]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/inode.c
Merge branch 'for-chris-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmana...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59 #include "hash.h"
60 #include "props.h"
61 #include "qgroup.h"
62 #include "dedupe.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 int overwrite;
75 };
76
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102 };
103
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
117
118 static void __endio_write_update_ordered(struct inode *inode,
119 const u64 offset, const u64 bytes,
120 const bool uptodate);
121
122 /*
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
125 *
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
134 */
135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
136 const u64 offset,
137 const u64 bytes)
138 {
139 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
140 bytes - PAGE_SIZE, false);
141 }
142
143 static int btrfs_dirty_inode(struct inode *inode);
144
145 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
146 void btrfs_test_inode_set_ops(struct inode *inode)
147 {
148 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
149 }
150 #endif
151
152 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
153 struct inode *inode, struct inode *dir,
154 const struct qstr *qstr)
155 {
156 int err;
157
158 err = btrfs_init_acl(trans, inode, dir);
159 if (!err)
160 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
161 return err;
162 }
163
164 /*
165 * this does all the hard work for inserting an inline extent into
166 * the btree. The caller should have done a btrfs_drop_extents so that
167 * no overlapping inline items exist in the btree
168 */
169 static int insert_inline_extent(struct btrfs_trans_handle *trans,
170 struct btrfs_path *path, int extent_inserted,
171 struct btrfs_root *root, struct inode *inode,
172 u64 start, size_t size, size_t compressed_size,
173 int compress_type,
174 struct page **compressed_pages)
175 {
176 struct extent_buffer *leaf;
177 struct page *page = NULL;
178 char *kaddr;
179 unsigned long ptr;
180 struct btrfs_file_extent_item *ei;
181 int err = 0;
182 int ret;
183 size_t cur_size = size;
184 unsigned long offset;
185
186 if (compressed_size && compressed_pages)
187 cur_size = compressed_size;
188
189 inode_add_bytes(inode, size);
190
191 if (!extent_inserted) {
192 struct btrfs_key key;
193 size_t datasize;
194
195 key.objectid = btrfs_ino(BTRFS_I(inode));
196 key.offset = start;
197 key.type = BTRFS_EXTENT_DATA_KEY;
198
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
202 datasize);
203 if (ret) {
204 err = ret;
205 goto fail;
206 }
207 }
208 leaf = path->nodes[0];
209 ei = btrfs_item_ptr(leaf, path->slots[0],
210 struct btrfs_file_extent_item);
211 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
212 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
213 btrfs_set_file_extent_encryption(leaf, ei, 0);
214 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
215 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
216 ptr = btrfs_file_extent_inline_start(ei);
217
218 if (compress_type != BTRFS_COMPRESS_NONE) {
219 struct page *cpage;
220 int i = 0;
221 while (compressed_size > 0) {
222 cpage = compressed_pages[i];
223 cur_size = min_t(unsigned long, compressed_size,
224 PAGE_SIZE);
225
226 kaddr = kmap_atomic(cpage);
227 write_extent_buffer(leaf, kaddr, ptr, cur_size);
228 kunmap_atomic(kaddr);
229
230 i++;
231 ptr += cur_size;
232 compressed_size -= cur_size;
233 }
234 btrfs_set_file_extent_compression(leaf, ei,
235 compress_type);
236 } else {
237 page = find_get_page(inode->i_mapping,
238 start >> PAGE_SHIFT);
239 btrfs_set_file_extent_compression(leaf, ei, 0);
240 kaddr = kmap_atomic(page);
241 offset = start & (PAGE_SIZE - 1);
242 write_extent_buffer(leaf, kaddr + offset, ptr, size);
243 kunmap_atomic(kaddr);
244 put_page(page);
245 }
246 btrfs_mark_buffer_dirty(leaf);
247 btrfs_release_path(path);
248
249 /*
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
253 *
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
257 */
258 BTRFS_I(inode)->disk_i_size = inode->i_size;
259 ret = btrfs_update_inode(trans, root, inode);
260
261 return ret;
262 fail:
263 return err;
264 }
265
266
267 /*
268 * conditionally insert an inline extent into the file. This
269 * does the checks required to make sure the data is small enough
270 * to fit as an inline extent.
271 */
272 static noinline int cow_file_range_inline(struct btrfs_root *root,
273 struct inode *inode, u64 start,
274 u64 end, size_t compressed_size,
275 int compress_type,
276 struct page **compressed_pages)
277 {
278 struct btrfs_fs_info *fs_info = root->fs_info;
279 struct btrfs_trans_handle *trans;
280 u64 isize = i_size_read(inode);
281 u64 actual_end = min(end + 1, isize);
282 u64 inline_len = actual_end - start;
283 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
284 u64 data_len = inline_len;
285 int ret;
286 struct btrfs_path *path;
287 int extent_inserted = 0;
288 u32 extent_item_size;
289
290 if (compressed_size)
291 data_len = compressed_size;
292
293 if (start > 0 ||
294 actual_end > fs_info->sectorsize ||
295 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
296 (!compressed_size &&
297 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
298 end + 1 < isize ||
299 data_len > fs_info->max_inline) {
300 return 1;
301 }
302
303 path = btrfs_alloc_path();
304 if (!path)
305 return -ENOMEM;
306
307 trans = btrfs_join_transaction(root);
308 if (IS_ERR(trans)) {
309 btrfs_free_path(path);
310 return PTR_ERR(trans);
311 }
312 trans->block_rsv = &fs_info->delalloc_block_rsv;
313
314 if (compressed_size && compressed_pages)
315 extent_item_size = btrfs_file_extent_calc_inline_size(
316 compressed_size);
317 else
318 extent_item_size = btrfs_file_extent_calc_inline_size(
319 inline_len);
320
321 ret = __btrfs_drop_extents(trans, root, inode, path,
322 start, aligned_end, NULL,
323 1, 1, extent_item_size, &extent_inserted);
324 if (ret) {
325 btrfs_abort_transaction(trans, ret);
326 goto out;
327 }
328
329 if (isize > actual_end)
330 inline_len = min_t(u64, isize, actual_end);
331 ret = insert_inline_extent(trans, path, extent_inserted,
332 root, inode, start,
333 inline_len, compressed_size,
334 compress_type, compressed_pages);
335 if (ret && ret != -ENOSPC) {
336 btrfs_abort_transaction(trans, ret);
337 goto out;
338 } else if (ret == -ENOSPC) {
339 ret = 1;
340 goto out;
341 }
342
343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
344 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
346 out:
347 /*
348 * Don't forget to free the reserved space, as for inlined extent
349 * it won't count as data extent, free them directly here.
350 * And at reserve time, it's always aligned to page size, so
351 * just free one page here.
352 */
353 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
354 btrfs_free_path(path);
355 btrfs_end_transaction(trans);
356 return ret;
357 }
358
359 struct async_extent {
360 u64 start;
361 u64 ram_size;
362 u64 compressed_size;
363 struct page **pages;
364 unsigned long nr_pages;
365 int compress_type;
366 struct list_head list;
367 };
368
369 struct async_cow {
370 struct inode *inode;
371 struct btrfs_root *root;
372 struct page *locked_page;
373 u64 start;
374 u64 end;
375 struct list_head extents;
376 struct btrfs_work work;
377 };
378
379 static noinline int add_async_extent(struct async_cow *cow,
380 u64 start, u64 ram_size,
381 u64 compressed_size,
382 struct page **pages,
383 unsigned long nr_pages,
384 int compress_type)
385 {
386 struct async_extent *async_extent;
387
388 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
389 BUG_ON(!async_extent); /* -ENOMEM */
390 async_extent->start = start;
391 async_extent->ram_size = ram_size;
392 async_extent->compressed_size = compressed_size;
393 async_extent->pages = pages;
394 async_extent->nr_pages = nr_pages;
395 async_extent->compress_type = compress_type;
396 list_add_tail(&async_extent->list, &cow->extents);
397 return 0;
398 }
399
400 static inline int inode_need_compress(struct inode *inode)
401 {
402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
403
404 /* force compress */
405 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
406 return 1;
407 /* bad compression ratios */
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
409 return 0;
410 if (btrfs_test_opt(fs_info, COMPRESS) ||
411 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
412 BTRFS_I(inode)->force_compress)
413 return 1;
414 return 0;
415 }
416
417 static inline void inode_should_defrag(struct btrfs_inode *inode,
418 u64 start, u64 end, u64 num_bytes, u64 small_write)
419 {
420 /* If this is a small write inside eof, kick off a defrag */
421 if (num_bytes < small_write &&
422 (start > 0 || end + 1 < inode->disk_i_size))
423 btrfs_add_inode_defrag(NULL, inode);
424 }
425
426 /*
427 * we create compressed extents in two phases. The first
428 * phase compresses a range of pages that have already been
429 * locked (both pages and state bits are locked).
430 *
431 * This is done inside an ordered work queue, and the compression
432 * is spread across many cpus. The actual IO submission is step
433 * two, and the ordered work queue takes care of making sure that
434 * happens in the same order things were put onto the queue by
435 * writepages and friends.
436 *
437 * If this code finds it can't get good compression, it puts an
438 * entry onto the work queue to write the uncompressed bytes. This
439 * makes sure that both compressed inodes and uncompressed inodes
440 * are written in the same order that the flusher thread sent them
441 * down.
442 */
443 static noinline void compress_file_range(struct inode *inode,
444 struct page *locked_page,
445 u64 start, u64 end,
446 struct async_cow *async_cow,
447 int *num_added)
448 {
449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
450 struct btrfs_root *root = BTRFS_I(inode)->root;
451 u64 num_bytes;
452 u64 blocksize = fs_info->sectorsize;
453 u64 actual_end;
454 u64 isize = i_size_read(inode);
455 int ret = 0;
456 struct page **pages = NULL;
457 unsigned long nr_pages;
458 unsigned long total_compressed = 0;
459 unsigned long total_in = 0;
460 int i;
461 int will_compress;
462 int compress_type = fs_info->compress_type;
463 int redirty = 0;
464
465 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
466 SZ_16K);
467
468 actual_end = min_t(u64, isize, end + 1);
469 again:
470 will_compress = 0;
471 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
472 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
473 nr_pages = min_t(unsigned long, nr_pages,
474 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
475
476 /*
477 * we don't want to send crud past the end of i_size through
478 * compression, that's just a waste of CPU time. So, if the
479 * end of the file is before the start of our current
480 * requested range of bytes, we bail out to the uncompressed
481 * cleanup code that can deal with all of this.
482 *
483 * It isn't really the fastest way to fix things, but this is a
484 * very uncommon corner.
485 */
486 if (actual_end <= start)
487 goto cleanup_and_bail_uncompressed;
488
489 total_compressed = actual_end - start;
490
491 /*
492 * skip compression for a small file range(<=blocksize) that
493 * isn't an inline extent, since it doesn't save disk space at all.
494 */
495 if (total_compressed <= blocksize &&
496 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
497 goto cleanup_and_bail_uncompressed;
498
499 total_compressed = min_t(unsigned long, total_compressed,
500 BTRFS_MAX_UNCOMPRESSED);
501 num_bytes = ALIGN(end - start + 1, blocksize);
502 num_bytes = max(blocksize, num_bytes);
503 total_in = 0;
504 ret = 0;
505
506 /*
507 * we do compression for mount -o compress and when the
508 * inode has not been flagged as nocompress. This flag can
509 * change at any time if we discover bad compression ratios.
510 */
511 if (inode_need_compress(inode)) {
512 WARN_ON(pages);
513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
514 if (!pages) {
515 /* just bail out to the uncompressed code */
516 goto cont;
517 }
518
519 if (BTRFS_I(inode)->force_compress)
520 compress_type = BTRFS_I(inode)->force_compress;
521
522 /*
523 * we need to call clear_page_dirty_for_io on each
524 * page in the range. Otherwise applications with the file
525 * mmap'd can wander in and change the page contents while
526 * we are compressing them.
527 *
528 * If the compression fails for any reason, we set the pages
529 * dirty again later on.
530 */
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
533 ret = btrfs_compress_pages(compress_type,
534 inode->i_mapping, start,
535 pages,
536 &nr_pages,
537 &total_in,
538 &total_compressed);
539
540 if (!ret) {
541 unsigned long offset = total_compressed &
542 (PAGE_SIZE - 1);
543 struct page *page = pages[nr_pages - 1];
544 char *kaddr;
545
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
548 */
549 if (offset) {
550 kaddr = kmap_atomic(page);
551 memset(kaddr + offset, 0,
552 PAGE_SIZE - offset);
553 kunmap_atomic(kaddr);
554 }
555 will_compress = 1;
556 }
557 }
558 cont:
559 if (start == 0) {
560 /* lets try to make an inline extent */
561 if (ret || total_in < (actual_end - start)) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
564 */
565 ret = cow_file_range_inline(root, inode, start, end,
566 0, BTRFS_COMPRESS_NONE, NULL);
567 } else {
568 /* try making a compressed inline extent */
569 ret = cow_file_range_inline(root, inode, start, end,
570 total_compressed,
571 compress_type, pages);
572 }
573 if (ret <= 0) {
574 unsigned long clear_flags = EXTENT_DELALLOC |
575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
576 unsigned long page_error_op;
577
578 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
580
581 /*
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
585 */
586 extent_clear_unlock_delalloc(inode, start, end, end,
587 NULL, clear_flags,
588 PAGE_UNLOCK |
589 PAGE_CLEAR_DIRTY |
590 PAGE_SET_WRITEBACK |
591 page_error_op |
592 PAGE_END_WRITEBACK);
593 if (ret == 0)
594 btrfs_free_reserved_data_space_noquota(inode,
595 start,
596 end - start + 1);
597 goto free_pages_out;
598 }
599 }
600
601 if (will_compress) {
602 /*
603 * we aren't doing an inline extent round the compressed size
604 * up to a block size boundary so the allocator does sane
605 * things
606 */
607 total_compressed = ALIGN(total_compressed, blocksize);
608
609 /*
610 * one last check to make sure the compression is really a
611 * win, compare the page count read with the blocks on disk
612 */
613 total_in = ALIGN(total_in, PAGE_SIZE);
614 if (total_compressed >= total_in) {
615 will_compress = 0;
616 } else {
617 num_bytes = total_in;
618 *num_added += 1;
619
620 /*
621 * The async work queues will take care of doing actual
622 * allocation on disk for these compressed pages, and
623 * will submit them to the elevator.
624 */
625 add_async_extent(async_cow, start, num_bytes,
626 total_compressed, pages, nr_pages,
627 compress_type);
628
629 if (start + num_bytes < end) {
630 start += num_bytes;
631 pages = NULL;
632 cond_resched();
633 goto again;
634 }
635 return;
636 }
637 }
638 if (pages) {
639 /*
640 * the compression code ran but failed to make things smaller,
641 * free any pages it allocated and our page pointer array
642 */
643 for (i = 0; i < nr_pages; i++) {
644 WARN_ON(pages[i]->mapping);
645 put_page(pages[i]);
646 }
647 kfree(pages);
648 pages = NULL;
649 total_compressed = 0;
650 nr_pages = 0;
651
652 /* flag the file so we don't compress in the future */
653 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
654 !(BTRFS_I(inode)->force_compress)) {
655 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
656 }
657 }
658 cleanup_and_bail_uncompressed:
659 /*
660 * No compression, but we still need to write the pages in the file
661 * we've been given so far. redirty the locked page if it corresponds
662 * to our extent and set things up for the async work queue to run
663 * cow_file_range to do the normal delalloc dance.
664 */
665 if (page_offset(locked_page) >= start &&
666 page_offset(locked_page) <= end)
667 __set_page_dirty_nobuffers(locked_page);
668 /* unlocked later on in the async handlers */
669
670 if (redirty)
671 extent_range_redirty_for_io(inode, start, end);
672 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
673 BTRFS_COMPRESS_NONE);
674 *num_added += 1;
675
676 return;
677
678 free_pages_out:
679 for (i = 0; i < nr_pages; i++) {
680 WARN_ON(pages[i]->mapping);
681 put_page(pages[i]);
682 }
683 kfree(pages);
684 }
685
686 static void free_async_extent_pages(struct async_extent *async_extent)
687 {
688 int i;
689
690 if (!async_extent->pages)
691 return;
692
693 for (i = 0; i < async_extent->nr_pages; i++) {
694 WARN_ON(async_extent->pages[i]->mapping);
695 put_page(async_extent->pages[i]);
696 }
697 kfree(async_extent->pages);
698 async_extent->nr_pages = 0;
699 async_extent->pages = NULL;
700 }
701
702 /*
703 * phase two of compressed writeback. This is the ordered portion
704 * of the code, which only gets called in the order the work was
705 * queued. We walk all the async extents created by compress_file_range
706 * and send them down to the disk.
707 */
708 static noinline void submit_compressed_extents(struct inode *inode,
709 struct async_cow *async_cow)
710 {
711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
712 struct async_extent *async_extent;
713 u64 alloc_hint = 0;
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct btrfs_root *root = BTRFS_I(inode)->root;
717 struct extent_io_tree *io_tree;
718 int ret = 0;
719
720 again:
721 while (!list_empty(&async_cow->extents)) {
722 async_extent = list_entry(async_cow->extents.next,
723 struct async_extent, list);
724 list_del(&async_extent->list);
725
726 io_tree = &BTRFS_I(inode)->io_tree;
727
728 retry:
729 /* did the compression code fall back to uncompressed IO? */
730 if (!async_extent->pages) {
731 int page_started = 0;
732 unsigned long nr_written = 0;
733
734 lock_extent(io_tree, async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1);
737
738 /* allocate blocks */
739 ret = cow_file_range(inode, async_cow->locked_page,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1,
743 async_extent->start +
744 async_extent->ram_size - 1,
745 &page_started, &nr_written, 0,
746 NULL);
747
748 /* JDM XXX */
749
750 /*
751 * if page_started, cow_file_range inserted an
752 * inline extent and took care of all the unlocking
753 * and IO for us. Otherwise, we need to submit
754 * all those pages down to the drive.
755 */
756 if (!page_started && !ret)
757 extent_write_locked_range(io_tree,
758 inode, async_extent->start,
759 async_extent->start +
760 async_extent->ram_size - 1,
761 btrfs_get_extent,
762 WB_SYNC_ALL);
763 else if (ret)
764 unlock_page(async_cow->locked_page);
765 kfree(async_extent);
766 cond_resched();
767 continue;
768 }
769
770 lock_extent(io_tree, async_extent->start,
771 async_extent->start + async_extent->ram_size - 1);
772
773 ret = btrfs_reserve_extent(root, async_extent->ram_size,
774 async_extent->compressed_size,
775 async_extent->compressed_size,
776 0, alloc_hint, &ins, 1, 1);
777 if (ret) {
778 free_async_extent_pages(async_extent);
779
780 if (ret == -ENOSPC) {
781 unlock_extent(io_tree, async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1);
784
785 /*
786 * we need to redirty the pages if we decide to
787 * fallback to uncompressed IO, otherwise we
788 * will not submit these pages down to lower
789 * layers.
790 */
791 extent_range_redirty_for_io(inode,
792 async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1);
795
796 goto retry;
797 }
798 goto out_free;
799 }
800 /*
801 * here we're doing allocation and writeback of the
802 * compressed pages
803 */
804 em = create_io_em(inode, async_extent->start,
805 async_extent->ram_size, /* len */
806 async_extent->start, /* orig_start */
807 ins.objectid, /* block_start */
808 ins.offset, /* block_len */
809 ins.offset, /* orig_block_len */
810 async_extent->ram_size, /* ram_bytes */
811 async_extent->compress_type,
812 BTRFS_ORDERED_COMPRESSED);
813 if (IS_ERR(em))
814 /* ret value is not necessary due to void function */
815 goto out_free_reserve;
816 free_extent_map(em);
817
818 ret = btrfs_add_ordered_extent_compress(inode,
819 async_extent->start,
820 ins.objectid,
821 async_extent->ram_size,
822 ins.offset,
823 BTRFS_ORDERED_COMPRESSED,
824 async_extent->compress_type);
825 if (ret) {
826 btrfs_drop_extent_cache(BTRFS_I(inode),
827 async_extent->start,
828 async_extent->start +
829 async_extent->ram_size - 1, 0);
830 goto out_free_reserve;
831 }
832 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
833
834 /*
835 * clear dirty, set writeback and unlock the pages.
836 */
837 extent_clear_unlock_delalloc(inode, async_extent->start,
838 async_extent->start +
839 async_extent->ram_size - 1,
840 async_extent->start +
841 async_extent->ram_size - 1,
842 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
843 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
844 PAGE_SET_WRITEBACK);
845 ret = btrfs_submit_compressed_write(inode,
846 async_extent->start,
847 async_extent->ram_size,
848 ins.objectid,
849 ins.offset, async_extent->pages,
850 async_extent->nr_pages);
851 if (ret) {
852 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
853 struct page *p = async_extent->pages[0];
854 const u64 start = async_extent->start;
855 const u64 end = start + async_extent->ram_size - 1;
856
857 p->mapping = inode->i_mapping;
858 tree->ops->writepage_end_io_hook(p, start, end,
859 NULL, 0);
860 p->mapping = NULL;
861 extent_clear_unlock_delalloc(inode, start, end, end,
862 NULL, 0,
863 PAGE_END_WRITEBACK |
864 PAGE_SET_ERROR);
865 free_async_extent_pages(async_extent);
866 }
867 alloc_hint = ins.objectid + ins.offset;
868 kfree(async_extent);
869 cond_resched();
870 }
871 return;
872 out_free_reserve:
873 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
874 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
875 out_free:
876 extent_clear_unlock_delalloc(inode, async_extent->start,
877 async_extent->start +
878 async_extent->ram_size - 1,
879 async_extent->start +
880 async_extent->ram_size - 1,
881 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
882 EXTENT_DELALLOC_NEW |
883 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
885 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
886 PAGE_SET_ERROR);
887 free_async_extent_pages(async_extent);
888 kfree(async_extent);
889 goto again;
890 }
891
892 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 u64 num_bytes)
894 {
895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 struct extent_map *em;
897 u64 alloc_hint = 0;
898
899 read_lock(&em_tree->lock);
900 em = search_extent_mapping(em_tree, start, num_bytes);
901 if (em) {
902 /*
903 * if block start isn't an actual block number then find the
904 * first block in this inode and use that as a hint. If that
905 * block is also bogus then just don't worry about it.
906 */
907 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
908 free_extent_map(em);
909 em = search_extent_mapping(em_tree, 0, 0);
910 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
911 alloc_hint = em->block_start;
912 if (em)
913 free_extent_map(em);
914 } else {
915 alloc_hint = em->block_start;
916 free_extent_map(em);
917 }
918 }
919 read_unlock(&em_tree->lock);
920
921 return alloc_hint;
922 }
923
924 /*
925 * when extent_io.c finds a delayed allocation range in the file,
926 * the call backs end up in this code. The basic idea is to
927 * allocate extents on disk for the range, and create ordered data structs
928 * in ram to track those extents.
929 *
930 * locked_page is the page that writepage had locked already. We use
931 * it to make sure we don't do extra locks or unlocks.
932 *
933 * *page_started is set to one if we unlock locked_page and do everything
934 * required to start IO on it. It may be clean and already done with
935 * IO when we return.
936 */
937 static noinline int cow_file_range(struct inode *inode,
938 struct page *locked_page,
939 u64 start, u64 end, u64 delalloc_end,
940 int *page_started, unsigned long *nr_written,
941 int unlock, struct btrfs_dedupe_hash *hash)
942 {
943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
944 struct btrfs_root *root = BTRFS_I(inode)->root;
945 u64 alloc_hint = 0;
946 u64 num_bytes;
947 unsigned long ram_size;
948 u64 disk_num_bytes;
949 u64 cur_alloc_size = 0;
950 u64 blocksize = fs_info->sectorsize;
951 struct btrfs_key ins;
952 struct extent_map *em;
953 unsigned clear_bits;
954 unsigned long page_ops;
955 bool extent_reserved = false;
956 int ret = 0;
957
958 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
959 WARN_ON_ONCE(1);
960 ret = -EINVAL;
961 goto out_unlock;
962 }
963
964 num_bytes = ALIGN(end - start + 1, blocksize);
965 num_bytes = max(blocksize, num_bytes);
966 disk_num_bytes = num_bytes;
967
968 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
969
970 if (start == 0) {
971 /* lets try to make an inline extent */
972 ret = cow_file_range_inline(root, inode, start, end, 0,
973 BTRFS_COMPRESS_NONE, NULL);
974 if (ret == 0) {
975 extent_clear_unlock_delalloc(inode, start, end,
976 delalloc_end, NULL,
977 EXTENT_LOCKED | EXTENT_DELALLOC |
978 EXTENT_DELALLOC_NEW |
979 EXTENT_DEFRAG, PAGE_UNLOCK |
980 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
981 PAGE_END_WRITEBACK);
982 btrfs_free_reserved_data_space_noquota(inode, start,
983 end - start + 1);
984 *nr_written = *nr_written +
985 (end - start + PAGE_SIZE) / PAGE_SIZE;
986 *page_started = 1;
987 goto out;
988 } else if (ret < 0) {
989 goto out_unlock;
990 }
991 }
992
993 BUG_ON(disk_num_bytes >
994 btrfs_super_total_bytes(fs_info->super_copy));
995
996 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
997 btrfs_drop_extent_cache(BTRFS_I(inode), start,
998 start + num_bytes - 1, 0);
999
1000 while (disk_num_bytes > 0) {
1001 cur_alloc_size = disk_num_bytes;
1002 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1003 fs_info->sectorsize, 0, alloc_hint,
1004 &ins, 1, 1);
1005 if (ret < 0)
1006 goto out_unlock;
1007 cur_alloc_size = ins.offset;
1008 extent_reserved = true;
1009
1010 ram_size = ins.offset;
1011 em = create_io_em(inode, start, ins.offset, /* len */
1012 start, /* orig_start */
1013 ins.objectid, /* block_start */
1014 ins.offset, /* block_len */
1015 ins.offset, /* orig_block_len */
1016 ram_size, /* ram_bytes */
1017 BTRFS_COMPRESS_NONE, /* compress_type */
1018 BTRFS_ORDERED_REGULAR /* type */);
1019 if (IS_ERR(em))
1020 goto out_reserve;
1021 free_extent_map(em);
1022
1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 ram_size, cur_alloc_size, 0);
1025 if (ret)
1026 goto out_drop_extent_cache;
1027
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1031 cur_alloc_size);
1032 /*
1033 * Only drop cache here, and process as normal.
1034 *
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1039 *
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1042 */
1043 if (ret)
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
1046 }
1047
1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1049
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1053 *
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1056 */
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
1059
1060 extent_clear_unlock_delalloc(inode, start,
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1064 page_ops);
1065 if (disk_num_bytes < cur_alloc_size)
1066 disk_num_bytes = 0;
1067 else
1068 disk_num_bytes -= cur_alloc_size;
1069 num_bytes -= cur_alloc_size;
1070 alloc_hint = ins.objectid + ins.offset;
1071 start += cur_alloc_size;
1072 extent_reserved = false;
1073
1074 /*
1075 * btrfs_reloc_clone_csums() error, since start is increased
1076 * extent_clear_unlock_delalloc() at out_unlock label won't
1077 * free metadata of current ordered extent, we're OK to exit.
1078 */
1079 if (ret)
1080 goto out_unlock;
1081 }
1082 out:
1083 return ret;
1084
1085 out_drop_extent_cache:
1086 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1087 out_reserve:
1088 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1089 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1090 out_unlock:
1091 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1092 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1093 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1094 PAGE_END_WRITEBACK;
1095 /*
1096 * If we reserved an extent for our delalloc range (or a subrange) and
1097 * failed to create the respective ordered extent, then it means that
1098 * when we reserved the extent we decremented the extent's size from
1099 * the data space_info's bytes_may_use counter and incremented the
1100 * space_info's bytes_reserved counter by the same amount. We must make
1101 * sure extent_clear_unlock_delalloc() does not try to decrement again
1102 * the data space_info's bytes_may_use counter, therefore we do not pass
1103 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 */
1105 if (extent_reserved) {
1106 extent_clear_unlock_delalloc(inode, start,
1107 start + cur_alloc_size,
1108 start + cur_alloc_size,
1109 locked_page,
1110 clear_bits,
1111 page_ops);
1112 start += cur_alloc_size;
1113 if (start >= end)
1114 goto out;
1115 }
1116 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 locked_page,
1118 clear_bits | EXTENT_CLEAR_DATA_RESV,
1119 page_ops);
1120 goto out;
1121 }
1122
1123 /*
1124 * work queue call back to started compression on a file and pages
1125 */
1126 static noinline void async_cow_start(struct btrfs_work *work)
1127 {
1128 struct async_cow *async_cow;
1129 int num_added = 0;
1130 async_cow = container_of(work, struct async_cow, work);
1131
1132 compress_file_range(async_cow->inode, async_cow->locked_page,
1133 async_cow->start, async_cow->end, async_cow,
1134 &num_added);
1135 if (num_added == 0) {
1136 btrfs_add_delayed_iput(async_cow->inode);
1137 async_cow->inode = NULL;
1138 }
1139 }
1140
1141 /*
1142 * work queue call back to submit previously compressed pages
1143 */
1144 static noinline void async_cow_submit(struct btrfs_work *work)
1145 {
1146 struct btrfs_fs_info *fs_info;
1147 struct async_cow *async_cow;
1148 struct btrfs_root *root;
1149 unsigned long nr_pages;
1150
1151 async_cow = container_of(work, struct async_cow, work);
1152
1153 root = async_cow->root;
1154 fs_info = root->fs_info;
1155 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1156 PAGE_SHIFT;
1157
1158 /*
1159 * atomic_sub_return implies a barrier for waitqueue_active
1160 */
1161 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1162 5 * SZ_1M &&
1163 waitqueue_active(&fs_info->async_submit_wait))
1164 wake_up(&fs_info->async_submit_wait);
1165
1166 if (async_cow->inode)
1167 submit_compressed_extents(async_cow->inode, async_cow);
1168 }
1169
1170 static noinline void async_cow_free(struct btrfs_work *work)
1171 {
1172 struct async_cow *async_cow;
1173 async_cow = container_of(work, struct async_cow, work);
1174 if (async_cow->inode)
1175 btrfs_add_delayed_iput(async_cow->inode);
1176 kfree(async_cow);
1177 }
1178
1179 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1180 u64 start, u64 end, int *page_started,
1181 unsigned long *nr_written)
1182 {
1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1184 struct async_cow *async_cow;
1185 struct btrfs_root *root = BTRFS_I(inode)->root;
1186 unsigned long nr_pages;
1187 u64 cur_end;
1188
1189 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1190 1, 0, NULL, GFP_NOFS);
1191 while (start < end) {
1192 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1193 BUG_ON(!async_cow); /* -ENOMEM */
1194 async_cow->inode = igrab(inode);
1195 async_cow->root = root;
1196 async_cow->locked_page = locked_page;
1197 async_cow->start = start;
1198
1199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1200 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1201 cur_end = end;
1202 else
1203 cur_end = min(end, start + SZ_512K - 1);
1204
1205 async_cow->end = cur_end;
1206 INIT_LIST_HEAD(&async_cow->extents);
1207
1208 btrfs_init_work(&async_cow->work,
1209 btrfs_delalloc_helper,
1210 async_cow_start, async_cow_submit,
1211 async_cow_free);
1212
1213 nr_pages = (cur_end - start + PAGE_SIZE) >>
1214 PAGE_SHIFT;
1215 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1216
1217 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1218
1219 while (atomic_read(&fs_info->async_submit_draining) &&
1220 atomic_read(&fs_info->async_delalloc_pages)) {
1221 wait_event(fs_info->async_submit_wait,
1222 (atomic_read(&fs_info->async_delalloc_pages) ==
1223 0));
1224 }
1225
1226 *nr_written += nr_pages;
1227 start = cur_end + 1;
1228 }
1229 *page_started = 1;
1230 return 0;
1231 }
1232
1233 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1234 u64 bytenr, u64 num_bytes)
1235 {
1236 int ret;
1237 struct btrfs_ordered_sum *sums;
1238 LIST_HEAD(list);
1239
1240 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1241 bytenr + num_bytes - 1, &list, 0);
1242 if (ret == 0 && list_empty(&list))
1243 return 0;
1244
1245 while (!list_empty(&list)) {
1246 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1247 list_del(&sums->list);
1248 kfree(sums);
1249 }
1250 return 1;
1251 }
1252
1253 /*
1254 * when nowcow writeback call back. This checks for snapshots or COW copies
1255 * of the extents that exist in the file, and COWs the file as required.
1256 *
1257 * If no cow copies or snapshots exist, we write directly to the existing
1258 * blocks on disk
1259 */
1260 static noinline int run_delalloc_nocow(struct inode *inode,
1261 struct page *locked_page,
1262 u64 start, u64 end, int *page_started, int force,
1263 unsigned long *nr_written)
1264 {
1265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1266 struct btrfs_root *root = BTRFS_I(inode)->root;
1267 struct extent_buffer *leaf;
1268 struct btrfs_path *path;
1269 struct btrfs_file_extent_item *fi;
1270 struct btrfs_key found_key;
1271 struct extent_map *em;
1272 u64 cow_start;
1273 u64 cur_offset;
1274 u64 extent_end;
1275 u64 extent_offset;
1276 u64 disk_bytenr;
1277 u64 num_bytes;
1278 u64 disk_num_bytes;
1279 u64 ram_bytes;
1280 int extent_type;
1281 int ret, err;
1282 int type;
1283 int nocow;
1284 int check_prev = 1;
1285 bool nolock;
1286 u64 ino = btrfs_ino(BTRFS_I(inode));
1287
1288 path = btrfs_alloc_path();
1289 if (!path) {
1290 extent_clear_unlock_delalloc(inode, start, end, end,
1291 locked_page,
1292 EXTENT_LOCKED | EXTENT_DELALLOC |
1293 EXTENT_DO_ACCOUNTING |
1294 EXTENT_DEFRAG, PAGE_UNLOCK |
1295 PAGE_CLEAR_DIRTY |
1296 PAGE_SET_WRITEBACK |
1297 PAGE_END_WRITEBACK);
1298 return -ENOMEM;
1299 }
1300
1301 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1302
1303 cow_start = (u64)-1;
1304 cur_offset = start;
1305 while (1) {
1306 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1307 cur_offset, 0);
1308 if (ret < 0)
1309 goto error;
1310 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1311 leaf = path->nodes[0];
1312 btrfs_item_key_to_cpu(leaf, &found_key,
1313 path->slots[0] - 1);
1314 if (found_key.objectid == ino &&
1315 found_key.type == BTRFS_EXTENT_DATA_KEY)
1316 path->slots[0]--;
1317 }
1318 check_prev = 0;
1319 next_slot:
1320 leaf = path->nodes[0];
1321 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1322 ret = btrfs_next_leaf(root, path);
1323 if (ret < 0)
1324 goto error;
1325 if (ret > 0)
1326 break;
1327 leaf = path->nodes[0];
1328 }
1329
1330 nocow = 0;
1331 disk_bytenr = 0;
1332 num_bytes = 0;
1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334
1335 if (found_key.objectid > ino)
1336 break;
1337 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1339 path->slots[0]++;
1340 goto next_slot;
1341 }
1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1343 found_key.offset > end)
1344 break;
1345
1346 if (found_key.offset > cur_offset) {
1347 extent_end = found_key.offset;
1348 extent_type = 0;
1349 goto out_check;
1350 }
1351
1352 fi = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_file_extent_item);
1354 extent_type = btrfs_file_extent_type(leaf, fi);
1355
1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1357 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1360 extent_offset = btrfs_file_extent_offset(leaf, fi);
1361 extent_end = found_key.offset +
1362 btrfs_file_extent_num_bytes(leaf, fi);
1363 disk_num_bytes =
1364 btrfs_file_extent_disk_num_bytes(leaf, fi);
1365 if (extent_end <= start) {
1366 path->slots[0]++;
1367 goto next_slot;
1368 }
1369 if (disk_bytenr == 0)
1370 goto out_check;
1371 if (btrfs_file_extent_compression(leaf, fi) ||
1372 btrfs_file_extent_encryption(leaf, fi) ||
1373 btrfs_file_extent_other_encoding(leaf, fi))
1374 goto out_check;
1375 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1376 goto out_check;
1377 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1378 goto out_check;
1379 if (btrfs_cross_ref_exist(root, ino,
1380 found_key.offset -
1381 extent_offset, disk_bytenr))
1382 goto out_check;
1383 disk_bytenr += extent_offset;
1384 disk_bytenr += cur_offset - found_key.offset;
1385 num_bytes = min(end + 1, extent_end) - cur_offset;
1386 /*
1387 * if there are pending snapshots for this root,
1388 * we fall into common COW way.
1389 */
1390 if (!nolock) {
1391 err = btrfs_start_write_no_snapshoting(root);
1392 if (!err)
1393 goto out_check;
1394 }
1395 /*
1396 * force cow if csum exists in the range.
1397 * this ensure that csum for a given extent are
1398 * either valid or do not exist.
1399 */
1400 if (csum_exist_in_range(fs_info, disk_bytenr,
1401 num_bytes)) {
1402 if (!nolock)
1403 btrfs_end_write_no_snapshoting(root);
1404 goto out_check;
1405 }
1406 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1407 if (!nolock)
1408 btrfs_end_write_no_snapshoting(root);
1409 goto out_check;
1410 }
1411 nocow = 1;
1412 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1413 extent_end = found_key.offset +
1414 btrfs_file_extent_inline_len(leaf,
1415 path->slots[0], fi);
1416 extent_end = ALIGN(extent_end,
1417 fs_info->sectorsize);
1418 } else {
1419 BUG_ON(1);
1420 }
1421 out_check:
1422 if (extent_end <= start) {
1423 path->slots[0]++;
1424 if (!nolock && nocow)
1425 btrfs_end_write_no_snapshoting(root);
1426 if (nocow)
1427 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1428 goto next_slot;
1429 }
1430 if (!nocow) {
1431 if (cow_start == (u64)-1)
1432 cow_start = cur_offset;
1433 cur_offset = extent_end;
1434 if (cur_offset > end)
1435 break;
1436 path->slots[0]++;
1437 goto next_slot;
1438 }
1439
1440 btrfs_release_path(path);
1441 if (cow_start != (u64)-1) {
1442 ret = cow_file_range(inode, locked_page,
1443 cow_start, found_key.offset - 1,
1444 end, page_started, nr_written, 1,
1445 NULL);
1446 if (ret) {
1447 if (!nolock && nocow)
1448 btrfs_end_write_no_snapshoting(root);
1449 if (nocow)
1450 btrfs_dec_nocow_writers(fs_info,
1451 disk_bytenr);
1452 goto error;
1453 }
1454 cow_start = (u64)-1;
1455 }
1456
1457 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1458 u64 orig_start = found_key.offset - extent_offset;
1459
1460 em = create_io_em(inode, cur_offset, num_bytes,
1461 orig_start,
1462 disk_bytenr, /* block_start */
1463 num_bytes, /* block_len */
1464 disk_num_bytes, /* orig_block_len */
1465 ram_bytes, BTRFS_COMPRESS_NONE,
1466 BTRFS_ORDERED_PREALLOC);
1467 if (IS_ERR(em)) {
1468 if (!nolock && nocow)
1469 btrfs_end_write_no_snapshoting(root);
1470 if (nocow)
1471 btrfs_dec_nocow_writers(fs_info,
1472 disk_bytenr);
1473 ret = PTR_ERR(em);
1474 goto error;
1475 }
1476 free_extent_map(em);
1477 }
1478
1479 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1480 type = BTRFS_ORDERED_PREALLOC;
1481 } else {
1482 type = BTRFS_ORDERED_NOCOW;
1483 }
1484
1485 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1486 num_bytes, num_bytes, type);
1487 if (nocow)
1488 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1489 BUG_ON(ret); /* -ENOMEM */
1490
1491 if (root->root_key.objectid ==
1492 BTRFS_DATA_RELOC_TREE_OBJECTID)
1493 /*
1494 * Error handled later, as we must prevent
1495 * extent_clear_unlock_delalloc() in error handler
1496 * from freeing metadata of created ordered extent.
