]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/inode.c
Btrfs: Fix releasepage to properly keep dirty and writeback pages
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51
52 struct btrfs_iget_args {
53 u64 ino;
54 struct btrfs_root *root;
55 };
56
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
66
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85
86 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
87 int for_del)
88 {
89 u64 total;
90 u64 used;
91 u64 thresh;
92 unsigned long flags;
93 int ret = 0;
94
95 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
96 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
97 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
98 if (for_del)
99 thresh = total * 90;
100 else
101 thresh = total * 85;
102
103 do_div(thresh, 100);
104
105 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
106 ret = -ENOSPC;
107 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
108 return ret;
109 }
110
111 static int cow_file_range(struct inode *inode, u64 start, u64 end)
112 {
113 struct btrfs_root *root = BTRFS_I(inode)->root;
114 struct btrfs_trans_handle *trans;
115 u64 alloc_hint = 0;
116 u64 num_bytes;
117 u64 cur_alloc_size;
118 u64 blocksize = root->sectorsize;
119 u64 orig_num_bytes;
120 struct btrfs_key ins;
121 struct extent_map *em;
122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 int ret = 0;
124
125 trans = btrfs_join_transaction(root, 1);
126 BUG_ON(!trans);
127 btrfs_set_trans_block_group(trans, inode);
128
129 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
130 num_bytes = max(blocksize, num_bytes);
131 orig_num_bytes = num_bytes;
132
133 if (alloc_hint == EXTENT_MAP_INLINE)
134 goto out;
135
136 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
137 mutex_lock(&BTRFS_I(inode)->extent_mutex);
138 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
139 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
140
141 while(num_bytes > 0) {
142 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
143 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
144 root->sectorsize, 0, 0,
145 (u64)-1, &ins, 1);
146 if (ret) {
147 WARN_ON(1);
148 goto out;
149 }
150 em = alloc_extent_map(GFP_NOFS);
151 em->start = start;
152 em->len = ins.offset;
153 em->block_start = ins.objectid;
154 em->bdev = root->fs_info->fs_devices->latest_bdev;
155 mutex_lock(&BTRFS_I(inode)->extent_mutex);
156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
157 while(1) {
158 spin_lock(&em_tree->lock);
159 ret = add_extent_mapping(em_tree, em);
160 spin_unlock(&em_tree->lock);
161 if (ret != -EEXIST) {
162 free_extent_map(em);
163 break;
164 }
165 btrfs_drop_extent_cache(inode, start,
166 start + ins.offset - 1);
167 }
168 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
169
170 cur_alloc_size = ins.offset;
171 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
172 ins.offset, 0);
173 BUG_ON(ret);
174 if (num_bytes < cur_alloc_size) {
175 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
176 cur_alloc_size);
177 break;
178 }
179 num_bytes -= cur_alloc_size;
180 alloc_hint = ins.objectid + ins.offset;
181 start += cur_alloc_size;
182 }
183 out:
184 btrfs_end_transaction(trans, root);
185 return ret;
186 }
187
188 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
189 {
190 u64 extent_start;
191 u64 extent_end;
192 u64 bytenr;
193 u64 loops = 0;
194 u64 total_fs_bytes;
195 struct btrfs_root *root = BTRFS_I(inode)->root;
196 struct btrfs_block_group_cache *block_group;
197 struct btrfs_trans_handle *trans;
198 struct extent_buffer *leaf;
199 int found_type;
200 struct btrfs_path *path;
201 struct btrfs_file_extent_item *item;
202 int ret;
203 int err = 0;
204 struct btrfs_key found_key;
205
206 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
207 path = btrfs_alloc_path();
208 BUG_ON(!path);
209 trans = btrfs_join_transaction(root, 1);
210 BUG_ON(!trans);
211 again:
212 ret = btrfs_lookup_file_extent(NULL, root, path,
213 inode->i_ino, start, 0);
214 if (ret < 0) {
215 err = ret;
216 goto out;
217 }
218
219 if (ret != 0) {
220 if (path->slots[0] == 0)
221 goto not_found;
222 path->slots[0]--;
223 }
224
225 leaf = path->nodes[0];
226 item = btrfs_item_ptr(leaf, path->slots[0],
227 struct btrfs_file_extent_item);
228
229 /* are we inside the extent that was found? */
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 found_type = btrfs_key_type(&found_key);
232 if (found_key.objectid != inode->i_ino ||
233 found_type != BTRFS_EXTENT_DATA_KEY)
234 goto not_found;
235
236 found_type = btrfs_file_extent_type(leaf, item);
237 extent_start = found_key.offset;
238 if (found_type == BTRFS_FILE_EXTENT_REG) {
239 u64 extent_num_bytes;
240
241 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
242 extent_end = extent_start + extent_num_bytes;
243 err = 0;
244
245 if (loops && start != extent_start)
246 goto not_found;
247
248 if (start < extent_start || start >= extent_end)
249 goto not_found;
250
251 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
252 if (bytenr == 0)
253 goto not_found;
254
255 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
256 goto not_found;
257 /*
258 * we may be called by the resizer, make sure we're inside
259 * the limits of the FS
260 */
261 block_group = btrfs_lookup_block_group(root->fs_info,
262 bytenr);
263 if (!block_group || block_group->ro)
264 goto not_found;
265
266 bytenr += btrfs_file_extent_offset(leaf, item);
267 extent_num_bytes = min(end + 1, extent_end) - start;
268 ret = btrfs_add_ordered_extent(inode, start, bytenr,
269 extent_num_bytes, 1);
270 if (ret) {
271 err = ret;
272 goto out;
273 }
274
275 btrfs_release_path(root, path);
276 start = extent_end;
277 if (start <= end) {
278 loops++;
279 goto again;
280 }
281 } else {
282 not_found:
283 btrfs_end_transaction(trans, root);
284 btrfs_free_path(path);
285 return cow_file_range(inode, start, end);
286 }
287 out:
288 WARN_ON(err);
289 btrfs_end_transaction(trans, root);
290 btrfs_free_path(path);
291 return err;
292 }
293
294 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
295 {
296 struct btrfs_root *root = BTRFS_I(inode)->root;
297 int ret;
298
299 if (btrfs_test_opt(root, NODATACOW) ||
300 btrfs_test_flag(inode, NODATACOW))
301 ret = run_delalloc_nocow(inode, start, end);
302 else
303 ret = cow_file_range(inode, start, end);
304
305 return ret;
306 }
307
308 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
309 unsigned long old, unsigned long bits)
310 {
311 unsigned long flags;
312 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
313 struct btrfs_root *root = BTRFS_I(inode)->root;
314 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
315 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
316 root->fs_info->delalloc_bytes += end - start + 1;
317 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
318 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
319 &root->fs_info->delalloc_inodes);
320 }
321 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
322 }
323 return 0;
324 }
325
326 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
327 unsigned long old, unsigned long bits)
328 {
329 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
330 struct btrfs_root *root = BTRFS_I(inode)->root;
331 unsigned long flags;
332
333 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
334 if (end - start + 1 > root->fs_info->delalloc_bytes) {
335 printk("warning: delalloc account %Lu %Lu\n",
336 end - start + 1, root->fs_info->delalloc_bytes);
337 root->fs_info->delalloc_bytes = 0;
338 BTRFS_I(inode)->delalloc_bytes = 0;
339 } else {
340 root->fs_info->delalloc_bytes -= end - start + 1;
341 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
342 }
343 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
344 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
345 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
346 }
347 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
348 }
349 return 0;
350 }
351
352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
353 size_t size, struct bio *bio)
354 {
355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 struct btrfs_mapping_tree *map_tree;
357 u64 logical = bio->bi_sector << 9;
358 u64 length = 0;
359 u64 map_length;
360 int ret;
361
362 length = bio->bi_size;
363 map_tree = &root->fs_info->mapping_tree;
364 map_length = length;
365 ret = btrfs_map_block(map_tree, READ, logical,
366 &map_length, NULL, 0);
367
368 if (map_length < length + size) {
369 return 1;
370 }
371 return 0;
372 }
373
374 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
375 int mirror_num)
376 {
377 struct btrfs_root *root = BTRFS_I(inode)->root;
378 int ret = 0;
379
380 ret = btrfs_csum_one_bio(root, inode, bio);
381 BUG_ON(ret);
382
383 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
384 }
385
386 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
387 int mirror_num)
388 {
389 struct btrfs_root *root = BTRFS_I(inode)->root;
390 int ret = 0;
391
392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 BUG_ON(ret);
394
395 if (btrfs_test_opt(root, NODATASUM) ||
396 btrfs_test_flag(inode, NODATASUM)) {
397 goto mapit;
398 }
399
400 if (!(rw & (1 << BIO_RW))) {
401 btrfs_lookup_bio_sums(root, inode, bio);
402 goto mapit;
403 }
404 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
405 inode, rw, bio, mirror_num,
406 __btrfs_submit_bio_hook);
407 mapit:
408 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
409 }
410
411 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
412 struct inode *inode, u64 file_offset,
413 struct list_head *list)
414 {
415 struct list_head *cur;
416 struct btrfs_ordered_sum *sum;
417
418 btrfs_set_trans_block_group(trans, inode);
419 list_for_each(cur, list) {
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
422 inode, sum);
423 }
424 return 0;
425 }
426
427 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
428 {
429 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
430 GFP_NOFS);
431 }
432
433 struct btrfs_writepage_fixup {
434 struct page *page;
435 struct btrfs_work work;
436 };
437
438 /* see btrfs_writepage_start_hook for details on why this is required */
439 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
440 {
441 struct btrfs_writepage_fixup *fixup;
442 struct btrfs_ordered_extent *ordered;
443 struct page *page;
444 struct inode *inode;
445 u64 page_start;
446 u64 page_end;
447
448 fixup = container_of(work, struct btrfs_writepage_fixup, work);
449 page = fixup->page;
450 again:
451 lock_page(page);
452 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
453 ClearPageChecked(page);
454 goto out_page;
455 }
456
457 inode = page->mapping->host;
458 page_start = page_offset(page);
459 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
460
461 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
462
463 /* already ordered? We're done */
464 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
465 EXTENT_ORDERED, 0)) {
466 goto out;
467 }
468
469 ordered = btrfs_lookup_ordered_extent(inode, page_start);
470 if (ordered) {
471 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
472 page_end, GFP_NOFS);
473 unlock_page(page);
474 btrfs_start_ordered_extent(inode, ordered, 1);
475 goto again;
476 }
477
478 btrfs_set_extent_delalloc(inode, page_start, page_end);
479 ClearPageChecked(page);
480 out:
481 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
482 out_page:
483 unlock_page(page);
484 page_cache_release(page);
485 }
486
487 /*
488 * There are a few paths in the higher layers of the kernel that directly
489 * set the page dirty bit without asking the filesystem if it is a
490 * good idea. This causes problems because we want to make sure COW
491 * properly happens and the data=ordered rules are followed.
492 *
493 * In our case any range that doesn't have the EXTENT_ORDERED bit set
494 * hasn't been properly setup for IO. We kick off an async process
495 * to fix it up. The async helper will wait for ordered extents, set
496 * the delalloc bit and make it safe to write the page.
