]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
Btrfs: cache ordered extent when completing io
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56 };
57
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 struct inode *inode, struct inode *dir)
93 {
94 int err;
95
96 err = btrfs_init_acl(trans, inode, dir);
97 if (!err)
98 err = btrfs_xattr_security_init(trans, inode, dir);
99 return err;
100 }
101
102 /*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111 {
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
131 path = btrfs_alloc_path();
132 if (!path)
133 return -ENOMEM;
134
135 path->leave_spinning = 1;
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
164 while (compressed_size > 0) {
165 cpage = compressed_pages[i];
166 cur_size = min_t(unsigned long, compressed_size,
167 PAGE_CACHE_SIZE);
168
169 kaddr = kmap_atomic(cpage, KM_USER0);
170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 kunmap_atomic(kaddr, KM_USER0);
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
192 /*
193 * we're an inline extent, so nobody can
194 * extend the file past i_size without locking
195 * a page we already have locked.
196 *
197 * We must do any isize and inode updates
198 * before we unlock the pages. Otherwise we
199 * could end up racing with unlink.
200 */
201 BTRFS_I(inode)->disk_i_size = inode->i_size;
202 btrfs_update_inode(trans, root, inode);
203
204 return 0;
205 fail:
206 btrfs_free_path(path);
207 return err;
208 }
209
210
211 /*
212 * conditionally insert an inline extent into the file. This
213 * does the checks required to make sure the data is small enough
214 * to fit as an inline extent.
215 */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217 struct btrfs_root *root,
218 struct inode *inode, u64 start, u64 end,
219 size_t compressed_size,
220 struct page **compressed_pages)
221 {
222 u64 isize = i_size_read(inode);
223 u64 actual_end = min(end + 1, isize);
224 u64 inline_len = actual_end - start;
225 u64 aligned_end = (end + root->sectorsize - 1) &
226 ~((u64)root->sectorsize - 1);
227 u64 hint_byte;
228 u64 data_len = inline_len;
229 int ret;
230
231 if (compressed_size)
232 data_len = compressed_size;
233
234 if (start > 0 ||
235 actual_end >= PAGE_CACHE_SIZE ||
236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 (!compressed_size &&
238 (actual_end & (root->sectorsize - 1)) == 0) ||
239 end + 1 < isize ||
240 data_len > root->fs_info->max_inline) {
241 return 1;
242 }
243
244 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245 &hint_byte, 1);
246 BUG_ON(ret);
247
248 if (isize > actual_end)
249 inline_len = min_t(u64, isize, actual_end);
250 ret = insert_inline_extent(trans, root, inode, start,
251 inline_len, compressed_size,
252 compressed_pages);
253 BUG_ON(ret);
254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255 return 0;
256 }
257
258 struct async_extent {
259 u64 start;
260 u64 ram_size;
261 u64 compressed_size;
262 struct page **pages;
263 unsigned long nr_pages;
264 struct list_head list;
265 };
266
267 struct async_cow {
268 struct inode *inode;
269 struct btrfs_root *root;
270 struct page *locked_page;
271 u64 start;
272 u64 end;
273 struct list_head extents;
274 struct btrfs_work work;
275 };
276
277 static noinline int add_async_extent(struct async_cow *cow,
278 u64 start, u64 ram_size,
279 u64 compressed_size,
280 struct page **pages,
281 unsigned long nr_pages)
282 {
283 struct async_extent *async_extent;
284
285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 async_extent->start = start;
287 async_extent->ram_size = ram_size;
288 async_extent->compressed_size = compressed_size;
289 async_extent->pages = pages;
290 async_extent->nr_pages = nr_pages;
291 list_add_tail(&async_extent->list, &cow->extents);
292 return 0;
293 }
294
295 /*
296 * we create compressed extents in two phases. The first
297 * phase compresses a range of pages that have already been
298 * locked (both pages and state bits are locked).
299 *
300 * This is done inside an ordered work queue, and the compression
301 * is spread across many cpus. The actual IO submission is step
302 * two, and the ordered work queue takes care of making sure that
303 * happens in the same order things were put onto the queue by
304 * writepages and friends.
305 *
306 * If this code finds it can't get good compression, it puts an
307 * entry onto the work queue to write the uncompressed bytes. This
308 * makes sure that both compressed inodes and uncompressed inodes
309 * are written in the same order that pdflush sent them down.
310 */
311 static noinline int compress_file_range(struct inode *inode,
312 struct page *locked_page,
313 u64 start, u64 end,
314 struct async_cow *async_cow,
315 int *num_added)
316 {
317 struct btrfs_root *root = BTRFS_I(inode)->root;
318 struct btrfs_trans_handle *trans;
319 u64 num_bytes;
320 u64 orig_start;
321 u64 disk_num_bytes;
322 u64 blocksize = root->sectorsize;
323 u64 actual_end;
324 u64 isize = i_size_read(inode);
325 int ret = 0;
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
332 unsigned long max_uncompressed = 128 * 1024;
333 int i;
334 int will_compress;
335
336 orig_start = start;
337
338 actual_end = min_t(u64, isize, end + 1);
339 again:
340 will_compress = 0;
341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343
344 /*
345 * we don't want to send crud past the end of i_size through
346 * compression, that's just a waste of CPU time. So, if the
347 * end of the file is before the start of our current
348 * requested range of bytes, we bail out to the uncompressed
349 * cleanup code that can deal with all of this.
350 *
351 * It isn't really the fastest way to fix things, but this is a
352 * very uncommon corner.
353 */
354 if (actual_end <= start)
355 goto cleanup_and_bail_uncompressed;
356
357 total_compressed = actual_end - start;
358
359 /* we want to make sure that amount of ram required to uncompress
360 * an extent is reasonable, so we limit the total size in ram
361 * of a compressed extent to 128k. This is a crucial number
362 * because it also controls how easily we can spread reads across
363 * cpus for decompression.
364 *
365 * We also want to make sure the amount of IO required to do
366 * a random read is reasonably small, so we limit the size of
367 * a compressed extent to 128k.
368 */
369 total_compressed = min(total_compressed, max_uncompressed);
370 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371 num_bytes = max(blocksize, num_bytes);
372 disk_num_bytes = num_bytes;
373 total_in = 0;
374 ret = 0;
375
376 /*
377 * we do compression for mount -o compress and when the
378 * inode has not been flagged as nocompress. This flag can
379 * change at any time if we discover bad compression ratios.
380 */
381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382 (btrfs_test_opt(root, COMPRESS) ||
383 (BTRFS_I(inode)->force_compress))) {
384 WARN_ON(pages);
385 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
386
387 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
388 total_compressed, pages,
389 nr_pages, &nr_pages_ret,
390 &total_in,
391 &total_compressed,
392 max_compressed);
393
394 if (!ret) {
395 unsigned long offset = total_compressed &
396 (PAGE_CACHE_SIZE - 1);
397 struct page *page = pages[nr_pages_ret - 1];
398 char *kaddr;
399
400 /* zero the tail end of the last page, we might be
401 * sending it down to disk
402 */
403 if (offset) {
404 kaddr = kmap_atomic(page, KM_USER0);
405 memset(kaddr + offset, 0,
406 PAGE_CACHE_SIZE - offset);
407 kunmap_atomic(kaddr, KM_USER0);
408 }
409 will_compress = 1;
410 }
411 }
412 if (start == 0) {
413 trans = btrfs_join_transaction(root, 1);
414 BUG_ON(!trans);
415 btrfs_set_trans_block_group(trans, inode);
416
417 /* lets try to make an inline extent */
418 if (ret || total_in < (actual_end - start)) {
419 /* we didn't compress the entire range, try
420 * to make an uncompressed inline extent.
421 */
422 ret = cow_file_range_inline(trans, root, inode,
423 start, end, 0, NULL);
424 } else {
425 /* try making a compressed inline extent */
426 ret = cow_file_range_inline(trans, root, inode,
427 start, end,
428 total_compressed, pages);
429 }
430 if (ret == 0) {
431 /*
432 * inline extent creation worked, we don't need
433 * to create any more async work items. Unlock
434 * and free up our temp pages.
435 */
436 extent_clear_unlock_delalloc(inode,
437 &BTRFS_I(inode)->io_tree,
438 start, end, NULL,
439 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
440 EXTENT_CLEAR_DELALLOC |
441 EXTENT_CLEAR_ACCOUNTING |
442 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
443
444 btrfs_end_transaction(trans, root);
445 goto free_pages_out;
446 }
447 btrfs_end_transaction(trans, root);
448 }
449
450 if (will_compress) {
451 /*
452 * we aren't doing an inline extent round the compressed size
453 * up to a block size boundary so the allocator does sane
454 * things
455 */
456 total_compressed = (total_compressed + blocksize - 1) &
457 ~(blocksize - 1);
458
459 /*
460 * one last check to make sure the compression is really a
461 * win, compare the page count read with the blocks on disk
462 */
463 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
464 ~(PAGE_CACHE_SIZE - 1);
465 if (total_compressed >= total_in) {
466 will_compress = 0;
467 } else {
468 disk_num_bytes = total_compressed;
469 num_bytes = total_in;
470 }
471 }
472 if (!will_compress && pages) {
473 /*
474 * the compression code ran but failed to make things smaller,
475 * free any pages it allocated and our page pointer array
476 */
477 for (i = 0; i < nr_pages_ret; i++) {
478 WARN_ON(pages[i]->mapping);
479 page_cache_release(pages[i]);
480 }
481 kfree(pages);
482 pages = NULL;
483 total_compressed = 0;
484 nr_pages_ret = 0;
485
486 /* flag the file so we don't compress in the future */
487 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
488 !(BTRFS_I(inode)->force_compress)) {
489 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
490 }
491 }
492 if (will_compress) {
493 *num_added += 1;
494
495 /* the async work queues will take care of doing actual
496 * allocation on disk for these compressed pages,
497 * and will submit them to the elevator.
498 */
499 add_async_extent(async_cow, start, num_bytes,
500 total_compressed, pages, nr_pages_ret);
501
502 if (start + num_bytes < end && start + num_bytes < actual_end) {
503 start += num_bytes;
504 pages = NULL;
505 cond_resched();
506 goto again;
507 }
508 } else {
509 cleanup_and_bail_uncompressed:
510 /*
511 * No compression, but we still need to write the pages in
512 * the file we've been given so far. redirty the locked
513 * page if it corresponds to our extent and set things up
514 * for the async work queue to run cow_file_range to do
515 * the normal delalloc dance
516 */
517 if (page_offset(locked_page) >= start &&
518 page_offset(locked_page) <= end) {
519 __set_page_dirty_nobuffers(locked_page);
520 /* unlocked later on in the async handlers */
521 }
522 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
523 *num_added += 1;
524 }
525
526 out:
527 return 0;
528
529 free_pages_out:
530 for (i = 0; i < nr_pages_ret; i++) {
531 WARN_ON(pages[i]->mapping);
532 page_cache_release(pages[i]);
533 }
534 kfree(pages);
535
536 goto out;
537 }
538
539 /*
540 * phase two of compressed writeback. This is the ordered portion
541 * of the code, which only gets called in the order the work was
542 * queued. We walk all the async extents created by compress_file_range
543 * and send them down to the disk.
544 */
545 static noinline int submit_compressed_extents(struct inode *inode,
546 struct async_cow *async_cow)
547 {
548 struct async_extent *async_extent;
549 u64 alloc_hint = 0;
550 struct btrfs_trans_handle *trans;
551 struct btrfs_key ins;
552 struct extent_map *em;
553 struct btrfs_root *root = BTRFS_I(inode)->root;
554 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
555 struct extent_io_tree *io_tree;
556 int ret = 0;
557
558 if (list_empty(&async_cow->extents))
559 return 0;
560
561
562 while (!list_empty(&async_cow->extents)) {
563 async_extent = list_entry(async_cow->extents.next,
564 struct async_extent, list);
565 list_del(&async_extent->list);
566
567 io_tree = &BTRFS_I(inode)->io_tree;
568
569 retry:
570 /* did the compression code fall back to uncompressed IO? */
571 if (!async_extent->pages) {
572 int page_started = 0;
573 unsigned long nr_written = 0;
574
575 lock_extent(io_tree, async_extent->start,
576 async_extent->start +
577 async_extent->ram_size - 1, GFP_NOFS);
578
579 /* allocate blocks */
580 ret = cow_file_range(inode, async_cow->locked_page,
581 async_extent->start,
582 async_extent->start +
583 async_extent->ram_size - 1,
584 &page_started, &nr_written, 0);
585
586 /*
587 * if page_started, cow_file_range inserted an
588 * inline extent and took care of all the unlocking
589 * and IO for us. Otherwise, we need to submit
590 * all those pages down to the drive.
591 */
592 if (!page_started && !ret)
593 extent_write_locked_range(io_tree,
594 inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1,
597 btrfs_get_extent,
598 WB_SYNC_ALL);
599 kfree(async_extent);
600 cond_resched();
601 continue;
602 }
603
604 lock_extent(io_tree, async_extent->start,
605 async_extent->start + async_extent->ram_size - 1,
606 GFP_NOFS);
607
608 trans = btrfs_join_transaction(root, 1);
609 ret = btrfs_reserve_extent(trans, root,
610 async_extent->compressed_size,
611 async_extent->compressed_size,
612 0, alloc_hint,
613 (u64)-1, &ins, 1);
614 btrfs_end_transaction(trans, root);
615
616 if (ret) {
617 int i;
618 for (i = 0; i < async_extent->nr_pages; i++) {
619 WARN_ON(async_extent->pages[i]->mapping);
620 page_cache_release(async_extent->pages[i]);
621 }
622 kfree(async_extent->pages);
623 async_extent->nr_pages = 0;
624 async_extent->pages = NULL;
625 unlock_extent(io_tree, async_extent->start,
626 async_extent->start +
627 async_extent->ram_size - 1, GFP_NOFS);
628 goto retry;
629 }
630
631 /*
632 * here we're doing allocation and writeback of the
633 * compressed pages
634 */
635 btrfs_drop_extent_cache(inode, async_extent->start,
636 async_extent->start +
637 async_extent->ram_size - 1, 0);
638
639 em = alloc_extent_map(GFP_NOFS);
640 em->start = async_extent->start;
641 em->len = async_extent->ram_size;
642 em->orig_start = em->start;
643
644 em->block_start = ins.objectid;
645 em->block_len = ins.offset;
646 em->bdev = root->fs_info->fs_devices->latest_bdev;
647 set_bit(EXTENT_FLAG_PINNED, &em->flags);
648 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
649
650 while (1) {
651 write_lock(&em_tree->lock);
652 ret = add_extent_mapping(em_tree, em);
653 write_unlock(&em_tree->lock);
654 if (ret != -EEXIST) {
655 free_extent_map(em);
656 break;
657 }
658 btrfs_drop_extent_cache(inode, async_extent->start,
659 async_extent->start +
660 async_extent->ram_size - 1, 0);
661 }
662
663 ret = btrfs_add_ordered_extent(inode, async_extent->start,
664 ins.objectid,
665 async_extent->ram_size,
666 ins.offset,
667 BTRFS_ORDERED_COMPRESSED);
668 BUG_ON(ret);
669
670 /*
671 * clear dirty, set writeback and unlock the pages.
672 */
673 extent_clear_unlock_delalloc(inode,
674 &BTRFS_I(inode)->io_tree,
675 async_extent->start,
676 async_extent->start +
677 async_extent->ram_size - 1,
678 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
679 EXTENT_CLEAR_UNLOCK |
680 EXTENT_CLEAR_DELALLOC |
681 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
682
683 ret = btrfs_submit_compressed_write(inode,
684 async_extent->start,
685 async_extent->ram_size,
686 ins.objectid,
687 ins.offset, async_extent->pages,
688 async_extent->nr_pages);
689
690 BUG_ON(ret);
691 alloc_hint = ins.objectid + ins.offset;
692 kfree(async_extent);
693 cond_resched();
694 }
695
696 return 0;
697 }
698
699 /*
700 * when extent_io.c finds a delayed allocation range in the file,
701 * the call backs end up in this code. The basic idea is to
702 * allocate extents on disk for the range, and create ordered data structs
703 * in ram to track those extents.
704 *
705 * locked_page is the page that writepage had locked already. We use
706 * it to make sure we don't do extra locks or unlocks.
707 *
708 * *page_started is set to one if we unlock locked_page and do everything
709 * required to start IO on it. It may be clean and already done with
710 * IO when we return.
711 */
712 static noinline int cow_file_range(struct inode *inode,
713 struct page *locked_page,
714 u64 start, u64 end, int *page_started,
715 unsigned long *nr_written,
716 int unlock)
717 {
718 struct btrfs_root *root = BTRFS_I(inode)->root;
719 struct btrfs_trans_handle *trans;
720 u64 alloc_hint = 0;
721 u64 num_bytes;
722 unsigned long ram_size;
723 u64 disk_num_bytes;
724 u64 cur_alloc_size;
725 u64 blocksize = root->sectorsize;
726 u64 actual_end;
727 u64 isize = i_size_read(inode);
728 struct btrfs_key ins;
729 struct extent_map *em;
730 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
731 int ret = 0;
732
733 trans = btrfs_join_transaction(root, 1);
734 BUG_ON(!trans);
735 btrfs_set_trans_block_group(trans, inode);
736
737 actual_end = min_t(u64, isize, end + 1);
738
739 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
740 num_bytes = max(blocksize, num_bytes);
741 disk_num_bytes = num_bytes;
742 ret = 0;
743
744 if (start == 0) {
745 /* lets try to make an inline extent */
746 ret = cow_file_range_inline(trans, root, inode,
747 start, end, 0, NULL);
748 if (ret == 0) {
749 extent_clear_unlock_delalloc(inode,
750 &BTRFS_I(inode)->io_tree,
751 start, end, NULL,
752 EXTENT_CLEAR_UNLOCK_PAGE |
753 EXTENT_CLEAR_UNLOCK |
754 EXTENT_CLEAR_DELALLOC |
755 EXTENT_CLEAR_ACCOUNTING |
756 EXTENT_CLEAR_DIRTY |
757 EXTENT_SET_WRITEBACK |
758 EXTENT_END_WRITEBACK);
759
760 *nr_written = *nr_written +
761 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
762 *page_started = 1;
763 ret = 0;
764 goto out;
765 }
766 }
767
768 BUG_ON(disk_num_bytes >
769 btrfs_super_total_bytes(&root->fs_info->super_copy));
770
771
772 read_lock(&BTRFS_I(inode)->extent_tree.lock);
773 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
774 start, num_bytes);
775 if (em) {
776 /*
777 * if block start isn't an actual block number then find the
778 * first block in this inode and use that as a hint. If that
779 * block is also bogus then just don't worry about it.
780 */
781 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
782 free_extent_map(em);
783 em = search_extent_mapping(em_tree, 0, 0);
784 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
785 alloc_hint = em->block_start;
786 if (em)
787 free_extent_map(em);
788 } else {
789 alloc_hint = em->block_start;
790 free_extent_map(em);
791 }
792 }
793 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
794 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
795
796 while (disk_num_bytes > 0) {
797 unsigned long op;
798
799 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
800 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
801 root->sectorsize, 0, alloc_hint,
802 (u64)-1, &ins, 1);
803 BUG_ON(ret);
804
805 em = alloc_extent_map(GFP_NOFS);
806 em->start = start;
807 em->orig_start = em->start;
808 ram_size = ins.offset;
809 em->len = ins.offset;
810
811 em->block_start = ins.objectid;
812 em->block_len = ins.offset;
813 em->bdev = root->fs_info->fs_devices->latest_bdev;
814 set_bit(EXTENT_FLAG_PINNED, &em->flags);
815
816 while (1) {
817 write_lock(&em_tree->lock);
818 ret = add_extent_mapping(em_tree, em);
819 write_unlock(&em_tree->lock);
820 if (ret != -EEXIST) {
821 free_extent_map(em);
822 break;
823 }
824 btrfs_drop_extent_cache(inode, start,
825 start + ram_size - 1, 0);
826 }
827
828 cur_alloc_size = ins.offset;
829 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
830 ram_size, cur_alloc_size, 0);
831 BUG_ON(ret);
832
833 if (root->root_key.objectid ==
834 BTRFS_DATA_RELOC_TREE_OBJECTID) {
835 ret = btrfs_reloc_clone_csums(inode, start,
836 cur_alloc_size);
837 BUG_ON(ret);
838 }
839
840 if (disk_num_bytes < cur_alloc_size)
841 break;
842
843 /* we're not doing compressed IO, don't unlock the first
844 * page (which the caller expects to stay locked), don't
845 * clear any dirty bits and don't set any writeback bits
846 *
847 * Do set the Private2 bit so we know this page was properly
848 * setup for writepage
849 */
850 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
851 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
852 EXTENT_SET_PRIVATE2;
853
854 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
855 start, start + ram_size - 1,
856 locked_page, op);
857 disk_num_bytes -= cur_alloc_size;
858 num_bytes -= cur_alloc_size;
859 alloc_hint = ins.objectid + ins.offset;
860 start += cur_alloc_size;
861 }
862 out:
863 ret = 0;
864 btrfs_end_transaction(trans, root);
865
866 return ret;
867 }
868
869 /*
870 * work queue call back to started compression on a file and pages
871 */
872 static noinline void async_cow_start(struct btrfs_work *work)
873 {
874 struct async_cow *async_cow;
875 int num_added = 0;
876 async_cow = container_of(work, struct async_cow, work);
877
878 compress_file_range(async_cow->inode, async_cow->locked_page,
879 async_cow->start, async_cow->end, async_cow,
880 &num_added);
881 if (num_added == 0)
882 async_cow->inode = NULL;
883 }
884
885 /*
886 * work queue call back to submit previously compressed pages
887 */
888 static noinline void async_cow_submit(struct btrfs_work *work)
889 {
890 struct async_cow *async_cow;
891 struct btrfs_root *root;
892 unsigned long nr_pages;
893
894 async_cow = container_of(work, struct async_cow, work);
895
896 root = async_cow->root;
897 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
898 PAGE_CACHE_SHIFT;
899
900 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
901
902 if (atomic_read(&root->fs_info->async_delalloc_pages) <
903 5 * 1042 * 1024 &&
904 waitqueue_active(&root->fs_info->async_submit_wait))
905 wake_up(&root->fs_info->async_submit_wait);
906
907 if (async_cow->inode)
908 submit_compressed_extents(async_cow->inode, async_cow);
909 }
910
911 static noinline void async_cow_free(struct btrfs_work *work)
912 {
913 struct async_cow *async_cow;
914 async_cow = container_of(work, struct async_cow, work);
915 kfree(async_cow);
916 }
917
918 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
919 u64 start, u64 end, int *page_started,
920 unsigned long *nr_written)
921 {
922 struct async_cow *async_cow;
923 struct btrfs_root *root = BTRFS_I(inode)->root;
924 unsigned long nr_pages;
925 u64 cur_end;
926 int limit = 10 * 1024 * 1042;
927
928 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
929 1, 0, NULL, GFP_NOFS);
930 while (start < end) {
931 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
932 async_cow->inode = inode;
933 async_cow->root = root;
934 async_cow->locked_page = locked_page;
935 async_cow->start = start;
936
937 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
938 cur_end = end;
939 else
940 cur_end = min(end, start + 512 * 1024 - 1);
941
942 async_cow->end = cur_end;
943 INIT_LIST_HEAD(&async_cow->extents);
944
945 async_cow->work.func = async_cow_start;
946 async_cow->work.ordered_func = async_cow_submit;
947 async_cow->work.ordered_free = async_cow_free;
948 async_cow->work.flags = 0;
949
950 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
951 PAGE_CACHE_SHIFT;
952 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
953
954 btrfs_queue_worker(&root->fs_info->delalloc_workers,
955 &async_cow->work);
956
957 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
958 wait_event(root->fs_info->async_submit_wait,
959 (atomic_read(&root->fs_info->async_delalloc_pages) <
960 limit));
961 }
962
963 while (atomic_read(&root->fs_info->async_submit_draining) &&
964 atomic_read(&root->fs_info->async_delalloc_pages)) {
965 wait_event(root->fs_info->async_submit_wait,
966 (atomic_read(&root->fs_info->async_delalloc_pages) ==
967 0));
968 }
969
970 *nr_written += nr_pages;
971 start = cur_end + 1;
972 }
973 *page_started = 1;
974 return 0;
975 }
976
977 static noinline int csum_exist_in_range(struct btrfs_root *root,
978 u64 bytenr, u64 num_bytes)
979 {
980 int ret;
981 struct btrfs_ordered_sum *sums;
982 LIST_HEAD(list);
983
984 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
985 bytenr + num_bytes - 1, &list);
986 if (ret == 0 && list_empty(&list))
987 return 0;
988
989 while (!list_empty(&list)) {
990 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
991 list_del(&sums->list);
992 kfree(sums);
993 }
994 return 1;
995 }
996
997 /*
998 * when nowcow writeback call back. This checks for snapshots or COW copies
999 * of the extents that exist in the file, and COWs the file as required.
