]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/file.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50 struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72 {
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
96 {
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
101 int ret;
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
110 p = &parent->rb_left;
111 else if (ret > 0)
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
122 return -EEXIST;
123 }
124 }
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
138
139 return 1;
140 }
141
142 /*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148 {
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
151 u64 transid;
152 int ret;
153
154 if (!__need_auto_defrag(root))
155 return 0;
156
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 if (!defrag)
167 return -ENOMEM;
168
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 }
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
187 return 0;
188 }
189
190 /*
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194 */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197 {
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214 out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
221 */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
233
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
242 p = parent->rb_left;
243 else if (ret > 0)
244 p = parent->rb_right;
245 else
246 goto out;
247 }
248
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
253 else
254 entry = NULL;
255 }
256 out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 struct inode_defrag *defrag;
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH 1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290 {
291 struct btrfs_root *inode_root;
292 struct inode *inode;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
295 int num_defrag;
296 int index;
297 int ret;
298
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
311
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 key.offset = 0;
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 if (IS_ERR(inode)) {
317 ret = PTR_ERR(inode);
318 goto cleanup;
319 }
320 srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 memset(&range, 0, sizeof(range));
325 range.len = (u64)-1;
326 range.start = defrag->last_offset;
327
328 sb_start_write(fs_info->sb);
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 BTRFS_DEFRAG_BATCH);
331 sb_end_write(fs_info->sb);
332 /*
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
335 * again
336 */
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
341 /*
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
345 */
346 defrag->last_offset = 0;
347 defrag->cycled = 1;
348 btrfs_requeue_inode_defrag(inode, defrag);
349 } else {
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 }
352
353 iput(inode);
354 return 0;
355 cleanup:
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 return ret;
359 }
360
361 /*
362 * run through the list of inodes in the FS that need
363 * defragging
364 */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367 struct inode_defrag *defrag;
368 u64 first_ino = 0;
369 u64 root_objectid = 0;
370
371 atomic_inc(&fs_info->defrag_running);
372 while (1) {
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 &fs_info->fs_state))
376 break;
377
378 if (!__need_auto_defrag(fs_info->tree_root))
379 break;
380
381 /* find an inode to defrag */
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 first_ino);
384 if (!defrag) {
385 if (root_objectid || first_ino) {
386 root_objectid = 0;
387 first_ino = 0;
388 continue;
389 } else {
390 break;
391 }
392 }
393
394 first_ino = defrag->ino + 1;
395 root_objectid = defrag->root;
396
397 __btrfs_run_defrag_inode(fs_info, defrag);
398 }
399 atomic_dec(&fs_info->defrag_running);
400
401 /*
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
404 */
405 wake_up(&fs_info->transaction_wait);
406 return 0;
407 }
408
409 /* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
411 */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413 size_t write_bytes,
414 struct page **prepared_pages,
415 struct iov_iter *i)
416 {
417 size_t copied = 0;
418 size_t total_copied = 0;
419 int pg = 0;
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422 while (write_bytes > 0) {
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
425 struct page *page = prepared_pages[pg];
426 /*
427 * Copy data from userspace to the current page
428 *
429 * Disable pagefault to avoid recursive lock since
430 * the pages are already locked
431 */
432 pagefault_disable();
433 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434 pagefault_enable();
435
436 /* Flush processor's dcache for this page */
437 flush_dcache_page(page);
438
439 /*
440 * if we get a partial write, we can end up with
441 * partially up to date pages. These add
442 * a lot of complexity, so make sure they don't
443 * happen by forcing this copy to be retried.
444 *
445 * The rest of the btrfs_file_write code will fall
446 * back to page at a time copies after we return 0.
447 */
448 if (!PageUptodate(page) && copied < count)
449 copied = 0;
450
451 iov_iter_advance(i, copied);
452 write_bytes -= copied;
453 total_copied += copied;
454
455 /* Return to btrfs_file_aio_write to fault page */
456 if (unlikely(copied == 0))
457 break;
458
459 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460 offset += copied;
461 } else {
462 pg++;
463 offset = 0;
464 }
465 }
466 return total_copied;
467 }
468
469 /*
470 * unlocks pages after btrfs_file_write is done with them
471 */
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
473 {
474 size_t i;
475 for (i = 0; i < num_pages; i++) {
476 /* page checked is some magic around finding pages that
477 * have been modified without going through btrfs_set_page_dirty
478 * clear it here
479 */
480 ClearPageChecked(pages[i]);
481 unlock_page(pages[i]);
482 mark_page_accessed(pages[i]);
483 page_cache_release(pages[i]);
484 }
485 }
486
487 /*
488 * after copy_from_user, pages need to be dirtied and we need to make
489 * sure holes are created between the current EOF and the start of
490 * any next extents (if required).
491 *
492 * this also makes the decision about creating an inline extent vs
493 * doing real data extents, marking pages dirty and delalloc as required.
494 */
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496 struct page **pages, size_t num_pages,
497 loff_t pos, size_t write_bytes,
498 struct extent_state **cached)
499 {
500 int err = 0;
501 int i;
502 u64 num_bytes;
503 u64 start_pos;
504 u64 end_of_last_block;
505 u64 end_pos = pos + write_bytes;
506 loff_t isize = i_size_read(inode);
507
508 start_pos = pos & ~((u64)root->sectorsize - 1);
509 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
510
511 end_of_last_block = start_pos + num_bytes - 1;
512 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513 cached);
514 if (err)
515 return err;
516
517 for (i = 0; i < num_pages; i++) {
518 struct page *p = pages[i];
519 SetPageUptodate(p);
520 ClearPageChecked(p);
521 set_page_dirty(p);
522 }
523
524 /*
525 * we've only changed i_size in ram, and we haven't updated
526 * the disk i_size. There is no need to log the inode
527 * at this time.
528 */
529 if (end_pos > isize)
530 i_size_write(inode, end_pos);
531 return 0;
532 }
533
534 /*
535 * this drops all the extents in the cache that intersect the range
536 * [start, end]. Existing extents are split as required.
537 */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539 int skip_pinned)
540 {
541 struct extent_map *em;
542 struct extent_map *split = NULL;
543 struct extent_map *split2 = NULL;
544 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545 u64 len = end - start + 1;
546 u64 gen;
547 int ret;
548 int testend = 1;
549 unsigned long flags;
550 int compressed = 0;
551 bool modified;
552
553 WARN_ON(end < start);
554 if (end == (u64)-1) {
555 len = (u64)-1;
556 testend = 0;
557 }
558 while (1) {
559 int no_splits = 0;
560
561 modified = false;
562 if (!split)
563 split = alloc_extent_map();
564 if (!split2)
565 split2 = alloc_extent_map();
566 if (!split || !split2)
567 no_splits = 1;
568
569 write_lock(&em_tree->lock);
570 em = lookup_extent_mapping(em_tree, start, len);
571 if (!em) {
572 write_unlock(&em_tree->lock);
573 break;
574 }
575 flags = em->flags;
576 gen = em->generation;
577 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578 if (testend && em->start + em->len >= start + len) {
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 break;
582 }
583 start = em->start + em->len;
584 if (testend)
585 len = start + len - (em->start + em->len);
586 free_extent_map(em);
587 write_unlock(&em_tree->lock);
588 continue;
589 }
590 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592 clear_bit(EXTENT_FLAG_LOGGING, &flags);
593 modified = !list_empty(&em->list);
594 if (no_splits)
595 goto next;
596
597 if (em->start < start) {
598 split->start = em->start;
599 split->len = start - em->start;
600
601 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
602 split->orig_start = em->orig_start;
603 split->block_start = em->block_start;
604
605 if (compressed)
606 split->block_len = em->block_len;
607 else
608 split->block_len = split->len;
609 split->orig_block_len = max(split->block_len,
610 em->orig_block_len);
611 split->ram_bytes = em->ram_bytes;
612 } else {
613 split->orig_start = split->start;
614 split->block_len = 0;
615 split->block_start = em->block_start;
616 split->orig_block_len = 0;
617 split->ram_bytes = split->len;
618 }
619
620 split->generation = gen;
621 split->bdev = em->bdev;
622 split->flags = flags;
623 split->compress_type = em->compress_type;
624 replace_extent_mapping(em_tree, em, split, modified);
625 free_extent_map(split);
626 split = split2;
627 split2 = NULL;
628 }
629 if (testend && em->start + em->len > start + len) {
630 u64 diff = start + len - em->start;
631
632 split->start = start + len;
633 split->len = em->start + em->len - (start + len);
634 split->bdev = em->bdev;
635 split->flags = flags;
636 split->compress_type = em->compress_type;
637 split->generation = gen;
638
639 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
640 split->orig_block_len = max(em->block_len,
641 em->orig_block_len);
642
643 split->ram_bytes = em->ram_bytes;
644 if (compressed) {
645 split->block_len = em->block_len;
646 split->block_start = em->block_start;
647 split->orig_start = em->orig_start;
648 } else {
649 split->block_len = split->len;
650 split->block_start = em->block_start
651 + diff;
652 split->orig_start = em->orig_start;
653 }
654 } else {
655 split->ram_bytes = split->len;
656 split->orig_start = split->start;
657 split->block_len = 0;
658 split->block_start = em->block_start;
659 split->orig_block_len = 0;
660 }
661
662 if (extent_map_in_tree(em)) {
663 replace_extent_mapping(em_tree, em, split,
664 modified);
665 } else {
666 ret = add_extent_mapping(em_tree, split,
667 modified);
668 ASSERT(ret == 0); /* Logic error */
669 }
670 free_extent_map(split);
671 split = NULL;
672 }
673 next:
674 if (extent_map_in_tree(em))
675 remove_extent_mapping(em_tree, em);
676 write_unlock(&em_tree->lock);
677
678 /* once for us */
679 free_extent_map(em);
680 /* once for the tree*/
681 free_extent_map(em);
682 }
683 if (split)
684 free_extent_map(split);
685 if (split2)
686 free_extent_map(split2);
687 }
688
689 /*
690 * this is very complex, but the basic idea is to drop all extents
691 * in the range start - end. hint_block is filled in with a block number
692 * that would be a good hint to the block allocator for this file.