1497 */
1498 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1499 num_bytes);
1500
1501 extent_clear_unlock_delalloc(inode, cur_offset,
1502 cur_offset + num_bytes - 1, end,
1503 locked_page, EXTENT_LOCKED |
1504 EXTENT_DELALLOC |
1505 EXTENT_CLEAR_DATA_RESV,
1506 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1507
1508 if (!nolock && nocow)
1509 btrfs_end_write_no_snapshoting(root);
1510 cur_offset = extent_end;
1511
1512 /*
1513 * btrfs_reloc_clone_csums() error, now we're OK to call error
1514 * handler, as metadata for created ordered extent will only
1515 * be freed by btrfs_finish_ordered_io().
1516 */
1517 if (ret)
1518 goto error;
1519 if (cur_offset > end)
1520 break;
1521 }
1522 btrfs_release_path(path);
1523
1524 if (cur_offset <= end && cow_start == (u64)-1) {
1525 cow_start = cur_offset;
1526 cur_offset = end;
1527 }
1528
1529 if (cow_start != (u64)-1) {
1530 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1531 page_started, nr_written, 1, NULL);
1532 if (ret)
1533 goto error;
1534 }
1535
1536 error:
1537 if (ret && cur_offset < end)
1538 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1539 locked_page, EXTENT_LOCKED |
1540 EXTENT_DELALLOC | EXTENT_DEFRAG |
1541 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1542 PAGE_CLEAR_DIRTY |
1543 PAGE_SET_WRITEBACK |
1544 PAGE_END_WRITEBACK);
1545 btrfs_free_path(path);
1546 return ret;
1547 }
1548
1549 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1550 {
1551
1552 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1553 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1554 return 0;
1555
1556 /*
1557 * @defrag_bytes is a hint value, no spinlock held here,
1558 * if is not zero, it means the file is defragging.
1559 * Force cow if given extent needs to be defragged.
1560 */
1561 if (BTRFS_I(inode)->defrag_bytes &&
1562 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1563 EXTENT_DEFRAG, 0, NULL))
1564 return 1;
1565
1566 return 0;
1567 }
1568
1569 /*
1570 * extent_io.c call back to do delayed allocation processing
1571 */
1572 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1573 u64 start, u64 end, int *page_started,
1574 unsigned long *nr_written)
1575 {
1576 int ret;
1577 int force_cow = need_force_cow(inode, start, end);
1578
1579 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1580 ret = run_delalloc_nocow(inode, locked_page, start, end,
1581 page_started, 1, nr_written);
1582 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1583 ret = run_delalloc_nocow(inode, locked_page, start, end,
1584 page_started, 0, nr_written);
1585 } else if (!inode_need_compress(inode)) {
1586 ret = cow_file_range(inode, locked_page, start, end, end,
1587 page_started, nr_written, 1, NULL);
1588 } else {
1589 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1590 &BTRFS_I(inode)->runtime_flags);
1591 ret = cow_file_range_async(inode, locked_page, start, end,
1592 page_started, nr_written);
1593 }
1594 if (ret)
1595 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1596 return ret;
1597 }
1598
1599 static void btrfs_split_extent_hook(struct inode *inode,
1600 struct extent_state *orig, u64 split)
1601 {
1602 u64 size;
1603
1604 /* not delalloc, ignore it */
1605 if (!(orig->state & EXTENT_DELALLOC))
1606 return;
1607
1608 size = orig->end - orig->start + 1;
1609 if (size > BTRFS_MAX_EXTENT_SIZE) {
1610 u32 num_extents;
1611 u64 new_size;
1612
1613 /*
1614 * See the explanation in btrfs_merge_extent_hook, the same
1615 * applies here, just in reverse.
1616 */
1617 new_size = orig->end - split + 1;
1618 num_extents = count_max_extents(new_size);
1619 new_size = split - orig->start;
1620 num_extents += count_max_extents(new_size);
1621 if (count_max_extents(size) >= num_extents)
1622 return;
1623 }
1624
1625 spin_lock(&BTRFS_I(inode)->lock);
1626 BTRFS_I(inode)->outstanding_extents++;
1627 spin_unlock(&BTRFS_I(inode)->lock);
1628 }
1629
1630 /*
1631 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1632 * extents so we can keep track of new extents that are just merged onto old
1633 * extents, such as when we are doing sequential writes, so we can properly
1634 * account for the metadata space we'll need.
1635 */
1636 static void btrfs_merge_extent_hook(struct inode *inode,
1637 struct extent_state *new,
1638 struct extent_state *other)
1639 {
1640 u64 new_size, old_size;
1641 u32 num_extents;
1642
1643 /* not delalloc, ignore it */
1644 if (!(other->state & EXTENT_DELALLOC))
1645 return;
1646
1647 if (new->start > other->start)
1648 new_size = new->end - other->start + 1;
1649 else
1650 new_size = other->end - new->start + 1;
1651
1652 /* we're not bigger than the max, unreserve the space and go */
1653 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1654 spin_lock(&BTRFS_I(inode)->lock);
1655 BTRFS_I(inode)->outstanding_extents--;
1656 spin_unlock(&BTRFS_I(inode)->lock);
1657 return;
1658 }
1659
1660 /*
1661 * We have to add up either side to figure out how many extents were
1662 * accounted for before we merged into one big extent. If the number of
1663 * extents we accounted for is <= the amount we need for the new range
1664 * then we can return, otherwise drop. Think of it like this
1665 *
1666 * [ 4k][MAX_SIZE]
1667 *
1668 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1669 * need 2 outstanding extents, on one side we have 1 and the other side
1670 * we have 1 so they are == and we can return. But in this case
1671 *
1672 * [MAX_SIZE+4k][MAX_SIZE+4k]
1673 *
1674 * Each range on their own accounts for 2 extents, but merged together
1675 * they are only 3 extents worth of accounting, so we need to drop in
1676 * this case.
1677 */
1678 old_size = other->end - other->start + 1;
1679 num_extents = count_max_extents(old_size);
1680 old_size = new->end - new->start + 1;
1681 num_extents += count_max_extents(old_size);
1682 if (count_max_extents(new_size) >= num_extents)
1683 return;
1684
1685 spin_lock(&BTRFS_I(inode)->lock);
1686 BTRFS_I(inode)->outstanding_extents--;
1687 spin_unlock(&BTRFS_I(inode)->lock);
1688 }
1689
1690 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1691 struct inode *inode)
1692 {
1693 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1694
1695 spin_lock(&root->delalloc_lock);
1696 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1697 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1698 &root->delalloc_inodes);
1699 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1700 &BTRFS_I(inode)->runtime_flags);
1701 root->nr_delalloc_inodes++;
1702 if (root->nr_delalloc_inodes == 1) {
1703 spin_lock(&fs_info->delalloc_root_lock);
1704 BUG_ON(!list_empty(&root->delalloc_root));
1705 list_add_tail(&root->delalloc_root,
1706 &fs_info->delalloc_roots);
1707 spin_unlock(&fs_info->delalloc_root_lock);
1708 }
1709 }
1710 spin_unlock(&root->delalloc_lock);
1711 }
1712
1713 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1714 struct btrfs_inode *inode)
1715 {
1716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1717
1718 spin_lock(&root->delalloc_lock);
1719 if (!list_empty(&inode->delalloc_inodes)) {
1720 list_del_init(&inode->delalloc_inodes);
1721 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1722 &inode->runtime_flags);
1723 root->nr_delalloc_inodes--;
1724 if (!root->nr_delalloc_inodes) {
1725 spin_lock(&fs_info->delalloc_root_lock);
1726 BUG_ON(list_empty(&root->delalloc_root));
1727 list_del_init(&root->delalloc_root);
1728 spin_unlock(&fs_info->delalloc_root_lock);
1729 }
1730 }
1731 spin_unlock(&root->delalloc_lock);
1732 }
1733
1734 /*
1735 * extent_io.c set_bit_hook, used to track delayed allocation
1736 * bytes in this file, and to maintain the list of inodes that
1737 * have pending delalloc work to be done.
1738 */
1739 static void btrfs_set_bit_hook(struct inode *inode,
1740 struct extent_state *state, unsigned *bits)
1741 {
1742
1743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1744
1745 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1746 WARN_ON(1);
1747 /*
1748 * set_bit and clear bit hooks normally require _irqsave/restore
1749 * but in this case, we are only testing for the DELALLOC
1750 * bit, which is only set or cleared with irqs on
1751 */
1752 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1753 struct btrfs_root *root = BTRFS_I(inode)->root;
1754 u64 len = state->end + 1 - state->start;
1755 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1756
1757 if (*bits & EXTENT_FIRST_DELALLOC) {
1758 *bits &= ~EXTENT_FIRST_DELALLOC;
1759 } else {
1760 spin_lock(&BTRFS_I(inode)->lock);
1761 BTRFS_I(inode)->outstanding_extents++;
1762 spin_unlock(&BTRFS_I(inode)->lock);
1763 }
1764
1765 /* For sanity tests */
1766 if (btrfs_is_testing(fs_info))
1767 return;
1768
1769 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1770 fs_info->delalloc_batch);
1771 spin_lock(&BTRFS_I(inode)->lock);
1772 BTRFS_I(inode)->delalloc_bytes += len;
1773 if (*bits & EXTENT_DEFRAG)
1774 BTRFS_I(inode)->defrag_bytes += len;
1775 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1776 &BTRFS_I(inode)->runtime_flags))
1777 btrfs_add_delalloc_inodes(root, inode);
1778 spin_unlock(&BTRFS_I(inode)->lock);
1779 }
1780
1781 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1782 (*bits & EXTENT_DELALLOC_NEW)) {
1783 spin_lock(&BTRFS_I(inode)->lock);
1784 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1785 state->start;
1786 spin_unlock(&BTRFS_I(inode)->lock);
1787 }
1788 }
1789
1790 /*
1791 * extent_io.c clear_bit_hook, see set_bit_hook for why
1792 */
1793 static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
1794 struct extent_state *state,
1795 unsigned *bits)
1796 {
1797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1798 u64 len = state->end + 1 - state->start;
1799 u32 num_extents = count_max_extents(len);
1800
1801 spin_lock(&inode->lock);
1802 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1803 inode->defrag_bytes -= len;
1804 spin_unlock(&inode->lock);
1805
1806 /*
1807 * set_bit and clear bit hooks normally require _irqsave/restore
1808 * but in this case, we are only testing for the DELALLOC
1809 * bit, which is only set or cleared with irqs on
1810 */
1811 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1812 struct btrfs_root *root = inode->root;
1813 bool do_list = !btrfs_is_free_space_inode(inode);
1814
1815 if (*bits & EXTENT_FIRST_DELALLOC) {
1816 *bits &= ~EXTENT_FIRST_DELALLOC;
1817 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1818 spin_lock(&inode->lock);
1819 inode->outstanding_extents -= num_extents;
1820 spin_unlock(&inode->lock);
1821 }
1822
1823 /*
1824 * We don't reserve metadata space for space cache inodes so we
1825 * don't need to call dellalloc_release_metadata if there is an
1826 * error.
1827 */
1828 if (*bits & EXTENT_CLEAR_META_RESV &&
1829 root != fs_info->tree_root)
1830 btrfs_delalloc_release_metadata(inode, len);
1831
1832 /* For sanity tests. */
1833 if (btrfs_is_testing(fs_info))
1834 return;
1835
1836 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1837 do_list && !(state->state & EXTENT_NORESERVE) &&
1838 (*bits & EXTENT_CLEAR_DATA_RESV))
1839 btrfs_free_reserved_data_space_noquota(
1840 &inode->vfs_inode,
1841 state->start, len);
1842
1843 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1844 fs_info->delalloc_batch);
1845 spin_lock(&inode->lock);
1846 inode->delalloc_bytes -= len;
1847 if (do_list && inode->delalloc_bytes == 0 &&
1848 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1849 &inode->runtime_flags))
1850 btrfs_del_delalloc_inode(root, inode);
1851 spin_unlock(&inode->lock);
1852 }
1853
1854 if ((state->state & EXTENT_DELALLOC_NEW) &&
1855 (*bits & EXTENT_DELALLOC_NEW)) {
1856 spin_lock(&inode->lock);
1857 ASSERT(inode->new_delalloc_bytes >= len);
1858 inode->new_delalloc_bytes -= len;
1859 spin_unlock(&inode->lock);
1860 }
1861 }
1862
1863 /*
1864 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1865 * we don't create bios that span stripes or chunks
1866 *
1867 * return 1 if page cannot be merged to bio
1868 * return 0 if page can be merged to bio
1869 * return error otherwise
1870 */
1871 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1872 size_t size, struct bio *bio,
1873 unsigned long bio_flags)
1874 {
1875 struct inode *inode = page->mapping->host;
1876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1877 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1878 u64 length = 0;
1879 u64 map_length;
1880 int ret;
1881
1882 if (bio_flags & EXTENT_BIO_COMPRESSED)
1883 return 0;
1884
1885 length = bio->bi_iter.bi_size;
1886 map_length = length;
1887 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1888 NULL, 0);
1889 if (ret < 0)
1890 return ret;
1891 if (map_length < length + size)
1892 return 1;
1893 return 0;
1894 }
1895
1896 /*
1897 * in order to insert checksums into the metadata in large chunks,
1898 * we wait until bio submission time. All the pages in the bio are
1899 * checksummed and sums are attached onto the ordered extent record.
1900 *
1901 * At IO completion time the cums attached on the ordered extent record
1902 * are inserted into the btree
1903 */
1904 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1905 int mirror_num, unsigned long bio_flags,
1906 u64 bio_offset)
1907 {
1908 int ret = 0;
1909
1910 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1911 BUG_ON(ret); /* -ENOMEM */
1912 return 0;
1913 }
1914
1915 /*
1916 * in order to insert checksums into the metadata in large chunks,
1917 * we wait until bio submission time. All the pages in the bio are
1918 * checksummed and sums are attached onto the ordered extent record.
1919 *
1920 * At IO completion time the cums attached on the ordered extent record
1921 * are inserted into the btree
1922 */
1923 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1924 int mirror_num, unsigned long bio_flags,
1925 u64 bio_offset)
1926 {
1927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1928 int ret;
1929
1930 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1931 if (ret) {
1932 bio->bi_error = ret;
1933 bio_endio(bio);
1934 }
1935 return ret;
1936 }
1937
1938 /*
1939 * extent_io.c submission hook. This does the right thing for csum calculation
1940 * on write, or reading the csums from the tree before a read
1941 */
1942 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1943 int mirror_num, unsigned long bio_flags,
1944 u64 bio_offset)
1945 {
1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1947 struct btrfs_root *root = BTRFS_I(inode)->root;
1948 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1949 int ret = 0;
1950 int skip_sum;
1951 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1952
1953 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1954
1955 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1956 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1957
1958 if (bio_op(bio) != REQ_OP_WRITE) {
1959 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1960 if (ret)
1961 goto out;
1962
1963 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1964 ret = btrfs_submit_compressed_read(inode, bio,
1965 mirror_num,
1966 bio_flags);
1967 goto out;
1968 } else if (!skip_sum) {
1969 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1970 if (ret)
1971 goto out;
1972 }
1973 goto mapit;
1974 } else if (async && !skip_sum) {
1975 /* csum items have already been cloned */
1976 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1977 goto mapit;
1978 /* we're doing a write, do the async checksumming */
1979 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1980 bio_flags, bio_offset,
1981 __btrfs_submit_bio_start,
1982 __btrfs_submit_bio_done);
1983 goto out;
1984 } else if (!skip_sum) {
1985 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1986 if (ret)
1987 goto out;
1988 }
1989
1990 mapit:
1991 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1992
1993 out:
1994 if (ret < 0) {
1995 bio->bi_error = ret;
1996 bio_endio(bio);
1997 }
1998 return ret;
1999 }
2000
2001 /*
2002 * given a list of ordered sums record them in the inode. This happens
2003 * at IO completion time based on sums calculated at bio submission time.
2004 */
2005 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2006 struct inode *inode, struct list_head *list)
2007 {
2008 struct btrfs_ordered_sum *sum;
2009
2010 list_for_each_entry(sum, list, list) {
2011 trans->adding_csums = 1;
2012 btrfs_csum_file_blocks(trans,
2013 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2014 trans->adding_csums = 0;
2015 }
2016 return 0;
2017 }
2018
2019 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2020 struct extent_state **cached_state, int dedupe)
2021 {
2022 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2023 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2024 cached_state);
2025 }
2026
2027 /* see btrfs_writepage_start_hook for details on why this is required */
2028 struct btrfs_writepage_fixup {
2029 struct page *page;
2030 struct btrfs_work work;
2031 };
2032
2033 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2034 {
2035 struct btrfs_writepage_fixup *fixup;
2036 struct btrfs_ordered_extent *ordered;
2037 struct extent_state *cached_state = NULL;
2038 struct page *page;
2039 struct inode *inode;
2040 u64 page_start;
2041 u64 page_end;
2042 int ret;
2043
2044 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2045 page = fixup->page;
2046 again:
2047 lock_page(page);
2048 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2049 ClearPageChecked(page);
2050 goto out_page;
2051 }
2052
2053 inode = page->mapping->host;
2054 page_start = page_offset(page);
2055 page_end = page_offset(page) + PAGE_SIZE - 1;
2056
2057 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2058 &cached_state);
2059
2060 /* already ordered? We're done */
2061 if (PagePrivate2(page))
2062 goto out;
2063
2064 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2065 PAGE_SIZE);
2066 if (ordered) {
2067 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2068 page_end, &cached_state, GFP_NOFS);
2069 unlock_page(page);
2070 btrfs_start_ordered_extent(inode, ordered, 1);
2071 btrfs_put_ordered_extent(ordered);
2072 goto again;
2073 }
2074
2075 ret = btrfs_delalloc_reserve_space(inode, page_start,
2076 PAGE_SIZE);
2077 if (ret) {
2078 mapping_set_error(page->mapping, ret);
2079 end_extent_writepage(page, ret, page_start, page_end);
2080 ClearPageChecked(page);
2081 goto out;
2082 }
2083
2084 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2085 0);
2086 ClearPageChecked(page);
2087 set_page_dirty(page);
2088 out:
2089 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2090 &cached_state, GFP_NOFS);
2091 out_page:
2092 unlock_page(page);
2093 put_page(page);
2094 kfree(fixup);
2095 }
2096
2097 /*
2098 * There are a few paths in the higher layers of the kernel that directly
2099 * set the page dirty bit without asking the filesystem if it is a
2100 * good idea. This causes problems because we want to make sure COW
2101 * properly happens and the data=ordered rules are followed.
2102 *
2103 * In our case any range that doesn't have the ORDERED bit set
2104 * hasn't been properly setup for IO. We kick off an async process
2105 * to fix it up. The async helper will wait for ordered extents, set
2106 * the delalloc bit and make it safe to write the page.
2107 */
2108 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2109 {
2110 struct inode *inode = page->mapping->host;
2111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2112 struct btrfs_writepage_fixup *fixup;
2113
2114 /* this page is properly in the ordered list */
2115 if (TestClearPagePrivate2(page))
2116 return 0;
2117
2118 if (PageChecked(page))
2119 return -EAGAIN;
2120
2121 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2122 if (!fixup)
2123 return -EAGAIN;
2124
2125 SetPageChecked(page);
2126 get_page(page);
2127 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2128 btrfs_writepage_fixup_worker, NULL, NULL);
2129 fixup->page = page;
2130 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2131 return -EBUSY;
2132 }
2133
2134 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2135 struct inode *inode, u64 file_pos,
2136 u64 disk_bytenr, u64 disk_num_bytes,
2137 u64 num_bytes, u64 ram_bytes,
2138 u8 compression, u8 encryption,
2139 u16 other_encoding, int extent_type)
2140 {
2141 struct btrfs_root *root = BTRFS_I(inode)->root;
2142 struct btrfs_file_extent_item *fi;
2143 struct btrfs_path *path;
2144 struct extent_buffer *leaf;
2145 struct btrfs_key ins;
2146 int extent_inserted = 0;
2147 int ret;
2148
2149 path = btrfs_alloc_path();
2150 if (!path)
2151 return -ENOMEM;
2152
2153 /*
2154 * we may be replacing one extent in the tree with another.
2155 * The new extent is pinned in the extent map, and we don't want
2156 * to drop it from the cache until it is completely in the btree.
2157 *
2158 * So, tell btrfs_drop_extents to leave this extent in the cache.
2159 * the caller is expected to unpin it and allow it to be merged
2160 * with the others.
2161 */
2162 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2163 file_pos + num_bytes, NULL, 0,
2164 1, sizeof(*fi), &extent_inserted);
2165 if (ret)
2166 goto out;
2167
2168 if (!extent_inserted) {
2169 ins.objectid = btrfs_ino(BTRFS_I(inode));
2170 ins.offset = file_pos;
2171 ins.type = BTRFS_EXTENT_DATA_KEY;
2172
2173 path->leave_spinning = 1;
2174 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2175 sizeof(*fi));
2176 if (ret)
2177 goto out;
2178 }
2179 leaf = path->nodes[0];
2180 fi = btrfs_item_ptr(leaf, path->slots[0],
2181 struct btrfs_file_extent_item);
2182 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2183 btrfs_set_file_extent_type(leaf, fi, extent_type);
2184 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2185 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2186 btrfs_set_file_extent_offset(leaf, fi, 0);
2187 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2188 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2189 btrfs_set_file_extent_compression(leaf, fi, compression);
2190 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2191 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2192
2193 btrfs_mark_buffer_dirty(leaf);
2194 btrfs_release_path(path);
2195
2196 inode_add_bytes(inode, num_bytes);
2197
2198 ins.objectid = disk_bytenr;
2199 ins.offset = disk_num_bytes;
2200 ins.type = BTRFS_EXTENT_ITEM_KEY;
2201 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2202 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
2203 /*
2204 * Release the reserved range from inode dirty range map, as it is
2205 * already moved into delayed_ref_head
2206 */
2207 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2208 out:
2209 btrfs_free_path(path);
2210
2211 return ret;
2212 }
2213
2214 /* snapshot-aware defrag */
2215 struct sa_defrag_extent_backref {
2216 struct rb_node node;
2217 struct old_sa_defrag_extent *old;
2218 u64 root_id;
2219 u64 inum;
2220 u64 file_pos;
2221 u64 extent_offset;
2222 u64 num_bytes;
2223 u64 generation;
2224 };
2225
2226 struct old_sa_defrag_extent {
2227 struct list_head list;
2228 struct new_sa_defrag_extent *new;
2229
2230 u64 extent_offset;
2231 u64 bytenr;
2232 u64 offset;
2233 u64 len;
2234 int count;
2235 };
2236
2237 struct new_sa_defrag_extent {
2238 struct rb_root root;
2239 struct list_head head;
2240 struct btrfs_path *path;
2241 struct inode *inode;
2242 u64 file_pos;
2243 u64 len;
2244 u64 bytenr;
2245 u64 disk_len;
2246 u8 compress_type;
2247 };
2248
2249 static int backref_comp(struct sa_defrag_extent_backref *b1,
2250 struct sa_defrag_extent_backref *b2)
2251 {
2252 if (b1->root_id < b2->root_id)
2253 return -1;
2254 else if (b1->root_id > b2->root_id)
2255 return 1;
2256
2257 if (b1->inum < b2->inum)
2258 return -1;
2259 else if (b1->inum > b2->inum)
2260 return 1;
2261
2262 if (b1->file_pos < b2->file_pos)
2263 return -1;
2264 else if (b1->file_pos > b2->file_pos)
2265 return 1;
2266
2267 /*
2268 * [------------------------------] ===> (a range of space)
2269 * |<--->| |<---->| =============> (fs/file tree A)
2270 * |<---------------------------->| ===> (fs/file tree B)
2271 *
2272 * A range of space can refer to two file extents in one tree while
2273 * refer to only one file extent in another tree.
2274 *
2275 * So we may process a disk offset more than one time(two extents in A)
2276 * and locate at the same extent(one extent in B), then insert two same
2277 * backrefs(both refer to the extent in B).
2278 */
2279 return 0;
2280 }
2281
2282 static void backref_insert(struct rb_root *root,
2283 struct sa_defrag_extent_backref *backref)
2284 {
2285 struct rb_node **p = &root->rb_node;
2286 struct rb_node *parent = NULL;
2287 struct sa_defrag_extent_backref *entry;
2288 int ret;
2289
2290 while (*p) {
2291 parent = *p;
2292 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2293
2294 ret = backref_comp(backref, entry);
2295 if (ret < 0)
2296 p = &(*p)->rb_left;
2297 else
2298 p = &(*p)->rb_right;
2299 }
2300
2301 rb_link_node(&backref->node, parent, p);
2302 rb_insert_color(&backref->node, root);
2303 }
2304
2305 /*
2306 * Note the backref might has changed, and in this case we just return 0.
2307 */
2308 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2309 void *ctx)
2310 {
2311 struct btrfs_file_extent_item *extent;
2312 struct old_sa_defrag_extent *old = ctx;
2313 struct new_sa_defrag_extent *new = old->new;
2314 struct btrfs_path *path = new->path;
2315 struct btrfs_key key;
2316 struct btrfs_root *root;
2317 struct sa_defrag_extent_backref *backref;
2318 struct extent_buffer *leaf;
2319 struct inode *inode = new->inode;
2320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2321 int slot;
2322 int ret;
2323 u64 extent_offset;
2324 u64 num_bytes;
2325
2326 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2327 inum == btrfs_ino(BTRFS_I(inode)))
2328 return 0;
2329
2330 key.objectid = root_id;
2331 key.type = BTRFS_ROOT_ITEM_KEY;
2332 key.offset = (u64)-1;
2333
2334 root = btrfs_read_fs_root_no_name(fs_info, &key);
2335 if (IS_ERR(root)) {
2336 if (PTR_ERR(root) == -ENOENT)
2337 return 0;
2338 WARN_ON(1);
2339 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2340 inum, offset, root_id);
2341 return PTR_ERR(root);
2342 }
2343
2344 key.objectid = inum;
2345 key.type = BTRFS_EXTENT_DATA_KEY;
2346 if (offset > (u64)-1 << 32)
2347 key.offset = 0;
2348 else
2349 key.offset = offset;
2350
2351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2352 if (WARN_ON(ret < 0))
2353 return ret;
2354 ret = 0;
2355
2356 while (1) {
2357 cond_resched();
2358
2359 leaf = path->nodes[0];
2360 slot = path->slots[0];
2361
2362 if (slot >= btrfs_header_nritems(leaf)) {
2363 ret = btrfs_next_leaf(root, path);
2364 if (ret < 0) {
2365 goto out;
2366 } else if (ret > 0) {
2367 ret = 0;
2368 goto out;
2369 }
2370 continue;
2371 }
2372
2373 path->slots[0]++;
2374
2375 btrfs_item_key_to_cpu(leaf, &key, slot);
2376
2377 if (key.objectid > inum)
2378 goto out;
2379
2380 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2381 continue;
2382
2383 extent = btrfs_item_ptr(leaf, slot,
2384 struct btrfs_file_extent_item);
2385
2386 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2387 continue;
2388
2389 /*
2390 * 'offset' refers to the exact key.offset,
2391 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2392 * (key.offset - extent_offset).
2393 */
2394 if (key.offset != offset)
2395 continue;
2396
2397 extent_offset = btrfs_file_extent_offset(leaf, extent);
2398 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2399
2400 if (extent_offset >= old->extent_offset + old->offset +
2401 old->len || extent_offset + num_bytes <=
2402 old->extent_offset + old->offset)
2403 continue;
2404 break;
2405 }
2406
2407 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2408 if (!backref) {
2409 ret = -ENOENT;
2410 goto out;
2411 }
2412
2413 backref->root_id = root_id;
2414 backref->inum = inum;
2415 backref->file_pos = offset;
2416 backref->num_bytes = num_bytes;
2417 backref->extent_offset = extent_offset;
2418 backref->generation = btrfs_file_extent_generation(leaf, extent);
2419 backref->old = old;
2420 backref_insert(&new->root, backref);
2421 old->count++;
2422 out:
2423 btrfs_release_path(path);
2424 WARN_ON(ret);
2425 return ret;
2426 }
2427
2428 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2429 struct new_sa_defrag_extent *new)
2430 {
2431 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2432 struct old_sa_defrag_extent *old, *tmp;
2433 int ret;
2434
2435 new->path = path;
2436
2437 list_for_each_entry_safe(old, tmp, &new->head, list) {
2438 ret = iterate_inodes_from_logical(old->bytenr +
2439 old->extent_offset, fs_info,
2440 path, record_one_backref,
2441 old);
2442 if (ret < 0 && ret != -ENOENT)
2443 return false;
2444
2445 /* no backref to be processed for this extent */
2446 if (!old->count) {
2447 list_del(&old->list);
2448 kfree(old);
2449 }
2450 }
2451
2452 if (list_empty(&new->head))
2453 return false;
2454
2455 return true;
2456 }
2457
2458 static int relink_is_mergable(struct extent_buffer *leaf,
2459 struct btrfs_file_extent_item *fi,
2460 struct new_sa_defrag_extent *new)
2461 {
2462 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2463 return 0;
2464
2465 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2466 return 0;
2467
2468 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2469 return 0;
2470
2471 if (btrfs_file_extent_encryption(leaf, fi) ||
2472 btrfs_file_extent_other_encoding(leaf, fi))
2473 return 0;
2474
2475 return 1;
2476 }
2477
2478 /*
2479 * Note the backref might has changed, and in this case we just return 0.
2480 */
2481 static noinline int relink_extent_backref(struct btrfs_path *path,
2482 struct sa_defrag_extent_backref *prev,
2483 struct sa_defrag_extent_backref *backref)
2484 {
2485 struct btrfs_file_extent_item *extent;
2486 struct btrfs_file_extent_item *item;
2487 struct btrfs_ordered_extent *ordered;
2488 struct btrfs_trans_handle *trans;
2489 struct btrfs_root *root;
2490 struct btrfs_key key;
2491 struct extent_buffer *leaf;
2492 struct old_sa_defrag_extent *old = backref->old;
2493 struct new_sa_defrag_extent *new = old->new;
2494 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2495 struct inode *inode;
2496 struct extent_state *cached = NULL;
2497 int ret = 0;
2498 u64 start;
2499 u64 len;
2500 u64 lock_start;
2501 u64 lock_end;
2502 bool merge = false;
2503 int index;
2504
2505 if (prev && prev->root_id == backref->root_id &&
2506 prev->inum == backref->inum &&
2507 prev->file_pos + prev->num_bytes == backref->file_pos)
2508 merge = true;
2509
2510 /* step 1: get root */
2511 key.objectid = backref->root_id;
2512 key.type = BTRFS_ROOT_ITEM_KEY;
2513 key.offset = (u64)-1;
2514
2515 index = srcu_read_lock(&fs_info->subvol_srcu);
2516
2517 root = btrfs_read_fs_root_no_name(fs_info, &key);
2518 if (IS_ERR(root)) {
2519 srcu_read_unlock(&fs_info->subvol_srcu, index);
2520 if (PTR_ERR(root) == -ENOENT)
2521 return 0;
2522 return PTR_ERR(root);
2523 }
2524
2525 if (btrfs_root_readonly(root)) {
2526 srcu_read_unlock(&fs_info->subvol_srcu, index);
2527 return 0;
2528 }
2529
2530 /* step 2: get inode */
2531 key.objectid = backref->inum;
2532 key.type = BTRFS_INODE_ITEM_KEY;
2533 key.offset = 0;
2534
2535 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2536 if (IS_ERR(inode)) {
2537 srcu_read_unlock(&fs_info->subvol_srcu, index);
2538 return 0;
2539 }
2540
2541 srcu_read_unlock(&fs_info->subvol_srcu, index);
2542
2543 /* step 3: relink backref */
2544 lock_start = backref->file_pos;
2545 lock_end = backref->file_pos + backref->num_bytes - 1;
2546 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2547 &cached);
2548
2549 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2550 if (ordered) {
2551 btrfs_put_ordered_extent(ordered);
2552 goto out_unlock;
2553 }
2554
2555 trans = btrfs_join_transaction(root);
2556 if (IS_ERR(trans)) {
2557 ret = PTR_ERR(trans);
2558 goto out_unlock;
2559 }
2560
2561 key.objectid = backref->inum;
2562 key.type = BTRFS_EXTENT_DATA_KEY;
2563 key.offset = backref->file_pos;
2564
2565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2566 if (ret < 0) {
2567 goto out_free_path;
2568 } else if (ret > 0) {
2569 ret = 0;
2570 goto out_free_path;
2571 }
2572
2573 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2574 struct btrfs_file_extent_item);
2575
2576 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2577 backref->generation)
2578 goto out_free_path;
2579
2580 btrfs_release_path(path);
2581
2582 start = backref->file_pos;
2583 if (backref->extent_offset < old->extent_offset + old->offset)
2584 start += old->extent_offset + old->offset -
2585 backref->extent_offset;
2586
2587 len = min(backref->extent_offset + backref->num_bytes,
2588 old->extent_offset + old->offset + old->len);
2589 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2590
2591 ret = btrfs_drop_extents(trans, root, inode, start,
2592 start + len, 1);
2593 if (ret)
2594 goto out_free_path;
2595 again:
2596 key.objectid = btrfs_ino(BTRFS_I(inode));
2597 key.type = BTRFS_EXTENT_DATA_KEY;
2598 key.offset = start;
2599
2600 path->leave_spinning = 1;
2601 if (merge) {
2602 struct btrfs_file_extent_item *fi;
2603 u64 extent_len;
2604 struct btrfs_key found_key;
2605
2606 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2607 if (ret < 0)
2608 goto out_free_path;
2609
2610 path->slots[0]--;
2611 leaf = path->nodes[0];
2612 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2613
2614 fi = btrfs_item_ptr(leaf, path->slots[0],
2615 struct btrfs_file_extent_item);
2616 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2617
2618 if (extent_len + found_key.offset == start &&
2619 relink_is_mergable(leaf, fi, new)) {
2620 btrfs_set_file_extent_num_bytes(leaf, fi,
2621 extent_len + len);
2622 btrfs_mark_buffer_dirty(leaf);
2623 inode_add_bytes(inode, len);
2624
2625 ret = 1;
2626 goto out_free_path;
2627 } else {
2628 merge = false;
2629 btrfs_release_path(path);
2630 goto again;
2631 }
2632 }
2633
2634 ret = btrfs_insert_empty_item(trans, root, path, &key,
2635 sizeof(*extent));
2636 if (ret) {
2637 btrfs_abort_transaction(trans, ret);
2638 goto out_free_path;
2639 }
2640
2641 leaf = path->nodes[0];
2642 item = btrfs_item_ptr(leaf, path->slots[0],
2643 struct btrfs_file_extent_item);
2644 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2645 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2646 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2647 btrfs_set_file_extent_num_bytes(leaf, item, len);
2648 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2649 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2650 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2651 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2652 btrfs_set_file_extent_encryption(leaf, item, 0);
2653 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2654
2655 btrfs_mark_buffer_dirty(leaf);
2656 inode_add_bytes(inode, len);
2657 btrfs_release_path(path);
2658
2659 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2660 new->disk_len, 0,
2661 backref->root_id, backref->inum,
2662 new->file_pos); /* start - extent_offset */
2663 if (ret) {
2664 btrfs_abort_transaction(trans, ret);
2665 goto out_free_path;
2666 }
2667
2668 ret = 1;
2669 out_free_path:
2670 btrfs_release_path(path);
2671 path->leave_spinning = 0;
2672 btrfs_end_transaction(trans);
2673 out_unlock:
2674 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2675 &cached, GFP_NOFS);
2676 iput(inode);
2677 return ret;
2678 }
2679
2680 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2681 {
2682 struct old_sa_defrag_extent *old, *tmp;
2683
2684 if (!new)
2685 return;
2686
2687 list_for_each_entry_safe(old, tmp, &new->head, list) {
2688 kfree(old);
2689 }
2690 kfree(new);
2691 }
2692
2693 static void relink_file_extents(struct new_sa_defrag_extent *new)
2694 {
2695 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2696 struct btrfs_path *path;
2697 struct sa_defrag_extent_backref *backref;
2698 struct sa_defrag_extent_backref *prev = NULL;
2699 struct inode *inode;
2700 struct btrfs_root *root;
2701 struct rb_node *node;
2702 int ret;
2703
2704 inode = new->inode;
2705 root = BTRFS_I(inode)->root;
2706
2707 path = btrfs_alloc_path();
2708 if (!path)
2709 return;
2710
2711 if (!record_extent_backrefs(path, new)) {
2712 btrfs_free_path(path);
2713 goto out;
2714 }
2715 btrfs_release_path(path);
2716
2717 while (1) {
2718 node = rb_first(&new->root);
2719 if (!node)
2720 break;
2721 rb_erase(node, &new->root);
2722
2723 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2724
2725 ret = relink_extent_backref(path, prev, backref);
2726 WARN_ON(ret < 0);
2727
2728 kfree(prev);
2729
2730 if (ret == 1)
2731 prev = backref;
2732 else
2733 prev = NULL;
2734 cond_resched();
2735 }
2736 kfree(prev);
2737
2738 btrfs_free_path(path);
2739 out:
2740 free_sa_defrag_extent(new);
2741
2742 atomic_dec(&fs_info->defrag_running);
2743 wake_up(&fs_info->transaction_wait);
2744 }
2745
2746 static struct new_sa_defrag_extent *
2747 record_old_file_extents(struct inode *inode,
2748 struct btrfs_ordered_extent *ordered)
2749 {
2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751 struct btrfs_root *root = BTRFS_I(inode)->root;
2752 struct btrfs_path *path;
2753 struct btrfs_key key;
2754 struct old_sa_defrag_extent *old;
2755 struct new_sa_defrag_extent *new;
2756 int ret;
2757
2758 new = kmalloc(sizeof(*new), GFP_NOFS);
2759 if (!new)
2760 return NULL;
2761
2762 new->inode = inode;
2763 new->file_pos = ordered->file_offset;
2764 new->len = ordered->len;
2765 new->bytenr = ordered->start;
2766 new->disk_len = ordered->disk_len;
2767 new->compress_type = ordered->compress_type;
2768 new->root = RB_ROOT;
2769 INIT_LIST_HEAD(&new->head);
2770
2771 path = btrfs_alloc_path();
2772 if (!path)
2773 goto out_kfree;
2774
2775 key.objectid = btrfs_ino(BTRFS_I(inode));
2776 key.type = BTRFS_EXTENT_DATA_KEY;
2777 key.offset = new->file_pos;
2778
2779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2780 if (ret < 0)
2781 goto out_free_path;
2782 if (ret > 0 && path->slots[0] > 0)
2783 path->slots[0]--;
2784
2785 /* find out all the old extents for the file range */
2786 while (1) {
2787 struct btrfs_file_extent_item *extent;
2788 struct extent_buffer *l;
2789 int slot;
2790 u64 num_bytes;
2791 u64 offset;
2792 u64 end;
2793 u64 disk_bytenr;
2794 u64 extent_offset;
2795
2796 l = path->nodes[0];
2797 slot = path->slots[0];
2798
2799 if (slot >= btrfs_header_nritems(l)) {
2800 ret = btrfs_next_leaf(root, path);
2801 if (ret < 0)
2802 goto out_free_path;
2803 else if (ret > 0)
2804 break;
2805 continue;
2806 }
2807
2808 btrfs_item_key_to_cpu(l, &key, slot);
2809
2810 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2811 break;
2812 if (key.type != BTRFS_EXTENT_DATA_KEY)
2813 break;
2814 if (key.offset >= new->file_pos + new->len)
2815 break;
2816
2817 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2818
2819 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2820 if (key.offset + num_bytes < new->file_pos)
2821 goto next;
2822
2823 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2824 if (!disk_bytenr)
2825 goto next;
2826
2827 extent_offset = btrfs_file_extent_offset(l, extent);
2828
2829 old = kmalloc(sizeof(*old), GFP_NOFS);
2830 if (!old)
2831 goto out_free_path;
2832
2833 offset = max(new->file_pos, key.offset);
2834 end = min(new->file_pos + new->len, key.offset + num_bytes);
2835
2836 old->bytenr = disk_bytenr;
2837 old->extent_offset = extent_offset;
2838 old->offset = offset - key.offset;
2839 old->len = end - offset;
2840 old->new = new;
2841 old->count = 0;
2842 list_add_tail(&old->list, &new->head);
2843 next:
2844 path->slots[0]++;
2845 cond_resched();
2846 }
2847
2848 btrfs_free_path(path);
2849 atomic_inc(&fs_info->defrag_running);
2850
2851 return new;
2852
2853 out_free_path:
2854 btrfs_free_path(path);
2855 out_kfree:
2856 free_sa_defrag_extent(new);
2857 return NULL;
2858 }
2859
2860 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2861 u64 start, u64 len)
2862 {
2863 struct btrfs_block_group_cache *cache;
2864
2865 cache = btrfs_lookup_block_group(fs_info, start);
2866 ASSERT(cache);
2867
2868 spin_lock(&cache->lock);
2869 cache->delalloc_bytes -= len;
2870 spin_unlock(&cache->lock);
2871
2872 btrfs_put_block_group(cache);
2873 }
2874
2875 /* as ordered data IO finishes, this gets called so we can finish
2876 * an ordered extent if the range of bytes in the file it covers are
2877 * fully written.
