]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/free-space-cache.c
e10c9668e4fdcc9fd1d1a9db9e841eee4bc123de
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / free-space-cache.c
1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31
32 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34
35 struct btrfs_trim_range {
36 u64 start;
37 u64 bytes;
38 struct list_head list;
39 };
40
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 struct btrfs_free_space *info);
45
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 struct btrfs_path *path,
48 u64 offset)
49 {
50 struct btrfs_key key;
51 struct btrfs_key location;
52 struct btrfs_disk_key disk_key;
53 struct btrfs_free_space_header *header;
54 struct extent_buffer *leaf;
55 struct inode *inode = NULL;
56 int ret;
57
58 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 key.offset = offset;
60 key.type = 0;
61
62 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 if (ret < 0)
64 return ERR_PTR(ret);
65 if (ret > 0) {
66 btrfs_release_path(path);
67 return ERR_PTR(-ENOENT);
68 }
69
70 leaf = path->nodes[0];
71 header = btrfs_item_ptr(leaf, path->slots[0],
72 struct btrfs_free_space_header);
73 btrfs_free_space_key(leaf, header, &disk_key);
74 btrfs_disk_key_to_cpu(&location, &disk_key);
75 btrfs_release_path(path);
76
77 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 if (!inode)
79 return ERR_PTR(-ENOENT);
80 if (IS_ERR(inode))
81 return inode;
82 if (is_bad_inode(inode)) {
83 iput(inode);
84 return ERR_PTR(-ENOENT);
85 }
86
87 mapping_set_gfp_mask(inode->i_mapping,
88 mapping_gfp_mask(inode->i_mapping) &
89 ~(__GFP_FS | __GFP_HIGHMEM));
90
91 return inode;
92 }
93
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 struct btrfs_block_group_cache
96 *block_group, struct btrfs_path *path)
97 {
98 struct inode *inode = NULL;
99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100
101 spin_lock(&block_group->lock);
102 if (block_group->inode)
103 inode = igrab(block_group->inode);
104 spin_unlock(&block_group->lock);
105 if (inode)
106 return inode;
107
108 inode = __lookup_free_space_inode(root, path,
109 block_group->key.objectid);
110 if (IS_ERR(inode))
111 return inode;
112
113 spin_lock(&block_group->lock);
114 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 btrfs_info(root->fs_info,
116 "Old style space inode found, converting.");
117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 BTRFS_INODE_NODATACOW;
119 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 }
121
122 if (!block_group->iref) {
123 block_group->inode = igrab(inode);
124 block_group->iref = 1;
125 }
126 spin_unlock(&block_group->lock);
127
128 return inode;
129 }
130
131 static int __create_free_space_inode(struct btrfs_root *root,
132 struct btrfs_trans_handle *trans,
133 struct btrfs_path *path,
134 u64 ino, u64 offset)
135 {
136 struct btrfs_key key;
137 struct btrfs_disk_key disk_key;
138 struct btrfs_free_space_header *header;
139 struct btrfs_inode_item *inode_item;
140 struct extent_buffer *leaf;
141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 int ret;
143
144 ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 if (ret)
146 return ret;
147
148 /* We inline crc's for the free disk space cache */
149 if (ino != BTRFS_FREE_INO_OBJECTID)
150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152 leaf = path->nodes[0];
153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_inode_item);
155 btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 sizeof(*inode_item));
158 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 btrfs_set_inode_size(leaf, inode_item, 0);
160 btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 btrfs_set_inode_uid(leaf, inode_item, 0);
162 btrfs_set_inode_gid(leaf, inode_item, 0);
163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 btrfs_set_inode_flags(leaf, inode_item, flags);
165 btrfs_set_inode_nlink(leaf, inode_item, 1);
166 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 btrfs_set_inode_block_group(leaf, inode_item, offset);
168 btrfs_mark_buffer_dirty(leaf);
169 btrfs_release_path(path);
170
171 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 key.offset = offset;
173 key.type = 0;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 sizeof(struct btrfs_free_space_header));
176 if (ret < 0) {
177 btrfs_release_path(path);
178 return ret;
179 }
180
181 leaf = path->nodes[0];
182 header = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_free_space_header);
184 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 btrfs_set_free_space_key(leaf, header, &disk_key);
186 btrfs_mark_buffer_dirty(leaf);
187 btrfs_release_path(path);
188
189 return 0;
190 }
191
192 int create_free_space_inode(struct btrfs_root *root,
193 struct btrfs_trans_handle *trans,
194 struct btrfs_block_group_cache *block_group,
195 struct btrfs_path *path)
196 {
197 int ret;
198 u64 ino;
199
200 ret = btrfs_find_free_objectid(root, &ino);
201 if (ret < 0)
202 return ret;
203
204 return __create_free_space_inode(root, trans, path, ino,
205 block_group->key.objectid);
206 }
207
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 struct btrfs_block_rsv *rsv)
210 {
211 u64 needed_bytes;
212 int ret;
213
214 /* 1 for slack space, 1 for updating the inode */
215 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 btrfs_calc_trans_metadata_size(root, 1);
217
218 spin_lock(&rsv->lock);
219 if (rsv->reserved < needed_bytes)
220 ret = -ENOSPC;
221 else
222 ret = 0;
223 spin_unlock(&rsv->lock);
224 return ret;
225 }
226
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 struct btrfs_trans_handle *trans,
229 struct btrfs_block_group_cache *block_group,
230 struct inode *inode)
231 {
232 int ret = 0;
233 struct btrfs_path *path = btrfs_alloc_path();
234 bool locked = false;
235
236 if (!path) {
237 ret = -ENOMEM;
238 goto fail;
239 }
240
241 if (block_group) {
242 locked = true;
243 mutex_lock(&trans->transaction->cache_write_mutex);
244 if (!list_empty(&block_group->io_list)) {
245 list_del_init(&block_group->io_list);
246
247 btrfs_wait_cache_io(root, trans, block_group,
248 &block_group->io_ctl, path,
249 block_group->key.objectid);
250 btrfs_put_block_group(block_group);
251 }
252
253 /*
254 * now that we've truncated the cache away, its no longer
255 * setup or written
256 */
257 spin_lock(&block_group->lock);
258 block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 spin_unlock(&block_group->lock);
260 }
261 btrfs_free_path(path);
262
263 btrfs_i_size_write(inode, 0);
264 truncate_pagecache(inode, 0);
265
266 /*
267 * We don't need an orphan item because truncating the free space cache
268 * will never be split across transactions.
269 * We don't need to check for -EAGAIN because we're a free space
270 * cache inode
271 */
272 ret = btrfs_truncate_inode_items(trans, root, inode,
273 0, BTRFS_EXTENT_DATA_KEY);
274 if (ret)
275 goto fail;
276
277 ret = btrfs_update_inode(trans, root, inode);
278
279 fail:
280 if (locked)
281 mutex_unlock(&trans->transaction->cache_write_mutex);
282 if (ret)
283 btrfs_abort_transaction(trans, root, ret);
284
285 return ret;
286 }
287
288 static int readahead_cache(struct inode *inode)
289 {
290 struct file_ra_state *ra;
291 unsigned long last_index;
292
293 ra = kzalloc(sizeof(*ra), GFP_NOFS);
294 if (!ra)
295 return -ENOMEM;
296
297 file_ra_state_init(ra, inode->i_mapping);
298 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
299
300 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301
302 kfree(ra);
303
304 return 0;
305 }
306
307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308 struct btrfs_root *root, int write)
309 {
310 int num_pages;
311 int check_crcs = 0;
312
313 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
314
315 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
316 check_crcs = 1;
317
318 /* Make sure we can fit our crcs into the first page */
319 if (write && check_crcs &&
320 (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
321 return -ENOSPC;
322
323 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324
325 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 if (!io_ctl->pages)
327 return -ENOMEM;
328
329 io_ctl->num_pages = num_pages;
330 io_ctl->root = root;
331 io_ctl->check_crcs = check_crcs;
332 io_ctl->inode = inode;
333
334 return 0;
335 }
336
337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 {
339 kfree(io_ctl->pages);
340 io_ctl->pages = NULL;
341 }
342
343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 {
345 if (io_ctl->cur) {
346 io_ctl->cur = NULL;
347 io_ctl->orig = NULL;
348 }
349 }
350
351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352 {
353 ASSERT(io_ctl->index < io_ctl->num_pages);
354 io_ctl->page = io_ctl->pages[io_ctl->index++];
355 io_ctl->cur = page_address(io_ctl->page);
356 io_ctl->orig = io_ctl->cur;
357 io_ctl->size = PAGE_CACHE_SIZE;
358 if (clear)
359 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
360 }
361
362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 {
364 int i;
365
366 io_ctl_unmap_page(io_ctl);
367
368 for (i = 0; i < io_ctl->num_pages; i++) {
369 if (io_ctl->pages[i]) {
370 ClearPageChecked(io_ctl->pages[i]);
371 unlock_page(io_ctl->pages[i]);
372 page_cache_release(io_ctl->pages[i]);
373 }
374 }
375 }
376
377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 int uptodate)
379 {
380 struct page *page;
381 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
382 int i;
383
384 for (i = 0; i < io_ctl->num_pages; i++) {
385 page = find_or_create_page(inode->i_mapping, i, mask);
386 if (!page) {
387 io_ctl_drop_pages(io_ctl);
388 return -ENOMEM;
389 }
390 io_ctl->pages[i] = page;
391 if (uptodate && !PageUptodate(page)) {
392 btrfs_readpage(NULL, page);
393 lock_page(page);
394 if (!PageUptodate(page)) {
395 btrfs_err(BTRFS_I(inode)->root->fs_info,
396 "error reading free space cache");
397 io_ctl_drop_pages(io_ctl);
398 return -EIO;
399 }
400 }
401 }
402
403 for (i = 0; i < io_ctl->num_pages; i++) {
404 clear_page_dirty_for_io(io_ctl->pages[i]);
405 set_page_extent_mapped(io_ctl->pages[i]);
406 }
407
408 return 0;
409 }
410
411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413 __le64 *val;
414
415 io_ctl_map_page(io_ctl, 1);
416
417 /*
418 * Skip the csum areas. If we don't check crcs then we just have a
419 * 64bit chunk at the front of the first page.
420 */
421 if (io_ctl->check_crcs) {
422 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424 } else {
425 io_ctl->cur += sizeof(u64);
426 io_ctl->size -= sizeof(u64) * 2;
427 }
428
429 val = io_ctl->cur;
430 *val = cpu_to_le64(generation);
431 io_ctl->cur += sizeof(u64);
432 }
433
434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436 __le64 *gen;
437
438 /*
439 * Skip the crc area. If we don't check crcs then we just have a 64bit
440 * chunk at the front of the first page.
441 */
442 if (io_ctl->check_crcs) {
443 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444 io_ctl->size -= sizeof(u64) +
445 (sizeof(u32) * io_ctl->num_pages);
446 } else {
447 io_ctl->cur += sizeof(u64);
448 io_ctl->size -= sizeof(u64) * 2;
449 }
450
451 gen = io_ctl->cur;
452 if (le64_to_cpu(*gen) != generation) {
453 btrfs_err_rl(io_ctl->root->fs_info,
454 "space cache generation (%llu) does not match inode (%llu)",
455 *gen, generation);
456 io_ctl_unmap_page(io_ctl);
457 return -EIO;
458 }
459 io_ctl->cur += sizeof(u64);
460 return 0;
461 }
462
463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465 u32 *tmp;
466 u32 crc = ~(u32)0;
467 unsigned offset = 0;
468
469 if (!io_ctl->check_crcs) {
470 io_ctl_unmap_page(io_ctl);
471 return;
472 }
473
474 if (index == 0)
475 offset = sizeof(u32) * io_ctl->num_pages;
476
477 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478 PAGE_CACHE_SIZE - offset);
479 btrfs_csum_final(crc, (char *)&crc);
480 io_ctl_unmap_page(io_ctl);
481 tmp = page_address(io_ctl->pages[0]);
482 tmp += index;
483 *tmp = crc;
484 }
485
486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 {
488 u32 *tmp, val;
489 u32 crc = ~(u32)0;
490 unsigned offset = 0;
491
492 if (!io_ctl->check_crcs) {
493 io_ctl_map_page(io_ctl, 0);
494 return 0;
495 }
496
497 if (index == 0)
498 offset = sizeof(u32) * io_ctl->num_pages;
499
500 tmp = page_address(io_ctl->pages[0]);
501 tmp += index;
502 val = *tmp;
503
504 io_ctl_map_page(io_ctl, 0);
505 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506 PAGE_CACHE_SIZE - offset);
507 btrfs_csum_final(crc, (char *)&crc);
508 if (val != crc) {
509 btrfs_err_rl(io_ctl->root->fs_info,
510 "csum mismatch on free space cache");
511 io_ctl_unmap_page(io_ctl);
512 return -EIO;
513 }
514
515 return 0;
516 }
517
518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 void *bitmap)
520 {
521 struct btrfs_free_space_entry *entry;
522
523 if (!io_ctl->cur)
524 return -ENOSPC;
525
526 entry = io_ctl->cur;
527 entry->offset = cpu_to_le64(offset);
528 entry->bytes = cpu_to_le64(bytes);
529 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
530 BTRFS_FREE_SPACE_EXTENT;
531 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
532 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
533
534 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
535 return 0;
536
537 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538
539 /* No more pages to map */
540 if (io_ctl->index >= io_ctl->num_pages)
541 return 0;
542
543 /* map the next page */
544 io_ctl_map_page(io_ctl, 1);
545 return 0;
546 }
547
548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 {
550 if (!io_ctl->cur)
551 return -ENOSPC;
552
553 /*
554 * If we aren't at the start of the current page, unmap this one and
555 * map the next one if there is any left.