693 *
694 * If an extent intersects the range but is not entirely inside the range
695 * it is either truncated or split. Anything entirely inside the range
696 * is deleted from the tree.
697 */
698 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
699 struct btrfs_root *root, struct inode *inode,
700 struct btrfs_path *path, u64 start, u64 end,
701 u64 *drop_end, int drop_cache,
702 int replace_extent,
703 u32 extent_item_size,
704 int *key_inserted)
705 {
706 struct extent_buffer *leaf;
707 struct btrfs_file_extent_item *fi;
708 struct btrfs_key key;
709 struct btrfs_key new_key;
710 u64 ino = btrfs_ino(inode);
711 u64 search_start = start;
712 u64 disk_bytenr = 0;
713 u64 num_bytes = 0;
714 u64 extent_offset = 0;
715 u64 extent_end = 0;
716 int del_nr = 0;
717 int del_slot = 0;
718 int extent_type;
719 int recow;
720 int ret;
721 int modify_tree = -1;
722 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
723 int found = 0;
724 int leafs_visited = 0;
725
726 if (drop_cache)
727 btrfs_drop_extent_cache(inode, start, end - 1, 0);
728
729 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
730 modify_tree = 0;
731
732 while (1) {
733 recow = 0;
734 ret = btrfs_lookup_file_extent(trans, root, path, ino,
735 search_start, modify_tree);
736 if (ret < 0)
737 break;
738 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
739 leaf = path->nodes[0];
740 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
741 if (key.objectid == ino &&
742 key.type == BTRFS_EXTENT_DATA_KEY)
743 path->slots[0]--;
744 }
745 ret = 0;
746 leafs_visited++;
747 next_slot:
748 leaf = path->nodes[0];
749 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
750 BUG_ON(del_nr > 0);
751 ret = btrfs_next_leaf(root, path);
752 if (ret < 0)
753 break;
754 if (ret > 0) {
755 ret = 0;
756 break;
757 }
758 leafs_visited++;
759 leaf = path->nodes[0];
760 recow = 1;
761 }
762
763 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
764 if (key.objectid > ino ||
765 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
766 break;
767
768 fi = btrfs_item_ptr(leaf, path->slots[0],
769 struct btrfs_file_extent_item);
770 extent_type = btrfs_file_extent_type(leaf, fi);
771
772 if (extent_type == BTRFS_FILE_EXTENT_REG ||
773 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
774 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
775 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
776 extent_offset = btrfs_file_extent_offset(leaf, fi);
777 extent_end = key.offset +
778 btrfs_file_extent_num_bytes(leaf, fi);
779 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
780 extent_end = key.offset +
781 btrfs_file_extent_inline_len(leaf,
782 path->slots[0], fi);
783 } else {
784 WARN_ON(1);
785 extent_end = search_start;
786 }
787
788 if (extent_end <= search_start) {
789 path->slots[0]++;
790 goto next_slot;
791 }
792
793 found = 1;
794 search_start = max(key.offset, start);
795 if (recow || !modify_tree) {
796 modify_tree = -1;
797 btrfs_release_path(path);
798 continue;
799 }
800
801 /*
802 * | - range to drop - |
803 * | -------- extent -------- |
804 */
805 if (start > key.offset && end < extent_end) {
806 BUG_ON(del_nr > 0);
807 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
808 ret = -EINVAL;
809 break;
810 }
811
812 memcpy(&new_key, &key, sizeof(new_key));
813 new_key.offset = start;
814 ret = btrfs_duplicate_item(trans, root, path,
815 &new_key);
816 if (ret == -EAGAIN) {
817 btrfs_release_path(path);
818 continue;
819 }
820 if (ret < 0)
821 break;
822
823 leaf = path->nodes[0];
824 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
825 struct btrfs_file_extent_item);
826 btrfs_set_file_extent_num_bytes(leaf, fi,
827 start - key.offset);
828
829 fi = btrfs_item_ptr(leaf, path->slots[0],
830 struct btrfs_file_extent_item);
831
832 extent_offset += start - key.offset;
833 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
834 btrfs_set_file_extent_num_bytes(leaf, fi,
835 extent_end - start);
836 btrfs_mark_buffer_dirty(leaf);
837
838 if (update_refs && disk_bytenr > 0) {
839 ret = btrfs_inc_extent_ref(trans, root,
840 disk_bytenr, num_bytes, 0,
841 root->root_key.objectid,
842 new_key.objectid,
843 start - extent_offset, 0);
844 BUG_ON(ret); /* -ENOMEM */
845 }
846 key.offset = start;
847 }
848 /*
849 * | ---- range to drop ----- |
850 * | -------- extent -------- |
851 */
852 if (start <= key.offset && end < extent_end) {
853 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
854 ret = -EINVAL;
855 break;
856 }
857
858 memcpy(&new_key, &key, sizeof(new_key));
859 new_key.offset = end;
860 btrfs_set_item_key_safe(root, path, &new_key);
861
862 extent_offset += end - key.offset;
863 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
864 btrfs_set_file_extent_num_bytes(leaf, fi,
865 extent_end - end);
866 btrfs_mark_buffer_dirty(leaf);
867 if (update_refs && disk_bytenr > 0)
868 inode_sub_bytes(inode, end - key.offset);
869 break;
870 }
871
872 search_start = extent_end;
873 /*
874 * | ---- range to drop ----- |
875 * | -------- extent -------- |
876 */
877 if (start > key.offset && end >= extent_end) {
878 BUG_ON(del_nr > 0);
879 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
880 ret = -EINVAL;
881 break;
882 }
883
884 btrfs_set_file_extent_num_bytes(leaf, fi,
885 start - key.offset);
886 btrfs_mark_buffer_dirty(leaf);
887 if (update_refs && disk_bytenr > 0)
888 inode_sub_bytes(inode, extent_end - start);
889 if (end == extent_end)
890 break;
891
892 path->slots[0]++;
893 goto next_slot;
894 }
895
896 /*
897 * | ---- range to drop ----- |
898 * | ------ extent ------ |
899 */
900 if (start <= key.offset && end >= extent_end) {
901 if (del_nr == 0) {
902 del_slot = path->slots[0];
903 del_nr = 1;
904 } else {
905 BUG_ON(del_slot + del_nr != path->slots[0]);
906 del_nr++;
907 }
908
909 if (update_refs &&
910 extent_type == BTRFS_FILE_EXTENT_INLINE) {
911 inode_sub_bytes(inode,
912 extent_end - key.offset);
913 extent_end = ALIGN(extent_end,
914 root->sectorsize);
915 } else if (update_refs && disk_bytenr > 0) {
916 ret = btrfs_free_extent(trans, root,
917 disk_bytenr, num_bytes, 0,
918 root->root_key.objectid,
919 key.objectid, key.offset -
920 extent_offset, 0);
921 BUG_ON(ret); /* -ENOMEM */
922 inode_sub_bytes(inode,
923 extent_end - key.offset);
924 }
925
926 if (end == extent_end)
927 break;
928
929 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
930 path->slots[0]++;
931 goto next_slot;
932 }
933
934 ret = btrfs_del_items(trans, root, path, del_slot,
935 del_nr);
936 if (ret) {
937 btrfs_abort_transaction(trans, root, ret);
938 break;
939 }
940
941 del_nr = 0;
942 del_slot = 0;
943
944 btrfs_release_path(path);
945 continue;
946 }
947
948 BUG_ON(1);
949 }
950
951 if (!ret && del_nr > 0) {
952 /*
953 * Set path->slots[0] to first slot, so that after the delete
954 * if items are move off from our leaf to its immediate left or
955 * right neighbor leafs, we end up with a correct and adjusted
956 * path->slots[0] for our insertion (if replace_extent != 0).