1000 *
1001 * If no cow copies or snapshots exist, we write directly to the existing
1002 * blocks on disk
1003 */
1004 static noinline int run_delalloc_nocow(struct inode *inode,
1005 struct page *locked_page,
1006 u64 start, u64 end, int *page_started, int force,
1007 unsigned long *nr_written)
1008 {
1009 struct btrfs_root *root = BTRFS_I(inode)->root;
1010 struct btrfs_trans_handle *trans;
1011 struct extent_buffer *leaf;
1012 struct btrfs_path *path;
1013 struct btrfs_file_extent_item *fi;
1014 struct btrfs_key found_key;
1015 u64 cow_start;
1016 u64 cur_offset;
1017 u64 extent_end;
1018 u64 extent_offset;
1019 u64 disk_bytenr;
1020 u64 num_bytes;
1021 int extent_type;
1022 int ret;
1023 int type;
1024 int nocow;
1025 int check_prev = 1;
1026
1027 path = btrfs_alloc_path();
1028 BUG_ON(!path);
1029 trans = btrfs_join_transaction(root, 1);
1030 BUG_ON(!trans);
1031
1032 cow_start = (u64)-1;
1033 cur_offset = start;
1034 while (1) {
1035 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1036 cur_offset, 0);
1037 BUG_ON(ret < 0);
1038 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1039 leaf = path->nodes[0];
1040 btrfs_item_key_to_cpu(leaf, &found_key,
1041 path->slots[0] - 1);
1042 if (found_key.objectid == inode->i_ino &&
1043 found_key.type == BTRFS_EXTENT_DATA_KEY)
1044 path->slots[0]--;
1045 }
1046 check_prev = 0;
1047 next_slot:
1048 leaf = path->nodes[0];
1049 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1050 ret = btrfs_next_leaf(root, path);
1051 if (ret < 0)
1052 BUG_ON(1);
1053 if (ret > 0)
1054 break;
1055 leaf = path->nodes[0];
1056 }
1057
1058 nocow = 0;
1059 disk_bytenr = 0;
1060 num_bytes = 0;
1061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1062
1063 if (found_key.objectid > inode->i_ino ||
1064 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1065 found_key.offset > end)
1066 break;
1067
1068 if (found_key.offset > cur_offset) {
1069 extent_end = found_key.offset;
1070 extent_type = 0;
1071 goto out_check;
1072 }
1073
1074 fi = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_file_extent_item);
1076 extent_type = btrfs_file_extent_type(leaf, fi);
1077
1078 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1079 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1080 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1081 extent_offset = btrfs_file_extent_offset(leaf, fi);
1082 extent_end = found_key.offset +
1083 btrfs_file_extent_num_bytes(leaf, fi);
1084 if (extent_end <= start) {
1085 path->slots[0]++;
1086 goto next_slot;
1087 }
1088 if (disk_bytenr == 0)
1089 goto out_check;
1090 if (btrfs_file_extent_compression(leaf, fi) ||
1091 btrfs_file_extent_encryption(leaf, fi) ||
1092 btrfs_file_extent_other_encoding(leaf, fi))
1093 goto out_check;
1094 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1095 goto out_check;
1096 if (btrfs_extent_readonly(root, disk_bytenr))
1097 goto out_check;
1098 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1099 found_key.offset -
1100 extent_offset, disk_bytenr))
1101 goto out_check;
1102 disk_bytenr += extent_offset;
1103 disk_bytenr += cur_offset - found_key.offset;
1104 num_bytes = min(end + 1, extent_end) - cur_offset;
1105 /*
1106 * force cow if csum exists in the range.
1107 * this ensure that csum for a given extent are
1108 * either valid or do not exist.
1109 */
1110 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1111 goto out_check;
1112 nocow = 1;
1113 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1114 extent_end = found_key.offset +
1115 btrfs_file_extent_inline_len(leaf, fi);
1116 extent_end = ALIGN(extent_end, root->sectorsize);
1117 } else {
1118 BUG_ON(1);
1119 }
1120 out_check:
1121 if (extent_end <= start) {
1122 path->slots[0]++;
1123 goto next_slot;
1124 }
1125 if (!nocow) {
1126 if (cow_start == (u64)-1)
1127 cow_start = cur_offset;
1128 cur_offset = extent_end;
1129 if (cur_offset > end)
1130 break;
1131 path->slots[0]++;
1132 goto next_slot;
1133 }
1134
1135 btrfs_release_path(root, path);
1136 if (cow_start != (u64)-1) {
1137 ret = cow_file_range(inode, locked_page, cow_start,
1138 found_key.offset - 1, page_started,
1139 nr_written, 1);
1140 BUG_ON(ret);
1141 cow_start = (u64)-1;
1142 }
1143
1144 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1145 struct extent_map *em;
1146 struct extent_map_tree *em_tree;
1147 em_tree = &BTRFS_I(inode)->extent_tree;
1148 em = alloc_extent_map(GFP_NOFS);
1149 em->start = cur_offset;
1150 em->orig_start = em->start;
1151 em->len = num_bytes;
1152 em->block_len = num_bytes;
1153 em->block_start = disk_bytenr;
1154 em->bdev = root->fs_info->fs_devices->latest_bdev;
1155 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1156 while (1) {
1157 write_lock(&em_tree->lock);
1158 ret = add_extent_mapping(em_tree, em);
1159 write_unlock(&em_tree->lock);
1160 if (ret != -EEXIST) {
1161 free_extent_map(em);
1162 break;
1163 }
1164 btrfs_drop_extent_cache(inode, em->start,
1165 em->start + em->len - 1, 0);
1166 }
1167 type = BTRFS_ORDERED_PREALLOC;
1168 } else {
1169 type = BTRFS_ORDERED_NOCOW;
1170 }
1171
1172 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1173 num_bytes, num_bytes, type);
1174 BUG_ON(ret);
1175
1176 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1177 cur_offset, cur_offset + num_bytes - 1,
1178 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1179 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1180 EXTENT_SET_PRIVATE2);
1181 cur_offset = extent_end;
1182 if (cur_offset > end)
1183 break;
1184 }
1185 btrfs_release_path(root, path);
1186
1187 if (cur_offset <= end && cow_start == (u64)-1)
1188 cow_start = cur_offset;
1189 if (cow_start != (u64)-1) {
1190 ret = cow_file_range(inode, locked_page, cow_start, end,
1191 page_started, nr_written, 1);
1192 BUG_ON(ret);
1193 }
1194
1195 ret = btrfs_end_transaction(trans, root);
1196 BUG_ON(ret);
1197 btrfs_free_path(path);
1198 return 0;
1199 }
1200
1201 /*
1202 * extent_io.c call back to do delayed allocation processing
1203 */
1204 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1205 u64 start, u64 end, int *page_started,
1206 unsigned long *nr_written)
1207 {
1208 int ret;
1209 struct btrfs_root *root = BTRFS_I(inode)->root;
1210
1211 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1212 ret = run_delalloc_nocow(inode, locked_page, start, end,
1213 page_started, 1, nr_written);
1214 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1215 ret = run_delalloc_nocow(inode, locked_page, start, end,
1216 page_started, 0, nr_written);
1217 else if (!btrfs_test_opt(root, COMPRESS) &&
1218 !(BTRFS_I(inode)->force_compress))
1219 ret = cow_file_range(inode, locked_page, start, end,
1220 page_started, nr_written, 1);
1221 else
1222 ret = cow_file_range_async(inode, locked_page, start, end,
1223 page_started, nr_written);
1224 return ret;
1225 }
1226
1227 static int btrfs_split_extent_hook(struct inode *inode,
1228 struct extent_state *orig, u64 split)
1229 {
1230 struct btrfs_root *root = BTRFS_I(inode)->root;
1231 u64 size;
1232
1233 if (!(orig->state & EXTENT_DELALLOC))
1234 return 0;
1235
1236 size = orig->end - orig->start + 1;
1237 if (size > root->fs_info->max_extent) {
1238 u64 num_extents;
1239 u64 new_size;
1240
1241 new_size = orig->end - split + 1;
1242 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1243 root->fs_info->max_extent);
1244
1245 /*
1246 * if we break a large extent up then leave oustanding_extents
1247 * be, since we've already accounted for the large extent.
1248 */
1249 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1250 root->fs_info->max_extent) < num_extents)
1251 return 0;
1252 }
1253
1254 spin_lock(&BTRFS_I(inode)->accounting_lock);
1255 BTRFS_I(inode)->outstanding_extents++;
1256 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1263 * extents so we can keep track of new extents that are just merged onto old
1264 * extents, such as when we are doing sequential writes, so we can properly
1265 * account for the metadata space we'll need.
1266 */
1267 static int btrfs_merge_extent_hook(struct inode *inode,
1268 struct extent_state *new,
1269 struct extent_state *other)
1270 {
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 u64 new_size, old_size;
1273 u64 num_extents;
1274
1275 /* not delalloc, ignore it */
1276 if (!(other->state & EXTENT_DELALLOC))
1277 return 0;
1278
1279 old_size = other->end - other->start + 1;
1280 if (new->start < other->start)
1281 new_size = other->end - new->start + 1;
1282 else
1283 new_size = new->end - other->start + 1;
1284
1285 /* we're not bigger than the max, unreserve the space and go */
1286 if (new_size <= root->fs_info->max_extent) {
1287 spin_lock(&BTRFS_I(inode)->accounting_lock);
1288 BTRFS_I(inode)->outstanding_extents--;
1289 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1290 return 0;
1291 }
1292
1293 /*
1294 * If we grew by another max_extent, just return, we want to keep that
1295 * reserved amount.
1296 */
1297 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1298 root->fs_info->max_extent);
1299 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1300 root->fs_info->max_extent) > num_extents)
1301 return 0;
1302
1303 spin_lock(&BTRFS_I(inode)->accounting_lock);
1304 BTRFS_I(inode)->outstanding_extents--;
1305 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1306
1307 return 0;
1308 }
1309
1310 /*
1311 * extent_io.c set_bit_hook, used to track delayed allocation
1312 * bytes in this file, and to maintain the list of inodes that
1313 * have pending delalloc work to be done.
1314 */
1315 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1316 unsigned long old, unsigned long bits)
1317 {
1318
1319 /*
1320 * set_bit and clear bit hooks normally require _irqsave/restore
1321 * but in this case, we are only testeing for the DELALLOC
1322 * bit, which is only set or cleared with irqs on
1323 */
1324 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1325 struct btrfs_root *root = BTRFS_I(inode)->root;
1326
1327 spin_lock(&BTRFS_I(inode)->accounting_lock);
1328 BTRFS_I(inode)->outstanding_extents++;
1329 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1330 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1331 spin_lock(&root->fs_info->delalloc_lock);
1332 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1333 root->fs_info->delalloc_bytes += end - start + 1;
1334 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1335 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1336 &root->fs_info->delalloc_inodes);
1337 }
1338 spin_unlock(&root->fs_info->delalloc_lock);
1339 }
1340 return 0;
1341 }
1342
1343 /*
1344 * extent_io.c clear_bit_hook, see set_bit_hook for why
1345 */
1346 static int btrfs_clear_bit_hook(struct inode *inode,
1347 struct extent_state *state, unsigned long bits)
1348 {
1349 /*
1350 * set_bit and clear bit hooks normally require _irqsave/restore
1351 * but in this case, we are only testeing for the DELALLOC
1352 * bit, which is only set or cleared with irqs on
1353 */
1354 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1355 struct btrfs_root *root = BTRFS_I(inode)->root;
1356
1357 if (bits & EXTENT_DO_ACCOUNTING) {
1358 spin_lock(&BTRFS_I(inode)->accounting_lock);
1359 BTRFS_I(inode)->outstanding_extents--;
1360 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1361 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1362 }
1363
1364 spin_lock(&root->fs_info->delalloc_lock);
1365 if (state->end - state->start + 1 >
1366 root->fs_info->delalloc_bytes) {
1367 printk(KERN_INFO "btrfs warning: delalloc account "
1368 "%llu %llu\n",
1369 (unsigned long long)
1370 state->end - state->start + 1,
1371 (unsigned long long)
1372 root->fs_info->delalloc_bytes);
1373 btrfs_delalloc_free_space(root, inode, (u64)-1);
1374 root->fs_info->delalloc_bytes = 0;
1375 BTRFS_I(inode)->delalloc_bytes = 0;
1376 } else {
1377 btrfs_delalloc_free_space(root, inode,
1378 state->end -
1379 state->start + 1);
1380 root->fs_info->delalloc_bytes -= state->end -
1381 state->start + 1;
1382 BTRFS_I(inode)->delalloc_bytes -= state->end -
1383 state->start + 1;
1384 }
1385 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1386 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1387 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1388 }
1389 spin_unlock(&root->fs_info->delalloc_lock);
1390 }
1391 return 0;
1392 }
1393
1394 /*
1395 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1396 * we don't create bios that span stripes or chunks
1397 */
1398 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1399 size_t size, struct bio *bio,
1400 unsigned long bio_flags)
1401 {
1402 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1403 struct btrfs_mapping_tree *map_tree;
1404 u64 logical = (u64)bio->bi_sector << 9;
1405 u64 length = 0;
1406 u64 map_length;
1407 int ret;
1408
1409 if (bio_flags & EXTENT_BIO_COMPRESSED)
1410 return 0;
1411
1412 length = bio->bi_size;
1413 map_tree = &root->fs_info->mapping_tree;
1414 map_length = length;
1415 ret = btrfs_map_block(map_tree, READ, logical,
1416 &map_length, NULL, 0);
1417
1418 if (map_length < length + size)
1419 return 1;
1420 return 0;
1421 }
1422
1423 /*
1424 * in order to insert checksums into the metadata in large chunks,
1425 * we wait until bio submission time. All the pages in the bio are
1426 * checksummed and sums are attached onto the ordered extent record.
1427 *
1428 * At IO completion time the cums attached on the ordered extent record
1429 * are inserted into the btree
1430 */
1431 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1432 struct bio *bio, int mirror_num,
1433 unsigned long bio_flags)
1434 {
1435 struct btrfs_root *root = BTRFS_I(inode)->root;
1436 int ret = 0;
1437
1438 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1439 BUG_ON(ret);
1440 return 0;
1441 }
1442
1443 /*
1444 * in order to insert checksums into the metadata in large chunks,
1445 * we wait until bio submission time. All the pages in the bio are
1446 * checksummed and sums are attached onto the ordered extent record.
1447 *
1448 * At IO completion time the cums attached on the ordered extent record
1449 * are inserted into the btree
1450 */
1451 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1452 int mirror_num, unsigned long bio_flags)
1453 {
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1456 }
1457
1458 /*
1459 * extent_io.c submission hook. This does the right thing for csum calculation
1460 * on write, or reading the csums from the tree before a read
1461 */
1462 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1463 int mirror_num, unsigned long bio_flags)
1464 {
1465 struct btrfs_root *root = BTRFS_I(inode)->root;
1466 int ret = 0;
1467 int skip_sum;
1468
1469 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1470
1471 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1472 BUG_ON(ret);
1473
1474 if (!(rw & (1 << BIO_RW))) {
1475 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1476 return btrfs_submit_compressed_read(inode, bio,
1477 mirror_num, bio_flags);
1478 } else if (!skip_sum)
1479 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1480 goto mapit;
1481 } else if (!skip_sum) {
1482 /* csum items have already been cloned */
1483 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1484 goto mapit;
1485 /* we're doing a write, do the async checksumming */
1486 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1487 inode, rw, bio, mirror_num,
1488 bio_flags, __btrfs_submit_bio_start,
1489 __btrfs_submit_bio_done);
1490 }
1491
1492 mapit:
1493 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1494 }
1495
1496 /*
1497 * given a list of ordered sums record them in the inode. This happens
1498 * at IO completion time based on sums calculated at bio submission time.
1499 */
1500 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1501 struct inode *inode, u64 file_offset,
1502 struct list_head *list)
1503 {
1504 struct btrfs_ordered_sum *sum;
1505
1506 btrfs_set_trans_block_group(trans, inode);
1507
1508 list_for_each_entry(sum, list, list) {
1509 btrfs_csum_file_blocks(trans,
1510 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1511 }
1512 return 0;
1513 }
1514
1515 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1516 {
1517 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1518 WARN_ON(1);
1519 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1520 GFP_NOFS);
1521 }
1522
1523 /* see btrfs_writepage_start_hook for details on why this is required */
1524 struct btrfs_writepage_fixup {
1525 struct page *page;
1526 struct btrfs_work work;
1527 };
1528
1529 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1530 {
1531 struct btrfs_writepage_fixup *fixup;
1532 struct btrfs_ordered_extent *ordered;
1533 struct page *page;
1534 struct inode *inode;
1535 u64 page_start;
1536 u64 page_end;
1537
1538 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1539 page = fixup->page;
1540 again:
1541 lock_page(page);
1542 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1543 ClearPageChecked(page);
1544 goto out_page;
1545 }
1546
1547 inode = page->mapping->host;
1548 page_start = page_offset(page);
1549 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1550
1551 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1552
1553 /* already ordered? We're done */
1554 if (PagePrivate2(page))
1555 goto out;
1556
1557 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1558 if (ordered) {
1559 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1560 page_end, GFP_NOFS);
1561 unlock_page(page);
1562 btrfs_start_ordered_extent(inode, ordered, 1);
1563 goto again;
1564 }
1565
1566 btrfs_set_extent_delalloc(inode, page_start, page_end);
1567 ClearPageChecked(page);
1568 out:
1569 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1570 out_page:
1571 unlock_page(page);
1572 page_cache_release(page);
1573 }
1574
1575 /*
1576 * There are a few paths in the higher layers of the kernel that directly
1577 * set the page dirty bit without asking the filesystem if it is a
1578 * good idea. This causes problems because we want to make sure COW
1579 * properly happens and the data=ordered rules are followed.
1580 *
1581 * In our case any range that doesn't have the ORDERED bit set
1582 * hasn't been properly setup for IO. We kick off an async process
1583 * to fix it up. The async helper will wait for ordered extents, set
1584 * the delalloc bit and make it safe to write the page.
1585 */
1586 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1587 {
1588 struct inode *inode = page->mapping->host;
1589 struct btrfs_writepage_fixup *fixup;
1590 struct btrfs_root *root = BTRFS_I(inode)->root;
1591
1592 /* this page is properly in the ordered list */
1593 if (TestClearPagePrivate2(page))
1594 return 0;
1595
1596 if (PageChecked(page))
1597 return -EAGAIN;
1598
1599 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1600 if (!fixup)
1601 return -EAGAIN;
1602
1603 SetPageChecked(page);
1604 page_cache_get(page);
1605 fixup->work.func = btrfs_writepage_fixup_worker;
1606 fixup->page = page;
1607 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1608 return -EAGAIN;
1609 }
1610
1611 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1612 struct inode *inode, u64 file_pos,
1613 u64 disk_bytenr, u64 disk_num_bytes,
1614 u64 num_bytes, u64 ram_bytes,
1615 u8 compression, u8 encryption,
1616 u16 other_encoding, int extent_type)
1617 {
1618 struct btrfs_root *root = BTRFS_I(inode)->root;
1619 struct btrfs_file_extent_item *fi;
1620 struct btrfs_path *path;
1621 struct extent_buffer *leaf;
1622 struct btrfs_key ins;
1623 u64 hint;
1624 int ret;
1625
1626 path = btrfs_alloc_path();
1627 BUG_ON(!path);
1628
1629 path->leave_spinning = 1;
1630
1631 /*
1632 * we may be replacing one extent in the tree with another.
1633 * The new extent is pinned in the extent map, and we don't want
1634 * to drop it from the cache until it is completely in the btree.
1635 *
1636 * So, tell btrfs_drop_extents to leave this extent in the cache.
1637 * the caller is expected to unpin it and allow it to be merged
1638 * with the others.
