]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/free-space-cache.c
aedacdbf77e2345acff1127dc903fcdfe29abb47
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / free-space-cache.c
1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30
31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 struct btrfs_free_space *info);
36
37 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
38 struct btrfs_path *path,
39 u64 offset)
40 {
41 struct btrfs_key key;
42 struct btrfs_key location;
43 struct btrfs_disk_key disk_key;
44 struct btrfs_free_space_header *header;
45 struct extent_buffer *leaf;
46 struct inode *inode = NULL;
47 int ret;
48
49 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
50 key.offset = offset;
51 key.type = 0;
52
53 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
54 if (ret < 0)
55 return ERR_PTR(ret);
56 if (ret > 0) {
57 btrfs_release_path(path);
58 return ERR_PTR(-ENOENT);
59 }
60
61 leaf = path->nodes[0];
62 header = btrfs_item_ptr(leaf, path->slots[0],
63 struct btrfs_free_space_header);
64 btrfs_free_space_key(leaf, header, &disk_key);
65 btrfs_disk_key_to_cpu(&location, &disk_key);
66 btrfs_release_path(path);
67
68 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
69 if (!inode)
70 return ERR_PTR(-ENOENT);
71 if (IS_ERR(inode))
72 return inode;
73 if (is_bad_inode(inode)) {
74 iput(inode);
75 return ERR_PTR(-ENOENT);
76 }
77
78 inode->i_mapping->flags &= ~__GFP_FS;
79
80 return inode;
81 }
82
83 struct inode *lookup_free_space_inode(struct btrfs_root *root,
84 struct btrfs_block_group_cache
85 *block_group, struct btrfs_path *path)
86 {
87 struct inode *inode = NULL;
88 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
89
90 spin_lock(&block_group->lock);
91 if (block_group->inode)
92 inode = igrab(block_group->inode);
93 spin_unlock(&block_group->lock);
94 if (inode)
95 return inode;
96
97 inode = __lookup_free_space_inode(root, path,
98 block_group->key.objectid);
99 if (IS_ERR(inode))
100 return inode;
101
102 spin_lock(&block_group->lock);
103 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
104 printk(KERN_INFO "Old style space inode found, converting.\n");
105 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
106 BTRFS_INODE_NODATACOW;
107 block_group->disk_cache_state = BTRFS_DC_CLEAR;
108 }
109
110 if (!block_group->iref) {
111 block_group->inode = igrab(inode);
112 block_group->iref = 1;
113 }
114 spin_unlock(&block_group->lock);
115
116 return inode;
117 }
118
119 int __create_free_space_inode(struct btrfs_root *root,
120 struct btrfs_trans_handle *trans,
121 struct btrfs_path *path, u64 ino, u64 offset)
122 {
123 struct btrfs_key key;
124 struct btrfs_disk_key disk_key;
125 struct btrfs_free_space_header *header;
126 struct btrfs_inode_item *inode_item;
127 struct extent_buffer *leaf;
128 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
129 int ret;
130
131 ret = btrfs_insert_empty_inode(trans, root, path, ino);
132 if (ret)
133 return ret;
134
135 /* We inline crc's for the free disk space cache */
136 if (ino != BTRFS_FREE_INO_OBJECTID)
137 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
139 leaf = path->nodes[0];
140 inode_item = btrfs_item_ptr(leaf, path->slots[0],
141 struct btrfs_inode_item);
142 btrfs_item_key(leaf, &disk_key, path->slots[0]);
143 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
144 sizeof(*inode_item));
145 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
146 btrfs_set_inode_size(leaf, inode_item, 0);
147 btrfs_set_inode_nbytes(leaf, inode_item, 0);
148 btrfs_set_inode_uid(leaf, inode_item, 0);
149 btrfs_set_inode_gid(leaf, inode_item, 0);
150 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
151 btrfs_set_inode_flags(leaf, inode_item, flags);
152 btrfs_set_inode_nlink(leaf, inode_item, 1);
153 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
154 btrfs_set_inode_block_group(leaf, inode_item, offset);
155 btrfs_mark_buffer_dirty(leaf);
156 btrfs_release_path(path);
157
158 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
159 key.offset = offset;
160 key.type = 0;
161
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 sizeof(struct btrfs_free_space_header));
164 if (ret < 0) {
165 btrfs_release_path(path);
166 return ret;
167 }
168 leaf = path->nodes[0];
169 header = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_free_space_header);
171 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
172 btrfs_set_free_space_key(leaf, header, &disk_key);
173 btrfs_mark_buffer_dirty(leaf);
174 btrfs_release_path(path);
175
176 return 0;
177 }
178
179 int create_free_space_inode(struct btrfs_root *root,
180 struct btrfs_trans_handle *trans,
181 struct btrfs_block_group_cache *block_group,
182 struct btrfs_path *path)
183 {
184 int ret;
185 u64 ino;
186
187 ret = btrfs_find_free_objectid(root, &ino);
188 if (ret < 0)
189 return ret;
190
191 return __create_free_space_inode(root, trans, path, ino,
192 block_group->key.objectid);
193 }
194
195 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
196 struct btrfs_trans_handle *trans,
197 struct btrfs_path *path,
198 struct inode *inode)
199 {
200 struct btrfs_block_rsv *rsv;
201 u64 needed_bytes;
202 loff_t oldsize;
203 int ret = 0;
204
205 rsv = trans->block_rsv;
206 trans->block_rsv = &root->fs_info->global_block_rsv;
207
208 /* 1 for slack space, 1 for updating the inode */
209 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
210 btrfs_calc_trans_metadata_size(root, 1);
211
212 spin_lock(&trans->block_rsv->lock);
213 if (trans->block_rsv->reserved < needed_bytes) {
214 spin_unlock(&trans->block_rsv->lock);
215 trans->block_rsv = rsv;
216 return -ENOSPC;
217 }
218 spin_unlock(&trans->block_rsv->lock);
219
220 oldsize = i_size_read(inode);
221 btrfs_i_size_write(inode, 0);
222 truncate_pagecache(inode, oldsize, 0);
223
224 /*
225 * We don't need an orphan item because truncating the free space cache
226 * will never be split across transactions.
227 */
228 ret = btrfs_truncate_inode_items(trans, root, inode,
229 0, BTRFS_EXTENT_DATA_KEY);
230
231 if (ret) {
232 trans->block_rsv = rsv;
233 WARN_ON(1);
234 return ret;
235 }
236
237 ret = btrfs_update_inode(trans, root, inode);
238 trans->block_rsv = rsv;
239
240 return ret;
241 }
242
243 static int readahead_cache(struct inode *inode)
244 {
245 struct file_ra_state *ra;
246 unsigned long last_index;
247
248 ra = kzalloc(sizeof(*ra), GFP_NOFS);
249 if (!ra)
250 return -ENOMEM;
251
252 file_ra_state_init(ra, inode->i_mapping);
253 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
254
255 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
256
257 kfree(ra);
258
259 return 0;
260 }
261
262 struct io_ctl {
263 void *cur, *orig;
264 struct page *page;
265 struct page **pages;
266 struct btrfs_root *root;
267 unsigned long size;
268 int index;
269 int num_pages;
270 unsigned check_crcs:1;
271 };
272
273 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
274 struct btrfs_root *root)
275 {
276 memset(io_ctl, 0, sizeof(struct io_ctl));
277 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
278 PAGE_CACHE_SHIFT;
279 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
280 GFP_NOFS);
281 if (!io_ctl->pages)
282 return -ENOMEM;
283 io_ctl->root = root;
284 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
285 io_ctl->check_crcs = 1;
286 return 0;
287 }
288
289 static void io_ctl_free(struct io_ctl *io_ctl)
290 {
291 kfree(io_ctl->pages);
292 }
293
294 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
295 {
296 if (io_ctl->cur) {
297 kunmap(io_ctl->page);
298 io_ctl->cur = NULL;
299 io_ctl->orig = NULL;
300 }
301 }
302
303 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
304 {
305 WARN_ON(io_ctl->cur);
306 BUG_ON(io_ctl->index >= io_ctl->num_pages);
307 io_ctl->page = io_ctl->pages[io_ctl->index++];
308 io_ctl->cur = kmap(io_ctl->page);
309 io_ctl->orig = io_ctl->cur;
310 io_ctl->size = PAGE_CACHE_SIZE;
311 if (clear)
312 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
313 }
314
315 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
316 {
317 int i;
318
319 io_ctl_unmap_page(io_ctl);
320
321 for (i = 0; i < io_ctl->num_pages; i++) {
322 ClearPageChecked(io_ctl->pages[i]);
323 unlock_page(io_ctl->pages[i]);
324 page_cache_release(io_ctl->pages[i]);
325 }
326 }
327
328 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
329 int uptodate)
330 {
331 struct page *page;
332 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
333 int i;
334
335 for (i = 0; i < io_ctl->num_pages; i++) {
336 page = find_or_create_page(inode->i_mapping, i, mask);
337 if (!page) {
338 io_ctl_drop_pages(io_ctl);
339 return -ENOMEM;
340 }
341 io_ctl->pages[i] = page;
342 if (uptodate && !PageUptodate(page)) {
343 btrfs_readpage(NULL, page);
344 lock_page(page);
345 if (!PageUptodate(page)) {
346 printk(KERN_ERR "btrfs: error reading free "
347 "space cache\n");
348 io_ctl_drop_pages(io_ctl);
349 return -EIO;
350 }
351 }
352 }
353
354 for (i = 0; i < io_ctl->num_pages; i++) {
355 clear_page_dirty_for_io(io_ctl->pages[i]);
356 set_page_extent_mapped(io_ctl->pages[i]);
357 }
358
359 return 0;
360 }
361
362 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
363 {
364 u64 *val;
365
366 io_ctl_map_page(io_ctl, 1);
367
368 /*
369 * Skip the csum areas. If we don't check crcs then we just have a
370 * 64bit chunk at the front of the first page.
371 */
372 if (io_ctl->check_crcs) {
373 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
374 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
375 } else {
376 io_ctl->cur += sizeof(u64);
377 io_ctl->size -= sizeof(u64) * 2;
378 }
379
380 val = io_ctl->cur;
381 *val = cpu_to_le64(generation);
382 io_ctl->cur += sizeof(u64);
383 }
384
385 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
386 {
387 u64 *gen;
388
389 /*
390 * Skip the crc area. If we don't check crcs then we just have a 64bit
391 * chunk at the front of the first page.
