 * when attempting to read the extent after a log replay.
2111 *
2112 * 2) We can end up logging an extent before its writeback finishes.
2113 * Therefore after the log replay we will have a file extent item
2114 * pointing to an unwritten extent (and no data checksums as well).
2115 *
2116 * So trigger writeback for any eventual new dirty pages and then we
2117 * wait for all ordered extents to complete below.
2118 */
2119 ret = start_ordered_ops(inode, start, end);
2120 if (ret) {
2121 inode_unlock(inode);
2122 goto out;
2123 }
2124
2125 /*
2126 * We write the dirty pages in the range and wait until they complete
2127 * out of the ->i_mutex. If so, we can flush the dirty pages by
2128 * multi-task, and make the performance up. See
2129 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2130 */
2131 ret = start_ordered_ops(inode, start, end);
2132 if (ret)
2133 goto out;
2134
2135 inode_lock(inode);
2136
2137 /*
2138 * We take the dio_sem here because the tree log stuff can race with
2139 * lockless dio writes and get an extent map logged for an extent we
2140 * never waited on. We need it this high up for lockdep reasons.
2141 */
2142 down_write(&BTRFS_I(inode)->dio_sem);
2143
2144 atomic_inc(&root->log_batch);
2145 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2146 &BTRFS_I(inode)->runtime_flags);
2147 /*
2148 * We might have have had more pages made dirty after calling
2149 * start_ordered_ops and before acquiring the inode's i_mutex.
2150 */
2151 if (full_sync) {
2152 /*
2153 * For a full sync, we need to make sure any ordered operations
2154 * start and finish before we start logging the inode, so that
2155 * all extents are persisted and the respective file extent
2156 * items are in the fs/subvol btree.
2157 */
2158 ret = btrfs_wait_ordered_range(inode, start, len);
2159 } else {
2160 /*
2161 * Start any new ordered operations before starting to log the
2162 * inode. We will wait for them to finish in btrfs_sync_log().
2163 *
2164 * Right before acquiring the inode's mutex, we might have new
2165 * writes dirtying pages, which won't immediately start the
2166 * respective ordered operations - that is done through the
2167 * fill_delalloc callbacks invoked from the writepage and
2168 * writepages address space operations. So make sure we start
2169 * all ordered operations before starting to log our inode. Not
2170 * doing this means that while logging the inode, writeback
2171 * could start and invoke writepage/writepages, which would call
2172 * the fill_delalloc callbacks (cow_file_range,
2173 * submit_compressed_extents). These callbacks add first an
2174 * extent map to the modified list of extents and then create
2175 * the respective ordered operation, which means in
2176 * tree-log.c:btrfs_log_inode() we might capture all existing
2177 * ordered operations (with btrfs_get_logged_extents()) before
2178 * the fill_delalloc callback adds its ordered operation, and by
2179 * the time we visit the modified list of extent maps (with
2180 * btrfs_log_changed_extents()), we see and process the extent
2181 * map they created. We then use the extent map to construct a
2182 * file extent item for logging without waiting for the
2183 * respective ordered operation to finish - this file extent
2184 * item points to a disk location that might not have yet been
2185 * written to, containing random data - so after a crash a log
2186 * replay will make our inode have file extent items that point
2187 * to disk locations containing invalid data, as we returned
2188 * success to userspace without waiting for the respective
2189 * ordered operation to finish, because it wasn't captured by
2190 * btrfs_get_logged_extents().
2191 */
2192 ret = start_ordered_ops(inode, start, end);
2193 }
2194 if (ret) {
2195 up_write(&BTRFS_I(inode)->dio_sem);
2196 inode_unlock(inode);
2197 goto out;
2198 }
2199 atomic_inc(&root->log_batch);
2200
2201 /*
2202 * If the last transaction that changed this file was before the current
2203 * transaction and we have the full sync flag set in our inode, we can
2204 * bail out now without any syncing.
2205 *
2206 * Note that we can't bail out if the full sync flag isn't set. This is
2207 * because when the full sync flag is set we start all ordered extents
2208 * and wait for them to fully complete - when they complete they update
2209 * the inode's last_trans field through:
2210 *
2211 * btrfs_finish_ordered_io() ->
2212 * btrfs_update_inode_fallback() ->
2213 * btrfs_update_inode() ->
2214 * btrfs_set_inode_last_trans()
2215 *
2216 * So we are sure that last_trans is up to date and can do this check to
2217 * bail out safely. For the fast path, when the full sync flag is not
2218 * set in our inode, we can not do it because we start only our ordered
2219 * extents and don't wait for them to complete (that is when
2220 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2221 * value might be less than or equals to fs_info->last_trans_committed,
2222 * and setting a speculative last_trans for an inode when a buffered
2223 * write is made (such as fs_info->generation + 1 for example) would not
2224 * be reliable since after setting the value and before fsync is called
2225 * any number of transactions can start and commit (transaction kthread
2226 * commits the current transaction periodically), and a transaction
2227 * commit does not start nor waits for ordered extents to complete.
