]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/file.c
Merge branch 'zstd-minimal' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73 {
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 struct inode_defrag *defrag)
97 {
98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
103
104 p = &fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
124 }
125 }
126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(fs_info))
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct btrfs_inode *inode)
149 {
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(fs_info))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = inode->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 int ret;
202
203 if (!__need_auto_defrag(fs_info))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 /*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
488 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
489 size_t num_pages, loff_t pos, size_t write_bytes,
490 struct extent_state **cached)
491 {
492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
500
501 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos,
503 fs_info->sectorsize);
504
505 end_of_last_block = start_pos + num_bytes - 1;
506 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
507 cached, 0);
508 if (err)
509 return err;
510
511 for (i = 0; i < num_pages; i++) {
512 struct page *p = pages[i];
513 SetPageUptodate(p);
514 ClearPageChecked(p);
515 set_page_dirty(p);
516 }
517
518 /*
519 * we've only changed i_size in ram, and we haven't updated
520 * the disk i_size. There is no need to log the inode
521 * at this time.
522 */
523 if (end_pos > isize)
524 i_size_write(inode, end_pos);
525 return 0;
526 }
527
528 /*
529 * this drops all the extents in the cache that intersect the range
530 * [start, end]. Existing extents are split as required.
531 */
532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
533 int skip_pinned)
534 {
535 struct extent_map *em;
536 struct extent_map *split = NULL;
537 struct extent_map *split2 = NULL;
538 struct extent_map_tree *em_tree = &inode->extent_tree;
539 u64 len = end - start + 1;
540 u64 gen;
541 int ret;
542 int testend = 1;
543 unsigned long flags;
544 int compressed = 0;
545 bool modified;
546
547 WARN_ON(end < start);
548 if (end == (u64)-1) {
549 len = (u64)-1;
550 testend = 0;
551 }
552 while (1) {
553 int no_splits = 0;
554
555 modified = false;
556 if (!split)
557 split = alloc_extent_map();
558 if (!split2)
559 split2 = alloc_extent_map();
560 if (!split || !split2)
561 no_splits = 1;
562
563 write_lock(&em_tree->lock);
564 em = lookup_extent_mapping(em_tree, start, len);
565 if (!em) {
566 write_unlock(&em_tree->lock);
567 break;
568 }
569 flags = em->flags;
570 gen = em->generation;
571 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572 if (testend && em->start + em->len >= start + len) {
573 free_extent_map(em);
574 write_unlock(&em_tree->lock);
575 break;
576 }
577 start = em->start + em->len;
578 if (testend)
579 len = start + len - (em->start + em->len);
580 free_extent_map(em);
581 write_unlock(&em_tree->lock);
582 continue;
583 }
584 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586 clear_bit(EXTENT_FLAG_LOGGING, &flags);
587 modified = !list_empty(&em->list);
588 if (no_splits)
589 goto next;
590
591 if (em->start < start) {
592 split->start = em->start;
593 split->len = start - em->start;
594
595 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596 split->orig_start = em->orig_start;
597 split->block_start = em->block_start;
598
599 if (compressed)
600 split->block_len = em->block_len;
601 else
602 split->block_len = split->len;
603 split->orig_block_len = max(split->block_len,
604 em->orig_block_len);
605 split->ram_bytes = em->ram_bytes;
606 } else {
607 split->orig_start = split->start;
608 split->block_len = 0;
609 split->block_start = em->block_start;
610 split->orig_block_len = 0;
611 split->ram_bytes = split->len;
612 }
613
614 split->generation = gen;
615 split->bdev = em->bdev;
616 split->flags = flags;
617 split->compress_type = em->compress_type;
618 replace_extent_mapping(em_tree, em, split, modified);
619 free_extent_map(split);
620 split = split2;
621 split2 = NULL;
622 }
623 if (testend && em->start + em->len > start + len) {
624 u64 diff = start + len - em->start;
625
626 split->start = start + len;
627 split->len = em->start + em->len - (start + len);
628 split->bdev = em->bdev;
629 split->flags = flags;
630 split->compress_type = em->compress_type;
631 split->generation = gen;
632
633 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
634 split->orig_block_len = max(em->block_len,
635 em->orig_block_len);
636
637 split->ram_bytes = em->ram_bytes;
638 if (compressed) {
639 split->block_len = em->block_len;
640 split->block_start = em->block_start;
641 split->orig_start = em->orig_start;
642 } else {
643 split->block_len = split->len;
644 split->block_start = em->block_start
645 + diff;
646 split->orig_start = em->orig_start;
647 }
648 } else {
649 split->ram_bytes = split->len;
650 split->orig_start = split->start;
651 split->block_len = 0;
652 split->block_start = em->block_start;
653 split->orig_block_len = 0;
654 }
655
656 if (extent_map_in_tree(em)) {
657 replace_extent_mapping(em_tree, em, split,
658 modified);
659 } else {
660 ret = add_extent_mapping(em_tree, split,
661 modified);
662 ASSERT(ret == 0); /* Logic error */
663 }
664 free_extent_map(split);
665 split = NULL;
666 }
667 next:
668 if (extent_map_in_tree(em))
669 remove_extent_mapping(em_tree, em);
670 write_unlock(&em_tree->lock);
671
672 /* once for us */
673 free_extent_map(em);
674 /* once for the tree*/
675 free_extent_map(em);
676 }
677 if (split)
678 free_extent_map(split);
679 if (split2)
680 free_extent_map(split2);
681 }
682
683 /*
684 * this is very complex, but the basic idea is to drop all extents
685 * in the range start - end. hint_block is filled in with a block number
686 * that would be a good hint to the block allocator for this file.
687 *
688 * If an extent intersects the range but is not entirely inside the range
689 * it is either truncated or split. Anything entirely inside the range
690 * is deleted from the tree.
691 */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 struct btrfs_root *root, struct inode *inode,
694 struct btrfs_path *path, u64 start, u64 end,
695 u64 *drop_end, int drop_cache,
696 int replace_extent,
697 u32 extent_item_size,
698 int *key_inserted)
699 {
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct extent_buffer *leaf;
702 struct btrfs_file_extent_item *fi;
703 struct btrfs_key key;
704 struct btrfs_key new_key;
705 u64 ino = btrfs_ino(BTRFS_I(inode));
706 u64 search_start = start;
707 u64 disk_bytenr = 0;
708 u64 num_bytes = 0;
709 u64 extent_offset = 0;
710 u64 extent_end = 0;
711 u64 last_end = start;
712 int del_nr = 0;
713 int del_slot = 0;
714 int extent_type;
715 int recow;
716 int ret;
717 int modify_tree = -1;
718 int update_refs;
719 int found = 0;
720 int leafs_visited = 0;
721
722 if (drop_cache)
723 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
724
725 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
726 modify_tree = 0;
727
728 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
729 root == fs_info->tree_root);
730 while (1) {
731 recow = 0;
732 ret = btrfs_lookup_file_extent(trans, root, path, ino,
733 search_start, modify_tree);
734 if (ret < 0)
735 break;
736 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
737 leaf = path->nodes[0];
738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
739 if (key.objectid == ino &&
740 key.type == BTRFS_EXTENT_DATA_KEY)
741 path->slots[0]--;
742 }
743 ret = 0;
744 leafs_visited++;
745 next_slot:
746 leaf = path->nodes[0];
747 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
748 BUG_ON(del_nr > 0);
749 ret = btrfs_next_leaf(root, path);
750 if (ret < 0)
751 break;
752 if (ret > 0) {
753 ret = 0;
754 break;
755 }
756 leafs_visited++;
757 leaf = path->nodes[0];
758 recow = 1;
759 }
760
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762
763 if (key.objectid > ino)
764 break;
765 if (WARN_ON_ONCE(key.objectid < ino) ||
766 key.type < BTRFS_EXTENT_DATA_KEY) {
767 ASSERT(del_nr == 0);
768 path->slots[0]++;
769 goto next_slot;
770 }
771 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
772 break;
773
774 fi = btrfs_item_ptr(leaf, path->slots[0],
775 struct btrfs_file_extent_item);
776 extent_type = btrfs_file_extent_type(leaf, fi);
777
778 if (extent_type == BTRFS_FILE_EXTENT_REG ||
779 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
780 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
781 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
782 extent_offset = btrfs_file_extent_offset(leaf, fi);
783 extent_end = key.offset +
784 btrfs_file_extent_num_bytes(leaf, fi);
785 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
786 extent_end = key.offset +
787 btrfs_file_extent_inline_len(leaf,
788 path->slots[0], fi);
789 } else {
790 /* can't happen */
791 BUG();
792 }
793
794 /*
795 * Don't skip extent items representing 0 byte lengths. They
796 * used to be created (bug) if while punching holes we hit
797 * -ENOSPC condition. So if we find one here, just ensure we
798 * delete it, otherwise we would insert a new file extent item
799 * with the same key (offset) as that 0 bytes length file
800 * extent item in the call to setup_items_for_insert() later
801 * in this function.
802 */
803 if (extent_end == key.offset && extent_end >= search_start) {
804 last_end = extent_end;
805 goto delete_extent_item;
806 }
807
808 if (extent_end <= search_start) {
809 path->slots[0]++;
810 goto next_slot;
811 }
812
813 found = 1;
814 search_start = max(key.offset, start);
815 if (recow || !modify_tree) {
816 modify_tree = -1;
817 btrfs_release_path(path);
818 continue;
819 }
820
821 /*
822 * | - range to drop - |
823 * | -------- extent -------- |
824 */
825 if (start > key.offset && end < extent_end) {
826 BUG_ON(del_nr > 0);
827 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828 ret = -EOPNOTSUPP;
829 break;
830 }
831
832 memcpy(&new_key, &key, sizeof(new_key));
833 new_key.offset = start;
834 ret = btrfs_duplicate_item(trans, root, path,
835 &new_key);
836 if (ret == -EAGAIN) {
837 btrfs_release_path(path);
838 continue;
839 }
840 if (ret < 0)
841 break;
842
843 leaf = path->nodes[0];
844 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
845 struct btrfs_file_extent_item);
846 btrfs_set_file_extent_num_bytes(leaf, fi,
847 start - key.offset);
848
849 fi = btrfs_item_ptr(leaf, path->slots[0],
850 struct btrfs_file_extent_item);
851
852 extent_offset += start - key.offset;
853 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
854 btrfs_set_file_extent_num_bytes(leaf, fi,
855 extent_end - start);
856 btrfs_mark_buffer_dirty(leaf);
857
858 if (update_refs && disk_bytenr > 0) {
859 ret = btrfs_inc_extent_ref(trans, fs_info,
860 disk_bytenr, num_bytes, 0,
861 root->root_key.objectid,
862 new_key.objectid,
863 start - extent_offset);
864 BUG_ON(ret); /* -ENOMEM */
865 }
866 key.offset = start;
867 }
868 /*
869 * From here on out we will have actually dropped something, so
870 * last_end can be updated.
