]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/inode.c
block: remove per-queue plugging
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int compress_type = BTRFS_COMPRESS_NONE;
126
127 if (compressed_size && compressed_pages) {
128 compress_type = root->fs_info->compress_type;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (compress_type != BTRFS_COMPRESS_NONE) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 compress_type);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
204
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
209 }
210
211
212 /*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222 {
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
258 }
259
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 int compress_type;
267 struct list_head list;
268 };
269
270 struct async_cow {
271 struct inode *inode;
272 struct btrfs_root *root;
273 struct page *locked_page;
274 u64 start;
275 u64 end;
276 struct list_head extents;
277 struct btrfs_work work;
278 };
279
280 static noinline int add_async_extent(struct async_cow *cow,
281 u64 start, u64 ram_size,
282 u64 compressed_size,
283 struct page **pages,
284 unsigned long nr_pages,
285 int compress_type)
286 {
287 struct async_extent *async_extent;
288
289 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290 async_extent->start = start;
291 async_extent->ram_size = ram_size;
292 async_extent->compressed_size = compressed_size;
293 async_extent->pages = pages;
294 async_extent->nr_pages = nr_pages;
295 async_extent->compress_type = compress_type;
296 list_add_tail(&async_extent->list, &cow->extents);
297 return 0;
298 }
299
300 /*
301 * we create compressed extents in two phases. The first
302 * phase compresses a range of pages that have already been
303 * locked (both pages and state bits are locked).
304 *
305 * This is done inside an ordered work queue, and the compression
306 * is spread across many cpus. The actual IO submission is step
307 * two, and the ordered work queue takes care of making sure that
308 * happens in the same order things were put onto the queue by
309 * writepages and friends.
310 *
311 * If this code finds it can't get good compression, it puts an
312 * entry onto the work queue to write the uncompressed bytes. This
313 * makes sure that both compressed inodes and uncompressed inodes
314 * are written in the same order that pdflush sent them down.
315 */
316 static noinline int compress_file_range(struct inode *inode,
317 struct page *locked_page,
318 u64 start, u64 end,
319 struct async_cow *async_cow,
320 int *num_added)
321 {
322 struct btrfs_root *root = BTRFS_I(inode)->root;
323 struct btrfs_trans_handle *trans;
324 u64 num_bytes;
325 u64 blocksize = root->sectorsize;
326 u64 actual_end;
327 u64 isize = i_size_read(inode);
328 int ret = 0;
329 struct page **pages = NULL;
330 unsigned long nr_pages;
331 unsigned long nr_pages_ret = 0;
332 unsigned long total_compressed = 0;
333 unsigned long total_in = 0;
334 unsigned long max_compressed = 128 * 1024;
335 unsigned long max_uncompressed = 128 * 1024;
336 int i;
337 int will_compress;
338 int compress_type = root->fs_info->compress_type;
339
340 actual_end = min_t(u64, isize, end + 1);
341 again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 num_bytes = max(blocksize, num_bytes);
374 total_in = 0;
375 ret = 0;
376
377 /*
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
381 */
382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
385 WARN_ON(pages);
386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388 if (BTRFS_I(inode)->force_compress)
389 compress_type = BTRFS_I(inode)->force_compress;
390
391 ret = btrfs_compress_pages(compress_type,
392 inode->i_mapping, start,
393 total_compressed, pages,
394 nr_pages, &nr_pages_ret,
395 &total_in,
396 &total_compressed,
397 max_compressed);
398
399 if (!ret) {
400 unsigned long offset = total_compressed &
401 (PAGE_CACHE_SIZE - 1);
402 struct page *page = pages[nr_pages_ret - 1];
403 char *kaddr;
404
405 /* zero the tail end of the last page, we might be
406 * sending it down to disk
407 */
408 if (offset) {
409 kaddr = kmap_atomic(page, KM_USER0);
410 memset(kaddr + offset, 0,
411 PAGE_CACHE_SIZE - offset);
412 kunmap_atomic(kaddr, KM_USER0);
413 }
414 will_compress = 1;
415 }
416 }
417 if (start == 0) {
418 trans = btrfs_join_transaction(root, 1);
419 BUG_ON(IS_ERR(trans));
420 btrfs_set_trans_block_group(trans, inode);
421 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422
423 /* lets try to make an inline extent */
424 if (ret || total_in < (actual_end - start)) {
425 /* we didn't compress the entire range, try
426 * to make an uncompressed inline extent.
427 */
428 ret = cow_file_range_inline(trans, root, inode,
429 start, end, 0, NULL);
430 } else {
431 /* try making a compressed inline extent */
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end,
434 total_compressed, pages);
435 }
436 if (ret == 0) {
437 /*
438 * inline extent creation worked, we don't need
439 * to create any more async work items. Unlock
440 * and free up our temp pages.
441 */
442 extent_clear_unlock_delalloc(inode,
443 &BTRFS_I(inode)->io_tree,
444 start, end, NULL,
445 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446 EXTENT_CLEAR_DELALLOC |
447 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448
449 btrfs_end_transaction(trans, root);
450 goto free_pages_out;
451 }
452 btrfs_end_transaction(trans, root);
453 }
454
455 if (will_compress) {
456 /*
457 * we aren't doing an inline extent round the compressed size
458 * up to a block size boundary so the allocator does sane
459 * things
460 */
461 total_compressed = (total_compressed + blocksize - 1) &
462 ~(blocksize - 1);
463
464 /*
465 * one last check to make sure the compression is really a
466 * win, compare the page count read with the blocks on disk
467 */
468 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469 ~(PAGE_CACHE_SIZE - 1);
470 if (total_compressed >= total_in) {
471 will_compress = 0;
472 } else {
473 num_bytes = total_in;
474 }
475 }
476 if (!will_compress && pages) {
477 /*
478 * the compression code ran but failed to make things smaller,
479 * free any pages it allocated and our page pointer array
480 */
481 for (i = 0; i < nr_pages_ret; i++) {
482 WARN_ON(pages[i]->mapping);
483 page_cache_release(pages[i]);
484 }
485 kfree(pages);
486 pages = NULL;
487 total_compressed = 0;
488 nr_pages_ret = 0;
489
490 /* flag the file so we don't compress in the future */
491 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492 !(BTRFS_I(inode)->force_compress)) {
493 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494 }
495 }
496 if (will_compress) {
497 *num_added += 1;
498
499 /* the async work queues will take care of doing actual
500 * allocation on disk for these compressed pages,
501 * and will submit them to the elevator.
502 */
503 add_async_extent(async_cow, start, num_bytes,
504 total_compressed, pages, nr_pages_ret,
505 compress_type);
506
507 if (start + num_bytes < end) {
508 start += num_bytes;
509 pages = NULL;
510 cond_resched();
511 goto again;
512 }
513 } else {
514 cleanup_and_bail_uncompressed:
515 /*
516 * No compression, but we still need to write the pages in
517 * the file we've been given so far. redirty the locked
518 * page if it corresponds to our extent and set things up
519 * for the async work queue to run cow_file_range to do
520 * the normal delalloc dance
521 */
522 if (page_offset(locked_page) >= start &&
523 page_offset(locked_page) <= end) {
524 __set_page_dirty_nobuffers(locked_page);
525 /* unlocked later on in the async handlers */
526 }
527 add_async_extent(async_cow, start, end - start + 1,
528 0, NULL, 0, BTRFS_COMPRESS_NONE);
529 *num_added += 1;
530 }
531
532 out:
533 return 0;
534
535 free_pages_out:
536 for (i = 0; i < nr_pages_ret; i++) {
537 WARN_ON(pages[i]->mapping);
538 page_cache_release(pages[i]);
539 }
540 kfree(pages);
541
542 goto out;
543 }
544
545 /*
546 * phase two of compressed writeback. This is the ordered portion
547 * of the code, which only gets called in the order the work was
548 * queued. We walk all the async extents created by compress_file_range
549 * and send them down to the disk.
550 */
551 static noinline int submit_compressed_extents(struct inode *inode,
552 struct async_cow *async_cow)
553 {
554 struct async_extent *async_extent;
555 u64 alloc_hint = 0;
556 struct btrfs_trans_handle *trans;
557 struct btrfs_key ins;
558 struct extent_map *em;
559 struct btrfs_root *root = BTRFS_I(inode)->root;
560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561 struct extent_io_tree *io_tree;
562 int ret = 0;
563
564 if (list_empty(&async_cow->extents))
565 return 0;
566
567
568 while (!list_empty(&async_cow->extents)) {
569 async_extent = list_entry(async_cow->extents.next,
570 struct async_extent, list);
571 list_del(&async_extent->list);
572
573 io_tree = &BTRFS_I(inode)->io_tree;
574
575 retry:
576 /* did the compression code fall back to uncompressed IO? */
577 if (!async_extent->pages) {
578 int page_started = 0;
579 unsigned long nr_written = 0;
580
581 lock_extent(io_tree, async_extent->start,
582 async_extent->start +
583 async_extent->ram_size - 1, GFP_NOFS);
584
585 /* allocate blocks */
586 ret = cow_file_range(inode, async_cow->locked_page,
587 async_extent->start,
588 async_extent->start +
589 async_extent->ram_size - 1,
590 &page_started, &nr_written, 0);
591
592 /*
593 * if page_started, cow_file_range inserted an
594 * inline extent and took care of all the unlocking
595 * and IO for us. Otherwise, we need to submit
596 * all those pages down to the drive.
597 */
598 if (!page_started && !ret)
599 extent_write_locked_range(io_tree,
600 inode, async_extent->start,
601 async_extent->start +
602 async_extent->ram_size - 1,
603 btrfs_get_extent,
604 WB_SYNC_ALL);
605 kfree(async_extent);
606 cond_resched();
607 continue;
608 }
609
610 lock_extent(io_tree, async_extent->start,
611 async_extent->start + async_extent->ram_size - 1,
612 GFP_NOFS);
613
614 trans = btrfs_join_transaction(root, 1);
615 BUG_ON(IS_ERR(trans));
616 ret = btrfs_reserve_extent(trans, root,
617 async_extent->compressed_size,
618 async_extent->compressed_size,
619 0, alloc_hint,
620 (u64)-1, &ins, 1);
621 btrfs_end_transaction(trans, root);
622
623 if (ret) {
624 int i;
625 for (i = 0; i < async_extent->nr_pages; i++) {
626 WARN_ON(async_extent->pages[i]->mapping);
627 page_cache_release(async_extent->pages[i]);
628 }
629 kfree(async_extent->pages);
630 async_extent->nr_pages = 0;
631 async_extent->pages = NULL;
632 unlock_extent(io_tree, async_extent->start,
633 async_extent->start +
634 async_extent->ram_size - 1, GFP_NOFS);
635 goto retry;
636 }
637
638 /*
639 * here we're doing allocation and writeback of the
640 * compressed pages
641 */
642 btrfs_drop_extent_cache(inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1, 0);
645
646 em = alloc_extent_map(GFP_NOFS);
647 BUG_ON(!em);
648 em->start = async_extent->start;
649 em->len = async_extent->ram_size;
650 em->orig_start = em->start;
651
652 em->block_start = ins.objectid;
653 em->block_len = ins.offset;
654 em->bdev = root->fs_info->fs_devices->latest_bdev;
655 em->compress_type = async_extent->compress_type;
656 set_bit(EXTENT_FLAG_PINNED, &em->flags);
657 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
658
659 while (1) {
660 write_lock(&em_tree->lock);
661 ret = add_extent_mapping(em_tree, em);
662 write_unlock(&em_tree->lock);
663 if (ret != -EEXIST) {
664 free_extent_map(em);
665 break;
666 }
667 btrfs_drop_extent_cache(inode, async_extent->start,
668 async_extent->start +
669 async_extent->ram_size - 1, 0);
670 }
671
672 ret = btrfs_add_ordered_extent_compress(inode,
673 async_extent->start,
674 ins.objectid,
675 async_extent->ram_size,
676 ins.offset,
677 BTRFS_ORDERED_COMPRESSED,
678 async_extent->compress_type);
679 BUG_ON(ret);
680
681 /*
682 * clear dirty, set writeback and unlock the pages.
683 */
684 extent_clear_unlock_delalloc(inode,
685 &BTRFS_I(inode)->io_tree,
686 async_extent->start,
687 async_extent->start +
688 async_extent->ram_size - 1,
689 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
690 EXTENT_CLEAR_UNLOCK |
691 EXTENT_CLEAR_DELALLOC |
692 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
693
694 ret = btrfs_submit_compressed_write(inode,
695 async_extent->start,
696 async_extent->ram_size,
697 ins.objectid,
698 ins.offset, async_extent->pages,
699 async_extent->nr_pages);
700
701 BUG_ON(ret);
702 alloc_hint = ins.objectid + ins.offset;
703 kfree(async_extent);
704 cond_resched();
705 }
706
707 return 0;
708 }
709
710 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
711 u64 num_bytes)
712 {
713 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
714 struct extent_map *em;
715 u64 alloc_hint = 0;
716
717 read_lock(&em_tree->lock);
718 em = search_extent_mapping(em_tree, start, num_bytes);
719 if (em) {
720 /*
721 * if block start isn't an actual block number then find the
722 * first block in this inode and use that as a hint. If that
723 * block is also bogus then just don't worry about it.
724 */
725 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
726 free_extent_map(em);
727 em = search_extent_mapping(em_tree, 0, 0);
728 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
729 alloc_hint = em->block_start;
730 if (em)
731 free_extent_map(em);
732 } else {
733 alloc_hint = em->block_start;
734 free_extent_map(em);
735 }
736 }
737 read_unlock(&em_tree->lock);
738
739 return alloc_hint;
740 }
741
742 /*
743 * when extent_io.c finds a delayed allocation range in the file,
744 * the call backs end up in this code. The basic idea is to
745 * allocate extents on disk for the range, and create ordered data structs
746 * in ram to track those extents.
747 *
748 * locked_page is the page that writepage had locked already. We use
749 * it to make sure we don't do extra locks or unlocks.
750 *
751 * *page_started is set to one if we unlock locked_page and do everything
752 * required to start IO on it. It may be clean and already done with
753 * IO when we return.
754 */
755 static noinline int cow_file_range(struct inode *inode,
756 struct page *locked_page,
757 u64 start, u64 end, int *page_started,
758 unsigned long *nr_written,
759 int unlock)
760 {
761 struct btrfs_root *root = BTRFS_I(inode)->root;
762 struct btrfs_trans_handle *trans;
763 u64 alloc_hint = 0;
764 u64 num_bytes;
765 unsigned long ram_size;
766 u64 disk_num_bytes;
767 u64 cur_alloc_size;
768 u64 blocksize = root->sectorsize;
769 struct btrfs_key ins;
770 struct extent_map *em;
771 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
772 int ret = 0;
773
774 BUG_ON(root == root->fs_info->tree_root);
775 trans = btrfs_join_transaction(root, 1);
776 BUG_ON(IS_ERR(trans));
777 btrfs_set_trans_block_group(trans, inode);
778 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
779
780 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
781 num_bytes = max(blocksize, num_bytes);
782 disk_num_bytes = num_bytes;
783 ret = 0;
784
785 if (start == 0) {
786 /* lets try to make an inline extent */
787 ret = cow_file_range_inline(trans, root, inode,
788 start, end, 0, NULL);
789 if (ret == 0) {
790 extent_clear_unlock_delalloc(inode,
791 &BTRFS_I(inode)->io_tree,
792 start, end, NULL,
793 EXTENT_CLEAR_UNLOCK_PAGE |
794 EXTENT_CLEAR_UNLOCK |
795 EXTENT_CLEAR_DELALLOC |
796 EXTENT_CLEAR_DIRTY |
797 EXTENT_SET_WRITEBACK |
798 EXTENT_END_WRITEBACK);
799
800 *nr_written = *nr_written +
801 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
802 *page_started = 1;
803 ret = 0;
804 goto out;
805 }
806 }
807
808 BUG_ON(disk_num_bytes >
809 btrfs_super_total_bytes(&root->fs_info->super_copy));
810
811 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
812 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
813
814 while (disk_num_bytes > 0) {
815 unsigned long op;
816
817 cur_alloc_size = disk_num_bytes;
818 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
819 root->sectorsize, 0, alloc_hint,
820 (u64)-1, &ins, 1);
821 BUG_ON(ret);
822
823 em = alloc_extent_map(GFP_NOFS);
824 BUG_ON(!em);
825 em->start = start;
826 em->orig_start = em->start;
827 ram_size = ins.offset;
828 em->len = ins.offset;
829
830 em->block_start = ins.objectid;
831 em->block_len = ins.offset;
832 em->bdev = root->fs_info->fs_devices->latest_bdev;
833 set_bit(EXTENT_FLAG_PINNED, &em->flags);
834
835 while (1) {
836 write_lock(&em_tree->lock);
837 ret = add_extent_mapping(em_tree, em);
838 write_unlock(&em_tree->lock);
839 if (ret != -EEXIST) {
840 free_extent_map(em);
841 break;
842 }
843 btrfs_drop_extent_cache(inode, start,
844 start + ram_size - 1, 0);
845 }
846
847 cur_alloc_size = ins.offset;
848 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
849 ram_size, cur_alloc_size, 0);
850 BUG_ON(ret);
851
852 if (root->root_key.objectid ==
853 BTRFS_DATA_RELOC_TREE_OBJECTID) {
854 ret = btrfs_reloc_clone_csums(inode, start,
855 cur_alloc_size);
856 BUG_ON(ret);
857 }
858
859 if (disk_num_bytes < cur_alloc_size)
860 break;
861
862 /* we're not doing compressed IO, don't unlock the first
863 * page (which the caller expects to stay locked), don't
864 * clear any dirty bits and don't set any writeback bits
865 *
866 * Do set the Private2 bit so we know this page was properly
867 * setup for writepage
868 */
869 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
870 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
871 EXTENT_SET_PRIVATE2;
872
873 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
874 start, start + ram_size - 1,
875 locked_page, op);
876 disk_num_bytes -= cur_alloc_size;
877 num_bytes -= cur_alloc_size;
878 alloc_hint = ins.objectid + ins.offset;
879 start += cur_alloc_size;
880 }
881 out:
882 ret = 0;
883 btrfs_end_transaction(trans, root);
884
885 return ret;
886 }
887
888 /*
889 * work queue call back to started compression on a file and pages
890 */
891 static noinline void async_cow_start(struct btrfs_work *work)
892 {
893 struct async_cow *async_cow;
894 int num_added = 0;
895 async_cow = container_of(work, struct async_cow, work);
896
897 compress_file_range(async_cow->inode, async_cow->locked_page,
898 async_cow->start, async_cow->end, async_cow,
899 &num_added);
900 if (num_added == 0)
901 async_cow->inode = NULL;
902 }
903
904 /*
905 * work queue call back to submit previously compressed pages
906 */
907 static noinline void async_cow_submit(struct btrfs_work *work)
908 {
909 struct async_cow *async_cow;
910 struct btrfs_root *root;
911 unsigned long nr_pages;
912
913 async_cow = container_of(work, struct async_cow, work);
914
915 root = async_cow->root;
916 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
917 PAGE_CACHE_SHIFT;
918
919 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
920
921 if (atomic_read(&root->fs_info->async_delalloc_pages) <
922 5 * 1042 * 1024 &&
923 waitqueue_active(&root->fs_info->async_submit_wait))
924 wake_up(&root->fs_info->async_submit_wait);
925
926 if (async_cow->inode)
927 submit_compressed_extents(async_cow->inode, async_cow);
928 }
929
930 static noinline void async_cow_free(struct btrfs_work *work)
931 {
932 struct async_cow *async_cow;
933 async_cow = container_of(work, struct async_cow, work);
934 kfree(async_cow);
935 }
936
937 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
938 u64 start, u64 end, int *page_started,
939 unsigned long *nr_written)
940 {
941 struct async_cow *async_cow;
942 struct btrfs_root *root = BTRFS_I(inode)->root;
943 unsigned long nr_pages;
944 u64 cur_end;
945 int limit = 10 * 1024 * 1042;
946
947 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
948 1, 0, NULL, GFP_NOFS);
949 while (start < end) {
950 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
951 async_cow->inode = inode;
952 async_cow->root = root;
953 async_cow->locked_page = locked_page;
954 async_cow->start = start;
955
956 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
957 cur_end = end;
958 else
959 cur_end = min(end, start + 512 * 1024 - 1);
960
961 async_cow->end = cur_end;
962 INIT_LIST_HEAD(&async_cow->extents);
963
964 async_cow->work.func = async_cow_start;
965 async_cow->work.ordered_func = async_cow_submit;
966 async_cow->work.ordered_free = async_cow_free;
967 async_cow->work.flags = 0;
968
969 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
970 PAGE_CACHE_SHIFT;
971 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
972
973 btrfs_queue_worker(&root->fs_info->delalloc_workers,
974 &async_cow->work);
975
976 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
977 wait_event(root->fs_info->async_submit_wait,
978 (atomic_read(&root->fs_info->async_delalloc_pages) <
979 limit));
980 }
981
982 while (atomic_read(&root->fs_info->async_submit_draining) &&
983 atomic_read(&root->fs_info->async_delalloc_pages)) {
984 wait_event(root->fs_info->async_submit_wait,
985 (atomic_read(&root->fs_info->async_delalloc_pages) ==
986 0));
987 }
988
989 *nr_written += nr_pages;
990 start = cur_end + 1;
991 }
992 *page_started = 1;
993 return 0;
994 }
995
996 static noinline int csum_exist_in_range(struct btrfs_root *root,
997 u64 bytenr, u64 num_bytes)
998 {
999 int ret;
1000 struct btrfs_ordered_sum *sums;
1001 LIST_HEAD(list);
1002
1003 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1004 bytenr + num_bytes - 1, &list);
1005 if (ret == 0 && list_empty(&list))
1006 return 0;
1007
1008 while (!list_empty(&list)) {
1009 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1010 list_del(&sums->list);
1011 kfree(sums);
1012 }
1013 return 1;
1014 }
1015
1016 /*
1017 * when nowcow writeback call back. This checks for snapshots or COW copies
1018 * of the extents that exist in the file, and COWs the file as required.
1019 *
1020 * If no cow copies or snapshots exist, we write directly to the existing
1021 * blocks on disk
1022 */
1023 static noinline int run_delalloc_nocow(struct inode *inode,
1024 struct page *locked_page,
1025 u64 start, u64 end, int *page_started, int force,
1026 unsigned long *nr_written)
1027 {
1028 struct btrfs_root *root = BTRFS_I(inode)->root;
1029 struct btrfs_trans_handle *trans;
1030 struct extent_buffer *leaf;
1031 struct btrfs_path *path;
1032 struct btrfs_file_extent_item *fi;
1033 struct btrfs_key found_key;
1034 u64 cow_start;
1035 u64 cur_offset;
1036 u64 extent_end;
1037 u64 extent_offset;
1038 u64 disk_bytenr;
1039 u64 num_bytes;
1040 int extent_type;
1041 int ret;
1042 int type;
1043 int nocow;
1044 int check_prev = 1;
1045 bool nolock = false;
1046
1047 path = btrfs_alloc_path();
1048 BUG_ON(!path);
1049 if (root == root->fs_info->tree_root) {
1050 nolock = true;
1051 trans = btrfs_join_transaction_nolock(root, 1);
1052 } else {
1053 trans = btrfs_join_transaction(root, 1);
1054 }
1055 BUG_ON(IS_ERR(trans));
1056
1057 cow_start = (u64)-1;
1058 cur_offset = start;
1059 while (1) {
1060 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1061 cur_offset, 0);
1062 BUG_ON(ret < 0);
1063 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1064 leaf = path->nodes[0];
1065 btrfs_item_key_to_cpu(leaf, &found_key,
1066 path->slots[0] - 1);
1067 if (found_key.objectid == inode->i_ino &&
1068 found_key.type == BTRFS_EXTENT_DATA_KEY)
1069 path->slots[0]--;
1070 }
1071 check_prev = 0;
1072 next_slot:
1073 leaf = path->nodes[0];
1074 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1075 ret = btrfs_next_leaf(root, path);
1076 if (ret < 0)
1077 BUG_ON(1);
1078 if (ret > 0)
1079 break;
1080 leaf = path->nodes[0];
1081 }
1082
1083 nocow = 0;
1084 disk_bytenr = 0;
1085 num_bytes = 0;
1086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1087
1088 if (found_key.objectid > inode->i_ino ||
1089 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1090 found_key.offset > end)
1091 break;
1092
1093 if (found_key.offset > cur_offset) {
1094 extent_end = found_key.offset;
1095 extent_type = 0;
1096 goto out_check;
1097 }
1098
1099 fi = btrfs_item_ptr(leaf, path->slots[0],
1100 struct btrfs_file_extent_item);
1101 extent_type = btrfs_file_extent_type(leaf, fi);
1102
1103 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1104 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1105 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106 extent_offset = btrfs_file_extent_offset(leaf, fi);
1107 extent_end = found_key.offset +
1108 btrfs_file_extent_num_bytes(leaf, fi);
1109 if (extent_end <= start) {
1110 path->slots[0]++;
1111 goto next_slot;
1112 }
1113 if (disk_bytenr == 0)
1114 goto out_check;
1115 if (btrfs_file_extent_compression(leaf, fi) ||
1116 btrfs_file_extent_encryption(leaf, fi) ||
1117 btrfs_file_extent_other_encoding(leaf, fi))
1118 goto out_check;
1119 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1120 goto out_check;
1121 if (btrfs_extent_readonly(root, disk_bytenr))
1122 goto out_check;
1123 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1124 found_key.offset -
1125 extent_offset, disk_bytenr))
1126 goto out_check;
1127 disk_bytenr += extent_offset;
1128 disk_bytenr += cur_offset - found_key.offset;
1129 num_bytes = min(end + 1, extent_end) - cur_offset;
1130 /*
1131 * force cow if csum exists in the range.
1132 * this ensure that csum for a given extent are
1133 * either valid or do not exist.