392 */
393 if (io_ctl->check_crcs) {
394 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
395 io_ctl->size -= sizeof(u64) +
396 (sizeof(u32) * io_ctl->num_pages);
397 } else {
398 io_ctl->cur += sizeof(u64);
399 io_ctl->size -= sizeof(u64) * 2;
400 }
401
402 gen = io_ctl->cur;
403 if (le64_to_cpu(*gen) != generation) {
404 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
405 "(%Lu) does not match inode (%Lu)\n", *gen,
406 generation);
407 io_ctl_unmap_page(io_ctl);
408 return -EIO;
409 }
410 io_ctl->cur += sizeof(u64);
411 return 0;
412 }
413
414 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
415 {
416 u32 *tmp;
417 u32 crc = ~(u32)0;
418 unsigned offset = 0;
419
420 if (!io_ctl->check_crcs) {
421 io_ctl_unmap_page(io_ctl);
422 return;
423 }
424
425 if (index == 0)
426 offset = sizeof(u32) * io_ctl->num_pages;;
427
428 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
429 PAGE_CACHE_SIZE - offset);
430 btrfs_csum_final(crc, (char *)&crc);
431 io_ctl_unmap_page(io_ctl);
432 tmp = kmap(io_ctl->pages[0]);
433 tmp += index;
434 *tmp = crc;
435 kunmap(io_ctl->pages[0]);
436 }
437
438 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
439 {
440 u32 *tmp, val;
441 u32 crc = ~(u32)0;
442 unsigned offset = 0;
443
444 if (!io_ctl->check_crcs) {
445 io_ctl_map_page(io_ctl, 0);
446 return 0;
447 }
448
449 if (index == 0)
450 offset = sizeof(u32) * io_ctl->num_pages;
451
452 tmp = kmap(io_ctl->pages[0]);
453 tmp += index;
454 val = *tmp;
455 kunmap(io_ctl->pages[0]);
456
457 io_ctl_map_page(io_ctl, 0);
458 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
459 PAGE_CACHE_SIZE - offset);
460 btrfs_csum_final(crc, (char *)&crc);
461 if (val != crc) {
462 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
463 "space cache\n");
464 io_ctl_unmap_page(io_ctl);
465 return -EIO;
466 }
467
468 return 0;
469 }
470
471 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
472 void *bitmap)
473 {
474 struct btrfs_free_space_entry *entry;
475
476 if (!io_ctl->cur)
477 return -ENOSPC;
478
479 entry = io_ctl->cur;
480 entry->offset = cpu_to_le64(offset);
481 entry->bytes = cpu_to_le64(bytes);
482 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
483 BTRFS_FREE_SPACE_EXTENT;
484 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
485 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
486
487 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
488 return 0;
489
490 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
491
492 /* No more pages to map */
493 if (io_ctl->index >= io_ctl->num_pages)
494 return 0;
495
496 /* map the next page */
497 io_ctl_map_page(io_ctl, 1);
498 return 0;
499 }
500
501 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
502 {
503 if (!io_ctl->cur)
504 return -ENOSPC;
505
506 /*
507 * If we aren't at the start of the current page, unmap this one and
508 * map the next one if there is any left.
509 */
510 if (io_ctl->cur != io_ctl->orig) {
511 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
512 if (io_ctl->index >= io_ctl->num_pages)
513 return -ENOSPC;
514 io_ctl_map_page(io_ctl, 0);
515 }
516
517 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
518 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
519 if (io_ctl->index < io_ctl->num_pages)
520 io_ctl_map_page(io_ctl, 0);
521 return 0;
522 }
523
524 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
525 {
526 /*
527 * If we're not on the boundary we know we've modified the page and we
528 * need to crc the page.
529 */
530 if (io_ctl->cur != io_ctl->orig)
531 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
532 else
533 io_ctl_unmap_page(io_ctl);
534
535 while (io_ctl->index < io_ctl->num_pages) {
536 io_ctl_map_page(io_ctl, 1);
537 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 }
539 }
540
541 static int io_ctl_read_entry(struct io_ctl *io_ctl,
542 struct btrfs_free_space *entry, u8 *type)
543 {
544 struct btrfs_free_space_entry *e;
545 int ret;
546
547 if (!io_ctl->cur) {
548 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
549 if (ret)
550 return ret;
551 }
552
553 e = io_ctl->cur;
554 entry->offset = le64_to_cpu(e->offset);
555 entry->bytes = le64_to_cpu(e->bytes);
556 *type = e->type;
557 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
558 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
559
560 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
561 return 0;
562
563 io_ctl_unmap_page(io_ctl);
564
565 return 0;
566 }
567
568 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
569 struct btrfs_free_space *entry)
570 {
571 int ret;
572
573 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
574 if (ret)
575 return ret;
576
577 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
578 io_ctl_unmap_page(io_ctl);
579
580 return 0;
581 }
582
583 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
584 struct btrfs_free_space_ctl *ctl,
585 struct btrfs_path *path, u64 offset)
586 {
587 struct btrfs_free_space_header *header;
588 struct extent_buffer *leaf;
589 struct io_ctl io_ctl;
590 struct btrfs_key key;
591 struct btrfs_free_space *e, *n;
592 struct list_head bitmaps;
593 u64 num_entries;
594 u64 num_bitmaps;
595 u64 generation;
596 u8 type;
597 int ret = 0;
598
599 INIT_LIST_HEAD(&bitmaps);
600
601 /* Nothing in the space cache, goodbye */
602 if (!i_size_read(inode))
603 return 0;
604
605 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
606 key.offset = offset;
607 key.type = 0;
608
609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
610 if (ret < 0)
611 return 0;
612 else if (ret > 0) {
613 btrfs_release_path(path);
614 return 0;
615 }
616
617 ret = -1;
618
619 leaf = path->nodes[0];
620 header = btrfs_item_ptr(leaf, path->slots[0],
621 struct btrfs_free_space_header);
622 num_entries = btrfs_free_space_entries(leaf, header);
623 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
624 generation = btrfs_free_space_generation(leaf, header);
625 btrfs_release_path(path);
626
627 if (BTRFS_I(inode)->generation != generation) {
628 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
629 " not match free space cache generation (%llu)\n",
630 (unsigned long long)BTRFS_I(inode)->generation,
631 (unsigned long long)generation);
632 return 0;
633 }
634
635 if (!num_entries)
636 return 0;
637
638 io_ctl_init(&io_ctl, inode, root);
639 ret = readahead_cache(inode);
640 if (ret)
641 goto out;
642
643 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
644 if (ret)
645 goto out;
646
647 ret = io_ctl_check_crc(&io_ctl, 0);
648 if (ret)
649 goto free_cache;
650
651 ret = io_ctl_check_generation(&io_ctl, generation);
652 if (ret)
653 goto free_cache;
654
655 while (num_entries) {
656 e = kmem_cache_zalloc(btrfs_free_space_cachep,
657 GFP_NOFS);
658 if (!e)
659 goto free_cache;
660
661 ret = io_ctl_read_entry(&io_ctl, e, &type);
662 if (ret) {
663 kmem_cache_free(btrfs_free_space_cachep, e);
664 goto free_cache;
665 }
666
667 if (!e->bytes) {
668 kmem_cache_free(btrfs_free_space_cachep, e);
669 goto free_cache;
670 }
671
672 if (type == BTRFS_FREE_SPACE_EXTENT) {
673 spin_lock(&ctl->tree_lock);
674 ret = link_free_space(ctl, e);
675 spin_unlock(&ctl->tree_lock);
676 if (ret) {
677 printk(KERN_ERR "Duplicate entries in "
678 "free space cache, dumping\n");
679 kmem_cache_free(btrfs_free_space_cachep, e);
680 goto free_cache;
681 }
682 } else {
683 BUG_ON(!num_bitmaps);
684 num_bitmaps--;
685 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
686 if (!e->bitmap) {
687 kmem_cache_free(
688 btrfs_free_space_cachep, e);
689 goto free_cache;
690 }
691 spin_lock(&ctl->tree_lock);
692 ret = link_free_space(ctl, e);
693 ctl->total_bitmaps++;
694 ctl->op->recalc_thresholds(ctl);
695 spin_unlock(&ctl->tree_lock);
696 if (ret) {
697 printk(KERN_ERR "Duplicate entries in "
698 "free space cache, dumping\n");
699 kmem_cache_free(btrfs_free_space_cachep, e);
700 goto free_cache;
701 }
702 list_add_tail(&e->list, &bitmaps);
703 }
704
705 num_entries--;
706 }
707
708 io_ctl_unmap_page(&io_ctl);
709
710 /*
711 * We add the bitmaps at the end of the entries in order that
712 * the bitmap entries are added to the cache.
713 */
714 list_for_each_entry_safe(e, n, &bitmaps, list) {
715 list_del_init(&e->list);
716 ret = io_ctl_read_bitmap(&io_ctl, e);
717 if (ret)
718 goto free_cache;
719 }
720
721 io_ctl_drop_pages(&io_ctl);
722 ret = 1;
723 out:
724 io_ctl_free(&io_ctl);
725 return ret;
726 free_cache:
727 io_ctl_drop_pages(&io_ctl);
728 __btrfs_remove_free_space_cache(ctl);
729 goto out;
730 }
731
732 int load_free_space_cache(struct btrfs_fs_info *fs_info,
733 struct btrfs_block_group_cache *block_group)
734 {
735 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
736 struct btrfs_root *root = fs_info->tree_root;
737 struct inode *inode;
738 struct btrfs_path *path;
739 int ret = 0;
740 bool matched;
741 u64 used = btrfs_block_group_used(&block_group->item);
742
743 /*
744 * If we're unmounting then just return, since this does a search on the
745 * normal root and not the commit root and we could deadlock.
746 */
747 if (btrfs_fs_closing(fs_info))
748 return 0;
749
750 /*
751 * If this block group has been marked to be cleared for one reason or
752 * another then we can't trust the on disk cache, so just return.