1639 */
1640 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1641 &hint, 0);
1642 BUG_ON(ret);
1643
1644 ins.objectid = inode->i_ino;
1645 ins.offset = file_pos;
1646 ins.type = BTRFS_EXTENT_DATA_KEY;
1647 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1648 BUG_ON(ret);
1649 leaf = path->nodes[0];
1650 fi = btrfs_item_ptr(leaf, path->slots[0],
1651 struct btrfs_file_extent_item);
1652 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1653 btrfs_set_file_extent_type(leaf, fi, extent_type);
1654 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1655 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1656 btrfs_set_file_extent_offset(leaf, fi, 0);
1657 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1658 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1659 btrfs_set_file_extent_compression(leaf, fi, compression);
1660 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1661 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1662
1663 btrfs_unlock_up_safe(path, 1);
1664 btrfs_set_lock_blocking(leaf);
1665
1666 btrfs_mark_buffer_dirty(leaf);
1667
1668 inode_add_bytes(inode, num_bytes);
1669
1670 ins.objectid = disk_bytenr;
1671 ins.offset = disk_num_bytes;
1672 ins.type = BTRFS_EXTENT_ITEM_KEY;
1673 ret = btrfs_alloc_reserved_file_extent(trans, root,
1674 root->root_key.objectid,
1675 inode->i_ino, file_pos, &ins);
1676 BUG_ON(ret);
1677 btrfs_free_path(path);
1678
1679 return 0;
1680 }
1681
1682 /*
1683 * helper function for btrfs_finish_ordered_io, this
1684 * just reads in some of the csum leaves to prime them into ram
1685 * before we start the transaction. It limits the amount of btree
1686 * reads required while inside the transaction.
1687 */
1688 /* as ordered data IO finishes, this gets called so we can finish
1689 * an ordered extent if the range of bytes in the file it covers are
1690 * fully written.
1691 */
1692 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1693 {
1694 struct btrfs_root *root = BTRFS_I(inode)->root;
1695 struct btrfs_trans_handle *trans;
1696 struct btrfs_ordered_extent *ordered_extent = NULL;
1697 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1698 int compressed = 0;
1699 int ret;
1700
1701 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1702 end - start + 1);
1703 if (!ret)
1704 return 0;
1705 BUG_ON(!ordered_extent);
1706
1707 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1708 BUG_ON(!list_empty(&ordered_extent->list));
1709 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1710 if (!ret) {
1711 trans = btrfs_join_transaction(root, 1);
1712 ret = btrfs_update_inode(trans, root, inode);
1713 BUG_ON(ret);
1714 btrfs_end_transaction(trans, root);
1715 }
1716 goto out;
1717 }
1718
1719 lock_extent(io_tree, ordered_extent->file_offset,
1720 ordered_extent->file_offset + ordered_extent->len - 1,
1721 GFP_NOFS);
1722
1723 trans = btrfs_join_transaction(root, 1);
1724
1725 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1726 compressed = 1;
1727 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1728 BUG_ON(compressed);
1729 ret = btrfs_mark_extent_written(trans, inode,
1730 ordered_extent->file_offset,
1731 ordered_extent->file_offset +
1732 ordered_extent->len);
1733 BUG_ON(ret);
1734 } else {
1735 ret = insert_reserved_file_extent(trans, inode,
1736 ordered_extent->file_offset,
1737 ordered_extent->start,
1738 ordered_extent->disk_len,
1739 ordered_extent->len,
1740 ordered_extent->len,
1741 compressed, 0, 0,
1742 BTRFS_FILE_EXTENT_REG);
1743 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1744 ordered_extent->file_offset,
1745 ordered_extent->len);
1746 BUG_ON(ret);
1747 }
1748 unlock_extent(io_tree, ordered_extent->file_offset,
1749 ordered_extent->file_offset + ordered_extent->len - 1,
1750 GFP_NOFS);
1751 add_pending_csums(trans, inode, ordered_extent->file_offset,
1752 &ordered_extent->list);
1753
1754 /* this also removes the ordered extent from the tree */
1755 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1756 ret = btrfs_update_inode(trans, root, inode);
1757 BUG_ON(ret);
1758 btrfs_end_transaction(trans, root);
1759 out:
1760 /* once for us */
1761 btrfs_put_ordered_extent(ordered_extent);
1762 /* once for the tree */
1763 btrfs_put_ordered_extent(ordered_extent);
1764
1765 return 0;
1766 }
1767
1768 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1769 struct extent_state *state, int uptodate)
1770 {
1771 ClearPagePrivate2(page);
1772 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1773 }
1774
1775 /*
1776 * When IO fails, either with EIO or csum verification fails, we
1777 * try other mirrors that might have a good copy of the data. This
1778 * io_failure_record is used to record state as we go through all the
1779 * mirrors. If another mirror has good data, the page is set up to date
1780 * and things continue. If a good mirror can't be found, the original
1781 * bio end_io callback is called to indicate things have failed.
1782 */
1783 struct io_failure_record {
1784 struct page *page;
1785 u64 start;
1786 u64 len;
1787 u64 logical;
1788 unsigned long bio_flags;
1789 int last_mirror;
1790 };
1791
1792 static int btrfs_io_failed_hook(struct bio *failed_bio,
1793 struct page *page, u64 start, u64 end,
1794 struct extent_state *state)
1795 {
1796 struct io_failure_record *failrec = NULL;
1797 u64 private;
1798 struct extent_map *em;
1799 struct inode *inode = page->mapping->host;
1800 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1801 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1802 struct bio *bio;
1803 int num_copies;
1804 int ret;
1805 int rw;
1806 u64 logical;
1807
1808 ret = get_state_private(failure_tree, start, &private);
1809 if (ret) {
1810 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1811 if (!failrec)
1812 return -ENOMEM;
1813 failrec->start = start;
1814 failrec->len = end - start + 1;
1815 failrec->last_mirror = 0;
1816 failrec->bio_flags = 0;
1817
1818 read_lock(&em_tree->lock);
1819 em = lookup_extent_mapping(em_tree, start, failrec->len);
1820 if (em->start > start || em->start + em->len < start) {
1821 free_extent_map(em);
1822 em = NULL;
1823 }
1824 read_unlock(&em_tree->lock);
1825
1826 if (!em || IS_ERR(em)) {
1827 kfree(failrec);
1828 return -EIO;
1829 }
1830 logical = start - em->start;
1831 logical = em->block_start + logical;
1832 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1833 logical = em->block_start;
1834 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1835 }
1836 failrec->logical = logical;
1837 free_extent_map(em);
1838 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1839 EXTENT_DIRTY, GFP_NOFS);
1840 set_state_private(failure_tree, start,
1841 (u64)(unsigned long)failrec);
1842 } else {
1843 failrec = (struct io_failure_record *)(unsigned long)private;
1844 }
1845 num_copies = btrfs_num_copies(
1846 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1847 failrec->logical, failrec->len);
1848 failrec->last_mirror++;
1849 if (!state) {
1850 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1851 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1852 failrec->start,
1853 EXTENT_LOCKED);
1854 if (state && state->start != failrec->start)
1855 state = NULL;
1856 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1857 }
1858 if (!state || failrec->last_mirror > num_copies) {
1859 set_state_private(failure_tree, failrec->start, 0);
1860 clear_extent_bits(failure_tree, failrec->start,
1861 failrec->start + failrec->len - 1,
1862 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1863 kfree(failrec);
1864 return -EIO;
1865 }
1866 bio = bio_alloc(GFP_NOFS, 1);
1867 bio->bi_private = state;
1868 bio->bi_end_io = failed_bio->bi_end_io;
1869 bio->bi_sector = failrec->logical >> 9;
1870 bio->bi_bdev = failed_bio->bi_bdev;
1871 bio->bi_size = 0;
1872
1873 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1874 if (failed_bio->bi_rw & (1 << BIO_RW))
1875 rw = WRITE;
1876 else
1877 rw = READ;
1878
1879 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1880 failrec->last_mirror,
1881 failrec->bio_flags);
1882 return 0;
1883 }
1884
1885 /*
1886 * each time an IO finishes, we do a fast check in the IO failure tree
1887 * to see if we need to process or clean up an io_failure_record
1888 */
1889 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1890 {
1891 u64 private;
1892 u64 private_failure;
1893 struct io_failure_record *failure;
1894 int ret;
1895
1896 private = 0;
1897 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1898 (u64)-1, 1, EXTENT_DIRTY)) {
1899 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1900 start, &private_failure);
1901 if (ret == 0) {
1902 failure = (struct io_failure_record *)(unsigned long)
1903 private_failure;
1904 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1905 failure->start, 0);
1906 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1907 failure->start,
1908 failure->start + failure->len - 1,
1909 EXTENT_DIRTY | EXTENT_LOCKED,
1910 GFP_NOFS);
1911 kfree(failure);
1912 }
1913 }
1914 return 0;
1915 }
1916
1917 /*
1918 * when reads are done, we need to check csums to verify the data is correct
1919 * if there's a match, we allow the bio to finish. If not, we go through
1920 * the io_failure_record routines to find good copies
1921 */
1922 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1923 struct extent_state *state)
1924 {
1925 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1926 struct inode *inode = page->mapping->host;
1927 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1928 char *kaddr;
1929 u64 private = ~(u32)0;
1930 int ret;
1931 struct btrfs_root *root = BTRFS_I(inode)->root;
1932 u32 csum = ~(u32)0;
1933
1934 if (PageChecked(page)) {
1935 ClearPageChecked(page);
1936 goto good;
1937 }
1938
1939 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1940 return 0;
1941
1942 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1943 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1944 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1945 GFP_NOFS);
1946 return 0;
1947 }
1948
1949 if (state && state->start == start) {
1950 private = state->private;
1951 ret = 0;
1952 } else {
1953 ret = get_state_private(io_tree, start, &private);
1954 }
1955 kaddr = kmap_atomic(page, KM_USER0);
1956 if (ret)
1957 goto zeroit;
1958
1959 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1960 btrfs_csum_final(csum, (char *)&csum);
1961 if (csum != private)
1962 goto zeroit;
1963
1964 kunmap_atomic(kaddr, KM_USER0);
1965 good:
1966 /* if the io failure tree for this inode is non-empty,
1967 * check to see if we've recovered from a failed IO
1968 */
1969 btrfs_clean_io_failures(inode, start);
1970 return 0;
1971
1972 zeroit:
1973 if (printk_ratelimit()) {
1974 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1975 "private %llu\n", page->mapping->host->i_ino,
1976 (unsigned long long)start, csum,
1977 (unsigned long long)private);
1978 }
1979 memset(kaddr + offset, 1, end - start + 1);
1980 flush_dcache_page(page);
1981 kunmap_atomic(kaddr, KM_USER0);
1982 if (private == 0)
1983 return 0;
1984 return -EIO;
1985 }
1986
1987 struct delayed_iput {
1988 struct list_head list;
1989 struct inode *inode;
1990 };
1991
1992 void btrfs_add_delayed_iput(struct inode *inode)
1993 {
1994 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1995 struct delayed_iput *delayed;
1996
1997 if (atomic_add_unless(&inode->i_count, -1, 1))
1998 return;
1999
2000 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2001 delayed->inode = inode;
2002
2003 spin_lock(&fs_info->delayed_iput_lock);
2004 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2005 spin_unlock(&fs_info->delayed_iput_lock);
2006 }
2007
2008 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2009 {
2010 LIST_HEAD(list);
2011 struct btrfs_fs_info *fs_info = root->fs_info;
2012 struct delayed_iput *delayed;
2013 int empty;
2014
2015 spin_lock(&fs_info->delayed_iput_lock);
2016 empty = list_empty(&fs_info->delayed_iputs);
2017 spin_unlock(&fs_info->delayed_iput_lock);
2018 if (empty)
2019 return;
2020
2021 down_read(&root->fs_info->cleanup_work_sem);
2022 spin_lock(&fs_info->delayed_iput_lock);
2023 list_splice_init(&fs_info->delayed_iputs, &list);
2024 spin_unlock(&fs_info->delayed_iput_lock);
2025
2026 while (!list_empty(&list)) {
2027 delayed = list_entry(list.next, struct delayed_iput, list);
2028 list_del(&delayed->list);
2029 iput(delayed->inode);
2030 kfree(delayed);
2031 }
2032 up_read(&root->fs_info->cleanup_work_sem);
2033 }
2034
2035 /*
2036 * This creates an orphan entry for the given inode in case something goes
2037 * wrong in the middle of an unlink/truncate.
2038 */
2039 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2040 {
2041 struct btrfs_root *root = BTRFS_I(inode)->root;
2042 int ret = 0;
2043
2044 spin_lock(&root->list_lock);
2045
2046 /* already on the orphan list, we're good */
2047 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2048 spin_unlock(&root->list_lock);
2049 return 0;
2050 }
2051
2052 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2053
2054 spin_unlock(&root->list_lock);
2055
2056 /*
2057 * insert an orphan item to track this unlinked/truncated file
2058 */
2059 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2060
2061 return ret;
2062 }
2063
2064 /*
2065 * We have done the truncate/delete so we can go ahead and remove the orphan
2066 * item for this particular inode.
2067 */
2068 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2069 {
2070 struct btrfs_root *root = BTRFS_I(inode)->root;
2071 int ret = 0;
2072
2073 spin_lock(&root->list_lock);
2074
2075 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2076 spin_unlock(&root->list_lock);
2077 return 0;
2078 }
2079
2080 list_del_init(&BTRFS_I(inode)->i_orphan);
2081 if (!trans) {
2082 spin_unlock(&root->list_lock);
2083 return 0;
2084 }
2085
2086 spin_unlock(&root->list_lock);
2087
2088 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2089
2090 return ret;
2091 }
2092
2093 /*
2094 * this cleans up any orphans that may be left on the list from the last use
2095 * of this root.
2096 */
2097 void btrfs_orphan_cleanup(struct btrfs_root *root)
2098 {
2099 struct btrfs_path *path;
2100 struct extent_buffer *leaf;
2101 struct btrfs_item *item;
2102 struct btrfs_key key, found_key;
2103 struct btrfs_trans_handle *trans;
2104 struct inode *inode;
2105 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2106
2107 if (!xchg(&root->clean_orphans, 0))
2108 return;
2109
2110 path = btrfs_alloc_path();
2111 BUG_ON(!path);
2112 path->reada = -1;
2113
2114 key.objectid = BTRFS_ORPHAN_OBJECTID;
2115 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2116 key.offset = (u64)-1;
2117
2118 while (1) {
2119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2120 if (ret < 0) {
2121 printk(KERN_ERR "Error searching slot for orphan: %d"
2122 "\n", ret);
2123 break;
2124 }
2125
2126 /*
2127 * if ret == 0 means we found what we were searching for, which
2128 * is weird, but possible, so only screw with path if we didnt
2129 * find the key and see if we have stuff that matches
2130 */
2131 if (ret > 0) {
2132 if (path->slots[0] == 0)
2133 break;
2134 path->slots[0]--;
2135 }
2136
2137 /* pull out the item */
2138 leaf = path->nodes[0];
2139 item = btrfs_item_nr(leaf, path->slots[0]);
2140 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2141
2142 /* make sure the item matches what we want */
2143 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2144 break;
2145 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2146 break;
2147
2148 /* release the path since we're done with it */
2149 btrfs_release_path(root, path);
2150
2151 /*
2152 * this is where we are basically btrfs_lookup, without the
2153 * crossing root thing. we store the inode number in the
2154 * offset of the orphan item.
2155 */
2156 found_key.objectid = found_key.offset;
2157 found_key.type = BTRFS_INODE_ITEM_KEY;
2158 found_key.offset = 0;
2159 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2160 if (IS_ERR(inode))
2161 break;
2162
2163 /*
2164 * add this inode to the orphan list so btrfs_orphan_del does
2165 * the proper thing when we hit it
2166 */
2167 spin_lock(&root->list_lock);
2168 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2169 spin_unlock(&root->list_lock);
2170
2171 /*
2172 * if this is a bad inode, means we actually succeeded in
2173 * removing the inode, but not the orphan record, which means
2174 * we need to manually delete the orphan since iput will just
2175 * do a destroy_inode
2176 */
2177 if (is_bad_inode(inode)) {
2178 trans = btrfs_start_transaction(root, 1);
2179 btrfs_orphan_del(trans, inode);
2180 btrfs_end_transaction(trans, root);
2181 iput(inode);
2182 continue;
2183 }
2184
2185 /* if we have links, this was a truncate, lets do that */
2186 if (inode->i_nlink) {
2187 nr_truncate++;
2188 btrfs_truncate(inode);
2189 } else {
2190 nr_unlink++;
2191 }
2192
2193 /* this will do delete_inode and everything for us */
2194 iput(inode);
2195 }
2196
2197 if (nr_unlink)
2198 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2199 if (nr_truncate)
2200 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2201
2202 btrfs_free_path(path);
2203 }
2204
2205 /*
2206 * very simple check to peek ahead in the leaf looking for xattrs. If we
2207 * don't find any xattrs, we know there can't be any acls.
2208 *
2209 * slot is the slot the inode is in, objectid is the objectid of the inode
2210 */
2211 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2212 int slot, u64 objectid)
2213 {
2214 u32 nritems = btrfs_header_nritems(leaf);
2215 struct btrfs_key found_key;
2216 int scanned = 0;
2217
2218 slot++;
2219 while (slot < nritems) {
2220 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2221
2222 /* we found a different objectid, there must not be acls */
2223 if (found_key.objectid != objectid)
2224 return 0;
2225
2226 /* we found an xattr, assume we've got an acl */
2227 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2228 return 1;
2229
2230 /*
2231 * we found a key greater than an xattr key, there can't
2232 * be any acls later on
2233 */
2234 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2235 return 0;
2236
2237 slot++;
2238 scanned++;
2239
2240 /*
2241 * it goes inode, inode backrefs, xattrs, extents,
2242 * so if there are a ton of hard links to an inode there can
2243 * be a lot of backrefs. Don't waste time searching too hard,
2244 * this is just an optimization
2245 */
2246 if (scanned >= 8)
2247 break;
2248 }
2249 /* we hit the end of the leaf before we found an xattr or
2250 * something larger than an xattr. We have to assume the inode
2251 * has acls
2252 */
2253 return 1;
2254 }
2255
2256 /*
2257 * read an inode from the btree into the in-memory inode
2258 */
2259 static void btrfs_read_locked_inode(struct inode *inode)
2260 {
2261 struct btrfs_path *path;
2262 struct extent_buffer *leaf;
2263 struct btrfs_inode_item *inode_item;
2264 struct btrfs_timespec *tspec;
2265 struct btrfs_root *root = BTRFS_I(inode)->root;
2266 struct btrfs_key location;
2267 int maybe_acls;
2268 u64 alloc_group_block;
2269 u32 rdev;
2270 int ret;
2271
2272 path = btrfs_alloc_path();
2273 BUG_ON(!path);
2274 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2275
2276 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2277 if (ret)
2278 goto make_bad;
2279
2280 leaf = path->nodes[0];
2281 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2282 struct btrfs_inode_item);
2283
2284 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2285 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2286 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2287 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2288 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2289
2290 tspec = btrfs_inode_atime(inode_item);
2291 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2292 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2293
2294 tspec = btrfs_inode_mtime(inode_item);
2295 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2296 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2297
2298 tspec = btrfs_inode_ctime(inode_item);
2299 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2300 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2301
2302 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2303 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2304 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2305 inode->i_generation = BTRFS_I(inode)->generation;
2306 inode->i_rdev = 0;
2307 rdev = btrfs_inode_rdev(leaf, inode_item);
2308
2309 BTRFS_I(inode)->index_cnt = (u64)-1;
2310 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2311
2312 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2313
2314 /*
2315 * try to precache a NULL acl entry for files that don't have
2316 * any xattrs or acls
2317 */
2318 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2319 if (!maybe_acls)
2320 cache_no_acl(inode);
2321
2322 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2323 alloc_group_block, 0);
2324 btrfs_free_path(path);
2325 inode_item = NULL;
2326
2327 switch (inode->i_mode & S_IFMT) {
2328 case S_IFREG:
2329 inode->i_mapping->a_ops = &btrfs_aops;
2330 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2331 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2332 inode->i_fop = &btrfs_file_operations;
2333 inode->i_op = &btrfs_file_inode_operations;
2334 break;
2335 case S_IFDIR:
2336 inode->i_fop = &btrfs_dir_file_operations;
2337 if (root == root->fs_info->tree_root)
2338 inode->i_op = &btrfs_dir_ro_inode_operations;
2339 else
2340 inode->i_op = &btrfs_dir_inode_operations;
2341 break;
2342 case S_IFLNK:
2343 inode->i_op = &btrfs_symlink_inode_operations;
2344 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2345 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2346 break;
2347 default:
2348 inode->i_op = &btrfs_special_inode_operations;
2349 init_special_inode(inode, inode->i_mode, rdev);
2350 break;
2351 }
2352
2353 btrfs_update_iflags(inode);
2354 return;
2355
2356 make_bad:
2357 btrfs_free_path(path);
2358 make_bad_inode(inode);
2359 }
2360
2361 /*
2362 * given a leaf and an inode, copy the inode fields into the leaf
2363 */
2364 static void fill_inode_item(struct btrfs_trans_handle *trans,
2365 struct extent_buffer *leaf,
2366 struct btrfs_inode_item *item,
2367 struct inode *inode)
2368 {
2369 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2370 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2371 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2372 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2373 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2374
2375 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2376 inode->i_atime.tv_sec);
2377 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2378 inode->i_atime.tv_nsec);
2379
2380 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2381 inode->i_mtime.tv_sec);
2382 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2383 inode->i_mtime.tv_nsec);
2384
2385 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2386 inode->i_ctime.tv_sec);
2387 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2388 inode->i_ctime.tv_nsec);
2389
2390 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2391 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2392 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2393 btrfs_set_inode_transid(leaf, item, trans->transid);
2394 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2395 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2396 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2397 }
2398
2399 /*
2400 * copy everything in the in-memory inode into the btree.