556 */
557 if (io_ctl->cur != io_ctl->orig) {
558 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 if (io_ctl->index >= io_ctl->num_pages)
560 return -ENOSPC;
561 io_ctl_map_page(io_ctl, 0);
562 }
563
564 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
565 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 if (io_ctl->index < io_ctl->num_pages)
567 io_ctl_map_page(io_ctl, 0);
568 return 0;
569 }
570
571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572 {
573 /*
574 * If we're not on the boundary we know we've modified the page and we
575 * need to crc the page.
576 */
577 if (io_ctl->cur != io_ctl->orig)
578 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
579 else
580 io_ctl_unmap_page(io_ctl);
581
582 while (io_ctl->index < io_ctl->num_pages) {
583 io_ctl_map_page(io_ctl, 1);
584 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 }
586 }
587
588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589 struct btrfs_free_space *entry, u8 *type)
590 {
591 struct btrfs_free_space_entry *e;
592 int ret;
593
594 if (!io_ctl->cur) {
595 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
596 if (ret)
597 return ret;
598 }
599
600 e = io_ctl->cur;
601 entry->offset = le64_to_cpu(e->offset);
602 entry->bytes = le64_to_cpu(e->bytes);
603 *type = e->type;
604 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
605 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
606
607 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608 return 0;
609
610 io_ctl_unmap_page(io_ctl);
611
612 return 0;
613 }
614
615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616 struct btrfs_free_space *entry)
617 {
618 int ret;
619
620 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
621 if (ret)
622 return ret;
623
624 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
625 io_ctl_unmap_page(io_ctl);
626
627 return 0;
628 }
629
630 /*
631 * Since we attach pinned extents after the fact we can have contiguous sections
632 * of free space that are split up in entries. This poses a problem with the
633 * tree logging stuff since it could have allocated across what appears to be 2
634 * entries since we would have merged the entries when adding the pinned extents
635 * back to the free space cache. So run through the space cache that we just
636 * loaded and merge contiguous entries. This will make the log replay stuff not
637 * blow up and it will make for nicer allocator behavior.
638 */
639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
640 {
641 struct btrfs_free_space *e, *prev = NULL;
642 struct rb_node *n;
643
644 again:
645 spin_lock(&ctl->tree_lock);
646 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
647 e = rb_entry(n, struct btrfs_free_space, offset_index);
648 if (!prev)
649 goto next;
650 if (e->bitmap || prev->bitmap)
651 goto next;
652 if (prev->offset + prev->bytes == e->offset) {
653 unlink_free_space(ctl, prev);
654 unlink_free_space(ctl, e);
655 prev->bytes += e->bytes;
656 kmem_cache_free(btrfs_free_space_cachep, e);
657 link_free_space(ctl, prev);
658 prev = NULL;
659 spin_unlock(&ctl->tree_lock);
660 goto again;
661 }
662 next:
663 prev = e;
664 }
665 spin_unlock(&ctl->tree_lock);
666 }
667
668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
669 struct btrfs_free_space_ctl *ctl,
670 struct btrfs_path *path, u64 offset)
671 {
672 struct btrfs_free_space_header *header;
673 struct extent_buffer *leaf;
674 struct btrfs_io_ctl io_ctl;
675 struct btrfs_key key;
676 struct btrfs_free_space *e, *n;
677 LIST_HEAD(bitmaps);
678 u64 num_entries;
679 u64 num_bitmaps;
680 u64 generation;
681 u8 type;
682 int ret = 0;
683
684 /* Nothing in the space cache, goodbye */
685 if (!i_size_read(inode))
686 return 0;
687
688 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689 key.offset = offset;
690 key.type = 0;
691
692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693 if (ret < 0)
694 return 0;
695 else if (ret > 0) {
696 btrfs_release_path(path);
697 return 0;
698 }
699
700 ret = -1;
701
702 leaf = path->nodes[0];
703 header = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_free_space_header);
705 num_entries = btrfs_free_space_entries(leaf, header);
706 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 generation = btrfs_free_space_generation(leaf, header);
708 btrfs_release_path(path);
709
710 if (!BTRFS_I(inode)->generation) {
711 btrfs_info(root->fs_info,
712 "The free space cache file (%llu) is invalid. skip it\n",
713 offset);
714 return 0;
715 }
716
717 if (BTRFS_I(inode)->generation != generation) {
718 btrfs_err(root->fs_info,
719 "free space inode generation (%llu) "
720 "did not match free space cache generation (%llu)",
721 BTRFS_I(inode)->generation, generation);
722 return 0;
723 }
724
725 if (!num_entries)
726 return 0;
727
728 ret = io_ctl_init(&io_ctl, inode, root, 0);
729 if (ret)
730 return ret;
731
732 ret = readahead_cache(inode);
733 if (ret)
734 goto out;
735
736 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
737 if (ret)
738 goto out;
739
740 ret = io_ctl_check_crc(&io_ctl, 0);
741 if (ret)
742 goto free_cache;
743
744 ret = io_ctl_check_generation(&io_ctl, generation);
745 if (ret)
746 goto free_cache;
747
748 while (num_entries) {
749 e = kmem_cache_zalloc(btrfs_free_space_cachep,
750 GFP_NOFS);
751 if (!e)
752 goto free_cache;
753
754 ret = io_ctl_read_entry(&io_ctl, e, &type);
755 if (ret) {
756 kmem_cache_free(btrfs_free_space_cachep, e);
757 goto free_cache;
758 }
759
760 if (!e->bytes) {
761 kmem_cache_free(btrfs_free_space_cachep, e);
762 goto free_cache;
763 }
764
765 if (type == BTRFS_FREE_SPACE_EXTENT) {
766 spin_lock(&ctl->tree_lock);
767 ret = link_free_space(ctl, e);
768 spin_unlock(&ctl->tree_lock);
769 if (ret) {
770 btrfs_err(root->fs_info,
771 "Duplicate entries in free space cache, dumping");
772 kmem_cache_free(btrfs_free_space_cachep, e);
773 goto free_cache;
774 }
775 } else {
776 ASSERT(num_bitmaps);
777 num_bitmaps--;
778 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
779 if (!e->bitmap) {
780 kmem_cache_free(
781 btrfs_free_space_cachep, e);
782 goto free_cache;
783 }
784 spin_lock(&ctl->tree_lock);
785 ret = link_free_space(ctl, e);
786 ctl->total_bitmaps++;
787 ctl->op->recalc_thresholds(ctl);
788 spin_unlock(&ctl->tree_lock);
789 if (ret) {
790 btrfs_err(root->fs_info,
791 "Duplicate entries in free space cache, dumping");
792 kmem_cache_free(btrfs_free_space_cachep, e);
793 goto free_cache;
794 }
795 list_add_tail(&e->list, &bitmaps);
796 }
797
798 num_entries--;
799 }
800
801 io_ctl_unmap_page(&io_ctl);
802
803 /*
804 * We add the bitmaps at the end of the entries in order that
805 * the bitmap entries are added to the cache.
806 */
807 list_for_each_entry_safe(e, n, &bitmaps, list) {
808 list_del_init(&e->list);
809 ret = io_ctl_read_bitmap(&io_ctl, e);
810 if (ret)
811 goto free_cache;
812 }
813
814 io_ctl_drop_pages(&io_ctl);
815 merge_space_tree(ctl);
816 ret = 1;
817 out:
818 io_ctl_free(&io_ctl);
819 return ret;
820 free_cache:
821 io_ctl_drop_pages(&io_ctl);
822 __btrfs_remove_free_space_cache(ctl);
823 goto out;
824 }
825
826 int load_free_space_cache(struct btrfs_fs_info *fs_info,
827 struct btrfs_block_group_cache *block_group)
828 {
829 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
830 struct btrfs_root *root = fs_info->tree_root;
831 struct inode *inode;
832 struct btrfs_path *path;
833 int ret = 0;
834 bool matched;
835 u64 used = btrfs_block_group_used(&block_group->item);
836
837 /*
838 * If this block group has been marked to be cleared for one reason or
839 * another then we can't trust the on disk cache, so just return.
840 */
841 spin_lock(&block_group->lock);
842 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
843 spin_unlock(&block_group->lock);
844 return 0;
845 }
846 spin_unlock(&block_group->lock);
847
848 path = btrfs_alloc_path();
849 if (!path)
850 return 0;
851 path->search_commit_root = 1;
852 path->skip_locking = 1;
853
854 inode = lookup_free_space_inode(root, block_group, path);
855 if (IS_ERR(inode)) {
856 btrfs_free_path(path);
857 return 0;
858 }
859
860 /* We may have converted the inode and made the cache invalid. */
861 spin_lock(&block_group->lock);
862 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
863 spin_unlock(&block_group->lock);
864 btrfs_free_path(path);
865 goto out;
866 }
867 spin_unlock(&block_group->lock);
868
869 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
870 path, block_group->key.objectid);
871 btrfs_free_path(path);
872 if (ret <= 0)
873 goto out;
874
875 spin_lock(&ctl->tree_lock);
876 matched = (ctl->free_space == (block_group->key.offset - used -
877 block_group->bytes_super));
878 spin_unlock(&ctl->tree_lock);
879
880 if (!matched) {
881 __btrfs_remove_free_space_cache(ctl);
882 btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
883 block_group->key.objectid);
884 ret = -1;
885 }
886 out:
887 if (ret < 0) {
888 /* This cache is bogus, make sure it gets cleared */
889 spin_lock(&block_group->lock);
890 block_group->disk_cache_state = BTRFS_DC_CLEAR;
891 spin_unlock(&block_group->lock);
892 ret = 0;
893
894 btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
895 block_group->key.objectid);
896 }
897
898 iput(inode);
899 return ret;
900 }
901
902 static noinline_for_stack
903 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
904 struct btrfs_free_space_ctl *ctl,
905 struct btrfs_block_group_cache *block_group,
906 int *entries, int *bitmaps,
907 struct list_head *bitmap_list)
908 {
909 int ret;
910 struct btrfs_free_cluster *cluster = NULL;
911 struct btrfs_free_cluster *cluster_locked = NULL;
912 struct rb_node *node = rb_first(&ctl->free_space_offset);
913 struct btrfs_trim_range *trim_entry;
914
915 /* Get the cluster for this block_group if it exists */
916 if (block_group && !list_empty(&block_group->cluster_list)) {
917 cluster = list_entry(block_group->cluster_list.next,
918 struct btrfs_free_cluster,
919 block_group_list);
920 }
921
922 if (!node && cluster) {
923 cluster_locked = cluster;
924 spin_lock(&cluster_locked->lock);
925 node = rb_first(&cluster->root);
926 cluster = NULL;
927 }
928
929 /* Write out the extent entries */
930 while (node) {
931 struct btrfs_free_space *e;
932
933 e = rb_entry(node, struct btrfs_free_space, offset_index);
934 *entries += 1;
935
936 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
937 e->bitmap);
938 if (ret)
939 goto fail;
940
941 if (e->bitmap) {
942 list_add_tail(&e->list, bitmap_list);
943 *bitmaps += 1;
944 }
945 node = rb_next(node);
946 if (!node && cluster) {
947 node = rb_first(&cluster->root);
948 cluster_locked = cluster;
949 spin_lock(&cluster_locked->lock);
950 cluster = NULL;
951 }
952 }
953 if (cluster_locked) {
954 spin_unlock(&cluster_locked->lock);
955 cluster_locked = NULL;
956 }
957
958 /*
959 * Make sure we don't miss any range that was removed from our rbtree
960 * because trimming is running. Otherwise after a umount+mount (or crash
961 * after committing the transaction) we would leak free space and get
962 * an inconsistent free space cache report from fsck.