497 */
498 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
499 {
500 struct inode *inode = page->mapping->host;
501 struct btrfs_writepage_fixup *fixup;
502 struct btrfs_root *root = BTRFS_I(inode)->root;
503 int ret;
504
505 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
506 EXTENT_ORDERED, 0);
507 if (ret)
508 return 0;
509
510 if (PageChecked(page))
511 return -EAGAIN;
512
513 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
514 if (!fixup)
515 return -EAGAIN;
516
517 SetPageChecked(page);
518 page_cache_get(page);
519 fixup->work.func = btrfs_writepage_fixup_worker;
520 fixup->page = page;
521 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
522 return -EAGAIN;
523 }
524
525 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
526 {
527 struct btrfs_root *root = BTRFS_I(inode)->root;
528 struct btrfs_trans_handle *trans;
529 struct btrfs_ordered_extent *ordered_extent;
530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
531 u64 alloc_hint = 0;
532 struct list_head list;
533 struct btrfs_key ins;
534 int ret;
535
536 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
537 if (!ret)
538 return 0;
539
540 trans = btrfs_join_transaction(root, 1);
541
542 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
543 BUG_ON(!ordered_extent);
544 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
545 goto nocow;
546
547 lock_extent(io_tree, ordered_extent->file_offset,
548 ordered_extent->file_offset + ordered_extent->len - 1,
549 GFP_NOFS);
550
551 INIT_LIST_HEAD(&list);
552
553 ins.objectid = ordered_extent->start;
554 ins.offset = ordered_extent->len;
555 ins.type = BTRFS_EXTENT_ITEM_KEY;
556
557 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
558 trans->transid, inode->i_ino,
559 ordered_extent->file_offset, &ins);
560 BUG_ON(ret);
561
562 mutex_lock(&BTRFS_I(inode)->extent_mutex);
563
564 ret = btrfs_drop_extents(trans, root, inode,
565 ordered_extent->file_offset,
566 ordered_extent->file_offset +
567 ordered_extent->len,
568 ordered_extent->file_offset, &alloc_hint);
569 BUG_ON(ret);
570 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
571 ordered_extent->file_offset,
572 ordered_extent->start,
573 ordered_extent->len,
574 ordered_extent->len, 0);
575 BUG_ON(ret);
576
577 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
578 ordered_extent->file_offset +
579 ordered_extent->len - 1);
580 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
581
582 inode->i_blocks += ordered_extent->len >> 9;
583 unlock_extent(io_tree, ordered_extent->file_offset,
584 ordered_extent->file_offset + ordered_extent->len - 1,
585 GFP_NOFS);
586 nocow:
587 add_pending_csums(trans, inode, ordered_extent->file_offset,
588 &ordered_extent->list);
589
590 btrfs_ordered_update_i_size(inode, ordered_extent);
591 btrfs_update_inode(trans, root, inode);
592 btrfs_remove_ordered_extent(inode, ordered_extent);
593
594 /* once for us */
595 btrfs_put_ordered_extent(ordered_extent);
596 /* once for the tree */
597 btrfs_put_ordered_extent(ordered_extent);
598
599 btrfs_end_transaction(trans, root);
600 return 0;
601 }
602
603 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
604 struct extent_state *state, int uptodate)
605 {
606 return btrfs_finish_ordered_io(page->mapping->host, start, end);
607 }
608
609 struct io_failure_record {
610 struct page *page;
611 u64 start;
612 u64 len;
613 u64 logical;
614 int last_mirror;
615 };
616
617 int btrfs_io_failed_hook(struct bio *failed_bio,
618 struct page *page, u64 start, u64 end,
619 struct extent_state *state)
620 {
621 struct io_failure_record *failrec = NULL;
622 u64 private;
623 struct extent_map *em;
624 struct inode *inode = page->mapping->host;
625 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
626 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
627 struct bio *bio;
628 int num_copies;
629 int ret;
630 int rw;
631 u64 logical;
632
633 ret = get_state_private(failure_tree, start, &private);
634 if (ret) {
635 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
636 if (!failrec)
637 return -ENOMEM;
638 failrec->start = start;
639 failrec->len = end - start + 1;
640 failrec->last_mirror = 0;
641
642 spin_lock(&em_tree->lock);
643 em = lookup_extent_mapping(em_tree, start, failrec->len);
644 if (em->start > start || em->start + em->len < start) {
645 free_extent_map(em);
646 em = NULL;
647 }
648 spin_unlock(&em_tree->lock);
649
650 if (!em || IS_ERR(em)) {
651 kfree(failrec);
652 return -EIO;
653 }
654 logical = start - em->start;
655 logical = em->block_start + logical;
656 failrec->logical = logical;
657 free_extent_map(em);
658 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
659 EXTENT_DIRTY, GFP_NOFS);
660 set_state_private(failure_tree, start,
661 (u64)(unsigned long)failrec);
662 } else {
663 failrec = (struct io_failure_record *)(unsigned long)private;
664 }
665 num_copies = btrfs_num_copies(
666 &BTRFS_I(inode)->root->fs_info->mapping_tree,
667 failrec->logical, failrec->len);
668 failrec->last_mirror++;
669 if (!state) {
670 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
671 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
672 failrec->start,
673 EXTENT_LOCKED);
674 if (state && state->start != failrec->start)
675 state = NULL;
676 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
677 }
678 if (!state || failrec->last_mirror > num_copies) {
679 set_state_private(failure_tree, failrec->start, 0);
680 clear_extent_bits(failure_tree, failrec->start,
681 failrec->start + failrec->len - 1,
682 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
683 kfree(failrec);
684 return -EIO;
685 }
686 bio = bio_alloc(GFP_NOFS, 1);
687 bio->bi_private = state;
688 bio->bi_end_io = failed_bio->bi_end_io;
689 bio->bi_sector = failrec->logical >> 9;
690 bio->bi_bdev = failed_bio->bi_bdev;
691 bio->bi_size = 0;
692 bio_add_page(bio, page, failrec->len, start - page_offset(page));
693 if (failed_bio->bi_rw & (1 << BIO_RW))
694 rw = WRITE;
695 else
696 rw = READ;
697
698 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
699 failrec->last_mirror);
700 return 0;
701 }
702
703 int btrfs_clean_io_failures(struct inode *inode, u64 start)
704 {
705 u64 private;
706 u64 private_failure;
707 struct io_failure_record *failure;
708 int ret;
709
710 private = 0;
711 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
712 (u64)-1, 1, EXTENT_DIRTY)) {
713 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
714 start, &private_failure);
715 if (ret == 0) {
716 failure = (struct io_failure_record *)(unsigned long)
717 private_failure;
718 set_state_private(&BTRFS_I(inode)->io_failure_tree,
719 failure->start, 0);
720 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
721 failure->start,
722 failure->start + failure->len - 1,
723 EXTENT_DIRTY | EXTENT_LOCKED,
724 GFP_NOFS);
725 kfree(failure);
726 }
727 }
728 return 0;
729 }
730
731 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
732 struct extent_state *state)
733 {
734 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
735 struct inode *inode = page->mapping->host;
736 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
737 char *kaddr;
738 u64 private = ~(u32)0;
739 int ret;
740 struct btrfs_root *root = BTRFS_I(inode)->root;
741 u32 csum = ~(u32)0;
742 unsigned long flags;
743
744 if (btrfs_test_opt(root, NODATASUM) ||
745 btrfs_test_flag(inode, NODATASUM))
746 return 0;
747 if (state && state->start == start) {
748 private = state->private;
749 ret = 0;
750 } else {
751 ret = get_state_private(io_tree, start, &private);
752 }
753 local_irq_save(flags);
754 kaddr = kmap_atomic(page, KM_IRQ0);
755 if (ret) {
756 goto zeroit;
757 }
758 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
759 btrfs_csum_final(csum, (char *)&csum);
760 if (csum != private) {
761 goto zeroit;
762 }
763 kunmap_atomic(kaddr, KM_IRQ0);
764 local_irq_restore(flags);
765
766 /* if the io failure tree for this inode is non-empty,
767 * check to see if we've recovered from a failed IO
768 */
769 btrfs_clean_io_failures(inode, start);
770 return 0;
771
772 zeroit:
773 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
774 page->mapping->host->i_ino, (unsigned long long)start, csum,
775 private);
776 memset(kaddr + offset, 1, end - start + 1);
777 flush_dcache_page(page);
778 kunmap_atomic(kaddr, KM_IRQ0);
779 local_irq_restore(flags);
780 if (private == 0)
781 return 0;
782 return -EIO;
783 }
784
785 /*
786 * This creates an orphan entry for the given inode in case something goes
787 * wrong in the middle of an unlink/truncate.
788 */
789 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
790 {
791 struct btrfs_root *root = BTRFS_I(inode)->root;
792 int ret = 0;
793
794 spin_lock(&root->list_lock);
795
796 /* already on the orphan list, we're good */
797 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
798 spin_unlock(&root->list_lock);
799 return 0;
800 }
801
802 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
803
804 spin_unlock(&root->list_lock);
805
806 /*
807 * insert an orphan item to track this unlinked/truncated file
808 */
809 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
810
811 return ret;
812 }
813
814 /*
815 * We have done the truncate/delete so we can go ahead and remove the orphan
816 * item for this particular inode.
817 */
818 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
819 {
820 struct btrfs_root *root = BTRFS_I(inode)->root;
821 int ret = 0;
822
823 spin_lock(&root->list_lock);
824
825 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
826 spin_unlock(&root->list_lock);
827 return 0;
828 }
829
830 list_del_init(&BTRFS_I(inode)->i_orphan);
831 if (!trans) {
832 spin_unlock(&root->list_lock);
833 return 0;
834 }
835
836 spin_unlock(&root->list_lock);
837
838 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
839
840 return ret;
841 }
842
843 /*
844 * this cleans up any orphans that may be left on the list from the last use
845 * of this root.
846 */
847 void btrfs_orphan_cleanup(struct btrfs_root *root)
848 {
849 struct btrfs_path *path;
850 struct extent_buffer *leaf;
851 struct btrfs_item *item;
852 struct btrfs_key key, found_key;
853 struct btrfs_trans_handle *trans;
854 struct inode *inode;
855 int ret = 0, nr_unlink = 0, nr_truncate = 0;
856
857 /* don't do orphan cleanup if the fs is readonly. */
858 if (root->inode->i_sb->s_flags & MS_RDONLY)
859 return;
860
861 path = btrfs_alloc_path();
862 if (!path)
863 return;
864 path->reada = -1;
865
866 key.objectid = BTRFS_ORPHAN_OBJECTID;
867 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
868 key.offset = (u64)-1;
869
870 trans = btrfs_start_transaction(root, 1);
871 btrfs_set_trans_block_group(trans, root->inode);
872
873 while (1) {
874 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
875 if (ret < 0) {
876 printk(KERN_ERR "Error searching slot for orphan: %d"
877 "\n", ret);
878 break;
879 }
880
881 /*
882 * if ret == 0 means we found what we were searching for, which
883 * is weird, but possible, so only screw with path if we didnt
884 * find the key and see if we have stuff that matches
885 */
886 if (ret > 0) {
887 if (path->slots[0] == 0)
888 break;
889 path->slots[0]--;
890 }
891
892 /* pull out the item */
893 leaf = path->nodes[0];
894 item = btrfs_item_nr(leaf, path->slots[0]);
895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
896
897 /* make sure the item matches what we want */
898 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
899 break;
900 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
901 break;
902
903 /* release the path since we're done with it */
904 btrfs_release_path(root, path);
905
906 /*
907 * this is where we are basically btrfs_lookup, without the
908 * crossing root thing. we store the inode number in the
909 * offset of the orphan item.
910 */
911 inode = btrfs_iget_locked(root->inode->i_sb,
912 found_key.offset, root);
913 if (!inode)
914 break;
915
916 if (inode->i_state & I_NEW) {
917 BTRFS_I(inode)->root = root;
918
919 /* have to set the location manually */
920 BTRFS_I(inode)->location.objectid = inode->i_ino;
921 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
922 BTRFS_I(inode)->location.offset = 0;
923
924 btrfs_read_locked_inode(inode);
925 unlock_new_inode(inode);
926 }
927
928 /*
929 * add this inode to the orphan list so btrfs_orphan_del does
930 * the proper thing when we hit it
931 */
932 spin_lock(&root->list_lock);
933 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
934 spin_unlock(&root->list_lock);
935
936 /*
937 * if this is a bad inode, means we actually succeeded in
938 * removing the inode, but not the orphan record, which means
939 * we need to manually delete the orphan since iput will just
940 * do a destroy_inode
941 */
942 if (is_bad_inode(inode)) {
943 btrfs_orphan_del(trans, inode);
944 iput(inode);
945 continue;
946 }
947
948 /* if we have links, this was a truncate, lets do that */
949 if (inode->i_nlink) {
950 nr_truncate++;
951 btrfs_truncate(inode);
952 } else {
953 nr_unlink++;
954 }
955
956 /* this will do delete_inode and everything for us */
957 iput(inode);
958 }
959
960 if (nr_unlink)
961 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
962 if (nr_truncate)
963 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
964
965 btrfs_free_path(path);
966 btrfs_end_transaction(trans, root);
967 }
968
969 void btrfs_read_locked_inode(struct inode *inode)
970 {
971 struct btrfs_path *path;
972 struct extent_buffer *leaf;
973 struct btrfs_inode_item *inode_item;
974 struct btrfs_timespec *tspec;
975 struct btrfs_root *root = BTRFS_I(inode)->root;
976 struct btrfs_key location;
977 u64 alloc_group_block;
978 u32 rdev;
979 int ret;
980
981 path = btrfs_alloc_path();
982 BUG_ON(!path);
983 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
984
985 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
986 if (ret)
987 goto make_bad;
988
989 leaf = path->nodes[0];
990 inode_item = btrfs_item_ptr(leaf, path->slots[0],
991 struct btrfs_inode_item);
992
993 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
994 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
995 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
996 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
997 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
998
999 tspec = btrfs_inode_atime(inode_item);
1000 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1001 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1002
1003 tspec = btrfs_inode_mtime(inode_item);
1004 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1005 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1006