2878 */
2879 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2880 {
2881 struct inode *inode = ordered_extent->inode;
2882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2883 struct btrfs_root *root = BTRFS_I(inode)->root;
2884 struct btrfs_trans_handle *trans = NULL;
2885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2886 struct extent_state *cached_state = NULL;
2887 struct new_sa_defrag_extent *new = NULL;
2888 int compress_type = 0;
2889 int ret = 0;
2890 u64 logical_len = ordered_extent->len;
2891 bool nolock;
2892 bool truncated = false;
2893 bool range_locked = false;
2894 bool clear_new_delalloc_bytes = false;
2895
2896 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2897 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2898 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2899 clear_new_delalloc_bytes = true;
2900
2901 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2902
2903 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2904 ret = -EIO;
2905 goto out;
2906 }
2907
2908 btrfs_free_io_failure_record(BTRFS_I(inode),
2909 ordered_extent->file_offset,
2910 ordered_extent->file_offset +
2911 ordered_extent->len - 1);
2912
2913 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2914 truncated = true;
2915 logical_len = ordered_extent->truncated_len;
2916 /* Truncated the entire extent, don't bother adding */
2917 if (!logical_len)
2918 goto out;
2919 }
2920
2921 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2922 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2923
2924 /*
2925 * For mwrite(mmap + memset to write) case, we still reserve
2926 * space for NOCOW range.
2927 * As NOCOW won't cause a new delayed ref, just free the space
2928 */
2929 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2930 ordered_extent->len);
2931 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2932 if (nolock)
2933 trans = btrfs_join_transaction_nolock(root);
2934 else
2935 trans = btrfs_join_transaction(root);
2936 if (IS_ERR(trans)) {
2937 ret = PTR_ERR(trans);
2938 trans = NULL;
2939 goto out;
2940 }
2941 trans->block_rsv = &fs_info->delalloc_block_rsv;
2942 ret = btrfs_update_inode_fallback(trans, root, inode);
2943 if (ret) /* -ENOMEM or corruption */
2944 btrfs_abort_transaction(trans, ret);
2945 goto out;
2946 }
2947
2948 range_locked = true;
2949 lock_extent_bits(io_tree, ordered_extent->file_offset,
2950 ordered_extent->file_offset + ordered_extent->len - 1,
2951 &cached_state);
2952
2953 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2954 ordered_extent->file_offset + ordered_extent->len - 1,
2955 EXTENT_DEFRAG, 1, cached_state);
2956 if (ret) {
2957 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2958 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2959 /* the inode is shared */
2960 new = record_old_file_extents(inode, ordered_extent);
2961
2962 clear_extent_bit(io_tree, ordered_extent->file_offset,
2963 ordered_extent->file_offset + ordered_extent->len - 1,
2964 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2965 }
2966
2967 if (nolock)
2968 trans = btrfs_join_transaction_nolock(root);
2969 else
2970 trans = btrfs_join_transaction(root);
2971 if (IS_ERR(trans)) {
2972 ret = PTR_ERR(trans);
2973 trans = NULL;
2974 goto out;
2975 }
2976
2977 trans->block_rsv = &fs_info->delalloc_block_rsv;
2978
2979 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2980 compress_type = ordered_extent->compress_type;
2981 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2982 BUG_ON(compress_type);
2983 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2984 ordered_extent->file_offset,
2985 ordered_extent->file_offset +
2986 logical_len);
2987 } else {
2988 BUG_ON(root == fs_info->tree_root);
2989 ret = insert_reserved_file_extent(trans, inode,
2990 ordered_extent->file_offset,
2991 ordered_extent->start,
2992 ordered_extent->disk_len,
2993 logical_len, logical_len,
2994 compress_type, 0, 0,
2995 BTRFS_FILE_EXTENT_REG);
2996 if (!ret)
2997 btrfs_release_delalloc_bytes(fs_info,
2998 ordered_extent->start,
2999 ordered_extent->disk_len);
3000 }
3001 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3002 ordered_extent->file_offset, ordered_extent->len,
3003 trans->transid);
3004 if (ret < 0) {
3005 btrfs_abort_transaction(trans, ret);
3006 goto out;
3007 }
3008
3009 add_pending_csums(trans, inode, &ordered_extent->list);
3010
3011 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3012 ret = btrfs_update_inode_fallback(trans, root, inode);
3013 if (ret) { /* -ENOMEM or corruption */
3014 btrfs_abort_transaction(trans, ret);
3015 goto out;
3016 }
3017 ret = 0;
3018 out:
3019 if (range_locked || clear_new_delalloc_bytes) {
3020 unsigned int clear_bits = 0;
3021
3022 if (range_locked)
3023 clear_bits |= EXTENT_LOCKED;
3024 if (clear_new_delalloc_bytes)
3025 clear_bits |= EXTENT_DELALLOC_NEW;
3026 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3027 ordered_extent->file_offset,
3028 ordered_extent->file_offset +
3029 ordered_extent->len - 1,
3030 clear_bits,
3031 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3032 0, &cached_state, GFP_NOFS);
3033 }
3034
3035 if (root != fs_info->tree_root)
3036 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3037 ordered_extent->len);
3038 if (trans)
3039 btrfs_end_transaction(trans);
3040
3041 if (ret || truncated) {
3042 u64 start, end;
3043
3044 if (truncated)
3045 start = ordered_extent->file_offset + logical_len;
3046 else
3047 start = ordered_extent->file_offset;
3048 end = ordered_extent->file_offset + ordered_extent->len - 1;
3049 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3050
3051 /* Drop the cache for the part of the extent we didn't write. */
3052 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3053
3054 /*
3055 * If the ordered extent had an IOERR or something else went
3056 * wrong we need to return the space for this ordered extent
3057 * back to the allocator. We only free the extent in the
3058 * truncated case if we didn't write out the extent at all.
3059 */
3060 if ((ret || !logical_len) &&
3061 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3062 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3063 btrfs_free_reserved_extent(fs_info,
3064 ordered_extent->start,
3065 ordered_extent->disk_len, 1);
3066 }
3067
3068
3069 /*
3070 * This needs to be done to make sure anybody waiting knows we are done
3071 * updating everything for this ordered extent.
3072 */
3073 btrfs_remove_ordered_extent(inode, ordered_extent);
3074
3075 /* for snapshot-aware defrag */
3076 if (new) {
3077 if (ret) {
3078 free_sa_defrag_extent(new);
3079 atomic_dec(&fs_info->defrag_running);
3080 } else {
3081 relink_file_extents(new);
3082 }
3083 }
3084
3085 /* once for us */
3086 btrfs_put_ordered_extent(ordered_extent);
3087 /* once for the tree */
3088 btrfs_put_ordered_extent(ordered_extent);
3089
3090 return ret;
3091 }
3092
3093 static void finish_ordered_fn(struct btrfs_work *work)
3094 {
3095 struct btrfs_ordered_extent *ordered_extent;
3096 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3097 btrfs_finish_ordered_io(ordered_extent);
3098 }
3099
3100 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3101 struct extent_state *state, int uptodate)
3102 {
3103 struct inode *inode = page->mapping->host;
3104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3105 struct btrfs_ordered_extent *ordered_extent = NULL;
3106 struct btrfs_workqueue *wq;
3107 btrfs_work_func_t func;
3108
3109 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3110
3111 ClearPagePrivate2(page);
3112 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3113 end - start + 1, uptodate))
3114 return;
3115
3116 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3117 wq = fs_info->endio_freespace_worker;
3118 func = btrfs_freespace_write_helper;
3119 } else {
3120 wq = fs_info->endio_write_workers;
3121 func = btrfs_endio_write_helper;
3122 }
3123
3124 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3125 NULL);
3126 btrfs_queue_work(wq, &ordered_extent->work);
3127 }
3128
3129 static int __readpage_endio_check(struct inode *inode,
3130 struct btrfs_io_bio *io_bio,
3131 int icsum, struct page *page,
3132 int pgoff, u64 start, size_t len)
3133 {
3134 char *kaddr;
3135 u32 csum_expected;
3136 u32 csum = ~(u32)0;
3137
3138 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3139
3140 kaddr = kmap_atomic(page);
3141 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3142 btrfs_csum_final(csum, (u8 *)&csum);
3143 if (csum != csum_expected)
3144 goto zeroit;
3145
3146 kunmap_atomic(kaddr);
3147 return 0;
3148 zeroit:
3149 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3150 io_bio->mirror_num);
3151 memset(kaddr + pgoff, 1, len);
3152 flush_dcache_page(page);
3153 kunmap_atomic(kaddr);
3154 if (csum_expected == 0)
3155 return 0;
3156 return -EIO;
3157 }
3158
3159 /*
3160 * when reads are done, we need to check csums to verify the data is correct
3161 * if there's a match, we allow the bio to finish. If not, the code in
3162 * extent_io.c will try to find good copies for us.
3163 */
3164 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3165 u64 phy_offset, struct page *page,
3166 u64 start, u64 end, int mirror)
3167 {
3168 size_t offset = start - page_offset(page);
3169 struct inode *inode = page->mapping->host;
3170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3171 struct btrfs_root *root = BTRFS_I(inode)->root;
3172
3173 if (PageChecked(page)) {
3174 ClearPageChecked(page);
3175 return 0;
3176 }
3177
3178 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3179 return 0;
3180
3181 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3182 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3183 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3184 return 0;
3185 }
3186
3187 phy_offset >>= inode->i_sb->s_blocksize_bits;
3188 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3189 start, (size_t)(end - start + 1));
3190 }
3191
3192 void btrfs_add_delayed_iput(struct inode *inode)
3193 {
3194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3195 struct btrfs_inode *binode = BTRFS_I(inode);
3196
3197 if (atomic_add_unless(&inode->i_count, -1, 1))
3198 return;
3199
3200 spin_lock(&fs_info->delayed_iput_lock);
3201 if (binode->delayed_iput_count == 0) {
3202 ASSERT(list_empty(&binode->delayed_iput));
3203 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3204 } else {
3205 binode->delayed_iput_count++;
3206 }
3207 spin_unlock(&fs_info->delayed_iput_lock);
3208 }
3209
3210 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3211 {
3212
3213 spin_lock(&fs_info->delayed_iput_lock);
3214 while (!list_empty(&fs_info->delayed_iputs)) {
3215 struct btrfs_inode *inode;
3216
3217 inode = list_first_entry(&fs_info->delayed_iputs,
3218 struct btrfs_inode, delayed_iput);
3219 if (inode->delayed_iput_count) {
3220 inode->delayed_iput_count--;
3221 list_move_tail(&inode->delayed_iput,
3222 &fs_info->delayed_iputs);
3223 } else {
3224 list_del_init(&inode->delayed_iput);
3225 }
3226 spin_unlock(&fs_info->delayed_iput_lock);
3227 iput(&inode->vfs_inode);
3228 spin_lock(&fs_info->delayed_iput_lock);
3229 }
3230 spin_unlock(&fs_info->delayed_iput_lock);
3231 }
3232
3233 /*
3234 * This is called in transaction commit time. If there are no orphan
3235 * files in the subvolume, it removes orphan item and frees block_rsv
3236 * structure.
3237 */
3238 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *root)
3240 {
3241 struct btrfs_fs_info *fs_info = root->fs_info;
3242 struct btrfs_block_rsv *block_rsv;
3243 int ret;
3244
3245 if (atomic_read(&root->orphan_inodes) ||
3246 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3247 return;
3248
3249 spin_lock(&root->orphan_lock);
3250 if (atomic_read(&root->orphan_inodes)) {
3251 spin_unlock(&root->orphan_lock);
3252 return;
3253 }
3254
3255 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3256 spin_unlock(&root->orphan_lock);
3257 return;
3258 }
3259
3260 block_rsv = root->orphan_block_rsv;
3261 root->orphan_block_rsv = NULL;
3262 spin_unlock(&root->orphan_lock);
3263
3264 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3265 btrfs_root_refs(&root->root_item) > 0) {
3266 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3267 root->root_key.objectid);
3268 if (ret)
3269 btrfs_abort_transaction(trans, ret);
3270 else
3271 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3272 &root->state);
3273 }
3274
3275 if (block_rsv) {
3276 WARN_ON(block_rsv->size > 0);
3277 btrfs_free_block_rsv(fs_info, block_rsv);
3278 }
3279 }
3280
3281 /*
3282 * This creates an orphan entry for the given inode in case something goes
3283 * wrong in the middle of an unlink/truncate.
3284 *
3285 * NOTE: caller of this function should reserve 5 units of metadata for
3286 * this function.
3287 */
3288 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3289 struct btrfs_inode *inode)
3290 {
3291 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3292 struct btrfs_root *root = inode->root;
3293 struct btrfs_block_rsv *block_rsv = NULL;
3294 int reserve = 0;
3295 int insert = 0;
3296 int ret;
3297
3298 if (!root->orphan_block_rsv) {
3299 block_rsv = btrfs_alloc_block_rsv(fs_info,
3300 BTRFS_BLOCK_RSV_TEMP);
3301 if (!block_rsv)
3302 return -ENOMEM;
3303 }
3304
3305 spin_lock(&root->orphan_lock);
3306 if (!root->orphan_block_rsv) {
3307 root->orphan_block_rsv = block_rsv;
3308 } else if (block_rsv) {
3309 btrfs_free_block_rsv(fs_info, block_rsv);
3310 block_rsv = NULL;
3311 }
3312
3313 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3314 &inode->runtime_flags)) {
3315 #if 0
3316 /*
3317 * For proper ENOSPC handling, we should do orphan
3318 * cleanup when mounting. But this introduces backward
3319 * compatibility issue.
3320 */
3321 if (!xchg(&root->orphan_item_inserted, 1))
3322 insert = 2;
3323 else
3324 insert = 1;
3325 #endif
3326 insert = 1;
3327 atomic_inc(&root->orphan_inodes);
3328 }
3329
3330 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3331 &inode->runtime_flags))
3332 reserve = 1;
3333 spin_unlock(&root->orphan_lock);
3334
3335 /* grab metadata reservation from transaction handle */
3336 if (reserve) {
3337 ret = btrfs_orphan_reserve_metadata(trans, inode);
3338 ASSERT(!ret);
3339 if (ret) {
3340 atomic_dec(&root->orphan_inodes);
3341 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3342 &inode->runtime_flags);
3343 if (insert)
3344 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3345 &inode->runtime_flags);
3346 return ret;
3347 }
3348 }
3349
3350 /* insert an orphan item to track this unlinked/truncated file */
3351 if (insert >= 1) {
3352 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3353 if (ret) {
3354 atomic_dec(&root->orphan_inodes);
3355 if (reserve) {
3356 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3357 &inode->runtime_flags);
3358 btrfs_orphan_release_metadata(inode);
3359 }
3360 if (ret != -EEXIST) {
3361 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3362 &inode->runtime_flags);
3363 btrfs_abort_transaction(trans, ret);
3364 return ret;
3365 }
3366 }
3367 ret = 0;
3368 }
3369
3370 /* insert an orphan item to track subvolume contains orphan files */
3371 if (insert >= 2) {
3372 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3373 root->root_key.objectid);
3374 if (ret && ret != -EEXIST) {
3375 btrfs_abort_transaction(trans, ret);
3376 return ret;
3377 }
3378 }
3379 return 0;
3380 }
3381
3382 /*
3383 * We have done the truncate/delete so we can go ahead and remove the orphan
3384 * item for this particular inode.
3385 */
3386 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3387 struct btrfs_inode *inode)
3388 {
3389 struct btrfs_root *root = inode->root;
3390 int delete_item = 0;
3391 int release_rsv = 0;
3392 int ret = 0;
3393
3394 spin_lock(&root->orphan_lock);
3395 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3396 &inode->runtime_flags))
3397 delete_item = 1;
3398
3399 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3400 &inode->runtime_flags))
3401 release_rsv = 1;
3402 spin_unlock(&root->orphan_lock);
3403
3404 if (delete_item) {
3405 atomic_dec(&root->orphan_inodes);
3406 if (trans)
3407 ret = btrfs_del_orphan_item(trans, root,
3408 btrfs_ino(inode));
3409 }
3410
3411 if (release_rsv)
3412 btrfs_orphan_release_metadata(inode);
3413
3414 return ret;
3415 }
3416
3417 /*
3418 * this cleans up any orphans that may be left on the list from the last use
3419 * of this root.
3420 */
3421 int btrfs_orphan_cleanup(struct btrfs_root *root)
3422 {
3423 struct btrfs_fs_info *fs_info = root->fs_info;
3424 struct btrfs_path *path;
3425 struct extent_buffer *leaf;
3426 struct btrfs_key key, found_key;
3427 struct btrfs_trans_handle *trans;
3428 struct inode *inode;
3429 u64 last_objectid = 0;
3430 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3431
3432 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3433 return 0;
3434
3435 path = btrfs_alloc_path();
3436 if (!path) {
3437 ret = -ENOMEM;
3438 goto out;
3439 }
3440 path->reada = READA_BACK;
3441
3442 key.objectid = BTRFS_ORPHAN_OBJECTID;
3443 key.type = BTRFS_ORPHAN_ITEM_KEY;
3444 key.offset = (u64)-1;
3445
3446 while (1) {
3447 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3448 if (ret < 0)
3449 goto out;
3450
3451 /*
3452 * if ret == 0 means we found what we were searching for, which
3453 * is weird, but possible, so only screw with path if we didn't
3454 * find the key and see if we have stuff that matches
3455 */
3456 if (ret > 0) {
3457 ret = 0;
3458 if (path->slots[0] == 0)
3459 break;
3460 path->slots[0]--;
3461 }
3462
3463 /* pull out the item */
3464 leaf = path->nodes[0];
3465 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3466
3467 /* make sure the item matches what we want */
3468 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3469 break;
3470 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3471 break;
3472
3473 /* release the path since we're done with it */
3474 btrfs_release_path(path);
3475
3476 /*
3477 * this is where we are basically btrfs_lookup, without the
3478 * crossing root thing. we store the inode number in the
3479 * offset of the orphan item.
3480 */
3481
3482 if (found_key.offset == last_objectid) {
3483 btrfs_err(fs_info,
3484 "Error removing orphan entry, stopping orphan cleanup");
3485 ret = -EINVAL;
3486 goto out;
3487 }
3488
3489 last_objectid = found_key.offset;
3490
3491 found_key.objectid = found_key.offset;
3492 found_key.type = BTRFS_INODE_ITEM_KEY;
3493 found_key.offset = 0;
3494 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3495 ret = PTR_ERR_OR_ZERO(inode);
3496 if (ret && ret != -ENOENT)
3497 goto out;
3498
3499 if (ret == -ENOENT && root == fs_info->tree_root) {
3500 struct btrfs_root *dead_root;
3501 struct btrfs_fs_info *fs_info = root->fs_info;
3502 int is_dead_root = 0;
3503
3504 /*
3505 * this is an orphan in the tree root. Currently these
3506 * could come from 2 sources:
3507 * a) a snapshot deletion in progress
3508 * b) a free space cache inode
3509 * We need to distinguish those two, as the snapshot
3510 * orphan must not get deleted.
3511 * find_dead_roots already ran before us, so if this
3512 * is a snapshot deletion, we should find the root
3513 * in the dead_roots list
3514 */
3515 spin_lock(&fs_info->trans_lock);
3516 list_for_each_entry(dead_root, &fs_info->dead_roots,
3517 root_list) {
3518 if (dead_root->root_key.objectid ==
3519 found_key.objectid) {
3520 is_dead_root = 1;
3521 break;
3522 }
3523 }
3524 spin_unlock(&fs_info->trans_lock);
3525 if (is_dead_root) {
3526 /* prevent this orphan from being found again */
3527 key.offset = found_key.objectid - 1;
3528 continue;
3529 }
3530 }
3531 /*
3532 * Inode is already gone but the orphan item is still there,
3533 * kill the orphan item.
3534 */
3535 if (ret == -ENOENT) {
3536 trans = btrfs_start_transaction(root, 1);
3537 if (IS_ERR(trans)) {
3538 ret = PTR_ERR(trans);
3539 goto out;
3540 }
3541 btrfs_debug(fs_info, "auto deleting %Lu",
3542 found_key.objectid);
3543 ret = btrfs_del_orphan_item(trans, root,
3544 found_key.objectid);
3545 btrfs_end_transaction(trans);
3546 if (ret)
3547 goto out;
3548 continue;
3549 }
3550
3551 /*
3552 * add this inode to the orphan list so btrfs_orphan_del does
3553 * the proper thing when we hit it
3554 */
3555 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3556 &BTRFS_I(inode)->runtime_flags);
3557 atomic_inc(&root->orphan_inodes);
3558
3559 /* if we have links, this was a truncate, lets do that */
3560 if (inode->i_nlink) {
3561 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3562 iput(inode);
3563 continue;
3564 }
3565 nr_truncate++;
3566
3567 /* 1 for the orphan item deletion. */
3568 trans = btrfs_start_transaction(root, 1);
3569 if (IS_ERR(trans)) {
3570 iput(inode);
3571 ret = PTR_ERR(trans);
3572 goto out;
3573 }
3574 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3575 btrfs_end_transaction(trans);
3576 if (ret) {
3577 iput(inode);
3578 goto out;
3579 }
3580
3581 ret = btrfs_truncate(inode);
3582 if (ret)
3583 btrfs_orphan_del(NULL, BTRFS_I(inode));
3584 } else {
3585 nr_unlink++;
3586 }
3587
3588 /* this will do delete_inode and everything for us */
3589 iput(inode);
3590 if (ret)
3591 goto out;
3592 }
3593 /* release the path since we're done with it */
3594 btrfs_release_path(path);
3595
3596 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3597
3598 if (root->orphan_block_rsv)
3599 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3600 (u64)-1);
3601
3602 if (root->orphan_block_rsv ||
3603 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3604 trans = btrfs_join_transaction(root);
3605 if (!IS_ERR(trans))
3606 btrfs_end_transaction(trans);
3607 }
3608
3609 if (nr_unlink)
3610 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3611 if (nr_truncate)
3612 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3613
3614 out:
3615 if (ret)
3616 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3617 btrfs_free_path(path);
3618 return ret;
3619 }
3620
3621 /*
3622 * very simple check to peek ahead in the leaf looking for xattrs. If we
3623 * don't find any xattrs, we know there can't be any acls.
3624 *
3625 * slot is the slot the inode is in, objectid is the objectid of the inode
3626 */
3627 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3628 int slot, u64 objectid,
3629 int *first_xattr_slot)
3630 {
3631 u32 nritems = btrfs_header_nritems(leaf);
3632 struct btrfs_key found_key;
3633 static u64 xattr_access = 0;
3634 static u64 xattr_default = 0;
3635 int scanned = 0;
3636
3637 if (!xattr_access) {
3638 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3639 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3640 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3641 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3642 }
3643
3644 slot++;
3645 *first_xattr_slot = -1;
3646 while (slot < nritems) {
3647 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3648
3649 /* we found a different objectid, there must not be acls */
3650 if (found_key.objectid != objectid)
3651 return 0;
3652
3653 /* we found an xattr, assume we've got an acl */
3654 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3655 if (*first_xattr_slot == -1)
3656 *first_xattr_slot = slot;
3657 if (found_key.offset == xattr_access ||
3658 found_key.offset == xattr_default)
3659 return 1;
3660 }
3661
3662 /*
3663 * we found a key greater than an xattr key, there can't
3664 * be any acls later on
3665 */
3666 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3667 return 0;
3668
3669 slot++;
3670 scanned++;
3671
3672 /*
3673 * it goes inode, inode backrefs, xattrs, extents,
3674 * so if there are a ton of hard links to an inode there can
3675 * be a lot of backrefs. Don't waste time searching too hard,
3676 * this is just an optimization
3677 */
3678 if (scanned >= 8)
3679 break;
3680 }
3681 /* we hit the end of the leaf before we found an xattr or
3682 * something larger than an xattr. We have to assume the inode
3683 * has acls
3684 */
3685 if (*first_xattr_slot == -1)
3686 *first_xattr_slot = slot;
3687 return 1;
3688 }
3689
3690 /*
3691 * read an inode from the btree into the in-memory inode
3692 */
3693 static int btrfs_read_locked_inode(struct inode *inode)
3694 {
3695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3696 struct btrfs_path *path;
3697 struct extent_buffer *leaf;
3698 struct btrfs_inode_item *inode_item;
3699 struct btrfs_root *root = BTRFS_I(inode)->root;
3700 struct btrfs_key location;
3701 unsigned long ptr;
3702 int maybe_acls;
3703 u32 rdev;
3704 int ret;
3705 bool filled = false;
3706 int first_xattr_slot;
3707
3708 ret = btrfs_fill_inode(inode, &rdev);
3709 if (!ret)
3710 filled = true;
3711
3712 path = btrfs_alloc_path();
3713 if (!path) {
3714 ret = -ENOMEM;
3715 goto make_bad;
3716 }
3717
3718 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3719
3720 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3721 if (ret) {
3722 if (ret > 0)
3723 ret = -ENOENT;
3724 goto make_bad;
3725 }
3726
3727 leaf = path->nodes[0];
3728
3729 if (filled)
3730 goto cache_index;
3731
3732 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3733 struct btrfs_inode_item);
3734 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3735 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3736 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3737 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3738 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3739
3740 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3741 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3742
3743 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3744 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3745
3746 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3747 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3748
3749 BTRFS_I(inode)->i_otime.tv_sec =
3750 btrfs_timespec_sec(leaf, &inode_item->otime);
3751 BTRFS_I(inode)->i_otime.tv_nsec =
3752 btrfs_timespec_nsec(leaf, &inode_item->otime);
3753
3754 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3755 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3756 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3757
3758 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3759 inode->i_generation = BTRFS_I(inode)->generation;
3760 inode->i_rdev = 0;
3761 rdev = btrfs_inode_rdev(leaf, inode_item);
3762
3763 BTRFS_I(inode)->index_cnt = (u64)-1;
3764 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3765
3766 cache_index:
3767 /*
3768 * If we were modified in the current generation and evicted from memory
3769 * and then re-read we need to do a full sync since we don't have any
3770 * idea about which extents were modified before we were evicted from
3771 * cache.
3772 *
3773 * This is required for both inode re-read from disk and delayed inode
3774 * in delayed_nodes_tree.
3775 */
3776 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3777 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3778 &BTRFS_I(inode)->runtime_flags);
3779
3780 /*
3781 * We don't persist the id of the transaction where an unlink operation
3782 * against the inode was last made. So here we assume the inode might
3783 * have been evicted, and therefore the exact value of last_unlink_trans
3784 * lost, and set it to last_trans to avoid metadata inconsistencies
3785 * between the inode and its parent if the inode is fsync'ed and the log
3786 * replayed. For example, in the scenario:
3787 *
3788 * touch mydir/foo
3789 * ln mydir/foo mydir/bar
3790 * sync
3791 * unlink mydir/bar
3792 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3793 * xfs_io -c fsync mydir/foo
3794 * <power failure>
3795 * mount fs, triggers fsync log replay
3796 *
3797 * We must make sure that when we fsync our inode foo we also log its
3798 * parent inode, otherwise after log replay the parent still has the
3799 * dentry with the "bar" name but our inode foo has a link count of 1
3800 * and doesn't have an inode ref with the name "bar" anymore.
3801 *
3802 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3803 * but it guarantees correctness at the expense of occasional full
3804 * transaction commits on fsync if our inode is a directory, or if our
3805 * inode is not a directory, logging its parent unnecessarily.
3806 */
3807 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3808
3809 path->slots[0]++;
3810 if (inode->i_nlink != 1 ||
3811 path->slots[0] >= btrfs_header_nritems(leaf))
3812 goto cache_acl;
3813
3814 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3815 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3816 goto cache_acl;
3817
3818 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3819 if (location.type == BTRFS_INODE_REF_KEY) {
3820 struct btrfs_inode_ref *ref;
3821
3822 ref = (struct btrfs_inode_ref *)ptr;
3823 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3824 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3825 struct btrfs_inode_extref *extref;
3826
3827 extref = (struct btrfs_inode_extref *)ptr;
3828 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3829 extref);
3830 }
3831 cache_acl:
3832 /*
3833 * try to precache a NULL acl entry for files that don't have
3834 * any xattrs or acls
3835 */
3836 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3837 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3838 if (first_xattr_slot != -1) {
3839 path->slots[0] = first_xattr_slot;
3840 ret = btrfs_load_inode_props(inode, path);
3841 if (ret)
3842 btrfs_err(fs_info,
3843 "error loading props for ino %llu (root %llu): %d",
3844 btrfs_ino(BTRFS_I(inode)),
3845 root->root_key.objectid, ret);
3846 }
3847 btrfs_free_path(path);
3848
3849 if (!maybe_acls)
3850 cache_no_acl(inode);
3851
3852 switch (inode->i_mode & S_IFMT) {
3853 case S_IFREG:
3854 inode->i_mapping->a_ops = &btrfs_aops;
3855 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3856 inode->i_fop = &btrfs_file_operations;
3857 inode->i_op = &btrfs_file_inode_operations;
3858 break;
3859 case S_IFDIR:
3860 inode->i_fop = &btrfs_dir_file_operations;
3861 inode->i_op = &btrfs_dir_inode_operations;
3862 break;
3863 case S_IFLNK:
3864 inode->i_op = &btrfs_symlink_inode_operations;
3865 inode_nohighmem(inode);
3866 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3867 break;
3868 default:
3869 inode->i_op = &btrfs_special_inode_operations;
3870 init_special_inode(inode, inode->i_mode, rdev);
3871 break;
3872 }
3873
3874 btrfs_update_iflags(inode);
3875 return 0;
3876
3877 make_bad:
3878 btrfs_free_path(path);
3879 make_bad_inode(inode);
3880 return ret;
3881 }
3882
3883 /*
3884 * given a leaf and an inode, copy the inode fields into the leaf
3885 */
3886 static void fill_inode_item(struct btrfs_trans_handle *trans,
3887 struct extent_buffer *leaf,
3888 struct btrfs_inode_item *item,
3889 struct inode *inode)
3890 {
3891 struct btrfs_map_token token;
3892
3893 btrfs_init_map_token(&token);
3894
3895 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3896 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3897 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3898 &token);
3899 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3900 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3901
3902 btrfs_set_token_timespec_sec(leaf, &item->atime,
3903 inode->i_atime.tv_sec, &token);
3904 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3905 inode->i_atime.tv_nsec, &token);
3906
3907 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3908 inode->i_mtime.tv_sec, &token);
3909 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3910 inode->i_mtime.tv_nsec, &token);
3911
3912 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3913 inode->i_ctime.tv_sec, &token);
3914 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3915 inode->i_ctime.tv_nsec, &token);
3916
3917 btrfs_set_token_timespec_sec(leaf, &item->otime,
3918 BTRFS_I(inode)->i_otime.tv_sec, &token);
3919 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3920 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3921
3922 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3923 &token);
3924 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3925 &token);
3926 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3927 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3928 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3929 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3930 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3931 }
3932
3933 /*
3934 * copy everything in the in-memory inode into the btree.
3935 */
3936 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3937 struct btrfs_root *root, struct inode *inode)
3938 {
3939 struct btrfs_inode_item *inode_item;
3940 struct btrfs_path *path;
3941 struct extent_buffer *leaf;
3942 int ret;
3943
3944 path = btrfs_alloc_path();
3945 if (!path)
3946 return -ENOMEM;
3947
3948 path->leave_spinning = 1;
3949 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3950 1);
3951 if (ret) {
3952 if (ret > 0)
3953 ret = -ENOENT;
3954 goto failed;
3955 }
3956
3957 leaf = path->nodes[0];
3958 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3959 struct btrfs_inode_item);
3960
3961 fill_inode_item(trans, leaf, inode_item, inode);
3962 btrfs_mark_buffer_dirty(leaf);
3963 btrfs_set_inode_last_trans(trans, inode);
3964 ret = 0;
3965 failed:
3966 btrfs_free_path(path);
3967 return ret;
3968 }
3969
3970 /*
3971 * copy everything in the in-memory inode into the btree.
3972 */
3973 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3974 struct btrfs_root *root, struct inode *inode)
3975 {
3976 struct btrfs_fs_info *fs_info = root->fs_info;
3977 int ret;
3978
3979 /*
3980 * If the inode is a free space inode, we can deadlock during commit
3981 * if we put it into the delayed code.
3982 *
3983 * The data relocation inode should also be directly updated
3984 * without delay
3985 */
3986 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3987 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3988 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3989 btrfs_update_root_times(trans, root);
3990
3991 ret = btrfs_delayed_update_inode(trans, root, inode);
3992 if (!ret)
3993 btrfs_set_inode_last_trans(trans, inode);
3994 return ret;
3995 }
3996
3997 return btrfs_update_inode_item(trans, root, inode);
3998 }
3999
4000 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4001 struct btrfs_root *root,
4002 struct inode *inode)
4003 {
4004 int ret;
4005
4006 ret = btrfs_update_inode(trans, root, inode);
4007 if (ret == -ENOSPC)
4008 return btrfs_update_inode_item(trans, root, inode);
4009 return ret;
4010 }
4011
4012 /*
4013 * unlink helper that gets used here in inode.c and in the tree logging
4014 * recovery code. It remove a link in a directory with a given name, and
4015 * also drops the back refs in the inode to the directory
4016 */
4017 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4018 struct btrfs_root *root,
4019 struct btrfs_inode *dir,
4020 struct btrfs_inode *inode,
4021 const char *name, int name_len)
4022 {
4023 struct btrfs_fs_info *fs_info = root->fs_info;
4024 struct btrfs_path *path;
4025 int ret = 0;
4026 struct extent_buffer *leaf;
4027 struct btrfs_dir_item *di;
4028 struct btrfs_key key;
4029 u64 index;
4030 u64 ino = btrfs_ino(inode);
4031 u64 dir_ino = btrfs_ino(dir);
4032
4033 path = btrfs_alloc_path();
4034 if (!path) {
4035 ret = -ENOMEM;
4036 goto out;
4037 }
4038
4039 path->leave_spinning = 1;
4040 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4041 name, name_len, -1);
4042 if (IS_ERR(di)) {
4043 ret = PTR_ERR(di);
4044 goto err;
4045 }
4046 if (!di) {
4047 ret = -ENOENT;
4048 goto err;
4049 }
4050 leaf = path->nodes[0];
4051 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4052 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4053 if (ret)
4054 goto err;
4055 btrfs_release_path(path);
4056
4057 /*
4058 * If we don't have dir index, we have to get it by looking up
4059 * the inode ref, since we get the inode ref, remove it directly,
4060 * it is unnecessary to do delayed deletion.
4061 *
4062 * But if we have dir index, needn't search inode ref to get it.
4063 * Since the inode ref is close to the inode item, it is better
4064 * that we delay to delete it, and just do this deletion when
4065 * we update the inode item.
4066 */
4067 if (inode->dir_index) {
4068 ret = btrfs_delayed_delete_inode_ref(inode);
4069 if (!ret) {
4070 index = inode->dir_index;
4071 goto skip_backref;
4072 }
4073 }
4074
4075 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4076 dir_ino, &index);
4077 if (ret) {
4078 btrfs_info(fs_info,
4079 "failed to delete reference to %.*s, inode %llu parent %llu",
4080 name_len, name, ino, dir_ino);
4081 btrfs_abort_transaction(trans, ret);
4082 goto err;
4083 }
4084 skip_backref:
4085 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4086 if (ret) {
4087 btrfs_abort_transaction(trans, ret);
4088 goto err;
4089 }
4090
4091 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4092 dir_ino);
4093 if (ret != 0 && ret != -ENOENT) {
4094 btrfs_abort_transaction(trans, ret);
4095 goto err;
4096 }
4097
4098 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4099 index);
4100 if (ret == -ENOENT)
4101 ret = 0;
4102 else if (ret)
4103 btrfs_abort_transaction(trans, ret);
4104 err:
4105 btrfs_free_path(path);
4106 if (ret)
4107 goto out;
4108
4109 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4110 inode_inc_iversion(&inode->vfs_inode);
4111 inode_inc_iversion(&dir->vfs_inode);
4112 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4113 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4114 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4115 out:
4116 return ret;
4117 }
4118
4119 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4120 struct btrfs_root *root,
4121 struct btrfs_inode *dir, struct btrfs_inode *inode,
4122 const char *name, int name_len)
4123 {
4124 int ret;
4125 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4126 if (!ret) {
4127 drop_nlink(&inode->vfs_inode);
4128 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4129 }
4130 return ret;
4131 }
4132
4133 /*
4134 * helper to start transaction for unlink and rmdir.
4135 *
4136 * unlink and rmdir are special in btrfs, they do not always free space, so
4137 * if we cannot make our reservations the normal way try and see if there is
4138 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4139 * allow the unlink to occur.