1134 */
1135 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1136 goto out_check;
1137 nocow = 1;
1138 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1139 extent_end = found_key.offset +
1140 btrfs_file_extent_inline_len(leaf, fi);
1141 extent_end = ALIGN(extent_end, root->sectorsize);
1142 } else {
1143 BUG_ON(1);
1144 }
1145 out_check:
1146 if (extent_end <= start) {
1147 path->slots[0]++;
1148 goto next_slot;
1149 }
1150 if (!nocow) {
1151 if (cow_start == (u64)-1)
1152 cow_start = cur_offset;
1153 cur_offset = extent_end;
1154 if (cur_offset > end)
1155 break;
1156 path->slots[0]++;
1157 goto next_slot;
1158 }
1159
1160 btrfs_release_path(root, path);
1161 if (cow_start != (u64)-1) {
1162 ret = cow_file_range(inode, locked_page, cow_start,
1163 found_key.offset - 1, page_started,
1164 nr_written, 1);
1165 BUG_ON(ret);
1166 cow_start = (u64)-1;
1167 }
1168
1169 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1170 struct extent_map *em;
1171 struct extent_map_tree *em_tree;
1172 em_tree = &BTRFS_I(inode)->extent_tree;
1173 em = alloc_extent_map(GFP_NOFS);
1174 BUG_ON(!em);
1175 em->start = cur_offset;
1176 em->orig_start = em->start;
1177 em->len = num_bytes;
1178 em->block_len = num_bytes;
1179 em->block_start = disk_bytenr;
1180 em->bdev = root->fs_info->fs_devices->latest_bdev;
1181 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1182 while (1) {
1183 write_lock(&em_tree->lock);
1184 ret = add_extent_mapping(em_tree, em);
1185 write_unlock(&em_tree->lock);
1186 if (ret != -EEXIST) {
1187 free_extent_map(em);
1188 break;
1189 }
1190 btrfs_drop_extent_cache(inode, em->start,
1191 em->start + em->len - 1, 0);
1192 }
1193 type = BTRFS_ORDERED_PREALLOC;
1194 } else {
1195 type = BTRFS_ORDERED_NOCOW;
1196 }
1197
1198 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1199 num_bytes, num_bytes, type);
1200 BUG_ON(ret);
1201
1202 if (root->root_key.objectid ==
1203 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1204 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1205 num_bytes);
1206 BUG_ON(ret);
1207 }
1208
1209 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1210 cur_offset, cur_offset + num_bytes - 1,
1211 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1212 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1213 EXTENT_SET_PRIVATE2);
1214 cur_offset = extent_end;
1215 if (cur_offset > end)
1216 break;
1217 }
1218 btrfs_release_path(root, path);
1219
1220 if (cur_offset <= end && cow_start == (u64)-1)
1221 cow_start = cur_offset;
1222 if (cow_start != (u64)-1) {
1223 ret = cow_file_range(inode, locked_page, cow_start, end,
1224 page_started, nr_written, 1);
1225 BUG_ON(ret);
1226 }
1227
1228 if (nolock) {
1229 ret = btrfs_end_transaction_nolock(trans, root);
1230 BUG_ON(ret);
1231 } else {
1232 ret = btrfs_end_transaction(trans, root);
1233 BUG_ON(ret);
1234 }
1235 btrfs_free_path(path);
1236 return 0;
1237 }
1238
1239 /*
1240 * extent_io.c call back to do delayed allocation processing
1241 */
1242 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1243 u64 start, u64 end, int *page_started,
1244 unsigned long *nr_written)
1245 {
1246 int ret;
1247 struct btrfs_root *root = BTRFS_I(inode)->root;
1248
1249 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1250 ret = run_delalloc_nocow(inode, locked_page, start, end,
1251 page_started, 1, nr_written);
1252 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1253 ret = run_delalloc_nocow(inode, locked_page, start, end,
1254 page_started, 0, nr_written);
1255 else if (!btrfs_test_opt(root, COMPRESS) &&
1256 !(BTRFS_I(inode)->force_compress))
1257 ret = cow_file_range(inode, locked_page, start, end,
1258 page_started, nr_written, 1);
1259 else
1260 ret = cow_file_range_async(inode, locked_page, start, end,
1261 page_started, nr_written);
1262 return ret;
1263 }
1264
1265 static int btrfs_split_extent_hook(struct inode *inode,
1266 struct extent_state *orig, u64 split)
1267 {
1268 /* not delalloc, ignore it */
1269 if (!(orig->state & EXTENT_DELALLOC))
1270 return 0;
1271
1272 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1273 return 0;
1274 }
1275
1276 /*
1277 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1278 * extents so we can keep track of new extents that are just merged onto old
1279 * extents, such as when we are doing sequential writes, so we can properly
1280 * account for the metadata space we'll need.
1281 */
1282 static int btrfs_merge_extent_hook(struct inode *inode,
1283 struct extent_state *new,
1284 struct extent_state *other)
1285 {
1286 /* not delalloc, ignore it */
1287 if (!(other->state & EXTENT_DELALLOC))
1288 return 0;
1289
1290 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1291 return 0;
1292 }
1293
1294 /*
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1298 */
1299 static int btrfs_set_bit_hook(struct inode *inode,
1300 struct extent_state *state, int *bits)
1301 {
1302
1303 /*
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1307 */
1308 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1309 struct btrfs_root *root = BTRFS_I(inode)->root;
1310 u64 len = state->end + 1 - state->start;
1311 int do_list = (root->root_key.objectid !=
1312 BTRFS_ROOT_TREE_OBJECTID);
1313
1314 if (*bits & EXTENT_FIRST_DELALLOC)
1315 *bits &= ~EXTENT_FIRST_DELALLOC;
1316 else
1317 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1318
1319 spin_lock(&root->fs_info->delalloc_lock);
1320 BTRFS_I(inode)->delalloc_bytes += len;
1321 root->fs_info->delalloc_bytes += len;
1322 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1323 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1324 &root->fs_info->delalloc_inodes);
1325 }
1326 spin_unlock(&root->fs_info->delalloc_lock);
1327 }
1328 return 0;
1329 }
1330
1331 /*
1332 * extent_io.c clear_bit_hook, see set_bit_hook for why
1333 */
1334 static int btrfs_clear_bit_hook(struct inode *inode,
1335 struct extent_state *state, int *bits)
1336 {
1337 /*
1338 * set_bit and clear bit hooks normally require _irqsave/restore
1339 * but in this case, we are only testeing for the DELALLOC
1340 * bit, which is only set or cleared with irqs on
1341 */
1342 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1343 struct btrfs_root *root = BTRFS_I(inode)->root;
1344 u64 len = state->end + 1 - state->start;
1345 int do_list = (root->root_key.objectid !=
1346 BTRFS_ROOT_TREE_OBJECTID);
1347
1348 if (*bits & EXTENT_FIRST_DELALLOC)
1349 *bits &= ~EXTENT_FIRST_DELALLOC;
1350 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1351 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1352
1353 if (*bits & EXTENT_DO_ACCOUNTING)
1354 btrfs_delalloc_release_metadata(inode, len);
1355
1356 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1357 && do_list)
1358 btrfs_free_reserved_data_space(inode, len);
1359
1360 spin_lock(&root->fs_info->delalloc_lock);
1361 root->fs_info->delalloc_bytes -= len;
1362 BTRFS_I(inode)->delalloc_bytes -= len;
1363
1364 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1365 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1366 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1367 }
1368 spin_unlock(&root->fs_info->delalloc_lock);
1369 }
1370 return 0;
1371 }
1372
1373 /*
1374 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1375 * we don't create bios that span stripes or chunks
1376 */
1377 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1378 size_t size, struct bio *bio,
1379 unsigned long bio_flags)
1380 {
1381 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1382 struct btrfs_mapping_tree *map_tree;
1383 u64 logical = (u64)bio->bi_sector << 9;
1384 u64 length = 0;
1385 u64 map_length;
1386 int ret;
1387
1388 if (bio_flags & EXTENT_BIO_COMPRESSED)
1389 return 0;
1390
1391 length = bio->bi_size;
1392 map_tree = &root->fs_info->mapping_tree;
1393 map_length = length;
1394 ret = btrfs_map_block(map_tree, READ, logical,
1395 &map_length, NULL, 0);
1396
1397 if (map_length < length + size)
1398 return 1;
1399 return ret;
1400 }
1401
1402 /*
1403 * in order to insert checksums into the metadata in large chunks,
1404 * we wait until bio submission time. All the pages in the bio are
1405 * checksummed and sums are attached onto the ordered extent record.
1406 *
1407 * At IO completion time the cums attached on the ordered extent record
1408 * are inserted into the btree
1409 */
1410 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1411 struct bio *bio, int mirror_num,
1412 unsigned long bio_flags,
1413 u64 bio_offset)
1414 {
1415 struct btrfs_root *root = BTRFS_I(inode)->root;
1416 int ret = 0;
1417
1418 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1419 BUG_ON(ret);
1420 return 0;
1421 }
1422
1423 /*
1424 * in order to insert checksums into the metadata in large chunks,
1425 * we wait until bio submission time. All the pages in the bio are
1426 * checksummed and sums are attached onto the ordered extent record.
1427 *
1428 * At IO completion time the cums attached on the ordered extent record
1429 * are inserted into the btree
1430 */
1431 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1432 int mirror_num, unsigned long bio_flags,
1433 u64 bio_offset)
1434 {
1435 struct btrfs_root *root = BTRFS_I(inode)->root;
1436 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1437 }
1438
1439 /*
1440 * extent_io.c submission hook. This does the right thing for csum calculation
1441 * on write, or reading the csums from the tree before a read
1442 */
1443 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1444 int mirror_num, unsigned long bio_flags,
1445 u64 bio_offset)
1446 {
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 int ret = 0;
1449 int skip_sum;
1450
1451 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1452
1453 if (root == root->fs_info->tree_root)
1454 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1455 else
1456 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1457 BUG_ON(ret);
1458
1459 if (!(rw & REQ_WRITE)) {
1460 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1461 return btrfs_submit_compressed_read(inode, bio,
1462 mirror_num, bio_flags);
1463 } else if (!skip_sum)
1464 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1465 goto mapit;
1466 } else if (!skip_sum) {
1467 /* csum items have already been cloned */
1468 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1469 goto mapit;
1470 /* we're doing a write, do the async checksumming */
1471 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1472 inode, rw, bio, mirror_num,
1473 bio_flags, bio_offset,
1474 __btrfs_submit_bio_start,
1475 __btrfs_submit_bio_done);
1476 }
1477
1478 mapit:
1479 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1480 }
1481
1482 /*
1483 * given a list of ordered sums record them in the inode. This happens
1484 * at IO completion time based on sums calculated at bio submission time.
1485 */
1486 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1487 struct inode *inode, u64 file_offset,
1488 struct list_head *list)
1489 {
1490 struct btrfs_ordered_sum *sum;
1491
1492 btrfs_set_trans_block_group(trans, inode);
1493
1494 list_for_each_entry(sum, list, list) {
1495 btrfs_csum_file_blocks(trans,
1496 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1497 }
1498 return 0;
1499 }
1500
1501 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1502 struct extent_state **cached_state)
1503 {
1504 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1505 WARN_ON(1);
1506 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1507 cached_state, GFP_NOFS);
1508 }
1509
1510 /* see btrfs_writepage_start_hook for details on why this is required */
1511 struct btrfs_writepage_fixup {
1512 struct page *page;
1513 struct btrfs_work work;
1514 };
1515
1516 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1517 {
1518 struct btrfs_writepage_fixup *fixup;
1519 struct btrfs_ordered_extent *ordered;
1520 struct extent_state *cached_state = NULL;
1521 struct page *page;
1522 struct inode *inode;
1523 u64 page_start;
1524 u64 page_end;
1525
1526 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1527 page = fixup->page;
1528 again:
1529 lock_page(page);
1530 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1531 ClearPageChecked(page);
1532 goto out_page;
1533 }
1534
1535 inode = page->mapping->host;
1536 page_start = page_offset(page);
1537 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1538
1539 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1540 &cached_state, GFP_NOFS);
1541
1542 /* already ordered? We're done */
1543 if (PagePrivate2(page))
1544 goto out;
1545
1546 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1547 if (ordered) {
1548 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1549 page_end, &cached_state, GFP_NOFS);
1550 unlock_page(page);
1551 btrfs_start_ordered_extent(inode, ordered, 1);
1552 goto again;
1553 }
1554
1555 BUG();
1556 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1557 ClearPageChecked(page);
1558 out:
1559 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1560 &cached_state, GFP_NOFS);
1561 out_page:
1562 unlock_page(page);
1563 page_cache_release(page);
1564 kfree(fixup);
1565 }
1566
1567 /*
1568 * There are a few paths in the higher layers of the kernel that directly
1569 * set the page dirty bit without asking the filesystem if it is a
1570 * good idea. This causes problems because we want to make sure COW
1571 * properly happens and the data=ordered rules are followed.
1572 *
1573 * In our case any range that doesn't have the ORDERED bit set
1574 * hasn't been properly setup for IO. We kick off an async process
1575 * to fix it up. The async helper will wait for ordered extents, set
1576 * the delalloc bit and make it safe to write the page.
1577 */
1578 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1579 {
1580 struct inode *inode = page->mapping->host;
1581 struct btrfs_writepage_fixup *fixup;
1582 struct btrfs_root *root = BTRFS_I(inode)->root;
1583
1584 /* this page is properly in the ordered list */
1585 if (TestClearPagePrivate2(page))
1586 return 0;
1587
1588 if (PageChecked(page))
1589 return -EAGAIN;
1590
1591 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1592 if (!fixup)
1593 return -EAGAIN;
1594
1595 SetPageChecked(page);
1596 page_cache_get(page);
1597 fixup->work.func = btrfs_writepage_fixup_worker;
1598 fixup->page = page;
1599 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1600 return -EAGAIN;
1601 }
1602
1603 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1604 struct inode *inode, u64 file_pos,
1605 u64 disk_bytenr, u64 disk_num_bytes,
1606 u64 num_bytes, u64 ram_bytes,
1607 u8 compression, u8 encryption,
1608 u16 other_encoding, int extent_type)
1609 {
1610 struct btrfs_root *root = BTRFS_I(inode)->root;
1611 struct btrfs_file_extent_item *fi;
1612 struct btrfs_path *path;
1613 struct extent_buffer *leaf;
1614 struct btrfs_key ins;
1615 u64 hint;
1616 int ret;
1617
1618 path = btrfs_alloc_path();
1619 BUG_ON(!path);
1620
1621 path->leave_spinning = 1;
1622
1623 /*
1624 * we may be replacing one extent in the tree with another.
1625 * The new extent is pinned in the extent map, and we don't want
1626 * to drop it from the cache until it is completely in the btree.
1627 *
1628 * So, tell btrfs_drop_extents to leave this extent in the cache.
1629 * the caller is expected to unpin it and allow it to be merged
1630 * with the others.
1631 */
1632 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1633 &hint, 0);
1634 BUG_ON(ret);
1635
1636 ins.objectid = inode->i_ino;
1637 ins.offset = file_pos;
1638 ins.type = BTRFS_EXTENT_DATA_KEY;
1639 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1640 BUG_ON(ret);
1641 leaf = path->nodes[0];
1642 fi = btrfs_item_ptr(leaf, path->slots[0],
1643 struct btrfs_file_extent_item);
1644 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1645 btrfs_set_file_extent_type(leaf, fi, extent_type);
1646 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1647 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1648 btrfs_set_file_extent_offset(leaf, fi, 0);
1649 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1650 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1651 btrfs_set_file_extent_compression(leaf, fi, compression);
1652 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1653 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1654
1655 btrfs_unlock_up_safe(path, 1);
1656 btrfs_set_lock_blocking(leaf);
1657
1658 btrfs_mark_buffer_dirty(leaf);
1659
1660 inode_add_bytes(inode, num_bytes);
1661
1662 ins.objectid = disk_bytenr;
1663 ins.offset = disk_num_bytes;
1664 ins.type = BTRFS_EXTENT_ITEM_KEY;
1665 ret = btrfs_alloc_reserved_file_extent(trans, root,
1666 root->root_key.objectid,
1667 inode->i_ino, file_pos, &ins);
1668 BUG_ON(ret);
1669 btrfs_free_path(path);
1670
1671 return 0;
1672 }
1673
1674 /*
1675 * helper function for btrfs_finish_ordered_io, this
1676 * just reads in some of the csum leaves to prime them into ram
1677 * before we start the transaction. It limits the amount of btree
1678 * reads required while inside the transaction.
1679 */
1680 /* as ordered data IO finishes, this gets called so we can finish
1681 * an ordered extent if the range of bytes in the file it covers are
1682 * fully written.
1683 */
1684 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1685 {
1686 struct btrfs_root *root = BTRFS_I(inode)->root;
1687 struct btrfs_trans_handle *trans = NULL;
1688 struct btrfs_ordered_extent *ordered_extent = NULL;
1689 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1690 struct extent_state *cached_state = NULL;
1691 int compress_type = 0;
1692 int ret;
1693 bool nolock = false;
1694
1695 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1696 end - start + 1);
1697 if (!ret)
1698 return 0;
1699 BUG_ON(!ordered_extent);
1700
1701 nolock = (root == root->fs_info->tree_root);
1702
1703 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1704 BUG_ON(!list_empty(&ordered_extent->list));
1705 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1706 if (!ret) {
1707 if (nolock)
1708 trans = btrfs_join_transaction_nolock(root, 1);
1709 else
1710 trans = btrfs_join_transaction(root, 1);
1711 BUG_ON(IS_ERR(trans));
1712 btrfs_set_trans_block_group(trans, inode);
1713 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1714 ret = btrfs_update_inode(trans, root, inode);
1715 BUG_ON(ret);
1716 }
1717 goto out;
1718 }
1719
1720 lock_extent_bits(io_tree, ordered_extent->file_offset,
1721 ordered_extent->file_offset + ordered_extent->len - 1,
1722 0, &cached_state, GFP_NOFS);
1723
1724 if (nolock)
1725 trans = btrfs_join_transaction_nolock(root, 1);
1726 else
1727 trans = btrfs_join_transaction(root, 1);
1728 BUG_ON(IS_ERR(trans));
1729 btrfs_set_trans_block_group(trans, inode);
1730 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1731
1732 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1733 compress_type = ordered_extent->compress_type;
1734 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1735 BUG_ON(compress_type);
1736 ret = btrfs_mark_extent_written(trans, inode,
1737 ordered_extent->file_offset,
1738 ordered_extent->file_offset +
1739 ordered_extent->len);
1740 BUG_ON(ret);
1741 } else {
1742 BUG_ON(root == root->fs_info->tree_root);
1743 ret = insert_reserved_file_extent(trans, inode,
1744 ordered_extent->file_offset,
1745 ordered_extent->start,
1746 ordered_extent->disk_len,
1747 ordered_extent->len,
1748 ordered_extent->len,
1749 compress_type, 0, 0,
1750 BTRFS_FILE_EXTENT_REG);
1751 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1752 ordered_extent->file_offset,
1753 ordered_extent->len);
1754 BUG_ON(ret);
1755 }
1756 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1757 ordered_extent->file_offset +
1758 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1759
1760 add_pending_csums(trans, inode, ordered_extent->file_offset,
1761 &ordered_extent->list);
1762
1763 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1764 ret = btrfs_update_inode(trans, root, inode);
1765 BUG_ON(ret);
1766 out:
1767 if (nolock) {
1768 if (trans)
1769 btrfs_end_transaction_nolock(trans, root);
1770 } else {
1771 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1772 if (trans)
1773 btrfs_end_transaction(trans, root);
1774 }
1775
1776 /* once for us */
1777 btrfs_put_ordered_extent(ordered_extent);
1778 /* once for the tree */
1779 btrfs_put_ordered_extent(ordered_extent);
1780
1781 return 0;
1782 }
1783
1784 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1785 struct extent_state *state, int uptodate)
1786 {
1787 ClearPagePrivate2(page);
1788 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1789 }
1790
1791 /*
1792 * When IO fails, either with EIO or csum verification fails, we
1793 * try other mirrors that might have a good copy of the data. This
1794 * io_failure_record is used to record state as we go through all the
1795 * mirrors. If another mirror has good data, the page is set up to date
1796 * and things continue. If a good mirror can't be found, the original
1797 * bio end_io callback is called to indicate things have failed.
1798 */
1799 struct io_failure_record {
1800 struct page *page;
1801 u64 start;
1802 u64 len;
1803 u64 logical;
1804 unsigned long bio_flags;
1805 int last_mirror;
1806 };
1807
1808 static int btrfs_io_failed_hook(struct bio *failed_bio,
1809 struct page *page, u64 start, u64 end,
1810 struct extent_state *state)
1811 {
1812 struct io_failure_record *failrec = NULL;
1813 u64 private;
1814 struct extent_map *em;
1815 struct inode *inode = page->mapping->host;
1816 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1817 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1818 struct bio *bio;
1819 int num_copies;
1820 int ret;
1821 int rw;
1822 u64 logical;
1823
1824 ret = get_state_private(failure_tree, start, &private);
1825 if (ret) {
1826 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1827 if (!failrec)
1828 return -ENOMEM;
1829 failrec->start = start;
1830 failrec->len = end - start + 1;
1831 failrec->last_mirror = 0;
1832 failrec->bio_flags = 0;
1833
1834 read_lock(&em_tree->lock);
1835 em = lookup_extent_mapping(em_tree, start, failrec->len);
1836 if (em->start > start || em->start + em->len < start) {
1837 free_extent_map(em);
1838 em = NULL;
1839 }
1840 read_unlock(&em_tree->lock);
1841
1842 if (!em || IS_ERR(em)) {
1843 kfree(failrec);
1844 return -EIO;
1845 }
1846 logical = start - em->start;
1847 logical = em->block_start + logical;
1848 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1849 logical = em->block_start;
1850 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1851 extent_set_compress_type(&failrec->bio_flags,
1852 em->compress_type);
1853 }
1854 failrec->logical = logical;
1855 free_extent_map(em);
1856 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1857 EXTENT_DIRTY, GFP_NOFS);
1858 set_state_private(failure_tree, start,
1859 (u64)(unsigned long)failrec);
1860 } else {
1861 failrec = (struct io_failure_record *)(unsigned long)private;
1862 }
1863 num_copies = btrfs_num_copies(
1864 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1865 failrec->logical, failrec->len);
1866 failrec->last_mirror++;
1867 if (!state) {
1868 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1869 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1870 failrec->start,
1871 EXTENT_LOCKED);
1872 if (state && state->start != failrec->start)
1873 state = NULL;
1874 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1875 }
1876 if (!state || failrec->last_mirror > num_copies) {
1877 set_state_private(failure_tree, failrec->start, 0);
1878 clear_extent_bits(failure_tree, failrec->start,
1879 failrec->start + failrec->len - 1,
1880 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1881 kfree(failrec);
1882 return -EIO;
1883 }
1884 bio = bio_alloc(GFP_NOFS, 1);
1885 bio->bi_private = state;
1886 bio->bi_end_io = failed_bio->bi_end_io;
1887 bio->bi_sector = failrec->logical >> 9;
1888 bio->bi_bdev = failed_bio->bi_bdev;
1889 bio->bi_size = 0;
1890
1891 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1892 if (failed_bio->bi_rw & REQ_WRITE)
1893 rw = WRITE;
1894 else
1895 rw = READ;
1896
1897 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1898 failrec->last_mirror,
1899 failrec->bio_flags, 0);
1900 return 0;
1901 }
1902
1903 /*
1904 * each time an IO finishes, we do a fast check in the IO failure tree
1905 * to see if we need to process or clean up an io_failure_record
1906 */
1907 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1908 {
1909 u64 private;
1910 u64 private_failure;
1911 struct io_failure_record *failure;
1912 int ret;
1913
1914 private = 0;
1915 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1916 (u64)-1, 1, EXTENT_DIRTY)) {
1917 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1918 start, &private_failure);
1919 if (ret == 0) {
1920 failure = (struct io_failure_record *)(unsigned long)
1921 private_failure;
1922 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1923 failure->start, 0);
1924 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1925 failure->start,
1926 failure->start + failure->len - 1,
1927 EXTENT_DIRTY | EXTENT_LOCKED,
1928 GFP_NOFS);
1929 kfree(failure);
1930 }
1931 }
1932 return 0;
1933 }
1934
1935 /*
1936 * when reads are done, we need to check csums to verify the data is correct
1937 * if there's a match, we allow the bio to finish. If not, we go through
1938 * the io_failure_record routines to find good copies
1939 */
1940 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1941 struct extent_state *state)
1942 {
1943 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1944 struct inode *inode = page->mapping->host;
1945 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1946 char *kaddr;
1947 u64 private = ~(u32)0;
1948 int ret;
1949 struct btrfs_root *root = BTRFS_I(inode)->root;
1950 u32 csum = ~(u32)0;
1951
1952 if (PageChecked(page)) {
1953 ClearPageChecked(page);
1954 goto good;
1955 }
1956
1957 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1958 return 0;
1959
1960 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1961 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1962 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1963 GFP_NOFS);
1964 return 0;
1965 }
1966
1967 if (state && state->start == start) {
1968 private = state->private;
1969 ret = 0;
1970 } else {
1971 ret = get_state_private(io_tree, start, &private);
1972 }
1973 kaddr = kmap_atomic(page, KM_USER0);
1974 if (ret)
1975 goto zeroit;
1976
1977 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1978 btrfs_csum_final(csum, (char *)&csum);
1979 if (csum != private)
1980 goto zeroit;
1981
1982 kunmap_atomic(kaddr, KM_USER0);
1983 good:
1984 /* if the io failure tree for this inode is non-empty,
1985 * check to see if we've recovered from a failed IO
1986 */
1987 btrfs_clean_io_failures(inode, start);
1988 return 0;
1989
1990 zeroit:
1991 if (printk_ratelimit()) {
1992 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1993 "private %llu\n", page->mapping->host->i_ino,
1994 (unsigned long long)start, csum,
1995 (unsigned long long)private);
1996 }
1997 memset(kaddr + offset, 1, end - start + 1);
1998 flush_dcache_page(page);
1999 kunmap_atomic(kaddr, KM_USER0);
2000 if (private == 0)
2001 return 0;
2002 return -EIO;
2003 }
2004
2005 struct delayed_iput {
2006 struct list_head list;
2007 struct inode *inode;
2008 };
2009
2010 void btrfs_add_delayed_iput(struct inode *inode)
2011 {
2012 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2013 struct delayed_iput *delayed;
2014
2015 if (atomic_add_unless(&inode->i_count, -1, 1))
2016 return;
2017
2018 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2019 delayed->inode = inode;
2020
2021 spin_lock(&fs_info->delayed_iput_lock);
2022 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2023 spin_unlock(&fs_info->delayed_iput_lock);
2024 }
2025
2026 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2027 {
2028 LIST_HEAD(list);
2029 struct btrfs_fs_info *fs_info = root->fs_info;
2030 struct delayed_iput *delayed;
2031 int empty;
2032
2033 spin_lock(&fs_info->delayed_iput_lock);
2034 empty = list_empty(&fs_info->delayed_iputs);
2035 spin_unlock(&fs_info->delayed_iput_lock);
2036 if (empty)
2037 return;
2038
2039 down_read(&root->fs_info->cleanup_work_sem);
2040 spin_lock(&fs_info->delayed_iput_lock);
2041 list_splice_init(&fs_info->delayed_iputs, &list);
2042 spin_unlock(&fs_info->delayed_iput_lock);
2043
2044 while (!list_empty(&list)) {
2045 delayed = list_entry(list.next, struct delayed_iput, list);
2046 list_del(&delayed->list);
2047 iput(delayed->inode);
2048 kfree(delayed);
2049 }
2050 up_read(&root->fs_info->cleanup_work_sem);
2051 }
2052
2053 /*
2054 * calculate extra metadata reservation when snapshotting a subvolume
2055 * contains orphan files.