1007 tspec = btrfs_inode_ctime(inode_item);
1008 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1009 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1010
1011 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1012 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1013 inode->i_generation = BTRFS_I(inode)->generation;
1014 inode->i_rdev = 0;
1015 rdev = btrfs_inode_rdev(leaf, inode_item);
1016
1017 BTRFS_I(inode)->index_cnt = (u64)-1;
1018
1019 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1020 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1021 alloc_group_block);
1022 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1023 if (!BTRFS_I(inode)->block_group) {
1024 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1025 NULL, 0,
1026 BTRFS_BLOCK_GROUP_METADATA, 0);
1027 }
1028 btrfs_free_path(path);
1029 inode_item = NULL;
1030
1031 switch (inode->i_mode & S_IFMT) {
1032 case S_IFREG:
1033 inode->i_mapping->a_ops = &btrfs_aops;
1034 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1035 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1036 inode->i_fop = &btrfs_file_operations;
1037 inode->i_op = &btrfs_file_inode_operations;
1038 break;
1039 case S_IFDIR:
1040 inode->i_fop = &btrfs_dir_file_operations;
1041 if (root == root->fs_info->tree_root)
1042 inode->i_op = &btrfs_dir_ro_inode_operations;
1043 else
1044 inode->i_op = &btrfs_dir_inode_operations;
1045 break;
1046 case S_IFLNK:
1047 inode->i_op = &btrfs_symlink_inode_operations;
1048 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1049 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1050 break;
1051 default:
1052 init_special_inode(inode, inode->i_mode, rdev);
1053 break;
1054 }
1055 return;
1056
1057 make_bad:
1058 btrfs_free_path(path);
1059 make_bad_inode(inode);
1060 }
1061
1062 static void fill_inode_item(struct btrfs_trans_handle *trans,
1063 struct extent_buffer *leaf,
1064 struct btrfs_inode_item *item,
1065 struct inode *inode)
1066 {
1067 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1068 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1069 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1070 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1071 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1072
1073 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1074 inode->i_atime.tv_sec);
1075 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1076 inode->i_atime.tv_nsec);
1077
1078 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1079 inode->i_mtime.tv_sec);
1080 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1081 inode->i_mtime.tv_nsec);
1082
1083 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1084 inode->i_ctime.tv_sec);
1085 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1086 inode->i_ctime.tv_nsec);
1087
1088 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1089 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1090 btrfs_set_inode_transid(leaf, item, trans->transid);
1091 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1092 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1093 btrfs_set_inode_block_group(leaf, item,
1094 BTRFS_I(inode)->block_group->key.objectid);
1095 }
1096
1097 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct inode *inode)
1100 {
1101 struct btrfs_inode_item *inode_item;
1102 struct btrfs_path *path;
1103 struct extent_buffer *leaf;
1104 int ret;
1105
1106 path = btrfs_alloc_path();
1107 BUG_ON(!path);
1108 ret = btrfs_lookup_inode(trans, root, path,
1109 &BTRFS_I(inode)->location, 1);
1110 if (ret) {
1111 if (ret > 0)
1112 ret = -ENOENT;
1113 goto failed;
1114 }
1115
1116 leaf = path->nodes[0];
1117 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1118 struct btrfs_inode_item);
1119
1120 fill_inode_item(trans, leaf, inode_item, inode);
1121 btrfs_mark_buffer_dirty(leaf);
1122 btrfs_set_inode_last_trans(trans, inode);
1123 ret = 0;
1124 failed:
1125 btrfs_free_path(path);
1126 return ret;
1127 }
1128
1129
1130 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root,
1132 struct inode *dir, struct inode *inode,
1133 const char *name, int name_len)
1134 {
1135 struct btrfs_path *path;
1136 int ret = 0;
1137 struct extent_buffer *leaf;
1138 struct btrfs_dir_item *di;
1139 struct btrfs_key key;
1140 u64 index;
1141
1142 path = btrfs_alloc_path();
1143 if (!path) {
1144 ret = -ENOMEM;
1145 goto err;
1146 }
1147
1148 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1149 name, name_len, -1);
1150 if (IS_ERR(di)) {
1151 ret = PTR_ERR(di);
1152 goto err;
1153 }
1154 if (!di) {
1155 ret = -ENOENT;
1156 goto err;
1157 }
1158 leaf = path->nodes[0];
1159 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1160 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1161 if (ret)
1162 goto err;
1163 btrfs_release_path(root, path);
1164
1165 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1166 inode->i_ino,
1167 dir->i_ino, &index);
1168 if (ret) {
1169 printk("failed to delete reference to %.*s, "
1170 "inode %lu parent %lu\n", name_len, name,
1171 inode->i_ino, dir->i_ino);
1172 goto err;
1173 }
1174
1175 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1176 index, name, name_len, -1);
1177 if (IS_ERR(di)) {
1178 ret = PTR_ERR(di);
1179 goto err;
1180 }
1181 if (!di) {
1182 ret = -ENOENT;
1183 goto err;
1184 }
1185 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1186 btrfs_release_path(root, path);
1187
1188 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1189 inode, dir->i_ino);
1190 BUG_ON(ret);
1191
1192 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1193 dir, index);
1194 BUG_ON(ret);
1195 err:
1196 btrfs_free_path(path);
1197 if (ret)
1198 goto out;
1199
1200 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1201 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1202 btrfs_update_inode(trans, root, dir);
1203 btrfs_drop_nlink(inode);
1204 ret = btrfs_update_inode(trans, root, inode);
1205 dir->i_sb->s_dirt = 1;
1206 out:
1207 return ret;
1208 }
1209
1210 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1211 {
1212 struct btrfs_root *root;
1213 struct btrfs_trans_handle *trans;
1214 struct inode *inode = dentry->d_inode;
1215 int ret;
1216 unsigned long nr = 0;
1217
1218 root = BTRFS_I(dir)->root;
1219
1220 ret = btrfs_check_free_space(root, 1, 1);
1221 if (ret)
1222 goto fail;
1223
1224 trans = btrfs_start_transaction(root, 1);
1225
1226 btrfs_set_trans_block_group(trans, dir);
1227 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1228 dentry->d_name.name, dentry->d_name.len);
1229
1230 if (inode->i_nlink == 0)
1231 ret = btrfs_orphan_add(trans, inode);
1232
1233 nr = trans->blocks_used;
1234
1235 btrfs_end_transaction_throttle(trans, root);
1236 fail:
1237 btrfs_btree_balance_dirty(root, nr);
1238 return ret;
1239 }
1240
1241 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1242 {
1243 struct inode *inode = dentry->d_inode;
1244 int err = 0;
1245 int ret;
1246 struct btrfs_root *root = BTRFS_I(dir)->root;
1247 struct btrfs_trans_handle *trans;
1248 unsigned long nr = 0;
1249
1250 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1251 return -ENOTEMPTY;
1252 }
1253
1254 ret = btrfs_check_free_space(root, 1, 1);
1255 if (ret)
1256 goto fail;
1257
1258 trans = btrfs_start_transaction(root, 1);
1259 btrfs_set_trans_block_group(trans, dir);
1260
1261 err = btrfs_orphan_add(trans, inode);
1262 if (err)
1263 goto fail_trans;
1264
1265 /* now the directory is empty */
1266 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1267 dentry->d_name.name, dentry->d_name.len);
1268 if (!err) {
1269 btrfs_i_size_write(inode, 0);
1270 }
1271
1272 fail_trans:
1273 nr = trans->blocks_used;
1274 ret = btrfs_end_transaction_throttle(trans, root);
1275 fail:
1276 btrfs_btree_balance_dirty(root, nr);
1277
1278 if (ret && !err)
1279 err = ret;
1280 return err;
1281 }
1282
1283 /*
1284 * this can truncate away extent items, csum items and directory items.
1285 * It starts at a high offset and removes keys until it can't find
1286 * any higher than i_size.
1287 *
1288 * csum items that cross the new i_size are truncated to the new size
1289 * as well.
1290 *
1291 * min_type is the minimum key type to truncate down to. If set to 0, this
1292 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1293 */
1294 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1295 struct btrfs_root *root,
1296 struct inode *inode,
1297 u64 new_size, u32 min_type)
1298 {
1299 int ret;
1300 struct btrfs_path *path;
1301 struct btrfs_key key;
1302 struct btrfs_key found_key;
1303 u32 found_type;
1304 struct extent_buffer *leaf;
1305 struct btrfs_file_extent_item *fi;
1306 u64 extent_start = 0;
1307 u64 extent_num_bytes = 0;
1308 u64 item_end = 0;
1309 u64 root_gen = 0;
1310 u64 root_owner = 0;
1311 int found_extent;
1312 int del_item;
1313 int pending_del_nr = 0;
1314 int pending_del_slot = 0;
1315 int extent_type = -1;
1316 u64 mask = root->sectorsize - 1;
1317
1318 if (root->ref_cows)
1319 btrfs_drop_extent_cache(inode,
1320 new_size & (~mask), (u64)-1);
1321 path = btrfs_alloc_path();
1322 path->reada = -1;
1323 BUG_ON(!path);
1324
1325 /* FIXME, add redo link to tree so we don't leak on crash */
1326 key.objectid = inode->i_ino;
1327 key.offset = (u64)-1;
1328 key.type = (u8)-1;
1329
1330 btrfs_init_path(path);
1331 search_again:
1332 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1333 if (ret < 0) {
1334 goto error;
1335 }
1336 if (ret > 0) {
1337 /* there are no items in the tree for us to truncate, we're
1338 * done
1339 */
1340 if (path->slots[0] == 0) {
1341 ret = 0;
1342 goto error;
1343 }
1344 path->slots[0]--;
1345 }
1346
1347 while(1) {
1348 fi = NULL;
1349 leaf = path->nodes[0];
1350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1351 found_type = btrfs_key_type(&found_key);
1352
1353 if (found_key.objectid != inode->i_ino)
1354 break;
1355
1356 if (found_type < min_type)
1357 break;
1358
1359 item_end = found_key.offset;
1360 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1361 fi = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_file_extent_item);
1363 extent_type = btrfs_file_extent_type(leaf, fi);
1364 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1365 item_end +=
1366 btrfs_file_extent_num_bytes(leaf, fi);
1367 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1368 struct btrfs_item *item = btrfs_item_nr(leaf,
1369 path->slots[0]);
1370 item_end += btrfs_file_extent_inline_len(leaf,
1371 item);
1372 }
1373 item_end--;
1374 }
1375 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1376 ret = btrfs_csum_truncate(trans, root, path,
1377 new_size);
1378 BUG_ON(ret);
1379 }
1380 if (item_end < new_size) {
1381 if (found_type == BTRFS_DIR_ITEM_KEY) {
1382 found_type = BTRFS_INODE_ITEM_KEY;
1383 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1384 found_type = BTRFS_CSUM_ITEM_KEY;
1385 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1386 found_type = BTRFS_XATTR_ITEM_KEY;
1387 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1388 found_type = BTRFS_INODE_REF_KEY;
1389 } else if (found_type) {
1390 found_type--;
1391 } else {
1392 break;
1393 }
1394 btrfs_set_key_type(&key, found_type);
1395 goto next;
1396 }
1397 if (found_key.offset >= new_size)
1398 del_item = 1;
1399 else
1400 del_item = 0;
1401 found_extent = 0;
1402
1403 /* FIXME, shrink the extent if the ref count is only 1 */
1404 if (found_type != BTRFS_EXTENT_DATA_KEY)
1405 goto delete;
1406
1407 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1408 u64 num_dec;
1409 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1410 if (!del_item) {
1411 u64 orig_num_bytes =
1412 btrfs_file_extent_num_bytes(leaf, fi);
1413 extent_num_bytes = new_size -
1414 found_key.offset + root->sectorsize - 1;
1415 extent_num_bytes = extent_num_bytes &
1416 ~((u64)root->sectorsize - 1);
1417 btrfs_set_file_extent_num_bytes(leaf, fi,
1418 extent_num_bytes);
1419 num_dec = (orig_num_bytes -
1420 extent_num_bytes);
1421 if (root->ref_cows && extent_start != 0)
1422 dec_i_blocks(inode, num_dec);
1423 btrfs_mark_buffer_dirty(leaf);
1424 } else {
1425 extent_num_bytes =
1426 btrfs_file_extent_disk_num_bytes(leaf,
1427 fi);
1428 /* FIXME blocksize != 4096 */
1429 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1430 if (extent_start != 0) {
1431 found_extent = 1;
1432 if (root->ref_cows)
1433 dec_i_blocks(inode, num_dec);
1434 }
1435 if (root->ref_cows) {
1436 root_gen =
1437 btrfs_header_generation(leaf);
1438 }
1439 root_owner = btrfs_header_owner(leaf);
1440 }
1441 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1442 if (!del_item) {
1443 u32 size = new_size - found_key.offset;
1444
1445 if (root->ref_cows) {
1446 dec_i_blocks(inode, item_end + 1 -
1447 found_key.offset - size);
1448 }
1449 size =
1450 btrfs_file_extent_calc_inline_size(size);
1451 ret = btrfs_truncate_item(trans, root, path,
1452 size, 1);
1453 BUG_ON(ret);
1454 } else if (root->ref_cows) {
1455 dec_i_blocks(inode, item_end + 1 -
1456 found_key.offset);
1457 }
1458 }
1459 delete:
1460 if (del_item) {
1461 if (!pending_del_nr) {
1462 /* no pending yet, add ourselves */
1463 pending_del_slot = path->slots[0];
1464 pending_del_nr = 1;
1465 } else if (pending_del_nr &&
1466 path->slots[0] + 1 == pending_del_slot) {
1467 /* hop on the pending chunk */
1468 pending_del_nr++;
1469 pending_del_slot = path->slots[0];
1470 } else {
1471 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1472 }
1473 } else {
1474 break;
1475 }
1476 if (found_extent) {
1477 ret = btrfs_free_extent(trans, root, extent_start,
1478 extent_num_bytes,
1479 root_owner,
1480 root_gen, inode->i_ino,
1481 found_key.offset, 0);
1482 BUG_ON(ret);
1483 }
1484 next:
1485 if (path->slots[0] == 0) {
1486 if (pending_del_nr)
1487 goto del_pending;
1488 btrfs_release_path(root, path);
1489 goto search_again;
1490 }
1491
1492 path->slots[0]--;
1493 if (pending_del_nr &&
1494 path->slots[0] + 1 != pending_del_slot) {
1495 struct btrfs_key debug;
1496 del_pending:
1497 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1498 pending_del_slot);
1499 ret = btrfs_del_items(trans, root, path,
1500 pending_del_slot,
1501 pending_del_nr);
1502 BUG_ON(ret);
1503 pending_del_nr = 0;
1504 btrfs_release_path(root, path);
1505 goto search_again;
1506 }
1507 }
1508 ret = 0;
1509 error:
1510 if (pending_del_nr) {
1511 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1512 pending_del_nr);
1513 }
1514 btrfs_free_path(path);
1515 inode->i_sb->s_dirt = 1;
1516 return ret;
1517 }
1518
1519 /*
1520 * taken from block_truncate_page, but does cow as it zeros out
1521 * any bytes left in the last page in the file.