4140 */
4141 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4142 {
4143 struct btrfs_root *root = BTRFS_I(dir)->root;
4144
4145 /*
4146 * 1 for the possible orphan item
4147 * 1 for the dir item
4148 * 1 for the dir index
4149 * 1 for the inode ref
4150 * 1 for the inode
4151 */
4152 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4153 }
4154
4155 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4156 {
4157 struct btrfs_root *root = BTRFS_I(dir)->root;
4158 struct btrfs_trans_handle *trans;
4159 struct inode *inode = d_inode(dentry);
4160 int ret;
4161
4162 trans = __unlink_start_trans(dir);
4163 if (IS_ERR(trans))
4164 return PTR_ERR(trans);
4165
4166 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4167 0);
4168
4169 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4170 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4171 dentry->d_name.len);
4172 if (ret)
4173 goto out;
4174
4175 if (inode->i_nlink == 0) {
4176 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4177 if (ret)
4178 goto out;
4179 }
4180
4181 out:
4182 btrfs_end_transaction(trans);
4183 btrfs_btree_balance_dirty(root->fs_info);
4184 return ret;
4185 }
4186
4187 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4188 struct btrfs_root *root,
4189 struct inode *dir, u64 objectid,
4190 const char *name, int name_len)
4191 {
4192 struct btrfs_fs_info *fs_info = root->fs_info;
4193 struct btrfs_path *path;
4194 struct extent_buffer *leaf;
4195 struct btrfs_dir_item *di;
4196 struct btrfs_key key;
4197 u64 index;
4198 int ret;
4199 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4200
4201 path = btrfs_alloc_path();
4202 if (!path)
4203 return -ENOMEM;
4204
4205 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4206 name, name_len, -1);
4207 if (IS_ERR_OR_NULL(di)) {
4208 if (!di)
4209 ret = -ENOENT;
4210 else
4211 ret = PTR_ERR(di);
4212 goto out;
4213 }
4214
4215 leaf = path->nodes[0];
4216 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4217 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4218 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4219 if (ret) {
4220 btrfs_abort_transaction(trans, ret);
4221 goto out;
4222 }
4223 btrfs_release_path(path);
4224
4225 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4226 root->root_key.objectid, dir_ino,
4227 &index, name, name_len);
4228 if (ret < 0) {
4229 if (ret != -ENOENT) {
4230 btrfs_abort_transaction(trans, ret);
4231 goto out;
4232 }
4233 di = btrfs_search_dir_index_item(root, path, dir_ino,
4234 name, name_len);
4235 if (IS_ERR_OR_NULL(di)) {
4236 if (!di)
4237 ret = -ENOENT;
4238 else
4239 ret = PTR_ERR(di);
4240 btrfs_abort_transaction(trans, ret);
4241 goto out;
4242 }
4243
4244 leaf = path->nodes[0];
4245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4246 btrfs_release_path(path);
4247 index = key.offset;
4248 }
4249 btrfs_release_path(path);
4250
4251 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4252 if (ret) {
4253 btrfs_abort_transaction(trans, ret);
4254 goto out;
4255 }
4256
4257 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4258 inode_inc_iversion(dir);
4259 dir->i_mtime = dir->i_ctime = current_time(dir);
4260 ret = btrfs_update_inode_fallback(trans, root, dir);
4261 if (ret)
4262 btrfs_abort_transaction(trans, ret);
4263 out:
4264 btrfs_free_path(path);
4265 return ret;
4266 }
4267
4268 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4269 {
4270 struct inode *inode = d_inode(dentry);
4271 int err = 0;
4272 struct btrfs_root *root = BTRFS_I(dir)->root;
4273 struct btrfs_trans_handle *trans;
4274 u64 last_unlink_trans;
4275
4276 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4277 return -ENOTEMPTY;
4278 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4279 return -EPERM;
4280
4281 trans = __unlink_start_trans(dir);
4282 if (IS_ERR(trans))
4283 return PTR_ERR(trans);
4284
4285 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4286 err = btrfs_unlink_subvol(trans, root, dir,
4287 BTRFS_I(inode)->location.objectid,
4288 dentry->d_name.name,
4289 dentry->d_name.len);
4290 goto out;
4291 }
4292
4293 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4294 if (err)
4295 goto out;
4296
4297 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4298
4299 /* now the directory is empty */
4300 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4301 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4302 dentry->d_name.len);
4303 if (!err) {
4304 btrfs_i_size_write(BTRFS_I(inode), 0);
4305 /*
4306 * Propagate the last_unlink_trans value of the deleted dir to
4307 * its parent directory. This is to prevent an unrecoverable
4308 * log tree in the case we do something like this:
4309 * 1) create dir foo
4310 * 2) create snapshot under dir foo
4311 * 3) delete the snapshot
4312 * 4) rmdir foo
4313 * 5) mkdir foo
4314 * 6) fsync foo or some file inside foo
4315 */
4316 if (last_unlink_trans >= trans->transid)
4317 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4318 }
4319 out:
4320 btrfs_end_transaction(trans);
4321 btrfs_btree_balance_dirty(root->fs_info);
4322
4323 return err;
4324 }
4325
4326 static int truncate_space_check(struct btrfs_trans_handle *trans,
4327 struct btrfs_root *root,
4328 u64 bytes_deleted)
4329 {
4330 struct btrfs_fs_info *fs_info = root->fs_info;
4331 int ret;
4332
4333 /*
4334 * This is only used to apply pressure to the enospc system, we don't
4335 * intend to use this reservation at all.
4336 */
4337 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4338 bytes_deleted *= fs_info->nodesize;
4339 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4340 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4341 if (!ret) {
4342 trace_btrfs_space_reservation(fs_info, "transaction",
4343 trans->transid,
4344 bytes_deleted, 1);
4345 trans->bytes_reserved += bytes_deleted;
4346 }
4347 return ret;
4348
4349 }
4350
4351 static int truncate_inline_extent(struct inode *inode,
4352 struct btrfs_path *path,
4353 struct btrfs_key *found_key,
4354 const u64 item_end,
4355 const u64 new_size)
4356 {
4357 struct extent_buffer *leaf = path->nodes[0];
4358 int slot = path->slots[0];
4359 struct btrfs_file_extent_item *fi;
4360 u32 size = (u32)(new_size - found_key->offset);
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362
4363 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4364
4365 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4366 loff_t offset = new_size;
4367 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4368
4369 /*
4370 * Zero out the remaining of the last page of our inline extent,
4371 * instead of directly truncating our inline extent here - that
4372 * would be much more complex (decompressing all the data, then
4373 * compressing the truncated data, which might be bigger than
4374 * the size of the inline extent, resize the extent, etc).
4375 * We release the path because to get the page we might need to
4376 * read the extent item from disk (data not in the page cache).
4377 */
4378 btrfs_release_path(path);
4379 return btrfs_truncate_block(inode, offset, page_end - offset,
4380 0);
4381 }
4382
4383 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4384 size = btrfs_file_extent_calc_inline_size(size);
4385 btrfs_truncate_item(root->fs_info, path, size, 1);
4386
4387 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4388 inode_sub_bytes(inode, item_end + 1 - new_size);
4389
4390 return 0;
4391 }
4392
4393 /*
4394 * this can truncate away extent items, csum items and directory items.
4395 * It starts at a high offset and removes keys until it can't find
4396 * any higher than new_size
4397 *
4398 * csum items that cross the new i_size are truncated to the new size
4399 * as well.
4400 *
4401 * min_type is the minimum key type to truncate down to. If set to 0, this
4402 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4403 */
4404 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4405 struct btrfs_root *root,
4406 struct inode *inode,
4407 u64 new_size, u32 min_type)
4408 {
4409 struct btrfs_fs_info *fs_info = root->fs_info;
4410 struct btrfs_path *path;
4411 struct extent_buffer *leaf;
4412 struct btrfs_file_extent_item *fi;
4413 struct btrfs_key key;
4414 struct btrfs_key found_key;
4415 u64 extent_start = 0;
4416 u64 extent_num_bytes = 0;
4417 u64 extent_offset = 0;
4418 u64 item_end = 0;
4419 u64 last_size = new_size;
4420 u32 found_type = (u8)-1;
4421 int found_extent;
4422 int del_item;
4423 int pending_del_nr = 0;
4424 int pending_del_slot = 0;
4425 int extent_type = -1;
4426 int ret;
4427 int err = 0;
4428 u64 ino = btrfs_ino(BTRFS_I(inode));
4429 u64 bytes_deleted = 0;
4430 bool be_nice = 0;
4431 bool should_throttle = 0;
4432 bool should_end = 0;
4433
4434 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4435
4436 /*
4437 * for non-free space inodes and ref cows, we want to back off from
4438 * time to time
4439 */
4440 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4441 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4442 be_nice = 1;
4443
4444 path = btrfs_alloc_path();
4445 if (!path)
4446 return -ENOMEM;
4447 path->reada = READA_BACK;
4448
4449 /*
4450 * We want to drop from the next block forward in case this new size is
4451 * not block aligned since we will be keeping the last block of the
4452 * extent just the way it is.
4453 */
4454 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4455 root == fs_info->tree_root)
4456 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4457 fs_info->sectorsize),
4458 (u64)-1, 0);
4459
4460 /*
4461 * This function is also used to drop the items in the log tree before
4462 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4463 * it is used to drop the loged items. So we shouldn't kill the delayed
4464 * items.
4465 */
4466 if (min_type == 0 && root == BTRFS_I(inode)->root)
4467 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4468
4469 key.objectid = ino;
4470 key.offset = (u64)-1;
4471 key.type = (u8)-1;
4472
4473 search_again:
4474 /*
4475 * with a 16K leaf size and 128MB extents, you can actually queue
4476 * up a huge file in a single leaf. Most of the time that
4477 * bytes_deleted is > 0, it will be huge by the time we get here
4478 */
4479 if (be_nice && bytes_deleted > SZ_32M) {
4480 if (btrfs_should_end_transaction(trans)) {
4481 err = -EAGAIN;
4482 goto error;
4483 }
4484 }
4485
4486
4487 path->leave_spinning = 1;
4488 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4489 if (ret < 0) {
4490 err = ret;
4491 goto out;
4492 }
4493
4494 if (ret > 0) {
4495 /* there are no items in the tree for us to truncate, we're
4496 * done
4497 */
4498 if (path->slots[0] == 0)
4499 goto out;
4500 path->slots[0]--;
4501 }
4502
4503 while (1) {
4504 fi = NULL;
4505 leaf = path->nodes[0];
4506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4507 found_type = found_key.type;
4508
4509 if (found_key.objectid != ino)
4510 break;
4511
4512 if (found_type < min_type)
4513 break;
4514
4515 item_end = found_key.offset;
4516 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4517 fi = btrfs_item_ptr(leaf, path->slots[0],
4518 struct btrfs_file_extent_item);
4519 extent_type = btrfs_file_extent_type(leaf, fi);
4520 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4521 item_end +=
4522 btrfs_file_extent_num_bytes(leaf, fi);
4523
4524 trace_btrfs_truncate_show_fi_regular(
4525 BTRFS_I(inode), leaf, fi,
4526 found_key.offset);
4527 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4528 item_end += btrfs_file_extent_inline_len(leaf,
4529 path->slots[0], fi);
4530
4531 trace_btrfs_truncate_show_fi_inline(
4532 BTRFS_I(inode), leaf, fi, path->slots[0],
4533 found_key.offset);
4534 }
4535 item_end--;
4536 }
4537 if (found_type > min_type) {
4538 del_item = 1;
4539 } else {
4540 if (item_end < new_size)
4541 break;
4542 if (found_key.offset >= new_size)
4543 del_item = 1;
4544 else
4545 del_item = 0;
4546 }
4547 found_extent = 0;
4548 /* FIXME, shrink the extent if the ref count is only 1 */
4549 if (found_type != BTRFS_EXTENT_DATA_KEY)
4550 goto delete;
4551
4552 if (del_item)
4553 last_size = found_key.offset;
4554 else
4555 last_size = new_size;
4556
4557 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4558 u64 num_dec;
4559 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4560 if (!del_item) {
4561 u64 orig_num_bytes =
4562 btrfs_file_extent_num_bytes(leaf, fi);
4563 extent_num_bytes = ALIGN(new_size -
4564 found_key.offset,
4565 fs_info->sectorsize);
4566 btrfs_set_file_extent_num_bytes(leaf, fi,
4567 extent_num_bytes);
4568 num_dec = (orig_num_bytes -
4569 extent_num_bytes);
4570 if (test_bit(BTRFS_ROOT_REF_COWS,
4571 &root->state) &&
4572 extent_start != 0)
4573 inode_sub_bytes(inode, num_dec);
4574 btrfs_mark_buffer_dirty(leaf);
4575 } else {
4576 extent_num_bytes =
4577 btrfs_file_extent_disk_num_bytes(leaf,
4578 fi);
4579 extent_offset = found_key.offset -
4580 btrfs_file_extent_offset(leaf, fi);
4581
4582 /* FIXME blocksize != 4096 */
4583 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4584 if (extent_start != 0) {
4585 found_extent = 1;
4586 if (test_bit(BTRFS_ROOT_REF_COWS,
4587 &root->state))
4588 inode_sub_bytes(inode, num_dec);
4589 }
4590 }
4591 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4592 /*
4593 * we can't truncate inline items that have had
4594 * special encodings
4595 */
4596 if (!del_item &&
4597 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4598 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4599
4600 /*
4601 * Need to release path in order to truncate a
4602 * compressed extent. So delete any accumulated
4603 * extent items so far.
4604 */
4605 if (btrfs_file_extent_compression(leaf, fi) !=
4606 BTRFS_COMPRESS_NONE && pending_del_nr) {
4607 err = btrfs_del_items(trans, root, path,
4608 pending_del_slot,
4609 pending_del_nr);
4610 if (err) {
4611 btrfs_abort_transaction(trans,
4612 err);
4613 goto error;
4614 }
4615 pending_del_nr = 0;
4616 }
4617
4618 err = truncate_inline_extent(inode, path,
4619 &found_key,
4620 item_end,
4621 new_size);
4622 if (err) {
4623 btrfs_abort_transaction(trans, err);
4624 goto error;
4625 }
4626 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4627 &root->state)) {
4628 inode_sub_bytes(inode, item_end + 1 - new_size);
4629 }
4630 }
4631 delete:
4632 if (del_item) {
4633 if (!pending_del_nr) {
4634 /* no pending yet, add ourselves */
4635 pending_del_slot = path->slots[0];
4636 pending_del_nr = 1;
4637 } else if (pending_del_nr &&
4638 path->slots[0] + 1 == pending_del_slot) {
4639 /* hop on the pending chunk */
4640 pending_del_nr++;
4641 pending_del_slot = path->slots[0];
4642 } else {
4643 BUG();
4644 }
4645 } else {
4646 break;
4647 }
4648 should_throttle = 0;
4649
4650 if (found_extent &&
4651 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4652 root == fs_info->tree_root)) {
4653 btrfs_set_path_blocking(path);
4654 bytes_deleted += extent_num_bytes;
4655 ret = btrfs_free_extent(trans, fs_info, extent_start,
4656 extent_num_bytes, 0,
4657 btrfs_header_owner(leaf),
4658 ino, extent_offset);
4659 BUG_ON(ret);
4660 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4661 btrfs_async_run_delayed_refs(fs_info,
4662 trans->delayed_ref_updates * 2,
4663 trans->transid, 0);
4664 if (be_nice) {
4665 if (truncate_space_check(trans, root,
4666 extent_num_bytes)) {
4667 should_end = 1;
4668 }
4669 if (btrfs_should_throttle_delayed_refs(trans,
4670 fs_info))
4671 should_throttle = 1;
4672 }
4673 }
4674
4675 if (found_type == BTRFS_INODE_ITEM_KEY)
4676 break;
4677
4678 if (path->slots[0] == 0 ||
4679 path->slots[0] != pending_del_slot ||
4680 should_throttle || should_end) {
4681 if (pending_del_nr) {
4682 ret = btrfs_del_items(trans, root, path,
4683 pending_del_slot,
4684 pending_del_nr);
4685 if (ret) {
4686 btrfs_abort_transaction(trans, ret);
4687 goto error;
4688 }
4689 pending_del_nr = 0;
4690 }
4691 btrfs_release_path(path);
4692 if (should_throttle) {
4693 unsigned long updates = trans->delayed_ref_updates;
4694 if (updates) {
4695 trans->delayed_ref_updates = 0;
4696 ret = btrfs_run_delayed_refs(trans,
4697 fs_info,
4698 updates * 2);
4699 if (ret && !err)
4700 err = ret;
4701 }
4702 }
4703 /*
4704 * if we failed to refill our space rsv, bail out
4705 * and let the transaction restart
4706 */
4707 if (should_end) {
4708 err = -EAGAIN;
4709 goto error;
4710 }
4711 goto search_again;
4712 } else {
4713 path->slots[0]--;
4714 }
4715 }
4716 out:
4717 if (pending_del_nr) {
4718 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4719 pending_del_nr);
4720 if (ret)
4721 btrfs_abort_transaction(trans, ret);
4722 }
4723 error:
4724 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4725 ASSERT(last_size >= new_size);
4726 if (!err && last_size > new_size)
4727 last_size = new_size;
4728 btrfs_ordered_update_i_size(inode, last_size, NULL);
4729 }
4730
4731 btrfs_free_path(path);
4732
4733 if (be_nice && bytes_deleted > SZ_32M) {
4734 unsigned long updates = trans->delayed_ref_updates;
4735 if (updates) {
4736 trans->delayed_ref_updates = 0;
4737 ret = btrfs_run_delayed_refs(trans, fs_info,
4738 updates * 2);
4739 if (ret && !err)
4740 err = ret;
4741 }
4742 }
4743 return err;
4744 }
4745
4746 /*
4747 * btrfs_truncate_block - read, zero a chunk and write a block
4748 * @inode - inode that we're zeroing
4749 * @from - the offset to start zeroing
4750 * @len - the length to zero, 0 to zero the entire range respective to the
4751 * offset
4752 * @front - zero up to the offset instead of from the offset on
4753 *
4754 * This will find the block for the "from" offset and cow the block and zero the
4755 * part we want to zero. This is used with truncate and hole punching.
4756 */
4757 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4758 int front)
4759 {
4760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4761 struct address_space *mapping = inode->i_mapping;
4762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4763 struct btrfs_ordered_extent *ordered;
4764 struct extent_state *cached_state = NULL;
4765 char *kaddr;
4766 u32 blocksize = fs_info->sectorsize;
4767 pgoff_t index = from >> PAGE_SHIFT;
4768 unsigned offset = from & (blocksize - 1);
4769 struct page *page;
4770 gfp_t mask = btrfs_alloc_write_mask(mapping);
4771 int ret = 0;
4772 u64 block_start;
4773 u64 block_end;
4774
4775 if ((offset & (blocksize - 1)) == 0 &&
4776 (!len || ((len & (blocksize - 1)) == 0)))
4777 goto out;
4778
4779 ret = btrfs_delalloc_reserve_space(inode,
4780 round_down(from, blocksize), blocksize);
4781 if (ret)
4782 goto out;
4783
4784 again:
4785 page = find_or_create_page(mapping, index, mask);
4786 if (!page) {
4787 btrfs_delalloc_release_space(inode,
4788 round_down(from, blocksize),
4789 blocksize);
4790 ret = -ENOMEM;
4791 goto out;
4792 }
4793
4794 block_start = round_down(from, blocksize);
4795 block_end = block_start + blocksize - 1;
4796
4797 if (!PageUptodate(page)) {
4798 ret = btrfs_readpage(NULL, page);
4799 lock_page(page);
4800 if (page->mapping != mapping) {
4801 unlock_page(page);
4802 put_page(page);
4803 goto again;
4804 }
4805 if (!PageUptodate(page)) {
4806 ret = -EIO;
4807 goto out_unlock;
4808 }
4809 }
4810 wait_on_page_writeback(page);
4811
4812 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4813 set_page_extent_mapped(page);
4814
4815 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4816 if (ordered) {
4817 unlock_extent_cached(io_tree, block_start, block_end,
4818 &cached_state, GFP_NOFS);
4819 unlock_page(page);
4820 put_page(page);
4821 btrfs_start_ordered_extent(inode, ordered, 1);
4822 btrfs_put_ordered_extent(ordered);
4823 goto again;
4824 }
4825
4826 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4827 EXTENT_DIRTY | EXTENT_DELALLOC |
4828 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4829 0, 0, &cached_state, GFP_NOFS);
4830
4831 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4832 &cached_state, 0);
4833 if (ret) {
4834 unlock_extent_cached(io_tree, block_start, block_end,
4835 &cached_state, GFP_NOFS);
4836 goto out_unlock;
4837 }
4838
4839 if (offset != blocksize) {
4840 if (!len)
4841 len = blocksize - offset;
4842 kaddr = kmap(page);
4843 if (front)
4844 memset(kaddr + (block_start - page_offset(page)),
4845 0, offset);
4846 else
4847 memset(kaddr + (block_start - page_offset(page)) + offset,
4848 0, len);
4849 flush_dcache_page(page);
4850 kunmap(page);
4851 }
4852 ClearPageChecked(page);
4853 set_page_dirty(page);
4854 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4855 GFP_NOFS);
4856
4857 out_unlock:
4858 if (ret)
4859 btrfs_delalloc_release_space(inode, block_start,
4860 blocksize);
4861 unlock_page(page);
4862 put_page(page);
4863 out:
4864 return ret;
4865 }
4866
4867 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4868 u64 offset, u64 len)
4869 {
4870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4871 struct btrfs_trans_handle *trans;
4872 int ret;
4873
4874 /*
4875 * Still need to make sure the inode looks like it's been updated so
4876 * that any holes get logged if we fsync.
4877 */
4878 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4879 BTRFS_I(inode)->last_trans = fs_info->generation;
4880 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4881 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4882 return 0;
4883 }
4884
4885 /*
4886 * 1 - for the one we're dropping
4887 * 1 - for the one we're adding
4888 * 1 - for updating the inode.
4889 */
4890 trans = btrfs_start_transaction(root, 3);
4891 if (IS_ERR(trans))
4892 return PTR_ERR(trans);
4893
4894 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4895 if (ret) {
4896 btrfs_abort_transaction(trans, ret);
4897 btrfs_end_transaction(trans);
4898 return ret;
4899 }
4900
4901 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4902 offset, 0, 0, len, 0, len, 0, 0, 0);
4903 if (ret)
4904 btrfs_abort_transaction(trans, ret);
4905 else
4906 btrfs_update_inode(trans, root, inode);
4907 btrfs_end_transaction(trans);
4908 return ret;
4909 }
4910
4911 /*
4912 * This function puts in dummy file extents for the area we're creating a hole
4913 * for. So if we are truncating this file to a larger size we need to insert
4914 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4915 * the range between oldsize and size
4916 */
4917 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4918 {
4919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4920 struct btrfs_root *root = BTRFS_I(inode)->root;
4921 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4922 struct extent_map *em = NULL;
4923 struct extent_state *cached_state = NULL;
4924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4925 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4926 u64 block_end = ALIGN(size, fs_info->sectorsize);
4927 u64 last_byte;
4928 u64 cur_offset;
4929 u64 hole_size;
4930 int err = 0;
4931
4932 /*
4933 * If our size started in the middle of a block we need to zero out the
4934 * rest of the block before we expand the i_size, otherwise we could
4935 * expose stale data.
4936 */
4937 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4938 if (err)
4939 return err;
4940
4941 if (size <= hole_start)
4942 return 0;
4943
4944 while (1) {
4945 struct btrfs_ordered_extent *ordered;
4946
4947 lock_extent_bits(io_tree, hole_start, block_end - 1,
4948 &cached_state);
4949 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4950 block_end - hole_start);
4951 if (!ordered)
4952 break;
4953 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4954 &cached_state, GFP_NOFS);
4955 btrfs_start_ordered_extent(inode, ordered, 1);
4956 btrfs_put_ordered_extent(ordered);
4957 }
4958
4959 cur_offset = hole_start;
4960 while (1) {
4961 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4962 block_end - cur_offset, 0);
4963 if (IS_ERR(em)) {
4964 err = PTR_ERR(em);
4965 em = NULL;
4966 break;
4967 }
4968 last_byte = min(extent_map_end(em), block_end);
4969 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4970 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4971 struct extent_map *hole_em;
4972 hole_size = last_byte - cur_offset;
4973
4974 err = maybe_insert_hole(root, inode, cur_offset,
4975 hole_size);
4976 if (err)
4977 break;
4978 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4979 cur_offset + hole_size - 1, 0);
4980 hole_em = alloc_extent_map();
4981 if (!hole_em) {
4982 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4983 &BTRFS_I(inode)->runtime_flags);
4984 goto next;
4985 }
4986 hole_em->start = cur_offset;
4987 hole_em->len = hole_size;
4988 hole_em->orig_start = cur_offset;
4989
4990 hole_em->block_start = EXTENT_MAP_HOLE;
4991 hole_em->block_len = 0;
4992 hole_em->orig_block_len = 0;
4993 hole_em->ram_bytes = hole_size;
4994 hole_em->bdev = fs_info->fs_devices->latest_bdev;
4995 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4996 hole_em->generation = fs_info->generation;
4997
4998 while (1) {
4999 write_lock(&em_tree->lock);
5000 err = add_extent_mapping(em_tree, hole_em, 1);
5001 write_unlock(&em_tree->lock);
5002 if (err != -EEXIST)
5003 break;
5004 btrfs_drop_extent_cache(BTRFS_I(inode),
5005 cur_offset,
5006 cur_offset +
5007 hole_size - 1, 0);
5008 }
5009 free_extent_map(hole_em);
5010 }
5011 next:
5012 free_extent_map(em);
5013 em = NULL;
5014 cur_offset = last_byte;
5015 if (cur_offset >= block_end)
5016 break;
5017 }
5018 free_extent_map(em);
5019 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5020 GFP_NOFS);
5021 return err;
5022 }
5023
5024 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5025 {
5026 struct btrfs_root *root = BTRFS_I(inode)->root;
5027 struct btrfs_trans_handle *trans;
5028 loff_t oldsize = i_size_read(inode);
5029 loff_t newsize = attr->ia_size;
5030 int mask = attr->ia_valid;
5031 int ret;
5032
5033 /*
5034 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5035 * special case where we need to update the times despite not having
5036 * these flags set. For all other operations the VFS set these flags
5037 * explicitly if it wants a timestamp update.
5038 */
5039 if (newsize != oldsize) {
5040 inode_inc_iversion(inode);
5041 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5042 inode->i_ctime = inode->i_mtime =
5043 current_time(inode);
5044 }
5045
5046 if (newsize > oldsize) {
5047 /*
5048 * Don't do an expanding truncate while snapshoting is ongoing.
5049 * This is to ensure the snapshot captures a fully consistent
5050 * state of this file - if the snapshot captures this expanding
5051 * truncation, it must capture all writes that happened before
5052 * this truncation.
5053 */
5054 btrfs_wait_for_snapshot_creation(root);
5055 ret = btrfs_cont_expand(inode, oldsize, newsize);
5056 if (ret) {
5057 btrfs_end_write_no_snapshoting(root);
5058 return ret;
5059 }
5060
5061 trans = btrfs_start_transaction(root, 1);
5062 if (IS_ERR(trans)) {
5063 btrfs_end_write_no_snapshoting(root);
5064 return PTR_ERR(trans);
5065 }
5066
5067 i_size_write(inode, newsize);
5068 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5069 pagecache_isize_extended(inode, oldsize, newsize);
5070 ret = btrfs_update_inode(trans, root, inode);
5071 btrfs_end_write_no_snapshoting(root);
5072 btrfs_end_transaction(trans);
5073 } else {
5074
5075 /*
5076 * We're truncating a file that used to have good data down to
5077 * zero. Make sure it gets into the ordered flush list so that
5078 * any new writes get down to disk quickly.
5079 */
5080 if (newsize == 0)
5081 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5082 &BTRFS_I(inode)->runtime_flags);
5083
5084 /*
5085 * 1 for the orphan item we're going to add
5086 * 1 for the orphan item deletion.
5087 */
5088 trans = btrfs_start_transaction(root, 2);
5089 if (IS_ERR(trans))
5090 return PTR_ERR(trans);
5091
5092 /*
5093 * We need to do this in case we fail at _any_ point during the
5094 * actual truncate. Once we do the truncate_setsize we could
5095 * invalidate pages which forces any outstanding ordered io to
5096 * be instantly completed which will give us extents that need
5097 * to be truncated. If we fail to get an orphan inode down we
5098 * could have left over extents that were never meant to live,
5099 * so we need to guarantee from this point on that everything
5100 * will be consistent.
5101 */
5102 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5103 btrfs_end_transaction(trans);
5104 if (ret)
5105 return ret;
5106
5107 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5108 truncate_setsize(inode, newsize);
5109
5110 /* Disable nonlocked read DIO to avoid the end less truncate */
5111 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5112 inode_dio_wait(inode);
5113 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5114
5115 ret = btrfs_truncate(inode);
5116 if (ret && inode->i_nlink) {
5117 int err;
5118
5119 /* To get a stable disk_i_size */
5120 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5121 if (err) {
5122 btrfs_orphan_del(NULL, BTRFS_I(inode));
5123 return err;
5124 }
5125
5126 /*
5127 * failed to truncate, disk_i_size is only adjusted down
5128 * as we remove extents, so it should represent the true
5129 * size of the inode, so reset the in memory size and
5130 * delete our orphan entry.
5131 */
5132 trans = btrfs_join_transaction(root);
5133 if (IS_ERR(trans)) {
5134 btrfs_orphan_del(NULL, BTRFS_I(inode));
5135 return ret;
5136 }
5137 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5138 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5139 if (err)
5140 btrfs_abort_transaction(trans, err);
5141 btrfs_end_transaction(trans);
5142 }
5143 }
5144
5145 return ret;
5146 }
5147
5148 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5149 {
5150 struct inode *inode = d_inode(dentry);
5151 struct btrfs_root *root = BTRFS_I(inode)->root;
5152 int err;
5153
5154 if (btrfs_root_readonly(root))
5155 return -EROFS;
5156
5157 err = setattr_prepare(dentry, attr);
5158 if (err)
5159 return err;
5160
5161 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5162 err = btrfs_setsize(inode, attr);
5163 if (err)
5164 return err;
5165 }
5166
5167 if (attr->ia_valid) {
5168 setattr_copy(inode, attr);
5169 inode_inc_iversion(inode);
5170 err = btrfs_dirty_inode(inode);
5171
5172 if (!err && attr->ia_valid & ATTR_MODE)
5173 err = posix_acl_chmod(inode, inode->i_mode);
5174 }
5175
5176 return err;
5177 }
5178
5179 /*
5180 * While truncating the inode pages during eviction, we get the VFS calling
5181 * btrfs_invalidatepage() against each page of the inode. This is slow because
5182 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5183 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5184 * extent_state structures over and over, wasting lots of time.
5185 *
5186 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5187 * those expensive operations on a per page basis and do only the ordered io
5188 * finishing, while we release here the extent_map and extent_state structures,
5189 * without the excessive merging and splitting.
5190 */
5191 static void evict_inode_truncate_pages(struct inode *inode)
5192 {
5193 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5194 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5195 struct rb_node *node;
5196
5197 ASSERT(inode->i_state & I_FREEING);
5198 truncate_inode_pages_final(&inode->i_data);
5199
5200 write_lock(&map_tree->lock);
5201 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5202 struct extent_map *em;
5203
5204 node = rb_first(&map_tree->map);
5205 em = rb_entry(node, struct extent_map, rb_node);
5206 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5207 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5208 remove_extent_mapping(map_tree, em);
5209 free_extent_map(em);
5210 if (need_resched()) {
5211 write_unlock(&map_tree->lock);
5212 cond_resched();
5213 write_lock(&map_tree->lock);
5214 }
5215 }
5216 write_unlock(&map_tree->lock);
5217
5218 /*
5219 * Keep looping until we have no more ranges in the io tree.
5220 * We can have ongoing bios started by readpages (called from readahead)
5221 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5222 * still in progress (unlocked the pages in the bio but did not yet
5223 * unlocked the ranges in the io tree). Therefore this means some
5224 * ranges can still be locked and eviction started because before
5225 * submitting those bios, which are executed by a separate task (work
5226 * queue kthread), inode references (inode->i_count) were not taken
5227 * (which would be dropped in the end io callback of each bio).
5228 * Therefore here we effectively end up waiting for those bios and
5229 * anyone else holding locked ranges without having bumped the inode's
5230 * reference count - if we don't do it, when they access the inode's
5231 * io_tree to unlock a range it may be too late, leading to an
5232 * use-after-free issue.
5233 */
5234 spin_lock(&io_tree->lock);
5235 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5236 struct extent_state *state;
5237 struct extent_state *cached_state = NULL;
5238 u64 start;
5239 u64 end;
5240
5241 node = rb_first(&io_tree->state);
5242 state = rb_entry(node, struct extent_state, rb_node);
5243 start = state->start;
5244 end = state->end;
5245 spin_unlock(&io_tree->lock);
5246
5247 lock_extent_bits(io_tree, start, end, &cached_state);
5248
5249 /*
5250 * If still has DELALLOC flag, the extent didn't reach disk,
5251 * and its reserved space won't be freed by delayed_ref.
5252 * So we need to free its reserved space here.
5253 * (Refer to comment in btrfs_invalidatepage, case 2)
5254 *
5255 * Note, end is the bytenr of last byte, so we need + 1 here.
5256 */
5257 if (state->state & EXTENT_DELALLOC)
5258 btrfs_qgroup_free_data(inode, start, end - start + 1);
5259
5260 clear_extent_bit(io_tree, start, end,
5261 EXTENT_LOCKED | EXTENT_DIRTY |
5262 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5263 EXTENT_DEFRAG, 1, 1,
5264 &cached_state, GFP_NOFS);
5265
5266 cond_resched();
5267 spin_lock(&io_tree->lock);
5268 }
5269 spin_unlock(&io_tree->lock);
5270 }
5271
5272 void btrfs_evict_inode(struct inode *inode)
5273 {
5274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5275 struct btrfs_trans_handle *trans;
5276 struct btrfs_root *root = BTRFS_I(inode)->root;
5277 struct btrfs_block_rsv *rsv, *global_rsv;
5278 int steal_from_global = 0;
5279 u64 min_size;
5280 int ret;
5281
5282 trace_btrfs_inode_evict(inode);
5283
5284 if (!root) {
5285 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5286 return;
5287 }
5288
5289 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5290
5291 evict_inode_truncate_pages(inode);
5292
5293 if (inode->i_nlink &&
5294 ((btrfs_root_refs(&root->root_item) != 0 &&
5295 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5296 btrfs_is_free_space_inode(BTRFS_I(inode))))
5297 goto no_delete;
5298
5299 if (is_bad_inode(inode)) {
5300 btrfs_orphan_del(NULL, BTRFS_I(inode));
5301 goto no_delete;
5302 }
5303 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5304 if (!special_file(inode->i_mode))
5305 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5306
5307 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5308
5309 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5310 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5311 &BTRFS_I(inode)->runtime_flags));
5312 goto no_delete;
5313 }
5314
5315 if (inode->i_nlink > 0) {
5316 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5317 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5318 goto no_delete;
5319 }
5320
5321 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5322 if (ret) {
5323 btrfs_orphan_del(NULL, BTRFS_I(inode));
5324 goto no_delete;
5325 }
5326
5327 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5328 if (!rsv) {
5329 btrfs_orphan_del(NULL, BTRFS_I(inode));
5330 goto no_delete;
5331 }
5332 rsv->size = min_size;
5333 rsv->failfast = 1;
5334 global_rsv = &fs_info->global_block_rsv;
5335
5336 btrfs_i_size_write(BTRFS_I(inode), 0);
5337
5338 /*
5339 * This is a bit simpler than btrfs_truncate since we've already
5340 * reserved our space for our orphan item in the unlink, so we just
5341 * need to reserve some slack space in case we add bytes and update
5342 * inode item when doing the truncate.
5343 */
5344 while (1) {
5345 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5346 BTRFS_RESERVE_FLUSH_LIMIT);
5347
5348 /*
5349 * Try and steal from the global reserve since we will
5350 * likely not use this space anyway, we want to try as
5351 * hard as possible to get this to work.
5352 */
5353 if (ret)
5354 steal_from_global++;
5355 else
5356 steal_from_global = 0;
5357 ret = 0;
5358
5359 /*
5360 * steal_from_global == 0: we reserved stuff, hooray!
5361 * steal_from_global == 1: we didn't reserve stuff, boo!
5362 * steal_from_global == 2: we've committed, still not a lot of
5363 * room but maybe we'll have room in the global reserve this
5364 * time.
5365 * steal_from_global == 3: abandon all hope!
5366 */
5367 if (steal_from_global > 2) {
5368 btrfs_warn(fs_info,
5369 "Could not get space for a delete, will truncate on mount %d",
5370 ret);
5371 btrfs_orphan_del(NULL, BTRFS_I(inode));
5372 btrfs_free_block_rsv(fs_info, rsv);
5373 goto no_delete;
5374 }
5375
5376 trans = btrfs_join_transaction(root);
5377 if (IS_ERR(trans)) {
5378 btrfs_orphan_del(NULL, BTRFS_I(inode));
5379 btrfs_free_block_rsv(fs_info, rsv);
5380 goto no_delete;
5381 }
5382
5383 /*
5384 * We can't just steal from the global reserve, we need to make
5385 * sure there is room to do it, if not we need to commit and try
5386 * again.
5387 */
5388 if (steal_from_global) {
5389 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5390 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5391 min_size, 0);
5392 else
5393 ret = -ENOSPC;
5394 }
5395
5396 /*
5397 * Couldn't steal from the global reserve, we have too much
5398 * pending stuff built up, commit the transaction and try it
5399 * again.
5400 */
5401 if (ret) {
5402 ret = btrfs_commit_transaction(trans);
5403 if (ret) {
5404 btrfs_orphan_del(NULL, BTRFS_I(inode));
5405 btrfs_free_block_rsv(fs_info, rsv);
5406 goto no_delete;
5407 }
5408 continue;
5409 } else {
5410 steal_from_global = 0;
5411 }
5412
5413 trans->block_rsv = rsv;
5414
5415 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5416 if (ret != -ENOSPC && ret != -EAGAIN)
5417 break;
5418
5419 trans->block_rsv = &fs_info->trans_block_rsv;
5420 btrfs_end_transaction(trans);
5421 trans = NULL;
5422 btrfs_btree_balance_dirty(fs_info);
5423 }
5424
5425 btrfs_free_block_rsv(fs_info, rsv);
5426
5427 /*
5428 * Errors here aren't a big deal, it just means we leave orphan items
5429 * in the tree. They will be cleaned up on the next mount.
5430 */
5431 if (ret == 0) {
5432 trans->block_rsv = root->orphan_block_rsv;
5433 btrfs_orphan_del(trans, BTRFS_I(inode));
5434 } else {
5435 btrfs_orphan_del(NULL, BTRFS_I(inode));
5436 }
5437
5438 trans->block_rsv = &fs_info->trans_block_rsv;
5439 if (!(root == fs_info->tree_root ||
5440 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5441 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5442
5443 btrfs_end_transaction(trans);
5444 btrfs_btree_balance_dirty(fs_info);
5445 no_delete:
5446 btrfs_remove_delayed_node(BTRFS_I(inode));
5447 clear_inode(inode);
5448 }
5449
5450 /*
5451 * this returns the key found in the dir entry in the location pointer.
5452 * If no dir entries were found, location->objectid is 0.
5453 */
5454 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5455 struct btrfs_key *location)
5456 {
5457 const char *name = dentry->d_name.name;
5458 int namelen = dentry->d_name.len;
5459 struct btrfs_dir_item *di;
5460 struct btrfs_path *path;
5461 struct btrfs_root *root = BTRFS_I(dir)->root;
5462 int ret = 0;
5463
5464 path = btrfs_alloc_path();
5465 if (!path)
5466 return -ENOMEM;
5467
5468 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5469 name, namelen, 0);
5470 if (IS_ERR(di))
5471 ret = PTR_ERR(di);
5472
5473 if (IS_ERR_OR_NULL(di))
5474 goto out_err;
5475
5476 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5477 out:
5478 btrfs_free_path(path);
5479 return ret;
5480 out_err:
5481 location->objectid = 0;
5482 goto out;
5483 }
5484
5485 /*
5486 * when we hit a tree root in a directory, the btrfs part of the inode
5487 * needs to be changed to reflect the root directory of the tree root. This
5488 * is kind of like crossing a mount point.
