]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/inode.c
3717b3d4c2ceabb259cb2244a0d3db5b5c8b64d2
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64 struct btrfs_key *location;
65 struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
112 void btrfs_test_inode_set_ops(struct inode *inode)
113 {
114 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
115 }
116 #endif
117
118 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
119 struct inode *inode, struct inode *dir,
120 const struct qstr *qstr)
121 {
122 int err;
123
124 err = btrfs_init_acl(trans, inode, dir);
125 if (!err)
126 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
127 return err;
128 }
129
130 /*
131 * this does all the hard work for inserting an inline extent into
132 * the btree. The caller should have done a btrfs_drop_extents so that
133 * no overlapping inline items exist in the btree
134 */
135 static int insert_inline_extent(struct btrfs_trans_handle *trans,
136 struct btrfs_path *path, int extent_inserted,
137 struct btrfs_root *root, struct inode *inode,
138 u64 start, size_t size, size_t compressed_size,
139 int compress_type,
140 struct page **compressed_pages)
141 {
142 struct extent_buffer *leaf;
143 struct page *page = NULL;
144 char *kaddr;
145 unsigned long ptr;
146 struct btrfs_file_extent_item *ei;
147 int err = 0;
148 int ret;
149 size_t cur_size = size;
150 unsigned long offset;
151
152 if (compressed_size && compressed_pages)
153 cur_size = compressed_size;
154
155 inode_add_bytes(inode, size);
156
157 if (!extent_inserted) {
158 struct btrfs_key key;
159 size_t datasize;
160
161 key.objectid = btrfs_ino(inode);
162 key.offset = start;
163 key.type = BTRFS_EXTENT_DATA_KEY;
164
165 datasize = btrfs_file_extent_calc_inline_size(cur_size);
166 path->leave_spinning = 1;
167 ret = btrfs_insert_empty_item(trans, root, path, &key,
168 datasize);
169 if (ret) {
170 err = ret;
171 goto fail;
172 }
173 }
174 leaf = path->nodes[0];
175 ei = btrfs_item_ptr(leaf, path->slots[0],
176 struct btrfs_file_extent_item);
177 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
178 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
179 btrfs_set_file_extent_encryption(leaf, ei, 0);
180 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
181 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
182 ptr = btrfs_file_extent_inline_start(ei);
183
184 if (compress_type != BTRFS_COMPRESS_NONE) {
185 struct page *cpage;
186 int i = 0;
187 while (compressed_size > 0) {
188 cpage = compressed_pages[i];
189 cur_size = min_t(unsigned long, compressed_size,
190 PAGE_CACHE_SIZE);
191
192 kaddr = kmap_atomic(cpage);
193 write_extent_buffer(leaf, kaddr, ptr, cur_size);
194 kunmap_atomic(kaddr);
195
196 i++;
197 ptr += cur_size;
198 compressed_size -= cur_size;
199 }
200 btrfs_set_file_extent_compression(leaf, ei,
201 compress_type);
202 } else {
203 page = find_get_page(inode->i_mapping,
204 start >> PAGE_CACHE_SHIFT);
205 btrfs_set_file_extent_compression(leaf, ei, 0);
206 kaddr = kmap_atomic(page);
207 offset = start & (PAGE_CACHE_SIZE - 1);
208 write_extent_buffer(leaf, kaddr + offset, ptr, size);
209 kunmap_atomic(kaddr);
210 page_cache_release(page);
211 }
212 btrfs_mark_buffer_dirty(leaf);
213 btrfs_release_path(path);
214
215 /*
216 * we're an inline extent, so nobody can
217 * extend the file past i_size without locking
218 * a page we already have locked.
219 *
220 * We must do any isize and inode updates
221 * before we unlock the pages. Otherwise we
222 * could end up racing with unlink.
223 */
224 BTRFS_I(inode)->disk_i_size = inode->i_size;
225 ret = btrfs_update_inode(trans, root, inode);
226
227 return ret;
228 fail:
229 return err;
230 }
231
232
233 /*
234 * conditionally insert an inline extent into the file. This
235 * does the checks required to make sure the data is small enough
236 * to fit as an inline extent.
237 */
238 static noinline int cow_file_range_inline(struct btrfs_root *root,
239 struct inode *inode, u64 start,
240 u64 end, size_t compressed_size,
241 int compress_type,
242 struct page **compressed_pages)
243 {
244 struct btrfs_trans_handle *trans;
245 u64 isize = i_size_read(inode);
246 u64 actual_end = min(end + 1, isize);
247 u64 inline_len = actual_end - start;
248 u64 aligned_end = ALIGN(end, root->sectorsize);
249 u64 data_len = inline_len;
250 int ret;
251 struct btrfs_path *path;
252 int extent_inserted = 0;
253 u32 extent_item_size;
254
255 if (compressed_size)
256 data_len = compressed_size;
257
258 if (start > 0 ||
259 actual_end > PAGE_CACHE_SIZE ||
260 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
261 (!compressed_size &&
262 (actual_end & (root->sectorsize - 1)) == 0) ||
263 end + 1 < isize ||
264 data_len > root->fs_info->max_inline) {
265 return 1;
266 }
267
268 path = btrfs_alloc_path();
269 if (!path)
270 return -ENOMEM;
271
272 trans = btrfs_join_transaction(root);
273 if (IS_ERR(trans)) {
274 btrfs_free_path(path);
275 return PTR_ERR(trans);
276 }
277 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
278
279 if (compressed_size && compressed_pages)
280 extent_item_size = btrfs_file_extent_calc_inline_size(
281 compressed_size);
282 else
283 extent_item_size = btrfs_file_extent_calc_inline_size(
284 inline_len);
285
286 ret = __btrfs_drop_extents(trans, root, inode, path,
287 start, aligned_end, NULL,
288 1, 1, extent_item_size, &extent_inserted);
289 if (ret) {
290 btrfs_abort_transaction(trans, root, ret);
291 goto out;
292 }
293
294 if (isize > actual_end)
295 inline_len = min_t(u64, isize, actual_end);
296 ret = insert_inline_extent(trans, path, extent_inserted,
297 root, inode, start,
298 inline_len, compressed_size,
299 compress_type, compressed_pages);
300 if (ret && ret != -ENOSPC) {
301 btrfs_abort_transaction(trans, root, ret);
302 goto out;
303 } else if (ret == -ENOSPC) {
304 ret = 1;
305 goto out;
306 }
307
308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
309 btrfs_delalloc_release_metadata(inode, end + 1 - start);
310 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
311 out:
312 btrfs_free_path(path);
313 btrfs_end_transaction(trans, root);
314 return ret;
315 }
316
317 struct async_extent {
318 u64 start;
319 u64 ram_size;
320 u64 compressed_size;
321 struct page **pages;
322 unsigned long nr_pages;
323 int compress_type;
324 struct list_head list;
325 };
326
327 struct async_cow {
328 struct inode *inode;
329 struct btrfs_root *root;
330 struct page *locked_page;
331 u64 start;
332 u64 end;
333 struct list_head extents;
334 struct btrfs_work work;
335 };
336
337 static noinline int add_async_extent(struct async_cow *cow,
338 u64 start, u64 ram_size,
339 u64 compressed_size,
340 struct page **pages,
341 unsigned long nr_pages,
342 int compress_type)
343 {
344 struct async_extent *async_extent;
345
346 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
347 BUG_ON(!async_extent); /* -ENOMEM */
348 async_extent->start = start;
349 async_extent->ram_size = ram_size;
350 async_extent->compressed_size = compressed_size;
351 async_extent->pages = pages;
352 async_extent->nr_pages = nr_pages;
353 async_extent->compress_type = compress_type;
354 list_add_tail(&async_extent->list, &cow->extents);
355 return 0;
356 }
357
358 static inline int inode_need_compress(struct inode *inode)
359 {
360 struct btrfs_root *root = BTRFS_I(inode)->root;
361
362 /* force compress */
363 if (btrfs_test_opt(root, FORCE_COMPRESS))
364 return 1;
365 /* bad compression ratios */
366 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
367 return 0;
368 if (btrfs_test_opt(root, COMPRESS) ||
369 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
370 BTRFS_I(inode)->force_compress)
371 return 1;
372 return 0;
373 }
374
375 /*
376 * we create compressed extents in two phases. The first
377 * phase compresses a range of pages that have already been
378 * locked (both pages and state bits are locked).
379 *
380 * This is done inside an ordered work queue, and the compression
381 * is spread across many cpus. The actual IO submission is step
382 * two, and the ordered work queue takes care of making sure that
383 * happens in the same order things were put onto the queue by
384 * writepages and friends.
385 *
386 * If this code finds it can't get good compression, it puts an
387 * entry onto the work queue to write the uncompressed bytes. This
388 * makes sure that both compressed inodes and uncompressed inodes
389 * are written in the same order that the flusher thread sent them
390 * down.
391 */
392 static noinline void compress_file_range(struct inode *inode,
393 struct page *locked_page,
394 u64 start, u64 end,
395 struct async_cow *async_cow,
396 int *num_added)
397 {
398 struct btrfs_root *root = BTRFS_I(inode)->root;
399 u64 num_bytes;
400 u64 blocksize = root->sectorsize;
401 u64 actual_end;
402 u64 isize = i_size_read(inode);
403 int ret = 0;
404 struct page **pages = NULL;
405 unsigned long nr_pages;
406 unsigned long nr_pages_ret = 0;
407 unsigned long total_compressed = 0;
408 unsigned long total_in = 0;
409 unsigned long max_compressed = 128 * 1024;
410 unsigned long max_uncompressed = 128 * 1024;
411 int i;
412 int will_compress;
413 int compress_type = root->fs_info->compress_type;
414 int redirty = 0;
415
416 /* if this is a small write inside eof, kick off a defrag */
417 if ((end - start + 1) < 16 * 1024 &&
418 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
419 btrfs_add_inode_defrag(NULL, inode);
420
421 actual_end = min_t(u64, isize, end + 1);
422 again:
423 will_compress = 0;
424 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
425 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
426
427 /*
428 * we don't want to send crud past the end of i_size through
429 * compression, that's just a waste of CPU time. So, if the
430 * end of the file is before the start of our current
431 * requested range of bytes, we bail out to the uncompressed
432 * cleanup code that can deal with all of this.
433 *
434 * It isn't really the fastest way to fix things, but this is a
435 * very uncommon corner.
436 */
437 if (actual_end <= start)
438 goto cleanup_and_bail_uncompressed;
439
440 total_compressed = actual_end - start;
441
442 /*
443 * skip compression for a small file range(<=blocksize) that
444 * isn't an inline extent, since it dosen't save disk space at all.
445 */
446 if (total_compressed <= blocksize &&
447 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
448 goto cleanup_and_bail_uncompressed;
449
450 /* we want to make sure that amount of ram required to uncompress
451 * an extent is reasonable, so we limit the total size in ram
452 * of a compressed extent to 128k. This is a crucial number
453 * because it also controls how easily we can spread reads across
454 * cpus for decompression.
455 *
456 * We also want to make sure the amount of IO required to do
457 * a random read is reasonably small, so we limit the size of
458 * a compressed extent to 128k.
459 */
460 total_compressed = min(total_compressed, max_uncompressed);
461 num_bytes = ALIGN(end - start + 1, blocksize);
462 num_bytes = max(blocksize, num_bytes);
463 total_in = 0;
464 ret = 0;
465
466 /*
467 * we do compression for mount -o compress and when the
468 * inode has not been flagged as nocompress. This flag can
469 * change at any time if we discover bad compression ratios.
470 */
471 if (inode_need_compress(inode)) {
472 WARN_ON(pages);
473 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
474 if (!pages) {
475 /* just bail out to the uncompressed code */
476 goto cont;
477 }
478
479 if (BTRFS_I(inode)->force_compress)
480 compress_type = BTRFS_I(inode)->force_compress;
481
482 /*
483 * we need to call clear_page_dirty_for_io on each
484 * page in the range. Otherwise applications with the file
485 * mmap'd can wander in and change the page contents while
486 * we are compressing them.
487 *
488 * If the compression fails for any reason, we set the pages
489 * dirty again later on.
490 */
491 extent_range_clear_dirty_for_io(inode, start, end);
492 redirty = 1;
493 ret = btrfs_compress_pages(compress_type,
494 inode->i_mapping, start,
495 total_compressed, pages,
496 nr_pages, &nr_pages_ret,
497 &total_in,
498 &total_compressed,
499 max_compressed);
500
501 if (!ret) {
502 unsigned long offset = total_compressed &
503 (PAGE_CACHE_SIZE - 1);
504 struct page *page = pages[nr_pages_ret - 1];
505 char *kaddr;
506
507 /* zero the tail end of the last page, we might be
508 * sending it down to disk
509 */
510 if (offset) {
511 kaddr = kmap_atomic(page);
512 memset(kaddr + offset, 0,
513 PAGE_CACHE_SIZE - offset);
514 kunmap_atomic(kaddr);
515 }
516 will_compress = 1;
517 }
518 }
519 cont:
520 if (start == 0) {
521 /* lets try to make an inline extent */
522 if (ret || total_in < (actual_end - start)) {
523 /* we didn't compress the entire range, try
524 * to make an uncompressed inline extent.
525 */
526 ret = cow_file_range_inline(root, inode, start, end,
527 0, 0, NULL);
528 } else {
529 /* try making a compressed inline extent */
530 ret = cow_file_range_inline(root, inode, start, end,
531 total_compressed,
532 compress_type, pages);
533 }
534 if (ret <= 0) {
535 unsigned long clear_flags = EXTENT_DELALLOC |
536 EXTENT_DEFRAG;
537 unsigned long page_error_op;
538
539 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
540 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
541
542 /*
543 * inline extent creation worked or returned error,
544 * we don't need to create any more async work items.
545 * Unlock and free up our temp pages.
546 */
547 extent_clear_unlock_delalloc(inode, start, end, NULL,
548 clear_flags, PAGE_UNLOCK |
549 PAGE_CLEAR_DIRTY |
550 PAGE_SET_WRITEBACK |
551 page_error_op |
552 PAGE_END_WRITEBACK);
553 goto free_pages_out;
554 }
555 }
556
557 if (will_compress) {
558 /*
559 * we aren't doing an inline extent round the compressed size
560 * up to a block size boundary so the allocator does sane
561 * things
562 */
563 total_compressed = ALIGN(total_compressed, blocksize);
564
565 /*
566 * one last check to make sure the compression is really a
567 * win, compare the page count read with the blocks on disk
568 */
569 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
570 if (total_compressed >= total_in) {
571 will_compress = 0;
572 } else {
573 num_bytes = total_in;
574 }
575 }
576 if (!will_compress && pages) {
577 /*
578 * the compression code ran but failed to make things smaller,
579 * free any pages it allocated and our page pointer array
580 */
581 for (i = 0; i < nr_pages_ret; i++) {
582 WARN_ON(pages[i]->mapping);
583 page_cache_release(pages[i]);
584 }
585 kfree(pages);
586 pages = NULL;
587 total_compressed = 0;
588 nr_pages_ret = 0;
589
590 /* flag the file so we don't compress in the future */
591 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
592 !(BTRFS_I(inode)->force_compress)) {
593 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
594 }
595 }
596 if (will_compress) {
597 *num_added += 1;
598
599 /* the async work queues will take care of doing actual
600 * allocation on disk for these compressed pages,
601 * and will submit them to the elevator.
602 */
603 add_async_extent(async_cow, start, num_bytes,
604 total_compressed, pages, nr_pages_ret,
605 compress_type);
606
607 if (start + num_bytes < end) {
608 start += num_bytes;
609 pages = NULL;
610 cond_resched();
611 goto again;
612 }
613 } else {
614 cleanup_and_bail_uncompressed:
615 /*
616 * No compression, but we still need to write the pages in
617 * the file we've been given so far. redirty the locked
618 * page if it corresponds to our extent and set things up
619 * for the async work queue to run cow_file_range to do
620 * the normal delalloc dance
621 */
622 if (page_offset(locked_page) >= start &&
623 page_offset(locked_page) <= end) {
624 __set_page_dirty_nobuffers(locked_page);
625 /* unlocked later on in the async handlers */
626 }
627 if (redirty)
628 extent_range_redirty_for_io(inode, start, end);
629 add_async_extent(async_cow, start, end - start + 1,
630 0, NULL, 0, BTRFS_COMPRESS_NONE);
631 *num_added += 1;
632 }
633
634 return;
635
636 free_pages_out:
637 for (i = 0; i < nr_pages_ret; i++) {
638 WARN_ON(pages[i]->mapping);
639 page_cache_release(pages[i]);
640 }
641 kfree(pages);
642 }
643
644 static void free_async_extent_pages(struct async_extent *async_extent)
645 {
646 int i;
647
648 if (!async_extent->pages)
649 return;
650
651 for (i = 0; i < async_extent->nr_pages; i++) {
652 WARN_ON(async_extent->pages[i]->mapping);
653 page_cache_release(async_extent->pages[i]);
654 }
655 kfree(async_extent->pages);
656 async_extent->nr_pages = 0;
657 async_extent->pages = NULL;
658 }
659
660 /*
661 * phase two of compressed writeback. This is the ordered portion
662 * of the code, which only gets called in the order the work was
663 * queued. We walk all the async extents created by compress_file_range
664 * and send them down to the disk.
665 */
666 static noinline void submit_compressed_extents(struct inode *inode,
667 struct async_cow *async_cow)
668 {
669 struct async_extent *async_extent;
670 u64 alloc_hint = 0;
671 struct btrfs_key ins;
672 struct extent_map *em;
673 struct btrfs_root *root = BTRFS_I(inode)->root;
674 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
675 struct extent_io_tree *io_tree;
676 int ret = 0;
677
678 again:
679 while (!list_empty(&async_cow->extents)) {
680 async_extent = list_entry(async_cow->extents.next,
681 struct async_extent, list);
682 list_del(&async_extent->list);
683
684 io_tree = &BTRFS_I(inode)->io_tree;
685
686 retry:
687 /* did the compression code fall back to uncompressed IO? */
688 if (!async_extent->pages) {
689 int page_started = 0;
690 unsigned long nr_written = 0;
691
692 lock_extent(io_tree, async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1);
695
696 /* allocate blocks */
697 ret = cow_file_range(inode, async_cow->locked_page,
698 async_extent->start,
699 async_extent->start +
700 async_extent->ram_size - 1,
701 &page_started, &nr_written, 0);
702
703 /* JDM XXX */
704
705 /*
706 * if page_started, cow_file_range inserted an
707 * inline extent and took care of all the unlocking
708 * and IO for us. Otherwise, we need to submit
709 * all those pages down to the drive.
710 */
711 if (!page_started && !ret)
712 extent_write_locked_range(io_tree,
713 inode, async_extent->start,
714 async_extent->start +
715 async_extent->ram_size - 1,
716 btrfs_get_extent,
717 WB_SYNC_ALL);
718 else if (ret)
719 unlock_page(async_cow->locked_page);
720 kfree(async_extent);
721 cond_resched();
722 continue;
723 }
724
725 lock_extent(io_tree, async_extent->start,
726 async_extent->start + async_extent->ram_size - 1);
727
728 ret = btrfs_reserve_extent(root,
729 async_extent->compressed_size,
730 async_extent->compressed_size,
731 0, alloc_hint, &ins, 1, 1);
732 if (ret) {
733 free_async_extent_pages(async_extent);
734
735 if (ret == -ENOSPC) {
736 unlock_extent(io_tree, async_extent->start,
737 async_extent->start +
738 async_extent->ram_size - 1);
739
740 /*
741 * we need to redirty the pages if we decide to
742 * fallback to uncompressed IO, otherwise we
743 * will not submit these pages down to lower
744 * layers.
745 */
746 extent_range_redirty_for_io(inode,
747 async_extent->start,
748 async_extent->start +
749 async_extent->ram_size - 1);
750
751 goto retry;
752 }
753 goto out_free;
754 }
755
756 /*
757 * here we're doing allocation and writeback of the
758 * compressed pages
759 */
760 btrfs_drop_extent_cache(inode, async_extent->start,
761 async_extent->start +
762 async_extent->ram_size - 1, 0);
763
764 em = alloc_extent_map();
765 if (!em) {
766 ret = -ENOMEM;
767 goto out_free_reserve;
768 }
769 em->start = async_extent->start;
770 em->len = async_extent->ram_size;
771 em->orig_start = em->start;
772 em->mod_start = em->start;
773 em->mod_len = em->len;
774
775 em->block_start = ins.objectid;
776 em->block_len = ins.offset;
777 em->orig_block_len = ins.offset;
778 em->ram_bytes = async_extent->ram_size;
779 em->bdev = root->fs_info->fs_devices->latest_bdev;
780 em->compress_type = async_extent->compress_type;
781 set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783 em->generation = -1;
784
785 while (1) {
786 write_lock(&em_tree->lock);
787 ret = add_extent_mapping(em_tree, em, 1);
788 write_unlock(&em_tree->lock);
789 if (ret != -EEXIST) {
790 free_extent_map(em);
791 break;
792 }
793 btrfs_drop_extent_cache(inode, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1, 0);
796 }
797
798 if (ret)
799 goto out_free_reserve;
800
801 ret = btrfs_add_ordered_extent_compress(inode,
802 async_extent->start,
803 ins.objectid,
804 async_extent->ram_size,
805 ins.offset,
806 BTRFS_ORDERED_COMPRESSED,
807 async_extent->compress_type);
808 if (ret) {
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
812 goto out_free_reserve;
813 }
814
815 /*
816 * clear dirty, set writeback and unlock the pages.
817 */
818 extent_clear_unlock_delalloc(inode, async_extent->start,
819 async_extent->start +
820 async_extent->ram_size - 1,
821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823 PAGE_SET_WRITEBACK);
824 ret = btrfs_submit_compressed_write(inode,
825 async_extent->start,
826 async_extent->ram_size,
827 ins.objectid,
828 ins.offset, async_extent->pages,
829 async_extent->nr_pages);
830 if (ret) {
831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 struct page *p = async_extent->pages[0];
833 const u64 start = async_extent->start;
834 const u64 end = start + async_extent->ram_size - 1;
835
836 p->mapping = inode->i_mapping;
837 tree->ops->writepage_end_io_hook(p, start, end,
838 NULL, 0);
839 p->mapping = NULL;
840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 PAGE_END_WRITEBACK |
842 PAGE_SET_ERROR);
843 free_async_extent_pages(async_extent);
844 }
845 alloc_hint = ins.objectid + ins.offset;
846 kfree(async_extent);
847 cond_resched();
848 }
849 return;
850 out_free_reserve:
851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852 out_free:
853 extent_clear_unlock_delalloc(inode, async_extent->start,
854 async_extent->start +
855 async_extent->ram_size - 1,
856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 PAGE_SET_ERROR);
861 free_async_extent_pages(async_extent);
862 kfree(async_extent);
863 goto again;
864 }
865
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 u64 num_bytes)
868 {
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 struct extent_map *em;
871 u64 alloc_hint = 0;
872
873 read_lock(&em_tree->lock);
874 em = search_extent_mapping(em_tree, start, num_bytes);
875 if (em) {
876 /*
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
880 */
881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 free_extent_map(em);
883 em = search_extent_mapping(em_tree, 0, 0);
884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 alloc_hint = em->block_start;
886 if (em)
887 free_extent_map(em);
888 } else {
889 alloc_hint = em->block_start;
890 free_extent_map(em);
891 }
892 }
893 read_unlock(&em_tree->lock);
894
895 return alloc_hint;
896 }
897
898 /*
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
903 *
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
906 *
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
909 * IO when we return.
910 */
911 static noinline int cow_file_range(struct inode *inode,
912 struct page *locked_page,
913 u64 start, u64 end, int *page_started,
914 unsigned long *nr_written,
915 int unlock)
916 {
917 struct btrfs_root *root = BTRFS_I(inode)->root;
918 u64 alloc_hint = 0;
919 u64 num_bytes;
920 unsigned long ram_size;
921 u64 disk_num_bytes;
922 u64 cur_alloc_size;
923 u64 blocksize = root->sectorsize;
924 struct btrfs_key ins;
925 struct extent_map *em;
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 int ret = 0;
928
929 if (btrfs_is_free_space_inode(inode)) {
930 WARN_ON_ONCE(1);
931 ret = -EINVAL;
932 goto out_unlock;
933 }
934
935 num_bytes = ALIGN(end - start + 1, blocksize);
936 num_bytes = max(blocksize, num_bytes);
937 disk_num_bytes = num_bytes;
938
939 /* if this is a small write inside eof, kick off defrag */
940 if (num_bytes < 64 * 1024 &&
941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 btrfs_add_inode_defrag(NULL, inode);
943
944 if (start == 0) {
945 /* lets try to make an inline extent */
946 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 NULL);
948 if (ret == 0) {
949 extent_clear_unlock_delalloc(inode, start, end, NULL,
950 EXTENT_LOCKED | EXTENT_DELALLOC |
951 EXTENT_DEFRAG, PAGE_UNLOCK |
952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 PAGE_END_WRITEBACK);
954
955 *nr_written = *nr_written +
956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 *page_started = 1;
958 goto out;
959 } else if (ret < 0) {
960 goto out_unlock;
961 }
962 }
963
964 BUG_ON(disk_num_bytes >
965 btrfs_super_total_bytes(root->fs_info->super_copy));
966
967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969
970 while (disk_num_bytes > 0) {
971 unsigned long op;
972
973 cur_alloc_size = disk_num_bytes;
974 ret = btrfs_reserve_extent(root, cur_alloc_size,
975 root->sectorsize, 0, alloc_hint,
976 &ins, 1, 1);
977 if (ret < 0)
978 goto out_unlock;
979
980 em = alloc_extent_map();
981 if (!em) {
982 ret = -ENOMEM;
983 goto out_reserve;
984 }
985 em->start = start;
986 em->orig_start = em->start;
987 ram_size = ins.offset;
988 em->len = ins.offset;
989 em->mod_start = em->start;
990 em->mod_len = em->len;
991
992 em->block_start = ins.objectid;
993 em->block_len = ins.offset;
994 em->orig_block_len = ins.offset;
995 em->ram_bytes = ram_size;
996 em->bdev = root->fs_info->fs_devices->latest_bdev;
997 set_bit(EXTENT_FLAG_PINNED, &em->flags);
998 em->generation = -1;
999
1000 while (1) {
1001 write_lock(&em_tree->lock);
1002 ret = add_extent_mapping(em_tree, em, 1);
1003 write_unlock(&em_tree->lock);
1004 if (ret != -EEXIST) {
1005 free_extent_map(em);
1006 break;
1007 }
1008 btrfs_drop_extent_cache(inode, start,
1009 start + ram_size - 1, 0);
1010 }
1011 if (ret)
1012 goto out_reserve;
1013
1014 cur_alloc_size = ins.offset;
1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 ram_size, cur_alloc_size, 0);
1017 if (ret)
1018 goto out_drop_extent_cache;
1019
1020 if (root->root_key.objectid ==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 ret = btrfs_reloc_clone_csums(inode, start,
1023 cur_alloc_size);
1024 if (ret)
1025 goto out_drop_extent_cache;
1026 }
1027
1028 if (disk_num_bytes < cur_alloc_size)
1029 break;
1030
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
1034 *
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
1037 */
1038 op = unlock ? PAGE_UNLOCK : 0;
1039 op |= PAGE_SET_PRIVATE2;
1040
1041 extent_clear_unlock_delalloc(inode, start,
1042 start + ram_size - 1, locked_page,
1043 EXTENT_LOCKED | EXTENT_DELALLOC,
1044 op);
1045 disk_num_bytes -= cur_alloc_size;
1046 num_bytes -= cur_alloc_size;
1047 alloc_hint = ins.objectid + ins.offset;
1048 start += cur_alloc_size;
1049 }
1050 out:
1051 return ret;
1052
1053 out_drop_extent_cache:
1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055 out_reserve:
1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057 out_unlock:
1058 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063 goto out;
1064 }
1065
1066 /*
1067 * work queue call back to started compression on a file and pages
1068 */
1069 static noinline void async_cow_start(struct btrfs_work *work)
1070 {
1071 struct async_cow *async_cow;
1072 int num_added = 0;
1073 async_cow = container_of(work, struct async_cow, work);
1074
1075 compress_file_range(async_cow->inode, async_cow->locked_page,
1076 async_cow->start, async_cow->end, async_cow,
1077 &num_added);
1078 if (num_added == 0) {
1079 btrfs_add_delayed_iput(async_cow->inode);
1080 async_cow->inode = NULL;
1081 }
1082 }
1083
1084 /*
1085 * work queue call back to submit previously compressed pages
1086 */
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1088 {
1089 struct async_cow *async_cow;
1090 struct btrfs_root *root;
1091 unsigned long nr_pages;
1092
1093 async_cow = container_of(work, struct async_cow, work);
1094
1095 root = async_cow->root;
1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 PAGE_CACHE_SHIFT;
1098
1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100 5 * 1024 * 1024 &&
1101 waitqueue_active(&root->fs_info->async_submit_wait))
1102 wake_up(&root->fs_info->async_submit_wait);
1103
1104 if (async_cow->inode)
1105 submit_compressed_extents(async_cow->inode, async_cow);
1106 }
1107
1108 static noinline void async_cow_free(struct btrfs_work *work)
1109 {
1110 struct async_cow *async_cow;
1111 async_cow = container_of(work, struct async_cow, work);
1112 if (async_cow->inode)
1113 btrfs_add_delayed_iput(async_cow->inode);
1114 kfree(async_cow);
1115 }
1116
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 u64 start, u64 end, int *page_started,
1119 unsigned long *nr_written)
1120 {
1121 struct async_cow *async_cow;
1122 struct btrfs_root *root = BTRFS_I(inode)->root;
1123 unsigned long nr_pages;
1124 u64 cur_end;
1125 int limit = 10 * 1024 * 1024;
1126
1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 1, 0, NULL, GFP_NOFS);
1129 while (start < end) {
1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 BUG_ON(!async_cow); /* -ENOMEM */
1132 async_cow->inode = igrab(inode);
1133 async_cow->root = root;
1134 async_cow->locked_page = locked_page;
1135 async_cow->start = start;
1136
1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 !btrfs_test_opt(root, FORCE_COMPRESS))
1139 cur_end = end;
1140 else
1141 cur_end = min(end, start + 512 * 1024 - 1);
1142
1143 async_cow->end = cur_end;
1144 INIT_LIST_HEAD(&async_cow->extents);
1145
1146 btrfs_init_work(&async_cow->work,
1147 btrfs_delalloc_helper,
1148 async_cow_start, async_cow_submit,
1149 async_cow_free);
1150
1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 PAGE_CACHE_SHIFT;
1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154
1155 btrfs_queue_work(root->fs_info->delalloc_workers,
1156 &async_cow->work);
1157
1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 limit));
1162 }
1163
1164 while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 wait_event(root->fs_info->async_submit_wait,
1167 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 0));
1169 }
1170
1171 *nr_written += nr_pages;
1172 start = cur_end + 1;
1173 }
1174 *page_started = 1;
1175 return 0;
1176 }
1177
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 u64 bytenr, u64 num_bytes)
1180 {
1181 int ret;
1182 struct btrfs_ordered_sum *sums;
1183 LIST_HEAD(list);
1184
1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 bytenr + num_bytes - 1, &list, 0);
1187 if (ret == 0 && list_empty(&list))
1188 return 0;
1189
1190 while (!list_empty(&list)) {
1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 list_del(&sums->list);
1193 kfree(sums);
1194 }
1195 return 1;
1196 }
1197
1198 /*
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1201 *
1202 * If no cow copies or snapshots exist, we write directly to the existing
1203 * blocks on disk
1204 */
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 struct page *locked_page,
1207 u64 start, u64 end, int *page_started, int force,
1208 unsigned long *nr_written)
1209 {
1210 struct btrfs_root *root = BTRFS_I(inode)->root;
1211 struct btrfs_trans_handle *trans;
1212 struct extent_buffer *leaf;
1213 struct btrfs_path *path;
1214 struct btrfs_file_extent_item *fi;
1215 struct btrfs_key found_key;
1216 u64 cow_start;
1217 u64 cur_offset;
1218 u64 extent_end;
1219 u64 extent_offset;
1220 u64 disk_bytenr;
1221 u64 num_bytes;
1222 u64 disk_num_bytes;
1223 u64 ram_bytes;
1224 int extent_type;
1225 int ret, err;
1226 int type;
1227 int nocow;
1228 int check_prev = 1;
1229 bool nolock;
1230 u64 ino = btrfs_ino(inode);
1231
1232 path = btrfs_alloc_path();
1233 if (!path) {
1234 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 EXTENT_LOCKED | EXTENT_DELALLOC |
1236 EXTENT_DO_ACCOUNTING |
1237 EXTENT_DEFRAG, PAGE_UNLOCK |
1238 PAGE_CLEAR_DIRTY |
1239 PAGE_SET_WRITEBACK |
1240 PAGE_END_WRITEBACK);
1241 return -ENOMEM;
1242 }
1243
1244 nolock = btrfs_is_free_space_inode(inode);
1245
1246 if (nolock)
1247 trans = btrfs_join_transaction_nolock(root);
1248 else
1249 trans = btrfs_join_transaction(root);
1250
1251 if (IS_ERR(trans)) {
1252 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 EXTENT_LOCKED | EXTENT_DELALLOC |
1254 EXTENT_DO_ACCOUNTING |
1255 EXTENT_DEFRAG, PAGE_UNLOCK |
1256 PAGE_CLEAR_DIRTY |
1257 PAGE_SET_WRITEBACK |
1258 PAGE_END_WRITEBACK);
1259 btrfs_free_path(path);
1260 return PTR_ERR(trans);
1261 }
1262
1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264
1265 cow_start = (u64)-1;
1266 cur_offset = start;
1267 while (1) {
1268 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269 cur_offset, 0);
1270 if (ret < 0)
1271 goto error;
1272 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &found_key,
1275 path->slots[0] - 1);
1276 if (found_key.objectid == ino &&
1277 found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 path->slots[0]--;
1279 }
1280 check_prev = 0;
1281 next_slot:
1282 leaf = path->nodes[0];
1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 ret = btrfs_next_leaf(root, path);
1285 if (ret < 0)
1286 goto error;
1287 if (ret > 0)
1288 break;
1289 leaf = path->nodes[0];
1290 }
1291
1292 nocow = 0;
1293 disk_bytenr = 0;
1294 num_bytes = 0;
1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296
1297 if (found_key.objectid > ino ||
1298 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 found_key.offset > end)
1300 break;
1301
1302 if (found_key.offset > cur_offset) {
1303 extent_end = found_key.offset;
1304 extent_type = 0;
1305 goto out_check;
1306 }
1307
1308 fi = btrfs_item_ptr(leaf, path->slots[0],
1309 struct btrfs_file_extent_item);
1310 extent_type = btrfs_file_extent_type(leaf, fi);
1311
1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316 extent_offset = btrfs_file_extent_offset(leaf, fi);
1317 extent_end = found_key.offset +
1318 btrfs_file_extent_num_bytes(leaf, fi);
1319 disk_num_bytes =
1320 btrfs_file_extent_disk_num_bytes(leaf, fi);
1321 if (extent_end <= start) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (disk_bytenr == 0)
1326 goto out_check;
1327 if (btrfs_file_extent_compression(leaf, fi) ||
1328 btrfs_file_extent_encryption(leaf, fi) ||
1329 btrfs_file_extent_other_encoding(leaf, fi))
1330 goto out_check;
1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332 goto out_check;
1333 if (btrfs_extent_readonly(root, disk_bytenr))
1334 goto out_check;
1335 if (btrfs_cross_ref_exist(trans, root, ino,
1336 found_key.offset -
1337 extent_offset, disk_bytenr))
1338 goto out_check;
1339 disk_bytenr += extent_offset;
1340 disk_bytenr += cur_offset - found_key.offset;
1341 num_bytes = min(end + 1, extent_end) - cur_offset;
1342 /*
1343 * if there are pending snapshots for this root,
1344 * we fall into common COW way.