963 */
964 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
965 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
966 trim_entry->bytes, NULL);
967 if (ret)
968 goto fail;
969 *entries += 1;
970 }
971
972 return 0;
973 fail:
974 if (cluster_locked)
975 spin_unlock(&cluster_locked->lock);
976 return -ENOSPC;
977 }
978
979 static noinline_for_stack int
980 update_cache_item(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct inode *inode,
983 struct btrfs_path *path, u64 offset,
984 int entries, int bitmaps)
985 {
986 struct btrfs_key key;
987 struct btrfs_free_space_header *header;
988 struct extent_buffer *leaf;
989 int ret;
990
991 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
992 key.offset = offset;
993 key.type = 0;
994
995 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
996 if (ret < 0) {
997 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
998 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
999 GFP_NOFS);
1000 goto fail;
1001 }
1002 leaf = path->nodes[0];
1003 if (ret > 0) {
1004 struct btrfs_key found_key;
1005 ASSERT(path->slots[0]);
1006 path->slots[0]--;
1007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1008 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1009 found_key.offset != offset) {
1010 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1011 inode->i_size - 1,
1012 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1013 NULL, GFP_NOFS);
1014 btrfs_release_path(path);
1015 goto fail;
1016 }
1017 }
1018
1019 BTRFS_I(inode)->generation = trans->transid;
1020 header = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_free_space_header);
1022 btrfs_set_free_space_entries(leaf, header, entries);
1023 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1024 btrfs_set_free_space_generation(leaf, header, trans->transid);
1025 btrfs_mark_buffer_dirty(leaf);
1026 btrfs_release_path(path);
1027
1028 return 0;
1029
1030 fail:
1031 return -1;
1032 }
1033
1034 static noinline_for_stack int
1035 write_pinned_extent_entries(struct btrfs_root *root,
1036 struct btrfs_block_group_cache *block_group,
1037 struct btrfs_io_ctl *io_ctl,
1038 int *entries)
1039 {
1040 u64 start, extent_start, extent_end, len;
1041 struct extent_io_tree *unpin = NULL;
1042 int ret;
1043
1044 if (!block_group)
1045 return 0;
1046
1047 /*
1048 * We want to add any pinned extents to our free space cache
1049 * so we don't leak the space
1050 *
1051 * We shouldn't have switched the pinned extents yet so this is the
1052 * right one
1053 */
1054 unpin = root->fs_info->pinned_extents;
1055
1056 start = block_group->key.objectid;
1057
1058 while (start < block_group->key.objectid + block_group->key.offset) {
1059 ret = find_first_extent_bit(unpin, start,
1060 &extent_start, &extent_end,
1061 EXTENT_DIRTY, NULL);
1062 if (ret)
1063 return 0;
1064
1065 /* This pinned extent is out of our range */
1066 if (extent_start >= block_group->key.objectid +
1067 block_group->key.offset)
1068 return 0;
1069
1070 extent_start = max(extent_start, start);
1071 extent_end = min(block_group->key.objectid +
1072 block_group->key.offset, extent_end + 1);
1073 len = extent_end - extent_start;
1074
1075 *entries += 1;
1076 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1077 if (ret)
1078 return -ENOSPC;
1079
1080 start = extent_end;
1081 }
1082
1083 return 0;
1084 }
1085
1086 static noinline_for_stack int
1087 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1088 {
1089 struct list_head *pos, *n;
1090 int ret;
1091
1092 /* Write out the bitmaps */
1093 list_for_each_safe(pos, n, bitmap_list) {
1094 struct btrfs_free_space *entry =
1095 list_entry(pos, struct btrfs_free_space, list);
1096
1097 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1098 if (ret)
1099 return -ENOSPC;
1100 list_del_init(&entry->list);
1101 }
1102
1103 return 0;
1104 }
1105
1106 static int flush_dirty_cache(struct inode *inode)
1107 {
1108 int ret;
1109
1110 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1111 if (ret)
1112 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1113 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1114 GFP_NOFS);
1115
1116 return ret;
1117 }
1118
1119 static void noinline_for_stack
1120 cleanup_bitmap_list(struct list_head *bitmap_list)
1121 {
1122 struct list_head *pos, *n;
1123
1124 list_for_each_safe(pos, n, bitmap_list) {
1125 struct btrfs_free_space *entry =
1126 list_entry(pos, struct btrfs_free_space, list);
1127 list_del_init(&entry->list);
1128 }
1129 }
1130
1131 static void noinline_for_stack
1132 cleanup_write_cache_enospc(struct inode *inode,
1133 struct btrfs_io_ctl *io_ctl,
1134 struct extent_state **cached_state,
1135 struct list_head *bitmap_list)
1136 {
1137 io_ctl_drop_pages(io_ctl);
1138 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139 i_size_read(inode) - 1, cached_state,
1140 GFP_NOFS);
1141 }
1142
1143 int btrfs_wait_cache_io(struct btrfs_root *root,
1144 struct btrfs_trans_handle *trans,
1145 struct btrfs_block_group_cache *block_group,
1146 struct btrfs_io_ctl *io_ctl,
1147 struct btrfs_path *path, u64 offset)
1148 {
1149 int ret;
1150 struct inode *inode = io_ctl->inode;
1151
1152 if (!inode)
1153 return 0;
1154
1155 if (block_group)
1156 root = root->fs_info->tree_root;
1157
1158 /* Flush the dirty pages in the cache file. */
1159 ret = flush_dirty_cache(inode);
1160 if (ret)
1161 goto out;
1162
1163 /* Update the cache item to tell everyone this cache file is valid. */
1164 ret = update_cache_item(trans, root, inode, path, offset,
1165 io_ctl->entries, io_ctl->bitmaps);
1166 out:
1167 io_ctl_free(io_ctl);
1168 if (ret) {
1169 invalidate_inode_pages2(inode->i_mapping);
1170 BTRFS_I(inode)->generation = 0;
1171 if (block_group) {
1172 #ifdef DEBUG
1173 btrfs_err(root->fs_info,
1174 "failed to write free space cache for block group %llu",
1175 block_group->key.objectid);
1176 #endif
1177 }
1178 }
1179 btrfs_update_inode(trans, root, inode);
1180
1181 if (block_group) {
1182 /* the dirty list is protected by the dirty_bgs_lock */
1183 spin_lock(&trans->transaction->dirty_bgs_lock);
1184
1185 /* the disk_cache_state is protected by the block group lock */
1186 spin_lock(&block_group->lock);
1187
1188 /*
1189 * only mark this as written if we didn't get put back on
1190 * the dirty list while waiting for IO. Otherwise our
1191 * cache state won't be right, and we won't get written again
1192 */
1193 if (!ret && list_empty(&block_group->dirty_list))
1194 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1195 else if (ret)
1196 block_group->disk_cache_state = BTRFS_DC_ERROR;
1197
1198 spin_unlock(&block_group->lock);
1199 spin_unlock(&trans->transaction->dirty_bgs_lock);
1200 io_ctl->inode = NULL;
1201 iput(inode);
1202 }
1203
1204 return ret;
1205
1206 }
1207
1208 /**
1209 * __btrfs_write_out_cache - write out cached info to an inode
1210 * @root - the root the inode belongs to
1211 * @ctl - the free space cache we are going to write out
1212 * @block_group - the block_group for this cache if it belongs to a block_group
1213 * @trans - the trans handle
1214 * @path - the path to use
1215 * @offset - the offset for the key we'll insert
1216 *
1217 * This function writes out a free space cache struct to disk for quick recovery
1218 * on mount. This will return 0 if it was successful in writing the cache out,
1219 * or an errno if it was not.
1220 */
1221 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1222 struct btrfs_free_space_ctl *ctl,
1223 struct btrfs_block_group_cache *block_group,
1224 struct btrfs_io_ctl *io_ctl,
1225 struct btrfs_trans_handle *trans,
1226 struct btrfs_path *path, u64 offset)
1227 {
1228 struct extent_state *cached_state = NULL;
1229 LIST_HEAD(bitmap_list);
1230 int entries = 0;
1231 int bitmaps = 0;
1232 int ret;
1233 int must_iput = 0;
1234
1235 if (!i_size_read(inode))
1236 return -EIO;
1237
1238 WARN_ON(io_ctl->pages);
1239 ret = io_ctl_init(io_ctl, inode, root, 1);
1240 if (ret)
1241 return ret;
1242
1243 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1244 down_write(&block_group->data_rwsem);
1245 spin_lock(&block_group->lock);
1246 if (block_group->delalloc_bytes) {
1247 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1248 spin_unlock(&block_group->lock);
1249 up_write(&block_group->data_rwsem);
1250 BTRFS_I(inode)->generation = 0;
1251 ret = 0;
1252 must_iput = 1;
1253 goto out;
1254 }
1255 spin_unlock(&block_group->lock);
1256 }
1257
1258 /* Lock all pages first so we can lock the extent safely. */
1259 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1260 if (ret)
1261 goto out;
1262
1263 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1264 0, &cached_state);
1265
1266 io_ctl_set_generation(io_ctl, trans->transid);
1267
1268 mutex_lock(&ctl->cache_writeout_mutex);
1269 /* Write out the extent entries in the free space cache */
1270 spin_lock(&ctl->tree_lock);
1271 ret = write_cache_extent_entries(io_ctl, ctl,
1272 block_group, &entries, &bitmaps,
1273 &bitmap_list);
1274 if (ret)
1275 goto out_nospc_locked;
1276
1277 /*
1278 * Some spaces that are freed in the current transaction are pinned,
1279 * they will be added into free space cache after the transaction is
1280 * committed, we shouldn't lose them.
1281 *
1282 * If this changes while we are working we'll get added back to
1283 * the dirty list and redo it. No locking needed
1284 */
1285 ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1286 if (ret)
1287 goto out_nospc_locked;
1288
1289 /*
1290 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1291 * locked while doing it because a concurrent trim can be manipulating
1292 * or freeing the bitmap.
1293 */
1294 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1295 spin_unlock(&ctl->tree_lock);
1296 mutex_unlock(&ctl->cache_writeout_mutex);
1297 if (ret)
1298 goto out_nospc;
1299
1300 /* Zero out the rest of the pages just to make sure */
1301 io_ctl_zero_remaining_pages(io_ctl);
1302
1303 /* Everything is written out, now we dirty the pages in the file. */
1304 ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1305 0, i_size_read(inode), &cached_state);
1306 if (ret)
1307 goto out_nospc;
1308
1309 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1310 up_write(&block_group->data_rwsem);
1311 /*
1312 * Release the pages and unlock the extent, we will flush
1313 * them out later
1314 */
1315 io_ctl_drop_pages(io_ctl);
1316
1317 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1318 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1319
1320 /*
1321 * at this point the pages are under IO and we're happy,
1322 * The caller is responsible for waiting on them and updating the
1323 * the cache and the inode
1324 */
1325 io_ctl->entries = entries;
1326 io_ctl->bitmaps = bitmaps;
1327
1328 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1329 if (ret)
1330 goto out;
1331
1332 return 0;
1333
1334 out:
1335 io_ctl->inode = NULL;
1336 io_ctl_free(io_ctl);
1337 if (ret) {
1338 invalidate_inode_pages2(inode->i_mapping);
1339 BTRFS_I(inode)->generation = 0;
1340 }
1341 btrfs_update_inode(trans, root, inode);
1342 if (must_iput)
1343 iput(inode);
1344 return ret;
1345
1346 out_nospc_locked:
1347 cleanup_bitmap_list(&bitmap_list);
1348 spin_unlock(&ctl->tree_lock);
1349 mutex_unlock(&ctl->cache_writeout_mutex);
1350
1351 out_nospc:
1352 cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1353
1354 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1355 up_write(&block_group->data_rwsem);
1356
1357 goto out;
1358 }
1359
1360 int btrfs_write_out_cache(struct btrfs_root *root,
1361 struct btrfs_trans_handle *trans,
1362 struct btrfs_block_group_cache *block_group,
1363 struct btrfs_path *path)
1364 {
1365 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1366 struct inode *inode;
1367 int ret = 0;
1368
1369 root = root->fs_info->tree_root;
1370
1371 spin_lock(&block_group->lock);
1372 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1373 spin_unlock(&block_group->lock);
1374 return 0;
1375 }
1376 spin_unlock(&block_group->lock);
1377
1378 inode = lookup_free_space_inode(root, block_group, path);
1379 if (IS_ERR(inode))
1380 return 0;
1381
1382 ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1383 &block_group->io_ctl, trans,
1384 path, block_group->key.objectid);
1385 if (ret) {
1386 #ifdef DEBUG
1387 btrfs_err(root->fs_info,
1388 "failed to write free space cache for block group %llu",
1389 block_group->key.objectid);
1390 #endif
1391 spin_lock(&block_group->lock);
1392 block_group->disk_cache_state = BTRFS_DC_ERROR;
1393 spin_unlock(&block_group->lock);
1394
1395 block_group->io_ctl.inode = NULL;
1396 iput(inode);
1397 }
1398
1399 /*
1400 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1401 * to wait for IO and put the inode
1402 */
1403
1404 return ret;
1405 }
1406
1407 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1408 u64 offset)
1409 {
1410 ASSERT(offset >= bitmap_start);
1411 offset -= bitmap_start;
1412 return (unsigned long)(div_u64(offset, unit));
1413 }
1414
1415 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1416 {
1417 return (unsigned long)(div_u64(bytes, unit));
1418 }
1419
1420 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1421 u64 offset)
1422 {
1423 u64 bitmap_start;
1424 u32 bytes_per_bitmap;
1425
1426 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1427 bitmap_start = offset - ctl->start;
1428 bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1429 bitmap_start *= bytes_per_bitmap;
1430 bitmap_start += ctl->start;
1431
1432 return bitmap_start;
1433 }
1434
1435 static int tree_insert_offset(struct rb_root *root, u64 offset,
1436 struct rb_node *node, int bitmap)
1437 {
1438 struct rb_node **p = &root->rb_node;
1439 struct rb_node *parent = NULL;
1440 struct btrfs_free_space *info;
1441
1442 while (*p) {
1443 parent = *p;
1444 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1445
1446 if (offset < info->offset) {
1447 p = &(*p)->rb_left;
1448 } else if (offset > info->offset) {
1449 p = &(*p)->rb_right;
1450 } else {
1451 /*
1452 * we could have a bitmap entry and an extent entry
1453 * share the same offset. If this is the case, we want
1454 * the extent entry to always be found first if we do a
1455 * linear search through the tree, since we want to have
1456 * the quickest allocation time, and allocating from an
1457 * extent is faster than allocating from a bitmap. So
1458 * if we're inserting a bitmap and we find an entry at
1459 * this offset, we want to go right, or after this entry
1460 * logically. If we are inserting an extent and we've
1461 * found a bitmap, we want to go left, or before
1462 * logically.