2056 */
2057 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2058 struct btrfs_pending_snapshot *pending,
2059 u64 *bytes_to_reserve)
2060 {
2061 struct btrfs_root *root;
2062 struct btrfs_block_rsv *block_rsv;
2063 u64 num_bytes;
2064 int index;
2065
2066 root = pending->root;
2067 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2068 return;
2069
2070 block_rsv = root->orphan_block_rsv;
2071
2072 /* orphan block reservation for the snapshot */
2073 num_bytes = block_rsv->size;
2074
2075 /*
2076 * after the snapshot is created, COWing tree blocks may use more
2077 * space than it frees. So we should make sure there is enough
2078 * reserved space.
2079 */
2080 index = trans->transid & 0x1;
2081 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2082 num_bytes += block_rsv->size -
2083 (block_rsv->reserved + block_rsv->freed[index]);
2084 }
2085
2086 *bytes_to_reserve += num_bytes;
2087 }
2088
2089 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2090 struct btrfs_pending_snapshot *pending)
2091 {
2092 struct btrfs_root *root = pending->root;
2093 struct btrfs_root *snap = pending->snap;
2094 struct btrfs_block_rsv *block_rsv;
2095 u64 num_bytes;
2096 int index;
2097 int ret;
2098
2099 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2100 return;
2101
2102 /* refill source subvolume's orphan block reservation */
2103 block_rsv = root->orphan_block_rsv;
2104 index = trans->transid & 0x1;
2105 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2106 num_bytes = block_rsv->size -
2107 (block_rsv->reserved + block_rsv->freed[index]);
2108 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2109 root->orphan_block_rsv,
2110 num_bytes);
2111 BUG_ON(ret);
2112 }
2113
2114 /* setup orphan block reservation for the snapshot */
2115 block_rsv = btrfs_alloc_block_rsv(snap);
2116 BUG_ON(!block_rsv);
2117
2118 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2119 snap->orphan_block_rsv = block_rsv;
2120
2121 num_bytes = root->orphan_block_rsv->size;
2122 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2123 block_rsv, num_bytes);
2124 BUG_ON(ret);
2125
2126 #if 0
2127 /* insert orphan item for the snapshot */
2128 WARN_ON(!root->orphan_item_inserted);
2129 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2130 snap->root_key.objectid);
2131 BUG_ON(ret);
2132 snap->orphan_item_inserted = 1;
2133 #endif
2134 }
2135
2136 enum btrfs_orphan_cleanup_state {
2137 ORPHAN_CLEANUP_STARTED = 1,
2138 ORPHAN_CLEANUP_DONE = 2,
2139 };
2140
2141 /*
2142 * This is called in transaction commmit time. If there are no orphan
2143 * files in the subvolume, it removes orphan item and frees block_rsv
2144 * structure.
2145 */
2146 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2147 struct btrfs_root *root)
2148 {
2149 int ret;
2150
2151 if (!list_empty(&root->orphan_list) ||
2152 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2153 return;
2154
2155 if (root->orphan_item_inserted &&
2156 btrfs_root_refs(&root->root_item) > 0) {
2157 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2158 root->root_key.objectid);
2159 BUG_ON(ret);
2160 root->orphan_item_inserted = 0;
2161 }
2162
2163 if (root->orphan_block_rsv) {
2164 WARN_ON(root->orphan_block_rsv->size > 0);
2165 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2166 root->orphan_block_rsv = NULL;
2167 }
2168 }
2169
2170 /*
2171 * This creates an orphan entry for the given inode in case something goes
2172 * wrong in the middle of an unlink/truncate.
2173 *
2174 * NOTE: caller of this function should reserve 5 units of metadata for
2175 * this function.
2176 */
2177 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2178 {
2179 struct btrfs_root *root = BTRFS_I(inode)->root;
2180 struct btrfs_block_rsv *block_rsv = NULL;
2181 int reserve = 0;
2182 int insert = 0;
2183 int ret;
2184
2185 if (!root->orphan_block_rsv) {
2186 block_rsv = btrfs_alloc_block_rsv(root);
2187 BUG_ON(!block_rsv);
2188 }
2189
2190 spin_lock(&root->orphan_lock);
2191 if (!root->orphan_block_rsv) {
2192 root->orphan_block_rsv = block_rsv;
2193 } else if (block_rsv) {
2194 btrfs_free_block_rsv(root, block_rsv);
2195 block_rsv = NULL;
2196 }
2197
2198 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2199 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2200 #if 0
2201 /*
2202 * For proper ENOSPC handling, we should do orphan
2203 * cleanup when mounting. But this introduces backward
2204 * compatibility issue.
2205 */
2206 if (!xchg(&root->orphan_item_inserted, 1))
2207 insert = 2;
2208 else
2209 insert = 1;
2210 #endif
2211 insert = 1;
2212 } else {
2213 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2214 }
2215
2216 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2217 BTRFS_I(inode)->orphan_meta_reserved = 1;
2218 reserve = 1;
2219 }
2220 spin_unlock(&root->orphan_lock);
2221
2222 if (block_rsv)
2223 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2224
2225 /* grab metadata reservation from transaction handle */
2226 if (reserve) {
2227 ret = btrfs_orphan_reserve_metadata(trans, inode);
2228 BUG_ON(ret);
2229 }
2230
2231 /* insert an orphan item to track this unlinked/truncated file */
2232 if (insert >= 1) {
2233 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2234 BUG_ON(ret);
2235 }
2236
2237 /* insert an orphan item to track subvolume contains orphan files */
2238 if (insert >= 2) {
2239 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2240 root->root_key.objectid);
2241 BUG_ON(ret);
2242 }
2243 return 0;
2244 }
2245
2246 /*
2247 * We have done the truncate/delete so we can go ahead and remove the orphan
2248 * item for this particular inode.
2249 */
2250 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2251 {
2252 struct btrfs_root *root = BTRFS_I(inode)->root;
2253 int delete_item = 0;
2254 int release_rsv = 0;
2255 int ret = 0;
2256
2257 spin_lock(&root->orphan_lock);
2258 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2259 list_del_init(&BTRFS_I(inode)->i_orphan);
2260 delete_item = 1;
2261 }
2262
2263 if (BTRFS_I(inode)->orphan_meta_reserved) {
2264 BTRFS_I(inode)->orphan_meta_reserved = 0;
2265 release_rsv = 1;
2266 }
2267 spin_unlock(&root->orphan_lock);
2268
2269 if (trans && delete_item) {
2270 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2271 BUG_ON(ret);
2272 }
2273
2274 if (release_rsv)
2275 btrfs_orphan_release_metadata(inode);
2276
2277 return 0;
2278 }
2279
2280 /*
2281 * this cleans up any orphans that may be left on the list from the last use
2282 * of this root.
2283 */
2284 void btrfs_orphan_cleanup(struct btrfs_root *root)
2285 {
2286 struct btrfs_path *path;
2287 struct extent_buffer *leaf;
2288 struct btrfs_key key, found_key;
2289 struct btrfs_trans_handle *trans;
2290 struct inode *inode;
2291 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2292
2293 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2294 return;
2295
2296 path = btrfs_alloc_path();
2297 BUG_ON(!path);
2298 path->reada = -1;
2299
2300 key.objectid = BTRFS_ORPHAN_OBJECTID;
2301 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2302 key.offset = (u64)-1;
2303
2304 while (1) {
2305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2306 if (ret < 0) {
2307 printk(KERN_ERR "Error searching slot for orphan: %d"
2308 "\n", ret);
2309 break;
2310 }
2311
2312 /*
2313 * if ret == 0 means we found what we were searching for, which
2314 * is weird, but possible, so only screw with path if we didnt
2315 * find the key and see if we have stuff that matches
2316 */
2317 if (ret > 0) {
2318 if (path->slots[0] == 0)
2319 break;
2320 path->slots[0]--;
2321 }
2322
2323 /* pull out the item */
2324 leaf = path->nodes[0];
2325 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2326
2327 /* make sure the item matches what we want */
2328 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2329 break;
2330 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2331 break;
2332
2333 /* release the path since we're done with it */
2334 btrfs_release_path(root, path);
2335
2336 /*
2337 * this is where we are basically btrfs_lookup, without the
2338 * crossing root thing. we store the inode number in the
2339 * offset of the orphan item.
2340 */
2341 found_key.objectid = found_key.offset;
2342 found_key.type = BTRFS_INODE_ITEM_KEY;
2343 found_key.offset = 0;
2344 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2345 BUG_ON(IS_ERR(inode));
2346
2347 /*
2348 * add this inode to the orphan list so btrfs_orphan_del does
2349 * the proper thing when we hit it
2350 */
2351 spin_lock(&root->orphan_lock);
2352 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2353 spin_unlock(&root->orphan_lock);
2354
2355 /*
2356 * if this is a bad inode, means we actually succeeded in
2357 * removing the inode, but not the orphan record, which means
2358 * we need to manually delete the orphan since iput will just
2359 * do a destroy_inode
2360 */
2361 if (is_bad_inode(inode)) {
2362 trans = btrfs_start_transaction(root, 0);
2363 BUG_ON(IS_ERR(trans));
2364 btrfs_orphan_del(trans, inode);
2365 btrfs_end_transaction(trans, root);
2366 iput(inode);
2367 continue;
2368 }
2369
2370 /* if we have links, this was a truncate, lets do that */
2371 if (inode->i_nlink) {
2372 nr_truncate++;
2373 btrfs_truncate(inode);
2374 } else {
2375 nr_unlink++;
2376 }
2377
2378 /* this will do delete_inode and everything for us */
2379 iput(inode);
2380 }
2381 btrfs_free_path(path);
2382
2383 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2384
2385 if (root->orphan_block_rsv)
2386 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2387 (u64)-1);
2388
2389 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2390 trans = btrfs_join_transaction(root, 1);
2391 BUG_ON(IS_ERR(trans));
2392 btrfs_end_transaction(trans, root);
2393 }
2394
2395 if (nr_unlink)
2396 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2397 if (nr_truncate)
2398 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2399 }
2400
2401 /*
2402 * very simple check to peek ahead in the leaf looking for xattrs. If we
2403 * don't find any xattrs, we know there can't be any acls.
2404 *
2405 * slot is the slot the inode is in, objectid is the objectid of the inode
2406 */
2407 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2408 int slot, u64 objectid)
2409 {
2410 u32 nritems = btrfs_header_nritems(leaf);
2411 struct btrfs_key found_key;
2412 int scanned = 0;
2413
2414 slot++;
2415 while (slot < nritems) {
2416 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2417
2418 /* we found a different objectid, there must not be acls */
2419 if (found_key.objectid != objectid)
2420 return 0;
2421
2422 /* we found an xattr, assume we've got an acl */
2423 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2424 return 1;
2425
2426 /*
2427 * we found a key greater than an xattr key, there can't
2428 * be any acls later on
2429 */
2430 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2431 return 0;
2432
2433 slot++;
2434 scanned++;
2435
2436 /*
2437 * it goes inode, inode backrefs, xattrs, extents,
2438 * so if there are a ton of hard links to an inode there can
2439 * be a lot of backrefs. Don't waste time searching too hard,
2440 * this is just an optimization
2441 */
2442 if (scanned >= 8)
2443 break;
2444 }
2445 /* we hit the end of the leaf before we found an xattr or
2446 * something larger than an xattr. We have to assume the inode
2447 * has acls
2448 */
2449 return 1;
2450 }
2451
2452 /*
2453 * read an inode from the btree into the in-memory inode
2454 */
2455 static void btrfs_read_locked_inode(struct inode *inode)
2456 {
2457 struct btrfs_path *path;
2458 struct extent_buffer *leaf;
2459 struct btrfs_inode_item *inode_item;
2460 struct btrfs_timespec *tspec;
2461 struct btrfs_root *root = BTRFS_I(inode)->root;
2462 struct btrfs_key location;
2463 int maybe_acls;
2464 u64 alloc_group_block;
2465 u32 rdev;
2466 int ret;
2467
2468 path = btrfs_alloc_path();
2469 BUG_ON(!path);
2470 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2471
2472 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2473 if (ret)
2474 goto make_bad;
2475
2476 leaf = path->nodes[0];
2477 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2478 struct btrfs_inode_item);
2479
2480 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2481 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2482 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2483 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2484 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2485
2486 tspec = btrfs_inode_atime(inode_item);
2487 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2489
2490 tspec = btrfs_inode_mtime(inode_item);
2491 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2492 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2493
2494 tspec = btrfs_inode_ctime(inode_item);
2495 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2496 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2497
2498 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2499 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2500 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2501 inode->i_generation = BTRFS_I(inode)->generation;
2502 inode->i_rdev = 0;
2503 rdev = btrfs_inode_rdev(leaf, inode_item);
2504
2505 BTRFS_I(inode)->index_cnt = (u64)-1;
2506 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2507
2508 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2509
2510 /*
2511 * try to precache a NULL acl entry for files that don't have
2512 * any xattrs or acls
2513 */
2514 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2515 if (!maybe_acls)
2516 cache_no_acl(inode);
2517
2518 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2519 alloc_group_block, 0);
2520 btrfs_free_path(path);
2521 inode_item = NULL;
2522
2523 switch (inode->i_mode & S_IFMT) {
2524 case S_IFREG:
2525 inode->i_mapping->a_ops = &btrfs_aops;
2526 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2527 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2528 inode->i_fop = &btrfs_file_operations;
2529 inode->i_op = &btrfs_file_inode_operations;
2530 break;
2531 case S_IFDIR:
2532 inode->i_fop = &btrfs_dir_file_operations;
2533 if (root == root->fs_info->tree_root)
2534 inode->i_op = &btrfs_dir_ro_inode_operations;
2535 else
2536 inode->i_op = &btrfs_dir_inode_operations;
2537 break;
2538 case S_IFLNK:
2539 inode->i_op = &btrfs_symlink_inode_operations;
2540 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2541 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2542 break;
2543 default:
2544 inode->i_op = &btrfs_special_inode_operations;
2545 init_special_inode(inode, inode->i_mode, rdev);
2546 break;
2547 }
2548
2549 btrfs_update_iflags(inode);
2550 return;
2551
2552 make_bad:
2553 btrfs_free_path(path);
2554 make_bad_inode(inode);
2555 }
2556
2557 /*
2558 * given a leaf and an inode, copy the inode fields into the leaf
2559 */
2560 static void fill_inode_item(struct btrfs_trans_handle *trans,
2561 struct extent_buffer *leaf,
2562 struct btrfs_inode_item *item,
2563 struct inode *inode)
2564 {
2565 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2566 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2567 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2568 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2569 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2570
2571 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2572 inode->i_atime.tv_sec);
2573 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2574 inode->i_atime.tv_nsec);
2575
2576 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2577 inode->i_mtime.tv_sec);
2578 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2579 inode->i_mtime.tv_nsec);
2580
2581 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2582 inode->i_ctime.tv_sec);
2583 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2584 inode->i_ctime.tv_nsec);
2585
2586 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2587 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2588 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2589 btrfs_set_inode_transid(leaf, item, trans->transid);
2590 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2591 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2592 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2593 }
2594
2595 /*
2596 * copy everything in the in-memory inode into the btree.
2597 */
2598 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2599 struct btrfs_root *root, struct inode *inode)
2600 {
2601 struct btrfs_inode_item *inode_item;
2602 struct btrfs_path *path;
2603 struct extent_buffer *leaf;
2604 int ret;
2605
2606 path = btrfs_alloc_path();
2607 BUG_ON(!path);
2608 path->leave_spinning = 1;
2609 ret = btrfs_lookup_inode(trans, root, path,
2610 &BTRFS_I(inode)->location, 1);
2611 if (ret) {
2612 if (ret > 0)
2613 ret = -ENOENT;
2614 goto failed;
2615 }
2616
2617 btrfs_unlock_up_safe(path, 1);
2618 leaf = path->nodes[0];
2619 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2620 struct btrfs_inode_item);
2621
2622 fill_inode_item(trans, leaf, inode_item, inode);
2623 btrfs_mark_buffer_dirty(leaf);
2624 btrfs_set_inode_last_trans(trans, inode);
2625 ret = 0;
2626 failed:
2627 btrfs_free_path(path);
2628 return ret;
2629 }
2630
2631
2632 /*
2633 * unlink helper that gets used here in inode.c and in the tree logging
2634 * recovery code. It remove a link in a directory with a given name, and
2635 * also drops the back refs in the inode to the directory
2636 */
2637 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root,
2639 struct inode *dir, struct inode *inode,
2640 const char *name, int name_len)
2641 {
2642 struct btrfs_path *path;
2643 int ret = 0;
2644 struct extent_buffer *leaf;
2645 struct btrfs_dir_item *di;
2646 struct btrfs_key key;
2647 u64 index;
2648
2649 path = btrfs_alloc_path();
2650 if (!path) {
2651 ret = -ENOMEM;
2652 goto out;
2653 }
2654
2655 path->leave_spinning = 1;
2656 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2657 name, name_len, -1);
2658 if (IS_ERR(di)) {
2659 ret = PTR_ERR(di);
2660 goto err;
2661 }
2662 if (!di) {
2663 ret = -ENOENT;
2664 goto err;
2665 }
2666 leaf = path->nodes[0];
2667 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2668 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2669 if (ret)
2670 goto err;
2671 btrfs_release_path(root, path);
2672
2673 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2674 inode->i_ino,
2675 dir->i_ino, &index);
2676 if (ret) {
2677 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2678 "inode %lu parent %lu\n", name_len, name,
2679 inode->i_ino, dir->i_ino);
2680 goto err;
2681 }
2682
2683 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2684 index, name, name_len, -1);
2685 if (IS_ERR(di)) {
2686 ret = PTR_ERR(di);
2687 goto err;
2688 }
2689 if (!di) {
2690 ret = -ENOENT;
2691 goto err;
2692 }
2693 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2694 btrfs_release_path(root, path);
2695
2696 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2697 inode, dir->i_ino);
2698 BUG_ON(ret != 0 && ret != -ENOENT);
2699
2700 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2701 dir, index);
2702 if (ret == -ENOENT)
2703 ret = 0;
2704 err:
2705 btrfs_free_path(path);
2706 if (ret)
2707 goto out;
2708
2709 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2710 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2711 btrfs_update_inode(trans, root, dir);
2712 btrfs_drop_nlink(inode);
2713 ret = btrfs_update_inode(trans, root, inode);
2714 out:
2715 return ret;
2716 }
2717
2718 /* helper to check if there is any shared block in the path */
2719 static int check_path_shared(struct btrfs_root *root,
2720 struct btrfs_path *path)
2721 {
2722 struct extent_buffer *eb;
2723 int level;
2724 u64 refs = 1;
2725
2726 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2727 int ret;
2728
2729 if (!path->nodes[level])
2730 break;
2731 eb = path->nodes[level];
2732 if (!btrfs_block_can_be_shared(root, eb))
2733 continue;
2734 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2735 &refs, NULL);
2736 if (refs > 1)
2737 return 1;
2738 }
2739 return 0;
2740 }
2741
2742 /*
2743 * helper to start transaction for unlink and rmdir.
2744 *
2745 * unlink and rmdir are special in btrfs, they do not always free space.
2746 * so in enospc case, we should make sure they will free space before
2747 * allowing them to use the global metadata reservation.
2748 */
2749 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2750 struct dentry *dentry)
2751 {
2752 struct btrfs_trans_handle *trans;
2753 struct btrfs_root *root = BTRFS_I(dir)->root;
2754 struct btrfs_path *path;
2755 struct btrfs_inode_ref *ref;
2756 struct btrfs_dir_item *di;
2757 struct inode *inode = dentry->d_inode;
2758 u64 index;
2759 int check_link = 1;
2760 int err = -ENOSPC;
2761 int ret;
2762
2763 trans = btrfs_start_transaction(root, 10);
2764 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2765 return trans;
2766
2767 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2768 return ERR_PTR(-ENOSPC);
2769
2770 /* check if there is someone else holds reference */
2771 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2772 return ERR_PTR(-ENOSPC);
2773
2774 if (atomic_read(&inode->i_count) > 2)
2775 return ERR_PTR(-ENOSPC);
2776
2777 if (xchg(&root->fs_info->enospc_unlink, 1))
2778 return ERR_PTR(-ENOSPC);
2779
2780 path = btrfs_alloc_path();
2781 if (!path) {
2782 root->fs_info->enospc_unlink = 0;
2783 return ERR_PTR(-ENOMEM);
2784 }
2785
2786 trans = btrfs_start_transaction(root, 0);
2787 if (IS_ERR(trans)) {
2788 btrfs_free_path(path);
2789 root->fs_info->enospc_unlink = 0;
2790 return trans;
2791 }
2792
2793 path->skip_locking = 1;
2794 path->search_commit_root = 1;
2795
2796 ret = btrfs_lookup_inode(trans, root, path,
2797 &BTRFS_I(dir)->location, 0);
2798 if (ret < 0) {
2799 err = ret;
2800 goto out;
2801 }
2802 if (ret == 0) {
2803 if (check_path_shared(root, path))
2804 goto out;
2805 } else {
2806 check_link = 0;
2807 }
2808 btrfs_release_path(root, path);
2809
2810 ret = btrfs_lookup_inode(trans, root, path,
2811 &BTRFS_I(inode)->location, 0);
2812 if (ret < 0) {
2813 err = ret;
2814 goto out;
2815 }
2816 if (ret == 0) {
2817 if (check_path_shared(root, path))
2818 goto out;
2819 } else {
2820 check_link = 0;
2821 }
2822 btrfs_release_path(root, path);
2823
2824 if (ret == 0 && S_ISREG(inode->i_mode)) {
2825 ret = btrfs_lookup_file_extent(trans, root, path,
2826 inode->i_ino, (u64)-1, 0);
2827 if (ret < 0) {
2828 err = ret;
2829 goto out;
2830 }
2831 BUG_ON(ret == 0);
2832 if (check_path_shared(root, path))
2833 goto out;
2834 btrfs_release_path(root, path);
2835 }
2836
2837 if (!check_link) {
2838 err = 0;
2839 goto out;
2840 }
2841
2842 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2843 dentry->d_name.name, dentry->d_name.len, 0);
2844 if (IS_ERR(di)) {
2845 err = PTR_ERR(di);
2846 goto out;
2847 }
2848 if (di) {
2849 if (check_path_shared(root, path))
2850 goto out;
2851 } else {
2852 err = 0;
2853 goto out;
2854 }
2855 btrfs_release_path(root, path);
2856
2857 ref = btrfs_lookup_inode_ref(trans, root, path,
2858 dentry->d_name.name, dentry->d_name.len,
2859 inode->i_ino, dir->i_ino, 0);
2860 if (IS_ERR(ref)) {
2861 err = PTR_ERR(ref);
2862 goto out;
2863 }
2864 BUG_ON(!ref);
2865 if (check_path_shared(root, path))
2866 goto out;
2867 index = btrfs_inode_ref_index(path->nodes[0], ref);
2868 btrfs_release_path(root, path);
2869
2870 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2871 dentry->d_name.name, dentry->d_name.len, 0);
2872 if (IS_ERR(di)) {
2873 err = PTR_ERR(di);
2874 goto out;
2875 }
2876 BUG_ON(ret == -ENOENT);
2877 if (check_path_shared(root, path))
2878 goto out;
2879
2880 err = 0;
2881 out:
2882 btrfs_free_path(path);
2883 if (err) {
2884 btrfs_end_transaction(trans, root);
2885 root->fs_info->enospc_unlink = 0;
2886 return ERR_PTR(err);
2887 }
2888
2889 trans->block_rsv = &root->fs_info->global_block_rsv;
2890 return trans;
2891 }
2892
2893 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2894 struct btrfs_root *root)
2895 {
2896 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2897 BUG_ON(!root->fs_info->enospc_unlink);
2898 root->fs_info->enospc_unlink = 0;
2899 }
2900 btrfs_end_transaction_throttle(trans, root);
2901 }
2902
2903 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2904 {
2905 struct btrfs_root *root = BTRFS_I(dir)->root;
2906 struct btrfs_trans_handle *trans;
2907 struct inode *inode = dentry->d_inode;
2908 int ret;
2909 unsigned long nr = 0;
2910
2911 trans = __unlink_start_trans(dir, dentry);
2912 if (IS_ERR(trans))
2913 return PTR_ERR(trans);
2914
2915 btrfs_set_trans_block_group(trans, dir);
2916
2917 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2918
2919 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2920 dentry->d_name.name, dentry->d_name.len);
2921 BUG_ON(ret);
2922
2923 if (inode->i_nlink == 0) {
2924 ret = btrfs_orphan_add(trans, inode);
2925 BUG_ON(ret);
2926 }
2927
2928 nr = trans->blocks_used;
2929 __unlink_end_trans(trans, root);
2930 btrfs_btree_balance_dirty(root, nr);
2931 return ret;
2932 }
2933
2934 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root,
2936 struct inode *dir, u64 objectid,
2937 const char *name, int name_len)
2938 {
2939 struct btrfs_path *path;
2940 struct extent_buffer *leaf;
2941 struct btrfs_dir_item *di;
2942 struct btrfs_key key;
2943 u64 index;
2944 int ret;
2945
2946 path = btrfs_alloc_path();
2947 if (!path)
2948 return -ENOMEM;
2949
2950 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2951 name, name_len, -1);
2952 BUG_ON(!di || IS_ERR(di));
2953
2954 leaf = path->nodes[0];
2955 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2956 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2957 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2958 BUG_ON(ret);
2959 btrfs_release_path(root, path);
2960
2961 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2962 objectid, root->root_key.objectid,
2963 dir->i_ino, &index, name, name_len);
2964 if (ret < 0) {
2965 BUG_ON(ret != -ENOENT);
2966 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2967 name, name_len);
2968 BUG_ON(!di || IS_ERR(di));
2969
2970 leaf = path->nodes[0];
2971 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2972 btrfs_release_path(root, path);
2973 index = key.offset;
2974 }
2975
2976 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2977 index, name, name_len, -1);
2978 BUG_ON(!di || IS_ERR(di));
2979
2980 leaf = path->nodes[0];
2981 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2982 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2983 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2984 BUG_ON(ret);
2985 btrfs_release_path(root, path);
2986
2987 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2988 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2989 ret = btrfs_update_inode(trans, root, dir);
2990 BUG_ON(ret);
2991
2992 btrfs_free_path(path);
2993 return 0;
2994 }
2995
2996 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2997 {
2998 struct inode *inode = dentry->d_inode;
2999 int err = 0;
3000 struct btrfs_root *root = BTRFS_I(dir)->root;
3001 struct btrfs_trans_handle *trans;
3002 unsigned long nr = 0;
3003
3004 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3005 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3006 return -ENOTEMPTY;
3007
3008 trans = __unlink_start_trans(dir, dentry);
3009 if (IS_ERR(trans))
3010 return PTR_ERR(trans);
3011
3012 btrfs_set_trans_block_group(trans, dir);
3013
3014 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3015 err = btrfs_unlink_subvol(trans, root, dir,
3016 BTRFS_I(inode)->location.objectid,
3017 dentry->d_name.name,
3018 dentry->d_name.len);
3019 goto out;
3020 }
3021
3022 err = btrfs_orphan_add(trans, inode);
3023 if (err)
3024 goto out;
3025
3026 /* now the directory is empty */
3027 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3028 dentry->d_name.name, dentry->d_name.len);
3029 if (!err)
3030 btrfs_i_size_write(inode, 0);
3031 out:
3032 nr = trans->blocks_used;
3033 __unlink_end_trans(trans, root);
3034 btrfs_btree_balance_dirty(root, nr);
3035
3036 return err;
3037 }
3038
3039 #if 0
3040 /*
3041 * when truncating bytes in a file, it is possible to avoid reading
3042 * the leaves that contain only checksum items. This can be the
3043 * majority of the IO required to delete a large file, but it must
3044 * be done carefully.