957 */
958 path->slots[0] = del_slot;
959 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
960 if (ret)
961 btrfs_abort_transaction(trans, root, ret);
962 }
963
964 leaf = path->nodes[0];
965 /*
966 * If btrfs_del_items() was called, it might have deleted a leaf, in
967 * which case it unlocked our path, so check path->locks[0] matches a
968 * write lock.
969 */
970 if (!ret && replace_extent && leafs_visited == 1 &&
971 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
972 path->locks[0] == BTRFS_WRITE_LOCK) &&
973 btrfs_leaf_free_space(root, leaf) >=
974 sizeof(struct btrfs_item) + extent_item_size) {
975
976 key.objectid = ino;
977 key.type = BTRFS_EXTENT_DATA_KEY;
978 key.offset = start;
979 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
980 struct btrfs_key slot_key;
981
982 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
983 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
984 path->slots[0]++;
985 }
986 setup_items_for_insert(root, path, &key,
987 &extent_item_size,
988 extent_item_size,
989 sizeof(struct btrfs_item) +
990 extent_item_size, 1);
991 *key_inserted = 1;
992 }
993
994 if (!replace_extent || !(*key_inserted))
995 btrfs_release_path(path);
996 if (drop_end)
997 *drop_end = found ? min(end, extent_end) : end;
998 return ret;
999 }
1000
1001 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1002 struct btrfs_root *root, struct inode *inode, u64 start,
1003 u64 end, int drop_cache)
1004 {
1005 struct btrfs_path *path;
1006 int ret;
1007
1008 path = btrfs_alloc_path();
1009 if (!path)
1010 return -ENOMEM;
1011 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1012 drop_cache, 0, 0, NULL);
1013 btrfs_free_path(path);
1014 return ret;
1015 }
1016
1017 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1018 u64 objectid, u64 bytenr, u64 orig_offset,
1019 u64 *start, u64 *end)
1020 {
1021 struct btrfs_file_extent_item *fi;
1022 struct btrfs_key key;
1023 u64 extent_end;
1024
1025 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1026 return 0;
1027
1028 btrfs_item_key_to_cpu(leaf, &key, slot);
1029 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1030 return 0;
1031
1032 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1033 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1034 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1035 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1036 btrfs_file_extent_compression(leaf, fi) ||
1037 btrfs_file_extent_encryption(leaf, fi) ||
1038 btrfs_file_extent_other_encoding(leaf, fi))
1039 return 0;
1040
1041 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1042 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1043 return 0;
1044
1045 *start = key.offset;
1046 *end = extent_end;
1047 return 1;
1048 }
1049
1050 /*
1051 * Mark extent in the range start - end as written.
1052 *
1053 * This changes extent type from 'pre-allocated' to 'regular'. If only
1054 * part of extent is marked as written, the extent will be split into
1055 * two or three.
1056 */
1057 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1058 struct inode *inode, u64 start, u64 end)
1059 {
1060 struct btrfs_root *root = BTRFS_I(inode)->root;
1061 struct extent_buffer *leaf;
1062 struct btrfs_path *path;
1063 struct btrfs_file_extent_item *fi;
1064 struct btrfs_key key;
1065 struct btrfs_key new_key;
1066 u64 bytenr;
1067 u64 num_bytes;
1068 u64 extent_end;
1069 u64 orig_offset;
1070 u64 other_start;
1071 u64 other_end;
1072 u64 split;
1073 int del_nr = 0;
1074 int del_slot = 0;
1075 int recow;
1076 int ret;
1077 u64 ino = btrfs_ino(inode);
1078
1079 path = btrfs_alloc_path();
1080 if (!path)
1081 return -ENOMEM;
1082 again:
1083 recow = 0;
1084 split = start;
1085 key.objectid = ino;
1086 key.type = BTRFS_EXTENT_DATA_KEY;
1087 key.offset = split;
1088
1089 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1090 if (ret < 0)
1091 goto out;
1092 if (ret > 0 && path->slots[0] > 0)
1093 path->slots[0]--;
1094
1095 leaf = path->nodes[0];
1096 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1097 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1098 fi = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_file_extent_item);
1100 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1101 BTRFS_FILE_EXTENT_PREALLOC);
1102 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1103 BUG_ON(key.offset > start || extent_end < end);
1104
1105 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1107 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1108 memcpy(&new_key, &key, sizeof(new_key));
1109
1110 if (start == key.offset && end < extent_end) {
1111 other_start = 0;
1112 other_end = start;
1113 if (extent_mergeable(leaf, path->slots[0] - 1,
1114 ino, bytenr, orig_offset,
1115 &other_start, &other_end)) {
1116 new_key.offset = end;
1117 btrfs_set_item_key_safe(root, path, &new_key);
1118 fi = btrfs_item_ptr(leaf, path->slots[0],
1119 struct btrfs_file_extent_item);
1120 btrfs_set_file_extent_generation(leaf, fi,
1121 trans->transid);
1122 btrfs_set_file_extent_num_bytes(leaf, fi,
1123 extent_end - end);
1124 btrfs_set_file_extent_offset(leaf, fi,
1125 end - orig_offset);
1126 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1127 struct btrfs_file_extent_item);
1128 btrfs_set_file_extent_generation(leaf, fi,
1129 trans->transid);
1130 btrfs_set_file_extent_num_bytes(leaf, fi,
1131 end - other_start);
1132 btrfs_mark_buffer_dirty(leaf);
1133 goto out;
1134 }
1135 }
1136
1137 if (start > key.offset && end == extent_end) {
1138 other_start = end;
1139 other_end = 0;
1140 if (extent_mergeable(leaf, path->slots[0] + 1,
1141 ino, bytenr, orig_offset,
1142 &other_start, &other_end)) {
1143 fi = btrfs_item_ptr(leaf, path->slots[0],
1144 struct btrfs_file_extent_item);
1145 btrfs_set_file_extent_num_bytes(leaf, fi,
1146 start - key.offset);
1147 btrfs_set_file_extent_generation(leaf, fi,
1148 trans->transid);
1149 path->slots[0]++;
1150 new_key.offset = start;
1151 btrfs_set_item_key_safe(root, path, &new_key);
1152
1153 fi = btrfs_item_ptr(leaf, path->slots[0],
1154 struct btrfs_file_extent_item);
1155 btrfs_set_file_extent_generation(leaf, fi,
1156 trans->transid);
1157 btrfs_set_file_extent_num_bytes(leaf, fi,
1158 other_end - start);
1159 btrfs_set_file_extent_offset(leaf, fi,
1160 start - orig_offset);
1161 btrfs_mark_buffer_dirty(leaf);
1162 goto out;
1163 }
1164 }
1165
1166 while (start > key.offset || end < extent_end) {
1167 if (key.offset == start)
1168 split = end;
1169
1170 new_key.offset = split;
1171 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1172 if (ret == -EAGAIN) {
1173 btrfs_release_path(path);
1174 goto again;
1175 }
1176 if (ret < 0) {
1177 btrfs_abort_transaction(trans, root, ret);
1178 goto out;
1179 }
1180
1181 leaf = path->nodes[0];
1182 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1183 struct btrfs_file_extent_item);
1184 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1185 btrfs_set_file_extent_num_bytes(leaf, fi,
1186 split - key.offset);
1187
1188 fi = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_file_extent_item);
1190
1191 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1192 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1193 btrfs_set_file_extent_num_bytes(leaf, fi,
1194 extent_end - split);
1195 btrfs_mark_buffer_dirty(leaf);
1196
1197 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1198 root->root_key.objectid,
1199 ino, orig_offset, 0);
1200 BUG_ON(ret); /* -ENOMEM */
1201
1202 if (split == start) {
1203 key.offset = start;
1204 } else {
1205 BUG_ON(start != key.offset);
1206 path->slots[0]--;
1207 extent_end = end;
1208 }
1209 recow = 1;
1210 }
1211
1212 other_start = end;
1213 other_end = 0;
1214 if (extent_mergeable(leaf, path->slots[0] + 1,
1215 ino, bytenr, orig_offset,
1216 &other_start, &other_end)) {
1217 if (recow) {
1218 btrfs_release_path(path);
1219 goto again;
1220 }
1221 extent_end = other_end;
1222 del_slot = path->slots[0] + 1;
1223 del_nr++;
1224 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1225 0, root->root_key.objectid,
1226 ino, orig_offset, 0);
1227 BUG_ON(ret); /* -ENOMEM */
1228 }
1229 other_start = 0;
1230 other_end = start;
1231 if (extent_mergeable(leaf, path->slots[0] - 1,
1232 ino, bytenr, orig_offset,
1233 &other_start, &other_end)) {
1234 if (recow) {
1235 btrfs_release_path(path);
1236 goto again;
1237 }
1238 key.offset = other_start;
1239 del_slot = path->slots[0];
1240 del_nr++;
1241 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1242 0, root->root_key.objectid,
1243 ino, orig_offset, 0);
1244 BUG_ON(ret); /* -ENOMEM */
1245 }
1246 if (del_nr == 0) {
1247 fi = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_file_extent_item);
1249 btrfs_set_file_extent_type(leaf, fi,
1250 BTRFS_FILE_EXTENT_REG);
1251 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1252 btrfs_mark_buffer_dirty(leaf);
1253 } else {
1254 fi = btrfs_item_ptr(leaf, del_slot - 1,
1255 struct btrfs_file_extent_item);
1256 btrfs_set_file_extent_type(leaf, fi,
1257 BTRFS_FILE_EXTENT_REG);
1258 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1259 btrfs_set_file_extent_num_bytes(leaf, fi,
1260 extent_end - key.offset);
1261 btrfs_mark_buffer_dirty(leaf);
1262
1263 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1264 if (ret < 0) {
1265 btrfs_abort_transaction(trans, root, ret);
1266 goto out;
1267 }
1268 }
1269 out:
1270 btrfs_free_path(path);
1271 return 0;
1272 }
1273
1274 /*
1275 * on error we return an unlocked page and the error value
1276 * on success we return a locked page and 0
1277 */
1278 static int prepare_uptodate_page(struct page *page, u64 pos,
1279 bool force_uptodate)
1280 {
1281 int ret = 0;
1282
1283 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1284 !PageUptodate(page)) {
1285 ret = btrfs_readpage(NULL, page);
1286 if (ret)
1287 return ret;
1288 lock_page(page);
1289 if (!PageUptodate(page)) {
1290 unlock_page(page);
1291 return -EIO;
1292 }
1293 }
1294 return 0;
1295 }
1296
1297 /*
1298 * this just gets pages into the page cache and locks them down.