1522 */
1523 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1524 {
1525 struct inode *inode = mapping->host;
1526 struct btrfs_root *root = BTRFS_I(inode)->root;
1527 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1528 struct btrfs_ordered_extent *ordered;
1529 char *kaddr;
1530 u32 blocksize = root->sectorsize;
1531 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1532 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1533 struct page *page;
1534 int ret = 0;
1535 u64 page_start;
1536 u64 page_end;
1537
1538 if ((offset & (blocksize - 1)) == 0)
1539 goto out;
1540
1541 ret = -ENOMEM;
1542 again:
1543 page = grab_cache_page(mapping, index);
1544 if (!page)
1545 goto out;
1546
1547 page_start = page_offset(page);
1548 page_end = page_start + PAGE_CACHE_SIZE - 1;
1549
1550 if (!PageUptodate(page)) {
1551 ret = btrfs_readpage(NULL, page);
1552 lock_page(page);
1553 if (page->mapping != mapping) {
1554 unlock_page(page);
1555 page_cache_release(page);
1556 goto again;
1557 }
1558 if (!PageUptodate(page)) {
1559 ret = -EIO;
1560 goto out_unlock;
1561 }
1562 }
1563 wait_on_page_writeback(page);
1564
1565 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1566 set_page_extent_mapped(page);
1567
1568 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1569 if (ordered) {
1570 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1571 unlock_page(page);
1572 page_cache_release(page);
1573 btrfs_start_ordered_extent(inode, ordered, 1);
1574 btrfs_put_ordered_extent(ordered);
1575 goto again;
1576 }
1577
1578 btrfs_set_extent_delalloc(inode, page_start, page_end);
1579 ret = 0;
1580 if (offset != PAGE_CACHE_SIZE) {
1581 kaddr = kmap(page);
1582 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1583 flush_dcache_page(page);
1584 kunmap(page);
1585 }
1586 ClearPageChecked(page);
1587 set_page_dirty(page);
1588 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1589
1590 out_unlock:
1591 unlock_page(page);
1592 page_cache_release(page);
1593 out:
1594 return ret;
1595 }
1596
1597 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1598 {
1599 struct inode *inode = dentry->d_inode;
1600 int err;
1601
1602 err = inode_change_ok(inode, attr);
1603 if (err)
1604 return err;
1605
1606 if (S_ISREG(inode->i_mode) &&
1607 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1608 struct btrfs_trans_handle *trans;
1609 struct btrfs_root *root = BTRFS_I(inode)->root;
1610 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1611
1612 u64 mask = root->sectorsize - 1;
1613 u64 hole_start = (inode->i_size + mask) & ~mask;
1614 u64 block_end = (attr->ia_size + mask) & ~mask;
1615 u64 hole_size;
1616 u64 alloc_hint = 0;
1617
1618 if (attr->ia_size <= hole_start)
1619 goto out;
1620
1621 err = btrfs_check_free_space(root, 1, 0);
1622 if (err)
1623 goto fail;
1624
1625 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1626
1627 hole_size = block_end - hole_start;
1628 while(1) {
1629 struct btrfs_ordered_extent *ordered;
1630 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1631
1632 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1633 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1634 if (ordered) {
1635 unlock_extent(io_tree, hole_start,
1636 block_end - 1, GFP_NOFS);
1637 btrfs_put_ordered_extent(ordered);
1638 } else {
1639 break;
1640 }
1641 }
1642
1643 trans = btrfs_start_transaction(root, 1);
1644 btrfs_set_trans_block_group(trans, inode);
1645 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1646 err = btrfs_drop_extents(trans, root, inode,
1647 hole_start, block_end, hole_start,
1648 &alloc_hint);
1649
1650 if (alloc_hint != EXTENT_MAP_INLINE) {
1651 err = btrfs_insert_file_extent(trans, root,
1652 inode->i_ino,
1653 hole_start, 0, 0,
1654 hole_size, 0);
1655 btrfs_drop_extent_cache(inode, hole_start,
1656 (u64)-1);
1657 btrfs_check_file(root, inode);
1658 }
1659 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1660 btrfs_end_transaction(trans, root);
1661 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1662 if (err)
1663 return err;
1664 }
1665 out:
1666 err = inode_setattr(inode, attr);
1667
1668 if (!err && ((attr->ia_valid & ATTR_MODE)))
1669 err = btrfs_acl_chmod(inode);
1670 fail:
1671 return err;
1672 }
1673
1674 void btrfs_delete_inode(struct inode *inode)
1675 {
1676 struct btrfs_trans_handle *trans;
1677 struct btrfs_root *root = BTRFS_I(inode)->root;
1678 unsigned long nr;
1679 int ret;
1680
1681 truncate_inode_pages(&inode->i_data, 0);
1682 if (is_bad_inode(inode)) {
1683 btrfs_orphan_del(NULL, inode);
1684 goto no_delete;
1685 }
1686 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1687
1688 btrfs_i_size_write(inode, 0);
1689 trans = btrfs_start_transaction(root, 1);
1690
1691 btrfs_set_trans_block_group(trans, inode);
1692 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1693 if (ret) {
1694 btrfs_orphan_del(NULL, inode);
1695 goto no_delete_lock;
1696 }
1697
1698 btrfs_orphan_del(trans, inode);
1699
1700 nr = trans->blocks_used;
1701 clear_inode(inode);
1702
1703 btrfs_end_transaction(trans, root);
1704 btrfs_btree_balance_dirty(root, nr);
1705 return;
1706
1707 no_delete_lock:
1708 nr = trans->blocks_used;
1709 btrfs_end_transaction(trans, root);
1710 btrfs_btree_balance_dirty(root, nr);
1711 no_delete:
1712 clear_inode(inode);
1713 }
1714
1715 /*
1716 * this returns the key found in the dir entry in the location pointer.
1717 * If no dir entries were found, location->objectid is 0.
1718 */
1719 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1720 struct btrfs_key *location)
1721 {
1722 const char *name = dentry->d_name.name;
1723 int namelen = dentry->d_name.len;
1724 struct btrfs_dir_item *di;
1725 struct btrfs_path *path;
1726 struct btrfs_root *root = BTRFS_I(dir)->root;
1727 int ret = 0;
1728
1729 path = btrfs_alloc_path();
1730 BUG_ON(!path);
1731
1732 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1733 namelen, 0);
1734 if (IS_ERR(di))
1735 ret = PTR_ERR(di);
1736 if (!di || IS_ERR(di)) {
1737 goto out_err;
1738 }
1739 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1740 out:
1741 btrfs_free_path(path);
1742 return ret;
1743 out_err:
1744 location->objectid = 0;
1745 goto out;
1746 }
1747
1748 /*
1749 * when we hit a tree root in a directory, the btrfs part of the inode
1750 * needs to be changed to reflect the root directory of the tree root. This
1751 * is kind of like crossing a mount point.
1752 */
1753 static int fixup_tree_root_location(struct btrfs_root *root,
1754 struct btrfs_key *location,
1755 struct btrfs_root **sub_root,
1756 struct dentry *dentry)
1757 {
1758 struct btrfs_root_item *ri;
1759
1760 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1761 return 0;
1762 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1763 return 0;
1764
1765 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1766 dentry->d_name.name,
1767 dentry->d_name.len);
1768 if (IS_ERR(*sub_root))
1769 return PTR_ERR(*sub_root);
1770
1771 ri = &(*sub_root)->root_item;
1772 location->objectid = btrfs_root_dirid(ri);
1773 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1774 location->offset = 0;
1775
1776 return 0;
1777 }
1778
1779 static noinline void init_btrfs_i(struct inode *inode)
1780 {
1781 struct btrfs_inode *bi = BTRFS_I(inode);
1782
1783 bi->i_acl = NULL;
1784 bi->i_default_acl = NULL;
1785
1786 bi->generation = 0;
1787 bi->last_trans = 0;
1788 bi->logged_trans = 0;
1789 bi->delalloc_bytes = 0;
1790 bi->disk_i_size = 0;
1791 bi->flags = 0;
1792 bi->index_cnt = (u64)-1;
1793 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1794 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1795 inode->i_mapping, GFP_NOFS);
1796 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1797 inode->i_mapping, GFP_NOFS);
1798 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1799 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1800 mutex_init(&BTRFS_I(inode)->csum_mutex);
1801 mutex_init(&BTRFS_I(inode)->extent_mutex);
1802 mutex_init(&BTRFS_I(inode)->log_mutex);
1803 }
1804
1805 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1806 {
1807 struct btrfs_iget_args *args = p;
1808 inode->i_ino = args->ino;
1809 init_btrfs_i(inode);
1810 BTRFS_I(inode)->root = args->root;
1811 return 0;
1812 }
1813
1814 static int btrfs_find_actor(struct inode *inode, void *opaque)
1815 {
1816 struct btrfs_iget_args *args = opaque;
1817 return (args->ino == inode->i_ino &&
1818 args->root == BTRFS_I(inode)->root);
1819 }
1820
1821 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1822 struct btrfs_root *root)
1823 {
1824 struct inode *inode;
1825 struct btrfs_iget_args args;
1826 args.ino = objectid;
1827 args.root = root;
1828
1829 inode = iget5_locked(s, objectid, btrfs_find_actor,
1830 btrfs_init_locked_inode,
1831 (void *)&args);
1832 return inode;
1833 }
1834
1835 /* Get an inode object given its location and corresponding root.
1836 * Returns in *is_new if the inode was read from disk
1837 */
1838 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1839 struct btrfs_root *root, int *is_new)
1840 {
1841 struct inode *inode;
1842
1843 inode = btrfs_iget_locked(s, location->objectid, root);
1844 if (!inode)
1845 return ERR_PTR(-EACCES);
1846
1847 if (inode->i_state & I_NEW) {
1848 BTRFS_I(inode)->root = root;
1849 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1850 btrfs_read_locked_inode(inode);
1851 unlock_new_inode(inode);
1852 if (is_new)
1853 *is_new = 1;
1854 } else {
1855 if (is_new)
1856 *is_new = 0;
1857 }
1858
1859 return inode;
1860 }
1861
1862 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1863 struct nameidata *nd)
1864 {
1865 struct inode * inode;
1866 struct btrfs_inode *bi = BTRFS_I(dir);
1867 struct btrfs_root *root = bi->root;
1868 struct btrfs_root *sub_root = root;
1869 struct btrfs_key location;
1870 int ret, new, do_orphan = 0;
1871
1872 if (dentry->d_name.len > BTRFS_NAME_LEN)
1873 return ERR_PTR(-ENAMETOOLONG);
1874
1875 ret = btrfs_inode_by_name(dir, dentry, &location);
1876
1877 if (ret < 0)
1878 return ERR_PTR(ret);
1879
1880 inode = NULL;
1881 if (location.objectid) {
1882 ret = fixup_tree_root_location(root, &location, &sub_root,
1883 dentry);
1884 if (ret < 0)
1885 return ERR_PTR(ret);
1886 if (ret > 0)
1887 return ERR_PTR(-ENOENT);
1888 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1889 if (IS_ERR(inode))
1890 return ERR_CAST(inode);
1891
1892 /* the inode and parent dir are two different roots */
1893 if (new && root != sub_root) {
1894 igrab(inode);
1895 sub_root->inode = inode;
1896 do_orphan = 1;
1897 }
1898 }
1899
1900 if (unlikely(do_orphan))
1901 btrfs_orphan_cleanup(sub_root);
1902
1903 return d_splice_alias(inode, dentry);
1904 }
1905
1906 static unsigned char btrfs_filetype_table[] = {
1907 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1908 };
1909
1910 static int btrfs_real_readdir(struct file *filp, void *dirent,
1911 filldir_t filldir)
1912 {
1913 struct inode *inode = filp->f_dentry->d_inode;
1914 struct btrfs_root *root = BTRFS_I(inode)->root;
1915 struct btrfs_item *item;
1916 struct btrfs_dir_item *di;
1917 struct btrfs_key key;
1918 struct btrfs_key found_key;
1919 struct btrfs_path *path;
1920 int ret;
1921 u32 nritems;
1922 struct extent_buffer *leaf;
1923 int slot;
1924 int advance;
1925 unsigned char d_type;
1926 int over = 0;
1927 u32 di_cur;
1928 u32 di_total;
1929 u32 di_len;
1930 int key_type = BTRFS_DIR_INDEX_KEY;
1931 char tmp_name[32];
1932 char *name_ptr;
1933 int name_len;
1934
1935 /* FIXME, use a real flag for deciding about the key type */
1936 if (root->fs_info->tree_root == root)
1937 key_type = BTRFS_DIR_ITEM_KEY;
1938
1939 /* special case for "." */
1940 if (filp->f_pos == 0) {
1941 over = filldir(dirent, ".", 1,
1942 1, inode->i_ino,
1943 DT_DIR);
1944 if (over)
1945 return 0;
1946 filp->f_pos = 1;
1947 }
1948 /* special case for .., just use the back ref */
1949 if (filp->f_pos == 1) {