5489 */
5490 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5491 struct inode *dir,
5492 struct dentry *dentry,
5493 struct btrfs_key *location,
5494 struct btrfs_root **sub_root)
5495 {
5496 struct btrfs_path *path;
5497 struct btrfs_root *new_root;
5498 struct btrfs_root_ref *ref;
5499 struct extent_buffer *leaf;
5500 struct btrfs_key key;
5501 int ret;
5502 int err = 0;
5503
5504 path = btrfs_alloc_path();
5505 if (!path) {
5506 err = -ENOMEM;
5507 goto out;
5508 }
5509
5510 err = -ENOENT;
5511 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5512 key.type = BTRFS_ROOT_REF_KEY;
5513 key.offset = location->objectid;
5514
5515 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5516 if (ret) {
5517 if (ret < 0)
5518 err = ret;
5519 goto out;
5520 }
5521
5522 leaf = path->nodes[0];
5523 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5524 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5525 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5526 goto out;
5527
5528 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5529 (unsigned long)(ref + 1),
5530 dentry->d_name.len);
5531 if (ret)
5532 goto out;
5533
5534 btrfs_release_path(path);
5535
5536 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5537 if (IS_ERR(new_root)) {
5538 err = PTR_ERR(new_root);
5539 goto out;
5540 }
5541
5542 *sub_root = new_root;
5543 location->objectid = btrfs_root_dirid(&new_root->root_item);
5544 location->type = BTRFS_INODE_ITEM_KEY;
5545 location->offset = 0;
5546 err = 0;
5547 out:
5548 btrfs_free_path(path);
5549 return err;
5550 }
5551
5552 static void inode_tree_add(struct inode *inode)
5553 {
5554 struct btrfs_root *root = BTRFS_I(inode)->root;
5555 struct btrfs_inode *entry;
5556 struct rb_node **p;
5557 struct rb_node *parent;
5558 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5559 u64 ino = btrfs_ino(BTRFS_I(inode));
5560
5561 if (inode_unhashed(inode))
5562 return;
5563 parent = NULL;
5564 spin_lock(&root->inode_lock);
5565 p = &root->inode_tree.rb_node;
5566 while (*p) {
5567 parent = *p;
5568 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5569
5570 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5571 p = &parent->rb_left;
5572 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5573 p = &parent->rb_right;
5574 else {
5575 WARN_ON(!(entry->vfs_inode.i_state &
5576 (I_WILL_FREE | I_FREEING)));
5577 rb_replace_node(parent, new, &root->inode_tree);
5578 RB_CLEAR_NODE(parent);
5579 spin_unlock(&root->inode_lock);
5580 return;
5581 }
5582 }
5583 rb_link_node(new, parent, p);
5584 rb_insert_color(new, &root->inode_tree);
5585 spin_unlock(&root->inode_lock);
5586 }
5587
5588 static void inode_tree_del(struct inode *inode)
5589 {
5590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5591 struct btrfs_root *root = BTRFS_I(inode)->root;
5592 int empty = 0;
5593
5594 spin_lock(&root->inode_lock);
5595 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5596 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5597 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5598 empty = RB_EMPTY_ROOT(&root->inode_tree);
5599 }
5600 spin_unlock(&root->inode_lock);
5601
5602 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5603 synchronize_srcu(&fs_info->subvol_srcu);
5604 spin_lock(&root->inode_lock);
5605 empty = RB_EMPTY_ROOT(&root->inode_tree);
5606 spin_unlock(&root->inode_lock);
5607 if (empty)
5608 btrfs_add_dead_root(root);
5609 }
5610 }
5611
5612 void btrfs_invalidate_inodes(struct btrfs_root *root)
5613 {
5614 struct btrfs_fs_info *fs_info = root->fs_info;
5615 struct rb_node *node;
5616 struct rb_node *prev;
5617 struct btrfs_inode *entry;
5618 struct inode *inode;
5619 u64 objectid = 0;
5620
5621 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5622 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5623
5624 spin_lock(&root->inode_lock);
5625 again:
5626 node = root->inode_tree.rb_node;
5627 prev = NULL;
5628 while (node) {
5629 prev = node;
5630 entry = rb_entry(node, struct btrfs_inode, rb_node);
5631
5632 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5633 node = node->rb_left;
5634 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5635 node = node->rb_right;
5636 else
5637 break;
5638 }
5639 if (!node) {
5640 while (prev) {
5641 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5642 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5643 node = prev;
5644 break;
5645 }
5646 prev = rb_next(prev);
5647 }
5648 }
5649 while (node) {
5650 entry = rb_entry(node, struct btrfs_inode, rb_node);
5651 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5652 inode = igrab(&entry->vfs_inode);
5653 if (inode) {
5654 spin_unlock(&root->inode_lock);
5655 if (atomic_read(&inode->i_count) > 1)
5656 d_prune_aliases(inode);
5657 /*
5658 * btrfs_drop_inode will have it removed from
5659 * the inode cache when its usage count
5660 * hits zero.
5661 */
5662 iput(inode);
5663 cond_resched();
5664 spin_lock(&root->inode_lock);
5665 goto again;
5666 }
5667
5668 if (cond_resched_lock(&root->inode_lock))
5669 goto again;
5670
5671 node = rb_next(node);
5672 }
5673 spin_unlock(&root->inode_lock);
5674 }
5675
5676 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5677 {
5678 struct btrfs_iget_args *args = p;
5679 inode->i_ino = args->location->objectid;
5680 memcpy(&BTRFS_I(inode)->location, args->location,
5681 sizeof(*args->location));
5682 BTRFS_I(inode)->root = args->root;
5683 return 0;
5684 }
5685
5686 static int btrfs_find_actor(struct inode *inode, void *opaque)
5687 {
5688 struct btrfs_iget_args *args = opaque;
5689 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5690 args->root == BTRFS_I(inode)->root;
5691 }
5692
5693 static struct inode *btrfs_iget_locked(struct super_block *s,
5694 struct btrfs_key *location,
5695 struct btrfs_root *root)
5696 {
5697 struct inode *inode;
5698 struct btrfs_iget_args args;
5699 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5700
5701 args.location = location;
5702 args.root = root;
5703
5704 inode = iget5_locked(s, hashval, btrfs_find_actor,
5705 btrfs_init_locked_inode,
5706 (void *)&args);
5707 return inode;
5708 }
5709
5710 /* Get an inode object given its location and corresponding root.
5711 * Returns in *is_new if the inode was read from disk
5712 */
5713 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5714 struct btrfs_root *root, int *new)
5715 {
5716 struct inode *inode;
5717
5718 inode = btrfs_iget_locked(s, location, root);
5719 if (!inode)
5720 return ERR_PTR(-ENOMEM);
5721
5722 if (inode->i_state & I_NEW) {
5723 int ret;
5724
5725 ret = btrfs_read_locked_inode(inode);
5726 if (!is_bad_inode(inode)) {
5727 inode_tree_add(inode);
5728 unlock_new_inode(inode);
5729 if (new)
5730 *new = 1;
5731 } else {
5732 unlock_new_inode(inode);
5733 iput(inode);
5734 ASSERT(ret < 0);
5735 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5736 }
5737 }
5738
5739 return inode;
5740 }
5741
5742 static struct inode *new_simple_dir(struct super_block *s,
5743 struct btrfs_key *key,
5744 struct btrfs_root *root)
5745 {
5746 struct inode *inode = new_inode(s);
5747
5748 if (!inode)
5749 return ERR_PTR(-ENOMEM);
5750
5751 BTRFS_I(inode)->root = root;
5752 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5753 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5754
5755 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5756 inode->i_op = &btrfs_dir_ro_inode_operations;
5757 inode->i_opflags &= ~IOP_XATTR;
5758 inode->i_fop = &simple_dir_operations;
5759 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5760 inode->i_mtime = current_time(inode);
5761 inode->i_atime = inode->i_mtime;
5762 inode->i_ctime = inode->i_mtime;
5763 BTRFS_I(inode)->i_otime = inode->i_mtime;
5764
5765 return inode;
5766 }
5767
5768 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5769 {
5770 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5771 struct inode *inode;
5772 struct btrfs_root *root = BTRFS_I(dir)->root;
5773 struct btrfs_root *sub_root = root;
5774 struct btrfs_key location;
5775 int index;
5776 int ret = 0;
5777
5778 if (dentry->d_name.len > BTRFS_NAME_LEN)
5779 return ERR_PTR(-ENAMETOOLONG);
5780
5781 ret = btrfs_inode_by_name(dir, dentry, &location);
5782 if (ret < 0)
5783 return ERR_PTR(ret);
5784
5785 if (location.objectid == 0)
5786 return ERR_PTR(-ENOENT);
5787
5788 if (location.type == BTRFS_INODE_ITEM_KEY) {
5789 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5790 return inode;
5791 }
5792
5793 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5794
5795 index = srcu_read_lock(&fs_info->subvol_srcu);
5796 ret = fixup_tree_root_location(fs_info, dir, dentry,
5797 &location, &sub_root);
5798 if (ret < 0) {
5799 if (ret != -ENOENT)
5800 inode = ERR_PTR(ret);
5801 else
5802 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5803 } else {
5804 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5805 }
5806 srcu_read_unlock(&fs_info->subvol_srcu, index);
5807
5808 if (!IS_ERR(inode) && root != sub_root) {
5809 down_read(&fs_info->cleanup_work_sem);
5810 if (!(inode->i_sb->s_flags & MS_RDONLY))
5811 ret = btrfs_orphan_cleanup(sub_root);
5812 up_read(&fs_info->cleanup_work_sem);
5813 if (ret) {
5814 iput(inode);
5815 inode = ERR_PTR(ret);
5816 }
5817 }
5818
5819 return inode;
5820 }
5821
5822 static int btrfs_dentry_delete(const struct dentry *dentry)
5823 {
5824 struct btrfs_root *root;
5825 struct inode *inode = d_inode(dentry);
5826
5827 if (!inode && !IS_ROOT(dentry))
5828 inode = d_inode(dentry->d_parent);
5829
5830 if (inode) {
5831 root = BTRFS_I(inode)->root;
5832 if (btrfs_root_refs(&root->root_item) == 0)
5833 return 1;
5834
5835 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5836 return 1;
5837 }
5838 return 0;
5839 }
5840
5841 static void btrfs_dentry_release(struct dentry *dentry)
5842 {
5843 kfree(dentry->d_fsdata);
5844 }
5845
5846 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5847 unsigned int flags)
5848 {
5849 struct inode *inode;
5850
5851 inode = btrfs_lookup_dentry(dir, dentry);
5852 if (IS_ERR(inode)) {
5853 if (PTR_ERR(inode) == -ENOENT)
5854 inode = NULL;
5855 else
5856 return ERR_CAST(inode);
5857 }
5858
5859 return d_splice_alias(inode, dentry);
5860 }
5861
5862 unsigned char btrfs_filetype_table[] = {
5863 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5864 };
5865
5866 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5867 {
5868 struct inode *inode = file_inode(file);
5869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5870 struct btrfs_root *root = BTRFS_I(inode)->root;
5871 struct btrfs_item *item;
5872 struct btrfs_dir_item *di;
5873 struct btrfs_key key;
5874 struct btrfs_key found_key;
5875 struct btrfs_path *path;
5876 struct list_head ins_list;
5877 struct list_head del_list;
5878 int ret;
5879 struct extent_buffer *leaf;
5880 int slot;
5881 unsigned char d_type;
5882 int over = 0;
5883 char tmp_name[32];
5884 char *name_ptr;
5885 int name_len;
5886 bool put = false;
5887 struct btrfs_key location;
5888
5889 if (!dir_emit_dots(file, ctx))
5890 return 0;
5891
5892 path = btrfs_alloc_path();
5893 if (!path)
5894 return -ENOMEM;
5895
5896 path->reada = READA_FORWARD;
5897
5898 INIT_LIST_HEAD(&ins_list);
5899 INIT_LIST_HEAD(&del_list);
5900 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5901
5902 key.type = BTRFS_DIR_INDEX_KEY;
5903 key.offset = ctx->pos;
5904 key.objectid = btrfs_ino(BTRFS_I(inode));
5905
5906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5907 if (ret < 0)
5908 goto err;
5909
5910 while (1) {
5911 leaf = path->nodes[0];
5912 slot = path->slots[0];
5913 if (slot >= btrfs_header_nritems(leaf)) {
5914 ret = btrfs_next_leaf(root, path);
5915 if (ret < 0)
5916 goto err;
5917 else if (ret > 0)
5918 break;
5919 continue;
5920 }
5921
5922 item = btrfs_item_nr(slot);
5923 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5924
5925 if (found_key.objectid != key.objectid)
5926 break;
5927 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5928 break;
5929 if (found_key.offset < ctx->pos)
5930 goto next;
5931 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5932 goto next;
5933
5934 ctx->pos = found_key.offset;
5935
5936 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5937 if (verify_dir_item(fs_info, leaf, di))
5938 goto next;
5939
5940 name_len = btrfs_dir_name_len(leaf, di);
5941 if (name_len <= sizeof(tmp_name)) {
5942 name_ptr = tmp_name;
5943 } else {
5944 name_ptr = kmalloc(name_len, GFP_KERNEL);
5945 if (!name_ptr) {
5946 ret = -ENOMEM;
5947 goto err;
5948 }
5949 }
5950 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5951 name_len);
5952
5953 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5954 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5955
5956 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5957 d_type);
5958
5959 if (name_ptr != tmp_name)
5960 kfree(name_ptr);
5961
5962 if (over)
5963 goto nopos;
5964 ctx->pos++;
5965 next:
5966 path->slots[0]++;
5967 }
5968
5969 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5970 if (ret)
5971 goto nopos;
5972
5973 /*
5974 * Stop new entries from being returned after we return the last
5975 * entry.
5976 *
5977 * New directory entries are assigned a strictly increasing
5978 * offset. This means that new entries created during readdir
5979 * are *guaranteed* to be seen in the future by that readdir.
5980 * This has broken buggy programs which operate on names as
5981 * they're returned by readdir. Until we re-use freed offsets
5982 * we have this hack to stop new entries from being returned
5983 * under the assumption that they'll never reach this huge
5984 * offset.
5985 *
5986 * This is being careful not to overflow 32bit loff_t unless the
5987 * last entry requires it because doing so has broken 32bit apps
5988 * in the past.
5989 */
5990 if (ctx->pos >= INT_MAX)
5991 ctx->pos = LLONG_MAX;
5992 else
5993 ctx->pos = INT_MAX;
5994 nopos:
5995 ret = 0;
5996 err:
5997 if (put)
5998 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5999 btrfs_free_path(path);
6000 return ret;
6001 }
6002
6003 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6004 {
6005 struct btrfs_root *root = BTRFS_I(inode)->root;
6006 struct btrfs_trans_handle *trans;
6007 int ret = 0;
6008 bool nolock = false;
6009
6010 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6011 return 0;
6012
6013 if (btrfs_fs_closing(root->fs_info) &&
6014 btrfs_is_free_space_inode(BTRFS_I(inode)))
6015 nolock = true;
6016
6017 if (wbc->sync_mode == WB_SYNC_ALL) {
6018 if (nolock)
6019 trans = btrfs_join_transaction_nolock(root);
6020 else
6021 trans = btrfs_join_transaction(root);
6022 if (IS_ERR(trans))
6023 return PTR_ERR(trans);
6024 ret = btrfs_commit_transaction(trans);
6025 }
6026 return ret;
6027 }
6028
6029 /*
6030 * This is somewhat expensive, updating the tree every time the
6031 * inode changes. But, it is most likely to find the inode in cache.
6032 * FIXME, needs more benchmarking...there are no reasons other than performance
6033 * to keep or drop this code.
6034 */
6035 static int btrfs_dirty_inode(struct inode *inode)
6036 {
6037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6038 struct btrfs_root *root = BTRFS_I(inode)->root;
6039 struct btrfs_trans_handle *trans;
6040 int ret;
6041
6042 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6043 return 0;
6044
6045 trans = btrfs_join_transaction(root);
6046 if (IS_ERR(trans))
6047 return PTR_ERR(trans);
6048
6049 ret = btrfs_update_inode(trans, root, inode);
6050 if (ret && ret == -ENOSPC) {
6051 /* whoops, lets try again with the full transaction */
6052 btrfs_end_transaction(trans);
6053 trans = btrfs_start_transaction(root, 1);
6054 if (IS_ERR(trans))
6055 return PTR_ERR(trans);
6056
6057 ret = btrfs_update_inode(trans, root, inode);
6058 }
6059 btrfs_end_transaction(trans);
6060 if (BTRFS_I(inode)->delayed_node)
6061 btrfs_balance_delayed_items(fs_info);
6062
6063 return ret;
6064 }
6065
6066 /*
6067 * This is a copy of file_update_time. We need this so we can return error on
6068 * ENOSPC for updating the inode in the case of file write and mmap writes.
6069 */
6070 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6071 int flags)
6072 {
6073 struct btrfs_root *root = BTRFS_I(inode)->root;
6074
6075 if (btrfs_root_readonly(root))
6076 return -EROFS;
6077
6078 if (flags & S_VERSION)
6079 inode_inc_iversion(inode);
6080 if (flags & S_CTIME)
6081 inode->i_ctime = *now;
6082 if (flags & S_MTIME)
6083 inode->i_mtime = *now;
6084 if (flags & S_ATIME)
6085 inode->i_atime = *now;
6086 return btrfs_dirty_inode(inode);
6087 }
6088
6089 /*
6090 * find the highest existing sequence number in a directory
6091 * and then set the in-memory index_cnt variable to reflect
6092 * free sequence numbers
6093 */
6094 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6095 {
6096 struct btrfs_root *root = inode->root;
6097 struct btrfs_key key, found_key;
6098 struct btrfs_path *path;
6099 struct extent_buffer *leaf;
6100 int ret;
6101
6102 key.objectid = btrfs_ino(inode);
6103 key.type = BTRFS_DIR_INDEX_KEY;
6104 key.offset = (u64)-1;
6105
6106 path = btrfs_alloc_path();
6107 if (!path)
6108 return -ENOMEM;
6109
6110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6111 if (ret < 0)
6112 goto out;
6113 /* FIXME: we should be able to handle this */
6114 if (ret == 0)
6115 goto out;
6116 ret = 0;
6117
6118 /*
6119 * MAGIC NUMBER EXPLANATION:
6120 * since we search a directory based on f_pos we have to start at 2
6121 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6122 * else has to start at 2
6123 */
6124 if (path->slots[0] == 0) {
6125 inode->index_cnt = 2;
6126 goto out;
6127 }
6128
6129 path->slots[0]--;
6130
6131 leaf = path->nodes[0];
6132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6133
6134 if (found_key.objectid != btrfs_ino(inode) ||
6135 found_key.type != BTRFS_DIR_INDEX_KEY) {
6136 inode->index_cnt = 2;
6137 goto out;
6138 }
6139
6140 inode->index_cnt = found_key.offset + 1;
6141 out:
6142 btrfs_free_path(path);
6143 return ret;
6144 }
6145
6146 /*
6147 * helper to find a free sequence number in a given directory. This current
6148 * code is very simple, later versions will do smarter things in the btree
6149 */
6150 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6151 {
6152 int ret = 0;
6153
6154 if (dir->index_cnt == (u64)-1) {
6155 ret = btrfs_inode_delayed_dir_index_count(dir);
6156 if (ret) {
6157 ret = btrfs_set_inode_index_count(dir);
6158 if (ret)
6159 return ret;
6160 }
6161 }
6162
6163 *index = dir->index_cnt;
6164 dir->index_cnt++;
6165
6166 return ret;
6167 }
6168
6169 static int btrfs_insert_inode_locked(struct inode *inode)
6170 {
6171 struct btrfs_iget_args args;
6172 args.location = &BTRFS_I(inode)->location;
6173 args.root = BTRFS_I(inode)->root;
6174
6175 return insert_inode_locked4(inode,
6176 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6177 btrfs_find_actor, &args);
6178 }
6179
6180 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6181 struct btrfs_root *root,
6182 struct inode *dir,
6183 const char *name, int name_len,
6184 u64 ref_objectid, u64 objectid,
6185 umode_t mode, u64 *index)
6186 {
6187 struct btrfs_fs_info *fs_info = root->fs_info;
6188 struct inode *inode;
6189 struct btrfs_inode_item *inode_item;
6190 struct btrfs_key *location;
6191 struct btrfs_path *path;
6192 struct btrfs_inode_ref *ref;
6193 struct btrfs_key key[2];
6194 u32 sizes[2];
6195 int nitems = name ? 2 : 1;
6196 unsigned long ptr;
6197 int ret;
6198
6199 path = btrfs_alloc_path();
6200 if (!path)
6201 return ERR_PTR(-ENOMEM);
6202
6203 inode = new_inode(fs_info->sb);
6204 if (!inode) {
6205 btrfs_free_path(path);
6206 return ERR_PTR(-ENOMEM);
6207 }
6208
6209 /*
6210 * O_TMPFILE, set link count to 0, so that after this point,
6211 * we fill in an inode item with the correct link count.
6212 */
6213 if (!name)
6214 set_nlink(inode, 0);
6215
6216 /*
6217 * we have to initialize this early, so we can reclaim the inode
6218 * number if we fail afterwards in this function.
6219 */
6220 inode->i_ino = objectid;
6221
6222 if (dir && name) {
6223 trace_btrfs_inode_request(dir);
6224
6225 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6226 if (ret) {
6227 btrfs_free_path(path);
6228 iput(inode);
6229 return ERR_PTR(ret);
6230 }
6231 } else if (dir) {
6232 *index = 0;
6233 }
6234 /*
6235 * index_cnt is ignored for everything but a dir,
6236 * btrfs_get_inode_index_count has an explanation for the magic
6237 * number
6238 */
6239 BTRFS_I(inode)->index_cnt = 2;
6240 BTRFS_I(inode)->dir_index = *index;
6241 BTRFS_I(inode)->root = root;
6242 BTRFS_I(inode)->generation = trans->transid;
6243 inode->i_generation = BTRFS_I(inode)->generation;
6244
6245 /*
6246 * We could have gotten an inode number from somebody who was fsynced
6247 * and then removed in this same transaction, so let's just set full
6248 * sync since it will be a full sync anyway and this will blow away the
6249 * old info in the log.
6250 */
6251 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6252
6253 key[0].objectid = objectid;
6254 key[0].type = BTRFS_INODE_ITEM_KEY;
6255 key[0].offset = 0;
6256
6257 sizes[0] = sizeof(struct btrfs_inode_item);
6258
6259 if (name) {
6260 /*
6261 * Start new inodes with an inode_ref. This is slightly more
6262 * efficient for small numbers of hard links since they will
6263 * be packed into one item. Extended refs will kick in if we
6264 * add more hard links than can fit in the ref item.
6265 */
6266 key[1].objectid = objectid;
6267 key[1].type = BTRFS_INODE_REF_KEY;
6268 key[1].offset = ref_objectid;
6269
6270 sizes[1] = name_len + sizeof(*ref);
6271 }
6272
6273 location = &BTRFS_I(inode)->location;
6274 location->objectid = objectid;
6275 location->offset = 0;
6276 location->type = BTRFS_INODE_ITEM_KEY;
6277
6278 ret = btrfs_insert_inode_locked(inode);
6279 if (ret < 0)
6280 goto fail;
6281
6282 path->leave_spinning = 1;
6283 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6284 if (ret != 0)
6285 goto fail_unlock;
6286
6287 inode_init_owner(inode, dir, mode);
6288 inode_set_bytes(inode, 0);
6289
6290 inode->i_mtime = current_time(inode);
6291 inode->i_atime = inode->i_mtime;
6292 inode->i_ctime = inode->i_mtime;
6293 BTRFS_I(inode)->i_otime = inode->i_mtime;
6294
6295 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6296 struct btrfs_inode_item);
6297 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6298 sizeof(*inode_item));
6299 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6300
6301 if (name) {
6302 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6303 struct btrfs_inode_ref);
6304 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6305 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6306 ptr = (unsigned long)(ref + 1);
6307 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6308 }
6309
6310 btrfs_mark_buffer_dirty(path->nodes[0]);
6311 btrfs_free_path(path);
6312
6313 btrfs_inherit_iflags(inode, dir);
6314
6315 if (S_ISREG(mode)) {
6316 if (btrfs_test_opt(fs_info, NODATASUM))
6317 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6318 if (btrfs_test_opt(fs_info, NODATACOW))
6319 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6320 BTRFS_INODE_NODATASUM;
6321 }
6322
6323 inode_tree_add(inode);
6324
6325 trace_btrfs_inode_new(inode);
6326 btrfs_set_inode_last_trans(trans, inode);
6327
6328 btrfs_update_root_times(trans, root);
6329
6330 ret = btrfs_inode_inherit_props(trans, inode, dir);
6331 if (ret)
6332 btrfs_err(fs_info,
6333 "error inheriting props for ino %llu (root %llu): %d",
6334 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6335
6336 return inode;
6337
6338 fail_unlock:
6339 unlock_new_inode(inode);
6340 fail:
6341 if (dir && name)
6342 BTRFS_I(dir)->index_cnt--;
6343 btrfs_free_path(path);
6344 iput(inode);
6345 return ERR_PTR(ret);
6346 }
6347
6348 static inline u8 btrfs_inode_type(struct inode *inode)
6349 {
6350 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6351 }
6352
6353 /*
6354 * utility function to add 'inode' into 'parent_inode' with
6355 * a give name and a given sequence number.
6356 * if 'add_backref' is true, also insert a backref from the
6357 * inode to the parent directory.
6358 */
6359 int btrfs_add_link(struct btrfs_trans_handle *trans,
6360 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6361 const char *name, int name_len, int add_backref, u64 index)
6362 {
6363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6364 int ret = 0;
6365 struct btrfs_key key;
6366 struct btrfs_root *root = parent_inode->root;
6367 u64 ino = btrfs_ino(inode);
6368 u64 parent_ino = btrfs_ino(parent_inode);
6369
6370 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6371 memcpy(&key, &inode->root->root_key, sizeof(key));
6372 } else {
6373 key.objectid = ino;
6374 key.type = BTRFS_INODE_ITEM_KEY;
6375 key.offset = 0;
6376 }
6377
6378 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6379 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6380 root->root_key.objectid, parent_ino,
6381 index, name, name_len);
6382 } else if (add_backref) {
6383 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6384 parent_ino, index);
6385 }
6386
6387 /* Nothing to clean up yet */
6388 if (ret)
6389 return ret;
6390
6391 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6392 parent_inode, &key,
6393 btrfs_inode_type(&inode->vfs_inode), index);
6394 if (ret == -EEXIST || ret == -EOVERFLOW)
6395 goto fail_dir_item;
6396 else if (ret) {
6397 btrfs_abort_transaction(trans, ret);
6398 return ret;
6399 }
6400
6401 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6402 name_len * 2);
6403 inode_inc_iversion(&parent_inode->vfs_inode);
6404 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6405 current_time(&parent_inode->vfs_inode);
6406 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6407 if (ret)
6408 btrfs_abort_transaction(trans, ret);
6409 return ret;
6410
6411 fail_dir_item:
6412 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6413 u64 local_index;
6414 int err;
6415 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6416 root->root_key.objectid, parent_ino,
6417 &local_index, name, name_len);
6418
6419 } else if (add_backref) {
6420 u64 local_index;
6421 int err;
6422
6423 err = btrfs_del_inode_ref(trans, root, name, name_len,
6424 ino, parent_ino, &local_index);
6425 }
6426 return ret;
6427 }
6428
6429 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6430 struct btrfs_inode *dir, struct dentry *dentry,
6431 struct btrfs_inode *inode, int backref, u64 index)
6432 {
6433 int err = btrfs_add_link(trans, dir, inode,
6434 dentry->d_name.name, dentry->d_name.len,
6435 backref, index);
6436 if (err > 0)
6437 err = -EEXIST;
6438 return err;
6439 }
6440
6441 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6442 umode_t mode, dev_t rdev)
6443 {
6444 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6445 struct btrfs_trans_handle *trans;
6446 struct btrfs_root *root = BTRFS_I(dir)->root;
6447 struct inode *inode = NULL;
6448 int err;
6449 int drop_inode = 0;
6450 u64 objectid;
6451 u64 index = 0;
6452
6453 /*
6454 * 2 for inode item and ref
6455 * 2 for dir items
6456 * 1 for xattr if selinux is on
6457 */
6458 trans = btrfs_start_transaction(root, 5);
6459 if (IS_ERR(trans))
6460 return PTR_ERR(trans);
6461
6462 err = btrfs_find_free_ino(root, &objectid);
6463 if (err)
6464 goto out_unlock;
6465
6466 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6467 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6468 mode, &index);
6469 if (IS_ERR(inode)) {
6470 err = PTR_ERR(inode);
6471 goto out_unlock;
6472 }
6473
6474 /*
6475 * If the active LSM wants to access the inode during
6476 * d_instantiate it needs these. Smack checks to see
6477 * if the filesystem supports xattrs by looking at the
6478 * ops vector.
6479 */
6480 inode->i_op = &btrfs_special_inode_operations;
6481 init_special_inode(inode, inode->i_mode, rdev);
6482
6483 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6484 if (err)
6485 goto out_unlock_inode;
6486
6487 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6488 0, index);
6489 if (err) {
6490 goto out_unlock_inode;
6491 } else {
6492 btrfs_update_inode(trans, root, inode);
6493 unlock_new_inode(inode);
6494 d_instantiate(dentry, inode);
6495 }
6496
6497 out_unlock:
6498 btrfs_end_transaction(trans);
6499 btrfs_balance_delayed_items(fs_info);
6500 btrfs_btree_balance_dirty(fs_info);
6501 if (drop_inode) {
6502 inode_dec_link_count(inode);
6503 iput(inode);
6504 }
6505 return err;
6506
6507 out_unlock_inode:
6508 drop_inode = 1;
6509 unlock_new_inode(inode);
6510 goto out_unlock;
6511
6512 }
6513
6514 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6515 umode_t mode, bool excl)
6516 {
6517 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6518 struct btrfs_trans_handle *trans;
6519 struct btrfs_root *root = BTRFS_I(dir)->root;
6520 struct inode *inode = NULL;
6521 int drop_inode_on_err = 0;
6522 int err;
6523 u64 objectid;
6524 u64 index = 0;
6525
6526 /*
6527 * 2 for inode item and ref
6528 * 2 for dir items
6529 * 1 for xattr if selinux is on
6530 */
6531 trans = btrfs_start_transaction(root, 5);
6532 if (IS_ERR(trans))
6533 return PTR_ERR(trans);
6534
6535 err = btrfs_find_free_ino(root, &objectid);
6536 if (err)
6537 goto out_unlock;
6538
6539 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6540 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6541 mode, &index);
6542 if (IS_ERR(inode)) {
6543 err = PTR_ERR(inode);
6544 goto out_unlock;
6545 }
6546 drop_inode_on_err = 1;
6547 /*
6548 * If the active LSM wants to access the inode during
6549 * d_instantiate it needs these. Smack checks to see
6550 * if the filesystem supports xattrs by looking at the
6551 * ops vector.
6552 */
6553 inode->i_fop = &btrfs_file_operations;
6554 inode->i_op = &btrfs_file_inode_operations;
6555 inode->i_mapping->a_ops = &btrfs_aops;
6556
6557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6558 if (err)
6559 goto out_unlock_inode;
6560
6561 err = btrfs_update_inode(trans, root, inode);
6562 if (err)
6563 goto out_unlock_inode;
6564
6565 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6566 0, index);
6567 if (err)
6568 goto out_unlock_inode;
6569
6570 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6571 unlock_new_inode(inode);
6572 d_instantiate(dentry, inode);
6573
6574 out_unlock:
6575 btrfs_end_transaction(trans);
6576 if (err && drop_inode_on_err) {
6577 inode_dec_link_count(inode);
6578 iput(inode);
6579 }
6580 btrfs_balance_delayed_items(fs_info);
6581 btrfs_btree_balance_dirty(fs_info);
6582 return err;
6583
6584 out_unlock_inode:
6585 unlock_new_inode(inode);
6586 goto out_unlock;
6587
6588 }
6589
6590 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6591 struct dentry *dentry)
6592 {
6593 struct btrfs_trans_handle *trans = NULL;
6594 struct btrfs_root *root = BTRFS_I(dir)->root;
6595 struct inode *inode = d_inode(old_dentry);
6596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6597 u64 index;
6598 int err;
6599 int drop_inode = 0;
6600
6601 /* do not allow sys_link's with other subvols of the same device */
6602 if (root->objectid != BTRFS_I(inode)->root->objectid)
6603 return -EXDEV;
6604
6605 if (inode->i_nlink >= BTRFS_LINK_MAX)
6606 return -EMLINK;
6607
6608 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6609 if (err)
6610 goto fail;
6611
6612 /*
6613 * 2 items for inode and inode ref
6614 * 2 items for dir items
6615 * 1 item for parent inode
6616 */
6617 trans = btrfs_start_transaction(root, 5);
6618 if (IS_ERR(trans)) {
6619 err = PTR_ERR(trans);
6620 trans = NULL;
6621 goto fail;
6622 }
6623
6624 /* There are several dir indexes for this inode, clear the cache. */
6625 BTRFS_I(inode)->dir_index = 0ULL;
6626 inc_nlink(inode);
6627 inode_inc_iversion(inode);
6628 inode->i_ctime = current_time(inode);
6629 ihold(inode);
6630 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6631
6632 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6633 1, index);
6634
6635 if (err) {
6636 drop_inode = 1;
6637 } else {
6638 struct dentry *parent = dentry->d_parent;
6639 err = btrfs_update_inode(trans, root, inode);
6640 if (err)
6641 goto fail;
6642 if (inode->i_nlink == 1) {
6643 /*
6644 * If new hard link count is 1, it's a file created
6645 * with open(2) O_TMPFILE flag.
6646 */
6647 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6648 if (err)
6649 goto fail;
6650 }
6651 d_instantiate(dentry, inode);
6652 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6653 }
6654
6655 btrfs_balance_delayed_items(fs_info);
6656 fail:
6657 if (trans)
6658 btrfs_end_transaction(trans);
6659 if (drop_inode) {
6660 inode_dec_link_count(inode);
6661 iput(inode);
6662 }
6663 btrfs_btree_balance_dirty(fs_info);
6664 return err;
6665 }
6666
6667 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6668 {
6669 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6670 struct inode *inode = NULL;
6671 struct btrfs_trans_handle *trans;
6672 struct btrfs_root *root = BTRFS_I(dir)->root;
6673 int err = 0;
6674 int drop_on_err = 0;
6675 u64 objectid = 0;
6676 u64 index = 0;
6677
6678 /*
6679 * 2 items for inode and ref
6680 * 2 items for dir items
6681 * 1 for xattr if selinux is on
6682 */
6683 trans = btrfs_start_transaction(root, 5);
6684 if (IS_ERR(trans))
6685 return PTR_ERR(trans);
6686
6687 err = btrfs_find_free_ino(root, &objectid);
6688 if (err)
6689 goto out_fail;
6690
6691 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6692 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6693 S_IFDIR | mode, &index);
6694 if (IS_ERR(inode)) {
6695 err = PTR_ERR(inode);
6696 goto out_fail;
6697 }
6698
6699 drop_on_err = 1;
6700 /* these must be set before we unlock the inode */
6701 inode->i_op = &btrfs_dir_inode_operations;
6702 inode->i_fop = &btrfs_dir_file_operations;
6703
6704 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6705 if (err)
6706 goto out_fail_inode;
6707
6708 btrfs_i_size_write(BTRFS_I(inode), 0);
6709 err = btrfs_update_inode(trans, root, inode);
6710 if (err)
6711 goto out_fail_inode;
6712
6713 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6714 dentry->d_name.name,
6715 dentry->d_name.len, 0, index);
6716 if (err)
6717 goto out_fail_inode;
6718
6719 d_instantiate(dentry, inode);
6720 /*
6721 * mkdir is special. We're unlocking after we call d_instantiate
6722 * to avoid a race with nfsd calling d_instantiate.
6723 */
6724 unlock_new_inode(inode);
6725 drop_on_err = 0;
6726
6727 out_fail:
6728 btrfs_end_transaction(trans);
6729 if (drop_on_err) {
6730 inode_dec_link_count(inode);
6731 iput(inode);
6732 }
6733 btrfs_balance_delayed_items(fs_info);
6734 btrfs_btree_balance_dirty(fs_info);
6735 return err;
6736
6737 out_fail_inode:
6738 unlock_new_inode(inode);
6739 goto out_fail;
6740 }
6741
6742 /* Find next extent map of a given extent map, caller needs to ensure locks */
6743 static struct extent_map *next_extent_map(struct extent_map *em)
6744 {
6745 struct rb_node *next;
6746
6747 next = rb_next(&em->rb_node);
6748 if (!next)
6749 return NULL;
6750 return container_of(next, struct extent_map, rb_node);
6751 }
6752
6753 static struct extent_map *prev_extent_map(struct extent_map *em)
6754 {
6755 struct rb_node *prev;
6756
6757 prev = rb_prev(&em->rb_node);
6758 if (!prev)
6759 return NULL;
6760 return container_of(prev, struct extent_map, rb_node);
6761 }
6762
6763 /* helper for btfs_get_extent. Given an existing extent in the tree,
6764 * the existing extent is the nearest extent to map_start,
6765 * and an extent that you want to insert, deal with overlap and insert
6766 * the best fitted new extent into the tree.
6767 */
6768 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6769 struct extent_map *existing,
6770 struct extent_map *em,
6771 u64 map_start)
6772 {
6773 struct extent_map *prev;
6774 struct extent_map *next;
6775 u64 start;
6776 u64 end;
6777 u64 start_diff;
6778
6779 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6780
6781 if (existing->start > map_start) {
6782 next = existing;
6783 prev = prev_extent_map(next);
6784 } else {
6785 prev = existing;
6786 next = next_extent_map(prev);
6787 }
6788
6789 start = prev ? extent_map_end(prev) : em->start;
6790 start = max_t(u64, start, em->start);
6791 end = next ? next->start : extent_map_end(em);
6792 end = min_t(u64, end, extent_map_end(em));
6793 start_diff = start - em->start;
6794 em->start = start;
6795 em->len = end - start;
6796 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6797 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6798 em->block_start += start_diff;
6799 em->block_len -= start_diff;
6800 }
6801 return add_extent_mapping(em_tree, em, 0);
6802 }
6803
6804 static noinline int uncompress_inline(struct btrfs_path *path,
6805 struct page *page,
6806 size_t pg_offset, u64 extent_offset,
6807 struct btrfs_file_extent_item *item)
6808 {
6809 int ret;
6810 struct extent_buffer *leaf = path->nodes[0];
6811 char *tmp;
6812 size_t max_size;
6813 unsigned long inline_size;
6814 unsigned long ptr;
6815 int compress_type;
6816
6817 WARN_ON(pg_offset != 0);
6818 compress_type = btrfs_file_extent_compression(leaf, item);
6819 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6820 inline_size = btrfs_file_extent_inline_item_len(leaf,
6821 btrfs_item_nr(path->slots[0]));
6822 tmp = kmalloc(inline_size, GFP_NOFS);
6823 if (!tmp)
6824 return -ENOMEM;
6825 ptr = btrfs_file_extent_inline_start(item);
6826
6827 read_extent_buffer(leaf, tmp, ptr, inline_size);
6828
6829 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6830 ret = btrfs_decompress(compress_type, tmp, page,
6831 extent_offset, inline_size, max_size);
6832
6833 /*
6834 * decompression code contains a memset to fill in any space between the end
6835 * of the uncompressed data and the end of max_size in case the decompressed
6836 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6837 * the end of an inline extent and the beginning of the next block, so we
6838 * cover that region here.
6839 */
6840
6841 if (max_size + pg_offset < PAGE_SIZE) {
6842 char *map = kmap(page);
6843 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6844 kunmap(page);
6845 }
6846 kfree(tmp);
6847 return ret;
6848 }
6849
6850 /*
6851 * a bit scary, this does extent mapping from logical file offset to the disk.
6852 * the ugly parts come from merging extents from the disk with the in-ram
6853 * representation. This gets more complex because of the data=ordered code,
6854 * where the in-ram extents might be locked pending data=ordered completion.
6855 *
6856 * This also copies inline extents directly into the page.