871 */
872 last_end = extent_end;
873
874 /*
875 * | ---- range to drop ----- |
876 * | -------- extent -------- |
877 */
878 if (start <= key.offset && end < extent_end) {
879 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
880 ret = -EOPNOTSUPP;
881 break;
882 }
883
884 memcpy(&new_key, &key, sizeof(new_key));
885 new_key.offset = end;
886 btrfs_set_item_key_safe(fs_info, path, &new_key);
887
888 extent_offset += end - key.offset;
889 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
890 btrfs_set_file_extent_num_bytes(leaf, fi,
891 extent_end - end);
892 btrfs_mark_buffer_dirty(leaf);
893 if (update_refs && disk_bytenr > 0)
894 inode_sub_bytes(inode, end - key.offset);
895 break;
896 }
897
898 search_start = extent_end;
899 /*
900 * | ---- range to drop ----- |
901 * | -------- extent -------- |
902 */
903 if (start > key.offset && end >= extent_end) {
904 BUG_ON(del_nr > 0);
905 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
906 ret = -EOPNOTSUPP;
907 break;
908 }
909
910 btrfs_set_file_extent_num_bytes(leaf, fi,
911 start - key.offset);
912 btrfs_mark_buffer_dirty(leaf);
913 if (update_refs && disk_bytenr > 0)
914 inode_sub_bytes(inode, extent_end - start);
915 if (end == extent_end)
916 break;
917
918 path->slots[0]++;
919 goto next_slot;
920 }
921
922 /*
923 * | ---- range to drop ----- |
924 * | ------ extent ------ |
925 */
926 if (start <= key.offset && end >= extent_end) {
927 delete_extent_item:
928 if (del_nr == 0) {
929 del_slot = path->slots[0];
930 del_nr = 1;
931 } else {
932 BUG_ON(del_slot + del_nr != path->slots[0]);
933 del_nr++;
934 }
935
936 if (update_refs &&
937 extent_type == BTRFS_FILE_EXTENT_INLINE) {
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
940 extent_end = ALIGN(extent_end,
941 fs_info->sectorsize);
942 } else if (update_refs && disk_bytenr > 0) {
943 ret = btrfs_free_extent(trans, fs_info,
944 disk_bytenr, num_bytes, 0,
945 root->root_key.objectid,
946 key.objectid, key.offset -
947 extent_offset);
948 BUG_ON(ret); /* -ENOMEM */
949 inode_sub_bytes(inode,
950 extent_end - key.offset);
951 }
952
953 if (end == extent_end)
954 break;
955
956 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
957 path->slots[0]++;
958 goto next_slot;
959 }
960
961 ret = btrfs_del_items(trans, root, path, del_slot,
962 del_nr);
963 if (ret) {
964 btrfs_abort_transaction(trans, ret);
965 break;
966 }
967
968 del_nr = 0;
969 del_slot = 0;
970
971 btrfs_release_path(path);
972 continue;
973 }
974
975 BUG_ON(1);
976 }
977
978 if (!ret && del_nr > 0) {
979 /*
980 * Set path->slots[0] to first slot, so that after the delete
981 * if items are move off from our leaf to its immediate left or
982 * right neighbor leafs, we end up with a correct and adjusted
983 * path->slots[0] for our insertion (if replace_extent != 0).
984 */
985 path->slots[0] = del_slot;
986 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
987 if (ret)
988 btrfs_abort_transaction(trans, ret);
989 }
990
991 leaf = path->nodes[0];
992 /*
993 * If btrfs_del_items() was called, it might have deleted a leaf, in
994 * which case it unlocked our path, so check path->locks[0] matches a
995 * write lock.
996 */
997 if (!ret && replace_extent && leafs_visited == 1 &&
998 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
999 path->locks[0] == BTRFS_WRITE_LOCK) &&
1000 btrfs_leaf_free_space(fs_info, leaf) >=
1001 sizeof(struct btrfs_item) + extent_item_size) {
1002
1003 key.objectid = ino;
1004 key.type = BTRFS_EXTENT_DATA_KEY;
1005 key.offset = start;
1006 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007 struct btrfs_key slot_key;
1008
1009 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011 path->slots[0]++;
1012 }
1013 setup_items_for_insert(root, path, &key,
1014 &extent_item_size,
1015 extent_item_size,
1016 sizeof(struct btrfs_item) +
1017 extent_item_size, 1);
1018 *key_inserted = 1;
1019 }
1020
1021 if (!replace_extent || !(*key_inserted))
1022 btrfs_release_path(path);
1023 if (drop_end)
1024 *drop_end = found ? min(end, last_end) : end;
1025 return ret;
1026 }
1027
1028 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029 struct btrfs_root *root, struct inode *inode, u64 start,
1030 u64 end, int drop_cache)
1031 {
1032 struct btrfs_path *path;
1033 int ret;
1034
1035 path = btrfs_alloc_path();
1036 if (!path)
1037 return -ENOMEM;
1038 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1039 drop_cache, 0, 0, NULL);
1040 btrfs_free_path(path);
1041 return ret;
1042 }
1043
1044 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1045 u64 objectid, u64 bytenr, u64 orig_offset,
1046 u64 *start, u64 *end)
1047 {
1048 struct btrfs_file_extent_item *fi;
1049 struct btrfs_key key;
1050 u64 extent_end;
1051
1052 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053 return 0;
1054
1055 btrfs_item_key_to_cpu(leaf, &key, slot);
1056 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057 return 0;
1058
1059 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1062 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1063 btrfs_file_extent_compression(leaf, fi) ||
1064 btrfs_file_extent_encryption(leaf, fi) ||
1065 btrfs_file_extent_other_encoding(leaf, fi))
1066 return 0;
1067
1068 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070 return 0;
1071
1072 *start = key.offset;
1073 *end = extent_end;
1074 return 1;
1075 }
1076
1077 /*
1078 * Mark extent in the range start - end as written.
1079 *
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1082 * two or three.
1083 */
1084 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1085 struct btrfs_inode *inode, u64 start, u64 end)
1086 {
1087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1088 struct btrfs_root *root = inode->root;
1089 struct extent_buffer *leaf;
1090 struct btrfs_path *path;
1091 struct btrfs_file_extent_item *fi;
1092 struct btrfs_key key;
1093 struct btrfs_key new_key;
1094 u64 bytenr;
1095 u64 num_bytes;
1096 u64 extent_end;
1097 u64 orig_offset;
1098 u64 other_start;
1099 u64 other_end;
1100 u64 split;
1101 int del_nr = 0;
1102 int del_slot = 0;
1103 int recow;
1104 int ret;
1105 u64 ino = btrfs_ino(inode);
1106
1107 path = btrfs_alloc_path();
1108 if (!path)
1109 return -ENOMEM;
1110 again:
1111 recow = 0;
1112 split = start;
1113 key.objectid = ino;
1114 key.type = BTRFS_EXTENT_DATA_KEY;
1115 key.offset = split;
1116
1117 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1118 if (ret < 0)
1119 goto out;
1120 if (ret > 0 && path->slots[0] > 0)
1121 path->slots[0]--;
1122
1123 leaf = path->nodes[0];
1124 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1125 if (key.objectid != ino ||
1126 key.type != BTRFS_EXTENT_DATA_KEY) {
1127 ret = -EINVAL;
1128 btrfs_abort_transaction(trans, ret);
1129 goto out;
1130 }
1131 fi = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_file_extent_item);
1133 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134 ret = -EINVAL;
1135 btrfs_abort_transaction(trans, ret);
1136 goto out;
1137 }
1138 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139 if (key.offset > start || extent_end < end) {
1140 ret = -EINVAL;
1141 btrfs_abort_transaction(trans, ret);
1142 goto out;
1143 }
1144
1145 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1148 memcpy(&new_key, &key, sizeof(new_key));
1149
1150 if (start == key.offset && end < extent_end) {
1151 other_start = 0;
1152 other_end = start;
1153 if (extent_mergeable(leaf, path->slots[0] - 1,
1154 ino, bytenr, orig_offset,
1155 &other_start, &other_end)) {
1156 new_key.offset = end;
1157 btrfs_set_item_key_safe(fs_info, path, &new_key);
1158 fi = btrfs_item_ptr(leaf, path->slots[0],
1159 struct btrfs_file_extent_item);
1160 btrfs_set_file_extent_generation(leaf, fi,
1161 trans->transid);
1162 btrfs_set_file_extent_num_bytes(leaf, fi,
1163 extent_end - end);
1164 btrfs_set_file_extent_offset(leaf, fi,
1165 end - orig_offset);
1166 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167 struct btrfs_file_extent_item);
1168 btrfs_set_file_extent_generation(leaf, fi,
1169 trans->transid);
1170 btrfs_set_file_extent_num_bytes(leaf, fi,
1171 end - other_start);
1172 btrfs_mark_buffer_dirty(leaf);
1173 goto out;
1174 }
1175 }
1176
1177 if (start > key.offset && end == extent_end) {
1178 other_start = end;
1179 other_end = 0;
1180 if (extent_mergeable(leaf, path->slots[0] + 1,
1181 ino, bytenr, orig_offset,
1182 &other_start, &other_end)) {
1183 fi = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_file_extent_item);
1185 btrfs_set_file_extent_num_bytes(leaf, fi,
1186 start - key.offset);
1187 btrfs_set_file_extent_generation(leaf, fi,
1188 trans->transid);
1189 path->slots[0]++;
1190 new_key.offset = start;
1191 btrfs_set_item_key_safe(fs_info, path, &new_key);
1192
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
1195 btrfs_set_file_extent_generation(leaf, fi,
1196 trans->transid);
1197 btrfs_set_file_extent_num_bytes(leaf, fi,
1198 other_end - start);
1199 btrfs_set_file_extent_offset(leaf, fi,
1200 start - orig_offset);
1201 btrfs_mark_buffer_dirty(leaf);
1202 goto out;
1203 }
1204 }
1205
1206 while (start > key.offset || end < extent_end) {
1207 if (key.offset == start)
1208 split = end;
1209
1210 new_key.offset = split;
1211 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212 if (ret == -EAGAIN) {
1213 btrfs_release_path(path);
1214 goto again;
1215 }
1216 if (ret < 0) {
1217 btrfs_abort_transaction(trans, ret);
1218 goto out;
1219 }
1220
1221 leaf = path->nodes[0];
1222 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223 struct btrfs_file_extent_item);
1224 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225 btrfs_set_file_extent_num_bytes(leaf, fi,
1226 split - key.offset);
1227
1228 fi = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_file_extent_item);
1230
1231 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1232 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233 btrfs_set_file_extent_num_bytes(leaf, fi,
1234 extent_end - split);
1235 btrfs_mark_buffer_dirty(leaf);
1236
1237 ret = btrfs_inc_extent_ref(trans, fs_info, bytenr, num_bytes,
1238 0, root->root_key.objectid,
1239 ino, orig_offset);
1240 if (ret) {
1241 btrfs_abort_transaction(trans, ret);
1242 goto out;
1243 }
1244
1245 if (split == start) {
1246 key.offset = start;
1247 } else {
1248 if (start != key.offset) {
1249 ret = -EINVAL;
1250 btrfs_abort_transaction(trans, ret);
1251 goto out;
1252 }
1253 path->slots[0]--;
1254 extent_end = end;
1255 }
1256 recow = 1;
1257 }
1258
1259 other_start = end;
1260 other_end = 0;
1261 if (extent_mergeable(leaf, path->slots[0] + 1,