2228 */
2229 smp_mb();
2230 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2231 (full_sync && BTRFS_I(inode)->last_trans <=
2232 fs_info->last_trans_committed) ||
2233 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2234 BTRFS_I(inode)->last_trans
2235 <= fs_info->last_trans_committed)) {
2236 /*
2237 * We've had everything committed since the last time we were
2238 * modified so clear this flag in case it was set for whatever
2239 * reason, it's no longer relevant.
2240 */
2241 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2242 &BTRFS_I(inode)->runtime_flags);
2243 /*
2244 * An ordered extent might have started before and completed
2245 * already with io errors, in which case the inode was not
2246 * updated and we end up here. So check the inode's mapping
2247 * for any errors that might have happened since we last
2248 * checked called fsync.
2249 */
2250 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2251 up_write(&BTRFS_I(inode)->dio_sem);
2252 inode_unlock(inode);
2253 goto out;
2254 }
2255
2256 /*
2257 * ok we haven't committed the transaction yet, lets do a commit
2258 */
2259 if (file->private_data)
2260 btrfs_ioctl_trans_end(file);
2261
2262 /*
2263 * We use start here because we will need to wait on the IO to complete
2264 * in btrfs_sync_log, which could require joining a transaction (for
2265 * example checking cross references in the nocow path). If we use join
2266 * here we could get into a situation where we're waiting on IO to
2267 * happen that is blocked on a transaction trying to commit. With start
2268 * we inc the extwriter counter, so we wait for all extwriters to exit
2269 * before we start blocking join'ers. This comment is to keep somebody
2270 * from thinking they are super smart and changing this to
2271 * btrfs_join_transaction *cough*Josef*cough*.
2272 */
2273 trans = btrfs_start_transaction(root, 0);
2274 if (IS_ERR(trans)) {
2275 ret = PTR_ERR(trans);
2276 up_write(&BTRFS_I(inode)->dio_sem);
2277 inode_unlock(inode);
2278 goto out;
2279 }
2280 trans->sync = true;
2281
2282 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2283 if (ret < 0) {
2284 /* Fallthrough and commit/free transaction. */
2285 ret = 1;
2286 }
2287
2288 /* we've logged all the items and now have a consistent
2289 * version of the file in the log. It is possible that
2290 * someone will come in and modify the file, but that's
2291 * fine because the log is consistent on disk, and we
2292 * have references to all of the file's extents
2293 *
2294 * It is possible that someone will come in and log the
2295 * file again, but that will end up using the synchronization
2296 * inside btrfs_sync_log to keep things safe.
2297 */
2298 up_write(&BTRFS_I(inode)->dio_sem);
2299 inode_unlock(inode);
2300
2301 /*
2302 * If any of the ordered extents had an error, just return it to user
2303 * space, so that the application knows some writes didn't succeed and
2304 * can take proper action (retry for e.g.). Blindly committing the
2305 * transaction in this case, would fool userspace that everything was
2306 * successful. And we also want to make sure our log doesn't contain
2307 * file extent items pointing to extents that weren't fully written to -
2308 * just like in the non fast fsync path, where we check for the ordered
2309 * operation's error flag before writing to the log tree and return -EIO
2310 * if any of them had this flag set (btrfs_wait_ordered_range) -
2311 * therefore we need to check for errors in the ordered operations,
2312 * which are indicated by ctx.io_err.