1950 u64 pino = parent_ino(filp->f_path.dentry);
1951 over = filldir(dirent, "..", 2,
1952 2, pino, DT_DIR);
1953 if (over)
1954 return 0;
1955 filp->f_pos = 2;
1956 }
1957
1958 path = btrfs_alloc_path();
1959 path->reada = 2;
1960
1961 btrfs_set_key_type(&key, key_type);
1962 key.offset = filp->f_pos;
1963 key.objectid = inode->i_ino;
1964
1965 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1966 if (ret < 0)
1967 goto err;
1968 advance = 0;
1969
1970 while (1) {
1971 leaf = path->nodes[0];
1972 nritems = btrfs_header_nritems(leaf);
1973 slot = path->slots[0];
1974 if (advance || slot >= nritems) {
1975 if (slot >= nritems - 1) {
1976 ret = btrfs_next_leaf(root, path);
1977 if (ret)
1978 break;
1979 leaf = path->nodes[0];
1980 nritems = btrfs_header_nritems(leaf);
1981 slot = path->slots[0];
1982 } else {
1983 slot++;
1984 path->slots[0]++;
1985 }
1986 }
1987 advance = 1;
1988 item = btrfs_item_nr(leaf, slot);
1989 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1990
1991 if (found_key.objectid != key.objectid)
1992 break;
1993 if (btrfs_key_type(&found_key) != key_type)
1994 break;
1995 if (found_key.offset < filp->f_pos)
1996 continue;
1997
1998 filp->f_pos = found_key.offset;
1999
2000 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2001 di_cur = 0;
2002 di_total = btrfs_item_size(leaf, item);
2003
2004 while (di_cur < di_total) {
2005 struct btrfs_key location;
2006
2007 name_len = btrfs_dir_name_len(leaf, di);
2008 if (name_len <= sizeof(tmp_name)) {
2009 name_ptr = tmp_name;
2010 } else {
2011 name_ptr = kmalloc(name_len, GFP_NOFS);
2012 if (!name_ptr) {
2013 ret = -ENOMEM;
2014 goto err;
2015 }
2016 }
2017 read_extent_buffer(leaf, name_ptr,
2018 (unsigned long)(di + 1), name_len);
2019
2020 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2021 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2022 over = filldir(dirent, name_ptr, name_len,
2023 found_key.offset, location.objectid,
2024 d_type);
2025
2026 if (name_ptr != tmp_name)
2027 kfree(name_ptr);
2028
2029 if (over)
2030 goto nopos;
2031
2032 di_len = btrfs_dir_name_len(leaf, di) +
2033 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2034 di_cur += di_len;
2035 di = (struct btrfs_dir_item *)((char *)di + di_len);
2036 }
2037 }
2038
2039 /* Reached end of directory/root. Bump pos past the last item. */
2040 if (key_type == BTRFS_DIR_INDEX_KEY)
2041 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2042 else
2043 filp->f_pos++;
2044 nopos:
2045 ret = 0;
2046 err:
2047 btrfs_free_path(path);
2048 return ret;
2049 }
2050
2051 /* Kernels earlier than 2.6.28 still have the NFS deadlock where nfsd
2052 will call the file system's ->lookup() method from within its
2053 filldir callback, which in turn was called from the file system's
2054 ->readdir() method. And will deadlock for many file systems. */
2055 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
2056
2057 struct nfshack_dirent {
2058 u64 ino;
2059 loff_t offset;
2060 int namlen;
2061 unsigned int d_type;
2062 char name[];
2063 };
2064
2065 struct nfshack_readdir {
2066 char *dirent;
2067 size_t used;
2068 int full;
2069 };
2070
2071
2072
2073 static int btrfs_nfshack_filldir(void *__buf, const char *name, int namlen,
2074 loff_t offset, u64 ino, unsigned int d_type)
2075 {
2076 struct nfshack_readdir *buf = __buf;
2077 struct nfshack_dirent *de = (void *)(buf->dirent + buf->used);
2078 unsigned int reclen;
2079
2080 reclen = ALIGN(sizeof(struct nfshack_dirent) + namlen, sizeof(u64));
2081 if (buf->used + reclen > PAGE_SIZE) {
2082 buf->full = 1;
2083 return -EINVAL;
2084 }
2085
2086 de->namlen = namlen;
2087 de->offset = offset;
2088 de->ino = ino;
2089 de->d_type = d_type;
2090 memcpy(de->name, name, namlen);
2091 buf->used += reclen;
2092
2093 return 0;
2094 }
2095
2096 static int btrfs_nfshack_readdir(struct file *file, void *dirent,
2097 filldir_t filldir)
2098 {
2099 struct nfshack_readdir buf;
2100 struct nfshack_dirent *de;
2101 int err;
2102 int size;
2103 loff_t offset;
2104
2105 buf.dirent = (void *)__get_free_page(GFP_KERNEL);
2106 if (!buf.dirent)
2107 return -ENOMEM;
2108
2109 offset = file->f_pos;
2110
2111 do {
2112 unsigned int reclen;
2113
2114 buf.used = 0;
2115 buf.full = 0;
2116 err = btrfs_real_readdir(file, &buf, btrfs_nfshack_filldir);
2117 if (err)
2118 break;
2119
2120 size = buf.used;
2121
2122 if (!size)
2123 break;
2124
2125 de = (struct nfshack_dirent *)buf.dirent;
2126 while (size > 0) {
2127 offset = de->offset;
2128
2129 if (filldir(dirent, de->name, de->namlen, de->offset,
2130 de->ino, de->d_type))
2131 goto done;
2132 offset = file->f_pos;
2133
2134 reclen = ALIGN(sizeof(*de) + de->namlen,
2135 sizeof(u64));
2136 size -= reclen;
2137 de = (struct nfshack_dirent *)((char *)de + reclen);
2138 }
2139 } while (buf.full);
2140
2141 done:
2142 free_page((unsigned long)buf.dirent);
2143 file->f_pos = offset;
2144
2145 return err;
2146 }
2147 #endif
2148
2149 int btrfs_write_inode(struct inode *inode, int wait)
2150 {
2151 struct btrfs_root *root = BTRFS_I(inode)->root;
2152 struct btrfs_trans_handle *trans;
2153 int ret = 0;
2154
2155 if (root->fs_info->closing > 1)
2156 return 0;
2157
2158 if (wait) {
2159 trans = btrfs_join_transaction(root, 1);
2160 btrfs_set_trans_block_group(trans, inode);
2161 ret = btrfs_commit_transaction(trans, root);
2162 }
2163 return ret;
2164 }
2165
2166 /*
2167 * This is somewhat expensive, updating the tree every time the
2168 * inode changes. But, it is most likely to find the inode in cache.
2169 * FIXME, needs more benchmarking...there are no reasons other than performance
2170 * to keep or drop this code.
2171 */
2172 void btrfs_dirty_inode(struct inode *inode)
2173 {
2174 struct btrfs_root *root = BTRFS_I(inode)->root;
2175 struct btrfs_trans_handle *trans;
2176
2177 trans = btrfs_join_transaction(root, 1);
2178 btrfs_set_trans_block_group(trans, inode);
2179 btrfs_update_inode(trans, root, inode);
2180 btrfs_end_transaction(trans, root);
2181 }
2182
2183 static int btrfs_set_inode_index_count(struct inode *inode)
2184 {
2185 struct btrfs_root *root = BTRFS_I(inode)->root;
2186 struct btrfs_key key, found_key;
2187 struct btrfs_path *path;
2188 struct extent_buffer *leaf;
2189 int ret;
2190
2191 key.objectid = inode->i_ino;
2192 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2193 key.offset = (u64)-1;
2194
2195 path = btrfs_alloc_path();
2196 if (!path)
2197 return -ENOMEM;
2198
2199 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2200 if (ret < 0)
2201 goto out;
2202 /* FIXME: we should be able to handle this */
2203 if (ret == 0)
2204 goto out;
2205 ret = 0;
2206
2207 /*
2208 * MAGIC NUMBER EXPLANATION:
2209 * since we search a directory based on f_pos we have to start at 2
2210 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2211 * else has to start at 2
2212 */
2213 if (path->slots[0] == 0) {
2214 BTRFS_I(inode)->index_cnt = 2;
2215 goto out;
2216 }
2217
2218 path->slots[0]--;
2219
2220 leaf = path->nodes[0];
2221 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2222
2223 if (found_key.objectid != inode->i_ino ||
2224 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2225 BTRFS_I(inode)->index_cnt = 2;
2226 goto out;
2227 }
2228
2229 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2230 out:
2231 btrfs_free_path(path);
2232 return ret;
2233 }
2234
2235 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2236 u64 *index)
2237 {
2238 int ret = 0;
2239
2240 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2241 ret = btrfs_set_inode_index_count(dir);
2242 if (ret) {
2243 return ret;
2244 }
2245 }
2246
2247 *index = BTRFS_I(dir)->index_cnt;
2248 BTRFS_I(dir)->index_cnt++;
2249
2250 return ret;
2251 }
2252
2253 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2254 struct btrfs_root *root,
2255 struct inode *dir,
2256 const char *name, int name_len,
2257 u64 ref_objectid,
2258 u64 objectid,
2259 struct btrfs_block_group_cache *group,
2260 int mode, u64 *index)
2261 {
2262 struct inode *inode;
2263 struct btrfs_inode_item *inode_item;
2264 struct btrfs_block_group_cache *new_inode_group;
2265 struct btrfs_key *location;
2266 struct btrfs_path *path;
2267 struct btrfs_inode_ref *ref;
2268 struct btrfs_key key[2];
2269 u32 sizes[2];
2270 unsigned long ptr;
2271 int ret;
2272 int owner;
2273
2274 path = btrfs_alloc_path();
2275 BUG_ON(!path);
2276
2277 inode = new_inode(root->fs_info->sb);
2278 if (!inode)
2279 return ERR_PTR(-ENOMEM);
2280
2281 if (dir) {
2282 ret = btrfs_set_inode_index(dir, inode, index);
2283 if (ret)
2284 return ERR_PTR(ret);
2285 }
2286 /*
2287 * index_cnt is ignored for everything but a dir,
2288 * btrfs_get_inode_index_count has an explanation for the magic
2289 * number
2290 */
2291 init_btrfs_i(inode);
2292 BTRFS_I(inode)->index_cnt = 2;
2293 BTRFS_I(inode)->root = root;
2294 BTRFS_I(inode)->generation = trans->transid;
2295
2296 if (mode & S_IFDIR)
2297 owner = 0;
2298 else
2299 owner = 1;
2300 new_inode_group = btrfs_find_block_group(root, group, 0,
2301 BTRFS_BLOCK_GROUP_METADATA, owner);
2302 if (!new_inode_group) {
2303 printk("find_block group failed\n");
2304 new_inode_group = group;
2305 }
2306 BTRFS_I(inode)->block_group = new_inode_group;
2307
2308 key[0].objectid = objectid;
2309 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2310 key[0].offset = 0;
2311
2312 key[1].objectid = objectid;
2313 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2314 key[1].offset = ref_objectid;
2315
2316 sizes[0] = sizeof(struct btrfs_inode_item);
2317 sizes[1] = name_len + sizeof(*ref);
2318
2319 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2320 if (ret != 0)
2321 goto fail;
2322
2323 if (objectid > root->highest_inode)
2324 root->highest_inode = objectid;
2325
2326 inode->i_uid = current->fsuid;
2327 inode->i_gid = current->fsgid;
2328 inode->i_mode = mode;
2329 inode->i_ino = objectid;
2330 inode->i_blocks = 0;
2331 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2332 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2333 struct btrfs_inode_item);
2334 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2335
2336 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2337 struct btrfs_inode_ref);
2338 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2339 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2340 ptr = (unsigned long)(ref + 1);
2341 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2342
2343 btrfs_mark_buffer_dirty(path->nodes[0]);
2344 btrfs_free_path(path);
2345
2346 location = &BTRFS_I(inode)->location;
2347 location->objectid = objectid;
2348 location->offset = 0;
2349 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2350
2351 insert_inode_hash(inode);
2352 return inode;
2353 fail:
2354 if (dir)
2355 BTRFS_I(dir)->index_cnt--;
2356 btrfs_free_path(path);
2357 return ERR_PTR(ret);
2358 }
2359
2360 static inline u8 btrfs_inode_type(struct inode *inode)
2361 {
2362 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2363 }
2364
2365 int btrfs_add_link(struct btrfs_trans_handle *trans,
2366 struct inode *parent_inode, struct inode *inode,
2367 const char *name, int name_len, int add_backref, u64 index)
2368 {
2369 int ret;
2370 struct btrfs_key key;
2371 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2372
2373 key.objectid = inode->i_ino;
2374 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2375 key.offset = 0;
2376
2377 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2378 parent_inode->i_ino,
2379 &key, btrfs_inode_type(inode),
2380 index);
2381 if (ret == 0) {
2382 if (add_backref) {
2383 ret = btrfs_insert_inode_ref(trans, root,
2384 name, name_len,
2385 inode->i_ino,
2386 parent_inode->i_ino,
2387 index);
2388 }
2389 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2390 name_len * 2);
2391 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2392 ret = btrfs_update_inode(trans, root, parent_inode);
2393 }
2394 return ret;