1262 ino, bytenr, orig_offset,
1263 &other_start, &other_end)) {
1264 if (recow) {
1265 btrfs_release_path(path);
1266 goto again;
1267 }
1268 extent_end = other_end;
1269 del_slot = path->slots[0] + 1;
1270 del_nr++;
1271 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1272 0, root->root_key.objectid,
1273 ino, orig_offset);
1274 if (ret) {
1275 btrfs_abort_transaction(trans, ret);
1276 goto out;
1277 }
1278 }
1279 other_start = 0;
1280 other_end = start;
1281 if (extent_mergeable(leaf, path->slots[0] - 1,
1282 ino, bytenr, orig_offset,
1283 &other_start, &other_end)) {
1284 if (recow) {
1285 btrfs_release_path(path);
1286 goto again;
1287 }
1288 key.offset = other_start;
1289 del_slot = path->slots[0];
1290 del_nr++;
1291 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1292 0, root->root_key.objectid,
1293 ino, orig_offset);
1294 if (ret) {
1295 btrfs_abort_transaction(trans, ret);
1296 goto out;
1297 }
1298 }
1299 if (del_nr == 0) {
1300 fi = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_file_extent_item);
1302 btrfs_set_file_extent_type(leaf, fi,
1303 BTRFS_FILE_EXTENT_REG);
1304 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1305 btrfs_mark_buffer_dirty(leaf);
1306 } else {
1307 fi = btrfs_item_ptr(leaf, del_slot - 1,
1308 struct btrfs_file_extent_item);
1309 btrfs_set_file_extent_type(leaf, fi,
1310 BTRFS_FILE_EXTENT_REG);
1311 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1312 btrfs_set_file_extent_num_bytes(leaf, fi,
1313 extent_end - key.offset);
1314 btrfs_mark_buffer_dirty(leaf);
1315
1316 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1317 if (ret < 0) {
1318 btrfs_abort_transaction(trans, ret);
1319 goto out;
1320 }
1321 }
1322 out:
1323 btrfs_free_path(path);
1324 return 0;
1325 }
1326
1327 /*
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1330 */
1331 static int prepare_uptodate_page(struct inode *inode,
1332 struct page *page, u64 pos,
1333 bool force_uptodate)
1334 {
1335 int ret = 0;
1336
1337 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1338 !PageUptodate(page)) {
1339 ret = btrfs_readpage(NULL, page);
1340 if (ret)
1341 return ret;
1342 lock_page(page);
1343 if (!PageUptodate(page)) {
1344 unlock_page(page);
1345 return -EIO;
1346 }
1347 if (page->mapping != inode->i_mapping) {
1348 unlock_page(page);
1349 return -EAGAIN;
1350 }
1351 }
1352 return 0;
1353 }
1354
1355 /*
1356 * this just gets pages into the page cache and locks them down.
1357 */
1358 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359 size_t num_pages, loff_t pos,
1360 size_t write_bytes, bool force_uptodate)
1361 {
1362 int i;
1363 unsigned long index = pos >> PAGE_SHIFT;
1364 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1365 int err = 0;
1366 int faili;
1367
1368 for (i = 0; i < num_pages; i++) {
1369 again:
1370 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1371 mask | __GFP_WRITE);
1372 if (!pages[i]) {
1373 faili = i - 1;
1374 err = -ENOMEM;
1375 goto fail;
1376 }
1377
1378 if (i == 0)
1379 err = prepare_uptodate_page(inode, pages[i], pos,
1380 force_uptodate);
1381 if (!err && i == num_pages - 1)
1382 err = prepare_uptodate_page(inode, pages[i],
1383 pos + write_bytes, false);
1384 if (err) {
1385 put_page(pages[i]);
1386 if (err == -EAGAIN) {
1387 err = 0;
1388 goto again;
1389 }
1390 faili = i - 1;
1391 goto fail;
1392 }
1393 wait_on_page_writeback(pages[i]);
1394 }
1395
1396 return 0;
1397 fail:
1398 while (faili >= 0) {
1399 unlock_page(pages[faili]);
1400 put_page(pages[faili]);
1401 faili--;
1402 }
1403 return err;
1404
1405 }
1406
1407 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
1408 const u64 start,
1409 const u64 len,
1410 struct extent_state **cached_state)
1411 {
1412 u64 search_start = start;
1413 const u64 end = start + len - 1;
1414
1415 while (search_start < end) {
1416 const u64 search_len = end - search_start + 1;
1417 struct extent_map *em;
1418 u64 em_len;
1419 int ret = 0;
1420
1421 em = btrfs_get_extent(inode, NULL, 0, search_start,
1422 search_len, 0);
1423 if (IS_ERR(em))
1424 return PTR_ERR(em);
1425
1426 if (em->block_start != EXTENT_MAP_HOLE)
1427 goto next;
1428
1429 em_len = em->len;
1430 if (em->start < search_start)
1431 em_len -= search_start - em->start;
1432 if (em_len > search_len)
1433 em_len = search_len;
1434
1435 ret = set_extent_bit(&inode->io_tree, search_start,
1436 search_start + em_len - 1,
1437 EXTENT_DELALLOC_NEW,
1438 NULL, cached_state, GFP_NOFS);
1439 next:
1440 search_start = extent_map_end(em);
1441 free_extent_map(em);
1442 if (ret)
1443 return ret;
1444 }
1445 return 0;
1446 }
1447
1448 /*
1449 * This function locks the extent and properly waits for data=ordered extents
1450 * to finish before allowing the pages to be modified if need.
1451 *
1452 * The return value:
1453 * 1 - the extent is locked
1454 * 0 - the extent is not locked, and everything is OK
1455 * -EAGAIN - need re-prepare the pages
1456 * the other < 0 number - Something wrong happens
1457 */
1458 static noinline int
1459 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1460 size_t num_pages, loff_t pos,
1461 size_t write_bytes,
1462 u64 *lockstart, u64 *lockend,
1463 struct extent_state **cached_state)
1464 {
1465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1466 u64 start_pos;
1467 u64 last_pos;
1468 int i;
1469 int ret = 0;
1470
1471 start_pos = round_down(pos, fs_info->sectorsize);
1472 last_pos = start_pos
1473 + round_up(pos + write_bytes - start_pos,
1474 fs_info->sectorsize) - 1;
1475
1476 if (start_pos < inode->vfs_inode.i_size ||
1477 (inode->flags & BTRFS_INODE_PREALLOC)) {
1478 struct btrfs_ordered_extent *ordered;
1479 unsigned int clear_bits;
1480
1481 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1482 cached_state);
1483 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484 last_pos - start_pos + 1);
1485 if (ordered &&
1486 ordered->file_offset + ordered->len > start_pos &&
1487 ordered->file_offset <= last_pos) {
1488 unlock_extent_cached(&inode->io_tree, start_pos,
1489 last_pos, cached_state, GFP_NOFS);
1490 for (i = 0; i < num_pages; i++) {
1491 unlock_page(pages[i]);
1492 put_page(pages[i]);
1493 }
1494 btrfs_start_ordered_extent(&inode->vfs_inode,
1495 ordered, 1);
1496 btrfs_put_ordered_extent(ordered);
1497 return -EAGAIN;
1498 }
1499 if (ordered)
1500 btrfs_put_ordered_extent(ordered);
1501 ret = btrfs_find_new_delalloc_bytes(inode, start_pos,
1502 last_pos - start_pos + 1,
1503 cached_state);
1504 clear_bits = EXTENT_DIRTY | EXTENT_DELALLOC |
1505 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG;
1506 if (ret)
1507 clear_bits |= EXTENT_DELALLOC_NEW | EXTENT_LOCKED;
1508 clear_extent_bit(&inode->io_tree, start_pos,
1509 last_pos, clear_bits,
1510 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
1511 0, cached_state, GFP_NOFS);
1512 if (ret)
1513 return ret;
1514 *lockstart = start_pos;
1515 *lockend = last_pos;
1516 ret = 1;
1517 }
1518
1519 for (i = 0; i < num_pages; i++) {
1520 if (clear_page_dirty_for_io(pages[i]))
1521 account_page_redirty(pages[i]);
1522 set_page_extent_mapped(pages[i]);
1523 WARN_ON(!PageLocked(pages[i]));
1524 }
1525
1526 return ret;
1527 }
1528
1529 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1530 size_t *write_bytes)
1531 {
1532 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1533 struct btrfs_root *root = inode->root;
1534 struct btrfs_ordered_extent *ordered;
1535 u64 lockstart, lockend;
1536 u64 num_bytes;
1537 int ret;
1538
1539 ret = btrfs_start_write_no_snapshotting(root);
1540 if (!ret)
1541 return -ENOSPC;
1542
1543 lockstart = round_down(pos, fs_info->sectorsize);
1544 lockend = round_up(pos + *write_bytes,
1545 fs_info->sectorsize) - 1;
1546
1547 while (1) {
1548 lock_extent(&inode->io_tree, lockstart, lockend);
1549 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1550 lockend - lockstart + 1);
1551 if (!ordered) {
1552 break;
1553 }
1554 unlock_extent(&inode->io_tree, lockstart, lockend);
1555 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1556 btrfs_put_ordered_extent(ordered);
1557 }
1558
1559 num_bytes = lockend - lockstart + 1;
1560 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1561 NULL, NULL, NULL);
1562 if (ret <= 0) {
1563 ret = 0;
1564 btrfs_end_write_no_snapshotting(root);
1565 } else {
1566 *write_bytes = min_t(size_t, *write_bytes ,
1567 num_bytes - pos + lockstart);
1568 }
1569
1570 unlock_extent(&inode->io_tree, lockstart, lockend);
1571
1572 return ret;
1573 }
1574
1575 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1576 struct iov_iter *i,
1577 loff_t pos)
1578 {
1579 struct inode *inode = file_inode(file);
1580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1581 struct btrfs_root *root = BTRFS_I(inode)->root;
1582 struct page **pages = NULL;
1583 struct extent_state *cached_state = NULL;
1584 struct extent_changeset *data_reserved = NULL;
1585 u64 release_bytes = 0;
1586 u64 lockstart;
1587 u64 lockend;
1588 size_t num_written = 0;
1589 int nrptrs;
1590 int ret = 0;
1591 bool only_release_metadata = false;
1592 bool force_page_uptodate = false;
1593 bool need_unlock;
1594
1595 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1596 PAGE_SIZE / (sizeof(struct page *)));
1597 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1598 nrptrs = max(nrptrs, 8);
1599 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1600 if (!pages)
1601 return -ENOMEM;
1602
1603 while (iov_iter_count(i) > 0) {
1604 size_t offset = pos & (PAGE_SIZE - 1);
1605 size_t sector_offset;
1606 size_t write_bytes = min(iov_iter_count(i),
1607 nrptrs * (size_t)PAGE_SIZE -
1608 offset);
1609 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1610 PAGE_SIZE);
1611 size_t reserve_bytes;
1612 size_t dirty_pages;
1613 size_t copied;
1614 size_t dirty_sectors;
1615 size_t num_sectors;
1616
1617 WARN_ON(num_pages > nrptrs);
1618
1619 /*
1620 * Fault pages before locking them in prepare_pages
1621 * to avoid recursive lock
1622 */
1623 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1624 ret = -EFAULT;
1625 break;
1626 }
1627
1628 sector_offset = pos & (fs_info->sectorsize - 1);
1629 reserve_bytes = round_up(write_bytes + sector_offset,
1630 fs_info->sectorsize);
1631
1632 extent_changeset_release(data_reserved);
1633 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1634 write_bytes);
1635 if (ret < 0) {
1636 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1637 BTRFS_INODE_PREALLOC)) &&
1638 check_can_nocow(BTRFS_I(inode), pos,
1639 &write_bytes) > 0) {
1640 /*
1641 * For nodata cow case, no need to reserve
1642 * data space.