2313 */
2314 if (ctx.io_err) {
2315 btrfs_end_transaction(trans);
2316 ret = ctx.io_err;
2317 goto out;
2318 }
2319
2320 if (ret != BTRFS_NO_LOG_SYNC) {
2321 if (!ret) {
2322 ret = btrfs_sync_log(trans, root, &ctx);
2323 if (!ret) {
2324 ret = btrfs_end_transaction(trans);
2325 goto out;
2326 }
2327 }
2328 if (!full_sync) {
2329 ret = btrfs_wait_ordered_range(inode, start, len);
2330 if (ret) {
2331 btrfs_end_transaction(trans);
2332 goto out;
2333 }
2334 }
2335 ret = btrfs_commit_transaction(trans);
2336 } else {
2337 ret = btrfs_end_transaction(trans);
2338 }
2339 out:
2340 ASSERT(list_empty(&ctx.list));
2341 err = file_check_and_advance_wb_err(file);
2342 if (!ret)
2343 ret = err;
2344 return ret > 0 ? -EIO : ret;
2345 }
2346
2347 static const struct vm_operations_struct btrfs_file_vm_ops = {
2348 .fault = filemap_fault,
2349 .map_pages = filemap_map_pages,
2350 .page_mkwrite = btrfs_page_mkwrite,
2351 };
2352
2353 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2354 {
2355 struct address_space *mapping = filp->f_mapping;
2356
2357 if (!mapping->a_ops->readpage)
2358 return -ENOEXEC;
2359
2360 file_accessed(filp);
2361 vma->vm_ops = &btrfs_file_vm_ops;
2362
2363 return 0;
2364 }
2365
2366 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2367 int slot, u64 start, u64 end)
2368 {
2369 struct btrfs_file_extent_item *fi;
2370 struct btrfs_key key;
2371
2372 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2373 return 0;
2374
2375 btrfs_item_key_to_cpu(leaf, &key, slot);
2376 if (key.objectid != btrfs_ino(inode) ||
2377 key.type != BTRFS_EXTENT_DATA_KEY)
2378 return 0;
2379
2380 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2381
2382 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2383 return 0;
2384
2385 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2386 return 0;
2387
2388 if (key.offset == end)
2389 return 1;
2390 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2391 return 1;
2392 return 0;
2393 }
2394
2395 static int fill_holes(struct btrfs_trans_handle *trans,
2396 struct btrfs_inode *inode,
2397 struct btrfs_path *path, u64 offset, u64 end)
2398 {
2399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2400 struct btrfs_root *root = inode->root;
2401 struct extent_buffer *leaf;
2402 struct btrfs_file_extent_item *fi;
2403 struct extent_map *hole_em;
2404 struct extent_map_tree *em_tree = &inode->extent_tree;
2405 struct btrfs_key key;
2406 int ret;
2407
2408 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2409 goto out;
2410
2411 key.objectid = btrfs_ino(inode);
2412 key.type = BTRFS_EXTENT_DATA_KEY;
2413 key.offset = offset;
2414
2415 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2416 if (ret <= 0) {
2417 /*
2418 * We should have dropped this offset, so if we find it then
2419 * something has gone horribly wrong.
2420 */
2421 if (ret == 0)
2422 ret = -EINVAL;
2423 return ret;
2424 }
2425
2426 leaf = path->nodes[0];
2427 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2428 u64 num_bytes;
2429
2430 path->slots[0]--;
2431 fi = btrfs_item_ptr(leaf, path->slots[0],
2432 struct btrfs_file_extent_item);
2433 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2434 end - offset;
2435 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2436 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2437 btrfs_set_file_extent_offset(leaf, fi, 0);
2438 btrfs_mark_buffer_dirty(leaf);
2439 goto out;
2440 }
2441
2442 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2443 u64 num_bytes;
2444
2445 key.offset = offset;
2446 btrfs_set_item_key_safe(fs_info, path, &key);
2447 fi = btrfs_item_ptr(leaf, path->slots[0],
2448 struct btrfs_file_extent_item);
2449 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2450 offset;
2451 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2452 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2453 btrfs_set_file_extent_offset(leaf, fi, 0);
2454 btrfs_mark_buffer_dirty(leaf);
2455 goto out;
2456 }
2457 btrfs_release_path(path);
2458
2459 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2460 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2461 if (ret)
2462 return ret;
2463
2464 out:
2465 btrfs_release_path(path);
2466
2467 hole_em = alloc_extent_map();
2468 if (!hole_em) {
2469 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2470 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2471 } else {
2472 hole_em->start = offset;
2473 hole_em->len = end - offset;
2474 hole_em->ram_bytes = hole_em->len;
2475 hole_em->orig_start = offset;
2476
2477 hole_em->block_start = EXTENT_MAP_HOLE;
2478 hole_em->block_len = 0;
2479 hole_em->orig_block_len = 0;
2480 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2481 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2482 hole_em->generation = trans->transid;
2483
2484 do {
2485 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2486 write_lock(&em_tree->lock);
2487 ret = add_extent_mapping(em_tree, hole_em, 1);
2488 write_unlock(&em_tree->lock);
2489 } while (ret == -EEXIST);
2490 free_extent_map(hole_em);
2491 if (ret)
2492 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2493 &inode->runtime_flags);
2494 }
2495
2496 return 0;
2497 }
2498
2499 /*
2500 * Find a hole extent on given inode and change start/len to the end of hole
2501 * extent.(hole/vacuum extent whose em->start <= start &&
2502 * em->start + em->len > start)
2503 * When a hole extent is found, return 1 and modify start/len.
2504 */
2505 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2506 {
2507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2508 struct extent_map *em;
2509 int ret = 0;
2510
2511 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2512 round_down(*start, fs_info->sectorsize),
2513 round_up(*len, fs_info->sectorsize), 0);
2514 if (IS_ERR(em))
2515 return PTR_ERR(em);
2516
2517 /* Hole or vacuum extent(only exists in no-hole mode) */
2518 if (em->block_start == EXTENT_MAP_HOLE) {
2519 ret = 1;
2520 *len = em->start + em->len > *start + *len ?
