]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/inode.c
kmemcg: account certain kmem allocations to memcg
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95 };
96
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
109
110 static int btrfs_dirty_inode(struct inode *inode);
111
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
122 {
123 int err;
124
125 err = btrfs_init_acl(trans, inode, dir);
126 if (!err)
127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 return err;
129 }
130
131 /*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 struct btrfs_path *path, int extent_inserted,
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
140 int compress_type,
141 struct page **compressed_pages)
142 {
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
151 unsigned long offset;
152
153 if (compressed_size && compressed_pages)
154 cur_size = compressed_size;
155
156 inode_add_bytes(inode, size);
157
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
161
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
164 key.type = BTRFS_EXTENT_DATA_KEY;
165
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
185 if (compress_type != BTRFS_COMPRESS_NONE) {
186 struct page *cpage;
187 int i = 0;
188 while (compressed_size > 0) {
189 cpage = compressed_pages[i];
190 cur_size = min_t(unsigned long, compressed_size,
191 PAGE_CACHE_SIZE);
192
193 kaddr = kmap_atomic(cpage);
194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 kunmap_atomic(kaddr);
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
202 compress_type);
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
207 kaddr = kmap_atomic(page);
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 kunmap_atomic(kaddr);
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
214 btrfs_release_path(path);
215
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
225 BTRFS_I(inode)->disk_i_size = inode->i_size;
226 ret = btrfs_update_inode(trans, root, inode);
227
228 return ret;
229 fail:
230 return err;
231 }
232
233
234 /*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
244 {
245 struct btrfs_trans_handle *trans;
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
249 u64 aligned_end = ALIGN(end, root->sectorsize);
250 u64 data_len = inline_len;
251 int ret;
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
273 trans = btrfs_join_transaction(root);
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
276 return PTR_ERR(trans);
277 }
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
299 inline_len, compressed_size,
300 compress_type, compressed_pages);
301 if (ret && ret != -ENOSPC) {
302 btrfs_abort_transaction(trans, root, ret);
303 goto out;
304 } else if (ret == -ENOSPC) {
305 ret = 1;
306 goto out;
307 }
308
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 /*
314 * Don't forget to free the reserved space, as for inlined extent
315 * it won't count as data extent, free them directly here.
316 * And at reserve time, it's always aligned to page size, so
317 * just free one page here.
318 */
319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
320 btrfs_free_path(path);
321 btrfs_end_transaction(trans, root);
322 return ret;
323 }
324
325 struct async_extent {
326 u64 start;
327 u64 ram_size;
328 u64 compressed_size;
329 struct page **pages;
330 unsigned long nr_pages;
331 int compress_type;
332 struct list_head list;
333 };
334
335 struct async_cow {
336 struct inode *inode;
337 struct btrfs_root *root;
338 struct page *locked_page;
339 u64 start;
340 u64 end;
341 struct list_head extents;
342 struct btrfs_work work;
343 };
344
345 static noinline int add_async_extent(struct async_cow *cow,
346 u64 start, u64 ram_size,
347 u64 compressed_size,
348 struct page **pages,
349 unsigned long nr_pages,
350 int compress_type)
351 {
352 struct async_extent *async_extent;
353
354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
355 BUG_ON(!async_extent); /* -ENOMEM */
356 async_extent->start = start;
357 async_extent->ram_size = ram_size;
358 async_extent->compressed_size = compressed_size;
359 async_extent->pages = pages;
360 async_extent->nr_pages = nr_pages;
361 async_extent->compress_type = compress_type;
362 list_add_tail(&async_extent->list, &cow->extents);
363 return 0;
364 }
365
366 static inline int inode_need_compress(struct inode *inode)
367 {
368 struct btrfs_root *root = BTRFS_I(inode)->root;
369
370 /* force compress */
371 if (btrfs_test_opt(root, FORCE_COMPRESS))
372 return 1;
373 /* bad compression ratios */
374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 return 0;
376 if (btrfs_test_opt(root, COMPRESS) ||
377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 BTRFS_I(inode)->force_compress)
379 return 1;
380 return 0;
381 }
382
383 /*
384 * we create compressed extents in two phases. The first
385 * phase compresses a range of pages that have already been
386 * locked (both pages and state bits are locked).
387 *
388 * This is done inside an ordered work queue, and the compression
389 * is spread across many cpus. The actual IO submission is step
390 * two, and the ordered work queue takes care of making sure that
391 * happens in the same order things were put onto the queue by
392 * writepages and friends.
393 *
394 * If this code finds it can't get good compression, it puts an
395 * entry onto the work queue to write the uncompressed bytes. This
396 * makes sure that both compressed inodes and uncompressed inodes
397 * are written in the same order that the flusher thread sent them
398 * down.
399 */
400 static noinline void compress_file_range(struct inode *inode,
401 struct page *locked_page,
402 u64 start, u64 end,
403 struct async_cow *async_cow,
404 int *num_added)
405 {
406 struct btrfs_root *root = BTRFS_I(inode)->root;
407 u64 num_bytes;
408 u64 blocksize = root->sectorsize;
409 u64 actual_end;
410 u64 isize = i_size_read(inode);
411 int ret = 0;
412 struct page **pages = NULL;
413 unsigned long nr_pages;
414 unsigned long nr_pages_ret = 0;
415 unsigned long total_compressed = 0;
416 unsigned long total_in = 0;
417 unsigned long max_compressed = 128 * 1024;
418 unsigned long max_uncompressed = 128 * 1024;
419 int i;
420 int will_compress;
421 int compress_type = root->fs_info->compress_type;
422 int redirty = 0;
423
424 /* if this is a small write inside eof, kick off a defrag */
425 if ((end - start + 1) < 16 * 1024 &&
426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
427 btrfs_add_inode_defrag(NULL, inode);
428
429 actual_end = min_t(u64, isize, end + 1);
430 again:
431 will_compress = 0;
432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
434
435 /*
436 * we don't want to send crud past the end of i_size through
437 * compression, that's just a waste of CPU time. So, if the
438 * end of the file is before the start of our current
439 * requested range of bytes, we bail out to the uncompressed
440 * cleanup code that can deal with all of this.
441 *
442 * It isn't really the fastest way to fix things, but this is a
443 * very uncommon corner.
444 */
445 if (actual_end <= start)
446 goto cleanup_and_bail_uncompressed;
447
448 total_compressed = actual_end - start;
449
450 /*
451 * skip compression for a small file range(<=blocksize) that
452 * isn't an inline extent, since it dosen't save disk space at all.
453 */
454 if (total_compressed <= blocksize &&
455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 goto cleanup_and_bail_uncompressed;
457
458 /* we want to make sure that amount of ram required to uncompress
459 * an extent is reasonable, so we limit the total size in ram
460 * of a compressed extent to 128k. This is a crucial number
461 * because it also controls how easily we can spread reads across
462 * cpus for decompression.
463 *
464 * We also want to make sure the amount of IO required to do
465 * a random read is reasonably small, so we limit the size of
466 * a compressed extent to 128k.
467 */
468 total_compressed = min(total_compressed, max_uncompressed);
469 num_bytes = ALIGN(end - start + 1, blocksize);
470 num_bytes = max(blocksize, num_bytes);
471 total_in = 0;
472 ret = 0;
473
474 /*
475 * we do compression for mount -o compress and when the
476 * inode has not been flagged as nocompress. This flag can
477 * change at any time if we discover bad compression ratios.
478 */
479 if (inode_need_compress(inode)) {
480 WARN_ON(pages);
481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
482 if (!pages) {
483 /* just bail out to the uncompressed code */
484 goto cont;
485 }
486
487 if (BTRFS_I(inode)->force_compress)
488 compress_type = BTRFS_I(inode)->force_compress;
489
490 /*
491 * we need to call clear_page_dirty_for_io on each
492 * page in the range. Otherwise applications with the file
493 * mmap'd can wander in and change the page contents while
494 * we are compressing them.
495 *
496 * If the compression fails for any reason, we set the pages
497 * dirty again later on.
498 */
499 extent_range_clear_dirty_for_io(inode, start, end);
500 redirty = 1;
501 ret = btrfs_compress_pages(compress_type,
502 inode->i_mapping, start,
503 total_compressed, pages,
504 nr_pages, &nr_pages_ret,
505 &total_in,
506 &total_compressed,
507 max_compressed);
508
509 if (!ret) {
510 unsigned long offset = total_compressed &
511 (PAGE_CACHE_SIZE - 1);
512 struct page *page = pages[nr_pages_ret - 1];
513 char *kaddr;
514
515 /* zero the tail end of the last page, we might be
516 * sending it down to disk
517 */
518 if (offset) {
519 kaddr = kmap_atomic(page);
520 memset(kaddr + offset, 0,
521 PAGE_CACHE_SIZE - offset);
522 kunmap_atomic(kaddr);
523 }
524 will_compress = 1;
525 }
526 }
527 cont:
528 if (start == 0) {
529 /* lets try to make an inline extent */
530 if (ret || total_in < (actual_end - start)) {
531 /* we didn't compress the entire range, try
532 * to make an uncompressed inline extent.
533 */
534 ret = cow_file_range_inline(root, inode, start, end,
535 0, 0, NULL);
536 } else {
537 /* try making a compressed inline extent */
538 ret = cow_file_range_inline(root, inode, start, end,
539 total_compressed,
540 compress_type, pages);
541 }
542 if (ret <= 0) {
543 unsigned long clear_flags = EXTENT_DELALLOC |
544 EXTENT_DEFRAG;
545 unsigned long page_error_op;
546
547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
549
550 /*
551 * inline extent creation worked or returned error,
552 * we don't need to create any more async work items.
553 * Unlock and free up our temp pages.
554 */
555 extent_clear_unlock_delalloc(inode, start, end, NULL,
556 clear_flags, PAGE_UNLOCK |
557 PAGE_CLEAR_DIRTY |
558 PAGE_SET_WRITEBACK |
559 page_error_op |
560 PAGE_END_WRITEBACK);
561 goto free_pages_out;
562 }
563 }
564
565 if (will_compress) {
566 /*
567 * we aren't doing an inline extent round the compressed size
568 * up to a block size boundary so the allocator does sane
569 * things
570 */
571 total_compressed = ALIGN(total_compressed, blocksize);
572
573 /*
574 * one last check to make sure the compression is really a
575 * win, compare the page count read with the blocks on disk
576 */
577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
578 if (total_compressed >= total_in) {
579 will_compress = 0;
580 } else {
581 num_bytes = total_in;
582 }
583 }
584 if (!will_compress && pages) {
585 /*
586 * the compression code ran but failed to make things smaller,
587 * free any pages it allocated and our page pointer array
588 */
589 for (i = 0; i < nr_pages_ret; i++) {
590 WARN_ON(pages[i]->mapping);
591 page_cache_release(pages[i]);
592 }
593 kfree(pages);
594 pages = NULL;
595 total_compressed = 0;
596 nr_pages_ret = 0;
597
598 /* flag the file so we don't compress in the future */
599 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 !(BTRFS_I(inode)->force_compress)) {
601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
602 }
603 }
604 if (will_compress) {
605 *num_added += 1;
606
607 /* the async work queues will take care of doing actual
608 * allocation on disk for these compressed pages,
609 * and will submit them to the elevator.
610 */
611 add_async_extent(async_cow, start, num_bytes,
612 total_compressed, pages, nr_pages_ret,
613 compress_type);
614
615 if (start + num_bytes < end) {
616 start += num_bytes;
617 pages = NULL;
618 cond_resched();
619 goto again;
620 }
621 } else {
622 cleanup_and_bail_uncompressed:
623 /*
624 * No compression, but we still need to write the pages in
625 * the file we've been given so far. redirty the locked
626 * page if it corresponds to our extent and set things up
627 * for the async work queue to run cow_file_range to do
628 * the normal delalloc dance
629 */
630 if (page_offset(locked_page) >= start &&
631 page_offset(locked_page) <= end) {
632 __set_page_dirty_nobuffers(locked_page);
633 /* unlocked later on in the async handlers */
634 }
635 if (redirty)
636 extent_range_redirty_for_io(inode, start, end);
637 add_async_extent(async_cow, start, end - start + 1,
638 0, NULL, 0, BTRFS_COMPRESS_NONE);
639 *num_added += 1;
640 }
641
642 return;
643
644 free_pages_out:
645 for (i = 0; i < nr_pages_ret; i++) {
646 WARN_ON(pages[i]->mapping);
647 page_cache_release(pages[i]);
648 }
649 kfree(pages);
650 }
651
652 static void free_async_extent_pages(struct async_extent *async_extent)
653 {
654 int i;
655
656 if (!async_extent->pages)
657 return;
658
659 for (i = 0; i < async_extent->nr_pages; i++) {
660 WARN_ON(async_extent->pages[i]->mapping);
661 page_cache_release(async_extent->pages[i]);
662 }
663 kfree(async_extent->pages);
664 async_extent->nr_pages = 0;
665 async_extent->pages = NULL;
666 }
667
668 /*
669 * phase two of compressed writeback. This is the ordered portion
670 * of the code, which only gets called in the order the work was
671 * queued. We walk all the async extents created by compress_file_range
672 * and send them down to the disk.
673 */
674 static noinline void submit_compressed_extents(struct inode *inode,
675 struct async_cow *async_cow)
676 {
677 struct async_extent *async_extent;
678 u64 alloc_hint = 0;
679 struct btrfs_key ins;
680 struct extent_map *em;
681 struct btrfs_root *root = BTRFS_I(inode)->root;
682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 struct extent_io_tree *io_tree;
684 int ret = 0;
685
686 again:
687 while (!list_empty(&async_cow->extents)) {
688 async_extent = list_entry(async_cow->extents.next,
689 struct async_extent, list);
690 list_del(&async_extent->list);
691
692 io_tree = &BTRFS_I(inode)->io_tree;
693
694 retry:
695 /* did the compression code fall back to uncompressed IO? */
696 if (!async_extent->pages) {
697 int page_started = 0;
698 unsigned long nr_written = 0;
699
700 lock_extent(io_tree, async_extent->start,
701 async_extent->start +
702 async_extent->ram_size - 1);
703
704 /* allocate blocks */
705 ret = cow_file_range(inode, async_cow->locked_page,
706 async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 &page_started, &nr_written, 0);
710
711 /* JDM XXX */
712
713 /*
714 * if page_started, cow_file_range inserted an
715 * inline extent and took care of all the unlocking
716 * and IO for us. Otherwise, we need to submit
717 * all those pages down to the drive.
718 */
719 if (!page_started && !ret)
720 extent_write_locked_range(io_tree,
721 inode, async_extent->start,
722 async_extent->start +
723 async_extent->ram_size - 1,
724 btrfs_get_extent,
725 WB_SYNC_ALL);
726 else if (ret)
727 unlock_page(async_cow->locked_page);
728 kfree(async_extent);
729 cond_resched();
730 continue;
731 }
732
733 lock_extent(io_tree, async_extent->start,
734 async_extent->start + async_extent->ram_size - 1);
735
736 ret = btrfs_reserve_extent(root,
737 async_extent->compressed_size,
738 async_extent->compressed_size,
739 0, alloc_hint, &ins, 1, 1);
740 if (ret) {
741 free_async_extent_pages(async_extent);
742
743 if (ret == -ENOSPC) {
744 unlock_extent(io_tree, async_extent->start,
745 async_extent->start +
746 async_extent->ram_size - 1);
747
748 /*
749 * we need to redirty the pages if we decide to
750 * fallback to uncompressed IO, otherwise we
751 * will not submit these pages down to lower
752 * layers.
753 */
754 extent_range_redirty_for_io(inode,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
758
759 goto retry;
760 }
761 goto out_free;
762 }
763 /*
764 * here we're doing allocation and writeback of the
765 * compressed pages
766 */
767 btrfs_drop_extent_cache(inode, async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1, 0);
770
771 em = alloc_extent_map();
772 if (!em) {
773 ret = -ENOMEM;
774 goto out_free_reserve;
775 }
776 em->start = async_extent->start;
777 em->len = async_extent->ram_size;
778 em->orig_start = em->start;
779 em->mod_start = em->start;
780 em->mod_len = em->len;
781
782 em->block_start = ins.objectid;
783 em->block_len = ins.offset;
784 em->orig_block_len = ins.offset;
785 em->ram_bytes = async_extent->ram_size;
786 em->bdev = root->fs_info->fs_devices->latest_bdev;
787 em->compress_type = async_extent->compress_type;
788 set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
790 em->generation = -1;
791
792 while (1) {
793 write_lock(&em_tree->lock);
794 ret = add_extent_mapping(em_tree, em, 1);
795 write_unlock(&em_tree->lock);
796 if (ret != -EEXIST) {
797 free_extent_map(em);
798 break;
799 }
800 btrfs_drop_extent_cache(inode, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 }
804
805 if (ret)
806 goto out_free_reserve;
807
808 ret = btrfs_add_ordered_extent_compress(inode,
809 async_extent->start,
810 ins.objectid,
811 async_extent->ram_size,
812 ins.offset,
813 BTRFS_ORDERED_COMPRESSED,
814 async_extent->compress_type);
815 if (ret) {
816 btrfs_drop_extent_cache(inode, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1, 0);
819 goto out_free_reserve;
820 }
821
822 /*
823 * clear dirty, set writeback and unlock the pages.
824 */
825 extent_clear_unlock_delalloc(inode, async_extent->start,
826 async_extent->start +
827 async_extent->ram_size - 1,
828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
830 PAGE_SET_WRITEBACK);
831 ret = btrfs_submit_compressed_write(inode,
832 async_extent->start,
833 async_extent->ram_size,
834 ins.objectid,
835 ins.offset, async_extent->pages,
836 async_extent->nr_pages);
837 if (ret) {
838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 struct page *p = async_extent->pages[0];
840 const u64 start = async_extent->start;
841 const u64 end = start + async_extent->ram_size - 1;
842
843 p->mapping = inode->i_mapping;
844 tree->ops->writepage_end_io_hook(p, start, end,
845 NULL, 0);
846 p->mapping = NULL;
847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 PAGE_END_WRITEBACK |
849 PAGE_SET_ERROR);
850 free_async_extent_pages(async_extent);
851 }
852 alloc_hint = ins.objectid + ins.offset;
853 kfree(async_extent);
854 cond_resched();
855 }
856 return;
857 out_free_reserve:
858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
859 out_free:
860 extent_clear_unlock_delalloc(inode, async_extent->start,
861 async_extent->start +
862 async_extent->ram_size - 1,
863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
868 free_async_extent_pages(async_extent);
869 kfree(async_extent);
870 goto again;
871 }
872
873 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 u64 num_bytes)
875 {
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 struct extent_map *em;
878 u64 alloc_hint = 0;
879
880 read_lock(&em_tree->lock);
881 em = search_extent_mapping(em_tree, start, num_bytes);
882 if (em) {
883 /*
884 * if block start isn't an actual block number then find the
885 * first block in this inode and use that as a hint. If that
886 * block is also bogus then just don't worry about it.
887 */
888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 free_extent_map(em);
890 em = search_extent_mapping(em_tree, 0, 0);
891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 alloc_hint = em->block_start;
893 if (em)
894 free_extent_map(em);
895 } else {
896 alloc_hint = em->block_start;
897 free_extent_map(em);
898 }
899 }
900 read_unlock(&em_tree->lock);
901
902 return alloc_hint;
903 }
904
905 /*
906 * when extent_io.c finds a delayed allocation range in the file,
907 * the call backs end up in this code. The basic idea is to
908 * allocate extents on disk for the range, and create ordered data structs
909 * in ram to track those extents.
910 *
911 * locked_page is the page that writepage had locked already. We use
912 * it to make sure we don't do extra locks or unlocks.
913 *
914 * *page_started is set to one if we unlock locked_page and do everything
915 * required to start IO on it. It may be clean and already done with
916 * IO when we return.
917 */
918 static noinline int cow_file_range(struct inode *inode,
919 struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written,
922 int unlock)
923 {
924 struct btrfs_root *root = BTRFS_I(inode)->root;
925 u64 alloc_hint = 0;
926 u64 num_bytes;
927 unsigned long ram_size;
928 u64 disk_num_bytes;
929 u64 cur_alloc_size;
930 u64 blocksize = root->sectorsize;
931 struct btrfs_key ins;
932 struct extent_map *em;
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 int ret = 0;
935
936 if (btrfs_is_free_space_inode(inode)) {
937 WARN_ON_ONCE(1);
938 ret = -EINVAL;
939 goto out_unlock;
940 }
941
942 num_bytes = ALIGN(end - start + 1, blocksize);
943 num_bytes = max(blocksize, num_bytes);
944 disk_num_bytes = num_bytes;
945
946 /* if this is a small write inside eof, kick off defrag */
947 if (num_bytes < 64 * 1024 &&
948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
949 btrfs_add_inode_defrag(NULL, inode);
950
951 if (start == 0) {
952 /* lets try to make an inline extent */
953 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 NULL);
955 if (ret == 0) {
956 extent_clear_unlock_delalloc(inode, start, end, NULL,
957 EXTENT_LOCKED | EXTENT_DELALLOC |
958 EXTENT_DEFRAG, PAGE_UNLOCK |
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
961
962 *nr_written = *nr_written +
963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 *page_started = 1;
965 goto out;
966 } else if (ret < 0) {
967 goto out_unlock;
968 }
969 }
970
971 BUG_ON(disk_num_bytes >
972 btrfs_super_total_bytes(root->fs_info->super_copy));
973
974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976
977 while (disk_num_bytes > 0) {
978 unsigned long op;
979
980 cur_alloc_size = disk_num_bytes;
981 ret = btrfs_reserve_extent(root, cur_alloc_size,
982 root->sectorsize, 0, alloc_hint,
983 &ins, 1, 1);
984 if (ret < 0)
985 goto out_unlock;
986
987 em = alloc_extent_map();
988 if (!em) {
989 ret = -ENOMEM;
990 goto out_reserve;
991 }
992 em->start = start;
993 em->orig_start = em->start;
994 ram_size = ins.offset;
995 em->len = ins.offset;
996 em->mod_start = em->start;
997 em->mod_len = em->len;
998
999 em->block_start = ins.objectid;
1000 em->block_len = ins.offset;
1001 em->orig_block_len = ins.offset;
1002 em->ram_bytes = ram_size;
1003 em->bdev = root->fs_info->fs_devices->latest_bdev;
1004 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1005 em->generation = -1;
1006
1007 while (1) {
1008 write_lock(&em_tree->lock);
1009 ret = add_extent_mapping(em_tree, em, 1);
1010 write_unlock(&em_tree->lock);
1011 if (ret != -EEXIST) {
1012 free_extent_map(em);
1013 break;
1014 }
1015 btrfs_drop_extent_cache(inode, start,
1016 start + ram_size - 1, 0);
1017 }
1018 if (ret)
1019 goto out_reserve;
1020
1021 cur_alloc_size = ins.offset;
1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 ram_size, cur_alloc_size, 0);
1024 if (ret)
1025 goto out_drop_extent_cache;
1026
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1030 cur_alloc_size);
1031 if (ret)
1032 goto out_drop_extent_cache;
1033 }
1034
1035 if (disk_num_bytes < cur_alloc_size)
1036 break;
1037
1038 /* we're not doing compressed IO, don't unlock the first
1039 * page (which the caller expects to stay locked), don't
1040 * clear any dirty bits and don't set any writeback bits
1041 *
1042 * Do set the Private2 bit so we know this page was properly
1043 * setup for writepage
1044 */
1045 op = unlock ? PAGE_UNLOCK : 0;
1046 op |= PAGE_SET_PRIVATE2;
1047
1048 extent_clear_unlock_delalloc(inode, start,
1049 start + ram_size - 1, locked_page,
1050 EXTENT_LOCKED | EXTENT_DELALLOC,
1051 op);
1052 disk_num_bytes -= cur_alloc_size;
1053 num_bytes -= cur_alloc_size;
1054 alloc_hint = ins.objectid + ins.offset;
1055 start += cur_alloc_size;
1056 }
1057 out:
1058 return ret;
1059
1060 out_drop_extent_cache:
1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1062 out_reserve:
1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1064 out_unlock:
1065 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1070 goto out;
1071 }
1072
1073 /*
1074 * work queue call back to started compression on a file and pages
1075 */
1076 static noinline void async_cow_start(struct btrfs_work *work)
1077 {
1078 struct async_cow *async_cow;
1079 int num_added = 0;
1080 async_cow = container_of(work, struct async_cow, work);
1081
1082 compress_file_range(async_cow->inode, async_cow->locked_page,
1083 async_cow->start, async_cow->end, async_cow,
1084 &num_added);
1085 if (num_added == 0) {
1086 btrfs_add_delayed_iput(async_cow->inode);
1087 async_cow->inode = NULL;
1088 }
1089 }
1090
1091 /*
1092 * work queue call back to submit previously compressed pages
1093 */
1094 static noinline void async_cow_submit(struct btrfs_work *work)
1095 {
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root;
1098 unsigned long nr_pages;
1099
1100 async_cow = container_of(work, struct async_cow, work);
1101
1102 root = async_cow->root;
1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 PAGE_CACHE_SHIFT;
1105
1106 /*
1107 * atomic_sub_return implies a barrier for waitqueue_active
1108 */
1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1110 5 * 1024 * 1024 &&
1111 waitqueue_active(&root->fs_info->async_submit_wait))
1112 wake_up(&root->fs_info->async_submit_wait);
1113
1114 if (async_cow->inode)
1115 submit_compressed_extents(async_cow->inode, async_cow);
1116 }
1117
1118 static noinline void async_cow_free(struct btrfs_work *work)
1119 {
1120 struct async_cow *async_cow;
1121 async_cow = container_of(work, struct async_cow, work);
1122 if (async_cow->inode)
1123 btrfs_add_delayed_iput(async_cow->inode);
1124 kfree(async_cow);
1125 }
1126
1127 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130 {
1131 struct async_cow *async_cow;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 unsigned long nr_pages;
1134 u64 cur_end;
1135 int limit = 10 * 1024 * 1024;
1136
1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 1, 0, NULL, GFP_NOFS);
1139 while (start < end) {
1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1141 BUG_ON(!async_cow); /* -ENOMEM */
1142 async_cow->inode = igrab(inode);
1143 async_cow->root = root;
1144 async_cow->locked_page = locked_page;
1145 async_cow->start = start;
1146
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 !btrfs_test_opt(root, FORCE_COMPRESS))
1149 cur_end = end;
1150 else
1151 cur_end = min(end, start + 512 * 1024 - 1);
1152
1153 async_cow->end = cur_end;
1154 INIT_LIST_HEAD(&async_cow->extents);
1155
1156 btrfs_init_work(&async_cow->work,
1157 btrfs_delalloc_helper,
1158 async_cow_start, async_cow_submit,
1159 async_cow_free);
1160
1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 PAGE_CACHE_SHIFT;
1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164
1165 btrfs_queue_work(root->fs_info->delalloc_workers,
1166 &async_cow->work);
1167
1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 limit));
1172 }
1173
1174 while (atomic_read(&root->fs_info->async_submit_draining) &&
1175 atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 wait_event(root->fs_info->async_submit_wait,
1177 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 0));
1179 }
1180
1181 *nr_written += nr_pages;
1182 start = cur_end + 1;
1183 }
1184 *page_started = 1;
1185 return 0;
1186 }
1187
1188 static noinline int csum_exist_in_range(struct btrfs_root *root,
1189 u64 bytenr, u64 num_bytes)
1190 {
1191 int ret;
1192 struct btrfs_ordered_sum *sums;
1193 LIST_HEAD(list);
1194
1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1196 bytenr + num_bytes - 1, &list, 0);
1197 if (ret == 0 && list_empty(&list))
1198 return 0;
1199
1200 while (!list_empty(&list)) {
1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 list_del(&sums->list);
1203 kfree(sums);
1204 }
1205 return 1;
1206 }
1207
1208 /*
1209 * when nowcow writeback call back. This checks for snapshots or COW copies
1210 * of the extents that exist in the file, and COWs the file as required.
1211 *
1212 * If no cow copies or snapshots exist, we write directly to the existing
1213 * blocks on disk
1214 */
1215 static noinline int run_delalloc_nocow(struct inode *inode,
1216 struct page *locked_page,
1217 u64 start, u64 end, int *page_started, int force,
1218 unsigned long *nr_written)
1219 {
1220 struct btrfs_root *root = BTRFS_I(inode)->root;
1221 struct btrfs_trans_handle *trans;
1222 struct extent_buffer *leaf;
1223 struct btrfs_path *path;
1224 struct btrfs_file_extent_item *fi;
1225 struct btrfs_key found_key;
1226 u64 cow_start;
1227 u64 cur_offset;
1228 u64 extent_end;
1229 u64 extent_offset;
1230 u64 disk_bytenr;
1231 u64 num_bytes;
1232 u64 disk_num_bytes;
1233 u64 ram_bytes;
1234 int extent_type;
1235 int ret, err;
1236 int type;
1237 int nocow;
1238 int check_prev = 1;
1239 bool nolock;
1240 u64 ino = btrfs_ino(inode);
1241
1242 path = btrfs_alloc_path();
1243 if (!path) {
1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 EXTENT_LOCKED | EXTENT_DELALLOC |
1246 EXTENT_DO_ACCOUNTING |
1247 EXTENT_DEFRAG, PAGE_UNLOCK |
1248 PAGE_CLEAR_DIRTY |
1249 PAGE_SET_WRITEBACK |
1250 PAGE_END_WRITEBACK);
1251 return -ENOMEM;
1252 }
1253
1254 nolock = btrfs_is_free_space_inode(inode);
1255
1256 if (nolock)
1257 trans = btrfs_join_transaction_nolock(root);
1258 else
1259 trans = btrfs_join_transaction(root);
1260
1261 if (IS_ERR(trans)) {
1262 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 EXTENT_LOCKED | EXTENT_DELALLOC |
1264 EXTENT_DO_ACCOUNTING |
1265 EXTENT_DEFRAG, PAGE_UNLOCK |
1266 PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK |
1268 PAGE_END_WRITEBACK);
1269 btrfs_free_path(path);
1270 return PTR_ERR(trans);
1271 }
1272
1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1274
1275 cow_start = (u64)-1;
1276 cur_offset = start;
1277 while (1) {
1278 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1279 cur_offset, 0);
1280 if (ret < 0)
1281 goto error;
1282 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &found_key,
1285 path->slots[0] - 1);
1286 if (found_key.objectid == ino &&
1287 found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 path->slots[0]--;
1289 }
1290 check_prev = 0;
1291 next_slot:
1292 leaf = path->nodes[0];
1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 ret = btrfs_next_leaf(root, path);
1295 if (ret < 0)
1296 goto error;
1297 if (ret > 0)
1298 break;
1299 leaf = path->nodes[0];
1300 }
1301
1302 nocow = 0;
1303 disk_bytenr = 0;
1304 num_bytes = 0;
1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306
1307 if (found_key.objectid > ino)
1308 break;
1309 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1310 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1311 path->slots[0]++;
1312 goto next_slot;
1313 }
1314 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1315 found_key.offset > end)
1316 break;
1317
1318 if (found_key.offset > cur_offset) {
1319 extent_end = found_key.offset;
1320 extent_type = 0;
1321 goto out_check;
1322 }
1323
1324 fi = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(leaf, fi);
1327
1328 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1329 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1330 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1331 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1332 extent_offset = btrfs_file_extent_offset(leaf, fi);
1333 extent_end = found_key.offset +
1334 btrfs_file_extent_num_bytes(leaf, fi);
1335 disk_num_bytes =
1336 btrfs_file_extent_disk_num_bytes(leaf, fi);
1337 if (extent_end <= start) {
1338 path->slots[0]++;
1339 goto next_slot;
1340 }
1341 if (disk_bytenr == 0)
1342 goto out_check;
1343 if (btrfs_file_extent_compression(leaf, fi) ||
1344 btrfs_file_extent_encryption(leaf, fi) ||
1345 btrfs_file_extent_other_encoding(leaf, fi))
1346 goto out_check;
1347 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1348 goto out_check;
1349 if (btrfs_extent_readonly(root, disk_bytenr))
1350 goto out_check;
1351 if (btrfs_cross_ref_exist(trans, root, ino,
1352 found_key.offset -
1353 extent_offset, disk_bytenr))
1354 goto out_check;
1355 disk_bytenr += extent_offset;
1356 disk_bytenr += cur_offset - found_key.offset;
1357 num_bytes = min(end + 1, extent_end) - cur_offset;
1358 /*
1359 * if there are pending snapshots for this root,
1360 * we fall into common COW way.
1361 */
1362 if (!nolock) {
1363 err = btrfs_start_write_no_snapshoting(root);
1364 if (!err)
1365 goto out_check;
1366 }
1367 /*
1368 * force cow if csum exists in the range.
1369 * this ensure that csum for a given extent are
1370 * either valid or do not exist.
1371 */
1372 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1373 goto out_check;
1374 nocow = 1;
1375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1376 extent_end = found_key.offset +
1377 btrfs_file_extent_inline_len(leaf,
1378 path->slots[0], fi);
1379 extent_end = ALIGN(extent_end, root->sectorsize);
1380 } else {
1381 BUG_ON(1);
1382 }
1383 out_check:
1384 if (extent_end <= start) {
1385 path->slots[0]++;
1386 if (!nolock && nocow)
1387 btrfs_end_write_no_snapshoting(root);
1388 goto next_slot;
1389 }
1390 if (!nocow) {
1391 if (cow_start == (u64)-1)
1392 cow_start = cur_offset;
1393 cur_offset = extent_end;
1394 if (cur_offset > end)
1395 break;
1396 path->slots[0]++;
1397 goto next_slot;
1398 }
1399
1400 btrfs_release_path(path);
1401 if (cow_start != (u64)-1) {
1402 ret = cow_file_range(inode, locked_page,
1403 cow_start, found_key.offset - 1,
1404 page_started, nr_written, 1);
1405 if (ret) {
1406 if (!nolock && nocow)
1407 btrfs_end_write_no_snapshoting(root);
1408 goto error;
1409 }
1410 cow_start = (u64)-1;
1411 }
1412
1413 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1414 struct extent_map *em;
1415 struct extent_map_tree *em_tree;
1416 em_tree = &BTRFS_I(inode)->extent_tree;
1417 em = alloc_extent_map();
1418 BUG_ON(!em); /* -ENOMEM */
1419 em->start = cur_offset;
1420 em->orig_start = found_key.offset - extent_offset;
1421 em->len = num_bytes;
1422 em->block_len = num_bytes;
1423 em->block_start = disk_bytenr;
1424 em->orig_block_len = disk_num_bytes;
1425 em->ram_bytes = ram_bytes;
1426 em->bdev = root->fs_info->fs_devices->latest_bdev;
1427 em->mod_start = em->start;
1428 em->mod_len = em->len;
1429 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1430 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1431 em->generation = -1;
1432 while (1) {
1433 write_lock(&em_tree->lock);
1434 ret = add_extent_mapping(em_tree, em, 1);
1435 write_unlock(&em_tree->lock);
1436 if (ret != -EEXIST) {
1437 free_extent_map(em);
1438 break;
1439 }
1440 btrfs_drop_extent_cache(inode, em->start,
1441 em->start + em->len - 1, 0);
1442 }
1443 type = BTRFS_ORDERED_PREALLOC;
1444 } else {
1445 type = BTRFS_ORDERED_NOCOW;
1446 }
1447
1448 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1449 num_bytes, num_bytes, type);
1450 BUG_ON(ret); /* -ENOMEM */
1451
1452 if (root->root_key.objectid ==
1453 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1454 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1455 num_bytes);
1456 if (ret) {
1457 if (!nolock && nocow)
1458 btrfs_end_write_no_snapshoting(root);
1459 goto error;
1460 }
1461 }
1462
1463 extent_clear_unlock_delalloc(inode, cur_offset,
1464 cur_offset + num_bytes - 1,
1465 locked_page, EXTENT_LOCKED |
1466 EXTENT_DELALLOC, PAGE_UNLOCK |
1467 PAGE_SET_PRIVATE2);
1468 if (!nolock && nocow)
1469 btrfs_end_write_no_snapshoting(root);
1470 cur_offset = extent_end;
1471 if (cur_offset > end)
1472 break;
1473 }
1474 btrfs_release_path(path);
1475
1476 if (cur_offset <= end && cow_start == (u64)-1) {
1477 cow_start = cur_offset;
1478 cur_offset = end;
1479 }
1480
1481 if (cow_start != (u64)-1) {
1482 ret = cow_file_range(inode, locked_page, cow_start, end,
1483 page_started, nr_written, 1);
1484 if (ret)
1485 goto error;
1486 }
1487
1488 error:
1489 err = btrfs_end_transaction(trans, root);
1490 if (!ret)
1491 ret = err;
1492
1493 if (ret && cur_offset < end)
1494 extent_clear_unlock_delalloc(inode, cur_offset, end,
1495 locked_page, EXTENT_LOCKED |
1496 EXTENT_DELALLOC | EXTENT_DEFRAG |
1497 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1498 PAGE_CLEAR_DIRTY |
1499 PAGE_SET_WRITEBACK |
1500 PAGE_END_WRITEBACK);
1501 btrfs_free_path(path);
1502 return ret;
1503 }
1504
1505 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1506 {
1507
1508 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1509 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1510 return 0;
1511
1512 /*
1513 * @defrag_bytes is a hint value, no spinlock held here,
1514 * if is not zero, it means the file is defragging.