753 */
754 spin_lock(&block_group->lock);
755 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
756 spin_unlock(&block_group->lock);
757 return 0;
758 }
759 spin_unlock(&block_group->lock);
760
761 path = btrfs_alloc_path();
762 if (!path)
763 return 0;
764
765 inode = lookup_free_space_inode(root, block_group, path);
766 if (IS_ERR(inode)) {
767 btrfs_free_path(path);
768 return 0;
769 }
770
771 /* We may have converted the inode and made the cache invalid. */
772 spin_lock(&block_group->lock);
773 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
774 spin_unlock(&block_group->lock);
775 goto out;
776 }
777 spin_unlock(&block_group->lock);
778
779 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
780 path, block_group->key.objectid);
781 btrfs_free_path(path);
782 if (ret <= 0)
783 goto out;
784
785 spin_lock(&ctl->tree_lock);
786 matched = (ctl->free_space == (block_group->key.offset - used -
787 block_group->bytes_super));
788 spin_unlock(&ctl->tree_lock);
789
790 if (!matched) {
791 __btrfs_remove_free_space_cache(ctl);
792 printk(KERN_ERR "block group %llu has an wrong amount of free "
793 "space\n", block_group->key.objectid);
794 ret = -1;
795 }
796 out:
797 if (ret < 0) {
798 /* This cache is bogus, make sure it gets cleared */
799 spin_lock(&block_group->lock);
800 block_group->disk_cache_state = BTRFS_DC_CLEAR;
801 spin_unlock(&block_group->lock);
802 ret = 0;
803
804 printk(KERN_ERR "btrfs: failed to load free space cache "
805 "for block group %llu\n", block_group->key.objectid);
806 }
807
808 iput(inode);
809 return ret;
810 }
811
812 /**
813 * __btrfs_write_out_cache - write out cached info to an inode
814 * @root - the root the inode belongs to
815 * @ctl - the free space cache we are going to write out
816 * @block_group - the block_group for this cache if it belongs to a block_group
817 * @trans - the trans handle
818 * @path - the path to use
819 * @offset - the offset for the key we'll insert
820 *
821 * This function writes out a free space cache struct to disk for quick recovery
822 * on mount. This will return 0 if it was successfull in writing the cache out,
823 * and -1 if it was not.
824 */
825 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
826 struct btrfs_free_space_ctl *ctl,
827 struct btrfs_block_group_cache *block_group,
828 struct btrfs_trans_handle *trans,
829 struct btrfs_path *path, u64 offset)
830 {
831 struct btrfs_free_space_header *header;
832 struct extent_buffer *leaf;
833 struct rb_node *node;
834 struct list_head *pos, *n;
835 struct extent_state *cached_state = NULL;
836 struct btrfs_free_cluster *cluster = NULL;
837 struct extent_io_tree *unpin = NULL;
838 struct io_ctl io_ctl;
839 struct list_head bitmap_list;
840 struct btrfs_key key;
841 u64 start, end, len;
842 int entries = 0;
843 int bitmaps = 0;
844 int ret;
845 int err = -1;
846
847 INIT_LIST_HEAD(&bitmap_list);
848
849 if (!i_size_read(inode))
850 return -1;
851
852 io_ctl_init(&io_ctl, inode, root);
853
854 /* Get the cluster for this block_group if it exists */
855 if (block_group && !list_empty(&block_group->cluster_list))
856 cluster = list_entry(block_group->cluster_list.next,
857 struct btrfs_free_cluster,
858 block_group_list);
859
860 /*
861 * We shouldn't have switched the pinned extents yet so this is the
862 * right one
863 */
864 unpin = root->fs_info->pinned_extents;
865
866 /* Lock all pages first so we can lock the extent safely. */
867 io_ctl_prepare_pages(&io_ctl, inode, 0);
868
869 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
870 0, &cached_state, GFP_NOFS);
871
872 /*
873 * When searching for pinned extents, we need to start at our start
874 * offset.
875 */
876 if (block_group)
877 start = block_group->key.objectid;
878
879 node = rb_first(&ctl->free_space_offset);
880 if (!node && cluster) {
881 node = rb_first(&cluster->root);
882 cluster = NULL;
883 }
884
885 /* Make sure we can fit our crcs into the first page */
886 if (io_ctl.check_crcs &&
887 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
888 WARN_ON(1);
889 goto out_nospc;
890 }
891
892 io_ctl_set_generation(&io_ctl, trans->transid);
893
894 /* Write out the extent entries */
895 while (node) {
896 struct btrfs_free_space *e;
897
898 e = rb_entry(node, struct btrfs_free_space, offset_index);
899 entries++;
900
901 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
902 e->bitmap);
903 if (ret)
904 goto out_nospc;
905
906 if (e->bitmap) {
907 list_add_tail(&e->list, &bitmap_list);
908 bitmaps++;
909 }
910 node = rb_next(node);
911 if (!node && cluster) {
912 node = rb_first(&cluster->root);
913 cluster = NULL;
914 }
915 }
916
917 /*
918 * We want to add any pinned extents to our free space cache
919 * so we don't leak the space
920 */
921 while (block_group && (start < block_group->key.objectid +
922 block_group->key.offset)) {
923 ret = find_first_extent_bit(unpin, start, &start, &end,
924 EXTENT_DIRTY);
925 if (ret) {
926 ret = 0;
927 break;
928 }
929
930 /* This pinned extent is out of our range */
931 if (start >= block_group->key.objectid +
932 block_group->key.offset)
933 break;
934
935 len = block_group->key.objectid +
936 block_group->key.offset - start;
937 len = min(len, end + 1 - start);
938
939 entries++;
940 ret = io_ctl_add_entry(&io_ctl, start, len, NULL);
941 if (ret)
942 goto out_nospc;
943
944 start = end + 1;
945 }
946
947 /* Write out the bitmaps */
948 list_for_each_safe(pos, n, &bitmap_list) {
949 struct btrfs_free_space *entry =
950 list_entry(pos, struct btrfs_free_space, list);
951
952 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
953 if (ret)
954 goto out_nospc;
955 list_del_init(&entry->list);
956 }
957
958 /* Zero out the rest of the pages just to make sure */
959 io_ctl_zero_remaining_pages(&io_ctl);
960
961 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
962 0, i_size_read(inode), &cached_state);
963 io_ctl_drop_pages(&io_ctl);
964 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
965 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
966
967 if (ret)
968 goto out;
969
970
971 ret = filemap_write_and_wait(inode->i_mapping);
972 if (ret)
973 goto out;
974
975 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
976 key.offset = offset;
977 key.type = 0;
978
979 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
980 if (ret < 0) {
981 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
982 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
983 GFP_NOFS);
984 goto out;
985 }
986 leaf = path->nodes[0];
987 if (ret > 0) {
988 struct btrfs_key found_key;
989 BUG_ON(!path->slots[0]);
990 path->slots[0]--;
991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
992 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
993 found_key.offset != offset) {
994 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
995 inode->i_size - 1,
996 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
997 NULL, GFP_NOFS);
998 btrfs_release_path(path);
999 goto out;
1000 }
1001 }
1002
1003 BTRFS_I(inode)->generation = trans->transid;
1004 header = btrfs_item_ptr(leaf, path->slots[0],
1005 struct btrfs_free_space_header);
1006 btrfs_set_free_space_entries(leaf, header, entries);
1007 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1008 btrfs_set_free_space_generation(leaf, header, trans->transid);
1009 btrfs_mark_buffer_dirty(leaf);
1010 btrfs_release_path(path);
1011
1012 err = 0;
1013 out:
1014 io_ctl_free(&io_ctl);
1015 if (err) {
1016 invalidate_inode_pages2(inode->i_mapping);
1017 BTRFS_I(inode)->generation = 0;
1018 }
1019 btrfs_update_inode(trans, root, inode);
1020 return err;
1021
1022 out_nospc:
1023 list_for_each_safe(pos, n, &bitmap_list) {
1024 struct btrfs_free_space *entry =
1025 list_entry(pos, struct btrfs_free_space, list);
1026 list_del_init(&entry->list);
1027 }
1028 io_ctl_drop_pages(&io_ctl);
1029 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1030 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1031 goto out;
1032 }
1033
1034 int btrfs_write_out_cache(struct btrfs_root *root,
1035 struct btrfs_trans_handle *trans,
1036 struct btrfs_block_group_cache *block_group,
1037 struct btrfs_path *path)
1038 {
1039 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1040 struct inode *inode;
1041 int ret = 0;
1042
1043 root = root->fs_info->tree_root;
1044
1045 spin_lock(&block_group->lock);
1046 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1047 spin_unlock(&block_group->lock);
1048 return 0;
1049 }
1050 spin_unlock(&block_group->lock);
1051
1052 inode = lookup_free_space_inode(root, block_group, path);
1053 if (IS_ERR(inode))
1054 return 0;
1055
1056 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1057 path, block_group->key.objectid);
1058 if (ret) {
1059 spin_lock(&block_group->lock);
1060 block_group->disk_cache_state = BTRFS_DC_ERROR;
1061 spin_unlock(&block_group->lock);
1062 ret = 0;
1063 #ifdef DEBUG
1064 printk(KERN_ERR "btrfs: failed to write free space cace "
1065 "for block group %llu\n", block_group->key.objectid);
1066 #endif
1067 }
1068
1069 iput(inode);
1070 return ret;
1071 }
1072
1073 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1074 u64 offset)
1075 {
1076 BUG_ON(offset < bitmap_start);
1077 offset -= bitmap_start;
1078 return (unsigned long)(div_u64(offset, unit));
1079 }
1080
1081 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1082 {
1083 return (unsigned long)(div_u64(bytes, unit));
1084 }
1085
1086 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1087 u64 offset)
1088 {
1089 u64 bitmap_start;
1090 u64 bytes_per_bitmap;
1091
1092 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1093 bitmap_start = offset - ctl->start;
1094 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1095 bitmap_start *= bytes_per_bitmap;
1096 bitmap_start += ctl->start;
1097
1098 return bitmap_start;
1099 }
1100
1101 static int tree_insert_offset(struct rb_root *root, u64 offset,
1102 struct rb_node *node, int bitmap)
1103 {
1104 struct rb_node **p = &root->rb_node;
1105 struct rb_node *parent = NULL;
1106 struct btrfs_free_space *info;
1107
1108 while (*p) {
1109 parent = *p;
1110 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1111
1112 if (offset < info->offset) {
1113 p = &(*p)->rb_left;
1114 } else if (offset > info->offset) {
1115 p = &(*p)->rb_right;
1116 } else {
1117 /*
1118 * we could have a bitmap entry and an extent entry
1119 * share the same offset. If this is the case, we want
1120 * the extent entry to always be found first if we do a
1121 * linear search through the tree, since we want to have
1122 * the quickest allocation time, and allocating from an
1123 * extent is faster than allocating from a bitmap. So
1124 * if we're inserting a bitmap and we find an entry at
1125 * this offset, we want to go right, or after this entry
1126 * logically. If we are inserting an extent and we've
1127 * found a bitmap, we want to go left, or before
1128 * logically.