1463 */
1464 if (bitmap) {
1465 if (info->bitmap) {
1466 WARN_ON_ONCE(1);
1467 return -EEXIST;
1468 }
1469 p = &(*p)->rb_right;
1470 } else {
1471 if (!info->bitmap) {
1472 WARN_ON_ONCE(1);
1473 return -EEXIST;
1474 }
1475 p = &(*p)->rb_left;
1476 }
1477 }
1478 }
1479
1480 rb_link_node(node, parent, p);
1481 rb_insert_color(node, root);
1482
1483 return 0;
1484 }
1485
1486 /*
1487 * searches the tree for the given offset.
1488 *
1489 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1490 * want a section that has at least bytes size and comes at or after the given
1491 * offset.
1492 */
1493 static struct btrfs_free_space *
1494 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1495 u64 offset, int bitmap_only, int fuzzy)
1496 {
1497 struct rb_node *n = ctl->free_space_offset.rb_node;
1498 struct btrfs_free_space *entry, *prev = NULL;
1499
1500 /* find entry that is closest to the 'offset' */
1501 while (1) {
1502 if (!n) {
1503 entry = NULL;
1504 break;
1505 }
1506
1507 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1508 prev = entry;
1509
1510 if (offset < entry->offset)
1511 n = n->rb_left;
1512 else if (offset > entry->offset)
1513 n = n->rb_right;
1514 else
1515 break;
1516 }
1517
1518 if (bitmap_only) {
1519 if (!entry)
1520 return NULL;
1521 if (entry->bitmap)
1522 return entry;
1523
1524 /*
1525 * bitmap entry and extent entry may share same offset,
1526 * in that case, bitmap entry comes after extent entry.
1527 */
1528 n = rb_next(n);
1529 if (!n)
1530 return NULL;
1531 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1532 if (entry->offset != offset)
1533 return NULL;
1534
1535 WARN_ON(!entry->bitmap);
1536 return entry;
1537 } else if (entry) {
1538 if (entry->bitmap) {
1539 /*
1540 * if previous extent entry covers the offset,
1541 * we should return it instead of the bitmap entry
1542 */
1543 n = rb_prev(&entry->offset_index);
1544 if (n) {
1545 prev = rb_entry(n, struct btrfs_free_space,
1546 offset_index);
1547 if (!prev->bitmap &&
1548 prev->offset + prev->bytes > offset)
1549 entry = prev;
1550 }
1551 }
1552 return entry;
1553 }
1554
1555 if (!prev)
1556 return NULL;
1557
1558 /* find last entry before the 'offset' */
1559 entry = prev;
1560 if (entry->offset > offset) {
1561 n = rb_prev(&entry->offset_index);
1562 if (n) {
1563 entry = rb_entry(n, struct btrfs_free_space,
1564 offset_index);
1565 ASSERT(entry->offset <= offset);
1566 } else {
1567 if (fuzzy)
1568 return entry;
1569 else
1570 return NULL;
1571 }
1572 }
1573
1574 if (entry->bitmap) {
1575 n = rb_prev(&entry->offset_index);
1576 if (n) {
1577 prev = rb_entry(n, struct btrfs_free_space,
1578 offset_index);
1579 if (!prev->bitmap &&
1580 prev->offset + prev->bytes > offset)
1581 return prev;
1582 }
1583 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1584 return entry;
1585 } else if (entry->offset + entry->bytes > offset)
1586 return entry;
1587
1588 if (!fuzzy)
1589 return NULL;
1590
1591 while (1) {
1592 if (entry->bitmap) {
1593 if (entry->offset + BITS_PER_BITMAP *
1594 ctl->unit > offset)
1595 break;
1596 } else {
1597 if (entry->offset + entry->bytes > offset)
1598 break;
1599 }
1600
1601 n = rb_next(&entry->offset_index);
1602 if (!n)
1603 return NULL;
1604 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1605 }
1606 return entry;
1607 }
1608
1609 static inline void
1610 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1611 struct btrfs_free_space *info)
1612 {
1613 rb_erase(&info->offset_index, &ctl->free_space_offset);
1614 ctl->free_extents--;
1615 }
1616
1617 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1618 struct btrfs_free_space *info)
1619 {
1620 __unlink_free_space(ctl, info);
1621 ctl->free_space -= info->bytes;
1622 }
1623
1624 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1625 struct btrfs_free_space *info)
1626 {
1627 int ret = 0;
1628
1629 ASSERT(info->bytes || info->bitmap);
1630 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1631 &info->offset_index, (info->bitmap != NULL));
1632 if (ret)
1633 return ret;
1634
1635 ctl->free_space += info->bytes;
1636 ctl->free_extents++;
1637 return ret;
1638 }
1639
1640 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1641 {
1642 struct btrfs_block_group_cache *block_group = ctl->private;
1643 u64 max_bytes;
1644 u64 bitmap_bytes;
1645 u64 extent_bytes;
1646 u64 size = block_group->key.offset;
1647 u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1648 u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1649
1650 max_bitmaps = max_t(u32, max_bitmaps, 1);
1651
1652 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1653
1654 /*
1655 * The goal is to keep the total amount of memory used per 1gb of space
1656 * at or below 32k, so we need to adjust how much memory we allow to be
1657 * used by extent based free space tracking
1658 */
1659 if (size < 1024 * 1024 * 1024)
1660 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1661 else
1662 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1663 div_u64(size, 1024 * 1024 * 1024);
1664
1665 /*
1666 * we want to account for 1 more bitmap than what we have so we can make
1667 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1668 * we add more bitmaps.
1669 */
1670 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1671
1672 if (bitmap_bytes >= max_bytes) {
1673 ctl->extents_thresh = 0;
1674 return;
1675 }
1676
1677 /*
1678 * we want the extent entry threshold to always be at most 1/2 the max
1679 * bytes we can have, or whatever is less than that.
1680 */
1681 extent_bytes = max_bytes - bitmap_bytes;
1682 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1683
1684 ctl->extents_thresh =
1685 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1686 }
1687
1688 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1689 struct btrfs_free_space *info,
1690 u64 offset, u64 bytes)
1691 {
1692 unsigned long start, count;
1693
1694 start = offset_to_bit(info->offset, ctl->unit, offset);
1695 count = bytes_to_bits(bytes, ctl->unit);
1696 ASSERT(start + count <= BITS_PER_BITMAP);
1697
1698 bitmap_clear(info->bitmap, start, count);
1699
1700 info->bytes -= bytes;
1701 }
1702
1703 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1704 struct btrfs_free_space *info, u64 offset,
1705 u64 bytes)
1706 {
1707 __bitmap_clear_bits(ctl, info, offset, bytes);
1708 ctl->free_space -= bytes;
1709 }
1710
1711 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1712 struct btrfs_free_space *info, u64 offset,
1713 u64 bytes)
1714 {
1715 unsigned long start, count;
1716
1717 start = offset_to_bit(info->offset, ctl->unit, offset);
1718 count = bytes_to_bits(bytes, ctl->unit);
1719 ASSERT(start + count <= BITS_PER_BITMAP);
1720
1721 bitmap_set(info->bitmap, start, count);
1722
1723 info->bytes += bytes;
1724 ctl->free_space += bytes;
1725 }
1726
1727 /*
1728 * If we can not find suitable extent, we will use bytes to record
1729 * the size of the max extent.
1730 */
1731 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1732 struct btrfs_free_space *bitmap_info, u64 *offset,
1733 u64 *bytes)
1734 {
1735 unsigned long found_bits = 0;
1736 unsigned long max_bits = 0;
1737 unsigned long bits, i;
1738 unsigned long next_zero;
1739 unsigned long extent_bits;
1740
1741 /*
1742 * Skip searching the bitmap if we don't have a contiguous section that
1743 * is large enough for this allocation.
1744 */
1745 if (bitmap_info->max_extent_size &&
1746 bitmap_info->max_extent_size < *bytes) {
1747 *bytes = bitmap_info->max_extent_size;
1748 return -1;
1749 }
1750
1751 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1752 max_t(u64, *offset, bitmap_info->offset));
1753 bits = bytes_to_bits(*bytes, ctl->unit);
1754
1755 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1756 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1757 BITS_PER_BITMAP, i);
1758 extent_bits = next_zero - i;
1759 if (extent_bits >= bits) {
1760 found_bits = extent_bits;
1761 break;
1762 } else if (extent_bits > max_bits) {
1763 max_bits = extent_bits;
1764 }
1765 i = next_zero;
1766 }
1767
1768 if (found_bits) {
1769 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1770 *bytes = (u64)(found_bits) * ctl->unit;
1771 return 0;
1772 }
1773
1774 *bytes = (u64)(max_bits) * ctl->unit;
1775 bitmap_info->max_extent_size = *bytes;
1776 return -1;
1777 }
1778
1779 /* Cache the size of the max extent in bytes */
1780 static struct btrfs_free_space *
1781 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1782 unsigned long align, u64 *max_extent_size)
1783 {
1784 struct btrfs_free_space *entry;
1785 struct rb_node *node;
1786 u64 tmp;
1787 u64 align_off;
1788 int ret;
1789
1790 if (!ctl->free_space_offset.rb_node)
1791 goto out;
1792
1793 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1794 if (!entry)
1795 goto out;
1796
1797 for (node = &entry->offset_index; node; node = rb_next(node)) {
1798 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1799 if (entry->bytes < *bytes) {
1800 if (entry->bytes > *max_extent_size)
1801 *max_extent_size = entry->bytes;
1802 continue;
1803 }
1804
1805 /* make sure the space returned is big enough
1806 * to match our requested alignment
1807 */
1808 if (*bytes >= align) {
1809 tmp = entry->offset - ctl->start + align - 1;
1810 tmp = div64_u64(tmp, align);
1811 tmp = tmp * align + ctl->start;
1812 align_off = tmp - entry->offset;
1813 } else {
1814 align_off = 0;
1815 tmp = entry->offset;
1816 }
1817
1818 if (entry->bytes < *bytes + align_off) {
1819 if (entry->bytes > *max_extent_size)
1820 *max_extent_size = entry->bytes;
1821 continue;
1822 }
1823
1824 if (entry->bitmap) {
1825 u64 size = *bytes;
1826
1827 ret = search_bitmap(ctl, entry, &tmp, &size);
1828 if (!ret) {
1829 *offset = tmp;
1830 *bytes = size;
1831 return entry;
1832 } else if (size > *max_extent_size) {
1833 *max_extent_size = size;
1834 }
1835 continue;
1836 }
1837
1838 *offset = tmp;
1839 *bytes = entry->bytes - align_off;
1840 return entry;
1841 }
1842 out:
1843 return NULL;
1844 }
1845
1846 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1847 struct btrfs_free_space *info, u64 offset)
1848 {
1849 info->offset = offset_to_bitmap(ctl, offset);
1850 info->bytes = 0;
1851 INIT_LIST_HEAD(&info->list);
1852 link_free_space(ctl, info);
1853 ctl->total_bitmaps++;
1854
1855 ctl->op->recalc_thresholds(ctl);
1856 }
1857
1858 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1859 struct btrfs_free_space *bitmap_info)
1860 {
1861 unlink_free_space(ctl, bitmap_info);
1862 kfree(bitmap_info->bitmap);
1863 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1864 ctl->total_bitmaps--;
1865 ctl->op->recalc_thresholds(ctl);
1866 }
1867
1868 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1869 struct btrfs_free_space *bitmap_info,
1870 u64 *offset, u64 *bytes)
1871 {
1872 u64 end;
1873 u64 search_start, search_bytes;
1874 int ret;
1875
1876 again:
1877 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1878
1879 /*
1880 * We need to search for bits in this bitmap. We could only cover some
1881 * of the extent in this bitmap thanks to how we add space, so we need
1882 * to search for as much as it as we can and clear that amount, and then
1883 * go searching for the next bit.
1884 */
1885 search_start = *offset;
1886 search_bytes = ctl->unit;
1887 search_bytes = min(search_bytes, end - search_start + 1);
1888 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1889 if (ret < 0 || search_start != *offset)
1890 return -EINVAL;
1891
1892 /* We may have found more bits than what we need */
1893 search_bytes = min(search_bytes, *bytes);
1894
1895 /* Cannot clear past the end of the bitmap */
1896 search_bytes = min(search_bytes, end - search_start + 1);
1897
1898 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1899 *offset += search_bytes;
1900 *bytes -= search_bytes;
1901
1902 if (*bytes) {
1903 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1904 if (!bitmap_info->bytes)
1905 free_bitmap(ctl, bitmap_info);
1906
1907 /*
1908 * no entry after this bitmap, but we still have bytes to
1909 * remove, so something has gone wrong.
1910 */
1911 if (!next)
1912 return -EINVAL;
1913
1914 bitmap_info = rb_entry(next, struct btrfs_free_space,
1915 offset_index);
1916
1917 /*
1918 * if the next entry isn't a bitmap we need to return to let the
1919 * extent stuff do its work.
1920 */
1921 if (!bitmap_info->bitmap)
1922 return -EAGAIN;
1923
1924 /*
1925 * Ok the next item is a bitmap, but it may not actually hold
1926 * the information for the rest of this free space stuff, so
1927 * look for it, and if we don't find it return so we can try
1928 * everything over again.