1515 * Force cow if given extent needs to be defragged.
1516 */
1517 if (BTRFS_I(inode)->defrag_bytes &&
1518 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1519 EXTENT_DEFRAG, 0, NULL))
1520 return 1;
1521
1522 return 0;
1523 }
1524
1525 /*
1526 * extent_io.c call back to do delayed allocation processing
1527 */
1528 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1529 u64 start, u64 end, int *page_started,
1530 unsigned long *nr_written)
1531 {
1532 int ret;
1533 int force_cow = need_force_cow(inode, start, end);
1534
1535 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1536 ret = run_delalloc_nocow(inode, locked_page, start, end,
1537 page_started, 1, nr_written);
1538 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1539 ret = run_delalloc_nocow(inode, locked_page, start, end,
1540 page_started, 0, nr_written);
1541 } else if (!inode_need_compress(inode)) {
1542 ret = cow_file_range(inode, locked_page, start, end,
1543 page_started, nr_written, 1);
1544 } else {
1545 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1546 &BTRFS_I(inode)->runtime_flags);
1547 ret = cow_file_range_async(inode, locked_page, start, end,
1548 page_started, nr_written);
1549 }
1550 return ret;
1551 }
1552
1553 static void btrfs_split_extent_hook(struct inode *inode,
1554 struct extent_state *orig, u64 split)
1555 {
1556 u64 size;
1557
1558 /* not delalloc, ignore it */
1559 if (!(orig->state & EXTENT_DELALLOC))
1560 return;
1561
1562 size = orig->end - orig->start + 1;
1563 if (size > BTRFS_MAX_EXTENT_SIZE) {
1564 u64 num_extents;
1565 u64 new_size;
1566
1567 /*
1568 * See the explanation in btrfs_merge_extent_hook, the same
1569 * applies here, just in reverse.
1570 */
1571 new_size = orig->end - split + 1;
1572 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1573 BTRFS_MAX_EXTENT_SIZE);
1574 new_size = split - orig->start;
1575 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1576 BTRFS_MAX_EXTENT_SIZE);
1577 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1578 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1579 return;
1580 }
1581
1582 spin_lock(&BTRFS_I(inode)->lock);
1583 BTRFS_I(inode)->outstanding_extents++;
1584 spin_unlock(&BTRFS_I(inode)->lock);
1585 }
1586
1587 /*
1588 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1589 * extents so we can keep track of new extents that are just merged onto old
1590 * extents, such as when we are doing sequential writes, so we can properly
1591 * account for the metadata space we'll need.
1592 */
1593 static void btrfs_merge_extent_hook(struct inode *inode,
1594 struct extent_state *new,
1595 struct extent_state *other)
1596 {
1597 u64 new_size, old_size;
1598 u64 num_extents;
1599
1600 /* not delalloc, ignore it */
1601 if (!(other->state & EXTENT_DELALLOC))
1602 return;
1603
1604 if (new->start > other->start)
1605 new_size = new->end - other->start + 1;
1606 else
1607 new_size = other->end - new->start + 1;
1608
1609 /* we're not bigger than the max, unreserve the space and go */
1610 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1611 spin_lock(&BTRFS_I(inode)->lock);
1612 BTRFS_I(inode)->outstanding_extents--;
1613 spin_unlock(&BTRFS_I(inode)->lock);
1614 return;
1615 }
1616
1617 /*
1618 * We have to add up either side to figure out how many extents were
1619 * accounted for before we merged into one big extent. If the number of
1620 * extents we accounted for is <= the amount we need for the new range
1621 * then we can return, otherwise drop. Think of it like this
1622 *
1623 * [ 4k][MAX_SIZE]
1624 *
1625 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1626 * need 2 outstanding extents, on one side we have 1 and the other side
1627 * we have 1 so they are == and we can return. But in this case
1628 *
1629 * [MAX_SIZE+4k][MAX_SIZE+4k]
1630 *
1631 * Each range on their own accounts for 2 extents, but merged together
1632 * they are only 3 extents worth of accounting, so we need to drop in
1633 * this case.
1634 */
1635 old_size = other->end - other->start + 1;
1636 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1637 BTRFS_MAX_EXTENT_SIZE);
1638 old_size = new->end - new->start + 1;
1639 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1640 BTRFS_MAX_EXTENT_SIZE);
1641
1642 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1644 return;
1645
1646 spin_lock(&BTRFS_I(inode)->lock);
1647 BTRFS_I(inode)->outstanding_extents--;
1648 spin_unlock(&BTRFS_I(inode)->lock);
1649 }
1650
1651 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1652 struct inode *inode)
1653 {
1654 spin_lock(&root->delalloc_lock);
1655 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1656 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1657 &root->delalloc_inodes);
1658 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1659 &BTRFS_I(inode)->runtime_flags);
1660 root->nr_delalloc_inodes++;
1661 if (root->nr_delalloc_inodes == 1) {
1662 spin_lock(&root->fs_info->delalloc_root_lock);
1663 BUG_ON(!list_empty(&root->delalloc_root));
1664 list_add_tail(&root->delalloc_root,
1665 &root->fs_info->delalloc_roots);
1666 spin_unlock(&root->fs_info->delalloc_root_lock);
1667 }
1668 }
1669 spin_unlock(&root->delalloc_lock);
1670 }
1671
1672 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1673 struct inode *inode)
1674 {
1675 spin_lock(&root->delalloc_lock);
1676 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1677 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1678 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1679 &BTRFS_I(inode)->runtime_flags);
1680 root->nr_delalloc_inodes--;
1681 if (!root->nr_delalloc_inodes) {
1682 spin_lock(&root->fs_info->delalloc_root_lock);
1683 BUG_ON(list_empty(&root->delalloc_root));
1684 list_del_init(&root->delalloc_root);
1685 spin_unlock(&root->fs_info->delalloc_root_lock);
1686 }
1687 }
1688 spin_unlock(&root->delalloc_lock);
1689 }
1690
1691 /*
1692 * extent_io.c set_bit_hook, used to track delayed allocation
1693 * bytes in this file, and to maintain the list of inodes that
1694 * have pending delalloc work to be done.
1695 */
1696 static void btrfs_set_bit_hook(struct inode *inode,
1697 struct extent_state *state, unsigned *bits)
1698 {
1699
1700 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1701 WARN_ON(1);
1702 /*
1703 * set_bit and clear bit hooks normally require _irqsave/restore
1704 * but in this case, we are only testing for the DELALLOC
1705 * bit, which is only set or cleared with irqs on
1706 */
1707 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1708 struct btrfs_root *root = BTRFS_I(inode)->root;
1709 u64 len = state->end + 1 - state->start;
1710 bool do_list = !btrfs_is_free_space_inode(inode);
1711
1712 if (*bits & EXTENT_FIRST_DELALLOC) {
1713 *bits &= ~EXTENT_FIRST_DELALLOC;
1714 } else {
1715 spin_lock(&BTRFS_I(inode)->lock);
1716 BTRFS_I(inode)->outstanding_extents++;
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718 }
1719
1720 /* For sanity tests */
1721 if (btrfs_test_is_dummy_root(root))
1722 return;
1723
1724 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1725 root->fs_info->delalloc_batch);
1726 spin_lock(&BTRFS_I(inode)->lock);
1727 BTRFS_I(inode)->delalloc_bytes += len;
1728 if (*bits & EXTENT_DEFRAG)
1729 BTRFS_I(inode)->defrag_bytes += len;
1730 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1731 &BTRFS_I(inode)->runtime_flags))
1732 btrfs_add_delalloc_inodes(root, inode);
1733 spin_unlock(&BTRFS_I(inode)->lock);
1734 }
1735 }
1736
1737 /*
1738 * extent_io.c clear_bit_hook, see set_bit_hook for why
1739 */
1740 static void btrfs_clear_bit_hook(struct inode *inode,
1741 struct extent_state *state,
1742 unsigned *bits)
1743 {
1744 u64 len = state->end + 1 - state->start;
1745 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1746 BTRFS_MAX_EXTENT_SIZE);
1747
1748 spin_lock(&BTRFS_I(inode)->lock);
1749 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1750 BTRFS_I(inode)->defrag_bytes -= len;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752
1753 /*
1754 * set_bit and clear bit hooks normally require _irqsave/restore
1755 * but in this case, we are only testing for the DELALLOC
1756 * bit, which is only set or cleared with irqs on
1757 */
1758 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1759 struct btrfs_root *root = BTRFS_I(inode)->root;
1760 bool do_list = !btrfs_is_free_space_inode(inode);
1761
1762 if (*bits & EXTENT_FIRST_DELALLOC) {
1763 *bits &= ~EXTENT_FIRST_DELALLOC;
1764 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1765 spin_lock(&BTRFS_I(inode)->lock);
1766 BTRFS_I(inode)->outstanding_extents -= num_extents;
1767 spin_unlock(&BTRFS_I(inode)->lock);
1768 }
1769
1770 /*
1771 * We don't reserve metadata space for space cache inodes so we
1772 * don't need to call dellalloc_release_metadata if there is an
1773 * error.
1774 */
1775 if (*bits & EXTENT_DO_ACCOUNTING &&
1776 root != root->fs_info->tree_root)
1777 btrfs_delalloc_release_metadata(inode, len);
1778
1779 /* For sanity tests. */
1780 if (btrfs_test_is_dummy_root(root))
1781 return;
1782
1783 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1784 && do_list && !(state->state & EXTENT_NORESERVE))
1785 btrfs_free_reserved_data_space_noquota(inode,
1786 state->start, len);
1787
1788 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1789 root->fs_info->delalloc_batch);
1790 spin_lock(&BTRFS_I(inode)->lock);
1791 BTRFS_I(inode)->delalloc_bytes -= len;
1792 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1793 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1794 &BTRFS_I(inode)->runtime_flags))
1795 btrfs_del_delalloc_inode(root, inode);
1796 spin_unlock(&BTRFS_I(inode)->lock);
1797 }
1798 }
1799
1800 /*
1801 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1802 * we don't create bios that span stripes or chunks
1803 */
1804 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1805 size_t size, struct bio *bio,
1806 unsigned long bio_flags)
1807 {
1808 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1809 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1810 u64 length = 0;
1811 u64 map_length;
1812 int ret;
1813
1814 if (bio_flags & EXTENT_BIO_COMPRESSED)
1815 return 0;
1816
1817 length = bio->bi_iter.bi_size;
1818 map_length = length;
1819 ret = btrfs_map_block(root->fs_info, rw, logical,
1820 &map_length, NULL, 0);
1821 /* Will always return 0 with map_multi == NULL */
1822 BUG_ON(ret < 0);
1823 if (map_length < length + size)
1824 return 1;
1825 return 0;
1826 }
1827
1828 /*
1829 * in order to insert checksums into the metadata in large chunks,
1830 * we wait until bio submission time. All the pages in the bio are
1831 * checksummed and sums are attached onto the ordered extent record.
1832 *
1833 * At IO completion time the cums attached on the ordered extent record
1834 * are inserted into the btree
1835 */
1836 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1837 struct bio *bio, int mirror_num,
1838 unsigned long bio_flags,
1839 u64 bio_offset)
1840 {
1841 struct btrfs_root *root = BTRFS_I(inode)->root;
1842 int ret = 0;
1843
1844 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1845 BUG_ON(ret); /* -ENOMEM */
1846 return 0;
1847 }
1848
1849 /*
1850 * in order to insert checksums into the metadata in large chunks,
1851 * we wait until bio submission time. All the pages in the bio are
1852 * checksummed and sums are attached onto the ordered extent record.
1853 *
1854 * At IO completion time the cums attached on the ordered extent record
1855 * are inserted into the btree
1856 */
1857 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1858 int mirror_num, unsigned long bio_flags,
1859 u64 bio_offset)
1860 {
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 int ret;
1863
1864 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1865 if (ret) {
1866 bio->bi_error = ret;
1867 bio_endio(bio);
1868 }
1869 return ret;
1870 }
1871
1872 /*
1873 * extent_io.c submission hook. This does the right thing for csum calculation
1874 * on write, or reading the csums from the tree before a read
1875 */
1876 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1877 int mirror_num, unsigned long bio_flags,
1878 u64 bio_offset)
1879 {
1880 struct btrfs_root *root = BTRFS_I(inode)->root;
1881 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1882 int ret = 0;
1883 int skip_sum;
1884 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1885
1886 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1887
1888 if (btrfs_is_free_space_inode(inode))
1889 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1890
1891 if (!(rw & REQ_WRITE)) {
1892 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1893 if (ret)
1894 goto out;
1895
1896 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1897 ret = btrfs_submit_compressed_read(inode, bio,
1898 mirror_num,
1899 bio_flags);
1900 goto out;
1901 } else if (!skip_sum) {
1902 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1903 if (ret)
1904 goto out;
1905 }
1906 goto mapit;
1907 } else if (async && !skip_sum) {
1908 /* csum items have already been cloned */
1909 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1910 goto mapit;
1911 /* we're doing a write, do the async checksumming */
1912 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1913 inode, rw, bio, mirror_num,
1914 bio_flags, bio_offset,
1915 __btrfs_submit_bio_start,
1916 __btrfs_submit_bio_done);
1917 goto out;
1918 } else if (!skip_sum) {
1919 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1920 if (ret)
1921 goto out;
1922 }
1923
1924 mapit:
1925 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1926
1927 out:
1928 if (ret < 0) {
1929 bio->bi_error = ret;
1930 bio_endio(bio);
1931 }
1932 return ret;
1933 }
1934
1935 /*
1936 * given a list of ordered sums record them in the inode. This happens
1937 * at IO completion time based on sums calculated at bio submission time.
1938 */
1939 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1940 struct inode *inode, u64 file_offset,
1941 struct list_head *list)
1942 {
1943 struct btrfs_ordered_sum *sum;
1944
1945 list_for_each_entry(sum, list, list) {
1946 trans->adding_csums = 1;
1947 btrfs_csum_file_blocks(trans,
1948 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1949 trans->adding_csums = 0;
1950 }
1951 return 0;
1952 }
1953
1954 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1955 struct extent_state **cached_state)
1956 {
1957 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1958 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1959 cached_state, GFP_NOFS);
1960 }
1961
1962 /* see btrfs_writepage_start_hook for details on why this is required */
1963 struct btrfs_writepage_fixup {
1964 struct page *page;
1965 struct btrfs_work work;
1966 };
1967
1968 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1969 {
1970 struct btrfs_writepage_fixup *fixup;
1971 struct btrfs_ordered_extent *ordered;
1972 struct extent_state *cached_state = NULL;
1973 struct page *page;
1974 struct inode *inode;
1975 u64 page_start;
1976 u64 page_end;
1977 int ret;
1978
1979 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1980 page = fixup->page;
1981 again:
1982 lock_page(page);
1983 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1984 ClearPageChecked(page);
1985 goto out_page;
1986 }
1987
1988 inode = page->mapping->host;
1989 page_start = page_offset(page);
1990 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1991
1992 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1993 &cached_state);
1994
1995 /* already ordered? We're done */
1996 if (PagePrivate2(page))
1997 goto out;
1998
1999 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2000 if (ordered) {
2001 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2002 page_end, &cached_state, GFP_NOFS);
2003 unlock_page(page);
2004 btrfs_start_ordered_extent(inode, ordered, 1);
2005 btrfs_put_ordered_extent(ordered);
2006 goto again;
2007 }
2008
2009 ret = btrfs_delalloc_reserve_space(inode, page_start,
2010 PAGE_CACHE_SIZE);
2011 if (ret) {
2012 mapping_set_error(page->mapping, ret);
2013 end_extent_writepage(page, ret, page_start, page_end);
2014 ClearPageChecked(page);
2015 goto out;
2016 }
2017
2018 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2019 ClearPageChecked(page);
2020 set_page_dirty(page);
2021 out:
2022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2023 &cached_state, GFP_NOFS);
2024 out_page:
2025 unlock_page(page);
2026 page_cache_release(page);
2027 kfree(fixup);
2028 }
2029
2030 /*
2031 * There are a few paths in the higher layers of the kernel that directly
2032 * set the page dirty bit without asking the filesystem if it is a
2033 * good idea. This causes problems because we want to make sure COW
2034 * properly happens and the data=ordered rules are followed.
2035 *
2036 * In our case any range that doesn't have the ORDERED bit set
2037 * hasn't been properly setup for IO. We kick off an async process
2038 * to fix it up. The async helper will wait for ordered extents, set
2039 * the delalloc bit and make it safe to write the page.
2040 */
2041 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2042 {
2043 struct inode *inode = page->mapping->host;
2044 struct btrfs_writepage_fixup *fixup;
2045 struct btrfs_root *root = BTRFS_I(inode)->root;
2046
2047 /* this page is properly in the ordered list */
2048 if (TestClearPagePrivate2(page))
2049 return 0;
2050
2051 if (PageChecked(page))
2052 return -EAGAIN;
2053
2054 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2055 if (!fixup)
2056 return -EAGAIN;
2057
2058 SetPageChecked(page);
2059 page_cache_get(page);
2060 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2061 btrfs_writepage_fixup_worker, NULL, NULL);
2062 fixup->page = page;
2063 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2064 return -EBUSY;
2065 }
2066
2067 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2068 struct inode *inode, u64 file_pos,
2069 u64 disk_bytenr, u64 disk_num_bytes,
2070 u64 num_bytes, u64 ram_bytes,
2071 u8 compression, u8 encryption,
2072 u16 other_encoding, int extent_type)
2073 {
2074 struct btrfs_root *root = BTRFS_I(inode)->root;
2075 struct btrfs_file_extent_item *fi;
2076 struct btrfs_path *path;
2077 struct extent_buffer *leaf;
2078 struct btrfs_key ins;
2079 int extent_inserted = 0;
2080 int ret;
2081
2082 path = btrfs_alloc_path();
2083 if (!path)
2084 return -ENOMEM;
2085
2086 /*
2087 * we may be replacing one extent in the tree with another.
2088 * The new extent is pinned in the extent map, and we don't want
2089 * to drop it from the cache until it is completely in the btree.
2090 *
2091 * So, tell btrfs_drop_extents to leave this extent in the cache.
2092 * the caller is expected to unpin it and allow it to be merged
2093 * with the others.
2094 */
2095 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2096 file_pos + num_bytes, NULL, 0,
2097 1, sizeof(*fi), &extent_inserted);
2098 if (ret)
2099 goto out;
2100
2101 if (!extent_inserted) {
2102 ins.objectid = btrfs_ino(inode);
2103 ins.offset = file_pos;
2104 ins.type = BTRFS_EXTENT_DATA_KEY;
2105
2106 path->leave_spinning = 1;
2107 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2108 sizeof(*fi));
2109 if (ret)
2110 goto out;
2111 }
2112 leaf = path->nodes[0];
2113 fi = btrfs_item_ptr(leaf, path->slots[0],
2114 struct btrfs_file_extent_item);
2115 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2116 btrfs_set_file_extent_type(leaf, fi, extent_type);
2117 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2118 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2119 btrfs_set_file_extent_offset(leaf, fi, 0);
2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2122 btrfs_set_file_extent_compression(leaf, fi, compression);
2123 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2124 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2125
2126 btrfs_mark_buffer_dirty(leaf);
2127 btrfs_release_path(path);
2128
2129 inode_add_bytes(inode, num_bytes);
2130
2131 ins.objectid = disk_bytenr;
2132 ins.offset = disk_num_bytes;
2133 ins.type = BTRFS_EXTENT_ITEM_KEY;
2134 ret = btrfs_alloc_reserved_file_extent(trans, root,
2135 root->root_key.objectid,
2136 btrfs_ino(inode), file_pos,
2137 ram_bytes, &ins);
2138 /*
2139 * Release the reserved range from inode dirty range map, as it is
2140 * already moved into delayed_ref_head
2141 */
2142 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2143 out:
2144 btrfs_free_path(path);
2145
2146 return ret;
2147 }
2148
2149 /* snapshot-aware defrag */
2150 struct sa_defrag_extent_backref {
2151 struct rb_node node;
2152 struct old_sa_defrag_extent *old;
2153 u64 root_id;
2154 u64 inum;
2155 u64 file_pos;
2156 u64 extent_offset;
2157 u64 num_bytes;
2158 u64 generation;
2159 };
2160
2161 struct old_sa_defrag_extent {
2162 struct list_head list;
2163 struct new_sa_defrag_extent *new;
2164
2165 u64 extent_offset;
2166 u64 bytenr;
2167 u64 offset;
2168 u64 len;
2169 int count;
2170 };
2171
2172 struct new_sa_defrag_extent {
2173 struct rb_root root;
2174 struct list_head head;
2175 struct btrfs_path *path;
2176 struct inode *inode;
2177 u64 file_pos;
2178 u64 len;
2179 u64 bytenr;
2180 u64 disk_len;
2181 u8 compress_type;
2182 };
2183
2184 static int backref_comp(struct sa_defrag_extent_backref *b1,
2185 struct sa_defrag_extent_backref *b2)
2186 {
2187 if (b1->root_id < b2->root_id)
2188 return -1;
2189 else if (b1->root_id > b2->root_id)
2190 return 1;
2191
2192 if (b1->inum < b2->inum)
2193 return -1;
2194 else if (b1->inum > b2->inum)
2195 return 1;
2196
2197 if (b1->file_pos < b2->file_pos)
2198 return -1;
2199 else if (b1->file_pos > b2->file_pos)
2200 return 1;
2201
2202 /*
2203 * [------------------------------] ===> (a range of space)
2204 * |<--->| |<---->| =============> (fs/file tree A)
2205 * |<---------------------------->| ===> (fs/file tree B)
2206 *
2207 * A range of space can refer to two file extents in one tree while
2208 * refer to only one file extent in another tree.
2209 *
2210 * So we may process a disk offset more than one time(two extents in A)
2211 * and locate at the same extent(one extent in B), then insert two same
2212 * backrefs(both refer to the extent in B).
2213 */
2214 return 0;
2215 }
2216
2217 static void backref_insert(struct rb_root *root,
2218 struct sa_defrag_extent_backref *backref)
2219 {
2220 struct rb_node **p = &root->rb_node;
2221 struct rb_node *parent = NULL;
2222 struct sa_defrag_extent_backref *entry;
2223 int ret;
2224
2225 while (*p) {
2226 parent = *p;
2227 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2228
2229 ret = backref_comp(backref, entry);
2230 if (ret < 0)
2231 p = &(*p)->rb_left;
2232 else
2233 p = &(*p)->rb_right;
2234 }
2235
2236 rb_link_node(&backref->node, parent, p);
2237 rb_insert_color(&backref->node, root);
2238 }
2239
2240 /*
2241 * Note the backref might has changed, and in this case we just return 0.
2242 */
2243 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2244 void *ctx)
2245 {
2246 struct btrfs_file_extent_item *extent;
2247 struct btrfs_fs_info *fs_info;
2248 struct old_sa_defrag_extent *old = ctx;
2249 struct new_sa_defrag_extent *new = old->new;
2250 struct btrfs_path *path = new->path;
2251 struct btrfs_key key;
2252 struct btrfs_root *root;
2253 struct sa_defrag_extent_backref *backref;
2254 struct extent_buffer *leaf;
2255 struct inode *inode = new->inode;
2256 int slot;
2257 int ret;
2258 u64 extent_offset;
2259 u64 num_bytes;
2260
2261 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2262 inum == btrfs_ino(inode))
2263 return 0;
2264
2265 key.objectid = root_id;
2266 key.type = BTRFS_ROOT_ITEM_KEY;
2267 key.offset = (u64)-1;
2268
2269 fs_info = BTRFS_I(inode)->root->fs_info;
2270 root = btrfs_read_fs_root_no_name(fs_info, &key);
2271 if (IS_ERR(root)) {
2272 if (PTR_ERR(root) == -ENOENT)
2273 return 0;
2274 WARN_ON(1);
2275 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2276 inum, offset, root_id);
2277 return PTR_ERR(root);
2278 }
2279
2280 key.objectid = inum;
2281 key.type = BTRFS_EXTENT_DATA_KEY;
2282 if (offset > (u64)-1 << 32)
2283 key.offset = 0;
2284 else
2285 key.offset = offset;
2286
2287 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2288 if (WARN_ON(ret < 0))
2289 return ret;
2290 ret = 0;
2291
2292 while (1) {
2293 cond_resched();
2294
2295 leaf = path->nodes[0];
2296 slot = path->slots[0];
2297
2298 if (slot >= btrfs_header_nritems(leaf)) {
2299 ret = btrfs_next_leaf(root, path);
2300 if (ret < 0) {
2301 goto out;
2302 } else if (ret > 0) {
2303 ret = 0;
2304 goto out;
2305 }
2306 continue;
2307 }
2308
2309 path->slots[0]++;
2310
2311 btrfs_item_key_to_cpu(leaf, &key, slot);
2312
2313 if (key.objectid > inum)
2314 goto out;
2315
2316 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2317 continue;
2318
2319 extent = btrfs_item_ptr(leaf, slot,
2320 struct btrfs_file_extent_item);
2321
2322 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2323 continue;
2324
2325 /*
2326 * 'offset' refers to the exact key.offset,
2327 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2328 * (key.offset - extent_offset).
2329 */
2330 if (key.offset != offset)
2331 continue;
2332
2333 extent_offset = btrfs_file_extent_offset(leaf, extent);
2334 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2335
2336 if (extent_offset >= old->extent_offset + old->offset +
2337 old->len || extent_offset + num_bytes <=
2338 old->extent_offset + old->offset)
2339 continue;
2340 break;
2341 }
2342
2343 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2344 if (!backref) {
2345 ret = -ENOENT;
2346 goto out;
2347 }
2348
2349 backref->root_id = root_id;
2350 backref->inum = inum;
2351 backref->file_pos = offset;
2352 backref->num_bytes = num_bytes;
2353 backref->extent_offset = extent_offset;
2354 backref->generation = btrfs_file_extent_generation(leaf, extent);
2355 backref->old = old;
2356 backref_insert(&new->root, backref);
2357 old->count++;
2358 out:
2359 btrfs_release_path(path);
2360 WARN_ON(ret);
2361 return ret;
2362 }
2363
2364 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2365 struct new_sa_defrag_extent *new)
2366 {
2367 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2368 struct old_sa_defrag_extent *old, *tmp;
2369 int ret;
2370
2371 new->path = path;
2372
2373 list_for_each_entry_safe(old, tmp, &new->head, list) {
2374 ret = iterate_inodes_from_logical(old->bytenr +
2375 old->extent_offset, fs_info,
2376 path, record_one_backref,
2377 old);
2378 if (ret < 0 && ret != -ENOENT)
2379 return false;
2380
2381 /* no backref to be processed for this extent */
2382 if (!old->count) {
2383 list_del(&old->list);
2384 kfree(old);
2385 }
2386 }
2387
2388 if (list_empty(&new->head))
2389 return false;
2390
2391 return true;
2392 }
2393
2394 static int relink_is_mergable(struct extent_buffer *leaf,
2395 struct btrfs_file_extent_item *fi,
2396 struct new_sa_defrag_extent *new)
2397 {
2398 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2399 return 0;
2400
2401 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2402 return 0;
2403
2404 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2405 return 0;
2406
2407 if (btrfs_file_extent_encryption(leaf, fi) ||
2408 btrfs_file_extent_other_encoding(leaf, fi))
2409 return 0;
2410
2411 return 1;
2412 }
2413
2414 /*
2415 * Note the backref might has changed, and in this case we just return 0.
2416 */
2417 static noinline int relink_extent_backref(struct btrfs_path *path,
2418 struct sa_defrag_extent_backref *prev,
2419 struct sa_defrag_extent_backref *backref)
2420 {
2421 struct btrfs_file_extent_item *extent;
2422 struct btrfs_file_extent_item *item;
2423 struct btrfs_ordered_extent *ordered;
2424 struct btrfs_trans_handle *trans;
2425 struct btrfs_fs_info *fs_info;
2426 struct btrfs_root *root;
2427 struct btrfs_key key;
2428 struct extent_buffer *leaf;
2429 struct old_sa_defrag_extent *old = backref->old;
2430 struct new_sa_defrag_extent *new = old->new;
2431 struct inode *src_inode = new->inode;
2432 struct inode *inode;
2433 struct extent_state *cached = NULL;
2434 int ret = 0;
2435 u64 start;
2436 u64 len;
2437 u64 lock_start;
2438 u64 lock_end;
2439 bool merge = false;
2440 int index;
2441
2442 if (prev && prev->root_id == backref->root_id &&
2443 prev->inum == backref->inum &&
2444 prev->file_pos + prev->num_bytes == backref->file_pos)
2445 merge = true;
2446
2447 /* step 1: get root */
2448 key.objectid = backref->root_id;
2449 key.type = BTRFS_ROOT_ITEM_KEY;
2450 key.offset = (u64)-1;
2451
2452 fs_info = BTRFS_I(src_inode)->root->fs_info;
2453 index = srcu_read_lock(&fs_info->subvol_srcu);
2454
2455 root = btrfs_read_fs_root_no_name(fs_info, &key);
2456 if (IS_ERR(root)) {
2457 srcu_read_unlock(&fs_info->subvol_srcu, index);
2458 if (PTR_ERR(root) == -ENOENT)
2459 return 0;
2460 return PTR_ERR(root);
2461 }
2462
2463 if (btrfs_root_readonly(root)) {
2464 srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 return 0;
2466 }
2467
2468 /* step 2: get inode */
2469 key.objectid = backref->inum;
2470 key.type = BTRFS_INODE_ITEM_KEY;
2471 key.offset = 0;
2472
2473 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2474 if (IS_ERR(inode)) {
2475 srcu_read_unlock(&fs_info->subvol_srcu, index);
2476 return 0;
2477 }
2478
2479 srcu_read_unlock(&fs_info->subvol_srcu, index);
2480
2481 /* step 3: relink backref */
2482 lock_start = backref->file_pos;
2483 lock_end = backref->file_pos + backref->num_bytes - 1;
2484 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2485 0, &cached);
2486
2487 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2488 if (ordered) {
2489 btrfs_put_ordered_extent(ordered);
2490 goto out_unlock;
2491 }
2492
2493 trans = btrfs_join_transaction(root);
2494 if (IS_ERR(trans)) {
2495 ret = PTR_ERR(trans);
2496 goto out_unlock;
2497 }
2498
2499 key.objectid = backref->inum;
2500 key.type = BTRFS_EXTENT_DATA_KEY;
2501 key.offset = backref->file_pos;
2502
2503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2504 if (ret < 0) {
2505 goto out_free_path;
2506 } else if (ret > 0) {
2507 ret = 0;
2508 goto out_free_path;
2509 }
2510
2511 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2512 struct btrfs_file_extent_item);
2513
2514 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2515 backref->generation)
2516 goto out_free_path;
2517
2518 btrfs_release_path(path);
2519
2520 start = backref->file_pos;
2521 if (backref->extent_offset < old->extent_offset + old->offset)
2522 start += old->extent_offset + old->offset -
2523 backref->extent_offset;
2524
2525 len = min(backref->extent_offset + backref->num_bytes,
2526 old->extent_offset + old->offset + old->len);
2527 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2528
2529 ret = btrfs_drop_extents(trans, root, inode, start,
2530 start + len, 1);
2531 if (ret)
2532 goto out_free_path;
2533 again:
2534 key.objectid = btrfs_ino(inode);
2535 key.type = BTRFS_EXTENT_DATA_KEY;
2536 key.offset = start;
2537
2538 path->leave_spinning = 1;
2539 if (merge) {
2540 struct btrfs_file_extent_item *fi;
2541 u64 extent_len;
2542 struct btrfs_key found_key;
2543
2544 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2545 if (ret < 0)
2546 goto out_free_path;
2547
2548 path->slots[0]--;
2549 leaf = path->nodes[0];
2550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2551
2552 fi = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_file_extent_item);
2554 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2555
2556 if (extent_len + found_key.offset == start &&
2557 relink_is_mergable(leaf, fi, new)) {
2558 btrfs_set_file_extent_num_bytes(leaf, fi,
2559 extent_len + len);
2560 btrfs_mark_buffer_dirty(leaf);
2561 inode_add_bytes(inode, len);
2562
2563 ret = 1;
2564 goto out_free_path;
2565 } else {
2566 merge = false;
2567 btrfs_release_path(path);
2568 goto again;
2569 }
2570 }
2571
2572 ret = btrfs_insert_empty_item(trans, root, path, &key,
2573 sizeof(*extent));
2574 if (ret) {
2575 btrfs_abort_transaction(trans, root, ret);
2576 goto out_free_path;
2577 }
2578
2579 leaf = path->nodes[0];
2580 item = btrfs_item_ptr(leaf, path->slots[0],
2581 struct btrfs_file_extent_item);
2582 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2583 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2584 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2585 btrfs_set_file_extent_num_bytes(leaf, item, len);
2586 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2587 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2588 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2589 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2590 btrfs_set_file_extent_encryption(leaf, item, 0);
2591 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2592
2593 btrfs_mark_buffer_dirty(leaf);
2594 inode_add_bytes(inode, len);
2595 btrfs_release_path(path);
2596
2597 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2598 new->disk_len, 0,
2599 backref->root_id, backref->inum,
2600 new->file_pos); /* start - extent_offset */
2601 if (ret) {
2602 btrfs_abort_transaction(trans, root, ret);
2603 goto out_free_path;
2604 }
2605
2606 ret = 1;
2607 out_free_path:
2608 btrfs_release_path(path);
2609 path->leave_spinning = 0;
2610 btrfs_end_transaction(trans, root);
2611 out_unlock:
2612 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2613 &cached, GFP_NOFS);
2614 iput(inode);
2615 return ret;
2616 }
2617
2618 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2619 {
2620 struct old_sa_defrag_extent *old, *tmp;
2621
2622 if (!new)
2623 return;
2624
2625 list_for_each_entry_safe(old, tmp, &new->head, list) {
2626 kfree(old);
2627 }
2628 kfree(new);
2629 }
2630
2631 static void relink_file_extents(struct new_sa_defrag_extent *new)
2632 {
2633 struct btrfs_path *path;
2634 struct sa_defrag_extent_backref *backref;
2635 struct sa_defrag_extent_backref *prev = NULL;
2636 struct inode *inode;
2637 struct btrfs_root *root;
2638 struct rb_node *node;
2639 int ret;
2640
2641 inode = new->inode;
2642 root = BTRFS_I(inode)->root;
2643
2644 path = btrfs_alloc_path();
2645 if (!path)
2646 return;
2647
2648 if (!record_extent_backrefs(path, new)) {
2649 btrfs_free_path(path);
2650 goto out;
2651 }
2652 btrfs_release_path(path);
2653
2654 while (1) {
2655 node = rb_first(&new->root);
2656 if (!node)
2657 break;
2658 rb_erase(node, &new->root);
2659
2660 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2661
2662 ret = relink_extent_backref(path, prev, backref);
2663 WARN_ON(ret < 0);
2664
2665 kfree(prev);
2666
2667 if (ret == 1)
2668 prev = backref;
2669 else
2670 prev = NULL;
2671 cond_resched();
2672 }
2673 kfree(prev);
2674
2675 btrfs_free_path(path);
2676 out:
2677 free_sa_defrag_extent(new);
2678
2679 atomic_dec(&root->fs_info->defrag_running);
2680 wake_up(&root->fs_info->transaction_wait);
2681 }
2682
2683 static struct new_sa_defrag_extent *
2684 record_old_file_extents(struct inode *inode,
2685 struct btrfs_ordered_extent *ordered)
2686 {
2687 struct btrfs_root *root = BTRFS_I(inode)->root;
2688 struct btrfs_path *path;
2689 struct btrfs_key key;
2690 struct old_sa_defrag_extent *old;
2691 struct new_sa_defrag_extent *new;
2692 int ret;
2693
2694 new = kmalloc(sizeof(*new), GFP_NOFS);
2695 if (!new)
2696 return NULL;
2697
2698 new->inode = inode;
2699 new->file_pos = ordered->file_offset;
2700 new->len = ordered->len;
2701 new->bytenr = ordered->start;
2702 new->disk_len = ordered->disk_len;
2703 new->compress_type = ordered->compress_type;
2704 new->root = RB_ROOT;
2705 INIT_LIST_HEAD(&new->head);
2706
2707 path = btrfs_alloc_path();
2708 if (!path)
2709 goto out_kfree;
2710
2711 key.objectid = btrfs_ino(inode);
2712 key.type = BTRFS_EXTENT_DATA_KEY;
2713 key.offset = new->file_pos;
2714
2715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2716 if (ret < 0)
2717 goto out_free_path;
2718 if (ret > 0 && path->slots[0] > 0)
2719 path->slots[0]--;
2720
2721 /* find out all the old extents for the file range */
2722 while (1) {
2723 struct btrfs_file_extent_item *extent;
2724 struct extent_buffer *l;
2725 int slot;
2726 u64 num_bytes;
2727 u64 offset;
2728 u64 end;
2729 u64 disk_bytenr;
2730 u64 extent_offset;
2731
2732 l = path->nodes[0];
2733 slot = path->slots[0];
2734
2735 if (slot >= btrfs_header_nritems(l)) {
2736 ret = btrfs_next_leaf(root, path);
2737 if (ret < 0)
2738 goto out_free_path;
2739 else if (ret > 0)
2740 break;
2741 continue;
2742 }
2743
2744 btrfs_item_key_to_cpu(l, &key, slot);
2745
2746 if (key.objectid != btrfs_ino(inode))
2747 break;
2748 if (key.type != BTRFS_EXTENT_DATA_KEY)
2749 break;
2750 if (key.offset >= new->file_pos + new->len)
2751 break;
2752
2753 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2754
2755 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2756 if (key.offset + num_bytes < new->file_pos)
2757 goto next;
2758
2759 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2760 if (!disk_bytenr)
2761 goto next;
2762
2763 extent_offset = btrfs_file_extent_offset(l, extent);
2764
2765 old = kmalloc(sizeof(*old), GFP_NOFS);
2766 if (!old)
2767 goto out_free_path;
2768
2769 offset = max(new->file_pos, key.offset);
2770 end = min(new->file_pos + new->len, key.offset + num_bytes);
2771
2772 old->bytenr = disk_bytenr;
2773 old->extent_offset = extent_offset;
2774 old->offset = offset - key.offset;
2775 old->len = end - offset;
2776 old->new = new;
2777 old->count = 0;
2778 list_add_tail(&old->list, &new->head);
2779 next:
2780 path->slots[0]++;
2781 cond_resched();
2782 }
2783
2784 btrfs_free_path(path);
2785 atomic_inc(&root->fs_info->defrag_running);
2786
2787 return new;
2788
2789 out_free_path:
2790 btrfs_free_path(path);
2791 out_kfree:
2792 free_sa_defrag_extent(new);
2793 return NULL;
2794 }
2795
2796 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2797 u64 start, u64 len)
2798 {
2799 struct btrfs_block_group_cache *cache;
2800
2801 cache = btrfs_lookup_block_group(root->fs_info, start);
2802 ASSERT(cache);
2803
2804 spin_lock(&cache->lock);
2805 cache->delalloc_bytes -= len;
2806 spin_unlock(&cache->lock);
2807
2808 btrfs_put_block_group(cache);
2809 }
2810
2811 /* as ordered data IO finishes, this gets called so we can finish
2812 * an ordered extent if the range of bytes in the file it covers are
2813 * fully written.