1345 */
1346 if (!nolock) {
1347 err = btrfs_start_write_no_snapshoting(root);
1348 if (!err)
1349 goto out_check;
1350 }
1351 /*
1352 * force cow if csum exists in the range.
1353 * this ensure that csum for a given extent are
1354 * either valid or do not exist.
1355 */
1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357 goto out_check;
1358 nocow = 1;
1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 extent_end = found_key.offset +
1361 btrfs_file_extent_inline_len(leaf,
1362 path->slots[0], fi);
1363 extent_end = ALIGN(extent_end, root->sectorsize);
1364 } else {
1365 BUG_ON(1);
1366 }
1367 out_check:
1368 if (extent_end <= start) {
1369 path->slots[0]++;
1370 if (!nolock && nocow)
1371 btrfs_end_write_no_snapshoting(root);
1372 goto next_slot;
1373 }
1374 if (!nocow) {
1375 if (cow_start == (u64)-1)
1376 cow_start = cur_offset;
1377 cur_offset = extent_end;
1378 if (cur_offset > end)
1379 break;
1380 path->slots[0]++;
1381 goto next_slot;
1382 }
1383
1384 btrfs_release_path(path);
1385 if (cow_start != (u64)-1) {
1386 ret = cow_file_range(inode, locked_page,
1387 cow_start, found_key.offset - 1,
1388 page_started, nr_written, 1);
1389 if (ret) {
1390 if (!nolock && nocow)
1391 btrfs_end_write_no_snapshoting(root);
1392 goto error;
1393 }
1394 cow_start = (u64)-1;
1395 }
1396
1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 struct extent_map *em;
1399 struct extent_map_tree *em_tree;
1400 em_tree = &BTRFS_I(inode)->extent_tree;
1401 em = alloc_extent_map();
1402 BUG_ON(!em); /* -ENOMEM */
1403 em->start = cur_offset;
1404 em->orig_start = found_key.offset - extent_offset;
1405 em->len = num_bytes;
1406 em->block_len = num_bytes;
1407 em->block_start = disk_bytenr;
1408 em->orig_block_len = disk_num_bytes;
1409 em->ram_bytes = ram_bytes;
1410 em->bdev = root->fs_info->fs_devices->latest_bdev;
1411 em->mod_start = em->start;
1412 em->mod_len = em->len;
1413 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415 em->generation = -1;
1416 while (1) {
1417 write_lock(&em_tree->lock);
1418 ret = add_extent_mapping(em_tree, em, 1);
1419 write_unlock(&em_tree->lock);
1420 if (ret != -EEXIST) {
1421 free_extent_map(em);
1422 break;
1423 }
1424 btrfs_drop_extent_cache(inode, em->start,
1425 em->start + em->len - 1, 0);
1426 }
1427 type = BTRFS_ORDERED_PREALLOC;
1428 } else {
1429 type = BTRFS_ORDERED_NOCOW;
1430 }
1431
1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433 num_bytes, num_bytes, type);
1434 BUG_ON(ret); /* -ENOMEM */
1435
1436 if (root->root_key.objectid ==
1437 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439 num_bytes);
1440 if (ret) {
1441 if (!nolock && nocow)
1442 btrfs_end_write_no_snapshoting(root);
1443 goto error;
1444 }
1445 }
1446
1447 extent_clear_unlock_delalloc(inode, cur_offset,
1448 cur_offset + num_bytes - 1,
1449 locked_page, EXTENT_LOCKED |
1450 EXTENT_DELALLOC, PAGE_UNLOCK |
1451 PAGE_SET_PRIVATE2);
1452 if (!nolock && nocow)
1453 btrfs_end_write_no_snapshoting(root);
1454 cur_offset = extent_end;
1455 if (cur_offset > end)
1456 break;
1457 }
1458 btrfs_release_path(path);
1459
1460 if (cur_offset <= end && cow_start == (u64)-1) {
1461 cow_start = cur_offset;
1462 cur_offset = end;
1463 }
1464
1465 if (cow_start != (u64)-1) {
1466 ret = cow_file_range(inode, locked_page, cow_start, end,
1467 page_started, nr_written, 1);
1468 if (ret)
1469 goto error;
1470 }
1471
1472 error:
1473 err = btrfs_end_transaction(trans, root);
1474 if (!ret)
1475 ret = err;
1476
1477 if (ret && cur_offset < end)
1478 extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 locked_page, EXTENT_LOCKED |
1480 EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482 PAGE_CLEAR_DIRTY |
1483 PAGE_SET_WRITEBACK |
1484 PAGE_END_WRITEBACK);
1485 btrfs_free_path(path);
1486 return ret;
1487 }
1488
1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490 {
1491
1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494 return 0;
1495
1496 /*
1497 * @defrag_bytes is a hint value, no spinlock held here,
1498 * if is not zero, it means the file is defragging.
1499 * Force cow if given extent needs to be defragged.
1500 */
1501 if (BTRFS_I(inode)->defrag_bytes &&
1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 EXTENT_DEFRAG, 0, NULL))
1504 return 1;
1505
1506 return 0;
1507 }
1508
1509 /*
1510 * extent_io.c call back to do delayed allocation processing
1511 */
1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513 u64 start, u64 end, int *page_started,
1514 unsigned long *nr_written)
1515 {
1516 int ret;
1517 int force_cow = need_force_cow(inode, start, end);
1518
1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520 ret = run_delalloc_nocow(inode, locked_page, start, end,
1521 page_started, 1, nr_written);
1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523 ret = run_delalloc_nocow(inode, locked_page, start, end,
1524 page_started, 0, nr_written);
1525 } else if (!inode_need_compress(inode)) {
1526 ret = cow_file_range(inode, locked_page, start, end,
1527 page_started, nr_written, 1);
1528 } else {
1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 &BTRFS_I(inode)->runtime_flags);
1531 ret = cow_file_range_async(inode, locked_page, start, end,
1532 page_started, nr_written);
1533 }
1534 return ret;
1535 }
1536
1537 static void btrfs_split_extent_hook(struct inode *inode,
1538 struct extent_state *orig, u64 split)
1539 {
1540 u64 size;
1541
1542 /* not delalloc, ignore it */
1543 if (!(orig->state & EXTENT_DELALLOC))
1544 return;
1545
1546 size = orig->end - orig->start + 1;
1547 if (size > BTRFS_MAX_EXTENT_SIZE) {
1548 u64 num_extents;
1549 u64 new_size;
1550
1551 /*
1552 * See the explanation in btrfs_merge_extent_hook, the same
1553 * applies here, just in reverse.
1554 */
1555 new_size = orig->end - split + 1;
1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557 BTRFS_MAX_EXTENT_SIZE);
1558 new_size = split - orig->start;
1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 BTRFS_MAX_EXTENT_SIZE);
1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1563 return;
1564 }
1565
1566 spin_lock(&BTRFS_I(inode)->lock);
1567 BTRFS_I(inode)->outstanding_extents++;
1568 spin_unlock(&BTRFS_I(inode)->lock);
1569 }
1570
1571 /*
1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573 * extents so we can keep track of new extents that are just merged onto old
1574 * extents, such as when we are doing sequential writes, so we can properly
1575 * account for the metadata space we'll need.
1576 */
1577 static void btrfs_merge_extent_hook(struct inode *inode,
1578 struct extent_state *new,
1579 struct extent_state *other)
1580 {
1581 u64 new_size, old_size;
1582 u64 num_extents;
1583
1584 /* not delalloc, ignore it */
1585 if (!(other->state & EXTENT_DELALLOC))
1586 return;
1587
1588 if (new->start > other->start)
1589 new_size = new->end - other->start + 1;
1590 else
1591 new_size = other->end - new->start + 1;
1592
1593 /* we're not bigger than the max, unreserve the space and go */
1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 spin_lock(&BTRFS_I(inode)->lock);
1596 BTRFS_I(inode)->outstanding_extents--;
1597 spin_unlock(&BTRFS_I(inode)->lock);
1598 return;
1599 }
1600
1601 /*
1602 * We have to add up either side to figure out how many extents were
1603 * accounted for before we merged into one big extent. If the number of
1604 * extents we accounted for is <= the amount we need for the new range
1605 * then we can return, otherwise drop. Think of it like this
1606 *
1607 * [ 4k][MAX_SIZE]
1608 *
1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 * need 2 outstanding extents, on one side we have 1 and the other side
1611 * we have 1 so they are == and we can return. But in this case
1612 *
1613 * [MAX_SIZE+4k][MAX_SIZE+4k]
1614 *
1615 * Each range on their own accounts for 2 extents, but merged together
1616 * they are only 3 extents worth of accounting, so we need to drop in
1617 * this case.
1618 */
1619 old_size = other->end - other->start + 1;
1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 BTRFS_MAX_EXTENT_SIZE);
1622 old_size = new->end - new->start + 1;
1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 BTRFS_MAX_EXTENT_SIZE);
1625
1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1628 return;
1629
1630 spin_lock(&BTRFS_I(inode)->lock);
1631 BTRFS_I(inode)->outstanding_extents--;
1632 spin_unlock(&BTRFS_I(inode)->lock);
1633 }
1634
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 struct inode *inode)
1637 {
1638 spin_lock(&root->delalloc_lock);
1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 &root->delalloc_inodes);
1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 &BTRFS_I(inode)->runtime_flags);
1644 root->nr_delalloc_inodes++;
1645 if (root->nr_delalloc_inodes == 1) {
1646 spin_lock(&root->fs_info->delalloc_root_lock);
1647 BUG_ON(!list_empty(&root->delalloc_root));
1648 list_add_tail(&root->delalloc_root,
1649 &root->fs_info->delalloc_roots);
1650 spin_unlock(&root->fs_info->delalloc_root_lock);
1651 }
1652 }
1653 spin_unlock(&root->delalloc_lock);
1654 }
1655
1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 struct inode *inode)
1658 {
1659 spin_lock(&root->delalloc_lock);
1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 &BTRFS_I(inode)->runtime_flags);
1664 root->nr_delalloc_inodes--;
1665 if (!root->nr_delalloc_inodes) {
1666 spin_lock(&root->fs_info->delalloc_root_lock);
1667 BUG_ON(list_empty(&root->delalloc_root));
1668 list_del_init(&root->delalloc_root);
1669 spin_unlock(&root->fs_info->delalloc_root_lock);
1670 }
1671 }
1672 spin_unlock(&root->delalloc_lock);
1673 }
1674
1675 /*
1676 * extent_io.c set_bit_hook, used to track delayed allocation
1677 * bytes in this file, and to maintain the list of inodes that
1678 * have pending delalloc work to be done.
1679 */
1680 static void btrfs_set_bit_hook(struct inode *inode,
1681 struct extent_state *state, unsigned *bits)
1682 {
1683
1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685 WARN_ON(1);
1686 /*
1687 * set_bit and clear bit hooks normally require _irqsave/restore
1688 * but in this case, we are only testing for the DELALLOC
1689 * bit, which is only set or cleared with irqs on
1690 */
1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692 struct btrfs_root *root = BTRFS_I(inode)->root;
1693 u64 len = state->end + 1 - state->start;
1694 bool do_list = !btrfs_is_free_space_inode(inode);
1695
1696 if (*bits & EXTENT_FIRST_DELALLOC) {
1697 *bits &= ~EXTENT_FIRST_DELALLOC;
1698 } else {
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 BTRFS_I(inode)->outstanding_extents++;
1701 spin_unlock(&BTRFS_I(inode)->lock);
1702 }
1703
1704 /* For sanity tests */
1705 if (btrfs_test_is_dummy_root(root))
1706 return;
1707
1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 root->fs_info->delalloc_batch);
1710 spin_lock(&BTRFS_I(inode)->lock);
1711 BTRFS_I(inode)->delalloc_bytes += len;
1712 if (*bits & EXTENT_DEFRAG)
1713 BTRFS_I(inode)->defrag_bytes += len;
1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 &BTRFS_I(inode)->runtime_flags))
1716 btrfs_add_delalloc_inodes(root, inode);
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718 }
1719 }
1720
1721 /*
1722 * extent_io.c clear_bit_hook, see set_bit_hook for why
1723 */
1724 static void btrfs_clear_bit_hook(struct inode *inode,
1725 struct extent_state *state,
1726 unsigned *bits)
1727 {
1728 u64 len = state->end + 1 - state->start;
1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 BTRFS_MAX_EXTENT_SIZE);
1731
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 BTRFS_I(inode)->defrag_bytes -= len;
1735 spin_unlock(&BTRFS_I(inode)->lock);
1736
1737 /*
1738 * set_bit and clear bit hooks normally require _irqsave/restore
1739 * but in this case, we are only testing for the DELALLOC
1740 * bit, which is only set or cleared with irqs on
1741 */
1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743 struct btrfs_root *root = BTRFS_I(inode)->root;
1744 bool do_list = !btrfs_is_free_space_inode(inode);
1745
1746 if (*bits & EXTENT_FIRST_DELALLOC) {
1747 *bits &= ~EXTENT_FIRST_DELALLOC;
1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 spin_lock(&BTRFS_I(inode)->lock);
1750 BTRFS_I(inode)->outstanding_extents -= num_extents;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752 }
1753
1754 /*
1755 * We don't reserve metadata space for space cache inodes so we
1756 * don't need to call dellalloc_release_metadata if there is an
1757 * error.
1758 */
1759 if (*bits & EXTENT_DO_ACCOUNTING &&
1760 root != root->fs_info->tree_root)
1761 btrfs_delalloc_release_metadata(inode, len);
1762
1763 /* For sanity tests. */
1764 if (btrfs_test_is_dummy_root(root))
1765 return;
1766
1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768 && do_list && !(state->state & EXTENT_NORESERVE))
1769 btrfs_free_reserved_data_space(inode, len);
1770
1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 root->fs_info->delalloc_batch);
1773 spin_lock(&BTRFS_I(inode)->lock);
1774 BTRFS_I(inode)->delalloc_bytes -= len;
1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777 &BTRFS_I(inode)->runtime_flags))
1778 btrfs_del_delalloc_inode(root, inode);
1779 spin_unlock(&BTRFS_I(inode)->lock);
1780 }
1781 }
1782
1783 /*
1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785 * we don't create bios that span stripes or chunks
1786 */
1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788 size_t size, struct bio *bio,
1789 unsigned long bio_flags)
1790 {
1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1793 u64 length = 0;
1794 u64 map_length;
1795 int ret;
1796
1797 if (bio_flags & EXTENT_BIO_COMPRESSED)
1798 return 0;
1799
1800 length = bio->bi_iter.bi_size;
1801 map_length = length;
1802 ret = btrfs_map_block(root->fs_info, rw, logical,
1803 &map_length, NULL, 0);
1804 /* Will always return 0 with map_multi == NULL */
1805 BUG_ON(ret < 0);
1806 if (map_length < length + size)
1807 return 1;
1808 return 0;
1809 }
1810
1811 /*
1812 * in order to insert checksums into the metadata in large chunks,
1813 * we wait until bio submission time. All the pages in the bio are
1814 * checksummed and sums are attached onto the ordered extent record.
1815 *
1816 * At IO completion time the cums attached on the ordered extent record
1817 * are inserted into the btree
1818 */
1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 struct bio *bio, int mirror_num,
1821 unsigned long bio_flags,
1822 u64 bio_offset)
1823 {
1824 struct btrfs_root *root = BTRFS_I(inode)->root;
1825 int ret = 0;
1826
1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828 BUG_ON(ret); /* -ENOMEM */
1829 return 0;
1830 }
1831
1832 /*
1833 * in order to insert checksums into the metadata in large chunks,
1834 * we wait until bio submission time. All the pages in the bio are
1835 * checksummed and sums are attached onto the ordered extent record.
1836 *
1837 * At IO completion time the cums attached on the ordered extent record
1838 * are inserted into the btree
1839 */
1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841 int mirror_num, unsigned long bio_flags,
1842 u64 bio_offset)
1843 {
1844 struct btrfs_root *root = BTRFS_I(inode)->root;
1845 int ret;
1846
1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848 if (ret)
1849 bio_endio(bio, ret);
1850 return ret;
1851 }
1852
1853 /*
1854 * extent_io.c submission hook. This does the right thing for csum calculation
1855 * on write, or reading the csums from the tree before a read
1856 */
1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1858 int mirror_num, unsigned long bio_flags,
1859 u64 bio_offset)
1860 {
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 int ret = 0;
1863 int skip_sum;
1864 int metadata = 0;
1865 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1866
1867 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1868
1869 if (btrfs_is_free_space_inode(inode))
1870 metadata = 2;
1871
1872 if (!(rw & REQ_WRITE)) {
1873 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1874 if (ret)
1875 goto out;
1876
1877 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1878 ret = btrfs_submit_compressed_read(inode, bio,
1879 mirror_num,
1880 bio_flags);
1881 goto out;
1882 } else if (!skip_sum) {
1883 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1884 if (ret)
1885 goto out;
1886 }
1887 goto mapit;
1888 } else if (async && !skip_sum) {
1889 /* csum items have already been cloned */
1890 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1891 goto mapit;
1892 /* we're doing a write, do the async checksumming */
1893 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1894 inode, rw, bio, mirror_num,
1895 bio_flags, bio_offset,
1896 __btrfs_submit_bio_start,
1897 __btrfs_submit_bio_done);
1898 goto out;
1899 } else if (!skip_sum) {
1900 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1901 if (ret)
1902 goto out;
1903 }
1904
1905 mapit:
1906 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1907
1908 out:
1909 if (ret < 0)
1910 bio_endio(bio, ret);
1911 return ret;
1912 }
1913
1914 /*
1915 * given a list of ordered sums record them in the inode. This happens
1916 * at IO completion time based on sums calculated at bio submission time.
1917 */
1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1919 struct inode *inode, u64 file_offset,
1920 struct list_head *list)
1921 {
1922 struct btrfs_ordered_sum *sum;
1923
1924 list_for_each_entry(sum, list, list) {
1925 trans->adding_csums = 1;
1926 btrfs_csum_file_blocks(trans,
1927 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1928 trans->adding_csums = 0;
1929 }
1930 return 0;
1931 }
1932
1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1934 struct extent_state **cached_state)
1935 {
1936 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1937 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1938 cached_state, GFP_NOFS);
1939 }
1940
1941 /* see btrfs_writepage_start_hook for details on why this is required */
1942 struct btrfs_writepage_fixup {
1943 struct page *page;
1944 struct btrfs_work work;
1945 };
1946
1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1948 {
1949 struct btrfs_writepage_fixup *fixup;
1950 struct btrfs_ordered_extent *ordered;
1951 struct extent_state *cached_state = NULL;
1952 struct page *page;
1953 struct inode *inode;
1954 u64 page_start;
1955 u64 page_end;
1956 int ret;
1957
1958 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1959 page = fixup->page;
1960 again:
1961 lock_page(page);
1962 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1963 ClearPageChecked(page);
1964 goto out_page;
1965 }
1966
1967 inode = page->mapping->host;
1968 page_start = page_offset(page);
1969 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1970
1971 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1972 &cached_state);
1973
1974 /* already ordered? We're done */
1975 if (PagePrivate2(page))
1976 goto out;
1977
1978 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1979 if (ordered) {
1980 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1981 page_end, &cached_state, GFP_NOFS);
1982 unlock_page(page);
1983 btrfs_start_ordered_extent(inode, ordered, 1);
1984 btrfs_put_ordered_extent(ordered);
1985 goto again;
1986 }
1987
1988 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1989 if (ret) {
1990 mapping_set_error(page->mapping, ret);
1991 end_extent_writepage(page, ret, page_start, page_end);
1992 ClearPageChecked(page);
1993 goto out;
1994 }
1995
1996 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1997 ClearPageChecked(page);
1998 set_page_dirty(page);
1999 out:
2000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2001 &cached_state, GFP_NOFS);
2002 out_page:
2003 unlock_page(page);
2004 page_cache_release(page);
2005 kfree(fixup);
2006 }
2007
2008 /*
2009 * There are a few paths in the higher layers of the kernel that directly
2010 * set the page dirty bit without asking the filesystem if it is a
2011 * good idea. This causes problems because we want to make sure COW
2012 * properly happens and the data=ordered rules are followed.
2013 *
2014 * In our case any range that doesn't have the ORDERED bit set
2015 * hasn't been properly setup for IO. We kick off an async process
2016 * to fix it up. The async helper will wait for ordered extents, set
2017 * the delalloc bit and make it safe to write the page.
2018 */
2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2020 {
2021 struct inode *inode = page->mapping->host;
2022 struct btrfs_writepage_fixup *fixup;
2023 struct btrfs_root *root = BTRFS_I(inode)->root;
2024
2025 /* this page is properly in the ordered list */
2026 if (TestClearPagePrivate2(page))
2027 return 0;
2028
2029 if (PageChecked(page))
2030 return -EAGAIN;
2031
2032 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2033 if (!fixup)
2034 return -EAGAIN;
2035
2036 SetPageChecked(page);
2037 page_cache_get(page);
2038 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2039 btrfs_writepage_fixup_worker, NULL, NULL);
2040 fixup->page = page;
2041 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2042 return -EBUSY;
2043 }
2044
2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2046 struct inode *inode, u64 file_pos,
2047 u64 disk_bytenr, u64 disk_num_bytes,
2048 u64 num_bytes, u64 ram_bytes,
2049 u8 compression, u8 encryption,
2050 u16 other_encoding, int extent_type)
2051 {
2052 struct btrfs_root *root = BTRFS_I(inode)->root;
2053 struct btrfs_file_extent_item *fi;
2054 struct btrfs_path *path;
2055 struct extent_buffer *leaf;
2056 struct btrfs_key ins;
2057 int extent_inserted = 0;
2058 int ret;
2059
2060 path = btrfs_alloc_path();
2061 if (!path)
2062 return -ENOMEM;
2063
2064 /*
2065 * we may be replacing one extent in the tree with another.
2066 * The new extent is pinned in the extent map, and we don't want
2067 * to drop it from the cache until it is completely in the btree.
2068 *
2069 * So, tell btrfs_drop_extents to leave this extent in the cache.
2070 * the caller is expected to unpin it and allow it to be merged
2071 * with the others.
2072 */
2073 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2074 file_pos + num_bytes, NULL, 0,
2075 1, sizeof(*fi), &extent_inserted);
2076 if (ret)
2077 goto out;
2078
2079 if (!extent_inserted) {
2080 ins.objectid = btrfs_ino(inode);
2081 ins.offset = file_pos;
2082 ins.type = BTRFS_EXTENT_DATA_KEY;
2083
2084 path->leave_spinning = 1;
2085 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2086 sizeof(*fi));
2087 if (ret)
2088 goto out;
2089 }
2090 leaf = path->nodes[0];
2091 fi = btrfs_item_ptr(leaf, path->slots[0],
2092 struct btrfs_file_extent_item);
2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2094 btrfs_set_file_extent_type(leaf, fi, extent_type);
2095 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2096 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2097 btrfs_set_file_extent_offset(leaf, fi, 0);
2098 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2099 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2100 btrfs_set_file_extent_compression(leaf, fi, compression);
2101 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2102 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2103
2104 btrfs_mark_buffer_dirty(leaf);
2105 btrfs_release_path(path);
2106
2107 inode_add_bytes(inode, num_bytes);
2108
2109 ins.objectid = disk_bytenr;
2110 ins.offset = disk_num_bytes;
2111 ins.type = BTRFS_EXTENT_ITEM_KEY;
2112 ret = btrfs_alloc_reserved_file_extent(trans, root,
2113 root->root_key.objectid,
2114 btrfs_ino(inode), file_pos, &ins);
2115 out:
2116 btrfs_free_path(path);
2117
2118 return ret;
2119 }
2120
2121 /* snapshot-aware defrag */
2122 struct sa_defrag_extent_backref {
2123 struct rb_node node;
2124 struct old_sa_defrag_extent *old;
2125 u64 root_id;
2126 u64 inum;
2127 u64 file_pos;
2128 u64 extent_offset;
2129 u64 num_bytes;
2130 u64 generation;
2131 };
2132
2133 struct old_sa_defrag_extent {
2134 struct list_head list;
2135 struct new_sa_defrag_extent *new;
2136
2137 u64 extent_offset;
2138 u64 bytenr;
2139 u64 offset;
2140 u64 len;
2141 int count;
2142 };
2143
2144 struct new_sa_defrag_extent {
2145 struct rb_root root;
2146 struct list_head head;
2147 struct btrfs_path *path;
2148 struct inode *inode;
2149 u64 file_pos;
2150 u64 len;
2151 u64 bytenr;
2152 u64 disk_len;
2153 u8 compress_type;
2154 };
2155
2156 static int backref_comp(struct sa_defrag_extent_backref *b1,
2157 struct sa_defrag_extent_backref *b2)
2158 {
2159 if (b1->root_id < b2->root_id)
2160 return -1;
2161 else if (b1->root_id > b2->root_id)
2162 return 1;
2163
2164 if (b1->inum < b2->inum)
2165 return -1;
2166 else if (b1->inum > b2->inum)
2167 return 1;
2168
2169 if (b1->file_pos < b2->file_pos)
2170 return -1;
2171 else if (b1->file_pos > b2->file_pos)
2172 return 1;
2173
2174 /*
2175 * [------------------------------] ===> (a range of space)
2176 * |<--->| |<---->| =============> (fs/file tree A)
2177 * |<---------------------------->| ===> (fs/file tree B)
2178 *
2179 * A range of space can refer to two file extents in one tree while
2180 * refer to only one file extent in another tree.
2181 *
2182 * So we may process a disk offset more than one time(two extents in A)
2183 * and locate at the same extent(one extent in B), then insert two same
2184 * backrefs(both refer to the extent in B).
2185 */
2186 return 0;
2187 }
2188
2189 static void backref_insert(struct rb_root *root,
2190 struct sa_defrag_extent_backref *backref)
2191 {
2192 struct rb_node **p = &root->rb_node;
2193 struct rb_node *parent = NULL;
2194 struct sa_defrag_extent_backref *entry;
2195 int ret;
2196
2197 while (*p) {
2198 parent = *p;
2199 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2200
2201 ret = backref_comp(backref, entry);
2202 if (ret < 0)
2203 p = &(*p)->rb_left;
2204 else
2205 p = &(*p)->rb_right;
2206 }
2207
2208 rb_link_node(&backref->node, parent, p);
2209 rb_insert_color(&backref->node, root);
2210 }
2211
2212 /*
2213 * Note the backref might has changed, and in this case we just return 0.
2214 */
2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2216 void *ctx)
2217 {
2218 struct btrfs_file_extent_item *extent;
2219 struct btrfs_fs_info *fs_info;
2220 struct old_sa_defrag_extent *old = ctx;
2221 struct new_sa_defrag_extent *new = old->new;
2222 struct btrfs_path *path = new->path;
2223 struct btrfs_key key;
2224 struct btrfs_root *root;
2225 struct sa_defrag_extent_backref *backref;
2226 struct extent_buffer *leaf;
2227 struct inode *inode = new->inode;
2228 int slot;
2229 int ret;
2230 u64 extent_offset;
2231 u64 num_bytes;
2232
2233 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2234 inum == btrfs_ino(inode))
2235 return 0;
2236
2237 key.objectid = root_id;
2238 key.type = BTRFS_ROOT_ITEM_KEY;
2239 key.offset = (u64)-1;
2240
2241 fs_info = BTRFS_I(inode)->root->fs_info;
2242 root = btrfs_read_fs_root_no_name(fs_info, &key);
2243 if (IS_ERR(root)) {
2244 if (PTR_ERR(root) == -ENOENT)
2245 return 0;
2246 WARN_ON(1);
2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2248 inum, offset, root_id);
2249 return PTR_ERR(root);
2250 }
2251
2252 key.objectid = inum;
2253 key.type = BTRFS_EXTENT_DATA_KEY;
2254 if (offset > (u64)-1 << 32)
2255 key.offset = 0;
2256 else
2257 key.offset = offset;
2258
2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2260 if (WARN_ON(ret < 0))
2261 return ret;
2262 ret = 0;
2263
2264 while (1) {
2265 cond_resched();
2266
2267 leaf = path->nodes[0];
2268 slot = path->slots[0];
2269
2270 if (slot >= btrfs_header_nritems(leaf)) {
2271 ret = btrfs_next_leaf(root, path);
2272 if (ret < 0) {
2273 goto out;
2274 } else if (ret > 0) {
2275 ret = 0;
2276 goto out;
2277 }
2278 continue;
2279 }
2280
2281 path->slots[0]++;
2282
2283 btrfs_item_key_to_cpu(leaf, &key, slot);
2284
2285 if (key.objectid > inum)
2286 goto out;
2287
2288 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2289 continue;
2290
2291 extent = btrfs_item_ptr(leaf, slot,
2292 struct btrfs_file_extent_item);
2293
2294 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2295 continue;
2296
2297 /*
2298 * 'offset' refers to the exact key.offset,
2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2300 * (key.offset - extent_offset).
2301 */
2302 if (key.offset != offset)
2303 continue;
2304
2305 extent_offset = btrfs_file_extent_offset(leaf, extent);
2306 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2307
2308 if (extent_offset >= old->extent_offset + old->offset +
2309 old->len || extent_offset + num_bytes <=
2310 old->extent_offset + old->offset)
2311 continue;
2312 break;
2313 }
2314
2315 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2316 if (!backref) {
2317 ret = -ENOENT;
2318 goto out;
2319 }
2320
2321 backref->root_id = root_id;
2322 backref->inum = inum;
2323 backref->file_pos = offset;
2324 backref->num_bytes = num_bytes;
2325 backref->extent_offset = extent_offset;
2326 backref->generation = btrfs_file_extent_generation(leaf, extent);
2327 backref->old = old;
2328 backref_insert(&new->root, backref);
2329 old->count++;
2330 out:
2331 btrfs_release_path(path);
2332 WARN_ON(ret);
2333 return ret;
2334 }
2335
2336 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2337 struct new_sa_defrag_extent *new)
2338 {
2339 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2340 struct old_sa_defrag_extent *old, *tmp;
2341 int ret;
2342
2343 new->path = path;
2344
2345 list_for_each_entry_safe(old, tmp, &new->head, list) {
2346 ret = iterate_inodes_from_logical(old->bytenr +
2347 old->extent_offset, fs_info,
2348 path, record_one_backref,
2349 old);
2350 if (ret < 0 && ret != -ENOENT)
2351 return false;
2352
2353 /* no backref to be processed for this extent */
2354 if (!old->count) {
2355 list_del(&old->list);
2356 kfree(old);
2357 }
2358 }
2359
2360 if (list_empty(&new->head))
2361 return false;
2362
2363 return true;
2364 }
2365
2366 static int relink_is_mergable(struct extent_buffer *leaf,
2367 struct btrfs_file_extent_item *fi,
2368 struct new_sa_defrag_extent *new)
2369 {
2370 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2371 return 0;
2372
2373 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2374 return 0;
2375
2376 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2377 return 0;
2378
2379 if (btrfs_file_extent_encryption(leaf, fi) ||
2380 btrfs_file_extent_other_encoding(leaf, fi))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 /*
2387 * Note the backref might has changed, and in this case we just return 0.