2395 }
2396
2397 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2398 struct dentry *dentry, struct inode *inode,
2399 int backref, u64 index)
2400 {
2401 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2402 inode, dentry->d_name.name,
2403 dentry->d_name.len, backref, index);
2404 if (!err) {
2405 d_instantiate(dentry, inode);
2406 return 0;
2407 }
2408 if (err > 0)
2409 err = -EEXIST;
2410 return err;
2411 }
2412
2413 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2414 int mode, dev_t rdev)
2415 {
2416 struct btrfs_trans_handle *trans;
2417 struct btrfs_root *root = BTRFS_I(dir)->root;
2418 struct inode *inode = NULL;
2419 int err;
2420 int drop_inode = 0;
2421 u64 objectid;
2422 unsigned long nr = 0;
2423 u64 index = 0;
2424
2425 if (!new_valid_dev(rdev))
2426 return -EINVAL;
2427
2428 err = btrfs_check_free_space(root, 1, 0);
2429 if (err)
2430 goto fail;
2431
2432 trans = btrfs_start_transaction(root, 1);
2433 btrfs_set_trans_block_group(trans, dir);
2434
2435 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2436 if (err) {
2437 err = -ENOSPC;
2438 goto out_unlock;
2439 }
2440
2441 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2442 dentry->d_name.len,
2443 dentry->d_parent->d_inode->i_ino, objectid,
2444 BTRFS_I(dir)->block_group, mode, &index);
2445 err = PTR_ERR(inode);
2446 if (IS_ERR(inode))
2447 goto out_unlock;
2448
2449 err = btrfs_init_acl(inode, dir);
2450 if (err) {
2451 drop_inode = 1;
2452 goto out_unlock;
2453 }
2454
2455 btrfs_set_trans_block_group(trans, inode);
2456 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2457 if (err)
2458 drop_inode = 1;
2459 else {
2460 inode->i_op = &btrfs_special_inode_operations;
2461 init_special_inode(inode, inode->i_mode, rdev);
2462 btrfs_update_inode(trans, root, inode);
2463 }
2464 dir->i_sb->s_dirt = 1;
2465 btrfs_update_inode_block_group(trans, inode);
2466 btrfs_update_inode_block_group(trans, dir);
2467 out_unlock:
2468 nr = trans->blocks_used;
2469 btrfs_end_transaction_throttle(trans, root);
2470 fail:
2471 if (drop_inode) {
2472 inode_dec_link_count(inode);
2473 iput(inode);
2474 }
2475 btrfs_btree_balance_dirty(root, nr);
2476 return err;
2477 }
2478
2479 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2480 int mode, struct nameidata *nd)
2481 {
2482 struct btrfs_trans_handle *trans;
2483 struct btrfs_root *root = BTRFS_I(dir)->root;
2484 struct inode *inode = NULL;
2485 int err;
2486 int drop_inode = 0;
2487 unsigned long nr = 0;
2488 u64 objectid;
2489 u64 index = 0;
2490
2491 err = btrfs_check_free_space(root, 1, 0);
2492 if (err)
2493 goto fail;
2494 trans = btrfs_start_transaction(root, 1);
2495 btrfs_set_trans_block_group(trans, dir);
2496
2497 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2498 if (err) {
2499 err = -ENOSPC;
2500 goto out_unlock;
2501 }
2502
2503 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2504 dentry->d_name.len,
2505 dentry->d_parent->d_inode->i_ino,
2506 objectid, BTRFS_I(dir)->block_group, mode,
2507 &index);
2508 err = PTR_ERR(inode);
2509 if (IS_ERR(inode))
2510 goto out_unlock;
2511
2512 err = btrfs_init_acl(inode, dir);
2513 if (err) {
2514 drop_inode = 1;
2515 goto out_unlock;
2516 }
2517
2518 btrfs_set_trans_block_group(trans, inode);
2519 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2520 if (err)
2521 drop_inode = 1;
2522 else {
2523 inode->i_mapping->a_ops = &btrfs_aops;
2524 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2525 inode->i_fop = &btrfs_file_operations;
2526 inode->i_op = &btrfs_file_inode_operations;
2527 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2528 }
2529 dir->i_sb->s_dirt = 1;
2530 btrfs_update_inode_block_group(trans, inode);
2531 btrfs_update_inode_block_group(trans, dir);
2532 out_unlock:
2533 nr = trans->blocks_used;
2534 btrfs_end_transaction_throttle(trans, root);
2535 fail:
2536 if (drop_inode) {
2537 inode_dec_link_count(inode);
2538 iput(inode);
2539 }
2540 btrfs_btree_balance_dirty(root, nr);
2541 return err;
2542 }
2543
2544 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2545 struct dentry *dentry)
2546 {
2547 struct btrfs_trans_handle *trans;
2548 struct btrfs_root *root = BTRFS_I(dir)->root;
2549 struct inode *inode = old_dentry->d_inode;
2550 u64 index;
2551 unsigned long nr = 0;
2552 int err;
2553 int drop_inode = 0;
2554
2555 if (inode->i_nlink == 0)
2556 return -ENOENT;
2557
2558 btrfs_inc_nlink(inode);
2559 err = btrfs_check_free_space(root, 1, 0);
2560 if (err)
2561 goto fail;
2562 err = btrfs_set_inode_index(dir, inode, &index);
2563 if (err)
2564 goto fail;
2565
2566 trans = btrfs_start_transaction(root, 1);
2567
2568 btrfs_set_trans_block_group(trans, dir);
2569 atomic_inc(&inode->i_count);
2570
2571 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2572
2573 if (err)
2574 drop_inode = 1;
2575
2576 dir->i_sb->s_dirt = 1;
2577 btrfs_update_inode_block_group(trans, dir);
2578 err = btrfs_update_inode(trans, root, inode);
2579
2580 if (err)
2581 drop_inode = 1;
2582
2583 nr = trans->blocks_used;
2584 btrfs_end_transaction_throttle(trans, root);
2585 fail:
2586 if (drop_inode) {
2587 inode_dec_link_count(inode);
2588 iput(inode);
2589 }
2590 btrfs_btree_balance_dirty(root, nr);
2591 return err;
2592 }
2593
2594 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2595 {
2596 struct inode *inode = NULL;
2597 struct btrfs_trans_handle *trans;
2598 struct btrfs_root *root = BTRFS_I(dir)->root;
2599 int err = 0;
2600 int drop_on_err = 0;
2601 u64 objectid = 0;
2602 u64 index = 0;
2603 unsigned long nr = 1;
2604
2605 err = btrfs_check_free_space(root, 1, 0);
2606 if (err)
2607 goto out_unlock;
2608
2609 trans = btrfs_start_transaction(root, 1);
2610 btrfs_set_trans_block_group(trans, dir);
2611
2612 if (IS_ERR(trans)) {
2613 err = PTR_ERR(trans);
2614 goto out_unlock;
2615 }
2616
2617 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2618 if (err) {
2619 err = -ENOSPC;
2620 goto out_unlock;
2621 }
2622
2623 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2624 dentry->d_name.len,
2625 dentry->d_parent->d_inode->i_ino, objectid,
2626 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2627 &index);
2628 if (IS_ERR(inode)) {
2629 err = PTR_ERR(inode);
2630 goto out_fail;
2631 }
2632
2633 drop_on_err = 1;
2634
2635 err = btrfs_init_acl(inode, dir);
2636 if (err)
2637 goto out_fail;
2638
2639 inode->i_op = &btrfs_dir_inode_operations;
2640 inode->i_fop = &btrfs_dir_file_operations;
2641 btrfs_set_trans_block_group(trans, inode);
2642
2643 btrfs_i_size_write(inode, 0);
2644 err = btrfs_update_inode(trans, root, inode);
2645 if (err)
2646 goto out_fail;
2647
2648 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2649 inode, dentry->d_name.name,
2650 dentry->d_name.len, 0, index);
2651 if (err)
2652 goto out_fail;
2653
2654 d_instantiate(dentry, inode);
2655 drop_on_err = 0;
2656 dir->i_sb->s_dirt = 1;
2657 btrfs_update_inode_block_group(trans, inode);
2658 btrfs_update_inode_block_group(trans, dir);
2659
2660 out_fail:
2661 nr = trans->blocks_used;
2662 btrfs_end_transaction_throttle(trans, root);
2663
2664 out_unlock:
2665 if (drop_on_err)
2666 iput(inode);
2667 btrfs_btree_balance_dirty(root, nr);
2668 return err;
2669 }
2670
2671 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2672 struct extent_map *existing,
2673 struct extent_map *em,
2674 u64 map_start, u64 map_len)
2675 {
2676 u64 start_diff;
2677
2678 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2679 start_diff = map_start - em->start;
2680 em->start = map_start;
2681 em->len = map_len;
2682 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2683 em->block_start += start_diff;
2684 return add_extent_mapping(em_tree, em);
2685 }
2686
2687 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2688 size_t pg_offset, u64 start, u64 len,
2689 int create)
2690 {
2691 int ret;
2692 int err = 0;
2693 u64 bytenr;
2694 u64 extent_start = 0;
2695 u64 extent_end = 0;
2696 u64 objectid = inode->i_ino;
2697 u32 found_type;
2698 struct btrfs_path *path = NULL;
2699 struct btrfs_root *root = BTRFS_I(inode)->root;
2700 struct btrfs_file_extent_item *item;
2701 struct extent_buffer *leaf;
2702 struct btrfs_key found_key;
2703 struct extent_map *em = NULL;
2704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2705 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2706 struct btrfs_trans_handle *trans = NULL;
2707
2708 again:
2709 spin_lock(&em_tree->lock);
2710 em = lookup_extent_mapping(em_tree, start, len);
2711 if (em)
2712 em->bdev = root->fs_info->fs_devices->latest_bdev;
2713 spin_unlock(&em_tree->lock);
2714
2715 if (em) {
2716 if (em->start > start || em->start + em->len <= start)
2717 free_extent_map(em);
2718 else if (em->block_start == EXTENT_MAP_INLINE && page)
2719 free_extent_map(em);
2720 else
2721 goto out;
2722 }
2723 em = alloc_extent_map(GFP_NOFS);
2724 if (!em) {
2725 err = -ENOMEM;
2726 goto out;
2727 }
2728 em->bdev = root->fs_info->fs_devices->latest_bdev;
2729 em->start = EXTENT_MAP_HOLE;
2730 em->len = (u64)-1;
2731
2732 if (!path) {
2733 path = btrfs_alloc_path();
2734 BUG_ON(!path);
2735 }
2736
2737 ret = btrfs_lookup_file_extent(trans, root, path,
2738 objectid, start, trans != NULL);
2739 if (ret < 0) {
2740 err = ret;
2741 goto out;
2742 }
2743
2744 if (ret != 0) {
2745 if (path->slots[0] == 0)
2746 goto not_found;
2747 path->slots[0]--;
2748 }
2749
2750 leaf = path->nodes[0];
2751 item = btrfs_item_ptr(leaf, path->slots[0],
2752 struct btrfs_file_extent_item);
2753 /* are we inside the extent that was found? */
2754 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2755 found_type = btrfs_key_type(&found_key);
2756 if (found_key.objectid != objectid ||
2757 found_type != BTRFS_EXTENT_DATA_KEY) {
2758 goto not_found;
2759 }
2760
2761 found_type = btrfs_file_extent_type(leaf, item);
2762 extent_start = found_key.offset;
2763 if (found_type == BTRFS_FILE_EXTENT_REG) {
2764 extent_end = extent_start +
2765 btrfs_file_extent_num_bytes(leaf, item);
2766 err = 0;
2767 if (start < extent_start || start >= extent_end) {
2768 em->start = start;
2769 if (start < extent_start) {
2770 if (start + len <= extent_start)
2771 goto not_found;
2772 em->len = extent_end - extent_start;
2773 } else {
2774 em->len = len;
2775 }
2776 goto not_found_em;
2777 }
2778 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2779 if (bytenr == 0) {
2780 em->start = extent_start;
2781 em->len = extent_end - extent_start;
2782 em->block_start = EXTENT_MAP_HOLE;
2783 goto insert;
2784 }
2785 bytenr += btrfs_file_extent_offset(leaf, item);
2786 em->block_start = bytenr;
2787 em->start = extent_start;
2788 em->len = extent_end - extent_start;
2789 goto insert;
2790 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2791 u64 page_start;
2792 unsigned long ptr;
2793 char *map;
2794 size_t size;
2795 size_t extent_offset;
2796 size_t copy_size;
2797
2798 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2799 path->slots[0]));
2800 extent_end = (extent_start + size + root->sectorsize - 1) &
2801 ~((u64)root->sectorsize - 1);
2802 if (start < extent_start || start >= extent_end) {
2803 em->start = start;
2804 if (start < extent_start) {
2805 if (start + len <= extent_start)
2806 goto not_found;
2807 em->len = extent_end - extent_start;
2808 } else {
2809 em->len = len;
2810 }
2811 goto not_found_em;
2812 }
2813 em->block_start = EXTENT_MAP_INLINE;
2814
2815 if (!page) {
2816 em->start = extent_start;
2817 em->len = size;
2818 goto out;
2819 }
2820
2821 page_start = page_offset(page) + pg_offset;
2822 extent_offset = page_start - extent_start;
2823 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2824 size - extent_offset);
2825 em->start = extent_start + extent_offset;
2826 em->len = (copy_size + root->sectorsize - 1) &
2827 ~((u64)root->sectorsize - 1);
2828 map = kmap(page);
2829 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2830 if (create == 0 && !PageUptodate(page)) {