1299 */
1300 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1301 size_t num_pages, loff_t pos,
1302 size_t write_bytes, bool force_uptodate)
1303 {
1304 int i;
1305 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1306 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1307 int err = 0;
1308 int faili;
1309
1310 for (i = 0; i < num_pages; i++) {
1311 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1312 mask | __GFP_WRITE);
1313 if (!pages[i]) {
1314 faili = i - 1;
1315 err = -ENOMEM;
1316 goto fail;
1317 }
1318
1319 if (i == 0)
1320 err = prepare_uptodate_page(pages[i], pos,
1321 force_uptodate);
1322 if (i == num_pages - 1)
1323 err = prepare_uptodate_page(pages[i],
1324 pos + write_bytes, false);
1325 if (err) {
1326 page_cache_release(pages[i]);
1327 faili = i - 1;
1328 goto fail;
1329 }
1330 wait_on_page_writeback(pages[i]);
1331 }
1332
1333 return 0;
1334 fail:
1335 while (faili >= 0) {
1336 unlock_page(pages[faili]);
1337 page_cache_release(pages[faili]);
1338 faili--;
1339 }
1340 return err;
1341
1342 }
1343
1344 /*
1345 * This function locks the extent and properly waits for data=ordered extents
1346 * to finish before allowing the pages to be modified if need.
1347 *
1348 * The return value:
1349 * 1 - the extent is locked
1350 * 0 - the extent is not locked, and everything is OK
1351 * -EAGAIN - need re-prepare the pages
1352 * the other < 0 number - Something wrong happens
1353 */
1354 static noinline int
1355 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1356 size_t num_pages, loff_t pos,
1357 u64 *lockstart, u64 *lockend,
1358 struct extent_state **cached_state)
1359 {
1360 u64 start_pos;
1361 u64 last_pos;
1362 int i;
1363 int ret = 0;
1364
1365 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1366 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1367
1368 if (start_pos < inode->i_size) {
1369 struct btrfs_ordered_extent *ordered;
1370 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1371 start_pos, last_pos, 0, cached_state);
1372 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1373 last_pos - start_pos + 1);
1374 if (ordered &&
1375 ordered->file_offset + ordered->len > start_pos &&
1376 ordered->file_offset <= last_pos) {
1377 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1378 start_pos, last_pos,
1379 cached_state, GFP_NOFS);
1380 for (i = 0; i < num_pages; i++) {
1381 unlock_page(pages[i]);
1382 page_cache_release(pages[i]);
1383 }
1384 btrfs_start_ordered_extent(inode, ordered, 1);
1385 btrfs_put_ordered_extent(ordered);
1386 return -EAGAIN;
1387 }
1388 if (ordered)
1389 btrfs_put_ordered_extent(ordered);
1390
1391 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1392 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1393 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1394 0, 0, cached_state, GFP_NOFS);
1395 *lockstart = start_pos;
1396 *lockend = last_pos;
1397 ret = 1;
1398 }
1399
1400 for (i = 0; i < num_pages; i++) {
1401 if (clear_page_dirty_for_io(pages[i]))
1402 account_page_redirty(pages[i]);
1403 set_page_extent_mapped(pages[i]);
1404 WARN_ON(!PageLocked(pages[i]));
1405 }
1406
1407 return ret;
1408 }
1409
1410 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1411 size_t *write_bytes)
1412 {
1413 struct btrfs_root *root = BTRFS_I(inode)->root;
1414 struct btrfs_ordered_extent *ordered;
1415 u64 lockstart, lockend;
1416 u64 num_bytes;
1417 int ret;
1418
1419 ret = btrfs_start_nocow_write(root);
1420 if (!ret)
1421 return -ENOSPC;
1422
1423 lockstart = round_down(pos, root->sectorsize);
1424 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1425
1426 while (1) {
1427 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1428 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1429 lockend - lockstart + 1);
1430 if (!ordered) {
1431 break;
1432 }
1433 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1434 btrfs_start_ordered_extent(inode, ordered, 1);
1435 btrfs_put_ordered_extent(ordered);
1436 }
1437
1438 num_bytes = lockend - lockstart + 1;
1439 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1440 if (ret <= 0) {
1441 ret = 0;
1442 btrfs_end_nocow_write(root);
1443 } else {
1444 *write_bytes = min_t(size_t, *write_bytes ,
1445 num_bytes - pos + lockstart);
1446 }
1447
1448 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1449
1450 return ret;
1451 }
1452
1453 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1454 struct iov_iter *i,
1455 loff_t pos)
1456 {
1457 struct inode *inode = file_inode(file);
1458 struct btrfs_root *root = BTRFS_I(inode)->root;
1459 struct page **pages = NULL;
1460 struct extent_state *cached_state = NULL;
1461 u64 release_bytes = 0;
1462 u64 lockstart;
1463 u64 lockend;
1464 unsigned long first_index;
1465 size_t num_written = 0;
1466 int nrptrs;
1467 int ret = 0;
1468 bool only_release_metadata = false;
1469 bool force_page_uptodate = false;
1470 bool need_unlock;
1471
1472 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1473 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1474 (sizeof(struct page *)));
1475 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1476 nrptrs = max(nrptrs, 8);
1477 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1478 if (!pages)
1479 return -ENOMEM;
1480
1481 first_index = pos >> PAGE_CACHE_SHIFT;
1482
1483 while (iov_iter_count(i) > 0) {
1484 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1485 size_t write_bytes = min(iov_iter_count(i),
1486 nrptrs * (size_t)PAGE_CACHE_SIZE -
1487 offset);
1488 size_t num_pages = (write_bytes + offset +
1489 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1490 size_t reserve_bytes;
1491 size_t dirty_pages;
1492 size_t copied;
1493
1494 WARN_ON(num_pages > nrptrs);
1495
1496 /*
1497 * Fault pages before locking them in prepare_pages
1498 * to avoid recursive lock
1499 */
1500 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1501 ret = -EFAULT;
1502 break;
1503 }
1504
1505 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1506 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1507 if (ret == -ENOSPC &&
1508 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1509 BTRFS_INODE_PREALLOC))) {
1510 ret = check_can_nocow(inode, pos, &write_bytes);
1511 if (ret > 0) {
1512 only_release_metadata = true;
1513 /*
1514 * our prealloc extent may be smaller than
1515 * write_bytes, so scale down.