2388 */
2389 static noinline int relink_extent_backref(struct btrfs_path *path,
2390 struct sa_defrag_extent_backref *prev,
2391 struct sa_defrag_extent_backref *backref)
2392 {
2393 struct btrfs_file_extent_item *extent;
2394 struct btrfs_file_extent_item *item;
2395 struct btrfs_ordered_extent *ordered;
2396 struct btrfs_trans_handle *trans;
2397 struct btrfs_fs_info *fs_info;
2398 struct btrfs_root *root;
2399 struct btrfs_key key;
2400 struct extent_buffer *leaf;
2401 struct old_sa_defrag_extent *old = backref->old;
2402 struct new_sa_defrag_extent *new = old->new;
2403 struct inode *src_inode = new->inode;
2404 struct inode *inode;
2405 struct extent_state *cached = NULL;
2406 int ret = 0;
2407 u64 start;
2408 u64 len;
2409 u64 lock_start;
2410 u64 lock_end;
2411 bool merge = false;
2412 int index;
2413
2414 if (prev && prev->root_id == backref->root_id &&
2415 prev->inum == backref->inum &&
2416 prev->file_pos + prev->num_bytes == backref->file_pos)
2417 merge = true;
2418
2419 /* step 1: get root */
2420 key.objectid = backref->root_id;
2421 key.type = BTRFS_ROOT_ITEM_KEY;
2422 key.offset = (u64)-1;
2423
2424 fs_info = BTRFS_I(src_inode)->root->fs_info;
2425 index = srcu_read_lock(&fs_info->subvol_srcu);
2426
2427 root = btrfs_read_fs_root_no_name(fs_info, &key);
2428 if (IS_ERR(root)) {
2429 srcu_read_unlock(&fs_info->subvol_srcu, index);
2430 if (PTR_ERR(root) == -ENOENT)
2431 return 0;
2432 return PTR_ERR(root);
2433 }
2434
2435 if (btrfs_root_readonly(root)) {
2436 srcu_read_unlock(&fs_info->subvol_srcu, index);
2437 return 0;
2438 }
2439
2440 /* step 2: get inode */
2441 key.objectid = backref->inum;
2442 key.type = BTRFS_INODE_ITEM_KEY;
2443 key.offset = 0;
2444
2445 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2446 if (IS_ERR(inode)) {
2447 srcu_read_unlock(&fs_info->subvol_srcu, index);
2448 return 0;
2449 }
2450
2451 srcu_read_unlock(&fs_info->subvol_srcu, index);
2452
2453 /* step 3: relink backref */
2454 lock_start = backref->file_pos;
2455 lock_end = backref->file_pos + backref->num_bytes - 1;
2456 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2457 0, &cached);
2458
2459 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2460 if (ordered) {
2461 btrfs_put_ordered_extent(ordered);
2462 goto out_unlock;
2463 }
2464
2465 trans = btrfs_join_transaction(root);
2466 if (IS_ERR(trans)) {
2467 ret = PTR_ERR(trans);
2468 goto out_unlock;
2469 }
2470
2471 key.objectid = backref->inum;
2472 key.type = BTRFS_EXTENT_DATA_KEY;
2473 key.offset = backref->file_pos;
2474
2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2476 if (ret < 0) {
2477 goto out_free_path;
2478 } else if (ret > 0) {
2479 ret = 0;
2480 goto out_free_path;
2481 }
2482
2483 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2484 struct btrfs_file_extent_item);
2485
2486 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2487 backref->generation)
2488 goto out_free_path;
2489
2490 btrfs_release_path(path);
2491
2492 start = backref->file_pos;
2493 if (backref->extent_offset < old->extent_offset + old->offset)
2494 start += old->extent_offset + old->offset -
2495 backref->extent_offset;
2496
2497 len = min(backref->extent_offset + backref->num_bytes,
2498 old->extent_offset + old->offset + old->len);
2499 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2500
2501 ret = btrfs_drop_extents(trans, root, inode, start,
2502 start + len, 1);
2503 if (ret)
2504 goto out_free_path;
2505 again:
2506 key.objectid = btrfs_ino(inode);
2507 key.type = BTRFS_EXTENT_DATA_KEY;
2508 key.offset = start;
2509
2510 path->leave_spinning = 1;
2511 if (merge) {
2512 struct btrfs_file_extent_item *fi;
2513 u64 extent_len;
2514 struct btrfs_key found_key;
2515
2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2517 if (ret < 0)
2518 goto out_free_path;
2519
2520 path->slots[0]--;
2521 leaf = path->nodes[0];
2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2523
2524 fi = btrfs_item_ptr(leaf, path->slots[0],
2525 struct btrfs_file_extent_item);
2526 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2527
2528 if (extent_len + found_key.offset == start &&
2529 relink_is_mergable(leaf, fi, new)) {
2530 btrfs_set_file_extent_num_bytes(leaf, fi,
2531 extent_len + len);
2532 btrfs_mark_buffer_dirty(leaf);
2533 inode_add_bytes(inode, len);
2534
2535 ret = 1;
2536 goto out_free_path;
2537 } else {
2538 merge = false;
2539 btrfs_release_path(path);
2540 goto again;
2541 }
2542 }
2543
2544 ret = btrfs_insert_empty_item(trans, root, path, &key,
2545 sizeof(*extent));
2546 if (ret) {
2547 btrfs_abort_transaction(trans, root, ret);
2548 goto out_free_path;
2549 }
2550
2551 leaf = path->nodes[0];
2552 item = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_file_extent_item);
2554 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2555 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2556 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2557 btrfs_set_file_extent_num_bytes(leaf, item, len);
2558 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2559 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2560 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2561 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2562 btrfs_set_file_extent_encryption(leaf, item, 0);
2563 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2564
2565 btrfs_mark_buffer_dirty(leaf);
2566 inode_add_bytes(inode, len);
2567 btrfs_release_path(path);
2568
2569 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2570 new->disk_len, 0,
2571 backref->root_id, backref->inum,
2572 new->file_pos, 0); /* start - extent_offset */
2573 if (ret) {
2574 btrfs_abort_transaction(trans, root, ret);
2575 goto out_free_path;
2576 }
2577
2578 ret = 1;
2579 out_free_path:
2580 btrfs_release_path(path);
2581 path->leave_spinning = 0;
2582 btrfs_end_transaction(trans, root);
2583 out_unlock:
2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2585 &cached, GFP_NOFS);
2586 iput(inode);
2587 return ret;
2588 }
2589
2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2591 {
2592 struct old_sa_defrag_extent *old, *tmp;
2593
2594 if (!new)
2595 return;
2596
2597 list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 list_del(&old->list);
2599 kfree(old);
2600 }
2601 kfree(new);
2602 }
2603
2604 static void relink_file_extents(struct new_sa_defrag_extent *new)
2605 {
2606 struct btrfs_path *path;
2607 struct sa_defrag_extent_backref *backref;
2608 struct sa_defrag_extent_backref *prev = NULL;
2609 struct inode *inode;
2610 struct btrfs_root *root;
2611 struct rb_node *node;
2612 int ret;
2613
2614 inode = new->inode;
2615 root = BTRFS_I(inode)->root;
2616
2617 path = btrfs_alloc_path();
2618 if (!path)
2619 return;
2620
2621 if (!record_extent_backrefs(path, new)) {
2622 btrfs_free_path(path);
2623 goto out;
2624 }
2625 btrfs_release_path(path);
2626
2627 while (1) {
2628 node = rb_first(&new->root);
2629 if (!node)
2630 break;
2631 rb_erase(node, &new->root);
2632
2633 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2634
2635 ret = relink_extent_backref(path, prev, backref);
2636 WARN_ON(ret < 0);
2637
2638 kfree(prev);
2639
2640 if (ret == 1)
2641 prev = backref;
2642 else
2643 prev = NULL;
2644 cond_resched();
2645 }
2646 kfree(prev);
2647
2648 btrfs_free_path(path);
2649 out:
2650 free_sa_defrag_extent(new);
2651
2652 atomic_dec(&root->fs_info->defrag_running);
2653 wake_up(&root->fs_info->transaction_wait);
2654 }
2655
2656 static struct new_sa_defrag_extent *
2657 record_old_file_extents(struct inode *inode,
2658 struct btrfs_ordered_extent *ordered)
2659 {
2660 struct btrfs_root *root = BTRFS_I(inode)->root;
2661 struct btrfs_path *path;
2662 struct btrfs_key key;
2663 struct old_sa_defrag_extent *old;
2664 struct new_sa_defrag_extent *new;
2665 int ret;
2666
2667 new = kmalloc(sizeof(*new), GFP_NOFS);
2668 if (!new)
2669 return NULL;
2670
2671 new->inode = inode;
2672 new->file_pos = ordered->file_offset;
2673 new->len = ordered->len;
2674 new->bytenr = ordered->start;
2675 new->disk_len = ordered->disk_len;
2676 new->compress_type = ordered->compress_type;
2677 new->root = RB_ROOT;
2678 INIT_LIST_HEAD(&new->head);
2679
2680 path = btrfs_alloc_path();
2681 if (!path)
2682 goto out_kfree;
2683
2684 key.objectid = btrfs_ino(inode);
2685 key.type = BTRFS_EXTENT_DATA_KEY;
2686 key.offset = new->file_pos;
2687
2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 if (ret < 0)
2690 goto out_free_path;
2691 if (ret > 0 && path->slots[0] > 0)
2692 path->slots[0]--;
2693
2694 /* find out all the old extents for the file range */
2695 while (1) {
2696 struct btrfs_file_extent_item *extent;
2697 struct extent_buffer *l;
2698 int slot;
2699 u64 num_bytes;
2700 u64 offset;
2701 u64 end;
2702 u64 disk_bytenr;
2703 u64 extent_offset;
2704
2705 l = path->nodes[0];
2706 slot = path->slots[0];
2707
2708 if (slot >= btrfs_header_nritems(l)) {
2709 ret = btrfs_next_leaf(root, path);
2710 if (ret < 0)
2711 goto out_free_path;
2712 else if (ret > 0)
2713 break;
2714 continue;
2715 }
2716
2717 btrfs_item_key_to_cpu(l, &key, slot);
2718
2719 if (key.objectid != btrfs_ino(inode))
2720 break;
2721 if (key.type != BTRFS_EXTENT_DATA_KEY)
2722 break;
2723 if (key.offset >= new->file_pos + new->len)
2724 break;
2725
2726 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2727
2728 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2729 if (key.offset + num_bytes < new->file_pos)
2730 goto next;
2731
2732 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2733 if (!disk_bytenr)
2734 goto next;
2735
2736 extent_offset = btrfs_file_extent_offset(l, extent);
2737
2738 old = kmalloc(sizeof(*old), GFP_NOFS);
2739 if (!old)
2740 goto out_free_path;
2741
2742 offset = max(new->file_pos, key.offset);
2743 end = min(new->file_pos + new->len, key.offset + num_bytes);
2744
2745 old->bytenr = disk_bytenr;
2746 old->extent_offset = extent_offset;
2747 old->offset = offset - key.offset;
2748 old->len = end - offset;
2749 old->new = new;
2750 old->count = 0;
2751 list_add_tail(&old->list, &new->head);
2752 next:
2753 path->slots[0]++;
2754 cond_resched();
2755 }
2756
2757 btrfs_free_path(path);
2758 atomic_inc(&root->fs_info->defrag_running);
2759
2760 return new;
2761
2762 out_free_path:
2763 btrfs_free_path(path);
2764 out_kfree:
2765 free_sa_defrag_extent(new);
2766 return NULL;
2767 }
2768
2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2770 u64 start, u64 len)
2771 {
2772 struct btrfs_block_group_cache *cache;
2773
2774 cache = btrfs_lookup_block_group(root->fs_info, start);
2775 ASSERT(cache);
2776
2777 spin_lock(&cache->lock);
2778 cache->delalloc_bytes -= len;
2779 spin_unlock(&cache->lock);
2780
2781 btrfs_put_block_group(cache);
2782 }
2783
2784 /* as ordered data IO finishes, this gets called so we can finish
2785 * an ordered extent if the range of bytes in the file it covers are
2786 * fully written.
2787 */
2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2789 {
2790 struct inode *inode = ordered_extent->inode;
2791 struct btrfs_root *root = BTRFS_I(inode)->root;
2792 struct btrfs_trans_handle *trans = NULL;
2793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2794 struct extent_state *cached_state = NULL;
2795 struct new_sa_defrag_extent *new = NULL;
2796 int compress_type = 0;
2797 int ret = 0;
2798 u64 logical_len = ordered_extent->len;
2799 bool nolock;
2800 bool truncated = false;
2801
2802 nolock = btrfs_is_free_space_inode(inode);
2803
2804 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2805 ret = -EIO;
2806 goto out;
2807 }
2808
2809 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2810 ordered_extent->file_offset +
2811 ordered_extent->len - 1);
2812
2813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2814 truncated = true;
2815 logical_len = ordered_extent->truncated_len;
2816 /* Truncated the entire extent, don't bother adding */
2817 if (!logical_len)
2818 goto out;
2819 }
2820
2821 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2822 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2823 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2824 if (nolock)
2825 trans = btrfs_join_transaction_nolock(root);
2826 else
2827 trans = btrfs_join_transaction(root);
2828 if (IS_ERR(trans)) {
2829 ret = PTR_ERR(trans);
2830 trans = NULL;
2831 goto out;
2832 }
2833 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2834 ret = btrfs_update_inode_fallback(trans, root, inode);
2835 if (ret) /* -ENOMEM or corruption */
2836 btrfs_abort_transaction(trans, root, ret);
2837 goto out;
2838 }
2839
2840 lock_extent_bits(io_tree, ordered_extent->file_offset,
2841 ordered_extent->file_offset + ordered_extent->len - 1,
2842 0, &cached_state);
2843
2844 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2845 ordered_extent->file_offset + ordered_extent->len - 1,
2846 EXTENT_DEFRAG, 1, cached_state);
2847 if (ret) {
2848 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2849 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2850 /* the inode is shared */
2851 new = record_old_file_extents(inode, ordered_extent);
2852
2853 clear_extent_bit(io_tree, ordered_extent->file_offset,
2854 ordered_extent->file_offset + ordered_extent->len - 1,
2855 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2856 }
2857
2858 if (nolock)
2859 trans = btrfs_join_transaction_nolock(root);
2860 else
2861 trans = btrfs_join_transaction(root);
2862 if (IS_ERR(trans)) {
2863 ret = PTR_ERR(trans);
2864 trans = NULL;
2865 goto out_unlock;
2866 }
2867
2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869
2870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2871 compress_type = ordered_extent->compress_type;
2872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2873 BUG_ON(compress_type);
2874 ret = btrfs_mark_extent_written(trans, inode,
2875 ordered_extent->file_offset,
2876 ordered_extent->file_offset +
2877 logical_len);
2878 } else {
2879 BUG_ON(root == root->fs_info->tree_root);
2880 ret = insert_reserved_file_extent(trans, inode,
2881 ordered_extent->file_offset,
2882 ordered_extent->start,
2883 ordered_extent->disk_len,
2884 logical_len, logical_len,
2885 compress_type, 0, 0,
2886 BTRFS_FILE_EXTENT_REG);
2887 if (!ret)
2888 btrfs_release_delalloc_bytes(root,
2889 ordered_extent->start,
2890 ordered_extent->disk_len);
2891 }
2892 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2893 ordered_extent->file_offset, ordered_extent->len,
2894 trans->transid);
2895 if (ret < 0) {
2896 btrfs_abort_transaction(trans, root, ret);
2897 goto out_unlock;
2898 }
2899
2900 add_pending_csums(trans, inode, ordered_extent->file_offset,
2901 &ordered_extent->list);
2902
2903 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2904 ret = btrfs_update_inode_fallback(trans, root, inode);
2905 if (ret) { /* -ENOMEM or corruption */
2906 btrfs_abort_transaction(trans, root, ret);
2907 goto out_unlock;
2908 }
2909 ret = 0;
2910 out_unlock:
2911 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2912 ordered_extent->file_offset +
2913 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2914 out:
2915 if (root != root->fs_info->tree_root)
2916 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2917 if (trans)
2918 btrfs_end_transaction(trans, root);
2919
2920 if (ret || truncated) {
2921 u64 start, end;
2922
2923 if (truncated)
2924 start = ordered_extent->file_offset + logical_len;
2925 else
2926 start = ordered_extent->file_offset;
2927 end = ordered_extent->file_offset + ordered_extent->len - 1;
2928 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2929
2930 /* Drop the cache for the part of the extent we didn't write. */
2931 btrfs_drop_extent_cache(inode, start, end, 0);
2932
2933 /*
2934 * If the ordered extent had an IOERR or something else went
2935 * wrong we need to return the space for this ordered extent
2936 * back to the allocator. We only free the extent in the
2937 * truncated case if we didn't write out the extent at all.
2938 */
2939 if ((ret || !logical_len) &&
2940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2941 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2942 btrfs_free_reserved_extent(root, ordered_extent->start,
2943 ordered_extent->disk_len, 1);
2944 }
2945
2946
2947 /*
2948 * This needs to be done to make sure anybody waiting knows we are done
2949 * updating everything for this ordered extent.
2950 */
2951 btrfs_remove_ordered_extent(inode, ordered_extent);
2952
2953 /* for snapshot-aware defrag */
2954 if (new) {
2955 if (ret) {
2956 free_sa_defrag_extent(new);
2957 atomic_dec(&root->fs_info->defrag_running);
2958 } else {
2959 relink_file_extents(new);
2960 }
2961 }
2962
2963 /* once for us */
2964 btrfs_put_ordered_extent(ordered_extent);
2965 /* once for the tree */
2966 btrfs_put_ordered_extent(ordered_extent);
2967
2968 return ret;
2969 }
2970
2971 static void finish_ordered_fn(struct btrfs_work *work)
2972 {
2973 struct btrfs_ordered_extent *ordered_extent;
2974 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2975 btrfs_finish_ordered_io(ordered_extent);
2976 }
2977
2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2979 struct extent_state *state, int uptodate)
2980 {
2981 struct inode *inode = page->mapping->host;
2982 struct btrfs_root *root = BTRFS_I(inode)->root;
2983 struct btrfs_ordered_extent *ordered_extent = NULL;
2984 struct btrfs_workqueue *wq;
2985 btrfs_work_func_t func;
2986
2987 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2988
2989 ClearPagePrivate2(page);
2990 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2991 end - start + 1, uptodate))
2992 return 0;
2993
2994 if (btrfs_is_free_space_inode(inode)) {
2995 wq = root->fs_info->endio_freespace_worker;
2996 func = btrfs_freespace_write_helper;
2997 } else {
2998 wq = root->fs_info->endio_write_workers;
2999 func = btrfs_endio_write_helper;
3000 }
3001
3002 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3003 NULL);
3004 btrfs_queue_work(wq, &ordered_extent->work);
3005
3006 return 0;
3007 }
3008
3009 static int __readpage_endio_check(struct inode *inode,
3010 struct btrfs_io_bio *io_bio,
3011 int icsum, struct page *page,
3012 int pgoff, u64 start, size_t len)
3013 {
3014 char *kaddr;
3015 u32 csum_expected;
3016 u32 csum = ~(u32)0;
3017 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3018 DEFAULT_RATELIMIT_BURST);
3019
3020 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3021
3022 kaddr = kmap_atomic(page);
3023 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3024 btrfs_csum_final(csum, (char *)&csum);
3025 if (csum != csum_expected)
3026 goto zeroit;
3027
3028 kunmap_atomic(kaddr);
3029 return 0;
3030 zeroit:
3031 if (__ratelimit(&_rs))
3032 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3033 "csum failed ino %llu off %llu csum %u expected csum %u",
3034 btrfs_ino(inode), start, csum, csum_expected);
3035 memset(kaddr + pgoff, 1, len);
3036 flush_dcache_page(page);
3037 kunmap_atomic(kaddr);
3038 if (csum_expected == 0)
3039 return 0;
3040 return -EIO;
3041 }
3042
3043 /*
3044 * when reads are done, we need to check csums to verify the data is correct
3045 * if there's a match, we allow the bio to finish. If not, the code in
3046 * extent_io.c will try to find good copies for us.
3047 */
3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3049 u64 phy_offset, struct page *page,
3050 u64 start, u64 end, int mirror)
3051 {
3052 size_t offset = start - page_offset(page);
3053 struct inode *inode = page->mapping->host;
3054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3055 struct btrfs_root *root = BTRFS_I(inode)->root;
3056
3057 if (PageChecked(page)) {
3058 ClearPageChecked(page);
3059 return 0;
3060 }
3061
3062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3063 return 0;
3064
3065 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3066 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3067 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3068 GFP_NOFS);
3069 return 0;
3070 }
3071
3072 phy_offset >>= inode->i_sb->s_blocksize_bits;
3073 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3074 start, (size_t)(end - start + 1));
3075 }
3076
3077 struct delayed_iput {
3078 struct list_head list;
3079 struct inode *inode;
3080 };
3081
3082 /* JDM: If this is fs-wide, why can't we add a pointer to
3083 * btrfs_inode instead and avoid the allocation? */
3084 void btrfs_add_delayed_iput(struct inode *inode)
3085 {
3086 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3087 struct delayed_iput *delayed;
3088
3089 if (atomic_add_unless(&inode->i_count, -1, 1))
3090 return;
3091
3092 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3093 delayed->inode = inode;
3094
3095 spin_lock(&fs_info->delayed_iput_lock);
3096 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3097 spin_unlock(&fs_info->delayed_iput_lock);
3098 }
3099
3100 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3101 {
3102 LIST_HEAD(list);
3103 struct btrfs_fs_info *fs_info = root->fs_info;
3104 struct delayed_iput *delayed;
3105 int empty;
3106
3107 spin_lock(&fs_info->delayed_iput_lock);
3108 empty = list_empty(&fs_info->delayed_iputs);
3109 spin_unlock(&fs_info->delayed_iput_lock);
3110 if (empty)
3111 return;
3112
3113 spin_lock(&fs_info->delayed_iput_lock);
3114 list_splice_init(&fs_info->delayed_iputs, &list);
3115 spin_unlock(&fs_info->delayed_iput_lock);
3116
3117 while (!list_empty(&list)) {
3118 delayed = list_entry(list.next, struct delayed_iput, list);
3119 list_del(&delayed->list);
3120 iput(delayed->inode);
3121 kfree(delayed);
3122 }
3123 }
3124
3125 /*
3126 * This is called in transaction commit time. If there are no orphan
3127 * files in the subvolume, it removes orphan item and frees block_rsv
3128 * structure.
3129 */
3130 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3131 struct btrfs_root *root)
3132 {
3133 struct btrfs_block_rsv *block_rsv;
3134 int ret;
3135
3136 if (atomic_read(&root->orphan_inodes) ||
3137 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3138 return;
3139
3140 spin_lock(&root->orphan_lock);
3141 if (atomic_read(&root->orphan_inodes)) {
3142 spin_unlock(&root->orphan_lock);
3143 return;
3144 }
3145
3146 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3147 spin_unlock(&root->orphan_lock);
3148 return;
3149 }
3150
3151 block_rsv = root->orphan_block_rsv;
3152 root->orphan_block_rsv = NULL;
3153 spin_unlock(&root->orphan_lock);
3154
3155 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3156 btrfs_root_refs(&root->root_item) > 0) {
3157 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3158 root->root_key.objectid);
3159 if (ret)
3160 btrfs_abort_transaction(trans, root, ret);
3161 else
3162 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3163 &root->state);
3164 }
3165
3166 if (block_rsv) {
3167 WARN_ON(block_rsv->size > 0);
3168 btrfs_free_block_rsv(root, block_rsv);
3169 }
3170 }
3171
3172 /*
3173 * This creates an orphan entry for the given inode in case something goes
3174 * wrong in the middle of an unlink/truncate.
3175 *
3176 * NOTE: caller of this function should reserve 5 units of metadata for
3177 * this function.
3178 */
3179 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3180 {
3181 struct btrfs_root *root = BTRFS_I(inode)->root;
3182 struct btrfs_block_rsv *block_rsv = NULL;
3183 int reserve = 0;
3184 int insert = 0;
3185 int ret;
3186
3187 if (!root->orphan_block_rsv) {
3188 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3189 if (!block_rsv)
3190 return -ENOMEM;
3191 }
3192
3193 spin_lock(&root->orphan_lock);
3194 if (!root->orphan_block_rsv) {
3195 root->orphan_block_rsv = block_rsv;
3196 } else if (block_rsv) {
3197 btrfs_free_block_rsv(root, block_rsv);
3198 block_rsv = NULL;
3199 }
3200
3201 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3202 &BTRFS_I(inode)->runtime_flags)) {
3203 #if 0
3204 /*
3205 * For proper ENOSPC handling, we should do orphan
3206 * cleanup when mounting. But this introduces backward
3207 * compatibility issue.
3208 */
3209 if (!xchg(&root->orphan_item_inserted, 1))
3210 insert = 2;
3211 else
3212 insert = 1;
3213 #endif
3214 insert = 1;
3215 atomic_inc(&root->orphan_inodes);
3216 }
3217
3218 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3219 &BTRFS_I(inode)->runtime_flags))
3220 reserve = 1;
3221 spin_unlock(&root->orphan_lock);
3222
3223 /* grab metadata reservation from transaction handle */
3224 if (reserve) {
3225 ret = btrfs_orphan_reserve_metadata(trans, inode);
3226 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3227 }
3228
3229 /* insert an orphan item to track this unlinked/truncated file */
3230 if (insert >= 1) {
3231 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3232 if (ret) {
3233 atomic_dec(&root->orphan_inodes);
3234 if (reserve) {
3235 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3236 &BTRFS_I(inode)->runtime_flags);
3237 btrfs_orphan_release_metadata(inode);
3238 }
3239 if (ret != -EEXIST) {
3240 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3241 &BTRFS_I(inode)->runtime_flags);
3242 btrfs_abort_transaction(trans, root, ret);
3243 return ret;
3244 }
3245 }
3246 ret = 0;
3247 }
3248
3249 /* insert an orphan item to track subvolume contains orphan files */
3250 if (insert >= 2) {
3251 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3252 root->root_key.objectid);
3253 if (ret && ret != -EEXIST) {
3254 btrfs_abort_transaction(trans, root, ret);
3255 return ret;
3256 }
3257 }
3258 return 0;
3259 }
3260
3261 /*
3262 * We have done the truncate/delete so we can go ahead and remove the orphan
3263 * item for this particular inode.
3264 */
3265 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3266 struct inode *inode)
3267 {
3268 struct btrfs_root *root = BTRFS_I(inode)->root;
3269 int delete_item = 0;
3270 int release_rsv = 0;
3271 int ret = 0;
3272
3273 spin_lock(&root->orphan_lock);
3274 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 &BTRFS_I(inode)->runtime_flags))
3276 delete_item = 1;
3277
3278 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3279 &BTRFS_I(inode)->runtime_flags))
3280 release_rsv = 1;
3281 spin_unlock(&root->orphan_lock);
3282
3283 if (delete_item) {
3284 atomic_dec(&root->orphan_inodes);
3285 if (trans)
3286 ret = btrfs_del_orphan_item(trans, root,
3287 btrfs_ino(inode));
3288 }
3289
3290 if (release_rsv)
3291 btrfs_orphan_release_metadata(inode);
3292
3293 return ret;
3294 }
3295
3296 /*
3297 * this cleans up any orphans that may be left on the list from the last use
3298 * of this root.
3299 */
3300 int btrfs_orphan_cleanup(struct btrfs_root *root)
3301 {
3302 struct btrfs_path *path;
3303 struct extent_buffer *leaf;
3304 struct btrfs_key key, found_key;
3305 struct btrfs_trans_handle *trans;
3306 struct inode *inode;
3307 u64 last_objectid = 0;
3308 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3309
3310 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3311 return 0;
3312
3313 path = btrfs_alloc_path();
3314 if (!path) {
3315 ret = -ENOMEM;
3316 goto out;
3317 }
3318 path->reada = -1;
3319
3320 key.objectid = BTRFS_ORPHAN_OBJECTID;
3321 key.type = BTRFS_ORPHAN_ITEM_KEY;
3322 key.offset = (u64)-1;
3323
3324 while (1) {
3325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3326 if (ret < 0)
3327 goto out;
3328
3329 /*
3330 * if ret == 0 means we found what we were searching for, which
3331 * is weird, but possible, so only screw with path if we didn't
3332 * find the key and see if we have stuff that matches
3333 */
3334 if (ret > 0) {
3335 ret = 0;
3336 if (path->slots[0] == 0)
3337 break;
3338 path->slots[0]--;
3339 }
3340
3341 /* pull out the item */
3342 leaf = path->nodes[0];
3343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3344
3345 /* make sure the item matches what we want */
3346 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3347 break;
3348 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3349 break;
3350
3351 /* release the path since we're done with it */
3352 btrfs_release_path(path);
3353
3354 /*
3355 * this is where we are basically btrfs_lookup, without the
3356 * crossing root thing. we store the inode number in the
3357 * offset of the orphan item.
3358 */
3359
3360 if (found_key.offset == last_objectid) {
3361 btrfs_err(root->fs_info,
3362 "Error removing orphan entry, stopping orphan cleanup");
3363 ret = -EINVAL;
3364 goto out;
3365 }
3366
3367 last_objectid = found_key.offset;
3368
3369 found_key.objectid = found_key.offset;
3370 found_key.type = BTRFS_INODE_ITEM_KEY;
3371 found_key.offset = 0;
3372 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3373 ret = PTR_ERR_OR_ZERO(inode);
3374 if (ret && ret != -ESTALE)
3375 goto out;
3376
3377 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3378 struct btrfs_root *dead_root;
3379 struct btrfs_fs_info *fs_info = root->fs_info;
3380 int is_dead_root = 0;
3381
3382 /*
3383 * this is an orphan in the tree root. Currently these
3384 * could come from 2 sources:
3385 * a) a snapshot deletion in progress
3386 * b) a free space cache inode
3387 * We need to distinguish those two, as the snapshot
3388 * orphan must not get deleted.
3389 * find_dead_roots already ran before us, so if this
3390 * is a snapshot deletion, we should find the root
3391 * in the dead_roots list
3392 */
3393 spin_lock(&fs_info->trans_lock);
3394 list_for_each_entry(dead_root, &fs_info->dead_roots,
3395 root_list) {
3396 if (dead_root->root_key.objectid ==
3397 found_key.objectid) {
3398 is_dead_root = 1;
3399 break;
3400 }
3401 }
3402 spin_unlock(&fs_info->trans_lock);
3403 if (is_dead_root) {
3404 /* prevent this orphan from being found again */
3405 key.offset = found_key.objectid - 1;
3406 continue;
3407 }
3408 }
3409 /*
3410 * Inode is already gone but the orphan item is still there,
3411 * kill the orphan item.
3412 */
3413 if (ret == -ESTALE) {
3414 trans = btrfs_start_transaction(root, 1);
3415 if (IS_ERR(trans)) {
3416 ret = PTR_ERR(trans);
3417 goto out;
3418 }
3419 btrfs_debug(root->fs_info, "auto deleting %Lu",
3420 found_key.objectid);
3421 ret = btrfs_del_orphan_item(trans, root,
3422 found_key.objectid);
3423 btrfs_end_transaction(trans, root);
3424 if (ret)
3425 goto out;
3426 continue;
3427 }
3428
3429 /*
3430 * add this inode to the orphan list so btrfs_orphan_del does
3431 * the proper thing when we hit it
3432 */
3433 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3434 &BTRFS_I(inode)->runtime_flags);
3435 atomic_inc(&root->orphan_inodes);
3436
3437 /* if we have links, this was a truncate, lets do that */
3438 if (inode->i_nlink) {
3439 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3440 iput(inode);
3441 continue;
3442 }
3443 nr_truncate++;
3444
3445 /* 1 for the orphan item deletion. */
3446 trans = btrfs_start_transaction(root, 1);
3447 if (IS_ERR(trans)) {
3448 iput(inode);
3449 ret = PTR_ERR(trans);
3450 goto out;
3451 }
3452 ret = btrfs_orphan_add(trans, inode);
3453 btrfs_end_transaction(trans, root);
3454 if (ret) {
3455 iput(inode);
3456 goto out;
3457 }
3458
3459 ret = btrfs_truncate(inode);
3460 if (ret)
3461 btrfs_orphan_del(NULL, inode);
3462 } else {
3463 nr_unlink++;
3464 }
3465
3466 /* this will do delete_inode and everything for us */
3467 iput(inode);
3468 if (ret)
3469 goto out;
3470 }
3471 /* release the path since we're done with it */
3472 btrfs_release_path(path);
3473
3474 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3475
3476 if (root->orphan_block_rsv)
3477 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3478 (u64)-1);
3479
3480 if (root->orphan_block_rsv ||
3481 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3482 trans = btrfs_join_transaction(root);
3483 if (!IS_ERR(trans))
3484 btrfs_end_transaction(trans, root);
3485 }
3486
3487 if (nr_unlink)
3488 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3489 if (nr_truncate)
3490 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3491
3492 out:
3493 if (ret)
3494 btrfs_err(root->fs_info,
3495 "could not do orphan cleanup %d", ret);
3496 btrfs_free_path(path);
3497 return ret;
3498 }
3499
3500 /*
3501 * very simple check to peek ahead in the leaf looking for xattrs. If we
3502 * don't find any xattrs, we know there can't be any acls.
3503 *
3504 * slot is the slot the inode is in, objectid is the objectid of the inode
3505 */
3506 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3507 int slot, u64 objectid,
3508 int *first_xattr_slot)
3509 {
3510 u32 nritems = btrfs_header_nritems(leaf);
3511 struct btrfs_key found_key;
3512 static u64 xattr_access = 0;
3513 static u64 xattr_default = 0;
3514 int scanned = 0;
3515
3516 if (!xattr_access) {
3517 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3518 strlen(POSIX_ACL_XATTR_ACCESS));
3519 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3520 strlen(POSIX_ACL_XATTR_DEFAULT));
3521 }
3522
3523 slot++;
3524 *first_xattr_slot = -1;
3525 while (slot < nritems) {
3526 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3527
3528 /* we found a different objectid, there must not be acls */
3529 if (found_key.objectid != objectid)
3530 return 0;
3531
3532 /* we found an xattr, assume we've got an acl */
3533 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3534 if (*first_xattr_slot == -1)
3535 *first_xattr_slot = slot;
3536 if (found_key.offset == xattr_access ||
3537 found_key.offset == xattr_default)
3538 return 1;
3539 }
3540
3541 /*
3542 * we found a key greater than an xattr key, there can't
3543 * be any acls later on
3544 */
3545 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3546 return 0;
3547
3548 slot++;
3549 scanned++;
3550
3551 /*
3552 * it goes inode, inode backrefs, xattrs, extents,
3553 * so if there are a ton of hard links to an inode there can
3554 * be a lot of backrefs. Don't waste time searching too hard,
3555 * this is just an optimization
3556 */
3557 if (scanned >= 8)
3558 break;
3559 }
3560 /* we hit the end of the leaf before we found an xattr or
3561 * something larger than an xattr. We have to assume the inode
3562 * has acls
3563 */
3564 if (*first_xattr_slot == -1)
3565 *first_xattr_slot = slot;
3566 return 1;
3567 }
3568
3569 /*
3570 * read an inode from the btree into the in-memory inode
3571 */
3572 static void btrfs_read_locked_inode(struct inode *inode)
3573 {
3574 struct btrfs_path *path;
3575 struct extent_buffer *leaf;
3576 struct btrfs_inode_item *inode_item;
3577 struct btrfs_root *root = BTRFS_I(inode)->root;
3578 struct btrfs_key location;
3579 unsigned long ptr;
3580 int maybe_acls;
3581 u32 rdev;
3582 int ret;
3583 bool filled = false;
3584 int first_xattr_slot;
3585
3586 ret = btrfs_fill_inode(inode, &rdev);
3587 if (!ret)
3588 filled = true;
3589
3590 path = btrfs_alloc_path();
3591 if (!path)
3592 goto make_bad;
3593
3594 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3595
3596 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3597 if (ret)
3598 goto make_bad;
3599
3600 leaf = path->nodes[0];
3601
3602 if (filled)
3603 goto cache_index;
3604
3605 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3606 struct btrfs_inode_item);
3607 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3608 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3609 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3610 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3611 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3612
3613 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3614 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3615
3616 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3617 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3618
3619 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3620 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3621
3622 BTRFS_I(inode)->i_otime.tv_sec =
3623 btrfs_timespec_sec(leaf, &inode_item->otime);
3624 BTRFS_I(inode)->i_otime.tv_nsec =
3625 btrfs_timespec_nsec(leaf, &inode_item->otime);
3626
3627 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3628 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3629 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3630
3631 /*
3632 * If we were modified in the current generation and evicted from memory
3633 * and then re-read we need to do a full sync since we don't have any
3634 * idea about which extents were modified before we were evicted from
3635 * cache.
3636 */
3637 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3638 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3639 &BTRFS_I(inode)->runtime_flags);
3640
3641 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3642 inode->i_generation = BTRFS_I(inode)->generation;
3643 inode->i_rdev = 0;
3644 rdev = btrfs_inode_rdev(leaf, inode_item);
3645
3646 BTRFS_I(inode)->index_cnt = (u64)-1;
3647 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3648
3649 cache_index:
3650 path->slots[0]++;
3651 if (inode->i_nlink != 1 ||
3652 path->slots[0] >= btrfs_header_nritems(leaf))
3653 goto cache_acl;
3654
3655 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3656 if (location.objectid != btrfs_ino(inode))
3657 goto cache_acl;
3658
3659 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3660 if (location.type == BTRFS_INODE_REF_KEY) {
3661 struct btrfs_inode_ref *ref;
3662
3663 ref = (struct btrfs_inode_ref *)ptr;
3664 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3665 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3666 struct btrfs_inode_extref *extref;
3667
3668 extref = (struct btrfs_inode_extref *)ptr;
3669 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3670 extref);
3671 }
3672 cache_acl:
3673 /*
3674 * try to precache a NULL acl entry for files that don't have
3675 * any xattrs or acls
3676 */
3677 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3678 btrfs_ino(inode), &first_xattr_slot);
3679 if (first_xattr_slot != -1) {
3680 path->slots[0] = first_xattr_slot;
3681 ret = btrfs_load_inode_props(inode, path);
3682 if (ret)
3683 btrfs_err(root->fs_info,
3684 "error loading props for ino %llu (root %llu): %d",
3685 btrfs_ino(inode),
3686 root->root_key.objectid, ret);
3687 }
3688 btrfs_free_path(path);
3689
3690 if (!maybe_acls)
3691 cache_no_acl(inode);
3692
3693 switch (inode->i_mode & S_IFMT) {
3694 case S_IFREG:
3695 inode->i_mapping->a_ops = &btrfs_aops;
3696 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3697 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3698 inode->i_fop = &btrfs_file_operations;
3699 inode->i_op = &btrfs_file_inode_operations;
3700 break;
3701 case S_IFDIR:
3702 inode->i_fop = &btrfs_dir_file_operations;
3703 if (root == root->fs_info->tree_root)
3704 inode->i_op = &btrfs_dir_ro_inode_operations;
3705 else
3706 inode->i_op = &btrfs_dir_inode_operations;
3707 break;
3708 case S_IFLNK:
3709 inode->i_op = &btrfs_symlink_inode_operations;
3710 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3711 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3712 break;
3713 default:
3714 inode->i_op = &btrfs_special_inode_operations;
3715 init_special_inode(inode, inode->i_mode, rdev);
3716 break;
3717 }
3718
3719 btrfs_update_iflags(inode);
3720 return;
3721
3722 make_bad:
3723 btrfs_free_path(path);
3724 make_bad_inode(inode);
3725 }
3726
3727 /*
3728 * given a leaf and an inode, copy the inode fields into the leaf
3729 */
3730 static void fill_inode_item(struct btrfs_trans_handle *trans,
3731 struct extent_buffer *leaf,
3732 struct btrfs_inode_item *item,
3733 struct inode *inode)
3734 {
3735 struct btrfs_map_token token;
3736
3737 btrfs_init_map_token(&token);
3738
3739 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3740 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3741 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3742 &token);
3743 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3744 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3745
3746 btrfs_set_token_timespec_sec(leaf, &item->atime,
3747 inode->i_atime.tv_sec, &token);
3748 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3749 inode->i_atime.tv_nsec, &token);
3750
3751 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3752 inode->i_mtime.tv_sec, &token);
3753 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3754 inode->i_mtime.tv_nsec, &token);
3755
3756 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3757 inode->i_ctime.tv_sec, &token);
3758 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3759 inode->i_ctime.tv_nsec, &token);
3760
3761 btrfs_set_token_timespec_sec(leaf, &item->otime,
3762 BTRFS_I(inode)->i_otime.tv_sec, &token);
3763 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3764 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3765
3766 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3767 &token);
3768 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3769 &token);
3770 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3771 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3772 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3773 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3774 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3775 }
3776
3777 /*
3778 * copy everything in the in-memory inode into the btree.