1129 */
1130 if (bitmap) {
1131 if (info->bitmap) {
1132 WARN_ON_ONCE(1);
1133 return -EEXIST;
1134 }
1135 p = &(*p)->rb_right;
1136 } else {
1137 if (!info->bitmap) {
1138 WARN_ON_ONCE(1);
1139 return -EEXIST;
1140 }
1141 p = &(*p)->rb_left;
1142 }
1143 }
1144 }
1145
1146 rb_link_node(node, parent, p);
1147 rb_insert_color(node, root);
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * searches the tree for the given offset.
1154 *
1155 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1156 * want a section that has at least bytes size and comes at or after the given
1157 * offset.
1158 */
1159 static struct btrfs_free_space *
1160 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1161 u64 offset, int bitmap_only, int fuzzy)
1162 {
1163 struct rb_node *n = ctl->free_space_offset.rb_node;
1164 struct btrfs_free_space *entry, *prev = NULL;
1165
1166 /* find entry that is closest to the 'offset' */
1167 while (1) {
1168 if (!n) {
1169 entry = NULL;
1170 break;
1171 }
1172
1173 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1174 prev = entry;
1175
1176 if (offset < entry->offset)
1177 n = n->rb_left;
1178 else if (offset > entry->offset)
1179 n = n->rb_right;
1180 else
1181 break;
1182 }
1183
1184 if (bitmap_only) {
1185 if (!entry)
1186 return NULL;
1187 if (entry->bitmap)
1188 return entry;
1189
1190 /*
1191 * bitmap entry and extent entry may share same offset,
1192 * in that case, bitmap entry comes after extent entry.
1193 */
1194 n = rb_next(n);
1195 if (!n)
1196 return NULL;
1197 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1198 if (entry->offset != offset)
1199 return NULL;
1200
1201 WARN_ON(!entry->bitmap);
1202 return entry;
1203 } else if (entry) {
1204 if (entry->bitmap) {
1205 /*
1206 * if previous extent entry covers the offset,
1207 * we should return it instead of the bitmap entry
1208 */
1209 n = &entry->offset_index;
1210 while (1) {
1211 n = rb_prev(n);
1212 if (!n)
1213 break;
1214 prev = rb_entry(n, struct btrfs_free_space,
1215 offset_index);
1216 if (!prev->bitmap) {
1217 if (prev->offset + prev->bytes > offset)
1218 entry = prev;
1219 break;
1220 }
1221 }
1222 }
1223 return entry;
1224 }
1225
1226 if (!prev)
1227 return NULL;
1228
1229 /* find last entry before the 'offset' */
1230 entry = prev;
1231 if (entry->offset > offset) {
1232 n = rb_prev(&entry->offset_index);
1233 if (n) {
1234 entry = rb_entry(n, struct btrfs_free_space,
1235 offset_index);
1236 BUG_ON(entry->offset > offset);
1237 } else {
1238 if (fuzzy)
1239 return entry;
1240 else
1241 return NULL;
1242 }
1243 }
1244
1245 if (entry->bitmap) {
1246 n = &entry->offset_index;
1247 while (1) {
1248 n = rb_prev(n);
1249 if (!n)
1250 break;
1251 prev = rb_entry(n, struct btrfs_free_space,
1252 offset_index);
1253 if (!prev->bitmap) {
1254 if (prev->offset + prev->bytes > offset)
1255 return prev;
1256 break;
1257 }
1258 }
1259 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1260 return entry;
1261 } else if (entry->offset + entry->bytes > offset)
1262 return entry;
1263
1264 if (!fuzzy)
1265 return NULL;
1266
1267 while (1) {
1268 if (entry->bitmap) {
1269 if (entry->offset + BITS_PER_BITMAP *
1270 ctl->unit > offset)
1271 break;
1272 } else {
1273 if (entry->offset + entry->bytes > offset)
1274 break;
1275 }
1276
1277 n = rb_next(&entry->offset_index);
1278 if (!n)
1279 return NULL;
1280 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1281 }
1282 return entry;
1283 }
1284
1285 static inline void
1286 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1287 struct btrfs_free_space *info)
1288 {
1289 rb_erase(&info->offset_index, &ctl->free_space_offset);
1290 ctl->free_extents--;
1291 }
1292
1293 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1294 struct btrfs_free_space *info)
1295 {
1296 __unlink_free_space(ctl, info);
1297 ctl->free_space -= info->bytes;
1298 }
1299
1300 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1301 struct btrfs_free_space *info)
1302 {
1303 int ret = 0;
1304
1305 BUG_ON(!info->bitmap && !info->bytes);
1306 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1307 &info->offset_index, (info->bitmap != NULL));
1308 if (ret)
1309 return ret;
1310
1311 ctl->free_space += info->bytes;
1312 ctl->free_extents++;
1313 return ret;
1314 }
1315
1316 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1317 {
1318 struct btrfs_block_group_cache *block_group = ctl->private;
1319 u64 max_bytes;
1320 u64 bitmap_bytes;
1321 u64 extent_bytes;
1322 u64 size = block_group->key.offset;
1323 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1324 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1325
1326 BUG_ON(ctl->total_bitmaps > max_bitmaps);
1327
1328 /*
1329 * The goal is to keep the total amount of memory used per 1gb of space
1330 * at or below 32k, so we need to adjust how much memory we allow to be
1331 * used by extent based free space tracking
1332 */
1333 if (size < 1024 * 1024 * 1024)
1334 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1335 else
1336 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1337 div64_u64(size, 1024 * 1024 * 1024);
1338
1339 /*
1340 * we want to account for 1 more bitmap than what we have so we can make
1341 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1342 * we add more bitmaps.
1343 */
1344 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1345
1346 if (bitmap_bytes >= max_bytes) {
1347 ctl->extents_thresh = 0;
1348 return;
1349 }
1350
1351 /*
1352 * we want the extent entry threshold to always be at most 1/2 the maxw
1353 * bytes we can have, or whatever is less than that.
1354 */
1355 extent_bytes = max_bytes - bitmap_bytes;
1356 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1357
1358 ctl->extents_thresh =
1359 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1360 }
1361
1362 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1363 struct btrfs_free_space *info,
1364 u64 offset, u64 bytes)
1365 {
1366 unsigned long start, count;
1367
1368 start = offset_to_bit(info->offset, ctl->unit, offset);
1369 count = bytes_to_bits(bytes, ctl->unit);
1370 BUG_ON(start + count > BITS_PER_BITMAP);
1371
1372 bitmap_clear(info->bitmap, start, count);
1373
1374 info->bytes -= bytes;
1375 }
1376
1377 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1378 struct btrfs_free_space *info, u64 offset,
1379 u64 bytes)
1380 {
1381 __bitmap_clear_bits(ctl, info, offset, bytes);
1382 ctl->free_space -= bytes;
1383 }
1384
1385 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1386 struct btrfs_free_space *info, u64 offset,
1387 u64 bytes)
1388 {
1389 unsigned long start, count;
1390
1391 start = offset_to_bit(info->offset, ctl->unit, offset);
1392 count = bytes_to_bits(bytes, ctl->unit);
1393 BUG_ON(start + count > BITS_PER_BITMAP);
1394
1395 bitmap_set(info->bitmap, start, count);
1396
1397 info->bytes += bytes;
1398 ctl->free_space += bytes;
1399 }
1400
1401 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1402 struct btrfs_free_space *bitmap_info, u64 *offset,
1403 u64 *bytes)
1404 {
1405 unsigned long found_bits = 0;
1406 unsigned long bits, i;
1407 unsigned long next_zero;
1408
1409 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1410 max_t(u64, *offset, bitmap_info->offset));
1411 bits = bytes_to_bits(*bytes, ctl->unit);
1412
1413 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1414 i < BITS_PER_BITMAP;
1415 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1416 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1417 BITS_PER_BITMAP, i);
1418 if ((next_zero - i) >= bits) {
1419 found_bits = next_zero - i;
1420 break;
1421 }
1422 i = next_zero;
1423 }
1424
1425 if (found_bits) {
1426 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1427 *bytes = (u64)(found_bits) * ctl->unit;
1428 return 0;
1429 }
1430
1431 return -1;
1432 }
1433
1434 static struct btrfs_free_space *
1435 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1436 {
1437 struct btrfs_free_space *entry;
1438 struct rb_node *node;
1439 int ret;
1440
1441 if (!ctl->free_space_offset.rb_node)
1442 return NULL;
1443
1444 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1445 if (!entry)
1446 return NULL;
1447
1448 for (node = &entry->offset_index; node; node = rb_next(node)) {
1449 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1450 if (entry->bytes < *bytes)
1451 continue;
1452
1453 if (entry->bitmap) {
1454 ret = search_bitmap(ctl, entry, offset, bytes);
1455 if (!ret)
1456 return entry;
1457 continue;
1458 }
1459
1460 *offset = entry->offset;
1461 *bytes = entry->bytes;
1462 return entry;
1463 }
1464
1465 return NULL;
1466 }
1467
1468 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1469 struct btrfs_free_space *info, u64 offset)
1470 {
1471 info->offset = offset_to_bitmap(ctl, offset);
1472 info->bytes = 0;
1473 link_free_space(ctl, info);
1474 ctl->total_bitmaps++;
1475
1476 ctl->op->recalc_thresholds(ctl);
1477 }
1478
1479 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1480 struct btrfs_free_space *bitmap_info)
1481 {
1482 unlink_free_space(ctl, bitmap_info);
1483 kfree(bitmap_info->bitmap);
1484 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1485 ctl->total_bitmaps--;
1486 ctl->op->recalc_thresholds(ctl);
1487 }
1488
1489 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1490 struct btrfs_free_space *bitmap_info,
1491 u64 *offset, u64 *bytes)
1492 {
1493 u64 end;
1494 u64 search_start, search_bytes;
1495 int ret;
1496
1497 again:
1498 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1499
1500 /*
1501 * XXX - this can go away after a few releases.