2814 */
2815 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2816 {
2817 struct inode *inode = ordered_extent->inode;
2818 struct btrfs_root *root = BTRFS_I(inode)->root;
2819 struct btrfs_trans_handle *trans = NULL;
2820 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2821 struct extent_state *cached_state = NULL;
2822 struct new_sa_defrag_extent *new = NULL;
2823 int compress_type = 0;
2824 int ret = 0;
2825 u64 logical_len = ordered_extent->len;
2826 bool nolock;
2827 bool truncated = false;
2828
2829 nolock = btrfs_is_free_space_inode(inode);
2830
2831 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2832 ret = -EIO;
2833 goto out;
2834 }
2835
2836 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2837 ordered_extent->file_offset +
2838 ordered_extent->len - 1);
2839
2840 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2841 truncated = true;
2842 logical_len = ordered_extent->truncated_len;
2843 /* Truncated the entire extent, don't bother adding */
2844 if (!logical_len)
2845 goto out;
2846 }
2847
2848 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2849 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2850
2851 /*
2852 * For mwrite(mmap + memset to write) case, we still reserve
2853 * space for NOCOW range.
2854 * As NOCOW won't cause a new delayed ref, just free the space
2855 */
2856 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2857 ordered_extent->len);
2858 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2859 if (nolock)
2860 trans = btrfs_join_transaction_nolock(root);
2861 else
2862 trans = btrfs_join_transaction(root);
2863 if (IS_ERR(trans)) {
2864 ret = PTR_ERR(trans);
2865 trans = NULL;
2866 goto out;
2867 }
2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869 ret = btrfs_update_inode_fallback(trans, root, inode);
2870 if (ret) /* -ENOMEM or corruption */
2871 btrfs_abort_transaction(trans, root, ret);
2872 goto out;
2873 }
2874
2875 lock_extent_bits(io_tree, ordered_extent->file_offset,
2876 ordered_extent->file_offset + ordered_extent->len - 1,
2877 0, &cached_state);
2878
2879 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2880 ordered_extent->file_offset + ordered_extent->len - 1,
2881 EXTENT_DEFRAG, 1, cached_state);
2882 if (ret) {
2883 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2884 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2885 /* the inode is shared */
2886 new = record_old_file_extents(inode, ordered_extent);
2887
2888 clear_extent_bit(io_tree, ordered_extent->file_offset,
2889 ordered_extent->file_offset + ordered_extent->len - 1,
2890 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2891 }
2892
2893 if (nolock)
2894 trans = btrfs_join_transaction_nolock(root);
2895 else
2896 trans = btrfs_join_transaction(root);
2897 if (IS_ERR(trans)) {
2898 ret = PTR_ERR(trans);
2899 trans = NULL;
2900 goto out_unlock;
2901 }
2902
2903 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2904
2905 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2906 compress_type = ordered_extent->compress_type;
2907 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2908 BUG_ON(compress_type);
2909 ret = btrfs_mark_extent_written(trans, inode,
2910 ordered_extent->file_offset,
2911 ordered_extent->file_offset +
2912 logical_len);
2913 } else {
2914 BUG_ON(root == root->fs_info->tree_root);
2915 ret = insert_reserved_file_extent(trans, inode,
2916 ordered_extent->file_offset,
2917 ordered_extent->start,
2918 ordered_extent->disk_len,
2919 logical_len, logical_len,
2920 compress_type, 0, 0,
2921 BTRFS_FILE_EXTENT_REG);
2922 if (!ret)
2923 btrfs_release_delalloc_bytes(root,
2924 ordered_extent->start,
2925 ordered_extent->disk_len);
2926 }
2927 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2928 ordered_extent->file_offset, ordered_extent->len,
2929 trans->transid);
2930 if (ret < 0) {
2931 btrfs_abort_transaction(trans, root, ret);
2932 goto out_unlock;
2933 }
2934
2935 add_pending_csums(trans, inode, ordered_extent->file_offset,
2936 &ordered_extent->list);
2937
2938 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2939 ret = btrfs_update_inode_fallback(trans, root, inode);
2940 if (ret) { /* -ENOMEM or corruption */
2941 btrfs_abort_transaction(trans, root, ret);
2942 goto out_unlock;
2943 }
2944 ret = 0;
2945 out_unlock:
2946 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2947 ordered_extent->file_offset +
2948 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2949 out:
2950 if (root != root->fs_info->tree_root)
2951 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2952 if (trans)
2953 btrfs_end_transaction(trans, root);
2954
2955 if (ret || truncated) {
2956 u64 start, end;
2957
2958 if (truncated)
2959 start = ordered_extent->file_offset + logical_len;
2960 else
2961 start = ordered_extent->file_offset;
2962 end = ordered_extent->file_offset + ordered_extent->len - 1;
2963 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2964
2965 /* Drop the cache for the part of the extent we didn't write. */
2966 btrfs_drop_extent_cache(inode, start, end, 0);
2967
2968 /*
2969 * If the ordered extent had an IOERR or something else went
2970 * wrong we need to return the space for this ordered extent
2971 * back to the allocator. We only free the extent in the
2972 * truncated case if we didn't write out the extent at all.
2973 */
2974 if ((ret || !logical_len) &&
2975 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2976 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2977 btrfs_free_reserved_extent(root, ordered_extent->start,
2978 ordered_extent->disk_len, 1);
2979 }
2980
2981
2982 /*
2983 * This needs to be done to make sure anybody waiting knows we are done
2984 * updating everything for this ordered extent.
2985 */
2986 btrfs_remove_ordered_extent(inode, ordered_extent);
2987
2988 /* for snapshot-aware defrag */
2989 if (new) {
2990 if (ret) {
2991 free_sa_defrag_extent(new);
2992 atomic_dec(&root->fs_info->defrag_running);
2993 } else {
2994 relink_file_extents(new);
2995 }
2996 }
2997
2998 /* once for us */
2999 btrfs_put_ordered_extent(ordered_extent);
3000 /* once for the tree */
3001 btrfs_put_ordered_extent(ordered_extent);
3002
3003 return ret;
3004 }
3005
3006 static void finish_ordered_fn(struct btrfs_work *work)
3007 {
3008 struct btrfs_ordered_extent *ordered_extent;
3009 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3010 btrfs_finish_ordered_io(ordered_extent);
3011 }
3012
3013 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3014 struct extent_state *state, int uptodate)
3015 {
3016 struct inode *inode = page->mapping->host;
3017 struct btrfs_root *root = BTRFS_I(inode)->root;
3018 struct btrfs_ordered_extent *ordered_extent = NULL;
3019 struct btrfs_workqueue *wq;
3020 btrfs_work_func_t func;
3021
3022 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3023
3024 ClearPagePrivate2(page);
3025 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3026 end - start + 1, uptodate))
3027 return 0;
3028
3029 if (btrfs_is_free_space_inode(inode)) {
3030 wq = root->fs_info->endio_freespace_worker;
3031 func = btrfs_freespace_write_helper;
3032 } else {
3033 wq = root->fs_info->endio_write_workers;
3034 func = btrfs_endio_write_helper;
3035 }
3036
3037 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3038 NULL);
3039 btrfs_queue_work(wq, &ordered_extent->work);
3040
3041 return 0;
3042 }
3043
3044 static int __readpage_endio_check(struct inode *inode,
3045 struct btrfs_io_bio *io_bio,
3046 int icsum, struct page *page,
3047 int pgoff, u64 start, size_t len)
3048 {
3049 char *kaddr;
3050 u32 csum_expected;
3051 u32 csum = ~(u32)0;
3052
3053 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3054
3055 kaddr = kmap_atomic(page);
3056 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3057 btrfs_csum_final(csum, (char *)&csum);
3058 if (csum != csum_expected)
3059 goto zeroit;
3060
3061 kunmap_atomic(kaddr);
3062 return 0;
3063 zeroit:
3064 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3065 "csum failed ino %llu off %llu csum %u expected csum %u",
3066 btrfs_ino(inode), start, csum, csum_expected);
3067 memset(kaddr + pgoff, 1, len);
3068 flush_dcache_page(page);
3069 kunmap_atomic(kaddr);
3070 if (csum_expected == 0)
3071 return 0;
3072 return -EIO;
3073 }
3074
3075 /*
3076 * when reads are done, we need to check csums to verify the data is correct
3077 * if there's a match, we allow the bio to finish. If not, the code in
3078 * extent_io.c will try to find good copies for us.
3079 */
3080 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3081 u64 phy_offset, struct page *page,
3082 u64 start, u64 end, int mirror)
3083 {
3084 size_t offset = start - page_offset(page);
3085 struct inode *inode = page->mapping->host;
3086 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3087 struct btrfs_root *root = BTRFS_I(inode)->root;
3088
3089 if (PageChecked(page)) {
3090 ClearPageChecked(page);
3091 return 0;
3092 }
3093
3094 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3095 return 0;
3096
3097 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3098 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3099 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3100 GFP_NOFS);
3101 return 0;
3102 }
3103
3104 phy_offset >>= inode->i_sb->s_blocksize_bits;
3105 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3106 start, (size_t)(end - start + 1));
3107 }
3108
3109 struct delayed_iput {
3110 struct list_head list;
3111 struct inode *inode;
3112 };
3113
3114 /* JDM: If this is fs-wide, why can't we add a pointer to
3115 * btrfs_inode instead and avoid the allocation? */
3116 void btrfs_add_delayed_iput(struct inode *inode)
3117 {
3118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3119 struct delayed_iput *delayed;
3120
3121 if (atomic_add_unless(&inode->i_count, -1, 1))
3122 return;
3123
3124 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3125 delayed->inode = inode;
3126
3127 spin_lock(&fs_info->delayed_iput_lock);
3128 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3129 spin_unlock(&fs_info->delayed_iput_lock);
3130 }
3131
3132 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3133 {
3134 LIST_HEAD(list);
3135 struct btrfs_fs_info *fs_info = root->fs_info;
3136 struct delayed_iput *delayed;
3137 int empty;
3138
3139 spin_lock(&fs_info->delayed_iput_lock);
3140 empty = list_empty(&fs_info->delayed_iputs);
3141 spin_unlock(&fs_info->delayed_iput_lock);
3142 if (empty)
3143 return;
3144
3145 down_read(&fs_info->delayed_iput_sem);
3146
3147 spin_lock(&fs_info->delayed_iput_lock);
3148 list_splice_init(&fs_info->delayed_iputs, &list);
3149 spin_unlock(&fs_info->delayed_iput_lock);
3150
3151 while (!list_empty(&list)) {
3152 delayed = list_entry(list.next, struct delayed_iput, list);
3153 list_del(&delayed->list);
3154 iput(delayed->inode);
3155 kfree(delayed);
3156 }
3157
3158 up_read(&root->fs_info->delayed_iput_sem);
3159 }
3160
3161 /*
3162 * This is called in transaction commit time. If there are no orphan
3163 * files in the subvolume, it removes orphan item and frees block_rsv
3164 * structure.
3165 */
3166 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3167 struct btrfs_root *root)
3168 {
3169 struct btrfs_block_rsv *block_rsv;
3170 int ret;
3171
3172 if (atomic_read(&root->orphan_inodes) ||
3173 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3174 return;
3175
3176 spin_lock(&root->orphan_lock);
3177 if (atomic_read(&root->orphan_inodes)) {
3178 spin_unlock(&root->orphan_lock);
3179 return;
3180 }
3181
3182 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3183 spin_unlock(&root->orphan_lock);
3184 return;
3185 }
3186
3187 block_rsv = root->orphan_block_rsv;
3188 root->orphan_block_rsv = NULL;
3189 spin_unlock(&root->orphan_lock);
3190
3191 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3192 btrfs_root_refs(&root->root_item) > 0) {
3193 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3194 root->root_key.objectid);
3195 if (ret)
3196 btrfs_abort_transaction(trans, root, ret);
3197 else
3198 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3199 &root->state);
3200 }
3201
3202 if (block_rsv) {
3203 WARN_ON(block_rsv->size > 0);
3204 btrfs_free_block_rsv(root, block_rsv);
3205 }
3206 }
3207
3208 /*
3209 * This creates an orphan entry for the given inode in case something goes
3210 * wrong in the middle of an unlink/truncate.
3211 *
3212 * NOTE: caller of this function should reserve 5 units of metadata for
3213 * this function.
3214 */
3215 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3216 {
3217 struct btrfs_root *root = BTRFS_I(inode)->root;
3218 struct btrfs_block_rsv *block_rsv = NULL;
3219 int reserve = 0;
3220 int insert = 0;
3221 int ret;
3222
3223 if (!root->orphan_block_rsv) {
3224 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3225 if (!block_rsv)
3226 return -ENOMEM;
3227 }
3228
3229 spin_lock(&root->orphan_lock);
3230 if (!root->orphan_block_rsv) {
3231 root->orphan_block_rsv = block_rsv;
3232 } else if (block_rsv) {
3233 btrfs_free_block_rsv(root, block_rsv);
3234 block_rsv = NULL;
3235 }
3236
3237 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3238 &BTRFS_I(inode)->runtime_flags)) {
3239 #if 0
3240 /*
3241 * For proper ENOSPC handling, we should do orphan
3242 * cleanup when mounting. But this introduces backward
3243 * compatibility issue.
3244 */
3245 if (!xchg(&root->orphan_item_inserted, 1))
3246 insert = 2;
3247 else
3248 insert = 1;
3249 #endif
3250 insert = 1;
3251 atomic_inc(&root->orphan_inodes);
3252 }
3253
3254 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3255 &BTRFS_I(inode)->runtime_flags))
3256 reserve = 1;
3257 spin_unlock(&root->orphan_lock);
3258
3259 /* grab metadata reservation from transaction handle */
3260 if (reserve) {
3261 ret = btrfs_orphan_reserve_metadata(trans, inode);
3262 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3263 }
3264
3265 /* insert an orphan item to track this unlinked/truncated file */
3266 if (insert >= 1) {
3267 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3268 if (ret) {
3269 atomic_dec(&root->orphan_inodes);
3270 if (reserve) {
3271 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3272 &BTRFS_I(inode)->runtime_flags);
3273 btrfs_orphan_release_metadata(inode);
3274 }
3275 if (ret != -EEXIST) {
3276 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3277 &BTRFS_I(inode)->runtime_flags);
3278 btrfs_abort_transaction(trans, root, ret);
3279 return ret;
3280 }
3281 }
3282 ret = 0;
3283 }
3284
3285 /* insert an orphan item to track subvolume contains orphan files */
3286 if (insert >= 2) {
3287 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3288 root->root_key.objectid);
3289 if (ret && ret != -EEXIST) {
3290 btrfs_abort_transaction(trans, root, ret);
3291 return ret;
3292 }
3293 }
3294 return 0;
3295 }
3296
3297 /*
3298 * We have done the truncate/delete so we can go ahead and remove the orphan
3299 * item for this particular inode.
3300 */
3301 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3302 struct inode *inode)
3303 {
3304 struct btrfs_root *root = BTRFS_I(inode)->root;
3305 int delete_item = 0;
3306 int release_rsv = 0;
3307 int ret = 0;
3308
3309 spin_lock(&root->orphan_lock);
3310 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3311 &BTRFS_I(inode)->runtime_flags))
3312 delete_item = 1;
3313
3314 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3315 &BTRFS_I(inode)->runtime_flags))
3316 release_rsv = 1;
3317 spin_unlock(&root->orphan_lock);
3318
3319 if (delete_item) {
3320 atomic_dec(&root->orphan_inodes);
3321 if (trans)
3322 ret = btrfs_del_orphan_item(trans, root,
3323 btrfs_ino(inode));
3324 }
3325
3326 if (release_rsv)
3327 btrfs_orphan_release_metadata(inode);
3328
3329 return ret;
3330 }
3331
3332 /*
3333 * this cleans up any orphans that may be left on the list from the last use
3334 * of this root.
3335 */
3336 int btrfs_orphan_cleanup(struct btrfs_root *root)
3337 {
3338 struct btrfs_path *path;
3339 struct extent_buffer *leaf;
3340 struct btrfs_key key, found_key;
3341 struct btrfs_trans_handle *trans;
3342 struct inode *inode;
3343 u64 last_objectid = 0;
3344 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3345
3346 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3347 return 0;
3348
3349 path = btrfs_alloc_path();
3350 if (!path) {
3351 ret = -ENOMEM;
3352 goto out;
3353 }
3354 path->reada = -1;
3355
3356 key.objectid = BTRFS_ORPHAN_OBJECTID;
3357 key.type = BTRFS_ORPHAN_ITEM_KEY;
3358 key.offset = (u64)-1;
3359
3360 while (1) {
3361 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3362 if (ret < 0)
3363 goto out;
3364
3365 /*
3366 * if ret == 0 means we found what we were searching for, which
3367 * is weird, but possible, so only screw with path if we didn't
3368 * find the key and see if we have stuff that matches
3369 */
3370 if (ret > 0) {
3371 ret = 0;
3372 if (path->slots[0] == 0)
3373 break;
3374 path->slots[0]--;
3375 }
3376
3377 /* pull out the item */
3378 leaf = path->nodes[0];
3379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3380
3381 /* make sure the item matches what we want */
3382 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3383 break;
3384 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3385 break;
3386
3387 /* release the path since we're done with it */
3388 btrfs_release_path(path);
3389
3390 /*
3391 * this is where we are basically btrfs_lookup, without the
3392 * crossing root thing. we store the inode number in the
3393 * offset of the orphan item.
3394 */
3395
3396 if (found_key.offset == last_objectid) {
3397 btrfs_err(root->fs_info,
3398 "Error removing orphan entry, stopping orphan cleanup");
3399 ret = -EINVAL;
3400 goto out;
3401 }
3402
3403 last_objectid = found_key.offset;
3404
3405 found_key.objectid = found_key.offset;
3406 found_key.type = BTRFS_INODE_ITEM_KEY;
3407 found_key.offset = 0;
3408 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3409 ret = PTR_ERR_OR_ZERO(inode);
3410 if (ret && ret != -ESTALE)
3411 goto out;
3412
3413 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3414 struct btrfs_root *dead_root;
3415 struct btrfs_fs_info *fs_info = root->fs_info;
3416 int is_dead_root = 0;
3417
3418 /*
3419 * this is an orphan in the tree root. Currently these
3420 * could come from 2 sources:
3421 * a) a snapshot deletion in progress
3422 * b) a free space cache inode
3423 * We need to distinguish those two, as the snapshot
3424 * orphan must not get deleted.
3425 * find_dead_roots already ran before us, so if this
3426 * is a snapshot deletion, we should find the root
3427 * in the dead_roots list
3428 */
3429 spin_lock(&fs_info->trans_lock);
3430 list_for_each_entry(dead_root, &fs_info->dead_roots,
3431 root_list) {
3432 if (dead_root->root_key.objectid ==
3433 found_key.objectid) {
3434 is_dead_root = 1;
3435 break;
3436 }
3437 }
3438 spin_unlock(&fs_info->trans_lock);
3439 if (is_dead_root) {
3440 /* prevent this orphan from being found again */
3441 key.offset = found_key.objectid - 1;
3442 continue;
3443 }
3444 }
3445 /*
3446 * Inode is already gone but the orphan item is still there,
3447 * kill the orphan item.
3448 */
3449 if (ret == -ESTALE) {
3450 trans = btrfs_start_transaction(root, 1);
3451 if (IS_ERR(trans)) {
3452 ret = PTR_ERR(trans);
3453 goto out;
3454 }
3455 btrfs_debug(root->fs_info, "auto deleting %Lu",
3456 found_key.objectid);
3457 ret = btrfs_del_orphan_item(trans, root,
3458 found_key.objectid);
3459 btrfs_end_transaction(trans, root);
3460 if (ret)
3461 goto out;
3462 continue;
3463 }
3464
3465 /*
3466 * add this inode to the orphan list so btrfs_orphan_del does
3467 * the proper thing when we hit it
3468 */
3469 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3470 &BTRFS_I(inode)->runtime_flags);
3471 atomic_inc(&root->orphan_inodes);
3472
3473 /* if we have links, this was a truncate, lets do that */
3474 if (inode->i_nlink) {
3475 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3476 iput(inode);
3477 continue;
3478 }
3479 nr_truncate++;
3480
3481 /* 1 for the orphan item deletion. */
3482 trans = btrfs_start_transaction(root, 1);
3483 if (IS_ERR(trans)) {
3484 iput(inode);
3485 ret = PTR_ERR(trans);
3486 goto out;
3487 }
3488 ret = btrfs_orphan_add(trans, inode);
3489 btrfs_end_transaction(trans, root);
3490 if (ret) {
3491 iput(inode);
3492 goto out;
3493 }
3494
3495 ret = btrfs_truncate(inode);
3496 if (ret)
3497 btrfs_orphan_del(NULL, inode);
3498 } else {
3499 nr_unlink++;
3500 }
3501
3502 /* this will do delete_inode and everything for us */
3503 iput(inode);
3504 if (ret)
3505 goto out;
3506 }
3507 /* release the path since we're done with it */
3508 btrfs_release_path(path);
3509
3510 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3511
3512 if (root->orphan_block_rsv)
3513 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3514 (u64)-1);
3515
3516 if (root->orphan_block_rsv ||
3517 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3518 trans = btrfs_join_transaction(root);
3519 if (!IS_ERR(trans))
3520 btrfs_end_transaction(trans, root);
3521 }
3522
3523 if (nr_unlink)
3524 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3525 if (nr_truncate)
3526 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3527
3528 out:
3529 if (ret)
3530 btrfs_err(root->fs_info,
3531 "could not do orphan cleanup %d", ret);
3532 btrfs_free_path(path);
3533 return ret;
3534 }
3535
3536 /*
3537 * very simple check to peek ahead in the leaf looking for xattrs. If we
3538 * don't find any xattrs, we know there can't be any acls.
3539 *
3540 * slot is the slot the inode is in, objectid is the objectid of the inode
3541 */
3542 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3543 int slot, u64 objectid,
3544 int *first_xattr_slot)
3545 {
3546 u32 nritems = btrfs_header_nritems(leaf);
3547 struct btrfs_key found_key;
3548 static u64 xattr_access = 0;
3549 static u64 xattr_default = 0;
3550 int scanned = 0;
3551
3552 if (!xattr_access) {
3553 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3554 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3555 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3556 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3557 }
3558
3559 slot++;
3560 *first_xattr_slot = -1;
3561 while (slot < nritems) {
3562 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3563
3564 /* we found a different objectid, there must not be acls */
3565 if (found_key.objectid != objectid)
3566 return 0;
3567
3568 /* we found an xattr, assume we've got an acl */
3569 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3570 if (*first_xattr_slot == -1)
3571 *first_xattr_slot = slot;
3572 if (found_key.offset == xattr_access ||
3573 found_key.offset == xattr_default)
3574 return 1;
3575 }
3576
3577 /*
3578 * we found a key greater than an xattr key, there can't
3579 * be any acls later on
3580 */
3581 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3582 return 0;
3583
3584 slot++;
3585 scanned++;
3586
3587 /*
3588 * it goes inode, inode backrefs, xattrs, extents,
3589 * so if there are a ton of hard links to an inode there can
3590 * be a lot of backrefs. Don't waste time searching too hard,
3591 * this is just an optimization
3592 */
3593 if (scanned >= 8)
3594 break;
3595 }
3596 /* we hit the end of the leaf before we found an xattr or
3597 * something larger than an xattr. We have to assume the inode
3598 * has acls
3599 */
3600 if (*first_xattr_slot == -1)
3601 *first_xattr_slot = slot;
3602 return 1;
3603 }
3604
3605 /*
3606 * read an inode from the btree into the in-memory inode
3607 */
3608 static void btrfs_read_locked_inode(struct inode *inode)
3609 {
3610 struct btrfs_path *path;
3611 struct extent_buffer *leaf;
3612 struct btrfs_inode_item *inode_item;
3613 struct btrfs_root *root = BTRFS_I(inode)->root;
3614 struct btrfs_key location;
3615 unsigned long ptr;
3616 int maybe_acls;
3617 u32 rdev;
3618 int ret;
3619 bool filled = false;
3620 int first_xattr_slot;
3621
3622 ret = btrfs_fill_inode(inode, &rdev);
3623 if (!ret)
3624 filled = true;
3625
3626 path = btrfs_alloc_path();
3627 if (!path)
3628 goto make_bad;
3629
3630 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3631
3632 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3633 if (ret)
3634 goto make_bad;
3635
3636 leaf = path->nodes[0];
3637
3638 if (filled)
3639 goto cache_index;
3640
3641 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3642 struct btrfs_inode_item);
3643 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3644 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3645 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3646 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3647 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3648
3649 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3650 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3651
3652 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3653 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3654
3655 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3656 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3657
3658 BTRFS_I(inode)->i_otime.tv_sec =
3659 btrfs_timespec_sec(leaf, &inode_item->otime);
3660 BTRFS_I(inode)->i_otime.tv_nsec =
3661 btrfs_timespec_nsec(leaf, &inode_item->otime);
3662
3663 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3664 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3665 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3666
3667 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3668 inode->i_generation = BTRFS_I(inode)->generation;
3669 inode->i_rdev = 0;
3670 rdev = btrfs_inode_rdev(leaf, inode_item);
3671
3672 BTRFS_I(inode)->index_cnt = (u64)-1;
3673 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3674
3675 cache_index:
3676 /*
3677 * If we were modified in the current generation and evicted from memory
3678 * and then re-read we need to do a full sync since we don't have any
3679 * idea about which extents were modified before we were evicted from
3680 * cache.
3681 *
3682 * This is required for both inode re-read from disk and delayed inode
3683 * in delayed_nodes_tree.
3684 */
3685 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3686 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3687 &BTRFS_I(inode)->runtime_flags);
3688
3689 /*
3690 * We don't persist the id of the transaction where an unlink operation
3691 * against the inode was last made. So here we assume the inode might
3692 * have been evicted, and therefore the exact value of last_unlink_trans
3693 * lost, and set it to last_trans to avoid metadata inconsistencies
3694 * between the inode and its parent if the inode is fsync'ed and the log
3695 * replayed. For example, in the scenario:
3696 *
3697 * touch mydir/foo
3698 * ln mydir/foo mydir/bar
3699 * sync
3700 * unlink mydir/bar
3701 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3702 * xfs_io -c fsync mydir/foo
3703 * <power failure>
3704 * mount fs, triggers fsync log replay
3705 *
3706 * We must make sure that when we fsync our inode foo we also log its
3707 * parent inode, otherwise after log replay the parent still has the
3708 * dentry with the "bar" name but our inode foo has a link count of 1
3709 * and doesn't have an inode ref with the name "bar" anymore.
3710 *
3711 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3712 * but it guarantees correctness at the expense of ocassional full
3713 * transaction commits on fsync if our inode is a directory, or if our
3714 * inode is not a directory, logging its parent unnecessarily.
3715 */
3716 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3717
3718 path->slots[0]++;
3719 if (inode->i_nlink != 1 ||
3720 path->slots[0] >= btrfs_header_nritems(leaf))
3721 goto cache_acl;
3722
3723 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3724 if (location.objectid != btrfs_ino(inode))
3725 goto cache_acl;
3726
3727 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3728 if (location.type == BTRFS_INODE_REF_KEY) {
3729 struct btrfs_inode_ref *ref;
3730
3731 ref = (struct btrfs_inode_ref *)ptr;
3732 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3733 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3734 struct btrfs_inode_extref *extref;
3735
3736 extref = (struct btrfs_inode_extref *)ptr;
3737 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3738 extref);
3739 }
3740 cache_acl:
3741 /*
3742 * try to precache a NULL acl entry for files that don't have
3743 * any xattrs or acls
3744 */
3745 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3746 btrfs_ino(inode), &first_xattr_slot);
3747 if (first_xattr_slot != -1) {
3748 path->slots[0] = first_xattr_slot;
3749 ret = btrfs_load_inode_props(inode, path);
3750 if (ret)
3751 btrfs_err(root->fs_info,
3752 "error loading props for ino %llu (root %llu): %d",
3753 btrfs_ino(inode),
3754 root->root_key.objectid, ret);
3755 }
3756 btrfs_free_path(path);
3757
3758 if (!maybe_acls)
3759 cache_no_acl(inode);
3760
3761 switch (inode->i_mode & S_IFMT) {
3762 case S_IFREG:
3763 inode->i_mapping->a_ops = &btrfs_aops;
3764 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3765 inode->i_fop = &btrfs_file_operations;
3766 inode->i_op = &btrfs_file_inode_operations;
3767 break;
3768 case S_IFDIR:
3769 inode->i_fop = &btrfs_dir_file_operations;
3770 if (root == root->fs_info->tree_root)
3771 inode->i_op = &btrfs_dir_ro_inode_operations;
3772 else
3773 inode->i_op = &btrfs_dir_inode_operations;
3774 break;
3775 case S_IFLNK:
3776 inode->i_op = &btrfs_symlink_inode_operations;
3777 inode_nohighmem(inode);
3778 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3779 break;
3780 default:
3781 inode->i_op = &btrfs_special_inode_operations;
3782 init_special_inode(inode, inode->i_mode, rdev);
3783 break;
3784 }
3785
3786 btrfs_update_iflags(inode);
3787 return;
3788
3789 make_bad:
3790 btrfs_free_path(path);
3791 make_bad_inode(inode);
3792 }
3793
3794 /*
3795 * given a leaf and an inode, copy the inode fields into the leaf
3796 */
3797 static void fill_inode_item(struct btrfs_trans_handle *trans,
3798 struct extent_buffer *leaf,
3799 struct btrfs_inode_item *item,
3800 struct inode *inode)
3801 {
3802 struct btrfs_map_token token;
3803
3804 btrfs_init_map_token(&token);
3805
3806 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3807 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3808 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3809 &token);
3810 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3811 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3812
3813 btrfs_set_token_timespec_sec(leaf, &item->atime,
3814 inode->i_atime.tv_sec, &token);
3815 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3816 inode->i_atime.tv_nsec, &token);
3817
3818 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3819 inode->i_mtime.tv_sec, &token);
3820 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3821 inode->i_mtime.tv_nsec, &token);
3822
3823 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3824 inode->i_ctime.tv_sec, &token);
3825 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3826 inode->i_ctime.tv_nsec, &token);
3827
3828 btrfs_set_token_timespec_sec(leaf, &item->otime,
3829 BTRFS_I(inode)->i_otime.tv_sec, &token);
3830 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3831 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3832
3833 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3834 &token);
3835 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3836 &token);
3837 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3838 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3839 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3840 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3841 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3842 }
3843
3844 /*
3845 * copy everything in the in-memory inode into the btree.
3846 */
3847 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3848 struct btrfs_root *root, struct inode *inode)
3849 {
3850 struct btrfs_inode_item *inode_item;
3851 struct btrfs_path *path;
3852 struct extent_buffer *leaf;
3853 int ret;
3854
3855 path = btrfs_alloc_path();
3856 if (!path)
3857 return -ENOMEM;
3858
3859 path->leave_spinning = 1;
3860 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3861 1);
3862 if (ret) {
3863 if (ret > 0)
3864 ret = -ENOENT;
3865 goto failed;
3866 }
3867
3868 leaf = path->nodes[0];
3869 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3870 struct btrfs_inode_item);
3871
3872 fill_inode_item(trans, leaf, inode_item, inode);
3873 btrfs_mark_buffer_dirty(leaf);
3874 btrfs_set_inode_last_trans(trans, inode);
3875 ret = 0;
3876 failed:
3877 btrfs_free_path(path);
3878 return ret;
3879 }
3880
3881 /*
3882 * copy everything in the in-memory inode into the btree.
3883 */
3884 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3885 struct btrfs_root *root, struct inode *inode)
3886 {
3887 int ret;
3888
3889 /*
3890 * If the inode is a free space inode, we can deadlock during commit
3891 * if we put it into the delayed code.
3892 *
3893 * The data relocation inode should also be directly updated
3894 * without delay
3895 */
3896 if (!btrfs_is_free_space_inode(inode)
3897 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3898 && !root->fs_info->log_root_recovering) {
3899 btrfs_update_root_times(trans, root);
3900
3901 ret = btrfs_delayed_update_inode(trans, root, inode);
3902 if (!ret)
3903 btrfs_set_inode_last_trans(trans, inode);
3904 return ret;
3905 }
3906
3907 return btrfs_update_inode_item(trans, root, inode);
3908 }
3909
3910 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3911 struct btrfs_root *root,
3912 struct inode *inode)
3913 {
3914 int ret;
3915
3916 ret = btrfs_update_inode(trans, root, inode);
3917 if (ret == -ENOSPC)
3918 return btrfs_update_inode_item(trans, root, inode);
3919 return ret;
3920 }
3921
3922 /*
3923 * unlink helper that gets used here in inode.c and in the tree logging
3924 * recovery code. It remove a link in a directory with a given name, and
3925 * also drops the back refs in the inode to the directory
3926 */
3927 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3928 struct btrfs_root *root,
3929 struct inode *dir, struct inode *inode,
3930 const char *name, int name_len)
3931 {
3932 struct btrfs_path *path;
3933 int ret = 0;
3934 struct extent_buffer *leaf;
3935 struct btrfs_dir_item *di;
3936 struct btrfs_key key;
3937 u64 index;
3938 u64 ino = btrfs_ino(inode);
3939 u64 dir_ino = btrfs_ino(dir);
3940
3941 path = btrfs_alloc_path();
3942 if (!path) {
3943 ret = -ENOMEM;
3944 goto out;
3945 }
3946
3947 path->leave_spinning = 1;
3948 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3949 name, name_len, -1);
3950 if (IS_ERR(di)) {
3951 ret = PTR_ERR(di);
3952 goto err;
3953 }
3954 if (!di) {
3955 ret = -ENOENT;
3956 goto err;
3957 }
3958 leaf = path->nodes[0];
3959 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3960 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3961 if (ret)
3962 goto err;
3963 btrfs_release_path(path);
3964
3965 /*
3966 * If we don't have dir index, we have to get it by looking up
3967 * the inode ref, since we get the inode ref, remove it directly,
3968 * it is unnecessary to do delayed deletion.
3969 *
3970 * But if we have dir index, needn't search inode ref to get it.
3971 * Since the inode ref is close to the inode item, it is better
3972 * that we delay to delete it, and just do this deletion when
3973 * we update the inode item.