6857 */
6858 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6859 struct page *page,
6860 size_t pg_offset, u64 start, u64 len,
6861 int create)
6862 {
6863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6864 int ret;
6865 int err = 0;
6866 u64 extent_start = 0;
6867 u64 extent_end = 0;
6868 u64 objectid = btrfs_ino(inode);
6869 u32 found_type;
6870 struct btrfs_path *path = NULL;
6871 struct btrfs_root *root = inode->root;
6872 struct btrfs_file_extent_item *item;
6873 struct extent_buffer *leaf;
6874 struct btrfs_key found_key;
6875 struct extent_map *em = NULL;
6876 struct extent_map_tree *em_tree = &inode->extent_tree;
6877 struct extent_io_tree *io_tree = &inode->io_tree;
6878 struct btrfs_trans_handle *trans = NULL;
6879 const bool new_inline = !page || create;
6880
6881 again:
6882 read_lock(&em_tree->lock);
6883 em = lookup_extent_mapping(em_tree, start, len);
6884 if (em)
6885 em->bdev = fs_info->fs_devices->latest_bdev;
6886 read_unlock(&em_tree->lock);
6887
6888 if (em) {
6889 if (em->start > start || em->start + em->len <= start)
6890 free_extent_map(em);
6891 else if (em->block_start == EXTENT_MAP_INLINE && page)
6892 free_extent_map(em);
6893 else
6894 goto out;
6895 }
6896 em = alloc_extent_map();
6897 if (!em) {
6898 err = -ENOMEM;
6899 goto out;
6900 }
6901 em->bdev = fs_info->fs_devices->latest_bdev;
6902 em->start = EXTENT_MAP_HOLE;
6903 em->orig_start = EXTENT_MAP_HOLE;
6904 em->len = (u64)-1;
6905 em->block_len = (u64)-1;
6906
6907 if (!path) {
6908 path = btrfs_alloc_path();
6909 if (!path) {
6910 err = -ENOMEM;
6911 goto out;
6912 }
6913 /*
6914 * Chances are we'll be called again, so go ahead and do
6915 * readahead
6916 */
6917 path->reada = READA_FORWARD;
6918 }
6919
6920 ret = btrfs_lookup_file_extent(trans, root, path,
6921 objectid, start, trans != NULL);
6922 if (ret < 0) {
6923 err = ret;
6924 goto out;
6925 }
6926
6927 if (ret != 0) {
6928 if (path->slots[0] == 0)
6929 goto not_found;
6930 path->slots[0]--;
6931 }
6932
6933 leaf = path->nodes[0];
6934 item = btrfs_item_ptr(leaf, path->slots[0],
6935 struct btrfs_file_extent_item);
6936 /* are we inside the extent that was found? */
6937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6938 found_type = found_key.type;
6939 if (found_key.objectid != objectid ||
6940 found_type != BTRFS_EXTENT_DATA_KEY) {
6941 /*
6942 * If we backup past the first extent we want to move forward
6943 * and see if there is an extent in front of us, otherwise we'll
6944 * say there is a hole for our whole search range which can
6945 * cause problems.
6946 */
6947 extent_end = start;
6948 goto next;
6949 }
6950
6951 found_type = btrfs_file_extent_type(leaf, item);
6952 extent_start = found_key.offset;
6953 if (found_type == BTRFS_FILE_EXTENT_REG ||
6954 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6955 extent_end = extent_start +
6956 btrfs_file_extent_num_bytes(leaf, item);
6957
6958 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6959 extent_start);
6960 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6961 size_t size;
6962 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6963 extent_end = ALIGN(extent_start + size,
6964 fs_info->sectorsize);
6965
6966 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6967 path->slots[0],
6968 extent_start);
6969 }
6970 next:
6971 if (start >= extent_end) {
6972 path->slots[0]++;
6973 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6974 ret = btrfs_next_leaf(root, path);
6975 if (ret < 0) {
6976 err = ret;
6977 goto out;
6978 }
6979 if (ret > 0)
6980 goto not_found;
6981 leaf = path->nodes[0];
6982 }
6983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6984 if (found_key.objectid != objectid ||
6985 found_key.type != BTRFS_EXTENT_DATA_KEY)
6986 goto not_found;
6987 if (start + len <= found_key.offset)
6988 goto not_found;
6989 if (start > found_key.offset)
6990 goto next;
6991 em->start = start;
6992 em->orig_start = start;
6993 em->len = found_key.offset - start;
6994 goto not_found_em;
6995 }
6996
6997 btrfs_extent_item_to_extent_map(inode, path, item,
6998 new_inline, em);
6999
7000 if (found_type == BTRFS_FILE_EXTENT_REG ||
7001 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7002 goto insert;
7003 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7004 unsigned long ptr;
7005 char *map;
7006 size_t size;
7007 size_t extent_offset;
7008 size_t copy_size;
7009
7010 if (new_inline)
7011 goto out;
7012
7013 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7014 extent_offset = page_offset(page) + pg_offset - extent_start;
7015 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7016 size - extent_offset);
7017 em->start = extent_start + extent_offset;
7018 em->len = ALIGN(copy_size, fs_info->sectorsize);
7019 em->orig_block_len = em->len;
7020 em->orig_start = em->start;
7021 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7022 if (create == 0 && !PageUptodate(page)) {
7023 if (btrfs_file_extent_compression(leaf, item) !=
7024 BTRFS_COMPRESS_NONE) {
7025 ret = uncompress_inline(path, page, pg_offset,
7026 extent_offset, item);
7027 if (ret) {
7028 err = ret;
7029 goto out;
7030 }
7031 } else {
7032 map = kmap(page);
7033 read_extent_buffer(leaf, map + pg_offset, ptr,
7034 copy_size);
7035 if (pg_offset + copy_size < PAGE_SIZE) {
7036 memset(map + pg_offset + copy_size, 0,
7037 PAGE_SIZE - pg_offset -
7038 copy_size);
7039 }
7040 kunmap(page);
7041 }
7042 flush_dcache_page(page);
7043 } else if (create && PageUptodate(page)) {
7044 BUG();
7045 if (!trans) {
7046 kunmap(page);
7047 free_extent_map(em);
7048 em = NULL;
7049
7050 btrfs_release_path(path);
7051 trans = btrfs_join_transaction(root);
7052
7053 if (IS_ERR(trans))
7054 return ERR_CAST(trans);
7055 goto again;
7056 }
7057 map = kmap(page);
7058 write_extent_buffer(leaf, map + pg_offset, ptr,
7059 copy_size);
7060 kunmap(page);
7061 btrfs_mark_buffer_dirty(leaf);
7062 }
7063 set_extent_uptodate(io_tree, em->start,
7064 extent_map_end(em) - 1, NULL, GFP_NOFS);
7065 goto insert;
7066 }
7067 not_found:
7068 em->start = start;
7069 em->orig_start = start;
7070 em->len = len;
7071 not_found_em:
7072 em->block_start = EXTENT_MAP_HOLE;
7073 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7074 insert:
7075 btrfs_release_path(path);
7076 if (em->start > start || extent_map_end(em) <= start) {
7077 btrfs_err(fs_info,
7078 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079 em->start, em->len, start, len);
7080 err = -EIO;
7081 goto out;
7082 }
7083
7084 err = 0;
7085 write_lock(&em_tree->lock);
7086 ret = add_extent_mapping(em_tree, em, 0);
7087 /* it is possible that someone inserted the extent into the tree
7088 * while we had the lock dropped. It is also possible that
7089 * an overlapping map exists in the tree
7090 */
7091 if (ret == -EEXIST) {
7092 struct extent_map *existing;
7093
7094 ret = 0;
7095
7096 existing = search_extent_mapping(em_tree, start, len);
7097 /*
7098 * existing will always be non-NULL, since there must be
7099 * extent causing the -EEXIST.
7100 */
7101 if (existing->start == em->start &&
7102 extent_map_end(existing) >= extent_map_end(em) &&
7103 em->block_start == existing->block_start) {
7104 /*
7105 * The existing extent map already encompasses the
7106 * entire extent map we tried to add.
7107 */
7108 free_extent_map(em);
7109 em = existing;
7110 err = 0;
7111
7112 } else if (start >= extent_map_end(existing) ||
7113 start <= existing->start) {
7114 /*
7115 * The existing extent map is the one nearest to
7116 * the [start, start + len) range which overlaps
7117 */
7118 err = merge_extent_mapping(em_tree, existing,
7119 em, start);
7120 free_extent_map(existing);
7121 if (err) {
7122 free_extent_map(em);
7123 em = NULL;
7124 }
7125 } else {
7126 free_extent_map(em);
7127 em = existing;
7128 err = 0;
7129 }
7130 }
7131 write_unlock(&em_tree->lock);
7132 out:
7133
7134 trace_btrfs_get_extent(root, inode, em);
7135
7136 btrfs_free_path(path);
7137 if (trans) {
7138 ret = btrfs_end_transaction(trans);
7139 if (!err)
7140 err = ret;
7141 }
7142 if (err) {
7143 free_extent_map(em);
7144 return ERR_PTR(err);
7145 }
7146 BUG_ON(!em); /* Error is always set */
7147 return em;
7148 }
7149
7150 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7151 struct page *page,
7152 size_t pg_offset, u64 start, u64 len,
7153 int create)
7154 {
7155 struct extent_map *em;
7156 struct extent_map *hole_em = NULL;
7157 u64 range_start = start;
7158 u64 end;
7159 u64 found;
7160 u64 found_end;
7161 int err = 0;
7162
7163 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7164 if (IS_ERR(em))
7165 return em;
7166 /*
7167 * If our em maps to:
7168 * - a hole or
7169 * - a pre-alloc extent,
7170 * there might actually be delalloc bytes behind it.
7171 */
7172 if (em->block_start != EXTENT_MAP_HOLE &&
7173 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7174 return em;
7175 else
7176 hole_em = em;
7177
7178 /* check to see if we've wrapped (len == -1 or similar) */
7179 end = start + len;
7180 if (end < start)
7181 end = (u64)-1;
7182 else
7183 end -= 1;
7184
7185 em = NULL;
7186
7187 /* ok, we didn't find anything, lets look for delalloc */
7188 found = count_range_bits(&inode->io_tree, &range_start,
7189 end, len, EXTENT_DELALLOC, 1);
7190 found_end = range_start + found;
7191 if (found_end < range_start)
7192 found_end = (u64)-1;
7193
7194 /*
7195 * we didn't find anything useful, return
7196 * the original results from get_extent()
7197 */
7198 if (range_start > end || found_end <= start) {
7199 em = hole_em;
7200 hole_em = NULL;
7201 goto out;
7202 }
7203
7204 /* adjust the range_start to make sure it doesn't
7205 * go backwards from the start they passed in
7206 */
7207 range_start = max(start, range_start);
7208 found = found_end - range_start;
7209
7210 if (found > 0) {
7211 u64 hole_start = start;
7212 u64 hole_len = len;
7213
7214 em = alloc_extent_map();
7215 if (!em) {
7216 err = -ENOMEM;
7217 goto out;
7218 }
7219 /*
7220 * when btrfs_get_extent can't find anything it
7221 * returns one huge hole
7222 *
7223 * make sure what it found really fits our range, and
7224 * adjust to make sure it is based on the start from
7225 * the caller
7226 */
7227 if (hole_em) {
7228 u64 calc_end = extent_map_end(hole_em);
7229
7230 if (calc_end <= start || (hole_em->start > end)) {
7231 free_extent_map(hole_em);
7232 hole_em = NULL;
7233 } else {
7234 hole_start = max(hole_em->start, start);
7235 hole_len = calc_end - hole_start;
7236 }
7237 }
7238 em->bdev = NULL;
7239 if (hole_em && range_start > hole_start) {
7240 /* our hole starts before our delalloc, so we
7241 * have to return just the parts of the hole
7242 * that go until the delalloc starts
7243 */
7244 em->len = min(hole_len,
7245 range_start - hole_start);
7246 em->start = hole_start;
7247 em->orig_start = hole_start;
7248 /*
7249 * don't adjust block start at all,
7250 * it is fixed at EXTENT_MAP_HOLE
7251 */
7252 em->block_start = hole_em->block_start;
7253 em->block_len = hole_len;
7254 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7255 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7256 } else {
7257 em->start = range_start;
7258 em->len = found;
7259 em->orig_start = range_start;
7260 em->block_start = EXTENT_MAP_DELALLOC;
7261 em->block_len = found;
7262 }
7263 } else if (hole_em) {
7264 return hole_em;
7265 }
7266 out:
7267
7268 free_extent_map(hole_em);
7269 if (err) {
7270 free_extent_map(em);
7271 return ERR_PTR(err);
7272 }
7273 return em;
7274 }
7275
7276 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7277 const u64 start,
7278 const u64 len,
7279 const u64 orig_start,
7280 const u64 block_start,
7281 const u64 block_len,
7282 const u64 orig_block_len,
7283 const u64 ram_bytes,
7284 const int type)
7285 {
7286 struct extent_map *em = NULL;
7287 int ret;
7288
7289 if (type != BTRFS_ORDERED_NOCOW) {
7290 em = create_io_em(inode, start, len, orig_start,
7291 block_start, block_len, orig_block_len,
7292 ram_bytes,
7293 BTRFS_COMPRESS_NONE, /* compress_type */
7294 type);
7295 if (IS_ERR(em))
7296 goto out;
7297 }
7298 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7299 len, block_len, type);
7300 if (ret) {
7301 if (em) {
7302 free_extent_map(em);
7303 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7304 start + len - 1, 0);
7305 }
7306 em = ERR_PTR(ret);
7307 }
7308 out:
7309
7310 return em;
7311 }
7312
7313 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7314 u64 start, u64 len)
7315 {
7316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7317 struct btrfs_root *root = BTRFS_I(inode)->root;
7318 struct extent_map *em;
7319 struct btrfs_key ins;
7320 u64 alloc_hint;
7321 int ret;
7322
7323 alloc_hint = get_extent_allocation_hint(inode, start, len);
7324 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7325 0, alloc_hint, &ins, 1, 1);
7326 if (ret)
7327 return ERR_PTR(ret);
7328
7329 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7330 ins.objectid, ins.offset, ins.offset,
7331 ins.offset, BTRFS_ORDERED_REGULAR);
7332 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7333 if (IS_ERR(em))
7334 btrfs_free_reserved_extent(fs_info, ins.objectid,
7335 ins.offset, 1);
7336
7337 return em;
7338 }
7339
7340 /*
7341 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7342 * block must be cow'd
7343 */
7344 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7345 u64 *orig_start, u64 *orig_block_len,
7346 u64 *ram_bytes)
7347 {
7348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7349 struct btrfs_path *path;
7350 int ret;
7351 struct extent_buffer *leaf;
7352 struct btrfs_root *root = BTRFS_I(inode)->root;
7353 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7354 struct btrfs_file_extent_item *fi;
7355 struct btrfs_key key;
7356 u64 disk_bytenr;
7357 u64 backref_offset;
7358 u64 extent_end;
7359 u64 num_bytes;
7360 int slot;
7361 int found_type;
7362 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7363
7364 path = btrfs_alloc_path();
7365 if (!path)
7366 return -ENOMEM;
7367
7368 ret = btrfs_lookup_file_extent(NULL, root, path,
7369 btrfs_ino(BTRFS_I(inode)), offset, 0);
7370 if (ret < 0)
7371 goto out;
7372
7373 slot = path->slots[0];
7374 if (ret == 1) {
7375 if (slot == 0) {
7376 /* can't find the item, must cow */
7377 ret = 0;
7378 goto out;
7379 }
7380 slot--;
7381 }
7382 ret = 0;
7383 leaf = path->nodes[0];
7384 btrfs_item_key_to_cpu(leaf, &key, slot);
7385 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7386 key.type != BTRFS_EXTENT_DATA_KEY) {
7387 /* not our file or wrong item type, must cow */
7388 goto out;
7389 }
7390
7391 if (key.offset > offset) {
7392 /* Wrong offset, must cow */
7393 goto out;
7394 }
7395
7396 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7397 found_type = btrfs_file_extent_type(leaf, fi);
7398 if (found_type != BTRFS_FILE_EXTENT_REG &&
7399 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7400 /* not a regular extent, must cow */
7401 goto out;
7402 }
7403
7404 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7405 goto out;
7406
7407 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7408 if (extent_end <= offset)
7409 goto out;
7410
7411 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7412 if (disk_bytenr == 0)
7413 goto out;
7414
7415 if (btrfs_file_extent_compression(leaf, fi) ||
7416 btrfs_file_extent_encryption(leaf, fi) ||
7417 btrfs_file_extent_other_encoding(leaf, fi))
7418 goto out;
7419
7420 backref_offset = btrfs_file_extent_offset(leaf, fi);
7421
7422 if (orig_start) {
7423 *orig_start = key.offset - backref_offset;
7424 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7425 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7426 }
7427
7428 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7429 goto out;
7430
7431 num_bytes = min(offset + *len, extent_end) - offset;
7432 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7433 u64 range_end;
7434
7435 range_end = round_up(offset + num_bytes,
7436 root->fs_info->sectorsize) - 1;
7437 ret = test_range_bit(io_tree, offset, range_end,
7438 EXTENT_DELALLOC, 0, NULL);
7439 if (ret) {
7440 ret = -EAGAIN;
7441 goto out;
7442 }
7443 }
7444
7445 btrfs_release_path(path);
7446
7447 /*
7448 * look for other files referencing this extent, if we
7449 * find any we must cow
7450 */
7451
7452 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7453 key.offset - backref_offset, disk_bytenr);
7454 if (ret) {
7455 ret = 0;
7456 goto out;
7457 }
7458
7459 /*
7460 * adjust disk_bytenr and num_bytes to cover just the bytes
7461 * in this extent we are about to write. If there
7462 * are any csums in that range we have to cow in order
7463 * to keep the csums correct
7464 */
7465 disk_bytenr += backref_offset;
7466 disk_bytenr += offset - key.offset;
7467 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7468 goto out;
7469 /*
7470 * all of the above have passed, it is safe to overwrite this extent
7471 * without cow
7472 */
7473 *len = num_bytes;
7474 ret = 1;
7475 out:
7476 btrfs_free_path(path);
7477 return ret;
7478 }
7479
7480 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7481 {
7482 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7483 int found = false;
7484 void **pagep = NULL;
7485 struct page *page = NULL;
7486 int start_idx;
7487 int end_idx;
7488
7489 start_idx = start >> PAGE_SHIFT;
7490
7491 /*
7492 * end is the last byte in the last page. end == start is legal
7493 */
7494 end_idx = end >> PAGE_SHIFT;
7495
7496 rcu_read_lock();
7497
7498 /* Most of the code in this while loop is lifted from
7499 * find_get_page. It's been modified to begin searching from a
7500 * page and return just the first page found in that range. If the
7501 * found idx is less than or equal to the end idx then we know that
7502 * a page exists. If no pages are found or if those pages are
7503 * outside of the range then we're fine (yay!) */
7504 while (page == NULL &&
7505 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7506 page = radix_tree_deref_slot(pagep);
7507 if (unlikely(!page))
7508 break;
7509
7510 if (radix_tree_exception(page)) {
7511 if (radix_tree_deref_retry(page)) {
7512 page = NULL;
7513 continue;
7514 }
7515 /*
7516 * Otherwise, shmem/tmpfs must be storing a swap entry
7517 * here as an exceptional entry: so return it without
7518 * attempting to raise page count.
7519 */
7520 page = NULL;
7521 break; /* TODO: Is this relevant for this use case? */
7522 }
7523
7524 if (!page_cache_get_speculative(page)) {
7525 page = NULL;
7526 continue;
7527 }
7528
7529 /*
7530 * Has the page moved?
7531 * This is part of the lockless pagecache protocol. See
7532 * include/linux/pagemap.h for details.
7533 */
7534 if (unlikely(page != *pagep)) {
7535 put_page(page);
7536 page = NULL;
7537 }
7538 }
7539
7540 if (page) {
7541 if (page->index <= end_idx)
7542 found = true;
7543 put_page(page);
7544 }
7545
7546 rcu_read_unlock();
7547 return found;
7548 }
7549
7550 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7551 struct extent_state **cached_state, int writing)
7552 {
7553 struct btrfs_ordered_extent *ordered;
7554 int ret = 0;
7555
7556 while (1) {
7557 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7558 cached_state);
7559 /*
7560 * We're concerned with the entire range that we're going to be
7561 * doing DIO to, so we need to make sure there's no ordered
7562 * extents in this range.
7563 */
7564 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7565 lockend - lockstart + 1);
7566
7567 /*
7568 * We need to make sure there are no buffered pages in this
7569 * range either, we could have raced between the invalidate in
7570 * generic_file_direct_write and locking the extent. The
7571 * invalidate needs to happen so that reads after a write do not
7572 * get stale data.
7573 */
7574 if (!ordered &&
7575 (!writing ||
7576 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7577 break;
7578
7579 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7580 cached_state, GFP_NOFS);
7581
7582 if (ordered) {
7583 /*
7584 * If we are doing a DIO read and the ordered extent we
7585 * found is for a buffered write, we can not wait for it
7586 * to complete and retry, because if we do so we can
7587 * deadlock with concurrent buffered writes on page
7588 * locks. This happens only if our DIO read covers more
7589 * than one extent map, if at this point has already
7590 * created an ordered extent for a previous extent map
7591 * and locked its range in the inode's io tree, and a
7592 * concurrent write against that previous extent map's
7593 * range and this range started (we unlock the ranges
7594 * in the io tree only when the bios complete and
7595 * buffered writes always lock pages before attempting
7596 * to lock range in the io tree).
7597 */
7598 if (writing ||
7599 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7600 btrfs_start_ordered_extent(inode, ordered, 1);
7601 else
7602 ret = -ENOTBLK;
7603 btrfs_put_ordered_extent(ordered);
7604 } else {
7605 /*
7606 * We could trigger writeback for this range (and wait
7607 * for it to complete) and then invalidate the pages for
7608 * this range (through invalidate_inode_pages2_range()),
7609 * but that can lead us to a deadlock with a concurrent
7610 * call to readpages() (a buffered read or a defrag call
7611 * triggered a readahead) on a page lock due to an
7612 * ordered dio extent we created before but did not have
7613 * yet a corresponding bio submitted (whence it can not
7614 * complete), which makes readpages() wait for that
7615 * ordered extent to complete while holding a lock on
7616 * that page.
7617 */
7618 ret = -ENOTBLK;
7619 }
7620
7621 if (ret)
7622 break;
7623
7624 cond_resched();
7625 }
7626
7627 return ret;
7628 }
7629
7630 /* The callers of this must take lock_extent() */
7631 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7632 u64 orig_start, u64 block_start,
7633 u64 block_len, u64 orig_block_len,
7634 u64 ram_bytes, int compress_type,
7635 int type)
7636 {
7637 struct extent_map_tree *em_tree;
7638 struct extent_map *em;
7639 struct btrfs_root *root = BTRFS_I(inode)->root;
7640 int ret;
7641
7642 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7643 type == BTRFS_ORDERED_COMPRESSED ||
7644 type == BTRFS_ORDERED_NOCOW ||
7645 type == BTRFS_ORDERED_REGULAR);
7646
7647 em_tree = &BTRFS_I(inode)->extent_tree;
7648 em = alloc_extent_map();
7649 if (!em)
7650 return ERR_PTR(-ENOMEM);
7651
7652 em->start = start;
7653 em->orig_start = orig_start;
7654 em->len = len;
7655 em->block_len = block_len;
7656 em->block_start = block_start;
7657 em->bdev = root->fs_info->fs_devices->latest_bdev;
7658 em->orig_block_len = orig_block_len;
7659 em->ram_bytes = ram_bytes;
7660 em->generation = -1;
7661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7662 if (type == BTRFS_ORDERED_PREALLOC) {
7663 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7664 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7665 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7666 em->compress_type = compress_type;
7667 }
7668
7669 do {
7670 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7671 em->start + em->len - 1, 0);
7672 write_lock(&em_tree->lock);
7673 ret = add_extent_mapping(em_tree, em, 1);
7674 write_unlock(&em_tree->lock);
7675 /*
7676 * The caller has taken lock_extent(), who could race with us
7677 * to add em?
7678 */
7679 } while (ret == -EEXIST);
7680
7681 if (ret) {
7682 free_extent_map(em);
7683 return ERR_PTR(ret);
7684 }
7685
7686 /* em got 2 refs now, callers needs to do free_extent_map once. */
7687 return em;
7688 }
7689
7690 static void adjust_dio_outstanding_extents(struct inode *inode,
7691 struct btrfs_dio_data *dio_data,
7692 const u64 len)
7693 {
7694 unsigned num_extents = count_max_extents(len);
7695
7696 /*
7697 * If we have an outstanding_extents count still set then we're
7698 * within our reservation, otherwise we need to adjust our inode
7699 * counter appropriately.
7700 */
7701 if (dio_data->outstanding_extents >= num_extents) {
7702 dio_data->outstanding_extents -= num_extents;
7703 } else {
7704 /*
7705 * If dio write length has been split due to no large enough
7706 * contiguous space, we need to compensate our inode counter
7707 * appropriately.
7708 */
7709 u64 num_needed = num_extents - dio_data->outstanding_extents;
7710
7711 spin_lock(&BTRFS_I(inode)->lock);
7712 BTRFS_I(inode)->outstanding_extents += num_needed;
7713 spin_unlock(&BTRFS_I(inode)->lock);
7714 }
7715 }
7716
7717 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7718 struct buffer_head *bh_result, int create)
7719 {
7720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7721 struct extent_map *em;
7722 struct extent_state *cached_state = NULL;
7723 struct btrfs_dio_data *dio_data = NULL;
7724 u64 start = iblock << inode->i_blkbits;
7725 u64 lockstart, lockend;
7726 u64 len = bh_result->b_size;
7727 int unlock_bits = EXTENT_LOCKED;
7728 int ret = 0;
7729
7730 if (create)
7731 unlock_bits |= EXTENT_DIRTY;
7732 else
7733 len = min_t(u64, len, fs_info->sectorsize);
7734
7735 lockstart = start;
7736 lockend = start + len - 1;
7737
7738 if (current->journal_info) {
7739 /*
7740 * Need to pull our outstanding extents and set journal_info to NULL so
7741 * that anything that needs to check if there's a transaction doesn't get
7742 * confused.
7743 */
7744 dio_data = current->journal_info;
7745 current->journal_info = NULL;
7746 }
7747
7748 /*
7749 * If this errors out it's because we couldn't invalidate pagecache for
7750 * this range and we need to fallback to buffered.
7751 */
7752 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7753 create)) {
7754 ret = -ENOTBLK;
7755 goto err;
7756 }
7757
7758 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7759 if (IS_ERR(em)) {
7760 ret = PTR_ERR(em);
7761 goto unlock_err;
7762 }
7763
7764 /*
7765 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7766 * io. INLINE is special, and we could probably kludge it in here, but
7767 * it's still buffered so for safety lets just fall back to the generic
7768 * buffered path.
7769 *
7770 * For COMPRESSED we _have_ to read the entire extent in so we can
7771 * decompress it, so there will be buffering required no matter what we
7772 * do, so go ahead and fallback to buffered.
7773 *
7774 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7775 * to buffered IO. Don't blame me, this is the price we pay for using
7776 * the generic code.
7777 */
7778 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7779 em->block_start == EXTENT_MAP_INLINE) {
7780 free_extent_map(em);
7781 ret = -ENOTBLK;
7782 goto unlock_err;
7783 }
7784
7785 /* Just a good old fashioned hole, return */
7786 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7787 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7788 free_extent_map(em);
7789 goto unlock_err;
7790 }
7791
7792 /*
7793 * We don't allocate a new extent in the following cases
7794 *
7795 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7796 * existing extent.
7797 * 2) The extent is marked as PREALLOC. We're good to go here and can
7798 * just use the extent.
7799 *
7800 */
7801 if (!create) {
7802 len = min(len, em->len - (start - em->start));
7803 lockstart = start + len;
7804 goto unlock;
7805 }
7806
7807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7808 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7809 em->block_start != EXTENT_MAP_HOLE)) {
7810 int type;
7811 u64 block_start, orig_start, orig_block_len, ram_bytes;
7812
7813 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7814 type = BTRFS_ORDERED_PREALLOC;
7815 else
7816 type = BTRFS_ORDERED_NOCOW;
7817 len = min(len, em->len - (start - em->start));
7818 block_start = em->block_start + (start - em->start);
7819
7820 if (can_nocow_extent(inode, start, &len, &orig_start,
7821 &orig_block_len, &ram_bytes) == 1 &&
7822 btrfs_inc_nocow_writers(fs_info, block_start)) {
7823 struct extent_map *em2;
7824
7825 em2 = btrfs_create_dio_extent(inode, start, len,
7826 orig_start, block_start,
7827 len, orig_block_len,
7828 ram_bytes, type);
7829 btrfs_dec_nocow_writers(fs_info, block_start);
7830 if (type == BTRFS_ORDERED_PREALLOC) {
7831 free_extent_map(em);
7832 em = em2;
7833 }
7834 if (em2 && IS_ERR(em2)) {
7835 ret = PTR_ERR(em2);
7836 goto unlock_err;
7837 }
7838 /*
7839 * For inode marked NODATACOW or extent marked PREALLOC,
7840 * use the existing or preallocated extent, so does not
7841 * need to adjust btrfs_space_info's bytes_may_use.
7842 */
7843 btrfs_free_reserved_data_space_noquota(inode,
7844 start, len);
7845 goto unlock;
7846 }
7847 }
7848
7849 /*
7850 * this will cow the extent, reset the len in case we changed
7851 * it above
7852 */
7853 len = bh_result->b_size;
7854 free_extent_map(em);
7855 em = btrfs_new_extent_direct(inode, start, len);
7856 if (IS_ERR(em)) {
7857 ret = PTR_ERR(em);
7858 goto unlock_err;
7859 }
7860 len = min(len, em->len - (start - em->start));
7861 unlock:
7862 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7863 inode->i_blkbits;
7864 bh_result->b_size = len;
7865 bh_result->b_bdev = em->bdev;
7866 set_buffer_mapped(bh_result);
7867 if (create) {
7868 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7869 set_buffer_new(bh_result);
7870
7871 /*
7872 * Need to update the i_size under the extent lock so buffered
7873 * readers will get the updated i_size when we unlock.
7874 */
7875 if (!dio_data->overwrite && start + len > i_size_read(inode))
7876 i_size_write(inode, start + len);
7877
7878 adjust_dio_outstanding_extents(inode, dio_data, len);
7879 WARN_ON(dio_data->reserve < len);
7880 dio_data->reserve -= len;
7881 dio_data->unsubmitted_oe_range_end = start + len;
7882 current->journal_info = dio_data;
7883 }
7884
7885 /*
7886 * In the case of write we need to clear and unlock the entire range,
7887 * in the case of read we need to unlock only the end area that we
7888 * aren't using if there is any left over space.
7889 */
7890 if (lockstart < lockend) {
7891 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7892 lockend, unlock_bits, 1, 0,
7893 &cached_state, GFP_NOFS);
7894 } else {
7895 free_extent_state(cached_state);
7896 }
7897
7898 free_extent_map(em);
7899
7900 return 0;
7901
7902 unlock_err:
7903 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7904 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7905 err:
7906 if (dio_data)
7907 current->journal_info = dio_data;
7908 /*
7909 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7910 * write less data then expected, so that we don't underflow our inode's
7911 * outstanding extents counter.
7912 */
7913 if (create && dio_data)
7914 adjust_dio_outstanding_extents(inode, dio_data, len);
7915
7916 return ret;
7917 }
7918
7919 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7920 int mirror_num)
7921 {
7922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7923 int ret;
7924
7925 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7926
7927 bio_get(bio);
7928
7929 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7930 if (ret)
7931 goto err;
7932
7933 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7934 err:
7935 bio_put(bio);
7936 return ret;
7937 }
7938
7939 static int btrfs_check_dio_repairable(struct inode *inode,
7940 struct bio *failed_bio,
7941 struct io_failure_record *failrec,
7942 int failed_mirror)
7943 {
7944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7945 int num_copies;
7946
7947 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7948 if (num_copies == 1) {
7949 /*
7950 * we only have a single copy of the data, so don't bother with
7951 * all the retry and error correction code that follows. no
7952 * matter what the error is, it is very likely to persist.
7953 */
7954 btrfs_debug(fs_info,
7955 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7956 num_copies, failrec->this_mirror, failed_mirror);
7957 return 0;
7958 }
7959
7960 failrec->failed_mirror = failed_mirror;
7961 failrec->this_mirror++;
7962 if (failrec->this_mirror == failed_mirror)
7963 failrec->this_mirror++;
7964
7965 if (failrec->this_mirror > num_copies) {
7966 btrfs_debug(fs_info,
7967 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7968 num_copies, failrec->this_mirror, failed_mirror);
7969 return 0;
7970 }
7971
7972 return 1;
7973 }
7974
7975 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7976 struct page *page, unsigned int pgoff,
7977 u64 start, u64 end, int failed_mirror,
7978 bio_end_io_t *repair_endio, void *repair_arg)
7979 {
7980 struct io_failure_record *failrec;
7981 struct bio *bio;
7982 int isector;
7983 int read_mode = 0;
7984 int ret;
7985
7986 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7987
7988 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7989 if (ret)
7990 return ret;
7991
7992 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7993 failed_mirror);
7994 if (!ret) {
7995 free_io_failure(BTRFS_I(inode), failrec);
7996 return -EIO;
7997 }
7998
7999 if ((failed_bio->bi_vcnt > 1)
8000 || (failed_bio->bi_io_vec->bv_len
8001 > btrfs_inode_sectorsize(inode)))
8002 read_mode |= REQ_FAILFAST_DEV;
8003
8004 isector = start - btrfs_io_bio(failed_bio)->logical;
8005 isector >>= inode->i_sb->s_blocksize_bits;
8006 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8007 pgoff, isector, repair_endio, repair_arg);
8008 if (!bio) {
8009 free_io_failure(BTRFS_I(inode), failrec);
8010 return -EIO;
8011 }
8012 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8013
8014 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8015 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8016 read_mode, failrec->this_mirror, failrec->in_validation);
8017
8018 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8019 if (ret) {
8020 free_io_failure(BTRFS_I(inode), failrec);
8021 bio_put(bio);
8022 }
8023
8024 return ret;
8025 }
8026
8027 struct btrfs_retry_complete {
8028 struct completion done;
8029 struct inode *inode;
8030 u64 start;
8031 int uptodate;
8032 };
8033
8034 static void btrfs_retry_endio_nocsum(struct bio *bio)
8035 {
8036 struct btrfs_retry_complete *done = bio->bi_private;
8037 struct bio_vec *bvec;
8038 int i;
8039
8040 if (bio->bi_error)
8041 goto end;
8042
8043 ASSERT(bio->bi_vcnt == 1);
8044 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8045
8046 done->uptodate = 1;
8047 bio_for_each_segment_all(bvec, bio, i)
8048 clean_io_failure(BTRFS_I(done->inode), done->start,
8049 bvec->bv_page, 0);
8050 end:
8051 complete(&done->done);
8052 bio_put(bio);
8053 }
8054
8055 static int __btrfs_correct_data_nocsum(struct inode *inode,
8056 struct btrfs_io_bio *io_bio)
8057 {
8058 struct btrfs_fs_info *fs_info;
8059 struct bio_vec *bvec;
8060 struct btrfs_retry_complete done;
8061 u64 start;
8062 unsigned int pgoff;
8063 u32 sectorsize;
8064 int nr_sectors;
8065 int i;
8066 int ret;
8067
8068 fs_info = BTRFS_I(inode)->root->fs_info;
8069 sectorsize = fs_info->sectorsize;
8070
8071 start = io_bio->logical;
8072 done.inode = inode;
8073
8074 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8075 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8076 pgoff = bvec->bv_offset;
8077
8078 next_block_or_try_again:
8079 done.uptodate = 0;
8080 done.start = start;
8081 init_completion(&done.done);
8082
8083 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8084 pgoff, start, start + sectorsize - 1,
8085 io_bio->mirror_num,
8086 btrfs_retry_endio_nocsum, &done);
8087 if (ret)
8088 return ret;
8089
8090 wait_for_completion(&done.done);
8091
8092 if (!done.uptodate) {
8093 /* We might have another mirror, so try again */
8094 goto next_block_or_try_again;
8095 }
8096
8097 start += sectorsize;
8098
8099 nr_sectors--;
8100 if (nr_sectors) {
8101 pgoff += sectorsize;
8102 ASSERT(pgoff < PAGE_SIZE);
8103 goto next_block_or_try_again;
8104 }
8105 }
8106
8107 return 0;
8108 }
8109
8110 static void btrfs_retry_endio(struct bio *bio)
8111 {
8112 struct btrfs_retry_complete *done = bio->bi_private;
8113 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8114 struct bio_vec *bvec;
8115 int uptodate;
8116 int ret;
8117 int i;
8118
8119 if (bio->bi_error)
8120 goto end;
8121
8122 uptodate = 1;
8123
8124 ASSERT(bio->bi_vcnt == 1);
8125 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8126
8127 bio_for_each_segment_all(bvec, bio, i) {
8128 ret = __readpage_endio_check(done->inode, io_bio, i,
8129 bvec->bv_page, bvec->bv_offset,
8130 done->start, bvec->bv_len);
8131 if (!ret)
8132 clean_io_failure(BTRFS_I(done->inode), done->start,
8133 bvec->bv_page, bvec->bv_offset);
8134 else
8135 uptodate = 0;
8136 }
8137
8138 done->uptodate = uptodate;
8139 end:
8140 complete(&done->done);
8141 bio_put(bio);
8142 }
8143
8144 static int __btrfs_subio_endio_read(struct inode *inode,
8145 struct btrfs_io_bio *io_bio, int err)
8146 {
8147 struct btrfs_fs_info *fs_info;
8148 struct bio_vec *bvec;
8149 struct btrfs_retry_complete done;
8150 u64 start;
8151 u64 offset = 0;
8152 u32 sectorsize;
8153 int nr_sectors;
8154 unsigned int pgoff;
8155 int csum_pos;
8156 int i;
8157 int ret;
8158
8159 fs_info = BTRFS_I(inode)->root->fs_info;
8160 sectorsize = fs_info->sectorsize;
8161
8162 err = 0;
8163 start = io_bio->logical;
8164 done.inode = inode;
8165
8166 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8167 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8168
8169 pgoff = bvec->bv_offset;
8170 next_block:
8171 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8172 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8173 bvec->bv_page, pgoff, start,
8174 sectorsize);
8175 if (likely(!ret))
8176 goto next;
8177 try_again:
8178 done.uptodate = 0;
8179 done.start = start;
8180 init_completion(&done.done);
8181
8182 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8183 pgoff, start, start + sectorsize - 1,
8184 io_bio->mirror_num,
8185 btrfs_retry_endio, &done);
8186 if (ret) {
8187 err = ret;
8188 goto next;
8189 }
8190
8191 wait_for_completion(&done.done);
8192
8193 if (!done.uptodate) {
8194 /* We might have another mirror, so try again */
8195 goto try_again;
8196 }
8197 next:
8198 offset += sectorsize;
8199 start += sectorsize;
8200
8201 ASSERT(nr_sectors);
8202
8203 nr_sectors--;
8204 if (nr_sectors) {
8205 pgoff += sectorsize;
8206 ASSERT(pgoff < PAGE_SIZE);
8207 goto next_block;
8208 }
8209 }
8210
8211 return err;
8212 }
8213
8214 static int btrfs_subio_endio_read(struct inode *inode,
8215 struct btrfs_io_bio *io_bio, int err)
8216 {
8217 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8218
8219 if (skip_csum) {
8220 if (unlikely(err))
8221 return __btrfs_correct_data_nocsum(inode, io_bio);
8222 else
8223 return 0;
8224 } else {
8225 return __btrfs_subio_endio_read(inode, io_bio, err);
8226 }
8227 }
8228
8229 static void btrfs_endio_direct_read(struct bio *bio)
8230 {
8231 struct btrfs_dio_private *dip = bio->bi_private;
8232 struct inode *inode = dip->inode;
8233 struct bio *dio_bio;
8234 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8235 int err = bio->bi_error;
8236
8237 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8238 err = btrfs_subio_endio_read(inode, io_bio, err);
8239
8240 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8241 dip->logical_offset + dip->bytes - 1);
8242 dio_bio = dip->dio_bio;
8243
8244 kfree(dip);
8245
8246 dio_bio->bi_error = bio->bi_error;
8247 dio_end_io(dio_bio, bio->bi_error);
8248
8249 if (io_bio->end_io)
8250 io_bio->end_io(io_bio, err);
8251 bio_put(bio);
8252 }
8253
8254 static void __endio_write_update_ordered(struct inode *inode,
8255 const u64 offset, const u64 bytes,
8256 const bool uptodate)
8257 {
8258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8259 struct btrfs_ordered_extent *ordered = NULL;
8260 struct btrfs_workqueue *wq;
8261 btrfs_work_func_t func;
8262 u64 ordered_offset = offset;
8263 u64 ordered_bytes = bytes;
8264 int ret;
8265
8266 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8267 wq = fs_info->endio_freespace_worker;
8268 func = btrfs_freespace_write_helper;
8269 } else {
8270 wq = fs_info->endio_write_workers;
8271 func = btrfs_endio_write_helper;
8272 }
8273
8274 again:
8275 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8276 &ordered_offset,
8277 ordered_bytes,
8278 uptodate);
8279 if (!ret)
8280 goto out_test;
8281
8282 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8283 btrfs_queue_work(wq, &ordered->work);
8284 out_test:
8285 /*
8286 * our bio might span multiple ordered extents. If we haven't
8287 * completed the accounting for the whole dio, go back and try again
8288 */
8289 if (ordered_offset < offset + bytes) {
8290 ordered_bytes = offset + bytes - ordered_offset;
8291 ordered = NULL;
8292 goto again;
8293 }
8294 }
8295
8296 static void btrfs_endio_direct_write(struct bio *bio)
8297 {
8298 struct btrfs_dio_private *dip = bio->bi_private;
8299 struct bio *dio_bio = dip->dio_bio;
8300
8301 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8302 dip->bytes, !bio->bi_error);
8303
8304 kfree(dip);
8305
8306 dio_bio->bi_error = bio->bi_error;
8307 dio_end_io(dio_bio, bio->bi_error);
8308 bio_put(bio);
8309 }
8310
8311 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8312 struct bio *bio, int mirror_num,
8313 unsigned long bio_flags, u64 offset)
8314 {
8315 int ret;
8316 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8317 BUG_ON(ret); /* -ENOMEM */
8318 return 0;
8319 }
8320
8321 static void btrfs_end_dio_bio(struct bio *bio)
8322 {
8323 struct btrfs_dio_private *dip = bio->bi_private;
8324 int err = bio->bi_error;
8325
8326 if (err)
8327 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8328 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8329 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8330 bio->bi_opf,
8331 (unsigned long long)bio->bi_iter.bi_sector,
8332 bio->bi_iter.bi_size, err);
8333
8334 if (dip->subio_endio)
8335 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8336
8337 if (err) {
8338 dip->errors = 1;
8339
8340 /*
8341 * before atomic variable goto zero, we must make sure
8342 * dip->errors is perceived to be set.