3045 *
3046 * The keys in the level just above the leaves are checked to make sure
3047 * the lowest key in a given leaf is a csum key, and starts at an offset
3048 * after the new size.
3049 *
3050 * Then the key for the next leaf is checked to make sure it also has
3051 * a checksum item for the same file. If it does, we know our target leaf
3052 * contains only checksum items, and it can be safely freed without reading
3053 * it.
3054 *
3055 * This is just an optimization targeted at large files. It may do
3056 * nothing. It will return 0 unless things went badly.
3057 */
3058 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 struct btrfs_path *path,
3061 struct inode *inode, u64 new_size)
3062 {
3063 struct btrfs_key key;
3064 int ret;
3065 int nritems;
3066 struct btrfs_key found_key;
3067 struct btrfs_key other_key;
3068 struct btrfs_leaf_ref *ref;
3069 u64 leaf_gen;
3070 u64 leaf_start;
3071
3072 path->lowest_level = 1;
3073 key.objectid = inode->i_ino;
3074 key.type = BTRFS_CSUM_ITEM_KEY;
3075 key.offset = new_size;
3076 again:
3077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3078 if (ret < 0)
3079 goto out;
3080
3081 if (path->nodes[1] == NULL) {
3082 ret = 0;
3083 goto out;
3084 }
3085 ret = 0;
3086 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3087 nritems = btrfs_header_nritems(path->nodes[1]);
3088
3089 if (!nritems)
3090 goto out;
3091
3092 if (path->slots[1] >= nritems)
3093 goto next_node;
3094
3095 /* did we find a key greater than anything we want to delete? */
3096 if (found_key.objectid > inode->i_ino ||
3097 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3098 goto out;
3099
3100 /* we check the next key in the node to make sure the leave contains
3101 * only checksum items. This comparison doesn't work if our
3102 * leaf is the last one in the node
3103 */
3104 if (path->slots[1] + 1 >= nritems) {
3105 next_node:
3106 /* search forward from the last key in the node, this
3107 * will bring us into the next node in the tree
3108 */
3109 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3110
3111 /* unlikely, but we inc below, so check to be safe */
3112 if (found_key.offset == (u64)-1)
3113 goto out;
3114
3115 /* search_forward needs a path with locks held, do the
3116 * search again for the original key. It is possible
3117 * this will race with a balance and return a path that
3118 * we could modify, but this drop is just an optimization
3119 * and is allowed to miss some leaves.
3120 */
3121 btrfs_release_path(root, path);
3122 found_key.offset++;
3123
3124 /* setup a max key for search_forward */
3125 other_key.offset = (u64)-1;
3126 other_key.type = key.type;
3127 other_key.objectid = key.objectid;
3128
3129 path->keep_locks = 1;
3130 ret = btrfs_search_forward(root, &found_key, &other_key,
3131 path, 0, 0);
3132 path->keep_locks = 0;
3133 if (ret || found_key.objectid != key.objectid ||
3134 found_key.type != key.type) {
3135 ret = 0;
3136 goto out;
3137 }
3138
3139 key.offset = found_key.offset;
3140 btrfs_release_path(root, path);
3141 cond_resched();
3142 goto again;
3143 }
3144
3145 /* we know there's one more slot after us in the tree,
3146 * read that key so we can verify it is also a checksum item
3147 */
3148 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3149
3150 if (found_key.objectid < inode->i_ino)
3151 goto next_key;
3152
3153 if (found_key.type != key.type || found_key.offset < new_size)
3154 goto next_key;
3155
3156 /*
3157 * if the key for the next leaf isn't a csum key from this objectid,
3158 * we can't be sure there aren't good items inside this leaf.
3159 * Bail out
3160 */
3161 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3162 goto out;
3163
3164 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3165 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3166 /*
3167 * it is safe to delete this leaf, it contains only
3168 * csum items from this inode at an offset >= new_size
3169 */
3170 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3171 BUG_ON(ret);
3172
3173 if (root->ref_cows && leaf_gen < trans->transid) {
3174 ref = btrfs_alloc_leaf_ref(root, 0);
3175 if (ref) {
3176 ref->root_gen = root->root_key.offset;
3177 ref->bytenr = leaf_start;
3178 ref->owner = 0;
3179 ref->generation = leaf_gen;
3180 ref->nritems = 0;
3181
3182 btrfs_sort_leaf_ref(ref);
3183
3184 ret = btrfs_add_leaf_ref(root, ref, 0);
3185 WARN_ON(ret);
3186 btrfs_free_leaf_ref(root, ref);
3187 } else {
3188 WARN_ON(1);
3189 }
3190 }
3191 next_key:
3192 btrfs_release_path(root, path);
3193
3194 if (other_key.objectid == inode->i_ino &&
3195 other_key.type == key.type && other_key.offset > key.offset) {
3196 key.offset = other_key.offset;
3197 cond_resched();
3198 goto again;
3199 }
3200 ret = 0;
3201 out:
3202 /* fixup any changes we've made to the path */
3203 path->lowest_level = 0;
3204 path->keep_locks = 0;
3205 btrfs_release_path(root, path);
3206 return ret;
3207 }
3208
3209 #endif
3210
3211 /*
3212 * this can truncate away extent items, csum items and directory items.
3213 * It starts at a high offset and removes keys until it can't find
3214 * any higher than new_size
3215 *
3216 * csum items that cross the new i_size are truncated to the new size
3217 * as well.
3218 *
3219 * min_type is the minimum key type to truncate down to. If set to 0, this
3220 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3221 */
3222 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 struct inode *inode,
3225 u64 new_size, u32 min_type)
3226 {
3227 struct btrfs_path *path;
3228 struct extent_buffer *leaf;
3229 struct btrfs_file_extent_item *fi;
3230 struct btrfs_key key;
3231 struct btrfs_key found_key;
3232 u64 extent_start = 0;
3233 u64 extent_num_bytes = 0;
3234 u64 extent_offset = 0;
3235 u64 item_end = 0;
3236 u64 mask = root->sectorsize - 1;
3237 u32 found_type = (u8)-1;
3238 int found_extent;
3239 int del_item;
3240 int pending_del_nr = 0;
3241 int pending_del_slot = 0;
3242 int extent_type = -1;
3243 int encoding;
3244 int ret;
3245 int err = 0;
3246
3247 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3248
3249 if (root->ref_cows || root == root->fs_info->tree_root)
3250 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3251
3252 path = btrfs_alloc_path();
3253 BUG_ON(!path);
3254 path->reada = -1;
3255
3256 key.objectid = inode->i_ino;
3257 key.offset = (u64)-1;
3258 key.type = (u8)-1;
3259
3260 search_again:
3261 path->leave_spinning = 1;
3262 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3263 if (ret < 0) {
3264 err = ret;
3265 goto out;
3266 }
3267
3268 if (ret > 0) {
3269 /* there are no items in the tree for us to truncate, we're
3270 * done
3271 */
3272 if (path->slots[0] == 0)
3273 goto out;
3274 path->slots[0]--;
3275 }
3276
3277 while (1) {
3278 fi = NULL;
3279 leaf = path->nodes[0];
3280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3281 found_type = btrfs_key_type(&found_key);
3282 encoding = 0;
3283
3284 if (found_key.objectid != inode->i_ino)
3285 break;
3286
3287 if (found_type < min_type)
3288 break;
3289
3290 item_end = found_key.offset;
3291 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3292 fi = btrfs_item_ptr(leaf, path->slots[0],
3293 struct btrfs_file_extent_item);
3294 extent_type = btrfs_file_extent_type(leaf, fi);
3295 encoding = btrfs_file_extent_compression(leaf, fi);
3296 encoding |= btrfs_file_extent_encryption(leaf, fi);
3297 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3298
3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3300 item_end +=
3301 btrfs_file_extent_num_bytes(leaf, fi);
3302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3303 item_end += btrfs_file_extent_inline_len(leaf,
3304 fi);
3305 }
3306 item_end--;
3307 }
3308 if (found_type > min_type) {
3309 del_item = 1;
3310 } else {
3311 if (item_end < new_size)
3312 break;
3313 if (found_key.offset >= new_size)
3314 del_item = 1;
3315 else
3316 del_item = 0;
3317 }
3318 found_extent = 0;
3319 /* FIXME, shrink the extent if the ref count is only 1 */
3320 if (found_type != BTRFS_EXTENT_DATA_KEY)
3321 goto delete;
3322
3323 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3324 u64 num_dec;
3325 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3326 if (!del_item && !encoding) {
3327 u64 orig_num_bytes =
3328 btrfs_file_extent_num_bytes(leaf, fi);
3329 extent_num_bytes = new_size -
3330 found_key.offset + root->sectorsize - 1;
3331 extent_num_bytes = extent_num_bytes &
3332 ~((u64)root->sectorsize - 1);
3333 btrfs_set_file_extent_num_bytes(leaf, fi,
3334 extent_num_bytes);
3335 num_dec = (orig_num_bytes -
3336 extent_num_bytes);
3337 if (root->ref_cows && extent_start != 0)
3338 inode_sub_bytes(inode, num_dec);
3339 btrfs_mark_buffer_dirty(leaf);
3340 } else {
3341 extent_num_bytes =
3342 btrfs_file_extent_disk_num_bytes(leaf,
3343 fi);
3344 extent_offset = found_key.offset -
3345 btrfs_file_extent_offset(leaf, fi);
3346
3347 /* FIXME blocksize != 4096 */
3348 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3349 if (extent_start != 0) {
3350 found_extent = 1;
3351 if (root->ref_cows)
3352 inode_sub_bytes(inode, num_dec);
3353 }
3354 }
3355 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3356 /*
3357 * we can't truncate inline items that have had
3358 * special encodings
3359 */
3360 if (!del_item &&
3361 btrfs_file_extent_compression(leaf, fi) == 0 &&
3362 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3363 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3364 u32 size = new_size - found_key.offset;
3365
3366 if (root->ref_cows) {
3367 inode_sub_bytes(inode, item_end + 1 -
3368 new_size);
3369 }
3370 size =
3371 btrfs_file_extent_calc_inline_size(size);
3372 ret = btrfs_truncate_item(trans, root, path,
3373 size, 1);
3374 BUG_ON(ret);
3375 } else if (root->ref_cows) {
3376 inode_sub_bytes(inode, item_end + 1 -
3377 found_key.offset);
3378 }
3379 }
3380 delete:
3381 if (del_item) {
3382 if (!pending_del_nr) {
3383 /* no pending yet, add ourselves */
3384 pending_del_slot = path->slots[0];
3385 pending_del_nr = 1;
3386 } else if (pending_del_nr &&
3387 path->slots[0] + 1 == pending_del_slot) {
3388 /* hop on the pending chunk */
3389 pending_del_nr++;
3390 pending_del_slot = path->slots[0];
3391 } else {
3392 BUG();
3393 }
3394 } else {
3395 break;
3396 }
3397 if (found_extent && (root->ref_cows ||
3398 root == root->fs_info->tree_root)) {
3399 btrfs_set_path_blocking(path);
3400 ret = btrfs_free_extent(trans, root, extent_start,
3401 extent_num_bytes, 0,
3402 btrfs_header_owner(leaf),
3403 inode->i_ino, extent_offset);
3404 BUG_ON(ret);
3405 }
3406
3407 if (found_type == BTRFS_INODE_ITEM_KEY)
3408 break;
3409
3410 if (path->slots[0] == 0 ||
3411 path->slots[0] != pending_del_slot) {
3412 if (root->ref_cows) {
3413 err = -EAGAIN;
3414 goto out;
3415 }
3416 if (pending_del_nr) {
3417 ret = btrfs_del_items(trans, root, path,
3418 pending_del_slot,
3419 pending_del_nr);
3420 BUG_ON(ret);
3421 pending_del_nr = 0;
3422 }
3423 btrfs_release_path(root, path);
3424 goto search_again;
3425 } else {
3426 path->slots[0]--;
3427 }
3428 }
3429 out:
3430 if (pending_del_nr) {
3431 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3432 pending_del_nr);
3433 BUG_ON(ret);
3434 }
3435 btrfs_free_path(path);
3436 return err;
3437 }
3438
3439 /*
3440 * taken from block_truncate_page, but does cow as it zeros out
3441 * any bytes left in the last page in the file.
3442 */
3443 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3444 {
3445 struct inode *inode = mapping->host;
3446 struct btrfs_root *root = BTRFS_I(inode)->root;
3447 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3448 struct btrfs_ordered_extent *ordered;
3449 struct extent_state *cached_state = NULL;
3450 char *kaddr;
3451 u32 blocksize = root->sectorsize;
3452 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3453 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3454 struct page *page;
3455 int ret = 0;
3456 u64 page_start;
3457 u64 page_end;
3458
3459 if ((offset & (blocksize - 1)) == 0)
3460 goto out;
3461 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3462 if (ret)
3463 goto out;
3464
3465 ret = -ENOMEM;
3466 again:
3467 page = grab_cache_page(mapping, index);
3468 if (!page) {
3469 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3470 goto out;
3471 }
3472
3473 page_start = page_offset(page);
3474 page_end = page_start + PAGE_CACHE_SIZE - 1;
3475
3476 if (!PageUptodate(page)) {
3477 ret = btrfs_readpage(NULL, page);
3478 lock_page(page);
3479 if (page->mapping != mapping) {
3480 unlock_page(page);
3481 page_cache_release(page);
3482 goto again;
3483 }
3484 if (!PageUptodate(page)) {
3485 ret = -EIO;
3486 goto out_unlock;
3487 }
3488 }
3489 wait_on_page_writeback(page);
3490
3491 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3492 GFP_NOFS);
3493 set_page_extent_mapped(page);
3494
3495 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3496 if (ordered) {
3497 unlock_extent_cached(io_tree, page_start, page_end,
3498 &cached_state, GFP_NOFS);
3499 unlock_page(page);
3500 page_cache_release(page);
3501 btrfs_start_ordered_extent(inode, ordered, 1);
3502 btrfs_put_ordered_extent(ordered);
3503 goto again;
3504 }
3505
3506 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3507 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3508 0, 0, &cached_state, GFP_NOFS);
3509
3510 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3511 &cached_state);
3512 if (ret) {
3513 unlock_extent_cached(io_tree, page_start, page_end,
3514 &cached_state, GFP_NOFS);
3515 goto out_unlock;
3516 }
3517
3518 ret = 0;
3519 if (offset != PAGE_CACHE_SIZE) {
3520 kaddr = kmap(page);
3521 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3522 flush_dcache_page(page);
3523 kunmap(page);
3524 }
3525 ClearPageChecked(page);
3526 set_page_dirty(page);
3527 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3528 GFP_NOFS);
3529
3530 out_unlock:
3531 if (ret)
3532 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3533 unlock_page(page);
3534 page_cache_release(page);
3535 out:
3536 return ret;
3537 }
3538
3539 int btrfs_cont_expand(struct inode *inode, loff_t size)
3540 {
3541 struct btrfs_trans_handle *trans;
3542 struct btrfs_root *root = BTRFS_I(inode)->root;
3543 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3544 struct extent_map *em = NULL;
3545 struct extent_state *cached_state = NULL;
3546 u64 mask = root->sectorsize - 1;
3547 u64 hole_start = (inode->i_size + mask) & ~mask;
3548 u64 block_end = (size + mask) & ~mask;
3549 u64 last_byte;
3550 u64 cur_offset;
3551 u64 hole_size;
3552 int err = 0;
3553
3554 if (size <= hole_start)
3555 return 0;
3556
3557 while (1) {
3558 struct btrfs_ordered_extent *ordered;
3559 btrfs_wait_ordered_range(inode, hole_start,
3560 block_end - hole_start);
3561 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3562 &cached_state, GFP_NOFS);
3563 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3564 if (!ordered)
3565 break;
3566 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3567 &cached_state, GFP_NOFS);
3568 btrfs_put_ordered_extent(ordered);
3569 }
3570
3571 cur_offset = hole_start;
3572 while (1) {
3573 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3574 block_end - cur_offset, 0);
3575 BUG_ON(IS_ERR(em) || !em);
3576 last_byte = min(extent_map_end(em), block_end);
3577 last_byte = (last_byte + mask) & ~mask;
3578 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3579 u64 hint_byte = 0;
3580 hole_size = last_byte - cur_offset;
3581
3582 trans = btrfs_start_transaction(root, 2);
3583 if (IS_ERR(trans)) {
3584 err = PTR_ERR(trans);
3585 break;
3586 }
3587 btrfs_set_trans_block_group(trans, inode);
3588
3589 err = btrfs_drop_extents(trans, inode, cur_offset,
3590 cur_offset + hole_size,
3591 &hint_byte, 1);
3592 BUG_ON(err);
3593
3594 err = btrfs_insert_file_extent(trans, root,
3595 inode->i_ino, cur_offset, 0,
3596 0, hole_size, 0, hole_size,
3597 0, 0, 0);
3598 BUG_ON(err);
3599
3600 btrfs_drop_extent_cache(inode, hole_start,
3601 last_byte - 1, 0);
3602
3603 btrfs_end_transaction(trans, root);
3604 }
3605 free_extent_map(em);
3606 em = NULL;
3607 cur_offset = last_byte;
3608 if (cur_offset >= block_end)
3609 break;
3610 }
3611
3612 free_extent_map(em);
3613 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3614 GFP_NOFS);
3615 return err;
3616 }
3617
3618 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3619 {
3620 struct btrfs_root *root = BTRFS_I(inode)->root;
3621 struct btrfs_trans_handle *trans;
3622 unsigned long nr;
3623 int ret;
3624
3625 if (attr->ia_size == inode->i_size)
3626 return 0;
3627
3628 if (attr->ia_size > inode->i_size) {
3629 unsigned long limit;
3630 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3631 if (attr->ia_size > inode->i_sb->s_maxbytes)
3632 return -EFBIG;
3633 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3634 send_sig(SIGXFSZ, current, 0);
3635 return -EFBIG;
3636 }
3637 }
3638
3639 trans = btrfs_start_transaction(root, 5);
3640 if (IS_ERR(trans))
3641 return PTR_ERR(trans);
3642
3643 btrfs_set_trans_block_group(trans, inode);
3644
3645 ret = btrfs_orphan_add(trans, inode);
3646 BUG_ON(ret);
3647
3648 nr = trans->blocks_used;
3649 btrfs_end_transaction(trans, root);
3650 btrfs_btree_balance_dirty(root, nr);
3651
3652 if (attr->ia_size > inode->i_size) {
3653 ret = btrfs_cont_expand(inode, attr->ia_size);
3654 if (ret) {
3655 btrfs_truncate(inode);
3656 return ret;
3657 }
3658
3659 i_size_write(inode, attr->ia_size);
3660 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3661
3662 trans = btrfs_start_transaction(root, 0);
3663 BUG_ON(IS_ERR(trans));
3664 btrfs_set_trans_block_group(trans, inode);
3665 trans->block_rsv = root->orphan_block_rsv;
3666 BUG_ON(!trans->block_rsv);
3667
3668 ret = btrfs_update_inode(trans, root, inode);
3669 BUG_ON(ret);
3670 if (inode->i_nlink > 0) {
3671 ret = btrfs_orphan_del(trans, inode);
3672 BUG_ON(ret);
3673 }
3674 nr = trans->blocks_used;
3675 btrfs_end_transaction(trans, root);
3676 btrfs_btree_balance_dirty(root, nr);
3677 return 0;
3678 }
3679
3680 /*
3681 * We're truncating a file that used to have good data down to
3682 * zero. Make sure it gets into the ordered flush list so that
3683 * any new writes get down to disk quickly.
3684 */
3685 if (attr->ia_size == 0)
3686 BTRFS_I(inode)->ordered_data_close = 1;
3687
3688 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3689 ret = vmtruncate(inode, attr->ia_size);
3690 BUG_ON(ret);
3691
3692 return 0;
3693 }
3694
3695 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3696 {
3697 struct inode *inode = dentry->d_inode;
3698 struct btrfs_root *root = BTRFS_I(inode)->root;
3699 int err;
3700
3701 if (btrfs_root_readonly(root))
3702 return -EROFS;
3703
3704 err = inode_change_ok(inode, attr);
3705 if (err)
3706 return err;
3707
3708 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3709 err = btrfs_setattr_size(inode, attr);
3710 if (err)
3711 return err;
3712 }
3713
3714 if (attr->ia_valid) {
3715 setattr_copy(inode, attr);
3716 mark_inode_dirty(inode);
3717
3718 if (attr->ia_valid & ATTR_MODE)
3719 err = btrfs_acl_chmod(inode);
3720 }
3721
3722 return err;
3723 }
3724
3725 void btrfs_evict_inode(struct inode *inode)
3726 {
3727 struct btrfs_trans_handle *trans;
3728 struct btrfs_root *root = BTRFS_I(inode)->root;
3729 unsigned long nr;
3730 int ret;
3731
3732 truncate_inode_pages(&inode->i_data, 0);
3733 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3734 root == root->fs_info->tree_root))
3735 goto no_delete;
3736
3737 if (is_bad_inode(inode)) {
3738 btrfs_orphan_del(NULL, inode);
3739 goto no_delete;
3740 }
3741 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3742 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3743
3744 if (root->fs_info->log_root_recovering) {
3745 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3746 goto no_delete;
3747 }
3748
3749 if (inode->i_nlink > 0) {
3750 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3751 goto no_delete;
3752 }
3753
3754 btrfs_i_size_write(inode, 0);
3755
3756 while (1) {
3757 trans = btrfs_start_transaction(root, 0);
3758 BUG_ON(IS_ERR(trans));
3759 btrfs_set_trans_block_group(trans, inode);
3760 trans->block_rsv = root->orphan_block_rsv;
3761
3762 ret = btrfs_block_rsv_check(trans, root,
3763 root->orphan_block_rsv, 0, 5);
3764 if (ret) {
3765 BUG_ON(ret != -EAGAIN);
3766 ret = btrfs_commit_transaction(trans, root);
3767 BUG_ON(ret);
3768 continue;
3769 }
3770
3771 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3772 if (ret != -EAGAIN)
3773 break;
3774
3775 nr = trans->blocks_used;
3776 btrfs_end_transaction(trans, root);
3777 trans = NULL;
3778 btrfs_btree_balance_dirty(root, nr);
3779
3780 }
3781
3782 if (ret == 0) {
3783 ret = btrfs_orphan_del(trans, inode);
3784 BUG_ON(ret);
3785 }
3786
3787 nr = trans->blocks_used;
3788 btrfs_end_transaction(trans, root);
3789 btrfs_btree_balance_dirty(root, nr);
3790 no_delete:
3791 end_writeback(inode);
3792 return;
3793 }
3794
3795 /*
3796 * this returns the key found in the dir entry in the location pointer.
3797 * If no dir entries were found, location->objectid is 0.
3798 */
3799 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3800 struct btrfs_key *location)
3801 {
3802 const char *name = dentry->d_name.name;
3803 int namelen = dentry->d_name.len;
3804 struct btrfs_dir_item *di;
3805 struct btrfs_path *path;
3806 struct btrfs_root *root = BTRFS_I(dir)->root;
3807 int ret = 0;
3808
3809 path = btrfs_alloc_path();
3810 BUG_ON(!path);
3811
3812 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3813 namelen, 0);
3814 if (IS_ERR(di))
3815 ret = PTR_ERR(di);
3816
3817 if (!di || IS_ERR(di))
3818 goto out_err;
3819
3820 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3821 out:
3822 btrfs_free_path(path);
3823 return ret;
3824 out_err:
3825 location->objectid = 0;
3826 goto out;
3827 }
3828
3829 /*
3830 * when we hit a tree root in a directory, the btrfs part of the inode
3831 * needs to be changed to reflect the root directory of the tree root. This
3832 * is kind of like crossing a mount point.