1516 */
1517 num_pages = (write_bytes + offset +
1518 PAGE_CACHE_SIZE - 1) >>
1519 PAGE_CACHE_SHIFT;
1520 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1521 ret = 0;
1522 } else {
1523 ret = -ENOSPC;
1524 }
1525 }
1526
1527 if (ret)
1528 break;
1529
1530 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1531 if (ret) {
1532 if (!only_release_metadata)
1533 btrfs_free_reserved_data_space(inode,
1534 reserve_bytes);
1535 else
1536 btrfs_end_nocow_write(root);
1537 break;
1538 }
1539
1540 release_bytes = reserve_bytes;
1541 need_unlock = false;
1542 again:
1543 /*
1544 * This is going to setup the pages array with the number of
1545 * pages we want, so we don't really need to worry about the
1546 * contents of pages from loop to loop
1547 */
1548 ret = prepare_pages(inode, pages, num_pages,
1549 pos, write_bytes,
1550 force_page_uptodate);
1551 if (ret)
1552 break;
1553
1554 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1555 pos, &lockstart, &lockend,
1556 &cached_state);
1557 if (ret < 0) {
1558 if (ret == -EAGAIN)
1559 goto again;
1560 break;
1561 } else if (ret > 0) {
1562 need_unlock = true;
1563 ret = 0;
1564 }
1565
1566 copied = btrfs_copy_from_user(pos, num_pages,
1567 write_bytes, pages, i);
1568
1569 /*
1570 * if we have trouble faulting in the pages, fall
1571 * back to one page at a time
1572 */
1573 if (copied < write_bytes)
1574 nrptrs = 1;
1575
1576 if (copied == 0) {
1577 force_page_uptodate = true;
1578 dirty_pages = 0;
1579 } else {
1580 force_page_uptodate = false;
1581 dirty_pages = (copied + offset +
1582 PAGE_CACHE_SIZE - 1) >>
1583 PAGE_CACHE_SHIFT;
1584 }
1585
1586 /*
1587 * If we had a short copy we need to release the excess delaloc
1588 * bytes we reserved. We need to increment outstanding_extents
1589 * because btrfs_delalloc_release_space will decrement it, but
1590 * we still have an outstanding extent for the chunk we actually
1591 * managed to copy.
1592 */
1593 if (num_pages > dirty_pages) {
1594 release_bytes = (num_pages - dirty_pages) <<
1595 PAGE_CACHE_SHIFT;
1596 if (copied > 0) {
1597 spin_lock(&BTRFS_I(inode)->lock);
1598 BTRFS_I(inode)->outstanding_extents++;
1599 spin_unlock(&BTRFS_I(inode)->lock);
1600 }
1601 if (only_release_metadata)
1602 btrfs_delalloc_release_metadata(inode,
1603 release_bytes);
1604 else
1605 btrfs_delalloc_release_space(inode,
1606 release_bytes);
1607 }
1608
1609 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1610
1611 if (copied > 0)
1612 ret = btrfs_dirty_pages(root, inode, pages,
1613 dirty_pages, pos, copied,
1614 NULL);
1615 if (need_unlock)
1616 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1617 lockstart, lockend, &cached_state,
1618 GFP_NOFS);
1619 if (ret) {
1620 btrfs_drop_pages(pages, num_pages);
1621 break;
1622 }
1623
1624 release_bytes = 0;
1625 if (only_release_metadata)
1626 btrfs_end_nocow_write(root);
1627
1628 if (only_release_metadata && copied > 0) {
1629 u64 lockstart = round_down(pos, root->sectorsize);
1630 u64 lockend = lockstart +
1631 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1632
1633 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1634 lockend, EXTENT_NORESERVE, NULL,
1635 NULL, GFP_NOFS);
1636 only_release_metadata = false;
1637 }
1638
1639 btrfs_drop_pages(pages, num_pages);
1640
1641 cond_resched();
1642
1643 balance_dirty_pages_ratelimited(inode->i_mapping);
1644 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1645 btrfs_btree_balance_dirty(root);
1646
1647 pos += copied;
1648 num_written += copied;
1649 }
1650
1651 kfree(pages);
1652
1653 if (release_bytes) {
1654 if (only_release_metadata) {
1655 btrfs_end_nocow_write(root);
1656 btrfs_delalloc_release_metadata(inode, release_bytes);
1657 } else {
1658 btrfs_delalloc_release_space(inode, release_bytes);
1659 }
1660 }
1661
1662 return num_written ? num_written : ret;
1663 }
1664
1665 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1666 const struct iovec *iov,
1667 unsigned long nr_segs, loff_t pos,
1668 loff_t *ppos, size_t count, size_t ocount)
1669 {
1670 struct file *file = iocb->ki_filp;
1671 struct iov_iter i;
1672 ssize_t written;
1673 ssize_t written_buffered;
1674 loff_t endbyte;
1675 int err;
1676
1677 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1678 count, ocount);
1679
1680 if (written < 0 || written == count)
1681 return written;
1682
1683 pos += written;
1684 count -= written;
1685 iov_iter_init(&i, iov, nr_segs, count, written);
1686 written_buffered = __btrfs_buffered_write(file, &i, pos);
1687 if (written_buffered < 0) {
1688 err = written_buffered;
1689 goto out;
1690 }
1691 endbyte = pos + written_buffered - 1;
1692 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1693 if (err)
1694 goto out;
1695 written += written_buffered;
1696 *ppos = pos + written_buffered;
1697 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1698 endbyte >> PAGE_CACHE_SHIFT);
1699 out:
1700 return written ? written : err;
1701 }
1702
1703 static void update_time_for_write(struct inode *inode)
1704 {
1705 struct timespec now;
1706
1707 if (IS_NOCMTIME(inode))
1708 return;
1709
1710 now = current_fs_time(inode->i_sb);
1711 if (!timespec_equal(&inode->i_mtime, &now))
1712 inode->i_mtime = now;
1713
1714 if (!timespec_equal(&inode->i_ctime, &now))
1715 inode->i_ctime = now;
1716
1717 if (IS_I_VERSION(inode))
1718 inode_inc_iversion(inode);
1719 }
1720
1721 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1722 const struct iovec *iov,
1723 unsigned long nr_segs, loff_t pos)
1724 {
1725 struct file *file = iocb->ki_filp;
1726 struct inode *inode = file_inode(file);
1727 struct btrfs_root *root = BTRFS_I(inode)->root;
1728 loff_t *ppos = &iocb->ki_pos;
1729 u64 start_pos;
1730 ssize_t num_written = 0;
1731 ssize_t err = 0;
1732 size_t count, ocount;
1733 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1734
1735 mutex_lock(&inode->i_mutex);
1736
1737 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1738 if (err) {
1739 mutex_unlock(&inode->i_mutex);
1740 goto out;
1741 }
1742 count = ocount;
1743
1744 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1745 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1746 if (err) {
1747 mutex_unlock(&inode->i_mutex);
1748 goto out;
1749 }
1750
1751 if (count == 0) {
1752 mutex_unlock(&inode->i_mutex);
1753 goto out;
1754 }
1755
1756 err = file_remove_suid(file);
1757 if (err) {
1758 mutex_unlock(&inode->i_mutex);
1759 goto out;
1760 }
1761
1762 /*
1763 * If BTRFS flips readonly due to some impossible error
1764 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1765 * although we have opened a file as writable, we have
1766 * to stop this write operation to ensure FS consistency.
1767 */
1768 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1769 mutex_unlock(&inode->i_mutex);
1770 err = -EROFS;
1771 goto out;
1772 }
1773
1774 /*
1775 * We reserve space for updating the inode when we reserve space for the
1776 * extent we are going to write, so we will enospc out there. We don't
1777 * need to start yet another transaction to update the inode as we will
1778 * update the inode when we finish writing whatever data we write.
1779 */
1780 update_time_for_write(inode);
1781
1782 start_pos = round_down(pos, root->sectorsize);
1783 if (start_pos > i_size_read(inode)) {
1784 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1785 if (err) {
1786 mutex_unlock(&inode->i_mutex);
1787 goto out;
1788 }
1789 }
1790
1791 if (sync)
1792 atomic_inc(&BTRFS_I(inode)->sync_writers);
1793
1794 if (unlikely(file->f_flags & O_DIRECT)) {
1795 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1796 pos, ppos, count, ocount);
1797 } else {
1798 struct iov_iter i;
1799
1800 iov_iter_init(&i, iov, nr_segs, count, num_written);
1801
1802 num_written = __btrfs_buffered_write(file, &i, pos);
1803 if (num_written > 0)
1804 *ppos = pos + num_written;
1805 }
1806
1807 mutex_unlock(&inode->i_mutex);
1808
1809 /*
1810 * we want to make sure fsync finds this change
1811 * but we haven't joined a transaction running right now.
1812 *
1813 * Later on, someone is sure to update the inode and get the
1814 * real transid recorded.
1815 *
1816 * We set last_trans now to the fs_info generation + 1,
1817 * this will either be one more than the running transaction
1818 * or the generation used for the next transaction if there isn't
1819 * one running right now.