2401 */
2402 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2403 struct btrfs_root *root, struct inode *inode)
2404 {
2405 struct btrfs_inode_item *inode_item;
2406 struct btrfs_path *path;
2407 struct extent_buffer *leaf;
2408 int ret;
2409
2410 path = btrfs_alloc_path();
2411 BUG_ON(!path);
2412 path->leave_spinning = 1;
2413 ret = btrfs_lookup_inode(trans, root, path,
2414 &BTRFS_I(inode)->location, 1);
2415 if (ret) {
2416 if (ret > 0)
2417 ret = -ENOENT;
2418 goto failed;
2419 }
2420
2421 btrfs_unlock_up_safe(path, 1);
2422 leaf = path->nodes[0];
2423 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2424 struct btrfs_inode_item);
2425
2426 fill_inode_item(trans, leaf, inode_item, inode);
2427 btrfs_mark_buffer_dirty(leaf);
2428 btrfs_set_inode_last_trans(trans, inode);
2429 ret = 0;
2430 failed:
2431 btrfs_free_path(path);
2432 return ret;
2433 }
2434
2435
2436 /*
2437 * unlink helper that gets used here in inode.c and in the tree logging
2438 * recovery code. It remove a link in a directory with a given name, and
2439 * also drops the back refs in the inode to the directory
2440 */
2441 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2442 struct btrfs_root *root,
2443 struct inode *dir, struct inode *inode,
2444 const char *name, int name_len)
2445 {
2446 struct btrfs_path *path;
2447 int ret = 0;
2448 struct extent_buffer *leaf;
2449 struct btrfs_dir_item *di;
2450 struct btrfs_key key;
2451 u64 index;
2452
2453 path = btrfs_alloc_path();
2454 if (!path) {
2455 ret = -ENOMEM;
2456 goto err;
2457 }
2458
2459 path->leave_spinning = 1;
2460 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2461 name, name_len, -1);
2462 if (IS_ERR(di)) {
2463 ret = PTR_ERR(di);
2464 goto err;
2465 }
2466 if (!di) {
2467 ret = -ENOENT;
2468 goto err;
2469 }
2470 leaf = path->nodes[0];
2471 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2472 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2473 if (ret)
2474 goto err;
2475 btrfs_release_path(root, path);
2476
2477 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2478 inode->i_ino,
2479 dir->i_ino, &index);
2480 if (ret) {
2481 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2482 "inode %lu parent %lu\n", name_len, name,
2483 inode->i_ino, dir->i_ino);
2484 goto err;
2485 }
2486
2487 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2488 index, name, name_len, -1);
2489 if (IS_ERR(di)) {
2490 ret = PTR_ERR(di);
2491 goto err;
2492 }
2493 if (!di) {
2494 ret = -ENOENT;
2495 goto err;
2496 }
2497 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2498 btrfs_release_path(root, path);
2499
2500 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2501 inode, dir->i_ino);
2502 BUG_ON(ret != 0 && ret != -ENOENT);
2503
2504 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2505 dir, index);
2506 BUG_ON(ret);
2507 err:
2508 btrfs_free_path(path);
2509 if (ret)
2510 goto out;
2511
2512 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2513 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2514 btrfs_update_inode(trans, root, dir);
2515 btrfs_drop_nlink(inode);
2516 ret = btrfs_update_inode(trans, root, inode);
2517 out:
2518 return ret;
2519 }
2520
2521 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2522 {
2523 struct btrfs_root *root;
2524 struct btrfs_trans_handle *trans;
2525 struct inode *inode = dentry->d_inode;
2526 int ret;
2527 unsigned long nr = 0;
2528
2529 root = BTRFS_I(dir)->root;
2530
2531 /*
2532 * 5 items for unlink inode
2533 * 1 for orphan
2534 */
2535 ret = btrfs_reserve_metadata_space(root, 6);
2536 if (ret)
2537 return ret;
2538
2539 trans = btrfs_start_transaction(root, 1);
2540 if (IS_ERR(trans)) {
2541 btrfs_unreserve_metadata_space(root, 6);
2542 return PTR_ERR(trans);
2543 }
2544
2545 btrfs_set_trans_block_group(trans, dir);
2546
2547 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2548
2549 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2550 dentry->d_name.name, dentry->d_name.len);
2551
2552 if (inode->i_nlink == 0)
2553 ret = btrfs_orphan_add(trans, inode);
2554
2555 nr = trans->blocks_used;
2556
2557 btrfs_end_transaction_throttle(trans, root);
2558 btrfs_unreserve_metadata_space(root, 6);
2559 btrfs_btree_balance_dirty(root, nr);
2560 return ret;
2561 }
2562
2563 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2564 struct btrfs_root *root,
2565 struct inode *dir, u64 objectid,
2566 const char *name, int name_len)
2567 {
2568 struct btrfs_path *path;
2569 struct extent_buffer *leaf;
2570 struct btrfs_dir_item *di;
2571 struct btrfs_key key;
2572 u64 index;
2573 int ret;
2574
2575 path = btrfs_alloc_path();
2576 if (!path)
2577 return -ENOMEM;
2578
2579 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2580 name, name_len, -1);
2581 BUG_ON(!di || IS_ERR(di));
2582
2583 leaf = path->nodes[0];
2584 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2585 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2586 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2587 BUG_ON(ret);
2588 btrfs_release_path(root, path);
2589
2590 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2591 objectid, root->root_key.objectid,
2592 dir->i_ino, &index, name, name_len);
2593 if (ret < 0) {
2594 BUG_ON(ret != -ENOENT);
2595 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2596 name, name_len);
2597 BUG_ON(!di || IS_ERR(di));
2598
2599 leaf = path->nodes[0];
2600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2601 btrfs_release_path(root, path);
2602 index = key.offset;
2603 }
2604
2605 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2606 index, name, name_len, -1);
2607 BUG_ON(!di || IS_ERR(di));
2608
2609 leaf = path->nodes[0];
2610 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2611 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2612 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2613 BUG_ON(ret);
2614 btrfs_release_path(root, path);
2615
2616 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2617 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2618 ret = btrfs_update_inode(trans, root, dir);
2619 BUG_ON(ret);
2620 dir->i_sb->s_dirt = 1;
2621
2622 btrfs_free_path(path);
2623 return 0;
2624 }
2625
2626 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2627 {
2628 struct inode *inode = dentry->d_inode;
2629 int err = 0;
2630 int ret;
2631 struct btrfs_root *root = BTRFS_I(dir)->root;
2632 struct btrfs_trans_handle *trans;
2633 unsigned long nr = 0;
2634
2635 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2636 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2637 return -ENOTEMPTY;
2638
2639 ret = btrfs_reserve_metadata_space(root, 5);
2640 if (ret)
2641 return ret;
2642
2643 trans = btrfs_start_transaction(root, 1);
2644 if (IS_ERR(trans)) {
2645 btrfs_unreserve_metadata_space(root, 5);
2646 return PTR_ERR(trans);
2647 }
2648
2649 btrfs_set_trans_block_group(trans, dir);
2650
2651 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2652 err = btrfs_unlink_subvol(trans, root, dir,
2653 BTRFS_I(inode)->location.objectid,
2654 dentry->d_name.name,
2655 dentry->d_name.len);
2656 goto out;
2657 }
2658
2659 err = btrfs_orphan_add(trans, inode);
2660 if (err)
2661 goto out;
2662
2663 /* now the directory is empty */
2664 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2665 dentry->d_name.name, dentry->d_name.len);
2666 if (!err)
2667 btrfs_i_size_write(inode, 0);
2668 out:
2669 nr = trans->blocks_used;
2670 ret = btrfs_end_transaction_throttle(trans, root);
2671 btrfs_unreserve_metadata_space(root, 5);
2672 btrfs_btree_balance_dirty(root, nr);
2673
2674 if (ret && !err)
2675 err = ret;
2676 return err;
2677 }
2678
2679 #if 0
2680 /*
2681 * when truncating bytes in a file, it is possible to avoid reading
2682 * the leaves that contain only checksum items. This can be the
2683 * majority of the IO required to delete a large file, but it must
2684 * be done carefully.
2685 *
2686 * The keys in the level just above the leaves are checked to make sure
2687 * the lowest key in a given leaf is a csum key, and starts at an offset
2688 * after the new size.
2689 *
2690 * Then the key for the next leaf is checked to make sure it also has
2691 * a checksum item for the same file. If it does, we know our target leaf
2692 * contains only checksum items, and it can be safely freed without reading
2693 * it.
2694 *
2695 * This is just an optimization targeted at large files. It may do
2696 * nothing. It will return 0 unless things went badly.
2697 */
2698 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2699 struct btrfs_root *root,
2700 struct btrfs_path *path,
2701 struct inode *inode, u64 new_size)
2702 {
2703 struct btrfs_key key;
2704 int ret;
2705 int nritems;
2706 struct btrfs_key found_key;
2707 struct btrfs_key other_key;
2708 struct btrfs_leaf_ref *ref;
2709 u64 leaf_gen;
2710 u64 leaf_start;
2711
2712 path->lowest_level = 1;
2713 key.objectid = inode->i_ino;
2714 key.type = BTRFS_CSUM_ITEM_KEY;
2715 key.offset = new_size;
2716 again:
2717 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2718 if (ret < 0)
2719 goto out;
2720
2721 if (path->nodes[1] == NULL) {
2722 ret = 0;
2723 goto out;
2724 }
2725 ret = 0;
2726 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2727 nritems = btrfs_header_nritems(path->nodes[1]);
2728
2729 if (!nritems)
2730 goto out;
2731
2732 if (path->slots[1] >= nritems)
2733 goto next_node;
2734
2735 /* did we find a key greater than anything we want to delete? */
2736 if (found_key.objectid > inode->i_ino ||
2737 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2738 goto out;
2739
2740 /* we check the next key in the node to make sure the leave contains
2741 * only checksum items. This comparison doesn't work if our
2742 * leaf is the last one in the node
2743 */
2744 if (path->slots[1] + 1 >= nritems) {
2745 next_node:
2746 /* search forward from the last key in the node, this
2747 * will bring us into the next node in the tree
2748 */
2749 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2750
2751 /* unlikely, but we inc below, so check to be safe */
2752 if (found_key.offset == (u64)-1)
2753 goto out;
2754
2755 /* search_forward needs a path with locks held, do the
2756 * search again for the original key. It is possible
2757 * this will race with a balance and return a path that
2758 * we could modify, but this drop is just an optimization
2759 * and is allowed to miss some leaves.
2760 */
2761 btrfs_release_path(root, path);
2762 found_key.offset++;
2763
2764 /* setup a max key for search_forward */
2765 other_key.offset = (u64)-1;
2766 other_key.type = key.type;
2767 other_key.objectid = key.objectid;
2768
2769 path->keep_locks = 1;
2770 ret = btrfs_search_forward(root, &found_key, &other_key,
2771 path, 0, 0);
2772 path->keep_locks = 0;
2773 if (ret || found_key.objectid != key.objectid ||
2774 found_key.type != key.type) {
2775 ret = 0;
2776 goto out;
2777 }
2778
2779 key.offset = found_key.offset;
2780 btrfs_release_path(root, path);
2781 cond_resched();
2782 goto again;
2783 }
2784
2785 /* we know there's one more slot after us in the tree,
2786 * read that key so we can verify it is also a checksum item
2787 */
2788 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2789
2790 if (found_key.objectid < inode->i_ino)
2791 goto next_key;
2792
2793 if (found_key.type != key.type || found_key.offset < new_size)
2794 goto next_key;
2795
2796 /*
2797 * if the key for the next leaf isn't a csum key from this objectid,
2798 * we can't be sure there aren't good items inside this leaf.
2799 * Bail out
2800 */
2801 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2802 goto out;
2803
2804 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2805 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2806 /*
2807 * it is safe to delete this leaf, it contains only
2808 * csum items from this inode at an offset >= new_size
2809 */
2810 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2811 BUG_ON(ret);
2812
2813 if (root->ref_cows && leaf_gen < trans->transid) {
2814 ref = btrfs_alloc_leaf_ref(root, 0);
2815 if (ref) {
2816 ref->root_gen = root->root_key.offset;
2817 ref->bytenr = leaf_start;
2818 ref->owner = 0;
2819 ref->generation = leaf_gen;
2820 ref->nritems = 0;
2821
2822 btrfs_sort_leaf_ref(ref);
2823
2824 ret = btrfs_add_leaf_ref(root, ref, 0);
2825 WARN_ON(ret);
2826 btrfs_free_leaf_ref(root, ref);
2827 } else {
2828 WARN_ON(1);
2829 }
2830 }
2831 next_key:
2832 btrfs_release_path(root, path);
2833
2834 if (other_key.objectid == inode->i_ino &&
2835 other_key.type == key.type && other_key.offset > key.offset) {
2836 key.offset = other_key.offset;
2837 cond_resched();
2838 goto again;
2839 }
2840 ret = 0;
2841 out:
2842 /* fixup any changes we've made to the path */
2843 path->lowest_level = 0;
2844 path->keep_locks = 0;
2845 btrfs_release_path(root, path);
2846 return ret;
2847 }
2848
2849 #endif
2850
2851 /*
2852 * this can truncate away extent items, csum items and directory items.
2853 * It starts at a high offset and removes keys until it can't find
2854 * any higher than new_size
2855 *
2856 * csum items that cross the new i_size are truncated to the new size
2857 * as well.
2858 *
2859 * min_type is the minimum key type to truncate down to. If set to 0, this
2860 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2861 */
2862 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2863 struct btrfs_root *root,
2864 struct inode *inode,
2865 u64 new_size, u32 min_type)
2866 {
2867 struct btrfs_path *path;
2868 struct extent_buffer *leaf;
2869 struct btrfs_file_extent_item *fi;
2870 struct btrfs_key key;
2871 struct btrfs_key found_key;
2872 u64 extent_start = 0;
2873 u64 extent_num_bytes = 0;
2874 u64 extent_offset = 0;
2875 u64 item_end = 0;
2876 u64 mask = root->sectorsize - 1;
2877 u32 found_type = (u8)-1;
2878 int found_extent;
2879 int del_item;
2880 int pending_del_nr = 0;
2881 int pending_del_slot = 0;
2882 int extent_type = -1;
2883 int encoding;
2884 int ret;
2885 int err = 0;
2886
2887 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2888
2889 if (root->ref_cows)
2890 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2891
2892 path = btrfs_alloc_path();
2893 BUG_ON(!path);
2894 path->reada = -1;
2895
2896 key.objectid = inode->i_ino;
2897 key.offset = (u64)-1;
2898 key.type = (u8)-1;
2899
2900 search_again:
2901 path->leave_spinning = 1;
2902 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2903 if (ret < 0) {
2904 err = ret;
2905 goto out;
2906 }
2907
2908 if (ret > 0) {
2909 /* there are no items in the tree for us to truncate, we're
2910 * done
2911 */
2912 if (path->slots[0] == 0)
2913 goto out;
2914 path->slots[0]--;
2915 }
2916
2917 while (1) {
2918 fi = NULL;
2919 leaf = path->nodes[0];
2920 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2921 found_type = btrfs_key_type(&found_key);
2922 encoding = 0;
2923
2924 if (found_key.objectid != inode->i_ino)
2925 break;
2926
2927 if (found_type < min_type)
2928 break;
2929
2930 item_end = found_key.offset;
2931 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2932 fi = btrfs_item_ptr(leaf, path->slots[0],
2933 struct btrfs_file_extent_item);
2934 extent_type = btrfs_file_extent_type(leaf, fi);
2935 encoding = btrfs_file_extent_compression(leaf, fi);
2936 encoding |= btrfs_file_extent_encryption(leaf, fi);
2937 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2938
2939 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2940 item_end +=
2941 btrfs_file_extent_num_bytes(leaf, fi);
2942 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2943 item_end += btrfs_file_extent_inline_len(leaf,
2944 fi);
2945 }
2946 item_end--;
2947 }
2948 if (found_type > min_type) {
2949 del_item = 1;
2950 } else {
2951 if (item_end < new_size)
2952 break;
2953 if (found_key.offset >= new_size)
2954 del_item = 1;
2955 else
2956 del_item = 0;
2957 }
2958 found_extent = 0;
2959 /* FIXME, shrink the extent if the ref count is only 1 */
2960 if (found_type != BTRFS_EXTENT_DATA_KEY)
2961 goto delete;
2962
2963 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2964 u64 num_dec;
2965 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2966 if (!del_item && !encoding) {
2967 u64 orig_num_bytes =
2968 btrfs_file_extent_num_bytes(leaf, fi);
2969 extent_num_bytes = new_size -
2970 found_key.offset + root->sectorsize - 1;
2971 extent_num_bytes = extent_num_bytes &
2972 ~((u64)root->sectorsize - 1);
2973 btrfs_set_file_extent_num_bytes(leaf, fi,
2974 extent_num_bytes);
2975 num_dec = (orig_num_bytes -
2976 extent_num_bytes);
2977 if (root->ref_cows && extent_start != 0)
2978 inode_sub_bytes(inode, num_dec);
2979 btrfs_mark_buffer_dirty(leaf);
2980 } else {
2981 extent_num_bytes =
2982 btrfs_file_extent_disk_num_bytes(leaf,
2983 fi);
2984 extent_offset = found_key.offset -
2985 btrfs_file_extent_offset(leaf, fi);
2986
2987 /* FIXME blocksize != 4096 */
2988 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2989 if (extent_start != 0) {
2990 found_extent = 1;
2991 if (root->ref_cows)
2992 inode_sub_bytes(inode, num_dec);
2993 }
2994 }
2995 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2996 /*
2997 * we can't truncate inline items that have had
2998 * special encodings
2999 */
3000 if (!del_item &&
3001 btrfs_file_extent_compression(leaf, fi) == 0 &&
3002 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3003 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3004 u32 size = new_size - found_key.offset;
3005
3006 if (root->ref_cows) {
3007 inode_sub_bytes(inode, item_end + 1 -
3008 new_size);
3009 }
3010 size =
3011 btrfs_file_extent_calc_inline_size(size);
3012 ret = btrfs_truncate_item(trans, root, path,
3013 size, 1);
3014 BUG_ON(ret);
3015 } else if (root->ref_cows) {
3016 inode_sub_bytes(inode, item_end + 1 -
3017 found_key.offset);
3018 }
3019 }
3020 delete:
3021 if (del_item) {
3022 if (!pending_del_nr) {
3023 /* no pending yet, add ourselves */
3024 pending_del_slot = path->slots[0];
3025 pending_del_nr = 1;
3026 } else if (pending_del_nr &&
3027 path->slots[0] + 1 == pending_del_slot) {
3028 /* hop on the pending chunk */
3029 pending_del_nr++;
3030 pending_del_slot = path->slots[0];
3031 } else {
3032 BUG();
3033 }
3034 } else {
3035 break;
3036 }
3037 if (found_extent && root->ref_cows) {
3038 btrfs_set_path_blocking(path);
3039 ret = btrfs_free_extent(trans, root, extent_start,
3040 extent_num_bytes, 0,
3041 btrfs_header_owner(leaf),
3042 inode->i_ino, extent_offset);
3043 BUG_ON(ret);
3044 }
3045
3046 if (found_type == BTRFS_INODE_ITEM_KEY)
3047 break;
3048
3049 if (path->slots[0] == 0 ||
3050 path->slots[0] != pending_del_slot) {
3051 if (root->ref_cows) {
3052 err = -EAGAIN;
3053 goto out;
3054 }
3055 if (pending_del_nr) {
3056 ret = btrfs_del_items(trans, root, path,
3057 pending_del_slot,
3058 pending_del_nr);
3059 BUG_ON(ret);
3060 pending_del_nr = 0;
3061 }
3062 btrfs_release_path(root, path);
3063 goto search_again;
3064 } else {
3065 path->slots[0]--;
3066 }
3067 }
3068 out:
3069 if (pending_del_nr) {
3070 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3071 pending_del_nr);
3072 }
3073 btrfs_free_path(path);
3074 return err;
3075 }
3076
3077 /*
3078 * taken from block_truncate_page, but does cow as it zeros out
3079 * any bytes left in the last page in the file.