3974 */
3975 if (BTRFS_I(inode)->dir_index) {
3976 ret = btrfs_delayed_delete_inode_ref(inode);
3977 if (!ret) {
3978 index = BTRFS_I(inode)->dir_index;
3979 goto skip_backref;
3980 }
3981 }
3982
3983 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3984 dir_ino, &index);
3985 if (ret) {
3986 btrfs_info(root->fs_info,
3987 "failed to delete reference to %.*s, inode %llu parent %llu",
3988 name_len, name, ino, dir_ino);
3989 btrfs_abort_transaction(trans, root, ret);
3990 goto err;
3991 }
3992 skip_backref:
3993 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3994 if (ret) {
3995 btrfs_abort_transaction(trans, root, ret);
3996 goto err;
3997 }
3998
3999 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4000 inode, dir_ino);
4001 if (ret != 0 && ret != -ENOENT) {
4002 btrfs_abort_transaction(trans, root, ret);
4003 goto err;
4004 }
4005
4006 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4007 dir, index);
4008 if (ret == -ENOENT)
4009 ret = 0;
4010 else if (ret)
4011 btrfs_abort_transaction(trans, root, ret);
4012 err:
4013 btrfs_free_path(path);
4014 if (ret)
4015 goto out;
4016
4017 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4018 inode_inc_iversion(inode);
4019 inode_inc_iversion(dir);
4020 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4021 ret = btrfs_update_inode(trans, root, dir);
4022 out:
4023 return ret;
4024 }
4025
4026 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4027 struct btrfs_root *root,
4028 struct inode *dir, struct inode *inode,
4029 const char *name, int name_len)
4030 {
4031 int ret;
4032 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4033 if (!ret) {
4034 drop_nlink(inode);
4035 ret = btrfs_update_inode(trans, root, inode);
4036 }
4037 return ret;
4038 }
4039
4040 /*
4041 * helper to start transaction for unlink and rmdir.
4042 *
4043 * unlink and rmdir are special in btrfs, they do not always free space, so
4044 * if we cannot make our reservations the normal way try and see if there is
4045 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4046 * allow the unlink to occur.
4047 */
4048 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4049 {
4050 struct btrfs_root *root = BTRFS_I(dir)->root;
4051
4052 /*
4053 * 1 for the possible orphan item
4054 * 1 for the dir item
4055 * 1 for the dir index
4056 * 1 for the inode ref
4057 * 1 for the inode
4058 */
4059 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4060 }
4061
4062 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4063 {
4064 struct btrfs_root *root = BTRFS_I(dir)->root;
4065 struct btrfs_trans_handle *trans;
4066 struct inode *inode = d_inode(dentry);
4067 int ret;
4068
4069 trans = __unlink_start_trans(dir);
4070 if (IS_ERR(trans))
4071 return PTR_ERR(trans);
4072
4073 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4074
4075 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4076 dentry->d_name.name, dentry->d_name.len);
4077 if (ret)
4078 goto out;
4079
4080 if (inode->i_nlink == 0) {
4081 ret = btrfs_orphan_add(trans, inode);
4082 if (ret)
4083 goto out;
4084 }
4085
4086 out:
4087 btrfs_end_transaction(trans, root);
4088 btrfs_btree_balance_dirty(root);
4089 return ret;
4090 }
4091
4092 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4093 struct btrfs_root *root,
4094 struct inode *dir, u64 objectid,
4095 const char *name, int name_len)
4096 {
4097 struct btrfs_path *path;
4098 struct extent_buffer *leaf;
4099 struct btrfs_dir_item *di;
4100 struct btrfs_key key;
4101 u64 index;
4102 int ret;
4103 u64 dir_ino = btrfs_ino(dir);
4104
4105 path = btrfs_alloc_path();
4106 if (!path)
4107 return -ENOMEM;
4108
4109 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4110 name, name_len, -1);
4111 if (IS_ERR_OR_NULL(di)) {
4112 if (!di)
4113 ret = -ENOENT;
4114 else
4115 ret = PTR_ERR(di);
4116 goto out;
4117 }
4118
4119 leaf = path->nodes[0];
4120 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4121 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4122 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4123 if (ret) {
4124 btrfs_abort_transaction(trans, root, ret);
4125 goto out;
4126 }
4127 btrfs_release_path(path);
4128
4129 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4130 objectid, root->root_key.objectid,
4131 dir_ino, &index, name, name_len);
4132 if (ret < 0) {
4133 if (ret != -ENOENT) {
4134 btrfs_abort_transaction(trans, root, ret);
4135 goto out;
4136 }
4137 di = btrfs_search_dir_index_item(root, path, dir_ino,
4138 name, name_len);
4139 if (IS_ERR_OR_NULL(di)) {
4140 if (!di)
4141 ret = -ENOENT;
4142 else
4143 ret = PTR_ERR(di);
4144 btrfs_abort_transaction(trans, root, ret);
4145 goto out;
4146 }
4147
4148 leaf = path->nodes[0];
4149 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4150 btrfs_release_path(path);
4151 index = key.offset;
4152 }
4153 btrfs_release_path(path);
4154
4155 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4156 if (ret) {
4157 btrfs_abort_transaction(trans, root, ret);
4158 goto out;
4159 }
4160
4161 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4162 inode_inc_iversion(dir);
4163 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4164 ret = btrfs_update_inode_fallback(trans, root, dir);
4165 if (ret)
4166 btrfs_abort_transaction(trans, root, ret);
4167 out:
4168 btrfs_free_path(path);
4169 return ret;
4170 }
4171
4172 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4173 {
4174 struct inode *inode = d_inode(dentry);
4175 int err = 0;
4176 struct btrfs_root *root = BTRFS_I(dir)->root;
4177 struct btrfs_trans_handle *trans;
4178
4179 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4180 return -ENOTEMPTY;
4181 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4182 return -EPERM;
4183
4184 trans = __unlink_start_trans(dir);
4185 if (IS_ERR(trans))
4186 return PTR_ERR(trans);
4187
4188 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4189 err = btrfs_unlink_subvol(trans, root, dir,
4190 BTRFS_I(inode)->location.objectid,
4191 dentry->d_name.name,
4192 dentry->d_name.len);
4193 goto out;
4194 }
4195
4196 err = btrfs_orphan_add(trans, inode);
4197 if (err)
4198 goto out;
4199
4200 /* now the directory is empty */
4201 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4202 dentry->d_name.name, dentry->d_name.len);
4203 if (!err)
4204 btrfs_i_size_write(inode, 0);
4205 out:
4206 btrfs_end_transaction(trans, root);
4207 btrfs_btree_balance_dirty(root);
4208
4209 return err;
4210 }
4211
4212 static int truncate_space_check(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *root,
4214 u64 bytes_deleted)
4215 {
4216 int ret;
4217
4218 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4219 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4220 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4221 if (!ret)
4222 trans->bytes_reserved += bytes_deleted;
4223 return ret;
4224
4225 }
4226
4227 static int truncate_inline_extent(struct inode *inode,
4228 struct btrfs_path *path,
4229 struct btrfs_key *found_key,
4230 const u64 item_end,
4231 const u64 new_size)
4232 {
4233 struct extent_buffer *leaf = path->nodes[0];
4234 int slot = path->slots[0];
4235 struct btrfs_file_extent_item *fi;
4236 u32 size = (u32)(new_size - found_key->offset);
4237 struct btrfs_root *root = BTRFS_I(inode)->root;
4238
4239 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4240
4241 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4242 loff_t offset = new_size;
4243 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4244
4245 /*
4246 * Zero out the remaining of the last page of our inline extent,
4247 * instead of directly truncating our inline extent here - that
4248 * would be much more complex (decompressing all the data, then
4249 * compressing the truncated data, which might be bigger than
4250 * the size of the inline extent, resize the extent, etc).
4251 * We release the path because to get the page we might need to
4252 * read the extent item from disk (data not in the page cache).
4253 */
4254 btrfs_release_path(path);
4255 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4256 }
4257
4258 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4259 size = btrfs_file_extent_calc_inline_size(size);
4260 btrfs_truncate_item(root, path, size, 1);
4261
4262 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4263 inode_sub_bytes(inode, item_end + 1 - new_size);
4264
4265 return 0;
4266 }
4267
4268 /*
4269 * this can truncate away extent items, csum items and directory items.
4270 * It starts at a high offset and removes keys until it can't find
4271 * any higher than new_size
4272 *
4273 * csum items that cross the new i_size are truncated to the new size
4274 * as well.
4275 *
4276 * min_type is the minimum key type to truncate down to. If set to 0, this
4277 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4278 */
4279 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4280 struct btrfs_root *root,
4281 struct inode *inode,
4282 u64 new_size, u32 min_type)
4283 {
4284 struct btrfs_path *path;
4285 struct extent_buffer *leaf;
4286 struct btrfs_file_extent_item *fi;
4287 struct btrfs_key key;
4288 struct btrfs_key found_key;
4289 u64 extent_start = 0;
4290 u64 extent_num_bytes = 0;
4291 u64 extent_offset = 0;
4292 u64 item_end = 0;
4293 u64 last_size = new_size;
4294 u32 found_type = (u8)-1;
4295 int found_extent;
4296 int del_item;
4297 int pending_del_nr = 0;
4298 int pending_del_slot = 0;
4299 int extent_type = -1;
4300 int ret;
4301 int err = 0;
4302 u64 ino = btrfs_ino(inode);
4303 u64 bytes_deleted = 0;
4304 bool be_nice = 0;
4305 bool should_throttle = 0;
4306 bool should_end = 0;
4307
4308 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4309
4310 /*
4311 * for non-free space inodes and ref cows, we want to back off from
4312 * time to time
4313 */
4314 if (!btrfs_is_free_space_inode(inode) &&
4315 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4316 be_nice = 1;
4317
4318 path = btrfs_alloc_path();
4319 if (!path)
4320 return -ENOMEM;
4321 path->reada = -1;
4322
4323 /*
4324 * We want to drop from the next block forward in case this new size is
4325 * not block aligned since we will be keeping the last block of the
4326 * extent just the way it is.
4327 */
4328 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4329 root == root->fs_info->tree_root)
4330 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4331 root->sectorsize), (u64)-1, 0);
4332
4333 /*
4334 * This function is also used to drop the items in the log tree before
4335 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4336 * it is used to drop the loged items. So we shouldn't kill the delayed
4337 * items.
4338 */
4339 if (min_type == 0 && root == BTRFS_I(inode)->root)
4340 btrfs_kill_delayed_inode_items(inode);
4341
4342 key.objectid = ino;
4343 key.offset = (u64)-1;
4344 key.type = (u8)-1;
4345
4346 search_again:
4347 /*
4348 * with a 16K leaf size and 128MB extents, you can actually queue
4349 * up a huge file in a single leaf. Most of the time that
4350 * bytes_deleted is > 0, it will be huge by the time we get here
4351 */
4352 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4353 if (btrfs_should_end_transaction(trans, root)) {
4354 err = -EAGAIN;
4355 goto error;
4356 }
4357 }
4358
4359
4360 path->leave_spinning = 1;
4361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4362 if (ret < 0) {
4363 err = ret;
4364 goto out;
4365 }
4366
4367 if (ret > 0) {
4368 /* there are no items in the tree for us to truncate, we're
4369 * done
4370 */
4371 if (path->slots[0] == 0)
4372 goto out;
4373 path->slots[0]--;
4374 }
4375
4376 while (1) {
4377 fi = NULL;
4378 leaf = path->nodes[0];
4379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4380 found_type = found_key.type;
4381
4382 if (found_key.objectid != ino)
4383 break;
4384
4385 if (found_type < min_type)
4386 break;
4387
4388 item_end = found_key.offset;
4389 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4390 fi = btrfs_item_ptr(leaf, path->slots[0],
4391 struct btrfs_file_extent_item);
4392 extent_type = btrfs_file_extent_type(leaf, fi);
4393 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4394 item_end +=
4395 btrfs_file_extent_num_bytes(leaf, fi);
4396 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4397 item_end += btrfs_file_extent_inline_len(leaf,
4398 path->slots[0], fi);
4399 }
4400 item_end--;
4401 }
4402 if (found_type > min_type) {
4403 del_item = 1;
4404 } else {
4405 if (item_end < new_size)
4406 break;
4407 if (found_key.offset >= new_size)
4408 del_item = 1;
4409 else
4410 del_item = 0;
4411 }
4412 found_extent = 0;
4413 /* FIXME, shrink the extent if the ref count is only 1 */
4414 if (found_type != BTRFS_EXTENT_DATA_KEY)
4415 goto delete;
4416
4417 if (del_item)
4418 last_size = found_key.offset;
4419 else
4420 last_size = new_size;
4421
4422 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4423 u64 num_dec;
4424 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4425 if (!del_item) {
4426 u64 orig_num_bytes =
4427 btrfs_file_extent_num_bytes(leaf, fi);
4428 extent_num_bytes = ALIGN(new_size -
4429 found_key.offset,
4430 root->sectorsize);
4431 btrfs_set_file_extent_num_bytes(leaf, fi,
4432 extent_num_bytes);
4433 num_dec = (orig_num_bytes -
4434 extent_num_bytes);
4435 if (test_bit(BTRFS_ROOT_REF_COWS,
4436 &root->state) &&
4437 extent_start != 0)
4438 inode_sub_bytes(inode, num_dec);
4439 btrfs_mark_buffer_dirty(leaf);
4440 } else {
4441 extent_num_bytes =
4442 btrfs_file_extent_disk_num_bytes(leaf,
4443 fi);
4444 extent_offset = found_key.offset -
4445 btrfs_file_extent_offset(leaf, fi);
4446
4447 /* FIXME blocksize != 4096 */
4448 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4449 if (extent_start != 0) {
4450 found_extent = 1;
4451 if (test_bit(BTRFS_ROOT_REF_COWS,
4452 &root->state))
4453 inode_sub_bytes(inode, num_dec);
4454 }
4455 }
4456 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4457 /*
4458 * we can't truncate inline items that have had
4459 * special encodings
4460 */
4461 if (!del_item &&
4462 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4463 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4464
4465 /*
4466 * Need to release path in order to truncate a
4467 * compressed extent. So delete any accumulated
4468 * extent items so far.
4469 */
4470 if (btrfs_file_extent_compression(leaf, fi) !=
4471 BTRFS_COMPRESS_NONE && pending_del_nr) {
4472 err = btrfs_del_items(trans, root, path,
4473 pending_del_slot,
4474 pending_del_nr);
4475 if (err) {
4476 btrfs_abort_transaction(trans,
4477 root,
4478 err);
4479 goto error;
4480 }
4481 pending_del_nr = 0;
4482 }
4483
4484 err = truncate_inline_extent(inode, path,
4485 &found_key,
4486 item_end,
4487 new_size);
4488 if (err) {
4489 btrfs_abort_transaction(trans,
4490 root, err);
4491 goto error;
4492 }
4493 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4494 &root->state)) {
4495 inode_sub_bytes(inode, item_end + 1 - new_size);
4496 }
4497 }
4498 delete:
4499 if (del_item) {
4500 if (!pending_del_nr) {
4501 /* no pending yet, add ourselves */
4502 pending_del_slot = path->slots[0];
4503 pending_del_nr = 1;
4504 } else if (pending_del_nr &&
4505 path->slots[0] + 1 == pending_del_slot) {
4506 /* hop on the pending chunk */
4507 pending_del_nr++;
4508 pending_del_slot = path->slots[0];
4509 } else {
4510 BUG();
4511 }
4512 } else {
4513 break;
4514 }
4515 should_throttle = 0;
4516
4517 if (found_extent &&
4518 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4519 root == root->fs_info->tree_root)) {
4520 btrfs_set_path_blocking(path);
4521 bytes_deleted += extent_num_bytes;
4522 ret = btrfs_free_extent(trans, root, extent_start,
4523 extent_num_bytes, 0,
4524 btrfs_header_owner(leaf),
4525 ino, extent_offset);
4526 BUG_ON(ret);
4527 if (btrfs_should_throttle_delayed_refs(trans, root))
4528 btrfs_async_run_delayed_refs(root,
4529 trans->delayed_ref_updates * 2, 0);
4530 if (be_nice) {
4531 if (truncate_space_check(trans, root,
4532 extent_num_bytes)) {
4533 should_end = 1;
4534 }
4535 if (btrfs_should_throttle_delayed_refs(trans,
4536 root)) {
4537 should_throttle = 1;
4538 }
4539 }
4540 }
4541
4542 if (found_type == BTRFS_INODE_ITEM_KEY)
4543 break;
4544
4545 if (path->slots[0] == 0 ||
4546 path->slots[0] != pending_del_slot ||
4547 should_throttle || should_end) {
4548 if (pending_del_nr) {
4549 ret = btrfs_del_items(trans, root, path,
4550 pending_del_slot,
4551 pending_del_nr);
4552 if (ret) {
4553 btrfs_abort_transaction(trans,
4554 root, ret);
4555 goto error;
4556 }
4557 pending_del_nr = 0;
4558 }
4559 btrfs_release_path(path);
4560 if (should_throttle) {
4561 unsigned long updates = trans->delayed_ref_updates;
4562 if (updates) {
4563 trans->delayed_ref_updates = 0;
4564 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4565 if (ret && !err)
4566 err = ret;
4567 }
4568 }
4569 /*
4570 * if we failed to refill our space rsv, bail out
4571 * and let the transaction restart
4572 */
4573 if (should_end) {
4574 err = -EAGAIN;
4575 goto error;
4576 }
4577 goto search_again;
4578 } else {
4579 path->slots[0]--;
4580 }
4581 }
4582 out:
4583 if (pending_del_nr) {
4584 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4585 pending_del_nr);
4586 if (ret)
4587 btrfs_abort_transaction(trans, root, ret);
4588 }
4589 error:
4590 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4591 btrfs_ordered_update_i_size(inode, last_size, NULL);
4592
4593 btrfs_free_path(path);
4594
4595 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4596 unsigned long updates = trans->delayed_ref_updates;
4597 if (updates) {
4598 trans->delayed_ref_updates = 0;
4599 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4600 if (ret && !err)
4601 err = ret;
4602 }
4603 }
4604 return err;
4605 }
4606
4607 /*
4608 * btrfs_truncate_page - read, zero a chunk and write a page
4609 * @inode - inode that we're zeroing
4610 * @from - the offset to start zeroing
4611 * @len - the length to zero, 0 to zero the entire range respective to the
4612 * offset
4613 * @front - zero up to the offset instead of from the offset on
4614 *
4615 * This will find the page for the "from" offset and cow the page and zero the
4616 * part we want to zero. This is used with truncate and hole punching.
4617 */
4618 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4619 int front)
4620 {
4621 struct address_space *mapping = inode->i_mapping;
4622 struct btrfs_root *root = BTRFS_I(inode)->root;
4623 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4624 struct btrfs_ordered_extent *ordered;
4625 struct extent_state *cached_state = NULL;
4626 char *kaddr;
4627 u32 blocksize = root->sectorsize;
4628 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4629 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4630 struct page *page;
4631 gfp_t mask = btrfs_alloc_write_mask(mapping);
4632 int ret = 0;
4633 u64 page_start;
4634 u64 page_end;
4635
4636 if ((offset & (blocksize - 1)) == 0 &&
4637 (!len || ((len & (blocksize - 1)) == 0)))
4638 goto out;
4639 ret = btrfs_delalloc_reserve_space(inode,
4640 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4641 if (ret)
4642 goto out;
4643
4644 again:
4645 page = find_or_create_page(mapping, index, mask);
4646 if (!page) {
4647 btrfs_delalloc_release_space(inode,
4648 round_down(from, PAGE_CACHE_SIZE),
4649 PAGE_CACHE_SIZE);
4650 ret = -ENOMEM;
4651 goto out;
4652 }
4653
4654 page_start = page_offset(page);
4655 page_end = page_start + PAGE_CACHE_SIZE - 1;
4656
4657 if (!PageUptodate(page)) {
4658 ret = btrfs_readpage(NULL, page);
4659 lock_page(page);
4660 if (page->mapping != mapping) {
4661 unlock_page(page);
4662 page_cache_release(page);
4663 goto again;
4664 }
4665 if (!PageUptodate(page)) {
4666 ret = -EIO;
4667 goto out_unlock;
4668 }
4669 }
4670 wait_on_page_writeback(page);
4671
4672 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4673 set_page_extent_mapped(page);
4674
4675 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4676 if (ordered) {
4677 unlock_extent_cached(io_tree, page_start, page_end,
4678 &cached_state, GFP_NOFS);
4679 unlock_page(page);
4680 page_cache_release(page);
4681 btrfs_start_ordered_extent(inode, ordered, 1);
4682 btrfs_put_ordered_extent(ordered);
4683 goto again;
4684 }
4685
4686 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4687 EXTENT_DIRTY | EXTENT_DELALLOC |
4688 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4689 0, 0, &cached_state, GFP_NOFS);
4690
4691 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4692 &cached_state);
4693 if (ret) {
4694 unlock_extent_cached(io_tree, page_start, page_end,
4695 &cached_state, GFP_NOFS);
4696 goto out_unlock;
4697 }
4698
4699 if (offset != PAGE_CACHE_SIZE) {
4700 if (!len)
4701 len = PAGE_CACHE_SIZE - offset;
4702 kaddr = kmap(page);
4703 if (front)
4704 memset(kaddr, 0, offset);
4705 else
4706 memset(kaddr + offset, 0, len);
4707 flush_dcache_page(page);
4708 kunmap(page);
4709 }
4710 ClearPageChecked(page);
4711 set_page_dirty(page);
4712 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4713 GFP_NOFS);
4714
4715 out_unlock:
4716 if (ret)
4717 btrfs_delalloc_release_space(inode, page_start,
4718 PAGE_CACHE_SIZE);
4719 unlock_page(page);
4720 page_cache_release(page);
4721 out:
4722 return ret;
4723 }
4724
4725 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4726 u64 offset, u64 len)
4727 {
4728 struct btrfs_trans_handle *trans;
4729 int ret;
4730
4731 /*
4732 * Still need to make sure the inode looks like it's been updated so
4733 * that any holes get logged if we fsync.
4734 */
4735 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4736 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4737 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4738 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4739 return 0;
4740 }
4741
4742 /*
4743 * 1 - for the one we're dropping
4744 * 1 - for the one we're adding
4745 * 1 - for updating the inode.
4746 */
4747 trans = btrfs_start_transaction(root, 3);
4748 if (IS_ERR(trans))
4749 return PTR_ERR(trans);
4750
4751 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4752 if (ret) {
4753 btrfs_abort_transaction(trans, root, ret);
4754 btrfs_end_transaction(trans, root);
4755 return ret;
4756 }
4757
4758 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4759 0, 0, len, 0, len, 0, 0, 0);
4760 if (ret)
4761 btrfs_abort_transaction(trans, root, ret);
4762 else
4763 btrfs_update_inode(trans, root, inode);
4764 btrfs_end_transaction(trans, root);
4765 return ret;
4766 }
4767
4768 /*
4769 * This function puts in dummy file extents for the area we're creating a hole
4770 * for. So if we are truncating this file to a larger size we need to insert
4771 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4772 * the range between oldsize and size
4773 */
4774 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4775 {
4776 struct btrfs_root *root = BTRFS_I(inode)->root;
4777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4778 struct extent_map *em = NULL;
4779 struct extent_state *cached_state = NULL;
4780 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4781 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4782 u64 block_end = ALIGN(size, root->sectorsize);
4783 u64 last_byte;
4784 u64 cur_offset;
4785 u64 hole_size;
4786 int err = 0;
4787
4788 /*
4789 * If our size started in the middle of a page we need to zero out the
4790 * rest of the page before we expand the i_size, otherwise we could
4791 * expose stale data.
4792 */
4793 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4794 if (err)
4795 return err;
4796
4797 if (size <= hole_start)
4798 return 0;
4799
4800 while (1) {
4801 struct btrfs_ordered_extent *ordered;
4802
4803 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4804 &cached_state);
4805 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4806 block_end - hole_start);
4807 if (!ordered)
4808 break;
4809 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4810 &cached_state, GFP_NOFS);
4811 btrfs_start_ordered_extent(inode, ordered, 1);
4812 btrfs_put_ordered_extent(ordered);
4813 }
4814
4815 cur_offset = hole_start;
4816 while (1) {
4817 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4818 block_end - cur_offset, 0);
4819 if (IS_ERR(em)) {
4820 err = PTR_ERR(em);
4821 em = NULL;
4822 break;
4823 }
4824 last_byte = min(extent_map_end(em), block_end);
4825 last_byte = ALIGN(last_byte , root->sectorsize);
4826 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4827 struct extent_map *hole_em;
4828 hole_size = last_byte - cur_offset;
4829
4830 err = maybe_insert_hole(root, inode, cur_offset,
4831 hole_size);
4832 if (err)
4833 break;
4834 btrfs_drop_extent_cache(inode, cur_offset,
4835 cur_offset + hole_size - 1, 0);
4836 hole_em = alloc_extent_map();
4837 if (!hole_em) {
4838 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4839 &BTRFS_I(inode)->runtime_flags);
4840 goto next;
4841 }
4842 hole_em->start = cur_offset;
4843 hole_em->len = hole_size;
4844 hole_em->orig_start = cur_offset;
4845
4846 hole_em->block_start = EXTENT_MAP_HOLE;
4847 hole_em->block_len = 0;
4848 hole_em->orig_block_len = 0;
4849 hole_em->ram_bytes = hole_size;
4850 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4851 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4852 hole_em->generation = root->fs_info->generation;
4853
4854 while (1) {
4855 write_lock(&em_tree->lock);
4856 err = add_extent_mapping(em_tree, hole_em, 1);
4857 write_unlock(&em_tree->lock);
4858 if (err != -EEXIST)
4859 break;
4860 btrfs_drop_extent_cache(inode, cur_offset,
4861 cur_offset +
4862 hole_size - 1, 0);
4863 }
4864 free_extent_map(hole_em);
4865 }
4866 next:
4867 free_extent_map(em);
4868 em = NULL;
4869 cur_offset = last_byte;
4870 if (cur_offset >= block_end)
4871 break;
4872 }
4873 free_extent_map(em);
4874 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4875 GFP_NOFS);
4876 return err;
4877 }
4878
4879 static int wait_snapshoting_atomic_t(atomic_t *a)
4880 {
4881 schedule();
4882 return 0;
4883 }
4884
4885 static void wait_for_snapshot_creation(struct btrfs_root *root)
4886 {
4887 while (true) {
4888 int ret;
4889
4890 ret = btrfs_start_write_no_snapshoting(root);
4891 if (ret)
4892 break;
4893 wait_on_atomic_t(&root->will_be_snapshoted,
4894 wait_snapshoting_atomic_t,
4895 TASK_UNINTERRUPTIBLE);
4896 }
4897 }
4898
4899 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4900 {
4901 struct btrfs_root *root = BTRFS_I(inode)->root;
4902 struct btrfs_trans_handle *trans;
4903 loff_t oldsize = i_size_read(inode);
4904 loff_t newsize = attr->ia_size;
4905 int mask = attr->ia_valid;
4906 int ret;
4907
4908 /*
4909 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4910 * special case where we need to update the times despite not having
4911 * these flags set. For all other operations the VFS set these flags
4912 * explicitly if it wants a timestamp update.
4913 */
4914 if (newsize != oldsize) {
4915 inode_inc_iversion(inode);
4916 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4917 inode->i_ctime = inode->i_mtime =
4918 current_fs_time(inode->i_sb);
4919 }
4920
4921 if (newsize > oldsize) {
4922 truncate_pagecache(inode, newsize);
4923 /*
4924 * Don't do an expanding truncate while snapshoting is ongoing.
4925 * This is to ensure the snapshot captures a fully consistent
4926 * state of this file - if the snapshot captures this expanding
4927 * truncation, it must capture all writes that happened before
4928 * this truncation.
4929 */
4930 wait_for_snapshot_creation(root);
4931 ret = btrfs_cont_expand(inode, oldsize, newsize);
4932 if (ret) {
4933 btrfs_end_write_no_snapshoting(root);
4934 return ret;
4935 }
4936
4937 trans = btrfs_start_transaction(root, 1);
4938 if (IS_ERR(trans)) {
4939 btrfs_end_write_no_snapshoting(root);
4940 return PTR_ERR(trans);
4941 }
4942
4943 i_size_write(inode, newsize);
4944 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4945 ret = btrfs_update_inode(trans, root, inode);
4946 btrfs_end_write_no_snapshoting(root);
4947 btrfs_end_transaction(trans, root);
4948 } else {
4949
4950 /*
4951 * We're truncating a file that used to have good data down to
4952 * zero. Make sure it gets into the ordered flush list so that
4953 * any new writes get down to disk quickly.
4954 */
4955 if (newsize == 0)
4956 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4957 &BTRFS_I(inode)->runtime_flags);
4958
4959 /*
4960 * 1 for the orphan item we're going to add
4961 * 1 for the orphan item deletion.
4962 */
4963 trans = btrfs_start_transaction(root, 2);
4964 if (IS_ERR(trans))
4965 return PTR_ERR(trans);
4966
4967 /*
4968 * We need to do this in case we fail at _any_ point during the
4969 * actual truncate. Once we do the truncate_setsize we could
4970 * invalidate pages which forces any outstanding ordered io to
4971 * be instantly completed which will give us extents that need
4972 * to be truncated. If we fail to get an orphan inode down we
4973 * could have left over extents that were never meant to live,
4974 * so we need to garuntee from this point on that everything
4975 * will be consistent.
4976 */
4977 ret = btrfs_orphan_add(trans, inode);
4978 btrfs_end_transaction(trans, root);
4979 if (ret)
4980 return ret;
4981
4982 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4983 truncate_setsize(inode, newsize);
4984
4985 /* Disable nonlocked read DIO to avoid the end less truncate */
4986 btrfs_inode_block_unlocked_dio(inode);
4987 inode_dio_wait(inode);
4988 btrfs_inode_resume_unlocked_dio(inode);
4989
4990 ret = btrfs_truncate(inode);
4991 if (ret && inode->i_nlink) {
4992 int err;
4993
4994 /*
4995 * failed to truncate, disk_i_size is only adjusted down
4996 * as we remove extents, so it should represent the true
4997 * size of the inode, so reset the in memory size and
4998 * delete our orphan entry.
4999 */
5000 trans = btrfs_join_transaction(root);
5001 if (IS_ERR(trans)) {
5002 btrfs_orphan_del(NULL, inode);
5003 return ret;
5004 }
5005 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5006 err = btrfs_orphan_del(trans, inode);
5007 if (err)
5008 btrfs_abort_transaction(trans, root, err);
5009 btrfs_end_transaction(trans, root);
5010 }
5011 }
5012
5013 return ret;
5014 }
5015
5016 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5017 {
5018 struct inode *inode = d_inode(dentry);
5019 struct btrfs_root *root = BTRFS_I(inode)->root;
5020 int err;
5021
5022 if (btrfs_root_readonly(root))
5023 return -EROFS;
5024
5025 err = inode_change_ok(inode, attr);
5026 if (err)
5027 return err;
5028
5029 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5030 err = btrfs_setsize(inode, attr);
5031 if (err)
5032 return err;
5033 }
5034
5035 if (attr->ia_valid) {
5036 setattr_copy(inode, attr);
5037 inode_inc_iversion(inode);
5038 err = btrfs_dirty_inode(inode);
5039
5040 if (!err && attr->ia_valid & ATTR_MODE)
5041 err = posix_acl_chmod(inode, inode->i_mode);
5042 }
5043
5044 return err;
5045 }
5046
5047 /*
5048 * While truncating the inode pages during eviction, we get the VFS calling
5049 * btrfs_invalidatepage() against each page of the inode. This is slow because
5050 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5051 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5052 * extent_state structures over and over, wasting lots of time.
5053 *
5054 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5055 * those expensive operations on a per page basis and do only the ordered io
5056 * finishing, while we release here the extent_map and extent_state structures,
5057 * without the excessive merging and splitting.
5058 */
5059 static void evict_inode_truncate_pages(struct inode *inode)
5060 {
5061 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5062 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5063 struct rb_node *node;
5064
5065 ASSERT(inode->i_state & I_FREEING);
5066 truncate_inode_pages_final(&inode->i_data);
5067
5068 write_lock(&map_tree->lock);
5069 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5070 struct extent_map *em;
5071
5072 node = rb_first(&map_tree->map);
5073 em = rb_entry(node, struct extent_map, rb_node);
5074 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5075 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5076 remove_extent_mapping(map_tree, em);
5077 free_extent_map(em);
5078 if (need_resched()) {
5079 write_unlock(&map_tree->lock);
5080 cond_resched();
5081 write_lock(&map_tree->lock);
5082 }
5083 }
5084 write_unlock(&map_tree->lock);
5085
5086 /*
5087 * Keep looping until we have no more ranges in the io tree.
5088 * We can have ongoing bios started by readpages (called from readahead)
5089 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5090 * still in progress (unlocked the pages in the bio but did not yet
5091 * unlocked the ranges in the io tree). Therefore this means some
5092 * ranges can still be locked and eviction started because before
5093 * submitting those bios, which are executed by a separate task (work
5094 * queue kthread), inode references (inode->i_count) were not taken
5095 * (which would be dropped in the end io callback of each bio).
5096 * Therefore here we effectively end up waiting for those bios and
5097 * anyone else holding locked ranges without having bumped the inode's
5098 * reference count - if we don't do it, when they access the inode's
5099 * io_tree to unlock a range it may be too late, leading to an
5100 * use-after-free issue.
5101 */
5102 spin_lock(&io_tree->lock);
5103 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5104 struct extent_state *state;
5105 struct extent_state *cached_state = NULL;
5106 u64 start;
5107 u64 end;
5108
5109 node = rb_first(&io_tree->state);
5110 state = rb_entry(node, struct extent_state, rb_node);
5111 start = state->start;
5112 end = state->end;
5113 spin_unlock(&io_tree->lock);
5114
5115 lock_extent_bits(io_tree, start, end, 0, &cached_state);
5116
5117 /*
5118 * If still has DELALLOC flag, the extent didn't reach disk,
5119 * and its reserved space won't be freed by delayed_ref.
5120 * So we need to free its reserved space here.
5121 * (Refer to comment in btrfs_invalidatepage, case 2)
5122 *
5123 * Note, end is the bytenr of last byte, so we need + 1 here.
5124 */
5125 if (state->state & EXTENT_DELALLOC)
5126 btrfs_qgroup_free_data(inode, start, end - start + 1);
5127
5128 clear_extent_bit(io_tree, start, end,
5129 EXTENT_LOCKED | EXTENT_DIRTY |
5130 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5131 EXTENT_DEFRAG, 1, 1,
5132 &cached_state, GFP_NOFS);
5133
5134 cond_resched();
5135 spin_lock(&io_tree->lock);
5136 }
5137 spin_unlock(&io_tree->lock);
5138 }
5139
5140 void btrfs_evict_inode(struct inode *inode)
5141 {
5142 struct btrfs_trans_handle *trans;
5143 struct btrfs_root *root = BTRFS_I(inode)->root;
5144 struct btrfs_block_rsv *rsv, *global_rsv;
5145 int steal_from_global = 0;
5146 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5147 int ret;
5148
5149 trace_btrfs_inode_evict(inode);
5150
5151 evict_inode_truncate_pages(inode);
5152
5153 if (inode->i_nlink &&
5154 ((btrfs_root_refs(&root->root_item) != 0 &&
5155 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5156 btrfs_is_free_space_inode(inode)))
5157 goto no_delete;
5158
5159 if (is_bad_inode(inode)) {
5160 btrfs_orphan_del(NULL, inode);
5161 goto no_delete;
5162 }
5163 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5164 if (!special_file(inode->i_mode))
5165 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5166
5167 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5168
5169 if (root->fs_info->log_root_recovering) {
5170 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5171 &BTRFS_I(inode)->runtime_flags));
5172 goto no_delete;
5173 }
5174
5175 if (inode->i_nlink > 0) {
5176 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5177 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5178 goto no_delete;
5179 }
5180
5181 ret = btrfs_commit_inode_delayed_inode(inode);
5182 if (ret) {
5183 btrfs_orphan_del(NULL, inode);
5184 goto no_delete;
5185 }
5186
5187 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5188 if (!rsv) {
5189 btrfs_orphan_del(NULL, inode);
5190 goto no_delete;
5191 }
5192 rsv->size = min_size;
5193 rsv->failfast = 1;
5194 global_rsv = &root->fs_info->global_block_rsv;
5195
5196 btrfs_i_size_write(inode, 0);
5197
5198 /*
5199 * This is a bit simpler than btrfs_truncate since we've already
5200 * reserved our space for our orphan item in the unlink, so we just
5201 * need to reserve some slack space in case we add bytes and update
5202 * inode item when doing the truncate.
5203 */
5204 while (1) {
5205 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5206 BTRFS_RESERVE_FLUSH_LIMIT);
5207
5208 /*
5209 * Try and steal from the global reserve since we will
5210 * likely not use this space anyway, we want to try as
5211 * hard as possible to get this to work.
5212 */
5213 if (ret)
5214 steal_from_global++;
5215 else
5216 steal_from_global = 0;
5217 ret = 0;
5218
5219 /*
5220 * steal_from_global == 0: we reserved stuff, hooray!
5221 * steal_from_global == 1: we didn't reserve stuff, boo!
5222 * steal_from_global == 2: we've committed, still not a lot of
5223 * room but maybe we'll have room in the global reserve this
5224 * time.
5225 * steal_from_global == 3: abandon all hope!
5226 */
5227 if (steal_from_global > 2) {
5228 btrfs_warn(root->fs_info,
5229 "Could not get space for a delete, will truncate on mount %d",
5230 ret);
5231 btrfs_orphan_del(NULL, inode);
5232 btrfs_free_block_rsv(root, rsv);
5233 goto no_delete;
5234 }
5235
5236 trans = btrfs_join_transaction(root);
5237 if (IS_ERR(trans)) {
5238 btrfs_orphan_del(NULL, inode);
5239 btrfs_free_block_rsv(root, rsv);
5240 goto no_delete;
5241 }
5242
5243 /*
5244 * We can't just steal from the global reserve, we need tomake
5245 * sure there is room to do it, if not we need to commit and try
5246 * again.