8343 */
8344 smp_mb__before_atomic();
8345 }
8346
8347 /* if there are more bios still pending for this dio, just exit */
8348 if (!atomic_dec_and_test(&dip->pending_bios))
8349 goto out;
8350
8351 if (dip->errors) {
8352 bio_io_error(dip->orig_bio);
8353 } else {
8354 dip->dio_bio->bi_error = 0;
8355 bio_endio(dip->orig_bio);
8356 }
8357 out:
8358 bio_put(bio);
8359 }
8360
8361 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8362 u64 first_sector, gfp_t gfp_flags)
8363 {
8364 struct bio *bio;
8365 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8366 if (bio)
8367 bio_associate_current(bio);
8368 return bio;
8369 }
8370
8371 static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8372 struct btrfs_dio_private *dip,
8373 struct bio *bio,
8374 u64 file_offset)
8375 {
8376 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8377 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8378 int ret;
8379
8380 /*
8381 * We load all the csum data we need when we submit
8382 * the first bio to reduce the csum tree search and
8383 * contention.
8384 */
8385 if (dip->logical_offset == file_offset) {
8386 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8387 file_offset);
8388 if (ret)
8389 return ret;
8390 }
8391
8392 if (bio == dip->orig_bio)
8393 return 0;
8394
8395 file_offset -= dip->logical_offset;
8396 file_offset >>= inode->i_sb->s_blocksize_bits;
8397 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8398
8399 return 0;
8400 }
8401
8402 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8403 u64 file_offset, int skip_sum,
8404 int async_submit)
8405 {
8406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8407 struct btrfs_dio_private *dip = bio->bi_private;
8408 bool write = bio_op(bio) == REQ_OP_WRITE;
8409 int ret;
8410
8411 if (async_submit)
8412 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8413
8414 bio_get(bio);
8415
8416 if (!write) {
8417 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8418 if (ret)
8419 goto err;
8420 }
8421
8422 if (skip_sum)
8423 goto map;
8424
8425 if (write && async_submit) {
8426 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8427 file_offset,
8428 __btrfs_submit_bio_start_direct_io,
8429 __btrfs_submit_bio_done);
8430 goto err;
8431 } else if (write) {
8432 /*
8433 * If we aren't doing async submit, calculate the csum of the
8434 * bio now.
8435 */
8436 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8437 if (ret)
8438 goto err;
8439 } else {
8440 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8441 file_offset);
8442 if (ret)
8443 goto err;
8444 }
8445 map:
8446 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8447 err:
8448 bio_put(bio);
8449 return ret;
8450 }
8451
8452 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8453 int skip_sum)
8454 {
8455 struct inode *inode = dip->inode;
8456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8457 struct btrfs_root *root = BTRFS_I(inode)->root;
8458 struct bio *bio;
8459 struct bio *orig_bio = dip->orig_bio;
8460 struct bio_vec *bvec;
8461 u64 start_sector = orig_bio->bi_iter.bi_sector;
8462 u64 file_offset = dip->logical_offset;
8463 u64 submit_len = 0;
8464 u64 map_length;
8465 u32 blocksize = fs_info->sectorsize;
8466 int async_submit = 0;
8467 int nr_sectors;
8468 int ret;
8469 int i, j;
8470
8471 map_length = orig_bio->bi_iter.bi_size;
8472 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8473 &map_length, NULL, 0);
8474 if (ret)
8475 return -EIO;
8476
8477 if (map_length >= orig_bio->bi_iter.bi_size) {
8478 bio = orig_bio;
8479 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8480 goto submit;
8481 }
8482
8483 /* async crcs make it difficult to collect full stripe writes. */
8484 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8485 async_submit = 0;
8486 else
8487 async_submit = 1;
8488
8489 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8490 if (!bio)
8491 return -ENOMEM;
8492
8493 bio->bi_opf = orig_bio->bi_opf;
8494 bio->bi_private = dip;
8495 bio->bi_end_io = btrfs_end_dio_bio;
8496 btrfs_io_bio(bio)->logical = file_offset;
8497 atomic_inc(&dip->pending_bios);
8498
8499 bio_for_each_segment_all(bvec, orig_bio, j) {
8500 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8501 i = 0;
8502 next_block:
8503 if (unlikely(map_length < submit_len + blocksize ||
8504 bio_add_page(bio, bvec->bv_page, blocksize,
8505 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8506 /*
8507 * inc the count before we submit the bio so
8508 * we know the end IO handler won't happen before
8509 * we inc the count. Otherwise, the dip might get freed
8510 * before we're done setting it up
8511 */
8512 atomic_inc(&dip->pending_bios);
8513 ret = __btrfs_submit_dio_bio(bio, inode,
8514 file_offset, skip_sum,
8515 async_submit);
8516 if (ret) {
8517 bio_put(bio);
8518 atomic_dec(&dip->pending_bios);
8519 goto out_err;
8520 }
8521
8522 start_sector += submit_len >> 9;
8523 file_offset += submit_len;
8524
8525 submit_len = 0;
8526
8527 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8528 start_sector, GFP_NOFS);
8529 if (!bio)
8530 goto out_err;
8531 bio->bi_opf = orig_bio->bi_opf;
8532 bio->bi_private = dip;
8533 bio->bi_end_io = btrfs_end_dio_bio;
8534 btrfs_io_bio(bio)->logical = file_offset;
8535
8536 map_length = orig_bio->bi_iter.bi_size;
8537 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8538 start_sector << 9,
8539 &map_length, NULL, 0);
8540 if (ret) {
8541 bio_put(bio);
8542 goto out_err;
8543 }
8544
8545 goto next_block;
8546 } else {
8547 submit_len += blocksize;
8548 if (--nr_sectors) {
8549 i++;
8550 goto next_block;
8551 }
8552 }
8553 }
8554
8555 submit:
8556 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8557 async_submit);
8558 if (!ret)
8559 return 0;
8560
8561 bio_put(bio);
8562 out_err:
8563 dip->errors = 1;
8564 /*
8565 * before atomic variable goto zero, we must
8566 * make sure dip->errors is perceived to be set.
8567 */
8568 smp_mb__before_atomic();
8569 if (atomic_dec_and_test(&dip->pending_bios))
8570 bio_io_error(dip->orig_bio);
8571
8572 /* bio_end_io() will handle error, so we needn't return it */
8573 return 0;
8574 }
8575
8576 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8577 loff_t file_offset)
8578 {
8579 struct btrfs_dio_private *dip = NULL;
8580 struct bio *io_bio = NULL;
8581 struct btrfs_io_bio *btrfs_bio;
8582 int skip_sum;
8583 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8584 int ret = 0;
8585
8586 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8587
8588 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8589 if (!io_bio) {
8590 ret = -ENOMEM;
8591 goto free_ordered;
8592 }
8593
8594 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8595 if (!dip) {
8596 ret = -ENOMEM;
8597 goto free_ordered;
8598 }
8599
8600 dip->private = dio_bio->bi_private;
8601 dip->inode = inode;
8602 dip->logical_offset = file_offset;
8603 dip->bytes = dio_bio->bi_iter.bi_size;
8604 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8605 io_bio->bi_private = dip;
8606 dip->orig_bio = io_bio;
8607 dip->dio_bio = dio_bio;
8608 atomic_set(&dip->pending_bios, 0);
8609 btrfs_bio = btrfs_io_bio(io_bio);
8610 btrfs_bio->logical = file_offset;
8611
8612 if (write) {
8613 io_bio->bi_end_io = btrfs_endio_direct_write;
8614 } else {
8615 io_bio->bi_end_io = btrfs_endio_direct_read;
8616 dip->subio_endio = btrfs_subio_endio_read;
8617 }
8618
8619 /*
8620 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8621 * even if we fail to submit a bio, because in such case we do the
8622 * corresponding error handling below and it must not be done a second
8623 * time by btrfs_direct_IO().
8624 */
8625 if (write) {
8626 struct btrfs_dio_data *dio_data = current->journal_info;
8627
8628 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8629 dip->bytes;
8630 dio_data->unsubmitted_oe_range_start =
8631 dio_data->unsubmitted_oe_range_end;
8632 }
8633
8634 ret = btrfs_submit_direct_hook(dip, skip_sum);
8635 if (!ret)
8636 return;
8637
8638 if (btrfs_bio->end_io)
8639 btrfs_bio->end_io(btrfs_bio, ret);
8640
8641 free_ordered:
8642 /*
8643 * If we arrived here it means either we failed to submit the dip
8644 * or we either failed to clone the dio_bio or failed to allocate the
8645 * dip. If we cloned the dio_bio and allocated the dip, we can just
8646 * call bio_endio against our io_bio so that we get proper resource
8647 * cleanup if we fail to submit the dip, otherwise, we must do the
8648 * same as btrfs_endio_direct_[write|read] because we can't call these
8649 * callbacks - they require an allocated dip and a clone of dio_bio.
8650 */
8651 if (io_bio && dip) {
8652 io_bio->bi_error = -EIO;
8653 bio_endio(io_bio);
8654 /*
8655 * The end io callbacks free our dip, do the final put on io_bio
8656 * and all the cleanup and final put for dio_bio (through
8657 * dio_end_io()).
8658 */
8659 dip = NULL;
8660 io_bio = NULL;
8661 } else {
8662 if (write)
8663 __endio_write_update_ordered(inode,
8664 file_offset,
8665 dio_bio->bi_iter.bi_size,
8666 false);
8667 else
8668 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8669 file_offset + dio_bio->bi_iter.bi_size - 1);
8670
8671 dio_bio->bi_error = -EIO;
8672 /*
8673 * Releases and cleans up our dio_bio, no need to bio_put()
8674 * nor bio_endio()/bio_io_error() against dio_bio.
8675 */
8676 dio_end_io(dio_bio, ret);
8677 }
8678 if (io_bio)
8679 bio_put(io_bio);
8680 kfree(dip);
8681 }
8682
8683 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8684 struct kiocb *iocb,
8685 const struct iov_iter *iter, loff_t offset)
8686 {
8687 int seg;
8688 int i;
8689 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8690 ssize_t retval = -EINVAL;
8691
8692 if (offset & blocksize_mask)
8693 goto out;
8694
8695 if (iov_iter_alignment(iter) & blocksize_mask)
8696 goto out;
8697
8698 /* If this is a write we don't need to check anymore */
8699 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8700 return 0;
8701 /*
8702 * Check to make sure we don't have duplicate iov_base's in this
8703 * iovec, if so return EINVAL, otherwise we'll get csum errors
8704 * when reading back.
8705 */
8706 for (seg = 0; seg < iter->nr_segs; seg++) {
8707 for (i = seg + 1; i < iter->nr_segs; i++) {
8708 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8709 goto out;
8710 }
8711 }
8712 retval = 0;
8713 out:
8714 return retval;
8715 }
8716
8717 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8718 {
8719 struct file *file = iocb->ki_filp;
8720 struct inode *inode = file->f_mapping->host;
8721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8722 struct btrfs_dio_data dio_data = { 0 };
8723 loff_t offset = iocb->ki_pos;
8724 size_t count = 0;
8725 int flags = 0;
8726 bool wakeup = true;
8727 bool relock = false;
8728 ssize_t ret;
8729
8730 if (check_direct_IO(fs_info, iocb, iter, offset))
8731 return 0;
8732
8733 inode_dio_begin(inode);
8734 smp_mb__after_atomic();
8735
8736 /*
8737 * The generic stuff only does filemap_write_and_wait_range, which
8738 * isn't enough if we've written compressed pages to this area, so
8739 * we need to flush the dirty pages again to make absolutely sure
8740 * that any outstanding dirty pages are on disk.
8741 */
8742 count = iov_iter_count(iter);
8743 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8744 &BTRFS_I(inode)->runtime_flags))
8745 filemap_fdatawrite_range(inode->i_mapping, offset,
8746 offset + count - 1);
8747
8748 if (iov_iter_rw(iter) == WRITE) {
8749 /*
8750 * If the write DIO is beyond the EOF, we need update
8751 * the isize, but it is protected by i_mutex. So we can
8752 * not unlock the i_mutex at this case.
8753 */
8754 if (offset + count <= inode->i_size) {
8755 dio_data.overwrite = 1;
8756 inode_unlock(inode);
8757 relock = true;
8758 }
8759 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8760 if (ret)
8761 goto out;
8762 dio_data.outstanding_extents = count_max_extents(count);
8763
8764 /*
8765 * We need to know how many extents we reserved so that we can
8766 * do the accounting properly if we go over the number we
8767 * originally calculated. Abuse current->journal_info for this.
8768 */
8769 dio_data.reserve = round_up(count,
8770 fs_info->sectorsize);
8771 dio_data.unsubmitted_oe_range_start = (u64)offset;
8772 dio_data.unsubmitted_oe_range_end = (u64)offset;
8773 current->journal_info = &dio_data;
8774 down_read(&BTRFS_I(inode)->dio_sem);
8775 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8776 &BTRFS_I(inode)->runtime_flags)) {
8777 inode_dio_end(inode);
8778 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8779 wakeup = false;
8780 }
8781
8782 ret = __blockdev_direct_IO(iocb, inode,
8783 fs_info->fs_devices->latest_bdev,
8784 iter, btrfs_get_blocks_direct, NULL,
8785 btrfs_submit_direct, flags);
8786 if (iov_iter_rw(iter) == WRITE) {
8787 up_read(&BTRFS_I(inode)->dio_sem);
8788 current->journal_info = NULL;
8789 if (ret < 0 && ret != -EIOCBQUEUED) {
8790 if (dio_data.reserve)
8791 btrfs_delalloc_release_space(inode, offset,
8792 dio_data.reserve);
8793 /*
8794 * On error we might have left some ordered extents
8795 * without submitting corresponding bios for them, so
8796 * cleanup them up to avoid other tasks getting them
8797 * and waiting for them to complete forever.
8798 */
8799 if (dio_data.unsubmitted_oe_range_start <
8800 dio_data.unsubmitted_oe_range_end)
8801 __endio_write_update_ordered(inode,
8802 dio_data.unsubmitted_oe_range_start,
8803 dio_data.unsubmitted_oe_range_end -
8804 dio_data.unsubmitted_oe_range_start,
8805 false);
8806 } else if (ret >= 0 && (size_t)ret < count)
8807 btrfs_delalloc_release_space(inode, offset,
8808 count - (size_t)ret);
8809 }
8810 out:
8811 if (wakeup)
8812 inode_dio_end(inode);
8813 if (relock)
8814 inode_lock(inode);
8815
8816 return ret;
8817 }
8818
8819 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8820
8821 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8822 __u64 start, __u64 len)
8823 {
8824 int ret;
8825
8826 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8827 if (ret)
8828 return ret;
8829
8830 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8831 }
8832
8833 int btrfs_readpage(struct file *file, struct page *page)
8834 {
8835 struct extent_io_tree *tree;
8836 tree = &BTRFS_I(page->mapping->host)->io_tree;
8837 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8838 }
8839
8840 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8841 {
8842 struct extent_io_tree *tree;
8843 struct inode *inode = page->mapping->host;
8844 int ret;
8845
8846 if (current->flags & PF_MEMALLOC) {
8847 redirty_page_for_writepage(wbc, page);
8848 unlock_page(page);
8849 return 0;
8850 }
8851
8852 /*
8853 * If we are under memory pressure we will call this directly from the
8854 * VM, we need to make sure we have the inode referenced for the ordered
8855 * extent. If not just return like we didn't do anything.
8856 */
8857 if (!igrab(inode)) {
8858 redirty_page_for_writepage(wbc, page);
8859 return AOP_WRITEPAGE_ACTIVATE;
8860 }
8861 tree = &BTRFS_I(page->mapping->host)->io_tree;
8862 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8863 btrfs_add_delayed_iput(inode);
8864 return ret;
8865 }
8866
8867 static int btrfs_writepages(struct address_space *mapping,
8868 struct writeback_control *wbc)
8869 {
8870 struct extent_io_tree *tree;
8871
8872 tree = &BTRFS_I(mapping->host)->io_tree;
8873 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8874 }
8875
8876 static int
8877 btrfs_readpages(struct file *file, struct address_space *mapping,
8878 struct list_head *pages, unsigned nr_pages)
8879 {
8880 struct extent_io_tree *tree;
8881 tree = &BTRFS_I(mapping->host)->io_tree;
8882 return extent_readpages(tree, mapping, pages, nr_pages,
8883 btrfs_get_extent);
8884 }
8885 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8886 {
8887 struct extent_io_tree *tree;
8888 struct extent_map_tree *map;
8889 int ret;
8890
8891 tree = &BTRFS_I(page->mapping->host)->io_tree;
8892 map = &BTRFS_I(page->mapping->host)->extent_tree;
8893 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8894 if (ret == 1) {
8895 ClearPagePrivate(page);
8896 set_page_private(page, 0);
8897 put_page(page);
8898 }
8899 return ret;
8900 }
8901
8902 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8903 {
8904 if (PageWriteback(page) || PageDirty(page))
8905 return 0;
8906 return __btrfs_releasepage(page, gfp_flags);
8907 }
8908
8909 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8910 unsigned int length)
8911 {
8912 struct inode *inode = page->mapping->host;
8913 struct extent_io_tree *tree;
8914 struct btrfs_ordered_extent *ordered;
8915 struct extent_state *cached_state = NULL;
8916 u64 page_start = page_offset(page);
8917 u64 page_end = page_start + PAGE_SIZE - 1;
8918 u64 start;
8919 u64 end;
8920 int inode_evicting = inode->i_state & I_FREEING;
8921
8922 /*
8923 * we have the page locked, so new writeback can't start,
8924 * and the dirty bit won't be cleared while we are here.
8925 *
8926 * Wait for IO on this page so that we can safely clear
8927 * the PagePrivate2 bit and do ordered accounting
8928 */
8929 wait_on_page_writeback(page);
8930
8931 tree = &BTRFS_I(inode)->io_tree;
8932 if (offset) {
8933 btrfs_releasepage(page, GFP_NOFS);
8934 return;
8935 }
8936
8937 if (!inode_evicting)
8938 lock_extent_bits(tree, page_start, page_end, &cached_state);
8939 again:
8940 start = page_start;
8941 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8942 page_end - start + 1);
8943 if (ordered) {
8944 end = min(page_end, ordered->file_offset + ordered->len - 1);
8945 /*
8946 * IO on this page will never be started, so we need
8947 * to account for any ordered extents now
8948 */
8949 if (!inode_evicting)
8950 clear_extent_bit(tree, start, end,
8951 EXTENT_DIRTY | EXTENT_DELALLOC |
8952 EXTENT_DELALLOC_NEW |
8953 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8954 EXTENT_DEFRAG, 1, 0, &cached_state,
8955 GFP_NOFS);
8956 /*
8957 * whoever cleared the private bit is responsible
8958 * for the finish_ordered_io
8959 */
8960 if (TestClearPagePrivate2(page)) {
8961 struct btrfs_ordered_inode_tree *tree;
8962 u64 new_len;
8963
8964 tree = &BTRFS_I(inode)->ordered_tree;
8965
8966 spin_lock_irq(&tree->lock);
8967 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8968 new_len = start - ordered->file_offset;
8969 if (new_len < ordered->truncated_len)
8970 ordered->truncated_len = new_len;
8971 spin_unlock_irq(&tree->lock);
8972
8973 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8974 start,
8975 end - start + 1, 1))
8976 btrfs_finish_ordered_io(ordered);
8977 }
8978 btrfs_put_ordered_extent(ordered);
8979 if (!inode_evicting) {
8980 cached_state = NULL;
8981 lock_extent_bits(tree, start, end,
8982 &cached_state);
8983 }
8984
8985 start = end + 1;
8986 if (start < page_end)
8987 goto again;
8988 }
8989
8990 /*
8991 * Qgroup reserved space handler
8992 * Page here will be either
8993 * 1) Already written to disk
8994 * In this case, its reserved space is released from data rsv map
8995 * and will be freed by delayed_ref handler finally.
8996 * So even we call qgroup_free_data(), it won't decrease reserved
8997 * space.
8998 * 2) Not written to disk
8999 * This means the reserved space should be freed here. However,
9000 * if a truncate invalidates the page (by clearing PageDirty)
9001 * and the page is accounted for while allocating extent
9002 * in btrfs_check_data_free_space() we let delayed_ref to
9003 * free the entire extent.
9004 */
9005 if (PageDirty(page))
9006 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
9007 if (!inode_evicting) {
9008 clear_extent_bit(tree, page_start, page_end,
9009 EXTENT_LOCKED | EXTENT_DIRTY |
9010 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9011 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9012 &cached_state, GFP_NOFS);
9013
9014 __btrfs_releasepage(page, GFP_NOFS);
9015 }
9016
9017 ClearPageChecked(page);
9018 if (PagePrivate(page)) {
9019 ClearPagePrivate(page);
9020 set_page_private(page, 0);
9021 put_page(page);
9022 }
9023 }
9024
9025 /*
9026 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9027 * called from a page fault handler when a page is first dirtied. Hence we must
9028 * be careful to check for EOF conditions here. We set the page up correctly
9029 * for a written page which means we get ENOSPC checking when writing into
9030 * holes and correct delalloc and unwritten extent mapping on filesystems that
9031 * support these features.
9032 *
9033 * We are not allowed to take the i_mutex here so we have to play games to
9034 * protect against truncate races as the page could now be beyond EOF. Because
9035 * vmtruncate() writes the inode size before removing pages, once we have the
9036 * page lock we can determine safely if the page is beyond EOF. If it is not
9037 * beyond EOF, then the page is guaranteed safe against truncation until we
9038 * unlock the page.
9039 */
9040 int btrfs_page_mkwrite(struct vm_fault *vmf)
9041 {
9042 struct page *page = vmf->page;
9043 struct inode *inode = file_inode(vmf->vma->vm_file);
9044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9046 struct btrfs_ordered_extent *ordered;
9047 struct extent_state *cached_state = NULL;
9048 char *kaddr;
9049 unsigned long zero_start;
9050 loff_t size;
9051 int ret;
9052 int reserved = 0;
9053 u64 reserved_space;
9054 u64 page_start;
9055 u64 page_end;
9056 u64 end;
9057
9058 reserved_space = PAGE_SIZE;
9059
9060 sb_start_pagefault(inode->i_sb);
9061 page_start = page_offset(page);
9062 page_end = page_start + PAGE_SIZE - 1;
9063 end = page_end;
9064
9065 /*
9066 * Reserving delalloc space after obtaining the page lock can lead to
9067 * deadlock. For example, if a dirty page is locked by this function
9068 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9069 * dirty page write out, then the btrfs_writepage() function could
9070 * end up waiting indefinitely to get a lock on the page currently
9071 * being processed by btrfs_page_mkwrite() function.
9072 */
9073 ret = btrfs_delalloc_reserve_space(inode, page_start,
9074 reserved_space);
9075 if (!ret) {
9076 ret = file_update_time(vmf->vma->vm_file);
9077 reserved = 1;
9078 }
9079 if (ret) {
9080 if (ret == -ENOMEM)
9081 ret = VM_FAULT_OOM;
9082 else /* -ENOSPC, -EIO, etc */
9083 ret = VM_FAULT_SIGBUS;
9084 if (reserved)
9085 goto out;
9086 goto out_noreserve;
9087 }
9088
9089 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9090 again:
9091 lock_page(page);
9092 size = i_size_read(inode);
9093
9094 if ((page->mapping != inode->i_mapping) ||
9095 (page_start >= size)) {
9096 /* page got truncated out from underneath us */
9097 goto out_unlock;
9098 }
9099 wait_on_page_writeback(page);
9100
9101 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9102 set_page_extent_mapped(page);
9103
9104 /*
9105 * we can't set the delalloc bits if there are pending ordered
9106 * extents. Drop our locks and wait for them to finish
9107 */
9108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9109 PAGE_SIZE);
9110 if (ordered) {
9111 unlock_extent_cached(io_tree, page_start, page_end,
9112 &cached_state, GFP_NOFS);
9113 unlock_page(page);
9114 btrfs_start_ordered_extent(inode, ordered, 1);
9115 btrfs_put_ordered_extent(ordered);
9116 goto again;
9117 }
9118
9119 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9120 reserved_space = round_up(size - page_start,
9121 fs_info->sectorsize);
9122 if (reserved_space < PAGE_SIZE) {
9123 end = page_start + reserved_space - 1;
9124 spin_lock(&BTRFS_I(inode)->lock);
9125 BTRFS_I(inode)->outstanding_extents++;
9126 spin_unlock(&BTRFS_I(inode)->lock);
9127 btrfs_delalloc_release_space(inode, page_start,
9128 PAGE_SIZE - reserved_space);
9129 }
9130 }
9131
9132 /*
9133 * page_mkwrite gets called when the page is firstly dirtied after it's
9134 * faulted in, but write(2) could also dirty a page and set delalloc
9135 * bits, thus in this case for space account reason, we still need to
9136 * clear any delalloc bits within this page range since we have to
9137 * reserve data&meta space before lock_page() (see above comments).
9138 */
9139 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9140 EXTENT_DIRTY | EXTENT_DELALLOC |
9141 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9142 0, 0, &cached_state, GFP_NOFS);
9143
9144 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9145 &cached_state, 0);
9146 if (ret) {
9147 unlock_extent_cached(io_tree, page_start, page_end,
9148 &cached_state, GFP_NOFS);
9149 ret = VM_FAULT_SIGBUS;
9150 goto out_unlock;
9151 }
9152 ret = 0;
9153
9154 /* page is wholly or partially inside EOF */
9155 if (page_start + PAGE_SIZE > size)
9156 zero_start = size & ~PAGE_MASK;
9157 else
9158 zero_start = PAGE_SIZE;
9159
9160 if (zero_start != PAGE_SIZE) {
9161 kaddr = kmap(page);
9162 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9163 flush_dcache_page(page);
9164 kunmap(page);
9165 }
9166 ClearPageChecked(page);
9167 set_page_dirty(page);
9168 SetPageUptodate(page);
9169
9170 BTRFS_I(inode)->last_trans = fs_info->generation;
9171 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9172 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9173
9174 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9175
9176 out_unlock:
9177 if (!ret) {
9178 sb_end_pagefault(inode->i_sb);
9179 return VM_FAULT_LOCKED;
9180 }
9181 unlock_page(page);
9182 out:
9183 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9184 out_noreserve:
9185 sb_end_pagefault(inode->i_sb);
9186 return ret;
9187 }
9188
9189 static int btrfs_truncate(struct inode *inode)
9190 {
9191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9192 struct btrfs_root *root = BTRFS_I(inode)->root;
9193 struct btrfs_block_rsv *rsv;
9194 int ret = 0;
9195 int err = 0;
9196 struct btrfs_trans_handle *trans;
9197 u64 mask = fs_info->sectorsize - 1;
9198 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9199
9200 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9201 (u64)-1);
9202 if (ret)
9203 return ret;
9204
9205 /*
9206 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9207 * 3 things going on here
9208 *
9209 * 1) We need to reserve space for our orphan item and the space to
9210 * delete our orphan item. Lord knows we don't want to have a dangling
9211 * orphan item because we didn't reserve space to remove it.
9212 *
9213 * 2) We need to reserve space to update our inode.
9214 *
9215 * 3) We need to have something to cache all the space that is going to
9216 * be free'd up by the truncate operation, but also have some slack
9217 * space reserved in case it uses space during the truncate (thank you
9218 * very much snapshotting).
9219 *
9220 * And we need these to all be separate. The fact is we can use a lot of
9221 * space doing the truncate, and we have no earthly idea how much space
9222 * we will use, so we need the truncate reservation to be separate so it
9223 * doesn't end up using space reserved for updating the inode or
9224 * removing the orphan item. We also need to be able to stop the
9225 * transaction and start a new one, which means we need to be able to
9226 * update the inode several times, and we have no idea of knowing how
9227 * many times that will be, so we can't just reserve 1 item for the
9228 * entirety of the operation, so that has to be done separately as well.
9229 * Then there is the orphan item, which does indeed need to be held on
9230 * to for the whole operation, and we need nobody to touch this reserved
9231 * space except the orphan code.
9232 *
9233 * So that leaves us with
9234 *
9235 * 1) root->orphan_block_rsv - for the orphan deletion.
9236 * 2) rsv - for the truncate reservation, which we will steal from the
9237 * transaction reservation.
9238 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9239 * updating the inode.
9240 */
9241 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9242 if (!rsv)
9243 return -ENOMEM;
9244 rsv->size = min_size;
9245 rsv->failfast = 1;
9246
9247 /*
9248 * 1 for the truncate slack space
9249 * 1 for updating the inode.
9250 */
9251 trans = btrfs_start_transaction(root, 2);
9252 if (IS_ERR(trans)) {
9253 err = PTR_ERR(trans);
9254 goto out;
9255 }
9256
9257 /* Migrate the slack space for the truncate to our reserve */
9258 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9259 min_size, 0);
9260 BUG_ON(ret);
9261
9262 /*
9263 * So if we truncate and then write and fsync we normally would just
9264 * write the extents that changed, which is a problem if we need to
9265 * first truncate that entire inode. So set this flag so we write out
9266 * all of the extents in the inode to the sync log so we're completely
9267 * safe.
9268 */
9269 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9270 trans->block_rsv = rsv;
9271
9272 while (1) {
9273 ret = btrfs_truncate_inode_items(trans, root, inode,
9274 inode->i_size,
9275 BTRFS_EXTENT_DATA_KEY);
9276 if (ret != -ENOSPC && ret != -EAGAIN) {
9277 err = ret;
9278 break;
9279 }
9280
9281 trans->block_rsv = &fs_info->trans_block_rsv;
9282 ret = btrfs_update_inode(trans, root, inode);
9283 if (ret) {
9284 err = ret;
9285 break;
9286 }
9287
9288 btrfs_end_transaction(trans);
9289 btrfs_btree_balance_dirty(fs_info);
9290
9291 trans = btrfs_start_transaction(root, 2);
9292 if (IS_ERR(trans)) {
9293 ret = err = PTR_ERR(trans);
9294 trans = NULL;
9295 break;
9296 }
9297
9298 btrfs_block_rsv_release(fs_info, rsv, -1);
9299 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9300 rsv, min_size, 0);
9301 BUG_ON(ret); /* shouldn't happen */
9302 trans->block_rsv = rsv;
9303 }
9304
9305 if (ret == 0 && inode->i_nlink > 0) {
9306 trans->block_rsv = root->orphan_block_rsv;
9307 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9308 if (ret)
9309 err = ret;
9310 }
9311
9312 if (trans) {
9313 trans->block_rsv = &fs_info->trans_block_rsv;
9314 ret = btrfs_update_inode(trans, root, inode);
9315 if (ret && !err)
9316 err = ret;
9317
9318 ret = btrfs_end_transaction(trans);
9319 btrfs_btree_balance_dirty(fs_info);
9320 }
9321 out:
9322 btrfs_free_block_rsv(fs_info, rsv);
9323
9324 if (ret && !err)
9325 err = ret;
9326
9327 return err;
9328 }
9329
9330 /*
9331 * create a new subvolume directory/inode (helper for the ioctl).
9332 */
9333 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9334 struct btrfs_root *new_root,
9335 struct btrfs_root *parent_root,
9336 u64 new_dirid)
9337 {
9338 struct inode *inode;
9339 int err;
9340 u64 index = 0;
9341
9342 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9343 new_dirid, new_dirid,
9344 S_IFDIR | (~current_umask() & S_IRWXUGO),
9345 &index);
9346 if (IS_ERR(inode))
9347 return PTR_ERR(inode);
9348 inode->i_op = &btrfs_dir_inode_operations;
9349 inode->i_fop = &btrfs_dir_file_operations;
9350
9351 set_nlink(inode, 1);
9352 btrfs_i_size_write(BTRFS_I(inode), 0);
9353 unlock_new_inode(inode);
9354
9355 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9356 if (err)
9357 btrfs_err(new_root->fs_info,
9358 "error inheriting subvolume %llu properties: %d",
9359 new_root->root_key.objectid, err);
9360
9361 err = btrfs_update_inode(trans, new_root, inode);
9362
9363 iput(inode);
9364 return err;
9365 }
9366
9367 struct inode *btrfs_alloc_inode(struct super_block *sb)
9368 {
9369 struct btrfs_inode *ei;
9370 struct inode *inode;
9371
9372 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9373 if (!ei)
9374 return NULL;
9375
9376 ei->root = NULL;
9377 ei->generation = 0;
9378 ei->last_trans = 0;
9379 ei->last_sub_trans = 0;
9380 ei->logged_trans = 0;
9381 ei->delalloc_bytes = 0;
9382 ei->new_delalloc_bytes = 0;
9383 ei->defrag_bytes = 0;
9384 ei->disk_i_size = 0;
9385 ei->flags = 0;
9386 ei->csum_bytes = 0;
9387 ei->index_cnt = (u64)-1;
9388 ei->dir_index = 0;
9389 ei->last_unlink_trans = 0;
9390 ei->last_log_commit = 0;
9391 ei->delayed_iput_count = 0;
9392
9393 spin_lock_init(&ei->lock);
9394 ei->outstanding_extents = 0;
9395 ei->reserved_extents = 0;
9396
9397 ei->runtime_flags = 0;
9398 ei->force_compress = BTRFS_COMPRESS_NONE;
9399
9400 ei->delayed_node = NULL;
9401
9402 ei->i_otime.tv_sec = 0;
9403 ei->i_otime.tv_nsec = 0;
9404
9405 inode = &ei->vfs_inode;
9406 extent_map_tree_init(&ei->extent_tree);
9407 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9408 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9409 ei->io_tree.track_uptodate = 1;
9410 ei->io_failure_tree.track_uptodate = 1;
9411 atomic_set(&ei->sync_writers, 0);
9412 mutex_init(&ei->log_mutex);
9413 mutex_init(&ei->delalloc_mutex);
9414 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9415 INIT_LIST_HEAD(&ei->delalloc_inodes);
9416 INIT_LIST_HEAD(&ei->delayed_iput);
9417 RB_CLEAR_NODE(&ei->rb_node);
9418 init_rwsem(&ei->dio_sem);
9419
9420 return inode;
9421 }
9422
9423 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9424 void btrfs_test_destroy_inode(struct inode *inode)
9425 {
9426 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9427 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9428 }
9429 #endif
9430
9431 static void btrfs_i_callback(struct rcu_head *head)
9432 {
9433 struct inode *inode = container_of(head, struct inode, i_rcu);
9434 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9435 }
9436
9437 void btrfs_destroy_inode(struct inode *inode)
9438 {
9439 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9440 struct btrfs_ordered_extent *ordered;
9441 struct btrfs_root *root = BTRFS_I(inode)->root;
9442
9443 WARN_ON(!hlist_empty(&inode->i_dentry));
9444 WARN_ON(inode->i_data.nrpages);
9445 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9446 WARN_ON(BTRFS_I(inode)->reserved_extents);
9447 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9448 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9449 WARN_ON(BTRFS_I(inode)->csum_bytes);
9450 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9451
9452 /*
9453 * This can happen where we create an inode, but somebody else also
9454 * created the same inode and we need to destroy the one we already
9455 * created.
9456 */
9457 if (!root)
9458 goto free;
9459
9460 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9461 &BTRFS_I(inode)->runtime_flags)) {
9462 btrfs_info(fs_info, "inode %llu still on the orphan list",
9463 btrfs_ino(BTRFS_I(inode)));
9464 atomic_dec(&root->orphan_inodes);
9465 }
9466
9467 while (1) {
9468 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9469 if (!ordered)
9470 break;
9471 else {
9472 btrfs_err(fs_info,
9473 "found ordered extent %llu %llu on inode cleanup",
9474 ordered->file_offset, ordered->len);
9475 btrfs_remove_ordered_extent(inode, ordered);
9476 btrfs_put_ordered_extent(ordered);
9477 btrfs_put_ordered_extent(ordered);
9478 }
9479 }
9480 btrfs_qgroup_check_reserved_leak(inode);
9481 inode_tree_del(inode);
9482 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9483 free:
9484 call_rcu(&inode->i_rcu, btrfs_i_callback);
9485 }
9486
9487 int btrfs_drop_inode(struct inode *inode)
9488 {
9489 struct btrfs_root *root = BTRFS_I(inode)->root;
9490
9491 if (root == NULL)
9492 return 1;
9493
9494 /* the snap/subvol tree is on deleting */
9495 if (btrfs_root_refs(&root->root_item) == 0)
9496 return 1;
9497 else
9498 return generic_drop_inode(inode);
9499 }
9500
9501 static void init_once(void *foo)
9502 {
9503 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9504
9505 inode_init_once(&ei->vfs_inode);
9506 }
9507
9508 void btrfs_destroy_cachep(void)
9509 {
9510 /*
9511 * Make sure all delayed rcu free inodes are flushed before we
9512 * destroy cache.