3080 */
3081 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3082 {
3083 struct inode *inode = mapping->host;
3084 struct btrfs_root *root = BTRFS_I(inode)->root;
3085 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3086 struct btrfs_ordered_extent *ordered;
3087 char *kaddr;
3088 u32 blocksize = root->sectorsize;
3089 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3090 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3091 struct page *page;
3092 int ret = 0;
3093 u64 page_start;
3094 u64 page_end;
3095
3096 if ((offset & (blocksize - 1)) == 0)
3097 goto out;
3098 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3099 if (ret)
3100 goto out;
3101
3102 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3103 if (ret)
3104 goto out;
3105
3106 ret = -ENOMEM;
3107 again:
3108 page = grab_cache_page(mapping, index);
3109 if (!page) {
3110 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3111 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3112 goto out;
3113 }
3114
3115 page_start = page_offset(page);
3116 page_end = page_start + PAGE_CACHE_SIZE - 1;
3117
3118 if (!PageUptodate(page)) {
3119 ret = btrfs_readpage(NULL, page);
3120 lock_page(page);
3121 if (page->mapping != mapping) {
3122 unlock_page(page);
3123 page_cache_release(page);
3124 goto again;
3125 }
3126 if (!PageUptodate(page)) {
3127 ret = -EIO;
3128 goto out_unlock;
3129 }
3130 }
3131 wait_on_page_writeback(page);
3132
3133 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3134 set_page_extent_mapped(page);
3135
3136 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3137 if (ordered) {
3138 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3139 unlock_page(page);
3140 page_cache_release(page);
3141 btrfs_start_ordered_extent(inode, ordered, 1);
3142 btrfs_put_ordered_extent(ordered);
3143 goto again;
3144 }
3145
3146 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3147 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3148 GFP_NOFS);
3149
3150 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3151 if (ret) {
3152 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3153 goto out_unlock;
3154 }
3155
3156 ret = 0;
3157 if (offset != PAGE_CACHE_SIZE) {
3158 kaddr = kmap(page);
3159 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3160 flush_dcache_page(page);
3161 kunmap(page);
3162 }
3163 ClearPageChecked(page);
3164 set_page_dirty(page);
3165 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3166
3167 out_unlock:
3168 if (ret)
3169 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3170 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3171 unlock_page(page);
3172 page_cache_release(page);
3173 out:
3174 return ret;
3175 }
3176
3177 int btrfs_cont_expand(struct inode *inode, loff_t size)
3178 {
3179 struct btrfs_trans_handle *trans;
3180 struct btrfs_root *root = BTRFS_I(inode)->root;
3181 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3182 struct extent_map *em;
3183 u64 mask = root->sectorsize - 1;
3184 u64 hole_start = (inode->i_size + mask) & ~mask;
3185 u64 block_end = (size + mask) & ~mask;
3186 u64 last_byte;
3187 u64 cur_offset;
3188 u64 hole_size;
3189 int err = 0;
3190
3191 if (size <= hole_start)
3192 return 0;
3193
3194 while (1) {
3195 struct btrfs_ordered_extent *ordered;
3196 btrfs_wait_ordered_range(inode, hole_start,
3197 block_end - hole_start);
3198 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3199 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3200 if (!ordered)
3201 break;
3202 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3203 btrfs_put_ordered_extent(ordered);
3204 }
3205
3206 cur_offset = hole_start;
3207 while (1) {
3208 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3209 block_end - cur_offset, 0);
3210 BUG_ON(IS_ERR(em) || !em);
3211 last_byte = min(extent_map_end(em), block_end);
3212 last_byte = (last_byte + mask) & ~mask;
3213 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3214 u64 hint_byte = 0;
3215 hole_size = last_byte - cur_offset;
3216
3217 err = btrfs_reserve_metadata_space(root, 2);
3218 if (err)
3219 break;
3220
3221 trans = btrfs_start_transaction(root, 1);
3222 btrfs_set_trans_block_group(trans, inode);
3223
3224 err = btrfs_drop_extents(trans, inode, cur_offset,
3225 cur_offset + hole_size,
3226 &hint_byte, 1);
3227 BUG_ON(err);
3228
3229 err = btrfs_insert_file_extent(trans, root,
3230 inode->i_ino, cur_offset, 0,
3231 0, hole_size, 0, hole_size,
3232 0, 0, 0);
3233 BUG_ON(err);
3234
3235 btrfs_drop_extent_cache(inode, hole_start,
3236 last_byte - 1, 0);
3237
3238 btrfs_end_transaction(trans, root);
3239 btrfs_unreserve_metadata_space(root, 2);
3240 }
3241 free_extent_map(em);
3242 cur_offset = last_byte;
3243 if (cur_offset >= block_end)
3244 break;
3245 }
3246
3247 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3248 return err;
3249 }
3250
3251 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3252 {
3253 struct btrfs_root *root = BTRFS_I(inode)->root;
3254 struct btrfs_trans_handle *trans;
3255 unsigned long nr;
3256 int ret;
3257
3258 if (attr->ia_size == inode->i_size)
3259 return 0;
3260
3261 if (attr->ia_size > inode->i_size) {
3262 unsigned long limit;
3263 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3264 if (attr->ia_size > inode->i_sb->s_maxbytes)
3265 return -EFBIG;
3266 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3267 send_sig(SIGXFSZ, current, 0);
3268 return -EFBIG;
3269 }
3270 }
3271
3272 ret = btrfs_reserve_metadata_space(root, 1);
3273 if (ret)
3274 return ret;
3275
3276 trans = btrfs_start_transaction(root, 1);
3277 btrfs_set_trans_block_group(trans, inode);
3278
3279 ret = btrfs_orphan_add(trans, inode);
3280 BUG_ON(ret);
3281
3282 nr = trans->blocks_used;
3283 btrfs_end_transaction(trans, root);
3284 btrfs_unreserve_metadata_space(root, 1);
3285 btrfs_btree_balance_dirty(root, nr);
3286
3287 if (attr->ia_size > inode->i_size) {
3288 ret = btrfs_cont_expand(inode, attr->ia_size);
3289 if (ret) {
3290 btrfs_truncate(inode);
3291 return ret;
3292 }
3293
3294 i_size_write(inode, attr->ia_size);
3295 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3296
3297 trans = btrfs_start_transaction(root, 1);
3298 btrfs_set_trans_block_group(trans, inode);
3299
3300 ret = btrfs_update_inode(trans, root, inode);
3301 BUG_ON(ret);
3302 if (inode->i_nlink > 0) {
3303 ret = btrfs_orphan_del(trans, inode);
3304 BUG_ON(ret);
3305 }
3306 nr = trans->blocks_used;
3307 btrfs_end_transaction(trans, root);
3308 btrfs_btree_balance_dirty(root, nr);
3309 return 0;
3310 }
3311
3312 /*
3313 * We're truncating a file that used to have good data down to
3314 * zero. Make sure it gets into the ordered flush list so that
3315 * any new writes get down to disk quickly.
3316 */
3317 if (attr->ia_size == 0)
3318 BTRFS_I(inode)->ordered_data_close = 1;
3319
3320 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3321 ret = vmtruncate(inode, attr->ia_size);
3322 BUG_ON(ret);
3323
3324 return 0;
3325 }
3326
3327 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3328 {
3329 struct inode *inode = dentry->d_inode;
3330 int err;
3331
3332 err = inode_change_ok(inode, attr);
3333 if (err)
3334 return err;
3335
3336 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3337 err = btrfs_setattr_size(inode, attr);
3338 if (err)
3339 return err;
3340 }
3341 attr->ia_valid &= ~ATTR_SIZE;
3342
3343 if (attr->ia_valid)
3344 err = inode_setattr(inode, attr);
3345
3346 if (!err && ((attr->ia_valid & ATTR_MODE)))
3347 err = btrfs_acl_chmod(inode);
3348 return err;
3349 }
3350
3351 void btrfs_delete_inode(struct inode *inode)
3352 {
3353 struct btrfs_trans_handle *trans;
3354 struct btrfs_root *root = BTRFS_I(inode)->root;
3355 unsigned long nr;
3356 int ret;
3357
3358 truncate_inode_pages(&inode->i_data, 0);
3359 if (is_bad_inode(inode)) {
3360 btrfs_orphan_del(NULL, inode);
3361 goto no_delete;
3362 }
3363 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3364
3365 if (root->fs_info->log_root_recovering) {
3366 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3367 goto no_delete;
3368 }
3369
3370 if (inode->i_nlink > 0) {
3371 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3372 goto no_delete;
3373 }
3374
3375 btrfs_i_size_write(inode, 0);
3376
3377 while (1) {
3378 trans = btrfs_start_transaction(root, 1);
3379 btrfs_set_trans_block_group(trans, inode);
3380 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3381
3382 if (ret != -EAGAIN)
3383 break;
3384
3385 nr = trans->blocks_used;
3386 btrfs_end_transaction(trans, root);
3387 trans = NULL;
3388 btrfs_btree_balance_dirty(root, nr);
3389 }
3390
3391 if (ret == 0) {
3392 ret = btrfs_orphan_del(trans, inode);
3393 BUG_ON(ret);
3394 }
3395
3396 nr = trans->blocks_used;
3397 btrfs_end_transaction(trans, root);
3398 btrfs_btree_balance_dirty(root, nr);
3399 no_delete:
3400 clear_inode(inode);
3401 return;
3402 }
3403
3404 /*
3405 * this returns the key found in the dir entry in the location pointer.
3406 * If no dir entries were found, location->objectid is 0.
3407 */
3408 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3409 struct btrfs_key *location)
3410 {
3411 const char *name = dentry->d_name.name;
3412 int namelen = dentry->d_name.len;
3413 struct btrfs_dir_item *di;
3414 struct btrfs_path *path;
3415 struct btrfs_root *root = BTRFS_I(dir)->root;
3416 int ret = 0;
3417
3418 path = btrfs_alloc_path();
3419 BUG_ON(!path);
3420
3421 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3422 namelen, 0);
3423 if (IS_ERR(di))
3424 ret = PTR_ERR(di);
3425
3426 if (!di || IS_ERR(di))
3427 goto out_err;
3428
3429 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3430 out:
3431 btrfs_free_path(path);
3432 return ret;
3433 out_err:
3434 location->objectid = 0;
3435 goto out;
3436 }
3437
3438 /*
3439 * when we hit a tree root in a directory, the btrfs part of the inode
3440 * needs to be changed to reflect the root directory of the tree root. This
3441 * is kind of like crossing a mount point.
3442 */
3443 static int fixup_tree_root_location(struct btrfs_root *root,
3444 struct inode *dir,
3445 struct dentry *dentry,
3446 struct btrfs_key *location,
3447 struct btrfs_root **sub_root)
3448 {
3449 struct btrfs_path *path;
3450 struct btrfs_root *new_root;
3451 struct btrfs_root_ref *ref;
3452 struct extent_buffer *leaf;
3453 int ret;
3454 int err = 0;
3455
3456 path = btrfs_alloc_path();
3457 if (!path) {
3458 err = -ENOMEM;
3459 goto out;
3460 }
3461
3462 err = -ENOENT;
3463 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3464 BTRFS_I(dir)->root->root_key.objectid,
3465 location->objectid);
3466 if (ret) {
3467 if (ret < 0)
3468 err = ret;
3469 goto out;
3470 }
3471
3472 leaf = path->nodes[0];
3473 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3474 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3475 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3476 goto out;
3477
3478 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3479 (unsigned long)(ref + 1),
3480 dentry->d_name.len);
3481 if (ret)
3482 goto out;
3483
3484 btrfs_release_path(root->fs_info->tree_root, path);
3485
3486 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3487 if (IS_ERR(new_root)) {
3488 err = PTR_ERR(new_root);
3489 goto out;
3490 }
3491
3492 if (btrfs_root_refs(&new_root->root_item) == 0) {
3493 err = -ENOENT;
3494 goto out;
3495 }
3496
3497 *sub_root = new_root;
3498 location->objectid = btrfs_root_dirid(&new_root->root_item);
3499 location->type = BTRFS_INODE_ITEM_KEY;
3500 location->offset = 0;
3501 err = 0;
3502 out:
3503 btrfs_free_path(path);
3504 return err;
3505 }
3506
3507 static void inode_tree_add(struct inode *inode)
3508 {
3509 struct btrfs_root *root = BTRFS_I(inode)->root;
3510 struct btrfs_inode *entry;
3511 struct rb_node **p;
3512 struct rb_node *parent;
3513 again:
3514 p = &root->inode_tree.rb_node;
3515 parent = NULL;
3516
3517 if (hlist_unhashed(&inode->i_hash))
3518 return;
3519
3520 spin_lock(&root->inode_lock);
3521 while (*p) {
3522 parent = *p;
3523 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3524
3525 if (inode->i_ino < entry->vfs_inode.i_ino)
3526 p = &parent->rb_left;
3527 else if (inode->i_ino > entry->vfs_inode.i_ino)
3528 p = &parent->rb_right;
3529 else {
3530 WARN_ON(!(entry->vfs_inode.i_state &
3531 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3532 rb_erase(parent, &root->inode_tree);
3533 RB_CLEAR_NODE(parent);
3534 spin_unlock(&root->inode_lock);
3535 goto again;
3536 }
3537 }
3538 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3539 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3540 spin_unlock(&root->inode_lock);
3541 }
3542
3543 static void inode_tree_del(struct inode *inode)
3544 {
3545 struct btrfs_root *root = BTRFS_I(inode)->root;
3546 int empty = 0;
3547
3548 spin_lock(&root->inode_lock);
3549 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3550 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3551 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3552 empty = RB_EMPTY_ROOT(&root->inode_tree);
3553 }
3554 spin_unlock(&root->inode_lock);
3555
3556 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3557 synchronize_srcu(&root->fs_info->subvol_srcu);
3558 spin_lock(&root->inode_lock);
3559 empty = RB_EMPTY_ROOT(&root->inode_tree);
3560 spin_unlock(&root->inode_lock);
3561 if (empty)
3562 btrfs_add_dead_root(root);
3563 }
3564 }
3565
3566 int btrfs_invalidate_inodes(struct btrfs_root *root)
3567 {
3568 struct rb_node *node;
3569 struct rb_node *prev;
3570 struct btrfs_inode *entry;
3571 struct inode *inode;
3572 u64 objectid = 0;
3573
3574 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3575
3576 spin_lock(&root->inode_lock);
3577 again:
3578 node = root->inode_tree.rb_node;
3579 prev = NULL;
3580 while (node) {
3581 prev = node;
3582 entry = rb_entry(node, struct btrfs_inode, rb_node);
3583
3584 if (objectid < entry->vfs_inode.i_ino)
3585 node = node->rb_left;
3586 else if (objectid > entry->vfs_inode.i_ino)
3587 node = node->rb_right;
3588 else
3589 break;
3590 }
3591 if (!node) {
3592 while (prev) {
3593 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3594 if (objectid <= entry->vfs_inode.i_ino) {
3595 node = prev;
3596 break;
3597 }
3598 prev = rb_next(prev);
3599 }
3600 }
3601 while (node) {
3602 entry = rb_entry(node, struct btrfs_inode, rb_node);
3603 objectid = entry->vfs_inode.i_ino + 1;
3604 inode = igrab(&entry->vfs_inode);
3605 if (inode) {
3606 spin_unlock(&root->inode_lock);
3607 if (atomic_read(&inode->i_count) > 1)
3608 d_prune_aliases(inode);
3609 /*
3610 * btrfs_drop_inode will remove it from
3611 * the inode cache when its usage count
3612 * hits zero.
3613 */
3614 iput(inode);
3615 cond_resched();
3616 spin_lock(&root->inode_lock);
3617 goto again;
3618 }
3619
3620 if (cond_resched_lock(&root->inode_lock))
3621 goto again;
3622
3623 node = rb_next(node);
3624 }
3625 spin_unlock(&root->inode_lock);
3626 return 0;
3627 }
3628
3629 static noinline void init_btrfs_i(struct inode *inode)
3630 {
3631 struct btrfs_inode *bi = BTRFS_I(inode);
3632
3633 bi->generation = 0;
3634 bi->sequence = 0;
3635 bi->last_trans = 0;
3636 bi->last_sub_trans = 0;
3637 bi->logged_trans = 0;
3638 bi->delalloc_bytes = 0;
3639 bi->reserved_bytes = 0;
3640 bi->disk_i_size = 0;
3641 bi->flags = 0;
3642 bi->index_cnt = (u64)-1;
3643 bi->last_unlink_trans = 0;
3644 bi->ordered_data_close = 0;
3645 bi->force_compress = 0;
3646 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3647 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3648 inode->i_mapping, GFP_NOFS);
3649 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3650 inode->i_mapping, GFP_NOFS);
3651 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3652 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3653 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3654 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3655 mutex_init(&BTRFS_I(inode)->log_mutex);
3656 }
3657
3658 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3659 {
3660 struct btrfs_iget_args *args = p;
3661 inode->i_ino = args->ino;
3662 init_btrfs_i(inode);
3663 BTRFS_I(inode)->root = args->root;
3664 btrfs_set_inode_space_info(args->root, inode);
3665 return 0;
3666 }
3667
3668 static int btrfs_find_actor(struct inode *inode, void *opaque)
3669 {
3670 struct btrfs_iget_args *args = opaque;
3671 return args->ino == inode->i_ino &&
3672 args->root == BTRFS_I(inode)->root;
3673 }
3674
3675 static struct inode *btrfs_iget_locked(struct super_block *s,
3676 u64 objectid,
3677 struct btrfs_root *root)
3678 {
3679 struct inode *inode;
3680 struct btrfs_iget_args args;
3681 args.ino = objectid;
3682 args.root = root;
3683
3684 inode = iget5_locked(s, objectid, btrfs_find_actor,
3685 btrfs_init_locked_inode,
3686 (void *)&args);
3687 return inode;
3688 }
3689
3690 /* Get an inode object given its location and corresponding root.
3691 * Returns in *is_new if the inode was read from disk
3692 */
3693 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3694 struct btrfs_root *root, int *new)
3695 {
3696 struct inode *inode;
3697
3698 inode = btrfs_iget_locked(s, location->objectid, root);
3699 if (!inode)
3700 return ERR_PTR(-ENOMEM);
3701
3702 if (inode->i_state & I_NEW) {
3703 BTRFS_I(inode)->root = root;
3704 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3705 btrfs_read_locked_inode(inode);
3706
3707 inode_tree_add(inode);
3708 unlock_new_inode(inode);
3709 if (new)
3710 *new = 1;
3711 }
3712
3713 return inode;
3714 }
3715
3716 static struct inode *new_simple_dir(struct super_block *s,
3717 struct btrfs_key *key,
3718 struct btrfs_root *root)
3719 {
3720 struct inode *inode = new_inode(s);
3721
3722 if (!inode)
3723 return ERR_PTR(-ENOMEM);
3724
3725 init_btrfs_i(inode);
3726
3727 BTRFS_I(inode)->root = root;
3728 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3729 BTRFS_I(inode)->dummy_inode = 1;
3730
3731 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3732 inode->i_op = &simple_dir_inode_operations;
3733 inode->i_fop = &simple_dir_operations;
3734 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3735 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3736
3737 return inode;
3738 }
3739
3740 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3741 {
3742 struct inode *inode;
3743 struct btrfs_root *root = BTRFS_I(dir)->root;
3744 struct btrfs_root *sub_root = root;
3745 struct btrfs_key location;
3746 int index;
3747 int ret;
3748
3749 dentry->d_op = &btrfs_dentry_operations;
3750
3751 if (dentry->d_name.len > BTRFS_NAME_LEN)
3752 return ERR_PTR(-ENAMETOOLONG);
3753
3754 ret = btrfs_inode_by_name(dir, dentry, &location);
3755
3756 if (ret < 0)
3757 return ERR_PTR(ret);
3758
3759 if (location.objectid == 0)
3760 return NULL;
3761
3762 if (location.type == BTRFS_INODE_ITEM_KEY) {
3763 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3764 return inode;
3765 }
3766
3767 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3768
3769 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3770 ret = fixup_tree_root_location(root, dir, dentry,
3771 &location, &sub_root);
3772 if (ret < 0) {
3773 if (ret != -ENOENT)
3774 inode = ERR_PTR(ret);
3775 else
3776 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3777 } else {
3778 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3779 }
3780 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3781
3782 if (root != sub_root) {
3783 down_read(&root->fs_info->cleanup_work_sem);
3784 if (!(inode->i_sb->s_flags & MS_RDONLY))
3785 btrfs_orphan_cleanup(sub_root);
3786 up_read(&root->fs_info->cleanup_work_sem);
3787 }
3788
3789 return inode;
3790 }
3791
3792 static int btrfs_dentry_delete(struct dentry *dentry)
3793 {
3794 struct btrfs_root *root;
3795
3796 if (!dentry->d_inode && !IS_ROOT(dentry))
3797 dentry = dentry->d_parent;
3798
3799 if (dentry->d_inode) {
3800 root = BTRFS_I(dentry->d_inode)->root;
3801 if (btrfs_root_refs(&root->root_item) == 0)
3802 return 1;
3803 }
3804 return 0;
3805 }
3806
3807 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3808 struct nameidata *nd)
3809 {
3810 struct inode *inode;
3811
3812 inode = btrfs_lookup_dentry(dir, dentry);
3813 if (IS_ERR(inode))
3814 return ERR_CAST(inode);
3815
3816 return d_splice_alias(inode, dentry);
3817 }
3818
3819 static unsigned char btrfs_filetype_table[] = {
3820 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3821 };
3822
3823 static int btrfs_real_readdir(struct file *filp, void *dirent,
3824 filldir_t filldir)
3825 {
3826 struct inode *inode = filp->f_dentry->d_inode;
3827 struct btrfs_root *root = BTRFS_I(inode)->root;
3828 struct btrfs_item *item;
3829 struct btrfs_dir_item *di;
3830 struct btrfs_key key;
3831 struct btrfs_key found_key;
3832 struct btrfs_path *path;
3833 int ret;
3834 u32 nritems;
3835 struct extent_buffer *leaf;
3836 int slot;
3837 int advance;
3838 unsigned char d_type;
3839 int over = 0;
3840 u32 di_cur;
3841 u32 di_total;
3842 u32 di_len;
3843 int key_type = BTRFS_DIR_INDEX_KEY;
3844 char tmp_name[32];
3845 char *name_ptr;
3846 int name_len;
3847
3848 /* FIXME, use a real flag for deciding about the key type */
3849 if (root->fs_info->tree_root == root)
3850 key_type = BTRFS_DIR_ITEM_KEY;
3851
3852 /* special case for "." */
3853 if (filp->f_pos == 0) {
3854 over = filldir(dirent, ".", 1,
3855 1, inode->i_ino,
3856 DT_DIR);
3857 if (over)
3858 return 0;
3859 filp->f_pos = 1;
3860 }
3861 /* special case for .., just use the back ref */
3862 if (filp->f_pos == 1) {
3863 u64 pino = parent_ino(filp->f_path.dentry);
3864 over = filldir(dirent, "..", 2,
3865 2, pino, DT_DIR);
3866 if (over)
3867 return 0;
3868 filp->f_pos = 2;
3869 }
3870 path = btrfs_alloc_path();
3871 path->reada = 2;
3872
3873 btrfs_set_key_type(&key, key_type);
3874 key.offset = filp->f_pos;
3875 key.objectid = inode->i_ino;
3876
3877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3878 if (ret < 0)
3879 goto err;
3880 advance = 0;
3881
3882 while (1) {
3883 leaf = path->nodes[0];
3884 nritems = btrfs_header_nritems(leaf);
3885 slot = path->slots[0];
3886 if (advance || slot >= nritems) {
3887 if (slot >= nritems - 1) {
3888 ret = btrfs_next_leaf(root, path);
3889 if (ret)
3890 break;
3891 leaf = path->nodes[0];
3892 nritems = btrfs_header_nritems(leaf);
3893 slot = path->slots[0];
3894 } else {
3895 slot++;
3896 path->slots[0]++;
3897 }
3898 }
3899
3900 advance = 1;
3901 item = btrfs_item_nr(leaf, slot);
3902 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3903
3904 if (found_key.objectid != key.objectid)
3905 break;
3906 if (btrfs_key_type(&found_key) != key_type)
3907 break;
3908 if (found_key.offset < filp->f_pos)
3909 continue;
3910
3911 filp->f_pos = found_key.offset;
3912
3913 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3914 di_cur = 0;
3915 di_total = btrfs_item_size(leaf, item);
3916
3917 while (di_cur < di_total) {
3918 struct btrfs_key location;
3919
3920 name_len = btrfs_dir_name_len(leaf, di);
3921 if (name_len <= sizeof(tmp_name)) {
3922 name_ptr = tmp_name;
3923 } else {
3924 name_ptr = kmalloc(name_len, GFP_NOFS);
3925 if (!name_ptr) {
3926 ret = -ENOMEM;
3927 goto err;
3928 }
3929 }
3930 read_extent_buffer(leaf, name_ptr,
3931 (unsigned long)(di + 1), name_len);
3932
3933 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3934 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3935
3936 /* is this a reference to our own snapshot? If so
3937 * skip it
3938 */
3939 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3940 location.objectid == root->root_key.objectid) {
3941 over = 0;
3942 goto skip;
3943 }
3944 over = filldir(dirent, name_ptr, name_len,
3945 found_key.offset, location.objectid,
3946 d_type);
3947
3948 skip:
3949 if (name_ptr != tmp_name)
3950 kfree(name_ptr);
3951
3952 if (over)
3953 goto nopos;
3954 di_len = btrfs_dir_name_len(leaf, di) +
3955 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3956 di_cur += di_len;
3957 di = (struct btrfs_dir_item *)((char *)di + di_len);
3958 }
3959 }
3960
3961 /* Reached end of directory/root. Bump pos past the last item. */
3962 if (key_type == BTRFS_DIR_INDEX_KEY)
3963 /*
3964 * 32-bit glibc will use getdents64, but then strtol -
3965 * so the last number we can serve is this.