5247 */
5248 if (steal_from_global) {
5249 if (!btrfs_check_space_for_delayed_refs(trans, root))
5250 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5251 min_size);
5252 else
5253 ret = -ENOSPC;
5254 }
5255
5256 /*
5257 * Couldn't steal from the global reserve, we have too much
5258 * pending stuff built up, commit the transaction and try it
5259 * again.
5260 */
5261 if (ret) {
5262 ret = btrfs_commit_transaction(trans, root);
5263 if (ret) {
5264 btrfs_orphan_del(NULL, inode);
5265 btrfs_free_block_rsv(root, rsv);
5266 goto no_delete;
5267 }
5268 continue;
5269 } else {
5270 steal_from_global = 0;
5271 }
5272
5273 trans->block_rsv = rsv;
5274
5275 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5276 if (ret != -ENOSPC && ret != -EAGAIN)
5277 break;
5278
5279 trans->block_rsv = &root->fs_info->trans_block_rsv;
5280 btrfs_end_transaction(trans, root);
5281 trans = NULL;
5282 btrfs_btree_balance_dirty(root);
5283 }
5284
5285 btrfs_free_block_rsv(root, rsv);
5286
5287 /*
5288 * Errors here aren't a big deal, it just means we leave orphan items
5289 * in the tree. They will be cleaned up on the next mount.
5290 */
5291 if (ret == 0) {
5292 trans->block_rsv = root->orphan_block_rsv;
5293 btrfs_orphan_del(trans, inode);
5294 } else {
5295 btrfs_orphan_del(NULL, inode);
5296 }
5297
5298 trans->block_rsv = &root->fs_info->trans_block_rsv;
5299 if (!(root == root->fs_info->tree_root ||
5300 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5301 btrfs_return_ino(root, btrfs_ino(inode));
5302
5303 btrfs_end_transaction(trans, root);
5304 btrfs_btree_balance_dirty(root);
5305 no_delete:
5306 btrfs_remove_delayed_node(inode);
5307 clear_inode(inode);
5308 return;
5309 }
5310
5311 /*
5312 * this returns the key found in the dir entry in the location pointer.
5313 * If no dir entries were found, location->objectid is 0.
5314 */
5315 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5316 struct btrfs_key *location)
5317 {
5318 const char *name = dentry->d_name.name;
5319 int namelen = dentry->d_name.len;
5320 struct btrfs_dir_item *di;
5321 struct btrfs_path *path;
5322 struct btrfs_root *root = BTRFS_I(dir)->root;
5323 int ret = 0;
5324
5325 path = btrfs_alloc_path();
5326 if (!path)
5327 return -ENOMEM;
5328
5329 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5330 namelen, 0);
5331 if (IS_ERR(di))
5332 ret = PTR_ERR(di);
5333
5334 if (IS_ERR_OR_NULL(di))
5335 goto out_err;
5336
5337 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5338 out:
5339 btrfs_free_path(path);
5340 return ret;
5341 out_err:
5342 location->objectid = 0;
5343 goto out;
5344 }
5345
5346 /*
5347 * when we hit a tree root in a directory, the btrfs part of the inode
5348 * needs to be changed to reflect the root directory of the tree root. This
5349 * is kind of like crossing a mount point.
5350 */
5351 static int fixup_tree_root_location(struct btrfs_root *root,
5352 struct inode *dir,
5353 struct dentry *dentry,
5354 struct btrfs_key *location,
5355 struct btrfs_root **sub_root)
5356 {
5357 struct btrfs_path *path;
5358 struct btrfs_root *new_root;
5359 struct btrfs_root_ref *ref;
5360 struct extent_buffer *leaf;
5361 struct btrfs_key key;
5362 int ret;
5363 int err = 0;
5364
5365 path = btrfs_alloc_path();
5366 if (!path) {
5367 err = -ENOMEM;
5368 goto out;
5369 }
5370
5371 err = -ENOENT;
5372 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5373 key.type = BTRFS_ROOT_REF_KEY;
5374 key.offset = location->objectid;
5375
5376 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5377 0, 0);
5378 if (ret) {
5379 if (ret < 0)
5380 err = ret;
5381 goto out;
5382 }
5383
5384 leaf = path->nodes[0];
5385 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5386 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5387 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5388 goto out;
5389
5390 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5391 (unsigned long)(ref + 1),
5392 dentry->d_name.len);
5393 if (ret)
5394 goto out;
5395
5396 btrfs_release_path(path);
5397
5398 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5399 if (IS_ERR(new_root)) {
5400 err = PTR_ERR(new_root);
5401 goto out;
5402 }
5403
5404 *sub_root = new_root;
5405 location->objectid = btrfs_root_dirid(&new_root->root_item);
5406 location->type = BTRFS_INODE_ITEM_KEY;
5407 location->offset = 0;
5408 err = 0;
5409 out:
5410 btrfs_free_path(path);
5411 return err;
5412 }
5413
5414 static void inode_tree_add(struct inode *inode)
5415 {
5416 struct btrfs_root *root = BTRFS_I(inode)->root;
5417 struct btrfs_inode *entry;
5418 struct rb_node **p;
5419 struct rb_node *parent;
5420 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5421 u64 ino = btrfs_ino(inode);
5422
5423 if (inode_unhashed(inode))
5424 return;
5425 parent = NULL;
5426 spin_lock(&root->inode_lock);
5427 p = &root->inode_tree.rb_node;
5428 while (*p) {
5429 parent = *p;
5430 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5431
5432 if (ino < btrfs_ino(&entry->vfs_inode))
5433 p = &parent->rb_left;
5434 else if (ino > btrfs_ino(&entry->vfs_inode))
5435 p = &parent->rb_right;
5436 else {
5437 WARN_ON(!(entry->vfs_inode.i_state &
5438 (I_WILL_FREE | I_FREEING)));
5439 rb_replace_node(parent, new, &root->inode_tree);
5440 RB_CLEAR_NODE(parent);
5441 spin_unlock(&root->inode_lock);
5442 return;
5443 }
5444 }
5445 rb_link_node(new, parent, p);
5446 rb_insert_color(new, &root->inode_tree);
5447 spin_unlock(&root->inode_lock);
5448 }
5449
5450 static void inode_tree_del(struct inode *inode)
5451 {
5452 struct btrfs_root *root = BTRFS_I(inode)->root;
5453 int empty = 0;
5454
5455 spin_lock(&root->inode_lock);
5456 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5457 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5458 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5459 empty = RB_EMPTY_ROOT(&root->inode_tree);
5460 }
5461 spin_unlock(&root->inode_lock);
5462
5463 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5464 synchronize_srcu(&root->fs_info->subvol_srcu);
5465 spin_lock(&root->inode_lock);
5466 empty = RB_EMPTY_ROOT(&root->inode_tree);
5467 spin_unlock(&root->inode_lock);
5468 if (empty)
5469 btrfs_add_dead_root(root);
5470 }
5471 }
5472
5473 void btrfs_invalidate_inodes(struct btrfs_root *root)
5474 {
5475 struct rb_node *node;
5476 struct rb_node *prev;
5477 struct btrfs_inode *entry;
5478 struct inode *inode;
5479 u64 objectid = 0;
5480
5481 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5482 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5483
5484 spin_lock(&root->inode_lock);
5485 again:
5486 node = root->inode_tree.rb_node;
5487 prev = NULL;
5488 while (node) {
5489 prev = node;
5490 entry = rb_entry(node, struct btrfs_inode, rb_node);
5491
5492 if (objectid < btrfs_ino(&entry->vfs_inode))
5493 node = node->rb_left;
5494 else if (objectid > btrfs_ino(&entry->vfs_inode))
5495 node = node->rb_right;
5496 else
5497 break;
5498 }
5499 if (!node) {
5500 while (prev) {
5501 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5502 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5503 node = prev;
5504 break;
5505 }
5506 prev = rb_next(prev);
5507 }
5508 }
5509 while (node) {
5510 entry = rb_entry(node, struct btrfs_inode, rb_node);
5511 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5512 inode = igrab(&entry->vfs_inode);
5513 if (inode) {
5514 spin_unlock(&root->inode_lock);
5515 if (atomic_read(&inode->i_count) > 1)
5516 d_prune_aliases(inode);
5517 /*
5518 * btrfs_drop_inode will have it removed from
5519 * the inode cache when its usage count
5520 * hits zero.
5521 */
5522 iput(inode);
5523 cond_resched();
5524 spin_lock(&root->inode_lock);
5525 goto again;
5526 }
5527
5528 if (cond_resched_lock(&root->inode_lock))
5529 goto again;
5530
5531 node = rb_next(node);
5532 }
5533 spin_unlock(&root->inode_lock);
5534 }
5535
5536 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5537 {
5538 struct btrfs_iget_args *args = p;
5539 inode->i_ino = args->location->objectid;
5540 memcpy(&BTRFS_I(inode)->location, args->location,
5541 sizeof(*args->location));
5542 BTRFS_I(inode)->root = args->root;
5543 return 0;
5544 }
5545
5546 static int btrfs_find_actor(struct inode *inode, void *opaque)
5547 {
5548 struct btrfs_iget_args *args = opaque;
5549 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5550 args->root == BTRFS_I(inode)->root;
5551 }
5552
5553 static struct inode *btrfs_iget_locked(struct super_block *s,
5554 struct btrfs_key *location,
5555 struct btrfs_root *root)
5556 {
5557 struct inode *inode;
5558 struct btrfs_iget_args args;
5559 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5560
5561 args.location = location;
5562 args.root = root;
5563
5564 inode = iget5_locked(s, hashval, btrfs_find_actor,
5565 btrfs_init_locked_inode,
5566 (void *)&args);
5567 return inode;
5568 }
5569
5570 /* Get an inode object given its location and corresponding root.
5571 * Returns in *is_new if the inode was read from disk
5572 */
5573 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5574 struct btrfs_root *root, int *new)
5575 {
5576 struct inode *inode;
5577
5578 inode = btrfs_iget_locked(s, location, root);
5579 if (!inode)
5580 return ERR_PTR(-ENOMEM);
5581
5582 if (inode->i_state & I_NEW) {
5583 btrfs_read_locked_inode(inode);
5584 if (!is_bad_inode(inode)) {
5585 inode_tree_add(inode);
5586 unlock_new_inode(inode);
5587 if (new)
5588 *new = 1;
5589 } else {
5590 unlock_new_inode(inode);
5591 iput(inode);
5592 inode = ERR_PTR(-ESTALE);
5593 }
5594 }
5595
5596 return inode;
5597 }
5598
5599 static struct inode *new_simple_dir(struct super_block *s,
5600 struct btrfs_key *key,
5601 struct btrfs_root *root)
5602 {
5603 struct inode *inode = new_inode(s);
5604
5605 if (!inode)
5606 return ERR_PTR(-ENOMEM);
5607
5608 BTRFS_I(inode)->root = root;
5609 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5610 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5611
5612 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5613 inode->i_op = &btrfs_dir_ro_inode_operations;
5614 inode->i_fop = &simple_dir_operations;
5615 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5616 inode->i_mtime = CURRENT_TIME;
5617 inode->i_atime = inode->i_mtime;
5618 inode->i_ctime = inode->i_mtime;
5619 BTRFS_I(inode)->i_otime = inode->i_mtime;
5620
5621 return inode;
5622 }
5623
5624 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5625 {
5626 struct inode *inode;
5627 struct btrfs_root *root = BTRFS_I(dir)->root;
5628 struct btrfs_root *sub_root = root;
5629 struct btrfs_key location;
5630 int index;
5631 int ret = 0;
5632
5633 if (dentry->d_name.len > BTRFS_NAME_LEN)
5634 return ERR_PTR(-ENAMETOOLONG);
5635
5636 ret = btrfs_inode_by_name(dir, dentry, &location);
5637 if (ret < 0)
5638 return ERR_PTR(ret);
5639
5640 if (location.objectid == 0)
5641 return ERR_PTR(-ENOENT);
5642
5643 if (location.type == BTRFS_INODE_ITEM_KEY) {
5644 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5645 return inode;
5646 }
5647
5648 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5649
5650 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5651 ret = fixup_tree_root_location(root, dir, dentry,
5652 &location, &sub_root);
5653 if (ret < 0) {
5654 if (ret != -ENOENT)
5655 inode = ERR_PTR(ret);
5656 else
5657 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5658 } else {
5659 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5660 }
5661 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5662
5663 if (!IS_ERR(inode) && root != sub_root) {
5664 down_read(&root->fs_info->cleanup_work_sem);
5665 if (!(inode->i_sb->s_flags & MS_RDONLY))
5666 ret = btrfs_orphan_cleanup(sub_root);
5667 up_read(&root->fs_info->cleanup_work_sem);
5668 if (ret) {
5669 iput(inode);
5670 inode = ERR_PTR(ret);
5671 }
5672 }
5673
5674 return inode;
5675 }
5676
5677 static int btrfs_dentry_delete(const struct dentry *dentry)
5678 {
5679 struct btrfs_root *root;
5680 struct inode *inode = d_inode(dentry);
5681
5682 if (!inode && !IS_ROOT(dentry))
5683 inode = d_inode(dentry->d_parent);
5684
5685 if (inode) {
5686 root = BTRFS_I(inode)->root;
5687 if (btrfs_root_refs(&root->root_item) == 0)
5688 return 1;
5689
5690 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5691 return 1;
5692 }
5693 return 0;
5694 }
5695
5696 static void btrfs_dentry_release(struct dentry *dentry)
5697 {
5698 kfree(dentry->d_fsdata);
5699 }
5700
5701 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5702 unsigned int flags)
5703 {
5704 struct inode *inode;
5705
5706 inode = btrfs_lookup_dentry(dir, dentry);
5707 if (IS_ERR(inode)) {
5708 if (PTR_ERR(inode) == -ENOENT)
5709 inode = NULL;
5710 else
5711 return ERR_CAST(inode);
5712 }
5713
5714 return d_splice_alias(inode, dentry);
5715 }
5716
5717 unsigned char btrfs_filetype_table[] = {
5718 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5719 };
5720
5721 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5722 {
5723 struct inode *inode = file_inode(file);
5724 struct btrfs_root *root = BTRFS_I(inode)->root;
5725 struct btrfs_item *item;
5726 struct btrfs_dir_item *di;
5727 struct btrfs_key key;
5728 struct btrfs_key found_key;
5729 struct btrfs_path *path;
5730 struct list_head ins_list;
5731 struct list_head del_list;
5732 int ret;
5733 struct extent_buffer *leaf;
5734 int slot;
5735 unsigned char d_type;
5736 int over = 0;
5737 u32 di_cur;
5738 u32 di_total;
5739 u32 di_len;
5740 int key_type = BTRFS_DIR_INDEX_KEY;
5741 char tmp_name[32];
5742 char *name_ptr;
5743 int name_len;
5744 int is_curr = 0; /* ctx->pos points to the current index? */
5745
5746 /* FIXME, use a real flag for deciding about the key type */
5747 if (root->fs_info->tree_root == root)
5748 key_type = BTRFS_DIR_ITEM_KEY;
5749
5750 if (!dir_emit_dots(file, ctx))
5751 return 0;
5752
5753 path = btrfs_alloc_path();
5754 if (!path)
5755 return -ENOMEM;
5756
5757 path->reada = 1;
5758
5759 if (key_type == BTRFS_DIR_INDEX_KEY) {
5760 INIT_LIST_HEAD(&ins_list);
5761 INIT_LIST_HEAD(&del_list);
5762 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5763 }
5764
5765 key.type = key_type;
5766 key.offset = ctx->pos;
5767 key.objectid = btrfs_ino(inode);
5768
5769 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5770 if (ret < 0)
5771 goto err;
5772
5773 while (1) {
5774 leaf = path->nodes[0];
5775 slot = path->slots[0];
5776 if (slot >= btrfs_header_nritems(leaf)) {
5777 ret = btrfs_next_leaf(root, path);
5778 if (ret < 0)
5779 goto err;
5780 else if (ret > 0)
5781 break;
5782 continue;
5783 }
5784
5785 item = btrfs_item_nr(slot);
5786 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5787
5788 if (found_key.objectid != key.objectid)
5789 break;
5790 if (found_key.type != key_type)
5791 break;
5792 if (found_key.offset < ctx->pos)
5793 goto next;
5794 if (key_type == BTRFS_DIR_INDEX_KEY &&
5795 btrfs_should_delete_dir_index(&del_list,
5796 found_key.offset))
5797 goto next;
5798
5799 ctx->pos = found_key.offset;
5800 is_curr = 1;
5801
5802 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5803 di_cur = 0;
5804 di_total = btrfs_item_size(leaf, item);
5805
5806 while (di_cur < di_total) {
5807 struct btrfs_key location;
5808
5809 if (verify_dir_item(root, leaf, di))
5810 break;
5811
5812 name_len = btrfs_dir_name_len(leaf, di);
5813 if (name_len <= sizeof(tmp_name)) {
5814 name_ptr = tmp_name;
5815 } else {
5816 name_ptr = kmalloc(name_len, GFP_NOFS);
5817 if (!name_ptr) {
5818 ret = -ENOMEM;
5819 goto err;
5820 }
5821 }
5822 read_extent_buffer(leaf, name_ptr,
5823 (unsigned long)(di + 1), name_len);
5824
5825 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5826 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5827
5828
5829 /* is this a reference to our own snapshot? If so
5830 * skip it.
5831 *
5832 * In contrast to old kernels, we insert the snapshot's
5833 * dir item and dir index after it has been created, so
5834 * we won't find a reference to our own snapshot. We
5835 * still keep the following code for backward
5836 * compatibility.
5837 */
5838 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5839 location.objectid == root->root_key.objectid) {
5840 over = 0;
5841 goto skip;
5842 }
5843 over = !dir_emit(ctx, name_ptr, name_len,
5844 location.objectid, d_type);
5845
5846 skip:
5847 if (name_ptr != tmp_name)
5848 kfree(name_ptr);
5849
5850 if (over)
5851 goto nopos;
5852 di_len = btrfs_dir_name_len(leaf, di) +
5853 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5854 di_cur += di_len;
5855 di = (struct btrfs_dir_item *)((char *)di + di_len);
5856 }
5857 next:
5858 path->slots[0]++;
5859 }
5860
5861 if (key_type == BTRFS_DIR_INDEX_KEY) {
5862 if (is_curr)
5863 ctx->pos++;
5864 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5865 if (ret)
5866 goto nopos;
5867 }
5868
5869 /* Reached end of directory/root. Bump pos past the last item. */
5870 ctx->pos++;
5871
5872 /*
5873 * Stop new entries from being returned after we return the last
5874 * entry.
5875 *
5876 * New directory entries are assigned a strictly increasing
5877 * offset. This means that new entries created during readdir
5878 * are *guaranteed* to be seen in the future by that readdir.
5879 * This has broken buggy programs which operate on names as
5880 * they're returned by readdir. Until we re-use freed offsets
5881 * we have this hack to stop new entries from being returned
5882 * under the assumption that they'll never reach this huge
5883 * offset.
5884 *
5885 * This is being careful not to overflow 32bit loff_t unless the
5886 * last entry requires it because doing so has broken 32bit apps
5887 * in the past.
5888 */
5889 if (key_type == BTRFS_DIR_INDEX_KEY) {
5890 if (ctx->pos >= INT_MAX)
5891 ctx->pos = LLONG_MAX;
5892 else
5893 ctx->pos = INT_MAX;
5894 }
5895 nopos:
5896 ret = 0;
5897 err:
5898 if (key_type == BTRFS_DIR_INDEX_KEY)
5899 btrfs_put_delayed_items(&ins_list, &del_list);
5900 btrfs_free_path(path);
5901 return ret;
5902 }
5903
5904 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5905 {
5906 struct btrfs_root *root = BTRFS_I(inode)->root;
5907 struct btrfs_trans_handle *trans;
5908 int ret = 0;
5909 bool nolock = false;
5910
5911 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5912 return 0;
5913
5914 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5915 nolock = true;
5916
5917 if (wbc->sync_mode == WB_SYNC_ALL) {
5918 if (nolock)
5919 trans = btrfs_join_transaction_nolock(root);
5920 else
5921 trans = btrfs_join_transaction(root);
5922 if (IS_ERR(trans))
5923 return PTR_ERR(trans);
5924 ret = btrfs_commit_transaction(trans, root);
5925 }
5926 return ret;
5927 }
5928
5929 /*
5930 * This is somewhat expensive, updating the tree every time the
5931 * inode changes. But, it is most likely to find the inode in cache.
5932 * FIXME, needs more benchmarking...there are no reasons other than performance
5933 * to keep or drop this code.
5934 */
5935 static int btrfs_dirty_inode(struct inode *inode)
5936 {
5937 struct btrfs_root *root = BTRFS_I(inode)->root;
5938 struct btrfs_trans_handle *trans;
5939 int ret;
5940
5941 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5942 return 0;
5943
5944 trans = btrfs_join_transaction(root);
5945 if (IS_ERR(trans))
5946 return PTR_ERR(trans);
5947
5948 ret = btrfs_update_inode(trans, root, inode);
5949 if (ret && ret == -ENOSPC) {
5950 /* whoops, lets try again with the full transaction */
5951 btrfs_end_transaction(trans, root);
5952 trans = btrfs_start_transaction(root, 1);
5953 if (IS_ERR(trans))
5954 return PTR_ERR(trans);
5955
5956 ret = btrfs_update_inode(trans, root, inode);
5957 }
5958 btrfs_end_transaction(trans, root);
5959 if (BTRFS_I(inode)->delayed_node)
5960 btrfs_balance_delayed_items(root);
5961
5962 return ret;
5963 }
5964
5965 /*
5966 * This is a copy of file_update_time. We need this so we can return error on
5967 * ENOSPC for updating the inode in the case of file write and mmap writes.
5968 */
5969 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5970 int flags)
5971 {
5972 struct btrfs_root *root = BTRFS_I(inode)->root;
5973
5974 if (btrfs_root_readonly(root))
5975 return -EROFS;
5976
5977 if (flags & S_VERSION)
5978 inode_inc_iversion(inode);
5979 if (flags & S_CTIME)
5980 inode->i_ctime = *now;
5981 if (flags & S_MTIME)
5982 inode->i_mtime = *now;
5983 if (flags & S_ATIME)
5984 inode->i_atime = *now;
5985 return btrfs_dirty_inode(inode);
5986 }
5987
5988 /*
5989 * find the highest existing sequence number in a directory
5990 * and then set the in-memory index_cnt variable to reflect
5991 * free sequence numbers
5992 */
5993 static int btrfs_set_inode_index_count(struct inode *inode)
5994 {
5995 struct btrfs_root *root = BTRFS_I(inode)->root;
5996 struct btrfs_key key, found_key;
5997 struct btrfs_path *path;
5998 struct extent_buffer *leaf;
5999 int ret;
6000
6001 key.objectid = btrfs_ino(inode);
6002 key.type = BTRFS_DIR_INDEX_KEY;
6003 key.offset = (u64)-1;
6004
6005 path = btrfs_alloc_path();
6006 if (!path)
6007 return -ENOMEM;
6008
6009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6010 if (ret < 0)
6011 goto out;
6012 /* FIXME: we should be able to handle this */
6013 if (ret == 0)
6014 goto out;
6015 ret = 0;
6016
6017 /*
6018 * MAGIC NUMBER EXPLANATION:
6019 * since we search a directory based on f_pos we have to start at 2
6020 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6021 * else has to start at 2
6022 */
6023 if (path->slots[0] == 0) {
6024 BTRFS_I(inode)->index_cnt = 2;
6025 goto out;
6026 }
6027
6028 path->slots[0]--;
6029
6030 leaf = path->nodes[0];
6031 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6032
6033 if (found_key.objectid != btrfs_ino(inode) ||
6034 found_key.type != BTRFS_DIR_INDEX_KEY) {
6035 BTRFS_I(inode)->index_cnt = 2;
6036 goto out;
6037 }
6038
6039 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6040 out:
6041 btrfs_free_path(path);
6042 return ret;
6043 }
6044
6045 /*
6046 * helper to find a free sequence number in a given directory. This current
6047 * code is very simple, later versions will do smarter things in the btree
6048 */
6049 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6050 {
6051 int ret = 0;
6052
6053 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6054 ret = btrfs_inode_delayed_dir_index_count(dir);
6055 if (ret) {
6056 ret = btrfs_set_inode_index_count(dir);
6057 if (ret)
6058 return ret;
6059 }
6060 }
6061
6062 *index = BTRFS_I(dir)->index_cnt;
6063 BTRFS_I(dir)->index_cnt++;
6064
6065 return ret;
6066 }
6067
6068 static int btrfs_insert_inode_locked(struct inode *inode)
6069 {
6070 struct btrfs_iget_args args;
6071 args.location = &BTRFS_I(inode)->location;
6072 args.root = BTRFS_I(inode)->root;
6073
6074 return insert_inode_locked4(inode,
6075 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6076 btrfs_find_actor, &args);
6077 }
6078
6079 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6080 struct btrfs_root *root,
6081 struct inode *dir,
6082 const char *name, int name_len,
6083 u64 ref_objectid, u64 objectid,
6084 umode_t mode, u64 *index)
6085 {
6086 struct inode *inode;
6087 struct btrfs_inode_item *inode_item;
6088 struct btrfs_key *location;
6089 struct btrfs_path *path;
6090 struct btrfs_inode_ref *ref;
6091 struct btrfs_key key[2];
6092 u32 sizes[2];
6093 int nitems = name ? 2 : 1;
6094 unsigned long ptr;
6095 int ret;
6096
6097 path = btrfs_alloc_path();
6098 if (!path)
6099 return ERR_PTR(-ENOMEM);
6100
6101 inode = new_inode(root->fs_info->sb);
6102 if (!inode) {
6103 btrfs_free_path(path);
6104 return ERR_PTR(-ENOMEM);
6105 }
6106
6107 /*
6108 * O_TMPFILE, set link count to 0, so that after this point,
6109 * we fill in an inode item with the correct link count.
6110 */
6111 if (!name)
6112 set_nlink(inode, 0);
6113
6114 /*
6115 * we have to initialize this early, so we can reclaim the inode
6116 * number if we fail afterwards in this function.
6117 */
6118 inode->i_ino = objectid;
6119
6120 if (dir && name) {
6121 trace_btrfs_inode_request(dir);
6122
6123 ret = btrfs_set_inode_index(dir, index);
6124 if (ret) {
6125 btrfs_free_path(path);
6126 iput(inode);
6127 return ERR_PTR(ret);
6128 }
6129 } else if (dir) {
6130 *index = 0;
6131 }
6132 /*
6133 * index_cnt is ignored for everything but a dir,
6134 * btrfs_get_inode_index_count has an explanation for the magic
6135 * number
6136 */
6137 BTRFS_I(inode)->index_cnt = 2;
6138 BTRFS_I(inode)->dir_index = *index;
6139 BTRFS_I(inode)->root = root;
6140 BTRFS_I(inode)->generation = trans->transid;
6141 inode->i_generation = BTRFS_I(inode)->generation;
6142
6143 /*
6144 * We could have gotten an inode number from somebody who was fsynced
6145 * and then removed in this same transaction, so let's just set full
6146 * sync since it will be a full sync anyway and this will blow away the
6147 * old info in the log.
6148 */
6149 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6150
6151 key[0].objectid = objectid;
6152 key[0].type = BTRFS_INODE_ITEM_KEY;
6153 key[0].offset = 0;
6154
6155 sizes[0] = sizeof(struct btrfs_inode_item);
6156
6157 if (name) {
6158 /*
6159 * Start new inodes with an inode_ref. This is slightly more
6160 * efficient for small numbers of hard links since they will
6161 * be packed into one item. Extended refs will kick in if we
6162 * add more hard links than can fit in the ref item.
6163 */
6164 key[1].objectid = objectid;
6165 key[1].type = BTRFS_INODE_REF_KEY;
6166 key[1].offset = ref_objectid;
6167
6168 sizes[1] = name_len + sizeof(*ref);
6169 }
6170
6171 location = &BTRFS_I(inode)->location;
6172 location->objectid = objectid;
6173 location->offset = 0;
6174 location->type = BTRFS_INODE_ITEM_KEY;
6175
6176 ret = btrfs_insert_inode_locked(inode);
6177 if (ret < 0)
6178 goto fail;
6179
6180 path->leave_spinning = 1;
6181 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6182 if (ret != 0)
6183 goto fail_unlock;
6184
6185 inode_init_owner(inode, dir, mode);
6186 inode_set_bytes(inode, 0);
6187
6188 inode->i_mtime = CURRENT_TIME;
6189 inode->i_atime = inode->i_mtime;
6190 inode->i_ctime = inode->i_mtime;
6191 BTRFS_I(inode)->i_otime = inode->i_mtime;
6192
6193 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6194 struct btrfs_inode_item);
6195 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6196 sizeof(*inode_item));
6197 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6198
6199 if (name) {
6200 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6201 struct btrfs_inode_ref);
6202 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6203 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6204 ptr = (unsigned long)(ref + 1);
6205 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6206 }
6207
6208 btrfs_mark_buffer_dirty(path->nodes[0]);
6209 btrfs_free_path(path);
6210
6211 btrfs_inherit_iflags(inode, dir);
6212
6213 if (S_ISREG(mode)) {
6214 if (btrfs_test_opt(root, NODATASUM))
6215 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6216 if (btrfs_test_opt(root, NODATACOW))
6217 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6218 BTRFS_INODE_NODATASUM;
6219 }
6220
6221 inode_tree_add(inode);
6222
6223 trace_btrfs_inode_new(inode);
6224 btrfs_set_inode_last_trans(trans, inode);
6225
6226 btrfs_update_root_times(trans, root);
6227
6228 ret = btrfs_inode_inherit_props(trans, inode, dir);
6229 if (ret)
6230 btrfs_err(root->fs_info,
6231 "error inheriting props for ino %llu (root %llu): %d",
6232 btrfs_ino(inode), root->root_key.objectid, ret);
6233
6234 return inode;
6235
6236 fail_unlock:
6237 unlock_new_inode(inode);
6238 fail:
6239 if (dir && name)
6240 BTRFS_I(dir)->index_cnt--;
6241 btrfs_free_path(path);
6242 iput(inode);
6243 return ERR_PTR(ret);
6244 }
6245
6246 static inline u8 btrfs_inode_type(struct inode *inode)
6247 {
6248 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6249 }
6250
6251 /*
6252 * utility function to add 'inode' into 'parent_inode' with
6253 * a give name and a given sequence number.
6254 * if 'add_backref' is true, also insert a backref from the
6255 * inode to the parent directory.
6256 */
6257 int btrfs_add_link(struct btrfs_trans_handle *trans,
6258 struct inode *parent_inode, struct inode *inode,
6259 const char *name, int name_len, int add_backref, u64 index)
6260 {
6261 int ret = 0;
6262 struct btrfs_key key;
6263 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6264 u64 ino = btrfs_ino(inode);
6265 u64 parent_ino = btrfs_ino(parent_inode);
6266
6267 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6268 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6269 } else {
6270 key.objectid = ino;
6271 key.type = BTRFS_INODE_ITEM_KEY;
6272 key.offset = 0;
6273 }
6274
6275 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6276 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6277 key.objectid, root->root_key.objectid,
6278 parent_ino, index, name, name_len);
6279 } else if (add_backref) {
6280 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6281 parent_ino, index);
6282 }
6283
6284 /* Nothing to clean up yet */
6285 if (ret)
6286 return ret;
6287
6288 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6289 parent_inode, &key,
6290 btrfs_inode_type(inode), index);
6291 if (ret == -EEXIST || ret == -EOVERFLOW)
6292 goto fail_dir_item;
6293 else if (ret) {
6294 btrfs_abort_transaction(trans, root, ret);
6295 return ret;
6296 }
6297
6298 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6299 name_len * 2);
6300 inode_inc_iversion(parent_inode);
6301 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6302 ret = btrfs_update_inode(trans, root, parent_inode);
6303 if (ret)
6304 btrfs_abort_transaction(trans, root, ret);
6305 return ret;
6306
6307 fail_dir_item:
6308 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6309 u64 local_index;
6310 int err;
6311 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6312 key.objectid, root->root_key.objectid,
6313 parent_ino, &local_index, name, name_len);
6314
6315 } else if (add_backref) {
6316 u64 local_index;
6317 int err;
6318
6319 err = btrfs_del_inode_ref(trans, root, name, name_len,
6320 ino, parent_ino, &local_index);
6321 }
6322 return ret;
6323 }
6324
6325 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6326 struct inode *dir, struct dentry *dentry,
6327 struct inode *inode, int backref, u64 index)
6328 {
6329 int err = btrfs_add_link(trans, dir, inode,
6330 dentry->d_name.name, dentry->d_name.len,
6331 backref, index);
6332 if (err > 0)
6333 err = -EEXIST;
6334 return err;
6335 }
6336
6337 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6338 umode_t mode, dev_t rdev)
6339 {
6340 struct btrfs_trans_handle *trans;
6341 struct btrfs_root *root = BTRFS_I(dir)->root;
6342 struct inode *inode = NULL;
6343 int err;
6344 int drop_inode = 0;
6345 u64 objectid;
6346 u64 index = 0;
6347
6348 /*
6349 * 2 for inode item and ref
6350 * 2 for dir items
6351 * 1 for xattr if selinux is on
6352 */
6353 trans = btrfs_start_transaction(root, 5);
6354 if (IS_ERR(trans))
6355 return PTR_ERR(trans);
6356
6357 err = btrfs_find_free_ino(root, &objectid);
6358 if (err)
6359 goto out_unlock;
6360
6361 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6362 dentry->d_name.len, btrfs_ino(dir), objectid,
6363 mode, &index);
6364 if (IS_ERR(inode)) {
6365 err = PTR_ERR(inode);
6366 goto out_unlock;
6367 }
6368
6369 /*
6370 * If the active LSM wants to access the inode during
6371 * d_instantiate it needs these. Smack checks to see
6372 * if the filesystem supports xattrs by looking at the
6373 * ops vector.
6374 */
6375 inode->i_op = &btrfs_special_inode_operations;
6376 init_special_inode(inode, inode->i_mode, rdev);
6377
6378 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6379 if (err)
6380 goto out_unlock_inode;
6381
6382 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6383 if (err) {
6384 goto out_unlock_inode;
6385 } else {
6386 btrfs_update_inode(trans, root, inode);
6387 unlock_new_inode(inode);
6388 d_instantiate(dentry, inode);
6389 }
6390
6391 out_unlock:
6392 btrfs_end_transaction(trans, root);
6393 btrfs_balance_delayed_items(root);
6394 btrfs_btree_balance_dirty(root);
6395 if (drop_inode) {
6396 inode_dec_link_count(inode);
6397 iput(inode);
6398 }
6399 return err;
6400
6401 out_unlock_inode:
6402 drop_inode = 1;
6403 unlock_new_inode(inode);
6404 goto out_unlock;
6405
6406 }
6407
6408 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6409 umode_t mode, bool excl)
6410 {
6411 struct btrfs_trans_handle *trans;
6412 struct btrfs_root *root = BTRFS_I(dir)->root;
6413 struct inode *inode = NULL;
6414 int drop_inode_on_err = 0;
6415 int err;
6416 u64 objectid;
6417 u64 index = 0;
6418
6419 /*
6420 * 2 for inode item and ref
6421 * 2 for dir items
6422 * 1 for xattr if selinux is on
6423 */
6424 trans = btrfs_start_transaction(root, 5);
6425 if (IS_ERR(trans))
6426 return PTR_ERR(trans);
6427
6428 err = btrfs_find_free_ino(root, &objectid);
6429 if (err)
6430 goto out_unlock;
6431
6432 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6433 dentry->d_name.len, btrfs_ino(dir), objectid,
6434 mode, &index);
6435 if (IS_ERR(inode)) {
6436 err = PTR_ERR(inode);
6437 goto out_unlock;
6438 }
6439 drop_inode_on_err = 1;
6440 /*
6441 * If the active LSM wants to access the inode during
6442 * d_instantiate it needs these. Smack checks to see
6443 * if the filesystem supports xattrs by looking at the
6444 * ops vector.