9513 */
9514 rcu_barrier();
9515 kmem_cache_destroy(btrfs_inode_cachep);
9516 kmem_cache_destroy(btrfs_trans_handle_cachep);
9517 kmem_cache_destroy(btrfs_transaction_cachep);
9518 kmem_cache_destroy(btrfs_path_cachep);
9519 kmem_cache_destroy(btrfs_free_space_cachep);
9520 }
9521
9522 int btrfs_init_cachep(void)
9523 {
9524 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9525 sizeof(struct btrfs_inode), 0,
9526 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9527 init_once);
9528 if (!btrfs_inode_cachep)
9529 goto fail;
9530
9531 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9532 sizeof(struct btrfs_trans_handle), 0,
9533 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9534 if (!btrfs_trans_handle_cachep)
9535 goto fail;
9536
9537 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9538 sizeof(struct btrfs_transaction), 0,
9539 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9540 if (!btrfs_transaction_cachep)
9541 goto fail;
9542
9543 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9544 sizeof(struct btrfs_path), 0,
9545 SLAB_MEM_SPREAD, NULL);
9546 if (!btrfs_path_cachep)
9547 goto fail;
9548
9549 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9550 sizeof(struct btrfs_free_space), 0,
9551 SLAB_MEM_SPREAD, NULL);
9552 if (!btrfs_free_space_cachep)
9553 goto fail;
9554
9555 return 0;
9556 fail:
9557 btrfs_destroy_cachep();
9558 return -ENOMEM;
9559 }
9560
9561 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9562 u32 request_mask, unsigned int flags)
9563 {
9564 u64 delalloc_bytes;
9565 struct inode *inode = d_inode(path->dentry);
9566 u32 blocksize = inode->i_sb->s_blocksize;
9567
9568 generic_fillattr(inode, stat);
9569 stat->dev = BTRFS_I(inode)->root->anon_dev;
9570
9571 spin_lock(&BTRFS_I(inode)->lock);
9572 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9573 spin_unlock(&BTRFS_I(inode)->lock);
9574 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9575 ALIGN(delalloc_bytes, blocksize)) >> 9;
9576 return 0;
9577 }
9578
9579 static int btrfs_rename_exchange(struct inode *old_dir,
9580 struct dentry *old_dentry,
9581 struct inode *new_dir,
9582 struct dentry *new_dentry)
9583 {
9584 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9585 struct btrfs_trans_handle *trans;
9586 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9587 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9588 struct inode *new_inode = new_dentry->d_inode;
9589 struct inode *old_inode = old_dentry->d_inode;
9590 struct timespec ctime = current_time(old_inode);
9591 struct dentry *parent;
9592 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9593 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9594 u64 old_idx = 0;
9595 u64 new_idx = 0;
9596 u64 root_objectid;
9597 int ret;
9598 bool root_log_pinned = false;
9599 bool dest_log_pinned = false;
9600
9601 /* we only allow rename subvolume link between subvolumes */
9602 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9603 return -EXDEV;
9604
9605 /* close the race window with snapshot create/destroy ioctl */
9606 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9607 down_read(&fs_info->subvol_sem);
9608 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9609 down_read(&fs_info->subvol_sem);
9610
9611 /*
9612 * We want to reserve the absolute worst case amount of items. So if
9613 * both inodes are subvols and we need to unlink them then that would
9614 * require 4 item modifications, but if they are both normal inodes it
9615 * would require 5 item modifications, so we'll assume their normal
9616 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9617 * should cover the worst case number of items we'll modify.
9618 */
9619 trans = btrfs_start_transaction(root, 12);
9620 if (IS_ERR(trans)) {
9621 ret = PTR_ERR(trans);
9622 goto out_notrans;
9623 }
9624
9625 /*
9626 * We need to find a free sequence number both in the source and
9627 * in the destination directory for the exchange.
9628 */
9629 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9630 if (ret)
9631 goto out_fail;
9632 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9633 if (ret)
9634 goto out_fail;
9635
9636 BTRFS_I(old_inode)->dir_index = 0ULL;
9637 BTRFS_I(new_inode)->dir_index = 0ULL;
9638
9639 /* Reference for the source. */
9640 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9641 /* force full log commit if subvolume involved. */
9642 btrfs_set_log_full_commit(fs_info, trans);
9643 } else {
9644 btrfs_pin_log_trans(root);
9645 root_log_pinned = true;
9646 ret = btrfs_insert_inode_ref(trans, dest,
9647 new_dentry->d_name.name,
9648 new_dentry->d_name.len,
9649 old_ino,
9650 btrfs_ino(BTRFS_I(new_dir)),
9651 old_idx);
9652 if (ret)
9653 goto out_fail;
9654 }
9655
9656 /* And now for the dest. */
9657 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9658 /* force full log commit if subvolume involved. */
9659 btrfs_set_log_full_commit(fs_info, trans);
9660 } else {
9661 btrfs_pin_log_trans(dest);
9662 dest_log_pinned = true;
9663 ret = btrfs_insert_inode_ref(trans, root,
9664 old_dentry->d_name.name,
9665 old_dentry->d_name.len,
9666 new_ino,
9667 btrfs_ino(BTRFS_I(old_dir)),
9668 new_idx);
9669 if (ret)
9670 goto out_fail;
9671 }
9672
9673 /* Update inode version and ctime/mtime. */
9674 inode_inc_iversion(old_dir);
9675 inode_inc_iversion(new_dir);
9676 inode_inc_iversion(old_inode);
9677 inode_inc_iversion(new_inode);
9678 old_dir->i_ctime = old_dir->i_mtime = ctime;
9679 new_dir->i_ctime = new_dir->i_mtime = ctime;
9680 old_inode->i_ctime = ctime;
9681 new_inode->i_ctime = ctime;
9682
9683 if (old_dentry->d_parent != new_dentry->d_parent) {
9684 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9685 BTRFS_I(old_inode), 1);
9686 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9687 BTRFS_I(new_inode), 1);
9688 }
9689
9690 /* src is a subvolume */
9691 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9692 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9693 ret = btrfs_unlink_subvol(trans, root, old_dir,
9694 root_objectid,
9695 old_dentry->d_name.name,
9696 old_dentry->d_name.len);
9697 } else { /* src is an inode */
9698 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9699 BTRFS_I(old_dentry->d_inode),
9700 old_dentry->d_name.name,
9701 old_dentry->d_name.len);
9702 if (!ret)
9703 ret = btrfs_update_inode(trans, root, old_inode);
9704 }
9705 if (ret) {
9706 btrfs_abort_transaction(trans, ret);
9707 goto out_fail;
9708 }
9709
9710 /* dest is a subvolume */
9711 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9712 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9713 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9714 root_objectid,
9715 new_dentry->d_name.name,
9716 new_dentry->d_name.len);
9717 } else { /* dest is an inode */
9718 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9719 BTRFS_I(new_dentry->d_inode),
9720 new_dentry->d_name.name,
9721 new_dentry->d_name.len);
9722 if (!ret)
9723 ret = btrfs_update_inode(trans, dest, new_inode);
9724 }
9725 if (ret) {
9726 btrfs_abort_transaction(trans, ret);
9727 goto out_fail;
9728 }
9729
9730 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9731 new_dentry->d_name.name,
9732 new_dentry->d_name.len, 0, old_idx);
9733 if (ret) {
9734 btrfs_abort_transaction(trans, ret);
9735 goto out_fail;
9736 }
9737
9738 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9739 old_dentry->d_name.name,
9740 old_dentry->d_name.len, 0, new_idx);
9741 if (ret) {
9742 btrfs_abort_transaction(trans, ret);
9743 goto out_fail;
9744 }
9745
9746 if (old_inode->i_nlink == 1)
9747 BTRFS_I(old_inode)->dir_index = old_idx;
9748 if (new_inode->i_nlink == 1)
9749 BTRFS_I(new_inode)->dir_index = new_idx;
9750
9751 if (root_log_pinned) {
9752 parent = new_dentry->d_parent;
9753 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9754 parent);
9755 btrfs_end_log_trans(root);
9756 root_log_pinned = false;
9757 }
9758 if (dest_log_pinned) {
9759 parent = old_dentry->d_parent;
9760 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9761 parent);
9762 btrfs_end_log_trans(dest);
9763 dest_log_pinned = false;
9764 }
9765 out_fail:
9766 /*
9767 * If we have pinned a log and an error happened, we unpin tasks
9768 * trying to sync the log and force them to fallback to a transaction
9769 * commit if the log currently contains any of the inodes involved in
9770 * this rename operation (to ensure we do not persist a log with an
9771 * inconsistent state for any of these inodes or leading to any
9772 * inconsistencies when replayed). If the transaction was aborted, the
9773 * abortion reason is propagated to userspace when attempting to commit
9774 * the transaction. If the log does not contain any of these inodes, we
9775 * allow the tasks to sync it.
9776 */
9777 if (ret && (root_log_pinned || dest_log_pinned)) {
9778 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9779 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9780 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9781 (new_inode &&
9782 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9783 btrfs_set_log_full_commit(fs_info, trans);
9784
9785 if (root_log_pinned) {
9786 btrfs_end_log_trans(root);
9787 root_log_pinned = false;
9788 }
9789 if (dest_log_pinned) {
9790 btrfs_end_log_trans(dest);
9791 dest_log_pinned = false;
9792 }
9793 }
9794 ret = btrfs_end_transaction(trans);
9795 out_notrans:
9796 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9797 up_read(&fs_info->subvol_sem);
9798 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9799 up_read(&fs_info->subvol_sem);
9800
9801 return ret;
9802 }
9803
9804 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9805 struct btrfs_root *root,
9806 struct inode *dir,
9807 struct dentry *dentry)
9808 {
9809 int ret;
9810 struct inode *inode;
9811 u64 objectid;
9812 u64 index;
9813
9814 ret = btrfs_find_free_ino(root, &objectid);
9815 if (ret)
9816 return ret;
9817
9818 inode = btrfs_new_inode(trans, root, dir,
9819 dentry->d_name.name,
9820 dentry->d_name.len,
9821 btrfs_ino(BTRFS_I(dir)),
9822 objectid,
9823 S_IFCHR | WHITEOUT_MODE,
9824 &index);
9825
9826 if (IS_ERR(inode)) {
9827 ret = PTR_ERR(inode);
9828 return ret;
9829 }
9830
9831 inode->i_op = &btrfs_special_inode_operations;
9832 init_special_inode(inode, inode->i_mode,
9833 WHITEOUT_DEV);
9834
9835 ret = btrfs_init_inode_security(trans, inode, dir,
9836 &dentry->d_name);
9837 if (ret)
9838 goto out;
9839
9840 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9841 BTRFS_I(inode), 0, index);
9842 if (ret)
9843 goto out;
9844
9845 ret = btrfs_update_inode(trans, root, inode);
9846 out:
9847 unlock_new_inode(inode);
9848 if (ret)
9849 inode_dec_link_count(inode);
9850 iput(inode);
9851
9852 return ret;
9853 }
9854
9855 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9856 struct inode *new_dir, struct dentry *new_dentry,
9857 unsigned int flags)
9858 {
9859 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9860 struct btrfs_trans_handle *trans;
9861 unsigned int trans_num_items;
9862 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9863 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9864 struct inode *new_inode = d_inode(new_dentry);
9865 struct inode *old_inode = d_inode(old_dentry);
9866 u64 index = 0;
9867 u64 root_objectid;
9868 int ret;
9869 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9870 bool log_pinned = false;
9871
9872 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9873 return -EPERM;
9874
9875 /* we only allow rename subvolume link between subvolumes */
9876 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9877 return -EXDEV;
9878
9879 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9880 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9881 return -ENOTEMPTY;
9882
9883 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9884 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9885 return -ENOTEMPTY;
9886
9887
9888 /* check for collisions, even if the name isn't there */
9889 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9890 new_dentry->d_name.name,
9891 new_dentry->d_name.len);
9892
9893 if (ret) {
9894 if (ret == -EEXIST) {
9895 /* we shouldn't get
9896 * eexist without a new_inode */
9897 if (WARN_ON(!new_inode)) {
9898 return ret;
9899 }
9900 } else {
9901 /* maybe -EOVERFLOW */
9902 return ret;
9903 }
9904 }
9905 ret = 0;
9906
9907 /*
9908 * we're using rename to replace one file with another. Start IO on it
9909 * now so we don't add too much work to the end of the transaction
9910 */
9911 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9912 filemap_flush(old_inode->i_mapping);
9913
9914 /* close the racy window with snapshot create/destroy ioctl */
9915 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9916 down_read(&fs_info->subvol_sem);
9917 /*
9918 * We want to reserve the absolute worst case amount of items. So if
9919 * both inodes are subvols and we need to unlink them then that would
9920 * require 4 item modifications, but if they are both normal inodes it
9921 * would require 5 item modifications, so we'll assume they are normal
9922 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9923 * should cover the worst case number of items we'll modify.
9924 * If our rename has the whiteout flag, we need more 5 units for the
9925 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9926 * when selinux is enabled).
9927 */
9928 trans_num_items = 11;
9929 if (flags & RENAME_WHITEOUT)
9930 trans_num_items += 5;
9931 trans = btrfs_start_transaction(root, trans_num_items);
9932 if (IS_ERR(trans)) {
9933 ret = PTR_ERR(trans);
9934 goto out_notrans;
9935 }
9936
9937 if (dest != root)
9938 btrfs_record_root_in_trans(trans, dest);
9939
9940 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9941 if (ret)
9942 goto out_fail;
9943
9944 BTRFS_I(old_inode)->dir_index = 0ULL;
9945 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9946 /* force full log commit if subvolume involved. */
9947 btrfs_set_log_full_commit(fs_info, trans);
9948 } else {
9949 btrfs_pin_log_trans(root);
9950 log_pinned = true;
9951 ret = btrfs_insert_inode_ref(trans, dest,
9952 new_dentry->d_name.name,
9953 new_dentry->d_name.len,
9954 old_ino,
9955 btrfs_ino(BTRFS_I(new_dir)), index);
9956 if (ret)
9957 goto out_fail;
9958 }
9959
9960 inode_inc_iversion(old_dir);
9961 inode_inc_iversion(new_dir);
9962 inode_inc_iversion(old_inode);
9963 old_dir->i_ctime = old_dir->i_mtime =
9964 new_dir->i_ctime = new_dir->i_mtime =
9965 old_inode->i_ctime = current_time(old_dir);
9966
9967 if (old_dentry->d_parent != new_dentry->d_parent)
9968 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9969 BTRFS_I(old_inode), 1);
9970
9971 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9972 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9973 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9974 old_dentry->d_name.name,
9975 old_dentry->d_name.len);
9976 } else {
9977 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9978 BTRFS_I(d_inode(old_dentry)),
9979 old_dentry->d_name.name,
9980 old_dentry->d_name.len);
9981 if (!ret)
9982 ret = btrfs_update_inode(trans, root, old_inode);
9983 }
9984 if (ret) {
9985 btrfs_abort_transaction(trans, ret);
9986 goto out_fail;
9987 }
9988
9989 if (new_inode) {
9990 inode_inc_iversion(new_inode);
9991 new_inode->i_ctime = current_time(new_inode);
9992 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9993 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9994 root_objectid = BTRFS_I(new_inode)->location.objectid;
9995 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9996 root_objectid,
9997 new_dentry->d_name.name,
9998 new_dentry->d_name.len);
9999 BUG_ON(new_inode->i_nlink == 0);
10000 } else {
10001 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10002 BTRFS_I(d_inode(new_dentry)),
10003 new_dentry->d_name.name,
10004 new_dentry->d_name.len);
10005 }
10006 if (!ret && new_inode->i_nlink == 0)
10007 ret = btrfs_orphan_add(trans,
10008 BTRFS_I(d_inode(new_dentry)));
10009 if (ret) {
10010 btrfs_abort_transaction(trans, ret);
10011 goto out_fail;
10012 }
10013 }
10014
10015 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10016 new_dentry->d_name.name,
10017 new_dentry->d_name.len, 0, index);
10018 if (ret) {
10019 btrfs_abort_transaction(trans, ret);
10020 goto out_fail;
10021 }
10022
10023 if (old_inode->i_nlink == 1)
10024 BTRFS_I(old_inode)->dir_index = index;
10025
10026 if (log_pinned) {
10027 struct dentry *parent = new_dentry->d_parent;
10028
10029 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10030 parent);
10031 btrfs_end_log_trans(root);
10032 log_pinned = false;
10033 }
10034
10035 if (flags & RENAME_WHITEOUT) {
10036 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10037 old_dentry);
10038
10039 if (ret) {
10040 btrfs_abort_transaction(trans, ret);
10041 goto out_fail;
10042 }
10043 }
10044 out_fail:
10045 /*
10046 * If we have pinned the log and an error happened, we unpin tasks
10047 * trying to sync the log and force them to fallback to a transaction
10048 * commit if the log currently contains any of the inodes involved in
10049 * this rename operation (to ensure we do not persist a log with an
10050 * inconsistent state for any of these inodes or leading to any
10051 * inconsistencies when replayed). If the transaction was aborted, the
10052 * abortion reason is propagated to userspace when attempting to commit
10053 * the transaction. If the log does not contain any of these inodes, we
10054 * allow the tasks to sync it.
10055 */
10056 if (ret && log_pinned) {
10057 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10058 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10059 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10060 (new_inode &&
10061 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10062 btrfs_set_log_full_commit(fs_info, trans);
10063
10064 btrfs_end_log_trans(root);
10065 log_pinned = false;
10066 }
10067 btrfs_end_transaction(trans);
10068 out_notrans:
10069 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10070 up_read(&fs_info->subvol_sem);
10071
10072 return ret;
10073 }
10074
10075 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10076 struct inode *new_dir, struct dentry *new_dentry,
10077 unsigned int flags)
10078 {
10079 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10080 return -EINVAL;
10081
10082 if (flags & RENAME_EXCHANGE)
10083 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10084 new_dentry);
10085
10086 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10087 }
10088
10089 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10090 {
10091 struct btrfs_delalloc_work *delalloc_work;
10092 struct inode *inode;
10093
10094 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10095 work);
10096 inode = delalloc_work->inode;
10097 filemap_flush(inode->i_mapping);
10098 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10099 &BTRFS_I(inode)->runtime_flags))
10100 filemap_flush(inode->i_mapping);
10101
10102 if (delalloc_work->delay_iput)
10103 btrfs_add_delayed_iput(inode);
10104 else
10105 iput(inode);
10106 complete(&delalloc_work->completion);
10107 }
10108
10109 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10110 int delay_iput)
10111 {
10112 struct btrfs_delalloc_work *work;
10113
10114 work = kmalloc(sizeof(*work), GFP_NOFS);
10115 if (!work)
10116 return NULL;
10117
10118 init_completion(&work->completion);
10119 INIT_LIST_HEAD(&work->list);
10120 work->inode = inode;
10121 work->delay_iput = delay_iput;
10122 WARN_ON_ONCE(!inode);
10123 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10124 btrfs_run_delalloc_work, NULL, NULL);
10125
10126 return work;
10127 }
10128
10129 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10130 {
10131 wait_for_completion(&work->completion);
10132 kfree(work);
10133 }
10134
10135 /*
10136 * some fairly slow code that needs optimization. This walks the list
10137 * of all the inodes with pending delalloc and forces them to disk.
10138 */
10139 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10140 int nr)
10141 {
10142 struct btrfs_inode *binode;
10143 struct inode *inode;
10144 struct btrfs_delalloc_work *work, *next;
10145 struct list_head works;
10146 struct list_head splice;
10147 int ret = 0;
10148
10149 INIT_LIST_HEAD(&works);
10150 INIT_LIST_HEAD(&splice);
10151
10152 mutex_lock(&root->delalloc_mutex);
10153 spin_lock(&root->delalloc_lock);
10154 list_splice_init(&root->delalloc_inodes, &splice);
10155 while (!list_empty(&splice)) {
10156 binode = list_entry(splice.next, struct btrfs_inode,
10157 delalloc_inodes);
10158
10159 list_move_tail(&binode->delalloc_inodes,
10160 &root->delalloc_inodes);
10161 inode = igrab(&binode->vfs_inode);
10162 if (!inode) {
10163 cond_resched_lock(&root->delalloc_lock);
10164 continue;
10165 }
10166 spin_unlock(&root->delalloc_lock);
10167
10168 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10169 if (!work) {
10170 if (delay_iput)
10171 btrfs_add_delayed_iput(inode);
10172 else
10173 iput(inode);
10174 ret = -ENOMEM;
10175 goto out;
10176 }
10177 list_add_tail(&work->list, &works);
10178 btrfs_queue_work(root->fs_info->flush_workers,
10179 &work->work);
10180 ret++;
10181 if (nr != -1 && ret >= nr)
10182 goto out;
10183 cond_resched();
10184 spin_lock(&root->delalloc_lock);
10185 }
10186 spin_unlock(&root->delalloc_lock);
10187
10188 out:
10189 list_for_each_entry_safe(work, next, &works, list) {
10190 list_del_init(&work->list);
10191 btrfs_wait_and_free_delalloc_work(work);
10192 }
10193
10194 if (!list_empty_careful(&splice)) {
10195 spin_lock(&root->delalloc_lock);
10196 list_splice_tail(&splice, &root->delalloc_inodes);
10197 spin_unlock(&root->delalloc_lock);
10198 }
10199 mutex_unlock(&root->delalloc_mutex);
10200 return ret;
10201 }
10202
10203 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10204 {
10205 struct btrfs_fs_info *fs_info = root->fs_info;
10206 int ret;
10207
10208 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10209 return -EROFS;
10210
10211 ret = __start_delalloc_inodes(root, delay_iput, -1);
10212 if (ret > 0)
10213 ret = 0;
10214 /*
10215 * the filemap_flush will queue IO into the worker threads, but
10216 * we have to make sure the IO is actually started and that
10217 * ordered extents get created before we return
10218 */
10219 atomic_inc(&fs_info->async_submit_draining);
10220 while (atomic_read(&fs_info->nr_async_submits) ||
10221 atomic_read(&fs_info->async_delalloc_pages)) {
10222 wait_event(fs_info->async_submit_wait,
10223 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10224 atomic_read(&fs_info->async_delalloc_pages) == 0));
10225 }
10226 atomic_dec(&fs_info->async_submit_draining);
10227 return ret;
10228 }
10229
10230 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10231 int nr)
10232 {
10233 struct btrfs_root *root;
10234 struct list_head splice;
10235 int ret;
10236
10237 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10238 return -EROFS;
10239
10240 INIT_LIST_HEAD(&splice);
10241
10242 mutex_lock(&fs_info->delalloc_root_mutex);
10243 spin_lock(&fs_info->delalloc_root_lock);
10244 list_splice_init(&fs_info->delalloc_roots, &splice);
10245 while (!list_empty(&splice) && nr) {
10246 root = list_first_entry(&splice, struct btrfs_root,
10247 delalloc_root);
10248 root = btrfs_grab_fs_root(root);
10249 BUG_ON(!root);
10250 list_move_tail(&root->delalloc_root,
10251 &fs_info->delalloc_roots);
10252 spin_unlock(&fs_info->delalloc_root_lock);
10253
10254 ret = __start_delalloc_inodes(root, delay_iput, nr);
10255 btrfs_put_fs_root(root);
10256 if (ret < 0)
10257 goto out;
10258
10259 if (nr != -1) {
10260 nr -= ret;
10261 WARN_ON(nr < 0);
10262 }
10263 spin_lock(&fs_info->delalloc_root_lock);
10264 }
10265 spin_unlock(&fs_info->delalloc_root_lock);
10266
10267 ret = 0;
10268 atomic_inc(&fs_info->async_submit_draining);
10269 while (atomic_read(&fs_info->nr_async_submits) ||
10270 atomic_read(&fs_info->async_delalloc_pages)) {
10271 wait_event(fs_info->async_submit_wait,
10272 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10273 atomic_read(&fs_info->async_delalloc_pages) == 0));
10274 }
10275 atomic_dec(&fs_info->async_submit_draining);
10276 out:
10277 if (!list_empty_careful(&splice)) {
10278 spin_lock(&fs_info->delalloc_root_lock);
10279 list_splice_tail(&splice, &fs_info->delalloc_roots);
10280 spin_unlock(&fs_info->delalloc_root_lock);
10281 }
10282 mutex_unlock(&fs_info->delalloc_root_mutex);
10283 return ret;
10284 }
10285
10286 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10287 const char *symname)
10288 {
10289 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10290 struct btrfs_trans_handle *trans;
10291 struct btrfs_root *root = BTRFS_I(dir)->root;
10292 struct btrfs_path *path;
10293 struct btrfs_key key;
10294 struct inode *inode = NULL;
10295 int err;
10296 int drop_inode = 0;
10297 u64 objectid;
10298 u64 index = 0;
10299 int name_len;
10300 int datasize;
10301 unsigned long ptr;
10302 struct btrfs_file_extent_item *ei;
10303 struct extent_buffer *leaf;
10304
10305 name_len = strlen(symname);
10306 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10307 return -ENAMETOOLONG;
10308
10309 /*
10310 * 2 items for inode item and ref
10311 * 2 items for dir items
10312 * 1 item for updating parent inode item
10313 * 1 item for the inline extent item
10314 * 1 item for xattr if selinux is on
10315 */
10316 trans = btrfs_start_transaction(root, 7);
10317 if (IS_ERR(trans))
10318 return PTR_ERR(trans);
10319
10320 err = btrfs_find_free_ino(root, &objectid);
10321 if (err)
10322 goto out_unlock;
10323
10324 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10325 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10326 objectid, S_IFLNK|S_IRWXUGO, &index);
10327 if (IS_ERR(inode)) {
10328 err = PTR_ERR(inode);
10329 goto out_unlock;
10330 }
10331
10332 /*
10333 * If the active LSM wants to access the inode during
10334 * d_instantiate it needs these. Smack checks to see
10335 * if the filesystem supports xattrs by looking at the
10336 * ops vector.
10337 */
10338 inode->i_fop = &btrfs_file_operations;
10339 inode->i_op = &btrfs_file_inode_operations;
10340 inode->i_mapping->a_ops = &btrfs_aops;
10341 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10342
10343 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10344 if (err)
10345 goto out_unlock_inode;
10346
10347 path = btrfs_alloc_path();
10348 if (!path) {
10349 err = -ENOMEM;
10350 goto out_unlock_inode;
10351 }
10352 key.objectid = btrfs_ino(BTRFS_I(inode));
10353 key.offset = 0;
10354 key.type = BTRFS_EXTENT_DATA_KEY;
10355 datasize = btrfs_file_extent_calc_inline_size(name_len);
10356 err = btrfs_insert_empty_item(trans, root, path, &key,
10357 datasize);
10358 if (err) {
10359 btrfs_free_path(path);
10360 goto out_unlock_inode;
10361 }
10362 leaf = path->nodes[0];
10363 ei = btrfs_item_ptr(leaf, path->slots[0],
10364 struct btrfs_file_extent_item);
10365 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10366 btrfs_set_file_extent_type(leaf, ei,
10367 BTRFS_FILE_EXTENT_INLINE);
10368 btrfs_set_file_extent_encryption(leaf, ei, 0);
10369 btrfs_set_file_extent_compression(leaf, ei, 0);
10370 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10371 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10372
10373 ptr = btrfs_file_extent_inline_start(ei);
10374 write_extent_buffer(leaf, symname, ptr, name_len);
10375 btrfs_mark_buffer_dirty(leaf);
10376 btrfs_free_path(path);
10377
10378 inode->i_op = &btrfs_symlink_inode_operations;
10379 inode_nohighmem(inode);
10380 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10381 inode_set_bytes(inode, name_len);
10382 btrfs_i_size_write(BTRFS_I(inode), name_len);
10383 err = btrfs_update_inode(trans, root, inode);
10384 /*
10385 * Last step, add directory indexes for our symlink inode. This is the
10386 * last step to avoid extra cleanup of these indexes if an error happens
10387 * elsewhere above.
10388 */
10389 if (!err)
10390 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10391 BTRFS_I(inode), 0, index);
10392 if (err) {
10393 drop_inode = 1;
10394 goto out_unlock_inode;
10395 }
10396
10397 unlock_new_inode(inode);
10398 d_instantiate(dentry, inode);
10399
10400 out_unlock:
10401 btrfs_end_transaction(trans);
10402 if (drop_inode) {
10403 inode_dec_link_count(inode);
10404 iput(inode);
10405 }
10406 btrfs_btree_balance_dirty(fs_info);
10407 return err;
10408
10409 out_unlock_inode:
10410 drop_inode = 1;
10411 unlock_new_inode(inode);
10412 goto out_unlock;
10413 }
10414
10415 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10416 u64 start, u64 num_bytes, u64 min_size,
10417 loff_t actual_len, u64 *alloc_hint,
10418 struct btrfs_trans_handle *trans)
10419 {
10420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10421 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10422 struct extent_map *em;
10423 struct btrfs_root *root = BTRFS_I(inode)->root;
10424 struct btrfs_key ins;
10425 u64 cur_offset = start;
10426 u64 i_size;
10427 u64 cur_bytes;
10428 u64 last_alloc = (u64)-1;
10429 int ret = 0;
10430 bool own_trans = true;
10431 u64 end = start + num_bytes - 1;
10432
10433 if (trans)
10434 own_trans = false;
10435 while (num_bytes > 0) {
10436 if (own_trans) {
10437 trans = btrfs_start_transaction(root, 3);
10438 if (IS_ERR(trans)) {
10439 ret = PTR_ERR(trans);
10440 break;
10441 }
10442 }
10443
10444 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10445 cur_bytes = max(cur_bytes, min_size);
10446 /*
10447 * If we are severely fragmented we could end up with really
10448 * small allocations, so if the allocator is returning small
10449 * chunks lets make its job easier by only searching for those
10450 * sized chunks.
10451 */
10452 cur_bytes = min(cur_bytes, last_alloc);
10453 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10454 min_size, 0, *alloc_hint, &ins, 1, 0);
10455 if (ret) {
10456 if (own_trans)
10457 btrfs_end_transaction(trans);
10458 break;
10459 }
10460 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10461
10462 last_alloc = ins.offset;
10463 ret = insert_reserved_file_extent(trans, inode,
10464 cur_offset, ins.objectid,
10465 ins.offset, ins.offset,
10466 ins.offset, 0, 0, 0,
10467 BTRFS_FILE_EXTENT_PREALLOC);
10468 if (ret) {
10469 btrfs_free_reserved_extent(fs_info, ins.objectid,
10470 ins.offset, 0);
10471 btrfs_abort_transaction(trans, ret);
10472 if (own_trans)
10473 btrfs_end_transaction(trans);
10474 break;
10475 }
10476
10477 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10478 cur_offset + ins.offset -1, 0);
10479
10480 em = alloc_extent_map();
10481 if (!em) {
10482 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10483 &BTRFS_I(inode)->runtime_flags);
10484 goto next;
10485 }
10486
10487 em->start = cur_offset;
10488 em->orig_start = cur_offset;
10489 em->len = ins.offset;
10490 em->block_start = ins.objectid;
10491 em->block_len = ins.offset;
10492 em->orig_block_len = ins.offset;
10493 em->ram_bytes = ins.offset;
10494 em->bdev = fs_info->fs_devices->latest_bdev;
10495 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10496 em->generation = trans->transid;
10497
10498 while (1) {
10499 write_lock(&em_tree->lock);
10500 ret = add_extent_mapping(em_tree, em, 1);
10501 write_unlock(&em_tree->lock);
10502 if (ret != -EEXIST)
10503 break;
10504 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10505 cur_offset + ins.offset - 1,
10506 0);
10507 }
10508 free_extent_map(em);
10509 next:
10510 num_bytes -= ins.offset;
10511 cur_offset += ins.offset;
10512 *alloc_hint = ins.objectid + ins.offset;
10513
10514 inode_inc_iversion(inode);
10515 inode->i_ctime = current_time(inode);
10516 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10517 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10518 (actual_len > inode->i_size) &&
10519 (cur_offset > inode->i_size)) {
10520 if (cur_offset > actual_len)
10521 i_size = actual_len;
10522 else
10523 i_size = cur_offset;
10524 i_size_write(inode, i_size);
10525 btrfs_ordered_update_i_size(inode, i_size, NULL);
10526 }
10527
10528 ret = btrfs_update_inode(trans, root, inode);
10529
10530 if (ret) {
10531 btrfs_abort_transaction(trans, ret);
10532 if (own_trans)
10533 btrfs_end_transaction(trans);
10534 break;
10535 }
10536
10537 if (own_trans)
10538 btrfs_end_transaction(trans);
10539 }
10540 if (cur_offset < end)
10541 btrfs_free_reserved_data_space(inode, cur_offset,
10542 end - cur_offset + 1);
10543 return ret;
10544 }
10545
10546 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10547 u64 start, u64 num_bytes, u64 min_size,
10548 loff_t actual_len, u64 *alloc_hint)
10549 {
10550 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10551 min_size, actual_len, alloc_hint,
10552 NULL);
10553 }
10554
10555 int btrfs_prealloc_file_range_trans(struct inode *inode,
10556 struct btrfs_trans_handle *trans, int mode,
10557 u64 start, u64 num_bytes, u64 min_size,
10558 loff_t actual_len, u64 *alloc_hint)
10559 {
10560 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10561 min_size, actual_len, alloc_hint, trans);
10562 }
10563
10564 static int btrfs_set_page_dirty(struct page *page)
10565 {
10566 return __set_page_dirty_nobuffers(page);
10567 }
10568
10569 static int btrfs_permission(struct inode *inode, int mask)
10570 {
10571 struct btrfs_root *root = BTRFS_I(inode)->root;
10572 umode_t mode = inode->i_mode;
10573
10574 if (mask & MAY_WRITE &&
10575 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10576 if (btrfs_root_readonly(root))
10577 return -EROFS;
10578 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10579 return -EACCES;
10580 }
10581 return generic_permission(inode, mask);
10582 }
10583
10584 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10585 {
10586 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10587 struct btrfs_trans_handle *trans;
10588 struct btrfs_root *root = BTRFS_I(dir)->root;
10589 struct inode *inode = NULL;
10590 u64 objectid;
10591 u64 index;
10592 int ret = 0;
10593
10594 /*
10595 * 5 units required for adding orphan entry
10596 */
10597 trans = btrfs_start_transaction(root, 5);
10598 if (IS_ERR(trans))
10599 return PTR_ERR(trans);
10600
10601 ret = btrfs_find_free_ino(root, &objectid);
10602 if (ret)
10603 goto out;
10604
10605 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10606 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10607 if (IS_ERR(inode)) {
10608 ret = PTR_ERR(inode);
10609 inode = NULL;
10610 goto out;
10611 }
10612
10613 inode->i_fop = &btrfs_file_operations;
10614 inode->i_op = &btrfs_file_inode_operations;
10615
10616 inode->i_mapping->a_ops = &btrfs_aops;
10617 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10618
10619 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10620 if (ret)
10621 goto out_inode;
10622
10623 ret = btrfs_update_inode(trans, root, inode);
10624 if (ret)
10625 goto out_inode;
10626 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10627 if (ret)
10628 goto out_inode;
10629
10630 /*
10631 * We set number of links to 0 in btrfs_new_inode(), and here we set
10632 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10633 * through:
10634 *
10635 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10636 */
10637 set_nlink(inode, 1);
10638 unlock_new_inode(inode);
10639 d_tmpfile(dentry, inode);
10640 mark_inode_dirty(inode);
10641
10642 out:
10643 btrfs_end_transaction(trans);
10644 if (ret)
10645 iput(inode);
10646 btrfs_balance_delayed_items(fs_info);
10647 btrfs_btree_balance_dirty(fs_info);
10648 return ret;
10649
10650 out_inode:
10651 unlock_new_inode(inode);
10652 goto out;
10653
10654 }
10655
10656 __attribute__((const))
10657 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10658 {
10659 return -EAGAIN;
10660 }
10661
10662 static const struct inode_operations btrfs_dir_inode_operations = {
10663 .getattr = btrfs_getattr,
10664 .lookup = btrfs_lookup,
10665 .create = btrfs_create,
10666 .unlink = btrfs_unlink,
10667 .link = btrfs_link,
10668 .mkdir = btrfs_mkdir,
10669 .rmdir = btrfs_rmdir,
10670 .rename = btrfs_rename2,
10671 .symlink = btrfs_symlink,
10672 .setattr = btrfs_setattr,
10673 .mknod = btrfs_mknod,
10674 .listxattr = btrfs_listxattr,
10675 .permission = btrfs_permission,
10676 .get_acl = btrfs_get_acl,
10677 .set_acl = btrfs_set_acl,
10678 .update_time = btrfs_update_time,
10679 .tmpfile = btrfs_tmpfile,
10680 };
10681 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10682 .lookup = btrfs_lookup,
10683 .permission = btrfs_permission,
10684 .update_time = btrfs_update_time,
10685 };
10686
10687 static const struct file_operations btrfs_dir_file_operations = {
10688 .llseek = generic_file_llseek,
10689 .read = generic_read_dir,
10690 .iterate_shared = btrfs_real_readdir,
10691 .unlocked_ioctl = btrfs_ioctl,
10692 #ifdef CONFIG_COMPAT
10693 .compat_ioctl = btrfs_compat_ioctl,
10694 #endif
10695 .release = btrfs_release_file,
10696 .fsync = btrfs_sync_file,
10697 };
10698
10699 static const struct extent_io_ops btrfs_extent_io_ops = {
10700 /* mandatory callbacks */
10701 .submit_bio_hook = btrfs_submit_bio_hook,
10702 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10703 .merge_bio_hook = btrfs_merge_bio_hook,
10704 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10705
10706 /* optional callbacks */
10707 .fill_delalloc = run_delalloc_range,
10708 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10709 .writepage_start_hook = btrfs_writepage_start_hook,
10710 .set_bit_hook = btrfs_set_bit_hook,
10711 .clear_bit_hook = btrfs_clear_bit_hook,
10712 .merge_extent_hook = btrfs_merge_extent_hook,
10713 .split_extent_hook = btrfs_split_extent_hook,
10714 };
10715
10716 /*
10717 * btrfs doesn't support the bmap operation because swapfiles
10718 * use bmap to make a mapping of extents in the file. They assume
10719 * these extents won't change over the life of the file and they
10720 * use the bmap result to do IO directly to the drive.
10721 *
10722 * the btrfs bmap call would return logical addresses that aren't
10723 * suitable for IO and they also will change frequently as COW
10724 * operations happen. So, swapfile + btrfs == corruption.
10725 *
10726 * For now we're avoiding this by dropping bmap.
10727 */
10728 static const struct address_space_operations btrfs_aops = {
10729 .readpage = btrfs_readpage,
10730 .writepage = btrfs_writepage,
10731 .writepages = btrfs_writepages,
10732 .readpages = btrfs_readpages,
10733 .direct_IO = btrfs_direct_IO,
10734 .invalidatepage = btrfs_invalidatepage,
10735 .releasepage = btrfs_releasepage,
10736 .set_page_dirty = btrfs_set_page_dirty,
10737 .error_remove_page = generic_error_remove_page,
10738 };
10739
10740 static const struct address_space_operations btrfs_symlink_aops = {
10741 .readpage = btrfs_readpage,
10742 .writepage = btrfs_writepage,
10743 .invalidatepage = btrfs_invalidatepage,
10744 .releasepage = btrfs_releasepage,
10745 };
10746
10747 static const struct inode_operations btrfs_file_inode_operations = {
10748 .getattr = btrfs_getattr,
10749 .setattr = btrfs_setattr,
10750 .listxattr = btrfs_listxattr,
10751 .permission = btrfs_permission,
10752 .fiemap = btrfs_fiemap,
10753 .get_acl = btrfs_get_acl,
10754 .set_acl = btrfs_set_acl,
10755 .update_time = btrfs_update_time,
10756 };
10757 static const struct inode_operations btrfs_special_inode_operations = {
10758 .getattr = btrfs_getattr,
10759 .setattr = btrfs_setattr,
10760 .permission = btrfs_permission,
10761 .listxattr = btrfs_listxattr,
10762 .get_acl = btrfs_get_acl,
10763 .set_acl = btrfs_set_acl,
10764 .update_time = btrfs_update_time,
10765 };
10766 static const struct inode_operations btrfs_symlink_inode_operations = {
10767 .get_link = page_get_link,
10768 .getattr = btrfs_getattr,
10769 .setattr = btrfs_setattr,
10770 .permission = btrfs_permission,
10771 .listxattr = btrfs_listxattr,
10772 .update_time = btrfs_update_time,
10773 };
10774
10775 const struct dentry_operations btrfs_dentry_operations = {
10776 .d_delete = btrfs_dentry_delete,
10777 .d_release = btrfs_dentry_release,
10778 };