2521 0 : *start + *len - em->start - em->len;
2522 *start = em->start + em->len;
2523 }
2524 free_extent_map(em);
2525 return ret;
2526 }
2527
2528 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2529 {
2530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2531 struct btrfs_root *root = BTRFS_I(inode)->root;
2532 struct extent_state *cached_state = NULL;
2533 struct btrfs_path *path;
2534 struct btrfs_block_rsv *rsv;
2535 struct btrfs_trans_handle *trans;
2536 u64 lockstart;
2537 u64 lockend;
2538 u64 tail_start;
2539 u64 tail_len;
2540 u64 orig_start = offset;
2541 u64 cur_offset;
2542 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2543 u64 drop_end;
2544 int ret = 0;
2545 int err = 0;
2546 unsigned int rsv_count;
2547 bool same_block;
2548 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2549 u64 ino_size;
2550 bool truncated_block = false;
2551 bool updated_inode = false;
2552
2553 ret = btrfs_wait_ordered_range(inode, offset, len);
2554 if (ret)
2555 return ret;
2556
2557 inode_lock(inode);
2558 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2559 ret = find_first_non_hole(inode, &offset, &len);
2560 if (ret < 0)
2561 goto out_only_mutex;
2562 if (ret && !len) {
2563 /* Already in a large hole */
2564 ret = 0;
2565 goto out_only_mutex;
2566 }
2567
2568 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2569 lockend = round_down(offset + len,
2570 btrfs_inode_sectorsize(inode)) - 1;
2571 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2572 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2573 /*
2574 * We needn't truncate any block which is beyond the end of the file
2575 * because we are sure there is no data there.
2576 */
2577 /*
2578 * Only do this if we are in the same block and we aren't doing the
2579 * entire block.
2580 */
2581 if (same_block && len < fs_info->sectorsize) {
2582 if (offset < ino_size) {
2583 truncated_block = true;
2584 ret = btrfs_truncate_block(inode, offset, len, 0);
2585 } else {
2586 ret = 0;
2587 }
2588 goto out_only_mutex;
2589 }
2590
2591 /* zero back part of the first block */
2592 if (offset < ino_size) {
2593 truncated_block = true;
2594 ret = btrfs_truncate_block(inode, offset, 0, 0);
2595 if (ret) {
2596 inode_unlock(inode);
2597 return ret;
2598 }
2599 }
2600
2601 /* Check the aligned pages after the first unaligned page,
2602 * if offset != orig_start, which means the first unaligned page
2603 * including several following pages are already in holes,
2604 * the extra check can be skipped */
2605 if (offset == orig_start) {
2606 /* after truncate page, check hole again */
2607 len = offset + len - lockstart;
2608 offset = lockstart;
2609 ret = find_first_non_hole(inode, &offset, &len);
2610 if (ret < 0)
2611 goto out_only_mutex;
2612 if (ret && !len) {
2613 ret = 0;
2614 goto out_only_mutex;
2615 }
2616 lockstart = offset;
2617 }
2618
2619 /* Check the tail unaligned part is in a hole */
2620 tail_start = lockend + 1;
2621 tail_len = offset + len - tail_start;
2622 if (tail_len) {
2623 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2624 if (unlikely(ret < 0))
2625 goto out_only_mutex;
2626 if (!ret) {
2627 /* zero the front end of the last page */
2628 if (tail_start + tail_len < ino_size) {
2629 truncated_block = true;
2630 ret = btrfs_truncate_block(inode,
2631 tail_start + tail_len,
2632 0, 1);
2633 if (ret)
2634 goto out_only_mutex;
2635 }
2636 }
2637 }
2638
2639 if (lockend < lockstart) {
2640 ret = 0;
2641 goto out_only_mutex;
2642 }
2643
2644 while (1) {
2645 struct btrfs_ordered_extent *ordered;
2646
2647 truncate_pagecache_range(inode, lockstart, lockend);
2648
2649 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2650 &cached_state);
2651 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2652
2653 /*
2654 * We need to make sure we have no ordered extents in this range
2655 * and nobody raced in and read a page in this range, if we did
2656 * we need to try again.