3779 */
3780 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3781 struct btrfs_root *root, struct inode *inode)
3782 {
3783 struct btrfs_inode_item *inode_item;
3784 struct btrfs_path *path;
3785 struct extent_buffer *leaf;
3786 int ret;
3787
3788 path = btrfs_alloc_path();
3789 if (!path)
3790 return -ENOMEM;
3791
3792 path->leave_spinning = 1;
3793 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3794 1);
3795 if (ret) {
3796 if (ret > 0)
3797 ret = -ENOENT;
3798 goto failed;
3799 }
3800
3801 leaf = path->nodes[0];
3802 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3803 struct btrfs_inode_item);
3804
3805 fill_inode_item(trans, leaf, inode_item, inode);
3806 btrfs_mark_buffer_dirty(leaf);
3807 btrfs_set_inode_last_trans(trans, inode);
3808 ret = 0;
3809 failed:
3810 btrfs_free_path(path);
3811 return ret;
3812 }
3813
3814 /*
3815 * copy everything in the in-memory inode into the btree.
3816 */
3817 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3818 struct btrfs_root *root, struct inode *inode)
3819 {
3820 int ret;
3821
3822 /*
3823 * If the inode is a free space inode, we can deadlock during commit
3824 * if we put it into the delayed code.
3825 *
3826 * The data relocation inode should also be directly updated
3827 * without delay
3828 */
3829 if (!btrfs_is_free_space_inode(inode)
3830 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3831 && !root->fs_info->log_root_recovering) {
3832 btrfs_update_root_times(trans, root);
3833
3834 ret = btrfs_delayed_update_inode(trans, root, inode);
3835 if (!ret)
3836 btrfs_set_inode_last_trans(trans, inode);
3837 return ret;
3838 }
3839
3840 return btrfs_update_inode_item(trans, root, inode);
3841 }
3842
3843 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3844 struct btrfs_root *root,
3845 struct inode *inode)
3846 {
3847 int ret;
3848
3849 ret = btrfs_update_inode(trans, root, inode);
3850 if (ret == -ENOSPC)
3851 return btrfs_update_inode_item(trans, root, inode);
3852 return ret;
3853 }
3854
3855 /*
3856 * unlink helper that gets used here in inode.c and in the tree logging
3857 * recovery code. It remove a link in a directory with a given name, and
3858 * also drops the back refs in the inode to the directory
3859 */
3860 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3861 struct btrfs_root *root,
3862 struct inode *dir, struct inode *inode,
3863 const char *name, int name_len)
3864 {
3865 struct btrfs_path *path;
3866 int ret = 0;
3867 struct extent_buffer *leaf;
3868 struct btrfs_dir_item *di;
3869 struct btrfs_key key;
3870 u64 index;
3871 u64 ino = btrfs_ino(inode);
3872 u64 dir_ino = btrfs_ino(dir);
3873
3874 path = btrfs_alloc_path();
3875 if (!path) {
3876 ret = -ENOMEM;
3877 goto out;
3878 }
3879
3880 path->leave_spinning = 1;
3881 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3882 name, name_len, -1);
3883 if (IS_ERR(di)) {
3884 ret = PTR_ERR(di);
3885 goto err;
3886 }
3887 if (!di) {
3888 ret = -ENOENT;
3889 goto err;
3890 }
3891 leaf = path->nodes[0];
3892 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3893 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3894 if (ret)
3895 goto err;
3896 btrfs_release_path(path);
3897
3898 /*
3899 * If we don't have dir index, we have to get it by looking up
3900 * the inode ref, since we get the inode ref, remove it directly,
3901 * it is unnecessary to do delayed deletion.
3902 *
3903 * But if we have dir index, needn't search inode ref to get it.
3904 * Since the inode ref is close to the inode item, it is better
3905 * that we delay to delete it, and just do this deletion when
3906 * we update the inode item.
3907 */
3908 if (BTRFS_I(inode)->dir_index) {
3909 ret = btrfs_delayed_delete_inode_ref(inode);
3910 if (!ret) {
3911 index = BTRFS_I(inode)->dir_index;
3912 goto skip_backref;
3913 }
3914 }
3915
3916 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3917 dir_ino, &index);
3918 if (ret) {
3919 btrfs_info(root->fs_info,
3920 "failed to delete reference to %.*s, inode %llu parent %llu",
3921 name_len, name, ino, dir_ino);
3922 btrfs_abort_transaction(trans, root, ret);
3923 goto err;
3924 }
3925 skip_backref:
3926 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3927 if (ret) {
3928 btrfs_abort_transaction(trans, root, ret);
3929 goto err;
3930 }
3931
3932 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3933 inode, dir_ino);
3934 if (ret != 0 && ret != -ENOENT) {
3935 btrfs_abort_transaction(trans, root, ret);
3936 goto err;
3937 }
3938
3939 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3940 dir, index);
3941 if (ret == -ENOENT)
3942 ret = 0;
3943 else if (ret)
3944 btrfs_abort_transaction(trans, root, ret);
3945 err:
3946 btrfs_free_path(path);
3947 if (ret)
3948 goto out;
3949
3950 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3951 inode_inc_iversion(inode);
3952 inode_inc_iversion(dir);
3953 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3954 ret = btrfs_update_inode(trans, root, dir);
3955 out:
3956 return ret;
3957 }
3958
3959 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root,
3961 struct inode *dir, struct inode *inode,
3962 const char *name, int name_len)
3963 {
3964 int ret;
3965 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3966 if (!ret) {
3967 drop_nlink(inode);
3968 ret = btrfs_update_inode(trans, root, inode);
3969 }
3970 return ret;
3971 }
3972
3973 /*
3974 * helper to start transaction for unlink and rmdir.
3975 *
3976 * unlink and rmdir are special in btrfs, they do not always free space, so
3977 * if we cannot make our reservations the normal way try and see if there is
3978 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3979 * allow the unlink to occur.
3980 */
3981 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3982 {
3983 struct btrfs_trans_handle *trans;
3984 struct btrfs_root *root = BTRFS_I(dir)->root;
3985 int ret;
3986
3987 /*
3988 * 1 for the possible orphan item
3989 * 1 for the dir item
3990 * 1 for the dir index
3991 * 1 for the inode ref
3992 * 1 for the inode
3993 */
3994 trans = btrfs_start_transaction(root, 5);
3995 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3996 return trans;
3997
3998 if (PTR_ERR(trans) == -ENOSPC) {
3999 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4000
4001 trans = btrfs_start_transaction(root, 0);
4002 if (IS_ERR(trans))
4003 return trans;
4004 ret = btrfs_cond_migrate_bytes(root->fs_info,
4005 &root->fs_info->trans_block_rsv,
4006 num_bytes, 5);
4007 if (ret) {
4008 btrfs_end_transaction(trans, root);
4009 return ERR_PTR(ret);
4010 }
4011 trans->block_rsv = &root->fs_info->trans_block_rsv;
4012 trans->bytes_reserved = num_bytes;
4013 }
4014 return trans;
4015 }
4016
4017 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4018 {
4019 struct btrfs_root *root = BTRFS_I(dir)->root;
4020 struct btrfs_trans_handle *trans;
4021 struct inode *inode = dentry->d_inode;
4022 int ret;
4023
4024 trans = __unlink_start_trans(dir);
4025 if (IS_ERR(trans))
4026 return PTR_ERR(trans);
4027
4028 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
4029
4030 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4031 dentry->d_name.name, dentry->d_name.len);
4032 if (ret)
4033 goto out;
4034
4035 if (inode->i_nlink == 0) {
4036 ret = btrfs_orphan_add(trans, inode);
4037 if (ret)
4038 goto out;
4039 }
4040
4041 out:
4042 btrfs_end_transaction(trans, root);
4043 btrfs_btree_balance_dirty(root);
4044 return ret;
4045 }
4046
4047 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4048 struct btrfs_root *root,
4049 struct inode *dir, u64 objectid,
4050 const char *name, int name_len)
4051 {
4052 struct btrfs_path *path;
4053 struct extent_buffer *leaf;
4054 struct btrfs_dir_item *di;
4055 struct btrfs_key key;
4056 u64 index;
4057 int ret;
4058 u64 dir_ino = btrfs_ino(dir);
4059
4060 path = btrfs_alloc_path();
4061 if (!path)
4062 return -ENOMEM;
4063
4064 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4065 name, name_len, -1);
4066 if (IS_ERR_OR_NULL(di)) {
4067 if (!di)
4068 ret = -ENOENT;
4069 else
4070 ret = PTR_ERR(di);
4071 goto out;
4072 }
4073
4074 leaf = path->nodes[0];
4075 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4076 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4077 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4078 if (ret) {
4079 btrfs_abort_transaction(trans, root, ret);
4080 goto out;
4081 }
4082 btrfs_release_path(path);
4083
4084 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4085 objectid, root->root_key.objectid,
4086 dir_ino, &index, name, name_len);
4087 if (ret < 0) {
4088 if (ret != -ENOENT) {
4089 btrfs_abort_transaction(trans, root, ret);
4090 goto out;
4091 }
4092 di = btrfs_search_dir_index_item(root, path, dir_ino,
4093 name, name_len);
4094 if (IS_ERR_OR_NULL(di)) {
4095 if (!di)
4096 ret = -ENOENT;
4097 else
4098 ret = PTR_ERR(di);
4099 btrfs_abort_transaction(trans, root, ret);
4100 goto out;
4101 }
4102
4103 leaf = path->nodes[0];
4104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4105 btrfs_release_path(path);
4106 index = key.offset;
4107 }
4108 btrfs_release_path(path);
4109
4110 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4111 if (ret) {
4112 btrfs_abort_transaction(trans, root, ret);
4113 goto out;
4114 }
4115
4116 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4117 inode_inc_iversion(dir);
4118 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4119 ret = btrfs_update_inode_fallback(trans, root, dir);
4120 if (ret)
4121 btrfs_abort_transaction(trans, root, ret);
4122 out:
4123 btrfs_free_path(path);
4124 return ret;
4125 }
4126
4127 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4128 {
4129 struct inode *inode = dentry->d_inode;
4130 int err = 0;
4131 struct btrfs_root *root = BTRFS_I(dir)->root;
4132 struct btrfs_trans_handle *trans;
4133
4134 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4135 return -ENOTEMPTY;
4136 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4137 return -EPERM;
4138
4139 trans = __unlink_start_trans(dir);
4140 if (IS_ERR(trans))
4141 return PTR_ERR(trans);
4142
4143 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4144 err = btrfs_unlink_subvol(trans, root, dir,
4145 BTRFS_I(inode)->location.objectid,
4146 dentry->d_name.name,
4147 dentry->d_name.len);
4148 goto out;
4149 }
4150
4151 err = btrfs_orphan_add(trans, inode);
4152 if (err)
4153 goto out;
4154
4155 /* now the directory is empty */
4156 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4157 dentry->d_name.name, dentry->d_name.len);
4158 if (!err)
4159 btrfs_i_size_write(inode, 0);
4160 out:
4161 btrfs_end_transaction(trans, root);
4162 btrfs_btree_balance_dirty(root);
4163
4164 return err;
4165 }
4166
4167 /*
4168 * this can truncate away extent items, csum items and directory items.
4169 * It starts at a high offset and removes keys until it can't find
4170 * any higher than new_size
4171 *
4172 * csum items that cross the new i_size are truncated to the new size
4173 * as well.
4174 *
4175 * min_type is the minimum key type to truncate down to. If set to 0, this
4176 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4177 */
4178 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4179 struct btrfs_root *root,
4180 struct inode *inode,
4181 u64 new_size, u32 min_type)
4182 {
4183 struct btrfs_path *path;
4184 struct extent_buffer *leaf;
4185 struct btrfs_file_extent_item *fi;
4186 struct btrfs_key key;
4187 struct btrfs_key found_key;
4188 u64 extent_start = 0;
4189 u64 extent_num_bytes = 0;
4190 u64 extent_offset = 0;
4191 u64 item_end = 0;
4192 u64 last_size = (u64)-1;
4193 u32 found_type = (u8)-1;
4194 int found_extent;
4195 int del_item;
4196 int pending_del_nr = 0;
4197 int pending_del_slot = 0;
4198 int extent_type = -1;
4199 int ret;
4200 int err = 0;
4201 u64 ino = btrfs_ino(inode);
4202
4203 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4204
4205 path = btrfs_alloc_path();
4206 if (!path)
4207 return -ENOMEM;
4208 path->reada = -1;
4209
4210 /*
4211 * We want to drop from the next block forward in case this new size is
4212 * not block aligned since we will be keeping the last block of the
4213 * extent just the way it is.
4214 */
4215 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4216 root == root->fs_info->tree_root)
4217 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4218 root->sectorsize), (u64)-1, 0);
4219
4220 /*
4221 * This function is also used to drop the items in the log tree before
4222 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4223 * it is used to drop the loged items. So we shouldn't kill the delayed
4224 * items.
4225 */
4226 if (min_type == 0 && root == BTRFS_I(inode)->root)
4227 btrfs_kill_delayed_inode_items(inode);
4228
4229 key.objectid = ino;
4230 key.offset = (u64)-1;
4231 key.type = (u8)-1;
4232
4233 search_again:
4234 path->leave_spinning = 1;
4235 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4236 if (ret < 0) {
4237 err = ret;
4238 goto out;
4239 }
4240
4241 if (ret > 0) {
4242 /* there are no items in the tree for us to truncate, we're
4243 * done
4244 */
4245 if (path->slots[0] == 0)
4246 goto out;
4247 path->slots[0]--;
4248 }
4249
4250 while (1) {
4251 fi = NULL;
4252 leaf = path->nodes[0];
4253 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4254 found_type = found_key.type;
4255
4256 if (found_key.objectid != ino)
4257 break;
4258
4259 if (found_type < min_type)
4260 break;
4261
4262 item_end = found_key.offset;
4263 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4264 fi = btrfs_item_ptr(leaf, path->slots[0],
4265 struct btrfs_file_extent_item);
4266 extent_type = btrfs_file_extent_type(leaf, fi);
4267 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4268 item_end +=
4269 btrfs_file_extent_num_bytes(leaf, fi);
4270 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4271 item_end += btrfs_file_extent_inline_len(leaf,
4272 path->slots[0], fi);
4273 }
4274 item_end--;
4275 }
4276 if (found_type > min_type) {
4277 del_item = 1;
4278 } else {
4279 if (item_end < new_size)
4280 break;
4281 if (found_key.offset >= new_size)
4282 del_item = 1;
4283 else
4284 del_item = 0;
4285 }
4286 found_extent = 0;
4287 /* FIXME, shrink the extent if the ref count is only 1 */
4288 if (found_type != BTRFS_EXTENT_DATA_KEY)
4289 goto delete;
4290
4291 if (del_item)
4292 last_size = found_key.offset;
4293 else
4294 last_size = new_size;
4295
4296 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4297 u64 num_dec;
4298 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4299 if (!del_item) {
4300 u64 orig_num_bytes =
4301 btrfs_file_extent_num_bytes(leaf, fi);
4302 extent_num_bytes = ALIGN(new_size -
4303 found_key.offset,
4304 root->sectorsize);
4305 btrfs_set_file_extent_num_bytes(leaf, fi,
4306 extent_num_bytes);
4307 num_dec = (orig_num_bytes -
4308 extent_num_bytes);
4309 if (test_bit(BTRFS_ROOT_REF_COWS,
4310 &root->state) &&
4311 extent_start != 0)
4312 inode_sub_bytes(inode, num_dec);
4313 btrfs_mark_buffer_dirty(leaf);
4314 } else {
4315 extent_num_bytes =
4316 btrfs_file_extent_disk_num_bytes(leaf,
4317 fi);
4318 extent_offset = found_key.offset -
4319 btrfs_file_extent_offset(leaf, fi);
4320
4321 /* FIXME blocksize != 4096 */
4322 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4323 if (extent_start != 0) {
4324 found_extent = 1;
4325 if (test_bit(BTRFS_ROOT_REF_COWS,
4326 &root->state))
4327 inode_sub_bytes(inode, num_dec);
4328 }
4329 }
4330 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4331 /*
4332 * we can't truncate inline items that have had
4333 * special encodings
4334 */
4335 if (!del_item &&
4336 btrfs_file_extent_compression(leaf, fi) == 0 &&
4337 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4338 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4339 u32 size = new_size - found_key.offset;
4340
4341 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4342 inode_sub_bytes(inode, item_end + 1 -
4343 new_size);
4344
4345 /*
4346 * update the ram bytes to properly reflect
4347 * the new size of our item
4348 */
4349 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4350 size =
4351 btrfs_file_extent_calc_inline_size(size);
4352 btrfs_truncate_item(root, path, size, 1);
4353 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4354 &root->state)) {
4355 inode_sub_bytes(inode, item_end + 1 -
4356 found_key.offset);
4357 }
4358 }
4359 delete:
4360 if (del_item) {
4361 if (!pending_del_nr) {
4362 /* no pending yet, add ourselves */
4363 pending_del_slot = path->slots[0];
4364 pending_del_nr = 1;
4365 } else if (pending_del_nr &&
4366 path->slots[0] + 1 == pending_del_slot) {
4367 /* hop on the pending chunk */
4368 pending_del_nr++;
4369 pending_del_slot = path->slots[0];
4370 } else {
4371 BUG();
4372 }
4373 } else {
4374 break;
4375 }
4376 if (found_extent &&
4377 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4378 root == root->fs_info->tree_root)) {
4379 btrfs_set_path_blocking(path);
4380 ret = btrfs_free_extent(trans, root, extent_start,
4381 extent_num_bytes, 0,
4382 btrfs_header_owner(leaf),
4383 ino, extent_offset, 0);
4384 BUG_ON(ret);
4385 }
4386
4387 if (found_type == BTRFS_INODE_ITEM_KEY)
4388 break;
4389
4390 if (path->slots[0] == 0 ||
4391 path->slots[0] != pending_del_slot) {
4392 if (pending_del_nr) {
4393 ret = btrfs_del_items(trans, root, path,
4394 pending_del_slot,
4395 pending_del_nr);
4396 if (ret) {
4397 btrfs_abort_transaction(trans,
4398 root, ret);
4399 goto error;
4400 }
4401 pending_del_nr = 0;
4402 }
4403 btrfs_release_path(path);
4404 goto search_again;
4405 } else {
4406 path->slots[0]--;
4407 }
4408 }
4409 out:
4410 if (pending_del_nr) {
4411 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4412 pending_del_nr);
4413 if (ret)
4414 btrfs_abort_transaction(trans, root, ret);
4415 }
4416 error:
4417 if (last_size != (u64)-1 &&
4418 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4419 btrfs_ordered_update_i_size(inode, last_size, NULL);
4420 btrfs_free_path(path);
4421 return err;
4422 }
4423
4424 /*
4425 * btrfs_truncate_page - read, zero a chunk and write a page
4426 * @inode - inode that we're zeroing
4427 * @from - the offset to start zeroing
4428 * @len - the length to zero, 0 to zero the entire range respective to the
4429 * offset
4430 * @front - zero up to the offset instead of from the offset on
4431 *
4432 * This will find the page for the "from" offset and cow the page and zero the
4433 * part we want to zero. This is used with truncate and hole punching.
4434 */
4435 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4436 int front)
4437 {
4438 struct address_space *mapping = inode->i_mapping;
4439 struct btrfs_root *root = BTRFS_I(inode)->root;
4440 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4441 struct btrfs_ordered_extent *ordered;
4442 struct extent_state *cached_state = NULL;
4443 char *kaddr;
4444 u32 blocksize = root->sectorsize;
4445 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4446 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4447 struct page *page;
4448 gfp_t mask = btrfs_alloc_write_mask(mapping);
4449 int ret = 0;
4450 u64 page_start;
4451 u64 page_end;
4452
4453 if ((offset & (blocksize - 1)) == 0 &&
4454 (!len || ((len & (blocksize - 1)) == 0)))
4455 goto out;
4456 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4457 if (ret)
4458 goto out;
4459
4460 again:
4461 page = find_or_create_page(mapping, index, mask);
4462 if (!page) {
4463 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4464 ret = -ENOMEM;
4465 goto out;
4466 }
4467
4468 page_start = page_offset(page);
4469 page_end = page_start + PAGE_CACHE_SIZE - 1;
4470
4471 if (!PageUptodate(page)) {
4472 ret = btrfs_readpage(NULL, page);
4473 lock_page(page);
4474 if (page->mapping != mapping) {
4475 unlock_page(page);
4476 page_cache_release(page);
4477 goto again;
4478 }
4479 if (!PageUptodate(page)) {
4480 ret = -EIO;
4481 goto out_unlock;
4482 }
4483 }
4484 wait_on_page_writeback(page);
4485
4486 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4487 set_page_extent_mapped(page);
4488
4489 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4490 if (ordered) {
4491 unlock_extent_cached(io_tree, page_start, page_end,
4492 &cached_state, GFP_NOFS);
4493 unlock_page(page);
4494 page_cache_release(page);
4495 btrfs_start_ordered_extent(inode, ordered, 1);
4496 btrfs_put_ordered_extent(ordered);
4497 goto again;
4498 }
4499
4500 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4501 EXTENT_DIRTY | EXTENT_DELALLOC |
4502 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4503 0, 0, &cached_state, GFP_NOFS);
4504
4505 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4506 &cached_state);
4507 if (ret) {
4508 unlock_extent_cached(io_tree, page_start, page_end,
4509 &cached_state, GFP_NOFS);
4510 goto out_unlock;
4511 }
4512
4513 if (offset != PAGE_CACHE_SIZE) {
4514 if (!len)
4515 len = PAGE_CACHE_SIZE - offset;
4516 kaddr = kmap(page);
4517 if (front)
4518 memset(kaddr, 0, offset);
4519 else
4520 memset(kaddr + offset, 0, len);
4521 flush_dcache_page(page);
4522 kunmap(page);
4523 }
4524 ClearPageChecked(page);
4525 set_page_dirty(page);
4526 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4527 GFP_NOFS);
4528
4529 out_unlock:
4530 if (ret)
4531 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4532 unlock_page(page);
4533 page_cache_release(page);
4534 out:
4535 return ret;
4536 }
4537
4538 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4539 u64 offset, u64 len)
4540 {
4541 struct btrfs_trans_handle *trans;
4542 int ret;
4543
4544 /*
4545 * Still need to make sure the inode looks like it's been updated so
4546 * that any holes get logged if we fsync.
4547 */
4548 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4549 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4550 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4551 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4552 return 0;
4553 }
4554
4555 /*
4556 * 1 - for the one we're dropping
4557 * 1 - for the one we're adding
4558 * 1 - for updating the inode.
4559 */
4560 trans = btrfs_start_transaction(root, 3);
4561 if (IS_ERR(trans))
4562 return PTR_ERR(trans);
4563
4564 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4565 if (ret) {
4566 btrfs_abort_transaction(trans, root, ret);
4567 btrfs_end_transaction(trans, root);
4568 return ret;
4569 }
4570
4571 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4572 0, 0, len, 0, len, 0, 0, 0);
4573 if (ret)
4574 btrfs_abort_transaction(trans, root, ret);
4575 else
4576 btrfs_update_inode(trans, root, inode);
4577 btrfs_end_transaction(trans, root);
4578 return ret;
4579 }
4580
4581 /*
4582 * This function puts in dummy file extents for the area we're creating a hole
4583 * for. So if we are truncating this file to a larger size we need to insert
4584 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4585 * the range between oldsize and size
4586 */
4587 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4588 {
4589 struct btrfs_root *root = BTRFS_I(inode)->root;
4590 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4591 struct extent_map *em = NULL;
4592 struct extent_state *cached_state = NULL;
4593 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4594 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4595 u64 block_end = ALIGN(size, root->sectorsize);
4596 u64 last_byte;
4597 u64 cur_offset;
4598 u64 hole_size;
4599 int err = 0;
4600
4601 /*
4602 * If our size started in the middle of a page we need to zero out the
4603 * rest of the page before we expand the i_size, otherwise we could
4604 * expose stale data.
4605 */
4606 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4607 if (err)
4608 return err;
4609
4610 if (size <= hole_start)
4611 return 0;
4612
4613 while (1) {
4614 struct btrfs_ordered_extent *ordered;
4615
4616 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4617 &cached_state);
4618 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4619 block_end - hole_start);
4620 if (!ordered)
4621 break;
4622 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4623 &cached_state, GFP_NOFS);
4624 btrfs_start_ordered_extent(inode, ordered, 1);
4625 btrfs_put_ordered_extent(ordered);
4626 }
4627
4628 cur_offset = hole_start;
4629 while (1) {
4630 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4631 block_end - cur_offset, 0);
4632 if (IS_ERR(em)) {
4633 err = PTR_ERR(em);
4634 em = NULL;
4635 break;
4636 }
4637 last_byte = min(extent_map_end(em), block_end);
4638 last_byte = ALIGN(last_byte , root->sectorsize);
4639 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4640 struct extent_map *hole_em;
4641 hole_size = last_byte - cur_offset;
4642
4643 err = maybe_insert_hole(root, inode, cur_offset,
4644 hole_size);
4645 if (err)
4646 break;
4647 btrfs_drop_extent_cache(inode, cur_offset,
4648 cur_offset + hole_size - 1, 0);
4649 hole_em = alloc_extent_map();
4650 if (!hole_em) {
4651 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4652 &BTRFS_I(inode)->runtime_flags);
4653 goto next;
4654 }
4655 hole_em->start = cur_offset;
4656 hole_em->len = hole_size;
4657 hole_em->orig_start = cur_offset;
4658
4659 hole_em->block_start = EXTENT_MAP_HOLE;
4660 hole_em->block_len = 0;
4661 hole_em->orig_block_len = 0;
4662 hole_em->ram_bytes = hole_size;
4663 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4664 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4665 hole_em->generation = root->fs_info->generation;
4666
4667 while (1) {
4668 write_lock(&em_tree->lock);
4669 err = add_extent_mapping(em_tree, hole_em, 1);
4670 write_unlock(&em_tree->lock);
4671 if (err != -EEXIST)
4672 break;
4673 btrfs_drop_extent_cache(inode, cur_offset,
4674 cur_offset +
4675 hole_size - 1, 0);
4676 }
4677 free_extent_map(hole_em);
4678 }
4679 next:
4680 free_extent_map(em);
4681 em = NULL;
4682 cur_offset = last_byte;
4683 if (cur_offset >= block_end)
4684 break;
4685 }
4686 free_extent_map(em);
4687 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4688 GFP_NOFS);
4689 return err;
4690 }
4691
4692 static int wait_snapshoting_atomic_t(atomic_t *a)
4693 {
4694 schedule();
4695 return 0;
4696 }
4697
4698 static void wait_for_snapshot_creation(struct btrfs_root *root)
4699 {
4700 while (true) {
4701 int ret;
4702
4703 ret = btrfs_start_write_no_snapshoting(root);
4704 if (ret)
4705 break;
4706 wait_on_atomic_t(&root->will_be_snapshoted,
4707 wait_snapshoting_atomic_t,
4708 TASK_UNINTERRUPTIBLE);
4709 }
4710 }
4711
4712 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4713 {
4714 struct btrfs_root *root = BTRFS_I(inode)->root;
4715 struct btrfs_trans_handle *trans;
4716 loff_t oldsize = i_size_read(inode);
4717 loff_t newsize = attr->ia_size;
4718 int mask = attr->ia_valid;
4719 int ret;
4720
4721 /*
4722 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4723 * special case where we need to update the times despite not having
4724 * these flags set. For all other operations the VFS set these flags
4725 * explicitly if it wants a timestamp update.
4726 */
4727 if (newsize != oldsize) {
4728 inode_inc_iversion(inode);
4729 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4730 inode->i_ctime = inode->i_mtime =
4731 current_fs_time(inode->i_sb);
4732 }
4733
4734 if (newsize > oldsize) {
4735 truncate_pagecache(inode, newsize);
4736 /*
4737 * Don't do an expanding truncate while snapshoting is ongoing.
4738 * This is to ensure the snapshot captures a fully consistent
4739 * state of this file - if the snapshot captures this expanding
4740 * truncation, it must capture all writes that happened before
4741 * this truncation.
4742 */
4743 wait_for_snapshot_creation(root);
4744 ret = btrfs_cont_expand(inode, oldsize, newsize);
4745 if (ret) {
4746 btrfs_end_write_no_snapshoting(root);
4747 return ret;
4748 }
4749
4750 trans = btrfs_start_transaction(root, 1);
4751 if (IS_ERR(trans)) {
4752 btrfs_end_write_no_snapshoting(root);
4753 return PTR_ERR(trans);
4754 }
4755
4756 i_size_write(inode, newsize);
4757 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4758 ret = btrfs_update_inode(trans, root, inode);
4759 btrfs_end_write_no_snapshoting(root);
4760 btrfs_end_transaction(trans, root);
4761 } else {
4762
4763 /*
4764 * We're truncating a file that used to have good data down to
4765 * zero. Make sure it gets into the ordered flush list so that
4766 * any new writes get down to disk quickly.
4767 */
4768 if (newsize == 0)
4769 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4770 &BTRFS_I(inode)->runtime_flags);
4771
4772 /*
4773 * 1 for the orphan item we're going to add
4774 * 1 for the orphan item deletion.
4775 */
4776 trans = btrfs_start_transaction(root, 2);
4777 if (IS_ERR(trans))
4778 return PTR_ERR(trans);
4779
4780 /*
4781 * We need to do this in case we fail at _any_ point during the
4782 * actual truncate. Once we do the truncate_setsize we could
4783 * invalidate pages which forces any outstanding ordered io to
4784 * be instantly completed which will give us extents that need
4785 * to be truncated. If we fail to get an orphan inode down we
4786 * could have left over extents that were never meant to live,
4787 * so we need to garuntee from this point on that everything
4788 * will be consistent.
4789 */
4790 ret = btrfs_orphan_add(trans, inode);
4791 btrfs_end_transaction(trans, root);
4792 if (ret)
4793 return ret;
4794
4795 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4796 truncate_setsize(inode, newsize);
4797
4798 /* Disable nonlocked read DIO to avoid the end less truncate */
4799 btrfs_inode_block_unlocked_dio(inode);
4800 inode_dio_wait(inode);
4801 btrfs_inode_resume_unlocked_dio(inode);
4802
4803 ret = btrfs_truncate(inode);
4804 if (ret && inode->i_nlink) {
4805 int err;
4806
4807 /*
4808 * failed to truncate, disk_i_size is only adjusted down
4809 * as we remove extents, so it should represent the true
4810 * size of the inode, so reset the in memory size and
4811 * delete our orphan entry.
4812 */
4813 trans = btrfs_join_transaction(root);
4814 if (IS_ERR(trans)) {
4815 btrfs_orphan_del(NULL, inode);
4816 return ret;
4817 }
4818 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4819 err = btrfs_orphan_del(trans, inode);
4820 if (err)
4821 btrfs_abort_transaction(trans, root, err);
4822 btrfs_end_transaction(trans, root);
4823 }
4824 }
4825
4826 return ret;
4827 }
4828
4829 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4830 {
4831 struct inode *inode = dentry->d_inode;
4832 struct btrfs_root *root = BTRFS_I(inode)->root;
4833 int err;
4834
4835 if (btrfs_root_readonly(root))
4836 return -EROFS;
4837
4838 err = inode_change_ok(inode, attr);
4839 if (err)
4840 return err;
4841
4842 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4843 err = btrfs_setsize(inode, attr);
4844 if (err)
4845 return err;
4846 }
4847
4848 if (attr->ia_valid) {
4849 setattr_copy(inode, attr);
4850 inode_inc_iversion(inode);
4851 err = btrfs_dirty_inode(inode);
4852
4853 if (!err && attr->ia_valid & ATTR_MODE)
4854 err = posix_acl_chmod(inode, inode->i_mode);
4855 }
4856
4857 return err;
4858 }
4859
4860 /*
4861 * While truncating the inode pages during eviction, we get the VFS calling
4862 * btrfs_invalidatepage() against each page of the inode. This is slow because
4863 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4864 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4865 * extent_state structures over and over, wasting lots of time.
4866 *
4867 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4868 * those expensive operations on a per page basis and do only the ordered io
4869 * finishing, while we release here the extent_map and extent_state structures,
4870 * without the excessive merging and splitting.
4871 */
4872 static void evict_inode_truncate_pages(struct inode *inode)
4873 {
4874 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4875 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4876 struct rb_node *node;
4877
4878 ASSERT(inode->i_state & I_FREEING);
4879 truncate_inode_pages_final(&inode->i_data);
4880
4881 write_lock(&map_tree->lock);
4882 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4883 struct extent_map *em;
4884
4885 node = rb_first(&map_tree->map);
4886 em = rb_entry(node, struct extent_map, rb_node);
4887 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4888 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4889 remove_extent_mapping(map_tree, em);
4890 free_extent_map(em);
4891 if (need_resched()) {
4892 write_unlock(&map_tree->lock);
4893 cond_resched();
4894 write_lock(&map_tree->lock);
4895 }
4896 }
4897 write_unlock(&map_tree->lock);
4898
4899 spin_lock(&io_tree->lock);
4900 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4901 struct extent_state *state;
4902 struct extent_state *cached_state = NULL;
4903
4904 node = rb_first(&io_tree->state);
4905 state = rb_entry(node, struct extent_state, rb_node);
4906 atomic_inc(&state->refs);
4907 spin_unlock(&io_tree->lock);
4908
4909 lock_extent_bits(io_tree, state->start, state->end,
4910 0, &cached_state);
4911 clear_extent_bit(io_tree, state->start, state->end,
4912 EXTENT_LOCKED | EXTENT_DIRTY |
4913 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4914 EXTENT_DEFRAG, 1, 1,
4915 &cached_state, GFP_NOFS);
4916 free_extent_state(state);
4917
4918 cond_resched();
4919 spin_lock(&io_tree->lock);
4920 }
4921 spin_unlock(&io_tree->lock);
4922 }
4923
4924 void btrfs_evict_inode(struct inode *inode)
4925 {
4926 struct btrfs_trans_handle *trans;
4927 struct btrfs_root *root = BTRFS_I(inode)->root;
4928 struct btrfs_block_rsv *rsv, *global_rsv;
4929 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4930 int ret;
4931
4932 trace_btrfs_inode_evict(inode);
4933
4934 evict_inode_truncate_pages(inode);
4935
4936 if (inode->i_nlink &&
4937 ((btrfs_root_refs(&root->root_item) != 0 &&
4938 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4939 btrfs_is_free_space_inode(inode)))
4940 goto no_delete;
4941
4942 if (is_bad_inode(inode)) {
4943 btrfs_orphan_del(NULL, inode);
4944 goto no_delete;
4945 }
4946 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4947 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4948
4949 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4950
4951 if (root->fs_info->log_root_recovering) {
4952 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4953 &BTRFS_I(inode)->runtime_flags));
4954 goto no_delete;
4955 }
4956
4957 if (inode->i_nlink > 0) {
4958 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4959 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4960 goto no_delete;
4961 }
4962
4963 ret = btrfs_commit_inode_delayed_inode(inode);
4964 if (ret) {
4965 btrfs_orphan_del(NULL, inode);
4966 goto no_delete;
4967 }
4968
4969 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4970 if (!rsv) {
4971 btrfs_orphan_del(NULL, inode);
4972 goto no_delete;
4973 }
4974 rsv->size = min_size;
4975 rsv->failfast = 1;
4976 global_rsv = &root->fs_info->global_block_rsv;
4977
4978 btrfs_i_size_write(inode, 0);
4979
4980 /*
4981 * This is a bit simpler than btrfs_truncate since we've already
4982 * reserved our space for our orphan item in the unlink, so we just
4983 * need to reserve some slack space in case we add bytes and update
4984 * inode item when doing the truncate.
4985 */
4986 while (1) {
4987 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4988 BTRFS_RESERVE_FLUSH_LIMIT);
4989
4990 /*
4991 * Try and steal from the global reserve since we will
4992 * likely not use this space anyway, we want to try as
4993 * hard as possible to get this to work.