1502 *
1503 * since the only user of btrfs_remove_free_space is the tree logging
1504 * stuff, and the only way to test that is under crash conditions, we
1505 * want to have this debug stuff here just in case somethings not
1506 * working. Search the bitmap for the space we are trying to use to
1507 * make sure its actually there. If its not there then we need to stop
1508 * because something has gone wrong.
1509 */
1510 search_start = *offset;
1511 search_bytes = *bytes;
1512 search_bytes = min(search_bytes, end - search_start + 1);
1513 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1514 BUG_ON(ret < 0 || search_start != *offset);
1515
1516 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1517 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1518 *bytes -= end - *offset + 1;
1519 *offset = end + 1;
1520 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1521 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1522 *bytes = 0;
1523 }
1524
1525 if (*bytes) {
1526 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1527 if (!bitmap_info->bytes)
1528 free_bitmap(ctl, bitmap_info);
1529
1530 /*
1531 * no entry after this bitmap, but we still have bytes to
1532 * remove, so something has gone wrong.
1533 */
1534 if (!next)
1535 return -EINVAL;
1536
1537 bitmap_info = rb_entry(next, struct btrfs_free_space,
1538 offset_index);
1539
1540 /*
1541 * if the next entry isn't a bitmap we need to return to let the
1542 * extent stuff do its work.
1543 */
1544 if (!bitmap_info->bitmap)
1545 return -EAGAIN;
1546
1547 /*
1548 * Ok the next item is a bitmap, but it may not actually hold
1549 * the information for the rest of this free space stuff, so
1550 * look for it, and if we don't find it return so we can try
1551 * everything over again.
1552 */
1553 search_start = *offset;
1554 search_bytes = *bytes;
1555 ret = search_bitmap(ctl, bitmap_info, &search_start,
1556 &search_bytes);
1557 if (ret < 0 || search_start != *offset)
1558 return -EAGAIN;
1559
1560 goto again;
1561 } else if (!bitmap_info->bytes)
1562 free_bitmap(ctl, bitmap_info);
1563
1564 return 0;
1565 }
1566
1567 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1568 struct btrfs_free_space *info, u64 offset,
1569 u64 bytes)
1570 {
1571 u64 bytes_to_set = 0;
1572 u64 end;
1573
1574 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1575
1576 bytes_to_set = min(end - offset, bytes);
1577
1578 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1579
1580 return bytes_to_set;
1581
1582 }
1583
1584 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1585 struct btrfs_free_space *info)
1586 {
1587 struct btrfs_block_group_cache *block_group = ctl->private;
1588
1589 /*
1590 * If we are below the extents threshold then we can add this as an
1591 * extent, and don't have to deal with the bitmap
1592 */
1593 if (ctl->free_extents < ctl->extents_thresh) {
1594 /*
1595 * If this block group has some small extents we don't want to
1596 * use up all of our free slots in the cache with them, we want
1597 * to reserve them to larger extents, however if we have plent
1598 * of cache left then go ahead an dadd them, no sense in adding
1599 * the overhead of a bitmap if we don't have to.
1600 */
1601 if (info->bytes <= block_group->sectorsize * 4) {
1602 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1603 return false;
1604 } else {
1605 return false;
1606 }
1607 }
1608
1609 /*
1610 * some block groups are so tiny they can't be enveloped by a bitmap, so
1611 * don't even bother to create a bitmap for this
1612 */
1613 if (BITS_PER_BITMAP * block_group->sectorsize >
1614 block_group->key.offset)
1615 return false;
1616
1617 return true;
1618 }
1619
1620 static struct btrfs_free_space_op free_space_op = {
1621 .recalc_thresholds = recalculate_thresholds,
1622 .use_bitmap = use_bitmap,
1623 };
1624
1625 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1626 struct btrfs_free_space *info)
1627 {
1628 struct btrfs_free_space *bitmap_info;
1629 struct btrfs_block_group_cache *block_group = NULL;
1630 int added = 0;
1631 u64 bytes, offset, bytes_added;
1632 int ret;
1633
1634 bytes = info->bytes;
1635 offset = info->offset;
1636
1637 if (!ctl->op->use_bitmap(ctl, info))
1638 return 0;
1639
1640 if (ctl->op == &free_space_op)
1641 block_group = ctl->private;
1642 again:
1643 /*
1644 * Since we link bitmaps right into the cluster we need to see if we
1645 * have a cluster here, and if so and it has our bitmap we need to add
1646 * the free space to that bitmap.
1647 */
1648 if (block_group && !list_empty(&block_group->cluster_list)) {
1649 struct btrfs_free_cluster *cluster;
1650 struct rb_node *node;
1651 struct btrfs_free_space *entry;
1652
1653 cluster = list_entry(block_group->cluster_list.next,
1654 struct btrfs_free_cluster,
1655 block_group_list);
1656 spin_lock(&cluster->lock);
1657 node = rb_first(&cluster->root);
1658 if (!node) {
1659 spin_unlock(&cluster->lock);
1660 goto no_cluster_bitmap;
1661 }
1662
1663 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1664 if (!entry->bitmap) {
1665 spin_unlock(&cluster->lock);
1666 goto no_cluster_bitmap;
1667 }
1668
1669 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1670 bytes_added = add_bytes_to_bitmap(ctl, entry,
1671 offset, bytes);
1672 bytes -= bytes_added;
1673 offset += bytes_added;
1674 }
1675 spin_unlock(&cluster->lock);
1676 if (!bytes) {
1677 ret = 1;
1678 goto out;
1679 }
1680 }
1681
1682 no_cluster_bitmap:
1683 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1684 1, 0);
1685 if (!bitmap_info) {
1686 BUG_ON(added);
1687 goto new_bitmap;
1688 }
1689
1690 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1691 bytes -= bytes_added;
1692 offset += bytes_added;
1693 added = 0;
1694
1695 if (!bytes) {
1696 ret = 1;
1697 goto out;
1698 } else
1699 goto again;
1700
1701 new_bitmap:
1702 if (info && info->bitmap) {
1703 add_new_bitmap(ctl, info, offset);
1704 added = 1;
1705 info = NULL;
1706 goto again;
1707 } else {
1708 spin_unlock(&ctl->tree_lock);
1709
1710 /* no pre-allocated info, allocate a new one */
1711 if (!info) {
1712 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1713 GFP_NOFS);
1714 if (!info) {
1715 spin_lock(&ctl->tree_lock);
1716 ret = -ENOMEM;
1717 goto out;
1718 }
1719 }
1720
1721 /* allocate the bitmap */
1722 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1723 spin_lock(&ctl->tree_lock);
1724 if (!info->bitmap) {
1725 ret = -ENOMEM;
1726 goto out;
1727 }
1728 goto again;
1729 }
1730
1731 out:
1732 if (info) {
1733 if (info->bitmap)
1734 kfree(info->bitmap);
1735 kmem_cache_free(btrfs_free_space_cachep, info);
1736 }
1737
1738 return ret;
1739 }
1740
1741 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1742 struct btrfs_free_space *info, bool update_stat)
1743 {
1744 struct btrfs_free_space *left_info;
1745 struct btrfs_free_space *right_info;
1746 bool merged = false;
1747 u64 offset = info->offset;
1748 u64 bytes = info->bytes;
1749
1750 /*
1751 * first we want to see if there is free space adjacent to the range we
1752 * are adding, if there is remove that struct and add a new one to
1753 * cover the entire range
1754 */
1755 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1756 if (right_info && rb_prev(&right_info->offset_index))
1757 left_info = rb_entry(rb_prev(&right_info->offset_index),
1758 struct btrfs_free_space, offset_index);
1759 else
1760 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1761
1762 if (right_info && !right_info->bitmap) {
1763 if (update_stat)
1764 unlink_free_space(ctl, right_info);
1765 else
1766 __unlink_free_space(ctl, right_info);
1767 info->bytes += right_info->bytes;
1768 kmem_cache_free(btrfs_free_space_cachep, right_info);
1769 merged = true;
1770 }
1771
1772 if (left_info && !left_info->bitmap &&
1773 left_info->offset + left_info->bytes == offset) {
1774 if (update_stat)
1775 unlink_free_space(ctl, left_info);
1776 else
1777 __unlink_free_space(ctl, left_info);
1778 info->offset = left_info->offset;
1779 info->bytes += left_info->bytes;
1780 kmem_cache_free(btrfs_free_space_cachep, left_info);
1781 merged = true;
1782 }
1783
1784 return merged;
1785 }
1786
1787 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1788 u64 offset, u64 bytes)
1789 {
1790 struct btrfs_free_space *info;
1791 int ret = 0;
1792
1793 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1794 if (!info)
1795 return -ENOMEM;
1796
1797 info->offset = offset;
1798 info->bytes = bytes;
1799
1800 spin_lock(&ctl->tree_lock);
1801
1802 if (try_merge_free_space(ctl, info, true))
1803 goto link;
1804
1805 /*
1806 * There was no extent directly to the left or right of this new
1807 * extent then we know we're going to have to allocate a new extent, so
1808 * before we do that see if we need to drop this into a bitmap
1809 */
1810 ret = insert_into_bitmap(ctl, info);
1811 if (ret < 0) {
1812 goto out;
1813 } else if (ret) {
1814 ret = 0;
1815 goto out;
1816 }
1817 link:
1818 ret = link_free_space(ctl, info);
1819 if (ret)