2657 */
2658 if ((!ordered ||
2659 (ordered->file_offset + ordered->len <= lockstart ||
2660 ordered->file_offset > lockend)) &&
2661 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2662 if (ordered)
2663 btrfs_put_ordered_extent(ordered);
2664 break;
2665 }
2666 if (ordered)
2667 btrfs_put_ordered_extent(ordered);
2668 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2669 lockend, &cached_state, GFP_NOFS);
2670 ret = btrfs_wait_ordered_range(inode, lockstart,
2671 lockend - lockstart + 1);
2672 if (ret) {
2673 inode_unlock(inode);
2674 return ret;
2675 }
2676 }
2677
2678 path = btrfs_alloc_path();
2679 if (!path) {
2680 ret = -ENOMEM;
2681 goto out;
2682 }
2683
2684 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2685 if (!rsv) {
2686 ret = -ENOMEM;
2687 goto out_free;
2688 }
2689 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2690 rsv->failfast = 1;
2691
2692 /*
2693 * 1 - update the inode
2694 * 1 - removing the extents in the range
2695 * 1 - adding the hole extent if no_holes isn't set
2696 */
2697 rsv_count = no_holes ? 2 : 3;
2698 trans = btrfs_start_transaction(root, rsv_count);
2699 if (IS_ERR(trans)) {
2700 err = PTR_ERR(trans);
2701 goto out_free;
2702 }
2703
2704 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2705 min_size, 0);
2706 BUG_ON(ret);
2707 trans->block_rsv = rsv;
2708
2709 cur_offset = lockstart;
2710 len = lockend - cur_offset;
2711 while (cur_offset < lockend) {
2712 ret = __btrfs_drop_extents(trans, root, inode, path,
2713 cur_offset, lockend + 1,
2714 &drop_end, 1, 0, 0, NULL);
2715 if (ret != -ENOSPC)
2716 break;
2717
2718 trans->block_rsv = &fs_info->trans_block_rsv;
2719
2720 if (cur_offset < drop_end && cur_offset < ino_size) {
2721 ret = fill_holes(trans, BTRFS_I(inode), path,
2722 cur_offset, drop_end);
2723 if (ret) {
2724 /*
2725 * If we failed then we didn't insert our hole
2726 * entries for the area we dropped, so now the
2727 * fs is corrupted, so we must abort the
2728 * transaction.
2729 */
2730 btrfs_abort_transaction(trans, ret);
2731 err = ret;
2732 break;
2733 }
2734 }
2735
2736 cur_offset = drop_end;
2737
2738 ret = btrfs_update_inode(trans, root, inode);
2739 if (ret) {
2740 err = ret;
2741 break;
2742 }
2743
2744 btrfs_end_transaction(trans);
2745 btrfs_btree_balance_dirty(fs_info);
2746
2747 trans = btrfs_start_transaction(root, rsv_count);
2748 if (IS_ERR(trans)) {
2749 ret = PTR_ERR(trans);
2750 trans = NULL;
2751 break;
2752 }
2753
2754 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2755 rsv, min_size, 0);
2756 BUG_ON(ret); /* shouldn't happen */
2757 trans->block_rsv = rsv;
2758
2759 ret = find_first_non_hole(inode, &cur_offset, &len);
2760 if (unlikely(ret < 0))
2761 break;
2762 if (ret && !len) {
2763 ret = 0;
2764 break;
2765 }
2766 }
2767
2768 if (ret) {
2769 err = ret;
2770 goto out_trans;
2771 }
2772
2773 trans->block_rsv = &fs_info->trans_block_rsv;
2774 /*
2775 * If we are using the NO_HOLES feature we might have had already an
2776 * hole that overlaps a part of the region [lockstart, lockend] and
2777 * ends at (or beyond) lockend. Since we have no file extent items to
2778 * represent holes, drop_end can be less than lockend and so we must
2779 * make sure we have an extent map representing the existing hole (the
2780 * call to __btrfs_drop_extents() might have dropped the existing extent
2781 * map representing the existing hole), otherwise the fast fsync path
2782 * will not record the existence of the hole region
2783 * [existing_hole_start, lockend].
2784 */
2785 if (drop_end <= lockend)
2786 drop_end = lockend + 1;
2787 /*
2788 * Don't insert file hole extent item if it's for a range beyond eof
2789 * (because it's useless) or if it represents a 0 bytes range (when
2790 * cur_offset == drop_end).
2791 */
2792 if (cur_offset < ino_size && cur_offset < drop_end) {
2793 ret = fill_holes(trans, BTRFS_I(inode), path,
2794 cur_offset, drop_end);
2795 if (ret) {
2796 /* Same comment as above. */
2797 btrfs_abort_transaction(trans, ret);
2798 err = ret;
2799 goto out_trans;
2800 }
2801 }
2802
2803 out_trans:
2804 if (!trans)
2805 goto out_free;
2806
2807 inode_inc_iversion(inode);
2808 inode->i_mtime = inode->i_ctime = current_time(inode);
2809
2810 trans->block_rsv = &fs_info->trans_block_rsv;
2811 ret = btrfs_update_inode(trans, root, inode);
2812 updated_inode = true;
2813 btrfs_end_transaction(trans);
2814 btrfs_btree_balance_dirty(fs_info);
2815 out_free:
2816 btrfs_free_path(path);
2817 btrfs_free_block_rsv(fs_info, rsv);
2818 out:
2819 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2820 &cached_state, GFP_NOFS);
2821 out_only_mutex:
2822 if (!updated_inode && truncated_block && !ret && !err) {
2823 /*
2824 * If we only end up zeroing part of a page, we still need to
2825 * update the inode item, so that all the time fields are
2826 * updated as well as the necessary btrfs inode in memory fields
2827 * for detecting, at fsync time, if the inode isn't yet in the
2828 * log tree or it's there but not up to date.