4994 */
4995 if (ret)
4996 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4997
4998 if (ret) {
4999 btrfs_warn(root->fs_info,
5000 "Could not get space for a delete, will truncate on mount %d",
5001 ret);
5002 btrfs_orphan_del(NULL, inode);
5003 btrfs_free_block_rsv(root, rsv);
5004 goto no_delete;
5005 }
5006
5007 trans = btrfs_join_transaction(root);
5008 if (IS_ERR(trans)) {
5009 btrfs_orphan_del(NULL, inode);
5010 btrfs_free_block_rsv(root, rsv);
5011 goto no_delete;
5012 }
5013
5014 trans->block_rsv = rsv;
5015
5016 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5017 if (ret != -ENOSPC)
5018 break;
5019
5020 trans->block_rsv = &root->fs_info->trans_block_rsv;
5021 btrfs_end_transaction(trans, root);
5022 trans = NULL;
5023 btrfs_btree_balance_dirty(root);
5024 }
5025
5026 btrfs_free_block_rsv(root, rsv);
5027
5028 /*
5029 * Errors here aren't a big deal, it just means we leave orphan items
5030 * in the tree. They will be cleaned up on the next mount.
5031 */
5032 if (ret == 0) {
5033 trans->block_rsv = root->orphan_block_rsv;
5034 btrfs_orphan_del(trans, inode);
5035 } else {
5036 btrfs_orphan_del(NULL, inode);
5037 }
5038
5039 trans->block_rsv = &root->fs_info->trans_block_rsv;
5040 if (!(root == root->fs_info->tree_root ||
5041 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5042 btrfs_return_ino(root, btrfs_ino(inode));
5043
5044 btrfs_end_transaction(trans, root);
5045 btrfs_btree_balance_dirty(root);
5046 no_delete:
5047 btrfs_remove_delayed_node(inode);
5048 clear_inode(inode);
5049 return;
5050 }
5051
5052 /*
5053 * this returns the key found in the dir entry in the location pointer.
5054 * If no dir entries were found, location->objectid is 0.
5055 */
5056 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5057 struct btrfs_key *location)
5058 {
5059 const char *name = dentry->d_name.name;
5060 int namelen = dentry->d_name.len;
5061 struct btrfs_dir_item *di;
5062 struct btrfs_path *path;
5063 struct btrfs_root *root = BTRFS_I(dir)->root;
5064 int ret = 0;
5065
5066 path = btrfs_alloc_path();
5067 if (!path)
5068 return -ENOMEM;
5069
5070 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5071 namelen, 0);
5072 if (IS_ERR(di))
5073 ret = PTR_ERR(di);
5074
5075 if (IS_ERR_OR_NULL(di))
5076 goto out_err;
5077
5078 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5079 out:
5080 btrfs_free_path(path);
5081 return ret;
5082 out_err:
5083 location->objectid = 0;
5084 goto out;
5085 }
5086
5087 /*
5088 * when we hit a tree root in a directory, the btrfs part of the inode
5089 * needs to be changed to reflect the root directory of the tree root. This
5090 * is kind of like crossing a mount point.
5091 */
5092 static int fixup_tree_root_location(struct btrfs_root *root,
5093 struct inode *dir,
5094 struct dentry *dentry,
5095 struct btrfs_key *location,
5096 struct btrfs_root **sub_root)
5097 {
5098 struct btrfs_path *path;
5099 struct btrfs_root *new_root;
5100 struct btrfs_root_ref *ref;
5101 struct extent_buffer *leaf;
5102 struct btrfs_key key;
5103 int ret;
5104 int err = 0;
5105
5106 path = btrfs_alloc_path();
5107 if (!path) {
5108 err = -ENOMEM;
5109 goto out;
5110 }
5111
5112 err = -ENOENT;
5113 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5114 key.type = BTRFS_ROOT_REF_KEY;
5115 key.offset = location->objectid;
5116
5117 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5118 0, 0);
5119 if (ret) {
5120 if (ret < 0)
5121 err = ret;
5122 goto out;
5123 }
5124
5125 leaf = path->nodes[0];
5126 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5127 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5128 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5129 goto out;
5130
5131 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5132 (unsigned long)(ref + 1),
5133 dentry->d_name.len);
5134 if (ret)
5135 goto out;
5136
5137 btrfs_release_path(path);
5138
5139 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5140 if (IS_ERR(new_root)) {
5141 err = PTR_ERR(new_root);
5142 goto out;
5143 }
5144
5145 *sub_root = new_root;
5146 location->objectid = btrfs_root_dirid(&new_root->root_item);
5147 location->type = BTRFS_INODE_ITEM_KEY;
5148 location->offset = 0;
5149 err = 0;
5150 out:
5151 btrfs_free_path(path);
5152 return err;
5153 }
5154
5155 static void inode_tree_add(struct inode *inode)
5156 {
5157 struct btrfs_root *root = BTRFS_I(inode)->root;
5158 struct btrfs_inode *entry;
5159 struct rb_node **p;
5160 struct rb_node *parent;
5161 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5162 u64 ino = btrfs_ino(inode);
5163
5164 if (inode_unhashed(inode))
5165 return;
5166 parent = NULL;
5167 spin_lock(&root->inode_lock);
5168 p = &root->inode_tree.rb_node;
5169 while (*p) {
5170 parent = *p;
5171 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5172
5173 if (ino < btrfs_ino(&entry->vfs_inode))
5174 p = &parent->rb_left;
5175 else if (ino > btrfs_ino(&entry->vfs_inode))
5176 p = &parent->rb_right;
5177 else {
5178 WARN_ON(!(entry->vfs_inode.i_state &
5179 (I_WILL_FREE | I_FREEING)));
5180 rb_replace_node(parent, new, &root->inode_tree);
5181 RB_CLEAR_NODE(parent);
5182 spin_unlock(&root->inode_lock);
5183 return;
5184 }
5185 }
5186 rb_link_node(new, parent, p);
5187 rb_insert_color(new, &root->inode_tree);
5188 spin_unlock(&root->inode_lock);
5189 }
5190
5191 static void inode_tree_del(struct inode *inode)
5192 {
5193 struct btrfs_root *root = BTRFS_I(inode)->root;
5194 int empty = 0;
5195
5196 spin_lock(&root->inode_lock);
5197 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5198 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5199 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5200 empty = RB_EMPTY_ROOT(&root->inode_tree);
5201 }
5202 spin_unlock(&root->inode_lock);
5203
5204 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5205 synchronize_srcu(&root->fs_info->subvol_srcu);
5206 spin_lock(&root->inode_lock);
5207 empty = RB_EMPTY_ROOT(&root->inode_tree);
5208 spin_unlock(&root->inode_lock);
5209 if (empty)
5210 btrfs_add_dead_root(root);
5211 }
5212 }
5213
5214 void btrfs_invalidate_inodes(struct btrfs_root *root)
5215 {
5216 struct rb_node *node;
5217 struct rb_node *prev;
5218 struct btrfs_inode *entry;
5219 struct inode *inode;
5220 u64 objectid = 0;
5221
5222 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5223 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5224
5225 spin_lock(&root->inode_lock);
5226 again:
5227 node = root->inode_tree.rb_node;
5228 prev = NULL;
5229 while (node) {
5230 prev = node;
5231 entry = rb_entry(node, struct btrfs_inode, rb_node);
5232
5233 if (objectid < btrfs_ino(&entry->vfs_inode))
5234 node = node->rb_left;
5235 else if (objectid > btrfs_ino(&entry->vfs_inode))
5236 node = node->rb_right;
5237 else
5238 break;
5239 }
5240 if (!node) {
5241 while (prev) {
5242 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5243 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5244 node = prev;
5245 break;
5246 }
5247 prev = rb_next(prev);
5248 }
5249 }
5250 while (node) {
5251 entry = rb_entry(node, struct btrfs_inode, rb_node);
5252 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5253 inode = igrab(&entry->vfs_inode);
5254 if (inode) {
5255 spin_unlock(&root->inode_lock);
5256 if (atomic_read(&inode->i_count) > 1)
5257 d_prune_aliases(inode);
5258 /*
5259 * btrfs_drop_inode will have it removed from
5260 * the inode cache when its usage count
5261 * hits zero.
5262 */
5263 iput(inode);
5264 cond_resched();
5265 spin_lock(&root->inode_lock);
5266 goto again;
5267 }
5268
5269 if (cond_resched_lock(&root->inode_lock))
5270 goto again;
5271
5272 node = rb_next(node);
5273 }
5274 spin_unlock(&root->inode_lock);
5275 }
5276
5277 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5278 {
5279 struct btrfs_iget_args *args = p;
5280 inode->i_ino = args->location->objectid;
5281 memcpy(&BTRFS_I(inode)->location, args->location,
5282 sizeof(*args->location));
5283 BTRFS_I(inode)->root = args->root;
5284 return 0;
5285 }
5286
5287 static int btrfs_find_actor(struct inode *inode, void *opaque)
5288 {
5289 struct btrfs_iget_args *args = opaque;
5290 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5291 args->root == BTRFS_I(inode)->root;
5292 }
5293
5294 static struct inode *btrfs_iget_locked(struct super_block *s,
5295 struct btrfs_key *location,
5296 struct btrfs_root *root)
5297 {
5298 struct inode *inode;
5299 struct btrfs_iget_args args;
5300 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5301
5302 args.location = location;
5303 args.root = root;
5304
5305 inode = iget5_locked(s, hashval, btrfs_find_actor,
5306 btrfs_init_locked_inode,
5307 (void *)&args);
5308 return inode;
5309 }
5310
5311 /* Get an inode object given its location and corresponding root.
5312 * Returns in *is_new if the inode was read from disk
5313 */
5314 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5315 struct btrfs_root *root, int *new)
5316 {
5317 struct inode *inode;
5318
5319 inode = btrfs_iget_locked(s, location, root);
5320 if (!inode)
5321 return ERR_PTR(-ENOMEM);
5322
5323 if (inode->i_state & I_NEW) {
5324 btrfs_read_locked_inode(inode);
5325 if (!is_bad_inode(inode)) {
5326 inode_tree_add(inode);
5327 unlock_new_inode(inode);
5328 if (new)
5329 *new = 1;
5330 } else {
5331 unlock_new_inode(inode);
5332 iput(inode);
5333 inode = ERR_PTR(-ESTALE);
5334 }
5335 }
5336
5337 return inode;
5338 }
5339
5340 static struct inode *new_simple_dir(struct super_block *s,
5341 struct btrfs_key *key,
5342 struct btrfs_root *root)
5343 {
5344 struct inode *inode = new_inode(s);
5345
5346 if (!inode)
5347 return ERR_PTR(-ENOMEM);
5348
5349 BTRFS_I(inode)->root = root;
5350 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5351 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5352
5353 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5354 inode->i_op = &btrfs_dir_ro_inode_operations;
5355 inode->i_fop = &simple_dir_operations;
5356 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5357 inode->i_mtime = CURRENT_TIME;
5358 inode->i_atime = inode->i_mtime;
5359 inode->i_ctime = inode->i_mtime;
5360 BTRFS_I(inode)->i_otime = inode->i_mtime;
5361
5362 return inode;
5363 }
5364
5365 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5366 {
5367 struct inode *inode;
5368 struct btrfs_root *root = BTRFS_I(dir)->root;
5369 struct btrfs_root *sub_root = root;
5370 struct btrfs_key location;
5371 int index;
5372 int ret = 0;
5373
5374 if (dentry->d_name.len > BTRFS_NAME_LEN)
5375 return ERR_PTR(-ENAMETOOLONG);
5376
5377 ret = btrfs_inode_by_name(dir, dentry, &location);
5378 if (ret < 0)
5379 return ERR_PTR(ret);
5380
5381 if (location.objectid == 0)
5382 return ERR_PTR(-ENOENT);
5383
5384 if (location.type == BTRFS_INODE_ITEM_KEY) {
5385 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5386 return inode;
5387 }
5388
5389 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5390
5391 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5392 ret = fixup_tree_root_location(root, dir, dentry,
5393 &location, &sub_root);
5394 if (ret < 0) {
5395 if (ret != -ENOENT)
5396 inode = ERR_PTR(ret);
5397 else
5398 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5399 } else {
5400 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5401 }
5402 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5403
5404 if (!IS_ERR(inode) && root != sub_root) {
5405 down_read(&root->fs_info->cleanup_work_sem);
5406 if (!(inode->i_sb->s_flags & MS_RDONLY))
5407 ret = btrfs_orphan_cleanup(sub_root);
5408 up_read(&root->fs_info->cleanup_work_sem);
5409 if (ret) {
5410 iput(inode);
5411 inode = ERR_PTR(ret);
5412 }
5413 }
5414
5415 return inode;
5416 }
5417
5418 static int btrfs_dentry_delete(const struct dentry *dentry)
5419 {
5420 struct btrfs_root *root;
5421 struct inode *inode = dentry->d_inode;
5422
5423 if (!inode && !IS_ROOT(dentry))
5424 inode = dentry->d_parent->d_inode;
5425
5426 if (inode) {
5427 root = BTRFS_I(inode)->root;
5428 if (btrfs_root_refs(&root->root_item) == 0)
5429 return 1;
5430
5431 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5432 return 1;
5433 }
5434 return 0;
5435 }
5436
5437 static void btrfs_dentry_release(struct dentry *dentry)
5438 {
5439 kfree(dentry->d_fsdata);
5440 }
5441
5442 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5443 unsigned int flags)
5444 {
5445 struct inode *inode;
5446
5447 inode = btrfs_lookup_dentry(dir, dentry);
5448 if (IS_ERR(inode)) {
5449 if (PTR_ERR(inode) == -ENOENT)
5450 inode = NULL;
5451 else
5452 return ERR_CAST(inode);
5453 }
5454
5455 return d_splice_alias(inode, dentry);
5456 }
5457
5458 unsigned char btrfs_filetype_table[] = {
5459 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5460 };
5461
5462 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5463 {
5464 struct inode *inode = file_inode(file);
5465 struct btrfs_root *root = BTRFS_I(inode)->root;
5466 struct btrfs_item *item;
5467 struct btrfs_dir_item *di;
5468 struct btrfs_key key;
5469 struct btrfs_key found_key;
5470 struct btrfs_path *path;
5471 struct list_head ins_list;
5472 struct list_head del_list;
5473 int ret;
5474 struct extent_buffer *leaf;
5475 int slot;
5476 unsigned char d_type;
5477 int over = 0;
5478 u32 di_cur;
5479 u32 di_total;
5480 u32 di_len;
5481 int key_type = BTRFS_DIR_INDEX_KEY;
5482 char tmp_name[32];
5483 char *name_ptr;
5484 int name_len;
5485 int is_curr = 0; /* ctx->pos points to the current index? */
5486
5487 /* FIXME, use a real flag for deciding about the key type */
5488 if (root->fs_info->tree_root == root)
5489 key_type = BTRFS_DIR_ITEM_KEY;
5490
5491 if (!dir_emit_dots(file, ctx))
5492 return 0;
5493
5494 path = btrfs_alloc_path();
5495 if (!path)
5496 return -ENOMEM;
5497
5498 path->reada = 1;
5499
5500 if (key_type == BTRFS_DIR_INDEX_KEY) {
5501 INIT_LIST_HEAD(&ins_list);
5502 INIT_LIST_HEAD(&del_list);
5503 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5504 }
5505
5506 key.type = key_type;
5507 key.offset = ctx->pos;
5508 key.objectid = btrfs_ino(inode);
5509
5510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5511 if (ret < 0)
5512 goto err;
5513
5514 while (1) {
5515 leaf = path->nodes[0];
5516 slot = path->slots[0];
5517 if (slot >= btrfs_header_nritems(leaf)) {
5518 ret = btrfs_next_leaf(root, path);
5519 if (ret < 0)
5520 goto err;
5521 else if (ret > 0)
5522 break;
5523 continue;
5524 }
5525
5526 item = btrfs_item_nr(slot);
5527 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5528
5529 if (found_key.objectid != key.objectid)
5530 break;
5531 if (found_key.type != key_type)
5532 break;
5533 if (found_key.offset < ctx->pos)
5534 goto next;
5535 if (key_type == BTRFS_DIR_INDEX_KEY &&
5536 btrfs_should_delete_dir_index(&del_list,
5537 found_key.offset))
5538 goto next;
5539
5540 ctx->pos = found_key.offset;
5541 is_curr = 1;
5542
5543 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5544 di_cur = 0;
5545 di_total = btrfs_item_size(leaf, item);
5546
5547 while (di_cur < di_total) {
5548 struct btrfs_key location;
5549
5550 if (verify_dir_item(root, leaf, di))
5551 break;
5552
5553 name_len = btrfs_dir_name_len(leaf, di);
5554 if (name_len <= sizeof(tmp_name)) {
5555 name_ptr = tmp_name;
5556 } else {
5557 name_ptr = kmalloc(name_len, GFP_NOFS);
5558 if (!name_ptr) {
5559 ret = -ENOMEM;
5560 goto err;
5561 }
5562 }
5563 read_extent_buffer(leaf, name_ptr,
5564 (unsigned long)(di + 1), name_len);
5565
5566 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5567 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5568
5569
5570 /* is this a reference to our own snapshot? If so
5571 * skip it.
5572 *
5573 * In contrast to old kernels, we insert the snapshot's
5574 * dir item and dir index after it has been created, so
5575 * we won't find a reference to our own snapshot. We
5576 * still keep the following code for backward
5577 * compatibility.
5578 */
5579 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5580 location.objectid == root->root_key.objectid) {
5581 over = 0;
5582 goto skip;
5583 }
5584 over = !dir_emit(ctx, name_ptr, name_len,
5585 location.objectid, d_type);
5586
5587 skip:
5588 if (name_ptr != tmp_name)
5589 kfree(name_ptr);
5590
5591 if (over)
5592 goto nopos;
5593 di_len = btrfs_dir_name_len(leaf, di) +
5594 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5595 di_cur += di_len;
5596 di = (struct btrfs_dir_item *)((char *)di + di_len);
5597 }
5598 next:
5599 path->slots[0]++;
5600 }
5601
5602 if (key_type == BTRFS_DIR_INDEX_KEY) {
5603 if (is_curr)
5604 ctx->pos++;
5605 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5606 if (ret)
5607 goto nopos;
5608 }
5609
5610 /* Reached end of directory/root. Bump pos past the last item. */
5611 ctx->pos++;
5612
5613 /*
5614 * Stop new entries from being returned after we return the last
5615 * entry.
5616 *
5617 * New directory entries are assigned a strictly increasing
5618 * offset. This means that new entries created during readdir
5619 * are *guaranteed* to be seen in the future by that readdir.
5620 * This has broken buggy programs which operate on names as
5621 * they're returned by readdir. Until we re-use freed offsets
5622 * we have this hack to stop new entries from being returned
5623 * under the assumption that they'll never reach this huge
5624 * offset.
5625 *
5626 * This is being careful not to overflow 32bit loff_t unless the
5627 * last entry requires it because doing so has broken 32bit apps
5628 * in the past.
5629 */
5630 if (key_type == BTRFS_DIR_INDEX_KEY) {
5631 if (ctx->pos >= INT_MAX)
5632 ctx->pos = LLONG_MAX;
5633 else
5634 ctx->pos = INT_MAX;
5635 }
5636 nopos:
5637 ret = 0;
5638 err:
5639 if (key_type == BTRFS_DIR_INDEX_KEY)
5640 btrfs_put_delayed_items(&ins_list, &del_list);
5641 btrfs_free_path(path);
5642 return ret;
5643 }
5644
5645 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5646 {
5647 struct btrfs_root *root = BTRFS_I(inode)->root;
5648 struct btrfs_trans_handle *trans;
5649 int ret = 0;
5650 bool nolock = false;
5651
5652 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5653 return 0;
5654
5655 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5656 nolock = true;
5657
5658 if (wbc->sync_mode == WB_SYNC_ALL) {
5659 if (nolock)
5660 trans = btrfs_join_transaction_nolock(root);
5661 else
5662 trans = btrfs_join_transaction(root);
5663 if (IS_ERR(trans))
5664 return PTR_ERR(trans);
5665 ret = btrfs_commit_transaction(trans, root);
5666 }
5667 return ret;
5668 }
5669
5670 /*
5671 * This is somewhat expensive, updating the tree every time the
5672 * inode changes. But, it is most likely to find the inode in cache.
5673 * FIXME, needs more benchmarking...there are no reasons other than performance
5674 * to keep or drop this code.
5675 */
5676 static int btrfs_dirty_inode(struct inode *inode)
5677 {
5678 struct btrfs_root *root = BTRFS_I(inode)->root;
5679 struct btrfs_trans_handle *trans;
5680 int ret;
5681
5682 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5683 return 0;
5684
5685 trans = btrfs_join_transaction(root);
5686 if (IS_ERR(trans))
5687 return PTR_ERR(trans);
5688
5689 ret = btrfs_update_inode(trans, root, inode);
5690 if (ret && ret == -ENOSPC) {
5691 /* whoops, lets try again with the full transaction */
5692 btrfs_end_transaction(trans, root);
5693 trans = btrfs_start_transaction(root, 1);
5694 if (IS_ERR(trans))
5695 return PTR_ERR(trans);
5696
5697 ret = btrfs_update_inode(trans, root, inode);
5698 }
5699 btrfs_end_transaction(trans, root);
5700 if (BTRFS_I(inode)->delayed_node)
5701 btrfs_balance_delayed_items(root);
5702
5703 return ret;
5704 }
5705
5706 /*
5707 * This is a copy of file_update_time. We need this so we can return error on
5708 * ENOSPC for updating the inode in the case of file write and mmap writes.
5709 */
5710 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5711 int flags)
5712 {
5713 struct btrfs_root *root = BTRFS_I(inode)->root;
5714
5715 if (btrfs_root_readonly(root))
5716 return -EROFS;
5717
5718 if (flags & S_VERSION)
5719 inode_inc_iversion(inode);
5720 if (flags & S_CTIME)
5721 inode->i_ctime = *now;
5722 if (flags & S_MTIME)
5723 inode->i_mtime = *now;
5724 if (flags & S_ATIME)
5725 inode->i_atime = *now;
5726 return btrfs_dirty_inode(inode);
5727 }
5728
5729 /*
5730 * find the highest existing sequence number in a directory
5731 * and then set the in-memory index_cnt variable to reflect
5732 * free sequence numbers
5733 */
5734 static int btrfs_set_inode_index_count(struct inode *inode)
5735 {
5736 struct btrfs_root *root = BTRFS_I(inode)->root;
5737 struct btrfs_key key, found_key;
5738 struct btrfs_path *path;
5739 struct extent_buffer *leaf;
5740 int ret;
5741
5742 key.objectid = btrfs_ino(inode);
5743 key.type = BTRFS_DIR_INDEX_KEY;
5744 key.offset = (u64)-1;
5745
5746 path = btrfs_alloc_path();
5747 if (!path)
5748 return -ENOMEM;
5749
5750 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5751 if (ret < 0)
5752 goto out;
5753 /* FIXME: we should be able to handle this */
5754 if (ret == 0)
5755 goto out;
5756 ret = 0;
5757
5758 /*
5759 * MAGIC NUMBER EXPLANATION:
5760 * since we search a directory based on f_pos we have to start at 2
5761 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5762 * else has to start at 2
5763 */
5764 if (path->slots[0] == 0) {
5765 BTRFS_I(inode)->index_cnt = 2;
5766 goto out;
5767 }
5768
5769 path->slots[0]--;
5770
5771 leaf = path->nodes[0];
5772 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5773
5774 if (found_key.objectid != btrfs_ino(inode) ||
5775 found_key.type != BTRFS_DIR_INDEX_KEY) {
5776 BTRFS_I(inode)->index_cnt = 2;
5777 goto out;
5778 }
5779
5780 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5781 out:
5782 btrfs_free_path(path);
5783 return ret;
5784 }
5785
5786 /*
5787 * helper to find a free sequence number in a given directory. This current
5788 * code is very simple, later versions will do smarter things in the btree
5789 */
5790 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5791 {
5792 int ret = 0;
5793
5794 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5795 ret = btrfs_inode_delayed_dir_index_count(dir);
5796 if (ret) {
5797 ret = btrfs_set_inode_index_count(dir);
5798 if (ret)
5799 return ret;
5800 }
5801 }
5802
5803 *index = BTRFS_I(dir)->index_cnt;
5804 BTRFS_I(dir)->index_cnt++;
5805
5806 return ret;
5807 }
5808
5809 static int btrfs_insert_inode_locked(struct inode *inode)
5810 {
5811 struct btrfs_iget_args args;
5812 args.location = &BTRFS_I(inode)->location;
5813 args.root = BTRFS_I(inode)->root;
5814
5815 return insert_inode_locked4(inode,
5816 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5817 btrfs_find_actor, &args);
5818 }
5819
5820 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5821 struct btrfs_root *root,
5822 struct inode *dir,
5823 const char *name, int name_len,
5824 u64 ref_objectid, u64 objectid,
5825 umode_t mode, u64 *index)
5826 {
5827 struct inode *inode;
5828 struct btrfs_inode_item *inode_item;
5829 struct btrfs_key *location;
5830 struct btrfs_path *path;
5831 struct btrfs_inode_ref *ref;
5832 struct btrfs_key key[2];
5833 u32 sizes[2];
5834 int nitems = name ? 2 : 1;
5835 unsigned long ptr;
5836 int ret;
5837
5838 path = btrfs_alloc_path();
5839 if (!path)
5840 return ERR_PTR(-ENOMEM);
5841
5842 inode = new_inode(root->fs_info->sb);
5843 if (!inode) {
5844 btrfs_free_path(path);
5845 return ERR_PTR(-ENOMEM);
5846 }
5847
5848 /*
5849 * O_TMPFILE, set link count to 0, so that after this point,
5850 * we fill in an inode item with the correct link count.
5851 */
5852 if (!name)
5853 set_nlink(inode, 0);
5854
5855 /*
5856 * we have to initialize this early, so we can reclaim the inode
5857 * number if we fail afterwards in this function.
5858 */
5859 inode->i_ino = objectid;
5860
5861 if (dir && name) {
5862 trace_btrfs_inode_request(dir);
5863
5864 ret = btrfs_set_inode_index(dir, index);
5865 if (ret) {
5866 btrfs_free_path(path);
5867 iput(inode);
5868 return ERR_PTR(ret);
5869 }
5870 } else if (dir) {
5871 *index = 0;
5872 }
5873 /*
5874 * index_cnt is ignored for everything but a dir,
5875 * btrfs_get_inode_index_count has an explanation for the magic
5876 * number
5877 */
5878 BTRFS_I(inode)->index_cnt = 2;
5879 BTRFS_I(inode)->dir_index = *index;
5880 BTRFS_I(inode)->root = root;
5881 BTRFS_I(inode)->generation = trans->transid;
5882 inode->i_generation = BTRFS_I(inode)->generation;
5883
5884 /*
5885 * We could have gotten an inode number from somebody who was fsynced
5886 * and then removed in this same transaction, so let's just set full
5887 * sync since it will be a full sync anyway and this will blow away the
5888 * old info in the log.
5889 */
5890 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5891
5892 key[0].objectid = objectid;
5893 key[0].type = BTRFS_INODE_ITEM_KEY;
5894 key[0].offset = 0;
5895
5896 sizes[0] = sizeof(struct btrfs_inode_item);
5897
5898 if (name) {
5899 /*
5900 * Start new inodes with an inode_ref. This is slightly more
5901 * efficient for small numbers of hard links since they will
5902 * be packed into one item. Extended refs will kick in if we
5903 * add more hard links than can fit in the ref item.
5904 */
5905 key[1].objectid = objectid;
5906 key[1].type = BTRFS_INODE_REF_KEY;
5907 key[1].offset = ref_objectid;
5908
5909 sizes[1] = name_len + sizeof(*ref);
5910 }
5911
5912 location = &BTRFS_I(inode)->location;
5913 location->objectid = objectid;
5914 location->offset = 0;
5915 location->type = BTRFS_INODE_ITEM_KEY;
5916
5917 ret = btrfs_insert_inode_locked(inode);
5918 if (ret < 0)
5919 goto fail;
5920
5921 path->leave_spinning = 1;
5922 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5923 if (ret != 0)
5924 goto fail_unlock;
5925
5926 inode_init_owner(inode, dir, mode);
5927 inode_set_bytes(inode, 0);
5928
5929 inode->i_mtime = CURRENT_TIME;
5930 inode->i_atime = inode->i_mtime;
5931 inode->i_ctime = inode->i_mtime;
5932 BTRFS_I(inode)->i_otime = inode->i_mtime;
5933
5934 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5935 struct btrfs_inode_item);
5936 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5937 sizeof(*inode_item));
5938 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5939
5940 if (name) {
5941 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5942 struct btrfs_inode_ref);
5943 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5944 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5945 ptr = (unsigned long)(ref + 1);
5946 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5947 }
5948
5949 btrfs_mark_buffer_dirty(path->nodes[0]);
5950 btrfs_free_path(path);
5951
5952 btrfs_inherit_iflags(inode, dir);
5953
5954 if (S_ISREG(mode)) {
5955 if (btrfs_test_opt(root, NODATASUM))
5956 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5957 if (btrfs_test_opt(root, NODATACOW))
5958 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5959 BTRFS_INODE_NODATASUM;
5960 }
5961
5962 inode_tree_add(inode);
5963
5964 trace_btrfs_inode_new(inode);
5965 btrfs_set_inode_last_trans(trans, inode);
5966
5967 btrfs_update_root_times(trans, root);
5968
5969 ret = btrfs_inode_inherit_props(trans, inode, dir);
5970 if (ret)
5971 btrfs_err(root->fs_info,
5972 "error inheriting props for ino %llu (root %llu): %d",
5973 btrfs_ino(inode), root->root_key.objectid, ret);
5974
5975 return inode;
5976
5977 fail_unlock:
5978 unlock_new_inode(inode);
5979 fail:
5980 if (dir && name)
5981 BTRFS_I(dir)->index_cnt--;
5982 btrfs_free_path(path);
5983 iput(inode);
5984 return ERR_PTR(ret);
5985 }
5986
5987 static inline u8 btrfs_inode_type(struct inode *inode)
5988 {
5989 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5990 }
5991
5992 /*
5993 * utility function to add 'inode' into 'parent_inode' with
5994 * a give name and a given sequence number.
5995 * if 'add_backref' is true, also insert a backref from the
5996 * inode to the parent directory.
5997 */
5998 int btrfs_add_link(struct btrfs_trans_handle *trans,
5999 struct inode *parent_inode, struct inode *inode,
6000 const char *name, int name_len, int add_backref, u64 index)
6001 {
6002 int ret = 0;
6003 struct btrfs_key key;
6004 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6005 u64 ino = btrfs_ino(inode);
6006 u64 parent_ino = btrfs_ino(parent_inode);
6007
6008 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6009 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6010 } else {
6011 key.objectid = ino;
6012 key.type = BTRFS_INODE_ITEM_KEY;
6013 key.offset = 0;
6014 }
6015
6016 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6017 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6018 key.objectid, root->root_key.objectid,
6019 parent_ino, index, name, name_len);
6020 } else if (add_backref) {
6021 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6022 parent_ino, index);
6023 }
6024
6025 /* Nothing to clean up yet */
6026 if (ret)
6027 return ret;
6028
6029 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6030 parent_inode, &key,
6031 btrfs_inode_type(inode), index);
6032 if (ret == -EEXIST || ret == -EOVERFLOW)
6033 goto fail_dir_item;
6034 else if (ret) {
6035 btrfs_abort_transaction(trans, root, ret);
6036 return ret;
6037 }
6038
6039 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6040 name_len * 2);
6041 inode_inc_iversion(parent_inode);
6042 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6043 ret = btrfs_update_inode(trans, root, parent_inode);
6044 if (ret)
6045 btrfs_abort_transaction(trans, root, ret);
6046 return ret;
6047
6048 fail_dir_item:
6049 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6050 u64 local_index;
6051 int err;
6052 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6053 key.objectid, root->root_key.objectid,
6054 parent_ino, &local_index, name, name_len);
6055
6056 } else if (add_backref) {
6057 u64 local_index;
6058 int err;
6059
6060 err = btrfs_del_inode_ref(trans, root, name, name_len,
6061 ino, parent_ino, &local_index);
6062 }
6063 return ret;
6064 }
6065
6066 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6067 struct inode *dir, struct dentry *dentry,
6068 struct inode *inode, int backref, u64 index)
6069 {
6070 int err = btrfs_add_link(trans, dir, inode,
6071 dentry->d_name.name, dentry->d_name.len,
6072 backref, index);
6073 if (err > 0)
6074 err = -EEXIST;
6075 return err;
6076 }
6077
6078 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6079 umode_t mode, dev_t rdev)
6080 {
6081 struct btrfs_trans_handle *trans;
6082 struct btrfs_root *root = BTRFS_I(dir)->root;
6083 struct inode *inode = NULL;
6084 int err;
6085 int drop_inode = 0;
6086 u64 objectid;
6087 u64 index = 0;
6088
6089 if (!new_valid_dev(rdev))
6090 return -EINVAL;
6091
6092 /*
6093 * 2 for inode item and ref
6094 * 2 for dir items
6095 * 1 for xattr if selinux is on
6096 */
6097 trans = btrfs_start_transaction(root, 5);
6098 if (IS_ERR(trans))
6099 return PTR_ERR(trans);
6100
6101 err = btrfs_find_free_ino(root, &objectid);
6102 if (err)
6103 goto out_unlock;
6104
6105 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6106 dentry->d_name.len, btrfs_ino(dir), objectid,
6107 mode, &index);
6108 if (IS_ERR(inode)) {
6109 err = PTR_ERR(inode);
6110 goto out_unlock;
6111 }
6112
6113 /*
6114 * If the active LSM wants to access the inode during
6115 * d_instantiate it needs these. Smack checks to see
6116 * if the filesystem supports xattrs by looking at the
6117 * ops vector.
6118 */
6119 inode->i_op = &btrfs_special_inode_operations;
6120 init_special_inode(inode, inode->i_mode, rdev);
6121
6122 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6123 if (err)
6124 goto out_unlock_inode;
6125
6126 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6127 if (err) {
6128 goto out_unlock_inode;
6129 } else {
6130 btrfs_update_inode(trans, root, inode);
6131 unlock_new_inode(inode);
6132 d_instantiate(dentry, inode);
6133 }
6134
6135 out_unlock:
6136 btrfs_end_transaction(trans, root);
6137 btrfs_balance_delayed_items(root);
6138 btrfs_btree_balance_dirty(root);
6139 if (drop_inode) {
6140 inode_dec_link_count(inode);
6141 iput(inode);
6142 }
6143 return err;
6144
6145 out_unlock_inode:
6146 drop_inode = 1;
6147 unlock_new_inode(inode);
6148 goto out_unlock;
6149
6150 }
6151
6152 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6153 umode_t mode, bool excl)
6154 {
6155 struct btrfs_trans_handle *trans;
6156 struct btrfs_root *root = BTRFS_I(dir)->root;
6157 struct inode *inode = NULL;
6158 int drop_inode_on_err = 0;
6159 int err;
6160 u64 objectid;
6161 u64 index = 0;
6162
6163 /*
6164 * 2 for inode item and ref
6165 * 2 for dir items
6166 * 1 for xattr if selinux is on
6167 */
6168 trans = btrfs_start_transaction(root, 5);
6169 if (IS_ERR(trans))
6170 return PTR_ERR(trans);
6171
6172 err = btrfs_find_free_ino(root, &objectid);
6173 if (err)
6174 goto out_unlock;
6175
6176 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6177 dentry->d_name.len, btrfs_ino(dir), objectid,
6178 mode, &index);
6179 if (IS_ERR(inode)) {
6180 err = PTR_ERR(inode);
6181 goto out_unlock;
6182 }
6183 drop_inode_on_err = 1;
6184 /*
6185 * If the active LSM wants to access the inode during
6186 * d_instantiate it needs these. Smack checks to see
6187 * if the filesystem supports xattrs by looking at the
6188 * ops vector.