1820 kmem_cache_free(btrfs_free_space_cachep, info);
1821 out:
1822 spin_unlock(&ctl->tree_lock);
1823
1824 if (ret) {
1825 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1826 BUG_ON(ret == -EEXIST);
1827 }
1828
1829 return ret;
1830 }
1831
1832 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1833 u64 offset, u64 bytes)
1834 {
1835 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1836 struct btrfs_free_space *info;
1837 struct btrfs_free_space *next_info = NULL;
1838 int ret = 0;
1839
1840 spin_lock(&ctl->tree_lock);
1841
1842 again:
1843 info = tree_search_offset(ctl, offset, 0, 0);
1844 if (!info) {
1845 /*
1846 * oops didn't find an extent that matched the space we wanted
1847 * to remove, look for a bitmap instead
1848 */
1849 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1850 1, 0);
1851 if (!info) {
1852 WARN_ON(1);
1853 goto out_lock;
1854 }
1855 }
1856
1857 if (info->bytes < bytes && rb_next(&info->offset_index)) {
1858 u64 end;
1859 next_info = rb_entry(rb_next(&info->offset_index),
1860 struct btrfs_free_space,
1861 offset_index);
1862
1863 if (next_info->bitmap)
1864 end = next_info->offset +
1865 BITS_PER_BITMAP * ctl->unit - 1;
1866 else
1867 end = next_info->offset + next_info->bytes;
1868
1869 if (next_info->bytes < bytes ||
1870 next_info->offset > offset || offset > end) {
1871 printk(KERN_CRIT "Found free space at %llu, size %llu,"
1872 " trying to use %llu\n",
1873 (unsigned long long)info->offset,
1874 (unsigned long long)info->bytes,
1875 (unsigned long long)bytes);
1876 WARN_ON(1);
1877 ret = -EINVAL;
1878 goto out_lock;
1879 }
1880
1881 info = next_info;
1882 }
1883
1884 if (info->bytes == bytes) {
1885 unlink_free_space(ctl, info);
1886 if (info->bitmap) {
1887 kfree(info->bitmap);
1888 ctl->total_bitmaps--;
1889 }
1890 kmem_cache_free(btrfs_free_space_cachep, info);
1891 ret = 0;
1892 goto out_lock;
1893 }
1894
1895 if (!info->bitmap && info->offset == offset) {
1896 unlink_free_space(ctl, info);
1897 info->offset += bytes;
1898 info->bytes -= bytes;
1899 ret = link_free_space(ctl, info);
1900 WARN_ON(ret);
1901 goto out_lock;
1902 }
1903
1904 if (!info->bitmap && info->offset <= offset &&
1905 info->offset + info->bytes >= offset + bytes) {
1906 u64 old_start = info->offset;
1907 /*
1908 * we're freeing space in the middle of the info,
1909 * this can happen during tree log replay
1910 *
1911 * first unlink the old info and then
1912 * insert it again after the hole we're creating
1913 */
1914 unlink_free_space(ctl, info);
1915 if (offset + bytes < info->offset + info->bytes) {
1916 u64 old_end = info->offset + info->bytes;
1917
1918 info->offset = offset + bytes;
1919 info->bytes = old_end - info->offset;
1920 ret = link_free_space(ctl, info);
1921 WARN_ON(ret);
1922 if (ret)
1923 goto out_lock;
1924 } else {
1925 /* the hole we're creating ends at the end
1926 * of the info struct, just free the info
1927 */
1928 kmem_cache_free(btrfs_free_space_cachep, info);
1929 }
1930 spin_unlock(&ctl->tree_lock);
1931
1932 /* step two, insert a new info struct to cover
1933 * anything before the hole
1934 */
1935 ret = btrfs_add_free_space(block_group, old_start,
1936 offset - old_start);
1937 WARN_ON(ret);
1938 goto out;
1939 }
1940
1941 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1942 if (ret == -EAGAIN)
1943 goto again;
1944 BUG_ON(ret);
1945 out_lock:
1946 spin_unlock(&ctl->tree_lock);
1947 out:
1948 return ret;
1949 }
1950
1951 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1952 u64 bytes)
1953 {
1954 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1955 struct btrfs_free_space *info;
1956 struct rb_node *n;
1957 int count = 0;
1958
1959 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1960 info = rb_entry(n, struct btrfs_free_space, offset_index);
1961 if (info->bytes >= bytes)
1962 count++;
1963 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1964 (unsigned long long)info->offset,
1965 (unsigned long long)info->bytes,
1966 (info->bitmap) ? "yes" : "no");
1967 }
1968 printk(KERN_INFO "block group has cluster?: %s\n",
1969 list_empty(&block_group->cluster_list) ? "no" : "yes");
1970 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1971 "\n", count);
1972 }
1973
1974 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1975 {
1976 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1977
1978 spin_lock_init(&ctl->tree_lock);
1979 ctl->unit = block_group->sectorsize;
1980 ctl->start = block_group->key.objectid;
1981 ctl->private = block_group;
1982 ctl->op = &free_space_op;
1983
1984 /*
1985 * we only want to have 32k of ram per block group for keeping
1986 * track of free space, and if we pass 1/2 of that we want to
1987 * start converting things over to using bitmaps
1988 */
1989 ctl->extents_thresh = ((1024 * 32) / 2) /
1990 sizeof(struct btrfs_free_space);
1991 }
1992
1993 /*
1994 * for a given cluster, put all of its extents back into the free
1995 * space cache. If the block group passed doesn't match the block group
1996 * pointed to by the cluster, someone else raced in and freed the
1997 * cluster already. In that case, we just return without changing anything
1998 */
1999 static int
2000 __btrfs_return_cluster_to_free_space(
2001 struct btrfs_block_group_cache *block_group,
2002 struct btrfs_free_cluster *cluster)
2003 {
2004 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2005 struct btrfs_free_space *entry;
2006 struct rb_node *node;
2007
2008 spin_lock(&cluster->lock);
2009 if (cluster->block_group != block_group)
2010 goto out;
2011
2012 cluster->block_group = NULL;
2013 cluster->window_start = 0;
2014 list_del_init(&cluster->block_group_list);
2015
2016 node = rb_first(&cluster->root);
2017 while (node) {
2018 bool bitmap;
2019
2020 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2021 node = rb_next(&entry->offset_index);
2022 rb_erase(&entry->offset_index, &cluster->root);
2023
2024 bitmap = (entry->bitmap != NULL);
2025 if (!bitmap)
2026 try_merge_free_space(ctl, entry, false);
2027 tree_insert_offset(&ctl->free_space_offset,
2028 entry->offset, &entry->offset_index, bitmap);
2029 }
2030 cluster->root = RB_ROOT;
2031
2032 out:
2033 spin_unlock(&cluster->lock);
2034 btrfs_put_block_group(block_group);
2035 return 0;
2036 }
2037
2038 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2039 {
2040 struct btrfs_free_space *info;
2041 struct rb_node *node;
2042
2043 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2044 info = rb_entry(node, struct btrfs_free_space, offset_index);
2045 if (!info->bitmap) {
2046 unlink_free_space(ctl, info);
2047 kmem_cache_free(btrfs_free_space_cachep, info);
2048 } else {
2049 free_bitmap(ctl, info);
2050 }
2051 if (need_resched()) {
2052 spin_unlock(&ctl->tree_lock);
2053 cond_resched();
2054 spin_lock(&ctl->tree_lock);
2055 }
2056 }
2057 }
2058
2059 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2060 {
2061 spin_lock(&ctl->tree_lock);
2062 __btrfs_remove_free_space_cache_locked(ctl);
2063 spin_unlock(&ctl->tree_lock);
2064 }
2065
2066 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2067 {
2068 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2069 struct btrfs_free_cluster *cluster;
2070 struct list_head *head;
2071
2072 spin_lock(&ctl->tree_lock);
2073 while ((head = block_group->cluster_list.next) !=
2074 &block_group->cluster_list) {
2075 cluster = list_entry(head, struct btrfs_free_cluster,
2076 block_group_list);
2077
2078 WARN_ON(cluster->block_group != block_group);
2079 __btrfs_return_cluster_to_free_space(block_group, cluster);
2080 if (need_resched()) {
2081 spin_unlock(&ctl->tree_lock);
2082 cond_resched();
2083 spin_lock(&ctl->tree_lock);
2084 }
2085 }
2086 __btrfs_remove_free_space_cache_locked(ctl);
2087 spin_unlock(&ctl->tree_lock);
2088
2089 }
2090
2091 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2092 u64 offset, u64 bytes, u64 empty_size)
2093 {
2094 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2095 struct btrfs_free_space *entry = NULL;
2096 u64 bytes_search = bytes + empty_size;
2097 u64 ret = 0;
2098
2099 spin_lock(&ctl->tree_lock);
2100 entry = find_free_space(ctl, &offset, &bytes_search);
2101 if (!entry)
2102 goto out;
2103
2104 ret = offset;
2105 if (entry->bitmap) {
2106 bitmap_clear_bits(ctl, entry, offset, bytes);
2107 if (!entry->bytes)
2108 free_bitmap(ctl, entry);
2109 } else {
2110 unlink_free_space(ctl, entry);
2111 entry->offset += bytes;
2112 entry->bytes -= bytes;
2113 if (!entry->bytes)
2114 kmem_cache_free(btrfs_free_space_cachep, entry);
2115 else
2116 link_free_space(ctl, entry);
2117 }
2118
2119 out:
2120 spin_unlock(&ctl->tree_lock);
2121
2122 return ret;
2123 }
2124
2125 /*
2126 * given a cluster, put all of its extents back into the free space
2127 * cache. If a block group is passed, this function will only free
2128 * a cluster that belongs to the passed block group.
2129 *
2130 * Otherwise, it'll get a reference on the block group pointed to by the
2131 * cluster and remove the cluster from it.