3833 */
3834 static int fixup_tree_root_location(struct btrfs_root *root,
3835 struct inode *dir,
3836 struct dentry *dentry,
3837 struct btrfs_key *location,
3838 struct btrfs_root **sub_root)
3839 {
3840 struct btrfs_path *path;
3841 struct btrfs_root *new_root;
3842 struct btrfs_root_ref *ref;
3843 struct extent_buffer *leaf;
3844 int ret;
3845 int err = 0;
3846
3847 path = btrfs_alloc_path();
3848 if (!path) {
3849 err = -ENOMEM;
3850 goto out;
3851 }
3852
3853 err = -ENOENT;
3854 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3855 BTRFS_I(dir)->root->root_key.objectid,
3856 location->objectid);
3857 if (ret) {
3858 if (ret < 0)
3859 err = ret;
3860 goto out;
3861 }
3862
3863 leaf = path->nodes[0];
3864 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3865 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3866 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3867 goto out;
3868
3869 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3870 (unsigned long)(ref + 1),
3871 dentry->d_name.len);
3872 if (ret)
3873 goto out;
3874
3875 btrfs_release_path(root->fs_info->tree_root, path);
3876
3877 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3878 if (IS_ERR(new_root)) {
3879 err = PTR_ERR(new_root);
3880 goto out;
3881 }
3882
3883 if (btrfs_root_refs(&new_root->root_item) == 0) {
3884 err = -ENOENT;
3885 goto out;
3886 }
3887
3888 *sub_root = new_root;
3889 location->objectid = btrfs_root_dirid(&new_root->root_item);
3890 location->type = BTRFS_INODE_ITEM_KEY;
3891 location->offset = 0;
3892 err = 0;
3893 out:
3894 btrfs_free_path(path);
3895 return err;
3896 }
3897
3898 static void inode_tree_add(struct inode *inode)
3899 {
3900 struct btrfs_root *root = BTRFS_I(inode)->root;
3901 struct btrfs_inode *entry;
3902 struct rb_node **p;
3903 struct rb_node *parent;
3904 again:
3905 p = &root->inode_tree.rb_node;
3906 parent = NULL;
3907
3908 if (inode_unhashed(inode))
3909 return;
3910
3911 spin_lock(&root->inode_lock);
3912 while (*p) {
3913 parent = *p;
3914 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3915
3916 if (inode->i_ino < entry->vfs_inode.i_ino)
3917 p = &parent->rb_left;
3918 else if (inode->i_ino > entry->vfs_inode.i_ino)
3919 p = &parent->rb_right;
3920 else {
3921 WARN_ON(!(entry->vfs_inode.i_state &
3922 (I_WILL_FREE | I_FREEING)));
3923 rb_erase(parent, &root->inode_tree);
3924 RB_CLEAR_NODE(parent);
3925 spin_unlock(&root->inode_lock);
3926 goto again;
3927 }
3928 }
3929 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3930 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931 spin_unlock(&root->inode_lock);
3932 }
3933
3934 static void inode_tree_del(struct inode *inode)
3935 {
3936 struct btrfs_root *root = BTRFS_I(inode)->root;
3937 int empty = 0;
3938
3939 spin_lock(&root->inode_lock);
3940 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3941 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3943 empty = RB_EMPTY_ROOT(&root->inode_tree);
3944 }
3945 spin_unlock(&root->inode_lock);
3946
3947 /*
3948 * Free space cache has inodes in the tree root, but the tree root has a
3949 * root_refs of 0, so this could end up dropping the tree root as a
3950 * snapshot, so we need the extra !root->fs_info->tree_root check to
3951 * make sure we don't drop it.
3952 */
3953 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3954 root != root->fs_info->tree_root) {
3955 synchronize_srcu(&root->fs_info->subvol_srcu);
3956 spin_lock(&root->inode_lock);
3957 empty = RB_EMPTY_ROOT(&root->inode_tree);
3958 spin_unlock(&root->inode_lock);
3959 if (empty)
3960 btrfs_add_dead_root(root);
3961 }
3962 }
3963
3964 int btrfs_invalidate_inodes(struct btrfs_root *root)
3965 {
3966 struct rb_node *node;
3967 struct rb_node *prev;
3968 struct btrfs_inode *entry;
3969 struct inode *inode;
3970 u64 objectid = 0;
3971
3972 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3973
3974 spin_lock(&root->inode_lock);
3975 again:
3976 node = root->inode_tree.rb_node;
3977 prev = NULL;
3978 while (node) {
3979 prev = node;
3980 entry = rb_entry(node, struct btrfs_inode, rb_node);
3981
3982 if (objectid < entry->vfs_inode.i_ino)
3983 node = node->rb_left;
3984 else if (objectid > entry->vfs_inode.i_ino)
3985 node = node->rb_right;
3986 else
3987 break;
3988 }
3989 if (!node) {
3990 while (prev) {
3991 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3992 if (objectid <= entry->vfs_inode.i_ino) {
3993 node = prev;
3994 break;
3995 }
3996 prev = rb_next(prev);
3997 }
3998 }
3999 while (node) {
4000 entry = rb_entry(node, struct btrfs_inode, rb_node);
4001 objectid = entry->vfs_inode.i_ino + 1;
4002 inode = igrab(&entry->vfs_inode);
4003 if (inode) {
4004 spin_unlock(&root->inode_lock);
4005 if (atomic_read(&inode->i_count) > 1)
4006 d_prune_aliases(inode);
4007 /*
4008 * btrfs_drop_inode will have it removed from
4009 * the inode cache when its usage count
4010 * hits zero.
4011 */
4012 iput(inode);
4013 cond_resched();
4014 spin_lock(&root->inode_lock);
4015 goto again;
4016 }
4017
4018 if (cond_resched_lock(&root->inode_lock))
4019 goto again;
4020
4021 node = rb_next(node);
4022 }
4023 spin_unlock(&root->inode_lock);
4024 return 0;
4025 }
4026
4027 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4028 {
4029 struct btrfs_iget_args *args = p;
4030 inode->i_ino = args->ino;
4031 BTRFS_I(inode)->root = args->root;
4032 btrfs_set_inode_space_info(args->root, inode);
4033 return 0;
4034 }
4035
4036 static int btrfs_find_actor(struct inode *inode, void *opaque)
4037 {
4038 struct btrfs_iget_args *args = opaque;
4039 return args->ino == inode->i_ino &&
4040 args->root == BTRFS_I(inode)->root;
4041 }
4042
4043 static struct inode *btrfs_iget_locked(struct super_block *s,
4044 u64 objectid,
4045 struct btrfs_root *root)
4046 {
4047 struct inode *inode;
4048 struct btrfs_iget_args args;
4049 args.ino = objectid;
4050 args.root = root;
4051
4052 inode = iget5_locked(s, objectid, btrfs_find_actor,
4053 btrfs_init_locked_inode,
4054 (void *)&args);
4055 return inode;
4056 }
4057
4058 /* Get an inode object given its location and corresponding root.
4059 * Returns in *is_new if the inode was read from disk
4060 */
4061 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4062 struct btrfs_root *root, int *new)
4063 {
4064 struct inode *inode;
4065
4066 inode = btrfs_iget_locked(s, location->objectid, root);
4067 if (!inode)
4068 return ERR_PTR(-ENOMEM);
4069
4070 if (inode->i_state & I_NEW) {
4071 BTRFS_I(inode)->root = root;
4072 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4073 btrfs_read_locked_inode(inode);
4074
4075 inode_tree_add(inode);
4076 unlock_new_inode(inode);
4077 if (new)
4078 *new = 1;
4079 }
4080
4081 return inode;
4082 }
4083
4084 static struct inode *new_simple_dir(struct super_block *s,
4085 struct btrfs_key *key,
4086 struct btrfs_root *root)
4087 {
4088 struct inode *inode = new_inode(s);
4089
4090 if (!inode)
4091 return ERR_PTR(-ENOMEM);
4092
4093 BTRFS_I(inode)->root = root;
4094 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4095 BTRFS_I(inode)->dummy_inode = 1;
4096
4097 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4098 inode->i_op = &simple_dir_inode_operations;
4099 inode->i_fop = &simple_dir_operations;
4100 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4101 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4102
4103 return inode;
4104 }
4105
4106 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4107 {
4108 struct inode *inode;
4109 struct btrfs_root *root = BTRFS_I(dir)->root;
4110 struct btrfs_root *sub_root = root;
4111 struct btrfs_key location;
4112 int index;
4113 int ret;
4114
4115 if (dentry->d_name.len > BTRFS_NAME_LEN)
4116 return ERR_PTR(-ENAMETOOLONG);
4117
4118 ret = btrfs_inode_by_name(dir, dentry, &location);
4119
4120 if (ret < 0)
4121 return ERR_PTR(ret);
4122
4123 if (location.objectid == 0)
4124 return NULL;
4125
4126 if (location.type == BTRFS_INODE_ITEM_KEY) {
4127 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4128 return inode;
4129 }
4130
4131 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4132
4133 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4134 ret = fixup_tree_root_location(root, dir, dentry,
4135 &location, &sub_root);
4136 if (ret < 0) {
4137 if (ret != -ENOENT)
4138 inode = ERR_PTR(ret);
4139 else
4140 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4141 } else {
4142 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4143 }
4144 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4145
4146 if (!IS_ERR(inode) && root != sub_root) {
4147 down_read(&root->fs_info->cleanup_work_sem);
4148 if (!(inode->i_sb->s_flags & MS_RDONLY))
4149 btrfs_orphan_cleanup(sub_root);
4150 up_read(&root->fs_info->cleanup_work_sem);
4151 }
4152
4153 return inode;
4154 }
4155
4156 static int btrfs_dentry_delete(const struct dentry *dentry)
4157 {
4158 struct btrfs_root *root;
4159
4160 if (!dentry->d_inode && !IS_ROOT(dentry))
4161 dentry = dentry->d_parent;
4162
4163 if (dentry->d_inode) {
4164 root = BTRFS_I(dentry->d_inode)->root;
4165 if (btrfs_root_refs(&root->root_item) == 0)
4166 return 1;
4167 }
4168 return 0;
4169 }
4170
4171 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4172 struct nameidata *nd)
4173 {
4174 struct inode *inode;
4175
4176 inode = btrfs_lookup_dentry(dir, dentry);
4177 if (IS_ERR(inode))
4178 return ERR_CAST(inode);
4179
4180 return d_splice_alias(inode, dentry);
4181 }
4182
4183 static unsigned char btrfs_filetype_table[] = {
4184 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4185 };
4186
4187 static int btrfs_real_readdir(struct file *filp, void *dirent,
4188 filldir_t filldir)
4189 {
4190 struct inode *inode = filp->f_dentry->d_inode;
4191 struct btrfs_root *root = BTRFS_I(inode)->root;
4192 struct btrfs_item *item;
4193 struct btrfs_dir_item *di;
4194 struct btrfs_key key;
4195 struct btrfs_key found_key;
4196 struct btrfs_path *path;
4197 int ret;
4198 u32 nritems;
4199 struct extent_buffer *leaf;
4200 int slot;
4201 int advance;
4202 unsigned char d_type;
4203 int over = 0;
4204 u32 di_cur;
4205 u32 di_total;
4206 u32 di_len;
4207 int key_type = BTRFS_DIR_INDEX_KEY;
4208 char tmp_name[32];
4209 char *name_ptr;
4210 int name_len;
4211
4212 /* FIXME, use a real flag for deciding about the key type */
4213 if (root->fs_info->tree_root == root)
4214 key_type = BTRFS_DIR_ITEM_KEY;
4215
4216 /* special case for "." */
4217 if (filp->f_pos == 0) {
4218 over = filldir(dirent, ".", 1,
4219 1, inode->i_ino,
4220 DT_DIR);
4221 if (over)
4222 return 0;
4223 filp->f_pos = 1;
4224 }
4225 /* special case for .., just use the back ref */
4226 if (filp->f_pos == 1) {
4227 u64 pino = parent_ino(filp->f_path.dentry);
4228 over = filldir(dirent, "..", 2,
4229 2, pino, DT_DIR);
4230 if (over)
4231 return 0;
4232 filp->f_pos = 2;
4233 }
4234 path = btrfs_alloc_path();
4235 path->reada = 2;
4236
4237 btrfs_set_key_type(&key, key_type);
4238 key.offset = filp->f_pos;
4239 key.objectid = inode->i_ino;
4240
4241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4242 if (ret < 0)
4243 goto err;
4244 advance = 0;
4245
4246 while (1) {
4247 leaf = path->nodes[0];
4248 nritems = btrfs_header_nritems(leaf);
4249 slot = path->slots[0];
4250 if (advance || slot >= nritems) {
4251 if (slot >= nritems - 1) {
4252 ret = btrfs_next_leaf(root, path);
4253 if (ret)
4254 break;
4255 leaf = path->nodes[0];
4256 nritems = btrfs_header_nritems(leaf);
4257 slot = path->slots[0];
4258 } else {
4259 slot++;
4260 path->slots[0]++;
4261 }
4262 }
4263
4264 advance = 1;
4265 item = btrfs_item_nr(leaf, slot);
4266 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4267
4268 if (found_key.objectid != key.objectid)
4269 break;
4270 if (btrfs_key_type(&found_key) != key_type)
4271 break;
4272 if (found_key.offset < filp->f_pos)
4273 continue;
4274
4275 filp->f_pos = found_key.offset;
4276
4277 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4278 di_cur = 0;
4279 di_total = btrfs_item_size(leaf, item);
4280
4281 while (di_cur < di_total) {
4282 struct btrfs_key location;
4283
4284 name_len = btrfs_dir_name_len(leaf, di);
4285 if (name_len <= sizeof(tmp_name)) {
4286 name_ptr = tmp_name;
4287 } else {
4288 name_ptr = kmalloc(name_len, GFP_NOFS);
4289 if (!name_ptr) {
4290 ret = -ENOMEM;
4291 goto err;
4292 }
4293 }
4294 read_extent_buffer(leaf, name_ptr,
4295 (unsigned long)(di + 1), name_len);
4296
4297 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4298 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4299
4300 /* is this a reference to our own snapshot? If so
4301 * skip it
4302 */
4303 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4304 location.objectid == root->root_key.objectid) {
4305 over = 0;
4306 goto skip;
4307 }
4308 over = filldir(dirent, name_ptr, name_len,
4309 found_key.offset, location.objectid,
4310 d_type);
4311
4312 skip:
4313 if (name_ptr != tmp_name)
4314 kfree(name_ptr);
4315
4316 if (over)
4317 goto nopos;
4318 di_len = btrfs_dir_name_len(leaf, di) +
4319 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4320 di_cur += di_len;
4321 di = (struct btrfs_dir_item *)((char *)di + di_len);
4322 }
4323 }
4324
4325 /* Reached end of directory/root. Bump pos past the last item. */
4326 if (key_type == BTRFS_DIR_INDEX_KEY)
4327 /*
4328 * 32-bit glibc will use getdents64, but then strtol -
4329 * so the last number we can serve is this.
4330 */
4331 filp->f_pos = 0x7fffffff;
4332 else
4333 filp->f_pos++;
4334 nopos:
4335 ret = 0;
4336 err:
4337 btrfs_free_path(path);
4338 return ret;
4339 }
4340
4341 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4342 {
4343 struct btrfs_root *root = BTRFS_I(inode)->root;
4344 struct btrfs_trans_handle *trans;
4345 int ret = 0;
4346 bool nolock = false;
4347
4348 if (BTRFS_I(inode)->dummy_inode)
4349 return 0;
4350
4351 smp_mb();
4352 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4353
4354 if (wbc->sync_mode == WB_SYNC_ALL) {
4355 if (nolock)
4356 trans = btrfs_join_transaction_nolock(root, 1);
4357 else
4358 trans = btrfs_join_transaction(root, 1);
4359 if (IS_ERR(trans))
4360 return PTR_ERR(trans);
4361 btrfs_set_trans_block_group(trans, inode);
4362 if (nolock)
4363 ret = btrfs_end_transaction_nolock(trans, root);
4364 else
4365 ret = btrfs_commit_transaction(trans, root);
4366 }
4367 return ret;
4368 }
4369
4370 /*
4371 * This is somewhat expensive, updating the tree every time the
4372 * inode changes. But, it is most likely to find the inode in cache.
4373 * FIXME, needs more benchmarking...there are no reasons other than performance
4374 * to keep or drop this code.
4375 */
4376 void btrfs_dirty_inode(struct inode *inode)
4377 {
4378 struct btrfs_root *root = BTRFS_I(inode)->root;
4379 struct btrfs_trans_handle *trans;
4380 int ret;
4381
4382 if (BTRFS_I(inode)->dummy_inode)
4383 return;
4384
4385 trans = btrfs_join_transaction(root, 1);
4386 BUG_ON(IS_ERR(trans));
4387 btrfs_set_trans_block_group(trans, inode);
4388
4389 ret = btrfs_update_inode(trans, root, inode);
4390 if (ret && ret == -ENOSPC) {
4391 /* whoops, lets try again with the full transaction */
4392 btrfs_end_transaction(trans, root);
4393 trans = btrfs_start_transaction(root, 1);
4394 if (IS_ERR(trans)) {
4395 if (printk_ratelimit()) {
4396 printk(KERN_ERR "btrfs: fail to "
4397 "dirty inode %lu error %ld\n",
4398 inode->i_ino, PTR_ERR(trans));
4399 }
4400 return;
4401 }
4402 btrfs_set_trans_block_group(trans, inode);
4403
4404 ret = btrfs_update_inode(trans, root, inode);
4405 if (ret) {
4406 if (printk_ratelimit()) {
4407 printk(KERN_ERR "btrfs: fail to "
4408 "dirty inode %lu error %d\n",
4409 inode->i_ino, ret);
4410 }
4411 }
4412 }
4413 btrfs_end_transaction(trans, root);
4414 }
4415
4416 /*
4417 * find the highest existing sequence number in a directory
4418 * and then set the in-memory index_cnt variable to reflect
4419 * free sequence numbers
4420 */
4421 static int btrfs_set_inode_index_count(struct inode *inode)
4422 {
4423 struct btrfs_root *root = BTRFS_I(inode)->root;
4424 struct btrfs_key key, found_key;
4425 struct btrfs_path *path;
4426 struct extent_buffer *leaf;
4427 int ret;
4428
4429 key.objectid = inode->i_ino;
4430 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4431 key.offset = (u64)-1;
4432
4433 path = btrfs_alloc_path();
4434 if (!path)
4435 return -ENOMEM;
4436
4437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4438 if (ret < 0)
4439 goto out;
4440 /* FIXME: we should be able to handle this */
4441 if (ret == 0)
4442 goto out;
4443 ret = 0;
4444
4445 /*
4446 * MAGIC NUMBER EXPLANATION:
4447 * since we search a directory based on f_pos we have to start at 2
4448 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4449 * else has to start at 2
4450 */
4451 if (path->slots[0] == 0) {
4452 BTRFS_I(inode)->index_cnt = 2;
4453 goto out;
4454 }
4455
4456 path->slots[0]--;
4457
4458 leaf = path->nodes[0];
4459 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4460
4461 if (found_key.objectid != inode->i_ino ||
4462 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4463 BTRFS_I(inode)->index_cnt = 2;
4464 goto out;
4465 }
4466
4467 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4468 out:
4469 btrfs_free_path(path);
4470 return ret;
4471 }
4472
4473 /*
4474 * helper to find a free sequence number in a given directory. This current
4475 * code is very simple, later versions will do smarter things in the btree
4476 */
4477 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4478 {
4479 int ret = 0;
4480
4481 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4482 ret = btrfs_set_inode_index_count(dir);
4483 if (ret)
4484 return ret;
4485 }
4486
4487 *index = BTRFS_I(dir)->index_cnt;
4488 BTRFS_I(dir)->index_cnt++;
4489
4490 return ret;
4491 }
4492
4493 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4494 struct btrfs_root *root,
4495 struct inode *dir,
4496 const char *name, int name_len,
4497 u64 ref_objectid, u64 objectid,
4498 u64 alloc_hint, int mode, u64 *index)
4499 {
4500 struct inode *inode;
4501 struct btrfs_inode_item *inode_item;
4502 struct btrfs_key *location;
4503 struct btrfs_path *path;
4504 struct btrfs_inode_ref *ref;
4505 struct btrfs_key key[2];
4506 u32 sizes[2];
4507 unsigned long ptr;
4508 int ret;
4509 int owner;
4510
4511 path = btrfs_alloc_path();
4512 BUG_ON(!path);
4513
4514 inode = new_inode(root->fs_info->sb);
4515 if (!inode)
4516 return ERR_PTR(-ENOMEM);
4517
4518 if (dir) {
4519 ret = btrfs_set_inode_index(dir, index);
4520 if (ret) {
4521 iput(inode);
4522 return ERR_PTR(ret);
4523 }
4524 }
4525 /*
4526 * index_cnt is ignored for everything but a dir,
4527 * btrfs_get_inode_index_count has an explanation for the magic
4528 * number
4529 */
4530 BTRFS_I(inode)->index_cnt = 2;
4531 BTRFS_I(inode)->root = root;
4532 BTRFS_I(inode)->generation = trans->transid;
4533 inode->i_generation = BTRFS_I(inode)->generation;
4534 btrfs_set_inode_space_info(root, inode);
4535
4536 if (mode & S_IFDIR)
4537 owner = 0;
4538 else
4539 owner = 1;
4540 BTRFS_I(inode)->block_group =
4541 btrfs_find_block_group(root, 0, alloc_hint, owner);
4542
4543 key[0].objectid = objectid;
4544 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4545 key[0].offset = 0;
4546
4547 key[1].objectid = objectid;
4548 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4549 key[1].offset = ref_objectid;
4550
4551 sizes[0] = sizeof(struct btrfs_inode_item);
4552 sizes[1] = name_len + sizeof(*ref);
4553
4554 path->leave_spinning = 1;
4555 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4556 if (ret != 0)
4557 goto fail;
4558
4559 inode_init_owner(inode, dir, mode);
4560 inode->i_ino = objectid;
4561 inode_set_bytes(inode, 0);
4562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4563 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4564 struct btrfs_inode_item);
4565 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4566
4567 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4568 struct btrfs_inode_ref);
4569 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4570 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4571 ptr = (unsigned long)(ref + 1);
4572 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4573
4574 btrfs_mark_buffer_dirty(path->nodes[0]);
4575 btrfs_free_path(path);
4576
4577 location = &BTRFS_I(inode)->location;
4578 location->objectid = objectid;
4579 location->offset = 0;
4580 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4581
4582 btrfs_inherit_iflags(inode, dir);
4583
4584 if ((mode & S_IFREG)) {
4585 if (btrfs_test_opt(root, NODATASUM))
4586 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4587 if (btrfs_test_opt(root, NODATACOW))
4588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4589 }
4590
4591 insert_inode_hash(inode);
4592 inode_tree_add(inode);
4593 return inode;
4594 fail:
4595 if (dir)
4596 BTRFS_I(dir)->index_cnt--;
4597 btrfs_free_path(path);
4598 iput(inode);
4599 return ERR_PTR(ret);
4600 }
4601
4602 static inline u8 btrfs_inode_type(struct inode *inode)
4603 {
4604 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4605 }
4606
4607 /*
4608 * utility function to add 'inode' into 'parent_inode' with
4609 * a give name and a given sequence number.
4610 * if 'add_backref' is true, also insert a backref from the
4611 * inode to the parent directory.