6189 */
6190 inode->i_fop = &btrfs_file_operations;
6191 inode->i_op = &btrfs_file_inode_operations;
6192 inode->i_mapping->a_ops = &btrfs_aops;
6193 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6194
6195 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6196 if (err)
6197 goto out_unlock_inode;
6198
6199 err = btrfs_update_inode(trans, root, inode);
6200 if (err)
6201 goto out_unlock_inode;
6202
6203 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6204 if (err)
6205 goto out_unlock_inode;
6206
6207 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6208 unlock_new_inode(inode);
6209 d_instantiate(dentry, inode);
6210
6211 out_unlock:
6212 btrfs_end_transaction(trans, root);
6213 if (err && drop_inode_on_err) {
6214 inode_dec_link_count(inode);
6215 iput(inode);
6216 }
6217 btrfs_balance_delayed_items(root);
6218 btrfs_btree_balance_dirty(root);
6219 return err;
6220
6221 out_unlock_inode:
6222 unlock_new_inode(inode);
6223 goto out_unlock;
6224
6225 }
6226
6227 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6228 struct dentry *dentry)
6229 {
6230 struct btrfs_trans_handle *trans;
6231 struct btrfs_root *root = BTRFS_I(dir)->root;
6232 struct inode *inode = old_dentry->d_inode;
6233 u64 index;
6234 int err;
6235 int drop_inode = 0;
6236
6237 /* do not allow sys_link's with other subvols of the same device */
6238 if (root->objectid != BTRFS_I(inode)->root->objectid)
6239 return -EXDEV;
6240
6241 if (inode->i_nlink >= BTRFS_LINK_MAX)
6242 return -EMLINK;
6243
6244 err = btrfs_set_inode_index(dir, &index);
6245 if (err)
6246 goto fail;
6247
6248 /*
6249 * 2 items for inode and inode ref
6250 * 2 items for dir items
6251 * 1 item for parent inode
6252 */
6253 trans = btrfs_start_transaction(root, 5);
6254 if (IS_ERR(trans)) {
6255 err = PTR_ERR(trans);
6256 goto fail;
6257 }
6258
6259 /* There are several dir indexes for this inode, clear the cache. */
6260 BTRFS_I(inode)->dir_index = 0ULL;
6261 inc_nlink(inode);
6262 inode_inc_iversion(inode);
6263 inode->i_ctime = CURRENT_TIME;
6264 ihold(inode);
6265 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6266
6267 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6268
6269 if (err) {
6270 drop_inode = 1;
6271 } else {
6272 struct dentry *parent = dentry->d_parent;
6273 err = btrfs_update_inode(trans, root, inode);
6274 if (err)
6275 goto fail;
6276 if (inode->i_nlink == 1) {
6277 /*
6278 * If new hard link count is 1, it's a file created
6279 * with open(2) O_TMPFILE flag.
6280 */
6281 err = btrfs_orphan_del(trans, inode);
6282 if (err)
6283 goto fail;
6284 }
6285 d_instantiate(dentry, inode);
6286 btrfs_log_new_name(trans, inode, NULL, parent);
6287 }
6288
6289 btrfs_end_transaction(trans, root);
6290 btrfs_balance_delayed_items(root);
6291 fail:
6292 if (drop_inode) {
6293 inode_dec_link_count(inode);
6294 iput(inode);
6295 }
6296 btrfs_btree_balance_dirty(root);
6297 return err;
6298 }
6299
6300 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6301 {
6302 struct inode *inode = NULL;
6303 struct btrfs_trans_handle *trans;
6304 struct btrfs_root *root = BTRFS_I(dir)->root;
6305 int err = 0;
6306 int drop_on_err = 0;
6307 u64 objectid = 0;
6308 u64 index = 0;
6309
6310 /*
6311 * 2 items for inode and ref
6312 * 2 items for dir items
6313 * 1 for xattr if selinux is on
6314 */
6315 trans = btrfs_start_transaction(root, 5);
6316 if (IS_ERR(trans))
6317 return PTR_ERR(trans);
6318
6319 err = btrfs_find_free_ino(root, &objectid);
6320 if (err)
6321 goto out_fail;
6322
6323 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6324 dentry->d_name.len, btrfs_ino(dir), objectid,
6325 S_IFDIR | mode, &index);
6326 if (IS_ERR(inode)) {
6327 err = PTR_ERR(inode);
6328 goto out_fail;
6329 }
6330
6331 drop_on_err = 1;
6332 /* these must be set before we unlock the inode */
6333 inode->i_op = &btrfs_dir_inode_operations;
6334 inode->i_fop = &btrfs_dir_file_operations;
6335
6336 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6337 if (err)
6338 goto out_fail_inode;
6339
6340 btrfs_i_size_write(inode, 0);
6341 err = btrfs_update_inode(trans, root, inode);
6342 if (err)
6343 goto out_fail_inode;
6344
6345 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6346 dentry->d_name.len, 0, index);
6347 if (err)
6348 goto out_fail_inode;
6349
6350 d_instantiate(dentry, inode);
6351 /*
6352 * mkdir is special. We're unlocking after we call d_instantiate
6353 * to avoid a race with nfsd calling d_instantiate.
6354 */
6355 unlock_new_inode(inode);
6356 drop_on_err = 0;
6357
6358 out_fail:
6359 btrfs_end_transaction(trans, root);
6360 if (drop_on_err) {
6361 inode_dec_link_count(inode);
6362 iput(inode);
6363 }
6364 btrfs_balance_delayed_items(root);
6365 btrfs_btree_balance_dirty(root);
6366 return err;
6367
6368 out_fail_inode:
6369 unlock_new_inode(inode);
6370 goto out_fail;
6371 }
6372
6373 /* Find next extent map of a given extent map, caller needs to ensure locks */
6374 static struct extent_map *next_extent_map(struct extent_map *em)
6375 {
6376 struct rb_node *next;
6377
6378 next = rb_next(&em->rb_node);
6379 if (!next)
6380 return NULL;
6381 return container_of(next, struct extent_map, rb_node);
6382 }
6383
6384 static struct extent_map *prev_extent_map(struct extent_map *em)
6385 {
6386 struct rb_node *prev;
6387
6388 prev = rb_prev(&em->rb_node);
6389 if (!prev)
6390 return NULL;
6391 return container_of(prev, struct extent_map, rb_node);
6392 }
6393
6394 /* helper for btfs_get_extent. Given an existing extent in the tree,
6395 * the existing extent is the nearest extent to map_start,
6396 * and an extent that you want to insert, deal with overlap and insert
6397 * the best fitted new extent into the tree.
6398 */
6399 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6400 struct extent_map *existing,
6401 struct extent_map *em,
6402 u64 map_start)
6403 {
6404 struct extent_map *prev;
6405 struct extent_map *next;
6406 u64 start;
6407 u64 end;
6408 u64 start_diff;
6409
6410 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6411
6412 if (existing->start > map_start) {
6413 next = existing;
6414 prev = prev_extent_map(next);
6415 } else {
6416 prev = existing;
6417 next = next_extent_map(prev);
6418 }
6419
6420 start = prev ? extent_map_end(prev) : em->start;
6421 start = max_t(u64, start, em->start);
6422 end = next ? next->start : extent_map_end(em);
6423 end = min_t(u64, end, extent_map_end(em));
6424 start_diff = start - em->start;
6425 em->start = start;
6426 em->len = end - start;
6427 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6428 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6429 em->block_start += start_diff;
6430 em->block_len -= start_diff;
6431 }
6432 return add_extent_mapping(em_tree, em, 0);
6433 }
6434
6435 static noinline int uncompress_inline(struct btrfs_path *path,
6436 struct inode *inode, struct page *page,
6437 size_t pg_offset, u64 extent_offset,
6438 struct btrfs_file_extent_item *item)
6439 {
6440 int ret;
6441 struct extent_buffer *leaf = path->nodes[0];
6442 char *tmp;
6443 size_t max_size;
6444 unsigned long inline_size;
6445 unsigned long ptr;
6446 int compress_type;
6447
6448 WARN_ON(pg_offset != 0);
6449 compress_type = btrfs_file_extent_compression(leaf, item);
6450 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6451 inline_size = btrfs_file_extent_inline_item_len(leaf,
6452 btrfs_item_nr(path->slots[0]));
6453 tmp = kmalloc(inline_size, GFP_NOFS);
6454 if (!tmp)
6455 return -ENOMEM;
6456 ptr = btrfs_file_extent_inline_start(item);
6457
6458 read_extent_buffer(leaf, tmp, ptr, inline_size);
6459
6460 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6461 ret = btrfs_decompress(compress_type, tmp, page,
6462 extent_offset, inline_size, max_size);
6463 kfree(tmp);
6464 return ret;
6465 }
6466
6467 /*
6468 * a bit scary, this does extent mapping from logical file offset to the disk.
6469 * the ugly parts come from merging extents from the disk with the in-ram
6470 * representation. This gets more complex because of the data=ordered code,
6471 * where the in-ram extents might be locked pending data=ordered completion.
6472 *
6473 * This also copies inline extents directly into the page.
6474 */
6475
6476 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6477 size_t pg_offset, u64 start, u64 len,
6478 int create)
6479 {
6480 int ret;
6481 int err = 0;
6482 u64 extent_start = 0;
6483 u64 extent_end = 0;
6484 u64 objectid = btrfs_ino(inode);
6485 u32 found_type;
6486 struct btrfs_path *path = NULL;
6487 struct btrfs_root *root = BTRFS_I(inode)->root;
6488 struct btrfs_file_extent_item *item;
6489 struct extent_buffer *leaf;
6490 struct btrfs_key found_key;
6491 struct extent_map *em = NULL;
6492 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6493 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6494 struct btrfs_trans_handle *trans = NULL;
6495 const bool new_inline = !page || create;
6496
6497 again:
6498 read_lock(&em_tree->lock);
6499 em = lookup_extent_mapping(em_tree, start, len);
6500 if (em)
6501 em->bdev = root->fs_info->fs_devices->latest_bdev;
6502 read_unlock(&em_tree->lock);
6503
6504 if (em) {
6505 if (em->start > start || em->start + em->len <= start)
6506 free_extent_map(em);
6507 else if (em->block_start == EXTENT_MAP_INLINE && page)
6508 free_extent_map(em);
6509 else
6510 goto out;
6511 }
6512 em = alloc_extent_map();
6513 if (!em) {
6514 err = -ENOMEM;
6515 goto out;
6516 }
6517 em->bdev = root->fs_info->fs_devices->latest_bdev;
6518 em->start = EXTENT_MAP_HOLE;
6519 em->orig_start = EXTENT_MAP_HOLE;
6520 em->len = (u64)-1;
6521 em->block_len = (u64)-1;
6522
6523 if (!path) {
6524 path = btrfs_alloc_path();
6525 if (!path) {
6526 err = -ENOMEM;
6527 goto out;
6528 }
6529 /*
6530 * Chances are we'll be called again, so go ahead and do
6531 * readahead
6532 */
6533 path->reada = 1;
6534 }
6535
6536 ret = btrfs_lookup_file_extent(trans, root, path,
6537 objectid, start, trans != NULL);
6538 if (ret < 0) {
6539 err = ret;
6540 goto out;
6541 }
6542
6543 if (ret != 0) {
6544 if (path->slots[0] == 0)
6545 goto not_found;
6546 path->slots[0]--;
6547 }
6548
6549 leaf = path->nodes[0];
6550 item = btrfs_item_ptr(leaf, path->slots[0],
6551 struct btrfs_file_extent_item);
6552 /* are we inside the extent that was found? */
6553 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6554 found_type = found_key.type;
6555 if (found_key.objectid != objectid ||
6556 found_type != BTRFS_EXTENT_DATA_KEY) {
6557 /*
6558 * If we backup past the first extent we want to move forward
6559 * and see if there is an extent in front of us, otherwise we'll
6560 * say there is a hole for our whole search range which can
6561 * cause problems.
6562 */
6563 extent_end = start;
6564 goto next;
6565 }
6566
6567 found_type = btrfs_file_extent_type(leaf, item);
6568 extent_start = found_key.offset;
6569 if (found_type == BTRFS_FILE_EXTENT_REG ||
6570 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6571 extent_end = extent_start +
6572 btrfs_file_extent_num_bytes(leaf, item);
6573 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6574 size_t size;
6575 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6576 extent_end = ALIGN(extent_start + size, root->sectorsize);
6577 }
6578 next:
6579 if (start >= extent_end) {
6580 path->slots[0]++;
6581 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6582 ret = btrfs_next_leaf(root, path);
6583 if (ret < 0) {
6584 err = ret;
6585 goto out;
6586 }
6587 if (ret > 0)
6588 goto not_found;
6589 leaf = path->nodes[0];
6590 }
6591 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6592 if (found_key.objectid != objectid ||
6593 found_key.type != BTRFS_EXTENT_DATA_KEY)
6594 goto not_found;
6595 if (start + len <= found_key.offset)
6596 goto not_found;
6597 if (start > found_key.offset)
6598 goto next;
6599 em->start = start;
6600 em->orig_start = start;
6601 em->len = found_key.offset - start;
6602 goto not_found_em;
6603 }
6604
6605 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6606
6607 if (found_type == BTRFS_FILE_EXTENT_REG ||
6608 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6609 goto insert;
6610 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6611 unsigned long ptr;
6612 char *map;
6613 size_t size;
6614 size_t extent_offset;
6615 size_t copy_size;
6616
6617 if (new_inline)
6618 goto out;
6619
6620 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6621 extent_offset = page_offset(page) + pg_offset - extent_start;
6622 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6623 size - extent_offset);
6624 em->start = extent_start + extent_offset;
6625 em->len = ALIGN(copy_size, root->sectorsize);
6626 em->orig_block_len = em->len;
6627 em->orig_start = em->start;
6628 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6629 if (create == 0 && !PageUptodate(page)) {
6630 if (btrfs_file_extent_compression(leaf, item) !=
6631 BTRFS_COMPRESS_NONE) {
6632 ret = uncompress_inline(path, inode, page,
6633 pg_offset,
6634 extent_offset, item);
6635 if (ret) {
6636 err = ret;
6637 goto out;
6638 }
6639 } else {
6640 map = kmap(page);
6641 read_extent_buffer(leaf, map + pg_offset, ptr,
6642 copy_size);
6643 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6644 memset(map + pg_offset + copy_size, 0,
6645 PAGE_CACHE_SIZE - pg_offset -
6646 copy_size);
6647 }
6648 kunmap(page);
6649 }
6650 flush_dcache_page(page);
6651 } else if (create && PageUptodate(page)) {
6652 BUG();
6653 if (!trans) {
6654 kunmap(page);
6655 free_extent_map(em);
6656 em = NULL;
6657
6658 btrfs_release_path(path);
6659 trans = btrfs_join_transaction(root);
6660
6661 if (IS_ERR(trans))
6662 return ERR_CAST(trans);
6663 goto again;
6664 }
6665 map = kmap(page);
6666 write_extent_buffer(leaf, map + pg_offset, ptr,
6667 copy_size);
6668 kunmap(page);
6669 btrfs_mark_buffer_dirty(leaf);
6670 }
6671 set_extent_uptodate(io_tree, em->start,
6672 extent_map_end(em) - 1, NULL, GFP_NOFS);
6673 goto insert;
6674 }
6675 not_found:
6676 em->start = start;
6677 em->orig_start = start;
6678 em->len = len;
6679 not_found_em:
6680 em->block_start = EXTENT_MAP_HOLE;
6681 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6682 insert:
6683 btrfs_release_path(path);
6684 if (em->start > start || extent_map_end(em) <= start) {
6685 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6686 em->start, em->len, start, len);
6687 err = -EIO;
6688 goto out;
6689 }
6690
6691 err = 0;
6692 write_lock(&em_tree->lock);
6693 ret = add_extent_mapping(em_tree, em, 0);
6694 /* it is possible that someone inserted the extent into the tree
6695 * while we had the lock dropped. It is also possible that
6696 * an overlapping map exists in the tree
6697 */
6698 if (ret == -EEXIST) {
6699 struct extent_map *existing;
6700
6701 ret = 0;
6702
6703 existing = search_extent_mapping(em_tree, start, len);
6704 /*
6705 * existing will always be non-NULL, since there must be
6706 * extent causing the -EEXIST.
6707 */
6708 if (start >= extent_map_end(existing) ||
6709 start <= existing->start) {
6710 /*
6711 * The existing extent map is the one nearest to
6712 * the [start, start + len) range which overlaps
6713 */
6714 err = merge_extent_mapping(em_tree, existing,
6715 em, start);
6716 free_extent_map(existing);
6717 if (err) {
6718 free_extent_map(em);
6719 em = NULL;
6720 }
6721 } else {
6722 free_extent_map(em);
6723 em = existing;
6724 err = 0;
6725 }
6726 }
6727 write_unlock(&em_tree->lock);
6728 out:
6729
6730 trace_btrfs_get_extent(root, em);
6731
6732 if (path)
6733 btrfs_free_path(path);
6734 if (trans) {
6735 ret = btrfs_end_transaction(trans, root);
6736 if (!err)
6737 err = ret;
6738 }
6739 if (err) {
6740 free_extent_map(em);
6741 return ERR_PTR(err);
6742 }
6743 BUG_ON(!em); /* Error is always set */
6744 return em;
6745 }
6746
6747 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6748 size_t pg_offset, u64 start, u64 len,
6749 int create)
6750 {
6751 struct extent_map *em;
6752 struct extent_map *hole_em = NULL;
6753 u64 range_start = start;
6754 u64 end;
6755 u64 found;
6756 u64 found_end;
6757 int err = 0;
6758
6759 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6760 if (IS_ERR(em))
6761 return em;
6762 if (em) {
6763 /*
6764 * if our em maps to
6765 * - a hole or
6766 * - a pre-alloc extent,
6767 * there might actually be delalloc bytes behind it.
6768 */
6769 if (em->block_start != EXTENT_MAP_HOLE &&
6770 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6771 return em;
6772 else
6773 hole_em = em;
6774 }
6775
6776 /* check to see if we've wrapped (len == -1 or similar) */
6777 end = start + len;
6778 if (end < start)
6779 end = (u64)-1;
6780 else
6781 end -= 1;
6782
6783 em = NULL;
6784
6785 /* ok, we didn't find anything, lets look for delalloc */
6786 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6787 end, len, EXTENT_DELALLOC, 1);
6788 found_end = range_start + found;
6789 if (found_end < range_start)
6790 found_end = (u64)-1;
6791
6792 /*
6793 * we didn't find anything useful, return
6794 * the original results from get_extent()
6795 */
6796 if (range_start > end || found_end <= start) {
6797 em = hole_em;
6798 hole_em = NULL;
6799 goto out;
6800 }
6801
6802 /* adjust the range_start to make sure it doesn't
6803 * go backwards from the start they passed in
6804 */
6805 range_start = max(start, range_start);
6806 found = found_end - range_start;
6807
6808 if (found > 0) {
6809 u64 hole_start = start;
6810 u64 hole_len = len;
6811
6812 em = alloc_extent_map();
6813 if (!em) {
6814 err = -ENOMEM;
6815 goto out;
6816 }
6817 /*
6818 * when btrfs_get_extent can't find anything it
6819 * returns one huge hole
6820 *
6821 * make sure what it found really fits our range, and
6822 * adjust to make sure it is based on the start from
6823 * the caller
6824 */
6825 if (hole_em) {
6826 u64 calc_end = extent_map_end(hole_em);
6827
6828 if (calc_end <= start || (hole_em->start > end)) {
6829 free_extent_map(hole_em);
6830 hole_em = NULL;
6831 } else {
6832 hole_start = max(hole_em->start, start);
6833 hole_len = calc_end - hole_start;
6834 }
6835 }
6836 em->bdev = NULL;
6837 if (hole_em && range_start > hole_start) {
6838 /* our hole starts before our delalloc, so we
6839 * have to return just the parts of the hole
6840 * that go until the delalloc starts
6841 */
6842 em->len = min(hole_len,
6843 range_start - hole_start);
6844 em->start = hole_start;
6845 em->orig_start = hole_start;
6846 /*
6847 * don't adjust block start at all,
6848 * it is fixed at EXTENT_MAP_HOLE
6849 */
6850 em->block_start = hole_em->block_start;
6851 em->block_len = hole_len;
6852 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6853 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6854 } else {
6855 em->start = range_start;
6856 em->len = found;
6857 em->orig_start = range_start;
6858 em->block_start = EXTENT_MAP_DELALLOC;
6859 em->block_len = found;
6860 }
6861 } else if (hole_em) {
6862 return hole_em;
6863 }
6864 out:
6865
6866 free_extent_map(hole_em);
6867 if (err) {
6868 free_extent_map(em);
6869 return ERR_PTR(err);
6870 }
6871 return em;
6872 }
6873
6874 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6875 u64 start, u64 len)
6876 {
6877 struct btrfs_root *root = BTRFS_I(inode)->root;
6878 struct extent_map *em;
6879 struct btrfs_key ins;
6880 u64 alloc_hint;
6881 int ret;
6882
6883 alloc_hint = get_extent_allocation_hint(inode, start, len);
6884 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6885 alloc_hint, &ins, 1, 1);
6886 if (ret)
6887 return ERR_PTR(ret);
6888
6889 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6890 ins.offset, ins.offset, ins.offset, 0);
6891 if (IS_ERR(em)) {
6892 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6893 return em;
6894 }
6895
6896 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6897 ins.offset, ins.offset, 0);
6898 if (ret) {
6899 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6900 free_extent_map(em);
6901 return ERR_PTR(ret);
6902 }
6903
6904 return em;
6905 }
6906
6907 /*
6908 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6909 * block must be cow'd
6910 */
6911 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6912 u64 *orig_start, u64 *orig_block_len,
6913 u64 *ram_bytes)
6914 {
6915 struct btrfs_trans_handle *trans;
6916 struct btrfs_path *path;
6917 int ret;
6918 struct extent_buffer *leaf;
6919 struct btrfs_root *root = BTRFS_I(inode)->root;
6920 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6921 struct btrfs_file_extent_item *fi;
6922 struct btrfs_key key;
6923 u64 disk_bytenr;
6924 u64 backref_offset;
6925 u64 extent_end;
6926 u64 num_bytes;
6927 int slot;
6928 int found_type;
6929 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6930
6931 path = btrfs_alloc_path();
6932 if (!path)
6933 return -ENOMEM;
6934
6935 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6936 offset, 0);
6937 if (ret < 0)
6938 goto out;
6939
6940 slot = path->slots[0];
6941 if (ret == 1) {
6942 if (slot == 0) {
6943 /* can't find the item, must cow */
6944 ret = 0;
6945 goto out;
6946 }
6947 slot--;
6948 }
6949 ret = 0;
6950 leaf = path->nodes[0];
6951 btrfs_item_key_to_cpu(leaf, &key, slot);
6952 if (key.objectid != btrfs_ino(inode) ||
6953 key.type != BTRFS_EXTENT_DATA_KEY) {
6954 /* not our file or wrong item type, must cow */
6955 goto out;
6956 }
6957
6958 if (key.offset > offset) {
6959 /* Wrong offset, must cow */
6960 goto out;
6961 }
6962
6963 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6964 found_type = btrfs_file_extent_type(leaf, fi);
6965 if (found_type != BTRFS_FILE_EXTENT_REG &&
6966 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6967 /* not a regular extent, must cow */
6968 goto out;
6969 }
6970
6971 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6972 goto out;
6973
6974 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6975 if (extent_end <= offset)
6976 goto out;
6977
6978 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6979 if (disk_bytenr == 0)
6980 goto out;
6981
6982 if (btrfs_file_extent_compression(leaf, fi) ||
6983 btrfs_file_extent_encryption(leaf, fi) ||
6984 btrfs_file_extent_other_encoding(leaf, fi))
6985 goto out;
6986
6987 backref_offset = btrfs_file_extent_offset(leaf, fi);
6988
6989 if (orig_start) {
6990 *orig_start = key.offset - backref_offset;
6991 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6992 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6993 }
6994
6995 if (btrfs_extent_readonly(root, disk_bytenr))
6996 goto out;
6997
6998 num_bytes = min(offset + *len, extent_end) - offset;
6999 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7000 u64 range_end;
7001
7002 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7003 ret = test_range_bit(io_tree, offset, range_end,
7004 EXTENT_DELALLOC, 0, NULL);
7005 if (ret) {
7006 ret = -EAGAIN;
7007 goto out;
7008 }
7009 }
7010
7011 btrfs_release_path(path);
7012
7013 /*
7014 * look for other files referencing this extent, if we
7015 * find any we must cow
7016 */
7017 trans = btrfs_join_transaction(root);
7018 if (IS_ERR(trans)) {
7019 ret = 0;
7020 goto out;
7021 }
7022
7023 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7024 key.offset - backref_offset, disk_bytenr);
7025 btrfs_end_transaction(trans, root);
7026 if (ret) {
7027 ret = 0;
7028 goto out;
7029 }
7030
7031 /*
7032 * adjust disk_bytenr and num_bytes to cover just the bytes
7033 * in this extent we are about to write. If there
7034 * are any csums in that range we have to cow in order
7035 * to keep the csums correct
7036 */
7037 disk_bytenr += backref_offset;
7038 disk_bytenr += offset - key.offset;
7039 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7040 goto out;
7041 /*
7042 * all of the above have passed, it is safe to overwrite this extent
7043 * without cow
7044 */
7045 *len = num_bytes;
7046 ret = 1;
7047 out:
7048 btrfs_free_path(path);
7049 return ret;
7050 }
7051
7052 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7053 {
7054 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7055 int found = false;
7056 void **pagep = NULL;
7057 struct page *page = NULL;
7058 int start_idx;
7059 int end_idx;
7060
7061 start_idx = start >> PAGE_CACHE_SHIFT;
7062
7063 /*
7064 * end is the last byte in the last page. end == start is legal
7065 */
7066 end_idx = end >> PAGE_CACHE_SHIFT;
7067
7068 rcu_read_lock();
7069
7070 /* Most of the code in this while loop is lifted from
7071 * find_get_page. It's been modified to begin searching from a
7072 * page and return just the first page found in that range. If the
7073 * found idx is less than or equal to the end idx then we know that
7074 * a page exists. If no pages are found or if those pages are
7075 * outside of the range then we're fine (yay!) */
7076 while (page == NULL &&
7077 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7078 page = radix_tree_deref_slot(pagep);
7079 if (unlikely(!page))
7080 break;
7081
7082 if (radix_tree_exception(page)) {
7083 if (radix_tree_deref_retry(page)) {
7084 page = NULL;
7085 continue;
7086 }
7087 /*
7088 * Otherwise, shmem/tmpfs must be storing a swap entry
7089 * here as an exceptional entry: so return it without
7090 * attempting to raise page count.
7091 */
7092 page = NULL;
7093 break; /* TODO: Is this relevant for this use case? */
7094 }
7095
7096 if (!page_cache_get_speculative(page)) {
7097 page = NULL;
7098 continue;
7099 }
7100
7101 /*
7102 * Has the page moved?
7103 * This is part of the lockless pagecache protocol. See
7104 * include/linux/pagemap.h for details.
7105 */
7106 if (unlikely(page != *pagep)) {
7107 page_cache_release(page);
7108 page = NULL;
7109 }
7110 }
7111
7112 if (page) {
7113 if (page->index <= end_idx)
7114 found = true;
7115 page_cache_release(page);
7116 }
7117
7118 rcu_read_unlock();
7119 return found;
7120 }
7121
7122 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7123 struct extent_state **cached_state, int writing)
7124 {
7125 struct btrfs_ordered_extent *ordered;
7126 int ret = 0;
7127
7128 while (1) {
7129 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7130 0, cached_state);
7131 /*
7132 * We're concerned with the entire range that we're going to be
7133 * doing DIO to, so we need to make sure theres no ordered
7134 * extents in this range.
7135 */
7136 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7137 lockend - lockstart + 1);
7138
7139 /*
7140 * We need to make sure there are no buffered pages in this
7141 * range either, we could have raced between the invalidate in
7142 * generic_file_direct_write and locking the extent. The
7143 * invalidate needs to happen so that reads after a write do not
7144 * get stale data.
7145 */
7146 if (!ordered &&
7147 (!writing ||
7148 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7149 break;
7150
7151 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7152 cached_state, GFP_NOFS);
7153
7154 if (ordered) {
7155 btrfs_start_ordered_extent(inode, ordered, 1);
7156 btrfs_put_ordered_extent(ordered);
7157 } else {
7158 /* Screw you mmap */
7159 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7160 if (ret)
7161 break;
7162 ret = filemap_fdatawait_range(inode->i_mapping,
7163 lockstart,
7164 lockend);
7165 if (ret)
7166 break;
7167
7168 /*
7169 * If we found a page that couldn't be invalidated just
7170 * fall back to buffered.
7171 */
7172 ret = invalidate_inode_pages2_range(inode->i_mapping,
7173 lockstart >> PAGE_CACHE_SHIFT,
7174 lockend >> PAGE_CACHE_SHIFT);
7175 if (ret)
7176 break;
7177 }
7178
7179 cond_resched();
7180 }
7181
7182 return ret;
7183 }
7184
7185 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7186 u64 len, u64 orig_start,
7187 u64 block_start, u64 block_len,
7188 u64 orig_block_len, u64 ram_bytes,
7189 int type)
7190 {
7191 struct extent_map_tree *em_tree;
7192 struct extent_map *em;
7193 struct btrfs_root *root = BTRFS_I(inode)->root;
7194 int ret;
7195
7196 em_tree = &BTRFS_I(inode)->extent_tree;
7197 em = alloc_extent_map();
7198 if (!em)
7199 return ERR_PTR(-ENOMEM);
7200
7201 em->start = start;
7202 em->orig_start = orig_start;
7203 em->mod_start = start;
7204 em->mod_len = len;
7205 em->len = len;
7206 em->block_len = block_len;
7207 em->block_start = block_start;
7208 em->bdev = root->fs_info->fs_devices->latest_bdev;
7209 em->orig_block_len = orig_block_len;
7210 em->ram_bytes = ram_bytes;
7211 em->generation = -1;
7212 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7213 if (type == BTRFS_ORDERED_PREALLOC)
7214 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7215
7216 do {
7217 btrfs_drop_extent_cache(inode, em->start,
7218 em->start + em->len - 1, 0);
7219 write_lock(&em_tree->lock);
7220 ret = add_extent_mapping(em_tree, em, 1);
7221 write_unlock(&em_tree->lock);
7222 } while (ret == -EEXIST);
7223
7224 if (ret) {
7225 free_extent_map(em);
7226 return ERR_PTR(ret);
7227 }
7228
7229 return em;
7230 }
7231
7232
7233 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7234 struct buffer_head *bh_result, int create)
7235 {
7236 struct extent_map *em;
7237 struct btrfs_root *root = BTRFS_I(inode)->root;
7238 struct extent_state *cached_state = NULL;
7239 u64 start = iblock << inode->i_blkbits;
7240 u64 lockstart, lockend;
7241 u64 len = bh_result->b_size;
7242 u64 orig_len = len;
7243 int unlock_bits = EXTENT_LOCKED;
7244 int ret = 0;
7245
7246 if (create)
7247 unlock_bits |= EXTENT_DIRTY;
7248 else
7249 len = min_t(u64, len, root->sectorsize);
7250
7251 lockstart = start;
7252 lockend = start + len - 1;
7253
7254 /*
7255 * If this errors out it's because we couldn't invalidate pagecache for
7256 * this range and we need to fallback to buffered.
7257 */
7258 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7259 return -ENOTBLK;
7260
7261 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7262 if (IS_ERR(em)) {
7263 ret = PTR_ERR(em);
7264 goto unlock_err;
7265 }
7266
7267 /*
7268 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7269 * io. INLINE is special, and we could probably kludge it in here, but
7270 * it's still buffered so for safety lets just fall back to the generic
7271 * buffered path.
7272 *
7273 * For COMPRESSED we _have_ to read the entire extent in so we can
7274 * decompress it, so there will be buffering required no matter what we
7275 * do, so go ahead and fallback to buffered.
7276 *
7277 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7278 * to buffered IO. Don't blame me, this is the price we pay for using
7279 * the generic code.
7280 */
7281 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7282 em->block_start == EXTENT_MAP_INLINE) {
7283 free_extent_map(em);
7284 ret = -ENOTBLK;
7285 goto unlock_err;
7286 }
7287
7288 /* Just a good old fashioned hole, return */
7289 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7290 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7291 free_extent_map(em);
7292 goto unlock_err;
7293 }
7294
7295 /*
7296 * We don't allocate a new extent in the following cases
7297 *
7298 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7299 * existing extent.
7300 * 2) The extent is marked as PREALLOC. We're good to go here and can
7301 * just use the extent.
7302 *
7303 */
7304 if (!create) {
7305 len = min(len, em->len - (start - em->start));
7306 lockstart = start + len;
7307 goto unlock;
7308 }
7309
7310 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7311 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7312 em->block_start != EXTENT_MAP_HOLE)) {
7313 int type;
7314 u64 block_start, orig_start, orig_block_len, ram_bytes;
7315
7316 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7317 type = BTRFS_ORDERED_PREALLOC;
7318 else
7319 type = BTRFS_ORDERED_NOCOW;
7320 len = min(len, em->len - (start - em->start));
7321 block_start = em->block_start + (start - em->start);
7322
7323 if (can_nocow_extent(inode, start, &len, &orig_start,
7324 &orig_block_len, &ram_bytes) == 1) {
7325 if (type == BTRFS_ORDERED_PREALLOC) {
7326 free_extent_map(em);
7327 em = create_pinned_em(inode, start, len,
7328 orig_start,
7329 block_start, len,
7330 orig_block_len,
7331 ram_bytes, type);
7332 if (IS_ERR(em)) {
7333 ret = PTR_ERR(em);
7334 goto unlock_err;
7335 }
7336 }
7337
7338 ret = btrfs_add_ordered_extent_dio(inode, start,
7339 block_start, len, len, type);
7340 if (ret) {
7341 free_extent_map(em);
7342 goto unlock_err;
7343 }
7344 goto unlock;
7345 }
7346 }
7347
7348 /*
7349 * this will cow the extent, reset the len in case we changed
7350 * it above
7351 */
7352 len = bh_result->b_size;
7353 free_extent_map(em);
7354 em = btrfs_new_extent_direct(inode, start, len);
7355 if (IS_ERR(em)) {
7356 ret = PTR_ERR(em);
7357 goto unlock_err;
7358 }
7359 len = min(len, em->len - (start - em->start));
7360 unlock:
7361 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7362 inode->i_blkbits;
7363 bh_result->b_size = len;
7364 bh_result->b_bdev = em->bdev;
7365 set_buffer_mapped(bh_result);
7366 if (create) {
7367 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7368 set_buffer_new(bh_result);
7369
7370 /*
7371 * Need to update the i_size under the extent lock so buffered
7372 * readers will get the updated i_size when we unlock.
7373 */
7374 if (start + len > i_size_read(inode))
7375 i_size_write(inode, start + len);
7376
7377 if (len < orig_len) {
7378 spin_lock(&BTRFS_I(inode)->lock);
7379 BTRFS_I(inode)->outstanding_extents++;
7380 spin_unlock(&BTRFS_I(inode)->lock);
7381 }
7382 btrfs_free_reserved_data_space(inode, len);
7383 }
7384
7385 /*
7386 * In the case of write we need to clear and unlock the entire range,
7387 * in the case of read we need to unlock only the end area that we
7388 * aren't using if there is any left over space.