2829 */
2830 struct timespec now = current_time(inode);
2831
2832 inode_inc_iversion(inode);
2833 inode->i_mtime = now;
2834 inode->i_ctime = now;
2835 trans = btrfs_start_transaction(root, 1);
2836 if (IS_ERR(trans)) {
2837 err = PTR_ERR(trans);
2838 } else {
2839 err = btrfs_update_inode(trans, root, inode);
2840 ret = btrfs_end_transaction(trans);
2841 }
2842 }
2843 inode_unlock(inode);
2844 if (ret && !err)
2845 err = ret;
2846 return err;
2847 }
2848
2849 /* Helper structure to record which range is already reserved */
2850 struct falloc_range {
2851 struct list_head list;
2852 u64 start;
2853 u64 len;
2854 };
2855
2856 /*
2857 * Helper function to add falloc range
2858 *
2859 * Caller should have locked the larger range of extent containing
2860 * [start, len)
2861 */
2862 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2863 {
2864 struct falloc_range *prev = NULL;
2865 struct falloc_range *range = NULL;
2866
2867 if (list_empty(head))
2868 goto insert;
2869
2870 /*
2871 * As fallocate iterate by bytenr order, we only need to check
2872 * the last range.
2873 */
2874 prev = list_entry(head->prev, struct falloc_range, list);
2875 if (prev->start + prev->len == start) {
2876 prev->len += len;
2877 return 0;
2878 }
2879 insert:
2880 range = kmalloc(sizeof(*range), GFP_KERNEL);
2881 if (!range)
2882 return -ENOMEM;
2883 range->start = start;
2884 range->len = len;
2885 list_add_tail(&range->list, head);
2886 return 0;
2887 }
2888
2889 static long btrfs_fallocate(struct file *file, int mode,
2890 loff_t offset, loff_t len)
2891 {
2892 struct inode *inode = file_inode(file);
2893 struct extent_state *cached_state = NULL;
2894 struct extent_changeset *data_reserved = NULL;
2895 struct falloc_range *range;
2896 struct falloc_range *tmp;
2897 struct list_head reserve_list;
2898 u64 cur_offset;
2899 u64 last_byte;
2900 u64 alloc_start;
2901 u64 alloc_end;
2902 u64 alloc_hint = 0;
2903 u64 locked_end;
2904 u64 actual_end = 0;
2905 struct extent_map *em;
2906 int blocksize = btrfs_inode_sectorsize(inode);
2907 int ret;
2908
2909 alloc_start = round_down(offset, blocksize);
2910 alloc_end = round_up(offset + len, blocksize);
2911 cur_offset = alloc_start;
2912
2913 /* Make sure we aren't being give some crap mode */
2914 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2915 return -EOPNOTSUPP;
2916
2917 if (mode & FALLOC_FL_PUNCH_HOLE)
2918 return btrfs_punch_hole(inode, offset, len);
2919
2920 /*
2921 * Only trigger disk allocation, don't trigger qgroup reserve
2922 *
2923 * For qgroup space, it will be checked later.
2924 */
2925 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2926 alloc_end - alloc_start);
2927 if (ret < 0)
2928 return ret;
2929
2930 inode_lock(inode);
2931
2932 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2933 ret = inode_newsize_ok(inode, offset + len);
2934 if (ret)
2935 goto out;
2936 }
2937
2938 /*
2939 * TODO: Move these two operations after we have checked
2940 * accurate reserved space, or fallocate can still fail but
2941 * with page truncated or size expanded.
2942 *
2943 * But that's a minor problem and won't do much harm BTW.
2944 */
2945 if (alloc_start > inode->i_size) {
2946 ret = btrfs_cont_expand(inode, i_size_read(inode),
2947 alloc_start);
2948 if (ret)
2949 goto out;
2950 } else if (offset + len > inode->i_size) {
2951 /*
2952 * If we are fallocating from the end of the file onward we
2953 * need to zero out the end of the block if i_size lands in the
2954 * middle of a block.
2955 */
2956 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2957 if (ret)
2958 goto out;
2959 }
2960
2961 /*
2962 * wait for ordered IO before we have any locks. We'll loop again
2963 * below with the locks held.