1643 */
1644 only_release_metadata = true;
1645 /*
1646 * our prealloc extent may be smaller than
1647 * write_bytes, so scale down.
1648 */
1649 num_pages = DIV_ROUND_UP(write_bytes + offset,
1650 PAGE_SIZE);
1651 reserve_bytes = round_up(write_bytes +
1652 sector_offset,
1653 fs_info->sectorsize);
1654 } else {
1655 break;
1656 }
1657 }
1658
1659 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1660 reserve_bytes);
1661 if (ret) {
1662 if (!only_release_metadata)
1663 btrfs_free_reserved_data_space(inode,
1664 data_reserved, pos,
1665 write_bytes);
1666 else
1667 btrfs_end_write_no_snapshotting(root);
1668 break;
1669 }
1670
1671 release_bytes = reserve_bytes;
1672 need_unlock = false;
1673 again:
1674 /*
1675 * This is going to setup the pages array with the number of
1676 * pages we want, so we don't really need to worry about the
1677 * contents of pages from loop to loop
1678 */
1679 ret = prepare_pages(inode, pages, num_pages,
1680 pos, write_bytes,
1681 force_page_uptodate);
1682 if (ret)
1683 break;
1684
1685 ret = lock_and_cleanup_extent_if_need(BTRFS_I(inode), pages,
1686 num_pages, pos, write_bytes, &lockstart,
1687 &lockend, &cached_state);
1688 if (ret < 0) {
1689 if (ret == -EAGAIN)
1690 goto again;
1691 break;
1692 } else if (ret > 0) {
1693 need_unlock = true;
1694 ret = 0;
1695 }
1696
1697 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1698
1699 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1700 dirty_sectors = round_up(copied + sector_offset,
1701 fs_info->sectorsize);
1702 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1703
1704 /*
1705 * if we have trouble faulting in the pages, fall
1706 * back to one page at a time
1707 */
1708 if (copied < write_bytes)
1709 nrptrs = 1;
1710
1711 if (copied == 0) {
1712 force_page_uptodate = true;
1713 dirty_sectors = 0;
1714 dirty_pages = 0;
1715 } else {
1716 force_page_uptodate = false;
1717 dirty_pages = DIV_ROUND_UP(copied + offset,
1718 PAGE_SIZE);
1719 }
1720
1721 /*
1722 * If we had a short copy we need to release the excess delaloc
1723 * bytes we reserved. We need to increment outstanding_extents
1724 * because btrfs_delalloc_release_space and
1725 * btrfs_delalloc_release_metadata will decrement it, but
1726 * we still have an outstanding extent for the chunk we actually
1727 * managed to copy.
1728 */
1729 if (num_sectors > dirty_sectors) {
1730 /* release everything except the sectors we dirtied */
1731 release_bytes -= dirty_sectors <<
1732 fs_info->sb->s_blocksize_bits;
1733 if (copied > 0) {
1734 spin_lock(&BTRFS_I(inode)->lock);
1735 BTRFS_I(inode)->outstanding_extents++;
1736 spin_unlock(&BTRFS_I(inode)->lock);
1737 }
1738 if (only_release_metadata) {
1739 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1740 release_bytes);
1741 } else {
1742 u64 __pos;
1743
1744 __pos = round_down(pos,
1745 fs_info->sectorsize) +
1746 (dirty_pages << PAGE_SHIFT);
1747 btrfs_delalloc_release_space(inode,
1748 data_reserved, __pos,
1749 release_bytes);
1750 }
1751 }
1752
1753 release_bytes = round_up(copied + sector_offset,
1754 fs_info->sectorsize);
1755
1756 if (copied > 0)
1757 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1758 pos, copied, NULL);
1759 if (need_unlock)
1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1761 lockstart, lockend, &cached_state,
1762 GFP_NOFS);
1763 if (ret) {
1764 btrfs_drop_pages(pages, num_pages);
1765 break;
1766 }
1767
1768 release_bytes = 0;
1769 if (only_release_metadata)
1770 btrfs_end_write_no_snapshotting(root);
1771
1772 if (only_release_metadata && copied > 0) {
1773 lockstart = round_down(pos,
1774 fs_info->sectorsize);
1775 lockend = round_up(pos + copied,
1776 fs_info->sectorsize) - 1;
1777
1778 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1779 lockend, EXTENT_NORESERVE, NULL,
1780 NULL, GFP_NOFS);
1781 only_release_metadata = false;
1782 }
1783
1784 btrfs_drop_pages(pages, num_pages);
1785
1786 cond_resched();
1787
1788 balance_dirty_pages_ratelimited(inode->i_mapping);
1789 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1790 btrfs_btree_balance_dirty(fs_info);
1791
1792 pos += copied;
1793 num_written += copied;
1794 }
1795
1796 kfree(pages);
1797
1798 if (release_bytes) {
1799 if (only_release_metadata) {
1800 btrfs_end_write_no_snapshotting(root);
1801 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1802 release_bytes);
1803 } else {
1804 btrfs_delalloc_release_space(inode, data_reserved,
1805 round_down(pos, fs_info->sectorsize),
1806 release_bytes);
1807 }
1808 }
1809
1810 extent_changeset_free(data_reserved);
1811 return num_written ? num_written : ret;
1812 }
1813
1814 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1815 {
1816 struct file *file = iocb->ki_filp;
1817 struct inode *inode = file_inode(file);
1818 loff_t pos = iocb->ki_pos;
1819 ssize_t written;
1820 ssize_t written_buffered;
1821 loff_t endbyte;
1822 int err;
1823
1824 written = generic_file_direct_write(iocb, from);
1825
1826 if (written < 0 || !iov_iter_count(from))
1827 return written;
1828
1829 pos += written;
1830 written_buffered = __btrfs_buffered_write(file, from, pos);
1831 if (written_buffered < 0) {
1832 err = written_buffered;
1833 goto out;
1834 }
1835 /*
1836 * Ensure all data is persisted. We want the next direct IO read to be
1837 * able to read what was just written.
1838 */
1839 endbyte = pos + written_buffered - 1;
1840 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1841 if (err)
1842 goto out;
1843 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1844 if (err)
1845 goto out;
1846 written += written_buffered;
1847 iocb->ki_pos = pos + written_buffered;
1848 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1849 endbyte >> PAGE_SHIFT);
1850 out:
1851 return written ? written : err;
1852 }
1853
1854 static void update_time_for_write(struct inode *inode)
1855 {
1856 struct timespec now;
1857
1858 if (IS_NOCMTIME(inode))
1859 return;
1860
1861 now = current_time(inode);
1862 if (!timespec_equal(&inode->i_mtime, &now))
1863 inode->i_mtime = now;
1864
1865 if (!timespec_equal(&inode->i_ctime, &now))
1866 inode->i_ctime = now;
1867
1868 if (IS_I_VERSION(inode))
1869 inode_inc_iversion(inode);
1870 }
1871
1872 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1873 struct iov_iter *from)
1874 {
1875 struct file *file = iocb->ki_filp;
1876 struct inode *inode = file_inode(file);
1877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1878 struct btrfs_root *root = BTRFS_I(inode)->root;
1879 u64 start_pos;
1880 u64 end_pos;
1881 ssize_t num_written = 0;
1882 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1883 ssize_t err;
1884 loff_t pos;
1885 size_t count = iov_iter_count(from);
1886 loff_t oldsize;
1887 int clean_page = 0;
1888
1889 if (!inode_trylock(inode)) {
1890 if (iocb->ki_flags & IOCB_NOWAIT)
1891 return -EAGAIN;
1892 inode_lock(inode);
1893 }
1894
1895 err = generic_write_checks(iocb, from);
1896 if (err <= 0) {
1897 inode_unlock(inode);
1898 return err;
1899 }
1900
1901 pos = iocb->ki_pos;
1902 if (iocb->ki_flags & IOCB_NOWAIT) {
1903 /*
1904 * We will allocate space in case nodatacow is not set,
1905 * so bail
1906 */
1907 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1908 BTRFS_INODE_PREALLOC)) ||
1909 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1910 inode_unlock(inode);
1911 return -EAGAIN;
1912 }
1913 }
1914
1915 current->backing_dev_info = inode_to_bdi(inode);
1916 err = file_remove_privs(file);
1917 if (err) {
1918 inode_unlock(inode);
1919 goto out;
1920 }
1921
1922 /*
1923 * If BTRFS flips readonly due to some impossible error
1924 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1925 * although we have opened a file as writable, we have
1926 * to stop this write operation to ensure FS consistency.