2831 read_extent_buffer(leaf, map + pg_offset, ptr,
2832 copy_size);
2833 flush_dcache_page(page);
2834 } else if (create && PageUptodate(page)) {
2835 if (!trans) {
2836 kunmap(page);
2837 free_extent_map(em);
2838 em = NULL;
2839 btrfs_release_path(root, path);
2840 trans = btrfs_join_transaction(root, 1);
2841 goto again;
2842 }
2843 write_extent_buffer(leaf, map + pg_offset, ptr,
2844 copy_size);
2845 btrfs_mark_buffer_dirty(leaf);
2846 }
2847 kunmap(page);
2848 set_extent_uptodate(io_tree, em->start,
2849 extent_map_end(em) - 1, GFP_NOFS);
2850 goto insert;
2851 } else {
2852 printk("unkknown found_type %d\n", found_type);
2853 WARN_ON(1);
2854 }
2855 not_found:
2856 em->start = start;
2857 em->len = len;
2858 not_found_em:
2859 em->block_start = EXTENT_MAP_HOLE;
2860 insert:
2861 btrfs_release_path(root, path);
2862 if (em->start > start || extent_map_end(em) <= start) {
2863 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2864 err = -EIO;
2865 goto out;
2866 }
2867
2868 err = 0;
2869 spin_lock(&em_tree->lock);
2870 ret = add_extent_mapping(em_tree, em);
2871 /* it is possible that someone inserted the extent into the tree
2872 * while we had the lock dropped. It is also possible that
2873 * an overlapping map exists in the tree
2874 */
2875 if (ret == -EEXIST) {
2876 struct extent_map *existing;
2877
2878 ret = 0;
2879
2880 existing = lookup_extent_mapping(em_tree, start, len);
2881 if (existing && (existing->start > start ||
2882 existing->start + existing->len <= start)) {
2883 free_extent_map(existing);
2884 existing = NULL;
2885 }
2886 if (!existing) {
2887 existing = lookup_extent_mapping(em_tree, em->start,
2888 em->len);
2889 if (existing) {
2890 err = merge_extent_mapping(em_tree, existing,
2891 em, start,
2892 root->sectorsize);
2893 free_extent_map(existing);
2894 if (err) {
2895 free_extent_map(em);
2896 em = NULL;
2897 }
2898 } else {
2899 err = -EIO;
2900 printk("failing to insert %Lu %Lu\n",
2901 start, len);
2902 free_extent_map(em);
2903 em = NULL;
2904 }
2905 } else {
2906 free_extent_map(em);
2907 em = existing;
2908 err = 0;
2909 }
2910 }
2911 spin_unlock(&em_tree->lock);
2912 out:
2913 if (path)
2914 btrfs_free_path(path);
2915 if (trans) {
2916 ret = btrfs_end_transaction(trans, root);
2917 if (!err) {
2918 err = ret;
2919 }
2920 }
2921 if (err) {
2922 free_extent_map(em);
2923 WARN_ON(1);
2924 return ERR_PTR(err);
2925 }
2926 return em;
2927 }
2928
2929 #if 0 /* waiting for O_DIRECT reads */
2930 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2931 struct buffer_head *bh_result, int create)
2932 {
2933 struct extent_map *em;
2934 u64 start = (u64)iblock << inode->i_blkbits;
2935 struct btrfs_multi_bio *multi = NULL;
2936 struct btrfs_root *root = BTRFS_I(inode)->root;
2937 u64 len;
2938 u64 logical;
2939 u64 map_length;
2940 int ret = 0;
2941
2942 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2943
2944 if (!em || IS_ERR(em))
2945 goto out;
2946
2947 if (em->start > start || em->start + em->len <= start) {
2948 goto out;
2949 }
2950
2951 if (em->block_start == EXTENT_MAP_INLINE) {
2952 ret = -EINVAL;
2953 goto out;
2954 }
2955
2956 len = em->start + em->len - start;
2957 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2958
2959 if (em->block_start == EXTENT_MAP_HOLE ||
2960 em->block_start == EXTENT_MAP_DELALLOC) {
2961 bh_result->b_size = len;
2962 goto out;
2963 }
2964
2965 logical = start - em->start;
2966 logical = em->block_start + logical;
2967
2968 map_length = len;
2969 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2970 logical, &map_length, &multi, 0);
2971 BUG_ON(ret);
2972 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2973 bh_result->b_size = min(map_length, len);
2974
2975 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2976 set_buffer_mapped(bh_result);
2977 kfree(multi);
2978 out:
2979 free_extent_map(em);
2980 return ret;
2981 }
2982 #endif
2983
2984 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2985 const struct iovec *iov, loff_t offset,
2986 unsigned long nr_segs)
2987 {
2988 return -EINVAL;
2989 #if 0
2990 struct file *file = iocb->ki_filp;
2991 struct inode *inode = file->f_mapping->host;
2992
2993 if (rw == WRITE)
2994 return -EINVAL;
2995
2996 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2997 offset, nr_segs, btrfs_get_block, NULL);
2998 #endif
2999 }
3000
3001 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3002 {
3003 return extent_bmap(mapping, iblock, btrfs_get_extent);
3004 }
3005
3006 int btrfs_readpage(struct file *file, struct page *page)
3007 {
3008 struct extent_io_tree *tree;
3009 tree = &BTRFS_I(page->mapping->host)->io_tree;
3010 return extent_read_full_page(tree, page, btrfs_get_extent);
3011 }
3012
3013 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3014 {
3015 struct extent_io_tree *tree;
3016
3017
3018 if (current->flags & PF_MEMALLOC) {
3019 redirty_page_for_writepage(wbc, page);
3020 unlock_page(page);
3021 return 0;
3022 }
3023 tree = &BTRFS_I(page->mapping->host)->io_tree;
3024 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3025 }
3026
3027 int btrfs_writepages(struct address_space *mapping,
3028 struct writeback_control *wbc)
3029 {
3030 struct extent_io_tree *tree;
3031 tree = &BTRFS_I(mapping->host)->io_tree;
3032 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3033 }
3034
3035 static int
3036 btrfs_readpages(struct file *file, struct address_space *mapping,
3037 struct list_head *pages, unsigned nr_pages)
3038 {
3039 struct extent_io_tree *tree;
3040 tree = &BTRFS_I(mapping->host)->io_tree;
3041 return extent_readpages(tree, mapping, pages, nr_pages,
3042 btrfs_get_extent);
3043 }
3044 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3045 {
3046 struct extent_io_tree *tree;
3047 struct extent_map_tree *map;
3048 int ret;
3049
3050 tree = &BTRFS_I(page->mapping->host)->io_tree;
3051 map = &BTRFS_I(page->mapping->host)->extent_tree;
3052 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3053 if (ret == 1) {
3054 ClearPagePrivate(page);
3055 set_page_private(page, 0);
3056 page_cache_release(page);
3057 }
3058 return ret;
3059 }
3060
3061 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3062 {
3063 if (PageWriteback(page) || PageDirty(page))
3064 return 0;
3065 return __btrfs_releasepage(page, gfp_flags);
3066 }
3067
3068 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3069 {
3070 struct extent_io_tree *tree;
3071 struct btrfs_ordered_extent *ordered;
3072 u64 page_start = page_offset(page);
3073 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3074
3075 wait_on_page_writeback(page);
3076 tree = &BTRFS_I(page->mapping->host)->io_tree;
3077 if (offset) {
3078 btrfs_releasepage(page, GFP_NOFS);
3079 return;
3080 }
3081
3082 lock_extent(tree, page_start, page_end, GFP_NOFS);
3083 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3084 page_offset(page));
3085 if (ordered) {
3086 /*
3087 * IO on this page will never be started, so we need
3088 * to account for any ordered extents now
3089 */
3090 clear_extent_bit(tree, page_start, page_end,
3091 EXTENT_DIRTY | EXTENT_DELALLOC |
3092 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3093 btrfs_finish_ordered_io(page->mapping->host,
3094 page_start, page_end);
3095 btrfs_put_ordered_extent(ordered);
3096 lock_extent(tree, page_start, page_end, GFP_NOFS);
3097 }
3098 clear_extent_bit(tree, page_start, page_end,
3099 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3100 EXTENT_ORDERED,
3101 1, 1, GFP_NOFS);
3102 __btrfs_releasepage(page, GFP_NOFS);
3103
3104 ClearPageChecked(page);
3105 if (PagePrivate(page)) {
3106 ClearPagePrivate(page);
3107 set_page_private(page, 0);
3108 page_cache_release(page);
3109 }
3110 }
3111
3112 /*
3113 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3114 * called from a page fault handler when a page is first dirtied. Hence we must
3115 * be careful to check for EOF conditions here. We set the page up correctly
3116 * for a written page which means we get ENOSPC checking when writing into
3117 * holes and correct delalloc and unwritten extent mapping on filesystems that
3118 * support these features.
3119 *
3120 * We are not allowed to take the i_mutex here so we have to play games to
3121 * protect against truncate races as the page could now be beyond EOF. Because
3122 * vmtruncate() writes the inode size before removing pages, once we have the
3123 * page lock we can determine safely if the page is beyond EOF. If it is not
3124 * beyond EOF, then the page is guaranteed safe against truncation until we
3125 * unlock the page.
3126 */
3127 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3128 {
3129 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3130 struct btrfs_root *root = BTRFS_I(inode)->root;
3131 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3132 struct btrfs_ordered_extent *ordered;
3133 char *kaddr;
3134 unsigned long zero_start;
3135 loff_t size;
3136 int ret;
3137 u64 page_start;
3138 u64 page_end;
3139
3140 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3141 if (ret)
3142 goto out;
3143
3144 ret = -EINVAL;
3145 again:
3146 lock_page(page);
3147 size = i_size_read(inode);
3148 page_start = page_offset(page);
3149 page_end = page_start + PAGE_CACHE_SIZE - 1;
3150
3151 if ((page->mapping != inode->i_mapping) ||
3152 (page_start >= size)) {
3153 /* page got truncated out from underneath us */
3154 goto out_unlock;
3155 }
3156 wait_on_page_writeback(page);
3157
3158 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3159 set_page_extent_mapped(page);
3160
3161 /*
3162 * we can't set the delalloc bits if there are pending ordered
3163 * extents. Drop our locks and wait for them to finish
3164 */
3165 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3166 if (ordered) {
3167 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3168 unlock_page(page);
3169 btrfs_start_ordered_extent(inode, ordered, 1);
3170 btrfs_put_ordered_extent(ordered);
3171 goto again;
3172 }
3173
3174 btrfs_set_extent_delalloc(inode, page_start, page_end);
3175 ret = 0;
3176
3177 /* page is wholly or partially inside EOF */
3178 if (page_start + PAGE_CACHE_SIZE > size)
3179 zero_start = size & ~PAGE_CACHE_MASK;
3180 else
3181 zero_start = PAGE_CACHE_SIZE;
3182
3183 if (zero_start != PAGE_CACHE_SIZE) {
3184 kaddr = kmap(page);
3185 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3186 flush_dcache_page(page);
3187 kunmap(page);
3188 }
3189 ClearPageChecked(page);
3190 set_page_dirty(page);
3191 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3192
3193 out_unlock:
3194 unlock_page(page);
3195 out:
3196 return ret;
3197 }
3198
3199 static void btrfs_truncate(struct inode *inode)
3200 {
3201 struct btrfs_root *root = BTRFS_I(inode)->root;
3202 int ret;
3203 struct btrfs_trans_handle *trans;
3204 unsigned long nr;
3205 u64 mask = root->sectorsize - 1;
3206
3207 if (!S_ISREG(inode->i_mode))
3208 return;
3209 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3210 return;
3211
3212 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3213 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3214
3215 trans = btrfs_start_transaction(root, 1);
3216 btrfs_set_trans_block_group(trans, inode);
3217 btrfs_i_size_write(inode, inode->i_size);
3218
3219 ret = btrfs_orphan_add(trans, inode);
3220 if (ret)
3221 goto out;
3222 /* FIXME, add redo link to tree so we don't leak on crash */
3223 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3224 BTRFS_EXTENT_DATA_KEY);
3225 btrfs_update_inode(trans, root, inode);
3226
3227 ret = btrfs_orphan_del(trans, inode);
3228 BUG_ON(ret);
3229
3230 out:
3231 nr = trans->blocks_used;
3232 ret = btrfs_end_transaction_throttle(trans, root);
3233 BUG_ON(ret);
3234 btrfs_btree_balance_dirty(root, nr);
3235 }
3236
3237 /*
3238 * Invalidate a single dcache entry at the root of the filesystem.
3239 * Needed after creation of snapshot or subvolume.