2964 */
2965 ret = btrfs_wait_ordered_range(inode, alloc_start,
2966 alloc_end - alloc_start);
2967 if (ret)
2968 goto out;
2969
2970 locked_end = alloc_end - 1;
2971 while (1) {
2972 struct btrfs_ordered_extent *ordered;
2973
2974 /* the extent lock is ordered inside the running
2975 * transaction
2976 */
2977 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2978 locked_end, &cached_state);
2979 ordered = btrfs_lookup_first_ordered_extent(inode,
2980 alloc_end - 1);
2981 if (ordered &&
2982 ordered->file_offset + ordered->len > alloc_start &&
2983 ordered->file_offset < alloc_end) {
2984 btrfs_put_ordered_extent(ordered);
2985 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2986 alloc_start, locked_end,
2987 &cached_state, GFP_KERNEL);
2988 /*
2989 * we can't wait on the range with the transaction
2990 * running or with the extent lock held
2991 */
2992 ret = btrfs_wait_ordered_range(inode, alloc_start,
2993 alloc_end - alloc_start);
2994 if (ret)
2995 goto out;
2996 } else {
2997 if (ordered)
2998 btrfs_put_ordered_extent(ordered);
2999 break;
3000 }
3001 }
3002
3003 /* First, check if we exceed the qgroup limit */
3004 INIT_LIST_HEAD(&reserve_list);
3005 while (1) {
3006 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3007 alloc_end - cur_offset, 0);
3008 if (IS_ERR(em)) {
3009 ret = PTR_ERR(em);
3010 break;
3011 }
3012 last_byte = min(extent_map_end(em), alloc_end);
3013 actual_end = min_t(u64, extent_map_end(em), offset + len);
3014 last_byte = ALIGN(last_byte, blocksize);
3015 if (em->block_start == EXTENT_MAP_HOLE ||
3016 (cur_offset >= inode->i_size &&
3017 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3018 ret = add_falloc_range(&reserve_list, cur_offset,
3019 last_byte - cur_offset);
3020 if (ret < 0) {
3021 free_extent_map(em);
3022 break;
3023 }
3024 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3025 cur_offset, last_byte - cur_offset);
3026 if (ret < 0) {
3027 cur_offset = last_byte;
3028 free_extent_map(em);
3029 break;
3030 }
3031 } else {
3032 /*
3033 * Do not need to reserve unwritten extent for this
3034 * range, free reserved data space first, otherwise
3035 * it'll result in false ENOSPC error.
3036 */
3037 btrfs_free_reserved_data_space(inode, data_reserved,
3038 cur_offset, last_byte - cur_offset);
3039 }
3040 free_extent_map(em);
3041 cur_offset = last_byte;
3042 if (cur_offset >= alloc_end)
3043 break;
3044 }
3045
3046 /*
3047 * If ret is still 0, means we're OK to fallocate.
3048 * Or just cleanup the list and exit.
3049 */
3050 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3051 if (!ret)
3052 ret = btrfs_prealloc_file_range(inode, mode,
3053 range->start,
3054 range->len, i_blocksize(inode),
3055 offset + len, &alloc_hint);
3056 else
3057 btrfs_free_reserved_data_space(inode,
3058 data_reserved, range->start,
3059 range->len);
3060 list_del(&range->list);
3061 kfree(range);
3062 }
3063 if (ret < 0)
3064 goto out_unlock;
3065
3066 if (actual_end > inode->i_size &&
3067 !(mode & FALLOC_FL_KEEP_SIZE)) {
3068 struct btrfs_trans_handle *trans;
3069 struct btrfs_root *root = BTRFS_I(inode)->root;
3070
3071 /*
3072 * We didn't need to allocate any more space, but we
3073 * still extended the size of the file so we need to
3074 * update i_size and the inode item.
3075 */
3076 trans = btrfs_start_transaction(root, 1);
3077 if (IS_ERR(trans)) {
3078 ret = PTR_ERR(trans);
3079 } else {
3080 inode->i_ctime = current_time(inode);
3081 i_size_write(inode, actual_end);
3082 btrfs_ordered_update_i_size(inode, actual_end, NULL);
3083 ret = btrfs_update_inode(trans, root, inode);
3084 if (ret)
3085 btrfs_end_transaction(trans);
3086 else
3087 ret = btrfs_end_transaction(trans);
3088 }
3089 }
3090 out_unlock:
3091 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3092 &cached_state, GFP_KERNEL);
3093 out:
3094 inode_unlock(inode);
3095 /* Let go of our reservation. */
3096 if (ret != 0)
3097 btrfs_free_reserved_data_space(inode, data_reserved,
3098 cur_offset, alloc_end - cur_offset);
3099 extent_changeset_free(data_reserved);
3100 return ret;
3101 }
3102
3103 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3104 {
3105 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3106 struct extent_map *em = NULL;
3107 struct extent_state *cached_state = NULL;
3108 u64 lockstart;
3109 u64 lockend;
3110 u64 start;
3111 u64 len;
3112 int ret = 0;
3113
3114 if (inode->i_size == 0)
3115 return -ENXIO;
3116
3117 /*
3118 * *offset can be negative, in this case we start finding DATA/HOLE from
3119 * the very start of the file.
3120 */
3121 start = max_t(loff_t, 0, *offset);
3122
3123 lockstart = round_down(start, fs_info->sectorsize);
3124 lockend = round_up(i_size_read(inode),
3125 fs_info->sectorsize);
3126 if (lockend <= lockstart)
3127 lockend = lockstart + fs_info->sectorsize;
3128 lockend--;
3129 len = lockend - lockstart + 1;
3130
3131 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3132 &cached_state);
3133
3134 while (start < inode->i_size) {
3135 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3136 start, len, 0);
3137 if (IS_ERR(em)) {
3138 ret = PTR_ERR(em);
3139 em = NULL;
3140 break;
3141 }
3142
3143 if (whence == SEEK_HOLE &&
3144 (em->block_start == EXTENT_MAP_HOLE ||
3145 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3146 break;
3147 else if (whence == SEEK_DATA &&
3148 (em->block_start != EXTENT_MAP_HOLE &&
3149 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3150 break;
3151
3152 start = em->start + em->len;
3153 free_extent_map(em);
3154 em = NULL;
3155 cond_resched();
3156 }
3157 free_extent_map(em);
3158 if (!ret) {
3159 if (whence == SEEK_DATA && start >= inode->i_size)
3160 ret = -ENXIO;
3161 else
3162 *offset = min_t(loff_t, start, inode->i_size);
3163 }
3164 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3165 &cached_state, GFP_NOFS);
3166 return ret;
3167 }
3168
3169 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3170 {
3171 struct inode *inode = file->f_mapping->host;
3172 int ret;
3173
3174 inode_lock(inode);
3175 switch (whence) {
3176 case SEEK_END:
3177 case SEEK_CUR:
3178 offset = generic_file_llseek(file, offset, whence);
3179 goto out;
3180 case SEEK_DATA:
3181 case SEEK_HOLE:
3182 if (offset >= i_size_read(inode)) {
3183 inode_unlock(inode);
3184 return -ENXIO;
3185 }
3186
3187 ret = find_desired_extent(inode, &offset, whence);
3188 if (ret) {
3189 inode_unlock(inode);
3190 return ret;
3191 }
3192 }
3193
3194 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3195 out:
3196 inode_unlock(inode);
3197 return offset;
3198 }
3199
3200 static int btrfs_file_open(struct inode *inode, struct file *filp)
3201 {
3202 filp->f_mode |= FMODE_NOWAIT;
3203 return generic_file_open(inode, filp);
3204 }
3205
3206 const struct file_operations btrfs_file_operations = {
3207 .llseek = btrfs_file_llseek,
3208 .read_iter = generic_file_read_iter,
3209 .splice_read = generic_file_splice_read,
3210 .write_iter = btrfs_file_write_iter,
3211 .mmap = btrfs_file_mmap,
3212 .open = btrfs_file_open,
3213 .release = btrfs_release_file,
3214 .fsync = btrfs_sync_file,
3215 .fallocate = btrfs_fallocate,
3216 .unlocked_ioctl = btrfs_ioctl,
3217 #ifdef CONFIG_COMPAT
3218 .compat_ioctl = btrfs_compat_ioctl,
3219 #endif
3220 .clone_file_range = btrfs_clone_file_range,
3221 .dedupe_file_range = btrfs_dedupe_file_range,
3222 };
3223
3224 void btrfs_auto_defrag_exit(void)
3225 {
3226 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3227 }
3228
3229 int btrfs_auto_defrag_init(void)
3230 {
3231 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3232 sizeof(struct inode_defrag), 0,
3233 SLAB_MEM_SPREAD,
3234 NULL);
3235 if (!btrfs_inode_defrag_cachep)
3236 return -ENOMEM;
3237
3238 return 0;
3239 }
3240
3241 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3242 {
3243 int ret;
3244
3245 /*
3246 * So with compression we will find and lock a dirty page and clear the
3247 * first one as dirty, setup an async extent, and immediately return
3248 * with the entire range locked but with nobody actually marked with
3249 * writeback. So we can't just filemap_write_and_wait_range() and
3250 * expect it to work since it will just kick off a thread to do the
3251 * actual work. So we need to call filemap_fdatawrite_range _again_
3252 * since it will wait on the page lock, which won't be unlocked until
3253 * after the pages have been marked as writeback and so we're good to go
3254 * from there. We have to do this otherwise we'll miss the ordered
3255 * extents and that results in badness. Please Josef, do not think you
3256 * know better and pull this out at some point in the future, it is
3257 * right and you are wrong.
3258 */
3259 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3260 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3261 &BTRFS_I(inode)->runtime_flags))
3262 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3263
3264 return ret;
3265 }