6445 */
6446 inode->i_fop = &btrfs_file_operations;
6447 inode->i_op = &btrfs_file_inode_operations;
6448 inode->i_mapping->a_ops = &btrfs_aops;
6449
6450 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6451 if (err)
6452 goto out_unlock_inode;
6453
6454 err = btrfs_update_inode(trans, root, inode);
6455 if (err)
6456 goto out_unlock_inode;
6457
6458 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6459 if (err)
6460 goto out_unlock_inode;
6461
6462 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6463 unlock_new_inode(inode);
6464 d_instantiate(dentry, inode);
6465
6466 out_unlock:
6467 btrfs_end_transaction(trans, root);
6468 if (err && drop_inode_on_err) {
6469 inode_dec_link_count(inode);
6470 iput(inode);
6471 }
6472 btrfs_balance_delayed_items(root);
6473 btrfs_btree_balance_dirty(root);
6474 return err;
6475
6476 out_unlock_inode:
6477 unlock_new_inode(inode);
6478 goto out_unlock;
6479
6480 }
6481
6482 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6483 struct dentry *dentry)
6484 {
6485 struct btrfs_trans_handle *trans;
6486 struct btrfs_root *root = BTRFS_I(dir)->root;
6487 struct inode *inode = d_inode(old_dentry);
6488 u64 index;
6489 int err;
6490 int drop_inode = 0;
6491
6492 /* do not allow sys_link's with other subvols of the same device */
6493 if (root->objectid != BTRFS_I(inode)->root->objectid)
6494 return -EXDEV;
6495
6496 if (inode->i_nlink >= BTRFS_LINK_MAX)
6497 return -EMLINK;
6498
6499 err = btrfs_set_inode_index(dir, &index);
6500 if (err)
6501 goto fail;
6502
6503 /*
6504 * 2 items for inode and inode ref
6505 * 2 items for dir items
6506 * 1 item for parent inode
6507 */
6508 trans = btrfs_start_transaction(root, 5);
6509 if (IS_ERR(trans)) {
6510 err = PTR_ERR(trans);
6511 goto fail;
6512 }
6513
6514 /* There are several dir indexes for this inode, clear the cache. */
6515 BTRFS_I(inode)->dir_index = 0ULL;
6516 inc_nlink(inode);
6517 inode_inc_iversion(inode);
6518 inode->i_ctime = CURRENT_TIME;
6519 ihold(inode);
6520 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6521
6522 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6523
6524 if (err) {
6525 drop_inode = 1;
6526 } else {
6527 struct dentry *parent = dentry->d_parent;
6528 err = btrfs_update_inode(trans, root, inode);
6529 if (err)
6530 goto fail;
6531 if (inode->i_nlink == 1) {
6532 /*
6533 * If new hard link count is 1, it's a file created
6534 * with open(2) O_TMPFILE flag.
6535 */
6536 err = btrfs_orphan_del(trans, inode);
6537 if (err)
6538 goto fail;
6539 }
6540 d_instantiate(dentry, inode);
6541 btrfs_log_new_name(trans, inode, NULL, parent);
6542 }
6543
6544 btrfs_end_transaction(trans, root);
6545 btrfs_balance_delayed_items(root);
6546 fail:
6547 if (drop_inode) {
6548 inode_dec_link_count(inode);
6549 iput(inode);
6550 }
6551 btrfs_btree_balance_dirty(root);
6552 return err;
6553 }
6554
6555 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6556 {
6557 struct inode *inode = NULL;
6558 struct btrfs_trans_handle *trans;
6559 struct btrfs_root *root = BTRFS_I(dir)->root;
6560 int err = 0;
6561 int drop_on_err = 0;
6562 u64 objectid = 0;
6563 u64 index = 0;
6564
6565 /*
6566 * 2 items for inode and ref
6567 * 2 items for dir items
6568 * 1 for xattr if selinux is on
6569 */
6570 trans = btrfs_start_transaction(root, 5);
6571 if (IS_ERR(trans))
6572 return PTR_ERR(trans);
6573
6574 err = btrfs_find_free_ino(root, &objectid);
6575 if (err)
6576 goto out_fail;
6577
6578 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6579 dentry->d_name.len, btrfs_ino(dir), objectid,
6580 S_IFDIR | mode, &index);
6581 if (IS_ERR(inode)) {
6582 err = PTR_ERR(inode);
6583 goto out_fail;
6584 }
6585
6586 drop_on_err = 1;
6587 /* these must be set before we unlock the inode */
6588 inode->i_op = &btrfs_dir_inode_operations;
6589 inode->i_fop = &btrfs_dir_file_operations;
6590
6591 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6592 if (err)
6593 goto out_fail_inode;
6594
6595 btrfs_i_size_write(inode, 0);
6596 err = btrfs_update_inode(trans, root, inode);
6597 if (err)
6598 goto out_fail_inode;
6599
6600 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6601 dentry->d_name.len, 0, index);
6602 if (err)
6603 goto out_fail_inode;
6604
6605 d_instantiate(dentry, inode);
6606 /*
6607 * mkdir is special. We're unlocking after we call d_instantiate
6608 * to avoid a race with nfsd calling d_instantiate.
6609 */
6610 unlock_new_inode(inode);
6611 drop_on_err = 0;
6612
6613 out_fail:
6614 btrfs_end_transaction(trans, root);
6615 if (drop_on_err) {
6616 inode_dec_link_count(inode);
6617 iput(inode);
6618 }
6619 btrfs_balance_delayed_items(root);
6620 btrfs_btree_balance_dirty(root);
6621 return err;
6622
6623 out_fail_inode:
6624 unlock_new_inode(inode);
6625 goto out_fail;
6626 }
6627
6628 /* Find next extent map of a given extent map, caller needs to ensure locks */
6629 static struct extent_map *next_extent_map(struct extent_map *em)
6630 {
6631 struct rb_node *next;
6632
6633 next = rb_next(&em->rb_node);
6634 if (!next)
6635 return NULL;
6636 return container_of(next, struct extent_map, rb_node);
6637 }
6638
6639 static struct extent_map *prev_extent_map(struct extent_map *em)
6640 {
6641 struct rb_node *prev;
6642
6643 prev = rb_prev(&em->rb_node);
6644 if (!prev)
6645 return NULL;
6646 return container_of(prev, struct extent_map, rb_node);
6647 }
6648
6649 /* helper for btfs_get_extent. Given an existing extent in the tree,
6650 * the existing extent is the nearest extent to map_start,
6651 * and an extent that you want to insert, deal with overlap and insert
6652 * the best fitted new extent into the tree.
6653 */
6654 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6655 struct extent_map *existing,
6656 struct extent_map *em,
6657 u64 map_start)
6658 {
6659 struct extent_map *prev;
6660 struct extent_map *next;
6661 u64 start;
6662 u64 end;
6663 u64 start_diff;
6664
6665 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6666
6667 if (existing->start > map_start) {
6668 next = existing;
6669 prev = prev_extent_map(next);
6670 } else {
6671 prev = existing;
6672 next = next_extent_map(prev);
6673 }
6674
6675 start = prev ? extent_map_end(prev) : em->start;
6676 start = max_t(u64, start, em->start);
6677 end = next ? next->start : extent_map_end(em);
6678 end = min_t(u64, end, extent_map_end(em));
6679 start_diff = start - em->start;
6680 em->start = start;
6681 em->len = end - start;
6682 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6683 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6684 em->block_start += start_diff;
6685 em->block_len -= start_diff;
6686 }
6687 return add_extent_mapping(em_tree, em, 0);
6688 }
6689
6690 static noinline int uncompress_inline(struct btrfs_path *path,
6691 struct inode *inode, struct page *page,
6692 size_t pg_offset, u64 extent_offset,
6693 struct btrfs_file_extent_item *item)
6694 {
6695 int ret;
6696 struct extent_buffer *leaf = path->nodes[0];
6697 char *tmp;
6698 size_t max_size;
6699 unsigned long inline_size;
6700 unsigned long ptr;
6701 int compress_type;
6702
6703 WARN_ON(pg_offset != 0);
6704 compress_type = btrfs_file_extent_compression(leaf, item);
6705 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6706 inline_size = btrfs_file_extent_inline_item_len(leaf,
6707 btrfs_item_nr(path->slots[0]));
6708 tmp = kmalloc(inline_size, GFP_NOFS);
6709 if (!tmp)
6710 return -ENOMEM;
6711 ptr = btrfs_file_extent_inline_start(item);
6712
6713 read_extent_buffer(leaf, tmp, ptr, inline_size);
6714
6715 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6716 ret = btrfs_decompress(compress_type, tmp, page,
6717 extent_offset, inline_size, max_size);
6718 kfree(tmp);
6719 return ret;
6720 }
6721
6722 /*
6723 * a bit scary, this does extent mapping from logical file offset to the disk.
6724 * the ugly parts come from merging extents from the disk with the in-ram
6725 * representation. This gets more complex because of the data=ordered code,
6726 * where the in-ram extents might be locked pending data=ordered completion.
6727 *
6728 * This also copies inline extents directly into the page.
6729 */
6730
6731 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6732 size_t pg_offset, u64 start, u64 len,
6733 int create)
6734 {
6735 int ret;
6736 int err = 0;
6737 u64 extent_start = 0;
6738 u64 extent_end = 0;
6739 u64 objectid = btrfs_ino(inode);
6740 u32 found_type;
6741 struct btrfs_path *path = NULL;
6742 struct btrfs_root *root = BTRFS_I(inode)->root;
6743 struct btrfs_file_extent_item *item;
6744 struct extent_buffer *leaf;
6745 struct btrfs_key found_key;
6746 struct extent_map *em = NULL;
6747 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6748 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6749 struct btrfs_trans_handle *trans = NULL;
6750 const bool new_inline = !page || create;
6751
6752 again:
6753 read_lock(&em_tree->lock);
6754 em = lookup_extent_mapping(em_tree, start, len);
6755 if (em)
6756 em->bdev = root->fs_info->fs_devices->latest_bdev;
6757 read_unlock(&em_tree->lock);
6758
6759 if (em) {
6760 if (em->start > start || em->start + em->len <= start)
6761 free_extent_map(em);
6762 else if (em->block_start == EXTENT_MAP_INLINE && page)
6763 free_extent_map(em);
6764 else
6765 goto out;
6766 }
6767 em = alloc_extent_map();
6768 if (!em) {
6769 err = -ENOMEM;
6770 goto out;
6771 }
6772 em->bdev = root->fs_info->fs_devices->latest_bdev;
6773 em->start = EXTENT_MAP_HOLE;
6774 em->orig_start = EXTENT_MAP_HOLE;
6775 em->len = (u64)-1;
6776 em->block_len = (u64)-1;
6777
6778 if (!path) {
6779 path = btrfs_alloc_path();
6780 if (!path) {
6781 err = -ENOMEM;
6782 goto out;
6783 }
6784 /*
6785 * Chances are we'll be called again, so go ahead and do
6786 * readahead
6787 */
6788 path->reada = 1;
6789 }
6790
6791 ret = btrfs_lookup_file_extent(trans, root, path,
6792 objectid, start, trans != NULL);
6793 if (ret < 0) {
6794 err = ret;
6795 goto out;
6796 }
6797
6798 if (ret != 0) {
6799 if (path->slots[0] == 0)
6800 goto not_found;
6801 path->slots[0]--;
6802 }
6803
6804 leaf = path->nodes[0];
6805 item = btrfs_item_ptr(leaf, path->slots[0],
6806 struct btrfs_file_extent_item);
6807 /* are we inside the extent that was found? */
6808 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6809 found_type = found_key.type;
6810 if (found_key.objectid != objectid ||
6811 found_type != BTRFS_EXTENT_DATA_KEY) {
6812 /*
6813 * If we backup past the first extent we want to move forward
6814 * and see if there is an extent in front of us, otherwise we'll
6815 * say there is a hole for our whole search range which can
6816 * cause problems.
6817 */
6818 extent_end = start;
6819 goto next;
6820 }
6821
6822 found_type = btrfs_file_extent_type(leaf, item);
6823 extent_start = found_key.offset;
6824 if (found_type == BTRFS_FILE_EXTENT_REG ||
6825 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6826 extent_end = extent_start +
6827 btrfs_file_extent_num_bytes(leaf, item);
6828 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6829 size_t size;
6830 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6831 extent_end = ALIGN(extent_start + size, root->sectorsize);
6832 }
6833 next:
6834 if (start >= extent_end) {
6835 path->slots[0]++;
6836 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6837 ret = btrfs_next_leaf(root, path);
6838 if (ret < 0) {
6839 err = ret;
6840 goto out;
6841 }
6842 if (ret > 0)
6843 goto not_found;
6844 leaf = path->nodes[0];
6845 }
6846 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6847 if (found_key.objectid != objectid ||
6848 found_key.type != BTRFS_EXTENT_DATA_KEY)
6849 goto not_found;
6850 if (start + len <= found_key.offset)
6851 goto not_found;
6852 if (start > found_key.offset)
6853 goto next;
6854 em->start = start;
6855 em->orig_start = start;
6856 em->len = found_key.offset - start;
6857 goto not_found_em;
6858 }
6859
6860 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6861
6862 if (found_type == BTRFS_FILE_EXTENT_REG ||
6863 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6864 goto insert;
6865 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6866 unsigned long ptr;
6867 char *map;
6868 size_t size;
6869 size_t extent_offset;
6870 size_t copy_size;
6871
6872 if (new_inline)
6873 goto out;
6874
6875 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6876 extent_offset = page_offset(page) + pg_offset - extent_start;
6877 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6878 size - extent_offset);
6879 em->start = extent_start + extent_offset;
6880 em->len = ALIGN(copy_size, root->sectorsize);
6881 em->orig_block_len = em->len;
6882 em->orig_start = em->start;
6883 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6884 if (create == 0 && !PageUptodate(page)) {
6885 if (btrfs_file_extent_compression(leaf, item) !=
6886 BTRFS_COMPRESS_NONE) {
6887 ret = uncompress_inline(path, inode, page,
6888 pg_offset,
6889 extent_offset, item);
6890 if (ret) {
6891 err = ret;
6892 goto out;
6893 }
6894 } else {
6895 map = kmap(page);
6896 read_extent_buffer(leaf, map + pg_offset, ptr,
6897 copy_size);
6898 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6899 memset(map + pg_offset + copy_size, 0,
6900 PAGE_CACHE_SIZE - pg_offset -
6901 copy_size);
6902 }
6903 kunmap(page);
6904 }
6905 flush_dcache_page(page);
6906 } else if (create && PageUptodate(page)) {
6907 BUG();
6908 if (!trans) {
6909 kunmap(page);
6910 free_extent_map(em);
6911 em = NULL;
6912
6913 btrfs_release_path(path);
6914 trans = btrfs_join_transaction(root);
6915
6916 if (IS_ERR(trans))
6917 return ERR_CAST(trans);
6918 goto again;
6919 }
6920 map = kmap(page);
6921 write_extent_buffer(leaf, map + pg_offset, ptr,
6922 copy_size);
6923 kunmap(page);
6924 btrfs_mark_buffer_dirty(leaf);
6925 }
6926 set_extent_uptodate(io_tree, em->start,
6927 extent_map_end(em) - 1, NULL, GFP_NOFS);
6928 goto insert;
6929 }
6930 not_found:
6931 em->start = start;
6932 em->orig_start = start;
6933 em->len = len;
6934 not_found_em:
6935 em->block_start = EXTENT_MAP_HOLE;
6936 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6937 insert:
6938 btrfs_release_path(path);
6939 if (em->start > start || extent_map_end(em) <= start) {
6940 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6941 em->start, em->len, start, len);
6942 err = -EIO;
6943 goto out;
6944 }
6945
6946 err = 0;
6947 write_lock(&em_tree->lock);
6948 ret = add_extent_mapping(em_tree, em, 0);
6949 /* it is possible that someone inserted the extent into the tree
6950 * while we had the lock dropped. It is also possible that
6951 * an overlapping map exists in the tree
6952 */
6953 if (ret == -EEXIST) {
6954 struct extent_map *existing;
6955
6956 ret = 0;
6957
6958 existing = search_extent_mapping(em_tree, start, len);
6959 /*
6960 * existing will always be non-NULL, since there must be
6961 * extent causing the -EEXIST.
6962 */
6963 if (start >= extent_map_end(existing) ||
6964 start <= existing->start) {
6965 /*
6966 * The existing extent map is the one nearest to
6967 * the [start, start + len) range which overlaps
6968 */
6969 err = merge_extent_mapping(em_tree, existing,
6970 em, start);
6971 free_extent_map(existing);
6972 if (err) {
6973 free_extent_map(em);
6974 em = NULL;
6975 }
6976 } else {
6977 free_extent_map(em);
6978 em = existing;
6979 err = 0;
6980 }
6981 }
6982 write_unlock(&em_tree->lock);
6983 out:
6984
6985 trace_btrfs_get_extent(root, em);
6986
6987 btrfs_free_path(path);
6988 if (trans) {
6989 ret = btrfs_end_transaction(trans, root);
6990 if (!err)
6991 err = ret;
6992 }
6993 if (err) {
6994 free_extent_map(em);
6995 return ERR_PTR(err);
6996 }
6997 BUG_ON(!em); /* Error is always set */
6998 return em;
6999 }
7000
7001 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7002 size_t pg_offset, u64 start, u64 len,
7003 int create)
7004 {
7005 struct extent_map *em;
7006 struct extent_map *hole_em = NULL;
7007 u64 range_start = start;
7008 u64 end;
7009 u64 found;
7010 u64 found_end;
7011 int err = 0;
7012
7013 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7014 if (IS_ERR(em))
7015 return em;
7016 if (em) {
7017 /*
7018 * if our em maps to
7019 * - a hole or
7020 * - a pre-alloc extent,
7021 * there might actually be delalloc bytes behind it.
7022 */
7023 if (em->block_start != EXTENT_MAP_HOLE &&
7024 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7025 return em;
7026 else
7027 hole_em = em;
7028 }
7029
7030 /* check to see if we've wrapped (len == -1 or similar) */
7031 end = start + len;
7032 if (end < start)
7033 end = (u64)-1;
7034 else
7035 end -= 1;
7036
7037 em = NULL;
7038
7039 /* ok, we didn't find anything, lets look for delalloc */
7040 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7041 end, len, EXTENT_DELALLOC, 1);
7042 found_end = range_start + found;
7043 if (found_end < range_start)
7044 found_end = (u64)-1;
7045
7046 /*
7047 * we didn't find anything useful, return
7048 * the original results from get_extent()
7049 */
7050 if (range_start > end || found_end <= start) {
7051 em = hole_em;
7052 hole_em = NULL;
7053 goto out;
7054 }
7055
7056 /* adjust the range_start to make sure it doesn't
7057 * go backwards from the start they passed in
7058 */
7059 range_start = max(start, range_start);
7060 found = found_end - range_start;
7061
7062 if (found > 0) {
7063 u64 hole_start = start;
7064 u64 hole_len = len;
7065
7066 em = alloc_extent_map();
7067 if (!em) {
7068 err = -ENOMEM;
7069 goto out;
7070 }
7071 /*
7072 * when btrfs_get_extent can't find anything it
7073 * returns one huge hole
7074 *
7075 * make sure what it found really fits our range, and
7076 * adjust to make sure it is based on the start from
7077 * the caller
7078 */
7079 if (hole_em) {
7080 u64 calc_end = extent_map_end(hole_em);
7081
7082 if (calc_end <= start || (hole_em->start > end)) {
7083 free_extent_map(hole_em);
7084 hole_em = NULL;
7085 } else {
7086 hole_start = max(hole_em->start, start);
7087 hole_len = calc_end - hole_start;
7088 }
7089 }
7090 em->bdev = NULL;
7091 if (hole_em && range_start > hole_start) {
7092 /* our hole starts before our delalloc, so we
7093 * have to return just the parts of the hole
7094 * that go until the delalloc starts
7095 */
7096 em->len = min(hole_len,
7097 range_start - hole_start);
7098 em->start = hole_start;
7099 em->orig_start = hole_start;
7100 /*
7101 * don't adjust block start at all,
7102 * it is fixed at EXTENT_MAP_HOLE
7103 */
7104 em->block_start = hole_em->block_start;
7105 em->block_len = hole_len;
7106 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7107 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7108 } else {
7109 em->start = range_start;
7110 em->len = found;
7111 em->orig_start = range_start;
7112 em->block_start = EXTENT_MAP_DELALLOC;
7113 em->block_len = found;
7114 }
7115 } else if (hole_em) {
7116 return hole_em;
7117 }
7118 out:
7119
7120 free_extent_map(hole_em);
7121 if (err) {
7122 free_extent_map(em);
7123 return ERR_PTR(err);
7124 }
7125 return em;
7126 }
7127
7128 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7129 u64 start, u64 len)
7130 {
7131 struct btrfs_root *root = BTRFS_I(inode)->root;
7132 struct extent_map *em;
7133 struct btrfs_key ins;
7134 u64 alloc_hint;
7135 int ret;
7136
7137 alloc_hint = get_extent_allocation_hint(inode, start, len);
7138 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7139 alloc_hint, &ins, 1, 1);
7140 if (ret)
7141 return ERR_PTR(ret);
7142
7143 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7144 ins.offset, ins.offset, ins.offset, 0);
7145 if (IS_ERR(em)) {
7146 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7147 return em;
7148 }
7149
7150 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7151 ins.offset, ins.offset, 0);
7152 if (ret) {
7153 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7154 free_extent_map(em);
7155 return ERR_PTR(ret);
7156 }
7157
7158 return em;
7159 }
7160
7161 /*
7162 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7163 * block must be cow'd
7164 */
7165 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7166 u64 *orig_start, u64 *orig_block_len,
7167 u64 *ram_bytes)
7168 {
7169 struct btrfs_trans_handle *trans;
7170 struct btrfs_path *path;
7171 int ret;
7172 struct extent_buffer *leaf;
7173 struct btrfs_root *root = BTRFS_I(inode)->root;
7174 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7175 struct btrfs_file_extent_item *fi;
7176 struct btrfs_key key;
7177 u64 disk_bytenr;
7178 u64 backref_offset;
7179 u64 extent_end;
7180 u64 num_bytes;
7181 int slot;
7182 int found_type;
7183 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7184
7185 path = btrfs_alloc_path();
7186 if (!path)
7187 return -ENOMEM;
7188
7189 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7190 offset, 0);
7191 if (ret < 0)
7192 goto out;
7193
7194 slot = path->slots[0];
7195 if (ret == 1) {
7196 if (slot == 0) {
7197 /* can't find the item, must cow */
7198 ret = 0;
7199 goto out;
7200 }
7201 slot--;
7202 }
7203 ret = 0;
7204 leaf = path->nodes[0];
7205 btrfs_item_key_to_cpu(leaf, &key, slot);
7206 if (key.objectid != btrfs_ino(inode) ||
7207 key.type != BTRFS_EXTENT_DATA_KEY) {
7208 /* not our file or wrong item type, must cow */
7209 goto out;
7210 }
7211
7212 if (key.offset > offset) {
7213 /* Wrong offset, must cow */
7214 goto out;
7215 }
7216
7217 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7218 found_type = btrfs_file_extent_type(leaf, fi);
7219 if (found_type != BTRFS_FILE_EXTENT_REG &&
7220 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7221 /* not a regular extent, must cow */
7222 goto out;
7223 }
7224
7225 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7226 goto out;
7227
7228 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7229 if (extent_end <= offset)
7230 goto out;
7231
7232 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7233 if (disk_bytenr == 0)
7234 goto out;
7235
7236 if (btrfs_file_extent_compression(leaf, fi) ||
7237 btrfs_file_extent_encryption(leaf, fi) ||
7238 btrfs_file_extent_other_encoding(leaf, fi))
7239 goto out;
7240
7241 backref_offset = btrfs_file_extent_offset(leaf, fi);
7242
7243 if (orig_start) {
7244 *orig_start = key.offset - backref_offset;
7245 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7246 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7247 }
7248
7249 if (btrfs_extent_readonly(root, disk_bytenr))
7250 goto out;
7251
7252 num_bytes = min(offset + *len, extent_end) - offset;
7253 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7254 u64 range_end;
7255
7256 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7257 ret = test_range_bit(io_tree, offset, range_end,
7258 EXTENT_DELALLOC, 0, NULL);
7259 if (ret) {
7260 ret = -EAGAIN;
7261 goto out;
7262 }
7263 }
7264
7265 btrfs_release_path(path);
7266
7267 /*
7268 * look for other files referencing this extent, if we
7269 * find any we must cow
7270 */
7271 trans = btrfs_join_transaction(root);
7272 if (IS_ERR(trans)) {
7273 ret = 0;
7274 goto out;
7275 }
7276
7277 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7278 key.offset - backref_offset, disk_bytenr);
7279 btrfs_end_transaction(trans, root);
7280 if (ret) {
7281 ret = 0;
7282 goto out;
7283 }
7284
7285 /*
7286 * adjust disk_bytenr and num_bytes to cover just the bytes
7287 * in this extent we are about to write. If there
7288 * are any csums in that range we have to cow in order
7289 * to keep the csums correct
7290 */
7291 disk_bytenr += backref_offset;
7292 disk_bytenr += offset - key.offset;
7293 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7294 goto out;
7295 /*
7296 * all of the above have passed, it is safe to overwrite this extent
7297 * without cow
7298 */
7299 *len = num_bytes;
7300 ret = 1;
7301 out:
7302 btrfs_free_path(path);
7303 return ret;
7304 }
7305
7306 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7307 {
7308 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7309 int found = false;
7310 void **pagep = NULL;
7311 struct page *page = NULL;
7312 int start_idx;
7313 int end_idx;
7314
7315 start_idx = start >> PAGE_CACHE_SHIFT;
7316
7317 /*
7318 * end is the last byte in the last page. end == start is legal
7319 */
7320 end_idx = end >> PAGE_CACHE_SHIFT;
7321
7322 rcu_read_lock();
7323
7324 /* Most of the code in this while loop is lifted from
7325 * find_get_page. It's been modified to begin searching from a
7326 * page and return just the first page found in that range. If the
7327 * found idx is less than or equal to the end idx then we know that
7328 * a page exists. If no pages are found or if those pages are
7329 * outside of the range then we're fine (yay!) */
7330 while (page == NULL &&
7331 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7332 page = radix_tree_deref_slot(pagep);
7333 if (unlikely(!page))
7334 break;
7335
7336 if (radix_tree_exception(page)) {
7337 if (radix_tree_deref_retry(page)) {
7338 page = NULL;
7339 continue;
7340 }
7341 /*
7342 * Otherwise, shmem/tmpfs must be storing a swap entry
7343 * here as an exceptional entry: so return it without
7344 * attempting to raise page count.
7345 */
7346 page = NULL;
7347 break; /* TODO: Is this relevant for this use case? */
7348 }
7349
7350 if (!page_cache_get_speculative(page)) {
7351 page = NULL;
7352 continue;
7353 }
7354
7355 /*
7356 * Has the page moved?
7357 * This is part of the lockless pagecache protocol. See
7358 * include/linux/pagemap.h for details.
7359 */
7360 if (unlikely(page != *pagep)) {
7361 page_cache_release(page);
7362 page = NULL;
7363 }
7364 }
7365
7366 if (page) {
7367 if (page->index <= end_idx)
7368 found = true;
7369 page_cache_release(page);
7370 }
7371
7372 rcu_read_unlock();
7373 return found;
7374 }
7375
7376 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7377 struct extent_state **cached_state, int writing)
7378 {
7379 struct btrfs_ordered_extent *ordered;
7380 int ret = 0;
7381
7382 while (1) {
7383 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7384 0, cached_state);
7385 /*
7386 * We're concerned with the entire range that we're going to be
7387 * doing DIO to, so we need to make sure theres no ordered
7388 * extents in this range.
7389 */
7390 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7391 lockend - lockstart + 1);
7392
7393 /*
7394 * We need to make sure there are no buffered pages in this
7395 * range either, we could have raced between the invalidate in
7396 * generic_file_direct_write and locking the extent. The
7397 * invalidate needs to happen so that reads after a write do not
7398 * get stale data.
7399 */
7400 if (!ordered &&
7401 (!writing ||
7402 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7403 break;
7404
7405 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7406 cached_state, GFP_NOFS);
7407
7408 if (ordered) {
7409 btrfs_start_ordered_extent(inode, ordered, 1);
7410 btrfs_put_ordered_extent(ordered);
7411 } else {
7412 /* Screw you mmap */
7413 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7414 if (ret)
7415 break;
7416 ret = filemap_fdatawait_range(inode->i_mapping,
7417 lockstart,
7418 lockend);
7419 if (ret)
7420 break;
7421
7422 /*
7423 * If we found a page that couldn't be invalidated just
7424 * fall back to buffered.
7425 */
7426 ret = invalidate_inode_pages2_range(inode->i_mapping,
7427 lockstart >> PAGE_CACHE_SHIFT,
7428 lockend >> PAGE_CACHE_SHIFT);
7429 if (ret)
7430 break;
7431 }
7432
7433 cond_resched();
7434 }
7435
7436 return ret;
7437 }
7438
7439 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7440 u64 len, u64 orig_start,
7441 u64 block_start, u64 block_len,
7442 u64 orig_block_len, u64 ram_bytes,
7443 int type)
7444 {
7445 struct extent_map_tree *em_tree;
7446 struct extent_map *em;
7447 struct btrfs_root *root = BTRFS_I(inode)->root;
7448 int ret;
7449
7450 em_tree = &BTRFS_I(inode)->extent_tree;
7451 em = alloc_extent_map();
7452 if (!em)
7453 return ERR_PTR(-ENOMEM);
7454
7455 em->start = start;
7456 em->orig_start = orig_start;
7457 em->mod_start = start;
7458 em->mod_len = len;
7459 em->len = len;
7460 em->block_len = block_len;
7461 em->block_start = block_start;
7462 em->bdev = root->fs_info->fs_devices->latest_bdev;
7463 em->orig_block_len = orig_block_len;
7464 em->ram_bytes = ram_bytes;
7465 em->generation = -1;
7466 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7467 if (type == BTRFS_ORDERED_PREALLOC)
7468 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7469
7470 do {
7471 btrfs_drop_extent_cache(inode, em->start,
7472 em->start + em->len - 1, 0);
7473 write_lock(&em_tree->lock);
7474 ret = add_extent_mapping(em_tree, em, 1);
7475 write_unlock(&em_tree->lock);
7476 } while (ret == -EEXIST);
7477
7478 if (ret) {
7479 free_extent_map(em);
7480 return ERR_PTR(ret);
7481 }
7482
7483 return em;
7484 }
7485
7486 struct btrfs_dio_data {
7487 u64 outstanding_extents;
7488 u64 reserve;
7489 };
7490
7491 static void adjust_dio_outstanding_extents(struct inode *inode,
7492 struct btrfs_dio_data *dio_data,
7493 const u64 len)
7494 {
7495 unsigned num_extents;
7496
7497 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7498 BTRFS_MAX_EXTENT_SIZE);
7499 /*
7500 * If we have an outstanding_extents count still set then we're
7501 * within our reservation, otherwise we need to adjust our inode
7502 * counter appropriately.
7503 */
7504 if (dio_data->outstanding_extents) {
7505 dio_data->outstanding_extents -= num_extents;
7506 } else {
7507 spin_lock(&BTRFS_I(inode)->lock);
7508 BTRFS_I(inode)->outstanding_extents += num_extents;
7509 spin_unlock(&BTRFS_I(inode)->lock);
7510 }
7511 }
7512
7513 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7514 struct buffer_head *bh_result, int create)
7515 {
7516 struct extent_map *em;
7517 struct btrfs_root *root = BTRFS_I(inode)->root;
7518 struct extent_state *cached_state = NULL;
7519 struct btrfs_dio_data *dio_data = NULL;
7520 u64 start = iblock << inode->i_blkbits;
7521 u64 lockstart, lockend;
7522 u64 len = bh_result->b_size;
7523 int unlock_bits = EXTENT_LOCKED;
7524 int ret = 0;
7525
7526 if (create)
7527 unlock_bits |= EXTENT_DIRTY;
7528 else
7529 len = min_t(u64, len, root->sectorsize);
7530
7531 lockstart = start;
7532 lockend = start + len - 1;
7533
7534 if (current->journal_info) {
7535 /*
7536 * Need to pull our outstanding extents and set journal_info to NULL so
7537 * that anything that needs to check if there's a transction doesn't get
7538 * confused.
7539 */
7540 dio_data = current->journal_info;
7541 current->journal_info = NULL;
7542 }
7543
7544 /*
7545 * If this errors out it's because we couldn't invalidate pagecache for
7546 * this range and we need to fallback to buffered.
7547 */
7548 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7549 create)) {
7550 ret = -ENOTBLK;
7551 goto err;
7552 }
7553
7554 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7555 if (IS_ERR(em)) {
7556 ret = PTR_ERR(em);
7557 goto unlock_err;
7558 }
7559
7560 /*
7561 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7562 * io. INLINE is special, and we could probably kludge it in here, but
7563 * it's still buffered so for safety lets just fall back to the generic
7564 * buffered path.
7565 *
7566 * For COMPRESSED we _have_ to read the entire extent in so we can
7567 * decompress it, so there will be buffering required no matter what we
7568 * do, so go ahead and fallback to buffered.
7569 *
7570 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7571 * to buffered IO. Don't blame me, this is the price we pay for using
7572 * the generic code.
7573 */
7574 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7575 em->block_start == EXTENT_MAP_INLINE) {
7576 free_extent_map(em);
7577 ret = -ENOTBLK;
7578 goto unlock_err;
7579 }
7580
7581 /* Just a good old fashioned hole, return */
7582 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7583 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7584 free_extent_map(em);
7585 goto unlock_err;
7586 }
7587
7588 /*
7589 * We don't allocate a new extent in the following cases
7590 *
7591 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7592 * existing extent.
7593 * 2) The extent is marked as PREALLOC. We're good to go here and can
7594 * just use the extent.
7595 *
7596 */
7597 if (!create) {
7598 len = min(len, em->len - (start - em->start));
7599 lockstart = start + len;
7600 goto unlock;
7601 }
7602
7603 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7604 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7605 em->block_start != EXTENT_MAP_HOLE)) {
7606 int type;
7607 u64 block_start, orig_start, orig_block_len, ram_bytes;
7608
7609 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7610 type = BTRFS_ORDERED_PREALLOC;
7611 else
7612 type = BTRFS_ORDERED_NOCOW;
7613 len = min(len, em->len - (start - em->start));
7614 block_start = em->block_start + (start - em->start);
7615
7616 if (can_nocow_extent(inode, start, &len, &orig_start,
7617 &orig_block_len, &ram_bytes) == 1) {
7618 if (type == BTRFS_ORDERED_PREALLOC) {
7619 free_extent_map(em);
7620 em = create_pinned_em(inode, start, len,
7621 orig_start,
7622 block_start, len,
7623 orig_block_len,
7624 ram_bytes, type);
7625 if (IS_ERR(em)) {
7626 ret = PTR_ERR(em);
7627 goto unlock_err;
7628 }
7629 }
7630
7631 ret = btrfs_add_ordered_extent_dio(inode, start,
7632 block_start, len, len, type);
7633 if (ret) {
7634 free_extent_map(em);
7635 goto unlock_err;
7636 }
7637 goto unlock;
7638 }
7639 }
7640
7641 /*
7642 * this will cow the extent, reset the len in case we changed
7643 * it above
7644 */
7645 len = bh_result->b_size;
7646 free_extent_map(em);
7647 em = btrfs_new_extent_direct(inode, start, len);
7648 if (IS_ERR(em)) {
7649 ret = PTR_ERR(em);
7650 goto unlock_err;
7651 }
7652 len = min(len, em->len - (start - em->start));
7653 unlock:
7654 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7655 inode->i_blkbits;
7656 bh_result->b_size = len;
7657 bh_result->b_bdev = em->bdev;
7658 set_buffer_mapped(bh_result);
7659 if (create) {
7660 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7661 set_buffer_new(bh_result);
7662
7663 /*
7664 * Need to update the i_size under the extent lock so buffered
7665 * readers will get the updated i_size when we unlock.
7666 */
7667 if (start + len > i_size_read(inode))
7668 i_size_write(inode, start + len);
7669
7670 adjust_dio_outstanding_extents(inode, dio_data, len);
7671 btrfs_free_reserved_data_space(inode, start, len);
7672 WARN_ON(dio_data->reserve < len);
7673 dio_data->reserve -= len;
7674 current->journal_info = dio_data;
7675 }
7676
7677 /*
7678 * In the case of write we need to clear and unlock the entire range,
7679 * in the case of read we need to unlock only the end area that we
7680 * aren't using if there is any left over space.
7681 */
7682 if (lockstart < lockend) {
7683 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7684 lockend, unlock_bits, 1, 0,
7685 &cached_state, GFP_NOFS);
7686 } else {
7687 free_extent_state(cached_state);
7688 }
7689
7690 free_extent_map(em);
7691
7692 return 0;
7693
7694 unlock_err:
7695 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7696 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7697 err:
7698 if (dio_data)
7699 current->journal_info = dio_data;
7700 /*
7701 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7702 * write less data then expected, so that we don't underflow our inode's
7703 * outstanding extents counter.
7704 */
7705 if (create && dio_data)
7706 adjust_dio_outstanding_extents(inode, dio_data, len);
7707
7708 return ret;
7709 }
7710
7711 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7712 int rw, int mirror_num)
7713 {
7714 struct btrfs_root *root = BTRFS_I(inode)->root;
7715 int ret;
7716
7717 BUG_ON(rw & REQ_WRITE);
7718
7719 bio_get(bio);
7720
7721 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7722 BTRFS_WQ_ENDIO_DIO_REPAIR);
7723 if (ret)
7724 goto err;
7725
7726 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7727 err:
7728 bio_put(bio);
7729 return ret;
7730 }
7731
7732 static int btrfs_check_dio_repairable(struct inode *inode,
7733 struct bio *failed_bio,
7734 struct io_failure_record *failrec,
7735 int failed_mirror)
7736 {
7737 int num_copies;
7738
7739 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7740 failrec->logical, failrec->len);
7741 if (num_copies == 1) {
7742 /*
7743 * we only have a single copy of the data, so don't bother with
7744 * all the retry and error correction code that follows. no
7745 * matter what the error is, it is very likely to persist.