3966 */
3967 filp->f_pos = 0x7fffffff;
3968 else
3969 filp->f_pos++;
3970 nopos:
3971 ret = 0;
3972 err:
3973 btrfs_free_path(path);
3974 return ret;
3975 }
3976
3977 int btrfs_write_inode(struct inode *inode, int wait)
3978 {
3979 struct btrfs_root *root = BTRFS_I(inode)->root;
3980 struct btrfs_trans_handle *trans;
3981 int ret = 0;
3982
3983 if (root->fs_info->btree_inode == inode)
3984 return 0;
3985
3986 if (wait) {
3987 trans = btrfs_join_transaction(root, 1);
3988 btrfs_set_trans_block_group(trans, inode);
3989 ret = btrfs_commit_transaction(trans, root);
3990 }
3991 return ret;
3992 }
3993
3994 /*
3995 * This is somewhat expensive, updating the tree every time the
3996 * inode changes. But, it is most likely to find the inode in cache.
3997 * FIXME, needs more benchmarking...there are no reasons other than performance
3998 * to keep or drop this code.
3999 */
4000 void btrfs_dirty_inode(struct inode *inode)
4001 {
4002 struct btrfs_root *root = BTRFS_I(inode)->root;
4003 struct btrfs_trans_handle *trans;
4004
4005 trans = btrfs_join_transaction(root, 1);
4006 btrfs_set_trans_block_group(trans, inode);
4007 btrfs_update_inode(trans, root, inode);
4008 btrfs_end_transaction(trans, root);
4009 }
4010
4011 /*
4012 * find the highest existing sequence number in a directory
4013 * and then set the in-memory index_cnt variable to reflect
4014 * free sequence numbers
4015 */
4016 static int btrfs_set_inode_index_count(struct inode *inode)
4017 {
4018 struct btrfs_root *root = BTRFS_I(inode)->root;
4019 struct btrfs_key key, found_key;
4020 struct btrfs_path *path;
4021 struct extent_buffer *leaf;
4022 int ret;
4023
4024 key.objectid = inode->i_ino;
4025 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4026 key.offset = (u64)-1;
4027
4028 path = btrfs_alloc_path();
4029 if (!path)
4030 return -ENOMEM;
4031
4032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4033 if (ret < 0)
4034 goto out;
4035 /* FIXME: we should be able to handle this */
4036 if (ret == 0)
4037 goto out;
4038 ret = 0;
4039
4040 /*
4041 * MAGIC NUMBER EXPLANATION:
4042 * since we search a directory based on f_pos we have to start at 2
4043 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4044 * else has to start at 2
4045 */
4046 if (path->slots[0] == 0) {
4047 BTRFS_I(inode)->index_cnt = 2;
4048 goto out;
4049 }
4050
4051 path->slots[0]--;
4052
4053 leaf = path->nodes[0];
4054 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4055
4056 if (found_key.objectid != inode->i_ino ||
4057 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4058 BTRFS_I(inode)->index_cnt = 2;
4059 goto out;
4060 }
4061
4062 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4063 out:
4064 btrfs_free_path(path);
4065 return ret;
4066 }
4067
4068 /*
4069 * helper to find a free sequence number in a given directory. This current
4070 * code is very simple, later versions will do smarter things in the btree
4071 */
4072 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4073 {
4074 int ret = 0;
4075
4076 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4077 ret = btrfs_set_inode_index_count(dir);
4078 if (ret)
4079 return ret;
4080 }
4081
4082 *index = BTRFS_I(dir)->index_cnt;
4083 BTRFS_I(dir)->index_cnt++;
4084
4085 return ret;
4086 }
4087
4088 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4089 struct btrfs_root *root,
4090 struct inode *dir,
4091 const char *name, int name_len,
4092 u64 ref_objectid, u64 objectid,
4093 u64 alloc_hint, int mode, u64 *index)
4094 {
4095 struct inode *inode;
4096 struct btrfs_inode_item *inode_item;
4097 struct btrfs_key *location;
4098 struct btrfs_path *path;
4099 struct btrfs_inode_ref *ref;
4100 struct btrfs_key key[2];
4101 u32 sizes[2];
4102 unsigned long ptr;
4103 int ret;
4104 int owner;
4105
4106 path = btrfs_alloc_path();
4107 BUG_ON(!path);
4108
4109 inode = new_inode(root->fs_info->sb);
4110 if (!inode)
4111 return ERR_PTR(-ENOMEM);
4112
4113 if (dir) {
4114 ret = btrfs_set_inode_index(dir, index);
4115 if (ret) {
4116 iput(inode);
4117 return ERR_PTR(ret);
4118 }
4119 }
4120 /*
4121 * index_cnt is ignored for everything but a dir,
4122 * btrfs_get_inode_index_count has an explanation for the magic
4123 * number
4124 */
4125 init_btrfs_i(inode);
4126 BTRFS_I(inode)->index_cnt = 2;
4127 BTRFS_I(inode)->root = root;
4128 BTRFS_I(inode)->generation = trans->transid;
4129 btrfs_set_inode_space_info(root, inode);
4130
4131 if (mode & S_IFDIR)
4132 owner = 0;
4133 else
4134 owner = 1;
4135 BTRFS_I(inode)->block_group =
4136 btrfs_find_block_group(root, 0, alloc_hint, owner);
4137
4138 key[0].objectid = objectid;
4139 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4140 key[0].offset = 0;
4141
4142 key[1].objectid = objectid;
4143 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4144 key[1].offset = ref_objectid;
4145
4146 sizes[0] = sizeof(struct btrfs_inode_item);
4147 sizes[1] = name_len + sizeof(*ref);
4148
4149 path->leave_spinning = 1;
4150 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4151 if (ret != 0)
4152 goto fail;
4153
4154 inode->i_uid = current_fsuid();
4155
4156 if (dir && (dir->i_mode & S_ISGID)) {
4157 inode->i_gid = dir->i_gid;
4158 if (S_ISDIR(mode))
4159 mode |= S_ISGID;
4160 } else
4161 inode->i_gid = current_fsgid();
4162
4163 inode->i_mode = mode;
4164 inode->i_ino = objectid;
4165 inode_set_bytes(inode, 0);
4166 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4167 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4168 struct btrfs_inode_item);
4169 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4170
4171 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4172 struct btrfs_inode_ref);
4173 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4174 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4175 ptr = (unsigned long)(ref + 1);
4176 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4177
4178 btrfs_mark_buffer_dirty(path->nodes[0]);
4179 btrfs_free_path(path);
4180
4181 location = &BTRFS_I(inode)->location;
4182 location->objectid = objectid;
4183 location->offset = 0;
4184 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4185
4186 btrfs_inherit_iflags(inode, dir);
4187
4188 if ((mode & S_IFREG)) {
4189 if (btrfs_test_opt(root, NODATASUM))
4190 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4191 if (btrfs_test_opt(root, NODATACOW))
4192 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4193 }
4194
4195 insert_inode_hash(inode);
4196 inode_tree_add(inode);
4197 return inode;
4198 fail:
4199 if (dir)
4200 BTRFS_I(dir)->index_cnt--;
4201 btrfs_free_path(path);
4202 iput(inode);
4203 return ERR_PTR(ret);
4204 }
4205
4206 static inline u8 btrfs_inode_type(struct inode *inode)
4207 {
4208 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4209 }
4210
4211 /*
4212 * utility function to add 'inode' into 'parent_inode' with
4213 * a give name and a given sequence number.
4214 * if 'add_backref' is true, also insert a backref from the
4215 * inode to the parent directory.
4216 */
4217 int btrfs_add_link(struct btrfs_trans_handle *trans,
4218 struct inode *parent_inode, struct inode *inode,
4219 const char *name, int name_len, int add_backref, u64 index)
4220 {
4221 int ret = 0;
4222 struct btrfs_key key;
4223 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4224
4225 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4226 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4227 } else {
4228 key.objectid = inode->i_ino;
4229 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4230 key.offset = 0;
4231 }
4232
4233 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4234 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4235 key.objectid, root->root_key.objectid,
4236 parent_inode->i_ino,
4237 index, name, name_len);
4238 } else if (add_backref) {
4239 ret = btrfs_insert_inode_ref(trans, root,
4240 name, name_len, inode->i_ino,
4241 parent_inode->i_ino, index);
4242 }
4243
4244 if (ret == 0) {
4245 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4246 parent_inode->i_ino, &key,
4247 btrfs_inode_type(inode), index);
4248 BUG_ON(ret);
4249
4250 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4251 name_len * 2);
4252 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4253 ret = btrfs_update_inode(trans, root, parent_inode);
4254 }
4255 return ret;
4256 }
4257
4258 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4259 struct dentry *dentry, struct inode *inode,
4260 int backref, u64 index)
4261 {
4262 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4263 inode, dentry->d_name.name,
4264 dentry->d_name.len, backref, index);
4265 if (!err) {
4266 d_instantiate(dentry, inode);
4267 return 0;
4268 }
4269 if (err > 0)
4270 err = -EEXIST;
4271 return err;
4272 }
4273
4274 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4275 int mode, dev_t rdev)
4276 {
4277 struct btrfs_trans_handle *trans;
4278 struct btrfs_root *root = BTRFS_I(dir)->root;
4279 struct inode *inode = NULL;
4280 int err;
4281 int drop_inode = 0;
4282 u64 objectid;
4283 unsigned long nr = 0;
4284 u64 index = 0;
4285
4286 if (!new_valid_dev(rdev))
4287 return -EINVAL;
4288
4289 /*
4290 * 2 for inode item and ref
4291 * 2 for dir items
4292 * 1 for xattr if selinux is on
4293 */
4294 err = btrfs_reserve_metadata_space(root, 5);
4295 if (err)
4296 return err;
4297
4298 trans = btrfs_start_transaction(root, 1);
4299 if (!trans)
4300 goto fail;
4301 btrfs_set_trans_block_group(trans, dir);
4302
4303 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4304 if (err) {
4305 err = -ENOSPC;
4306 goto out_unlock;
4307 }
4308
4309 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4310 dentry->d_name.len,
4311 dentry->d_parent->d_inode->i_ino, objectid,
4312 BTRFS_I(dir)->block_group, mode, &index);
4313 err = PTR_ERR(inode);
4314 if (IS_ERR(inode))
4315 goto out_unlock;
4316
4317 err = btrfs_init_inode_security(trans, inode, dir);
4318 if (err) {
4319 drop_inode = 1;
4320 goto out_unlock;
4321 }
4322
4323 btrfs_set_trans_block_group(trans, inode);
4324 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4325 if (err)
4326 drop_inode = 1;
4327 else {
4328 inode->i_op = &btrfs_special_inode_operations;
4329 init_special_inode(inode, inode->i_mode, rdev);
4330 btrfs_update_inode(trans, root, inode);
4331 }
4332 btrfs_update_inode_block_group(trans, inode);
4333 btrfs_update_inode_block_group(trans, dir);
4334 out_unlock:
4335 nr = trans->blocks_used;
4336 btrfs_end_transaction_throttle(trans, root);
4337 fail:
4338 btrfs_unreserve_metadata_space(root, 5);
4339 if (drop_inode) {
4340 inode_dec_link_count(inode);
4341 iput(inode);
4342 }
4343 btrfs_btree_balance_dirty(root, nr);
4344 return err;
4345 }
4346
4347 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4348 int mode, struct nameidata *nd)
4349 {
4350 struct btrfs_trans_handle *trans;
4351 struct btrfs_root *root = BTRFS_I(dir)->root;
4352 struct inode *inode = NULL;
4353 int err;
4354 int drop_inode = 0;
4355 unsigned long nr = 0;
4356 u64 objectid;
4357 u64 index = 0;
4358
4359 /*
4360 * 2 for inode item and ref
4361 * 2 for dir items
4362 * 1 for xattr if selinux is on
4363 */
4364 err = btrfs_reserve_metadata_space(root, 5);
4365 if (err)
4366 return err;
4367
4368 trans = btrfs_start_transaction(root, 1);
4369 if (!trans)
4370 goto fail;
4371 btrfs_set_trans_block_group(trans, dir);
4372
4373 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4374 if (err) {
4375 err = -ENOSPC;
4376 goto out_unlock;
4377 }
4378
4379 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4380 dentry->d_name.len,
4381 dentry->d_parent->d_inode->i_ino,
4382 objectid, BTRFS_I(dir)->block_group, mode,
4383 &index);
4384 err = PTR_ERR(inode);
4385 if (IS_ERR(inode))
4386 goto out_unlock;
4387
4388 err = btrfs_init_inode_security(trans, inode, dir);
4389 if (err) {
4390 drop_inode = 1;
4391 goto out_unlock;
4392 }
4393
4394 btrfs_set_trans_block_group(trans, inode);
4395 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4396 if (err)
4397 drop_inode = 1;
4398 else {
4399 inode->i_mapping->a_ops = &btrfs_aops;
4400 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4401 inode->i_fop = &btrfs_file_operations;
4402 inode->i_op = &btrfs_file_inode_operations;
4403 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4404 }
4405 btrfs_update_inode_block_group(trans, inode);
4406 btrfs_update_inode_block_group(trans, dir);
4407 out_unlock:
4408 nr = trans->blocks_used;
4409 btrfs_end_transaction_throttle(trans, root);
4410 fail:
4411 btrfs_unreserve_metadata_space(root, 5);
4412 if (drop_inode) {
4413 inode_dec_link_count(inode);
4414 iput(inode);
4415 }
4416 btrfs_btree_balance_dirty(root, nr);
4417 return err;
4418 }
4419
4420 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4421 struct dentry *dentry)
4422 {
4423 struct btrfs_trans_handle *trans;
4424 struct btrfs_root *root = BTRFS_I(dir)->root;
4425 struct inode *inode = old_dentry->d_inode;
4426 u64 index;
4427 unsigned long nr = 0;
4428 int err;
4429 int drop_inode = 0;
4430
4431 if (inode->i_nlink == 0)
4432 return -ENOENT;
4433
4434 /* do not allow sys_link's with other subvols of the same device */
4435 if (root->objectid != BTRFS_I(inode)->root->objectid)
4436 return -EPERM;
4437
4438 /*
4439 * 1 item for inode ref
4440 * 2 items for dir items
4441 */
4442 err = btrfs_reserve_metadata_space(root, 3);
4443 if (err)
4444 return err;
4445
4446 btrfs_inc_nlink(inode);
4447
4448 err = btrfs_set_inode_index(dir, &index);
4449 if (err)
4450 goto fail;
4451
4452 trans = btrfs_start_transaction(root, 1);
4453
4454 btrfs_set_trans_block_group(trans, dir);
4455 atomic_inc(&inode->i_count);
4456
4457 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4458
4459 if (err) {
4460 drop_inode = 1;
4461 } else {
4462 btrfs_update_inode_block_group(trans, dir);
4463 err = btrfs_update_inode(trans, root, inode);
4464 BUG_ON(err);
4465 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4466 }
4467
4468 nr = trans->blocks_used;
4469 btrfs_end_transaction_throttle(trans, root);
4470 fail:
4471 btrfs_unreserve_metadata_space(root, 3);
4472 if (drop_inode) {
4473 inode_dec_link_count(inode);
4474 iput(inode);
4475 }
4476 btrfs_btree_balance_dirty(root, nr);
4477 return err;
4478 }
4479
4480 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4481 {
4482 struct inode *inode = NULL;
4483 struct btrfs_trans_handle *trans;
4484 struct btrfs_root *root = BTRFS_I(dir)->root;
4485 int err = 0;
4486 int drop_on_err = 0;
4487 u64 objectid = 0;
4488 u64 index = 0;
4489 unsigned long nr = 1;
4490
4491 /*
4492 * 2 items for inode and ref
4493 * 2 items for dir items
4494 * 1 for xattr if selinux is on
4495 */
4496 err = btrfs_reserve_metadata_space(root, 5);
4497 if (err)
4498 return err;
4499
4500 trans = btrfs_start_transaction(root, 1);
4501 if (!trans) {
4502 err = -ENOMEM;
4503 goto out_unlock;
4504 }
4505 btrfs_set_trans_block_group(trans, dir);
4506
4507 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4508 if (err) {
4509 err = -ENOSPC;
4510 goto out_fail;
4511 }
4512
4513 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4514 dentry->d_name.len,
4515 dentry->d_parent->d_inode->i_ino, objectid,
4516 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4517 &index);
4518 if (IS_ERR(inode)) {
4519 err = PTR_ERR(inode);
4520 goto out_fail;
4521 }
4522
4523 drop_on_err = 1;
4524
4525 err = btrfs_init_inode_security(trans, inode, dir);
4526 if (err)
4527 goto out_fail;
4528
4529 inode->i_op = &btrfs_dir_inode_operations;
4530 inode->i_fop = &btrfs_dir_file_operations;
4531 btrfs_set_trans_block_group(trans, inode);
4532
4533 btrfs_i_size_write(inode, 0);
4534 err = btrfs_update_inode(trans, root, inode);
4535 if (err)
4536 goto out_fail;
4537
4538 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4539 inode, dentry->d_name.name,
4540 dentry->d_name.len, 0, index);
4541 if (err)
4542 goto out_fail;
4543
4544 d_instantiate(dentry, inode);
4545 drop_on_err = 0;
4546 btrfs_update_inode_block_group(trans, inode);
4547 btrfs_update_inode_block_group(trans, dir);
4548
4549 out_fail:
4550 nr = trans->blocks_used;
4551 btrfs_end_transaction_throttle(trans, root);
4552
4553 out_unlock:
4554 btrfs_unreserve_metadata_space(root, 5);
4555 if (drop_on_err)
4556 iput(inode);
4557 btrfs_btree_balance_dirty(root, nr);
4558 return err;
4559 }
4560
4561 /* helper for btfs_get_extent. Given an existing extent in the tree,
4562 * and an extent that you want to insert, deal with overlap and insert
4563 * the new extent into the tree.
4564 */
4565 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4566 struct extent_map *existing,
4567 struct extent_map *em,
4568 u64 map_start, u64 map_len)
4569 {
4570 u64 start_diff;
4571
4572 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4573 start_diff = map_start - em->start;
4574 em->start = map_start;
4575 em->len = map_len;
4576 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4577 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4578 em->block_start += start_diff;
4579 em->block_len -= start_diff;
4580 }
4581 return add_extent_mapping(em_tree, em);
4582 }
4583
4584 static noinline int uncompress_inline(struct btrfs_path *path,
4585 struct inode *inode, struct page *page,
4586 size_t pg_offset, u64 extent_offset,
4587 struct btrfs_file_extent_item *item)
4588 {
4589 int ret;
4590 struct extent_buffer *leaf = path->nodes[0];
4591 char *tmp;
4592 size_t max_size;
4593 unsigned long inline_size;
4594 unsigned long ptr;
4595
4596 WARN_ON(pg_offset != 0);
4597 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4598 inline_size = btrfs_file_extent_inline_item_len(leaf,
4599 btrfs_item_nr(leaf, path->slots[0]));
4600 tmp = kmalloc(inline_size, GFP_NOFS);
4601 ptr = btrfs_file_extent_inline_start(item);
4602
4603 read_extent_buffer(leaf, tmp, ptr, inline_size);
4604
4605 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4606 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4607 inline_size, max_size);
4608 if (ret) {
4609 char *kaddr = kmap_atomic(page, KM_USER0);
4610 unsigned long copy_size = min_t(u64,
4611 PAGE_CACHE_SIZE - pg_offset,
4612 max_size - extent_offset);
4613 memset(kaddr + pg_offset, 0, copy_size);
4614 kunmap_atomic(kaddr, KM_USER0);
4615 }
4616 kfree(tmp);
4617 return 0;
4618 }
4619
4620 /*
4621 * a bit scary, this does extent mapping from logical file offset to the disk.
4622 * the ugly parts come from merging extents from the disk with the in-ram
4623 * representation. This gets more complex because of the data=ordered code,
4624 * where the in-ram extents might be locked pending data=ordered completion.
4625 *
4626 * This also copies inline extents directly into the page.