1927 */
1928 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1929 inode_unlock(inode);
1930 err = -EROFS;
1931 goto out;
1932 }
1933
1934 /*
1935 * We reserve space for updating the inode when we reserve space for the
1936 * extent we are going to write, so we will enospc out there. We don't
1937 * need to start yet another transaction to update the inode as we will
1938 * update the inode when we finish writing whatever data we write.
1939 */
1940 update_time_for_write(inode);
1941
1942 start_pos = round_down(pos, fs_info->sectorsize);
1943 oldsize = i_size_read(inode);
1944 if (start_pos > oldsize) {
1945 /* Expand hole size to cover write data, preventing empty gap */
1946 end_pos = round_up(pos + count,
1947 fs_info->sectorsize);
1948 err = btrfs_cont_expand(inode, oldsize, end_pos);
1949 if (err) {
1950 inode_unlock(inode);
1951 goto out;
1952 }
1953 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1954 clean_page = 1;
1955 }
1956
1957 if (sync)
1958 atomic_inc(&BTRFS_I(inode)->sync_writers);
1959
1960 if (iocb->ki_flags & IOCB_DIRECT) {
1961 num_written = __btrfs_direct_write(iocb, from);
1962 } else {
1963 num_written = __btrfs_buffered_write(file, from, pos);
1964 if (num_written > 0)
1965 iocb->ki_pos = pos + num_written;
1966 if (clean_page)
1967 pagecache_isize_extended(inode, oldsize,
1968 i_size_read(inode));
1969 }
1970
1971 inode_unlock(inode);
1972
1973 /*
1974 * We also have to set last_sub_trans to the current log transid,
1975 * otherwise subsequent syncs to a file that's been synced in this
1976 * transaction will appear to have already occurred.
1977 */
1978 spin_lock(&BTRFS_I(inode)->lock);
1979 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1980 spin_unlock(&BTRFS_I(inode)->lock);
1981 if (num_written > 0)
1982 num_written = generic_write_sync(iocb, num_written);
1983
1984 if (sync)
1985 atomic_dec(&BTRFS_I(inode)->sync_writers);
1986 out:
1987 current->backing_dev_info = NULL;
1988 return num_written ? num_written : err;
1989 }
1990
1991 int btrfs_release_file(struct inode *inode, struct file *filp)
1992 {
1993 struct btrfs_file_private *private = filp->private_data;
1994
1995 if (private && private->trans)
1996 btrfs_ioctl_trans_end(filp);
1997 if (private && private->filldir_buf)
1998 kfree(private->filldir_buf);
1999 kfree(private);
2000 filp->private_data = NULL;
2001
2002 /*
2003 * ordered_data_close is set by settattr when we are about to truncate
2004 * a file from a non-zero size to a zero size. This tries to
2005 * flush down new bytes that may have been written if the
2006 * application were using truncate to replace a file in place.
2007 */
2008 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2009 &BTRFS_I(inode)->runtime_flags))
2010 filemap_flush(inode->i_mapping);
2011 return 0;
2012 }
2013
2014 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2015 {
2016 int ret;
2017
2018 atomic_inc(&BTRFS_I(inode)->sync_writers);
2019 ret = btrfs_fdatawrite_range(inode, start, end);
2020 atomic_dec(&BTRFS_I(inode)->sync_writers);
2021
2022 return ret;
2023 }
2024
2025 /*
2026 * fsync call for both files and directories. This logs the inode into
2027 * the tree log instead of forcing full commits whenever possible.
2028 *
2029 * It needs to call filemap_fdatawait so that all ordered extent updates are
2030 * in the metadata btree are up to date for copying to the log.
2031 *
2032 * It drops the inode mutex before doing the tree log commit. This is an
2033 * important optimization for directories because holding the mutex prevents
2034 * new operations on the dir while we write to disk.
2035 */
2036 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2037 {
2038 struct dentry *dentry = file_dentry(file);
2039 struct inode *inode = d_inode(dentry);
2040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2041 struct btrfs_root *root = BTRFS_I(inode)->root;
2042 struct btrfs_trans_handle *trans;
2043 struct btrfs_log_ctx ctx;
2044 int ret = 0, err;
2045 bool full_sync = 0;
2046 u64 len;
2047
2048 /*
2049 * The range length can be represented by u64, we have to do the typecasts
2050 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2051 */
2052 len = (u64)end - (u64)start + 1;
2053 trace_btrfs_sync_file(file, datasync);
2054
2055 /*
2056 * We write the dirty pages in the range and wait until they complete
2057 * out of the ->i_mutex. If so, we can flush the dirty pages by
2058 * multi-task, and make the performance up. See
2059 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2060 */
2061 ret = start_ordered_ops(inode, start, end);
2062 if (ret)
2063 goto out;
2064
2065 inode_lock(inode);
2066 atomic_inc(&root->log_batch);
2067 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2068 &BTRFS_I(inode)->runtime_flags);
2069 /*
2070 * We might have have had more pages made dirty after calling
2071 * start_ordered_ops and before acquiring the inode's i_mutex.
2072 */
2073 if (full_sync) {
2074 /*
2075 * For a full sync, we need to make sure any ordered operations
2076 * start and finish before we start logging the inode, so that
2077 * all extents are persisted and the respective file extent
2078 * items are in the fs/subvol btree.
2079 */
2080 ret = btrfs_wait_ordered_range(inode, start, len);
2081 } else {
2082 /*
2083 * Start any new ordered operations before starting to log the
2084 * inode. We will wait for them to finish in btrfs_sync_log().
2085 *
2086 * Right before acquiring the inode's mutex, we might have new
2087 * writes dirtying pages, which won't immediately start the
2088 * respective ordered operations - that is done through the
2089 * fill_delalloc callbacks invoked from the writepage and
2090 * writepages address space operations. So make sure we start
2091 * all ordered operations before starting to log our inode. Not
2092 * doing this means that while logging the inode, writeback
2093 * could start and invoke writepage/writepages, which would call
2094 * the fill_delalloc callbacks (cow_file_range,
2095 * submit_compressed_extents). These callbacks add first an
2096 * extent map to the modified list of extents and then create
2097 * the respective ordered operation, which means in
2098 * tree-log.c:btrfs_log_inode() we might capture all existing
2099 * ordered operations (with btrfs_get_logged_extents()) before
2100 * the fill_delalloc callback adds its ordered operation, and by
2101 * the time we visit the modified list of extent maps (with
2102 * btrfs_log_changed_extents()), we see and process the extent
2103 * map they created. We then use the extent map to construct a
2104 * file extent item for logging without waiting for the
2105 * respective ordered operation to finish - this file extent
2106 * item points to a disk location that might not have yet been
2107 * written to, containing random data - so after a crash a log
2108 * replay will make our inode have file extent items that point
2109 * to disk locations containing invalid data, as we returned
2110 * success to userspace without waiting for the respective
2111 * ordered operation to finish, because it wasn't captured by
2112 * btrfs_get_logged_extents().
2113 */
2114 ret = start_ordered_ops(inode, start, end);
2115 }
2116 if (ret) {
2117 inode_unlock(inode);
2118 goto out;
2119 }
2120 atomic_inc(&root->log_batch);
2121
2122 /*
2123 * If the last transaction that changed this file was before the current
2124 * transaction and we have the full sync flag set in our inode, we can
2125 * bail out now without any syncing.
2126 *
2127 * Note that we can't bail out if the full sync flag isn't set. This is
2128 * because when the full sync flag is set we start all ordered extents
2129 * and wait for them to fully complete - when they complete they update
2130 * the inode's last_trans field through:
2131 *
2132 * btrfs_finish_ordered_io() ->
2133 * btrfs_update_inode_fallback() ->
2134 * btrfs_update_inode() ->
2135 * btrfs_set_inode_last_trans()
2136 *
2137 * So we are sure that last_trans is up to date and can do this check to
2138 * bail out safely. For the fast path, when the full sync flag is not
2139 * set in our inode, we can not do it because we start only our ordered
2140 * extents and don't wait for them to complete (that is when
2141 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2142 * value might be less than or equals to fs_info->last_trans_committed,
2143 * and setting a speculative last_trans for an inode when a buffered
2144 * write is made (such as fs_info->generation + 1 for example) would not
2145 * be reliable since after setting the value and before fsync is called
2146 * any number of transactions can start and commit (transaction kthread
2147 * commits the current transaction periodically), and a transaction
2148 * commit does not start nor waits for ordered extents to complete.
2149 */
2150 smp_mb();
2151 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2152 (full_sync && BTRFS_I(inode)->last_trans <=
2153 fs_info->last_trans_committed) ||
2154 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2155 BTRFS_I(inode)->last_trans
2156 <= fs_info->last_trans_committed)) {
2157 /*
2158 * We've had everything committed since the last time we were
2159 * modified so clear this flag in case it was set for whatever
2160 * reason, it's no longer relevant.
2161 */
2162 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2163 &BTRFS_I(inode)->runtime_flags);
2164 /*
2165 * An ordered extent might have started before and completed
2166 * already with io errors, in which case the inode was not
2167 * updated and we end up here. So check the inode's mapping
2168 * for any errors that might have happened since we last
2169 * checked called fsync.