7746 */
7747 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7748 num_copies, failrec->this_mirror, failed_mirror);
7749 return 0;
7750 }
7751
7752 failrec->failed_mirror = failed_mirror;
7753 failrec->this_mirror++;
7754 if (failrec->this_mirror == failed_mirror)
7755 failrec->this_mirror++;
7756
7757 if (failrec->this_mirror > num_copies) {
7758 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7759 num_copies, failrec->this_mirror, failed_mirror);
7760 return 0;
7761 }
7762
7763 return 1;
7764 }
7765
7766 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7767 struct page *page, u64 start, u64 end,
7768 int failed_mirror, bio_end_io_t *repair_endio,
7769 void *repair_arg)
7770 {
7771 struct io_failure_record *failrec;
7772 struct bio *bio;
7773 int isector;
7774 int read_mode;
7775 int ret;
7776
7777 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7778
7779 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7780 if (ret)
7781 return ret;
7782
7783 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7784 failed_mirror);
7785 if (!ret) {
7786 free_io_failure(inode, failrec);
7787 return -EIO;
7788 }
7789
7790 if (failed_bio->bi_vcnt > 1)
7791 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7792 else
7793 read_mode = READ_SYNC;
7794
7795 isector = start - btrfs_io_bio(failed_bio)->logical;
7796 isector >>= inode->i_sb->s_blocksize_bits;
7797 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7798 0, isector, repair_endio, repair_arg);
7799 if (!bio) {
7800 free_io_failure(inode, failrec);
7801 return -EIO;
7802 }
7803
7804 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7805 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7806 read_mode, failrec->this_mirror, failrec->in_validation);
7807
7808 ret = submit_dio_repair_bio(inode, bio, read_mode,
7809 failrec->this_mirror);
7810 if (ret) {
7811 free_io_failure(inode, failrec);
7812 bio_put(bio);
7813 }
7814
7815 return ret;
7816 }
7817
7818 struct btrfs_retry_complete {
7819 struct completion done;
7820 struct inode *inode;
7821 u64 start;
7822 int uptodate;
7823 };
7824
7825 static void btrfs_retry_endio_nocsum(struct bio *bio)
7826 {
7827 struct btrfs_retry_complete *done = bio->bi_private;
7828 struct bio_vec *bvec;
7829 int i;
7830
7831 if (bio->bi_error)
7832 goto end;
7833
7834 done->uptodate = 1;
7835 bio_for_each_segment_all(bvec, bio, i)
7836 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7837 end:
7838 complete(&done->done);
7839 bio_put(bio);
7840 }
7841
7842 static int __btrfs_correct_data_nocsum(struct inode *inode,
7843 struct btrfs_io_bio *io_bio)
7844 {
7845 struct bio_vec *bvec;
7846 struct btrfs_retry_complete done;
7847 u64 start;
7848 int i;
7849 int ret;
7850
7851 start = io_bio->logical;
7852 done.inode = inode;
7853
7854 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7855 try_again:
7856 done.uptodate = 0;
7857 done.start = start;
7858 init_completion(&done.done);
7859
7860 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7861 start + bvec->bv_len - 1,
7862 io_bio->mirror_num,
7863 btrfs_retry_endio_nocsum, &done);
7864 if (ret)
7865 return ret;
7866
7867 wait_for_completion(&done.done);
7868
7869 if (!done.uptodate) {
7870 /* We might have another mirror, so try again */
7871 goto try_again;
7872 }
7873
7874 start += bvec->bv_len;
7875 }
7876
7877 return 0;
7878 }
7879
7880 static void btrfs_retry_endio(struct bio *bio)
7881 {
7882 struct btrfs_retry_complete *done = bio->bi_private;
7883 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7884 struct bio_vec *bvec;
7885 int uptodate;
7886 int ret;
7887 int i;
7888
7889 if (bio->bi_error)
7890 goto end;
7891
7892 uptodate = 1;
7893 bio_for_each_segment_all(bvec, bio, i) {
7894 ret = __readpage_endio_check(done->inode, io_bio, i,
7895 bvec->bv_page, 0,
7896 done->start, bvec->bv_len);
7897 if (!ret)
7898 clean_io_failure(done->inode, done->start,
7899 bvec->bv_page, 0);
7900 else
7901 uptodate = 0;
7902 }
7903
7904 done->uptodate = uptodate;
7905 end:
7906 complete(&done->done);
7907 bio_put(bio);
7908 }
7909
7910 static int __btrfs_subio_endio_read(struct inode *inode,
7911 struct btrfs_io_bio *io_bio, int err)
7912 {
7913 struct bio_vec *bvec;
7914 struct btrfs_retry_complete done;
7915 u64 start;
7916 u64 offset = 0;
7917 int i;
7918 int ret;
7919
7920 err = 0;
7921 start = io_bio->logical;
7922 done.inode = inode;
7923
7924 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7925 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7926 0, start, bvec->bv_len);
7927 if (likely(!ret))
7928 goto next;
7929 try_again:
7930 done.uptodate = 0;
7931 done.start = start;
7932 init_completion(&done.done);
7933
7934 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7935 start + bvec->bv_len - 1,
7936 io_bio->mirror_num,
7937 btrfs_retry_endio, &done);
7938 if (ret) {
7939 err = ret;
7940 goto next;
7941 }
7942
7943 wait_for_completion(&done.done);
7944
7945 if (!done.uptodate) {
7946 /* We might have another mirror, so try again */
7947 goto try_again;
7948 }
7949 next:
7950 offset += bvec->bv_len;
7951 start += bvec->bv_len;
7952 }
7953
7954 return err;
7955 }
7956
7957 static int btrfs_subio_endio_read(struct inode *inode,
7958 struct btrfs_io_bio *io_bio, int err)
7959 {
7960 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7961
7962 if (skip_csum) {
7963 if (unlikely(err))
7964 return __btrfs_correct_data_nocsum(inode, io_bio);
7965 else
7966 return 0;
7967 } else {
7968 return __btrfs_subio_endio_read(inode, io_bio, err);
7969 }
7970 }
7971
7972 static void btrfs_endio_direct_read(struct bio *bio)
7973 {
7974 struct btrfs_dio_private *dip = bio->bi_private;
7975 struct inode *inode = dip->inode;
7976 struct bio *dio_bio;
7977 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7978 int err = bio->bi_error;
7979
7980 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7981 err = btrfs_subio_endio_read(inode, io_bio, err);
7982
7983 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7984 dip->logical_offset + dip->bytes - 1);
7985 dio_bio = dip->dio_bio;
7986
7987 kfree(dip);
7988
7989 dio_end_io(dio_bio, bio->bi_error);
7990
7991 if (io_bio->end_io)
7992 io_bio->end_io(io_bio, err);
7993 bio_put(bio);
7994 }
7995
7996 static void btrfs_endio_direct_write(struct bio *bio)
7997 {
7998 struct btrfs_dio_private *dip = bio->bi_private;
7999 struct inode *inode = dip->inode;
8000 struct btrfs_root *root = BTRFS_I(inode)->root;
8001 struct btrfs_ordered_extent *ordered = NULL;
8002 u64 ordered_offset = dip->logical_offset;
8003 u64 ordered_bytes = dip->bytes;
8004 struct bio *dio_bio;
8005 int ret;
8006
8007 again:
8008 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8009 &ordered_offset,
8010 ordered_bytes,
8011 !bio->bi_error);
8012 if (!ret)
8013 goto out_test;
8014
8015 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8016 finish_ordered_fn, NULL, NULL);
8017 btrfs_queue_work(root->fs_info->endio_write_workers,
8018 &ordered->work);
8019 out_test:
8020 /*
8021 * our bio might span multiple ordered extents. If we haven't
8022 * completed the accounting for the whole dio, go back and try again
8023 */
8024 if (ordered_offset < dip->logical_offset + dip->bytes) {
8025 ordered_bytes = dip->logical_offset + dip->bytes -
8026 ordered_offset;
8027 ordered = NULL;
8028 goto again;
8029 }
8030 dio_bio = dip->dio_bio;
8031
8032 kfree(dip);
8033
8034 dio_end_io(dio_bio, bio->bi_error);
8035 bio_put(bio);
8036 }
8037
8038 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8039 struct bio *bio, int mirror_num,
8040 unsigned long bio_flags, u64 offset)
8041 {
8042 int ret;
8043 struct btrfs_root *root = BTRFS_I(inode)->root;
8044 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8045 BUG_ON(ret); /* -ENOMEM */
8046 return 0;
8047 }
8048
8049 static void btrfs_end_dio_bio(struct bio *bio)
8050 {
8051 struct btrfs_dio_private *dip = bio->bi_private;
8052 int err = bio->bi_error;
8053
8054 if (err)
8055 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8056 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8057 btrfs_ino(dip->inode), bio->bi_rw,
8058 (unsigned long long)bio->bi_iter.bi_sector,
8059 bio->bi_iter.bi_size, err);
8060
8061 if (dip->subio_endio)
8062 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8063
8064 if (err) {
8065 dip->errors = 1;
8066
8067 /*
8068 * before atomic variable goto zero, we must make sure
8069 * dip->errors is perceived to be set.
8070 */
8071 smp_mb__before_atomic();
8072 }
8073
8074 /* if there are more bios still pending for this dio, just exit */
8075 if (!atomic_dec_and_test(&dip->pending_bios))
8076 goto out;
8077
8078 if (dip->errors) {
8079 bio_io_error(dip->orig_bio);
8080 } else {
8081 dip->dio_bio->bi_error = 0;
8082 bio_endio(dip->orig_bio);
8083 }
8084 out:
8085 bio_put(bio);
8086 }
8087
8088 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8089 u64 first_sector, gfp_t gfp_flags)
8090 {
8091 struct bio *bio;
8092 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8093 if (bio)
8094 bio_associate_current(bio);
8095 return bio;
8096 }
8097
8098 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8099 struct inode *inode,
8100 struct btrfs_dio_private *dip,
8101 struct bio *bio,
8102 u64 file_offset)
8103 {
8104 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8105 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8106 int ret;
8107
8108 /*
8109 * We load all the csum data we need when we submit
8110 * the first bio to reduce the csum tree search and
8111 * contention.
8112 */
8113 if (dip->logical_offset == file_offset) {
8114 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8115 file_offset);
8116 if (ret)
8117 return ret;
8118 }
8119
8120 if (bio == dip->orig_bio)
8121 return 0;
8122
8123 file_offset -= dip->logical_offset;
8124 file_offset >>= inode->i_sb->s_blocksize_bits;
8125 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8126
8127 return 0;
8128 }
8129
8130 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8131 int rw, u64 file_offset, int skip_sum,
8132 int async_submit)
8133 {
8134 struct btrfs_dio_private *dip = bio->bi_private;
8135 int write = rw & REQ_WRITE;
8136 struct btrfs_root *root = BTRFS_I(inode)->root;
8137 int ret;
8138
8139 if (async_submit)
8140 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8141
8142 bio_get(bio);
8143
8144 if (!write) {
8145 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8146 BTRFS_WQ_ENDIO_DATA);
8147 if (ret)
8148 goto err;
8149 }
8150
8151 if (skip_sum)
8152 goto map;
8153
8154 if (write && async_submit) {
8155 ret = btrfs_wq_submit_bio(root->fs_info,
8156 inode, rw, bio, 0, 0,
8157 file_offset,
8158 __btrfs_submit_bio_start_direct_io,
8159 __btrfs_submit_bio_done);
8160 goto err;
8161 } else if (write) {
8162 /*
8163 * If we aren't doing async submit, calculate the csum of the
8164 * bio now.
8165 */
8166 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8167 if (ret)
8168 goto err;
8169 } else {
8170 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8171 file_offset);
8172 if (ret)
8173 goto err;
8174 }
8175 map:
8176 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8177 err:
8178 bio_put(bio);
8179 return ret;
8180 }
8181
8182 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8183 int skip_sum)
8184 {
8185 struct inode *inode = dip->inode;
8186 struct btrfs_root *root = BTRFS_I(inode)->root;
8187 struct bio *bio;
8188 struct bio *orig_bio = dip->orig_bio;
8189 struct bio_vec *bvec = orig_bio->bi_io_vec;
8190 u64 start_sector = orig_bio->bi_iter.bi_sector;
8191 u64 file_offset = dip->logical_offset;
8192 u64 submit_len = 0;
8193 u64 map_length;
8194 int nr_pages = 0;
8195 int ret;
8196 int async_submit = 0;
8197
8198 map_length = orig_bio->bi_iter.bi_size;
8199 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8200 &map_length, NULL, 0);
8201 if (ret)
8202 return -EIO;
8203
8204 if (map_length >= orig_bio->bi_iter.bi_size) {
8205 bio = orig_bio;
8206 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8207 goto submit;
8208 }
8209
8210 /* async crcs make it difficult to collect full stripe writes. */
8211 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8212 async_submit = 0;
8213 else
8214 async_submit = 1;
8215
8216 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8217 if (!bio)
8218 return -ENOMEM;
8219
8220 bio->bi_private = dip;
8221 bio->bi_end_io = btrfs_end_dio_bio;
8222 btrfs_io_bio(bio)->logical = file_offset;
8223 atomic_inc(&dip->pending_bios);
8224
8225 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8226 if (map_length < submit_len + bvec->bv_len ||
8227 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8228 bvec->bv_offset) < bvec->bv_len) {
8229 /*
8230 * inc the count before we submit the bio so
8231 * we know the end IO handler won't happen before
8232 * we inc the count. Otherwise, the dip might get freed
8233 * before we're done setting it up
8234 */
8235 atomic_inc(&dip->pending_bios);
8236 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8237 file_offset, skip_sum,
8238 async_submit);
8239 if (ret) {
8240 bio_put(bio);
8241 atomic_dec(&dip->pending_bios);
8242 goto out_err;
8243 }
8244
8245 start_sector += submit_len >> 9;
8246 file_offset += submit_len;
8247
8248 submit_len = 0;
8249 nr_pages = 0;
8250
8251 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8252 start_sector, GFP_NOFS);
8253 if (!bio)
8254 goto out_err;
8255 bio->bi_private = dip;
8256 bio->bi_end_io = btrfs_end_dio_bio;
8257 btrfs_io_bio(bio)->logical = file_offset;
8258
8259 map_length = orig_bio->bi_iter.bi_size;
8260 ret = btrfs_map_block(root->fs_info, rw,
8261 start_sector << 9,
8262 &map_length, NULL, 0);
8263 if (ret) {
8264 bio_put(bio);
8265 goto out_err;
8266 }
8267 } else {
8268 submit_len += bvec->bv_len;
8269 nr_pages++;
8270 bvec++;
8271 }
8272 }
8273
8274 submit:
8275 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8276 async_submit);
8277 if (!ret)
8278 return 0;
8279
8280 bio_put(bio);
8281 out_err:
8282 dip->errors = 1;
8283 /*
8284 * before atomic variable goto zero, we must
8285 * make sure dip->errors is perceived to be set.
8286 */
8287 smp_mb__before_atomic();
8288 if (atomic_dec_and_test(&dip->pending_bios))
8289 bio_io_error(dip->orig_bio);
8290
8291 /* bio_end_io() will handle error, so we needn't return it */
8292 return 0;
8293 }
8294
8295 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8296 struct inode *inode, loff_t file_offset)
8297 {
8298 struct btrfs_dio_private *dip = NULL;
8299 struct bio *io_bio = NULL;
8300 struct btrfs_io_bio *btrfs_bio;
8301 int skip_sum;
8302 int write = rw & REQ_WRITE;
8303 int ret = 0;
8304
8305 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8306
8307 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8308 if (!io_bio) {
8309 ret = -ENOMEM;
8310 goto free_ordered;
8311 }
8312
8313 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8314 if (!dip) {
8315 ret = -ENOMEM;
8316 goto free_ordered;
8317 }
8318
8319 dip->private = dio_bio->bi_private;
8320 dip->inode = inode;
8321 dip->logical_offset = file_offset;
8322 dip->bytes = dio_bio->bi_iter.bi_size;
8323 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8324 io_bio->bi_private = dip;
8325 dip->orig_bio = io_bio;
8326 dip->dio_bio = dio_bio;
8327 atomic_set(&dip->pending_bios, 0);
8328 btrfs_bio = btrfs_io_bio(io_bio);
8329 btrfs_bio->logical = file_offset;
8330
8331 if (write) {
8332 io_bio->bi_end_io = btrfs_endio_direct_write;
8333 } else {
8334 io_bio->bi_end_io = btrfs_endio_direct_read;
8335 dip->subio_endio = btrfs_subio_endio_read;
8336 }
8337
8338 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8339 if (!ret)
8340 return;
8341
8342 if (btrfs_bio->end_io)
8343 btrfs_bio->end_io(btrfs_bio, ret);
8344
8345 free_ordered:
8346 /*
8347 * If we arrived here it means either we failed to submit the dip
8348 * or we either failed to clone the dio_bio or failed to allocate the
8349 * dip. If we cloned the dio_bio and allocated the dip, we can just
8350 * call bio_endio against our io_bio so that we get proper resource
8351 * cleanup if we fail to submit the dip, otherwise, we must do the
8352 * same as btrfs_endio_direct_[write|read] because we can't call these
8353 * callbacks - they require an allocated dip and a clone of dio_bio.
8354 */
8355 if (io_bio && dip) {
8356 io_bio->bi_error = -EIO;
8357 bio_endio(io_bio);
8358 /*
8359 * The end io callbacks free our dip, do the final put on io_bio
8360 * and all the cleanup and final put for dio_bio (through
8361 * dio_end_io()).
8362 */
8363 dip = NULL;
8364 io_bio = NULL;
8365 } else {
8366 if (write) {
8367 struct btrfs_ordered_extent *ordered;
8368
8369 ordered = btrfs_lookup_ordered_extent(inode,
8370 file_offset);
8371 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8372 /*
8373 * Decrements our ref on the ordered extent and removes
8374 * the ordered extent from the inode's ordered tree,
8375 * doing all the proper resource cleanup such as for the
8376 * reserved space and waking up any waiters for this
8377 * ordered extent (through btrfs_remove_ordered_extent).
8378 */
8379 btrfs_finish_ordered_io(ordered);
8380 } else {
8381 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8382 file_offset + dio_bio->bi_iter.bi_size - 1);
8383 }
8384 dio_bio->bi_error = -EIO;
8385 /*
8386 * Releases and cleans up our dio_bio, no need to bio_put()
8387 * nor bio_endio()/bio_io_error() against dio_bio.
8388 */
8389 dio_end_io(dio_bio, ret);
8390 }
8391 if (io_bio)
8392 bio_put(io_bio);
8393 kfree(dip);
8394 }
8395
8396 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8397 const struct iov_iter *iter, loff_t offset)
8398 {
8399 int seg;
8400 int i;
8401 unsigned blocksize_mask = root->sectorsize - 1;
8402 ssize_t retval = -EINVAL;
8403
8404 if (offset & blocksize_mask)
8405 goto out;
8406
8407 if (iov_iter_alignment(iter) & blocksize_mask)
8408 goto out;
8409
8410 /* If this is a write we don't need to check anymore */
8411 if (iov_iter_rw(iter) == WRITE)
8412 return 0;
8413 /*
8414 * Check to make sure we don't have duplicate iov_base's in this
8415 * iovec, if so return EINVAL, otherwise we'll get csum errors
8416 * when reading back.
8417 */
8418 for (seg = 0; seg < iter->nr_segs; seg++) {
8419 for (i = seg + 1; i < iter->nr_segs; i++) {
8420 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8421 goto out;
8422 }
8423 }
8424 retval = 0;
8425 out:
8426 return retval;
8427 }
8428
8429 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8430 loff_t offset)
8431 {
8432 struct file *file = iocb->ki_filp;
8433 struct inode *inode = file->f_mapping->host;
8434 struct btrfs_root *root = BTRFS_I(inode)->root;
8435 struct btrfs_dio_data dio_data = { 0 };
8436 size_t count = 0;
8437 int flags = 0;
8438 bool wakeup = true;
8439 bool relock = false;
8440 ssize_t ret;
8441
8442 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8443 return 0;
8444
8445 inode_dio_begin(inode);
8446 smp_mb__after_atomic();
8447
8448 /*
8449 * The generic stuff only does filemap_write_and_wait_range, which
8450 * isn't enough if we've written compressed pages to this area, so
8451 * we need to flush the dirty pages again to make absolutely sure
8452 * that any outstanding dirty pages are on disk.
8453 */
8454 count = iov_iter_count(iter);
8455 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8456 &BTRFS_I(inode)->runtime_flags))
8457 filemap_fdatawrite_range(inode->i_mapping, offset,
8458 offset + count - 1);
8459
8460 if (iov_iter_rw(iter) == WRITE) {
8461 /*
8462 * If the write DIO is beyond the EOF, we need update
8463 * the isize, but it is protected by i_mutex. So we can
8464 * not unlock the i_mutex at this case.
8465 */
8466 if (offset + count <= inode->i_size) {
8467 mutex_unlock(&inode->i_mutex);
8468 relock = true;
8469 }
8470 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8471 if (ret)
8472 goto out;
8473 dio_data.outstanding_extents = div64_u64(count +
8474 BTRFS_MAX_EXTENT_SIZE - 1,
8475 BTRFS_MAX_EXTENT_SIZE);
8476
8477 /*
8478 * We need to know how many extents we reserved so that we can
8479 * do the accounting properly if we go over the number we
8480 * originally calculated. Abuse current->journal_info for this.
8481 */
8482 dio_data.reserve = round_up(count, root->sectorsize);
8483 current->journal_info = &dio_data;
8484 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8485 &BTRFS_I(inode)->runtime_flags)) {
8486 inode_dio_end(inode);
8487 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8488 wakeup = false;
8489 }
8490
8491 ret = __blockdev_direct_IO(iocb, inode,
8492 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8493 iter, offset, btrfs_get_blocks_direct, NULL,
8494 btrfs_submit_direct, flags);
8495 if (iov_iter_rw(iter) == WRITE) {
8496 current->journal_info = NULL;
8497 if (ret < 0 && ret != -EIOCBQUEUED) {
8498 if (dio_data.reserve)
8499 btrfs_delalloc_release_space(inode, offset,
8500 dio_data.reserve);
8501 } else if (ret >= 0 && (size_t)ret < count)
8502 btrfs_delalloc_release_space(inode, offset,
8503 count - (size_t)ret);
8504 }
8505 out:
8506 if (wakeup)
8507 inode_dio_end(inode);
8508 if (relock)
8509 mutex_lock(&inode->i_mutex);
8510
8511 return ret;
8512 }
8513
8514 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8515
8516 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8517 __u64 start, __u64 len)
8518 {
8519 int ret;
8520
8521 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8522 if (ret)
8523 return ret;
8524
8525 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8526 }
8527
8528 int btrfs_readpage(struct file *file, struct page *page)
8529 {
8530 struct extent_io_tree *tree;
8531 tree = &BTRFS_I(page->mapping->host)->io_tree;
8532 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8533 }
8534
8535 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8536 {
8537 struct extent_io_tree *tree;
8538
8539
8540 if (current->flags & PF_MEMALLOC) {
8541 redirty_page_for_writepage(wbc, page);
8542 unlock_page(page);
8543 return 0;
8544 }
8545 tree = &BTRFS_I(page->mapping->host)->io_tree;
8546 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8547 }
8548
8549 static int btrfs_writepages(struct address_space *mapping,
8550 struct writeback_control *wbc)
8551 {
8552 struct extent_io_tree *tree;
8553
8554 tree = &BTRFS_I(mapping->host)->io_tree;
8555 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8556 }
8557
8558 static int
8559 btrfs_readpages(struct file *file, struct address_space *mapping,
8560 struct list_head *pages, unsigned nr_pages)
8561 {
8562 struct extent_io_tree *tree;
8563 tree = &BTRFS_I(mapping->host)->io_tree;
8564 return extent_readpages(tree, mapping, pages, nr_pages,
8565 btrfs_get_extent);
8566 }
8567 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8568 {
8569 struct extent_io_tree *tree;
8570 struct extent_map_tree *map;
8571 int ret;
8572
8573 tree = &BTRFS_I(page->mapping->host)->io_tree;
8574 map = &BTRFS_I(page->mapping->host)->extent_tree;
8575 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8576 if (ret == 1) {
8577 ClearPagePrivate(page);
8578 set_page_private(page, 0);
8579 page_cache_release(page);
8580 }
8581 return ret;
8582 }
8583
8584 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8585 {
8586 if (PageWriteback(page) || PageDirty(page))
8587 return 0;
8588 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8589 }
8590
8591 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8592 unsigned int length)
8593 {
8594 struct inode *inode = page->mapping->host;
8595 struct extent_io_tree *tree;
8596 struct btrfs_ordered_extent *ordered;
8597 struct extent_state *cached_state = NULL;
8598 u64 page_start = page_offset(page);
8599 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8600 int inode_evicting = inode->i_state & I_FREEING;
8601
8602 /*
8603 * we have the page locked, so new writeback can't start,
8604 * and the dirty bit won't be cleared while we are here.
8605 *
8606 * Wait for IO on this page so that we can safely clear
8607 * the PagePrivate2 bit and do ordered accounting
8608 */
8609 wait_on_page_writeback(page);
8610
8611 tree = &BTRFS_I(inode)->io_tree;
8612 if (offset) {
8613 btrfs_releasepage(page, GFP_NOFS);
8614 return;
8615 }
8616
8617 if (!inode_evicting)
8618 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8619 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8620 if (ordered) {
8621 /*
8622 * IO on this page will never be started, so we need
8623 * to account for any ordered extents now
8624 */
8625 if (!inode_evicting)
8626 clear_extent_bit(tree, page_start, page_end,
8627 EXTENT_DIRTY | EXTENT_DELALLOC |
8628 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8629 EXTENT_DEFRAG, 1, 0, &cached_state,
8630 GFP_NOFS);
8631 /*
8632 * whoever cleared the private bit is responsible
8633 * for the finish_ordered_io
8634 */
8635 if (TestClearPagePrivate2(page)) {
8636 struct btrfs_ordered_inode_tree *tree;
8637 u64 new_len;
8638
8639 tree = &BTRFS_I(inode)->ordered_tree;
8640
8641 spin_lock_irq(&tree->lock);
8642 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8643 new_len = page_start - ordered->file_offset;
8644 if (new_len < ordered->truncated_len)
8645 ordered->truncated_len = new_len;
8646 spin_unlock_irq(&tree->lock);
8647
8648 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8649 page_start,
8650 PAGE_CACHE_SIZE, 1))
8651 btrfs_finish_ordered_io(ordered);
8652 }
8653 btrfs_put_ordered_extent(ordered);
8654 if (!inode_evicting) {
8655 cached_state = NULL;
8656 lock_extent_bits(tree, page_start, page_end, 0,
8657 &cached_state);
8658 }
8659 }
8660
8661 /*
8662 * Qgroup reserved space handler
8663 * Page here will be either
8664 * 1) Already written to disk
8665 * In this case, its reserved space is released from data rsv map
8666 * and will be freed by delayed_ref handler finally.
8667 * So even we call qgroup_free_data(), it won't decrease reserved
8668 * space.
8669 * 2) Not written to disk
8670 * This means the reserved space should be freed here.
8671 */
8672 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8673 if (!inode_evicting) {
8674 clear_extent_bit(tree, page_start, page_end,
8675 EXTENT_LOCKED | EXTENT_DIRTY |
8676 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8677 EXTENT_DEFRAG, 1, 1,
8678 &cached_state, GFP_NOFS);
8679
8680 __btrfs_releasepage(page, GFP_NOFS);
8681 }
8682
8683 ClearPageChecked(page);
8684 if (PagePrivate(page)) {
8685 ClearPagePrivate(page);
8686 set_page_private(page, 0);
8687 page_cache_release(page);
8688 }
8689 }
8690
8691 /*
8692 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8693 * called from a page fault handler when a page is first dirtied. Hence we must
8694 * be careful to check for EOF conditions here. We set the page up correctly
8695 * for a written page which means we get ENOSPC checking when writing into
8696 * holes and correct delalloc and unwritten extent mapping on filesystems that
8697 * support these features.
8698 *
8699 * We are not allowed to take the i_mutex here so we have to play games to
8700 * protect against truncate races as the page could now be beyond EOF. Because
8701 * vmtruncate() writes the inode size before removing pages, once we have the
8702 * page lock we can determine safely if the page is beyond EOF. If it is not
8703 * beyond EOF, then the page is guaranteed safe against truncation until we
8704 * unlock the page.
8705 */
8706 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8707 {
8708 struct page *page = vmf->page;
8709 struct inode *inode = file_inode(vma->vm_file);
8710 struct btrfs_root *root = BTRFS_I(inode)->root;
8711 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8712 struct btrfs_ordered_extent *ordered;
8713 struct extent_state *cached_state = NULL;
8714 char *kaddr;
8715 unsigned long zero_start;
8716 loff_t size;
8717 int ret;
8718 int reserved = 0;
8719 u64 page_start;
8720 u64 page_end;
8721
8722 sb_start_pagefault(inode->i_sb);
8723 page_start = page_offset(page);
8724 page_end = page_start + PAGE_CACHE_SIZE - 1;
8725
8726 ret = btrfs_delalloc_reserve_space(inode, page_start,
8727 PAGE_CACHE_SIZE);
8728 if (!ret) {
8729 ret = file_update_time(vma->vm_file);
8730 reserved = 1;
8731 }
8732 if (ret) {
8733 if (ret == -ENOMEM)
8734 ret = VM_FAULT_OOM;
8735 else /* -ENOSPC, -EIO, etc */
8736 ret = VM_FAULT_SIGBUS;
8737 if (reserved)
8738 goto out;
8739 goto out_noreserve;
8740 }
8741
8742 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8743 again:
8744 lock_page(page);
8745 size = i_size_read(inode);
8746
8747 if ((page->mapping != inode->i_mapping) ||
8748 (page_start >= size)) {
8749 /* page got truncated out from underneath us */
8750 goto out_unlock;
8751 }
8752 wait_on_page_writeback(page);
8753
8754 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8755 set_page_extent_mapped(page);
8756
8757 /*
8758 * we can't set the delalloc bits if there are pending ordered
8759 * extents. Drop our locks and wait for them to finish
8760 */
8761 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8762 if (ordered) {
8763 unlock_extent_cached(io_tree, page_start, page_end,
8764 &cached_state, GFP_NOFS);
8765 unlock_page(page);
8766 btrfs_start_ordered_extent(inode, ordered, 1);
8767 btrfs_put_ordered_extent(ordered);
8768 goto again;
8769 }
8770
8771 /*
8772 * XXX - page_mkwrite gets called every time the page is dirtied, even
8773 * if it was already dirty, so for space accounting reasons we need to
8774 * clear any delalloc bits for the range we are fixing to save. There
8775 * is probably a better way to do this, but for now keep consistent with
8776 * prepare_pages in the normal write path.
8777 */
8778 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8779 EXTENT_DIRTY | EXTENT_DELALLOC |
8780 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8781 0, 0, &cached_state, GFP_NOFS);
8782
8783 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8784 &cached_state);
8785 if (ret) {
8786 unlock_extent_cached(io_tree, page_start, page_end,
8787 &cached_state, GFP_NOFS);
8788 ret = VM_FAULT_SIGBUS;
8789 goto out_unlock;
8790 }
8791 ret = 0;
8792
8793 /* page is wholly or partially inside EOF */
8794 if (page_start + PAGE_CACHE_SIZE > size)
8795 zero_start = size & ~PAGE_CACHE_MASK;
8796 else
8797 zero_start = PAGE_CACHE_SIZE;
8798
8799 if (zero_start != PAGE_CACHE_SIZE) {
8800 kaddr = kmap(page);
8801 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8802 flush_dcache_page(page);
8803 kunmap(page);
8804 }
8805 ClearPageChecked(page);
8806 set_page_dirty(page);
8807 SetPageUptodate(page);
8808
8809 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8810 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8811 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8812
8813 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8814
8815 out_unlock:
8816 if (!ret) {
8817 sb_end_pagefault(inode->i_sb);
8818 return VM_FAULT_LOCKED;
8819 }
8820 unlock_page(page);
8821 out:
8822 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8823 out_noreserve:
8824 sb_end_pagefault(inode->i_sb);
8825 return ret;
8826 }
8827
8828 static int btrfs_truncate(struct inode *inode)
8829 {
8830 struct btrfs_root *root = BTRFS_I(inode)->root;
8831 struct btrfs_block_rsv *rsv;
8832 int ret = 0;
8833 int err = 0;
8834 struct btrfs_trans_handle *trans;
8835 u64 mask = root->sectorsize - 1;
8836 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8837
8838 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8839 (u64)-1);
8840 if (ret)
8841 return ret;
8842
8843 /*
8844 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8845 * 3 things going on here
8846 *
8847 * 1) We need to reserve space for our orphan item and the space to
8848 * delete our orphan item. Lord knows we don't want to have a dangling
8849 * orphan item because we didn't reserve space to remove it.
8850 *
8851 * 2) We need to reserve space to update our inode.
8852 *
8853 * 3) We need to have something to cache all the space that is going to
8854 * be free'd up by the truncate operation, but also have some slack
8855 * space reserved in case it uses space during the truncate (thank you
8856 * very much snapshotting).
8857 *
8858 * And we need these to all be seperate. The fact is we can use alot of
8859 * space doing the truncate, and we have no earthly idea how much space
8860 * we will use, so we need the truncate reservation to be seperate so it
8861 * doesn't end up using space reserved for updating the inode or
8862 * removing the orphan item. We also need to be able to stop the
8863 * transaction and start a new one, which means we need to be able to
8864 * update the inode several times, and we have no idea of knowing how
8865 * many times that will be, so we can't just reserve 1 item for the
8866 * entirety of the opration, so that has to be done seperately as well.
8867 * Then there is the orphan item, which does indeed need to be held on
8868 * to for the whole operation, and we need nobody to touch this reserved
8869 * space except the orphan code.
8870 *
8871 * So that leaves us with
8872 *
8873 * 1) root->orphan_block_rsv - for the orphan deletion.
8874 * 2) rsv - for the truncate reservation, which we will steal from the
8875 * transaction reservation.
8876 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8877 * updating the inode.
8878 */
8879 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8880 if (!rsv)
8881 return -ENOMEM;
8882 rsv->size = min_size;
8883 rsv->failfast = 1;
8884
8885 /*
8886 * 1 for the truncate slack space
8887 * 1 for updating the inode.
8888 */
8889 trans = btrfs_start_transaction(root, 2);
8890 if (IS_ERR(trans)) {
8891 err = PTR_ERR(trans);
8892 goto out;
8893 }
8894
8895 /* Migrate the slack space for the truncate to our reserve */
8896 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8897 min_size);
8898 BUG_ON(ret);
8899
8900 /*
8901 * So if we truncate and then write and fsync we normally would just
8902 * write the extents that changed, which is a problem if we need to
8903 * first truncate that entire inode. So set this flag so we write out
8904 * all of the extents in the inode to the sync log so we're completely
8905 * safe.
8906 */
8907 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8908 trans->block_rsv = rsv;
8909
8910 while (1) {
8911 ret = btrfs_truncate_inode_items(trans, root, inode,
8912 inode->i_size,
8913 BTRFS_EXTENT_DATA_KEY);
8914 if (ret != -ENOSPC && ret != -EAGAIN) {
8915 err = ret;
8916 break;
8917 }
8918
8919 trans->block_rsv = &root->fs_info->trans_block_rsv;
8920 ret = btrfs_update_inode(trans, root, inode);
8921 if (ret) {
8922 err = ret;
8923 break;
8924 }
8925
8926 btrfs_end_transaction(trans, root);
8927 btrfs_btree_balance_dirty(root);
8928
8929 trans = btrfs_start_transaction(root, 2);
8930 if (IS_ERR(trans)) {
8931 ret = err = PTR_ERR(trans);
8932 trans = NULL;
8933 break;
8934 }
8935
8936 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8937 rsv, min_size);
8938 BUG_ON(ret); /* shouldn't happen */
8939 trans->block_rsv = rsv;
8940 }
8941
8942 if (ret == 0 && inode->i_nlink > 0) {
8943 trans->block_rsv = root->orphan_block_rsv;
8944 ret = btrfs_orphan_del(trans, inode);
8945 if (ret)
8946 err = ret;
8947 }
8948
8949 if (trans) {
8950 trans->block_rsv = &root->fs_info->trans_block_rsv;
8951 ret = btrfs_update_inode(trans, root, inode);
8952 if (ret && !err)
8953 err = ret;
8954
8955 ret = btrfs_end_transaction(trans, root);
8956 btrfs_btree_balance_dirty(root);
8957 }
8958
8959 out:
8960 btrfs_free_block_rsv(root, rsv);
8961
8962 if (ret && !err)
8963 err = ret;
8964
8965 return err;
8966 }
8967
8968 /*
8969 * create a new subvolume directory/inode (helper for the ioctl).