4627 */
4628
4629 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4630 size_t pg_offset, u64 start, u64 len,
4631 int create)
4632 {
4633 int ret;
4634 int err = 0;
4635 u64 bytenr;
4636 u64 extent_start = 0;
4637 u64 extent_end = 0;
4638 u64 objectid = inode->i_ino;
4639 u32 found_type;
4640 struct btrfs_path *path = NULL;
4641 struct btrfs_root *root = BTRFS_I(inode)->root;
4642 struct btrfs_file_extent_item *item;
4643 struct extent_buffer *leaf;
4644 struct btrfs_key found_key;
4645 struct extent_map *em = NULL;
4646 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4647 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4648 struct btrfs_trans_handle *trans = NULL;
4649 int compressed;
4650
4651 again:
4652 read_lock(&em_tree->lock);
4653 em = lookup_extent_mapping(em_tree, start, len);
4654 if (em)
4655 em->bdev = root->fs_info->fs_devices->latest_bdev;
4656 read_unlock(&em_tree->lock);
4657
4658 if (em) {
4659 if (em->start > start || em->start + em->len <= start)
4660 free_extent_map(em);
4661 else if (em->block_start == EXTENT_MAP_INLINE && page)
4662 free_extent_map(em);
4663 else
4664 goto out;
4665 }
4666 em = alloc_extent_map(GFP_NOFS);
4667 if (!em) {
4668 err = -ENOMEM;
4669 goto out;
4670 }
4671 em->bdev = root->fs_info->fs_devices->latest_bdev;
4672 em->start = EXTENT_MAP_HOLE;
4673 em->orig_start = EXTENT_MAP_HOLE;
4674 em->len = (u64)-1;
4675 em->block_len = (u64)-1;
4676
4677 if (!path) {
4678 path = btrfs_alloc_path();
4679 BUG_ON(!path);
4680 }
4681
4682 ret = btrfs_lookup_file_extent(trans, root, path,
4683 objectid, start, trans != NULL);
4684 if (ret < 0) {
4685 err = ret;
4686 goto out;
4687 }
4688
4689 if (ret != 0) {
4690 if (path->slots[0] == 0)
4691 goto not_found;
4692 path->slots[0]--;
4693 }
4694
4695 leaf = path->nodes[0];
4696 item = btrfs_item_ptr(leaf, path->slots[0],
4697 struct btrfs_file_extent_item);
4698 /* are we inside the extent that was found? */
4699 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4700 found_type = btrfs_key_type(&found_key);
4701 if (found_key.objectid != objectid ||
4702 found_type != BTRFS_EXTENT_DATA_KEY) {
4703 goto not_found;
4704 }
4705
4706 found_type = btrfs_file_extent_type(leaf, item);
4707 extent_start = found_key.offset;
4708 compressed = btrfs_file_extent_compression(leaf, item);
4709 if (found_type == BTRFS_FILE_EXTENT_REG ||
4710 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4711 extent_end = extent_start +
4712 btrfs_file_extent_num_bytes(leaf, item);
4713 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4714 size_t size;
4715 size = btrfs_file_extent_inline_len(leaf, item);
4716 extent_end = (extent_start + size + root->sectorsize - 1) &
4717 ~((u64)root->sectorsize - 1);
4718 }
4719
4720 if (start >= extent_end) {
4721 path->slots[0]++;
4722 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4723 ret = btrfs_next_leaf(root, path);
4724 if (ret < 0) {
4725 err = ret;
4726 goto out;
4727 }
4728 if (ret > 0)
4729 goto not_found;
4730 leaf = path->nodes[0];
4731 }
4732 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4733 if (found_key.objectid != objectid ||
4734 found_key.type != BTRFS_EXTENT_DATA_KEY)
4735 goto not_found;
4736 if (start + len <= found_key.offset)
4737 goto not_found;
4738 em->start = start;
4739 em->len = found_key.offset - start;
4740 goto not_found_em;
4741 }
4742
4743 if (found_type == BTRFS_FILE_EXTENT_REG ||
4744 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4745 em->start = extent_start;
4746 em->len = extent_end - extent_start;
4747 em->orig_start = extent_start -
4748 btrfs_file_extent_offset(leaf, item);
4749 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4750 if (bytenr == 0) {
4751 em->block_start = EXTENT_MAP_HOLE;
4752 goto insert;
4753 }
4754 if (compressed) {
4755 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4756 em->block_start = bytenr;
4757 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4758 item);
4759 } else {
4760 bytenr += btrfs_file_extent_offset(leaf, item);
4761 em->block_start = bytenr;
4762 em->block_len = em->len;
4763 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4764 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4765 }
4766 goto insert;
4767 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4768 unsigned long ptr;
4769 char *map;
4770 size_t size;
4771 size_t extent_offset;
4772 size_t copy_size;
4773
4774 em->block_start = EXTENT_MAP_INLINE;
4775 if (!page || create) {
4776 em->start = extent_start;
4777 em->len = extent_end - extent_start;
4778 goto out;
4779 }
4780
4781 size = btrfs_file_extent_inline_len(leaf, item);
4782 extent_offset = page_offset(page) + pg_offset - extent_start;
4783 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4784 size - extent_offset);
4785 em->start = extent_start + extent_offset;
4786 em->len = (copy_size + root->sectorsize - 1) &
4787 ~((u64)root->sectorsize - 1);
4788 em->orig_start = EXTENT_MAP_INLINE;
4789 if (compressed)
4790 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4791 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4792 if (create == 0 && !PageUptodate(page)) {
4793 if (btrfs_file_extent_compression(leaf, item) ==
4794 BTRFS_COMPRESS_ZLIB) {
4795 ret = uncompress_inline(path, inode, page,
4796 pg_offset,
4797 extent_offset, item);
4798 BUG_ON(ret);
4799 } else {
4800 map = kmap(page);
4801 read_extent_buffer(leaf, map + pg_offset, ptr,
4802 copy_size);
4803 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4804 memset(map + pg_offset + copy_size, 0,
4805 PAGE_CACHE_SIZE - pg_offset -
4806 copy_size);
4807 }
4808 kunmap(page);
4809 }
4810 flush_dcache_page(page);
4811 } else if (create && PageUptodate(page)) {
4812 if (!trans) {
4813 kunmap(page);
4814 free_extent_map(em);
4815 em = NULL;
4816 btrfs_release_path(root, path);
4817 trans = btrfs_join_transaction(root, 1);
4818 goto again;
4819 }
4820 map = kmap(page);
4821 write_extent_buffer(leaf, map + pg_offset, ptr,
4822 copy_size);
4823 kunmap(page);
4824 btrfs_mark_buffer_dirty(leaf);
4825 }
4826 set_extent_uptodate(io_tree, em->start,
4827 extent_map_end(em) - 1, GFP_NOFS);
4828 goto insert;
4829 } else {
4830 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4831 WARN_ON(1);
4832 }
4833 not_found:
4834 em->start = start;
4835 em->len = len;
4836 not_found_em:
4837 em->block_start = EXTENT_MAP_HOLE;
4838 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4839 insert:
4840 btrfs_release_path(root, path);
4841 if (em->start > start || extent_map_end(em) <= start) {
4842 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4843 "[%llu %llu]\n", (unsigned long long)em->start,
4844 (unsigned long long)em->len,
4845 (unsigned long long)start,
4846 (unsigned long long)len);
4847 err = -EIO;
4848 goto out;
4849 }
4850
4851 err = 0;
4852 write_lock(&em_tree->lock);
4853 ret = add_extent_mapping(em_tree, em);
4854 /* it is possible that someone inserted the extent into the tree
4855 * while we had the lock dropped. It is also possible that
4856 * an overlapping map exists in the tree
4857 */
4858 if (ret == -EEXIST) {
4859 struct extent_map *existing;
4860
4861 ret = 0;
4862
4863 existing = lookup_extent_mapping(em_tree, start, len);
4864 if (existing && (existing->start > start ||
4865 existing->start + existing->len <= start)) {
4866 free_extent_map(existing);
4867 existing = NULL;
4868 }
4869 if (!existing) {
4870 existing = lookup_extent_mapping(em_tree, em->start,
4871 em->len);
4872 if (existing) {
4873 err = merge_extent_mapping(em_tree, existing,
4874 em, start,
4875 root->sectorsize);
4876 free_extent_map(existing);
4877 if (err) {
4878 free_extent_map(em);
4879 em = NULL;
4880 }
4881 } else {
4882 err = -EIO;
4883 free_extent_map(em);
4884 em = NULL;
4885 }
4886 } else {
4887 free_extent_map(em);
4888 em = existing;
4889 err = 0;
4890 }
4891 }
4892 write_unlock(&em_tree->lock);
4893 out:
4894 if (path)
4895 btrfs_free_path(path);
4896 if (trans) {
4897 ret = btrfs_end_transaction(trans, root);
4898 if (!err)
4899 err = ret;
4900 }
4901 if (err) {
4902 free_extent_map(em);
4903 return ERR_PTR(err);
4904 }
4905 return em;
4906 }
4907
4908 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4909 const struct iovec *iov, loff_t offset,
4910 unsigned long nr_segs)
4911 {
4912 return -EINVAL;
4913 }
4914
4915 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4916 __u64 start, __u64 len)
4917 {
4918 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4919 }
4920
4921 int btrfs_readpage(struct file *file, struct page *page)
4922 {
4923 struct extent_io_tree *tree;
4924 tree = &BTRFS_I(page->mapping->host)->io_tree;
4925 return extent_read_full_page(tree, page, btrfs_get_extent);
4926 }
4927
4928 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4929 {
4930 struct extent_io_tree *tree;
4931
4932
4933 if (current->flags & PF_MEMALLOC) {
4934 redirty_page_for_writepage(wbc, page);
4935 unlock_page(page);
4936 return 0;
4937 }
4938 tree = &BTRFS_I(page->mapping->host)->io_tree;
4939 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4940 }
4941
4942 int btrfs_writepages(struct address_space *mapping,
4943 struct writeback_control *wbc)
4944 {
4945 struct extent_io_tree *tree;
4946
4947 tree = &BTRFS_I(mapping->host)->io_tree;
4948 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4949 }
4950
4951 static int
4952 btrfs_readpages(struct file *file, struct address_space *mapping,
4953 struct list_head *pages, unsigned nr_pages)
4954 {
4955 struct extent_io_tree *tree;
4956 tree = &BTRFS_I(mapping->host)->io_tree;
4957 return extent_readpages(tree, mapping, pages, nr_pages,
4958 btrfs_get_extent);
4959 }
4960 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4961 {
4962 struct extent_io_tree *tree;
4963 struct extent_map_tree *map;
4964 int ret;
4965
4966 tree = &BTRFS_I(page->mapping->host)->io_tree;
4967 map = &BTRFS_I(page->mapping->host)->extent_tree;
4968 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4969 if (ret == 1) {
4970 ClearPagePrivate(page);
4971 set_page_private(page, 0);
4972 page_cache_release(page);
4973 }
4974 return ret;
4975 }
4976
4977 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4978 {
4979 if (PageWriteback(page) || PageDirty(page))
4980 return 0;
4981 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4982 }
4983
4984 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4985 {
4986 struct extent_io_tree *tree;
4987 struct btrfs_ordered_extent *ordered;
4988 u64 page_start = page_offset(page);
4989 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4990
4991
4992 /*
4993 * we have the page locked, so new writeback can't start,
4994 * and the dirty bit won't be cleared while we are here.
4995 *
4996 * Wait for IO on this page so that we can safely clear
4997 * the PagePrivate2 bit and do ordered accounting
4998 */
4999 wait_on_page_writeback(page);
5000
5001 tree = &BTRFS_I(page->mapping->host)->io_tree;
5002 if (offset) {
5003 btrfs_releasepage(page, GFP_NOFS);
5004 return;
5005 }
5006 lock_extent(tree, page_start, page_end, GFP_NOFS);
5007 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5008 page_offset(page));
5009 if (ordered) {
5010 /*
5011 * IO on this page will never be started, so we need
5012 * to account for any ordered extents now
5013 */
5014 clear_extent_bit(tree, page_start, page_end,
5015 EXTENT_DIRTY | EXTENT_DELALLOC |
5016 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5017 NULL, GFP_NOFS);
5018 /*
5019 * whoever cleared the private bit is responsible
5020 * for the finish_ordered_io
5021 */
5022 if (TestClearPagePrivate2(page)) {
5023 btrfs_finish_ordered_io(page->mapping->host,
5024 page_start, page_end);
5025 }
5026 btrfs_put_ordered_extent(ordered);
5027 lock_extent(tree, page_start, page_end, GFP_NOFS);
5028 }
5029 clear_extent_bit(tree, page_start, page_end,
5030 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5031 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
5032 __btrfs_releasepage(page, GFP_NOFS);
5033
5034 ClearPageChecked(page);
5035 if (PagePrivate(page)) {
5036 ClearPagePrivate(page);
5037 set_page_private(page, 0);
5038 page_cache_release(page);
5039 }
5040 }
5041
5042 /*
5043 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5044 * called from a page fault handler when a page is first dirtied. Hence we must
5045 * be careful to check for EOF conditions here. We set the page up correctly
5046 * for a written page which means we get ENOSPC checking when writing into
5047 * holes and correct delalloc and unwritten extent mapping on filesystems that
5048 * support these features.
5049 *
5050 * We are not allowed to take the i_mutex here so we have to play games to
5051 * protect against truncate races as the page could now be beyond EOF. Because
5052 * vmtruncate() writes the inode size before removing pages, once we have the
5053 * page lock we can determine safely if the page is beyond EOF. If it is not
5054 * beyond EOF, then the page is guaranteed safe against truncation until we
5055 * unlock the page.
5056 */
5057 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5058 {
5059 struct page *page = vmf->page;
5060 struct inode *inode = fdentry(vma->vm_file)->d_inode;
5061 struct btrfs_root *root = BTRFS_I(inode)->root;
5062 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5063 struct btrfs_ordered_extent *ordered;
5064 char *kaddr;
5065 unsigned long zero_start;
5066 loff_t size;
5067 int ret;
5068 u64 page_start;
5069 u64 page_end;
5070
5071 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5072 if (ret) {
5073 if (ret == -ENOMEM)
5074 ret = VM_FAULT_OOM;
5075 else /* -ENOSPC, -EIO, etc */
5076 ret = VM_FAULT_SIGBUS;
5077 goto out;
5078 }
5079
5080 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5081 if (ret) {
5082 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5083 ret = VM_FAULT_SIGBUS;
5084 goto out;
5085 }
5086
5087 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5088 again:
5089 lock_page(page);
5090 size = i_size_read(inode);
5091 page_start = page_offset(page);
5092 page_end = page_start + PAGE_CACHE_SIZE - 1;
5093
5094 if ((page->mapping != inode->i_mapping) ||
5095 (page_start >= size)) {
5096 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5097 /* page got truncated out from underneath us */
5098 goto out_unlock;
5099 }
5100 wait_on_page_writeback(page);
5101
5102 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5103 set_page_extent_mapped(page);
5104
5105 /*
5106 * we can't set the delalloc bits if there are pending ordered
5107 * extents. Drop our locks and wait for them to finish
5108 */
5109 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5110 if (ordered) {
5111 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5112 unlock_page(page);
5113 btrfs_start_ordered_extent(inode, ordered, 1);
5114 btrfs_put_ordered_extent(ordered);
5115 goto again;
5116 }
5117
5118 /*
5119 * XXX - page_mkwrite gets called every time the page is dirtied, even
5120 * if it was already dirty, so for space accounting reasons we need to
5121 * clear any delalloc bits for the range we are fixing to save. There
5122 * is probably a better way to do this, but for now keep consistent with
5123 * prepare_pages in the normal write path.
5124 */
5125 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5126 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5127 GFP_NOFS);
5128
5129 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5130 if (ret) {
5131 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5132 ret = VM_FAULT_SIGBUS;
5133 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5134 goto out_unlock;
5135 }
5136 ret = 0;
5137
5138 /* page is wholly or partially inside EOF */
5139 if (page_start + PAGE_CACHE_SIZE > size)
5140 zero_start = size & ~PAGE_CACHE_MASK;
5141 else
5142 zero_start = PAGE_CACHE_SIZE;
5143
5144 if (zero_start != PAGE_CACHE_SIZE) {
5145 kaddr = kmap(page);
5146 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5147 flush_dcache_page(page);
5148 kunmap(page);
5149 }
5150 ClearPageChecked(page);
5151 set_page_dirty(page);
5152 SetPageUptodate(page);
5153
5154 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5155 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5156
5157 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5158
5159 out_unlock:
5160 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5161 if (!ret)
5162 return VM_FAULT_LOCKED;
5163 unlock_page(page);
5164 out:
5165 return ret;
5166 }
5167
5168 static void btrfs_truncate(struct inode *inode)
5169 {
5170 struct btrfs_root *root = BTRFS_I(inode)->root;
5171 int ret;
5172 struct btrfs_trans_handle *trans;
5173 unsigned long nr;
5174 u64 mask = root->sectorsize - 1;
5175
5176 if (!S_ISREG(inode->i_mode)) {
5177 WARN_ON(1);
5178 return;
5179 }
5180
5181 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5182 if (ret)
5183 return;
5184
5185 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5186 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5187
5188 trans = btrfs_start_transaction(root, 1);
5189 btrfs_set_trans_block_group(trans, inode);
5190
5191 /*
5192 * setattr is responsible for setting the ordered_data_close flag,
5193 * but that is only tested during the last file release. That
5194 * could happen well after the next commit, leaving a great big
5195 * window where new writes may get lost if someone chooses to write
5196 * to this file after truncating to zero
5197 *
5198 * The inode doesn't have any dirty data here, and so if we commit
5199 * this is a noop. If someone immediately starts writing to the inode
5200 * it is very likely we'll catch some of their writes in this
5201 * transaction, and the commit will find this file on the ordered
5202 * data list with good things to send down.
5203 *
5204 * This is a best effort solution, there is still a window where
5205 * using truncate to replace the contents of the file will
5206 * end up with a zero length file after a crash.
5207 */
5208 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5209 btrfs_add_ordered_operation(trans, root, inode);
5210
5211 while (1) {
5212 ret = btrfs_truncate_inode_items(trans, root, inode,
5213 inode->i_size,
5214 BTRFS_EXTENT_DATA_KEY);
5215 if (ret != -EAGAIN)
5216 break;
5217
5218 ret = btrfs_update_inode(trans, root, inode);
5219 BUG_ON(ret);
5220
5221 nr = trans->blocks_used;
5222 btrfs_end_transaction(trans, root);
5223 btrfs_btree_balance_dirty(root, nr);
5224
5225 trans = btrfs_start_transaction(root, 1);
5226 btrfs_set_trans_block_group(trans, inode);
5227 }
5228
5229 if (ret == 0 && inode->i_nlink > 0) {
5230 ret = btrfs_orphan_del(trans, inode);
5231 BUG_ON(ret);
5232 }
5233
5234 ret = btrfs_update_inode(trans, root, inode);
5235 BUG_ON(ret);
5236
5237 nr = trans->blocks_used;
5238 ret = btrfs_end_transaction_throttle(trans, root);
5239 BUG_ON(ret);
5240 btrfs_btree_balance_dirty(root, nr);
5241 }
5242
5243 /*
5244 * create a new subvolume directory/inode (helper for the ioctl).
5245 */
5246 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5247 struct btrfs_root *new_root,
5248 u64 new_dirid, u64 alloc_hint)
5249 {
5250 struct inode *inode;
5251 int err;
5252 u64 index = 0;
5253
5254 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5255 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5256 if (IS_ERR(inode))
5257 return PTR_ERR(inode);
5258 inode->i_op = &btrfs_dir_inode_operations;
5259 inode->i_fop = &btrfs_dir_file_operations;
5260
5261 inode->i_nlink = 1;
5262 btrfs_i_size_write(inode, 0);
5263
5264 err = btrfs_update_inode(trans, new_root, inode);
5265 BUG_ON(err);
5266
5267 iput(inode);
5268 return 0;
5269 }
5270
5271 /* helper function for file defrag and space balancing. This
5272 * forces readahead on a given range of bytes in an inode
5273 */
5274 unsigned long btrfs_force_ra(struct address_space *mapping,
5275 struct file_ra_state *ra, struct file *file,
5276 pgoff_t offset, pgoff_t last_index)
5277 {
5278 pgoff_t req_size = last_index - offset + 1;
5279
5280 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5281 return offset + req_size;
5282 }
5283
5284 struct inode *btrfs_alloc_inode(struct super_block *sb)
5285 {
5286 struct btrfs_inode *ei;
5287
5288 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5289 if (!ei)
5290 return NULL;
5291 ei->last_trans = 0;
5292 ei->last_sub_trans = 0;
5293 ei->logged_trans = 0;
5294 ei->outstanding_extents = 0;
5295 ei->reserved_extents = 0;
5296 ei->root = NULL;
5297 spin_lock_init(&ei->accounting_lock);
5298 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5299 INIT_LIST_HEAD(&ei->i_orphan);
5300 INIT_LIST_HEAD(&ei->ordered_operations);
5301 return &ei->vfs_inode;
5302 }
5303
5304 void btrfs_destroy_inode(struct inode *inode)
5305 {
5306 struct btrfs_ordered_extent *ordered;
5307 struct btrfs_root *root = BTRFS_I(inode)->root;
5308
5309 WARN_ON(!list_empty(&inode->i_dentry));
5310 WARN_ON(inode->i_data.nrpages);
5311
5312 /*
5313 * This can happen where we create an inode, but somebody else also
5314 * created the same inode and we need to destroy the one we already
5315 * created.
5316 */
5317 if (!root)
5318 goto free;
5319
5320 /*
5321 * Make sure we're properly removed from the ordered operation
5322 * lists.
5323 */
5324 smp_mb();
5325 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5326 spin_lock(&root->fs_info->ordered_extent_lock);
5327 list_del_init(&BTRFS_I(inode)->ordered_operations);
5328 spin_unlock(&root->fs_info->ordered_extent_lock);
5329 }
5330
5331 spin_lock(&root->list_lock);
5332 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5333 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5334 inode->i_ino);
5335 list_del_init(&BTRFS_I(inode)->i_orphan);
5336 }
5337 spin_unlock(&root->list_lock);
5338
5339 while (1) {
5340 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5341 if (!ordered)
5342 break;
5343 else {
5344 printk(KERN_ERR "btrfs found ordered "
5345 "extent %llu %llu on inode cleanup\n",
5346 (unsigned long long)ordered->file_offset,
5347 (unsigned long long)ordered->len);
5348 btrfs_remove_ordered_extent(inode, ordered);
5349 btrfs_put_ordered_extent(ordered);
5350 btrfs_put_ordered_extent(ordered);
5351 }
5352 }
5353 inode_tree_del(inode);
5354 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5355 free:
5356 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5357 }
5358
5359 void btrfs_drop_inode(struct inode *inode)
5360 {
5361 struct btrfs_root *root = BTRFS_I(inode)->root;
5362
5363 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5364 generic_delete_inode(inode);
5365 else
5366 generic_drop_inode(inode);
5367 }
5368
5369 static void init_once(void *foo)
5370 {
5371 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5372
5373 inode_init_once(&ei->vfs_inode);
5374 }
5375
5376 void btrfs_destroy_cachep(void)
5377 {
5378 if (btrfs_inode_cachep)
5379 kmem_cache_destroy(btrfs_inode_cachep);
5380 if (btrfs_trans_handle_cachep)
5381 kmem_cache_destroy(btrfs_trans_handle_cachep);
5382 if (btrfs_transaction_cachep)
5383 kmem_cache_destroy(btrfs_transaction_cachep);
5384 if (btrfs_path_cachep)
5385 kmem_cache_destroy(btrfs_path_cachep);
5386 }
5387
5388 int btrfs_init_cachep(void)
5389 {
5390 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5391 sizeof(struct btrfs_inode), 0,
5392 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5393 if (!btrfs_inode_cachep)
5394 goto fail;
5395
5396 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5397 sizeof(struct btrfs_trans_handle), 0,
5398 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5399 if (!btrfs_trans_handle_cachep)
5400 goto fail;
5401
5402 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5403 sizeof(struct btrfs_transaction), 0,
5404 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5405 if (!btrfs_transaction_cachep)
5406 goto fail;
5407
5408 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5409 sizeof(struct btrfs_path), 0,
5410 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5411 if (!btrfs_path_cachep)
5412 goto fail;
5413
5414 return 0;
5415 fail:
5416 btrfs_destroy_cachep();
5417 return -ENOMEM;
5418 }
5419
5420 static int btrfs_getattr(struct vfsmount *mnt,
5421 struct dentry *dentry, struct kstat *stat)
5422 {
5423 struct inode *inode = dentry->d_inode;
5424 generic_fillattr(inode, stat);
5425 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5426 stat->blksize = PAGE_CACHE_SIZE;
5427 stat->blocks = (inode_get_bytes(inode) +
5428 BTRFS_I(inode)->delalloc_bytes) >> 9;
5429 return 0;
5430 }
5431
5432 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5433 struct inode *new_dir, struct dentry *new_dentry)
5434 {
5435 struct btrfs_trans_handle *trans;
5436 struct btrfs_root *root = BTRFS_I(old_dir)->root;
5437 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5438 struct inode *new_inode = new_dentry->d_inode;
5439 struct inode *old_inode = old_dentry->d_inode;
5440 struct timespec ctime = CURRENT_TIME;
5441 u64 index = 0;
5442 u64 root_objectid;
5443 int ret;
5444
5445 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5446 return -EPERM;
5447
5448 /* we only allow rename subvolume link between subvolumes */
5449 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5450 return -EXDEV;
5451
5452 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5453 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5454 return -ENOTEMPTY;
5455
5456 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5457 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5458 return -ENOTEMPTY;
5459
5460 /*
5461 * We want to reserve the absolute worst case amount of items. So if
5462 * both inodes are subvols and we need to unlink them then that would
5463 * require 4 item modifications, but if they are both normal inodes it
5464 * would require 5 item modifications, so we'll assume their normal
5465 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5466 * should cover the worst case number of items we'll modify.