2170 */
2171 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2172 inode_unlock(inode);
2173 goto out;
2174 }
2175
2176 /*
2177 * ok we haven't committed the transaction yet, lets do a commit
2178 */
2179 if (file->private_data)
2180 btrfs_ioctl_trans_end(file);
2181
2182 /*
2183 * We use start here because we will need to wait on the IO to complete
2184 * in btrfs_sync_log, which could require joining a transaction (for
2185 * example checking cross references in the nocow path). If we use join
2186 * here we could get into a situation where we're waiting on IO to
2187 * happen that is blocked on a transaction trying to commit. With start
2188 * we inc the extwriter counter, so we wait for all extwriters to exit
2189 * before we start blocking join'ers. This comment is to keep somebody
2190 * from thinking they are super smart and changing this to
2191 * btrfs_join_transaction *cough*Josef*cough*.
2192 */
2193 trans = btrfs_start_transaction(root, 0);
2194 if (IS_ERR(trans)) {
2195 ret = PTR_ERR(trans);
2196 inode_unlock(inode);
2197 goto out;
2198 }
2199 trans->sync = true;
2200
2201 btrfs_init_log_ctx(&ctx, inode);
2202
2203 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2204 if (ret < 0) {
2205 /* Fallthrough and commit/free transaction. */
2206 ret = 1;
2207 }
2208
2209 /* we've logged all the items and now have a consistent
2210 * version of the file in the log. It is possible that
2211 * someone will come in and modify the file, but that's
2212 * fine because the log is consistent on disk, and we
2213 * have references to all of the file's extents
2214 *
2215 * It is possible that someone will come in and log the
2216 * file again, but that will end up using the synchronization
2217 * inside btrfs_sync_log to keep things safe.
2218 */
2219 inode_unlock(inode);
2220
2221 /*
2222 * If any of the ordered extents had an error, just return it to user
2223 * space, so that the application knows some writes didn't succeed and
2224 * can take proper action (retry for e.g.). Blindly committing the
2225 * transaction in this case, would fool userspace that everything was
2226 * successful. And we also want to make sure our log doesn't contain
2227 * file extent items pointing to extents that weren't fully written to -
2228 * just like in the non fast fsync path, where we check for the ordered
2229 * operation's error flag before writing to the log tree and return -EIO
2230 * if any of them had this flag set (btrfs_wait_ordered_range) -
2231 * therefore we need to check for errors in the ordered operations,
2232 * which are indicated by ctx.io_err.
2233 */
2234 if (ctx.io_err) {
2235 btrfs_end_transaction(trans);
2236 ret = ctx.io_err;
2237 goto out;
2238 }
2239
2240 if (ret != BTRFS_NO_LOG_SYNC) {
2241 if (!ret) {
2242 ret = btrfs_sync_log(trans, root, &ctx);
2243 if (!ret) {
2244 ret = btrfs_end_transaction(trans);
2245 goto out;
2246 }
2247 }
2248 if (!full_sync) {
2249 ret = btrfs_wait_ordered_range(inode, start, len);
2250 if (ret) {
2251 btrfs_end_transaction(trans);
2252 goto out;
2253 }
2254 }
2255 ret = btrfs_commit_transaction(trans);
2256 } else {
2257 ret = btrfs_end_transaction(trans);
2258 }
2259 out:
2260 err = file_check_and_advance_wb_err(file);
2261 if (!ret)
2262 ret = err;
2263 return ret > 0 ? -EIO : ret;
2264 }
2265
2266 static const struct vm_operations_struct btrfs_file_vm_ops = {
2267 .fault = filemap_fault,
2268 .map_pages = filemap_map_pages,
2269 .page_mkwrite = btrfs_page_mkwrite,
2270 };
2271
2272 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2273 {
2274 struct address_space *mapping = filp->f_mapping;
2275
2276 if (!mapping->a_ops->readpage)
2277 return -ENOEXEC;
2278
2279 file_accessed(filp);
2280 vma->vm_ops = &btrfs_file_vm_ops;
2281
2282 return 0;
2283 }
2284
2285 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2286 int slot, u64 start, u64 end)
2287 {
2288 struct btrfs_file_extent_item *fi;
2289 struct btrfs_key key;
2290
2291 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2292 return 0;
2293
2294 btrfs_item_key_to_cpu(leaf, &key, slot);
2295 if (key.objectid != btrfs_ino(inode) ||
2296 key.type != BTRFS_EXTENT_DATA_KEY)
2297 return 0;
2298
2299 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2300
2301 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2302 return 0;
2303
2304 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2305 return 0;
2306
2307 if (key.offset == end)
2308 return 1;
2309 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2310 return 1;
2311 return 0;
2312 }
2313
2314 static int fill_holes(struct btrfs_trans_handle *trans,
2315 struct btrfs_inode *inode,
2316 struct btrfs_path *path, u64 offset, u64 end)
2317 {
2318 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2319 struct btrfs_root *root = inode->root;
2320 struct extent_buffer *leaf;
2321 struct btrfs_file_extent_item *fi;
2322 struct extent_map *hole_em;
2323 struct extent_map_tree *em_tree = &inode->extent_tree;
2324 struct btrfs_key key;
2325 int ret;
2326
2327 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2328 goto out;
2329
2330 key.objectid = btrfs_ino(inode);
2331 key.type = BTRFS_EXTENT_DATA_KEY;
2332 key.offset = offset;
2333
2334 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2335 if (ret <= 0) {
2336 /*
2337 * We should have dropped this offset, so if we find it then
2338 * something has gone horribly wrong.
2339 */
2340 if (ret == 0)
2341 ret = -EINVAL;
2342 return ret;
2343 }
2344
2345 leaf = path->nodes[0];
2346 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2347 u64 num_bytes;
2348
2349 path->slots[0]--;
2350 fi = btrfs_item_ptr(leaf, path->slots[0],
2351 struct btrfs_file_extent_item);
2352 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2353 end - offset;
2354 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2355 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2356 btrfs_set_file_extent_offset(leaf, fi, 0);
2357 btrfs_mark_buffer_dirty(leaf);
2358 goto out;
2359 }
2360
2361 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2362 u64 num_bytes;
2363
2364 key.offset = offset;
2365 btrfs_set_item_key_safe(fs_info, path, &key);
2366 fi = btrfs_item_ptr(leaf, path->slots[0],
2367 struct btrfs_file_extent_item);
2368 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2369 offset;
2370 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2371 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2372 btrfs_set_file_extent_offset(leaf, fi, 0);
2373 btrfs_mark_buffer_dirty(leaf);
2374 goto out;
2375 }
2376 btrfs_release_path(path);
2377
2378 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2379 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2380 if (ret)
2381 return ret;
2382
2383 out:
2384 btrfs_release_path(path);
2385
2386 hole_em = alloc_extent_map();
2387 if (!hole_em) {
2388 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2389 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2390 } else {
2391 hole_em->start = offset;
2392 hole_em->len = end - offset;
2393 hole_em->ram_bytes = hole_em->len;
2394 hole_em->orig_start = offset;
2395
2396 hole_em->block_start = EXTENT_MAP_HOLE;
2397 hole_em->block_len = 0;
2398 hole_em->orig_block_len = 0;
2399 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2400 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2401 hole_em->generation = trans->transid;
2402
2403 do {
2404 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2405 write_lock(&em_tree->lock);
2406 ret = add_extent_mapping(em_tree, hole_em, 1);
2407 write_unlock(&em_tree->lock);
2408 } while (ret == -EEXIST);
2409 free_extent_map(hole_em);
2410 if (ret)
2411 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2412 &inode->runtime_flags);
2413 }
2414
2415 return 0;
2416 }
2417
2418 /*
2419 * Find a hole extent on given inode and change start/len to the end of hole
2420 * extent.(hole/vacuum extent whose em->start <= start &&
2421 * em->start + em->len > start)
2422 * When a hole extent is found, return 1 and modify start/len.
2423 */
2424 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2425 {
2426 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2427 struct extent_map *em;
2428 int ret = 0;
2429
2430 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2431 round_down(*start, fs_info->sectorsize),
2432 round_up(*len, fs_info->sectorsize), 0);
2433 if (IS_ERR(em))
2434 return PTR_ERR(em);
2435
2436 /* Hole or vacuum extent(only exists in no-hole mode) */
2437 if (em->block_start == EXTENT_MAP_HOLE) {
2438 ret = 1;
2439 *len = em->start + em->len > *start + *len ?
2440 0 : *start + *len - em->start - em->len;
2441 *start = em->start + em->len;
2442 }
2443 free_extent_map(em);
2444 return ret;
2445 }
2446
2447 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2448 {
2449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2450 struct btrfs_root *root = BTRFS_I(inode)->root;
2451 struct extent_state *cached_state = NULL;
2452 struct btrfs_path *path;
2453 struct btrfs_block_rsv *rsv;
2454 struct btrfs_trans_handle *trans;
2455 u64 lockstart;
2456 u64 lockend;
2457 u64 tail_start;
2458 u64 tail_len;
2459 u64 orig_start = offset;
2460 u64 cur_offset;
2461 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2462 u64 drop_end;
2463 int ret = 0;
2464 int err = 0;
2465 unsigned int rsv_count;
2466 bool same_block;
2467 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2468 u64 ino_size;
2469 bool truncated_block = false;
2470 bool updated_inode = false;
2471
2472 ret = btrfs_wait_ordered_range(inode, offset, len);
2473 if (ret)
2474 return ret;
2475
2476 inode_lock(inode);
2477 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2478 ret = find_first_non_hole(inode, &offset, &len);
2479 if (ret < 0)
2480 goto out_only_mutex;
2481 if (ret && !len) {
2482 /* Already in a large hole */
2483 ret = 0;
2484 goto out_only_mutex;
2485 }
2486
2487 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2488 lockend = round_down(offset + len,
2489 btrfs_inode_sectorsize(inode)) - 1;
2490 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2491 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2492 /*
2493 * We needn't truncate any block which is beyond the end of the file
2494 * because we are sure there is no data there.
2495 */
2496 /*
2497 * Only do this if we are in the same block and we aren't doing the
2498 * entire block.