7389 */
7390 if (lockstart < lockend) {
7391 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7392 lockend, unlock_bits, 1, 0,
7393 &cached_state, GFP_NOFS);
7394 } else {
7395 free_extent_state(cached_state);
7396 }
7397
7398 free_extent_map(em);
7399
7400 return 0;
7401
7402 unlock_err:
7403 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7404 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7405 return ret;
7406 }
7407
7408 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7409 int rw, int mirror_num)
7410 {
7411 struct btrfs_root *root = BTRFS_I(inode)->root;
7412 int ret;
7413
7414 BUG_ON(rw & REQ_WRITE);
7415
7416 bio_get(bio);
7417
7418 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7419 BTRFS_WQ_ENDIO_DIO_REPAIR);
7420 if (ret)
7421 goto err;
7422
7423 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7424 err:
7425 bio_put(bio);
7426 return ret;
7427 }
7428
7429 static int btrfs_check_dio_repairable(struct inode *inode,
7430 struct bio *failed_bio,
7431 struct io_failure_record *failrec,
7432 int failed_mirror)
7433 {
7434 int num_copies;
7435
7436 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7437 failrec->logical, failrec->len);
7438 if (num_copies == 1) {
7439 /*
7440 * we only have a single copy of the data, so don't bother with
7441 * all the retry and error correction code that follows. no
7442 * matter what the error is, it is very likely to persist.
7443 */
7444 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7445 num_copies, failrec->this_mirror, failed_mirror);
7446 return 0;
7447 }
7448
7449 failrec->failed_mirror = failed_mirror;
7450 failrec->this_mirror++;
7451 if (failrec->this_mirror == failed_mirror)
7452 failrec->this_mirror++;
7453
7454 if (failrec->this_mirror > num_copies) {
7455 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7456 num_copies, failrec->this_mirror, failed_mirror);
7457 return 0;
7458 }
7459
7460 return 1;
7461 }
7462
7463 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7464 struct page *page, u64 start, u64 end,
7465 int failed_mirror, bio_end_io_t *repair_endio,
7466 void *repair_arg)
7467 {
7468 struct io_failure_record *failrec;
7469 struct bio *bio;
7470 int isector;
7471 int read_mode;
7472 int ret;
7473
7474 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7475
7476 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7477 if (ret)
7478 return ret;
7479
7480 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7481 failed_mirror);
7482 if (!ret) {
7483 free_io_failure(inode, failrec);
7484 return -EIO;
7485 }
7486
7487 if (failed_bio->bi_vcnt > 1)
7488 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7489 else
7490 read_mode = READ_SYNC;
7491
7492 isector = start - btrfs_io_bio(failed_bio)->logical;
7493 isector >>= inode->i_sb->s_blocksize_bits;
7494 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7495 0, isector, repair_endio, repair_arg);
7496 if (!bio) {
7497 free_io_failure(inode, failrec);
7498 return -EIO;
7499 }
7500
7501 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7502 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7503 read_mode, failrec->this_mirror, failrec->in_validation);
7504
7505 ret = submit_dio_repair_bio(inode, bio, read_mode,
7506 failrec->this_mirror);
7507 if (ret) {
7508 free_io_failure(inode, failrec);
7509 bio_put(bio);
7510 }
7511
7512 return ret;
7513 }
7514
7515 struct btrfs_retry_complete {
7516 struct completion done;
7517 struct inode *inode;
7518 u64 start;
7519 int uptodate;
7520 };
7521
7522 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7523 {
7524 struct btrfs_retry_complete *done = bio->bi_private;
7525 struct bio_vec *bvec;
7526 int i;
7527
7528 if (err)
7529 goto end;
7530
7531 done->uptodate = 1;
7532 bio_for_each_segment_all(bvec, bio, i)
7533 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7534 end:
7535 complete(&done->done);
7536 bio_put(bio);
7537 }
7538
7539 static int __btrfs_correct_data_nocsum(struct inode *inode,
7540 struct btrfs_io_bio *io_bio)
7541 {
7542 struct bio_vec *bvec;
7543 struct btrfs_retry_complete done;
7544 u64 start;
7545 int i;
7546 int ret;
7547
7548 start = io_bio->logical;
7549 done.inode = inode;
7550
7551 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7552 try_again:
7553 done.uptodate = 0;
7554 done.start = start;
7555 init_completion(&done.done);
7556
7557 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7558 start + bvec->bv_len - 1,
7559 io_bio->mirror_num,
7560 btrfs_retry_endio_nocsum, &done);
7561 if (ret)
7562 return ret;
7563
7564 wait_for_completion(&done.done);
7565
7566 if (!done.uptodate) {
7567 /* We might have another mirror, so try again */
7568 goto try_again;
7569 }
7570
7571 start += bvec->bv_len;
7572 }
7573
7574 return 0;
7575 }
7576
7577 static void btrfs_retry_endio(struct bio *bio, int err)
7578 {
7579 struct btrfs_retry_complete *done = bio->bi_private;
7580 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7581 struct bio_vec *bvec;
7582 int uptodate;
7583 int ret;
7584 int i;
7585
7586 if (err)
7587 goto end;
7588
7589 uptodate = 1;
7590 bio_for_each_segment_all(bvec, bio, i) {
7591 ret = __readpage_endio_check(done->inode, io_bio, i,
7592 bvec->bv_page, 0,
7593 done->start, bvec->bv_len);
7594 if (!ret)
7595 clean_io_failure(done->inode, done->start,
7596 bvec->bv_page, 0);
7597 else
7598 uptodate = 0;
7599 }
7600
7601 done->uptodate = uptodate;
7602 end:
7603 complete(&done->done);
7604 bio_put(bio);
7605 }
7606
7607 static int __btrfs_subio_endio_read(struct inode *inode,
7608 struct btrfs_io_bio *io_bio, int err)
7609 {
7610 struct bio_vec *bvec;
7611 struct btrfs_retry_complete done;
7612 u64 start;
7613 u64 offset = 0;
7614 int i;
7615 int ret;
7616
7617 err = 0;
7618 start = io_bio->logical;
7619 done.inode = inode;
7620
7621 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7622 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7623 0, start, bvec->bv_len);
7624 if (likely(!ret))
7625 goto next;
7626 try_again:
7627 done.uptodate = 0;
7628 done.start = start;
7629 init_completion(&done.done);
7630
7631 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7632 start + bvec->bv_len - 1,
7633 io_bio->mirror_num,
7634 btrfs_retry_endio, &done);
7635 if (ret) {
7636 err = ret;
7637 goto next;
7638 }
7639
7640 wait_for_completion(&done.done);
7641
7642 if (!done.uptodate) {
7643 /* We might have another mirror, so try again */
7644 goto try_again;
7645 }
7646 next:
7647 offset += bvec->bv_len;
7648 start += bvec->bv_len;
7649 }
7650
7651 return err;
7652 }
7653
7654 static int btrfs_subio_endio_read(struct inode *inode,
7655 struct btrfs_io_bio *io_bio, int err)
7656 {
7657 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7658
7659 if (skip_csum) {
7660 if (unlikely(err))
7661 return __btrfs_correct_data_nocsum(inode, io_bio);
7662 else
7663 return 0;
7664 } else {
7665 return __btrfs_subio_endio_read(inode, io_bio, err);
7666 }
7667 }
7668
7669 static void btrfs_endio_direct_read(struct bio *bio, int err)
7670 {
7671 struct btrfs_dio_private *dip = bio->bi_private;
7672 struct inode *inode = dip->inode;
7673 struct bio *dio_bio;
7674 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7675
7676 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7677 err = btrfs_subio_endio_read(inode, io_bio, err);
7678
7679 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7680 dip->logical_offset + dip->bytes - 1);
7681 dio_bio = dip->dio_bio;
7682
7683 kfree(dip);
7684
7685 /* If we had a csum failure make sure to clear the uptodate flag */
7686 if (err)
7687 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7688 dio_end_io(dio_bio, err);
7689
7690 if (io_bio->end_io)
7691 io_bio->end_io(io_bio, err);
7692 bio_put(bio);
7693 }
7694
7695 static void btrfs_endio_direct_write(struct bio *bio, int err)
7696 {
7697 struct btrfs_dio_private *dip = bio->bi_private;
7698 struct inode *inode = dip->inode;
7699 struct btrfs_root *root = BTRFS_I(inode)->root;
7700 struct btrfs_ordered_extent *ordered = NULL;
7701 u64 ordered_offset = dip->logical_offset;
7702 u64 ordered_bytes = dip->bytes;
7703 struct bio *dio_bio;
7704 int ret;
7705
7706 if (err)
7707 goto out_done;
7708 again:
7709 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7710 &ordered_offset,
7711 ordered_bytes, !err);
7712 if (!ret)
7713 goto out_test;
7714
7715 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7716 finish_ordered_fn, NULL, NULL);
7717 btrfs_queue_work(root->fs_info->endio_write_workers,
7718 &ordered->work);
7719 out_test:
7720 /*
7721 * our bio might span multiple ordered extents. If we haven't
7722 * completed the accounting for the whole dio, go back and try again
7723 */
7724 if (ordered_offset < dip->logical_offset + dip->bytes) {
7725 ordered_bytes = dip->logical_offset + dip->bytes -
7726 ordered_offset;
7727 ordered = NULL;
7728 goto again;
7729 }
7730 out_done:
7731 dio_bio = dip->dio_bio;
7732
7733 kfree(dip);
7734
7735 /* If we had an error make sure to clear the uptodate flag */
7736 if (err)
7737 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7738 dio_end_io(dio_bio, err);
7739 bio_put(bio);
7740 }
7741
7742 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7743 struct bio *bio, int mirror_num,
7744 unsigned long bio_flags, u64 offset)
7745 {
7746 int ret;
7747 struct btrfs_root *root = BTRFS_I(inode)->root;
7748 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7749 BUG_ON(ret); /* -ENOMEM */
7750 return 0;
7751 }
7752
7753 static void btrfs_end_dio_bio(struct bio *bio, int err)
7754 {
7755 struct btrfs_dio_private *dip = bio->bi_private;
7756
7757 if (err)
7758 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7759 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7760 btrfs_ino(dip->inode), bio->bi_rw,
7761 (unsigned long long)bio->bi_iter.bi_sector,
7762 bio->bi_iter.bi_size, err);
7763
7764 if (dip->subio_endio)
7765 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7766
7767 if (err) {
7768 dip->errors = 1;
7769
7770 /*
7771 * before atomic variable goto zero, we must make sure
7772 * dip->errors is perceived to be set.
7773 */
7774 smp_mb__before_atomic();
7775 }
7776
7777 /* if there are more bios still pending for this dio, just exit */
7778 if (!atomic_dec_and_test(&dip->pending_bios))
7779 goto out;
7780
7781 if (dip->errors) {
7782 bio_io_error(dip->orig_bio);
7783 } else {
7784 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7785 bio_endio(dip->orig_bio, 0);
7786 }
7787 out:
7788 bio_put(bio);
7789 }
7790
7791 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7792 u64 first_sector, gfp_t gfp_flags)
7793 {
7794 int nr_vecs = bio_get_nr_vecs(bdev);
7795 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7796 }
7797
7798 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7799 struct inode *inode,
7800 struct btrfs_dio_private *dip,
7801 struct bio *bio,
7802 u64 file_offset)
7803 {
7804 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7805 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7806 int ret;
7807
7808 /*
7809 * We load all the csum data we need when we submit
7810 * the first bio to reduce the csum tree search and
7811 * contention.
7812 */
7813 if (dip->logical_offset == file_offset) {
7814 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7815 file_offset);
7816 if (ret)
7817 return ret;
7818 }
7819
7820 if (bio == dip->orig_bio)
7821 return 0;
7822
7823 file_offset -= dip->logical_offset;
7824 file_offset >>= inode->i_sb->s_blocksize_bits;
7825 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7826
7827 return 0;
7828 }
7829
7830 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7831 int rw, u64 file_offset, int skip_sum,
7832 int async_submit)
7833 {
7834 struct btrfs_dio_private *dip = bio->bi_private;
7835 int write = rw & REQ_WRITE;
7836 struct btrfs_root *root = BTRFS_I(inode)->root;
7837 int ret;
7838
7839 if (async_submit)
7840 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7841
7842 bio_get(bio);
7843
7844 if (!write) {
7845 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7846 BTRFS_WQ_ENDIO_DATA);
7847 if (ret)
7848 goto err;
7849 }
7850
7851 if (skip_sum)
7852 goto map;
7853
7854 if (write && async_submit) {
7855 ret = btrfs_wq_submit_bio(root->fs_info,
7856 inode, rw, bio, 0, 0,
7857 file_offset,
7858 __btrfs_submit_bio_start_direct_io,
7859 __btrfs_submit_bio_done);
7860 goto err;
7861 } else if (write) {
7862 /*
7863 * If we aren't doing async submit, calculate the csum of the
7864 * bio now.
7865 */
7866 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7867 if (ret)
7868 goto err;
7869 } else {
7870 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7871 file_offset);
7872 if (ret)
7873 goto err;
7874 }
7875 map:
7876 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7877 err:
7878 bio_put(bio);
7879 return ret;
7880 }
7881
7882 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7883 int skip_sum)
7884 {
7885 struct inode *inode = dip->inode;
7886 struct btrfs_root *root = BTRFS_I(inode)->root;
7887 struct bio *bio;
7888 struct bio *orig_bio = dip->orig_bio;
7889 struct bio_vec *bvec = orig_bio->bi_io_vec;
7890 u64 start_sector = orig_bio->bi_iter.bi_sector;
7891 u64 file_offset = dip->logical_offset;
7892 u64 submit_len = 0;
7893 u64 map_length;
7894 int nr_pages = 0;
7895 int ret;
7896 int async_submit = 0;
7897
7898 map_length = orig_bio->bi_iter.bi_size;
7899 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7900 &map_length, NULL, 0);
7901 if (ret)
7902 return -EIO;
7903
7904 if (map_length >= orig_bio->bi_iter.bi_size) {
7905 bio = orig_bio;
7906 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7907 goto submit;
7908 }
7909
7910 /* async crcs make it difficult to collect full stripe writes. */
7911 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
7912 async_submit = 0;
7913 else
7914 async_submit = 1;
7915
7916 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7917 if (!bio)
7918 return -ENOMEM;
7919
7920 bio->bi_private = dip;
7921 bio->bi_end_io = btrfs_end_dio_bio;
7922 btrfs_io_bio(bio)->logical = file_offset;
7923 atomic_inc(&dip->pending_bios);
7924
7925 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7926 if (map_length < submit_len + bvec->bv_len ||
7927 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7928 bvec->bv_offset) < bvec->bv_len) {
7929 /*
7930 * inc the count before we submit the bio so
7931 * we know the end IO handler won't happen before
7932 * we inc the count. Otherwise, the dip might get freed
7933 * before we're done setting it up
7934 */
7935 atomic_inc(&dip->pending_bios);
7936 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7937 file_offset, skip_sum,
7938 async_submit);
7939 if (ret) {
7940 bio_put(bio);
7941 atomic_dec(&dip->pending_bios);
7942 goto out_err;
7943 }
7944
7945 start_sector += submit_len >> 9;
7946 file_offset += submit_len;
7947
7948 submit_len = 0;
7949 nr_pages = 0;
7950
7951 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7952 start_sector, GFP_NOFS);
7953 if (!bio)
7954 goto out_err;
7955 bio->bi_private = dip;
7956 bio->bi_end_io = btrfs_end_dio_bio;
7957 btrfs_io_bio(bio)->logical = file_offset;
7958
7959 map_length = orig_bio->bi_iter.bi_size;
7960 ret = btrfs_map_block(root->fs_info, rw,
7961 start_sector << 9,
7962 &map_length, NULL, 0);
7963 if (ret) {
7964 bio_put(bio);
7965 goto out_err;
7966 }
7967 } else {
7968 submit_len += bvec->bv_len;
7969 nr_pages++;
7970 bvec++;
7971 }
7972 }
7973
7974 submit:
7975 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7976 async_submit);
7977 if (!ret)
7978 return 0;
7979
7980 bio_put(bio);
7981 out_err:
7982 dip->errors = 1;
7983 /*
7984 * before atomic variable goto zero, we must
7985 * make sure dip->errors is perceived to be set.
7986 */
7987 smp_mb__before_atomic();
7988 if (atomic_dec_and_test(&dip->pending_bios))
7989 bio_io_error(dip->orig_bio);
7990
7991 /* bio_end_io() will handle error, so we needn't return it */
7992 return 0;
7993 }
7994
7995 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7996 struct inode *inode, loff_t file_offset)
7997 {
7998 struct btrfs_root *root = BTRFS_I(inode)->root;
7999 struct btrfs_dio_private *dip;
8000 struct bio *io_bio;
8001 struct btrfs_io_bio *btrfs_bio;
8002 int skip_sum;
8003 int write = rw & REQ_WRITE;
8004 int ret = 0;
8005
8006 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8007
8008 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8009 if (!io_bio) {
8010 ret = -ENOMEM;
8011 goto free_ordered;
8012 }
8013
8014 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8015 if (!dip) {
8016 ret = -ENOMEM;
8017 goto free_io_bio;
8018 }
8019
8020 dip->private = dio_bio->bi_private;
8021 dip->inode = inode;
8022 dip->logical_offset = file_offset;
8023 dip->bytes = dio_bio->bi_iter.bi_size;
8024 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8025 io_bio->bi_private = dip;
8026 dip->orig_bio = io_bio;
8027 dip->dio_bio = dio_bio;
8028 atomic_set(&dip->pending_bios, 0);
8029 btrfs_bio = btrfs_io_bio(io_bio);
8030 btrfs_bio->logical = file_offset;
8031
8032 if (write) {
8033 io_bio->bi_end_io = btrfs_endio_direct_write;
8034 } else {
8035 io_bio->bi_end_io = btrfs_endio_direct_read;
8036 dip->subio_endio = btrfs_subio_endio_read;
8037 }
8038
8039 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8040 if (!ret)
8041 return;
8042
8043 if (btrfs_bio->end_io)
8044 btrfs_bio->end_io(btrfs_bio, ret);
8045 free_io_bio:
8046 bio_put(io_bio);
8047
8048 free_ordered:
8049 /*
8050 * If this is a write, we need to clean up the reserved space and kill
8051 * the ordered extent.
8052 */
8053 if (write) {
8054 struct btrfs_ordered_extent *ordered;
8055 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8056 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8057 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8058 btrfs_free_reserved_extent(root, ordered->start,
8059 ordered->disk_len, 1);
8060 btrfs_put_ordered_extent(ordered);
8061 btrfs_put_ordered_extent(ordered);
8062 }
8063 bio_endio(dio_bio, ret);
8064 }
8065
8066 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
8067 const struct iov_iter *iter, loff_t offset)
8068 {
8069 int seg;
8070 int i;
8071 unsigned blocksize_mask = root->sectorsize - 1;
8072 ssize_t retval = -EINVAL;
8073
8074 if (offset & blocksize_mask)
8075 goto out;
8076
8077 if (iov_iter_alignment(iter) & blocksize_mask)
8078 goto out;
8079
8080 /* If this is a write we don't need to check anymore */
8081 if (rw & WRITE)
8082 return 0;
8083 /*
8084 * Check to make sure we don't have duplicate iov_base's in this
8085 * iovec, if so return EINVAL, otherwise we'll get csum errors
8086 * when reading back.
8087 */
8088 for (seg = 0; seg < iter->nr_segs; seg++) {
8089 for (i = seg + 1; i < iter->nr_segs; i++) {
8090 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8091 goto out;
8092 }
8093 }
8094 retval = 0;
8095 out:
8096 return retval;
8097 }
8098
8099 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
8100 struct iov_iter *iter, loff_t offset)
8101 {
8102 struct file *file = iocb->ki_filp;
8103 struct inode *inode = file->f_mapping->host;
8104 size_t count = 0;
8105 int flags = 0;
8106 bool wakeup = true;
8107 bool relock = false;
8108 ssize_t ret;
8109
8110 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
8111 return 0;
8112
8113 atomic_inc(&inode->i_dio_count);
8114 smp_mb__after_atomic();
8115
8116 /*
8117 * The generic stuff only does filemap_write_and_wait_range, which
8118 * isn't enough if we've written compressed pages to this area, so
8119 * we need to flush the dirty pages again to make absolutely sure
8120 * that any outstanding dirty pages are on disk.
8121 */
8122 count = iov_iter_count(iter);
8123 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8124 &BTRFS_I(inode)->runtime_flags))
8125 filemap_fdatawrite_range(inode->i_mapping, offset,
8126 offset + count - 1);
8127
8128 if (rw & WRITE) {
8129 /*
8130 * If the write DIO is beyond the EOF, we need update
8131 * the isize, but it is protected by i_mutex. So we can
8132 * not unlock the i_mutex at this case.
8133 */
8134 if (offset + count <= inode->i_size) {
8135 mutex_unlock(&inode->i_mutex);
8136 relock = true;
8137 }
8138 ret = btrfs_delalloc_reserve_space(inode, count);
8139 if (ret)
8140 goto out;
8141 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8142 &BTRFS_I(inode)->runtime_flags)) {
8143 inode_dio_done(inode);
8144 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8145 wakeup = false;
8146 }
8147
8148 ret = __blockdev_direct_IO(rw, iocb, inode,
8149 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8150 iter, offset, btrfs_get_blocks_direct, NULL,
8151 btrfs_submit_direct, flags);
8152 if (rw & WRITE) {
8153 if (ret < 0 && ret != -EIOCBQUEUED)
8154 btrfs_delalloc_release_space(inode, count);
8155 else if (ret >= 0 && (size_t)ret < count)
8156 btrfs_delalloc_release_space(inode,
8157 count - (size_t)ret);
8158 }
8159 out:
8160 if (wakeup)
8161 inode_dio_done(inode);
8162 if (relock)
8163 mutex_lock(&inode->i_mutex);
8164
8165 return ret;
8166 }
8167
8168 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8169
8170 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8171 __u64 start, __u64 len)
8172 {
8173 int ret;
8174
8175 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8176 if (ret)
8177 return ret;
8178
8179 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8180 }
8181
8182 int btrfs_readpage(struct file *file, struct page *page)
8183 {
8184 struct extent_io_tree *tree;
8185 tree = &BTRFS_I(page->mapping->host)->io_tree;
8186 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8187 }
8188
8189 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8190 {
8191 struct extent_io_tree *tree;
8192
8193
8194 if (current->flags & PF_MEMALLOC) {
8195 redirty_page_for_writepage(wbc, page);
8196 unlock_page(page);
8197 return 0;
8198 }
8199 tree = &BTRFS_I(page->mapping->host)->io_tree;
8200 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8201 }
8202
8203 static int btrfs_writepages(struct address_space *mapping,
8204 struct writeback_control *wbc)
8205 {
8206 struct extent_io_tree *tree;
8207
8208 tree = &BTRFS_I(mapping->host)->io_tree;
8209 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8210 }
8211
8212 static int
8213 btrfs_readpages(struct file *file, struct address_space *mapping,
8214 struct list_head *pages, unsigned nr_pages)
8215 {
8216 struct extent_io_tree *tree;
8217 tree = &BTRFS_I(mapping->host)->io_tree;
8218 return extent_readpages(tree, mapping, pages, nr_pages,
8219 btrfs_get_extent);
8220 }
8221 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8222 {
8223 struct extent_io_tree *tree;
8224 struct extent_map_tree *map;
8225 int ret;
8226
8227 tree = &BTRFS_I(page->mapping->host)->io_tree;
8228 map = &BTRFS_I(page->mapping->host)->extent_tree;
8229 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8230 if (ret == 1) {
8231 ClearPagePrivate(page);
8232 set_page_private(page, 0);
8233 page_cache_release(page);
8234 }
8235 return ret;
8236 }
8237
8238 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8239 {
8240 if (PageWriteback(page) || PageDirty(page))
8241 return 0;
8242 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8243 }
8244
8245 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8246 unsigned int length)
8247 {
8248 struct inode *inode = page->mapping->host;
8249 struct extent_io_tree *tree;
8250 struct btrfs_ordered_extent *ordered;
8251 struct extent_state *cached_state = NULL;
8252 u64 page_start = page_offset(page);
8253 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8254 int inode_evicting = inode->i_state & I_FREEING;
8255
8256 /*
8257 * we have the page locked, so new writeback can't start,
8258 * and the dirty bit won't be cleared while we are here.
8259 *
8260 * Wait for IO on this page so that we can safely clear
8261 * the PagePrivate2 bit and do ordered accounting
8262 */
8263 wait_on_page_writeback(page);
8264
8265 tree = &BTRFS_I(inode)->io_tree;
8266 if (offset) {
8267 btrfs_releasepage(page, GFP_NOFS);
8268 return;
8269 }
8270
8271 if (!inode_evicting)
8272 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8273 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8274 if (ordered) {
8275 /*
8276 * IO on this page will never be started, so we need
8277 * to account for any ordered extents now
8278 */
8279 if (!inode_evicting)
8280 clear_extent_bit(tree, page_start, page_end,
8281 EXTENT_DIRTY | EXTENT_DELALLOC |
8282 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8283 EXTENT_DEFRAG, 1, 0, &cached_state,
8284 GFP_NOFS);
8285 /*
8286 * whoever cleared the private bit is responsible
8287 * for the finish_ordered_io
8288 */
8289 if (TestClearPagePrivate2(page)) {
8290 struct btrfs_ordered_inode_tree *tree;
8291 u64 new_len;
8292
8293 tree = &BTRFS_I(inode)->ordered_tree;
8294
8295 spin_lock_irq(&tree->lock);
8296 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8297 new_len = page_start - ordered->file_offset;
8298 if (new_len < ordered->truncated_len)
8299 ordered->truncated_len = new_len;
8300 spin_unlock_irq(&tree->lock);
8301
8302 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8303 page_start,
8304 PAGE_CACHE_SIZE, 1))
8305 btrfs_finish_ordered_io(ordered);
8306 }
8307 btrfs_put_ordered_extent(ordered);
8308 if (!inode_evicting) {
8309 cached_state = NULL;
8310 lock_extent_bits(tree, page_start, page_end, 0,
8311 &cached_state);
8312 }
8313 }
8314
8315 if (!inode_evicting) {
8316 clear_extent_bit(tree, page_start, page_end,
8317 EXTENT_LOCKED | EXTENT_DIRTY |
8318 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8319 EXTENT_DEFRAG, 1, 1,
8320 &cached_state, GFP_NOFS);
8321
8322 __btrfs_releasepage(page, GFP_NOFS);
8323 }
8324
8325 ClearPageChecked(page);
8326 if (PagePrivate(page)) {
8327 ClearPagePrivate(page);
8328 set_page_private(page, 0);
8329 page_cache_release(page);
8330 }
8331 }
8332
8333 /*
8334 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8335 * called from a page fault handler when a page is first dirtied. Hence we must
8336 * be careful to check for EOF conditions here. We set the page up correctly
8337 * for a written page which means we get ENOSPC checking when writing into
8338 * holes and correct delalloc and unwritten extent mapping on filesystems that
8339 * support these features.
8340 *
8341 * We are not allowed to take the i_mutex here so we have to play games to
8342 * protect against truncate races as the page could now be beyond EOF. Because
8343 * vmtruncate() writes the inode size before removing pages, once we have the
8344 * page lock we can determine safely if the page is beyond EOF. If it is not
8345 * beyond EOF, then the page is guaranteed safe against truncation until we
8346 * unlock the page.
8347 */
8348 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8349 {
8350 struct page *page = vmf->page;
8351 struct inode *inode = file_inode(vma->vm_file);
8352 struct btrfs_root *root = BTRFS_I(inode)->root;
8353 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8354 struct btrfs_ordered_extent *ordered;
8355 struct extent_state *cached_state = NULL;
8356 char *kaddr;
8357 unsigned long zero_start;
8358 loff_t size;
8359 int ret;
8360 int reserved = 0;
8361 u64 page_start;
8362 u64 page_end;
8363
8364 sb_start_pagefault(inode->i_sb);
8365 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8366 if (!ret) {
8367 ret = file_update_time(vma->vm_file);
8368 reserved = 1;
8369 }
8370 if (ret) {
8371 if (ret == -ENOMEM)
8372 ret = VM_FAULT_OOM;
8373 else /* -ENOSPC, -EIO, etc */
8374 ret = VM_FAULT_SIGBUS;
8375 if (reserved)
8376 goto out;
8377 goto out_noreserve;
8378 }
8379
8380 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8381 again:
8382 lock_page(page);
8383 size = i_size_read(inode);
8384 page_start = page_offset(page);
8385 page_end = page_start + PAGE_CACHE_SIZE - 1;
8386
8387 if ((page->mapping != inode->i_mapping) ||
8388 (page_start >= size)) {
8389 /* page got truncated out from underneath us */
8390 goto out_unlock;
8391 }
8392 wait_on_page_writeback(page);
8393
8394 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8395 set_page_extent_mapped(page);
8396
8397 /*
8398 * we can't set the delalloc bits if there are pending ordered
8399 * extents. Drop our locks and wait for them to finish
8400 */
8401 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8402 if (ordered) {
8403 unlock_extent_cached(io_tree, page_start, page_end,
8404 &cached_state, GFP_NOFS);
8405 unlock_page(page);
8406 btrfs_start_ordered_extent(inode, ordered, 1);
8407 btrfs_put_ordered_extent(ordered);
8408 goto again;
8409 }
8410
8411 /*
8412 * XXX - page_mkwrite gets called every time the page is dirtied, even
8413 * if it was already dirty, so for space accounting reasons we need to
8414 * clear any delalloc bits for the range we are fixing to save. There
8415 * is probably a better way to do this, but for now keep consistent with
8416 * prepare_pages in the normal write path.
8417 */
8418 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8419 EXTENT_DIRTY | EXTENT_DELALLOC |
8420 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8421 0, 0, &cached_state, GFP_NOFS);
8422
8423 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8424 &cached_state);
8425 if (ret) {
8426 unlock_extent_cached(io_tree, page_start, page_end,
8427 &cached_state, GFP_NOFS);
8428 ret = VM_FAULT_SIGBUS;
8429 goto out_unlock;
8430 }
8431 ret = 0;
8432
8433 /* page is wholly or partially inside EOF */
8434 if (page_start + PAGE_CACHE_SIZE > size)
8435 zero_start = size & ~PAGE_CACHE_MASK;
8436 else
8437 zero_start = PAGE_CACHE_SIZE;
8438
8439 if (zero_start != PAGE_CACHE_SIZE) {
8440 kaddr = kmap(page);
8441 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8442 flush_dcache_page(page);
8443 kunmap(page);
8444 }
8445 ClearPageChecked(page);
8446 set_page_dirty(page);
8447 SetPageUptodate(page);
8448
8449 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8450 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8451 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8452
8453 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8454
8455 out_unlock:
8456 if (!ret) {
8457 sb_end_pagefault(inode->i_sb);
8458 return VM_FAULT_LOCKED;
8459 }
8460 unlock_page(page);
8461 out:
8462 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8463 out_noreserve:
8464 sb_end_pagefault(inode->i_sb);
8465 return ret;
8466 }
8467
8468 static int btrfs_truncate(struct inode *inode)
8469 {
8470 struct btrfs_root *root = BTRFS_I(inode)->root;
8471 struct btrfs_block_rsv *rsv;
8472 int ret = 0;
8473 int err = 0;
8474 struct btrfs_trans_handle *trans;
8475 u64 mask = root->sectorsize - 1;
8476 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8477
8478 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8479 (u64)-1);
8480 if (ret)
8481 return ret;
8482
8483 /*
8484 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8485 * 3 things going on here
8486 *
8487 * 1) We need to reserve space for our orphan item and the space to
8488 * delete our orphan item. Lord knows we don't want to have a dangling
8489 * orphan item because we didn't reserve space to remove it.
8490 *
8491 * 2) We need to reserve space to update our inode.
8492 *
8493 * 3) We need to have something to cache all the space that is going to
8494 * be free'd up by the truncate operation, but also have some slack
8495 * space reserved in case it uses space during the truncate (thank you
8496 * very much snapshotting).
8497 *
8498 * And we need these to all be seperate. The fact is we can use alot of
8499 * space doing the truncate, and we have no earthly idea how much space
8500 * we will use, so we need the truncate reservation to be seperate so it
8501 * doesn't end up using space reserved for updating the inode or
8502 * removing the orphan item. We also need to be able to stop the
8503 * transaction and start a new one, which means we need to be able to
8504 * update the inode several times, and we have no idea of knowing how
8505 * many times that will be, so we can't just reserve 1 item for the
8506 * entirety of the opration, so that has to be done seperately as well.
8507 * Then there is the orphan item, which does indeed need to be held on
8508 * to for the whole operation, and we need nobody to touch this reserved
8509 * space except the orphan code.
8510 *
8511 * So that leaves us with
8512 *
8513 * 1) root->orphan_block_rsv - for the orphan deletion.
8514 * 2) rsv - for the truncate reservation, which we will steal from the
8515 * transaction reservation.
8516 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8517 * updating the inode.
8518 */
8519 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8520 if (!rsv)
8521 return -ENOMEM;
8522 rsv->size = min_size;
8523 rsv->failfast = 1;
8524
8525 /*
8526 * 1 for the truncate slack space
8527 * 1 for updating the inode.
8528 */
8529 trans = btrfs_start_transaction(root, 2);
8530 if (IS_ERR(trans)) {
8531 err = PTR_ERR(trans);
8532 goto out;
8533 }
8534
8535 /* Migrate the slack space for the truncate to our reserve */
8536 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8537 min_size);
8538 BUG_ON(ret);
8539
8540 /*
8541 * So if we truncate and then write and fsync we normally would just
8542 * write the extents that changed, which is a problem if we need to
8543 * first truncate that entire inode. So set this flag so we write out
8544 * all of the extents in the inode to the sync log so we're completely
8545 * safe.
8546 */
8547 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8548 trans->block_rsv = rsv;
8549
8550 while (1) {
8551 ret = btrfs_truncate_inode_items(trans, root, inode,
8552 inode->i_size,
8553 BTRFS_EXTENT_DATA_KEY);
8554 if (ret != -ENOSPC) {
8555 err = ret;
8556 break;
8557 }
8558
8559 trans->block_rsv = &root->fs_info->trans_block_rsv;
8560 ret = btrfs_update_inode(trans, root, inode);
8561 if (ret) {
8562 err = ret;
8563 break;
8564 }
8565
8566 btrfs_end_transaction(trans, root);
8567 btrfs_btree_balance_dirty(root);
8568
8569 trans = btrfs_start_transaction(root, 2);
8570 if (IS_ERR(trans)) {
8571 ret = err = PTR_ERR(trans);
8572 trans = NULL;
8573 break;
8574 }
8575
8576 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8577 rsv, min_size);
8578 BUG_ON(ret); /* shouldn't happen */
8579 trans->block_rsv = rsv;
8580 }
8581
8582 if (ret == 0 && inode->i_nlink > 0) {
8583 trans->block_rsv = root->orphan_block_rsv;
8584 ret = btrfs_orphan_del(trans, inode);
8585 if (ret)
8586 err = ret;
8587 }
8588
8589 if (trans) {
8590 trans->block_rsv = &root->fs_info->trans_block_rsv;
8591 ret = btrfs_update_inode(trans, root, inode);
8592 if (ret && !err)
8593 err = ret;
8594
8595 ret = btrfs_end_transaction(trans, root);
8596 btrfs_btree_balance_dirty(root);
8597 }
8598
8599 out:
8600 btrfs_free_block_rsv(root, rsv);
8601
8602 if (ret && !err)
8603 err = ret;
8604
8605 return err;
8606 }
8607
8608 /*
8609 * create a new subvolume directory/inode (helper for the ioctl).