8970 */
8971 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8972 struct btrfs_root *new_root,
8973 struct btrfs_root *parent_root,
8974 u64 new_dirid)
8975 {
8976 struct inode *inode;
8977 int err;
8978 u64 index = 0;
8979
8980 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8981 new_dirid, new_dirid,
8982 S_IFDIR | (~current_umask() & S_IRWXUGO),
8983 &index);
8984 if (IS_ERR(inode))
8985 return PTR_ERR(inode);
8986 inode->i_op = &btrfs_dir_inode_operations;
8987 inode->i_fop = &btrfs_dir_file_operations;
8988
8989 set_nlink(inode, 1);
8990 btrfs_i_size_write(inode, 0);
8991 unlock_new_inode(inode);
8992
8993 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8994 if (err)
8995 btrfs_err(new_root->fs_info,
8996 "error inheriting subvolume %llu properties: %d",
8997 new_root->root_key.objectid, err);
8998
8999 err = btrfs_update_inode(trans, new_root, inode);
9000
9001 iput(inode);
9002 return err;
9003 }
9004
9005 struct inode *btrfs_alloc_inode(struct super_block *sb)
9006 {
9007 struct btrfs_inode *ei;
9008 struct inode *inode;
9009
9010 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9011 if (!ei)
9012 return NULL;
9013
9014 ei->root = NULL;
9015 ei->generation = 0;
9016 ei->last_trans = 0;
9017 ei->last_sub_trans = 0;
9018 ei->logged_trans = 0;
9019 ei->delalloc_bytes = 0;
9020 ei->defrag_bytes = 0;
9021 ei->disk_i_size = 0;
9022 ei->flags = 0;
9023 ei->csum_bytes = 0;
9024 ei->index_cnt = (u64)-1;
9025 ei->dir_index = 0;
9026 ei->last_unlink_trans = 0;
9027 ei->last_log_commit = 0;
9028
9029 spin_lock_init(&ei->lock);
9030 ei->outstanding_extents = 0;
9031 ei->reserved_extents = 0;
9032
9033 ei->runtime_flags = 0;
9034 ei->force_compress = BTRFS_COMPRESS_NONE;
9035
9036 ei->delayed_node = NULL;
9037
9038 ei->i_otime.tv_sec = 0;
9039 ei->i_otime.tv_nsec = 0;
9040
9041 inode = &ei->vfs_inode;
9042 extent_map_tree_init(&ei->extent_tree);
9043 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9044 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9045 ei->io_tree.track_uptodate = 1;
9046 ei->io_failure_tree.track_uptodate = 1;
9047 atomic_set(&ei->sync_writers, 0);
9048 mutex_init(&ei->log_mutex);
9049 mutex_init(&ei->delalloc_mutex);
9050 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9051 INIT_LIST_HEAD(&ei->delalloc_inodes);
9052 RB_CLEAR_NODE(&ei->rb_node);
9053
9054 return inode;
9055 }
9056
9057 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9058 void btrfs_test_destroy_inode(struct inode *inode)
9059 {
9060 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9061 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9062 }
9063 #endif
9064
9065 static void btrfs_i_callback(struct rcu_head *head)
9066 {
9067 struct inode *inode = container_of(head, struct inode, i_rcu);
9068 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9069 }
9070
9071 void btrfs_destroy_inode(struct inode *inode)
9072 {
9073 struct btrfs_ordered_extent *ordered;
9074 struct btrfs_root *root = BTRFS_I(inode)->root;
9075
9076 WARN_ON(!hlist_empty(&inode->i_dentry));
9077 WARN_ON(inode->i_data.nrpages);
9078 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9079 WARN_ON(BTRFS_I(inode)->reserved_extents);
9080 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9081 WARN_ON(BTRFS_I(inode)->csum_bytes);
9082 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9083
9084 /*
9085 * This can happen where we create an inode, but somebody else also
9086 * created the same inode and we need to destroy the one we already
9087 * created.
9088 */
9089 if (!root)
9090 goto free;
9091
9092 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9093 &BTRFS_I(inode)->runtime_flags)) {
9094 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9095 btrfs_ino(inode));
9096 atomic_dec(&root->orphan_inodes);
9097 }
9098
9099 while (1) {
9100 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9101 if (!ordered)
9102 break;
9103 else {
9104 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9105 ordered->file_offset, ordered->len);
9106 btrfs_remove_ordered_extent(inode, ordered);
9107 btrfs_put_ordered_extent(ordered);
9108 btrfs_put_ordered_extent(ordered);
9109 }
9110 }
9111 btrfs_qgroup_check_reserved_leak(inode);
9112 inode_tree_del(inode);
9113 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9114 free:
9115 call_rcu(&inode->i_rcu, btrfs_i_callback);
9116 }
9117
9118 int btrfs_drop_inode(struct inode *inode)
9119 {
9120 struct btrfs_root *root = BTRFS_I(inode)->root;
9121
9122 if (root == NULL)
9123 return 1;
9124
9125 /* the snap/subvol tree is on deleting */
9126 if (btrfs_root_refs(&root->root_item) == 0)
9127 return 1;
9128 else
9129 return generic_drop_inode(inode);
9130 }
9131
9132 static void init_once(void *foo)
9133 {
9134 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9135
9136 inode_init_once(&ei->vfs_inode);
9137 }
9138
9139 void btrfs_destroy_cachep(void)
9140 {
9141 /*
9142 * Make sure all delayed rcu free inodes are flushed before we
9143 * destroy cache.
9144 */
9145 rcu_barrier();
9146 if (btrfs_inode_cachep)
9147 kmem_cache_destroy(btrfs_inode_cachep);
9148 if (btrfs_trans_handle_cachep)
9149 kmem_cache_destroy(btrfs_trans_handle_cachep);
9150 if (btrfs_transaction_cachep)
9151 kmem_cache_destroy(btrfs_transaction_cachep);
9152 if (btrfs_path_cachep)
9153 kmem_cache_destroy(btrfs_path_cachep);
9154 if (btrfs_free_space_cachep)
9155 kmem_cache_destroy(btrfs_free_space_cachep);
9156 if (btrfs_delalloc_work_cachep)
9157 kmem_cache_destroy(btrfs_delalloc_work_cachep);
9158 }
9159
9160 int btrfs_init_cachep(void)
9161 {
9162 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9163 sizeof(struct btrfs_inode), 0,
9164 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9165 init_once);
9166 if (!btrfs_inode_cachep)
9167 goto fail;
9168
9169 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9170 sizeof(struct btrfs_trans_handle), 0,
9171 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9172 if (!btrfs_trans_handle_cachep)
9173 goto fail;
9174
9175 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9176 sizeof(struct btrfs_transaction), 0,
9177 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9178 if (!btrfs_transaction_cachep)
9179 goto fail;
9180
9181 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9182 sizeof(struct btrfs_path), 0,
9183 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9184 if (!btrfs_path_cachep)
9185 goto fail;
9186
9187 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9188 sizeof(struct btrfs_free_space), 0,
9189 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9190 if (!btrfs_free_space_cachep)
9191 goto fail;
9192
9193 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9194 sizeof(struct btrfs_delalloc_work), 0,
9195 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9196 NULL);
9197 if (!btrfs_delalloc_work_cachep)
9198 goto fail;
9199
9200 return 0;
9201 fail:
9202 btrfs_destroy_cachep();
9203 return -ENOMEM;
9204 }
9205
9206 static int btrfs_getattr(struct vfsmount *mnt,
9207 struct dentry *dentry, struct kstat *stat)
9208 {
9209 u64 delalloc_bytes;
9210 struct inode *inode = d_inode(dentry);
9211 u32 blocksize = inode->i_sb->s_blocksize;
9212
9213 generic_fillattr(inode, stat);
9214 stat->dev = BTRFS_I(inode)->root->anon_dev;
9215 stat->blksize = PAGE_CACHE_SIZE;
9216
9217 spin_lock(&BTRFS_I(inode)->lock);
9218 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9219 spin_unlock(&BTRFS_I(inode)->lock);
9220 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9221 ALIGN(delalloc_bytes, blocksize)) >> 9;
9222 return 0;
9223 }
9224
9225 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9226 struct inode *new_dir, struct dentry *new_dentry)
9227 {
9228 struct btrfs_trans_handle *trans;
9229 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9230 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9231 struct inode *new_inode = d_inode(new_dentry);
9232 struct inode *old_inode = d_inode(old_dentry);
9233 struct timespec ctime = CURRENT_TIME;
9234 u64 index = 0;
9235 u64 root_objectid;
9236 int ret;
9237 u64 old_ino = btrfs_ino(old_inode);
9238
9239 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9240 return -EPERM;
9241
9242 /* we only allow rename subvolume link between subvolumes */
9243 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9244 return -EXDEV;
9245
9246 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9247 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9248 return -ENOTEMPTY;
9249
9250 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9251 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9252 return -ENOTEMPTY;
9253
9254
9255 /* check for collisions, even if the name isn't there */
9256 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9257 new_dentry->d_name.name,
9258 new_dentry->d_name.len);
9259
9260 if (ret) {
9261 if (ret == -EEXIST) {
9262 /* we shouldn't get
9263 * eexist without a new_inode */
9264 if (WARN_ON(!new_inode)) {
9265 return ret;
9266 }
9267 } else {
9268 /* maybe -EOVERFLOW */
9269 return ret;
9270 }
9271 }
9272 ret = 0;
9273
9274 /*
9275 * we're using rename to replace one file with another. Start IO on it
9276 * now so we don't add too much work to the end of the transaction
9277 */
9278 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9279 filemap_flush(old_inode->i_mapping);
9280
9281 /* close the racy window with snapshot create/destroy ioctl */
9282 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9283 down_read(&root->fs_info->subvol_sem);
9284 /*
9285 * We want to reserve the absolute worst case amount of items. So if
9286 * both inodes are subvols and we need to unlink them then that would
9287 * require 4 item modifications, but if they are both normal inodes it
9288 * would require 5 item modifications, so we'll assume their normal
9289 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9290 * should cover the worst case number of items we'll modify.
9291 */
9292 trans = btrfs_start_transaction(root, 11);
9293 if (IS_ERR(trans)) {
9294 ret = PTR_ERR(trans);
9295 goto out_notrans;
9296 }
9297
9298 if (dest != root)
9299 btrfs_record_root_in_trans(trans, dest);
9300
9301 ret = btrfs_set_inode_index(new_dir, &index);
9302 if (ret)
9303 goto out_fail;
9304
9305 BTRFS_I(old_inode)->dir_index = 0ULL;
9306 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9307 /* force full log commit if subvolume involved. */
9308 btrfs_set_log_full_commit(root->fs_info, trans);
9309 } else {
9310 ret = btrfs_insert_inode_ref(trans, dest,
9311 new_dentry->d_name.name,
9312 new_dentry->d_name.len,
9313 old_ino,
9314 btrfs_ino(new_dir), index);
9315 if (ret)
9316 goto out_fail;
9317 /*
9318 * this is an ugly little race, but the rename is required
9319 * to make sure that if we crash, the inode is either at the
9320 * old name or the new one. pinning the log transaction lets
9321 * us make sure we don't allow a log commit to come in after
9322 * we unlink the name but before we add the new name back in.
9323 */
9324 btrfs_pin_log_trans(root);
9325 }
9326
9327 inode_inc_iversion(old_dir);
9328 inode_inc_iversion(new_dir);
9329 inode_inc_iversion(old_inode);
9330 old_dir->i_ctime = old_dir->i_mtime = ctime;
9331 new_dir->i_ctime = new_dir->i_mtime = ctime;
9332 old_inode->i_ctime = ctime;
9333
9334 if (old_dentry->d_parent != new_dentry->d_parent)
9335 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9336
9337 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9338 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9339 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9340 old_dentry->d_name.name,
9341 old_dentry->d_name.len);
9342 } else {
9343 ret = __btrfs_unlink_inode(trans, root, old_dir,
9344 d_inode(old_dentry),
9345 old_dentry->d_name.name,
9346 old_dentry->d_name.len);
9347 if (!ret)
9348 ret = btrfs_update_inode(trans, root, old_inode);
9349 }
9350 if (ret) {
9351 btrfs_abort_transaction(trans, root, ret);
9352 goto out_fail;
9353 }
9354
9355 if (new_inode) {
9356 inode_inc_iversion(new_inode);
9357 new_inode->i_ctime = CURRENT_TIME;
9358 if (unlikely(btrfs_ino(new_inode) ==
9359 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9360 root_objectid = BTRFS_I(new_inode)->location.objectid;
9361 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9362 root_objectid,
9363 new_dentry->d_name.name,
9364 new_dentry->d_name.len);
9365 BUG_ON(new_inode->i_nlink == 0);
9366 } else {
9367 ret = btrfs_unlink_inode(trans, dest, new_dir,
9368 d_inode(new_dentry),
9369 new_dentry->d_name.name,
9370 new_dentry->d_name.len);
9371 }
9372 if (!ret && new_inode->i_nlink == 0)
9373 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9374 if (ret) {
9375 btrfs_abort_transaction(trans, root, ret);
9376 goto out_fail;
9377 }
9378 }
9379
9380 ret = btrfs_add_link(trans, new_dir, old_inode,
9381 new_dentry->d_name.name,
9382 new_dentry->d_name.len, 0, index);
9383 if (ret) {
9384 btrfs_abort_transaction(trans, root, ret);
9385 goto out_fail;
9386 }
9387
9388 if (old_inode->i_nlink == 1)
9389 BTRFS_I(old_inode)->dir_index = index;
9390
9391 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9392 struct dentry *parent = new_dentry->d_parent;
9393 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9394 btrfs_end_log_trans(root);
9395 }
9396 out_fail:
9397 btrfs_end_transaction(trans, root);
9398 out_notrans:
9399 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9400 up_read(&root->fs_info->subvol_sem);
9401
9402 return ret;
9403 }
9404
9405 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9406 struct inode *new_dir, struct dentry *new_dentry,
9407 unsigned int flags)
9408 {
9409 if (flags & ~RENAME_NOREPLACE)
9410 return -EINVAL;
9411
9412 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9413 }
9414
9415 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9416 {
9417 struct btrfs_delalloc_work *delalloc_work;
9418 struct inode *inode;
9419
9420 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9421 work);
9422 inode = delalloc_work->inode;
9423 if (delalloc_work->wait) {
9424 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9425 } else {
9426 filemap_flush(inode->i_mapping);
9427 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9428 &BTRFS_I(inode)->runtime_flags))
9429 filemap_flush(inode->i_mapping);
9430 }
9431
9432 if (delalloc_work->delay_iput)
9433 btrfs_add_delayed_iput(inode);
9434 else
9435 iput(inode);
9436 complete(&delalloc_work->completion);
9437 }
9438
9439 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9440 int wait, int delay_iput)
9441 {
9442 struct btrfs_delalloc_work *work;
9443
9444 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9445 if (!work)
9446 return NULL;
9447
9448 init_completion(&work->completion);
9449 INIT_LIST_HEAD(&work->list);
9450 work->inode = inode;
9451 work->wait = wait;
9452 work->delay_iput = delay_iput;
9453 WARN_ON_ONCE(!inode);
9454 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9455 btrfs_run_delalloc_work, NULL, NULL);
9456
9457 return work;
9458 }
9459
9460 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9461 {
9462 wait_for_completion(&work->completion);
9463 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9464 }
9465
9466 /*
9467 * some fairly slow code that needs optimization. This walks the list
9468 * of all the inodes with pending delalloc and forces them to disk.
9469 */
9470 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9471 int nr)
9472 {
9473 struct btrfs_inode *binode;
9474 struct inode *inode;
9475 struct btrfs_delalloc_work *work, *next;
9476 struct list_head works;
9477 struct list_head splice;
9478 int ret = 0;
9479
9480 INIT_LIST_HEAD(&works);
9481 INIT_LIST_HEAD(&splice);
9482
9483 mutex_lock(&root->delalloc_mutex);
9484 spin_lock(&root->delalloc_lock);
9485 list_splice_init(&root->delalloc_inodes, &splice);
9486 while (!list_empty(&splice)) {
9487 binode = list_entry(splice.next, struct btrfs_inode,
9488 delalloc_inodes);
9489
9490 list_move_tail(&binode->delalloc_inodes,
9491 &root->delalloc_inodes);
9492 inode = igrab(&binode->vfs_inode);
9493 if (!inode) {
9494 cond_resched_lock(&root->delalloc_lock);
9495 continue;
9496 }
9497 spin_unlock(&root->delalloc_lock);
9498
9499 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9500 if (!work) {
9501 if (delay_iput)
9502 btrfs_add_delayed_iput(inode);
9503 else
9504 iput(inode);
9505 ret = -ENOMEM;
9506 goto out;
9507 }
9508 list_add_tail(&work->list, &works);
9509 btrfs_queue_work(root->fs_info->flush_workers,
9510 &work->work);
9511 ret++;
9512 if (nr != -1 && ret >= nr)
9513 goto out;
9514 cond_resched();
9515 spin_lock(&root->delalloc_lock);
9516 }
9517 spin_unlock(&root->delalloc_lock);
9518
9519 out:
9520 list_for_each_entry_safe(work, next, &works, list) {
9521 list_del_init(&work->list);
9522 btrfs_wait_and_free_delalloc_work(work);
9523 }
9524
9525 if (!list_empty_careful(&splice)) {
9526 spin_lock(&root->delalloc_lock);
9527 list_splice_tail(&splice, &root->delalloc_inodes);
9528 spin_unlock(&root->delalloc_lock);
9529 }
9530 mutex_unlock(&root->delalloc_mutex);
9531 return ret;
9532 }
9533
9534 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9535 {
9536 int ret;
9537
9538 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9539 return -EROFS;
9540
9541 ret = __start_delalloc_inodes(root, delay_iput, -1);
9542 if (ret > 0)
9543 ret = 0;
9544 /*
9545 * the filemap_flush will queue IO into the worker threads, but
9546 * we have to make sure the IO is actually started and that
9547 * ordered extents get created before we return
9548 */
9549 atomic_inc(&root->fs_info->async_submit_draining);
9550 while (atomic_read(&root->fs_info->nr_async_submits) ||
9551 atomic_read(&root->fs_info->async_delalloc_pages)) {
9552 wait_event(root->fs_info->async_submit_wait,
9553 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9554 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9555 }
9556 atomic_dec(&root->fs_info->async_submit_draining);
9557 return ret;
9558 }
9559
9560 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9561 int nr)
9562 {
9563 struct btrfs_root *root;
9564 struct list_head splice;
9565 int ret;
9566
9567 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9568 return -EROFS;
9569
9570 INIT_LIST_HEAD(&splice);
9571
9572 mutex_lock(&fs_info->delalloc_root_mutex);
9573 spin_lock(&fs_info->delalloc_root_lock);
9574 list_splice_init(&fs_info->delalloc_roots, &splice);
9575 while (!list_empty(&splice) && nr) {
9576 root = list_first_entry(&splice, struct btrfs_root,
9577 delalloc_root);
9578 root = btrfs_grab_fs_root(root);
9579 BUG_ON(!root);
9580 list_move_tail(&root->delalloc_root,
9581 &fs_info->delalloc_roots);
9582 spin_unlock(&fs_info->delalloc_root_lock);
9583
9584 ret = __start_delalloc_inodes(root, delay_iput, nr);
9585 btrfs_put_fs_root(root);
9586 if (ret < 0)
9587 goto out;
9588
9589 if (nr != -1) {
9590 nr -= ret;
9591 WARN_ON(nr < 0);
9592 }
9593 spin_lock(&fs_info->delalloc_root_lock);
9594 }
9595 spin_unlock(&fs_info->delalloc_root_lock);
9596
9597 ret = 0;
9598 atomic_inc(&fs_info->async_submit_draining);
9599 while (atomic_read(&fs_info->nr_async_submits) ||
9600 atomic_read(&fs_info->async_delalloc_pages)) {
9601 wait_event(fs_info->async_submit_wait,
9602 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9603 atomic_read(&fs_info->async_delalloc_pages) == 0));
9604 }
9605 atomic_dec(&fs_info->async_submit_draining);
9606 out:
9607 if (!list_empty_careful(&splice)) {
9608 spin_lock(&fs_info->delalloc_root_lock);
9609 list_splice_tail(&splice, &fs_info->delalloc_roots);
9610 spin_unlock(&fs_info->delalloc_root_lock);
9611 }
9612 mutex_unlock(&fs_info->delalloc_root_mutex);
9613 return ret;
9614 }
9615
9616 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9617 const char *symname)
9618 {
9619 struct btrfs_trans_handle *trans;
9620 struct btrfs_root *root = BTRFS_I(dir)->root;
9621 struct btrfs_path *path;
9622 struct btrfs_key key;
9623 struct inode *inode = NULL;
9624 int err;
9625 int drop_inode = 0;
9626 u64 objectid;
9627 u64 index = 0;
9628 int name_len;
9629 int datasize;
9630 unsigned long ptr;
9631 struct btrfs_file_extent_item *ei;
9632 struct extent_buffer *leaf;
9633
9634 name_len = strlen(symname);
9635 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9636 return -ENAMETOOLONG;
9637
9638 /*
9639 * 2 items for inode item and ref
9640 * 2 items for dir items
9641 * 1 item for xattr if selinux is on
9642 */
9643 trans = btrfs_start_transaction(root, 5);
9644 if (IS_ERR(trans))
9645 return PTR_ERR(trans);
9646
9647 err = btrfs_find_free_ino(root, &objectid);
9648 if (err)
9649 goto out_unlock;
9650
9651 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9652 dentry->d_name.len, btrfs_ino(dir), objectid,
9653 S_IFLNK|S_IRWXUGO, &index);
9654 if (IS_ERR(inode)) {
9655 err = PTR_ERR(inode);
9656 goto out_unlock;
9657 }
9658
9659 /*
9660 * If the active LSM wants to access the inode during
9661 * d_instantiate it needs these. Smack checks to see
9662 * if the filesystem supports xattrs by looking at the
9663 * ops vector.
9664 */
9665 inode->i_fop = &btrfs_file_operations;
9666 inode->i_op = &btrfs_file_inode_operations;
9667 inode->i_mapping->a_ops = &btrfs_aops;
9668 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9669
9670 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9671 if (err)
9672 goto out_unlock_inode;
9673
9674 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9675 if (err)
9676 goto out_unlock_inode;
9677
9678 path = btrfs_alloc_path();
9679 if (!path) {
9680 err = -ENOMEM;
9681 goto out_unlock_inode;
9682 }
9683 key.objectid = btrfs_ino(inode);
9684 key.offset = 0;
9685 key.type = BTRFS_EXTENT_DATA_KEY;
9686 datasize = btrfs_file_extent_calc_inline_size(name_len);
9687 err = btrfs_insert_empty_item(trans, root, path, &key,
9688 datasize);
9689 if (err) {
9690 btrfs_free_path(path);
9691 goto out_unlock_inode;
9692 }
9693 leaf = path->nodes[0];
9694 ei = btrfs_item_ptr(leaf, path->slots[0],
9695 struct btrfs_file_extent_item);
9696 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9697 btrfs_set_file_extent_type(leaf, ei,
9698 BTRFS_FILE_EXTENT_INLINE);
9699 btrfs_set_file_extent_encryption(leaf, ei, 0);
9700 btrfs_set_file_extent_compression(leaf, ei, 0);
9701 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9702 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9703
9704 ptr = btrfs_file_extent_inline_start(ei);
9705 write_extent_buffer(leaf, symname, ptr, name_len);
9706 btrfs_mark_buffer_dirty(leaf);
9707 btrfs_free_path(path);
9708
9709 inode->i_op = &btrfs_symlink_inode_operations;
9710 inode_nohighmem(inode);
9711 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9712 inode_set_bytes(inode, name_len);
9713 btrfs_i_size_write(inode, name_len);
9714 err = btrfs_update_inode(trans, root, inode);
9715 if (err) {
9716 drop_inode = 1;
9717 goto out_unlock_inode;
9718 }
9719
9720 unlock_new_inode(inode);
9721 d_instantiate(dentry, inode);
9722
9723 out_unlock:
9724 btrfs_end_transaction(trans, root);
9725 if (drop_inode) {
9726 inode_dec_link_count(inode);
9727 iput(inode);
9728 }
9729 btrfs_btree_balance_dirty(root);
9730 return err;
9731
9732 out_unlock_inode:
9733 drop_inode = 1;
9734 unlock_new_inode(inode);
9735 goto out_unlock;
9736 }
9737
9738 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9739 u64 start, u64 num_bytes, u64 min_size,
9740 loff_t actual_len, u64 *alloc_hint,
9741 struct btrfs_trans_handle *trans)
9742 {
9743 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9744 struct extent_map *em;
9745 struct btrfs_root *root = BTRFS_I(inode)->root;
9746 struct btrfs_key ins;
9747 u64 cur_offset = start;
9748 u64 i_size;
9749 u64 cur_bytes;
9750 u64 last_alloc = (u64)-1;
9751 int ret = 0;
9752 bool own_trans = true;
9753
9754 if (trans)
9755 own_trans = false;
9756 while (num_bytes > 0) {
9757 if (own_trans) {
9758 trans = btrfs_start_transaction(root, 3);
9759 if (IS_ERR(trans)) {
9760 ret = PTR_ERR(trans);
9761 break;
9762 }
9763 }
9764
9765 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9766 cur_bytes = max(cur_bytes, min_size);
9767 /*
9768 * If we are severely fragmented we could end up with really
9769 * small allocations, so if the allocator is returning small
9770 * chunks lets make its job easier by only searching for those
9771 * sized chunks.
9772 */
9773 cur_bytes = min(cur_bytes, last_alloc);
9774 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9775 *alloc_hint, &ins, 1, 0);
9776 if (ret) {
9777 if (own_trans)
9778 btrfs_end_transaction(trans, root);
9779 break;
9780 }
9781
9782 last_alloc = ins.offset;
9783 ret = insert_reserved_file_extent(trans, inode,
9784 cur_offset, ins.objectid,
9785 ins.offset, ins.offset,
9786 ins.offset, 0, 0, 0,
9787 BTRFS_FILE_EXTENT_PREALLOC);
9788 if (ret) {
9789 btrfs_free_reserved_extent(root, ins.objectid,
9790 ins.offset, 0);
9791 btrfs_abort_transaction(trans, root, ret);
9792 if (own_trans)
9793 btrfs_end_transaction(trans, root);
9794 break;
9795 }
9796
9797 btrfs_drop_extent_cache(inode, cur_offset,
9798 cur_offset + ins.offset -1, 0);
9799
9800 em = alloc_extent_map();
9801 if (!em) {
9802 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9803 &BTRFS_I(inode)->runtime_flags);
9804 goto next;
9805 }
9806
9807 em->start = cur_offset;
9808 em->orig_start = cur_offset;
9809 em->len = ins.offset;
9810 em->block_start = ins.objectid;
9811 em->block_len = ins.offset;
9812 em->orig_block_len = ins.offset;
9813 em->ram_bytes = ins.offset;
9814 em->bdev = root->fs_info->fs_devices->latest_bdev;
9815 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9816 em->generation = trans->transid;
9817
9818 while (1) {
9819 write_lock(&em_tree->lock);
9820 ret = add_extent_mapping(em_tree, em, 1);
9821 write_unlock(&em_tree->lock);
9822 if (ret != -EEXIST)
9823 break;
9824 btrfs_drop_extent_cache(inode, cur_offset,
9825 cur_offset + ins.offset - 1,
9826 0);
9827 }
9828 free_extent_map(em);
9829 next:
9830 num_bytes -= ins.offset;
9831 cur_offset += ins.offset;
9832 *alloc_hint = ins.objectid + ins.offset;
9833
9834 inode_inc_iversion(inode);
9835 inode->i_ctime = CURRENT_TIME;
9836 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9837 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9838 (actual_len > inode->i_size) &&
9839 (cur_offset > inode->i_size)) {
9840 if (cur_offset > actual_len)
9841 i_size = actual_len;
9842 else
9843 i_size = cur_offset;
9844 i_size_write(inode, i_size);
9845 btrfs_ordered_update_i_size(inode, i_size, NULL);
9846 }
9847
9848 ret = btrfs_update_inode(trans, root, inode);
9849
9850 if (ret) {
9851 btrfs_abort_transaction(trans, root, ret);
9852 if (own_trans)
9853 btrfs_end_transaction(trans, root);
9854 break;
9855 }
9856
9857 if (own_trans)
9858 btrfs_end_transaction(trans, root);
9859 }
9860 return ret;
9861 }
9862
9863 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9864 u64 start, u64 num_bytes, u64 min_size,
9865 loff_t actual_len, u64 *alloc_hint)
9866 {
9867 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9868 min_size, actual_len, alloc_hint,
9869 NULL);
9870 }
9871
9872 int btrfs_prealloc_file_range_trans(struct inode *inode,
9873 struct btrfs_trans_handle *trans, int mode,
9874 u64 start, u64 num_bytes, u64 min_size,
9875 loff_t actual_len, u64 *alloc_hint)
9876 {
9877 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9878 min_size, actual_len, alloc_hint, trans);
9879 }
9880
9881 static int btrfs_set_page_dirty(struct page *page)
9882 {
9883 return __set_page_dirty_nobuffers(page);
9884 }
9885
9886 static int btrfs_permission(struct inode *inode, int mask)
9887 {
9888 struct btrfs_root *root = BTRFS_I(inode)->root;
9889 umode_t mode = inode->i_mode;
9890
9891 if (mask & MAY_WRITE &&
9892 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9893 if (btrfs_root_readonly(root))
9894 return -EROFS;
9895 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9896 return -EACCES;
9897 }
9898 return generic_permission(inode, mask);
9899 }
9900
9901 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9902 {
9903 struct btrfs_trans_handle *trans;
9904 struct btrfs_root *root = BTRFS_I(dir)->root;
9905 struct inode *inode = NULL;
9906 u64 objectid;
9907 u64 index;
9908 int ret = 0;
9909
9910 /*
9911 * 5 units required for adding orphan entry
9912 */
9913 trans = btrfs_start_transaction(root, 5);
9914 if (IS_ERR(trans))
9915 return PTR_ERR(trans);
9916
9917 ret = btrfs_find_free_ino(root, &objectid);
9918 if (ret)
9919 goto out;
9920
9921 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9922 btrfs_ino(dir), objectid, mode, &index);
9923 if (IS_ERR(inode)) {
9924 ret = PTR_ERR(inode);
9925 inode = NULL;
9926 goto out;
9927 }
9928
9929 inode->i_fop = &btrfs_file_operations;
9930 inode->i_op = &btrfs_file_inode_operations;
9931
9932 inode->i_mapping->a_ops = &btrfs_aops;
9933 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9934
9935 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9936 if (ret)
9937 goto out_inode;
9938
9939 ret = btrfs_update_inode(trans, root, inode);
9940 if (ret)
9941 goto out_inode;
9942 ret = btrfs_orphan_add(trans, inode);
9943 if (ret)
9944 goto out_inode;
9945
9946 /*
9947 * We set number of links to 0 in btrfs_new_inode(), and here we set
9948 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9949 * through:
9950 *
9951 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9952 */
9953 set_nlink(inode, 1);
9954 unlock_new_inode(inode);
9955 d_tmpfile(dentry, inode);
9956 mark_inode_dirty(inode);
9957
9958 out:
9959 btrfs_end_transaction(trans, root);
9960 if (ret)
9961 iput(inode);
9962 btrfs_balance_delayed_items(root);
9963 btrfs_btree_balance_dirty(root);
9964 return ret;
9965
9966 out_inode:
9967 unlock_new_inode(inode);
9968 goto out;
9969
9970 }
9971
9972 /* Inspired by filemap_check_errors() */
9973 int btrfs_inode_check_errors(struct inode *inode)
9974 {
9975 int ret = 0;
9976
9977 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9978 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9979 ret = -ENOSPC;
9980 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9981 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9982 ret = -EIO;
9983
9984 return ret;
9985 }
9986
9987 static const struct inode_operations btrfs_dir_inode_operations = {
9988 .getattr = btrfs_getattr,
9989 .lookup = btrfs_lookup,
9990 .create = btrfs_create,
9991 .unlink = btrfs_unlink,
9992 .link = btrfs_link,
9993 .mkdir = btrfs_mkdir,
9994 .rmdir = btrfs_rmdir,
9995 .rename2 = btrfs_rename2,
9996 .symlink = btrfs_symlink,
9997 .setattr = btrfs_setattr,
9998 .mknod = btrfs_mknod,
9999 .setxattr = btrfs_setxattr,
10000 .getxattr = generic_getxattr,
10001 .listxattr = btrfs_listxattr,
10002 .removexattr = btrfs_removexattr,
10003 .permission = btrfs_permission,
10004 .get_acl = btrfs_get_acl,
10005 .set_acl = btrfs_set_acl,
10006 .update_time = btrfs_update_time,
10007 .tmpfile = btrfs_tmpfile,
10008 };
10009 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10010 .lookup = btrfs_lookup,
10011 .permission = btrfs_permission,
10012 .get_acl = btrfs_get_acl,
10013 .set_acl = btrfs_set_acl,
10014 .update_time = btrfs_update_time,
10015 };
10016
10017 static const struct file_operations btrfs_dir_file_operations = {
10018 .llseek = generic_file_llseek,
10019 .read = generic_read_dir,
10020 .iterate = btrfs_real_readdir,
10021 .unlocked_ioctl = btrfs_ioctl,
10022 #ifdef CONFIG_COMPAT
10023 .compat_ioctl = btrfs_ioctl,
10024 #endif
10025 .release = btrfs_release_file,
10026 .fsync = btrfs_sync_file,
10027 };
10028
10029 static struct extent_io_ops btrfs_extent_io_ops = {
10030 .fill_delalloc = run_delalloc_range,
10031 .submit_bio_hook = btrfs_submit_bio_hook,
10032 .merge_bio_hook = btrfs_merge_bio_hook,
10033 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10034 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10035 .writepage_start_hook = btrfs_writepage_start_hook,
10036 .set_bit_hook = btrfs_set_bit_hook,
10037 .clear_bit_hook = btrfs_clear_bit_hook,
10038 .merge_extent_hook = btrfs_merge_extent_hook,
10039 .split_extent_hook = btrfs_split_extent_hook,
10040 };
10041
10042 /*
10043 * btrfs doesn't support the bmap operation because swapfiles
10044 * use bmap to make a mapping of extents in the file. They assume
10045 * these extents won't change over the life of the file and they
10046 * use the bmap result to do IO directly to the drive.
10047 *
10048 * the btrfs bmap call would return logical addresses that aren't
10049 * suitable for IO and they also will change frequently as COW
10050 * operations happen. So, swapfile + btrfs == corruption.
10051 *
10052 * For now we're avoiding this by dropping bmap.
10053 */
10054 static const struct address_space_operations btrfs_aops = {
10055 .readpage = btrfs_readpage,
10056 .writepage = btrfs_writepage,
10057 .writepages = btrfs_writepages,
10058 .readpages = btrfs_readpages,
10059 .direct_IO = btrfs_direct_IO,
10060 .invalidatepage = btrfs_invalidatepage,
10061 .releasepage = btrfs_releasepage,
10062 .set_page_dirty = btrfs_set_page_dirty,
10063 .error_remove_page = generic_error_remove_page,
10064 };
10065
10066 static const struct address_space_operations btrfs_symlink_aops = {
10067 .readpage = btrfs_readpage,
10068 .writepage = btrfs_writepage,
10069 .invalidatepage = btrfs_invalidatepage,
10070 .releasepage = btrfs_releasepage,
10071 };
10072
10073 static const struct inode_operations btrfs_file_inode_operations = {
10074 .getattr = btrfs_getattr,
10075 .setattr = btrfs_setattr,
10076 .setxattr = btrfs_setxattr,
10077 .getxattr = generic_getxattr,
10078 .listxattr = btrfs_listxattr,
10079 .removexattr = btrfs_removexattr,
10080 .permission = btrfs_permission,
10081 .fiemap = btrfs_fiemap,
10082 .get_acl = btrfs_get_acl,
10083 .set_acl = btrfs_set_acl,
10084 .update_time = btrfs_update_time,
10085 };
10086 static const struct inode_operations btrfs_special_inode_operations = {
10087 .getattr = btrfs_getattr,
10088 .setattr = btrfs_setattr,
10089 .permission = btrfs_permission,
10090 .setxattr = btrfs_setxattr,
10091 .getxattr = generic_getxattr,
10092 .listxattr = btrfs_listxattr,
10093 .removexattr = btrfs_removexattr,
10094 .get_acl = btrfs_get_acl,
10095 .set_acl = btrfs_set_acl,
10096 .update_time = btrfs_update_time,
10097 };
10098 static const struct inode_operations btrfs_symlink_inode_operations = {
10099 .readlink = generic_readlink,
10100 .get_link = page_get_link,
10101 .getattr = btrfs_getattr,
10102 .setattr = btrfs_setattr,
10103 .permission = btrfs_permission,
10104 .setxattr = btrfs_setxattr,
10105 .getxattr = generic_getxattr,
10106 .listxattr = btrfs_listxattr,
10107 .removexattr = btrfs_removexattr,
10108 .update_time = btrfs_update_time,
10109 };
10110
10111 const struct dentry_operations btrfs_dentry_operations = {
10112 .d_delete = btrfs_dentry_delete,
10113 .d_release = btrfs_dentry_release,
10114 };