5467 */
5468 ret = btrfs_reserve_metadata_space(root, 11);
5469 if (ret)
5470 return ret;
5471
5472 /*
5473 * we're using rename to replace one file with another.
5474 * and the replacement file is large. Start IO on it now so
5475 * we don't add too much work to the end of the transaction
5476 */
5477 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5478 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5479 filemap_flush(old_inode->i_mapping);
5480
5481 /* close the racy window with snapshot create/destroy ioctl */
5482 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5483 down_read(&root->fs_info->subvol_sem);
5484
5485 trans = btrfs_start_transaction(root, 1);
5486 btrfs_set_trans_block_group(trans, new_dir);
5487
5488 if (dest != root)
5489 btrfs_record_root_in_trans(trans, dest);
5490
5491 ret = btrfs_set_inode_index(new_dir, &index);
5492 if (ret)
5493 goto out_fail;
5494
5495 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5496 /* force full log commit if subvolume involved. */
5497 root->fs_info->last_trans_log_full_commit = trans->transid;
5498 } else {
5499 ret = btrfs_insert_inode_ref(trans, dest,
5500 new_dentry->d_name.name,
5501 new_dentry->d_name.len,
5502 old_inode->i_ino,
5503 new_dir->i_ino, index);
5504 if (ret)
5505 goto out_fail;
5506 /*
5507 * this is an ugly little race, but the rename is required
5508 * to make sure that if we crash, the inode is either at the
5509 * old name or the new one. pinning the log transaction lets
5510 * us make sure we don't allow a log commit to come in after
5511 * we unlink the name but before we add the new name back in.
5512 */
5513 btrfs_pin_log_trans(root);
5514 }
5515 /*
5516 * make sure the inode gets flushed if it is replacing
5517 * something.
5518 */
5519 if (new_inode && new_inode->i_size &&
5520 old_inode && S_ISREG(old_inode->i_mode)) {
5521 btrfs_add_ordered_operation(trans, root, old_inode);
5522 }
5523
5524 old_dir->i_ctime = old_dir->i_mtime = ctime;
5525 new_dir->i_ctime = new_dir->i_mtime = ctime;
5526 old_inode->i_ctime = ctime;
5527
5528 if (old_dentry->d_parent != new_dentry->d_parent)
5529 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5530
5531 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5532 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5533 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5534 old_dentry->d_name.name,
5535 old_dentry->d_name.len);
5536 } else {
5537 btrfs_inc_nlink(old_dentry->d_inode);
5538 ret = btrfs_unlink_inode(trans, root, old_dir,
5539 old_dentry->d_inode,
5540 old_dentry->d_name.name,
5541 old_dentry->d_name.len);
5542 }
5543 BUG_ON(ret);
5544
5545 if (new_inode) {
5546 new_inode->i_ctime = CURRENT_TIME;
5547 if (unlikely(new_inode->i_ino ==
5548 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5549 root_objectid = BTRFS_I(new_inode)->location.objectid;
5550 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5551 root_objectid,
5552 new_dentry->d_name.name,
5553 new_dentry->d_name.len);
5554 BUG_ON(new_inode->i_nlink == 0);
5555 } else {
5556 ret = btrfs_unlink_inode(trans, dest, new_dir,
5557 new_dentry->d_inode,
5558 new_dentry->d_name.name,
5559 new_dentry->d_name.len);
5560 }
5561 BUG_ON(ret);
5562 if (new_inode->i_nlink == 0) {
5563 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5564 BUG_ON(ret);
5565 }
5566 }
5567
5568 ret = btrfs_add_link(trans, new_dir, old_inode,
5569 new_dentry->d_name.name,
5570 new_dentry->d_name.len, 0, index);
5571 BUG_ON(ret);
5572
5573 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5574 btrfs_log_new_name(trans, old_inode, old_dir,
5575 new_dentry->d_parent);
5576 btrfs_end_log_trans(root);
5577 }
5578 out_fail:
5579 btrfs_end_transaction_throttle(trans, root);
5580
5581 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5582 up_read(&root->fs_info->subvol_sem);
5583
5584 btrfs_unreserve_metadata_space(root, 11);
5585 return ret;
5586 }
5587
5588 /*
5589 * some fairly slow code that needs optimization. This walks the list
5590 * of all the inodes with pending delalloc and forces them to disk.
5591 */
5592 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5593 {
5594 struct list_head *head = &root->fs_info->delalloc_inodes;
5595 struct btrfs_inode *binode;
5596 struct inode *inode;
5597
5598 if (root->fs_info->sb->s_flags & MS_RDONLY)
5599 return -EROFS;
5600
5601 spin_lock(&root->fs_info->delalloc_lock);
5602 while (!list_empty(head)) {
5603 binode = list_entry(head->next, struct btrfs_inode,
5604 delalloc_inodes);
5605 inode = igrab(&binode->vfs_inode);
5606 if (!inode)
5607 list_del_init(&binode->delalloc_inodes);
5608 spin_unlock(&root->fs_info->delalloc_lock);
5609 if (inode) {
5610 filemap_flush(inode->i_mapping);
5611 if (delay_iput)
5612 btrfs_add_delayed_iput(inode);
5613 else
5614 iput(inode);
5615 }
5616 cond_resched();
5617 spin_lock(&root->fs_info->delalloc_lock);
5618 }
5619 spin_unlock(&root->fs_info->delalloc_lock);
5620
5621 /* the filemap_flush will queue IO into the worker threads, but
5622 * we have to make sure the IO is actually started and that
5623 * ordered extents get created before we return
5624 */
5625 atomic_inc(&root->fs_info->async_submit_draining);
5626 while (atomic_read(&root->fs_info->nr_async_submits) ||
5627 atomic_read(&root->fs_info->async_delalloc_pages)) {
5628 wait_event(root->fs_info->async_submit_wait,
5629 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5630 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5631 }
5632 atomic_dec(&root->fs_info->async_submit_draining);
5633 return 0;
5634 }
5635
5636 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5637 const char *symname)
5638 {
5639 struct btrfs_trans_handle *trans;
5640 struct btrfs_root *root = BTRFS_I(dir)->root;
5641 struct btrfs_path *path;
5642 struct btrfs_key key;
5643 struct inode *inode = NULL;
5644 int err;
5645 int drop_inode = 0;
5646 u64 objectid;
5647 u64 index = 0 ;
5648 int name_len;
5649 int datasize;
5650 unsigned long ptr;
5651 struct btrfs_file_extent_item *ei;
5652 struct extent_buffer *leaf;
5653 unsigned long nr = 0;
5654
5655 name_len = strlen(symname) + 1;
5656 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5657 return -ENAMETOOLONG;
5658
5659 /*
5660 * 2 items for inode item and ref
5661 * 2 items for dir items
5662 * 1 item for xattr if selinux is on
5663 */
5664 err = btrfs_reserve_metadata_space(root, 5);
5665 if (err)
5666 return err;
5667
5668 trans = btrfs_start_transaction(root, 1);
5669 if (!trans)
5670 goto out_fail;
5671 btrfs_set_trans_block_group(trans, dir);
5672
5673 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5674 if (err) {
5675 err = -ENOSPC;
5676 goto out_unlock;
5677 }
5678
5679 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5680 dentry->d_name.len,
5681 dentry->d_parent->d_inode->i_ino, objectid,
5682 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5683 &index);
5684 err = PTR_ERR(inode);
5685 if (IS_ERR(inode))
5686 goto out_unlock;
5687
5688 err = btrfs_init_inode_security(trans, inode, dir);
5689 if (err) {
5690 drop_inode = 1;
5691 goto out_unlock;
5692 }
5693
5694 btrfs_set_trans_block_group(trans, inode);
5695 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5696 if (err)
5697 drop_inode = 1;
5698 else {
5699 inode->i_mapping->a_ops = &btrfs_aops;
5700 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5701 inode->i_fop = &btrfs_file_operations;
5702 inode->i_op = &btrfs_file_inode_operations;
5703 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5704 }
5705 btrfs_update_inode_block_group(trans, inode);
5706 btrfs_update_inode_block_group(trans, dir);
5707 if (drop_inode)
5708 goto out_unlock;
5709
5710 path = btrfs_alloc_path();
5711 BUG_ON(!path);
5712 key.objectid = inode->i_ino;
5713 key.offset = 0;
5714 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5715 datasize = btrfs_file_extent_calc_inline_size(name_len);
5716 err = btrfs_insert_empty_item(trans, root, path, &key,
5717 datasize);
5718 if (err) {
5719 drop_inode = 1;
5720 goto out_unlock;
5721 }
5722 leaf = path->nodes[0];
5723 ei = btrfs_item_ptr(leaf, path->slots[0],
5724 struct btrfs_file_extent_item);
5725 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5726 btrfs_set_file_extent_type(leaf, ei,
5727 BTRFS_FILE_EXTENT_INLINE);
5728 btrfs_set_file_extent_encryption(leaf, ei, 0);
5729 btrfs_set_file_extent_compression(leaf, ei, 0);
5730 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5731 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5732
5733 ptr = btrfs_file_extent_inline_start(ei);
5734 write_extent_buffer(leaf, symname, ptr, name_len);
5735 btrfs_mark_buffer_dirty(leaf);
5736 btrfs_free_path(path);
5737
5738 inode->i_op = &btrfs_symlink_inode_operations;
5739 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5740 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5741 inode_set_bytes(inode, name_len);
5742 btrfs_i_size_write(inode, name_len - 1);
5743 err = btrfs_update_inode(trans, root, inode);
5744 if (err)
5745 drop_inode = 1;
5746
5747 out_unlock:
5748 nr = trans->blocks_used;
5749 btrfs_end_transaction_throttle(trans, root);
5750 out_fail:
5751 btrfs_unreserve_metadata_space(root, 5);
5752 if (drop_inode) {
5753 inode_dec_link_count(inode);
5754 iput(inode);
5755 }
5756 btrfs_btree_balance_dirty(root, nr);
5757 return err;
5758 }
5759
5760 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5761 u64 alloc_hint, int mode, loff_t actual_len)
5762 {
5763 struct btrfs_trans_handle *trans;
5764 struct btrfs_root *root = BTRFS_I(inode)->root;
5765 struct btrfs_key ins;
5766 u64 alloc_size;
5767 u64 cur_offset = start;
5768 u64 num_bytes = end - start;
5769 int ret = 0;
5770 u64 i_size;
5771
5772 while (num_bytes > 0) {
5773 alloc_size = min(num_bytes, root->fs_info->max_extent);
5774
5775 trans = btrfs_start_transaction(root, 1);
5776
5777 ret = btrfs_reserve_extent(trans, root, alloc_size,
5778 root->sectorsize, 0, alloc_hint,
5779 (u64)-1, &ins, 1);
5780 if (ret) {
5781 WARN_ON(1);
5782 goto stop_trans;
5783 }
5784
5785 ret = btrfs_reserve_metadata_space(root, 3);
5786 if (ret) {
5787 btrfs_free_reserved_extent(root, ins.objectid,
5788 ins.offset);
5789 goto stop_trans;
5790 }
5791
5792 ret = insert_reserved_file_extent(trans, inode,
5793 cur_offset, ins.objectid,
5794 ins.offset, ins.offset,
5795 ins.offset, 0, 0, 0,
5796 BTRFS_FILE_EXTENT_PREALLOC);
5797 BUG_ON(ret);
5798 btrfs_drop_extent_cache(inode, cur_offset,
5799 cur_offset + ins.offset -1, 0);
5800
5801 num_bytes -= ins.offset;
5802 cur_offset += ins.offset;
5803 alloc_hint = ins.objectid + ins.offset;
5804
5805 inode->i_ctime = CURRENT_TIME;
5806 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5807 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5808 (actual_len > inode->i_size) &&
5809 (cur_offset > inode->i_size)) {
5810
5811 if (cur_offset > actual_len)
5812 i_size = actual_len;
5813 else
5814 i_size = cur_offset;
5815 i_size_write(inode, i_size);
5816 btrfs_ordered_update_i_size(inode, i_size, NULL);
5817 }
5818
5819 ret = btrfs_update_inode(trans, root, inode);
5820 BUG_ON(ret);
5821
5822 btrfs_end_transaction(trans, root);
5823 btrfs_unreserve_metadata_space(root, 3);
5824 }
5825 return ret;
5826
5827 stop_trans:
5828 btrfs_end_transaction(trans, root);
5829 return ret;
5830
5831 }
5832
5833 static long btrfs_fallocate(struct inode *inode, int mode,
5834 loff_t offset, loff_t len)
5835 {
5836 u64 cur_offset;
5837 u64 last_byte;
5838 u64 alloc_start;
5839 u64 alloc_end;
5840 u64 alloc_hint = 0;
5841 u64 locked_end;
5842 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5843 struct extent_map *em;
5844 int ret;
5845
5846 alloc_start = offset & ~mask;
5847 alloc_end = (offset + len + mask) & ~mask;
5848
5849 /*
5850 * wait for ordered IO before we have any locks. We'll loop again
5851 * below with the locks held.
5852 */
5853 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5854
5855 mutex_lock(&inode->i_mutex);
5856 if (alloc_start > inode->i_size) {
5857 ret = btrfs_cont_expand(inode, alloc_start);
5858 if (ret)
5859 goto out;
5860 }
5861
5862 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5863 alloc_end - alloc_start);
5864 if (ret)
5865 goto out;
5866
5867 locked_end = alloc_end - 1;
5868 while (1) {
5869 struct btrfs_ordered_extent *ordered;
5870
5871 /* the extent lock is ordered inside the running
5872 * transaction
5873 */
5874 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5875 GFP_NOFS);
5876 ordered = btrfs_lookup_first_ordered_extent(inode,
5877 alloc_end - 1);
5878 if (ordered &&
5879 ordered->file_offset + ordered->len > alloc_start &&
5880 ordered->file_offset < alloc_end) {
5881 btrfs_put_ordered_extent(ordered);
5882 unlock_extent(&BTRFS_I(inode)->io_tree,
5883 alloc_start, locked_end, GFP_NOFS);
5884 /*
5885 * we can't wait on the range with the transaction
5886 * running or with the extent lock held
5887 */
5888 btrfs_wait_ordered_range(inode, alloc_start,
5889 alloc_end - alloc_start);
5890 } else {
5891 if (ordered)
5892 btrfs_put_ordered_extent(ordered);
5893 break;
5894 }
5895 }
5896
5897 cur_offset = alloc_start;
5898 while (1) {
5899 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5900 alloc_end - cur_offset, 0);
5901 BUG_ON(IS_ERR(em) || !em);
5902 last_byte = min(extent_map_end(em), alloc_end);
5903 last_byte = (last_byte + mask) & ~mask;
5904 if (em->block_start == EXTENT_MAP_HOLE ||
5905 (cur_offset >= inode->i_size &&
5906 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5907 ret = prealloc_file_range(inode,
5908 cur_offset, last_byte,
5909 alloc_hint, mode, offset+len);
5910 if (ret < 0) {
5911 free_extent_map(em);
5912 break;
5913 }
5914 }
5915 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5916 alloc_hint = em->block_start;
5917 free_extent_map(em);
5918
5919 cur_offset = last_byte;
5920 if (cur_offset >= alloc_end) {
5921 ret = 0;
5922 break;
5923 }
5924 }
5925 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5926 GFP_NOFS);
5927
5928 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5929 alloc_end - alloc_start);
5930 out:
5931 mutex_unlock(&inode->i_mutex);
5932 return ret;
5933 }
5934
5935 static int btrfs_set_page_dirty(struct page *page)
5936 {
5937 return __set_page_dirty_nobuffers(page);
5938 }
5939
5940 static int btrfs_permission(struct inode *inode, int mask)
5941 {
5942 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5943 return -EACCES;
5944 return generic_permission(inode, mask, btrfs_check_acl);
5945 }
5946
5947 static const struct inode_operations btrfs_dir_inode_operations = {
5948 .getattr = btrfs_getattr,
5949 .lookup = btrfs_lookup,
5950 .create = btrfs_create,
5951 .unlink = btrfs_unlink,
5952 .link = btrfs_link,
5953 .mkdir = btrfs_mkdir,
5954 .rmdir = btrfs_rmdir,
5955 .rename = btrfs_rename,
5956 .symlink = btrfs_symlink,
5957 .setattr = btrfs_setattr,
5958 .mknod = btrfs_mknod,
5959 .setxattr = btrfs_setxattr,
5960 .getxattr = btrfs_getxattr,
5961 .listxattr = btrfs_listxattr,
5962 .removexattr = btrfs_removexattr,
5963 .permission = btrfs_permission,
5964 };
5965 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5966 .lookup = btrfs_lookup,
5967 .permission = btrfs_permission,
5968 };
5969
5970 static const struct file_operations btrfs_dir_file_operations = {
5971 .llseek = generic_file_llseek,
5972 .read = generic_read_dir,
5973 .readdir = btrfs_real_readdir,
5974 .unlocked_ioctl = btrfs_ioctl,
5975 #ifdef CONFIG_COMPAT
5976 .compat_ioctl = btrfs_ioctl,
5977 #endif
5978 .release = btrfs_release_file,
5979 .fsync = btrfs_sync_file,
5980 };
5981
5982 static struct extent_io_ops btrfs_extent_io_ops = {
5983 .fill_delalloc = run_delalloc_range,
5984 .submit_bio_hook = btrfs_submit_bio_hook,
5985 .merge_bio_hook = btrfs_merge_bio_hook,
5986 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5987 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5988 .writepage_start_hook = btrfs_writepage_start_hook,
5989 .readpage_io_failed_hook = btrfs_io_failed_hook,
5990 .set_bit_hook = btrfs_set_bit_hook,
5991 .clear_bit_hook = btrfs_clear_bit_hook,
5992 .merge_extent_hook = btrfs_merge_extent_hook,
5993 .split_extent_hook = btrfs_split_extent_hook,
5994 };
5995
5996 /*
5997 * btrfs doesn't support the bmap operation because swapfiles
5998 * use bmap to make a mapping of extents in the file. They assume
5999 * these extents won't change over the life of the file and they
6000 * use the bmap result to do IO directly to the drive.
6001 *
6002 * the btrfs bmap call would return logical addresses that aren't
6003 * suitable for IO and they also will change frequently as COW
6004 * operations happen. So, swapfile + btrfs == corruption.
6005 *
6006 * For now we're avoiding this by dropping bmap.
6007 */
6008 static const struct address_space_operations btrfs_aops = {
6009 .readpage = btrfs_readpage,
6010 .writepage = btrfs_writepage,
6011 .writepages = btrfs_writepages,
6012 .readpages = btrfs_readpages,
6013 .sync_page = block_sync_page,
6014 .direct_IO = btrfs_direct_IO,
6015 .invalidatepage = btrfs_invalidatepage,
6016 .releasepage = btrfs_releasepage,
6017 .set_page_dirty = btrfs_set_page_dirty,
6018 .error_remove_page = generic_error_remove_page,
6019 };
6020
6021 static const struct address_space_operations btrfs_symlink_aops = {
6022 .readpage = btrfs_readpage,
6023 .writepage = btrfs_writepage,
6024 .invalidatepage = btrfs_invalidatepage,
6025 .releasepage = btrfs_releasepage,
6026 };
6027
6028 static const struct inode_operations btrfs_file_inode_operations = {
6029 .truncate = btrfs_truncate,
6030 .getattr = btrfs_getattr,
6031 .setattr = btrfs_setattr,
6032 .setxattr = btrfs_setxattr,
6033 .getxattr = btrfs_getxattr,
6034 .listxattr = btrfs_listxattr,
6035 .removexattr = btrfs_removexattr,
6036 .permission = btrfs_permission,
6037 .fallocate = btrfs_fallocate,
6038 .fiemap = btrfs_fiemap,
6039 };
6040 static const struct inode_operations btrfs_special_inode_operations = {
6041 .getattr = btrfs_getattr,
6042 .setattr = btrfs_setattr,
6043 .permission = btrfs_permission,
6044 .setxattr = btrfs_setxattr,
6045 .getxattr = btrfs_getxattr,
6046 .listxattr = btrfs_listxattr,
6047 .removexattr = btrfs_removexattr,
6048 };
6049 static const struct inode_operations btrfs_symlink_inode_operations = {
6050 .readlink = generic_readlink,
6051 .follow_link = page_follow_link_light,
6052 .put_link = page_put_link,
6053 .permission = btrfs_permission,
6054 .setxattr = btrfs_setxattr,
6055 .getxattr = btrfs_getxattr,
6056 .listxattr = btrfs_listxattr,
6057 .removexattr = btrfs_removexattr,
6058 };
6059
6060 const struct dentry_operations btrfs_dentry_operations = {
6061 .d_delete = btrfs_dentry_delete,
6062 };