1929 */
1930 search_start = *offset;
1931 search_bytes = ctl->unit;
1932 ret = search_bitmap(ctl, bitmap_info, &search_start,
1933 &search_bytes);
1934 if (ret < 0 || search_start != *offset)
1935 return -EAGAIN;
1936
1937 goto again;
1938 } else if (!bitmap_info->bytes)
1939 free_bitmap(ctl, bitmap_info);
1940
1941 return 0;
1942 }
1943
1944 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1945 struct btrfs_free_space *info, u64 offset,
1946 u64 bytes)
1947 {
1948 u64 bytes_to_set = 0;
1949 u64 end;
1950
1951 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1952
1953 bytes_to_set = min(end - offset, bytes);
1954
1955 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1956
1957 /*
1958 * We set some bytes, we have no idea what the max extent size is
1959 * anymore.
1960 */
1961 info->max_extent_size = 0;
1962
1963 return bytes_to_set;
1964
1965 }
1966
1967 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1968 struct btrfs_free_space *info)
1969 {
1970 struct btrfs_block_group_cache *block_group = ctl->private;
1971 bool forced = false;
1972
1973 #ifdef CONFIG_BTRFS_DEBUG
1974 if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
1975 block_group))
1976 forced = true;
1977 #endif
1978
1979 /*
1980 * If we are below the extents threshold then we can add this as an
1981 * extent, and don't have to deal with the bitmap
1982 */
1983 if (!forced && ctl->free_extents < ctl->extents_thresh) {
1984 /*
1985 * If this block group has some small extents we don't want to
1986 * use up all of our free slots in the cache with them, we want
1987 * to reserve them to larger extents, however if we have plent
1988 * of cache left then go ahead an dadd them, no sense in adding
1989 * the overhead of a bitmap if we don't have to.
1990 */
1991 if (info->bytes <= block_group->sectorsize * 4) {
1992 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1993 return false;
1994 } else {
1995 return false;
1996 }
1997 }
1998
1999 /*
2000 * The original block groups from mkfs can be really small, like 8
2001 * megabytes, so don't bother with a bitmap for those entries. However
2002 * some block groups can be smaller than what a bitmap would cover but
2003 * are still large enough that they could overflow the 32k memory limit,
2004 * so allow those block groups to still be allowed to have a bitmap
2005 * entry.
2006 */
2007 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2008 return false;
2009
2010 return true;
2011 }
2012
2013 static struct btrfs_free_space_op free_space_op = {
2014 .recalc_thresholds = recalculate_thresholds,
2015 .use_bitmap = use_bitmap,
2016 };
2017
2018 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2019 struct btrfs_free_space *info)
2020 {
2021 struct btrfs_free_space *bitmap_info;
2022 struct btrfs_block_group_cache *block_group = NULL;
2023 int added = 0;
2024 u64 bytes, offset, bytes_added;
2025 int ret;
2026
2027 bytes = info->bytes;
2028 offset = info->offset;
2029
2030 if (!ctl->op->use_bitmap(ctl, info))
2031 return 0;
2032
2033 if (ctl->op == &free_space_op)
2034 block_group = ctl->private;
2035 again:
2036 /*
2037 * Since we link bitmaps right into the cluster we need to see if we
2038 * have a cluster here, and if so and it has our bitmap we need to add
2039 * the free space to that bitmap.
2040 */
2041 if (block_group && !list_empty(&block_group->cluster_list)) {
2042 struct btrfs_free_cluster *cluster;
2043 struct rb_node *node;
2044 struct btrfs_free_space *entry;
2045
2046 cluster = list_entry(block_group->cluster_list.next,
2047 struct btrfs_free_cluster,
2048 block_group_list);
2049 spin_lock(&cluster->lock);
2050 node = rb_first(&cluster->root);
2051 if (!node) {
2052 spin_unlock(&cluster->lock);
2053 goto no_cluster_bitmap;
2054 }
2055
2056 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2057 if (!entry->bitmap) {
2058 spin_unlock(&cluster->lock);
2059 goto no_cluster_bitmap;
2060 }
2061
2062 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2063 bytes_added = add_bytes_to_bitmap(ctl, entry,
2064 offset, bytes);
2065 bytes -= bytes_added;
2066 offset += bytes_added;
2067 }
2068 spin_unlock(&cluster->lock);
2069 if (!bytes) {
2070 ret = 1;
2071 goto out;
2072 }
2073 }
2074
2075 no_cluster_bitmap:
2076 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2077 1, 0);
2078 if (!bitmap_info) {
2079 ASSERT(added == 0);
2080 goto new_bitmap;
2081 }
2082
2083 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2084 bytes -= bytes_added;
2085 offset += bytes_added;
2086 added = 0;
2087
2088 if (!bytes) {
2089 ret = 1;
2090 goto out;
2091 } else
2092 goto again;
2093
2094 new_bitmap:
2095 if (info && info->bitmap) {
2096 add_new_bitmap(ctl, info, offset);
2097 added = 1;
2098 info = NULL;
2099 goto again;
2100 } else {
2101 spin_unlock(&ctl->tree_lock);
2102
2103 /* no pre-allocated info, allocate a new one */
2104 if (!info) {
2105 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2106 GFP_NOFS);
2107 if (!info) {
2108 spin_lock(&ctl->tree_lock);
2109 ret = -ENOMEM;
2110 goto out;
2111 }
2112 }
2113
2114 /* allocate the bitmap */
2115 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2116 spin_lock(&ctl->tree_lock);
2117 if (!info->bitmap) {
2118 ret = -ENOMEM;
2119 goto out;
2120 }
2121 goto again;
2122 }
2123
2124 out:
2125 if (info) {
2126 if (info->bitmap)
2127 kfree(info->bitmap);
2128 kmem_cache_free(btrfs_free_space_cachep, info);
2129 }
2130
2131 return ret;
2132 }
2133
2134 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2135 struct btrfs_free_space *info, bool update_stat)
2136 {
2137 struct btrfs_free_space *left_info;
2138 struct btrfs_free_space *right_info;
2139 bool merged = false;
2140 u64 offset = info->offset;
2141 u64 bytes = info->bytes;
2142
2143 /*
2144 * first we want to see if there is free space adjacent to the range we
2145 * are adding, if there is remove that struct and add a new one to
2146 * cover the entire range
2147 */
2148 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2149 if (right_info && rb_prev(&right_info->offset_index))
2150 left_info = rb_entry(rb_prev(&right_info->offset_index),
2151 struct btrfs_free_space, offset_index);
2152 else
2153 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2154
2155 if (right_info && !right_info->bitmap) {
2156 if (update_stat)
2157 unlink_free_space(ctl, right_info);
2158 else
2159 __unlink_free_space(ctl, right_info);
2160 info->bytes += right_info->bytes;
2161 kmem_cache_free(btrfs_free_space_cachep, right_info);
2162 merged = true;
2163 }
2164
2165 if (left_info && !left_info->bitmap &&
2166 left_info->offset + left_info->bytes == offset) {
2167 if (update_stat)
2168 unlink_free_space(ctl, left_info);
2169 else
2170 __unlink_free_space(ctl, left_info);
2171 info->offset = left_info->offset;
2172 info->bytes += left_info->bytes;
2173 kmem_cache_free(btrfs_free_space_cachep, left_info);
2174 merged = true;
2175 }
2176
2177 return merged;
2178 }
2179
2180 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2181 struct btrfs_free_space *info,
2182 bool update_stat)
2183 {
2184 struct btrfs_free_space *bitmap;
2185 unsigned long i;
2186 unsigned long j;
2187 const u64 end = info->offset + info->bytes;
2188 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2189 u64 bytes;
2190
2191 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2192 if (!bitmap)
2193 return false;
2194
2195 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2196 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2197 if (j == i)
2198 return false;
2199 bytes = (j - i) * ctl->unit;
2200 info->bytes += bytes;
2201
2202 if (update_stat)
2203 bitmap_clear_bits(ctl, bitmap, end, bytes);
2204 else
2205 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2206
2207 if (!bitmap->bytes)
2208 free_bitmap(ctl, bitmap);
2209
2210 return true;
2211 }
2212
2213 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2214 struct btrfs_free_space *info,
2215 bool update_stat)
2216 {
2217 struct btrfs_free_space *bitmap;
2218 u64 bitmap_offset;
2219 unsigned long i;
2220 unsigned long j;
2221 unsigned long prev_j;
2222 u64 bytes;
2223
2224 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2225 /* If we're on a boundary, try the previous logical bitmap. */
2226 if (bitmap_offset == info->offset) {
2227 if (info->offset == 0)
2228 return false;
2229 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2230 }
2231
2232 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2233 if (!bitmap)
2234 return false;
2235
2236 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2237 j = 0;
2238 prev_j = (unsigned long)-1;
2239 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2240 if (j > i)
2241 break;
2242 prev_j = j;
2243 }
2244 if (prev_j == i)
2245 return false;
2246
2247 if (prev_j == (unsigned long)-1)
2248 bytes = (i + 1) * ctl->unit;
2249 else
2250 bytes = (i - prev_j) * ctl->unit;
2251
2252 info->offset -= bytes;
2253 info->bytes += bytes;
2254
2255 if (update_stat)
2256 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2257 else
2258 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2259
2260 if (!bitmap->bytes)
2261 free_bitmap(ctl, bitmap);
2262
2263 return true;
2264 }
2265
2266 /*
2267 * We prefer always to allocate from extent entries, both for clustered and
2268 * non-clustered allocation requests. So when attempting to add a new extent
2269 * entry, try to see if there's adjacent free space in bitmap entries, and if
2270 * there is, migrate that space from the bitmaps to the extent.
2271 * Like this we get better chances of satisfying space allocation requests
2272 * because we attempt to satisfy them based on a single cache entry, and never
2273 * on 2 or more entries - even if the entries represent a contiguous free space
2274 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2275 * ends).
2276 */
2277 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2278 struct btrfs_free_space *info,
2279 bool update_stat)
2280 {
2281 /*
2282 * Only work with disconnected entries, as we can change their offset,
2283 * and must be extent entries.
2284 */
2285 ASSERT(!info->bitmap);
2286 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2287
2288 if (ctl->total_bitmaps > 0) {
2289 bool stole_end;
2290 bool stole_front = false;
2291
2292 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2293 if (ctl->total_bitmaps > 0)
2294 stole_front = steal_from_bitmap_to_front(ctl, info,
2295 update_stat);
2296
2297 if (stole_end || stole_front)
2298 try_merge_free_space(ctl, info, update_stat);
2299 }
2300 }
2301
2302 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2303 u64 offset, u64 bytes)
2304 {
2305 struct btrfs_free_space *info;
2306 int ret = 0;
2307
2308 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2309 if (!info)
2310 return -ENOMEM;
2311
2312 info->offset = offset;
2313 info->bytes = bytes;
2314 RB_CLEAR_NODE(&info->offset_index);
2315
2316 spin_lock(&ctl->tree_lock);
2317
2318 if (try_merge_free_space(ctl, info, true))
2319 goto link;
2320
2321 /*
2322 * There was no extent directly to the left or right of this new
2323 * extent then we know we're going to have to allocate a new extent, so
2324 * before we do that see if we need to drop this into a bitmap
2325 */
2326 ret = insert_into_bitmap(ctl, info);
2327 if (ret < 0) {
2328 goto out;
2329 } else if (ret) {
2330 ret = 0;
2331 goto out;
2332 }
2333 link:
2334 /*
2335 * Only steal free space from adjacent bitmaps if we're sure we're not
2336 * going to add the new free space to existing bitmap entries - because
2337 * that would mean unnecessary work that would be reverted. Therefore
2338 * attempt to steal space from bitmaps if we're adding an extent entry.
2339 */
2340 steal_from_bitmap(ctl, info, true);
2341
2342 ret = link_free_space(ctl, info);
2343 if (ret)
2344 kmem_cache_free(btrfs_free_space_cachep, info);
2345 out:
2346 spin_unlock(&ctl->tree_lock);
2347
2348 if (ret) {
2349 printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2350 ASSERT(ret != -EEXIST);
2351 }
2352
2353 return ret;
2354 }
2355
2356 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2357 u64 offset, u64 bytes)
2358 {
2359 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2360 struct btrfs_free_space *info;
2361 int ret;
2362 bool re_search = false;
2363
2364 spin_lock(&ctl->tree_lock);
2365
2366 again:
2367 ret = 0;
2368 if (!bytes)
2369 goto out_lock;
2370
2371 info = tree_search_offset(ctl, offset, 0, 0);
2372 if (!info) {
2373 /*
2374 * oops didn't find an extent that matched the space we wanted
2375 * to remove, look for a bitmap instead
2376 */
2377 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2378 1, 0);
2379 if (!info) {
2380 /*
2381 * If we found a partial bit of our free space in a
2382 * bitmap but then couldn't find the other part this may
2383 * be a problem, so WARN about it.