1820 *
1821 * We also have to set last_sub_trans to the current log transid,
1822 * otherwise subsequent syncs to a file that's been synced in this
1823 * transaction will appear to have already occured.
1824 */
1825 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1826 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1827 if (num_written > 0) {
1828 err = generic_write_sync(file, pos, num_written);
1829 if (err < 0)
1830 num_written = err;
1831 }
1832
1833 if (sync)
1834 atomic_dec(&BTRFS_I(inode)->sync_writers);
1835 out:
1836 current->backing_dev_info = NULL;
1837 return num_written ? num_written : err;
1838 }
1839
1840 int btrfs_release_file(struct inode *inode, struct file *filp)
1841 {
1842 /*
1843 * ordered_data_close is set by settattr when we are about to truncate
1844 * a file from a non-zero size to a zero size. This tries to
1845 * flush down new bytes that may have been written if the
1846 * application were using truncate to replace a file in place.
1847 */
1848 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1849 &BTRFS_I(inode)->runtime_flags)) {
1850 struct btrfs_trans_handle *trans;
1851 struct btrfs_root *root = BTRFS_I(inode)->root;
1852
1853 /*
1854 * We need to block on a committing transaction to keep us from
1855 * throwing a ordered operation on to the list and causing
1856 * something like sync to deadlock trying to flush out this
1857 * inode.
1858 */
1859 trans = btrfs_start_transaction(root, 0);
1860 if (IS_ERR(trans))
1861 return PTR_ERR(trans);
1862 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1863 btrfs_end_transaction(trans, root);
1864 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1865 filemap_flush(inode->i_mapping);
1866 }
1867 if (filp->private_data)
1868 btrfs_ioctl_trans_end(filp);
1869 return 0;
1870 }
1871
1872 /*
1873 * fsync call for both files and directories. This logs the inode into
1874 * the tree log instead of forcing full commits whenever possible.
1875 *
1876 * It needs to call filemap_fdatawait so that all ordered extent updates are
1877 * in the metadata btree are up to date for copying to the log.
1878 *
1879 * It drops the inode mutex before doing the tree log commit. This is an
1880 * important optimization for directories because holding the mutex prevents
1881 * new operations on the dir while we write to disk.
1882 */
1883 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1884 {
1885 struct dentry *dentry = file->f_path.dentry;
1886 struct inode *inode = dentry->d_inode;
1887 struct btrfs_root *root = BTRFS_I(inode)->root;
1888 struct btrfs_trans_handle *trans;
1889 struct btrfs_log_ctx ctx;
1890 int ret = 0;
1891 bool full_sync = 0;
1892
1893 trace_btrfs_sync_file(file, datasync);
1894
1895 /*
1896 * We write the dirty pages in the range and wait until they complete
1897 * out of the ->i_mutex. If so, we can flush the dirty pages by
1898 * multi-task, and make the performance up. See
1899 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1900 */
1901 atomic_inc(&BTRFS_I(inode)->sync_writers);
1902 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1903 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1904 &BTRFS_I(inode)->runtime_flags))
1905 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1906 atomic_dec(&BTRFS_I(inode)->sync_writers);
1907 if (ret)
1908 return ret;
1909
1910 mutex_lock(&inode->i_mutex);
1911
1912 /*
1913 * We flush the dirty pages again to avoid some dirty pages in the
1914 * range being left.
1915 */
1916 atomic_inc(&root->log_batch);
1917 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1918 &BTRFS_I(inode)->runtime_flags);
1919 if (full_sync) {
1920 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1921 if (ret) {
1922 mutex_unlock(&inode->i_mutex);
1923 goto out;
1924 }
1925 }
1926 atomic_inc(&root->log_batch);
1927
1928 /*
1929 * check the transaction that last modified this inode
1930 * and see if its already been committed
1931 */
1932 if (!BTRFS_I(inode)->last_trans) {
1933 mutex_unlock(&inode->i_mutex);
1934 goto out;
1935 }
1936
1937 /*
1938 * if the last transaction that changed this file was before
1939 * the current transaction, we can bail out now without any
1940 * syncing
1941 */
1942 smp_mb();
1943 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1944 BTRFS_I(inode)->last_trans <=
1945 root->fs_info->last_trans_committed) {
1946 BTRFS_I(inode)->last_trans = 0;
1947
1948 /*
1949 * We'v had everything committed since the last time we were
1950 * modified so clear this flag in case it was set for whatever
1951 * reason, it's no longer relevant.
1952 */
1953 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1954 &BTRFS_I(inode)->runtime_flags);
1955 mutex_unlock(&inode->i_mutex);
1956 goto out;
1957 }
1958
1959 /*
1960 * ok we haven't committed the transaction yet, lets do a commit
1961 */
1962 if (file->private_data)
1963 btrfs_ioctl_trans_end(file);
1964
1965 /*
1966 * We use start here because we will need to wait on the IO to complete
1967 * in btrfs_sync_log, which could require joining a transaction (for
1968 * example checking cross references in the nocow path). If we use join
1969 * here we could get into a situation where we're waiting on IO to
1970 * happen that is blocked on a transaction trying to commit. With start
1971 * we inc the extwriter counter, so we wait for all extwriters to exit
1972 * before we start blocking join'ers. This comment is to keep somebody
1973 * from thinking they are super smart and changing this to
1974 * btrfs_join_transaction *cough*Josef*cough*.
1975 */
1976 trans = btrfs_start_transaction(root, 0);
1977 if (IS_ERR(trans)) {
1978 ret = PTR_ERR(trans);
1979 mutex_unlock(&inode->i_mutex);
1980 goto out;
1981 }
1982 trans->sync = true;
1983
1984 btrfs_init_log_ctx(&ctx);
1985
1986 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1987 if (ret < 0) {
1988 /* Fallthrough and commit/free transaction. */
1989 ret = 1;
1990 }
1991
1992 /* we've logged all the items and now have a consistent
1993 * version of the file in the log. It is possible that
1994 * someone will come in and modify the file, but that's
1995 * fine because the log is consistent on disk, and we
1996 * have references to all of the file's extents
1997 *
1998 * It is possible that someone will come in and log the
1999 * file again, but that will end up using the synchronization
2000 * inside btrfs_sync_log to keep things safe.