2132 */
2133 int btrfs_return_cluster_to_free_space(
2134 struct btrfs_block_group_cache *block_group,
2135 struct btrfs_free_cluster *cluster)
2136 {
2137 struct btrfs_free_space_ctl *ctl;
2138 int ret;
2139
2140 /* first, get a safe pointer to the block group */
2141 spin_lock(&cluster->lock);
2142 if (!block_group) {
2143 block_group = cluster->block_group;
2144 if (!block_group) {
2145 spin_unlock(&cluster->lock);
2146 return 0;
2147 }
2148 } else if (cluster->block_group != block_group) {
2149 /* someone else has already freed it don't redo their work */
2150 spin_unlock(&cluster->lock);
2151 return 0;
2152 }
2153 atomic_inc(&block_group->count);
2154 spin_unlock(&cluster->lock);
2155
2156 ctl = block_group->free_space_ctl;
2157
2158 /* now return any extents the cluster had on it */
2159 spin_lock(&ctl->tree_lock);
2160 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2161 spin_unlock(&ctl->tree_lock);
2162
2163 /* finally drop our ref */
2164 btrfs_put_block_group(block_group);
2165 return ret;
2166 }
2167
2168 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2169 struct btrfs_free_cluster *cluster,
2170 struct btrfs_free_space *entry,
2171 u64 bytes, u64 min_start)
2172 {
2173 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2174 int err;
2175 u64 search_start = cluster->window_start;
2176 u64 search_bytes = bytes;
2177 u64 ret = 0;
2178
2179 search_start = min_start;
2180 search_bytes = bytes;
2181
2182 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2183 if (err)
2184 return 0;
2185
2186 ret = search_start;
2187 __bitmap_clear_bits(ctl, entry, ret, bytes);
2188
2189 return ret;
2190 }
2191
2192 /*
2193 * given a cluster, try to allocate 'bytes' from it, returns 0
2194 * if it couldn't find anything suitably large, or a logical disk offset
2195 * if things worked out
2196 */
2197 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2198 struct btrfs_free_cluster *cluster, u64 bytes,
2199 u64 min_start)
2200 {
2201 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2202 struct btrfs_free_space *entry = NULL;
2203 struct rb_node *node;
2204 u64 ret = 0;
2205
2206 spin_lock(&cluster->lock);
2207 if (bytes > cluster->max_size)
2208 goto out;
2209
2210 if (cluster->block_group != block_group)
2211 goto out;
2212
2213 node = rb_first(&cluster->root);
2214 if (!node)
2215 goto out;
2216
2217 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2218 while(1) {
2219 if (entry->bytes < bytes ||
2220 (!entry->bitmap && entry->offset < min_start)) {
2221 node = rb_next(&entry->offset_index);
2222 if (!node)
2223 break;
2224 entry = rb_entry(node, struct btrfs_free_space,
2225 offset_index);
2226 continue;
2227 }
2228
2229 if (entry->bitmap) {
2230 ret = btrfs_alloc_from_bitmap(block_group,
2231 cluster, entry, bytes,
2232 min_start);
2233 if (ret == 0) {
2234 node = rb_next(&entry->offset_index);
2235 if (!node)
2236 break;
2237 entry = rb_entry(node, struct btrfs_free_space,
2238 offset_index);
2239 continue;
2240 }
2241 } else {
2242 ret = entry->offset;
2243
2244 entry->offset += bytes;
2245 entry->bytes -= bytes;
2246 }
2247
2248 if (entry->bytes == 0)
2249 rb_erase(&entry->offset_index, &cluster->root);
2250 break;
2251 }
2252 out:
2253 spin_unlock(&cluster->lock);
2254
2255 if (!ret)
2256 return 0;
2257
2258 spin_lock(&ctl->tree_lock);
2259
2260 ctl->free_space -= bytes;
2261 if (entry->bytes == 0) {
2262 ctl->free_extents--;
2263 if (entry->bitmap) {
2264 kfree(entry->bitmap);
2265 ctl->total_bitmaps--;
2266 ctl->op->recalc_thresholds(ctl);
2267 }
2268 kmem_cache_free(btrfs_free_space_cachep, entry);
2269 }
2270
2271 spin_unlock(&ctl->tree_lock);
2272
2273 return ret;
2274 }
2275
2276 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2277 struct btrfs_free_space *entry,
2278 struct btrfs_free_cluster *cluster,
2279 u64 offset, u64 bytes, u64 min_bytes)
2280 {
2281 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2282 unsigned long next_zero;
2283 unsigned long i;
2284 unsigned long search_bits;
2285 unsigned long total_bits;
2286 unsigned long found_bits;
2287 unsigned long start = 0;
2288 unsigned long total_found = 0;
2289 int ret;
2290 bool found = false;
2291
2292 i = offset_to_bit(entry->offset, block_group->sectorsize,
2293 max_t(u64, offset, entry->offset));
2294 search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2295 total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2296
2297 again:
2298 found_bits = 0;
2299 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2300 i < BITS_PER_BITMAP;
2301 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2302 next_zero = find_next_zero_bit(entry->bitmap,
2303 BITS_PER_BITMAP, i);
2304 if (next_zero - i >= search_bits) {
2305 found_bits = next_zero - i;
2306 break;
2307 }
2308 i = next_zero;
2309 }
2310
2311 if (!found_bits)
2312 return -ENOSPC;
2313
2314 if (!found) {
2315 start = i;
2316 found = true;
2317 }
2318
2319 total_found += found_bits;
2320
2321 if (cluster->max_size < found_bits * block_group->sectorsize)
2322 cluster->max_size = found_bits * block_group->sectorsize;
2323
2324 if (total_found < total_bits) {
2325 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2326 if (i - start > total_bits * 2) {
2327 total_found = 0;
2328 cluster->max_size = 0;
2329 found = false;
2330 }
2331 goto again;
2332 }
2333
2334 cluster->window_start = start * block_group->sectorsize +
2335 entry->offset;
2336 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2337 ret = tree_insert_offset(&cluster->root, entry->offset,
2338 &entry->offset_index, 1);
2339 BUG_ON(ret);
2340
2341 return 0;
2342 }
2343
2344 /*
2345 * This searches the block group for just extents to fill the cluster with.
2346 */
2347 static noinline int
2348 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2349 struct btrfs_free_cluster *cluster,
2350 struct list_head *bitmaps, u64 offset, u64 bytes,
2351 u64 min_bytes)
2352 {
2353 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2354 struct btrfs_free_space *first = NULL;
2355 struct btrfs_free_space *entry = NULL;
2356 struct btrfs_free_space *prev = NULL;
2357 struct btrfs_free_space *last;
2358 struct rb_node *node;
2359 u64 window_start;
2360 u64 window_free;
2361 u64 max_extent;
2362 u64 max_gap = 128 * 1024;
2363
2364 entry = tree_search_offset(ctl, offset, 0, 1);
2365 if (!entry)
2366 return -ENOSPC;
2367
2368 /*
2369 * We don't want bitmaps, so just move along until we find a normal
2370 * extent entry.
2371 */
2372 while (entry->bitmap) {
2373 if (list_empty(&entry->list))
2374 list_add_tail(&entry->list, bitmaps);
2375 node = rb_next(&entry->offset_index);
2376 if (!node)
2377 return -ENOSPC;
2378 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2379 }
2380
2381 window_start = entry->offset;
2382 window_free = entry->bytes;
2383 max_extent = entry->bytes;
2384 first = entry;
2385 last = entry;
2386 prev = entry;
2387
2388 while (window_free <= min_bytes) {
2389 node = rb_next(&entry->offset_index);
2390 if (!node)
2391 return -ENOSPC;
2392 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2393
2394 if (entry->bitmap) {
2395 if (list_empty(&entry->list))
2396 list_add_tail(&entry->list, bitmaps);
2397 continue;
2398 }
2399
2400 /*
2401 * we haven't filled the empty size and the window is
2402 * very large. reset and try again
2403 */
2404 if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2405 entry->offset - window_start > (min_bytes * 2)) {
2406 first = entry;
2407 window_start = entry->offset;
2408 window_free = entry->bytes;
2409 last = entry;
2410 max_extent = entry->bytes;
2411 } else {
2412 last = entry;
2413 window_free += entry->bytes;
2414 if (entry->bytes > max_extent)
2415 max_extent = entry->bytes;
2416 }
2417 prev = entry;
2418 }
2419
2420 cluster->window_start = first->offset;
2421
2422 node = &first->offset_index;
2423
2424 /*
2425 * now we've found our entries, pull them out of the free space
2426 * cache and put them into the cluster rbtree
2427 */
2428 do {
2429 int ret;
2430
2431 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2432 node = rb_next(&entry->offset_index);
2433 if (entry->bitmap)
2434 continue;
2435
2436 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2437 ret = tree_insert_offset(&cluster->root, entry->offset,
2438 &entry->offset_index, 0);
2439 BUG_ON(ret);
2440 } while (node && entry != last);
2441
2442 cluster->max_size = max_extent;
2443
2444 return 0;
2445 }
2446
2447 /*
2448 * This specifically looks for bitmaps that may work in the cluster, we assume
2449 * that we have already failed to find extents that will work.
2450 */
2451 static noinline int
2452 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2453 struct btrfs_free_cluster *cluster,
2454 struct list_head *bitmaps, u64 offset, u64 bytes,
2455 u64 min_bytes)
2456 {
2457 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2458 struct btrfs_free_space *entry;
2459 int ret = -ENOSPC;
2460 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2461
2462 if (ctl->total_bitmaps == 0)
2463 return -ENOSPC;
2464
2465 /*
2466 * The bitmap that covers offset won't be in the list unless offset
2467 * is just its start offset.
2468 */
2469 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2470 if (entry->offset != bitmap_offset) {
2471 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2472 if (entry && list_empty(&entry->list))
2473 list_add(&entry->list, bitmaps);
2474 }
2475
2476 list_for_each_entry(entry, bitmaps, list) {
2477 if (entry->bytes < min_bytes)
2478 continue;
2479 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2480 bytes, min_bytes);
2481 if (!ret)
2482 return 0;
2483 }
2484
2485 /*
2486 * The bitmaps list has all the bitmaps that record free space
2487 * starting after offset, so no more search is required.
2488 */
2489 return -ENOSPC;
2490 }
2491
2492 /*
2493 * here we try to find a cluster of blocks in a block group. The goal
2494 * is to find at least bytes free and up to empty_size + bytes free.
2495 * We might not find them all in one contiguous area.