4612 */
4613 int btrfs_add_link(struct btrfs_trans_handle *trans,
4614 struct inode *parent_inode, struct inode *inode,
4615 const char *name, int name_len, int add_backref, u64 index)
4616 {
4617 int ret = 0;
4618 struct btrfs_key key;
4619 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4620
4621 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4622 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4623 } else {
4624 key.objectid = inode->i_ino;
4625 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4626 key.offset = 0;
4627 }
4628
4629 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4630 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4631 key.objectid, root->root_key.objectid,
4632 parent_inode->i_ino,
4633 index, name, name_len);
4634 } else if (add_backref) {
4635 ret = btrfs_insert_inode_ref(trans, root,
4636 name, name_len, inode->i_ino,
4637 parent_inode->i_ino, index);
4638 }
4639
4640 if (ret == 0) {
4641 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4642 parent_inode->i_ino, &key,
4643 btrfs_inode_type(inode), index);
4644 BUG_ON(ret);
4645
4646 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4647 name_len * 2);
4648 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4649 ret = btrfs_update_inode(trans, root, parent_inode);
4650 }
4651 return ret;
4652 }
4653
4654 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4655 struct inode *dir, struct dentry *dentry,
4656 struct inode *inode, int backref, u64 index)
4657 {
4658 int err = btrfs_add_link(trans, dir, inode,
4659 dentry->d_name.name, dentry->d_name.len,
4660 backref, index);
4661 if (!err) {
4662 d_instantiate(dentry, inode);
4663 return 0;
4664 }
4665 if (err > 0)
4666 err = -EEXIST;
4667 return err;
4668 }
4669
4670 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4671 int mode, dev_t rdev)
4672 {
4673 struct btrfs_trans_handle *trans;
4674 struct btrfs_root *root = BTRFS_I(dir)->root;
4675 struct inode *inode = NULL;
4676 int err;
4677 int drop_inode = 0;
4678 u64 objectid;
4679 unsigned long nr = 0;
4680 u64 index = 0;
4681
4682 if (!new_valid_dev(rdev))
4683 return -EINVAL;
4684
4685 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4686 if (err)
4687 return err;
4688
4689 /*
4690 * 2 for inode item and ref
4691 * 2 for dir items
4692 * 1 for xattr if selinux is on
4693 */
4694 trans = btrfs_start_transaction(root, 5);
4695 if (IS_ERR(trans))
4696 return PTR_ERR(trans);
4697
4698 btrfs_set_trans_block_group(trans, dir);
4699
4700 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4701 dentry->d_name.len, dir->i_ino, objectid,
4702 BTRFS_I(dir)->block_group, mode, &index);
4703 err = PTR_ERR(inode);
4704 if (IS_ERR(inode))
4705 goto out_unlock;
4706
4707 err = btrfs_init_inode_security(trans, inode, dir);
4708 if (err) {
4709 drop_inode = 1;
4710 goto out_unlock;
4711 }
4712
4713 btrfs_set_trans_block_group(trans, inode);
4714 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4715 if (err)
4716 drop_inode = 1;
4717 else {
4718 inode->i_op = &btrfs_special_inode_operations;
4719 init_special_inode(inode, inode->i_mode, rdev);
4720 btrfs_update_inode(trans, root, inode);
4721 }
4722 btrfs_update_inode_block_group(trans, inode);
4723 btrfs_update_inode_block_group(trans, dir);
4724 out_unlock:
4725 nr = trans->blocks_used;
4726 btrfs_end_transaction_throttle(trans, root);
4727 btrfs_btree_balance_dirty(root, nr);
4728 if (drop_inode) {
4729 inode_dec_link_count(inode);
4730 iput(inode);
4731 }
4732 return err;
4733 }
4734
4735 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4736 int mode, struct nameidata *nd)
4737 {
4738 struct btrfs_trans_handle *trans;
4739 struct btrfs_root *root = BTRFS_I(dir)->root;
4740 struct inode *inode = NULL;
4741 int drop_inode = 0;
4742 int err;
4743 unsigned long nr = 0;
4744 u64 objectid;
4745 u64 index = 0;
4746
4747 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4748 if (err)
4749 return err;
4750 /*
4751 * 2 for inode item and ref
4752 * 2 for dir items
4753 * 1 for xattr if selinux is on
4754 */
4755 trans = btrfs_start_transaction(root, 5);
4756 if (IS_ERR(trans))
4757 return PTR_ERR(trans);
4758
4759 btrfs_set_trans_block_group(trans, dir);
4760
4761 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4762 dentry->d_name.len, dir->i_ino, objectid,
4763 BTRFS_I(dir)->block_group, mode, &index);
4764 err = PTR_ERR(inode);
4765 if (IS_ERR(inode))
4766 goto out_unlock;
4767
4768 err = btrfs_init_inode_security(trans, inode, dir);
4769 if (err) {
4770 drop_inode = 1;
4771 goto out_unlock;
4772 }
4773
4774 btrfs_set_trans_block_group(trans, inode);
4775 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4776 if (err)
4777 drop_inode = 1;
4778 else {
4779 inode->i_mapping->a_ops = &btrfs_aops;
4780 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4781 inode->i_fop = &btrfs_file_operations;
4782 inode->i_op = &btrfs_file_inode_operations;
4783 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4784 }
4785 btrfs_update_inode_block_group(trans, inode);
4786 btrfs_update_inode_block_group(trans, dir);
4787 out_unlock:
4788 nr = trans->blocks_used;
4789 btrfs_end_transaction_throttle(trans, root);
4790 if (drop_inode) {
4791 inode_dec_link_count(inode);
4792 iput(inode);
4793 }
4794 btrfs_btree_balance_dirty(root, nr);
4795 return err;
4796 }
4797
4798 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4799 struct dentry *dentry)
4800 {
4801 struct btrfs_trans_handle *trans;
4802 struct btrfs_root *root = BTRFS_I(dir)->root;
4803 struct inode *inode = old_dentry->d_inode;
4804 u64 index;
4805 unsigned long nr = 0;
4806 int err;
4807 int drop_inode = 0;
4808
4809 if (inode->i_nlink == 0)
4810 return -ENOENT;
4811
4812 /* do not allow sys_link's with other subvols of the same device */
4813 if (root->objectid != BTRFS_I(inode)->root->objectid)
4814 return -EPERM;
4815
4816 btrfs_inc_nlink(inode);
4817 inode->i_ctime = CURRENT_TIME;
4818
4819 err = btrfs_set_inode_index(dir, &index);
4820 if (err)
4821 goto fail;
4822
4823 /*
4824 * 1 item for inode ref
4825 * 2 items for dir items
4826 */
4827 trans = btrfs_start_transaction(root, 3);
4828 if (IS_ERR(trans)) {
4829 err = PTR_ERR(trans);
4830 goto fail;
4831 }
4832
4833 btrfs_set_trans_block_group(trans, dir);
4834 ihold(inode);
4835
4836 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4837
4838 if (err) {
4839 drop_inode = 1;
4840 } else {
4841 struct dentry *parent = dget_parent(dentry);
4842 btrfs_update_inode_block_group(trans, dir);
4843 err = btrfs_update_inode(trans, root, inode);
4844 BUG_ON(err);
4845 btrfs_log_new_name(trans, inode, NULL, parent);
4846 dput(parent);
4847 }
4848
4849 nr = trans->blocks_used;
4850 btrfs_end_transaction_throttle(trans, root);
4851 fail:
4852 if (drop_inode) {
4853 inode_dec_link_count(inode);
4854 iput(inode);
4855 }
4856 btrfs_btree_balance_dirty(root, nr);
4857 return err;
4858 }
4859
4860 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4861 {
4862 struct inode *inode = NULL;
4863 struct btrfs_trans_handle *trans;
4864 struct btrfs_root *root = BTRFS_I(dir)->root;
4865 int err = 0;
4866 int drop_on_err = 0;
4867 u64 objectid = 0;
4868 u64 index = 0;
4869 unsigned long nr = 1;
4870
4871 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4872 if (err)
4873 return err;
4874
4875 /*
4876 * 2 items for inode and ref
4877 * 2 items for dir items
4878 * 1 for xattr if selinux is on
4879 */
4880 trans = btrfs_start_transaction(root, 5);
4881 if (IS_ERR(trans))
4882 return PTR_ERR(trans);
4883 btrfs_set_trans_block_group(trans, dir);
4884
4885 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4886 dentry->d_name.len, dir->i_ino, objectid,
4887 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4888 &index);
4889 if (IS_ERR(inode)) {
4890 err = PTR_ERR(inode);
4891 goto out_fail;
4892 }
4893
4894 drop_on_err = 1;
4895
4896 err = btrfs_init_inode_security(trans, inode, dir);
4897 if (err)
4898 goto out_fail;
4899
4900 inode->i_op = &btrfs_dir_inode_operations;
4901 inode->i_fop = &btrfs_dir_file_operations;
4902 btrfs_set_trans_block_group(trans, inode);
4903
4904 btrfs_i_size_write(inode, 0);
4905 err = btrfs_update_inode(trans, root, inode);
4906 if (err)
4907 goto out_fail;
4908
4909 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4910 dentry->d_name.len, 0, index);
4911 if (err)
4912 goto out_fail;
4913
4914 d_instantiate(dentry, inode);
4915 drop_on_err = 0;
4916 btrfs_update_inode_block_group(trans, inode);
4917 btrfs_update_inode_block_group(trans, dir);
4918
4919 out_fail:
4920 nr = trans->blocks_used;
4921 btrfs_end_transaction_throttle(trans, root);
4922 if (drop_on_err)
4923 iput(inode);
4924 btrfs_btree_balance_dirty(root, nr);
4925 return err;
4926 }
4927
4928 /* helper for btfs_get_extent. Given an existing extent in the tree,
4929 * and an extent that you want to insert, deal with overlap and insert
4930 * the new extent into the tree.
4931 */
4932 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4933 struct extent_map *existing,
4934 struct extent_map *em,
4935 u64 map_start, u64 map_len)
4936 {
4937 u64 start_diff;
4938
4939 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4940 start_diff = map_start - em->start;
4941 em->start = map_start;
4942 em->len = map_len;
4943 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4944 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4945 em->block_start += start_diff;
4946 em->block_len -= start_diff;
4947 }
4948 return add_extent_mapping(em_tree, em);
4949 }
4950
4951 static noinline int uncompress_inline(struct btrfs_path *path,
4952 struct inode *inode, struct page *page,
4953 size_t pg_offset, u64 extent_offset,
4954 struct btrfs_file_extent_item *item)
4955 {
4956 int ret;
4957 struct extent_buffer *leaf = path->nodes[0];
4958 char *tmp;
4959 size_t max_size;
4960 unsigned long inline_size;
4961 unsigned long ptr;
4962 int compress_type;
4963
4964 WARN_ON(pg_offset != 0);
4965 compress_type = btrfs_file_extent_compression(leaf, item);
4966 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4967 inline_size = btrfs_file_extent_inline_item_len(leaf,
4968 btrfs_item_nr(leaf, path->slots[0]));
4969 tmp = kmalloc(inline_size, GFP_NOFS);
4970 ptr = btrfs_file_extent_inline_start(item);
4971
4972 read_extent_buffer(leaf, tmp, ptr, inline_size);
4973
4974 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4975 ret = btrfs_decompress(compress_type, tmp, page,
4976 extent_offset, inline_size, max_size);
4977 if (ret) {
4978 char *kaddr = kmap_atomic(page, KM_USER0);
4979 unsigned long copy_size = min_t(u64,
4980 PAGE_CACHE_SIZE - pg_offset,
4981 max_size - extent_offset);
4982 memset(kaddr + pg_offset, 0, copy_size);
4983 kunmap_atomic(kaddr, KM_USER0);
4984 }
4985 kfree(tmp);
4986 return 0;
4987 }
4988
4989 /*
4990 * a bit scary, this does extent mapping from logical file offset to the disk.
4991 * the ugly parts come from merging extents from the disk with the in-ram
4992 * representation. This gets more complex because of the data=ordered code,
4993 * where the in-ram extents might be locked pending data=ordered completion.
4994 *
4995 * This also copies inline extents directly into the page.
4996 */
4997
4998 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4999 size_t pg_offset, u64 start, u64 len,
5000 int create)
5001 {
5002 int ret;
5003 int err = 0;
5004 u64 bytenr;
5005 u64 extent_start = 0;
5006 u64 extent_end = 0;
5007 u64 objectid = inode->i_ino;
5008 u32 found_type;
5009 struct btrfs_path *path = NULL;
5010 struct btrfs_root *root = BTRFS_I(inode)->root;
5011 struct btrfs_file_extent_item *item;
5012 struct extent_buffer *leaf;
5013 struct btrfs_key found_key;
5014 struct extent_map *em = NULL;
5015 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5016 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5017 struct btrfs_trans_handle *trans = NULL;
5018 int compress_type;
5019
5020 again:
5021 read_lock(&em_tree->lock);
5022 em = lookup_extent_mapping(em_tree, start, len);
5023 if (em)
5024 em->bdev = root->fs_info->fs_devices->latest_bdev;
5025 read_unlock(&em_tree->lock);
5026
5027 if (em) {
5028 if (em->start > start || em->start + em->len <= start)
5029 free_extent_map(em);
5030 else if (em->block_start == EXTENT_MAP_INLINE && page)
5031 free_extent_map(em);
5032 else
5033 goto out;
5034 }
5035 em = alloc_extent_map(GFP_NOFS);
5036 if (!em) {
5037 err = -ENOMEM;
5038 goto out;
5039 }
5040 em->bdev = root->fs_info->fs_devices->latest_bdev;
5041 em->start = EXTENT_MAP_HOLE;
5042 em->orig_start = EXTENT_MAP_HOLE;
5043 em->len = (u64)-1;
5044 em->block_len = (u64)-1;
5045
5046 if (!path) {
5047 path = btrfs_alloc_path();
5048 BUG_ON(!path);
5049 }
5050
5051 ret = btrfs_lookup_file_extent(trans, root, path,
5052 objectid, start, trans != NULL);
5053 if (ret < 0) {
5054 err = ret;
5055 goto out;
5056 }
5057
5058 if (ret != 0) {
5059 if (path->slots[0] == 0)
5060 goto not_found;
5061 path->slots[0]--;
5062 }
5063
5064 leaf = path->nodes[0];
5065 item = btrfs_item_ptr(leaf, path->slots[0],
5066 struct btrfs_file_extent_item);
5067 /* are we inside the extent that was found? */
5068 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5069 found_type = btrfs_key_type(&found_key);
5070 if (found_key.objectid != objectid ||
5071 found_type != BTRFS_EXTENT_DATA_KEY) {
5072 goto not_found;
5073 }
5074
5075 found_type = btrfs_file_extent_type(leaf, item);
5076 extent_start = found_key.offset;
5077 compress_type = btrfs_file_extent_compression(leaf, item);
5078 if (found_type == BTRFS_FILE_EXTENT_REG ||
5079 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5080 extent_end = extent_start +
5081 btrfs_file_extent_num_bytes(leaf, item);
5082 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5083 size_t size;
5084 size = btrfs_file_extent_inline_len(leaf, item);
5085 extent_end = (extent_start + size + root->sectorsize - 1) &
5086 ~((u64)root->sectorsize - 1);
5087 }
5088
5089 if (start >= extent_end) {
5090 path->slots[0]++;
5091 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5092 ret = btrfs_next_leaf(root, path);
5093 if (ret < 0) {
5094 err = ret;
5095 goto out;
5096 }
5097 if (ret > 0)
5098 goto not_found;
5099 leaf = path->nodes[0];
5100 }
5101 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5102 if (found_key.objectid != objectid ||
5103 found_key.type != BTRFS_EXTENT_DATA_KEY)
5104 goto not_found;
5105 if (start + len <= found_key.offset)
5106 goto not_found;
5107 em->start = start;
5108 em->len = found_key.offset - start;
5109 goto not_found_em;
5110 }
5111
5112 if (found_type == BTRFS_FILE_EXTENT_REG ||
5113 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5114 em->start = extent_start;
5115 em->len = extent_end - extent_start;
5116 em->orig_start = extent_start -
5117 btrfs_file_extent_offset(leaf, item);
5118 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5119 if (bytenr == 0) {
5120 em->block_start = EXTENT_MAP_HOLE;
5121 goto insert;
5122 }
5123 if (compress_type != BTRFS_COMPRESS_NONE) {
5124 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5125 em->compress_type = compress_type;
5126 em->block_start = bytenr;
5127 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5128 item);
5129 } else {
5130 bytenr += btrfs_file_extent_offset(leaf, item);
5131 em->block_start = bytenr;
5132 em->block_len = em->len;
5133 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5134 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5135 }
5136 goto insert;
5137 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5138 unsigned long ptr;
5139 char *map;
5140 size_t size;
5141 size_t extent_offset;
5142 size_t copy_size;
5143
5144 em->block_start = EXTENT_MAP_INLINE;
5145 if (!page || create) {
5146 em->start = extent_start;
5147 em->len = extent_end - extent_start;
5148 goto out;
5149 }
5150
5151 size = btrfs_file_extent_inline_len(leaf, item);
5152 extent_offset = page_offset(page) + pg_offset - extent_start;
5153 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5154 size - extent_offset);
5155 em->start = extent_start + extent_offset;
5156 em->len = (copy_size + root->sectorsize - 1) &
5157 ~((u64)root->sectorsize - 1);
5158 em->orig_start = EXTENT_MAP_INLINE;
5159 if (compress_type) {
5160 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5161 em->compress_type = compress_type;
5162 }
5163 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5164 if (create == 0 && !PageUptodate(page)) {
5165 if (btrfs_file_extent_compression(leaf, item) !=
5166 BTRFS_COMPRESS_NONE) {
5167 ret = uncompress_inline(path, inode, page,
5168 pg_offset,
5169 extent_offset, item);
5170 BUG_ON(ret);
5171 } else {
5172 map = kmap(page);
5173 read_extent_buffer(leaf, map + pg_offset, ptr,
5174 copy_size);
5175 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5176 memset(map + pg_offset + copy_size, 0,
5177 PAGE_CACHE_SIZE - pg_offset -
5178 copy_size);
5179 }
5180 kunmap(page);
5181 }
5182 flush_dcache_page(page);
5183 } else if (create && PageUptodate(page)) {
5184 WARN_ON(1);
5185 if (!trans) {
5186 kunmap(page);
5187 free_extent_map(em);
5188 em = NULL;
5189 btrfs_release_path(root, path);
5190 trans = btrfs_join_transaction(root, 1);
5191 if (IS_ERR(trans))
5192 return ERR_CAST(trans);
5193 goto again;
5194 }
5195 map = kmap(page);
5196 write_extent_buffer(leaf, map + pg_offset, ptr,
5197 copy_size);
5198 kunmap(page);
5199 btrfs_mark_buffer_dirty(leaf);
5200 }
5201 set_extent_uptodate(io_tree, em->start,
5202 extent_map_end(em) - 1, GFP_NOFS);
5203 goto insert;
5204 } else {
5205 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5206 WARN_ON(1);
5207 }
5208 not_found:
5209 em->start = start;
5210 em->len = len;
5211 not_found_em:
5212 em->block_start = EXTENT_MAP_HOLE;
5213 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5214 insert:
5215 btrfs_release_path(root, path);
5216 if (em->start > start || extent_map_end(em) <= start) {
5217 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5218 "[%llu %llu]\n", (unsigned long long)em->start,
5219 (unsigned long long)em->len,
5220 (unsigned long long)start,
5221 (unsigned long long)len);
5222 err = -EIO;
5223 goto out;
5224 }
5225
5226 err = 0;
5227 write_lock(&em_tree->lock);
5228 ret = add_extent_mapping(em_tree, em);
5229 /* it is possible that someone inserted the extent into the tree
5230 * while we had the lock dropped. It is also possible that
5231 * an overlapping map exists in the tree
5232 */
5233 if (ret == -EEXIST) {
5234 struct extent_map *existing;
5235
5236 ret = 0;
5237
5238 existing = lookup_extent_mapping(em_tree, start, len);
5239 if (existing && (existing->start > start ||
5240 existing->start + existing->len <= start)) {
5241 free_extent_map(existing);
5242 existing = NULL;
5243 }
5244 if (!existing) {
5245 existing = lookup_extent_mapping(em_tree, em->start,
5246 em->len);
5247 if (existing) {
5248 err = merge_extent_mapping(em_tree, existing,
5249 em, start,
5250 root->sectorsize);
5251 free_extent_map(existing);
5252 if (err) {
5253 free_extent_map(em);
5254 em = NULL;
5255 }
5256 } else {
5257 err = -EIO;
5258 free_extent_map(em);
5259 em = NULL;
5260 }
5261 } else {
5262 free_extent_map(em);
5263 em = existing;
5264 err = 0;
5265 }
5266 }
5267 write_unlock(&em_tree->lock);
5268 out:
5269 if (path)
5270 btrfs_free_path(path);
5271 if (trans) {
5272 ret = btrfs_end_transaction(trans, root);
5273 if (!err)
5274 err = ret;
5275 }
5276 if (err) {
5277 free_extent_map(em);
5278 return ERR_PTR(err);
5279 }
5280 return em;
5281 }
5282
5283 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5284 u64 start, u64 len)
5285 {
5286 struct btrfs_root *root = BTRFS_I(inode)->root;
5287 struct btrfs_trans_handle *trans;
5288 struct extent_map *em;
5289 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5290 struct btrfs_key ins;
5291 u64 alloc_hint;
5292 int ret;
5293
5294 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5295
5296 trans = btrfs_join_transaction(root, 0);
5297 if (IS_ERR(trans))
5298 return ERR_CAST(trans);
5299
5300 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5301
5302 alloc_hint = get_extent_allocation_hint(inode, start, len);
5303 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5304 alloc_hint, (u64)-1, &ins, 1);
5305 if (ret) {
5306 em = ERR_PTR(ret);
5307 goto out;
5308 }
5309
5310 em = alloc_extent_map(GFP_NOFS);
5311 if (!em) {
5312 em = ERR_PTR(-ENOMEM);
5313 goto out;
5314 }
5315
5316 em->start = start;
5317 em->orig_start = em->start;
5318 em->len = ins.offset;
5319
5320 em->block_start = ins.objectid;
5321 em->block_len = ins.offset;
5322 em->bdev = root->fs_info->fs_devices->latest_bdev;
5323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5324
5325 while (1) {
5326 write_lock(&em_tree->lock);
5327 ret = add_extent_mapping(em_tree, em);
5328 write_unlock(&em_tree->lock);
5329 if (ret != -EEXIST)
5330 break;
5331 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5332 }
5333
5334 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5335 ins.offset, ins.offset, 0);
5336 if (ret) {
5337 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5338 em = ERR_PTR(ret);
5339 }
5340 out:
5341 btrfs_end_transaction(trans, root);
5342 return em;
5343 }
5344
5345 /*
5346 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5347 * block must be cow'd
5348 */
5349 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5350 struct inode *inode, u64 offset, u64 len)
5351 {
5352 struct btrfs_path *path;
5353 int ret;
5354 struct extent_buffer *leaf;
5355 struct btrfs_root *root = BTRFS_I(inode)->root;
5356 struct btrfs_file_extent_item *fi;
5357 struct btrfs_key key;
5358 u64 disk_bytenr;
5359 u64 backref_offset;
5360 u64 extent_end;
5361 u64 num_bytes;
5362 int slot;
5363 int found_type;
5364
5365 path = btrfs_alloc_path();
5366 if (!path)
5367 return -ENOMEM;
5368
5369 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5370 offset, 0);
5371 if (ret < 0)
5372 goto out;
5373
5374 slot = path->slots[0];
5375 if (ret == 1) {
5376 if (slot == 0) {
5377 /* can't find the item, must cow */
5378 ret = 0;
5379 goto out;
5380 }
5381 slot--;
5382 }
5383 ret = 0;
5384 leaf = path->nodes[0];
5385 btrfs_item_key_to_cpu(leaf, &key, slot);
5386 if (key.objectid != inode->i_ino ||
5387 key.type != BTRFS_EXTENT_DATA_KEY) {
5388 /* not our file or wrong item type, must cow */
5389 goto out;
5390 }
5391
5392 if (key.offset > offset) {
5393 /* Wrong offset, must cow */
5394 goto out;
5395 }
5396
5397 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5398 found_type = btrfs_file_extent_type(leaf, fi);
5399 if (found_type != BTRFS_FILE_EXTENT_REG &&
5400 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5401 /* not a regular extent, must cow */
5402 goto out;
5403 }
5404 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5405 backref_offset = btrfs_file_extent_offset(leaf, fi);
5406
5407 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5408 if (extent_end < offset + len) {
5409 /* extent doesn't include our full range, must cow */
5410 goto out;
5411 }
5412
5413 if (btrfs_extent_readonly(root, disk_bytenr))
5414 goto out;
5415
5416 /*
5417 * look for other files referencing this extent, if we
5418 * find any we must cow
5419 */
5420 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5421 key.offset - backref_offset, disk_bytenr))
5422 goto out;
5423
5424 /*
5425 * adjust disk_bytenr and num_bytes to cover just the bytes
5426 * in this extent we are about to write. If there
5427 * are any csums in that range we have to cow in order
5428 * to keep the csums correct
5429 */
5430 disk_bytenr += backref_offset;
5431 disk_bytenr += offset - key.offset;
5432 num_bytes = min(offset + len, extent_end) - offset;
5433 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5434 goto out;
5435 /*
5436 * all of the above have passed, it is safe to overwrite this extent
5437 * without cow
5438 */
5439 ret = 1;
5440 out:
5441 btrfs_free_path(path);
5442 return ret;
5443 }
5444
5445 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5446 struct buffer_head *bh_result, int create)
5447 {
5448 struct extent_map *em;
5449 struct btrfs_root *root = BTRFS_I(inode)->root;
5450 u64 start = iblock << inode->i_blkbits;
5451 u64 len = bh_result->b_size;
5452 struct btrfs_trans_handle *trans;
5453
5454 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5455 if (IS_ERR(em))
5456 return PTR_ERR(em);
5457
5458 /*
5459 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5460 * io. INLINE is special, and we could probably kludge it in here, but
5461 * it's still buffered so for safety lets just fall back to the generic
5462 * buffered path.
5463 *
5464 * For COMPRESSED we _have_ to read the entire extent in so we can
5465 * decompress it, so there will be buffering required no matter what we
5466 * do, so go ahead and fallback to buffered.
5467 *
5468 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5469 * to buffered IO. Don't blame me, this is the price we pay for using
5470 * the generic code.
5471 */
5472 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5473 em->block_start == EXTENT_MAP_INLINE) {
5474 free_extent_map(em);
5475 return -ENOTBLK;
5476 }
5477
5478 /* Just a good old fashioned hole, return */
5479 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5480 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5481 free_extent_map(em);
5482 /* DIO will do one hole at a time, so just unlock a sector */
5483 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5484 start + root->sectorsize - 1, GFP_NOFS);
5485 return 0;
5486 }
5487
5488 /*
5489 * We don't allocate a new extent in the following cases
5490 *
5491 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5492 * existing extent.
5493 * 2) The extent is marked as PREALLOC. We're good to go here and can
5494 * just use the extent.