2001 */
2002 mutex_unlock(&inode->i_mutex);
2003
2004 if (ret != BTRFS_NO_LOG_SYNC) {
2005 if (!ret) {
2006 ret = btrfs_sync_log(trans, root, &ctx);
2007 if (!ret) {
2008 ret = btrfs_end_transaction(trans, root);
2009 goto out;
2010 }
2011 }
2012 if (!full_sync) {
2013 ret = btrfs_wait_ordered_range(inode, start,
2014 end - start + 1);
2015 if (ret)
2016 goto out;
2017 }
2018 ret = btrfs_commit_transaction(trans, root);
2019 } else {
2020 ret = btrfs_end_transaction(trans, root);
2021 }
2022 out:
2023 return ret > 0 ? -EIO : ret;
2024 }
2025
2026 static const struct vm_operations_struct btrfs_file_vm_ops = {
2027 .fault = filemap_fault,
2028 .map_pages = filemap_map_pages,
2029 .page_mkwrite = btrfs_page_mkwrite,
2030 .remap_pages = generic_file_remap_pages,
2031 };
2032
2033 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2034 {
2035 struct address_space *mapping = filp->f_mapping;
2036
2037 if (!mapping->a_ops->readpage)
2038 return -ENOEXEC;
2039
2040 file_accessed(filp);
2041 vma->vm_ops = &btrfs_file_vm_ops;
2042
2043 return 0;
2044 }
2045
2046 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2047 int slot, u64 start, u64 end)
2048 {
2049 struct btrfs_file_extent_item *fi;
2050 struct btrfs_key key;
2051
2052 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2053 return 0;
2054
2055 btrfs_item_key_to_cpu(leaf, &key, slot);
2056 if (key.objectid != btrfs_ino(inode) ||
2057 key.type != BTRFS_EXTENT_DATA_KEY)
2058 return 0;
2059
2060 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2061
2062 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2063 return 0;
2064
2065 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2066 return 0;
2067
2068 if (key.offset == end)
2069 return 1;
2070 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2071 return 1;
2072 return 0;
2073 }
2074
2075 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2076 struct btrfs_path *path, u64 offset, u64 end)
2077 {
2078 struct btrfs_root *root = BTRFS_I(inode)->root;
2079 struct extent_buffer *leaf;
2080 struct btrfs_file_extent_item *fi;
2081 struct extent_map *hole_em;
2082 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2083 struct btrfs_key key;
2084 int ret;
2085
2086 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2087 goto out;
2088
2089 key.objectid = btrfs_ino(inode);
2090 key.type = BTRFS_EXTENT_DATA_KEY;
2091 key.offset = offset;
2092
2093 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2094 if (ret < 0)
2095 return ret;
2096 BUG_ON(!ret);
2097
2098 leaf = path->nodes[0];
2099 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2100 u64 num_bytes;
2101
2102 path->slots[0]--;
2103 fi = btrfs_item_ptr(leaf, path->slots[0],
2104 struct btrfs_file_extent_item);
2105 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2106 end - offset;
2107 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2108 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2109 btrfs_set_file_extent_offset(leaf, fi, 0);
2110 btrfs_mark_buffer_dirty(leaf);
2111 goto out;
2112 }
2113
2114 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2115 u64 num_bytes;
2116
2117 path->slots[0]++;
2118 key.offset = offset;
2119 btrfs_set_item_key_safe(root, path, &key);
2120 fi = btrfs_item_ptr(leaf, path->slots[0],
2121 struct btrfs_file_extent_item);
2122 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2123 offset;
2124 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2125 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2126 btrfs_set_file_extent_offset(leaf, fi, 0);
2127 btrfs_mark_buffer_dirty(leaf);
2128 goto out;
2129 }
2130 btrfs_release_path(path);
2131
2132 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2133 0, 0, end - offset, 0, end - offset,
2134 0, 0, 0);
2135 if (ret)
2136 return ret;
2137
2138 out:
2139 btrfs_release_path(path);
2140
2141 hole_em = alloc_extent_map();
2142 if (!hole_em) {
2143 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2144 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2145 &BTRFS_I(inode)->runtime_flags);
2146 } else {
2147 hole_em->start = offset;
2148 hole_em->len = end - offset;
2149 hole_em->ram_bytes = hole_em->len;
2150 hole_em->orig_start = offset;
2151
2152 hole_em->block_start = EXTENT_MAP_HOLE;
2153 hole_em->block_len = 0;
2154 hole_em->orig_block_len = 0;
2155 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2156 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2157 hole_em->generation = trans->transid;
2158
2159 do {
2160 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2161 write_lock(&em_tree->lock);
2162 ret = add_extent_mapping(em_tree, hole_em, 1);
2163 write_unlock(&em_tree->lock);
2164 } while (ret == -EEXIST);
2165 free_extent_map(hole_em);
2166 if (ret)
2167 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2168 &BTRFS_I(inode)->runtime_flags);
2169 }
2170
2171 return 0;
2172 }
2173
2174 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2175 {
2176 struct btrfs_root *root = BTRFS_I(inode)->root;
2177 struct extent_state *cached_state = NULL;
2178 struct btrfs_path *path;
2179 struct btrfs_block_rsv *rsv;
2180 struct btrfs_trans_handle *trans;
2181 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2182 u64 lockend = round_down(offset + len,
2183 BTRFS_I(inode)->root->sectorsize) - 1;
2184 u64 cur_offset = lockstart;
2185 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2186 u64 drop_end;
2187 int ret = 0;
2188 int err = 0;
2189 int rsv_count;
2190 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2191 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2192 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2193 u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2194
2195 ret = btrfs_wait_ordered_range(inode, offset, len);
2196 if (ret)
2197 return ret;
2198
2199 mutex_lock(&inode->i_mutex);
2200 /*
2201 * We needn't truncate any page which is beyond the end of the file
2202 * because we are sure there is no data there.
2203 */
2204 /*
2205 * Only do this if we are in the same page and we aren't doing the
2206 * entire page.
2207 */
2208 if (same_page && len < PAGE_CACHE_SIZE) {
2209 if (offset < ino_size)
2210 ret = btrfs_truncate_page(inode, offset, len, 0);
2211 mutex_unlock(&inode->i_mutex);
2212 return ret;
2213 }
2214
2215 /* zero back part of the first page */
2216 if (offset < ino_size) {
2217 ret = btrfs_truncate_page(inode, offset, 0, 0);
2218 if (ret) {
2219 mutex_unlock(&inode->i_mutex);
2220 return ret;
2221 }
2222 }
2223
2224 /* zero the front end of the last page */
2225 if (offset + len < ino_size) {
2226 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2227 if (ret) {
2228 mutex_unlock(&inode->i_mutex);
2229 return ret;
2230 }
2231 }
2232
2233 if (lockend < lockstart) {
2234 mutex_unlock(&inode->i_mutex);
2235 return 0;
2236 }
2237
2238 while (1) {
2239 struct btrfs_ordered_extent *ordered;
2240
2241 truncate_pagecache_range(inode, lockstart, lockend);
2242
2243 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2244 0, &cached_state);
2245 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2246
2247 /*
2248 * We need to make sure we have no ordered extents in this range
2249 * and nobody raced in and read a page in this range, if we did
2250 * we need to try again.
2251 */
2252 if ((!ordered ||
2253 (ordered->file_offset + ordered->len <= lockstart ||
2254 ordered->file_offset > lockend)) &&
2255 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2256 lockend, EXTENT_UPTODATE, 0,
2257 cached_state)) {
2258 if (ordered)
2259 btrfs_put_ordered_extent(ordered);
2260 break;
2261 }
2262 if (ordered)
2263 btrfs_put_ordered_extent(ordered);
2264 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2265 lockend, &cached_state, GFP_NOFS);
2266 ret = btrfs_wait_ordered_range(inode, lockstart,
2267 lockend - lockstart + 1);
2268 if (ret) {
2269 mutex_unlock(&inode->i_mutex);
2270 return ret;
2271 }
2272 }
2273
2274 path = btrfs_alloc_path();
2275 if (!path) {
2276 ret = -ENOMEM;
2277 goto out;
2278 }
2279
2280 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2281 if (!rsv) {
2282 ret = -ENOMEM;
2283 goto out_free;
2284 }
2285 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2286 rsv->failfast = 1;
2287
2288 /*
2289 * 1 - update the inode
2290 * 1 - removing the extents in the range
2291 * 1 - adding the hole extent if no_holes isn't set
2292 */
2293 rsv_count = no_holes ? 2 : 3;
2294 trans = btrfs_start_transaction(root, rsv_count);
2295 if (IS_ERR(trans)) {
2296 err = PTR_ERR(trans);
2297 goto out_free;
2298 }
2299
2300 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2301 min_size);
2302 BUG_ON(ret);
2303 trans->block_rsv = rsv;
2304
2305 while (cur_offset < lockend) {
2306 ret = __btrfs_drop_extents(trans, root, inode, path,
2307 cur_offset, lockend + 1,
2308 &drop_end, 1, 0, 0, NULL);
2309 if (ret != -ENOSPC)
2310 break;
2311
2312 trans->block_rsv = &root->fs_info->trans_block_rsv;
2313
2314 if (cur_offset < ino_size) {
2315 ret = fill_holes(trans, inode, path, cur_offset,
2316 drop_end);
2317 if (ret) {
2318 err = ret;
2319 break;
2320 }
2321 }
2322
2323 cur_offset = drop_end;
2324
2325 ret = btrfs_update_inode(trans, root, inode);
2326 if (ret) {
2327 err = ret;
2328 break;
2329 }
2330
2331 btrfs_end_transaction(trans, root);
2332 btrfs_btree_balance_dirty(root);
2333
2334 trans = btrfs_start_transaction(root, rsv_count);
2335 if (IS_ERR(trans)) {
2336 ret = PTR_ERR(trans);
2337 trans = NULL;
2338 break;
2339 }
2340
2341 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2342 rsv, min_size);
2343 BUG_ON(ret); /* shouldn't happen */
2344 trans->block_rsv = rsv;
2345 }
2346
2347 if (ret) {
2348 err = ret;
2349 goto out_trans;
2350 }
2351
2352 trans->block_rsv = &root->fs_info->trans_block_rsv;
2353 if (cur_offset < ino_size) {
2354 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2355 if (ret) {
2356 err = ret;
2357 goto out_trans;
2358 }
2359 }
2360
2361 out_trans:
2362 if (!trans)
2363 goto out_free;
2364
2365 inode_inc_iversion(inode);
2366 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2367
2368 trans->block_rsv = &root->fs_info->trans_block_rsv;
2369 ret = btrfs_update_inode(trans, root, inode);
2370 btrfs_end_transaction(trans, root);
2371 btrfs_btree_balance_dirty(root);
2372 out_free:
2373 btrfs_free_path(path);
2374 btrfs_free_block_rsv(root, rsv);
2375 out:
2376 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2377 &cached_state, GFP_NOFS);
2378 mutex_unlock(&inode->i_mutex);
2379 if (ret && !err)
2380 err = ret;
2381 return err;
2382 }
2383
2384 static long btrfs_fallocate(struct file *file, int mode,
2385 loff_t offset, loff_t len)
2386 {
2387 struct inode *inode = file_inode(file);
2388 struct extent_state *cached_state = NULL;
2389 struct btrfs_root *root = BTRFS_I(inode)->root;
2390 u64 cur_offset;
2391 u64 last_byte;
2392 u64 alloc_start;
2393 u64 alloc_end;
2394 u64 alloc_hint = 0;
2395 u64 locked_end;
2396 struct extent_map *em;
2397 int blocksize = BTRFS_I(inode)->root->sectorsize;
2398 int ret;
2399
2400 alloc_start = round_down(offset, blocksize);
2401 alloc_end = round_up(offset + len, blocksize);
2402
2403 /* Make sure we aren't being give some crap mode */
2404 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2405 return -EOPNOTSUPP;
2406
2407 if (mode & FALLOC_FL_PUNCH_HOLE)
2408 return btrfs_punch_hole(inode, offset, len);
2409
2410 /*
2411 * Make sure we have enough space before we do the
2412 * allocation.