2499 */
2500 if (same_block && len < fs_info->sectorsize) {
2501 if (offset < ino_size) {
2502 truncated_block = true;
2503 ret = btrfs_truncate_block(inode, offset, len, 0);
2504 } else {
2505 ret = 0;
2506 }
2507 goto out_only_mutex;
2508 }
2509
2510 /* zero back part of the first block */
2511 if (offset < ino_size) {
2512 truncated_block = true;
2513 ret = btrfs_truncate_block(inode, offset, 0, 0);
2514 if (ret) {
2515 inode_unlock(inode);
2516 return ret;
2517 }
2518 }
2519
2520 /* Check the aligned pages after the first unaligned page,
2521 * if offset != orig_start, which means the first unaligned page
2522 * including several following pages are already in holes,
2523 * the extra check can be skipped */
2524 if (offset == orig_start) {
2525 /* after truncate page, check hole again */
2526 len = offset + len - lockstart;
2527 offset = lockstart;
2528 ret = find_first_non_hole(inode, &offset, &len);
2529 if (ret < 0)
2530 goto out_only_mutex;
2531 if (ret && !len) {
2532 ret = 0;
2533 goto out_only_mutex;
2534 }
2535 lockstart = offset;
2536 }
2537
2538 /* Check the tail unaligned part is in a hole */
2539 tail_start = lockend + 1;
2540 tail_len = offset + len - tail_start;
2541 if (tail_len) {
2542 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2543 if (unlikely(ret < 0))
2544 goto out_only_mutex;
2545 if (!ret) {
2546 /* zero the front end of the last page */
2547 if (tail_start + tail_len < ino_size) {
2548 truncated_block = true;
2549 ret = btrfs_truncate_block(inode,
2550 tail_start + tail_len,
2551 0, 1);
2552 if (ret)
2553 goto out_only_mutex;
2554 }
2555 }
2556 }
2557
2558 if (lockend < lockstart) {
2559 ret = 0;
2560 goto out_only_mutex;
2561 }
2562
2563 while (1) {
2564 struct btrfs_ordered_extent *ordered;
2565
2566 truncate_pagecache_range(inode, lockstart, lockend);
2567
2568 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2569 &cached_state);
2570 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2571
2572 /*
2573 * We need to make sure we have no ordered extents in this range
2574 * and nobody raced in and read a page in this range, if we did
2575 * we need to try again.
2576 */
2577 if ((!ordered ||
2578 (ordered->file_offset + ordered->len <= lockstart ||
2579 ordered->file_offset > lockend)) &&
2580 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2581 if (ordered)
2582 btrfs_put_ordered_extent(ordered);
2583 break;
2584 }
2585 if (ordered)
2586 btrfs_put_ordered_extent(ordered);
2587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2588 lockend, &cached_state, GFP_NOFS);
2589 ret = btrfs_wait_ordered_range(inode, lockstart,
2590 lockend - lockstart + 1);
2591 if (ret) {
2592 inode_unlock(inode);
2593 return ret;
2594 }
2595 }
2596
2597 path = btrfs_alloc_path();
2598 if (!path) {
2599 ret = -ENOMEM;
2600 goto out;
2601 }
2602
2603 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2604 if (!rsv) {
2605 ret = -ENOMEM;
2606 goto out_free;
2607 }
2608 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2609 rsv->failfast = 1;
2610
2611 /*
2612 * 1 - update the inode
2613 * 1 - removing the extents in the range
2614 * 1 - adding the hole extent if no_holes isn't set
2615 */
2616 rsv_count = no_holes ? 2 : 3;
2617 trans = btrfs_start_transaction(root, rsv_count);
2618 if (IS_ERR(trans)) {
2619 err = PTR_ERR(trans);
2620 goto out_free;
2621 }
2622
2623 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2624 min_size, 0);
2625 BUG_ON(ret);
2626 trans->block_rsv = rsv;
2627
2628 cur_offset = lockstart;
2629 len = lockend - cur_offset;
2630 while (cur_offset < lockend) {
2631 ret = __btrfs_drop_extents(trans, root, inode, path,
2632 cur_offset, lockend + 1,
2633 &drop_end, 1, 0, 0, NULL);
2634 if (ret != -ENOSPC)
2635 break;
2636
2637 trans->block_rsv = &fs_info->trans_block_rsv;
2638
2639 if (cur_offset < drop_end && cur_offset < ino_size) {
2640 ret = fill_holes(trans, BTRFS_I(inode), path,
2641 cur_offset, drop_end);
2642 if (ret) {
2643 /*
2644 * If we failed then we didn't insert our hole
2645 * entries for the area we dropped, so now the
2646 * fs is corrupted, so we must abort the
2647 * transaction.
2648 */
2649 btrfs_abort_transaction(trans, ret);
2650 err = ret;
2651 break;
2652 }
2653 }
2654
2655 cur_offset = drop_end;
2656
2657 ret = btrfs_update_inode(trans, root, inode);
2658 if (ret) {
2659 err = ret;
2660 break;
2661 }
2662
2663 btrfs_end_transaction(trans);
2664 btrfs_btree_balance_dirty(fs_info);
2665
2666 trans = btrfs_start_transaction(root, rsv_count);
2667 if (IS_ERR(trans)) {
2668 ret = PTR_ERR(trans);
2669 trans = NULL;
2670 break;
2671 }
2672
2673 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2674 rsv, min_size, 0);
2675 BUG_ON(ret); /* shouldn't happen */
2676 trans->block_rsv = rsv;
2677
2678 ret = find_first_non_hole(inode, &cur_offset, &len);
2679 if (unlikely(ret < 0))
2680 break;
2681 if (ret && !len) {
2682 ret = 0;
2683 break;
2684 }
2685 }
2686
2687 if (ret) {
2688 err = ret;
2689 goto out_trans;
2690 }
2691
2692 trans->block_rsv = &fs_info->trans_block_rsv;
2693 /*
2694 * If we are using the NO_HOLES feature we might have had already an
2695 * hole that overlaps a part of the region [lockstart, lockend] and
2696 * ends at (or beyond) lockend. Since we have no file extent items to
2697 * represent holes, drop_end can be less than lockend and so we must
2698 * make sure we have an extent map representing the existing hole (the
2699 * call to __btrfs_drop_extents() might have dropped the existing extent
2700 * map representing the existing hole), otherwise the fast fsync path
2701 * will not record the existence of the hole region
2702 * [existing_hole_start, lockend].
2703 */
2704 if (drop_end <= lockend)
2705 drop_end = lockend + 1;
2706 /*
2707 * Don't insert file hole extent item if it's for a range beyond eof
2708 * (because it's useless) or if it represents a 0 bytes range (when
2709 * cur_offset == drop_end).
2710 */
2711 if (cur_offset < ino_size && cur_offset < drop_end) {
2712 ret = fill_holes(trans, BTRFS_I(inode), path,
2713 cur_offset, drop_end);
2714 if (ret) {
2715 /* Same comment as above. */
2716 btrfs_abort_transaction(trans, ret);
2717 err = ret;
2718 goto out_trans;
2719 }
2720 }
2721
2722 out_trans:
2723 if (!trans)
2724 goto out_free;
2725
2726 inode_inc_iversion(inode);
2727 inode->i_mtime = inode->i_ctime = current_time(inode);
2728
2729 trans->block_rsv = &fs_info->trans_block_rsv;
2730 ret = btrfs_update_inode(trans, root, inode);
2731 updated_inode = true;
2732 btrfs_end_transaction(trans);
2733 btrfs_btree_balance_dirty(fs_info);
2734 out_free:
2735 btrfs_free_path(path);
2736 btrfs_free_block_rsv(fs_info, rsv);
2737 out:
2738 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2739 &cached_state, GFP_NOFS);
2740 out_only_mutex:
2741 if (!updated_inode && truncated_block && !ret && !err) {
2742 /*
2743 * If we only end up zeroing part of a page, we still need to
2744 * update the inode item, so that all the time fields are
2745 * updated as well as the necessary btrfs inode in memory fields
2746 * for detecting, at fsync time, if the inode isn't yet in the
2747 * log tree or it's there but not up to date.
2748 */
2749 trans = btrfs_start_transaction(root, 1);
2750 if (IS_ERR(trans)) {
2751 err = PTR_ERR(trans);
2752 } else {
2753 err = btrfs_update_inode(trans, root, inode);
2754 ret = btrfs_end_transaction(trans);
2755 }
2756 }
2757 inode_unlock(inode);
2758 if (ret && !err)
2759 err = ret;
2760 return err;
2761 }
2762
2763 /* Helper structure to record which range is already reserved */
2764 struct falloc_range {
2765 struct list_head list;
2766 u64 start;
2767 u64 len;
2768 };
2769
2770 /*
2771 * Helper function to add falloc range
2772 *
2773 * Caller should have locked the larger range of extent containing
2774 * [start, len)
2775 */
2776 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2777 {
2778 struct falloc_range *prev = NULL;
2779 struct falloc_range *range = NULL;
2780
2781 if (list_empty(head))
2782 goto insert;
2783
2784 /*
2785 * As fallocate iterate by bytenr order, we only need to check
2786 * the last range.
2787 */
2788 prev = list_entry(head->prev, struct falloc_range, list);
2789 if (prev->start + prev->len == start) {
2790 prev->len += len;
2791 return 0;
2792 }
2793 insert:
2794 range = kmalloc(sizeof(*range), GFP_KERNEL);
2795 if (!range)
2796 return -ENOMEM;
2797 range->start = start;
2798 range->len = len;
2799 list_add_tail(&range->list, head);
2800 return 0;
2801 }
2802
2803 static long btrfs_fallocate(struct file *file, int mode,
2804 loff_t offset, loff_t len)
2805 {
2806 struct inode *inode = file_inode(file);
2807 struct extent_state *cached_state = NULL;
2808 struct extent_changeset *data_reserved = NULL;
2809 struct falloc_range *range;
2810 struct falloc_range *tmp;
2811 struct list_head reserve_list;
2812 u64 cur_offset;
2813 u64 last_byte;
2814 u64 alloc_start;
2815 u64 alloc_end;
2816 u64 alloc_hint = 0;
2817 u64 locked_end;
2818 u64 actual_end = 0;
2819 struct extent_map *em;
2820 int blocksize = btrfs_inode_sectorsize(inode);
2821 int ret;
2822
2823 alloc_start = round_down(offset, blocksize);
2824 alloc_end = round_up(offset + len, blocksize);
2825 cur_offset = alloc_start;
2826
2827 /* Make sure we aren't being give some crap mode */
2828 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2829 return -EOPNOTSUPP;
2830
2831 if (mode & FALLOC_FL_PUNCH_HOLE)
2832 return btrfs_punch_hole(inode, offset, len);
2833
2834 /*
2835 * Only trigger disk allocation, don't trigger qgroup reserve
2836 *
2837 * For qgroup space, it will be checked later.
2838 */
2839 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2840 alloc_end - alloc_start);
2841 if (ret < 0)
2842 return ret;
2843
2844 inode_lock(inode);
2845
2846 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2847 ret = inode_newsize_ok(inode, offset + len);
2848 if (ret)
2849 goto out;
2850 }
2851
2852 /*
2853 * TODO: Move these two operations after we have checked
2854 * accurate reserved space, or fallocate can still fail but
2855 * with page truncated or size expanded.