5495 *
5496 */
5497 if (!create) {
5498 len = em->len - (start - em->start);
5499 goto map;
5500 }
5501
5502 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5503 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5504 em->block_start != EXTENT_MAP_HOLE)) {
5505 int type;
5506 int ret;
5507 u64 block_start;
5508
5509 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5510 type = BTRFS_ORDERED_PREALLOC;
5511 else
5512 type = BTRFS_ORDERED_NOCOW;
5513 len = min(len, em->len - (start - em->start));
5514 block_start = em->block_start + (start - em->start);
5515
5516 /*
5517 * we're not going to log anything, but we do need
5518 * to make sure the current transaction stays open
5519 * while we look for nocow cross refs
5520 */
5521 trans = btrfs_join_transaction(root, 0);
5522 if (IS_ERR(trans))
5523 goto must_cow;
5524
5525 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5526 ret = btrfs_add_ordered_extent_dio(inode, start,
5527 block_start, len, len, type);
5528 btrfs_end_transaction(trans, root);
5529 if (ret) {
5530 free_extent_map(em);
5531 return ret;
5532 }
5533 goto unlock;
5534 }
5535 btrfs_end_transaction(trans, root);
5536 }
5537 must_cow:
5538 /*
5539 * this will cow the extent, reset the len in case we changed
5540 * it above
5541 */
5542 len = bh_result->b_size;
5543 free_extent_map(em);
5544 em = btrfs_new_extent_direct(inode, start, len);
5545 if (IS_ERR(em))
5546 return PTR_ERR(em);
5547 len = min(len, em->len - (start - em->start));
5548 unlock:
5549 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5550 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5551 0, NULL, GFP_NOFS);
5552 map:
5553 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5554 inode->i_blkbits;
5555 bh_result->b_size = len;
5556 bh_result->b_bdev = em->bdev;
5557 set_buffer_mapped(bh_result);
5558 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5559 set_buffer_new(bh_result);
5560
5561 free_extent_map(em);
5562
5563 return 0;
5564 }
5565
5566 struct btrfs_dio_private {
5567 struct inode *inode;
5568 u64 logical_offset;
5569 u64 disk_bytenr;
5570 u64 bytes;
5571 u32 *csums;
5572 void *private;
5573
5574 /* number of bios pending for this dio */
5575 atomic_t pending_bios;
5576
5577 /* IO errors */
5578 int errors;
5579
5580 struct bio *orig_bio;
5581 };
5582
5583 static void btrfs_endio_direct_read(struct bio *bio, int err)
5584 {
5585 struct btrfs_dio_private *dip = bio->bi_private;
5586 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5587 struct bio_vec *bvec = bio->bi_io_vec;
5588 struct inode *inode = dip->inode;
5589 struct btrfs_root *root = BTRFS_I(inode)->root;
5590 u64 start;
5591 u32 *private = dip->csums;
5592
5593 start = dip->logical_offset;
5594 do {
5595 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5596 struct page *page = bvec->bv_page;
5597 char *kaddr;
5598 u32 csum = ~(u32)0;
5599 unsigned long flags;
5600
5601 local_irq_save(flags);
5602 kaddr = kmap_atomic(page, KM_IRQ0);
5603 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5604 csum, bvec->bv_len);
5605 btrfs_csum_final(csum, (char *)&csum);
5606 kunmap_atomic(kaddr, KM_IRQ0);
5607 local_irq_restore(flags);
5608
5609 flush_dcache_page(bvec->bv_page);
5610 if (csum != *private) {
5611 printk(KERN_ERR "btrfs csum failed ino %lu off"
5612 " %llu csum %u private %u\n",
5613 inode->i_ino, (unsigned long long)start,
5614 csum, *private);
5615 err = -EIO;
5616 }
5617 }
5618
5619 start += bvec->bv_len;
5620 private++;
5621 bvec++;
5622 } while (bvec <= bvec_end);
5623
5624 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5625 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5626 bio->bi_private = dip->private;
5627
5628 kfree(dip->csums);
5629 kfree(dip);
5630 dio_end_io(bio, err);
5631 }
5632
5633 static void btrfs_endio_direct_write(struct bio *bio, int err)
5634 {
5635 struct btrfs_dio_private *dip = bio->bi_private;
5636 struct inode *inode = dip->inode;
5637 struct btrfs_root *root = BTRFS_I(inode)->root;
5638 struct btrfs_trans_handle *trans;
5639 struct btrfs_ordered_extent *ordered = NULL;
5640 struct extent_state *cached_state = NULL;
5641 u64 ordered_offset = dip->logical_offset;
5642 u64 ordered_bytes = dip->bytes;
5643 int ret;
5644
5645 if (err)
5646 goto out_done;
5647 again:
5648 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5649 &ordered_offset,
5650 ordered_bytes);
5651 if (!ret)
5652 goto out_test;
5653
5654 BUG_ON(!ordered);
5655
5656 trans = btrfs_join_transaction(root, 1);
5657 if (IS_ERR(trans)) {
5658 err = -ENOMEM;
5659 goto out;
5660 }
5661 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5662
5663 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5664 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5665 if (!ret)
5666 ret = btrfs_update_inode(trans, root, inode);
5667 err = ret;
5668 goto out;
5669 }
5670
5671 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5672 ordered->file_offset + ordered->len - 1, 0,
5673 &cached_state, GFP_NOFS);
5674
5675 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5676 ret = btrfs_mark_extent_written(trans, inode,
5677 ordered->file_offset,
5678 ordered->file_offset +
5679 ordered->len);
5680 if (ret) {
5681 err = ret;
5682 goto out_unlock;
5683 }
5684 } else {
5685 ret = insert_reserved_file_extent(trans, inode,
5686 ordered->file_offset,
5687 ordered->start,
5688 ordered->disk_len,
5689 ordered->len,
5690 ordered->len,
5691 0, 0, 0,
5692 BTRFS_FILE_EXTENT_REG);
5693 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5694 ordered->file_offset, ordered->len);
5695 if (ret) {
5696 err = ret;
5697 WARN_ON(1);
5698 goto out_unlock;
5699 }
5700 }
5701
5702 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5703 btrfs_ordered_update_i_size(inode, 0, ordered);
5704 btrfs_update_inode(trans, root, inode);
5705 out_unlock:
5706 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5707 ordered->file_offset + ordered->len - 1,
5708 &cached_state, GFP_NOFS);
5709 out:
5710 btrfs_delalloc_release_metadata(inode, ordered->len);
5711 btrfs_end_transaction(trans, root);
5712 ordered_offset = ordered->file_offset + ordered->len;
5713 btrfs_put_ordered_extent(ordered);
5714 btrfs_put_ordered_extent(ordered);
5715
5716 out_test:
5717 /*
5718 * our bio might span multiple ordered extents. If we haven't
5719 * completed the accounting for the whole dio, go back and try again
5720 */
5721 if (ordered_offset < dip->logical_offset + dip->bytes) {
5722 ordered_bytes = dip->logical_offset + dip->bytes -
5723 ordered_offset;
5724 goto again;
5725 }
5726 out_done:
5727 bio->bi_private = dip->private;
5728
5729 kfree(dip->csums);
5730 kfree(dip);
5731 dio_end_io(bio, err);
5732 }
5733
5734 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5735 struct bio *bio, int mirror_num,
5736 unsigned long bio_flags, u64 offset)
5737 {
5738 int ret;
5739 struct btrfs_root *root = BTRFS_I(inode)->root;
5740 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5741 BUG_ON(ret);
5742 return 0;
5743 }
5744
5745 static void btrfs_end_dio_bio(struct bio *bio, int err)
5746 {
5747 struct btrfs_dio_private *dip = bio->bi_private;
5748
5749 if (err) {
5750 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5751 "sector %#Lx len %u err no %d\n",
5752 dip->inode->i_ino, bio->bi_rw,
5753 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5754 dip->errors = 1;
5755
5756 /*
5757 * before atomic variable goto zero, we must make sure
5758 * dip->errors is perceived to be set.
5759 */
5760 smp_mb__before_atomic_dec();
5761 }
5762
5763 /* if there are more bios still pending for this dio, just exit */
5764 if (!atomic_dec_and_test(&dip->pending_bios))
5765 goto out;
5766
5767 if (dip->errors)
5768 bio_io_error(dip->orig_bio);
5769 else {
5770 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5771 bio_endio(dip->orig_bio, 0);
5772 }
5773 out:
5774 bio_put(bio);
5775 }
5776
5777 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5778 u64 first_sector, gfp_t gfp_flags)
5779 {
5780 int nr_vecs = bio_get_nr_vecs(bdev);
5781 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5782 }
5783
5784 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5785 int rw, u64 file_offset, int skip_sum,
5786 u32 *csums)
5787 {
5788 int write = rw & REQ_WRITE;
5789 struct btrfs_root *root = BTRFS_I(inode)->root;
5790 int ret;
5791
5792 bio_get(bio);
5793 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5794 if (ret)
5795 goto err;
5796
5797 if (write && !skip_sum) {
5798 ret = btrfs_wq_submit_bio(root->fs_info,
5799 inode, rw, bio, 0, 0,
5800 file_offset,
5801 __btrfs_submit_bio_start_direct_io,
5802 __btrfs_submit_bio_done);
5803 goto err;
5804 } else if (!skip_sum)
5805 btrfs_lookup_bio_sums_dio(root, inode, bio,
5806 file_offset, csums);
5807
5808 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5809 err:
5810 bio_put(bio);
5811 return ret;
5812 }
5813
5814 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5815 int skip_sum)
5816 {
5817 struct inode *inode = dip->inode;
5818 struct btrfs_root *root = BTRFS_I(inode)->root;
5819 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5820 struct bio *bio;
5821 struct bio *orig_bio = dip->orig_bio;
5822 struct bio_vec *bvec = orig_bio->bi_io_vec;
5823 u64 start_sector = orig_bio->bi_sector;
5824 u64 file_offset = dip->logical_offset;
5825 u64 submit_len = 0;
5826 u64 map_length;
5827 int nr_pages = 0;
5828 u32 *csums = dip->csums;
5829 int ret = 0;
5830
5831 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5832 if (!bio)
5833 return -ENOMEM;
5834 bio->bi_private = dip;
5835 bio->bi_end_io = btrfs_end_dio_bio;
5836 atomic_inc(&dip->pending_bios);
5837
5838 map_length = orig_bio->bi_size;
5839 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5840 &map_length, NULL, 0);
5841 if (ret) {
5842 bio_put(bio);
5843 return -EIO;
5844 }
5845
5846 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5847 if (unlikely(map_length < submit_len + bvec->bv_len ||
5848 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5849 bvec->bv_offset) < bvec->bv_len)) {
5850 /*
5851 * inc the count before we submit the bio so
5852 * we know the end IO handler won't happen before
5853 * we inc the count. Otherwise, the dip might get freed
5854 * before we're done setting it up
5855 */
5856 atomic_inc(&dip->pending_bios);
5857 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5858 file_offset, skip_sum,
5859 csums);
5860 if (ret) {
5861 bio_put(bio);
5862 atomic_dec(&dip->pending_bios);
5863 goto out_err;
5864 }
5865
5866 if (!skip_sum)
5867 csums = csums + nr_pages;
5868 start_sector += submit_len >> 9;
5869 file_offset += submit_len;
5870
5871 submit_len = 0;
5872 nr_pages = 0;
5873
5874 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5875 start_sector, GFP_NOFS);
5876 if (!bio)
5877 goto out_err;
5878 bio->bi_private = dip;
5879 bio->bi_end_io = btrfs_end_dio_bio;
5880
5881 map_length = orig_bio->bi_size;
5882 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5883 &map_length, NULL, 0);
5884 if (ret) {
5885 bio_put(bio);
5886 goto out_err;
5887 }
5888 } else {
5889 submit_len += bvec->bv_len;
5890 nr_pages ++;
5891 bvec++;
5892 }
5893 }
5894
5895 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5896 csums);
5897 if (!ret)
5898 return 0;
5899
5900 bio_put(bio);
5901 out_err:
5902 dip->errors = 1;
5903 /*
5904 * before atomic variable goto zero, we must
5905 * make sure dip->errors is perceived to be set.
5906 */
5907 smp_mb__before_atomic_dec();
5908 if (atomic_dec_and_test(&dip->pending_bios))
5909 bio_io_error(dip->orig_bio);
5910
5911 /* bio_end_io() will handle error, so we needn't return it */
5912 return 0;
5913 }
5914
5915 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5916 loff_t file_offset)
5917 {
5918 struct btrfs_root *root = BTRFS_I(inode)->root;
5919 struct btrfs_dio_private *dip;
5920 struct bio_vec *bvec = bio->bi_io_vec;
5921 int skip_sum;
5922 int write = rw & REQ_WRITE;
5923 int ret = 0;
5924
5925 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5926
5927 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5928 if (!dip) {
5929 ret = -ENOMEM;
5930 goto free_ordered;
5931 }
5932 dip->csums = NULL;
5933
5934 if (!skip_sum) {
5935 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5936 if (!dip->csums) {
5937 ret = -ENOMEM;
5938 goto free_ordered;
5939 }
5940 }
5941
5942 dip->private = bio->bi_private;
5943 dip->inode = inode;
5944 dip->logical_offset = file_offset;
5945
5946 dip->bytes = 0;
5947 do {
5948 dip->bytes += bvec->bv_len;
5949 bvec++;
5950 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5951
5952 dip->disk_bytenr = (u64)bio->bi_sector << 9;
5953 bio->bi_private = dip;
5954 dip->errors = 0;
5955 dip->orig_bio = bio;
5956 atomic_set(&dip->pending_bios, 0);
5957
5958 if (write)
5959 bio->bi_end_io = btrfs_endio_direct_write;
5960 else
5961 bio->bi_end_io = btrfs_endio_direct_read;
5962
5963 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5964 if (!ret)
5965 return;
5966 free_ordered:
5967 /*
5968 * If this is a write, we need to clean up the reserved space and kill
5969 * the ordered extent.
5970 */
5971 if (write) {
5972 struct btrfs_ordered_extent *ordered;
5973 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5974 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5975 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5976 btrfs_free_reserved_extent(root, ordered->start,
5977 ordered->disk_len);
5978 btrfs_put_ordered_extent(ordered);
5979 btrfs_put_ordered_extent(ordered);
5980 }
5981 bio_endio(bio, ret);
5982 }
5983
5984 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5985 const struct iovec *iov, loff_t offset,
5986 unsigned long nr_segs)
5987 {
5988 int seg;
5989 size_t size;
5990 unsigned long addr;
5991 unsigned blocksize_mask = root->sectorsize - 1;
5992 ssize_t retval = -EINVAL;
5993 loff_t end = offset;
5994
5995 if (offset & blocksize_mask)
5996 goto out;
5997
5998 /* Check the memory alignment. Blocks cannot straddle pages */
5999 for (seg = 0; seg < nr_segs; seg++) {
6000 addr = (unsigned long)iov[seg].iov_base;
6001 size = iov[seg].iov_len;
6002 end += size;
6003 if ((addr & blocksize_mask) || (size & blocksize_mask))
6004 goto out;
6005 }
6006 retval = 0;
6007 out:
6008 return retval;
6009 }
6010 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6011 const struct iovec *iov, loff_t offset,
6012 unsigned long nr_segs)
6013 {
6014 struct file *file = iocb->ki_filp;
6015 struct inode *inode = file->f_mapping->host;
6016 struct btrfs_ordered_extent *ordered;
6017 struct extent_state *cached_state = NULL;
6018 u64 lockstart, lockend;
6019 ssize_t ret;
6020 int writing = rw & WRITE;
6021 int write_bits = 0;
6022 size_t count = iov_length(iov, nr_segs);
6023
6024 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6025 offset, nr_segs)) {
6026 return 0;
6027 }
6028
6029 lockstart = offset;
6030 lockend = offset + count - 1;
6031
6032 if (writing) {
6033 ret = btrfs_delalloc_reserve_space(inode, count);
6034 if (ret)
6035 goto out;
6036 }
6037
6038 while (1) {
6039 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6040 0, &cached_state, GFP_NOFS);
6041 /*
6042 * We're concerned with the entire range that we're going to be
6043 * doing DIO to, so we need to make sure theres no ordered
6044 * extents in this range.
6045 */
6046 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6047 lockend - lockstart + 1);
6048 if (!ordered)
6049 break;
6050 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6051 &cached_state, GFP_NOFS);
6052 btrfs_start_ordered_extent(inode, ordered, 1);
6053 btrfs_put_ordered_extent(ordered);
6054 cond_resched();
6055 }
6056
6057 /*
6058 * we don't use btrfs_set_extent_delalloc because we don't want
6059 * the dirty or uptodate bits
6060 */
6061 if (writing) {
6062 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6063 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6064 EXTENT_DELALLOC, 0, NULL, &cached_state,
6065 GFP_NOFS);
6066 if (ret) {
6067 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6068 lockend, EXTENT_LOCKED | write_bits,
6069 1, 0, &cached_state, GFP_NOFS);
6070 goto out;
6071 }
6072 }
6073
6074 free_extent_state(cached_state);
6075 cached_state = NULL;
6076
6077 ret = __blockdev_direct_IO(rw, iocb, inode,
6078 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6079 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6080 btrfs_submit_direct, 0);
6081
6082 if (ret < 0 && ret != -EIOCBQUEUED) {
6083 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6084 offset + iov_length(iov, nr_segs) - 1,
6085 EXTENT_LOCKED | write_bits, 1, 0,
6086 &cached_state, GFP_NOFS);
6087 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6088 /*
6089 * We're falling back to buffered, unlock the section we didn't
6090 * do IO on.
6091 */
6092 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6093 offset + iov_length(iov, nr_segs) - 1,
6094 EXTENT_LOCKED | write_bits, 1, 0,
6095 &cached_state, GFP_NOFS);
6096 }
6097 out:
6098 free_extent_state(cached_state);
6099 return ret;
6100 }
6101
6102 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6103 __u64 start, __u64 len)
6104 {
6105 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6106 }
6107
6108 int btrfs_readpage(struct file *file, struct page *page)
6109 {
6110 struct extent_io_tree *tree;
6111 tree = &BTRFS_I(page->mapping->host)->io_tree;
6112 return extent_read_full_page(tree, page, btrfs_get_extent);
6113 }
6114
6115 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6116 {
6117 struct extent_io_tree *tree;
6118
6119
6120 if (current->flags & PF_MEMALLOC) {
6121 redirty_page_for_writepage(wbc, page);
6122 unlock_page(page);
6123 return 0;
6124 }
6125 tree = &BTRFS_I(page->mapping->host)->io_tree;
6126 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6127 }
6128
6129 int btrfs_writepages(struct address_space *mapping,
6130 struct writeback_control *wbc)
6131 {
6132 struct extent_io_tree *tree;
6133
6134 tree = &BTRFS_I(mapping->host)->io_tree;
6135 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6136 }
6137
6138 static int
6139 btrfs_readpages(struct file *file, struct address_space *mapping,
6140 struct list_head *pages, unsigned nr_pages)
6141 {
6142 struct extent_io_tree *tree;
6143 tree = &BTRFS_I(mapping->host)->io_tree;
6144 return extent_readpages(tree, mapping, pages, nr_pages,
6145 btrfs_get_extent);
6146 }
6147 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6148 {
6149 struct extent_io_tree *tree;
6150 struct extent_map_tree *map;
6151 int ret;
6152
6153 tree = &BTRFS_I(page->mapping->host)->io_tree;
6154 map = &BTRFS_I(page->mapping->host)->extent_tree;
6155 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6156 if (ret == 1) {
6157 ClearPagePrivate(page);
6158 set_page_private(page, 0);
6159 page_cache_release(page);
6160 }
6161 return ret;
6162 }
6163
6164 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6165 {
6166 if (PageWriteback(page) || PageDirty(page))
6167 return 0;
6168 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6169 }
6170
6171 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6172 {
6173 struct extent_io_tree *tree;
6174 struct btrfs_ordered_extent *ordered;
6175 struct extent_state *cached_state = NULL;
6176 u64 page_start = page_offset(page);
6177 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6178
6179
6180 /*
6181 * we have the page locked, so new writeback can't start,
6182 * and the dirty bit won't be cleared while we are here.
6183 *
6184 * Wait for IO on this page so that we can safely clear
6185 * the PagePrivate2 bit and do ordered accounting
6186 */
6187 wait_on_page_writeback(page);
6188
6189 tree = &BTRFS_I(page->mapping->host)->io_tree;
6190 if (offset) {
6191 btrfs_releasepage(page, GFP_NOFS);
6192 return;
6193 }
6194 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6195 GFP_NOFS);
6196 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6197 page_offset(page));
6198 if (ordered) {
6199 /*
6200 * IO on this page will never be started, so we need
6201 * to account for any ordered extents now
6202 */
6203 clear_extent_bit(tree, page_start, page_end,
6204 EXTENT_DIRTY | EXTENT_DELALLOC |
6205 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6206 &cached_state, GFP_NOFS);
6207 /*
6208 * whoever cleared the private bit is responsible
6209 * for the finish_ordered_io
6210 */
6211 if (TestClearPagePrivate2(page)) {
6212 btrfs_finish_ordered_io(page->mapping->host,
6213 page_start, page_end);
6214 }
6215 btrfs_put_ordered_extent(ordered);
6216 cached_state = NULL;
6217 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6218 GFP_NOFS);
6219 }
6220 clear_extent_bit(tree, page_start, page_end,
6221 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6222 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6223 __btrfs_releasepage(page, GFP_NOFS);
6224
6225 ClearPageChecked(page);
6226 if (PagePrivate(page)) {
6227 ClearPagePrivate(page);
6228 set_page_private(page, 0);
6229 page_cache_release(page);
6230 }
6231 }
6232
6233 /*
6234 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6235 * called from a page fault handler when a page is first dirtied. Hence we must
6236 * be careful to check for EOF conditions here. We set the page up correctly
6237 * for a written page which means we get ENOSPC checking when writing into
6238 * holes and correct delalloc and unwritten extent mapping on filesystems that
6239 * support these features.
6240 *
6241 * We are not allowed to take the i_mutex here so we have to play games to
6242 * protect against truncate races as the page could now be beyond EOF. Because
6243 * vmtruncate() writes the inode size before removing pages, once we have the
6244 * page lock we can determine safely if the page is beyond EOF. If it is not
6245 * beyond EOF, then the page is guaranteed safe against truncation until we
6246 * unlock the page.
6247 */
6248 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6249 {
6250 struct page *page = vmf->page;
6251 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6252 struct btrfs_root *root = BTRFS_I(inode)->root;
6253 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6254 struct btrfs_ordered_extent *ordered;
6255 struct extent_state *cached_state = NULL;
6256 char *kaddr;
6257 unsigned long zero_start;
6258 loff_t size;
6259 int ret;
6260 u64 page_start;
6261 u64 page_end;
6262
6263 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6264 if (ret) {
6265 if (ret == -ENOMEM)
6266 ret = VM_FAULT_OOM;
6267 else /* -ENOSPC, -EIO, etc */
6268 ret = VM_FAULT_SIGBUS;
6269 goto out;
6270 }
6271
6272 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6273 again:
6274 lock_page(page);
6275 size = i_size_read(inode);
6276 page_start = page_offset(page);
6277 page_end = page_start + PAGE_CACHE_SIZE - 1;
6278
6279 if ((page->mapping != inode->i_mapping) ||
6280 (page_start >= size)) {
6281 /* page got truncated out from underneath us */
6282 goto out_unlock;
6283 }
6284 wait_on_page_writeback(page);
6285
6286 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6287 GFP_NOFS);
6288 set_page_extent_mapped(page);
6289
6290 /*
6291 * we can't set the delalloc bits if there are pending ordered
6292 * extents. Drop our locks and wait for them to finish
6293 */
6294 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6295 if (ordered) {
6296 unlock_extent_cached(io_tree, page_start, page_end,
6297 &cached_state, GFP_NOFS);
6298 unlock_page(page);
6299 btrfs_start_ordered_extent(inode, ordered, 1);
6300 btrfs_put_ordered_extent(ordered);
6301 goto again;
6302 }
6303
6304 /*
6305 * XXX - page_mkwrite gets called every time the page is dirtied, even
6306 * if it was already dirty, so for space accounting reasons we need to
6307 * clear any delalloc bits for the range we are fixing to save. There
6308 * is probably a better way to do this, but for now keep consistent with
6309 * prepare_pages in the normal write path.
6310 */
6311 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6312 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6313 0, 0, &cached_state, GFP_NOFS);
6314
6315 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6316 &cached_state);
6317 if (ret) {
6318 unlock_extent_cached(io_tree, page_start, page_end,
6319 &cached_state, GFP_NOFS);
6320 ret = VM_FAULT_SIGBUS;
6321 goto out_unlock;
6322 }
6323 ret = 0;
6324
6325 /* page is wholly or partially inside EOF */
6326 if (page_start + PAGE_CACHE_SIZE > size)
6327 zero_start = size & ~PAGE_CACHE_MASK;
6328 else
6329 zero_start = PAGE_CACHE_SIZE;
6330
6331 if (zero_start != PAGE_CACHE_SIZE) {
6332 kaddr = kmap(page);
6333 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6334 flush_dcache_page(page);
6335 kunmap(page);
6336 }
6337 ClearPageChecked(page);
6338 set_page_dirty(page);
6339 SetPageUptodate(page);
6340
6341 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6342 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6343
6344 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6345
6346 out_unlock:
6347 if (!ret)
6348 return VM_FAULT_LOCKED;
6349 unlock_page(page);
6350 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6351 out:
6352 return ret;
6353 }
6354
6355 static void btrfs_truncate(struct inode *inode)
6356 {
6357 struct btrfs_root *root = BTRFS_I(inode)->root;
6358 int ret;
6359 struct btrfs_trans_handle *trans;
6360 unsigned long nr;
6361 u64 mask = root->sectorsize - 1;
6362
6363 if (!S_ISREG(inode->i_mode)) {
6364 WARN_ON(1);
6365 return;
6366 }
6367
6368 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6369 if (ret)
6370 return;
6371
6372 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6373 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6374
6375 trans = btrfs_start_transaction(root, 0);
6376 BUG_ON(IS_ERR(trans));
6377 btrfs_set_trans_block_group(trans, inode);
6378 trans->block_rsv = root->orphan_block_rsv;
6379
6380 /*
6381 * setattr is responsible for setting the ordered_data_close flag,
6382 * but that is only tested during the last file release. That
6383 * could happen well after the next commit, leaving a great big
6384 * window where new writes may get lost if someone chooses to write
6385 * to this file after truncating to zero
6386 *
6387 * The inode doesn't have any dirty data here, and so if we commit
6388 * this is a noop. If someone immediately starts writing to the inode
6389 * it is very likely we'll catch some of their writes in this
6390 * transaction, and the commit will find this file on the ordered
6391 * data list with good things to send down.
6392 *
6393 * This is a best effort solution, there is still a window where
6394 * using truncate to replace the contents of the file will
6395 * end up with a zero length file after a crash.
6396 */
6397 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6398 btrfs_add_ordered_operation(trans, root, inode);
6399
6400 while (1) {
6401 if (!trans) {
6402 trans = btrfs_start_transaction(root, 0);
6403 BUG_ON(IS_ERR(trans));
6404 btrfs_set_trans_block_group(trans, inode);
6405 trans->block_rsv = root->orphan_block_rsv;
6406 }
6407
6408 ret = btrfs_block_rsv_check(trans, root,
6409 root->orphan_block_rsv, 0, 5);
6410 if (ret) {
6411 BUG_ON(ret != -EAGAIN);
6412 ret = btrfs_commit_transaction(trans, root);
6413 BUG_ON(ret);
6414 trans = NULL;
6415 continue;
6416 }
6417
6418 ret = btrfs_truncate_inode_items(trans, root, inode,
6419 inode->i_size,
6420 BTRFS_EXTENT_DATA_KEY);
6421 if (ret != -EAGAIN)
6422 break;
6423
6424 ret = btrfs_update_inode(trans, root, inode);
6425 BUG_ON(ret);
6426
6427 nr = trans->blocks_used;
6428 btrfs_end_transaction(trans, root);
6429 trans = NULL;
6430 btrfs_btree_balance_dirty(root, nr);
6431 }
6432
6433 if (ret == 0 && inode->i_nlink > 0) {
6434 ret = btrfs_orphan_del(trans, inode);
6435 BUG_ON(ret);
6436 }
6437
6438 ret = btrfs_update_inode(trans, root, inode);
6439 BUG_ON(ret);
6440
6441 nr = trans->blocks_used;
6442 ret = btrfs_end_transaction_throttle(trans, root);
6443 BUG_ON(ret);
6444 btrfs_btree_balance_dirty(root, nr);
6445 }
6446
6447 /*
6448 * create a new subvolume directory/inode (helper for the ioctl).