2496 *
2497 * returns zero and sets up cluster if things worked out, otherwise
2498 * it returns -enospc
2499 */
2500 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2501 struct btrfs_root *root,
2502 struct btrfs_block_group_cache *block_group,
2503 struct btrfs_free_cluster *cluster,
2504 u64 offset, u64 bytes, u64 empty_size)
2505 {
2506 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2507 struct btrfs_free_space *entry, *tmp;
2508 LIST_HEAD(bitmaps);
2509 u64 min_bytes;
2510 int ret;
2511
2512 /* for metadata, allow allocates with more holes */
2513 if (btrfs_test_opt(root, SSD_SPREAD)) {
2514 min_bytes = bytes + empty_size;
2515 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2516 /*
2517 * we want to do larger allocations when we are
2518 * flushing out the delayed refs, it helps prevent
2519 * making more work as we go along.
2520 */
2521 if (trans->transaction->delayed_refs.flushing)
2522 min_bytes = max(bytes, (bytes + empty_size) >> 1);
2523 else
2524 min_bytes = max(bytes, (bytes + empty_size) >> 4);
2525 } else
2526 min_bytes = max(bytes, (bytes + empty_size) >> 2);
2527
2528 spin_lock(&ctl->tree_lock);
2529
2530 /*
2531 * If we know we don't have enough space to make a cluster don't even
2532 * bother doing all the work to try and find one.
2533 */
2534 if (ctl->free_space < min_bytes) {
2535 spin_unlock(&ctl->tree_lock);
2536 return -ENOSPC;
2537 }
2538
2539 spin_lock(&cluster->lock);
2540
2541 /* someone already found a cluster, hooray */
2542 if (cluster->block_group) {
2543 ret = 0;
2544 goto out;
2545 }
2546
2547 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2548 bytes, min_bytes);
2549 if (ret)
2550 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2551 offset, bytes, min_bytes);
2552
2553 /* Clear our temporary list */
2554 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2555 list_del_init(&entry->list);
2556
2557 if (!ret) {
2558 atomic_inc(&block_group->count);
2559 list_add_tail(&cluster->block_group_list,
2560 &block_group->cluster_list);
2561 cluster->block_group = block_group;
2562 }
2563 out:
2564 spin_unlock(&cluster->lock);
2565 spin_unlock(&ctl->tree_lock);
2566
2567 return ret;
2568 }
2569
2570 /*
2571 * simple code to zero out a cluster
2572 */
2573 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2574 {
2575 spin_lock_init(&cluster->lock);
2576 spin_lock_init(&cluster->refill_lock);
2577 cluster->root = RB_ROOT;
2578 cluster->max_size = 0;
2579 INIT_LIST_HEAD(&cluster->block_group_list);
2580 cluster->block_group = NULL;
2581 }
2582
2583 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2584 u64 *trimmed, u64 start, u64 end, u64 minlen)
2585 {
2586 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2587 struct btrfs_free_space *entry = NULL;
2588 struct btrfs_fs_info *fs_info = block_group->fs_info;
2589 u64 bytes = 0;
2590 u64 actually_trimmed;
2591 int ret = 0;
2592
2593 *trimmed = 0;
2594
2595 while (start < end) {
2596 spin_lock(&ctl->tree_lock);
2597
2598 if (ctl->free_space < minlen) {
2599 spin_unlock(&ctl->tree_lock);
2600 break;
2601 }
2602
2603 entry = tree_search_offset(ctl, start, 0, 1);
2604 if (!entry)
2605 entry = tree_search_offset(ctl,
2606 offset_to_bitmap(ctl, start),
2607 1, 1);
2608
2609 if (!entry || entry->offset >= end) {
2610 spin_unlock(&ctl->tree_lock);
2611 break;
2612 }
2613
2614 if (entry->bitmap) {
2615 ret = search_bitmap(ctl, entry, &start, &bytes);
2616 if (!ret) {
2617 if (start >= end) {
2618 spin_unlock(&ctl->tree_lock);
2619 break;
2620 }
2621 bytes = min(bytes, end - start);
2622 bitmap_clear_bits(ctl, entry, start, bytes);
2623 if (entry->bytes == 0)
2624 free_bitmap(ctl, entry);
2625 } else {
2626 start = entry->offset + BITS_PER_BITMAP *
2627 block_group->sectorsize;
2628 spin_unlock(&ctl->tree_lock);
2629 ret = 0;
2630 continue;
2631 }
2632 } else {
2633 start = entry->offset;
2634 bytes = min(entry->bytes, end - start);
2635 unlink_free_space(ctl, entry);
2636 kmem_cache_free(btrfs_free_space_cachep, entry);
2637 }
2638
2639 spin_unlock(&ctl->tree_lock);
2640
2641 if (bytes >= minlen) {
2642 struct btrfs_space_info *space_info;
2643 int update = 0;
2644
2645 space_info = block_group->space_info;
2646 spin_lock(&space_info->lock);
2647 spin_lock(&block_group->lock);
2648 if (!block_group->ro) {
2649 block_group->reserved += bytes;
2650 space_info->bytes_reserved += bytes;
2651 update = 1;
2652 }
2653 spin_unlock(&block_group->lock);
2654 spin_unlock(&space_info->lock);
2655
2656 ret = btrfs_error_discard_extent(fs_info->extent_root,
2657 start,
2658 bytes,
2659 &actually_trimmed);
2660
2661 btrfs_add_free_space(block_group, start, bytes);
2662 if (update) {
2663 spin_lock(&space_info->lock);
2664 spin_lock(&block_group->lock);
2665 if (block_group->ro)
2666 space_info->bytes_readonly += bytes;
2667 block_group->reserved -= bytes;
2668 space_info->bytes_reserved -= bytes;
2669 spin_unlock(&space_info->lock);
2670 spin_unlock(&block_group->lock);
2671 }
2672
2673 if (ret)
2674 break;
2675 *trimmed += actually_trimmed;
2676 }
2677 start += bytes;
2678 bytes = 0;
2679
2680 if (fatal_signal_pending(current)) {
2681 ret = -ERESTARTSYS;
2682 break;
2683 }
2684
2685 cond_resched();
2686 }
2687
2688 return ret;
2689 }
2690
2691 /*
2692 * Find the left-most item in the cache tree, and then return the
2693 * smallest inode number in the item.
2694 *
2695 * Note: the returned inode number may not be the smallest one in
2696 * the tree, if the left-most item is a bitmap.
2697 */
2698 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2699 {
2700 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2701 struct btrfs_free_space *entry = NULL;
2702 u64 ino = 0;
2703
2704 spin_lock(&ctl->tree_lock);
2705
2706 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2707 goto out;
2708
2709 entry = rb_entry(rb_first(&ctl->free_space_offset),
2710 struct btrfs_free_space, offset_index);
2711
2712 if (!entry->bitmap) {
2713 ino = entry->offset;
2714
2715 unlink_free_space(ctl, entry);
2716 entry->offset++;
2717 entry->bytes--;
2718 if (!entry->bytes)
2719 kmem_cache_free(btrfs_free_space_cachep, entry);
2720 else
2721 link_free_space(ctl, entry);
2722 } else {
2723 u64 offset = 0;
2724 u64 count = 1;
2725 int ret;
2726
2727 ret = search_bitmap(ctl, entry, &offset, &count);
2728 BUG_ON(ret);
2729
2730 ino = offset;
2731 bitmap_clear_bits(ctl, entry, offset, 1);
2732 if (entry->bytes == 0)
2733 free_bitmap(ctl, entry);
2734 }
2735 out:
2736 spin_unlock(&ctl->tree_lock);
2737
2738 return ino;
2739 }
2740
2741 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2742 struct btrfs_path *path)
2743 {
2744 struct inode *inode = NULL;
2745
2746 spin_lock(&root->cache_lock);
2747 if (root->cache_inode)
2748 inode = igrab(root->cache_inode);
2749 spin_unlock(&root->cache_lock);
2750 if (inode)
2751 return inode;
2752
2753 inode = __lookup_free_space_inode(root, path, 0);
2754 if (IS_ERR(inode))
2755 return inode;
2756
2757 spin_lock(&root->cache_lock);
2758 if (!btrfs_fs_closing(root->fs_info))
2759 root->cache_inode = igrab(inode);
2760 spin_unlock(&root->cache_lock);
2761
2762 return inode;
2763 }
2764
2765 int create_free_ino_inode(struct btrfs_root *root,
2766 struct btrfs_trans_handle *trans,
2767 struct btrfs_path *path)
2768 {
2769 return __create_free_space_inode(root, trans, path,
2770 BTRFS_FREE_INO_OBJECTID, 0);
2771 }
2772
2773 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2774 {
2775 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2776 struct btrfs_path *path;
2777 struct inode *inode;
2778 int ret = 0;
2779 u64 root_gen = btrfs_root_generation(&root->root_item);
2780
2781 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2782 return 0;
2783
2784 /*
2785 * If we're unmounting then just return, since this does a search on the
2786 * normal root and not the commit root and we could deadlock.
2787 */
2788 if (btrfs_fs_closing(fs_info))
2789 return 0;
2790
2791 path = btrfs_alloc_path();
2792 if (!path)
2793 return 0;
2794
2795 inode = lookup_free_ino_inode(root, path);
2796 if (IS_ERR(inode))
2797 goto out;
2798
2799 if (root_gen != BTRFS_I(inode)->generation)
2800 goto out_put;
2801
2802 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2803
2804 if (ret < 0)
2805 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2806 "root %llu\n", root->root_key.objectid);
2807 out_put:
2808 iput(inode);
2809 out:
2810 btrfs_free_path(path);
2811 return ret;
2812 }
2813
2814 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2815 struct btrfs_trans_handle *trans,
2816 struct btrfs_path *path)
2817 {
2818 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2819 struct inode *inode;
2820 int ret;
2821
2822 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2823 return 0;
2824
2825 inode = lookup_free_ino_inode(root, path);
2826 if (IS_ERR(inode))
2827 return 0;
2828
2829 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2830 if (ret) {
2831 btrfs_delalloc_release_metadata(inode, inode->i_size);
2832 #ifdef DEBUG
2833 printk(KERN_ERR "btrfs: failed to write free ino cache "
2834 "for root %llu\n", root->root_key.objectid);
2835 #endif
2836 }
2837
2838 iput(inode);
2839 return ret;
2840 }