8610 */
8611 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8612 struct btrfs_root *new_root,
8613 struct btrfs_root *parent_root,
8614 u64 new_dirid)
8615 {
8616 struct inode *inode;
8617 int err;
8618 u64 index = 0;
8619
8620 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8621 new_dirid, new_dirid,
8622 S_IFDIR | (~current_umask() & S_IRWXUGO),
8623 &index);
8624 if (IS_ERR(inode))
8625 return PTR_ERR(inode);
8626 inode->i_op = &btrfs_dir_inode_operations;
8627 inode->i_fop = &btrfs_dir_file_operations;
8628
8629 set_nlink(inode, 1);
8630 btrfs_i_size_write(inode, 0);
8631 unlock_new_inode(inode);
8632
8633 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8634 if (err)
8635 btrfs_err(new_root->fs_info,
8636 "error inheriting subvolume %llu properties: %d",
8637 new_root->root_key.objectid, err);
8638
8639 err = btrfs_update_inode(trans, new_root, inode);
8640
8641 iput(inode);
8642 return err;
8643 }
8644
8645 struct inode *btrfs_alloc_inode(struct super_block *sb)
8646 {
8647 struct btrfs_inode *ei;
8648 struct inode *inode;
8649
8650 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8651 if (!ei)
8652 return NULL;
8653
8654 ei->root = NULL;
8655 ei->generation = 0;
8656 ei->last_trans = 0;
8657 ei->last_sub_trans = 0;
8658 ei->logged_trans = 0;
8659 ei->delalloc_bytes = 0;
8660 ei->defrag_bytes = 0;
8661 ei->disk_i_size = 0;
8662 ei->flags = 0;
8663 ei->csum_bytes = 0;
8664 ei->index_cnt = (u64)-1;
8665 ei->dir_index = 0;
8666 ei->last_unlink_trans = 0;
8667 ei->last_log_commit = 0;
8668
8669 spin_lock_init(&ei->lock);
8670 ei->outstanding_extents = 0;
8671 ei->reserved_extents = 0;
8672
8673 ei->runtime_flags = 0;
8674 ei->force_compress = BTRFS_COMPRESS_NONE;
8675
8676 ei->delayed_node = NULL;
8677
8678 ei->i_otime.tv_sec = 0;
8679 ei->i_otime.tv_nsec = 0;
8680
8681 inode = &ei->vfs_inode;
8682 extent_map_tree_init(&ei->extent_tree);
8683 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8684 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8685 ei->io_tree.track_uptodate = 1;
8686 ei->io_failure_tree.track_uptodate = 1;
8687 atomic_set(&ei->sync_writers, 0);
8688 mutex_init(&ei->log_mutex);
8689 mutex_init(&ei->delalloc_mutex);
8690 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8691 INIT_LIST_HEAD(&ei->delalloc_inodes);
8692 RB_CLEAR_NODE(&ei->rb_node);
8693
8694 return inode;
8695 }
8696
8697 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8698 void btrfs_test_destroy_inode(struct inode *inode)
8699 {
8700 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8701 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8702 }
8703 #endif
8704
8705 static void btrfs_i_callback(struct rcu_head *head)
8706 {
8707 struct inode *inode = container_of(head, struct inode, i_rcu);
8708 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8709 }
8710
8711 void btrfs_destroy_inode(struct inode *inode)
8712 {
8713 struct btrfs_ordered_extent *ordered;
8714 struct btrfs_root *root = BTRFS_I(inode)->root;
8715
8716 WARN_ON(!hlist_empty(&inode->i_dentry));
8717 WARN_ON(inode->i_data.nrpages);
8718 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8719 WARN_ON(BTRFS_I(inode)->reserved_extents);
8720 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8721 WARN_ON(BTRFS_I(inode)->csum_bytes);
8722 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8723
8724 /*
8725 * This can happen where we create an inode, but somebody else also
8726 * created the same inode and we need to destroy the one we already
8727 * created.
8728 */
8729 if (!root)
8730 goto free;
8731
8732 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8733 &BTRFS_I(inode)->runtime_flags)) {
8734 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8735 btrfs_ino(inode));
8736 atomic_dec(&root->orphan_inodes);
8737 }
8738
8739 while (1) {
8740 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8741 if (!ordered)
8742 break;
8743 else {
8744 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8745 ordered->file_offset, ordered->len);
8746 btrfs_remove_ordered_extent(inode, ordered);
8747 btrfs_put_ordered_extent(ordered);
8748 btrfs_put_ordered_extent(ordered);
8749 }
8750 }
8751 inode_tree_del(inode);
8752 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8753 free:
8754 call_rcu(&inode->i_rcu, btrfs_i_callback);
8755 }
8756
8757 int btrfs_drop_inode(struct inode *inode)
8758 {
8759 struct btrfs_root *root = BTRFS_I(inode)->root;
8760
8761 if (root == NULL)
8762 return 1;
8763
8764 /* the snap/subvol tree is on deleting */
8765 if (btrfs_root_refs(&root->root_item) == 0)
8766 return 1;
8767 else
8768 return generic_drop_inode(inode);
8769 }
8770
8771 static void init_once(void *foo)
8772 {
8773 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8774
8775 inode_init_once(&ei->vfs_inode);
8776 }
8777
8778 void btrfs_destroy_cachep(void)
8779 {
8780 /*
8781 * Make sure all delayed rcu free inodes are flushed before we
8782 * destroy cache.
8783 */
8784 rcu_barrier();
8785 if (btrfs_inode_cachep)
8786 kmem_cache_destroy(btrfs_inode_cachep);
8787 if (btrfs_trans_handle_cachep)
8788 kmem_cache_destroy(btrfs_trans_handle_cachep);
8789 if (btrfs_transaction_cachep)
8790 kmem_cache_destroy(btrfs_transaction_cachep);
8791 if (btrfs_path_cachep)
8792 kmem_cache_destroy(btrfs_path_cachep);
8793 if (btrfs_free_space_cachep)
8794 kmem_cache_destroy(btrfs_free_space_cachep);
8795 if (btrfs_delalloc_work_cachep)
8796 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8797 }
8798
8799 int btrfs_init_cachep(void)
8800 {
8801 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8802 sizeof(struct btrfs_inode), 0,
8803 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8804 if (!btrfs_inode_cachep)
8805 goto fail;
8806
8807 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8808 sizeof(struct btrfs_trans_handle), 0,
8809 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8810 if (!btrfs_trans_handle_cachep)
8811 goto fail;
8812
8813 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8814 sizeof(struct btrfs_transaction), 0,
8815 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8816 if (!btrfs_transaction_cachep)
8817 goto fail;
8818
8819 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8820 sizeof(struct btrfs_path), 0,
8821 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8822 if (!btrfs_path_cachep)
8823 goto fail;
8824
8825 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8826 sizeof(struct btrfs_free_space), 0,
8827 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8828 if (!btrfs_free_space_cachep)
8829 goto fail;
8830
8831 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8832 sizeof(struct btrfs_delalloc_work), 0,
8833 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8834 NULL);
8835 if (!btrfs_delalloc_work_cachep)
8836 goto fail;
8837
8838 return 0;
8839 fail:
8840 btrfs_destroy_cachep();
8841 return -ENOMEM;
8842 }
8843
8844 static int btrfs_getattr(struct vfsmount *mnt,
8845 struct dentry *dentry, struct kstat *stat)
8846 {
8847 u64 delalloc_bytes;
8848 struct inode *inode = dentry->d_inode;
8849 u32 blocksize = inode->i_sb->s_blocksize;
8850
8851 generic_fillattr(inode, stat);
8852 stat->dev = BTRFS_I(inode)->root->anon_dev;
8853 stat->blksize = PAGE_CACHE_SIZE;
8854
8855 spin_lock(&BTRFS_I(inode)->lock);
8856 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8857 spin_unlock(&BTRFS_I(inode)->lock);
8858 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8859 ALIGN(delalloc_bytes, blocksize)) >> 9;
8860 return 0;
8861 }
8862
8863 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8864 struct inode *new_dir, struct dentry *new_dentry)
8865 {
8866 struct btrfs_trans_handle *trans;
8867 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8868 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8869 struct inode *new_inode = new_dentry->d_inode;
8870 struct inode *old_inode = old_dentry->d_inode;
8871 struct timespec ctime = CURRENT_TIME;
8872 u64 index = 0;
8873 u64 root_objectid;
8874 int ret;
8875 u64 old_ino = btrfs_ino(old_inode);
8876
8877 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8878 return -EPERM;
8879
8880 /* we only allow rename subvolume link between subvolumes */
8881 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8882 return -EXDEV;
8883
8884 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8885 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8886 return -ENOTEMPTY;
8887
8888 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8889 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8890 return -ENOTEMPTY;
8891
8892
8893 /* check for collisions, even if the name isn't there */
8894 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8895 new_dentry->d_name.name,
8896 new_dentry->d_name.len);
8897
8898 if (ret) {
8899 if (ret == -EEXIST) {
8900 /* we shouldn't get
8901 * eexist without a new_inode */
8902 if (WARN_ON(!new_inode)) {
8903 return ret;
8904 }
8905 } else {
8906 /* maybe -EOVERFLOW */
8907 return ret;
8908 }
8909 }
8910 ret = 0;
8911
8912 /*
8913 * we're using rename to replace one file with another. Start IO on it
8914 * now so we don't add too much work to the end of the transaction
8915 */
8916 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8917 filemap_flush(old_inode->i_mapping);
8918
8919 /* close the racy window with snapshot create/destroy ioctl */
8920 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8921 down_read(&root->fs_info->subvol_sem);
8922 /*
8923 * We want to reserve the absolute worst case amount of items. So if
8924 * both inodes are subvols and we need to unlink them then that would
8925 * require 4 item modifications, but if they are both normal inodes it
8926 * would require 5 item modifications, so we'll assume their normal
8927 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8928 * should cover the worst case number of items we'll modify.
8929 */
8930 trans = btrfs_start_transaction(root, 11);
8931 if (IS_ERR(trans)) {
8932 ret = PTR_ERR(trans);
8933 goto out_notrans;
8934 }
8935
8936 if (dest != root)
8937 btrfs_record_root_in_trans(trans, dest);
8938
8939 ret = btrfs_set_inode_index(new_dir, &index);
8940 if (ret)
8941 goto out_fail;
8942
8943 BTRFS_I(old_inode)->dir_index = 0ULL;
8944 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8945 /* force full log commit if subvolume involved. */
8946 btrfs_set_log_full_commit(root->fs_info, trans);
8947 } else {
8948 ret = btrfs_insert_inode_ref(trans, dest,
8949 new_dentry->d_name.name,
8950 new_dentry->d_name.len,
8951 old_ino,
8952 btrfs_ino(new_dir), index);
8953 if (ret)
8954 goto out_fail;
8955 /*
8956 * this is an ugly little race, but the rename is required
8957 * to make sure that if we crash, the inode is either at the
8958 * old name or the new one. pinning the log transaction lets
8959 * us make sure we don't allow a log commit to come in after
8960 * we unlink the name but before we add the new name back in.
8961 */
8962 btrfs_pin_log_trans(root);
8963 }
8964
8965 inode_inc_iversion(old_dir);
8966 inode_inc_iversion(new_dir);
8967 inode_inc_iversion(old_inode);
8968 old_dir->i_ctime = old_dir->i_mtime = ctime;
8969 new_dir->i_ctime = new_dir->i_mtime = ctime;
8970 old_inode->i_ctime = ctime;
8971
8972 if (old_dentry->d_parent != new_dentry->d_parent)
8973 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8974
8975 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8976 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8977 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8978 old_dentry->d_name.name,
8979 old_dentry->d_name.len);
8980 } else {
8981 ret = __btrfs_unlink_inode(trans, root, old_dir,
8982 old_dentry->d_inode,
8983 old_dentry->d_name.name,
8984 old_dentry->d_name.len);
8985 if (!ret)
8986 ret = btrfs_update_inode(trans, root, old_inode);
8987 }
8988 if (ret) {
8989 btrfs_abort_transaction(trans, root, ret);
8990 goto out_fail;
8991 }
8992
8993 if (new_inode) {
8994 inode_inc_iversion(new_inode);
8995 new_inode->i_ctime = CURRENT_TIME;
8996 if (unlikely(btrfs_ino(new_inode) ==
8997 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8998 root_objectid = BTRFS_I(new_inode)->location.objectid;
8999 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9000 root_objectid,
9001 new_dentry->d_name.name,
9002 new_dentry->d_name.len);
9003 BUG_ON(new_inode->i_nlink == 0);
9004 } else {
9005 ret = btrfs_unlink_inode(trans, dest, new_dir,
9006 new_dentry->d_inode,
9007 new_dentry->d_name.name,
9008 new_dentry->d_name.len);
9009 }
9010 if (!ret && new_inode->i_nlink == 0)
9011 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
9012 if (ret) {
9013 btrfs_abort_transaction(trans, root, ret);
9014 goto out_fail;
9015 }
9016 }
9017
9018 ret = btrfs_add_link(trans, new_dir, old_inode,
9019 new_dentry->d_name.name,
9020 new_dentry->d_name.len, 0, index);
9021 if (ret) {
9022 btrfs_abort_transaction(trans, root, ret);
9023 goto out_fail;
9024 }
9025
9026 if (old_inode->i_nlink == 1)
9027 BTRFS_I(old_inode)->dir_index = index;
9028
9029 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9030 struct dentry *parent = new_dentry->d_parent;
9031 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9032 btrfs_end_log_trans(root);
9033 }
9034 out_fail:
9035 btrfs_end_transaction(trans, root);
9036 out_notrans:
9037 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9038 up_read(&root->fs_info->subvol_sem);
9039
9040 return ret;
9041 }
9042
9043 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9044 struct inode *new_dir, struct dentry *new_dentry,
9045 unsigned int flags)
9046 {
9047 if (flags & ~RENAME_NOREPLACE)
9048 return -EINVAL;
9049
9050 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9051 }
9052
9053 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9054 {
9055 struct btrfs_delalloc_work *delalloc_work;
9056 struct inode *inode;
9057
9058 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9059 work);
9060 inode = delalloc_work->inode;
9061 if (delalloc_work->wait) {
9062 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9063 } else {
9064 filemap_flush(inode->i_mapping);
9065 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9066 &BTRFS_I(inode)->runtime_flags))
9067 filemap_flush(inode->i_mapping);
9068 }
9069
9070 if (delalloc_work->delay_iput)
9071 btrfs_add_delayed_iput(inode);
9072 else
9073 iput(inode);
9074 complete(&delalloc_work->completion);
9075 }
9076
9077 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9078 int wait, int delay_iput)
9079 {
9080 struct btrfs_delalloc_work *work;
9081
9082 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9083 if (!work)
9084 return NULL;
9085
9086 init_completion(&work->completion);
9087 INIT_LIST_HEAD(&work->list);
9088 work->inode = inode;
9089 work->wait = wait;
9090 work->delay_iput = delay_iput;
9091 WARN_ON_ONCE(!inode);
9092 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9093 btrfs_run_delalloc_work, NULL, NULL);
9094
9095 return work;
9096 }
9097
9098 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9099 {
9100 wait_for_completion(&work->completion);
9101 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9102 }
9103
9104 /*
9105 * some fairly slow code that needs optimization. This walks the list
9106 * of all the inodes with pending delalloc and forces them to disk.
9107 */
9108 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9109 int nr)
9110 {
9111 struct btrfs_inode *binode;
9112 struct inode *inode;
9113 struct btrfs_delalloc_work *work, *next;
9114 struct list_head works;
9115 struct list_head splice;
9116 int ret = 0;
9117
9118 INIT_LIST_HEAD(&works);
9119 INIT_LIST_HEAD(&splice);
9120
9121 mutex_lock(&root->delalloc_mutex);
9122 spin_lock(&root->delalloc_lock);
9123 list_splice_init(&root->delalloc_inodes, &splice);
9124 while (!list_empty(&splice)) {
9125 binode = list_entry(splice.next, struct btrfs_inode,
9126 delalloc_inodes);
9127
9128 list_move_tail(&binode->delalloc_inodes,
9129 &root->delalloc_inodes);
9130 inode = igrab(&binode->vfs_inode);
9131 if (!inode) {
9132 cond_resched_lock(&root->delalloc_lock);
9133 continue;
9134 }
9135 spin_unlock(&root->delalloc_lock);
9136
9137 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9138 if (!work) {
9139 if (delay_iput)
9140 btrfs_add_delayed_iput(inode);
9141 else
9142 iput(inode);
9143 ret = -ENOMEM;
9144 goto out;
9145 }
9146 list_add_tail(&work->list, &works);
9147 btrfs_queue_work(root->fs_info->flush_workers,
9148 &work->work);
9149 ret++;
9150 if (nr != -1 && ret >= nr)
9151 goto out;
9152 cond_resched();
9153 spin_lock(&root->delalloc_lock);
9154 }
9155 spin_unlock(&root->delalloc_lock);
9156
9157 out:
9158 list_for_each_entry_safe(work, next, &works, list) {
9159 list_del_init(&work->list);
9160 btrfs_wait_and_free_delalloc_work(work);
9161 }
9162
9163 if (!list_empty_careful(&splice)) {
9164 spin_lock(&root->delalloc_lock);
9165 list_splice_tail(&splice, &root->delalloc_inodes);
9166 spin_unlock(&root->delalloc_lock);
9167 }
9168 mutex_unlock(&root->delalloc_mutex);
9169 return ret;
9170 }
9171
9172 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9173 {
9174 int ret;
9175
9176 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9177 return -EROFS;
9178
9179 ret = __start_delalloc_inodes(root, delay_iput, -1);
9180 if (ret > 0)
9181 ret = 0;
9182 /*
9183 * the filemap_flush will queue IO into the worker threads, but
9184 * we have to make sure the IO is actually started and that
9185 * ordered extents get created before we return
9186 */
9187 atomic_inc(&root->fs_info->async_submit_draining);
9188 while (atomic_read(&root->fs_info->nr_async_submits) ||
9189 atomic_read(&root->fs_info->async_delalloc_pages)) {
9190 wait_event(root->fs_info->async_submit_wait,
9191 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9192 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9193 }
9194 atomic_dec(&root->fs_info->async_submit_draining);
9195 return ret;
9196 }
9197
9198 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9199 int nr)
9200 {
9201 struct btrfs_root *root;
9202 struct list_head splice;
9203 int ret;
9204
9205 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9206 return -EROFS;
9207
9208 INIT_LIST_HEAD(&splice);
9209
9210 mutex_lock(&fs_info->delalloc_root_mutex);
9211 spin_lock(&fs_info->delalloc_root_lock);
9212 list_splice_init(&fs_info->delalloc_roots, &splice);
9213 while (!list_empty(&splice) && nr) {
9214 root = list_first_entry(&splice, struct btrfs_root,
9215 delalloc_root);
9216 root = btrfs_grab_fs_root(root);
9217 BUG_ON(!root);
9218 list_move_tail(&root->delalloc_root,
9219 &fs_info->delalloc_roots);
9220 spin_unlock(&fs_info->delalloc_root_lock);
9221
9222 ret = __start_delalloc_inodes(root, delay_iput, nr);
9223 btrfs_put_fs_root(root);
9224 if (ret < 0)
9225 goto out;
9226
9227 if (nr != -1) {
9228 nr -= ret;
9229 WARN_ON(nr < 0);
9230 }
9231 spin_lock(&fs_info->delalloc_root_lock);
9232 }
9233 spin_unlock(&fs_info->delalloc_root_lock);
9234
9235 ret = 0;
9236 atomic_inc(&fs_info->async_submit_draining);
9237 while (atomic_read(&fs_info->nr_async_submits) ||
9238 atomic_read(&fs_info->async_delalloc_pages)) {
9239 wait_event(fs_info->async_submit_wait,
9240 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9241 atomic_read(&fs_info->async_delalloc_pages) == 0));
9242 }
9243 atomic_dec(&fs_info->async_submit_draining);
9244 out:
9245 if (!list_empty_careful(&splice)) {
9246 spin_lock(&fs_info->delalloc_root_lock);
9247 list_splice_tail(&splice, &fs_info->delalloc_roots);
9248 spin_unlock(&fs_info->delalloc_root_lock);
9249 }
9250 mutex_unlock(&fs_info->delalloc_root_mutex);
9251 return ret;
9252 }
9253
9254 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9255 const char *symname)
9256 {
9257 struct btrfs_trans_handle *trans;
9258 struct btrfs_root *root = BTRFS_I(dir)->root;
9259 struct btrfs_path *path;
9260 struct btrfs_key key;
9261 struct inode *inode = NULL;
9262 int err;
9263 int drop_inode = 0;
9264 u64 objectid;
9265 u64 index = 0;
9266 int name_len;
9267 int datasize;
9268 unsigned long ptr;
9269 struct btrfs_file_extent_item *ei;
9270 struct extent_buffer *leaf;
9271
9272 name_len = strlen(symname);
9273 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9274 return -ENAMETOOLONG;
9275
9276 /*
9277 * 2 items for inode item and ref
9278 * 2 items for dir items
9279 * 1 item for xattr if selinux is on
9280 */
9281 trans = btrfs_start_transaction(root, 5);
9282 if (IS_ERR(trans))
9283 return PTR_ERR(trans);
9284
9285 err = btrfs_find_free_ino(root, &objectid);
9286 if (err)
9287 goto out_unlock;
9288
9289 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9290 dentry->d_name.len, btrfs_ino(dir), objectid,
9291 S_IFLNK|S_IRWXUGO, &index);
9292 if (IS_ERR(inode)) {
9293 err = PTR_ERR(inode);
9294 goto out_unlock;
9295 }
9296
9297 /*
9298 * If the active LSM wants to access the inode during
9299 * d_instantiate it needs these. Smack checks to see
9300 * if the filesystem supports xattrs by looking at the
9301 * ops vector.
9302 */
9303 inode->i_fop = &btrfs_file_operations;
9304 inode->i_op = &btrfs_file_inode_operations;
9305 inode->i_mapping->a_ops = &btrfs_aops;
9306 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9307 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9308
9309 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9310 if (err)
9311 goto out_unlock_inode;
9312
9313 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9314 if (err)
9315 goto out_unlock_inode;
9316
9317 path = btrfs_alloc_path();
9318 if (!path) {
9319 err = -ENOMEM;
9320 goto out_unlock_inode;
9321 }
9322 key.objectid = btrfs_ino(inode);
9323 key.offset = 0;
9324 key.type = BTRFS_EXTENT_DATA_KEY;
9325 datasize = btrfs_file_extent_calc_inline_size(name_len);
9326 err = btrfs_insert_empty_item(trans, root, path, &key,
9327 datasize);
9328 if (err) {
9329 btrfs_free_path(path);
9330 goto out_unlock_inode;
9331 }
9332 leaf = path->nodes[0];
9333 ei = btrfs_item_ptr(leaf, path->slots[0],
9334 struct btrfs_file_extent_item);
9335 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9336 btrfs_set_file_extent_type(leaf, ei,
9337 BTRFS_FILE_EXTENT_INLINE);
9338 btrfs_set_file_extent_encryption(leaf, ei, 0);
9339 btrfs_set_file_extent_compression(leaf, ei, 0);
9340 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9341 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9342
9343 ptr = btrfs_file_extent_inline_start(ei);
9344 write_extent_buffer(leaf, symname, ptr, name_len);
9345 btrfs_mark_buffer_dirty(leaf);
9346 btrfs_free_path(path);
9347
9348 inode->i_op = &btrfs_symlink_inode_operations;
9349 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9350 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9351 inode_set_bytes(inode, name_len);
9352 btrfs_i_size_write(inode, name_len);
9353 err = btrfs_update_inode(trans, root, inode);
9354 if (err) {
9355 drop_inode = 1;
9356 goto out_unlock_inode;
9357 }
9358
9359 unlock_new_inode(inode);
9360 d_instantiate(dentry, inode);
9361
9362 out_unlock:
9363 btrfs_end_transaction(trans, root);
9364 if (drop_inode) {
9365 inode_dec_link_count(inode);
9366 iput(inode);
9367 }
9368 btrfs_btree_balance_dirty(root);
9369 return err;
9370
9371 out_unlock_inode:
9372 drop_inode = 1;
9373 unlock_new_inode(inode);
9374 goto out_unlock;
9375 }
9376
9377 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9378 u64 start, u64 num_bytes, u64 min_size,
9379 loff_t actual_len, u64 *alloc_hint,
9380 struct btrfs_trans_handle *trans)
9381 {
9382 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9383 struct extent_map *em;
9384 struct btrfs_root *root = BTRFS_I(inode)->root;
9385 struct btrfs_key ins;
9386 u64 cur_offset = start;
9387 u64 i_size;
9388 u64 cur_bytes;
9389 int ret = 0;
9390 bool own_trans = true;
9391
9392 if (trans)
9393 own_trans = false;
9394 while (num_bytes > 0) {
9395 if (own_trans) {
9396 trans = btrfs_start_transaction(root, 3);
9397 if (IS_ERR(trans)) {
9398 ret = PTR_ERR(trans);
9399 break;
9400 }
9401 }
9402
9403 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9404 cur_bytes = max(cur_bytes, min_size);
9405 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9406 *alloc_hint, &ins, 1, 0);
9407 if (ret) {
9408 if (own_trans)
9409 btrfs_end_transaction(trans, root);
9410 break;
9411 }
9412
9413 ret = insert_reserved_file_extent(trans, inode,
9414 cur_offset, ins.objectid,
9415 ins.offset, ins.offset,
9416 ins.offset, 0, 0, 0,
9417 BTRFS_FILE_EXTENT_PREALLOC);
9418 if (ret) {
9419 btrfs_free_reserved_extent(root, ins.objectid,
9420 ins.offset, 0);
9421 btrfs_abort_transaction(trans, root, ret);
9422 if (own_trans)
9423 btrfs_end_transaction(trans, root);
9424 break;
9425 }
9426 btrfs_drop_extent_cache(inode, cur_offset,
9427 cur_offset + ins.offset -1, 0);
9428
9429 em = alloc_extent_map();
9430 if (!em) {
9431 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9432 &BTRFS_I(inode)->runtime_flags);
9433 goto next;
9434 }
9435
9436 em->start = cur_offset;
9437 em->orig_start = cur_offset;
9438 em->len = ins.offset;
9439 em->block_start = ins.objectid;
9440 em->block_len = ins.offset;
9441 em->orig_block_len = ins.offset;
9442 em->ram_bytes = ins.offset;
9443 em->bdev = root->fs_info->fs_devices->latest_bdev;
9444 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9445 em->generation = trans->transid;
9446
9447 while (1) {
9448 write_lock(&em_tree->lock);
9449 ret = add_extent_mapping(em_tree, em, 1);
9450 write_unlock(&em_tree->lock);
9451 if (ret != -EEXIST)
9452 break;
9453 btrfs_drop_extent_cache(inode, cur_offset,
9454 cur_offset + ins.offset - 1,
9455 0);
9456 }
9457 free_extent_map(em);
9458 next:
9459 num_bytes -= ins.offset;
9460 cur_offset += ins.offset;
9461 *alloc_hint = ins.objectid + ins.offset;
9462
9463 inode_inc_iversion(inode);
9464 inode->i_ctime = CURRENT_TIME;
9465 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9466 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9467 (actual_len > inode->i_size) &&
9468 (cur_offset > inode->i_size)) {
9469 if (cur_offset > actual_len)
9470 i_size = actual_len;
9471 else
9472 i_size = cur_offset;
9473 i_size_write(inode, i_size);
9474 btrfs_ordered_update_i_size(inode, i_size, NULL);
9475 }
9476
9477 ret = btrfs_update_inode(trans, root, inode);
9478
9479 if (ret) {
9480 btrfs_abort_transaction(trans, root, ret);
9481 if (own_trans)
9482 btrfs_end_transaction(trans, root);
9483 break;
9484 }
9485
9486 if (own_trans)
9487 btrfs_end_transaction(trans, root);
9488 }
9489 return ret;
9490 }
9491
9492 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9493 u64 start, u64 num_bytes, u64 min_size,
9494 loff_t actual_len, u64 *alloc_hint)
9495 {
9496 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9497 min_size, actual_len, alloc_hint,
9498 NULL);
9499 }
9500
9501 int btrfs_prealloc_file_range_trans(struct inode *inode,
9502 struct btrfs_trans_handle *trans, int mode,
9503 u64 start, u64 num_bytes, u64 min_size,
9504 loff_t actual_len, u64 *alloc_hint)
9505 {
9506 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9507 min_size, actual_len, alloc_hint, trans);
9508 }
9509
9510 static int btrfs_set_page_dirty(struct page *page)
9511 {
9512 return __set_page_dirty_nobuffers(page);
9513 }
9514
9515 static int btrfs_permission(struct inode *inode, int mask)
9516 {
9517 struct btrfs_root *root = BTRFS_I(inode)->root;
9518 umode_t mode = inode->i_mode;
9519
9520 if (mask & MAY_WRITE &&
9521 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9522 if (btrfs_root_readonly(root))
9523 return -EROFS;
9524 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9525 return -EACCES;
9526 }
9527 return generic_permission(inode, mask);
9528 }
9529
9530 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9531 {
9532 struct btrfs_trans_handle *trans;
9533 struct btrfs_root *root = BTRFS_I(dir)->root;
9534 struct inode *inode = NULL;
9535 u64 objectid;
9536 u64 index;
9537 int ret = 0;
9538
9539 /*
9540 * 5 units required for adding orphan entry
9541 */
9542 trans = btrfs_start_transaction(root, 5);
9543 if (IS_ERR(trans))
9544 return PTR_ERR(trans);
9545
9546 ret = btrfs_find_free_ino(root, &objectid);
9547 if (ret)
9548 goto out;
9549
9550 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9551 btrfs_ino(dir), objectid, mode, &index);
9552 if (IS_ERR(inode)) {
9553 ret = PTR_ERR(inode);
9554 inode = NULL;
9555 goto out;
9556 }
9557
9558 inode->i_fop = &btrfs_file_operations;
9559 inode->i_op = &btrfs_file_inode_operations;
9560
9561 inode->i_mapping->a_ops = &btrfs_aops;
9562 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9563 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9564
9565 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9566 if (ret)
9567 goto out_inode;
9568
9569 ret = btrfs_update_inode(trans, root, inode);
9570 if (ret)
9571 goto out_inode;
9572 ret = btrfs_orphan_add(trans, inode);
9573 if (ret)
9574 goto out_inode;
9575
9576 /*
9577 * We set number of links to 0 in btrfs_new_inode(), and here we set
9578 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9579 * through:
9580 *
9581 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9582 */
9583 set_nlink(inode, 1);
9584 unlock_new_inode(inode);
9585 d_tmpfile(dentry, inode);
9586 mark_inode_dirty(inode);
9587
9588 out:
9589 btrfs_end_transaction(trans, root);
9590 if (ret)
9591 iput(inode);
9592 btrfs_balance_delayed_items(root);
9593 btrfs_btree_balance_dirty(root);
9594 return ret;
9595
9596 out_inode:
9597 unlock_new_inode(inode);
9598 goto out;
9599
9600 }
9601
9602 /* Inspired by filemap_check_errors() */
9603 int btrfs_inode_check_errors(struct inode *inode)
9604 {
9605 int ret = 0;
9606
9607 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9608 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9609 ret = -ENOSPC;
9610 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9611 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9612 ret = -EIO;
9613
9614 return ret;
9615 }
9616
9617 static const struct inode_operations btrfs_dir_inode_operations = {
9618 .getattr = btrfs_getattr,
9619 .lookup = btrfs_lookup,
9620 .create = btrfs_create,
9621 .unlink = btrfs_unlink,
9622 .link = btrfs_link,
9623 .mkdir = btrfs_mkdir,
9624 .rmdir = btrfs_rmdir,
9625 .rename2 = btrfs_rename2,
9626 .symlink = btrfs_symlink,
9627 .setattr = btrfs_setattr,
9628 .mknod = btrfs_mknod,
9629 .setxattr = btrfs_setxattr,
9630 .getxattr = btrfs_getxattr,
9631 .listxattr = btrfs_listxattr,
9632 .removexattr = btrfs_removexattr,
9633 .permission = btrfs_permission,
9634 .get_acl = btrfs_get_acl,
9635 .set_acl = btrfs_set_acl,
9636 .update_time = btrfs_update_time,
9637 .tmpfile = btrfs_tmpfile,
9638 };
9639 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9640 .lookup = btrfs_lookup,
9641 .permission = btrfs_permission,
9642 .get_acl = btrfs_get_acl,
9643 .set_acl = btrfs_set_acl,
9644 .update_time = btrfs_update_time,
9645 };
9646
9647 static const struct file_operations btrfs_dir_file_operations = {
9648 .llseek = generic_file_llseek,
9649 .read = generic_read_dir,
9650 .iterate = btrfs_real_readdir,
9651 .unlocked_ioctl = btrfs_ioctl,
9652 #ifdef CONFIG_COMPAT
9653 .compat_ioctl = btrfs_ioctl,
9654 #endif
9655 .release = btrfs_release_file,
9656 .fsync = btrfs_sync_file,
9657 };
9658
9659 static struct extent_io_ops btrfs_extent_io_ops = {
9660 .fill_delalloc = run_delalloc_range,
9661 .submit_bio_hook = btrfs_submit_bio_hook,
9662 .merge_bio_hook = btrfs_merge_bio_hook,
9663 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9664 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9665 .writepage_start_hook = btrfs_writepage_start_hook,
9666 .set_bit_hook = btrfs_set_bit_hook,
9667 .clear_bit_hook = btrfs_clear_bit_hook,
9668 .merge_extent_hook = btrfs_merge_extent_hook,
9669 .split_extent_hook = btrfs_split_extent_hook,
9670 };
9671
9672 /*
9673 * btrfs doesn't support the bmap operation because swapfiles
9674 * use bmap to make a mapping of extents in the file. They assume
9675 * these extents won't change over the life of the file and they
9676 * use the bmap result to do IO directly to the drive.
9677 *
9678 * the btrfs bmap call would return logical addresses that aren't
9679 * suitable for IO and they also will change frequently as COW
9680 * operations happen. So, swapfile + btrfs == corruption.
9681 *
9682 * For now we're avoiding this by dropping bmap.
9683 */
9684 static const struct address_space_operations btrfs_aops = {
9685 .readpage = btrfs_readpage,
9686 .writepage = btrfs_writepage,
9687 .writepages = btrfs_writepages,
9688 .readpages = btrfs_readpages,
9689 .direct_IO = btrfs_direct_IO,
9690 .invalidatepage = btrfs_invalidatepage,
9691 .releasepage = btrfs_releasepage,
9692 .set_page_dirty = btrfs_set_page_dirty,
9693 .error_remove_page = generic_error_remove_page,
9694 };
9695
9696 static const struct address_space_operations btrfs_symlink_aops = {
9697 .readpage = btrfs_readpage,
9698 .writepage = btrfs_writepage,
9699 .invalidatepage = btrfs_invalidatepage,
9700 .releasepage = btrfs_releasepage,
9701 };
9702
9703 static const struct inode_operations btrfs_file_inode_operations = {
9704 .getattr = btrfs_getattr,
9705 .setattr = btrfs_setattr,
9706 .setxattr = btrfs_setxattr,
9707 .getxattr = btrfs_getxattr,
9708 .listxattr = btrfs_listxattr,
9709 .removexattr = btrfs_removexattr,
9710 .permission = btrfs_permission,
9711 .fiemap = btrfs_fiemap,
9712 .get_acl = btrfs_get_acl,
9713 .set_acl = btrfs_set_acl,
9714 .update_time = btrfs_update_time,
9715 };
9716 static const struct inode_operations btrfs_special_inode_operations = {
9717 .getattr = btrfs_getattr,
9718 .setattr = btrfs_setattr,
9719 .permission = btrfs_permission,
9720 .setxattr = btrfs_setxattr,
9721 .getxattr = btrfs_getxattr,
9722 .listxattr = btrfs_listxattr,
9723 .removexattr = btrfs_removexattr,
9724 .get_acl = btrfs_get_acl,
9725 .set_acl = btrfs_set_acl,
9726 .update_time = btrfs_update_time,
9727 };
9728 static const struct inode_operations btrfs_symlink_inode_operations = {
9729 .readlink = generic_readlink,
9730 .follow_link = page_follow_link_light,
9731 .put_link = page_put_link,
9732 .getattr = btrfs_getattr,
9733 .setattr = btrfs_setattr,
9734 .permission = btrfs_permission,
9735 .setxattr = btrfs_setxattr,
9736 .getxattr = btrfs_getxattr,
9737 .listxattr = btrfs_listxattr,
9738 .removexattr = btrfs_removexattr,
9739 .update_time = btrfs_update_time,
9740 };
9741
9742 const struct dentry_operations btrfs_dentry_operations = {
9743 .d_delete = btrfs_dentry_delete,
9744 .d_release = btrfs_dentry_release,
9745 };