6449 */
6450 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6451 struct btrfs_root *new_root,
6452 u64 new_dirid, u64 alloc_hint)
6453 {
6454 struct inode *inode;
6455 int err;
6456 u64 index = 0;
6457
6458 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6459 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6460 if (IS_ERR(inode))
6461 return PTR_ERR(inode);
6462 inode->i_op = &btrfs_dir_inode_operations;
6463 inode->i_fop = &btrfs_dir_file_operations;
6464
6465 inode->i_nlink = 1;
6466 btrfs_i_size_write(inode, 0);
6467
6468 err = btrfs_update_inode(trans, new_root, inode);
6469 BUG_ON(err);
6470
6471 iput(inode);
6472 return 0;
6473 }
6474
6475 /* helper function for file defrag and space balancing. This
6476 * forces readahead on a given range of bytes in an inode
6477 */
6478 unsigned long btrfs_force_ra(struct address_space *mapping,
6479 struct file_ra_state *ra, struct file *file,
6480 pgoff_t offset, pgoff_t last_index)
6481 {
6482 pgoff_t req_size = last_index - offset + 1;
6483
6484 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6485 return offset + req_size;
6486 }
6487
6488 struct inode *btrfs_alloc_inode(struct super_block *sb)
6489 {
6490 struct btrfs_inode *ei;
6491 struct inode *inode;
6492
6493 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6494 if (!ei)
6495 return NULL;
6496
6497 ei->root = NULL;
6498 ei->space_info = NULL;
6499 ei->generation = 0;
6500 ei->sequence = 0;
6501 ei->last_trans = 0;
6502 ei->last_sub_trans = 0;
6503 ei->logged_trans = 0;
6504 ei->delalloc_bytes = 0;
6505 ei->reserved_bytes = 0;
6506 ei->disk_i_size = 0;
6507 ei->flags = 0;
6508 ei->index_cnt = (u64)-1;
6509 ei->last_unlink_trans = 0;
6510
6511 spin_lock_init(&ei->accounting_lock);
6512 atomic_set(&ei->outstanding_extents, 0);
6513 ei->reserved_extents = 0;
6514
6515 ei->ordered_data_close = 0;
6516 ei->orphan_meta_reserved = 0;
6517 ei->dummy_inode = 0;
6518 ei->force_compress = BTRFS_COMPRESS_NONE;
6519
6520 inode = &ei->vfs_inode;
6521 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6522 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6523 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6524 mutex_init(&ei->log_mutex);
6525 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6526 INIT_LIST_HEAD(&ei->i_orphan);
6527 INIT_LIST_HEAD(&ei->delalloc_inodes);
6528 INIT_LIST_HEAD(&ei->ordered_operations);
6529 RB_CLEAR_NODE(&ei->rb_node);
6530
6531 return inode;
6532 }
6533
6534 static void btrfs_i_callback(struct rcu_head *head)
6535 {
6536 struct inode *inode = container_of(head, struct inode, i_rcu);
6537 INIT_LIST_HEAD(&inode->i_dentry);
6538 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6539 }
6540
6541 void btrfs_destroy_inode(struct inode *inode)
6542 {
6543 struct btrfs_ordered_extent *ordered;
6544 struct btrfs_root *root = BTRFS_I(inode)->root;
6545
6546 WARN_ON(!list_empty(&inode->i_dentry));
6547 WARN_ON(inode->i_data.nrpages);
6548 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6549 WARN_ON(BTRFS_I(inode)->reserved_extents);
6550
6551 /*
6552 * This can happen where we create an inode, but somebody else also
6553 * created the same inode and we need to destroy the one we already
6554 * created.
6555 */
6556 if (!root)
6557 goto free;
6558
6559 /*
6560 * Make sure we're properly removed from the ordered operation
6561 * lists.
6562 */
6563 smp_mb();
6564 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6565 spin_lock(&root->fs_info->ordered_extent_lock);
6566 list_del_init(&BTRFS_I(inode)->ordered_operations);
6567 spin_unlock(&root->fs_info->ordered_extent_lock);
6568 }
6569
6570 if (root == root->fs_info->tree_root) {
6571 struct btrfs_block_group_cache *block_group;
6572
6573 block_group = btrfs_lookup_block_group(root->fs_info,
6574 BTRFS_I(inode)->block_group);
6575 if (block_group && block_group->inode == inode) {
6576 spin_lock(&block_group->lock);
6577 block_group->inode = NULL;
6578 spin_unlock(&block_group->lock);
6579 btrfs_put_block_group(block_group);
6580 } else if (block_group) {
6581 btrfs_put_block_group(block_group);
6582 }
6583 }
6584
6585 spin_lock(&root->orphan_lock);
6586 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6587 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6588 inode->i_ino);
6589 list_del_init(&BTRFS_I(inode)->i_orphan);
6590 }
6591 spin_unlock(&root->orphan_lock);
6592
6593 while (1) {
6594 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6595 if (!ordered)
6596 break;
6597 else {
6598 printk(KERN_ERR "btrfs found ordered "
6599 "extent %llu %llu on inode cleanup\n",
6600 (unsigned long long)ordered->file_offset,
6601 (unsigned long long)ordered->len);
6602 btrfs_remove_ordered_extent(inode, ordered);
6603 btrfs_put_ordered_extent(ordered);
6604 btrfs_put_ordered_extent(ordered);
6605 }
6606 }
6607 inode_tree_del(inode);
6608 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6609 free:
6610 call_rcu(&inode->i_rcu, btrfs_i_callback);
6611 }
6612
6613 int btrfs_drop_inode(struct inode *inode)
6614 {
6615 struct btrfs_root *root = BTRFS_I(inode)->root;
6616
6617 if (btrfs_root_refs(&root->root_item) == 0 &&
6618 root != root->fs_info->tree_root)
6619 return 1;
6620 else
6621 return generic_drop_inode(inode);
6622 }
6623
6624 static void init_once(void *foo)
6625 {
6626 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6627
6628 inode_init_once(&ei->vfs_inode);
6629 }
6630
6631 void btrfs_destroy_cachep(void)
6632 {
6633 if (btrfs_inode_cachep)
6634 kmem_cache_destroy(btrfs_inode_cachep);
6635 if (btrfs_trans_handle_cachep)
6636 kmem_cache_destroy(btrfs_trans_handle_cachep);
6637 if (btrfs_transaction_cachep)
6638 kmem_cache_destroy(btrfs_transaction_cachep);
6639 if (btrfs_path_cachep)
6640 kmem_cache_destroy(btrfs_path_cachep);
6641 }
6642
6643 int btrfs_init_cachep(void)
6644 {
6645 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6646 sizeof(struct btrfs_inode), 0,
6647 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6648 if (!btrfs_inode_cachep)
6649 goto fail;
6650
6651 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6652 sizeof(struct btrfs_trans_handle), 0,
6653 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6654 if (!btrfs_trans_handle_cachep)
6655 goto fail;
6656
6657 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6658 sizeof(struct btrfs_transaction), 0,
6659 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6660 if (!btrfs_transaction_cachep)
6661 goto fail;
6662
6663 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6664 sizeof(struct btrfs_path), 0,
6665 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6666 if (!btrfs_path_cachep)
6667 goto fail;
6668
6669 return 0;
6670 fail:
6671 btrfs_destroy_cachep();
6672 return -ENOMEM;
6673 }
6674
6675 static int btrfs_getattr(struct vfsmount *mnt,
6676 struct dentry *dentry, struct kstat *stat)
6677 {
6678 struct inode *inode = dentry->d_inode;
6679 generic_fillattr(inode, stat);
6680 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6681 stat->blksize = PAGE_CACHE_SIZE;
6682 stat->blocks = (inode_get_bytes(inode) +
6683 BTRFS_I(inode)->delalloc_bytes) >> 9;
6684 return 0;
6685 }
6686
6687 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6688 struct inode *new_dir, struct dentry *new_dentry)
6689 {
6690 struct btrfs_trans_handle *trans;
6691 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6692 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6693 struct inode *new_inode = new_dentry->d_inode;
6694 struct inode *old_inode = old_dentry->d_inode;
6695 struct timespec ctime = CURRENT_TIME;
6696 u64 index = 0;
6697 u64 root_objectid;
6698 int ret;
6699
6700 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6701 return -EPERM;
6702
6703 /* we only allow rename subvolume link between subvolumes */
6704 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6705 return -EXDEV;
6706
6707 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6708 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6709 return -ENOTEMPTY;
6710
6711 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6712 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6713 return -ENOTEMPTY;
6714 /*
6715 * we're using rename to replace one file with another.
6716 * and the replacement file is large. Start IO on it now so
6717 * we don't add too much work to the end of the transaction
6718 */
6719 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6720 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6721 filemap_flush(old_inode->i_mapping);
6722
6723 /* close the racy window with snapshot create/destroy ioctl */
6724 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6725 down_read(&root->fs_info->subvol_sem);
6726 /*
6727 * We want to reserve the absolute worst case amount of items. So if
6728 * both inodes are subvols and we need to unlink them then that would
6729 * require 4 item modifications, but if they are both normal inodes it
6730 * would require 5 item modifications, so we'll assume their normal
6731 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6732 * should cover the worst case number of items we'll modify.
6733 */
6734 trans = btrfs_start_transaction(root, 20);
6735 if (IS_ERR(trans))
6736 return PTR_ERR(trans);
6737
6738 btrfs_set_trans_block_group(trans, new_dir);
6739
6740 if (dest != root)
6741 btrfs_record_root_in_trans(trans, dest);
6742
6743 ret = btrfs_set_inode_index(new_dir, &index);
6744 if (ret)
6745 goto out_fail;
6746
6747 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6748 /* force full log commit if subvolume involved. */
6749 root->fs_info->last_trans_log_full_commit = trans->transid;
6750 } else {
6751 ret = btrfs_insert_inode_ref(trans, dest,
6752 new_dentry->d_name.name,
6753 new_dentry->d_name.len,
6754 old_inode->i_ino,
6755 new_dir->i_ino, index);
6756 if (ret)
6757 goto out_fail;
6758 /*
6759 * this is an ugly little race, but the rename is required
6760 * to make sure that if we crash, the inode is either at the
6761 * old name or the new one. pinning the log transaction lets
6762 * us make sure we don't allow a log commit to come in after
6763 * we unlink the name but before we add the new name back in.
6764 */
6765 btrfs_pin_log_trans(root);
6766 }
6767 /*
6768 * make sure the inode gets flushed if it is replacing
6769 * something.
6770 */
6771 if (new_inode && new_inode->i_size &&
6772 old_inode && S_ISREG(old_inode->i_mode)) {
6773 btrfs_add_ordered_operation(trans, root, old_inode);
6774 }
6775
6776 old_dir->i_ctime = old_dir->i_mtime = ctime;
6777 new_dir->i_ctime = new_dir->i_mtime = ctime;
6778 old_inode->i_ctime = ctime;
6779
6780 if (old_dentry->d_parent != new_dentry->d_parent)
6781 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6782
6783 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6784 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6785 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6786 old_dentry->d_name.name,
6787 old_dentry->d_name.len);
6788 } else {
6789 btrfs_inc_nlink(old_dentry->d_inode);
6790 ret = btrfs_unlink_inode(trans, root, old_dir,
6791 old_dentry->d_inode,
6792 old_dentry->d_name.name,
6793 old_dentry->d_name.len);
6794 }
6795 BUG_ON(ret);
6796
6797 if (new_inode) {
6798 new_inode->i_ctime = CURRENT_TIME;
6799 if (unlikely(new_inode->i_ino ==
6800 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6801 root_objectid = BTRFS_I(new_inode)->location.objectid;
6802 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6803 root_objectid,
6804 new_dentry->d_name.name,
6805 new_dentry->d_name.len);
6806 BUG_ON(new_inode->i_nlink == 0);
6807 } else {
6808 ret = btrfs_unlink_inode(trans, dest, new_dir,
6809 new_dentry->d_inode,
6810 new_dentry->d_name.name,
6811 new_dentry->d_name.len);
6812 }
6813 BUG_ON(ret);
6814 if (new_inode->i_nlink == 0) {
6815 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6816 BUG_ON(ret);
6817 }
6818 }
6819
6820 ret = btrfs_add_link(trans, new_dir, old_inode,
6821 new_dentry->d_name.name,
6822 new_dentry->d_name.len, 0, index);
6823 BUG_ON(ret);
6824
6825 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6826 struct dentry *parent = dget_parent(new_dentry);
6827 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6828 dput(parent);
6829 btrfs_end_log_trans(root);
6830 }
6831 out_fail:
6832 btrfs_end_transaction_throttle(trans, root);
6833
6834 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6835 up_read(&root->fs_info->subvol_sem);
6836
6837 return ret;
6838 }
6839
6840 /*
6841 * some fairly slow code that needs optimization. This walks the list
6842 * of all the inodes with pending delalloc and forces them to disk.
6843 */
6844 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6845 {
6846 struct list_head *head = &root->fs_info->delalloc_inodes;
6847 struct btrfs_inode *binode;
6848 struct inode *inode;
6849
6850 if (root->fs_info->sb->s_flags & MS_RDONLY)
6851 return -EROFS;
6852
6853 spin_lock(&root->fs_info->delalloc_lock);
6854 while (!list_empty(head)) {
6855 binode = list_entry(head->next, struct btrfs_inode,
6856 delalloc_inodes);
6857 inode = igrab(&binode->vfs_inode);
6858 if (!inode)
6859 list_del_init(&binode->delalloc_inodes);
6860 spin_unlock(&root->fs_info->delalloc_lock);
6861 if (inode) {
6862 filemap_flush(inode->i_mapping);
6863 if (delay_iput)
6864 btrfs_add_delayed_iput(inode);
6865 else
6866 iput(inode);
6867 }
6868 cond_resched();
6869 spin_lock(&root->fs_info->delalloc_lock);
6870 }
6871 spin_unlock(&root->fs_info->delalloc_lock);
6872
6873 /* the filemap_flush will queue IO into the worker threads, but
6874 * we have to make sure the IO is actually started and that
6875 * ordered extents get created before we return
6876 */
6877 atomic_inc(&root->fs_info->async_submit_draining);
6878 while (atomic_read(&root->fs_info->nr_async_submits) ||
6879 atomic_read(&root->fs_info->async_delalloc_pages)) {
6880 wait_event(root->fs_info->async_submit_wait,
6881 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6882 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6883 }
6884 atomic_dec(&root->fs_info->async_submit_draining);
6885 return 0;
6886 }
6887
6888 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6889 int sync)
6890 {
6891 struct btrfs_inode *binode;
6892 struct inode *inode = NULL;
6893
6894 spin_lock(&root->fs_info->delalloc_lock);
6895 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6896 binode = list_entry(root->fs_info->delalloc_inodes.next,
6897 struct btrfs_inode, delalloc_inodes);
6898 inode = igrab(&binode->vfs_inode);
6899 if (inode) {
6900 list_move_tail(&binode->delalloc_inodes,
6901 &root->fs_info->delalloc_inodes);
6902 break;
6903 }
6904
6905 list_del_init(&binode->delalloc_inodes);
6906 cond_resched_lock(&root->fs_info->delalloc_lock);
6907 }
6908 spin_unlock(&root->fs_info->delalloc_lock);
6909
6910 if (inode) {
6911 if (sync) {
6912 filemap_write_and_wait(inode->i_mapping);
6913 /*
6914 * We have to do this because compression doesn't
6915 * actually set PG_writeback until it submits the pages
6916 * for IO, which happens in an async thread, so we could
6917 * race and not actually wait for any writeback pages
6918 * because they've not been submitted yet. Technically
6919 * this could still be the case for the ordered stuff
6920 * since the async thread may not have started to do its
6921 * work yet. If this becomes the case then we need to
6922 * figure out a way to make sure that in writepage we
6923 * wait for any async pages to be submitted before
6924 * returning so that fdatawait does what its supposed to
6925 * do.
6926 */
6927 btrfs_wait_ordered_range(inode, 0, (u64)-1);
6928 } else {
6929 filemap_flush(inode->i_mapping);
6930 }
6931 if (delay_iput)
6932 btrfs_add_delayed_iput(inode);
6933 else
6934 iput(inode);
6935 return 1;
6936 }
6937 return 0;
6938 }
6939
6940 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6941 const char *symname)
6942 {
6943 struct btrfs_trans_handle *trans;
6944 struct btrfs_root *root = BTRFS_I(dir)->root;
6945 struct btrfs_path *path;
6946 struct btrfs_key key;
6947 struct inode *inode = NULL;
6948 int err;
6949 int drop_inode = 0;
6950 u64 objectid;
6951 u64 index = 0 ;
6952 int name_len;
6953 int datasize;
6954 unsigned long ptr;
6955 struct btrfs_file_extent_item *ei;
6956 struct extent_buffer *leaf;
6957 unsigned long nr = 0;
6958
6959 name_len = strlen(symname) + 1;
6960 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6961 return -ENAMETOOLONG;
6962
6963 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6964 if (err)
6965 return err;
6966 /*
6967 * 2 items for inode item and ref
6968 * 2 items for dir items
6969 * 1 item for xattr if selinux is on
6970 */
6971 trans = btrfs_start_transaction(root, 5);
6972 if (IS_ERR(trans))
6973 return PTR_ERR(trans);
6974
6975 btrfs_set_trans_block_group(trans, dir);
6976
6977 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6978 dentry->d_name.len, dir->i_ino, objectid,
6979 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6980 &index);
6981 err = PTR_ERR(inode);
6982 if (IS_ERR(inode))
6983 goto out_unlock;
6984
6985 err = btrfs_init_inode_security(trans, inode, dir);
6986 if (err) {
6987 drop_inode = 1;
6988 goto out_unlock;
6989 }
6990
6991 btrfs_set_trans_block_group(trans, inode);
6992 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6993 if (err)
6994 drop_inode = 1;
6995 else {
6996 inode->i_mapping->a_ops = &btrfs_aops;
6997 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6998 inode->i_fop = &btrfs_file_operations;
6999 inode->i_op = &btrfs_file_inode_operations;
7000 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7001 }
7002 btrfs_update_inode_block_group(trans, inode);
7003 btrfs_update_inode_block_group(trans, dir);
7004 if (drop_inode)
7005 goto out_unlock;
7006
7007 path = btrfs_alloc_path();
7008 BUG_ON(!path);
7009 key.objectid = inode->i_ino;
7010 key.offset = 0;
7011 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7012 datasize = btrfs_file_extent_calc_inline_size(name_len);
7013 err = btrfs_insert_empty_item(trans, root, path, &key,
7014 datasize);
7015 if (err) {
7016 drop_inode = 1;
7017 goto out_unlock;
7018 }
7019 leaf = path->nodes[0];
7020 ei = btrfs_item_ptr(leaf, path->slots[0],
7021 struct btrfs_file_extent_item);
7022 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7023 btrfs_set_file_extent_type(leaf, ei,
7024 BTRFS_FILE_EXTENT_INLINE);
7025 btrfs_set_file_extent_encryption(leaf, ei, 0);
7026 btrfs_set_file_extent_compression(leaf, ei, 0);
7027 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7028 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7029
7030 ptr = btrfs_file_extent_inline_start(ei);
7031 write_extent_buffer(leaf, symname, ptr, name_len);
7032 btrfs_mark_buffer_dirty(leaf);
7033 btrfs_free_path(path);
7034
7035 inode->i_op = &btrfs_symlink_inode_operations;
7036 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7037 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7038 inode_set_bytes(inode, name_len);
7039 btrfs_i_size_write(inode, name_len - 1);
7040 err = btrfs_update_inode(trans, root, inode);
7041 if (err)
7042 drop_inode = 1;
7043
7044 out_unlock:
7045 nr = trans->blocks_used;
7046 btrfs_end_transaction_throttle(trans, root);
7047 if (drop_inode) {
7048 inode_dec_link_count(inode);
7049 iput(inode);
7050 }
7051 btrfs_btree_balance_dirty(root, nr);
7052 return err;
7053 }
7054
7055 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7056 u64 start, u64 num_bytes, u64 min_size,
7057 loff_t actual_len, u64 *alloc_hint,
7058 struct btrfs_trans_handle *trans)
7059 {
7060 struct btrfs_root *root = BTRFS_I(inode)->root;
7061 struct btrfs_key ins;
7062 u64 cur_offset = start;
7063 u64 i_size;
7064 int ret = 0;
7065 bool own_trans = true;
7066
7067 if (trans)
7068 own_trans = false;
7069 while (num_bytes > 0) {
7070 if (own_trans) {
7071 trans = btrfs_start_transaction(root, 3);
7072 if (IS_ERR(trans)) {
7073 ret = PTR_ERR(trans);
7074 break;
7075 }
7076 }
7077
7078 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7079 0, *alloc_hint, (u64)-1, &ins, 1);
7080 if (ret) {
7081 if (own_trans)
7082 btrfs_end_transaction(trans, root);
7083 break;
7084 }
7085
7086 ret = insert_reserved_file_extent(trans, inode,
7087 cur_offset, ins.objectid,
7088 ins.offset, ins.offset,
7089 ins.offset, 0, 0, 0,
7090 BTRFS_FILE_EXTENT_PREALLOC);
7091 BUG_ON(ret);
7092 btrfs_drop_extent_cache(inode, cur_offset,
7093 cur_offset + ins.offset -1, 0);
7094
7095 num_bytes -= ins.offset;
7096 cur_offset += ins.offset;
7097 *alloc_hint = ins.objectid + ins.offset;
7098
7099 inode->i_ctime = CURRENT_TIME;
7100 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7101 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7102 (actual_len > inode->i_size) &&
7103 (cur_offset > inode->i_size)) {
7104 if (cur_offset > actual_len)
7105 i_size = actual_len;
7106 else
7107 i_size = cur_offset;
7108 i_size_write(inode, i_size);
7109 btrfs_ordered_update_i_size(inode, i_size, NULL);
7110 }
7111
7112 ret = btrfs_update_inode(trans, root, inode);
7113 BUG_ON(ret);
7114
7115 if (own_trans)
7116 btrfs_end_transaction(trans, root);
7117 }
7118 return ret;
7119 }
7120
7121 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7122 u64 start, u64 num_bytes, u64 min_size,
7123 loff_t actual_len, u64 *alloc_hint)
7124 {
7125 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7126 min_size, actual_len, alloc_hint,
7127 NULL);
7128 }
7129
7130 int btrfs_prealloc_file_range_trans(struct inode *inode,
7131 struct btrfs_trans_handle *trans, int mode,
7132 u64 start, u64 num_bytes, u64 min_size,
7133 loff_t actual_len, u64 *alloc_hint)
7134 {
7135 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7136 min_size, actual_len, alloc_hint, trans);
7137 }
7138
7139 static int btrfs_set_page_dirty(struct page *page)
7140 {
7141 return __set_page_dirty_nobuffers(page);
7142 }
7143
7144 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7145 {
7146 struct btrfs_root *root = BTRFS_I(inode)->root;
7147
7148 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7149 return -EROFS;
7150 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7151 return -EACCES;
7152 return generic_permission(inode, mask, flags, btrfs_check_acl);
7153 }
7154
7155 static const struct inode_operations btrfs_dir_inode_operations = {
7156 .getattr = btrfs_getattr,
7157 .lookup = btrfs_lookup,
7158 .create = btrfs_create,
7159 .unlink = btrfs_unlink,
7160 .link = btrfs_link,
7161 .mkdir = btrfs_mkdir,
7162 .rmdir = btrfs_rmdir,
7163 .rename = btrfs_rename,
7164 .symlink = btrfs_symlink,
7165 .setattr = btrfs_setattr,
7166 .mknod = btrfs_mknod,
7167 .setxattr = btrfs_setxattr,
7168 .getxattr = btrfs_getxattr,
7169 .listxattr = btrfs_listxattr,
7170 .removexattr = btrfs_removexattr,
7171 .permission = btrfs_permission,
7172 };
7173 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7174 .lookup = btrfs_lookup,
7175 .permission = btrfs_permission,
7176 };
7177
7178 static const struct file_operations btrfs_dir_file_operations = {
7179 .llseek = generic_file_llseek,
7180 .read = generic_read_dir,
7181 .readdir = btrfs_real_readdir,
7182 .unlocked_ioctl = btrfs_ioctl,
7183 #ifdef CONFIG_COMPAT
7184 .compat_ioctl = btrfs_ioctl,
7185 #endif
7186 .release = btrfs_release_file,
7187 .fsync = btrfs_sync_file,
7188 };
7189
7190 static struct extent_io_ops btrfs_extent_io_ops = {
7191 .fill_delalloc = run_delalloc_range,
7192 .submit_bio_hook = btrfs_submit_bio_hook,
7193 .merge_bio_hook = btrfs_merge_bio_hook,
7194 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7195 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7196 .writepage_start_hook = btrfs_writepage_start_hook,
7197 .readpage_io_failed_hook = btrfs_io_failed_hook,
7198 .set_bit_hook = btrfs_set_bit_hook,
7199 .clear_bit_hook = btrfs_clear_bit_hook,
7200 .merge_extent_hook = btrfs_merge_extent_hook,
7201 .split_extent_hook = btrfs_split_extent_hook,
7202 };
7203
7204 /*
7205 * btrfs doesn't support the bmap operation because swapfiles
7206 * use bmap to make a mapping of extents in the file. They assume
7207 * these extents won't change over the life of the file and they
7208 * use the bmap result to do IO directly to the drive.
7209 *
7210 * the btrfs bmap call would return logical addresses that aren't
7211 * suitable for IO and they also will change frequently as COW
7212 * operations happen. So, swapfile + btrfs == corruption.
7213 *
7214 * For now we're avoiding this by dropping bmap.
7215 */
7216 static const struct address_space_operations btrfs_aops = {
7217 .readpage = btrfs_readpage,
7218 .writepage = btrfs_writepage,
7219 .writepages = btrfs_writepages,
7220 .readpages = btrfs_readpages,
7221 .direct_IO = btrfs_direct_IO,
7222 .invalidatepage = btrfs_invalidatepage,
7223 .releasepage = btrfs_releasepage,
7224 .set_page_dirty = btrfs_set_page_dirty,
7225 .error_remove_page = generic_error_remove_page,
7226 };
7227
7228 static const struct address_space_operations btrfs_symlink_aops = {
7229 .readpage = btrfs_readpage,
7230 .writepage = btrfs_writepage,
7231 .invalidatepage = btrfs_invalidatepage,
7232 .releasepage = btrfs_releasepage,
7233 };
7234
7235 static const struct inode_operations btrfs_file_inode_operations = {
7236 .truncate = btrfs_truncate,
7237 .getattr = btrfs_getattr,
7238 .setattr = btrfs_setattr,
7239 .setxattr = btrfs_setxattr,
7240 .getxattr = btrfs_getxattr,
7241 .listxattr = btrfs_listxattr,
7242 .removexattr = btrfs_removexattr,
7243 .permission = btrfs_permission,
7244 .fiemap = btrfs_fiemap,
7245 };
7246 static const struct inode_operations btrfs_special_inode_operations = {
7247 .getattr = btrfs_getattr,
7248 .setattr = btrfs_setattr,
7249 .permission = btrfs_permission,
7250 .setxattr = btrfs_setxattr,
7251 .getxattr = btrfs_getxattr,
7252 .listxattr = btrfs_listxattr,
7253 .removexattr = btrfs_removexattr,
7254 };
7255 static const struct inode_operations btrfs_symlink_inode_operations = {
7256 .readlink = generic_readlink,
7257 .follow_link = page_follow_link_light,
7258 .put_link = page_put_link,
7259 .getattr = btrfs_getattr,
7260 .permission = btrfs_permission,
7261 .setxattr = btrfs_setxattr,
7262 .getxattr = btrfs_getxattr,
7263 .listxattr = btrfs_listxattr,
7264 .removexattr = btrfs_removexattr,
7265 };
7266
7267 const struct dentry_operations btrfs_dentry_operations = {
7268 .d_delete = btrfs_dentry_delete,
7269 };