2384 */
2385 WARN_ON(re_search);
2386 goto out_lock;
2387 }
2388 }
2389
2390 re_search = false;
2391 if (!info->bitmap) {
2392 unlink_free_space(ctl, info);
2393 if (offset == info->offset) {
2394 u64 to_free = min(bytes, info->bytes);
2395
2396 info->bytes -= to_free;
2397 info->offset += to_free;
2398 if (info->bytes) {
2399 ret = link_free_space(ctl, info);
2400 WARN_ON(ret);
2401 } else {
2402 kmem_cache_free(btrfs_free_space_cachep, info);
2403 }
2404
2405 offset += to_free;
2406 bytes -= to_free;
2407 goto again;
2408 } else {
2409 u64 old_end = info->bytes + info->offset;
2410
2411 info->bytes = offset - info->offset;
2412 ret = link_free_space(ctl, info);
2413 WARN_ON(ret);
2414 if (ret)
2415 goto out_lock;
2416
2417 /* Not enough bytes in this entry to satisfy us */
2418 if (old_end < offset + bytes) {
2419 bytes -= old_end - offset;
2420 offset = old_end;
2421 goto again;
2422 } else if (old_end == offset + bytes) {
2423 /* all done */
2424 goto out_lock;
2425 }
2426 spin_unlock(&ctl->tree_lock);
2427
2428 ret = btrfs_add_free_space(block_group, offset + bytes,
2429 old_end - (offset + bytes));
2430 WARN_ON(ret);
2431 goto out;
2432 }
2433 }
2434
2435 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2436 if (ret == -EAGAIN) {
2437 re_search = true;
2438 goto again;
2439 }
2440 out_lock:
2441 spin_unlock(&ctl->tree_lock);
2442 out:
2443 return ret;
2444 }
2445
2446 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2447 u64 bytes)
2448 {
2449 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2450 struct btrfs_free_space *info;
2451 struct rb_node *n;
2452 int count = 0;
2453
2454 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2455 info = rb_entry(n, struct btrfs_free_space, offset_index);
2456 if (info->bytes >= bytes && !block_group->ro)
2457 count++;
2458 btrfs_crit(block_group->fs_info,
2459 "entry offset %llu, bytes %llu, bitmap %s",
2460 info->offset, info->bytes,
2461 (info->bitmap) ? "yes" : "no");
2462 }
2463 btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2464 list_empty(&block_group->cluster_list) ? "no" : "yes");
2465 btrfs_info(block_group->fs_info,
2466 "%d blocks of free space at or bigger than bytes is", count);
2467 }
2468
2469 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2470 {
2471 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2472
2473 spin_lock_init(&ctl->tree_lock);
2474 ctl->unit = block_group->sectorsize;
2475 ctl->start = block_group->key.objectid;
2476 ctl->private = block_group;
2477 ctl->op = &free_space_op;
2478 INIT_LIST_HEAD(&ctl->trimming_ranges);
2479 mutex_init(&ctl->cache_writeout_mutex);
2480
2481 /*
2482 * we only want to have 32k of ram per block group for keeping
2483 * track of free space, and if we pass 1/2 of that we want to
2484 * start converting things over to using bitmaps
2485 */
2486 ctl->extents_thresh = ((1024 * 32) / 2) /
2487 sizeof(struct btrfs_free_space);
2488 }
2489
2490 /*
2491 * for a given cluster, put all of its extents back into the free
2492 * space cache. If the block group passed doesn't match the block group
2493 * pointed to by the cluster, someone else raced in and freed the
2494 * cluster already. In that case, we just return without changing anything
2495 */
2496 static int
2497 __btrfs_return_cluster_to_free_space(
2498 struct btrfs_block_group_cache *block_group,
2499 struct btrfs_free_cluster *cluster)
2500 {
2501 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2502 struct btrfs_free_space *entry;
2503 struct rb_node *node;
2504
2505 spin_lock(&cluster->lock);
2506 if (cluster->block_group != block_group)
2507 goto out;
2508
2509 cluster->block_group = NULL;
2510 cluster->window_start = 0;
2511 list_del_init(&cluster->block_group_list);
2512
2513 node = rb_first(&cluster->root);
2514 while (node) {
2515 bool bitmap;
2516
2517 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2518 node = rb_next(&entry->offset_index);
2519 rb_erase(&entry->offset_index, &cluster->root);
2520 RB_CLEAR_NODE(&entry->offset_index);
2521
2522 bitmap = (entry->bitmap != NULL);
2523 if (!bitmap) {
2524 try_merge_free_space(ctl, entry, false);
2525 steal_from_bitmap(ctl, entry, false);
2526 }
2527 tree_insert_offset(&ctl->free_space_offset,
2528 entry->offset, &entry->offset_index, bitmap);
2529 }
2530 cluster->root = RB_ROOT;
2531
2532 out:
2533 spin_unlock(&cluster->lock);
2534 btrfs_put_block_group(block_group);
2535 return 0;
2536 }
2537
2538 static void __btrfs_remove_free_space_cache_locked(
2539 struct btrfs_free_space_ctl *ctl)
2540 {
2541 struct btrfs_free_space *info;
2542 struct rb_node *node;
2543
2544 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2545 info = rb_entry(node, struct btrfs_free_space, offset_index);
2546 if (!info->bitmap) {
2547 unlink_free_space(ctl, info);
2548 kmem_cache_free(btrfs_free_space_cachep, info);
2549 } else {
2550 free_bitmap(ctl, info);
2551 }
2552
2553 cond_resched_lock(&ctl->tree_lock);
2554 }
2555 }
2556
2557 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2558 {
2559 spin_lock(&ctl->tree_lock);
2560 __btrfs_remove_free_space_cache_locked(ctl);
2561 spin_unlock(&ctl->tree_lock);
2562 }
2563
2564 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2565 {
2566 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2567 struct btrfs_free_cluster *cluster;
2568 struct list_head *head;
2569
2570 spin_lock(&ctl->tree_lock);
2571 while ((head = block_group->cluster_list.next) !=
2572 &block_group->cluster_list) {
2573 cluster = list_entry(head, struct btrfs_free_cluster,
2574 block_group_list);
2575
2576 WARN_ON(cluster->block_group != block_group);
2577 __btrfs_return_cluster_to_free_space(block_group, cluster);
2578
2579 cond_resched_lock(&ctl->tree_lock);
2580 }
2581 __btrfs_remove_free_space_cache_locked(ctl);
2582 spin_unlock(&ctl->tree_lock);
2583
2584 }
2585
2586 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2587 u64 offset, u64 bytes, u64 empty_size,
2588 u64 *max_extent_size)
2589 {
2590 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2591 struct btrfs_free_space *entry = NULL;
2592 u64 bytes_search = bytes + empty_size;
2593 u64 ret = 0;
2594 u64 align_gap = 0;
2595 u64 align_gap_len = 0;
2596
2597 spin_lock(&ctl->tree_lock);
2598 entry = find_free_space(ctl, &offset, &bytes_search,
2599 block_group->full_stripe_len, max_extent_size);
2600 if (!entry)
2601 goto out;
2602
2603 ret = offset;
2604 if (entry->bitmap) {
2605 bitmap_clear_bits(ctl, entry, offset, bytes);
2606 if (!entry->bytes)
2607 free_bitmap(ctl, entry);
2608 } else {
2609 unlink_free_space(ctl, entry);
2610 align_gap_len = offset - entry->offset;
2611 align_gap = entry->offset;
2612
2613 entry->offset = offset + bytes;
2614 WARN_ON(entry->bytes < bytes + align_gap_len);
2615
2616 entry->bytes -= bytes + align_gap_len;
2617 if (!entry->bytes)
2618 kmem_cache_free(btrfs_free_space_cachep, entry);
2619 else
2620 link_free_space(ctl, entry);
2621 }
2622 out:
2623 spin_unlock(&ctl->tree_lock);
2624
2625 if (align_gap_len)
2626 __btrfs_add_free_space(ctl, align_gap, align_gap_len);
2627 return ret;
2628 }
2629
2630 /*
2631 * given a cluster, put all of its extents back into the free space
2632 * cache. If a block group is passed, this function will only free
2633 * a cluster that belongs to the passed block group.
2634 *
2635 * Otherwise, it'll get a reference on the block group pointed to by the
2636 * cluster and remove the cluster from it.
2637 */
2638 int btrfs_return_cluster_to_free_space(
2639 struct btrfs_block_group_cache *block_group,
2640 struct btrfs_free_cluster *cluster)
2641 {
2642 struct btrfs_free_space_ctl *ctl;
2643 int ret;
2644
2645 /* first, get a safe pointer to the block group */
2646 spin_lock(&cluster->lock);
2647 if (!block_group) {
2648 block_group = cluster->block_group;
2649 if (!block_group) {
2650 spin_unlock(&cluster->lock);
2651 return 0;
2652 }
2653 } else if (cluster->block_group != block_group) {
2654 /* someone else has already freed it don't redo their work */
2655 spin_unlock(&cluster->lock);
2656 return 0;
2657 }
2658 atomic_inc(&block_group->count);
2659 spin_unlock(&cluster->lock);
2660
2661 ctl = block_group->free_space_ctl;
2662
2663 /* now return any extents the cluster had on it */
2664 spin_lock(&ctl->tree_lock);
2665 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2666 spin_unlock(&ctl->tree_lock);
2667
2668 /* finally drop our ref */
2669 btrfs_put_block_group(block_group);
2670 return ret;
2671 }
2672
2673 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2674 struct btrfs_free_cluster *cluster,
2675 struct btrfs_free_space *entry,
2676 u64 bytes, u64 min_start,
2677 u64 *max_extent_size)
2678 {
2679 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2680 int err;
2681 u64 search_start = cluster->window_start;
2682 u64 search_bytes = bytes;
2683 u64 ret = 0;
2684
2685 search_start = min_start;
2686 search_bytes = bytes;
2687
2688 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2689 if (err) {
2690 if (search_bytes > *max_extent_size)
2691 *max_extent_size = search_bytes;
2692 return 0;
2693 }
2694
2695 ret = search_start;
2696 __bitmap_clear_bits(ctl, entry, ret, bytes);
2697
2698 return ret;
2699 }
2700
2701 /*
2702 * given a cluster, try to allocate 'bytes' from it, returns 0
2703 * if it couldn't find anything suitably large, or a logical disk offset
2704 * if things worked out
2705 */
2706 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2707 struct btrfs_free_cluster *cluster, u64 bytes,
2708 u64 min_start, u64 *max_extent_size)
2709 {
2710 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2711 struct btrfs_free_space *entry = NULL;
2712 struct rb_node *node;
2713 u64 ret = 0;
2714
2715 spin_lock(&cluster->lock);
2716 if (bytes > cluster->max_size)
2717 goto out;
2718
2719 if (cluster->block_group != block_group)
2720 goto out;
2721
2722 node = rb_first(&cluster->root);
2723 if (!node)
2724 goto out;
2725
2726 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2727 while (1) {
2728 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2729 *max_extent_size = entry->bytes;
2730
2731 if (entry->bytes < bytes ||
2732 (!entry->bitmap && entry->offset < min_start)) {
2733 node = rb_next(&entry->offset_index);
2734 if (!node)
2735 break;
2736 entry = rb_entry(node, struct btrfs_free_space,
2737 offset_index);
2738 continue;
2739 }
2740
2741 if (entry->bitmap) {
2742 ret = btrfs_alloc_from_bitmap(block_group,
2743 cluster, entry, bytes,
2744 cluster->window_start,
2745 max_extent_size);
2746 if (ret == 0) {
2747 node = rb_next(&entry->offset_index);
2748 if (!node)
2749 break;
2750 entry = rb_entry(node, struct btrfs_free_space,
2751 offset_index);
2752 continue;
2753 }
2754 cluster->window_start += bytes;
2755 } else {
2756 ret = entry->offset;
2757
2758 entry->offset += bytes;
2759 entry->bytes -= bytes;
2760 }
2761
2762 if (entry->bytes == 0)
2763 rb_erase(&entry->offset_index, &cluster->root);
2764 break;
2765 }
2766 out:
2767 spin_unlock(&cluster->lock);
2768
2769 if (!ret)
2770 return 0;
2771
2772 spin_lock(&ctl->tree_lock);
2773
2774 ctl->free_space -= bytes;
2775 if (entry->bytes == 0) {
2776 ctl->free_extents--;
2777 if (entry->bitmap) {
2778 kfree(entry->bitmap);
2779 ctl->total_bitmaps--;
2780 ctl->op->recalc_thresholds(ctl);
2781 }
2782 kmem_cache_free(btrfs_free_space_cachep, entry);
2783 }
2784
2785 spin_unlock(&ctl->tree_lock);
2786
2787 return ret;
2788 }
2789
2790 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2791 struct btrfs_free_space *entry,
2792 struct btrfs_free_cluster *cluster,
2793 u64 offset, u64 bytes,
2794 u64 cont1_bytes, u64 min_bytes)
2795 {
2796 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2797 unsigned long next_zero;
2798 unsigned long i;
2799 unsigned long want_bits;
2800 unsigned long min_bits;
2801 unsigned long found_bits;
2802 unsigned long max_bits = 0;
2803 unsigned long start = 0;
2804 unsigned long total_found = 0;
2805 int ret;
2806
2807 i = offset_to_bit(entry->offset, ctl->unit,
2808 max_t(u64, offset, entry->offset));
2809 want_bits = bytes_to_bits(bytes, ctl->unit);
2810 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2811
2812 /*
2813 * Don't bother looking for a cluster in this bitmap if it's heavily
2814 * fragmented.