2856 *
2857 * But that's a minor problem and won't do much harm BTW.
2858 */
2859 if (alloc_start > inode->i_size) {
2860 ret = btrfs_cont_expand(inode, i_size_read(inode),
2861 alloc_start);
2862 if (ret)
2863 goto out;
2864 } else if (offset + len > inode->i_size) {
2865 /*
2866 * If we are fallocating from the end of the file onward we
2867 * need to zero out the end of the block if i_size lands in the
2868 * middle of a block.
2869 */
2870 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2871 if (ret)
2872 goto out;
2873 }
2874
2875 /*
2876 * wait for ordered IO before we have any locks. We'll loop again
2877 * below with the locks held.
2878 */
2879 ret = btrfs_wait_ordered_range(inode, alloc_start,
2880 alloc_end - alloc_start);
2881 if (ret)
2882 goto out;
2883
2884 locked_end = alloc_end - 1;
2885 while (1) {
2886 struct btrfs_ordered_extent *ordered;
2887
2888 /* the extent lock is ordered inside the running
2889 * transaction
2890 */
2891 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2892 locked_end, &cached_state);
2893 ordered = btrfs_lookup_first_ordered_extent(inode,
2894 alloc_end - 1);
2895 if (ordered &&
2896 ordered->file_offset + ordered->len > alloc_start &&
2897 ordered->file_offset < alloc_end) {
2898 btrfs_put_ordered_extent(ordered);
2899 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2900 alloc_start, locked_end,
2901 &cached_state, GFP_KERNEL);
2902 /*
2903 * we can't wait on the range with the transaction
2904 * running or with the extent lock held
2905 */
2906 ret = btrfs_wait_ordered_range(inode, alloc_start,
2907 alloc_end - alloc_start);
2908 if (ret)
2909 goto out;
2910 } else {
2911 if (ordered)
2912 btrfs_put_ordered_extent(ordered);
2913 break;
2914 }
2915 }
2916
2917 /* First, check if we exceed the qgroup limit */
2918 INIT_LIST_HEAD(&reserve_list);
2919 while (1) {
2920 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2921 alloc_end - cur_offset, 0);
2922 if (IS_ERR(em)) {
2923 ret = PTR_ERR(em);
2924 break;
2925 }
2926 last_byte = min(extent_map_end(em), alloc_end);
2927 actual_end = min_t(u64, extent_map_end(em), offset + len);
2928 last_byte = ALIGN(last_byte, blocksize);
2929 if (em->block_start == EXTENT_MAP_HOLE ||
2930 (cur_offset >= inode->i_size &&
2931 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2932 ret = add_falloc_range(&reserve_list, cur_offset,
2933 last_byte - cur_offset);
2934 if (ret < 0) {
2935 free_extent_map(em);
2936 break;
2937 }
2938 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2939 cur_offset, last_byte - cur_offset);
2940 if (ret < 0) {
2941 free_extent_map(em);
2942 break;
2943 }
2944 } else {
2945 /*
2946 * Do not need to reserve unwritten extent for this
2947 * range, free reserved data space first, otherwise
2948 * it'll result in false ENOSPC error.
2949 */
2950 btrfs_free_reserved_data_space(inode, data_reserved,
2951 cur_offset, last_byte - cur_offset);
2952 }
2953 free_extent_map(em);
2954 cur_offset = last_byte;
2955 if (cur_offset >= alloc_end)
2956 break;
2957 }
2958
2959 /*
2960 * If ret is still 0, means we're OK to fallocate.
2961 * Or just cleanup the list and exit.
2962 */
2963 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2964 if (!ret)
2965 ret = btrfs_prealloc_file_range(inode, mode,
2966 range->start,
2967 range->len, i_blocksize(inode),
2968 offset + len, &alloc_hint);
2969 else
2970 btrfs_free_reserved_data_space(inode,
2971 data_reserved, range->start,
2972 range->len);
2973 list_del(&range->list);
2974 kfree(range);
2975 }
2976 if (ret < 0)
2977 goto out_unlock;
2978
2979 if (actual_end > inode->i_size &&
2980 !(mode & FALLOC_FL_KEEP_SIZE)) {
2981 struct btrfs_trans_handle *trans;
2982 struct btrfs_root *root = BTRFS_I(inode)->root;
2983
2984 /*
2985 * We didn't need to allocate any more space, but we
2986 * still extended the size of the file so we need to
2987 * update i_size and the inode item.
2988 */
2989 trans = btrfs_start_transaction(root, 1);
2990 if (IS_ERR(trans)) {
2991 ret = PTR_ERR(trans);
2992 } else {
2993 inode->i_ctime = current_time(inode);
2994 i_size_write(inode, actual_end);
2995 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2996 ret = btrfs_update_inode(trans, root, inode);
2997 if (ret)
2998 btrfs_end_transaction(trans);
2999 else
3000 ret = btrfs_end_transaction(trans);
3001 }
3002 }
3003 out_unlock:
3004 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3005 &cached_state, GFP_KERNEL);
3006 out:
3007 inode_unlock(inode);
3008 /* Let go of our reservation. */
3009 if (ret != 0)
3010 btrfs_free_reserved_data_space(inode, data_reserved,
3011 alloc_start, alloc_end - cur_offset);
3012 extent_changeset_free(data_reserved);
3013 return ret;
3014 }
3015
3016 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3017 {
3018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3019 struct extent_map *em = NULL;
3020 struct extent_state *cached_state = NULL;
3021 u64 lockstart;
3022 u64 lockend;
3023 u64 start;
3024 u64 len;
3025 int ret = 0;
3026
3027 if (inode->i_size == 0)
3028 return -ENXIO;
3029
3030 /*
3031 * *offset can be negative, in this case we start finding DATA/HOLE from
3032 * the very start of the file.
3033 */
3034 start = max_t(loff_t, 0, *offset);
3035
3036 lockstart = round_down(start, fs_info->sectorsize);
3037 lockend = round_up(i_size_read(inode),
3038 fs_info->sectorsize);
3039 if (lockend <= lockstart)
3040 lockend = lockstart + fs_info->sectorsize;
3041 lockend--;
3042 len = lockend - lockstart + 1;
3043
3044 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3045 &cached_state);
3046
3047 while (start < inode->i_size) {
3048 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3049 start, len, 0);
3050 if (IS_ERR(em)) {
3051 ret = PTR_ERR(em);
3052 em = NULL;
3053 break;
3054 }
3055
3056 if (whence == SEEK_HOLE &&
3057 (em->block_start == EXTENT_MAP_HOLE ||
3058 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3059 break;
3060 else if (whence == SEEK_DATA &&
3061 (em->block_start != EXTENT_MAP_HOLE &&
3062 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3063 break;
3064
3065 start = em->start + em->len;
3066 free_extent_map(em);
3067 em = NULL;
3068 cond_resched();
3069 }
3070 free_extent_map(em);
3071 if (!ret) {
3072 if (whence == SEEK_DATA && start >= inode->i_size)
3073 ret = -ENXIO;
3074 else
3075 *offset = min_t(loff_t, start, inode->i_size);
3076 }
3077 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3078 &cached_state, GFP_NOFS);
3079 return ret;
3080 }
3081
3082 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3083 {
3084 struct inode *inode = file->f_mapping->host;
3085 int ret;
3086
3087 inode_lock(inode);
3088 switch (whence) {
3089 case SEEK_END:
3090 case SEEK_CUR:
3091 offset = generic_file_llseek(file, offset, whence);
3092 goto out;
3093 case SEEK_DATA:
3094 case SEEK_HOLE:
3095 if (offset >= i_size_read(inode)) {
3096 inode_unlock(inode);
3097 return -ENXIO;
3098 }
3099
3100 ret = find_desired_extent(inode, &offset, whence);
3101 if (ret) {
3102 inode_unlock(inode);
3103 return ret;
3104 }
3105 }
3106
3107 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3108 out:
3109 inode_unlock(inode);
3110 return offset;
3111 }
3112
3113 static int btrfs_file_open(struct inode *inode, struct file *filp)
3114 {
3115 filp->f_mode |= FMODE_AIO_NOWAIT;
3116 return generic_file_open(inode, filp);
3117 }
3118
3119 const struct file_operations btrfs_file_operations = {
3120 .llseek = btrfs_file_llseek,
3121 .read_iter = generic_file_read_iter,
3122 .splice_read = generic_file_splice_read,
3123 .write_iter = btrfs_file_write_iter,
3124 .mmap = btrfs_file_mmap,
3125 .open = btrfs_file_open,
3126 .release = btrfs_release_file,
3127 .fsync = btrfs_sync_file,
3128 .fallocate = btrfs_fallocate,
3129 .unlocked_ioctl = btrfs_ioctl,
3130 #ifdef CONFIG_COMPAT
3131 .compat_ioctl = btrfs_compat_ioctl,
3132 #endif
3133 .clone_file_range = btrfs_clone_file_range,
3134 .dedupe_file_range = btrfs_dedupe_file_range,
3135 };
3136
3137 void btrfs_auto_defrag_exit(void)
3138 {
3139 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3140 }
3141
3142 int btrfs_auto_defrag_init(void)
3143 {
3144 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3145 sizeof(struct inode_defrag), 0,
3146 SLAB_MEM_SPREAD,
3147 NULL);
3148 if (!btrfs_inode_defrag_cachep)
3149 return -ENOMEM;
3150
3151 return 0;
3152 }
3153
3154 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3155 {
3156 int ret;
3157
3158 /*
3159 * So with compression we will find and lock a dirty page and clear the
3160 * first one as dirty, setup an async extent, and immediately return
3161 * with the entire range locked but with nobody actually marked with
3162 * writeback. So we can't just filemap_write_and_wait_range() and
3163 * expect it to work since it will just kick off a thread to do the
3164 * actual work. So we need to call filemap_fdatawrite_range _again_
3165 * since it will wait on the page lock, which won't be unlocked until
3166 * after the pages have been marked as writeback and so we're good to go
3167 * from there. We have to do this otherwise we'll miss the ordered
3168 * extents and that results in badness. Please Josef, do not think you
3169 * know better and pull this out at some point in the future, it is
3170 * right and you are wrong.
3171 */
3172 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3173 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3174 &BTRFS_I(inode)->runtime_flags))
3175 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3176
3177 return ret;
3178 }