3240 */
3241 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3242 int namelen)
3243 {
3244 struct dentry *alias, *entry;
3245 struct qstr qstr;
3246
3247 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3248 if (alias) {
3249 qstr.name = name;
3250 qstr.len = namelen;
3251 /* change me if btrfs ever gets a d_hash operation */
3252 qstr.hash = full_name_hash(qstr.name, qstr.len);
3253 entry = d_lookup(alias, &qstr);
3254 dput(alias);
3255 if (entry) {
3256 d_invalidate(entry);
3257 dput(entry);
3258 }
3259 }
3260 }
3261
3262 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3263 struct btrfs_trans_handle *trans, u64 new_dirid,
3264 struct btrfs_block_group_cache *block_group)
3265 {
3266 struct inode *inode;
3267 u64 index = 0;
3268
3269 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3270 new_dirid, block_group, S_IFDIR | 0700, &index);
3271 if (IS_ERR(inode))
3272 return PTR_ERR(inode);
3273 inode->i_op = &btrfs_dir_inode_operations;
3274 inode->i_fop = &btrfs_dir_file_operations;
3275 new_root->inode = inode;
3276
3277 inode->i_nlink = 1;
3278 btrfs_i_size_write(inode, 0);
3279
3280 return btrfs_update_inode(trans, new_root, inode);
3281 }
3282
3283 unsigned long btrfs_force_ra(struct address_space *mapping,
3284 struct file_ra_state *ra, struct file *file,
3285 pgoff_t offset, pgoff_t last_index)
3286 {
3287 pgoff_t req_size = last_index - offset + 1;
3288
3289 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3290 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3291 return offset;
3292 #else
3293 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3294 return offset + req_size;
3295 #endif
3296 }
3297
3298 struct inode *btrfs_alloc_inode(struct super_block *sb)
3299 {
3300 struct btrfs_inode *ei;
3301
3302 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3303 if (!ei)
3304 return NULL;
3305 ei->last_trans = 0;
3306 ei->logged_trans = 0;
3307 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3308 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3309 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3310 INIT_LIST_HEAD(&ei->i_orphan);
3311 return &ei->vfs_inode;
3312 }
3313
3314 void btrfs_destroy_inode(struct inode *inode)
3315 {
3316 struct btrfs_ordered_extent *ordered;
3317 WARN_ON(!list_empty(&inode->i_dentry));
3318 WARN_ON(inode->i_data.nrpages);
3319
3320 if (BTRFS_I(inode)->i_acl &&
3321 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3322 posix_acl_release(BTRFS_I(inode)->i_acl);
3323 if (BTRFS_I(inode)->i_default_acl &&
3324 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3325 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3326
3327 spin_lock(&BTRFS_I(inode)->root->list_lock);
3328 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3329 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3330 " list\n", inode->i_ino);
3331 dump_stack();
3332 }
3333 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3334
3335 while(1) {
3336 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3337 if (!ordered)
3338 break;
3339 else {
3340 printk("found ordered extent %Lu %Lu\n",
3341 ordered->file_offset, ordered->len);
3342 btrfs_remove_ordered_extent(inode, ordered);
3343 btrfs_put_ordered_extent(ordered);
3344 btrfs_put_ordered_extent(ordered);
3345 }
3346 }
3347 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3348 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3349 }
3350
3351 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3352 static void init_once(void *foo)
3353 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3354 static void init_once(struct kmem_cache * cachep, void *foo)
3355 #else
3356 static void init_once(void * foo, struct kmem_cache * cachep,
3357 unsigned long flags)
3358 #endif
3359 {
3360 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3361
3362 inode_init_once(&ei->vfs_inode);
3363 }
3364
3365 void btrfs_destroy_cachep(void)
3366 {
3367 if (btrfs_inode_cachep)
3368 kmem_cache_destroy(btrfs_inode_cachep);
3369 if (btrfs_trans_handle_cachep)
3370 kmem_cache_destroy(btrfs_trans_handle_cachep);
3371 if (btrfs_transaction_cachep)
3372 kmem_cache_destroy(btrfs_transaction_cachep);
3373 if (btrfs_bit_radix_cachep)
3374 kmem_cache_destroy(btrfs_bit_radix_cachep);
3375 if (btrfs_path_cachep)
3376 kmem_cache_destroy(btrfs_path_cachep);
3377 }
3378
3379 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3380 unsigned long extra_flags,
3381 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3382 void (*ctor)(void *)
3383 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3384 void (*ctor)(struct kmem_cache *, void *)
3385 #else
3386 void (*ctor)(void *, struct kmem_cache *,
3387 unsigned long)
3388 #endif
3389 )
3390 {
3391 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3392 SLAB_MEM_SPREAD | extra_flags), ctor
3393 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3394 ,NULL
3395 #endif
3396 );
3397 }
3398
3399 int btrfs_init_cachep(void)
3400 {
3401 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3402 sizeof(struct btrfs_inode),
3403 0, init_once);
3404 if (!btrfs_inode_cachep)
3405 goto fail;
3406 btrfs_trans_handle_cachep =
3407 btrfs_cache_create("btrfs_trans_handle_cache",
3408 sizeof(struct btrfs_trans_handle),
3409 0, NULL);
3410 if (!btrfs_trans_handle_cachep)
3411 goto fail;
3412 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3413 sizeof(struct btrfs_transaction),
3414 0, NULL);
3415 if (!btrfs_transaction_cachep)
3416 goto fail;
3417 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3418 sizeof(struct btrfs_path),
3419 0, NULL);
3420 if (!btrfs_path_cachep)
3421 goto fail;
3422 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3423 SLAB_DESTROY_BY_RCU, NULL);
3424 if (!btrfs_bit_radix_cachep)
3425 goto fail;
3426 return 0;
3427 fail:
3428 btrfs_destroy_cachep();
3429 return -ENOMEM;
3430 }
3431
3432 static int btrfs_getattr(struct vfsmount *mnt,
3433 struct dentry *dentry, struct kstat *stat)
3434 {
3435 struct inode *inode = dentry->d_inode;
3436 generic_fillattr(inode, stat);
3437 stat->blksize = PAGE_CACHE_SIZE;
3438 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3439 return 0;
3440 }
3441
3442 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3443 struct inode * new_dir,struct dentry *new_dentry)
3444 {
3445 struct btrfs_trans_handle *trans;
3446 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3447 struct inode *new_inode = new_dentry->d_inode;
3448 struct inode *old_inode = old_dentry->d_inode;
3449 struct timespec ctime = CURRENT_TIME;
3450 u64 index = 0;
3451 int ret;
3452
3453 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3454 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3455 return -ENOTEMPTY;
3456 }
3457
3458 ret = btrfs_check_free_space(root, 1, 0);
3459 if (ret)
3460 goto out_unlock;
3461
3462 trans = btrfs_start_transaction(root, 1);
3463
3464 btrfs_set_trans_block_group(trans, new_dir);
3465
3466 btrfs_inc_nlink(old_dentry->d_inode);
3467 old_dir->i_ctime = old_dir->i_mtime = ctime;
3468 new_dir->i_ctime = new_dir->i_mtime = ctime;
3469 old_inode->i_ctime = ctime;
3470
3471 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3472 old_dentry->d_name.name,
3473 old_dentry->d_name.len);
3474 if (ret)
3475 goto out_fail;
3476
3477 if (new_inode) {
3478 new_inode->i_ctime = CURRENT_TIME;
3479 ret = btrfs_unlink_inode(trans, root, new_dir,
3480 new_dentry->d_inode,
3481 new_dentry->d_name.name,
3482 new_dentry->d_name.len);
3483 if (ret)
3484 goto out_fail;
3485 if (new_inode->i_nlink == 0) {
3486 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3487 if (ret)
3488 goto out_fail;
3489 }
3490
3491 }
3492 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3493 if (ret)
3494 goto out_fail;
3495
3496 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3497 old_inode, new_dentry->d_name.name,
3498 new_dentry->d_name.len, 1, index);
3499 if (ret)
3500 goto out_fail;
3501
3502 out_fail:
3503 btrfs_end_transaction_throttle(trans, root);
3504 out_unlock:
3505 return ret;
3506 }
3507
3508 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3509 {
3510 struct list_head *head = &root->fs_info->delalloc_inodes;
3511 struct btrfs_inode *binode;
3512 unsigned long flags;
3513
3514 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3515 while(!list_empty(head)) {
3516 binode = list_entry(head->next, struct btrfs_inode,
3517 delalloc_inodes);
3518 atomic_inc(&binode->vfs_inode.i_count);
3519 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3520 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3521 iput(&binode->vfs_inode);
3522 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3523 }
3524 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3525 return 0;
3526 }
3527
3528 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3529 const char *symname)
3530 {
3531 struct btrfs_trans_handle *trans;
3532 struct btrfs_root *root = BTRFS_I(dir)->root;
3533 struct btrfs_path *path;
3534 struct btrfs_key key;
3535 struct inode *inode = NULL;
3536 int err;
3537 int drop_inode = 0;
3538 u64 objectid;
3539 u64 index = 0 ;
3540 int name_len;
3541 int datasize;
3542 unsigned long ptr;
3543 struct btrfs_file_extent_item *ei;
3544 struct extent_buffer *leaf;
3545 unsigned long nr = 0;
3546
3547 name_len = strlen(symname) + 1;
3548 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3549 return -ENAMETOOLONG;
3550
3551 err = btrfs_check_free_space(root, 1, 0);
3552 if (err)
3553 goto out_fail;
3554
3555 trans = btrfs_start_transaction(root, 1);
3556 btrfs_set_trans_block_group(trans, dir);
3557
3558 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3559 if (err) {
3560 err = -ENOSPC;
3561 goto out_unlock;
3562 }
3563
3564 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3565 dentry->d_name.len,
3566 dentry->d_parent->d_inode->i_ino, objectid,
3567 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3568 &index);
3569 err = PTR_ERR(inode);
3570 if (IS_ERR(inode))
3571 goto out_unlock;
3572
3573 err = btrfs_init_acl(inode, dir);
3574 if (err) {
3575 drop_inode = 1;
3576 goto out_unlock;
3577 }
3578
3579 btrfs_set_trans_block_group(trans, inode);
3580 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3581 if (err)
3582 drop_inode = 1;
3583 else {
3584 inode->i_mapping->a_ops = &btrfs_aops;
3585 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3586 inode->i_fop = &btrfs_file_operations;
3587 inode->i_op = &btrfs_file_inode_operations;
3588 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3589 }
3590 dir->i_sb->s_dirt = 1;
3591 btrfs_update_inode_block_group(trans, inode);
3592 btrfs_update_inode_block_group(trans, dir);
3593 if (drop_inode)
3594 goto out_unlock;
3595
3596 path = btrfs_alloc_path();
3597 BUG_ON(!path);
3598 key.objectid = inode->i_ino;
3599 key.offset = 0;
3600 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3601 datasize = btrfs_file_extent_calc_inline_size(name_len);
3602 err = btrfs_insert_empty_item(trans, root, path, &key,
3603 datasize);
3604 if (err) {
3605 drop_inode = 1;
3606 goto out_unlock;
3607 }
3608 leaf = path->nodes[0];
3609 ei = btrfs_item_ptr(leaf, path->slots[0],
3610 struct btrfs_file_extent_item);
3611 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3612 btrfs_set_file_extent_type(leaf, ei,
3613 BTRFS_FILE_EXTENT_INLINE);
3614 ptr = btrfs_file_extent_inline_start(ei);
3615 write_extent_buffer(leaf, symname, ptr, name_len);
3616 btrfs_mark_buffer_dirty(leaf);
3617 btrfs_free_path(path);
3618
3619 inode->i_op = &btrfs_symlink_inode_operations;
3620 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3621 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3622 btrfs_i_size_write(inode, name_len - 1);
3623 err = btrfs_update_inode(trans, root, inode);
3624 if (err)
3625 drop_inode = 1;
3626
3627 out_unlock:
3628 nr = trans->blocks_used;
3629 btrfs_end_transaction_throttle(trans, root);
3630 out_fail:
3631 if (drop_inode) {
3632 inode_dec_link_count(inode);
3633 iput(inode);
3634 }
3635 btrfs_btree_balance_dirty(root, nr);
3636 return err;
3637 }
3638
3639 static int btrfs_set_page_dirty(struct page *page)
3640 {
3641 return __set_page_dirty_nobuffers(page);
3642 }
3643
3644 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3645 static int btrfs_permission(struct inode *inode, int mask)
3646 #else
3647 static int btrfs_permission(struct inode *inode, int mask,
3648 struct nameidata *nd)
3649 #endif
3650 {
3651 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3652 return -EACCES;
3653 return generic_permission(inode, mask, btrfs_check_acl);
3654 }
3655
3656 static struct inode_operations btrfs_dir_inode_operations = {
3657 .lookup = btrfs_lookup,
3658 .create = btrfs_create,
3659 .unlink = btrfs_unlink,
3660 .link = btrfs_link,
3661 .mkdir = btrfs_mkdir,
3662 .rmdir = btrfs_rmdir,
3663 .rename = btrfs_rename,
3664 .symlink = btrfs_symlink,
3665 .setattr = btrfs_setattr,
3666 .mknod = btrfs_mknod,
3667 .setxattr = btrfs_setxattr,
3668 .getxattr = btrfs_getxattr,
3669 .listxattr = btrfs_listxattr,
3670 .removexattr = btrfs_removexattr,
3671 .permission = btrfs_permission,
3672 };
3673 static struct inode_operations btrfs_dir_ro_inode_operations = {
3674 .lookup = btrfs_lookup,
3675 .permission = btrfs_permission,
3676 };
3677 static struct file_operations btrfs_dir_file_operations = {
3678 .llseek = generic_file_llseek,
3679 .read = generic_read_dir,
3680 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
3681 .readdir = btrfs_nfshack_readdir,
3682 #else /* NFSd readdir/lookup deadlock is fixed */
3683 .readdir = btrfs_real_readdir,
3684 #endif
3685 .unlocked_ioctl = btrfs_ioctl,
3686 #ifdef CONFIG_COMPAT
3687 .compat_ioctl = btrfs_ioctl,
3688 #endif
3689 .release = btrfs_release_file,
3690 .fsync = btrfs_sync_file,
3691 };
3692
3693 static struct extent_io_ops btrfs_extent_io_ops = {
3694 .fill_delalloc = run_delalloc_range,
3695 .submit_bio_hook = btrfs_submit_bio_hook,
3696 .merge_bio_hook = btrfs_merge_bio_hook,
3697 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3698 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3699 .writepage_start_hook = btrfs_writepage_start_hook,
3700 .readpage_io_failed_hook = btrfs_io_failed_hook,
3701 .set_bit_hook = btrfs_set_bit_hook,
3702 .clear_bit_hook = btrfs_clear_bit_hook,
3703 };
3704
3705 static struct address_space_operations btrfs_aops = {
3706 .readpage = btrfs_readpage,
3707 .writepage = btrfs_writepage,
3708 .writepages = btrfs_writepages,
3709 .readpages = btrfs_readpages,
3710 .sync_page = block_sync_page,
3711 .bmap = btrfs_bmap,
3712 .direct_IO = btrfs_direct_IO,
3713 .invalidatepage = btrfs_invalidatepage,
3714 .releasepage = btrfs_releasepage,
3715 .set_page_dirty = btrfs_set_page_dirty,
3716 };
3717
3718 static struct address_space_operations btrfs_symlink_aops = {
3719 .readpage = btrfs_readpage,
3720 .writepage = btrfs_writepage,
3721 .invalidatepage = btrfs_invalidatepage,
3722 .releasepage = btrfs_releasepage,
3723 };
3724
3725 static struct inode_operations btrfs_file_inode_operations = {
3726 .truncate = btrfs_truncate,
3727 .getattr = btrfs_getattr,
3728 .setattr = btrfs_setattr,
3729 .setxattr = btrfs_setxattr,
3730 .getxattr = btrfs_getxattr,
3731 .listxattr = btrfs_listxattr,
3732 .removexattr = btrfs_removexattr,
3733 .permission = btrfs_permission,
3734 };
3735 static struct inode_operations btrfs_special_inode_operations = {
3736 .getattr = btrfs_getattr,
3737 .setattr = btrfs_setattr,
3738 .permission = btrfs_permission,
3739 .setxattr = btrfs_setxattr,
3740 .getxattr = btrfs_getxattr,
3741 .listxattr = btrfs_listxattr,
3742 .removexattr = btrfs_removexattr,
3743 };
3744 static struct inode_operations btrfs_symlink_inode_operations = {
3745 .readlink = generic_readlink,
3746 .follow_link = page_follow_link_light,
3747 .put_link = page_put_link,
3748 .permission = btrfs_permission,
3749 };