2815 */
2816 if (entry->max_extent_size &&
2817 entry->max_extent_size < cont1_bytes)
2818 return -ENOSPC;
2819 again:
2820 found_bits = 0;
2821 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2822 next_zero = find_next_zero_bit(entry->bitmap,
2823 BITS_PER_BITMAP, i);
2824 if (next_zero - i >= min_bits) {
2825 found_bits = next_zero - i;
2826 if (found_bits > max_bits)
2827 max_bits = found_bits;
2828 break;
2829 }
2830 if (next_zero - i > max_bits)
2831 max_bits = next_zero - i;
2832 i = next_zero;
2833 }
2834
2835 if (!found_bits) {
2836 entry->max_extent_size = (u64)max_bits * ctl->unit;
2837 return -ENOSPC;
2838 }
2839
2840 if (!total_found) {
2841 start = i;
2842 cluster->max_size = 0;
2843 }
2844
2845 total_found += found_bits;
2846
2847 if (cluster->max_size < found_bits * ctl->unit)
2848 cluster->max_size = found_bits * ctl->unit;
2849
2850 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2851 i = next_zero + 1;
2852 goto again;
2853 }
2854
2855 cluster->window_start = start * ctl->unit + entry->offset;
2856 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2857 ret = tree_insert_offset(&cluster->root, entry->offset,
2858 &entry->offset_index, 1);
2859 ASSERT(!ret); /* -EEXIST; Logic error */
2860
2861 trace_btrfs_setup_cluster(block_group, cluster,
2862 total_found * ctl->unit, 1);
2863 return 0;
2864 }
2865
2866 /*
2867 * This searches the block group for just extents to fill the cluster with.
2868 * Try to find a cluster with at least bytes total bytes, at least one
2869 * extent of cont1_bytes, and other clusters of at least min_bytes.
2870 */
2871 static noinline int
2872 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2873 struct btrfs_free_cluster *cluster,
2874 struct list_head *bitmaps, u64 offset, u64 bytes,
2875 u64 cont1_bytes, u64 min_bytes)
2876 {
2877 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2878 struct btrfs_free_space *first = NULL;
2879 struct btrfs_free_space *entry = NULL;
2880 struct btrfs_free_space *last;
2881 struct rb_node *node;
2882 u64 window_free;
2883 u64 max_extent;
2884 u64 total_size = 0;
2885
2886 entry = tree_search_offset(ctl, offset, 0, 1);
2887 if (!entry)
2888 return -ENOSPC;
2889
2890 /*
2891 * We don't want bitmaps, so just move along until we find a normal
2892 * extent entry.
2893 */
2894 while (entry->bitmap || entry->bytes < min_bytes) {
2895 if (entry->bitmap && list_empty(&entry->list))
2896 list_add_tail(&entry->list, bitmaps);
2897 node = rb_next(&entry->offset_index);
2898 if (!node)
2899 return -ENOSPC;
2900 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2901 }
2902
2903 window_free = entry->bytes;
2904 max_extent = entry->bytes;
2905 first = entry;
2906 last = entry;
2907
2908 for (node = rb_next(&entry->offset_index); node;
2909 node = rb_next(&entry->offset_index)) {
2910 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2911
2912 if (entry->bitmap) {
2913 if (list_empty(&entry->list))
2914 list_add_tail(&entry->list, bitmaps);
2915 continue;
2916 }
2917
2918 if (entry->bytes < min_bytes)
2919 continue;
2920
2921 last = entry;
2922 window_free += entry->bytes;
2923 if (entry->bytes > max_extent)
2924 max_extent = entry->bytes;
2925 }
2926
2927 if (window_free < bytes || max_extent < cont1_bytes)
2928 return -ENOSPC;
2929
2930 cluster->window_start = first->offset;
2931
2932 node = &first->offset_index;
2933
2934 /*
2935 * now we've found our entries, pull them out of the free space
2936 * cache and put them into the cluster rbtree
2937 */
2938 do {
2939 int ret;
2940
2941 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2942 node = rb_next(&entry->offset_index);
2943 if (entry->bitmap || entry->bytes < min_bytes)
2944 continue;
2945
2946 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2947 ret = tree_insert_offset(&cluster->root, entry->offset,
2948 &entry->offset_index, 0);
2949 total_size += entry->bytes;
2950 ASSERT(!ret); /* -EEXIST; Logic error */
2951 } while (node && entry != last);
2952
2953 cluster->max_size = max_extent;
2954 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2955 return 0;
2956 }
2957
2958 /*
2959 * This specifically looks for bitmaps that may work in the cluster, we assume
2960 * that we have already failed to find extents that will work.
2961 */
2962 static noinline int
2963 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2964 struct btrfs_free_cluster *cluster,
2965 struct list_head *bitmaps, u64 offset, u64 bytes,
2966 u64 cont1_bytes, u64 min_bytes)
2967 {
2968 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2969 struct btrfs_free_space *entry;
2970 int ret = -ENOSPC;
2971 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2972
2973 if (ctl->total_bitmaps == 0)
2974 return -ENOSPC;
2975
2976 /*
2977 * The bitmap that covers offset won't be in the list unless offset
2978 * is just its start offset.
2979 */
2980 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2981 if (entry->offset != bitmap_offset) {
2982 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2983 if (entry && list_empty(&entry->list))
2984 list_add(&entry->list, bitmaps);
2985 }
2986
2987 list_for_each_entry(entry, bitmaps, list) {
2988 if (entry->bytes < bytes)
2989 continue;
2990 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2991 bytes, cont1_bytes, min_bytes);
2992 if (!ret)
2993 return 0;
2994 }
2995
2996 /*
2997 * The bitmaps list has all the bitmaps that record free space
2998 * starting after offset, so no more search is required.
2999 */
3000 return -ENOSPC;
3001 }
3002
3003 /*
3004 * here we try to find a cluster of blocks in a block group. The goal
3005 * is to find at least bytes+empty_size.
3006 * We might not find them all in one contiguous area.
3007 *
3008 * returns zero and sets up cluster if things worked out, otherwise
3009 * it returns -enospc
3010 */
3011 int btrfs_find_space_cluster(struct btrfs_root *root,
3012 struct btrfs_block_group_cache *block_group,
3013 struct btrfs_free_cluster *cluster,
3014 u64 offset, u64 bytes, u64 empty_size)
3015 {
3016 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3017 struct btrfs_free_space *entry, *tmp;
3018 LIST_HEAD(bitmaps);
3019 u64 min_bytes;
3020 u64 cont1_bytes;
3021 int ret;
3022
3023 /*
3024 * Choose the minimum extent size we'll require for this
3025 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3026 * For metadata, allow allocates with smaller extents. For
3027 * data, keep it dense.
3028 */
3029 if (btrfs_test_opt(root, SSD_SPREAD)) {
3030 cont1_bytes = min_bytes = bytes + empty_size;
3031 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3032 cont1_bytes = bytes;
3033 min_bytes = block_group->sectorsize;
3034 } else {
3035 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3036 min_bytes = block_group->sectorsize;
3037 }
3038
3039 spin_lock(&ctl->tree_lock);
3040
3041 /*
3042 * If we know we don't have enough space to make a cluster don't even
3043 * bother doing all the work to try and find one.
3044 */
3045 if (ctl->free_space < bytes) {
3046 spin_unlock(&ctl->tree_lock);
3047 return -ENOSPC;
3048 }
3049
3050 spin_lock(&cluster->lock);
3051
3052 /* someone already found a cluster, hooray */
3053 if (cluster->block_group) {
3054 ret = 0;
3055 goto out;
3056 }
3057
3058 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3059 min_bytes);
3060
3061 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3062 bytes + empty_size,
3063 cont1_bytes, min_bytes);
3064 if (ret)
3065 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3066 offset, bytes + empty_size,
3067 cont1_bytes, min_bytes);
3068
3069 /* Clear our temporary list */
3070 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3071 list_del_init(&entry->list);
3072
3073 if (!ret) {
3074 atomic_inc(&block_group->count);
3075 list_add_tail(&cluster->block_group_list,
3076 &block_group->cluster_list);
3077 cluster->block_group = block_group;
3078 } else {
3079 trace_btrfs_failed_cluster_setup(block_group);
3080 }
3081 out:
3082 spin_unlock(&cluster->lock);
3083 spin_unlock(&ctl->tree_lock);
3084
3085 return ret;
3086 }
3087
3088 /*
3089 * simple code to zero out a cluster
3090 */
3091 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3092 {
3093 spin_lock_init(&cluster->lock);
3094 spin_lock_init(&cluster->refill_lock);
3095 cluster->root = RB_ROOT;
3096 cluster->max_size = 0;
3097 cluster->fragmented = false;
3098 INIT_LIST_HEAD(&cluster->block_group_list);
3099 cluster->block_group = NULL;
3100 }
3101
3102 static int do_trimming(struct btrfs_block_group_cache *block_group,
3103 u64 *total_trimmed, u64 start, u64 bytes,
3104 u64 reserved_start, u64 reserved_bytes,
3105 struct btrfs_trim_range *trim_entry)
3106 {
3107 struct btrfs_space_info *space_info = block_group->space_info;
3108 struct btrfs_fs_info *fs_info = block_group->fs_info;
3109 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3110 int ret;
3111 int update = 0;
3112 u64 trimmed = 0;
3113
3114 spin_lock(&space_info->lock);
3115 spin_lock(&block_group->lock);
3116 if (!block_group->ro) {
3117 block_group->reserved += reserved_bytes;
3118 space_info->bytes_reserved += reserved_bytes;
3119 update = 1;
3120 }
3121 spin_unlock(&block_group->lock);
3122 spin_unlock(&space_info->lock);
3123
3124 ret = btrfs_discard_extent(fs_info->extent_root,
3125 start, bytes, &trimmed);
3126 if (!ret)
3127 *total_trimmed += trimmed;
3128
3129 mutex_lock(&ctl->cache_writeout_mutex);
3130 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3131 list_del(&trim_entry->list);
3132 mutex_unlock(&ctl->cache_writeout_mutex);
3133
3134 if (update) {
3135 spin_lock(&space_info->lock);
3136 spin_lock(&block_group->lock);
3137 if (block_group->ro)
3138 space_info->bytes_readonly += reserved_bytes;
3139 block_group->reserved -= reserved_bytes;
3140 space_info->bytes_reserved -= reserved_bytes;
3141 spin_unlock(&space_info->lock);
3142 spin_unlock(&block_group->lock);
3143 }
3144
3145 return ret;
3146 }
3147
3148 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3149 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3150 {
3151 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152 struct btrfs_free_space *entry;
3153 struct rb_node *node;
3154 int ret = 0;
3155 u64 extent_start;
3156 u64 extent_bytes;
3157 u64 bytes;
3158
3159 while (start < end) {
3160 struct btrfs_trim_range trim_entry;
3161
3162 mutex_lock(&ctl->cache_writeout_mutex);
3163 spin_lock(&ctl->tree_lock);
3164
3165 if (ctl->free_space < minlen) {
3166 spin_unlock(&ctl->tree_lock);
3167 mutex_unlock(&ctl->cache_writeout_mutex);
3168 break;
3169 }
3170
3171 entry = tree_search_offset(ctl, start, 0, 1);
3172 if (!entry) {
3173 spin_unlock(&ctl->tree_lock);
3174 mutex_unlock(&ctl->cache_writeout_mutex);
3175 break;
3176 }
3177
3178 /* skip bitmaps */
3179 while (entry->bitmap) {
3180 node = rb_next(&entry->offset_index);
3181 if (!node) {
3182 spin_unlock(&ctl->tree_lock);
3183 mutex_unlock(&ctl->cache_writeout_mutex);
3184 goto out;
3185 }
3186 entry = rb_entry(node, struct btrfs_free_space,
3187 offset_index);
3188 }
3189
3190 if (entry->offset >= end) {
3191 spin_unlock(&ctl->tree_lock);
3192 mutex_unlock(&ctl->cache_writeout_mutex);
3193 break;
3194 }
3195
3196 extent_start = entry->offset;
3197 extent_bytes = entry->bytes;
3198 start = max(start, extent_start);
3199 bytes = min(extent_start + extent_bytes, end) - start;
3200 if (bytes < minlen) {
3201 spin_unlock(&ctl->tree_lock);
3202 mutex_unlock(&ctl->cache_writeout_mutex);
3203 goto next;
3204 }
3205
3206 unlink_free_space(ctl, entry);
3207 kmem_cache_free(btrfs_free_space_cachep, entry);
3208
3209 spin_unlock(&ctl->tree_lock);
3210 trim_entry.start = extent_start;
3211 trim_entry.bytes = extent_bytes;
3212 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3213 mutex_unlock(&ctl->cache_writeout_mutex);
3214
3215 ret = do_trimming(block_group, total_trimmed, start, bytes,
3216 extent_start, extent_bytes, &trim_entry);
3217 if (ret)
3218 break;
3219 next:
3220 start += bytes;
3221
3222 if (fatal_signal_pending(current)) {
3223 ret = -ERESTARTSYS;
3224 break;
3225 }
3226
3227 cond_resched();
3228 }
3229 out:
3230 return ret;
3231 }
3232
3233 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3234 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3235 {
3236 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3237 struct btrfs_free_space *entry;
3238 int ret = 0;
3239 int ret2;
3240 u64 bytes;
3241 u64 offset = offset_to_bitmap(ctl, start);
3242
3243 while (offset < end) {
3244 bool next_bitmap = false;
3245 struct btrfs_trim_range trim_entry;
3246
3247 mutex_lock(&ctl->cache_writeout_mutex);
3248 spin_lock(&ctl->tree_lock);
3249
3250 if (ctl->free_space < minlen) {
3251 spin_unlock(&ctl->tree_lock);
3252 mutex_unlock(&ctl->cache_writeout_mutex);
3253 break;
3254 }
3255
3256 entry = tree_search_offset(ctl, offset, 1, 0);
3257 if (!entry) {
3258 spin_unlock(&ctl->tree_lock);
3259 mutex_unlock(&ctl->cache_writeout_mutex);
3260 next_bitmap = true;
3261 goto next;
3262 }
3263
3264 bytes = minlen;
3265 ret2 = search_bitmap(ctl, entry, &start, &bytes);
3266 if (ret2 || start >= end) {
3267 spin_unlock(&ctl->tree_lock);
3268 mutex_unlock(&ctl->cache_writeout_mutex);
3269 next_bitmap = true;
3270 goto next;
3271 }
3272
3273 bytes = min(bytes, end - start);
3274 if (bytes < minlen) {
3275 spin_unlock(&ctl->tree_lock);
3276 mutex_unlock(&ctl->cache_writeout_mutex);
3277 goto next;
3278 }
3279
3280 bitmap_clear_bits(ctl, entry, start, bytes);
3281 if (entry->bytes == 0)
3282 free_bitmap(ctl, entry);
3283
3284 spin_unlock(&ctl->tree_lock);
3285 trim_entry.start = start;
3286 trim_entry.bytes = bytes;
3287 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3288 mutex_unlock(&ctl->cache_writeout_mutex);
3289
3290 ret = do_trimming(block_group, total_trimmed, start, bytes,
3291 start, bytes, &trim_entry);
3292 if (ret)
3293 break;
3294 next:
3295 if (next_bitmap) {
3296 offset += BITS_PER_BITMAP * ctl->unit;
3297 } else {
3298 start += bytes;
3299 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3300 offset += BITS_PER_BITMAP * ctl->unit;
3301 }
3302
3303 if (fatal_signal_pending(current)) {
3304 ret = -ERESTARTSYS;
3305 break;
3306 }
3307
3308 cond_resched();
3309 }
3310
3311 return ret;
3312 }
3313
3314 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3315 {
3316 atomic_inc(&cache->trimming);
3317 }
3318
3319 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3320 {
3321 struct extent_map_tree *em_tree;
3322 struct extent_map *em;
3323 bool cleanup;
3324
3325 spin_lock(&block_group->lock);
3326 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3327 block_group->removed);
3328 spin_unlock(&block_group->lock);
3329
3330 if (cleanup) {
3331 lock_chunks(block_group->fs_info->chunk_root);
3332 em_tree = &block_group->fs_info->mapping_tree.map_tree;
3333 write_lock(&em_tree->lock);
3334 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3335 1);
3336 BUG_ON(!em); /* logic error, can't happen */
3337 /*
3338 * remove_extent_mapping() will delete us from the pinned_chunks
3339 * list, which is protected by the chunk mutex.