2413 */
2414 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2415 if (ret)
2416 return ret;
2417 if (root->fs_info->quota_enabled) {
2418 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2419 if (ret)
2420 goto out_reserve_fail;
2421 }
2422
2423 mutex_lock(&inode->i_mutex);
2424 ret = inode_newsize_ok(inode, alloc_end);
2425 if (ret)
2426 goto out;
2427
2428 if (alloc_start > inode->i_size) {
2429 ret = btrfs_cont_expand(inode, i_size_read(inode),
2430 alloc_start);
2431 if (ret)
2432 goto out;
2433 } else {
2434 /*
2435 * If we are fallocating from the end of the file onward we
2436 * need to zero out the end of the page if i_size lands in the
2437 * middle of a page.
2438 */
2439 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2440 if (ret)
2441 goto out;
2442 }
2443
2444 /*
2445 * wait for ordered IO before we have any locks. We'll loop again
2446 * below with the locks held.
2447 */
2448 ret = btrfs_wait_ordered_range(inode, alloc_start,
2449 alloc_end - alloc_start);
2450 if (ret)
2451 goto out;
2452
2453 locked_end = alloc_end - 1;
2454 while (1) {
2455 struct btrfs_ordered_extent *ordered;
2456
2457 /* the extent lock is ordered inside the running
2458 * transaction
2459 */
2460 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2461 locked_end, 0, &cached_state);
2462 ordered = btrfs_lookup_first_ordered_extent(inode,
2463 alloc_end - 1);
2464 if (ordered &&
2465 ordered->file_offset + ordered->len > alloc_start &&
2466 ordered->file_offset < alloc_end) {
2467 btrfs_put_ordered_extent(ordered);
2468 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2469 alloc_start, locked_end,
2470 &cached_state, GFP_NOFS);
2471 /*
2472 * we can't wait on the range with the transaction
2473 * running or with the extent lock held
2474 */
2475 ret = btrfs_wait_ordered_range(inode, alloc_start,
2476 alloc_end - alloc_start);
2477 if (ret)
2478 goto out;
2479 } else {
2480 if (ordered)
2481 btrfs_put_ordered_extent(ordered);
2482 break;
2483 }
2484 }
2485
2486 cur_offset = alloc_start;
2487 while (1) {
2488 u64 actual_end;
2489
2490 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2491 alloc_end - cur_offset, 0);
2492 if (IS_ERR_OR_NULL(em)) {
2493 if (!em)
2494 ret = -ENOMEM;
2495 else
2496 ret = PTR_ERR(em);
2497 break;
2498 }
2499 last_byte = min(extent_map_end(em), alloc_end);
2500 actual_end = min_t(u64, extent_map_end(em), offset + len);
2501 last_byte = ALIGN(last_byte, blocksize);
2502
2503 if (em->block_start == EXTENT_MAP_HOLE ||
2504 (cur_offset >= inode->i_size &&
2505 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2506 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2507 last_byte - cur_offset,
2508 1 << inode->i_blkbits,
2509 offset + len,
2510 &alloc_hint);
2511
2512 if (ret < 0) {
2513 free_extent_map(em);
2514 break;
2515 }
2516 } else if (actual_end > inode->i_size &&
2517 !(mode & FALLOC_FL_KEEP_SIZE)) {
2518 /*
2519 * We didn't need to allocate any more space, but we
2520 * still extended the size of the file so we need to
2521 * update i_size.
2522 */
2523 inode->i_ctime = CURRENT_TIME;
2524 i_size_write(inode, actual_end);
2525 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2526 }
2527 free_extent_map(em);
2528
2529 cur_offset = last_byte;
2530 if (cur_offset >= alloc_end) {
2531 ret = 0;
2532 break;
2533 }
2534 }
2535 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2536 &cached_state, GFP_NOFS);
2537 out:
2538 mutex_unlock(&inode->i_mutex);
2539 if (root->fs_info->quota_enabled)
2540 btrfs_qgroup_free(root, alloc_end - alloc_start);
2541 out_reserve_fail:
2542 /* Let go of our reservation. */
2543 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2544 return ret;
2545 }
2546
2547 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2548 {
2549 struct btrfs_root *root = BTRFS_I(inode)->root;
2550 struct extent_map *em = NULL;
2551 struct extent_state *cached_state = NULL;
2552 u64 lockstart = *offset;
2553 u64 lockend = i_size_read(inode);
2554 u64 start = *offset;
2555 u64 len = i_size_read(inode);
2556 int ret = 0;
2557
2558 lockend = max_t(u64, root->sectorsize, lockend);
2559 if (lockend <= lockstart)
2560 lockend = lockstart + root->sectorsize;
2561
2562 lockend--;
2563 len = lockend - lockstart + 1;
2564
2565 len = max_t(u64, len, root->sectorsize);
2566 if (inode->i_size == 0)
2567 return -ENXIO;
2568
2569 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2570 &cached_state);
2571
2572 while (start < inode->i_size) {
2573 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2574 if (IS_ERR(em)) {
2575 ret = PTR_ERR(em);
2576 em = NULL;
2577 break;
2578 }
2579
2580 if (whence == SEEK_HOLE &&
2581 (em->block_start == EXTENT_MAP_HOLE ||
2582 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2583 break;
2584 else if (whence == SEEK_DATA &&
2585 (em->block_start != EXTENT_MAP_HOLE &&
2586 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2587 break;
2588
2589 start = em->start + em->len;
2590 free_extent_map(em);
2591 em = NULL;
2592 cond_resched();
2593 }
2594 free_extent_map(em);
2595 if (!ret) {
2596 if (whence == SEEK_DATA && start >= inode->i_size)
2597 ret = -ENXIO;
2598 else
2599 *offset = min_t(loff_t, start, inode->i_size);
2600 }
2601 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2602 &cached_state, GFP_NOFS);
2603 return ret;
2604 }
2605
2606 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2607 {
2608 struct inode *inode = file->f_mapping->host;
2609 int ret;
2610
2611 mutex_lock(&inode->i_mutex);
2612 switch (whence) {
2613 case SEEK_END:
2614 case SEEK_CUR:
2615 offset = generic_file_llseek(file, offset, whence);
2616 goto out;
2617 case SEEK_DATA:
2618 case SEEK_HOLE:
2619 if (offset >= i_size_read(inode)) {
2620 mutex_unlock(&inode->i_mutex);
2621 return -ENXIO;
2622 }
2623
2624 ret = find_desired_extent(inode, &offset, whence);
2625 if (ret) {
2626 mutex_unlock(&inode->i_mutex);
2627 return ret;
2628 }
2629 }
2630
2631 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2632 out:
2633 mutex_unlock(&inode->i_mutex);
2634 return offset;
2635 }
2636
2637 const struct file_operations btrfs_file_operations = {
2638 .llseek = btrfs_file_llseek,
2639 .read = do_sync_read,
2640 .write = do_sync_write,
2641 .aio_read = generic_file_aio_read,
2642 .splice_read = generic_file_splice_read,
2643 .aio_write = btrfs_file_aio_write,
2644 .mmap = btrfs_file_mmap,
2645 .open = generic_file_open,
2646 .release = btrfs_release_file,
2647 .fsync = btrfs_sync_file,
2648 .fallocate = btrfs_fallocate,
2649 .unlocked_ioctl = btrfs_ioctl,
2650 #ifdef CONFIG_COMPAT
2651 .compat_ioctl = btrfs_ioctl,
2652 #endif
2653 };
2654
2655 void btrfs_auto_defrag_exit(void)
2656 {
2657 if (btrfs_inode_defrag_cachep)
2658 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2659 }
2660
2661 int btrfs_auto_defrag_init(void)
2662 {
2663 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2664 sizeof(struct inode_defrag), 0,
2665 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2666 NULL);
2667 if (!btrfs_inode_defrag_cachep)
2668 return -ENOMEM;
2669
2670 return 0;
2671 }