3340 */
3341 remove_extent_mapping(em_tree, em);
3342 write_unlock(&em_tree->lock);
3343 unlock_chunks(block_group->fs_info->chunk_root);
3344
3345 /* once for us and once for the tree */
3346 free_extent_map(em);
3347 free_extent_map(em);
3348
3349 /*
3350 * We've left one free space entry and other tasks trimming
3351 * this block group have left 1 entry each one. Free them.
3352 */
3353 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3354 }
3355 }
3356
3357 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3358 u64 *trimmed, u64 start, u64 end, u64 minlen)
3359 {
3360 int ret;
3361
3362 *trimmed = 0;
3363
3364 spin_lock(&block_group->lock);
3365 if (block_group->removed) {
3366 spin_unlock(&block_group->lock);
3367 return 0;
3368 }
3369 btrfs_get_block_group_trimming(block_group);
3370 spin_unlock(&block_group->lock);
3371
3372 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3373 if (ret)
3374 goto out;
3375
3376 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3377 out:
3378 btrfs_put_block_group_trimming(block_group);
3379 return ret;
3380 }
3381
3382 /*
3383 * Find the left-most item in the cache tree, and then return the
3384 * smallest inode number in the item.
3385 *
3386 * Note: the returned inode number may not be the smallest one in
3387 * the tree, if the left-most item is a bitmap.
3388 */
3389 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3390 {
3391 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3392 struct btrfs_free_space *entry = NULL;
3393 u64 ino = 0;
3394
3395 spin_lock(&ctl->tree_lock);
3396
3397 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3398 goto out;
3399
3400 entry = rb_entry(rb_first(&ctl->free_space_offset),
3401 struct btrfs_free_space, offset_index);
3402
3403 if (!entry->bitmap) {
3404 ino = entry->offset;
3405
3406 unlink_free_space(ctl, entry);
3407 entry->offset++;
3408 entry->bytes--;
3409 if (!entry->bytes)
3410 kmem_cache_free(btrfs_free_space_cachep, entry);
3411 else
3412 link_free_space(ctl, entry);
3413 } else {
3414 u64 offset = 0;
3415 u64 count = 1;
3416 int ret;
3417
3418 ret = search_bitmap(ctl, entry, &offset, &count);
3419 /* Logic error; Should be empty if it can't find anything */
3420 ASSERT(!ret);
3421
3422 ino = offset;
3423 bitmap_clear_bits(ctl, entry, offset, 1);
3424 if (entry->bytes == 0)
3425 free_bitmap(ctl, entry);
3426 }
3427 out:
3428 spin_unlock(&ctl->tree_lock);
3429
3430 return ino;
3431 }
3432
3433 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3434 struct btrfs_path *path)
3435 {
3436 struct inode *inode = NULL;
3437
3438 spin_lock(&root->ino_cache_lock);
3439 if (root->ino_cache_inode)
3440 inode = igrab(root->ino_cache_inode);
3441 spin_unlock(&root->ino_cache_lock);
3442 if (inode)
3443 return inode;
3444
3445 inode = __lookup_free_space_inode(root, path, 0);
3446 if (IS_ERR(inode))
3447 return inode;
3448
3449 spin_lock(&root->ino_cache_lock);
3450 if (!btrfs_fs_closing(root->fs_info))
3451 root->ino_cache_inode = igrab(inode);
3452 spin_unlock(&root->ino_cache_lock);
3453
3454 return inode;
3455 }
3456
3457 int create_free_ino_inode(struct btrfs_root *root,
3458 struct btrfs_trans_handle *trans,
3459 struct btrfs_path *path)
3460 {
3461 return __create_free_space_inode(root, trans, path,
3462 BTRFS_FREE_INO_OBJECTID, 0);
3463 }
3464
3465 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3466 {
3467 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3468 struct btrfs_path *path;
3469 struct inode *inode;
3470 int ret = 0;
3471 u64 root_gen = btrfs_root_generation(&root->root_item);
3472
3473 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3474 return 0;
3475
3476 /*
3477 * If we're unmounting then just return, since this does a search on the
3478 * normal root and not the commit root and we could deadlock.
3479 */
3480 if (btrfs_fs_closing(fs_info))
3481 return 0;
3482
3483 path = btrfs_alloc_path();
3484 if (!path)
3485 return 0;
3486
3487 inode = lookup_free_ino_inode(root, path);
3488 if (IS_ERR(inode))
3489 goto out;
3490
3491 if (root_gen != BTRFS_I(inode)->generation)
3492 goto out_put;
3493
3494 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3495
3496 if (ret < 0)
3497 btrfs_err(fs_info,
3498 "failed to load free ino cache for root %llu",
3499 root->root_key.objectid);
3500 out_put:
3501 iput(inode);
3502 out:
3503 btrfs_free_path(path);
3504 return ret;
3505 }
3506
3507 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3508 struct btrfs_trans_handle *trans,
3509 struct btrfs_path *path,
3510 struct inode *inode)
3511 {
3512 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3513 int ret;
3514 struct btrfs_io_ctl io_ctl;
3515 bool release_metadata = true;
3516
3517 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3518 return 0;
3519
3520 memset(&io_ctl, 0, sizeof(io_ctl));
3521 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3522 trans, path, 0);
3523 if (!ret) {
3524 /*
3525 * At this point writepages() didn't error out, so our metadata
3526 * reservation is released when the writeback finishes, at
3527 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3528 * with or without an error.
3529 */
3530 release_metadata = false;
3531 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3532 }
3533
3534 if (ret) {
3535 if (release_metadata)
3536 btrfs_delalloc_release_metadata(inode, inode->i_size);
3537 #ifdef DEBUG
3538 btrfs_err(root->fs_info,
3539 "failed to write free ino cache for root %llu",
3540 root->root_key.objectid);
3541 #endif
3542 }
3543
3544 return ret;
3545 }
3546
3547 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3548 /*
3549 * Use this if you need to make a bitmap or extent entry specifically, it
3550 * doesn't do any of the merging that add_free_space does, this acts a lot like
3551 * how the free space cache loading stuff works, so you can get really weird
3552 * configurations.
3553 */
3554 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3555 u64 offset, u64 bytes, bool bitmap)
3556 {
3557 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3558 struct btrfs_free_space *info = NULL, *bitmap_info;
3559 void *map = NULL;
3560 u64 bytes_added;
3561 int ret;
3562
3563 again:
3564 if (!info) {
3565 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3566 if (!info)
3567 return -ENOMEM;
3568 }
3569
3570 if (!bitmap) {
3571 spin_lock(&ctl->tree_lock);
3572 info->offset = offset;
3573 info->bytes = bytes;
3574 info->max_extent_size = 0;
3575 ret = link_free_space(ctl, info);
3576 spin_unlock(&ctl->tree_lock);
3577 if (ret)
3578 kmem_cache_free(btrfs_free_space_cachep, info);
3579 return ret;
3580 }
3581
3582 if (!map) {
3583 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3584 if (!map) {
3585 kmem_cache_free(btrfs_free_space_cachep, info);
3586 return -ENOMEM;
3587 }
3588 }
3589
3590 spin_lock(&ctl->tree_lock);
3591 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3592 1, 0);
3593 if (!bitmap_info) {
3594 info->bitmap = map;
3595 map = NULL;
3596 add_new_bitmap(ctl, info, offset);
3597 bitmap_info = info;
3598 info = NULL;
3599 }
3600
3601 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3602
3603 /* We used the newly allocated info, set the max_extent_size to bytes */
3604 if (!info)
3605 bitmap_info->max_extent_size = bytes_added;
3606
3607 bytes -= bytes_added;
3608 offset += bytes_added;
3609 spin_unlock(&ctl->tree_lock);
3610
3611 if (bytes)
3612 goto again;
3613
3614 if (info)
3615 kmem_cache_free(btrfs_free_space_cachep, info);
3616 if (map)
3617 kfree(map);
3618 return 0;
3619 }
3620
3621 /*
3622 * Checks to see if the given range is in the free space cache. This is really
3623 * just used to check the absence of space, so if there is free space in the
3624 * range at all we will return 1.
3625 */
3626 int test_check_exists(struct btrfs_block_group_cache *cache,
3627 u64 offset, u64 bytes)
3628 {
3629 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3630 struct btrfs_free_space *info;
3631 int ret = 0;
3632
3633 spin_lock(&ctl->tree_lock);
3634 info = tree_search_offset(ctl, offset, 0, 0);
3635 if (!info) {
3636 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3637 1, 0);
3638 if (!info)
3639 goto out;
3640 }
3641
3642 have_info:
3643 if (info->bitmap) {
3644 u64 bit_off, bit_bytes;
3645 struct rb_node *n;
3646 struct btrfs_free_space *tmp;
3647
3648 bit_off = offset;
3649 bit_bytes = ctl->unit;
3650 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3651 if (!ret) {
3652 if (bit_off == offset) {
3653 ret = 1;
3654 goto out;
3655 } else if (bit_off > offset &&
3656 offset + bytes > bit_off) {
3657 ret = 1;
3658 goto out;
3659 }
3660 }
3661
3662 n = rb_prev(&info->offset_index);
3663 while (n) {
3664 tmp = rb_entry(n, struct btrfs_free_space,
3665 offset_index);
3666 if (tmp->offset + tmp->bytes < offset)
3667 break;
3668 if (offset + bytes < tmp->offset) {
3669 n = rb_prev(&info->offset_index);
3670 continue;
3671 }
3672 info = tmp;
3673 goto have_info;
3674 }
3675
3676 n = rb_next(&info->offset_index);
3677 while (n) {
3678 tmp = rb_entry(n, struct btrfs_free_space,
3679 offset_index);
3680 if (offset + bytes < tmp->offset)
3681 break;
3682 if (tmp->offset + tmp->bytes < offset) {
3683 n = rb_next(&info->offset_index);
3684 continue;
3685 }
3686 info = tmp;
3687 goto have_info;
3688 }
3689
3690 ret = 0;
3691 goto out;
3692 }
3693
3694 if (info->offset == offset) {
3695 ret = 1;
3696 goto out;
3697 }
3698
3699 if (offset > info->offset && offset < info->offset + info->bytes)
3700 ret = 1;
3701 out:
3702 spin_unlock(&ctl->tree_lock);
3703 return ret;
3704 }
3705 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */