]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/inode.c
btrfs: Remove false alert when fiemap range is smaller than on-disk extent
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59 #include "hash.h"
60 #include "props.h"
61 #include "qgroup.h"
62 #include "dedupe.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 int overwrite;
75 };
76
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101 };
102
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
116
117 static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121 /*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137 {
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140 }
141
142 static int btrfs_dirty_inode(struct inode *inode);
143
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode *inode)
146 {
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148 }
149 #endif
150
151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
154 {
155 int err;
156
157 err = btrfs_init_acl(trans, inode, dir);
158 if (!err)
159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 return err;
161 }
162
163 /*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
168 static int insert_inline_extent(struct btrfs_trans_handle *trans,
169 struct btrfs_path *path, int extent_inserted,
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
172 int compress_type,
173 struct page **compressed_pages)
174 {
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
180 int ret;
181 size_t cur_size = size;
182 unsigned long offset;
183
184 if (compressed_size && compressed_pages)
185 cur_size = compressed_size;
186
187 inode_add_bytes(inode, size);
188
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
192
193 key.objectid = btrfs_ino(BTRFS_I(inode));
194 key.offset = start;
195 key.type = BTRFS_EXTENT_DATA_KEY;
196
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
201 if (ret)
202 goto fail;
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
214 if (compress_type != BTRFS_COMPRESS_NONE) {
215 struct page *cpage;
216 int i = 0;
217 while (compressed_size > 0) {
218 cpage = compressed_pages[i];
219 cur_size = min_t(unsigned long, compressed_size,
220 PAGE_SIZE);
221
222 kaddr = kmap_atomic(cpage);
223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
224 kunmap_atomic(kaddr);
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
231 compress_type);
232 } else {
233 page = find_get_page(inode->i_mapping,
234 start >> PAGE_SHIFT);
235 btrfs_set_file_extent_compression(leaf, ei, 0);
236 kaddr = kmap_atomic(page);
237 offset = start & (PAGE_SIZE - 1);
238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
239 kunmap_atomic(kaddr);
240 put_page(page);
241 }
242 btrfs_mark_buffer_dirty(leaf);
243 btrfs_release_path(path);
244
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
254 BTRFS_I(inode)->disk_i_size = inode->i_size;
255 ret = btrfs_update_inode(trans, root, inode);
256
257 fail:
258 return ret;
259 }
260
261
262 /*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
267 static noinline int cow_file_range_inline(struct btrfs_root *root,
268 struct inode *inode, u64 start,
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
272 {
273 struct btrfs_fs_info *fs_info = root->fs_info;
274 struct btrfs_trans_handle *trans;
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
279 u64 data_len = inline_len;
280 int ret;
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
291 (!compressed_size &&
292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
293 end + 1 < isize ||
294 data_len > fs_info->max_inline) {
295 return 1;
296 }
297
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
302 trans = btrfs_join_transaction(root);
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
305 return PTR_ERR(trans);
306 }
307 trans->block_rsv = &fs_info->delalloc_block_rsv;
308
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
319 if (ret) {
320 btrfs_abort_transaction(trans, ret);
321 goto out;
322 }
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
328 inline_len, compressed_size,
329 compress_type, compressed_pages);
330 if (ret && ret != -ENOSPC) {
331 btrfs_abort_transaction(trans, ret);
332 goto out;
333 } else if (ret == -ENOSPC) {
334 ret = 1;
335 goto out;
336 }
337
338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
339 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 btrfs_free_path(path);
350 btrfs_end_transaction(trans);
351 return ret;
352 }
353
354 struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
360 int compress_type;
361 struct list_head list;
362 };
363
364 struct async_cow {
365 struct inode *inode;
366 struct btrfs_root *root;
367 struct page *locked_page;
368 u64 start;
369 u64 end;
370 struct list_head extents;
371 struct btrfs_work work;
372 };
373
374 static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
378 unsigned long nr_pages,
379 int compress_type)
380 {
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
384 BUG_ON(!async_extent); /* -ENOMEM */
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
390 async_extent->compress_type = compress_type;
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393 }
394
395 static inline int inode_need_compress(struct inode *inode)
396 {
397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
398
399 /* force compress */
400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
401 return 1;
402 /* bad compression ratios */
403 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
404 return 0;
405 if (btrfs_test_opt(fs_info, COMPRESS) ||
406 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
407 BTRFS_I(inode)->force_compress)
408 return 1;
409 return 0;
410 }
411
412 static inline void inode_should_defrag(struct btrfs_inode *inode,
413 u64 start, u64 end, u64 num_bytes, u64 small_write)
414 {
415 /* If this is a small write inside eof, kick off a defrag */
416 if (num_bytes < small_write &&
417 (start > 0 || end + 1 < inode->disk_i_size))
418 btrfs_add_inode_defrag(NULL, inode);
419 }
420
421 /*
422 * we create compressed extents in two phases. The first
423 * phase compresses a range of pages that have already been
424 * locked (both pages and state bits are locked).
425 *
426 * This is done inside an ordered work queue, and the compression
427 * is spread across many cpus. The actual IO submission is step
428 * two, and the ordered work queue takes care of making sure that
429 * happens in the same order things were put onto the queue by
430 * writepages and friends.
431 *
432 * If this code finds it can't get good compression, it puts an
433 * entry onto the work queue to write the uncompressed bytes. This
434 * makes sure that both compressed inodes and uncompressed inodes
435 * are written in the same order that the flusher thread sent them
436 * down.
437 */
438 static noinline void compress_file_range(struct inode *inode,
439 struct page *locked_page,
440 u64 start, u64 end,
441 struct async_cow *async_cow,
442 int *num_added)
443 {
444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
445 struct btrfs_root *root = BTRFS_I(inode)->root;
446 u64 num_bytes;
447 u64 blocksize = fs_info->sectorsize;
448 u64 actual_end;
449 u64 isize = i_size_read(inode);
450 int ret = 0;
451 struct page **pages = NULL;
452 unsigned long nr_pages;
453 unsigned long total_compressed = 0;
454 unsigned long total_in = 0;
455 int i;
456 int will_compress;
457 int compress_type = fs_info->compress_type;
458 int redirty = 0;
459
460 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
461 SZ_16K);
462
463 actual_end = min_t(u64, isize, end + 1);
464 again:
465 will_compress = 0;
466 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
467 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
468 nr_pages = min_t(unsigned long, nr_pages,
469 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
470
471 /*
472 * we don't want to send crud past the end of i_size through
473 * compression, that's just a waste of CPU time. So, if the
474 * end of the file is before the start of our current
475 * requested range of bytes, we bail out to the uncompressed
476 * cleanup code that can deal with all of this.
477 *
478 * It isn't really the fastest way to fix things, but this is a
479 * very uncommon corner.
480 */
481 if (actual_end <= start)
482 goto cleanup_and_bail_uncompressed;
483
484 total_compressed = actual_end - start;
485
486 /*
487 * skip compression for a small file range(<=blocksize) that
488 * isn't an inline extent, since it doesn't save disk space at all.
489 */
490 if (total_compressed <= blocksize &&
491 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
492 goto cleanup_and_bail_uncompressed;
493
494 total_compressed = min_t(unsigned long, total_compressed,
495 BTRFS_MAX_UNCOMPRESSED);
496 num_bytes = ALIGN(end - start + 1, blocksize);
497 num_bytes = max(blocksize, num_bytes);
498 total_in = 0;
499 ret = 0;
500
501 /*
502 * we do compression for mount -o compress and when the
503 * inode has not been flagged as nocompress. This flag can
504 * change at any time if we discover bad compression ratios.
505 */
506 if (inode_need_compress(inode)) {
507 WARN_ON(pages);
508 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
509 if (!pages) {
510 /* just bail out to the uncompressed code */
511 goto cont;
512 }
513
514 if (BTRFS_I(inode)->force_compress)
515 compress_type = BTRFS_I(inode)->force_compress;
516
517 /*
518 * we need to call clear_page_dirty_for_io on each
519 * page in the range. Otherwise applications with the file
520 * mmap'd can wander in and change the page contents while
521 * we are compressing them.
522 *
523 * If the compression fails for any reason, we set the pages
524 * dirty again later on.
525 */
526 extent_range_clear_dirty_for_io(inode, start, end);
527 redirty = 1;
528 ret = btrfs_compress_pages(compress_type,
529 inode->i_mapping, start,
530 pages,
531 &nr_pages,
532 &total_in,
533 &total_compressed);
534
535 if (!ret) {
536 unsigned long offset = total_compressed &
537 (PAGE_SIZE - 1);
538 struct page *page = pages[nr_pages - 1];
539 char *kaddr;
540
541 /* zero the tail end of the last page, we might be
542 * sending it down to disk
543 */
544 if (offset) {
545 kaddr = kmap_atomic(page);
546 memset(kaddr + offset, 0,
547 PAGE_SIZE - offset);
548 kunmap_atomic(kaddr);
549 }
550 will_compress = 1;
551 }
552 }
553 cont:
554 if (start == 0) {
555 /* lets try to make an inline extent */
556 if (ret || total_in < (actual_end - start)) {
557 /* we didn't compress the entire range, try
558 * to make an uncompressed inline extent.
559 */
560 ret = cow_file_range_inline(root, inode, start, end,
561 0, BTRFS_COMPRESS_NONE, NULL);
562 } else {
563 /* try making a compressed inline extent */
564 ret = cow_file_range_inline(root, inode, start, end,
565 total_compressed,
566 compress_type, pages);
567 }
568 if (ret <= 0) {
569 unsigned long clear_flags = EXTENT_DELALLOC |
570 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
571 unsigned long page_error_op;
572
573 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
574 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
575
576 /*
577 * inline extent creation worked or returned error,
578 * we don't need to create any more async work items.
579 * Unlock and free up our temp pages.
580 */
581 extent_clear_unlock_delalloc(inode, start, end, end,
582 NULL, clear_flags,
583 PAGE_UNLOCK |
584 PAGE_CLEAR_DIRTY |
585 PAGE_SET_WRITEBACK |
586 page_error_op |
587 PAGE_END_WRITEBACK);
588 if (ret == 0)
589 btrfs_free_reserved_data_space_noquota(inode,
590 start,
591 end - start + 1);
592 goto free_pages_out;
593 }
594 }
595
596 if (will_compress) {
597 /*
598 * we aren't doing an inline extent round the compressed size
599 * up to a block size boundary so the allocator does sane
600 * things
601 */
602 total_compressed = ALIGN(total_compressed, blocksize);
603
604 /*
605 * one last check to make sure the compression is really a
606 * win, compare the page count read with the blocks on disk,
607 * compression must free at least one sector size
608 */
609 total_in = ALIGN(total_in, PAGE_SIZE);
610 if (total_compressed + blocksize <= total_in) {
611 num_bytes = total_in;
612 *num_added += 1;
613
614 /*
615 * The async work queues will take care of doing actual
616 * allocation on disk for these compressed pages, and
617 * will submit them to the elevator.
618 */
619 add_async_extent(async_cow, start, num_bytes,
620 total_compressed, pages, nr_pages,
621 compress_type);
622
623 if (start + num_bytes < end) {
624 start += num_bytes;
625 pages = NULL;
626 cond_resched();
627 goto again;
628 }
629 return;
630 }
631 }
632 if (pages) {
633 /*
634 * the compression code ran but failed to make things smaller,
635 * free any pages it allocated and our page pointer array
636 */
637 for (i = 0; i < nr_pages; i++) {
638 WARN_ON(pages[i]->mapping);
639 put_page(pages[i]);
640 }
641 kfree(pages);
642 pages = NULL;
643 total_compressed = 0;
644 nr_pages = 0;
645
646 /* flag the file so we don't compress in the future */
647 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
648 !(BTRFS_I(inode)->force_compress)) {
649 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
650 }
651 }
652 cleanup_and_bail_uncompressed:
653 /*
654 * No compression, but we still need to write the pages in the file
655 * we've been given so far. redirty the locked page if it corresponds
656 * to our extent and set things up for the async work queue to run
657 * cow_file_range to do the normal delalloc dance.
658 */
659 if (page_offset(locked_page) >= start &&
660 page_offset(locked_page) <= end)
661 __set_page_dirty_nobuffers(locked_page);
662 /* unlocked later on in the async handlers */
663
664 if (redirty)
665 extent_range_redirty_for_io(inode, start, end);
666 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
667 BTRFS_COMPRESS_NONE);
668 *num_added += 1;
669
670 return;
671
672 free_pages_out:
673 for (i = 0; i < nr_pages; i++) {
674 WARN_ON(pages[i]->mapping);
675 put_page(pages[i]);
676 }
677 kfree(pages);
678 }
679
680 static void free_async_extent_pages(struct async_extent *async_extent)
681 {
682 int i;
683
684 if (!async_extent->pages)
685 return;
686
687 for (i = 0; i < async_extent->nr_pages; i++) {
688 WARN_ON(async_extent->pages[i]->mapping);
689 put_page(async_extent->pages[i]);
690 }
691 kfree(async_extent->pages);
692 async_extent->nr_pages = 0;
693 async_extent->pages = NULL;
694 }
695
696 /*
697 * phase two of compressed writeback. This is the ordered portion
698 * of the code, which only gets called in the order the work was
699 * queued. We walk all the async extents created by compress_file_range
700 * and send them down to the disk.
701 */
702 static noinline void submit_compressed_extents(struct inode *inode,
703 struct async_cow *async_cow)
704 {
705 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
706 struct async_extent *async_extent;
707 u64 alloc_hint = 0;
708 struct btrfs_key ins;
709 struct extent_map *em;
710 struct btrfs_root *root = BTRFS_I(inode)->root;
711 struct extent_io_tree *io_tree;
712 int ret = 0;
713
714 again:
715 while (!list_empty(&async_cow->extents)) {
716 async_extent = list_entry(async_cow->extents.next,
717 struct async_extent, list);
718 list_del(&async_extent->list);
719
720 io_tree = &BTRFS_I(inode)->io_tree;
721
722 retry:
723 /* did the compression code fall back to uncompressed IO? */
724 if (!async_extent->pages) {
725 int page_started = 0;
726 unsigned long nr_written = 0;
727
728 lock_extent(io_tree, async_extent->start,
729 async_extent->start +
730 async_extent->ram_size - 1);
731
732 /* allocate blocks */
733 ret = cow_file_range(inode, async_cow->locked_page,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 async_extent->start +
738 async_extent->ram_size - 1,
739 &page_started, &nr_written, 0,
740 NULL);
741
742 /* JDM XXX */
743
744 /*
745 * if page_started, cow_file_range inserted an
746 * inline extent and took care of all the unlocking
747 * and IO for us. Otherwise, we need to submit
748 * all those pages down to the drive.
749 */
750 if (!page_started && !ret)
751 extent_write_locked_range(io_tree,
752 inode, async_extent->start,
753 async_extent->start +
754 async_extent->ram_size - 1,
755 btrfs_get_extent,
756 WB_SYNC_ALL);
757 else if (ret)
758 unlock_page(async_cow->locked_page);
759 kfree(async_extent);
760 cond_resched();
761 continue;
762 }
763
764 lock_extent(io_tree, async_extent->start,
765 async_extent->start + async_extent->ram_size - 1);
766
767 ret = btrfs_reserve_extent(root, async_extent->ram_size,
768 async_extent->compressed_size,
769 async_extent->compressed_size,
770 0, alloc_hint, &ins, 1, 1);
771 if (ret) {
772 free_async_extent_pages(async_extent);
773
774 if (ret == -ENOSPC) {
775 unlock_extent(io_tree, async_extent->start,
776 async_extent->start +
777 async_extent->ram_size - 1);
778
779 /*
780 * we need to redirty the pages if we decide to
781 * fallback to uncompressed IO, otherwise we
782 * will not submit these pages down to lower
783 * layers.
784 */
785 extent_range_redirty_for_io(inode,
786 async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1);
789
790 goto retry;
791 }
792 goto out_free;
793 }
794 /*
795 * here we're doing allocation and writeback of the
796 * compressed pages
797 */
798 em = create_io_em(inode, async_extent->start,
799 async_extent->ram_size, /* len */
800 async_extent->start, /* orig_start */
801 ins.objectid, /* block_start */
802 ins.offset, /* block_len */
803 ins.offset, /* orig_block_len */
804 async_extent->ram_size, /* ram_bytes */
805 async_extent->compress_type,
806 BTRFS_ORDERED_COMPRESSED);
807 if (IS_ERR(em))
808 /* ret value is not necessary due to void function */
809 goto out_free_reserve;
810 free_extent_map(em);
811
812 ret = btrfs_add_ordered_extent_compress(inode,
813 async_extent->start,
814 ins.objectid,
815 async_extent->ram_size,
816 ins.offset,
817 BTRFS_ORDERED_COMPRESSED,
818 async_extent->compress_type);
819 if (ret) {
820 btrfs_drop_extent_cache(BTRFS_I(inode),
821 async_extent->start,
822 async_extent->start +
823 async_extent->ram_size - 1, 0);
824 goto out_free_reserve;
825 }
826 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
827
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
831 extent_clear_unlock_delalloc(inode, async_extent->start,
832 async_extent->start +
833 async_extent->ram_size - 1,
834 async_extent->start +
835 async_extent->ram_size - 1,
836 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
837 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
838 PAGE_SET_WRITEBACK);
839 ret = btrfs_submit_compressed_write(inode,
840 async_extent->start,
841 async_extent->ram_size,
842 ins.objectid,
843 ins.offset, async_extent->pages,
844 async_extent->nr_pages);
845 if (ret) {
846 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
847 struct page *p = async_extent->pages[0];
848 const u64 start = async_extent->start;
849 const u64 end = start + async_extent->ram_size - 1;
850
851 p->mapping = inode->i_mapping;
852 tree->ops->writepage_end_io_hook(p, start, end,
853 NULL, 0);
854 p->mapping = NULL;
855 extent_clear_unlock_delalloc(inode, start, end, end,
856 NULL, 0,
857 PAGE_END_WRITEBACK |
858 PAGE_SET_ERROR);
859 free_async_extent_pages(async_extent);
860 }
861 alloc_hint = ins.objectid + ins.offset;
862 kfree(async_extent);
863 cond_resched();
864 }
865 return;
866 out_free_reserve:
867 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
868 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
869 out_free:
870 extent_clear_unlock_delalloc(inode, async_extent->start,
871 async_extent->start +
872 async_extent->ram_size - 1,
873 async_extent->start +
874 async_extent->ram_size - 1,
875 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
876 EXTENT_DELALLOC_NEW |
877 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
878 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
879 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
880 PAGE_SET_ERROR);
881 free_async_extent_pages(async_extent);
882 kfree(async_extent);
883 goto again;
884 }
885
886 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
887 u64 num_bytes)
888 {
889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 struct extent_map *em;
891 u64 alloc_hint = 0;
892
893 read_lock(&em_tree->lock);
894 em = search_extent_mapping(em_tree, start, num_bytes);
895 if (em) {
896 /*
897 * if block start isn't an actual block number then find the
898 * first block in this inode and use that as a hint. If that
899 * block is also bogus then just don't worry about it.
900 */
901 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
902 free_extent_map(em);
903 em = search_extent_mapping(em_tree, 0, 0);
904 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
905 alloc_hint = em->block_start;
906 if (em)
907 free_extent_map(em);
908 } else {
909 alloc_hint = em->block_start;
910 free_extent_map(em);
911 }
912 }
913 read_unlock(&em_tree->lock);
914
915 return alloc_hint;
916 }
917
918 /*
919 * when extent_io.c finds a delayed allocation range in the file,
920 * the call backs end up in this code. The basic idea is to
921 * allocate extents on disk for the range, and create ordered data structs
922 * in ram to track those extents.
923 *
924 * locked_page is the page that writepage had locked already. We use
925 * it to make sure we don't do extra locks or unlocks.
926 *
927 * *page_started is set to one if we unlock locked_page and do everything
928 * required to start IO on it. It may be clean and already done with
929 * IO when we return.
930 */
931 static noinline int cow_file_range(struct inode *inode,
932 struct page *locked_page,
933 u64 start, u64 end, u64 delalloc_end,
934 int *page_started, unsigned long *nr_written,
935 int unlock, struct btrfs_dedupe_hash *hash)
936 {
937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
938 struct btrfs_root *root = BTRFS_I(inode)->root;
939 u64 alloc_hint = 0;
940 u64 num_bytes;
941 unsigned long ram_size;
942 u64 disk_num_bytes;
943 u64 cur_alloc_size = 0;
944 u64 blocksize = fs_info->sectorsize;
945 struct btrfs_key ins;
946 struct extent_map *em;
947 unsigned clear_bits;
948 unsigned long page_ops;
949 bool extent_reserved = false;
950 int ret = 0;
951
952 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
953 WARN_ON_ONCE(1);
954 ret = -EINVAL;
955 goto out_unlock;
956 }
957
958 num_bytes = ALIGN(end - start + 1, blocksize);
959 num_bytes = max(blocksize, num_bytes);
960 disk_num_bytes = num_bytes;
961
962 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
963
964 if (start == 0) {
965 /* lets try to make an inline extent */
966 ret = cow_file_range_inline(root, inode, start, end, 0,
967 BTRFS_COMPRESS_NONE, NULL);
968 if (ret == 0) {
969 extent_clear_unlock_delalloc(inode, start, end,
970 delalloc_end, NULL,
971 EXTENT_LOCKED | EXTENT_DELALLOC |
972 EXTENT_DELALLOC_NEW |
973 EXTENT_DEFRAG, PAGE_UNLOCK |
974 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
975 PAGE_END_WRITEBACK);
976 btrfs_free_reserved_data_space_noquota(inode, start,
977 end - start + 1);
978 *nr_written = *nr_written +
979 (end - start + PAGE_SIZE) / PAGE_SIZE;
980 *page_started = 1;
981 goto out;
982 } else if (ret < 0) {
983 goto out_unlock;
984 }
985 }
986
987 BUG_ON(disk_num_bytes >
988 btrfs_super_total_bytes(fs_info->super_copy));
989
990 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
991 btrfs_drop_extent_cache(BTRFS_I(inode), start,
992 start + num_bytes - 1, 0);
993
994 while (disk_num_bytes > 0) {
995 cur_alloc_size = disk_num_bytes;
996 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
997 fs_info->sectorsize, 0, alloc_hint,
998 &ins, 1, 1);
999 if (ret < 0)
1000 goto out_unlock;
1001 cur_alloc_size = ins.offset;
1002 extent_reserved = true;
1003
1004 ram_size = ins.offset;
1005 em = create_io_em(inode, start, ins.offset, /* len */
1006 start, /* orig_start */
1007 ins.objectid, /* block_start */
1008 ins.offset, /* block_len */
1009 ins.offset, /* orig_block_len */
1010 ram_size, /* ram_bytes */
1011 BTRFS_COMPRESS_NONE, /* compress_type */
1012 BTRFS_ORDERED_REGULAR /* type */);
1013 if (IS_ERR(em))
1014 goto out_reserve;
1015 free_extent_map(em);
1016
1017 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1018 ram_size, cur_alloc_size, 0);
1019 if (ret)
1020 goto out_drop_extent_cache;
1021
1022 if (root->root_key.objectid ==
1023 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1024 ret = btrfs_reloc_clone_csums(inode, start,
1025 cur_alloc_size);
1026 /*
1027 * Only drop cache here, and process as normal.
1028 *
1029 * We must not allow extent_clear_unlock_delalloc()
1030 * at out_unlock label to free meta of this ordered
1031 * extent, as its meta should be freed by
1032 * btrfs_finish_ordered_io().
1033 *
1034 * So we must continue until @start is increased to
1035 * skip current ordered extent.
1036 */
1037 if (ret)
1038 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1039 start + ram_size - 1, 0);
1040 }
1041
1042 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1043
1044 /* we're not doing compressed IO, don't unlock the first
1045 * page (which the caller expects to stay locked), don't
1046 * clear any dirty bits and don't set any writeback bits
1047 *
1048 * Do set the Private2 bit so we know this page was properly
1049 * setup for writepage
1050 */
1051 page_ops = unlock ? PAGE_UNLOCK : 0;
1052 page_ops |= PAGE_SET_PRIVATE2;
1053
1054 extent_clear_unlock_delalloc(inode, start,
1055 start + ram_size - 1,
1056 delalloc_end, locked_page,
1057 EXTENT_LOCKED | EXTENT_DELALLOC,
1058 page_ops);
1059 if (disk_num_bytes < cur_alloc_size)
1060 disk_num_bytes = 0;
1061 else
1062 disk_num_bytes -= cur_alloc_size;
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
1066 extent_reserved = false;
1067
1068 /*
1069 * btrfs_reloc_clone_csums() error, since start is increased
1070 * extent_clear_unlock_delalloc() at out_unlock label won't
1071 * free metadata of current ordered extent, we're OK to exit.
1072 */
1073 if (ret)
1074 goto out_unlock;
1075 }
1076 out:
1077 return ret;
1078
1079 out_drop_extent_cache:
1080 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1081 out_reserve:
1082 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1083 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1084 out_unlock:
1085 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1086 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1087 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1088 PAGE_END_WRITEBACK;
1089 /*
1090 * If we reserved an extent for our delalloc range (or a subrange) and
1091 * failed to create the respective ordered extent, then it means that
1092 * when we reserved the extent we decremented the extent's size from
1093 * the data space_info's bytes_may_use counter and incremented the
1094 * space_info's bytes_reserved counter by the same amount. We must make
1095 * sure extent_clear_unlock_delalloc() does not try to decrement again
1096 * the data space_info's bytes_may_use counter, therefore we do not pass
1097 * it the flag EXTENT_CLEAR_DATA_RESV.
1098 */
1099 if (extent_reserved) {
1100 extent_clear_unlock_delalloc(inode, start,
1101 start + cur_alloc_size,
1102 start + cur_alloc_size,
1103 locked_page,
1104 clear_bits,
1105 page_ops);
1106 start += cur_alloc_size;
1107 if (start >= end)
1108 goto out;
1109 }
1110 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1111 locked_page,
1112 clear_bits | EXTENT_CLEAR_DATA_RESV,
1113 page_ops);
1114 goto out;
1115 }
1116
1117 /*
1118 * work queue call back to started compression on a file and pages
1119 */
1120 static noinline void async_cow_start(struct btrfs_work *work)
1121 {
1122 struct async_cow *async_cow;
1123 int num_added = 0;
1124 async_cow = container_of(work, struct async_cow, work);
1125
1126 compress_file_range(async_cow->inode, async_cow->locked_page,
1127 async_cow->start, async_cow->end, async_cow,
1128 &num_added);
1129 if (num_added == 0) {
1130 btrfs_add_delayed_iput(async_cow->inode);
1131 async_cow->inode = NULL;
1132 }
1133 }
1134
1135 /*
1136 * work queue call back to submit previously compressed pages
1137 */
1138 static noinline void async_cow_submit(struct btrfs_work *work)
1139 {
1140 struct btrfs_fs_info *fs_info;
1141 struct async_cow *async_cow;
1142 struct btrfs_root *root;
1143 unsigned long nr_pages;
1144
1145 async_cow = container_of(work, struct async_cow, work);
1146
1147 root = async_cow->root;
1148 fs_info = root->fs_info;
1149 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1150 PAGE_SHIFT;
1151
1152 /*
1153 * atomic_sub_return implies a barrier for waitqueue_active
1154 */
1155 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1156 5 * SZ_1M &&
1157 waitqueue_active(&fs_info->async_submit_wait))
1158 wake_up(&fs_info->async_submit_wait);
1159
1160 if (async_cow->inode)
1161 submit_compressed_extents(async_cow->inode, async_cow);
1162 }
1163
1164 static noinline void async_cow_free(struct btrfs_work *work)
1165 {
1166 struct async_cow *async_cow;
1167 async_cow = container_of(work, struct async_cow, work);
1168 if (async_cow->inode)
1169 btrfs_add_delayed_iput(async_cow->inode);
1170 kfree(async_cow);
1171 }
1172
1173 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1174 u64 start, u64 end, int *page_started,
1175 unsigned long *nr_written)
1176 {
1177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1178 struct async_cow *async_cow;
1179 struct btrfs_root *root = BTRFS_I(inode)->root;
1180 unsigned long nr_pages;
1181 u64 cur_end;
1182
1183 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1184 1, 0, NULL, GFP_NOFS);
1185 while (start < end) {
1186 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1187 BUG_ON(!async_cow); /* -ENOMEM */
1188 async_cow->inode = igrab(inode);
1189 async_cow->root = root;
1190 async_cow->locked_page = locked_page;
1191 async_cow->start = start;
1192
1193 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1194 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1195 cur_end = end;
1196 else
1197 cur_end = min(end, start + SZ_512K - 1);
1198
1199 async_cow->end = cur_end;
1200 INIT_LIST_HEAD(&async_cow->extents);
1201
1202 btrfs_init_work(&async_cow->work,
1203 btrfs_delalloc_helper,
1204 async_cow_start, async_cow_submit,
1205 async_cow_free);
1206
1207 nr_pages = (cur_end - start + PAGE_SIZE) >>
1208 PAGE_SHIFT;
1209 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1210
1211 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1212
1213 while (atomic_read(&fs_info->async_submit_draining) &&
1214 atomic_read(&fs_info->async_delalloc_pages)) {
1215 wait_event(fs_info->async_submit_wait,
1216 (atomic_read(&fs_info->async_delalloc_pages) ==
1217 0));
1218 }
1219
1220 *nr_written += nr_pages;
1221 start = cur_end + 1;
1222 }
1223 *page_started = 1;
1224 return 0;
1225 }
1226
1227 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1228 u64 bytenr, u64 num_bytes)
1229 {
1230 int ret;
1231 struct btrfs_ordered_sum *sums;
1232 LIST_HEAD(list);
1233
1234 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1235 bytenr + num_bytes - 1, &list, 0);
1236 if (ret == 0 && list_empty(&list))
1237 return 0;
1238
1239 while (!list_empty(&list)) {
1240 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1241 list_del(&sums->list);
1242 kfree(sums);
1243 }
1244 return 1;
1245 }
1246
1247 /*
1248 * when nowcow writeback call back. This checks for snapshots or COW copies
1249 * of the extents that exist in the file, and COWs the file as required.
1250 *
1251 * If no cow copies or snapshots exist, we write directly to the existing
1252 * blocks on disk
1253 */
1254 static noinline int run_delalloc_nocow(struct inode *inode,
1255 struct page *locked_page,
1256 u64 start, u64 end, int *page_started, int force,
1257 unsigned long *nr_written)
1258 {
1259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1260 struct btrfs_root *root = BTRFS_I(inode)->root;
1261 struct extent_buffer *leaf;
1262 struct btrfs_path *path;
1263 struct btrfs_file_extent_item *fi;
1264 struct btrfs_key found_key;
1265 struct extent_map *em;
1266 u64 cow_start;
1267 u64 cur_offset;
1268 u64 extent_end;
1269 u64 extent_offset;
1270 u64 disk_bytenr;
1271 u64 num_bytes;
1272 u64 disk_num_bytes;
1273 u64 ram_bytes;
1274 int extent_type;
1275 int ret, err;
1276 int type;
1277 int nocow;
1278 int check_prev = 1;
1279 bool nolock;
1280 u64 ino = btrfs_ino(BTRFS_I(inode));
1281
1282 path = btrfs_alloc_path();
1283 if (!path) {
1284 extent_clear_unlock_delalloc(inode, start, end, end,
1285 locked_page,
1286 EXTENT_LOCKED | EXTENT_DELALLOC |
1287 EXTENT_DO_ACCOUNTING |
1288 EXTENT_DEFRAG, PAGE_UNLOCK |
1289 PAGE_CLEAR_DIRTY |
1290 PAGE_SET_WRITEBACK |
1291 PAGE_END_WRITEBACK);
1292 return -ENOMEM;
1293 }
1294
1295 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1296
1297 cow_start = (u64)-1;
1298 cur_offset = start;
1299 while (1) {
1300 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1301 cur_offset, 0);
1302 if (ret < 0)
1303 goto error;
1304 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &found_key,
1307 path->slots[0] - 1);
1308 if (found_key.objectid == ino &&
1309 found_key.type == BTRFS_EXTENT_DATA_KEY)
1310 path->slots[0]--;
1311 }
1312 check_prev = 0;
1313 next_slot:
1314 leaf = path->nodes[0];
1315 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1316 ret = btrfs_next_leaf(root, path);
1317 if (ret < 0)
1318 goto error;
1319 if (ret > 0)
1320 break;
1321 leaf = path->nodes[0];
1322 }
1323
1324 nocow = 0;
1325 disk_bytenr = 0;
1326 num_bytes = 0;
1327 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1328
1329 if (found_key.objectid > ino)
1330 break;
1331 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1332 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1333 path->slots[0]++;
1334 goto next_slot;
1335 }
1336 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1337 found_key.offset > end)
1338 break;
1339
1340 if (found_key.offset > cur_offset) {
1341 extent_end = found_key.offset;
1342 extent_type = 0;
1343 goto out_check;
1344 }
1345
1346 fi = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_file_extent_item);
1348 extent_type = btrfs_file_extent_type(leaf, fi);
1349
1350 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1351 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1352 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1353 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1354 extent_offset = btrfs_file_extent_offset(leaf, fi);
1355 extent_end = found_key.offset +
1356 btrfs_file_extent_num_bytes(leaf, fi);
1357 disk_num_bytes =
1358 btrfs_file_extent_disk_num_bytes(leaf, fi);
1359 if (extent_end <= start) {
1360 path->slots[0]++;
1361 goto next_slot;
1362 }
1363 if (disk_bytenr == 0)
1364 goto out_check;
1365 if (btrfs_file_extent_compression(leaf, fi) ||
1366 btrfs_file_extent_encryption(leaf, fi) ||
1367 btrfs_file_extent_other_encoding(leaf, fi))
1368 goto out_check;
1369 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1370 goto out_check;
1371 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1372 goto out_check;
1373 if (btrfs_cross_ref_exist(root, ino,
1374 found_key.offset -
1375 extent_offset, disk_bytenr))
1376 goto out_check;
1377 disk_bytenr += extent_offset;
1378 disk_bytenr += cur_offset - found_key.offset;
1379 num_bytes = min(end + 1, extent_end) - cur_offset;
1380 /*
1381 * if there are pending snapshots for this root,
1382 * we fall into common COW way.
1383 */
1384 if (!nolock) {
1385 err = btrfs_start_write_no_snapshoting(root);
1386 if (!err)
1387 goto out_check;
1388 }
1389 /*
1390 * force cow if csum exists in the range.
1391 * this ensure that csum for a given extent are
1392 * either valid or do not exist.
1393 */
1394 if (csum_exist_in_range(fs_info, disk_bytenr,
1395 num_bytes)) {
1396 if (!nolock)
1397 btrfs_end_write_no_snapshoting(root);
1398 goto out_check;
1399 }
1400 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1401 if (!nolock)
1402 btrfs_end_write_no_snapshoting(root);
1403 goto out_check;
1404 }
1405 nocow = 1;
1406 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1407 extent_end = found_key.offset +
1408 btrfs_file_extent_inline_len(leaf,
1409 path->slots[0], fi);
1410 extent_end = ALIGN(extent_end,
1411 fs_info->sectorsize);
1412 } else {
1413 BUG_ON(1);
1414 }
1415 out_check:
1416 if (extent_end <= start) {
1417 path->slots[0]++;
1418 if (!nolock && nocow)
1419 btrfs_end_write_no_snapshoting(root);
1420 if (nocow)
1421 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1422 goto next_slot;
1423 }
1424 if (!nocow) {
1425 if (cow_start == (u64)-1)
1426 cow_start = cur_offset;
1427 cur_offset = extent_end;
1428 if (cur_offset > end)
1429 break;
1430 path->slots[0]++;
1431 goto next_slot;
1432 }
1433
1434 btrfs_release_path(path);
1435 if (cow_start != (u64)-1) {
1436 ret = cow_file_range(inode, locked_page,
1437 cow_start, found_key.offset - 1,
1438 end, page_started, nr_written, 1,
1439 NULL);
1440 if (ret) {
1441 if (!nolock && nocow)
1442 btrfs_end_write_no_snapshoting(root);
1443 if (nocow)
1444 btrfs_dec_nocow_writers(fs_info,
1445 disk_bytenr);
1446 goto error;
1447 }
1448 cow_start = (u64)-1;
1449 }
1450
1451 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1452 u64 orig_start = found_key.offset - extent_offset;
1453
1454 em = create_io_em(inode, cur_offset, num_bytes,
1455 orig_start,
1456 disk_bytenr, /* block_start */
1457 num_bytes, /* block_len */
1458 disk_num_bytes, /* orig_block_len */
1459 ram_bytes, BTRFS_COMPRESS_NONE,
1460 BTRFS_ORDERED_PREALLOC);
1461 if (IS_ERR(em)) {
1462 if (!nolock && nocow)
1463 btrfs_end_write_no_snapshoting(root);
1464 if (nocow)
1465 btrfs_dec_nocow_writers(fs_info,
1466 disk_bytenr);
1467 ret = PTR_ERR(em);
1468 goto error;
1469 }
1470 free_extent_map(em);
1471 }
1472
1473 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1474 type = BTRFS_ORDERED_PREALLOC;
1475 } else {
1476 type = BTRFS_ORDERED_NOCOW;
1477 }
1478
1479 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1480 num_bytes, num_bytes, type);
1481 if (nocow)
1482 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1483 BUG_ON(ret); /* -ENOMEM */
1484
1485 if (root->root_key.objectid ==
1486 BTRFS_DATA_RELOC_TREE_OBJECTID)
1487 /*
1488 * Error handled later, as we must prevent
1489 * extent_clear_unlock_delalloc() in error handler
1490 * from freeing metadata of created ordered extent.
1491 */
1492 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1493 num_bytes);
1494
1495 extent_clear_unlock_delalloc(inode, cur_offset,
1496 cur_offset + num_bytes - 1, end,
1497 locked_page, EXTENT_LOCKED |
1498 EXTENT_DELALLOC |
1499 EXTENT_CLEAR_DATA_RESV,
1500 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1501
1502 if (!nolock && nocow)
1503 btrfs_end_write_no_snapshoting(root);
1504 cur_offset = extent_end;
1505
1506 /*
1507 * btrfs_reloc_clone_csums() error, now we're OK to call error
1508 * handler, as metadata for created ordered extent will only
1509 * be freed by btrfs_finish_ordered_io().
1510 */
1511 if (ret)
1512 goto error;
1513 if (cur_offset > end)
1514 break;
1515 }
1516 btrfs_release_path(path);
1517
1518 if (cur_offset <= end && cow_start == (u64)-1) {
1519 cow_start = cur_offset;
1520 cur_offset = end;
1521 }
1522
1523 if (cow_start != (u64)-1) {
1524 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1525 page_started, nr_written, 1, NULL);
1526 if (ret)
1527 goto error;
1528 }
1529
1530 error:
1531 if (ret && cur_offset < end)
1532 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1533 locked_page, EXTENT_LOCKED |
1534 EXTENT_DELALLOC | EXTENT_DEFRAG |
1535 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1536 PAGE_CLEAR_DIRTY |
1537 PAGE_SET_WRITEBACK |
1538 PAGE_END_WRITEBACK);
1539 btrfs_free_path(path);
1540 return ret;
1541 }
1542
1543 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1544 {
1545
1546 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1547 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1548 return 0;
1549
1550 /*
1551 * @defrag_bytes is a hint value, no spinlock held here,
1552 * if is not zero, it means the file is defragging.
1553 * Force cow if given extent needs to be defragged.
1554 */
1555 if (BTRFS_I(inode)->defrag_bytes &&
1556 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1557 EXTENT_DEFRAG, 0, NULL))
1558 return 1;
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * extent_io.c call back to do delayed allocation processing
1565 */
1566 static int run_delalloc_range(void *private_data, struct page *locked_page,
1567 u64 start, u64 end, int *page_started,
1568 unsigned long *nr_written)
1569 {
1570 struct inode *inode = private_data;
1571 int ret;
1572 int force_cow = need_force_cow(inode, start, end);
1573
1574 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1575 ret = run_delalloc_nocow(inode, locked_page, start, end,
1576 page_started, 1, nr_written);
1577 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1578 ret = run_delalloc_nocow(inode, locked_page, start, end,
1579 page_started, 0, nr_written);
1580 } else if (!inode_need_compress(inode)) {
1581 ret = cow_file_range(inode, locked_page, start, end, end,
1582 page_started, nr_written, 1, NULL);
1583 } else {
1584 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1585 &BTRFS_I(inode)->runtime_flags);
1586 ret = cow_file_range_async(inode, locked_page, start, end,
1587 page_started, nr_written);
1588 }
1589 if (ret)
1590 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1591 return ret;
1592 }
1593
1594 static void btrfs_split_extent_hook(void *private_data,
1595 struct extent_state *orig, u64 split)
1596 {
1597 struct inode *inode = private_data;
1598 u64 size;
1599
1600 /* not delalloc, ignore it */
1601 if (!(orig->state & EXTENT_DELALLOC))
1602 return;
1603
1604 size = orig->end - orig->start + 1;
1605 if (size > BTRFS_MAX_EXTENT_SIZE) {
1606 u32 num_extents;
1607 u64 new_size;
1608
1609 /*
1610 * See the explanation in btrfs_merge_extent_hook, the same
1611 * applies here, just in reverse.
1612 */
1613 new_size = orig->end - split + 1;
1614 num_extents = count_max_extents(new_size);
1615 new_size = split - orig->start;
1616 num_extents += count_max_extents(new_size);
1617 if (count_max_extents(size) >= num_extents)
1618 return;
1619 }
1620
1621 spin_lock(&BTRFS_I(inode)->lock);
1622 BTRFS_I(inode)->outstanding_extents++;
1623 spin_unlock(&BTRFS_I(inode)->lock);
1624 }
1625
1626 /*
1627 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1628 * extents so we can keep track of new extents that are just merged onto old
1629 * extents, such as when we are doing sequential writes, so we can properly
1630 * account for the metadata space we'll need.
1631 */
1632 static void btrfs_merge_extent_hook(void *private_data,
1633 struct extent_state *new,
1634 struct extent_state *other)
1635 {
1636 struct inode *inode = private_data;
1637 u64 new_size, old_size;
1638 u32 num_extents;
1639
1640 /* not delalloc, ignore it */
1641 if (!(other->state & EXTENT_DELALLOC))
1642 return;
1643
1644 if (new->start > other->start)
1645 new_size = new->end - other->start + 1;
1646 else
1647 new_size = other->end - new->start + 1;
1648
1649 /* we're not bigger than the max, unreserve the space and go */
1650 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1651 spin_lock(&BTRFS_I(inode)->lock);
1652 BTRFS_I(inode)->outstanding_extents--;
1653 spin_unlock(&BTRFS_I(inode)->lock);
1654 return;
1655 }
1656
1657 /*
1658 * We have to add up either side to figure out how many extents were
1659 * accounted for before we merged into one big extent. If the number of
1660 * extents we accounted for is <= the amount we need for the new range
1661 * then we can return, otherwise drop. Think of it like this
1662 *
1663 * [ 4k][MAX_SIZE]
1664 *
1665 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1666 * need 2 outstanding extents, on one side we have 1 and the other side
1667 * we have 1 so they are == and we can return. But in this case
1668 *
1669 * [MAX_SIZE+4k][MAX_SIZE+4k]
1670 *
1671 * Each range on their own accounts for 2 extents, but merged together
1672 * they are only 3 extents worth of accounting, so we need to drop in
1673 * this case.
1674 */
1675 old_size = other->end - other->start + 1;
1676 num_extents = count_max_extents(old_size);
1677 old_size = new->end - new->start + 1;
1678 num_extents += count_max_extents(old_size);
1679 if (count_max_extents(new_size) >= num_extents)
1680 return;
1681
1682 spin_lock(&BTRFS_I(inode)->lock);
1683 BTRFS_I(inode)->outstanding_extents--;
1684 spin_unlock(&BTRFS_I(inode)->lock);
1685 }
1686
1687 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1688 struct inode *inode)
1689 {
1690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1691
1692 spin_lock(&root->delalloc_lock);
1693 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1694 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1695 &root->delalloc_inodes);
1696 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1697 &BTRFS_I(inode)->runtime_flags);
1698 root->nr_delalloc_inodes++;
1699 if (root->nr_delalloc_inodes == 1) {
1700 spin_lock(&fs_info->delalloc_root_lock);
1701 BUG_ON(!list_empty(&root->delalloc_root));
1702 list_add_tail(&root->delalloc_root,
1703 &fs_info->delalloc_roots);
1704 spin_unlock(&fs_info->delalloc_root_lock);
1705 }
1706 }
1707 spin_unlock(&root->delalloc_lock);
1708 }
1709
1710 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1711 struct btrfs_inode *inode)
1712 {
1713 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1714
1715 spin_lock(&root->delalloc_lock);
1716 if (!list_empty(&inode->delalloc_inodes)) {
1717 list_del_init(&inode->delalloc_inodes);
1718 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1719 &inode->runtime_flags);
1720 root->nr_delalloc_inodes--;
1721 if (!root->nr_delalloc_inodes) {
1722 spin_lock(&fs_info->delalloc_root_lock);
1723 BUG_ON(list_empty(&root->delalloc_root));
1724 list_del_init(&root->delalloc_root);
1725 spin_unlock(&fs_info->delalloc_root_lock);
1726 }
1727 }
1728 spin_unlock(&root->delalloc_lock);
1729 }
1730
1731 /*
1732 * extent_io.c set_bit_hook, used to track delayed allocation
1733 * bytes in this file, and to maintain the list of inodes that
1734 * have pending delalloc work to be done.
1735 */
1736 static void btrfs_set_bit_hook(void *private_data,
1737 struct extent_state *state, unsigned *bits)
1738 {
1739 struct inode *inode = private_data;
1740
1741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1742
1743 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1744 WARN_ON(1);
1745 /*
1746 * set_bit and clear bit hooks normally require _irqsave/restore
1747 * but in this case, we are only testing for the DELALLOC
1748 * bit, which is only set or cleared with irqs on
1749 */
1750 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1751 struct btrfs_root *root = BTRFS_I(inode)->root;
1752 u64 len = state->end + 1 - state->start;
1753 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1754
1755 if (*bits & EXTENT_FIRST_DELALLOC) {
1756 *bits &= ~EXTENT_FIRST_DELALLOC;
1757 } else {
1758 spin_lock(&BTRFS_I(inode)->lock);
1759 BTRFS_I(inode)->outstanding_extents++;
1760 spin_unlock(&BTRFS_I(inode)->lock);
1761 }
1762
1763 /* For sanity tests */
1764 if (btrfs_is_testing(fs_info))
1765 return;
1766
1767 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1768 fs_info->delalloc_batch);
1769 spin_lock(&BTRFS_I(inode)->lock);
1770 BTRFS_I(inode)->delalloc_bytes += len;
1771 if (*bits & EXTENT_DEFRAG)
1772 BTRFS_I(inode)->defrag_bytes += len;
1773 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1774 &BTRFS_I(inode)->runtime_flags))
1775 btrfs_add_delalloc_inodes(root, inode);
1776 spin_unlock(&BTRFS_I(inode)->lock);
1777 }
1778
1779 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1780 (*bits & EXTENT_DELALLOC_NEW)) {
1781 spin_lock(&BTRFS_I(inode)->lock);
1782 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1783 state->start;
1784 spin_unlock(&BTRFS_I(inode)->lock);
1785 }
1786 }
1787
1788 /*
1789 * extent_io.c clear_bit_hook, see set_bit_hook for why
1790 */
1791 static void btrfs_clear_bit_hook(void *private_data,
1792 struct extent_state *state,
1793 unsigned *bits)
1794 {
1795 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1797 u64 len = state->end + 1 - state->start;
1798 u32 num_extents = count_max_extents(len);
1799
1800 spin_lock(&inode->lock);
1801 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1802 inode->defrag_bytes -= len;
1803 spin_unlock(&inode->lock);
1804
1805 /*
1806 * set_bit and clear bit hooks normally require _irqsave/restore
1807 * but in this case, we are only testing for the DELALLOC
1808 * bit, which is only set or cleared with irqs on
1809 */
1810 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1811 struct btrfs_root *root = inode->root;
1812 bool do_list = !btrfs_is_free_space_inode(inode);
1813
1814 if (*bits & EXTENT_FIRST_DELALLOC) {
1815 *bits &= ~EXTENT_FIRST_DELALLOC;
1816 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1817 spin_lock(&inode->lock);
1818 inode->outstanding_extents -= num_extents;
1819 spin_unlock(&inode->lock);
1820 }
1821
1822 /*
1823 * We don't reserve metadata space for space cache inodes so we
1824 * don't need to call dellalloc_release_metadata if there is an
1825 * error.
1826 */
1827 if (*bits & EXTENT_CLEAR_META_RESV &&
1828 root != fs_info->tree_root)
1829 btrfs_delalloc_release_metadata(inode, len);
1830
1831 /* For sanity tests. */
1832 if (btrfs_is_testing(fs_info))
1833 return;
1834
1835 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1836 do_list && !(state->state & EXTENT_NORESERVE) &&
1837 (*bits & EXTENT_CLEAR_DATA_RESV))
1838 btrfs_free_reserved_data_space_noquota(
1839 &inode->vfs_inode,
1840 state->start, len);
1841
1842 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1843 fs_info->delalloc_batch);
1844 spin_lock(&inode->lock);
1845 inode->delalloc_bytes -= len;
1846 if (do_list && inode->delalloc_bytes == 0 &&
1847 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1848 &inode->runtime_flags))
1849 btrfs_del_delalloc_inode(root, inode);
1850 spin_unlock(&inode->lock);
1851 }
1852
1853 if ((state->state & EXTENT_DELALLOC_NEW) &&
1854 (*bits & EXTENT_DELALLOC_NEW)) {
1855 spin_lock(&inode->lock);
1856 ASSERT(inode->new_delalloc_bytes >= len);
1857 inode->new_delalloc_bytes -= len;
1858 spin_unlock(&inode->lock);
1859 }
1860 }
1861
1862 /*
1863 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1864 * we don't create bios that span stripes or chunks
1865 *
1866 * return 1 if page cannot be merged to bio
1867 * return 0 if page can be merged to bio
1868 * return error otherwise
1869 */
1870 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1871 size_t size, struct bio *bio,
1872 unsigned long bio_flags)
1873 {
1874 struct inode *inode = page->mapping->host;
1875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1876 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1877 u64 length = 0;
1878 u64 map_length;
1879 int ret;
1880
1881 if (bio_flags & EXTENT_BIO_COMPRESSED)
1882 return 0;
1883
1884 length = bio->bi_iter.bi_size;
1885 map_length = length;
1886 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1887 NULL, 0);
1888 if (ret < 0)
1889 return ret;
1890 if (map_length < length + size)
1891 return 1;
1892 return 0;
1893 }
1894
1895 /*
1896 * in order to insert checksums into the metadata in large chunks,
1897 * we wait until bio submission time. All the pages in the bio are
1898 * checksummed and sums are attached onto the ordered extent record.
1899 *
1900 * At IO completion time the cums attached on the ordered extent record
1901 * are inserted into the btree
1902 */
1903 static int __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1904 int mirror_num, unsigned long bio_flags,
1905 u64 bio_offset)
1906 {
1907 struct inode *inode = private_data;
1908 int ret = 0;
1909
1910 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1911 BUG_ON(ret); /* -ENOMEM */
1912 return 0;
1913 }
1914
1915 /*
1916 * in order to insert checksums into the metadata in large chunks,
1917 * we wait until bio submission time. All the pages in the bio are
1918 * checksummed and sums are attached onto the ordered extent record.
1919 *
1920 * At IO completion time the cums attached on the ordered extent record
1921 * are inserted into the btree
1922 */
1923 static int __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1924 int mirror_num, unsigned long bio_flags,
1925 u64 bio_offset)
1926 {
1927 struct inode *inode = private_data;
1928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1929 int ret;
1930
1931 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1932 if (ret) {
1933 bio->bi_error = ret;
1934 bio_endio(bio);
1935 }
1936 return ret;
1937 }
1938
1939 /*
1940 * extent_io.c submission hook. This does the right thing for csum calculation
1941 * on write, or reading the csums from the tree before a read
1942 */
1943 static int btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1944 int mirror_num, unsigned long bio_flags,
1945 u64 bio_offset)
1946 {
1947 struct inode *inode = private_data;
1948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1949 struct btrfs_root *root = BTRFS_I(inode)->root;
1950 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1951 int ret = 0;
1952 int skip_sum;
1953 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1954
1955 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1956
1957 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1958 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1959
1960 if (bio_op(bio) != REQ_OP_WRITE) {
1961 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1962 if (ret)
1963 goto out;
1964
1965 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1966 ret = btrfs_submit_compressed_read(inode, bio,
1967 mirror_num,
1968 bio_flags);
1969 goto out;
1970 } else if (!skip_sum) {
1971 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1972 if (ret)
1973 goto out;
1974 }
1975 goto mapit;
1976 } else if (async && !skip_sum) {
1977 /* csum items have already been cloned */
1978 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1979 goto mapit;
1980 /* we're doing a write, do the async checksumming */
1981 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1982 bio_offset, inode,
1983 __btrfs_submit_bio_start,
1984 __btrfs_submit_bio_done);
1985 goto out;
1986 } else if (!skip_sum) {
1987 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1988 if (ret)
1989 goto out;
1990 }
1991
1992 mapit:
1993 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1994
1995 out:
1996 if (ret < 0) {
1997 bio->bi_error = ret;
1998 bio_endio(bio);
1999 }
2000 return ret;
2001 }
2002
2003 /*
2004 * given a list of ordered sums record them in the inode. This happens
2005 * at IO completion time based on sums calculated at bio submission time.
2006 */
2007 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2008 struct inode *inode, struct list_head *list)
2009 {
2010 struct btrfs_ordered_sum *sum;
2011
2012 list_for_each_entry(sum, list, list) {
2013 trans->adding_csums = 1;
2014 btrfs_csum_file_blocks(trans,
2015 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2016 trans->adding_csums = 0;
2017 }
2018 return 0;
2019 }
2020
2021 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2022 struct extent_state **cached_state, int dedupe)
2023 {
2024 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2025 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2026 cached_state);
2027 }
2028
2029 /* see btrfs_writepage_start_hook for details on why this is required */
2030 struct btrfs_writepage_fixup {
2031 struct page *page;
2032 struct btrfs_work work;
2033 };
2034
2035 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2036 {
2037 struct btrfs_writepage_fixup *fixup;
2038 struct btrfs_ordered_extent *ordered;
2039 struct extent_state *cached_state = NULL;
2040 struct extent_changeset *data_reserved = NULL;
2041 struct page *page;
2042 struct inode *inode;
2043 u64 page_start;
2044 u64 page_end;
2045 int ret;
2046
2047 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2048 page = fixup->page;
2049 again:
2050 lock_page(page);
2051 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2052 ClearPageChecked(page);
2053 goto out_page;
2054 }
2055
2056 inode = page->mapping->host;
2057 page_start = page_offset(page);
2058 page_end = page_offset(page) + PAGE_SIZE - 1;
2059
2060 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2061 &cached_state);
2062
2063 /* already ordered? We're done */
2064 if (PagePrivate2(page))
2065 goto out;
2066
2067 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2068 PAGE_SIZE);
2069 if (ordered) {
2070 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2071 page_end, &cached_state, GFP_NOFS);
2072 unlock_page(page);
2073 btrfs_start_ordered_extent(inode, ordered, 1);
2074 btrfs_put_ordered_extent(ordered);
2075 goto again;
2076 }
2077
2078 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2079 PAGE_SIZE);
2080 if (ret) {
2081 mapping_set_error(page->mapping, ret);
2082 end_extent_writepage(page, ret, page_start, page_end);
2083 ClearPageChecked(page);
2084 goto out;
2085 }
2086
2087 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2088 0);
2089 ClearPageChecked(page);
2090 set_page_dirty(page);
2091 out:
2092 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2093 &cached_state, GFP_NOFS);
2094 out_page:
2095 unlock_page(page);
2096 put_page(page);
2097 kfree(fixup);
2098 extent_changeset_free(data_reserved);
2099 }
2100
2101 /*
2102 * There are a few paths in the higher layers of the kernel that directly
2103 * set the page dirty bit without asking the filesystem if it is a
2104 * good idea. This causes problems because we want to make sure COW
2105 * properly happens and the data=ordered rules are followed.
2106 *
2107 * In our case any range that doesn't have the ORDERED bit set
2108 * hasn't been properly setup for IO. We kick off an async process
2109 * to fix it up. The async helper will wait for ordered extents, set
2110 * the delalloc bit and make it safe to write the page.
2111 */
2112 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2113 {
2114 struct inode *inode = page->mapping->host;
2115 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2116 struct btrfs_writepage_fixup *fixup;
2117
2118 /* this page is properly in the ordered list */
2119 if (TestClearPagePrivate2(page))
2120 return 0;
2121
2122 if (PageChecked(page))
2123 return -EAGAIN;
2124
2125 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2126 if (!fixup)
2127 return -EAGAIN;
2128
2129 SetPageChecked(page);
2130 get_page(page);
2131 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2132 btrfs_writepage_fixup_worker, NULL, NULL);
2133 fixup->page = page;
2134 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2135 return -EBUSY;
2136 }
2137
2138 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2139 struct inode *inode, u64 file_pos,
2140 u64 disk_bytenr, u64 disk_num_bytes,
2141 u64 num_bytes, u64 ram_bytes,
2142 u8 compression, u8 encryption,
2143 u16 other_encoding, int extent_type)
2144 {
2145 struct btrfs_root *root = BTRFS_I(inode)->root;
2146 struct btrfs_file_extent_item *fi;
2147 struct btrfs_path *path;
2148 struct extent_buffer *leaf;
2149 struct btrfs_key ins;
2150 u64 qg_released;
2151 int extent_inserted = 0;
2152 int ret;
2153
2154 path = btrfs_alloc_path();
2155 if (!path)
2156 return -ENOMEM;
2157
2158 /*
2159 * we may be replacing one extent in the tree with another.
2160 * The new extent is pinned in the extent map, and we don't want
2161 * to drop it from the cache until it is completely in the btree.
2162 *
2163 * So, tell btrfs_drop_extents to leave this extent in the cache.
2164 * the caller is expected to unpin it and allow it to be merged
2165 * with the others.
2166 */
2167 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2168 file_pos + num_bytes, NULL, 0,
2169 1, sizeof(*fi), &extent_inserted);
2170 if (ret)
2171 goto out;
2172
2173 if (!extent_inserted) {
2174 ins.objectid = btrfs_ino(BTRFS_I(inode));
2175 ins.offset = file_pos;
2176 ins.type = BTRFS_EXTENT_DATA_KEY;
2177
2178 path->leave_spinning = 1;
2179 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2180 sizeof(*fi));
2181 if (ret)
2182 goto out;
2183 }
2184 leaf = path->nodes[0];
2185 fi = btrfs_item_ptr(leaf, path->slots[0],
2186 struct btrfs_file_extent_item);
2187 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2188 btrfs_set_file_extent_type(leaf, fi, extent_type);
2189 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2190 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2191 btrfs_set_file_extent_offset(leaf, fi, 0);
2192 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2193 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2194 btrfs_set_file_extent_compression(leaf, fi, compression);
2195 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2196 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2197
2198 btrfs_mark_buffer_dirty(leaf);
2199 btrfs_release_path(path);
2200
2201 inode_add_bytes(inode, num_bytes);
2202
2203 ins.objectid = disk_bytenr;
2204 ins.offset = disk_num_bytes;
2205 ins.type = BTRFS_EXTENT_ITEM_KEY;
2206
2207 /*
2208 * Release the reserved range from inode dirty range map, as it is
2209 * already moved into delayed_ref_head
2210 */
2211 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2212 if (ret < 0)
2213 goto out;
2214 qg_released = ret;
2215 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2216 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
2217 out:
2218 btrfs_free_path(path);
2219
2220 return ret;
2221 }
2222
2223 /* snapshot-aware defrag */
2224 struct sa_defrag_extent_backref {
2225 struct rb_node node;
2226 struct old_sa_defrag_extent *old;
2227 u64 root_id;
2228 u64 inum;
2229 u64 file_pos;
2230 u64 extent_offset;
2231 u64 num_bytes;
2232 u64 generation;
2233 };
2234
2235 struct old_sa_defrag_extent {
2236 struct list_head list;
2237 struct new_sa_defrag_extent *new;
2238
2239 u64 extent_offset;
2240 u64 bytenr;
2241 u64 offset;
2242 u64 len;
2243 int count;
2244 };
2245
2246 struct new_sa_defrag_extent {
2247 struct rb_root root;
2248 struct list_head head;
2249 struct btrfs_path *path;
2250 struct inode *inode;
2251 u64 file_pos;
2252 u64 len;
2253 u64 bytenr;
2254 u64 disk_len;
2255 u8 compress_type;
2256 };
2257
2258 static int backref_comp(struct sa_defrag_extent_backref *b1,
2259 struct sa_defrag_extent_backref *b2)
2260 {
2261 if (b1->root_id < b2->root_id)
2262 return -1;
2263 else if (b1->root_id > b2->root_id)
2264 return 1;
2265
2266 if (b1->inum < b2->inum)
2267 return -1;
2268 else if (b1->inum > b2->inum)
2269 return 1;
2270
2271 if (b1->file_pos < b2->file_pos)
2272 return -1;
2273 else if (b1->file_pos > b2->file_pos)
2274 return 1;
2275
2276 /*
2277 * [------------------------------] ===> (a range of space)
2278 * |<--->| |<---->| =============> (fs/file tree A)
2279 * |<---------------------------->| ===> (fs/file tree B)
2280 *
2281 * A range of space can refer to two file extents in one tree while
2282 * refer to only one file extent in another tree.
2283 *
2284 * So we may process a disk offset more than one time(two extents in A)
2285 * and locate at the same extent(one extent in B), then insert two same
2286 * backrefs(both refer to the extent in B).
2287 */
2288 return 0;
2289 }
2290
2291 static void backref_insert(struct rb_root *root,
2292 struct sa_defrag_extent_backref *backref)
2293 {
2294 struct rb_node **p = &root->rb_node;
2295 struct rb_node *parent = NULL;
2296 struct sa_defrag_extent_backref *entry;
2297 int ret;
2298
2299 while (*p) {
2300 parent = *p;
2301 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2302
2303 ret = backref_comp(backref, entry);
2304 if (ret < 0)
2305 p = &(*p)->rb_left;
2306 else
2307 p = &(*p)->rb_right;
2308 }
2309
2310 rb_link_node(&backref->node, parent, p);
2311 rb_insert_color(&backref->node, root);
2312 }
2313
2314 /*
2315 * Note the backref might has changed, and in this case we just return 0.
2316 */
2317 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2318 void *ctx)
2319 {
2320 struct btrfs_file_extent_item *extent;
2321 struct old_sa_defrag_extent *old = ctx;
2322 struct new_sa_defrag_extent *new = old->new;
2323 struct btrfs_path *path = new->path;
2324 struct btrfs_key key;
2325 struct btrfs_root *root;
2326 struct sa_defrag_extent_backref *backref;
2327 struct extent_buffer *leaf;
2328 struct inode *inode = new->inode;
2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2330 int slot;
2331 int ret;
2332 u64 extent_offset;
2333 u64 num_bytes;
2334
2335 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2336 inum == btrfs_ino(BTRFS_I(inode)))
2337 return 0;
2338
2339 key.objectid = root_id;
2340 key.type = BTRFS_ROOT_ITEM_KEY;
2341 key.offset = (u64)-1;
2342
2343 root = btrfs_read_fs_root_no_name(fs_info, &key);
2344 if (IS_ERR(root)) {
2345 if (PTR_ERR(root) == -ENOENT)
2346 return 0;
2347 WARN_ON(1);
2348 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2349 inum, offset, root_id);
2350 return PTR_ERR(root);
2351 }
2352
2353 key.objectid = inum;
2354 key.type = BTRFS_EXTENT_DATA_KEY;
2355 if (offset > (u64)-1 << 32)
2356 key.offset = 0;
2357 else
2358 key.offset = offset;
2359
2360 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2361 if (WARN_ON(ret < 0))
2362 return ret;
2363 ret = 0;
2364
2365 while (1) {
2366 cond_resched();
2367
2368 leaf = path->nodes[0];
2369 slot = path->slots[0];
2370
2371 if (slot >= btrfs_header_nritems(leaf)) {
2372 ret = btrfs_next_leaf(root, path);
2373 if (ret < 0) {
2374 goto out;
2375 } else if (ret > 0) {
2376 ret = 0;
2377 goto out;
2378 }
2379 continue;
2380 }
2381
2382 path->slots[0]++;
2383
2384 btrfs_item_key_to_cpu(leaf, &key, slot);
2385
2386 if (key.objectid > inum)
2387 goto out;
2388
2389 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2390 continue;
2391
2392 extent = btrfs_item_ptr(leaf, slot,
2393 struct btrfs_file_extent_item);
2394
2395 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2396 continue;
2397
2398 /*
2399 * 'offset' refers to the exact key.offset,
2400 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2401 * (key.offset - extent_offset).
2402 */
2403 if (key.offset != offset)
2404 continue;
2405
2406 extent_offset = btrfs_file_extent_offset(leaf, extent);
2407 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2408
2409 if (extent_offset >= old->extent_offset + old->offset +
2410 old->len || extent_offset + num_bytes <=
2411 old->extent_offset + old->offset)
2412 continue;
2413 break;
2414 }
2415
2416 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2417 if (!backref) {
2418 ret = -ENOENT;
2419 goto out;
2420 }
2421
2422 backref->root_id = root_id;
2423 backref->inum = inum;
2424 backref->file_pos = offset;
2425 backref->num_bytes = num_bytes;
2426 backref->extent_offset = extent_offset;
2427 backref->generation = btrfs_file_extent_generation(leaf, extent);
2428 backref->old = old;
2429 backref_insert(&new->root, backref);
2430 old->count++;
2431 out:
2432 btrfs_release_path(path);
2433 WARN_ON(ret);
2434 return ret;
2435 }
2436
2437 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2438 struct new_sa_defrag_extent *new)
2439 {
2440 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2441 struct old_sa_defrag_extent *old, *tmp;
2442 int ret;
2443
2444 new->path = path;
2445
2446 list_for_each_entry_safe(old, tmp, &new->head, list) {
2447 ret = iterate_inodes_from_logical(old->bytenr +
2448 old->extent_offset, fs_info,
2449 path, record_one_backref,
2450 old);
2451 if (ret < 0 && ret != -ENOENT)
2452 return false;
2453
2454 /* no backref to be processed for this extent */
2455 if (!old->count) {
2456 list_del(&old->list);
2457 kfree(old);
2458 }
2459 }
2460
2461 if (list_empty(&new->head))
2462 return false;
2463
2464 return true;
2465 }
2466
2467 static int relink_is_mergable(struct extent_buffer *leaf,
2468 struct btrfs_file_extent_item *fi,
2469 struct new_sa_defrag_extent *new)
2470 {
2471 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2472 return 0;
2473
2474 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2475 return 0;
2476
2477 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2478 return 0;
2479
2480 if (btrfs_file_extent_encryption(leaf, fi) ||
2481 btrfs_file_extent_other_encoding(leaf, fi))
2482 return 0;
2483
2484 return 1;
2485 }
2486
2487 /*
2488 * Note the backref might has changed, and in this case we just return 0.
2489 */
2490 static noinline int relink_extent_backref(struct btrfs_path *path,
2491 struct sa_defrag_extent_backref *prev,
2492 struct sa_defrag_extent_backref *backref)
2493 {
2494 struct btrfs_file_extent_item *extent;
2495 struct btrfs_file_extent_item *item;
2496 struct btrfs_ordered_extent *ordered;
2497 struct btrfs_trans_handle *trans;
2498 struct btrfs_root *root;
2499 struct btrfs_key key;
2500 struct extent_buffer *leaf;
2501 struct old_sa_defrag_extent *old = backref->old;
2502 struct new_sa_defrag_extent *new = old->new;
2503 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2504 struct inode *inode;
2505 struct extent_state *cached = NULL;
2506 int ret = 0;
2507 u64 start;
2508 u64 len;
2509 u64 lock_start;
2510 u64 lock_end;
2511 bool merge = false;
2512 int index;
2513
2514 if (prev && prev->root_id == backref->root_id &&
2515 prev->inum == backref->inum &&
2516 prev->file_pos + prev->num_bytes == backref->file_pos)
2517 merge = true;
2518
2519 /* step 1: get root */
2520 key.objectid = backref->root_id;
2521 key.type = BTRFS_ROOT_ITEM_KEY;
2522 key.offset = (u64)-1;
2523
2524 index = srcu_read_lock(&fs_info->subvol_srcu);
2525
2526 root = btrfs_read_fs_root_no_name(fs_info, &key);
2527 if (IS_ERR(root)) {
2528 srcu_read_unlock(&fs_info->subvol_srcu, index);
2529 if (PTR_ERR(root) == -ENOENT)
2530 return 0;
2531 return PTR_ERR(root);
2532 }
2533
2534 if (btrfs_root_readonly(root)) {
2535 srcu_read_unlock(&fs_info->subvol_srcu, index);
2536 return 0;
2537 }
2538
2539 /* step 2: get inode */
2540 key.objectid = backref->inum;
2541 key.type = BTRFS_INODE_ITEM_KEY;
2542 key.offset = 0;
2543
2544 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2545 if (IS_ERR(inode)) {
2546 srcu_read_unlock(&fs_info->subvol_srcu, index);
2547 return 0;
2548 }
2549
2550 srcu_read_unlock(&fs_info->subvol_srcu, index);
2551
2552 /* step 3: relink backref */
2553 lock_start = backref->file_pos;
2554 lock_end = backref->file_pos + backref->num_bytes - 1;
2555 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2556 &cached);
2557
2558 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2559 if (ordered) {
2560 btrfs_put_ordered_extent(ordered);
2561 goto out_unlock;
2562 }
2563
2564 trans = btrfs_join_transaction(root);
2565 if (IS_ERR(trans)) {
2566 ret = PTR_ERR(trans);
2567 goto out_unlock;
2568 }
2569
2570 key.objectid = backref->inum;
2571 key.type = BTRFS_EXTENT_DATA_KEY;
2572 key.offset = backref->file_pos;
2573
2574 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2575 if (ret < 0) {
2576 goto out_free_path;
2577 } else if (ret > 0) {
2578 ret = 0;
2579 goto out_free_path;
2580 }
2581
2582 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2583 struct btrfs_file_extent_item);
2584
2585 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2586 backref->generation)
2587 goto out_free_path;
2588
2589 btrfs_release_path(path);
2590
2591 start = backref->file_pos;
2592 if (backref->extent_offset < old->extent_offset + old->offset)
2593 start += old->extent_offset + old->offset -
2594 backref->extent_offset;
2595
2596 len = min(backref->extent_offset + backref->num_bytes,
2597 old->extent_offset + old->offset + old->len);
2598 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2599
2600 ret = btrfs_drop_extents(trans, root, inode, start,
2601 start + len, 1);
2602 if (ret)
2603 goto out_free_path;
2604 again:
2605 key.objectid = btrfs_ino(BTRFS_I(inode));
2606 key.type = BTRFS_EXTENT_DATA_KEY;
2607 key.offset = start;
2608
2609 path->leave_spinning = 1;
2610 if (merge) {
2611 struct btrfs_file_extent_item *fi;
2612 u64 extent_len;
2613 struct btrfs_key found_key;
2614
2615 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2616 if (ret < 0)
2617 goto out_free_path;
2618
2619 path->slots[0]--;
2620 leaf = path->nodes[0];
2621 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2622
2623 fi = btrfs_item_ptr(leaf, path->slots[0],
2624 struct btrfs_file_extent_item);
2625 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2626
2627 if (extent_len + found_key.offset == start &&
2628 relink_is_mergable(leaf, fi, new)) {
2629 btrfs_set_file_extent_num_bytes(leaf, fi,
2630 extent_len + len);
2631 btrfs_mark_buffer_dirty(leaf);
2632 inode_add_bytes(inode, len);
2633
2634 ret = 1;
2635 goto out_free_path;
2636 } else {
2637 merge = false;
2638 btrfs_release_path(path);
2639 goto again;
2640 }
2641 }
2642
2643 ret = btrfs_insert_empty_item(trans, root, path, &key,
2644 sizeof(*extent));
2645 if (ret) {
2646 btrfs_abort_transaction(trans, ret);
2647 goto out_free_path;
2648 }
2649
2650 leaf = path->nodes[0];
2651 item = btrfs_item_ptr(leaf, path->slots[0],
2652 struct btrfs_file_extent_item);
2653 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2654 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2655 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2656 btrfs_set_file_extent_num_bytes(leaf, item, len);
2657 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2658 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2659 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2660 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2661 btrfs_set_file_extent_encryption(leaf, item, 0);
2662 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2663
2664 btrfs_mark_buffer_dirty(leaf);
2665 inode_add_bytes(inode, len);
2666 btrfs_release_path(path);
2667
2668 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2669 new->disk_len, 0,
2670 backref->root_id, backref->inum,
2671 new->file_pos); /* start - extent_offset */
2672 if (ret) {
2673 btrfs_abort_transaction(trans, ret);
2674 goto out_free_path;
2675 }
2676
2677 ret = 1;
2678 out_free_path:
2679 btrfs_release_path(path);
2680 path->leave_spinning = 0;
2681 btrfs_end_transaction(trans);
2682 out_unlock:
2683 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2684 &cached, GFP_NOFS);
2685 iput(inode);
2686 return ret;
2687 }
2688
2689 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2690 {
2691 struct old_sa_defrag_extent *old, *tmp;
2692
2693 if (!new)
2694 return;
2695
2696 list_for_each_entry_safe(old, tmp, &new->head, list) {
2697 kfree(old);
2698 }
2699 kfree(new);
2700 }
2701
2702 static void relink_file_extents(struct new_sa_defrag_extent *new)
2703 {
2704 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2705 struct btrfs_path *path;
2706 struct sa_defrag_extent_backref *backref;
2707 struct sa_defrag_extent_backref *prev = NULL;
2708 struct inode *inode;
2709 struct btrfs_root *root;
2710 struct rb_node *node;
2711 int ret;
2712
2713 inode = new->inode;
2714 root = BTRFS_I(inode)->root;
2715
2716 path = btrfs_alloc_path();
2717 if (!path)
2718 return;
2719
2720 if (!record_extent_backrefs(path, new)) {
2721 btrfs_free_path(path);
2722 goto out;
2723 }
2724 btrfs_release_path(path);
2725
2726 while (1) {
2727 node = rb_first(&new->root);
2728 if (!node)
2729 break;
2730 rb_erase(node, &new->root);
2731
2732 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2733
2734 ret = relink_extent_backref(path, prev, backref);
2735 WARN_ON(ret < 0);
2736
2737 kfree(prev);
2738
2739 if (ret == 1)
2740 prev = backref;
2741 else
2742 prev = NULL;
2743 cond_resched();
2744 }
2745 kfree(prev);
2746
2747 btrfs_free_path(path);
2748 out:
2749 free_sa_defrag_extent(new);
2750
2751 atomic_dec(&fs_info->defrag_running);
2752 wake_up(&fs_info->transaction_wait);
2753 }
2754
2755 static struct new_sa_defrag_extent *
2756 record_old_file_extents(struct inode *inode,
2757 struct btrfs_ordered_extent *ordered)
2758 {
2759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2760 struct btrfs_root *root = BTRFS_I(inode)->root;
2761 struct btrfs_path *path;
2762 struct btrfs_key key;
2763 struct old_sa_defrag_extent *old;
2764 struct new_sa_defrag_extent *new;
2765 int ret;
2766
2767 new = kmalloc(sizeof(*new), GFP_NOFS);
2768 if (!new)
2769 return NULL;
2770
2771 new->inode = inode;
2772 new->file_pos = ordered->file_offset;
2773 new->len = ordered->len;
2774 new->bytenr = ordered->start;
2775 new->disk_len = ordered->disk_len;
2776 new->compress_type = ordered->compress_type;
2777 new->root = RB_ROOT;
2778 INIT_LIST_HEAD(&new->head);
2779
2780 path = btrfs_alloc_path();
2781 if (!path)
2782 goto out_kfree;
2783
2784 key.objectid = btrfs_ino(BTRFS_I(inode));
2785 key.type = BTRFS_EXTENT_DATA_KEY;
2786 key.offset = new->file_pos;
2787
2788 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2789 if (ret < 0)
2790 goto out_free_path;
2791 if (ret > 0 && path->slots[0] > 0)
2792 path->slots[0]--;
2793
2794 /* find out all the old extents for the file range */
2795 while (1) {
2796 struct btrfs_file_extent_item *extent;
2797 struct extent_buffer *l;
2798 int slot;
2799 u64 num_bytes;
2800 u64 offset;
2801 u64 end;
2802 u64 disk_bytenr;
2803 u64 extent_offset;
2804
2805 l = path->nodes[0];
2806 slot = path->slots[0];
2807
2808 if (slot >= btrfs_header_nritems(l)) {
2809 ret = btrfs_next_leaf(root, path);
2810 if (ret < 0)
2811 goto out_free_path;
2812 else if (ret > 0)
2813 break;
2814 continue;
2815 }
2816
2817 btrfs_item_key_to_cpu(l, &key, slot);
2818
2819 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2820 break;
2821 if (key.type != BTRFS_EXTENT_DATA_KEY)
2822 break;
2823 if (key.offset >= new->file_pos + new->len)
2824 break;
2825
2826 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2827
2828 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2829 if (key.offset + num_bytes < new->file_pos)
2830 goto next;
2831
2832 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2833 if (!disk_bytenr)
2834 goto next;
2835
2836 extent_offset = btrfs_file_extent_offset(l, extent);
2837
2838 old = kmalloc(sizeof(*old), GFP_NOFS);
2839 if (!old)
2840 goto out_free_path;
2841
2842 offset = max(new->file_pos, key.offset);
2843 end = min(new->file_pos + new->len, key.offset + num_bytes);
2844
2845 old->bytenr = disk_bytenr;
2846 old->extent_offset = extent_offset;
2847 old->offset = offset - key.offset;
2848 old->len = end - offset;
2849 old->new = new;
2850 old->count = 0;
2851 list_add_tail(&old->list, &new->head);
2852 next:
2853 path->slots[0]++;
2854 cond_resched();
2855 }
2856
2857 btrfs_free_path(path);
2858 atomic_inc(&fs_info->defrag_running);
2859
2860 return new;
2861
2862 out_free_path:
2863 btrfs_free_path(path);
2864 out_kfree:
2865 free_sa_defrag_extent(new);
2866 return NULL;
2867 }
2868
2869 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2870 u64 start, u64 len)
2871 {
2872 struct btrfs_block_group_cache *cache;
2873
2874 cache = btrfs_lookup_block_group(fs_info, start);
2875 ASSERT(cache);
2876
2877 spin_lock(&cache->lock);
2878 cache->delalloc_bytes -= len;
2879 spin_unlock(&cache->lock);
2880
2881 btrfs_put_block_group(cache);
2882 }
2883
2884 /* as ordered data IO finishes, this gets called so we can finish
2885 * an ordered extent if the range of bytes in the file it covers are
2886 * fully written.
2887 */
2888 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2889 {
2890 struct inode *inode = ordered_extent->inode;
2891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2892 struct btrfs_root *root = BTRFS_I(inode)->root;
2893 struct btrfs_trans_handle *trans = NULL;
2894 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2895 struct extent_state *cached_state = NULL;
2896 struct new_sa_defrag_extent *new = NULL;
2897 int compress_type = 0;
2898 int ret = 0;
2899 u64 logical_len = ordered_extent->len;
2900 bool nolock;
2901 bool truncated = false;
2902 bool range_locked = false;
2903 bool clear_new_delalloc_bytes = false;
2904
2905 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2906 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2907 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2908 clear_new_delalloc_bytes = true;
2909
2910 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2911
2912 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2913 ret = -EIO;
2914 goto out;
2915 }
2916
2917 btrfs_free_io_failure_record(BTRFS_I(inode),
2918 ordered_extent->file_offset,
2919 ordered_extent->file_offset +
2920 ordered_extent->len - 1);
2921
2922 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2923 truncated = true;
2924 logical_len = ordered_extent->truncated_len;
2925 /* Truncated the entire extent, don't bother adding */
2926 if (!logical_len)
2927 goto out;
2928 }
2929
2930 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2931 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2932
2933 /*
2934 * For mwrite(mmap + memset to write) case, we still reserve
2935 * space for NOCOW range.
2936 * As NOCOW won't cause a new delayed ref, just free the space
2937 */
2938 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2939 ordered_extent->len);
2940 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2941 if (nolock)
2942 trans = btrfs_join_transaction_nolock(root);
2943 else
2944 trans = btrfs_join_transaction(root);
2945 if (IS_ERR(trans)) {
2946 ret = PTR_ERR(trans);
2947 trans = NULL;
2948 goto out;
2949 }
2950 trans->block_rsv = &fs_info->delalloc_block_rsv;
2951 ret = btrfs_update_inode_fallback(trans, root, inode);
2952 if (ret) /* -ENOMEM or corruption */
2953 btrfs_abort_transaction(trans, ret);
2954 goto out;
2955 }
2956
2957 range_locked = true;
2958 lock_extent_bits(io_tree, ordered_extent->file_offset,
2959 ordered_extent->file_offset + ordered_extent->len - 1,
2960 &cached_state);
2961
2962 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2963 ordered_extent->file_offset + ordered_extent->len - 1,
2964 EXTENT_DEFRAG, 0, cached_state);
2965 if (ret) {
2966 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2967 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2968 /* the inode is shared */
2969 new = record_old_file_extents(inode, ordered_extent);
2970
2971 clear_extent_bit(io_tree, ordered_extent->file_offset,
2972 ordered_extent->file_offset + ordered_extent->len - 1,
2973 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2974 }
2975
2976 if (nolock)
2977 trans = btrfs_join_transaction_nolock(root);
2978 else
2979 trans = btrfs_join_transaction(root);
2980 if (IS_ERR(trans)) {
2981 ret = PTR_ERR(trans);
2982 trans = NULL;
2983 goto out;
2984 }
2985
2986 trans->block_rsv = &fs_info->delalloc_block_rsv;
2987
2988 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2989 compress_type = ordered_extent->compress_type;
2990 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2991 BUG_ON(compress_type);
2992 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2993 ordered_extent->file_offset,
2994 ordered_extent->file_offset +
2995 logical_len);
2996 } else {
2997 BUG_ON(root == fs_info->tree_root);
2998 ret = insert_reserved_file_extent(trans, inode,
2999 ordered_extent->file_offset,
3000 ordered_extent->start,
3001 ordered_extent->disk_len,
3002 logical_len, logical_len,
3003 compress_type, 0, 0,
3004 BTRFS_FILE_EXTENT_REG);
3005 if (!ret)
3006 btrfs_release_delalloc_bytes(fs_info,
3007 ordered_extent->start,
3008 ordered_extent->disk_len);
3009 }
3010 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3011 ordered_extent->file_offset, ordered_extent->len,
3012 trans->transid);
3013 if (ret < 0) {
3014 btrfs_abort_transaction(trans, ret);
3015 goto out;
3016 }
3017
3018 add_pending_csums(trans, inode, &ordered_extent->list);
3019
3020 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3021 ret = btrfs_update_inode_fallback(trans, root, inode);
3022 if (ret) { /* -ENOMEM or corruption */
3023 btrfs_abort_transaction(trans, ret);
3024 goto out;
3025 }
3026 ret = 0;
3027 out:
3028 if (range_locked || clear_new_delalloc_bytes) {
3029 unsigned int clear_bits = 0;
3030
3031 if (range_locked)
3032 clear_bits |= EXTENT_LOCKED;
3033 if (clear_new_delalloc_bytes)
3034 clear_bits |= EXTENT_DELALLOC_NEW;
3035 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3036 ordered_extent->file_offset,
3037 ordered_extent->file_offset +
3038 ordered_extent->len - 1,
3039 clear_bits,
3040 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3041 0, &cached_state, GFP_NOFS);
3042 }
3043
3044 if (root != fs_info->tree_root)
3045 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3046 ordered_extent->len);
3047 if (trans)
3048 btrfs_end_transaction(trans);
3049
3050 if (ret || truncated) {
3051 u64 start, end;
3052
3053 if (truncated)
3054 start = ordered_extent->file_offset + logical_len;
3055 else
3056 start = ordered_extent->file_offset;
3057 end = ordered_extent->file_offset + ordered_extent->len - 1;
3058 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3059
3060 /* Drop the cache for the part of the extent we didn't write. */
3061 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3062
3063 /*
3064 * If the ordered extent had an IOERR or something else went
3065 * wrong we need to return the space for this ordered extent
3066 * back to the allocator. We only free the extent in the
3067 * truncated case if we didn't write out the extent at all.
3068 */
3069 if ((ret || !logical_len) &&
3070 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3071 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3072 btrfs_free_reserved_extent(fs_info,
3073 ordered_extent->start,
3074 ordered_extent->disk_len, 1);
3075 }
3076
3077
3078 /*
3079 * This needs to be done to make sure anybody waiting knows we are done
3080 * updating everything for this ordered extent.
3081 */
3082 btrfs_remove_ordered_extent(inode, ordered_extent);
3083
3084 /* for snapshot-aware defrag */
3085 if (new) {
3086 if (ret) {
3087 free_sa_defrag_extent(new);
3088 atomic_dec(&fs_info->defrag_running);
3089 } else {
3090 relink_file_extents(new);
3091 }
3092 }
3093
3094 /* once for us */
3095 btrfs_put_ordered_extent(ordered_extent);
3096 /* once for the tree */
3097 btrfs_put_ordered_extent(ordered_extent);
3098
3099 return ret;
3100 }
3101
3102 static void finish_ordered_fn(struct btrfs_work *work)
3103 {
3104 struct btrfs_ordered_extent *ordered_extent;
3105 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3106 btrfs_finish_ordered_io(ordered_extent);
3107 }
3108
3109 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3110 struct extent_state *state, int uptodate)
3111 {
3112 struct inode *inode = page->mapping->host;
3113 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3114 struct btrfs_ordered_extent *ordered_extent = NULL;
3115 struct btrfs_workqueue *wq;
3116 btrfs_work_func_t func;
3117
3118 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3119
3120 ClearPagePrivate2(page);
3121 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3122 end - start + 1, uptodate))
3123 return;
3124
3125 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3126 wq = fs_info->endio_freespace_worker;
3127 func = btrfs_freespace_write_helper;
3128 } else {
3129 wq = fs_info->endio_write_workers;
3130 func = btrfs_endio_write_helper;
3131 }
3132
3133 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3134 NULL);
3135 btrfs_queue_work(wq, &ordered_extent->work);
3136 }
3137
3138 static int __readpage_endio_check(struct inode *inode,
3139 struct btrfs_io_bio *io_bio,
3140 int icsum, struct page *page,
3141 int pgoff, u64 start, size_t len)
3142 {
3143 char *kaddr;
3144 u32 csum_expected;
3145 u32 csum = ~(u32)0;
3146
3147 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3148
3149 kaddr = kmap_atomic(page);
3150 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3151 btrfs_csum_final(csum, (u8 *)&csum);
3152 if (csum != csum_expected)
3153 goto zeroit;
3154
3155 kunmap_atomic(kaddr);
3156 return 0;
3157 zeroit:
3158 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3159 io_bio->mirror_num);
3160 memset(kaddr + pgoff, 1, len);
3161 flush_dcache_page(page);
3162 kunmap_atomic(kaddr);
3163 if (csum_expected == 0)
3164 return 0;
3165 return -EIO;
3166 }
3167
3168 /*
3169 * when reads are done, we need to check csums to verify the data is correct
3170 * if there's a match, we allow the bio to finish. If not, the code in
3171 * extent_io.c will try to find good copies for us.
3172 */
3173 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3174 u64 phy_offset, struct page *page,
3175 u64 start, u64 end, int mirror)
3176 {
3177 size_t offset = start - page_offset(page);
3178 struct inode *inode = page->mapping->host;
3179 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3180 struct btrfs_root *root = BTRFS_I(inode)->root;
3181
3182 if (PageChecked(page)) {
3183 ClearPageChecked(page);
3184 return 0;
3185 }
3186
3187 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3188 return 0;
3189
3190 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3191 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3192 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3193 return 0;
3194 }
3195
3196 phy_offset >>= inode->i_sb->s_blocksize_bits;
3197 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3198 start, (size_t)(end - start + 1));
3199 }
3200
3201 void btrfs_add_delayed_iput(struct inode *inode)
3202 {
3203 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3204 struct btrfs_inode *binode = BTRFS_I(inode);
3205
3206 if (atomic_add_unless(&inode->i_count, -1, 1))
3207 return;
3208
3209 spin_lock(&fs_info->delayed_iput_lock);
3210 if (binode->delayed_iput_count == 0) {
3211 ASSERT(list_empty(&binode->delayed_iput));
3212 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3213 } else {
3214 binode->delayed_iput_count++;
3215 }
3216 spin_unlock(&fs_info->delayed_iput_lock);
3217 }
3218
3219 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3220 {
3221
3222 spin_lock(&fs_info->delayed_iput_lock);
3223 while (!list_empty(&fs_info->delayed_iputs)) {
3224 struct btrfs_inode *inode;
3225
3226 inode = list_first_entry(&fs_info->delayed_iputs,
3227 struct btrfs_inode, delayed_iput);
3228 if (inode->delayed_iput_count) {
3229 inode->delayed_iput_count--;
3230 list_move_tail(&inode->delayed_iput,
3231 &fs_info->delayed_iputs);
3232 } else {
3233 list_del_init(&inode->delayed_iput);
3234 }
3235 spin_unlock(&fs_info->delayed_iput_lock);
3236 iput(&inode->vfs_inode);
3237 spin_lock(&fs_info->delayed_iput_lock);
3238 }
3239 spin_unlock(&fs_info->delayed_iput_lock);
3240 }
3241
3242 /*
3243 * This is called in transaction commit time. If there are no orphan
3244 * files in the subvolume, it removes orphan item and frees block_rsv
3245 * structure.
3246 */
3247 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3248 struct btrfs_root *root)
3249 {
3250 struct btrfs_fs_info *fs_info = root->fs_info;
3251 struct btrfs_block_rsv *block_rsv;
3252 int ret;
3253
3254 if (atomic_read(&root->orphan_inodes) ||
3255 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3256 return;
3257
3258 spin_lock(&root->orphan_lock);
3259 if (atomic_read(&root->orphan_inodes)) {
3260 spin_unlock(&root->orphan_lock);
3261 return;
3262 }
3263
3264 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3265 spin_unlock(&root->orphan_lock);
3266 return;
3267 }
3268
3269 block_rsv = root->orphan_block_rsv;
3270 root->orphan_block_rsv = NULL;
3271 spin_unlock(&root->orphan_lock);
3272
3273 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3274 btrfs_root_refs(&root->root_item) > 0) {
3275 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3276 root->root_key.objectid);
3277 if (ret)
3278 btrfs_abort_transaction(trans, ret);
3279 else
3280 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3281 &root->state);
3282 }
3283
3284 if (block_rsv) {
3285 WARN_ON(block_rsv->size > 0);
3286 btrfs_free_block_rsv(fs_info, block_rsv);
3287 }
3288 }
3289
3290 /*
3291 * This creates an orphan entry for the given inode in case something goes
3292 * wrong in the middle of an unlink/truncate.
3293 *
3294 * NOTE: caller of this function should reserve 5 units of metadata for
3295 * this function.
3296 */
3297 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3298 struct btrfs_inode *inode)
3299 {
3300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3301 struct btrfs_root *root = inode->root;
3302 struct btrfs_block_rsv *block_rsv = NULL;
3303 int reserve = 0;
3304 int insert = 0;
3305 int ret;
3306
3307 if (!root->orphan_block_rsv) {
3308 block_rsv = btrfs_alloc_block_rsv(fs_info,
3309 BTRFS_BLOCK_RSV_TEMP);
3310 if (!block_rsv)
3311 return -ENOMEM;
3312 }
3313
3314 spin_lock(&root->orphan_lock);
3315 if (!root->orphan_block_rsv) {
3316 root->orphan_block_rsv = block_rsv;
3317 } else if (block_rsv) {
3318 btrfs_free_block_rsv(fs_info, block_rsv);
3319 block_rsv = NULL;
3320 }
3321
3322 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3323 &inode->runtime_flags)) {
3324 #if 0
3325 /*
3326 * For proper ENOSPC handling, we should do orphan
3327 * cleanup when mounting. But this introduces backward
3328 * compatibility issue.
3329 */
3330 if (!xchg(&root->orphan_item_inserted, 1))
3331 insert = 2;
3332 else
3333 insert = 1;
3334 #endif
3335 insert = 1;
3336 atomic_inc(&root->orphan_inodes);
3337 }
3338
3339 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3340 &inode->runtime_flags))
3341 reserve = 1;
3342 spin_unlock(&root->orphan_lock);
3343
3344 /* grab metadata reservation from transaction handle */
3345 if (reserve) {
3346 ret = btrfs_orphan_reserve_metadata(trans, inode);
3347 ASSERT(!ret);
3348 if (ret) {
3349 atomic_dec(&root->orphan_inodes);
3350 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3351 &inode->runtime_flags);
3352 if (insert)
3353 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3354 &inode->runtime_flags);
3355 return ret;
3356 }
3357 }
3358
3359 /* insert an orphan item to track this unlinked/truncated file */
3360 if (insert >= 1) {
3361 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3362 if (ret) {
3363 atomic_dec(&root->orphan_inodes);
3364 if (reserve) {
3365 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3366 &inode->runtime_flags);
3367 btrfs_orphan_release_metadata(inode);
3368 }
3369 if (ret != -EEXIST) {
3370 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3371 &inode->runtime_flags);
3372 btrfs_abort_transaction(trans, ret);
3373 return ret;
3374 }
3375 }
3376 ret = 0;
3377 }
3378
3379 /* insert an orphan item to track subvolume contains orphan files */
3380 if (insert >= 2) {
3381 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3382 root->root_key.objectid);
3383 if (ret && ret != -EEXIST) {
3384 btrfs_abort_transaction(trans, ret);
3385 return ret;
3386 }
3387 }
3388 return 0;
3389 }
3390
3391 /*
3392 * We have done the truncate/delete so we can go ahead and remove the orphan
3393 * item for this particular inode.
3394 */
3395 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3396 struct btrfs_inode *inode)
3397 {
3398 struct btrfs_root *root = inode->root;
3399 int delete_item = 0;
3400 int release_rsv = 0;
3401 int ret = 0;
3402
3403 spin_lock(&root->orphan_lock);
3404 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3405 &inode->runtime_flags))
3406 delete_item = 1;
3407
3408 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3409 &inode->runtime_flags))
3410 release_rsv = 1;
3411 spin_unlock(&root->orphan_lock);
3412
3413 if (delete_item) {
3414 atomic_dec(&root->orphan_inodes);
3415 if (trans)
3416 ret = btrfs_del_orphan_item(trans, root,
3417 btrfs_ino(inode));
3418 }
3419
3420 if (release_rsv)
3421 btrfs_orphan_release_metadata(inode);
3422
3423 return ret;
3424 }
3425
3426 /*
3427 * this cleans up any orphans that may be left on the list from the last use
3428 * of this root.
3429 */
3430 int btrfs_orphan_cleanup(struct btrfs_root *root)
3431 {
3432 struct btrfs_fs_info *fs_info = root->fs_info;
3433 struct btrfs_path *path;
3434 struct extent_buffer *leaf;
3435 struct btrfs_key key, found_key;
3436 struct btrfs_trans_handle *trans;
3437 struct inode *inode;
3438 u64 last_objectid = 0;
3439 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3440
3441 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3442 return 0;
3443
3444 path = btrfs_alloc_path();
3445 if (!path) {
3446 ret = -ENOMEM;
3447 goto out;
3448 }
3449 path->reada = READA_BACK;
3450
3451 key.objectid = BTRFS_ORPHAN_OBJECTID;
3452 key.type = BTRFS_ORPHAN_ITEM_KEY;
3453 key.offset = (u64)-1;
3454
3455 while (1) {
3456 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3457 if (ret < 0)
3458 goto out;
3459
3460 /*
3461 * if ret == 0 means we found what we were searching for, which
3462 * is weird, but possible, so only screw with path if we didn't
3463 * find the key and see if we have stuff that matches
3464 */
3465 if (ret > 0) {
3466 ret = 0;
3467 if (path->slots[0] == 0)
3468 break;
3469 path->slots[0]--;
3470 }
3471
3472 /* pull out the item */
3473 leaf = path->nodes[0];
3474 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3475
3476 /* make sure the item matches what we want */
3477 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3478 break;
3479 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3480 break;
3481
3482 /* release the path since we're done with it */
3483 btrfs_release_path(path);
3484
3485 /*
3486 * this is where we are basically btrfs_lookup, without the
3487 * crossing root thing. we store the inode number in the
3488 * offset of the orphan item.
3489 */
3490
3491 if (found_key.offset == last_objectid) {
3492 btrfs_err(fs_info,
3493 "Error removing orphan entry, stopping orphan cleanup");
3494 ret = -EINVAL;
3495 goto out;
3496 }
3497
3498 last_objectid = found_key.offset;
3499
3500 found_key.objectid = found_key.offset;
3501 found_key.type = BTRFS_INODE_ITEM_KEY;
3502 found_key.offset = 0;
3503 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3504 ret = PTR_ERR_OR_ZERO(inode);
3505 if (ret && ret != -ENOENT)
3506 goto out;
3507
3508 if (ret == -ENOENT && root == fs_info->tree_root) {
3509 struct btrfs_root *dead_root;
3510 struct btrfs_fs_info *fs_info = root->fs_info;
3511 int is_dead_root = 0;
3512
3513 /*
3514 * this is an orphan in the tree root. Currently these
3515 * could come from 2 sources:
3516 * a) a snapshot deletion in progress
3517 * b) a free space cache inode
3518 * We need to distinguish those two, as the snapshot
3519 * orphan must not get deleted.
3520 * find_dead_roots already ran before us, so if this
3521 * is a snapshot deletion, we should find the root
3522 * in the dead_roots list
3523 */
3524 spin_lock(&fs_info->trans_lock);
3525 list_for_each_entry(dead_root, &fs_info->dead_roots,
3526 root_list) {
3527 if (dead_root->root_key.objectid ==
3528 found_key.objectid) {
3529 is_dead_root = 1;
3530 break;
3531 }
3532 }
3533 spin_unlock(&fs_info->trans_lock);
3534 if (is_dead_root) {
3535 /* prevent this orphan from being found again */
3536 key.offset = found_key.objectid - 1;
3537 continue;
3538 }
3539 }
3540 /*
3541 * Inode is already gone but the orphan item is still there,
3542 * kill the orphan item.
3543 */
3544 if (ret == -ENOENT) {
3545 trans = btrfs_start_transaction(root, 1);
3546 if (IS_ERR(trans)) {
3547 ret = PTR_ERR(trans);
3548 goto out;
3549 }
3550 btrfs_debug(fs_info, "auto deleting %Lu",
3551 found_key.objectid);
3552 ret = btrfs_del_orphan_item(trans, root,
3553 found_key.objectid);
3554 btrfs_end_transaction(trans);
3555 if (ret)
3556 goto out;
3557 continue;
3558 }
3559
3560 /*
3561 * add this inode to the orphan list so btrfs_orphan_del does
3562 * the proper thing when we hit it
3563 */
3564 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3565 &BTRFS_I(inode)->runtime_flags);
3566 atomic_inc(&root->orphan_inodes);
3567
3568 /* if we have links, this was a truncate, lets do that */
3569 if (inode->i_nlink) {
3570 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3571 iput(inode);
3572 continue;
3573 }
3574 nr_truncate++;
3575
3576 /* 1 for the orphan item deletion. */
3577 trans = btrfs_start_transaction(root, 1);
3578 if (IS_ERR(trans)) {
3579 iput(inode);
3580 ret = PTR_ERR(trans);
3581 goto out;
3582 }
3583 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3584 btrfs_end_transaction(trans);
3585 if (ret) {
3586 iput(inode);
3587 goto out;
3588 }
3589
3590 ret = btrfs_truncate(inode);
3591 if (ret)
3592 btrfs_orphan_del(NULL, BTRFS_I(inode));
3593 } else {
3594 nr_unlink++;
3595 }
3596
3597 /* this will do delete_inode and everything for us */
3598 iput(inode);
3599 if (ret)
3600 goto out;
3601 }
3602 /* release the path since we're done with it */
3603 btrfs_release_path(path);
3604
3605 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3606
3607 if (root->orphan_block_rsv)
3608 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3609 (u64)-1);
3610
3611 if (root->orphan_block_rsv ||
3612 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3613 trans = btrfs_join_transaction(root);
3614 if (!IS_ERR(trans))
3615 btrfs_end_transaction(trans);
3616 }
3617
3618 if (nr_unlink)
3619 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3620 if (nr_truncate)
3621 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3622
3623 out:
3624 if (ret)
3625 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3626 btrfs_free_path(path);
3627 return ret;
3628 }
3629
3630 /*
3631 * very simple check to peek ahead in the leaf looking for xattrs. If we
3632 * don't find any xattrs, we know there can't be any acls.
3633 *
3634 * slot is the slot the inode is in, objectid is the objectid of the inode
3635 */
3636 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3637 int slot, u64 objectid,
3638 int *first_xattr_slot)
3639 {
3640 u32 nritems = btrfs_header_nritems(leaf);
3641 struct btrfs_key found_key;
3642 static u64 xattr_access = 0;
3643 static u64 xattr_default = 0;
3644 int scanned = 0;
3645
3646 if (!xattr_access) {
3647 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3648 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3649 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3650 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3651 }
3652
3653 slot++;
3654 *first_xattr_slot = -1;
3655 while (slot < nritems) {
3656 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3657
3658 /* we found a different objectid, there must not be acls */
3659 if (found_key.objectid != objectid)
3660 return 0;
3661
3662 /* we found an xattr, assume we've got an acl */
3663 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3664 if (*first_xattr_slot == -1)
3665 *first_xattr_slot = slot;
3666 if (found_key.offset == xattr_access ||
3667 found_key.offset == xattr_default)
3668 return 1;
3669 }
3670
3671 /*
3672 * we found a key greater than an xattr key, there can't
3673 * be any acls later on
3674 */
3675 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3676 return 0;
3677
3678 slot++;
3679 scanned++;
3680
3681 /*
3682 * it goes inode, inode backrefs, xattrs, extents,
3683 * so if there are a ton of hard links to an inode there can
3684 * be a lot of backrefs. Don't waste time searching too hard,
3685 * this is just an optimization
3686 */
3687 if (scanned >= 8)
3688 break;
3689 }
3690 /* we hit the end of the leaf before we found an xattr or
3691 * something larger than an xattr. We have to assume the inode
3692 * has acls
3693 */
3694 if (*first_xattr_slot == -1)
3695 *first_xattr_slot = slot;
3696 return 1;
3697 }
3698
3699 /*
3700 * read an inode from the btree into the in-memory inode
3701 */
3702 static int btrfs_read_locked_inode(struct inode *inode)
3703 {
3704 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3705 struct btrfs_path *path;
3706 struct extent_buffer *leaf;
3707 struct btrfs_inode_item *inode_item;
3708 struct btrfs_root *root = BTRFS_I(inode)->root;
3709 struct btrfs_key location;
3710 unsigned long ptr;
3711 int maybe_acls;
3712 u32 rdev;
3713 int ret;
3714 bool filled = false;
3715 int first_xattr_slot;
3716
3717 ret = btrfs_fill_inode(inode, &rdev);
3718 if (!ret)
3719 filled = true;
3720
3721 path = btrfs_alloc_path();
3722 if (!path) {
3723 ret = -ENOMEM;
3724 goto make_bad;
3725 }
3726
3727 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3728
3729 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3730 if (ret) {
3731 if (ret > 0)
3732 ret = -ENOENT;
3733 goto make_bad;
3734 }
3735
3736 leaf = path->nodes[0];
3737
3738 if (filled)
3739 goto cache_index;
3740
3741 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3742 struct btrfs_inode_item);
3743 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3744 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3745 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3746 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3747 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3748
3749 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3750 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3751
3752 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3753 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3754
3755 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3756 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3757
3758 BTRFS_I(inode)->i_otime.tv_sec =
3759 btrfs_timespec_sec(leaf, &inode_item->otime);
3760 BTRFS_I(inode)->i_otime.tv_nsec =
3761 btrfs_timespec_nsec(leaf, &inode_item->otime);
3762
3763 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3764 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3765 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3766
3767 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3768 inode->i_generation = BTRFS_I(inode)->generation;
3769 inode->i_rdev = 0;
3770 rdev = btrfs_inode_rdev(leaf, inode_item);
3771
3772 BTRFS_I(inode)->index_cnt = (u64)-1;
3773 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3774
3775 cache_index:
3776 /*
3777 * If we were modified in the current generation and evicted from memory
3778 * and then re-read we need to do a full sync since we don't have any
3779 * idea about which extents were modified before we were evicted from
3780 * cache.
3781 *
3782 * This is required for both inode re-read from disk and delayed inode
3783 * in delayed_nodes_tree.
3784 */
3785 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3786 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3787 &BTRFS_I(inode)->runtime_flags);
3788
3789 /*
3790 * We don't persist the id of the transaction where an unlink operation
3791 * against the inode was last made. So here we assume the inode might
3792 * have been evicted, and therefore the exact value of last_unlink_trans
3793 * lost, and set it to last_trans to avoid metadata inconsistencies
3794 * between the inode and its parent if the inode is fsync'ed and the log
3795 * replayed. For example, in the scenario:
3796 *
3797 * touch mydir/foo
3798 * ln mydir/foo mydir/bar
3799 * sync
3800 * unlink mydir/bar
3801 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3802 * xfs_io -c fsync mydir/foo
3803 * <power failure>
3804 * mount fs, triggers fsync log replay
3805 *
3806 * We must make sure that when we fsync our inode foo we also log its
3807 * parent inode, otherwise after log replay the parent still has the
3808 * dentry with the "bar" name but our inode foo has a link count of 1
3809 * and doesn't have an inode ref with the name "bar" anymore.
3810 *
3811 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3812 * but it guarantees correctness at the expense of occasional full
3813 * transaction commits on fsync if our inode is a directory, or if our
3814 * inode is not a directory, logging its parent unnecessarily.
3815 */
3816 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3817
3818 path->slots[0]++;
3819 if (inode->i_nlink != 1 ||
3820 path->slots[0] >= btrfs_header_nritems(leaf))
3821 goto cache_acl;
3822
3823 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3824 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3825 goto cache_acl;
3826
3827 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3828 if (location.type == BTRFS_INODE_REF_KEY) {
3829 struct btrfs_inode_ref *ref;
3830
3831 ref = (struct btrfs_inode_ref *)ptr;
3832 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3833 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3834 struct btrfs_inode_extref *extref;
3835
3836 extref = (struct btrfs_inode_extref *)ptr;
3837 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3838 extref);
3839 }
3840 cache_acl:
3841 /*
3842 * try to precache a NULL acl entry for files that don't have
3843 * any xattrs or acls
3844 */
3845 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3846 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3847 if (first_xattr_slot != -1) {
3848 path->slots[0] = first_xattr_slot;
3849 ret = btrfs_load_inode_props(inode, path);
3850 if (ret)
3851 btrfs_err(fs_info,
3852 "error loading props for ino %llu (root %llu): %d",
3853 btrfs_ino(BTRFS_I(inode)),
3854 root->root_key.objectid, ret);
3855 }
3856 btrfs_free_path(path);
3857
3858 if (!maybe_acls)
3859 cache_no_acl(inode);
3860
3861 switch (inode->i_mode & S_IFMT) {
3862 case S_IFREG:
3863 inode->i_mapping->a_ops = &btrfs_aops;
3864 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3865 inode->i_fop = &btrfs_file_operations;
3866 inode->i_op = &btrfs_file_inode_operations;
3867 break;
3868 case S_IFDIR:
3869 inode->i_fop = &btrfs_dir_file_operations;
3870 inode->i_op = &btrfs_dir_inode_operations;
3871 break;
3872 case S_IFLNK:
3873 inode->i_op = &btrfs_symlink_inode_operations;
3874 inode_nohighmem(inode);
3875 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3876 break;
3877 default:
3878 inode->i_op = &btrfs_special_inode_operations;
3879 init_special_inode(inode, inode->i_mode, rdev);
3880 break;
3881 }
3882
3883 btrfs_update_iflags(inode);
3884 return 0;
3885
3886 make_bad:
3887 btrfs_free_path(path);
3888 make_bad_inode(inode);
3889 return ret;
3890 }
3891
3892 /*
3893 * given a leaf and an inode, copy the inode fields into the leaf
3894 */
3895 static void fill_inode_item(struct btrfs_trans_handle *trans,
3896 struct extent_buffer *leaf,
3897 struct btrfs_inode_item *item,
3898 struct inode *inode)
3899 {
3900 struct btrfs_map_token token;
3901
3902 btrfs_init_map_token(&token);
3903
3904 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3905 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3906 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3907 &token);
3908 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3909 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3910
3911 btrfs_set_token_timespec_sec(leaf, &item->atime,
3912 inode->i_atime.tv_sec, &token);
3913 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3914 inode->i_atime.tv_nsec, &token);
3915
3916 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3917 inode->i_mtime.tv_sec, &token);
3918 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3919 inode->i_mtime.tv_nsec, &token);
3920
3921 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3922 inode->i_ctime.tv_sec, &token);
3923 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3924 inode->i_ctime.tv_nsec, &token);
3925
3926 btrfs_set_token_timespec_sec(leaf, &item->otime,
3927 BTRFS_I(inode)->i_otime.tv_sec, &token);
3928 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3929 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3930
3931 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3932 &token);
3933 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3934 &token);
3935 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3936 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3937 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3938 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3939 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3940 }
3941
3942 /*
3943 * copy everything in the in-memory inode into the btree.
3944 */
3945 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3946 struct btrfs_root *root, struct inode *inode)
3947 {
3948 struct btrfs_inode_item *inode_item;
3949 struct btrfs_path *path;
3950 struct extent_buffer *leaf;
3951 int ret;
3952
3953 path = btrfs_alloc_path();
3954 if (!path)
3955 return -ENOMEM;
3956
3957 path->leave_spinning = 1;
3958 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3959 1);
3960 if (ret) {
3961 if (ret > 0)
3962 ret = -ENOENT;
3963 goto failed;
3964 }
3965
3966 leaf = path->nodes[0];
3967 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3968 struct btrfs_inode_item);
3969
3970 fill_inode_item(trans, leaf, inode_item, inode);
3971 btrfs_mark_buffer_dirty(leaf);
3972 btrfs_set_inode_last_trans(trans, inode);
3973 ret = 0;
3974 failed:
3975 btrfs_free_path(path);
3976 return ret;
3977 }
3978
3979 /*
3980 * copy everything in the in-memory inode into the btree.
3981 */
3982 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3983 struct btrfs_root *root, struct inode *inode)
3984 {
3985 struct btrfs_fs_info *fs_info = root->fs_info;
3986 int ret;
3987
3988 /*
3989 * If the inode is a free space inode, we can deadlock during commit
3990 * if we put it into the delayed code.
3991 *
3992 * The data relocation inode should also be directly updated
3993 * without delay
3994 */
3995 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3996 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3997 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3998 btrfs_update_root_times(trans, root);
3999
4000 ret = btrfs_delayed_update_inode(trans, root, inode);
4001 if (!ret)
4002 btrfs_set_inode_last_trans(trans, inode);
4003 return ret;
4004 }
4005
4006 return btrfs_update_inode_item(trans, root, inode);
4007 }
4008
4009 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4010 struct btrfs_root *root,
4011 struct inode *inode)
4012 {
4013 int ret;
4014
4015 ret = btrfs_update_inode(trans, root, inode);
4016 if (ret == -ENOSPC)
4017 return btrfs_update_inode_item(trans, root, inode);
4018 return ret;
4019 }
4020
4021 /*
4022 * unlink helper that gets used here in inode.c and in the tree logging
4023 * recovery code. It remove a link in a directory with a given name, and
4024 * also drops the back refs in the inode to the directory
4025 */
4026 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4027 struct btrfs_root *root,
4028 struct btrfs_inode *dir,
4029 struct btrfs_inode *inode,
4030 const char *name, int name_len)
4031 {
4032 struct btrfs_fs_info *fs_info = root->fs_info;
4033 struct btrfs_path *path;
4034 int ret = 0;
4035 struct extent_buffer *leaf;
4036 struct btrfs_dir_item *di;
4037 struct btrfs_key key;
4038 u64 index;
4039 u64 ino = btrfs_ino(inode);
4040 u64 dir_ino = btrfs_ino(dir);
4041
4042 path = btrfs_alloc_path();
4043 if (!path) {
4044 ret = -ENOMEM;
4045 goto out;
4046 }
4047
4048 path->leave_spinning = 1;
4049 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4050 name, name_len, -1);
4051 if (IS_ERR(di)) {
4052 ret = PTR_ERR(di);
4053 goto err;
4054 }
4055 if (!di) {
4056 ret = -ENOENT;
4057 goto err;
4058 }
4059 leaf = path->nodes[0];
4060 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4061 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4062 if (ret)
4063 goto err;
4064 btrfs_release_path(path);
4065
4066 /*
4067 * If we don't have dir index, we have to get it by looking up
4068 * the inode ref, since we get the inode ref, remove it directly,
4069 * it is unnecessary to do delayed deletion.
4070 *
4071 * But if we have dir index, needn't search inode ref to get it.
4072 * Since the inode ref is close to the inode item, it is better
4073 * that we delay to delete it, and just do this deletion when
4074 * we update the inode item.
4075 */
4076 if (inode->dir_index) {
4077 ret = btrfs_delayed_delete_inode_ref(inode);
4078 if (!ret) {
4079 index = inode->dir_index;
4080 goto skip_backref;
4081 }
4082 }
4083
4084 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4085 dir_ino, &index);
4086 if (ret) {
4087 btrfs_info(fs_info,
4088 "failed to delete reference to %.*s, inode %llu parent %llu",
4089 name_len, name, ino, dir_ino);
4090 btrfs_abort_transaction(trans, ret);
4091 goto err;
4092 }
4093 skip_backref:
4094 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4095 if (ret) {
4096 btrfs_abort_transaction(trans, ret);
4097 goto err;
4098 }
4099
4100 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4101 dir_ino);
4102 if (ret != 0 && ret != -ENOENT) {
4103 btrfs_abort_transaction(trans, ret);
4104 goto err;
4105 }
4106
4107 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4108 index);
4109 if (ret == -ENOENT)
4110 ret = 0;
4111 else if (ret)
4112 btrfs_abort_transaction(trans, ret);
4113 err:
4114 btrfs_free_path(path);
4115 if (ret)
4116 goto out;
4117
4118 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4119 inode_inc_iversion(&inode->vfs_inode);
4120 inode_inc_iversion(&dir->vfs_inode);
4121 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4122 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4123 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4124 out:
4125 return ret;
4126 }
4127
4128 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4129 struct btrfs_root *root,
4130 struct btrfs_inode *dir, struct btrfs_inode *inode,
4131 const char *name, int name_len)
4132 {
4133 int ret;
4134 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4135 if (!ret) {
4136 drop_nlink(&inode->vfs_inode);
4137 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4138 }
4139 return ret;
4140 }
4141
4142 /*
4143 * helper to start transaction for unlink and rmdir.
4144 *
4145 * unlink and rmdir are special in btrfs, they do not always free space, so
4146 * if we cannot make our reservations the normal way try and see if there is
4147 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4148 * allow the unlink to occur.
4149 */
4150 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4151 {
4152 struct btrfs_root *root = BTRFS_I(dir)->root;
4153
4154 /*
4155 * 1 for the possible orphan item
4156 * 1 for the dir item
4157 * 1 for the dir index
4158 * 1 for the inode ref
4159 * 1 for the inode
4160 */
4161 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4162 }
4163
4164 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4165 {
4166 struct btrfs_root *root = BTRFS_I(dir)->root;
4167 struct btrfs_trans_handle *trans;
4168 struct inode *inode = d_inode(dentry);
4169 int ret;
4170
4171 trans = __unlink_start_trans(dir);
4172 if (IS_ERR(trans))
4173 return PTR_ERR(trans);
4174
4175 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4176 0);
4177
4178 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4179 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4180 dentry->d_name.len);
4181 if (ret)
4182 goto out;
4183
4184 if (inode->i_nlink == 0) {
4185 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4186 if (ret)
4187 goto out;
4188 }
4189
4190 out:
4191 btrfs_end_transaction(trans);
4192 btrfs_btree_balance_dirty(root->fs_info);
4193 return ret;
4194 }
4195
4196 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4197 struct btrfs_root *root,
4198 struct inode *dir, u64 objectid,
4199 const char *name, int name_len)
4200 {
4201 struct btrfs_fs_info *fs_info = root->fs_info;
4202 struct btrfs_path *path;
4203 struct extent_buffer *leaf;
4204 struct btrfs_dir_item *di;
4205 struct btrfs_key key;
4206 u64 index;
4207 int ret;
4208 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4209
4210 path = btrfs_alloc_path();
4211 if (!path)
4212 return -ENOMEM;
4213
4214 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4215 name, name_len, -1);
4216 if (IS_ERR_OR_NULL(di)) {
4217 if (!di)
4218 ret = -ENOENT;
4219 else
4220 ret = PTR_ERR(di);
4221 goto out;
4222 }
4223
4224 leaf = path->nodes[0];
4225 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4226 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4227 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4228 if (ret) {
4229 btrfs_abort_transaction(trans, ret);
4230 goto out;
4231 }
4232 btrfs_release_path(path);
4233
4234 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4235 root->root_key.objectid, dir_ino,
4236 &index, name, name_len);
4237 if (ret < 0) {
4238 if (ret != -ENOENT) {
4239 btrfs_abort_transaction(trans, ret);
4240 goto out;
4241 }
4242 di = btrfs_search_dir_index_item(root, path, dir_ino,
4243 name, name_len);
4244 if (IS_ERR_OR_NULL(di)) {
4245 if (!di)
4246 ret = -ENOENT;
4247 else
4248 ret = PTR_ERR(di);
4249 btrfs_abort_transaction(trans, ret);
4250 goto out;
4251 }
4252
4253 leaf = path->nodes[0];
4254 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4255 btrfs_release_path(path);
4256 index = key.offset;
4257 }
4258 btrfs_release_path(path);
4259
4260 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4261 if (ret) {
4262 btrfs_abort_transaction(trans, ret);
4263 goto out;
4264 }
4265
4266 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4267 inode_inc_iversion(dir);
4268 dir->i_mtime = dir->i_ctime = current_time(dir);
4269 ret = btrfs_update_inode_fallback(trans, root, dir);
4270 if (ret)
4271 btrfs_abort_transaction(trans, ret);
4272 out:
4273 btrfs_free_path(path);
4274 return ret;
4275 }
4276
4277 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4278 {
4279 struct inode *inode = d_inode(dentry);
4280 int err = 0;
4281 struct btrfs_root *root = BTRFS_I(dir)->root;
4282 struct btrfs_trans_handle *trans;
4283 u64 last_unlink_trans;
4284
4285 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4286 return -ENOTEMPTY;
4287 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4288 return -EPERM;
4289
4290 trans = __unlink_start_trans(dir);
4291 if (IS_ERR(trans))
4292 return PTR_ERR(trans);
4293
4294 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4295 err = btrfs_unlink_subvol(trans, root, dir,
4296 BTRFS_I(inode)->location.objectid,
4297 dentry->d_name.name,
4298 dentry->d_name.len);
4299 goto out;
4300 }
4301
4302 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4303 if (err)
4304 goto out;
4305
4306 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4307
4308 /* now the directory is empty */
4309 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4310 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4311 dentry->d_name.len);
4312 if (!err) {
4313 btrfs_i_size_write(BTRFS_I(inode), 0);
4314 /*
4315 * Propagate the last_unlink_trans value of the deleted dir to
4316 * its parent directory. This is to prevent an unrecoverable
4317 * log tree in the case we do something like this:
4318 * 1) create dir foo
4319 * 2) create snapshot under dir foo
4320 * 3) delete the snapshot
4321 * 4) rmdir foo
4322 * 5) mkdir foo
4323 * 6) fsync foo or some file inside foo
4324 */
4325 if (last_unlink_trans >= trans->transid)
4326 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4327 }
4328 out:
4329 btrfs_end_transaction(trans);
4330 btrfs_btree_balance_dirty(root->fs_info);
4331
4332 return err;
4333 }
4334
4335 static int truncate_space_check(struct btrfs_trans_handle *trans,
4336 struct btrfs_root *root,
4337 u64 bytes_deleted)
4338 {
4339 struct btrfs_fs_info *fs_info = root->fs_info;
4340 int ret;
4341
4342 /*
4343 * This is only used to apply pressure to the enospc system, we don't
4344 * intend to use this reservation at all.
4345 */
4346 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4347 bytes_deleted *= fs_info->nodesize;
4348 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4349 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4350 if (!ret) {
4351 trace_btrfs_space_reservation(fs_info, "transaction",
4352 trans->transid,
4353 bytes_deleted, 1);
4354 trans->bytes_reserved += bytes_deleted;
4355 }
4356 return ret;
4357
4358 }
4359
4360 static int truncate_inline_extent(struct inode *inode,
4361 struct btrfs_path *path,
4362 struct btrfs_key *found_key,
4363 const u64 item_end,
4364 const u64 new_size)
4365 {
4366 struct extent_buffer *leaf = path->nodes[0];
4367 int slot = path->slots[0];
4368 struct btrfs_file_extent_item *fi;
4369 u32 size = (u32)(new_size - found_key->offset);
4370 struct btrfs_root *root = BTRFS_I(inode)->root;
4371
4372 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4373
4374 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4375 loff_t offset = new_size;
4376 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4377
4378 /*
4379 * Zero out the remaining of the last page of our inline extent,
4380 * instead of directly truncating our inline extent here - that
4381 * would be much more complex (decompressing all the data, then
4382 * compressing the truncated data, which might be bigger than
4383 * the size of the inline extent, resize the extent, etc).
4384 * We release the path because to get the page we might need to
4385 * read the extent item from disk (data not in the page cache).
4386 */
4387 btrfs_release_path(path);
4388 return btrfs_truncate_block(inode, offset, page_end - offset,
4389 0);
4390 }
4391
4392 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4393 size = btrfs_file_extent_calc_inline_size(size);
4394 btrfs_truncate_item(root->fs_info, path, size, 1);
4395
4396 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4397 inode_sub_bytes(inode, item_end + 1 - new_size);
4398
4399 return 0;
4400 }
4401
4402 /*
4403 * this can truncate away extent items, csum items and directory items.
4404 * It starts at a high offset and removes keys until it can't find
4405 * any higher than new_size
4406 *
4407 * csum items that cross the new i_size are truncated to the new size
4408 * as well.
4409 *
4410 * min_type is the minimum key type to truncate down to. If set to 0, this
4411 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4412 */
4413 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4414 struct btrfs_root *root,
4415 struct inode *inode,
4416 u64 new_size, u32 min_type)
4417 {
4418 struct btrfs_fs_info *fs_info = root->fs_info;
4419 struct btrfs_path *path;
4420 struct extent_buffer *leaf;
4421 struct btrfs_file_extent_item *fi;
4422 struct btrfs_key key;
4423 struct btrfs_key found_key;
4424 u64 extent_start = 0;
4425 u64 extent_num_bytes = 0;
4426 u64 extent_offset = 0;
4427 u64 item_end = 0;
4428 u64 last_size = new_size;
4429 u32 found_type = (u8)-1;
4430 int found_extent;
4431 int del_item;
4432 int pending_del_nr = 0;
4433 int pending_del_slot = 0;
4434 int extent_type = -1;
4435 int ret;
4436 int err = 0;
4437 u64 ino = btrfs_ino(BTRFS_I(inode));
4438 u64 bytes_deleted = 0;
4439 bool be_nice = 0;
4440 bool should_throttle = 0;
4441 bool should_end = 0;
4442
4443 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4444
4445 /*
4446 * for non-free space inodes and ref cows, we want to back off from
4447 * time to time
4448 */
4449 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4450 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4451 be_nice = 1;
4452
4453 path = btrfs_alloc_path();
4454 if (!path)
4455 return -ENOMEM;
4456 path->reada = READA_BACK;
4457
4458 /*
4459 * We want to drop from the next block forward in case this new size is
4460 * not block aligned since we will be keeping the last block of the
4461 * extent just the way it is.
4462 */
4463 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4464 root == fs_info->tree_root)
4465 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4466 fs_info->sectorsize),
4467 (u64)-1, 0);
4468
4469 /*
4470 * This function is also used to drop the items in the log tree before
4471 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4472 * it is used to drop the loged items. So we shouldn't kill the delayed
4473 * items.
4474 */
4475 if (min_type == 0 && root == BTRFS_I(inode)->root)
4476 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4477
4478 key.objectid = ino;
4479 key.offset = (u64)-1;
4480 key.type = (u8)-1;
4481
4482 search_again:
4483 /*
4484 * with a 16K leaf size and 128MB extents, you can actually queue
4485 * up a huge file in a single leaf. Most of the time that
4486 * bytes_deleted is > 0, it will be huge by the time we get here
4487 */
4488 if (be_nice && bytes_deleted > SZ_32M) {
4489 if (btrfs_should_end_transaction(trans)) {
4490 err = -EAGAIN;
4491 goto error;
4492 }
4493 }
4494
4495
4496 path->leave_spinning = 1;
4497 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4498 if (ret < 0) {
4499 err = ret;
4500 goto out;
4501 }
4502
4503 if (ret > 0) {
4504 /* there are no items in the tree for us to truncate, we're
4505 * done
4506 */
4507 if (path->slots[0] == 0)
4508 goto out;
4509 path->slots[0]--;
4510 }
4511
4512 while (1) {
4513 fi = NULL;
4514 leaf = path->nodes[0];
4515 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4516 found_type = found_key.type;
4517
4518 if (found_key.objectid != ino)
4519 break;
4520
4521 if (found_type < min_type)
4522 break;
4523
4524 item_end = found_key.offset;
4525 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4526 fi = btrfs_item_ptr(leaf, path->slots[0],
4527 struct btrfs_file_extent_item);
4528 extent_type = btrfs_file_extent_type(leaf, fi);
4529 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4530 item_end +=
4531 btrfs_file_extent_num_bytes(leaf, fi);
4532
4533 trace_btrfs_truncate_show_fi_regular(
4534 BTRFS_I(inode), leaf, fi,
4535 found_key.offset);
4536 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4537 item_end += btrfs_file_extent_inline_len(leaf,
4538 path->slots[0], fi);
4539
4540 trace_btrfs_truncate_show_fi_inline(
4541 BTRFS_I(inode), leaf, fi, path->slots[0],
4542 found_key.offset);
4543 }
4544 item_end--;
4545 }
4546 if (found_type > min_type) {
4547 del_item = 1;
4548 } else {
4549 if (item_end < new_size)
4550 break;
4551 if (found_key.offset >= new_size)
4552 del_item = 1;
4553 else
4554 del_item = 0;
4555 }
4556 found_extent = 0;
4557 /* FIXME, shrink the extent if the ref count is only 1 */
4558 if (found_type != BTRFS_EXTENT_DATA_KEY)
4559 goto delete;
4560
4561 if (del_item)
4562 last_size = found_key.offset;
4563 else
4564 last_size = new_size;
4565
4566 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4567 u64 num_dec;
4568 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4569 if (!del_item) {
4570 u64 orig_num_bytes =
4571 btrfs_file_extent_num_bytes(leaf, fi);
4572 extent_num_bytes = ALIGN(new_size -
4573 found_key.offset,
4574 fs_info->sectorsize);
4575 btrfs_set_file_extent_num_bytes(leaf, fi,
4576 extent_num_bytes);
4577 num_dec = (orig_num_bytes -
4578 extent_num_bytes);
4579 if (test_bit(BTRFS_ROOT_REF_COWS,
4580 &root->state) &&
4581 extent_start != 0)
4582 inode_sub_bytes(inode, num_dec);
4583 btrfs_mark_buffer_dirty(leaf);
4584 } else {
4585 extent_num_bytes =
4586 btrfs_file_extent_disk_num_bytes(leaf,
4587 fi);
4588 extent_offset = found_key.offset -
4589 btrfs_file_extent_offset(leaf, fi);
4590
4591 /* FIXME blocksize != 4096 */
4592 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4593 if (extent_start != 0) {
4594 found_extent = 1;
4595 if (test_bit(BTRFS_ROOT_REF_COWS,
4596 &root->state))
4597 inode_sub_bytes(inode, num_dec);
4598 }
4599 }
4600 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4601 /*
4602 * we can't truncate inline items that have had
4603 * special encodings
4604 */
4605 if (!del_item &&
4606 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4607 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4608
4609 /*
4610 * Need to release path in order to truncate a
4611 * compressed extent. So delete any accumulated
4612 * extent items so far.
4613 */
4614 if (btrfs_file_extent_compression(leaf, fi) !=
4615 BTRFS_COMPRESS_NONE && pending_del_nr) {
4616 err = btrfs_del_items(trans, root, path,
4617 pending_del_slot,
4618 pending_del_nr);
4619 if (err) {
4620 btrfs_abort_transaction(trans,
4621 err);
4622 goto error;
4623 }
4624 pending_del_nr = 0;
4625 }
4626
4627 err = truncate_inline_extent(inode, path,
4628 &found_key,
4629 item_end,
4630 new_size);
4631 if (err) {
4632 btrfs_abort_transaction(trans, err);
4633 goto error;
4634 }
4635 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4636 &root->state)) {
4637 inode_sub_bytes(inode, item_end + 1 - new_size);
4638 }
4639 }
4640 delete:
4641 if (del_item) {
4642 if (!pending_del_nr) {
4643 /* no pending yet, add ourselves */
4644 pending_del_slot = path->slots[0];
4645 pending_del_nr = 1;
4646 } else if (pending_del_nr &&
4647 path->slots[0] + 1 == pending_del_slot) {
4648 /* hop on the pending chunk */
4649 pending_del_nr++;
4650 pending_del_slot = path->slots[0];
4651 } else {
4652 BUG();
4653 }
4654 } else {
4655 break;
4656 }
4657 should_throttle = 0;
4658
4659 if (found_extent &&
4660 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4661 root == fs_info->tree_root)) {
4662 btrfs_set_path_blocking(path);
4663 bytes_deleted += extent_num_bytes;
4664 ret = btrfs_free_extent(trans, fs_info, extent_start,
4665 extent_num_bytes, 0,
4666 btrfs_header_owner(leaf),
4667 ino, extent_offset);
4668 BUG_ON(ret);
4669 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4670 btrfs_async_run_delayed_refs(fs_info,
4671 trans->delayed_ref_updates * 2,
4672 trans->transid, 0);
4673 if (be_nice) {
4674 if (truncate_space_check(trans, root,
4675 extent_num_bytes)) {
4676 should_end = 1;
4677 }
4678 if (btrfs_should_throttle_delayed_refs(trans,
4679 fs_info))
4680 should_throttle = 1;
4681 }
4682 }
4683
4684 if (found_type == BTRFS_INODE_ITEM_KEY)
4685 break;
4686
4687 if (path->slots[0] == 0 ||
4688 path->slots[0] != pending_del_slot ||
4689 should_throttle || should_end) {
4690 if (pending_del_nr) {
4691 ret = btrfs_del_items(trans, root, path,
4692 pending_del_slot,
4693 pending_del_nr);
4694 if (ret) {
4695 btrfs_abort_transaction(trans, ret);
4696 goto error;
4697 }
4698 pending_del_nr = 0;
4699 }
4700 btrfs_release_path(path);
4701 if (should_throttle) {
4702 unsigned long updates = trans->delayed_ref_updates;
4703 if (updates) {
4704 trans->delayed_ref_updates = 0;
4705 ret = btrfs_run_delayed_refs(trans,
4706 fs_info,
4707 updates * 2);
4708 if (ret && !err)
4709 err = ret;
4710 }
4711 }
4712 /*
4713 * if we failed to refill our space rsv, bail out
4714 * and let the transaction restart
4715 */
4716 if (should_end) {
4717 err = -EAGAIN;
4718 goto error;
4719 }
4720 goto search_again;
4721 } else {
4722 path->slots[0]--;
4723 }
4724 }
4725 out:
4726 if (pending_del_nr) {
4727 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4728 pending_del_nr);
4729 if (ret)
4730 btrfs_abort_transaction(trans, ret);
4731 }
4732 error:
4733 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4734 ASSERT(last_size >= new_size);
4735 if (!err && last_size > new_size)
4736 last_size = new_size;
4737 btrfs_ordered_update_i_size(inode, last_size, NULL);
4738 }
4739
4740 btrfs_free_path(path);
4741
4742 if (be_nice && bytes_deleted > SZ_32M) {
4743 unsigned long updates = trans->delayed_ref_updates;
4744 if (updates) {
4745 trans->delayed_ref_updates = 0;
4746 ret = btrfs_run_delayed_refs(trans, fs_info,
4747 updates * 2);
4748 if (ret && !err)
4749 err = ret;
4750 }
4751 }
4752 return err;
4753 }
4754
4755 /*
4756 * btrfs_truncate_block - read, zero a chunk and write a block
4757 * @inode - inode that we're zeroing
4758 * @from - the offset to start zeroing
4759 * @len - the length to zero, 0 to zero the entire range respective to the
4760 * offset
4761 * @front - zero up to the offset instead of from the offset on
4762 *
4763 * This will find the block for the "from" offset and cow the block and zero the
4764 * part we want to zero. This is used with truncate and hole punching.
4765 */
4766 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4767 int front)
4768 {
4769 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4770 struct address_space *mapping = inode->i_mapping;
4771 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4772 struct btrfs_ordered_extent *ordered;
4773 struct extent_state *cached_state = NULL;
4774 struct extent_changeset *data_reserved = NULL;
4775 char *kaddr;
4776 u32 blocksize = fs_info->sectorsize;
4777 pgoff_t index = from >> PAGE_SHIFT;
4778 unsigned offset = from & (blocksize - 1);
4779 struct page *page;
4780 gfp_t mask = btrfs_alloc_write_mask(mapping);
4781 int ret = 0;
4782 u64 block_start;
4783 u64 block_end;
4784
4785 if ((offset & (blocksize - 1)) == 0 &&
4786 (!len || ((len & (blocksize - 1)) == 0)))
4787 goto out;
4788
4789 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4790 round_down(from, blocksize), blocksize);
4791 if (ret)
4792 goto out;
4793
4794 again:
4795 page = find_or_create_page(mapping, index, mask);
4796 if (!page) {
4797 btrfs_delalloc_release_space(inode, data_reserved,
4798 round_down(from, blocksize),
4799 blocksize);
4800 ret = -ENOMEM;
4801 goto out;
4802 }
4803
4804 block_start = round_down(from, blocksize);
4805 block_end = block_start + blocksize - 1;
4806
4807 if (!PageUptodate(page)) {
4808 ret = btrfs_readpage(NULL, page);
4809 lock_page(page);
4810 if (page->mapping != mapping) {
4811 unlock_page(page);
4812 put_page(page);
4813 goto again;
4814 }
4815 if (!PageUptodate(page)) {
4816 ret = -EIO;
4817 goto out_unlock;
4818 }
4819 }
4820 wait_on_page_writeback(page);
4821
4822 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4823 set_page_extent_mapped(page);
4824
4825 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4826 if (ordered) {
4827 unlock_extent_cached(io_tree, block_start, block_end,
4828 &cached_state, GFP_NOFS);
4829 unlock_page(page);
4830 put_page(page);
4831 btrfs_start_ordered_extent(inode, ordered, 1);
4832 btrfs_put_ordered_extent(ordered);
4833 goto again;
4834 }
4835
4836 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4837 EXTENT_DIRTY | EXTENT_DELALLOC |
4838 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4839 0, 0, &cached_state, GFP_NOFS);
4840
4841 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4842 &cached_state, 0);
4843 if (ret) {
4844 unlock_extent_cached(io_tree, block_start, block_end,
4845 &cached_state, GFP_NOFS);
4846 goto out_unlock;
4847 }
4848
4849 if (offset != blocksize) {
4850 if (!len)
4851 len = blocksize - offset;
4852 kaddr = kmap(page);
4853 if (front)
4854 memset(kaddr + (block_start - page_offset(page)),
4855 0, offset);
4856 else
4857 memset(kaddr + (block_start - page_offset(page)) + offset,
4858 0, len);
4859 flush_dcache_page(page);
4860 kunmap(page);
4861 }
4862 ClearPageChecked(page);
4863 set_page_dirty(page);
4864 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4865 GFP_NOFS);
4866
4867 out_unlock:
4868 if (ret)
4869 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4870 blocksize);
4871 unlock_page(page);
4872 put_page(page);
4873 out:
4874 extent_changeset_free(data_reserved);
4875 return ret;
4876 }
4877
4878 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4879 u64 offset, u64 len)
4880 {
4881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4882 struct btrfs_trans_handle *trans;
4883 int ret;
4884
4885 /*
4886 * Still need to make sure the inode looks like it's been updated so
4887 * that any holes get logged if we fsync.
4888 */
4889 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4890 BTRFS_I(inode)->last_trans = fs_info->generation;
4891 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4892 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4893 return 0;
4894 }
4895
4896 /*
4897 * 1 - for the one we're dropping
4898 * 1 - for the one we're adding
4899 * 1 - for updating the inode.
4900 */
4901 trans = btrfs_start_transaction(root, 3);
4902 if (IS_ERR(trans))
4903 return PTR_ERR(trans);
4904
4905 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4906 if (ret) {
4907 btrfs_abort_transaction(trans, ret);
4908 btrfs_end_transaction(trans);
4909 return ret;
4910 }
4911
4912 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4913 offset, 0, 0, len, 0, len, 0, 0, 0);
4914 if (ret)
4915 btrfs_abort_transaction(trans, ret);
4916 else
4917 btrfs_update_inode(trans, root, inode);
4918 btrfs_end_transaction(trans);
4919 return ret;
4920 }
4921
4922 /*
4923 * This function puts in dummy file extents for the area we're creating a hole
4924 * for. So if we are truncating this file to a larger size we need to insert
4925 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4926 * the range between oldsize and size
4927 */
4928 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4929 {
4930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4931 struct btrfs_root *root = BTRFS_I(inode)->root;
4932 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4933 struct extent_map *em = NULL;
4934 struct extent_state *cached_state = NULL;
4935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4936 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4937 u64 block_end = ALIGN(size, fs_info->sectorsize);
4938 u64 last_byte;
4939 u64 cur_offset;
4940 u64 hole_size;
4941 int err = 0;
4942
4943 /*
4944 * If our size started in the middle of a block we need to zero out the
4945 * rest of the block before we expand the i_size, otherwise we could
4946 * expose stale data.
4947 */
4948 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4949 if (err)
4950 return err;
4951
4952 if (size <= hole_start)
4953 return 0;
4954
4955 while (1) {
4956 struct btrfs_ordered_extent *ordered;
4957
4958 lock_extent_bits(io_tree, hole_start, block_end - 1,
4959 &cached_state);
4960 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4961 block_end - hole_start);
4962 if (!ordered)
4963 break;
4964 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4965 &cached_state, GFP_NOFS);
4966 btrfs_start_ordered_extent(inode, ordered, 1);
4967 btrfs_put_ordered_extent(ordered);
4968 }
4969
4970 cur_offset = hole_start;
4971 while (1) {
4972 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4973 block_end - cur_offset, 0);
4974 if (IS_ERR(em)) {
4975 err = PTR_ERR(em);
4976 em = NULL;
4977 break;
4978 }
4979 last_byte = min(extent_map_end(em), block_end);
4980 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4981 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4982 struct extent_map *hole_em;
4983 hole_size = last_byte - cur_offset;
4984
4985 err = maybe_insert_hole(root, inode, cur_offset,
4986 hole_size);
4987 if (err)
4988 break;
4989 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4990 cur_offset + hole_size - 1, 0);
4991 hole_em = alloc_extent_map();
4992 if (!hole_em) {
4993 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4994 &BTRFS_I(inode)->runtime_flags);
4995 goto next;
4996 }
4997 hole_em->start = cur_offset;
4998 hole_em->len = hole_size;
4999 hole_em->orig_start = cur_offset;
5000
5001 hole_em->block_start = EXTENT_MAP_HOLE;
5002 hole_em->block_len = 0;
5003 hole_em->orig_block_len = 0;
5004 hole_em->ram_bytes = hole_size;
5005 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5006 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5007 hole_em->generation = fs_info->generation;
5008
5009 while (1) {
5010 write_lock(&em_tree->lock);
5011 err = add_extent_mapping(em_tree, hole_em, 1);
5012 write_unlock(&em_tree->lock);
5013 if (err != -EEXIST)
5014 break;
5015 btrfs_drop_extent_cache(BTRFS_I(inode),
5016 cur_offset,
5017 cur_offset +
5018 hole_size - 1, 0);
5019 }
5020 free_extent_map(hole_em);
5021 }
5022 next:
5023 free_extent_map(em);
5024 em = NULL;
5025 cur_offset = last_byte;
5026 if (cur_offset >= block_end)
5027 break;
5028 }
5029 free_extent_map(em);
5030 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5031 GFP_NOFS);
5032 return err;
5033 }
5034
5035 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5036 {
5037 struct btrfs_root *root = BTRFS_I(inode)->root;
5038 struct btrfs_trans_handle *trans;
5039 loff_t oldsize = i_size_read(inode);
5040 loff_t newsize = attr->ia_size;
5041 int mask = attr->ia_valid;
5042 int ret;
5043
5044 /*
5045 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5046 * special case where we need to update the times despite not having
5047 * these flags set. For all other operations the VFS set these flags
5048 * explicitly if it wants a timestamp update.
5049 */
5050 if (newsize != oldsize) {
5051 inode_inc_iversion(inode);
5052 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5053 inode->i_ctime = inode->i_mtime =
5054 current_time(inode);
5055 }
5056
5057 if (newsize > oldsize) {
5058 /*
5059 * Don't do an expanding truncate while snapshoting is ongoing.
5060 * This is to ensure the snapshot captures a fully consistent
5061 * state of this file - if the snapshot captures this expanding
5062 * truncation, it must capture all writes that happened before
5063 * this truncation.
5064 */
5065 btrfs_wait_for_snapshot_creation(root);
5066 ret = btrfs_cont_expand(inode, oldsize, newsize);
5067 if (ret) {
5068 btrfs_end_write_no_snapshoting(root);
5069 return ret;
5070 }
5071
5072 trans = btrfs_start_transaction(root, 1);
5073 if (IS_ERR(trans)) {
5074 btrfs_end_write_no_snapshoting(root);
5075 return PTR_ERR(trans);
5076 }
5077
5078 i_size_write(inode, newsize);
5079 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5080 pagecache_isize_extended(inode, oldsize, newsize);
5081 ret = btrfs_update_inode(trans, root, inode);
5082 btrfs_end_write_no_snapshoting(root);
5083 btrfs_end_transaction(trans);
5084 } else {
5085
5086 /*
5087 * We're truncating a file that used to have good data down to
5088 * zero. Make sure it gets into the ordered flush list so that
5089 * any new writes get down to disk quickly.
5090 */
5091 if (newsize == 0)
5092 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5093 &BTRFS_I(inode)->runtime_flags);
5094
5095 /*
5096 * 1 for the orphan item we're going to add
5097 * 1 for the orphan item deletion.
5098 */
5099 trans = btrfs_start_transaction(root, 2);
5100 if (IS_ERR(trans))
5101 return PTR_ERR(trans);
5102
5103 /*
5104 * We need to do this in case we fail at _any_ point during the
5105 * actual truncate. Once we do the truncate_setsize we could
5106 * invalidate pages which forces any outstanding ordered io to
5107 * be instantly completed which will give us extents that need
5108 * to be truncated. If we fail to get an orphan inode down we
5109 * could have left over extents that were never meant to live,
5110 * so we need to guarantee from this point on that everything
5111 * will be consistent.
5112 */
5113 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5114 btrfs_end_transaction(trans);
5115 if (ret)
5116 return ret;
5117
5118 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5119 truncate_setsize(inode, newsize);
5120
5121 /* Disable nonlocked read DIO to avoid the end less truncate */
5122 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5123 inode_dio_wait(inode);
5124 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5125
5126 ret = btrfs_truncate(inode);
5127 if (ret && inode->i_nlink) {
5128 int err;
5129
5130 /* To get a stable disk_i_size */
5131 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5132 if (err) {
5133 btrfs_orphan_del(NULL, BTRFS_I(inode));
5134 return err;
5135 }
5136
5137 /*
5138 * failed to truncate, disk_i_size is only adjusted down
5139 * as we remove extents, so it should represent the true
5140 * size of the inode, so reset the in memory size and
5141 * delete our orphan entry.
5142 */
5143 trans = btrfs_join_transaction(root);
5144 if (IS_ERR(trans)) {
5145 btrfs_orphan_del(NULL, BTRFS_I(inode));
5146 return ret;
5147 }
5148 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5149 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5150 if (err)
5151 btrfs_abort_transaction(trans, err);
5152 btrfs_end_transaction(trans);
5153 }
5154 }
5155
5156 return ret;
5157 }
5158
5159 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5160 {
5161 struct inode *inode = d_inode(dentry);
5162 struct btrfs_root *root = BTRFS_I(inode)->root;
5163 int err;
5164
5165 if (btrfs_root_readonly(root))
5166 return -EROFS;
5167
5168 err = setattr_prepare(dentry, attr);
5169 if (err)
5170 return err;
5171
5172 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5173 err = btrfs_setsize(inode, attr);
5174 if (err)
5175 return err;
5176 }
5177
5178 if (attr->ia_valid) {
5179 setattr_copy(inode, attr);
5180 inode_inc_iversion(inode);
5181 err = btrfs_dirty_inode(inode);
5182
5183 if (!err && attr->ia_valid & ATTR_MODE)
5184 err = posix_acl_chmod(inode, inode->i_mode);
5185 }
5186
5187 return err;
5188 }
5189
5190 /*
5191 * While truncating the inode pages during eviction, we get the VFS calling
5192 * btrfs_invalidatepage() against each page of the inode. This is slow because
5193 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5194 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5195 * extent_state structures over and over, wasting lots of time.
5196 *
5197 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5198 * those expensive operations on a per page basis and do only the ordered io
5199 * finishing, while we release here the extent_map and extent_state structures,
5200 * without the excessive merging and splitting.
5201 */
5202 static void evict_inode_truncate_pages(struct inode *inode)
5203 {
5204 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5205 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5206 struct rb_node *node;
5207
5208 ASSERT(inode->i_state & I_FREEING);
5209 truncate_inode_pages_final(&inode->i_data);
5210
5211 write_lock(&map_tree->lock);
5212 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5213 struct extent_map *em;
5214
5215 node = rb_first(&map_tree->map);
5216 em = rb_entry(node, struct extent_map, rb_node);
5217 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5218 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5219 remove_extent_mapping(map_tree, em);
5220 free_extent_map(em);
5221 if (need_resched()) {
5222 write_unlock(&map_tree->lock);
5223 cond_resched();
5224 write_lock(&map_tree->lock);
5225 }
5226 }
5227 write_unlock(&map_tree->lock);
5228
5229 /*
5230 * Keep looping until we have no more ranges in the io tree.
5231 * We can have ongoing bios started by readpages (called from readahead)
5232 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5233 * still in progress (unlocked the pages in the bio but did not yet
5234 * unlocked the ranges in the io tree). Therefore this means some
5235 * ranges can still be locked and eviction started because before
5236 * submitting those bios, which are executed by a separate task (work
5237 * queue kthread), inode references (inode->i_count) were not taken
5238 * (which would be dropped in the end io callback of each bio).
5239 * Therefore here we effectively end up waiting for those bios and
5240 * anyone else holding locked ranges without having bumped the inode's
5241 * reference count - if we don't do it, when they access the inode's
5242 * io_tree to unlock a range it may be too late, leading to an
5243 * use-after-free issue.
5244 */
5245 spin_lock(&io_tree->lock);
5246 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5247 struct extent_state *state;
5248 struct extent_state *cached_state = NULL;
5249 u64 start;
5250 u64 end;
5251
5252 node = rb_first(&io_tree->state);
5253 state = rb_entry(node, struct extent_state, rb_node);
5254 start = state->start;
5255 end = state->end;
5256 spin_unlock(&io_tree->lock);
5257
5258 lock_extent_bits(io_tree, start, end, &cached_state);
5259
5260 /*
5261 * If still has DELALLOC flag, the extent didn't reach disk,
5262 * and its reserved space won't be freed by delayed_ref.
5263 * So we need to free its reserved space here.
5264 * (Refer to comment in btrfs_invalidatepage, case 2)
5265 *
5266 * Note, end is the bytenr of last byte, so we need + 1 here.
5267 */
5268 if (state->state & EXTENT_DELALLOC)
5269 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5270
5271 clear_extent_bit(io_tree, start, end,
5272 EXTENT_LOCKED | EXTENT_DIRTY |
5273 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5274 EXTENT_DEFRAG, 1, 1,
5275 &cached_state, GFP_NOFS);
5276
5277 cond_resched();
5278 spin_lock(&io_tree->lock);
5279 }
5280 spin_unlock(&io_tree->lock);
5281 }
5282
5283 void btrfs_evict_inode(struct inode *inode)
5284 {
5285 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5286 struct btrfs_trans_handle *trans;
5287 struct btrfs_root *root = BTRFS_I(inode)->root;
5288 struct btrfs_block_rsv *rsv, *global_rsv;
5289 int steal_from_global = 0;
5290 u64 min_size;
5291 int ret;
5292
5293 trace_btrfs_inode_evict(inode);
5294
5295 if (!root) {
5296 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5297 return;
5298 }
5299
5300 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5301
5302 evict_inode_truncate_pages(inode);
5303
5304 if (inode->i_nlink &&
5305 ((btrfs_root_refs(&root->root_item) != 0 &&
5306 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5307 btrfs_is_free_space_inode(BTRFS_I(inode))))
5308 goto no_delete;
5309
5310 if (is_bad_inode(inode)) {
5311 btrfs_orphan_del(NULL, BTRFS_I(inode));
5312 goto no_delete;
5313 }
5314 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5315 if (!special_file(inode->i_mode))
5316 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5317
5318 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5319
5320 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5321 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5322 &BTRFS_I(inode)->runtime_flags));
5323 goto no_delete;
5324 }
5325
5326 if (inode->i_nlink > 0) {
5327 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5328 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5329 goto no_delete;
5330 }
5331
5332 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5333 if (ret) {
5334 btrfs_orphan_del(NULL, BTRFS_I(inode));
5335 goto no_delete;
5336 }
5337
5338 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5339 if (!rsv) {
5340 btrfs_orphan_del(NULL, BTRFS_I(inode));
5341 goto no_delete;
5342 }
5343 rsv->size = min_size;
5344 rsv->failfast = 1;
5345 global_rsv = &fs_info->global_block_rsv;
5346
5347 btrfs_i_size_write(BTRFS_I(inode), 0);
5348
5349 /*
5350 * This is a bit simpler than btrfs_truncate since we've already
5351 * reserved our space for our orphan item in the unlink, so we just
5352 * need to reserve some slack space in case we add bytes and update
5353 * inode item when doing the truncate.
5354 */
5355 while (1) {
5356 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5357 BTRFS_RESERVE_FLUSH_LIMIT);
5358
5359 /*
5360 * Try and steal from the global reserve since we will
5361 * likely not use this space anyway, we want to try as
5362 * hard as possible to get this to work.
5363 */
5364 if (ret)
5365 steal_from_global++;
5366 else
5367 steal_from_global = 0;
5368 ret = 0;
5369
5370 /*
5371 * steal_from_global == 0: we reserved stuff, hooray!
5372 * steal_from_global == 1: we didn't reserve stuff, boo!
5373 * steal_from_global == 2: we've committed, still not a lot of
5374 * room but maybe we'll have room in the global reserve this
5375 * time.
5376 * steal_from_global == 3: abandon all hope!
5377 */
5378 if (steal_from_global > 2) {
5379 btrfs_warn(fs_info,
5380 "Could not get space for a delete, will truncate on mount %d",
5381 ret);
5382 btrfs_orphan_del(NULL, BTRFS_I(inode));
5383 btrfs_free_block_rsv(fs_info, rsv);
5384 goto no_delete;
5385 }
5386
5387 trans = btrfs_join_transaction(root);
5388 if (IS_ERR(trans)) {
5389 btrfs_orphan_del(NULL, BTRFS_I(inode));
5390 btrfs_free_block_rsv(fs_info, rsv);
5391 goto no_delete;
5392 }
5393
5394 /*
5395 * We can't just steal from the global reserve, we need to make
5396 * sure there is room to do it, if not we need to commit and try
5397 * again.
5398 */
5399 if (steal_from_global) {
5400 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5401 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5402 min_size, 0);
5403 else
5404 ret = -ENOSPC;
5405 }
5406
5407 /*
5408 * Couldn't steal from the global reserve, we have too much
5409 * pending stuff built up, commit the transaction and try it
5410 * again.
5411 */
5412 if (ret) {
5413 ret = btrfs_commit_transaction(trans);
5414 if (ret) {
5415 btrfs_orphan_del(NULL, BTRFS_I(inode));
5416 btrfs_free_block_rsv(fs_info, rsv);
5417 goto no_delete;
5418 }
5419 continue;
5420 } else {
5421 steal_from_global = 0;
5422 }
5423
5424 trans->block_rsv = rsv;
5425
5426 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5427 if (ret != -ENOSPC && ret != -EAGAIN)
5428 break;
5429
5430 trans->block_rsv = &fs_info->trans_block_rsv;
5431 btrfs_end_transaction(trans);
5432 trans = NULL;
5433 btrfs_btree_balance_dirty(fs_info);
5434 }
5435
5436 btrfs_free_block_rsv(fs_info, rsv);
5437
5438 /*
5439 * Errors here aren't a big deal, it just means we leave orphan items
5440 * in the tree. They will be cleaned up on the next mount.
5441 */
5442 if (ret == 0) {
5443 trans->block_rsv = root->orphan_block_rsv;
5444 btrfs_orphan_del(trans, BTRFS_I(inode));
5445 } else {
5446 btrfs_orphan_del(NULL, BTRFS_I(inode));
5447 }
5448
5449 trans->block_rsv = &fs_info->trans_block_rsv;
5450 if (!(root == fs_info->tree_root ||
5451 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5452 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5453
5454 btrfs_end_transaction(trans);
5455 btrfs_btree_balance_dirty(fs_info);
5456 no_delete:
5457 btrfs_remove_delayed_node(BTRFS_I(inode));
5458 clear_inode(inode);
5459 }
5460
5461 /*
5462 * this returns the key found in the dir entry in the location pointer.
5463 * If no dir entries were found, location->objectid is 0.
5464 */
5465 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5466 struct btrfs_key *location)
5467 {
5468 const char *name = dentry->d_name.name;
5469 int namelen = dentry->d_name.len;
5470 struct btrfs_dir_item *di;
5471 struct btrfs_path *path;
5472 struct btrfs_root *root = BTRFS_I(dir)->root;
5473 int ret = 0;
5474
5475 path = btrfs_alloc_path();
5476 if (!path)
5477 return -ENOMEM;
5478
5479 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5480 name, namelen, 0);
5481 if (IS_ERR(di))
5482 ret = PTR_ERR(di);
5483
5484 if (IS_ERR_OR_NULL(di))
5485 goto out_err;
5486
5487 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5488 out:
5489 btrfs_free_path(path);
5490 return ret;
5491 out_err:
5492 location->objectid = 0;
5493 goto out;
5494 }
5495
5496 /*
5497 * when we hit a tree root in a directory, the btrfs part of the inode
5498 * needs to be changed to reflect the root directory of the tree root. This
5499 * is kind of like crossing a mount point.
5500 */
5501 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5502 struct inode *dir,
5503 struct dentry *dentry,
5504 struct btrfs_key *location,
5505 struct btrfs_root **sub_root)
5506 {
5507 struct btrfs_path *path;
5508 struct btrfs_root *new_root;
5509 struct btrfs_root_ref *ref;
5510 struct extent_buffer *leaf;
5511 struct btrfs_key key;
5512 int ret;
5513 int err = 0;
5514
5515 path = btrfs_alloc_path();
5516 if (!path) {
5517 err = -ENOMEM;
5518 goto out;
5519 }
5520
5521 err = -ENOENT;
5522 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5523 key.type = BTRFS_ROOT_REF_KEY;
5524 key.offset = location->objectid;
5525
5526 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5527 if (ret) {
5528 if (ret < 0)
5529 err = ret;
5530 goto out;
5531 }
5532
5533 leaf = path->nodes[0];
5534 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5535 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5536 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5537 goto out;
5538
5539 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5540 (unsigned long)(ref + 1),
5541 dentry->d_name.len);
5542 if (ret)
5543 goto out;
5544
5545 btrfs_release_path(path);
5546
5547 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5548 if (IS_ERR(new_root)) {
5549 err = PTR_ERR(new_root);
5550 goto out;
5551 }
5552
5553 *sub_root = new_root;
5554 location->objectid = btrfs_root_dirid(&new_root->root_item);
5555 location->type = BTRFS_INODE_ITEM_KEY;
5556 location->offset = 0;
5557 err = 0;
5558 out:
5559 btrfs_free_path(path);
5560 return err;
5561 }
5562
5563 static void inode_tree_add(struct inode *inode)
5564 {
5565 struct btrfs_root *root = BTRFS_I(inode)->root;
5566 struct btrfs_inode *entry;
5567 struct rb_node **p;
5568 struct rb_node *parent;
5569 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5570 u64 ino = btrfs_ino(BTRFS_I(inode));
5571
5572 if (inode_unhashed(inode))
5573 return;
5574 parent = NULL;
5575 spin_lock(&root->inode_lock);
5576 p = &root->inode_tree.rb_node;
5577 while (*p) {
5578 parent = *p;
5579 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5580
5581 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5582 p = &parent->rb_left;
5583 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5584 p = &parent->rb_right;
5585 else {
5586 WARN_ON(!(entry->vfs_inode.i_state &
5587 (I_WILL_FREE | I_FREEING)));
5588 rb_replace_node(parent, new, &root->inode_tree);
5589 RB_CLEAR_NODE(parent);
5590 spin_unlock(&root->inode_lock);
5591 return;
5592 }
5593 }
5594 rb_link_node(new, parent, p);
5595 rb_insert_color(new, &root->inode_tree);
5596 spin_unlock(&root->inode_lock);
5597 }
5598
5599 static void inode_tree_del(struct inode *inode)
5600 {
5601 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5602 struct btrfs_root *root = BTRFS_I(inode)->root;
5603 int empty = 0;
5604
5605 spin_lock(&root->inode_lock);
5606 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5607 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5608 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5609 empty = RB_EMPTY_ROOT(&root->inode_tree);
5610 }
5611 spin_unlock(&root->inode_lock);
5612
5613 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5614 synchronize_srcu(&fs_info->subvol_srcu);
5615 spin_lock(&root->inode_lock);
5616 empty = RB_EMPTY_ROOT(&root->inode_tree);
5617 spin_unlock(&root->inode_lock);
5618 if (empty)
5619 btrfs_add_dead_root(root);
5620 }
5621 }
5622
5623 void btrfs_invalidate_inodes(struct btrfs_root *root)
5624 {
5625 struct btrfs_fs_info *fs_info = root->fs_info;
5626 struct rb_node *node;
5627 struct rb_node *prev;
5628 struct btrfs_inode *entry;
5629 struct inode *inode;
5630 u64 objectid = 0;
5631
5632 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5633 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5634
5635 spin_lock(&root->inode_lock);
5636 again:
5637 node = root->inode_tree.rb_node;
5638 prev = NULL;
5639 while (node) {
5640 prev = node;
5641 entry = rb_entry(node, struct btrfs_inode, rb_node);
5642
5643 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5644 node = node->rb_left;
5645 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5646 node = node->rb_right;
5647 else
5648 break;
5649 }
5650 if (!node) {
5651 while (prev) {
5652 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5653 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5654 node = prev;
5655 break;
5656 }
5657 prev = rb_next(prev);
5658 }
5659 }
5660 while (node) {
5661 entry = rb_entry(node, struct btrfs_inode, rb_node);
5662 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5663 inode = igrab(&entry->vfs_inode);
5664 if (inode) {
5665 spin_unlock(&root->inode_lock);
5666 if (atomic_read(&inode->i_count) > 1)
5667 d_prune_aliases(inode);
5668 /*
5669 * btrfs_drop_inode will have it removed from
5670 * the inode cache when its usage count
5671 * hits zero.
5672 */
5673 iput(inode);
5674 cond_resched();
5675 spin_lock(&root->inode_lock);
5676 goto again;
5677 }
5678
5679 if (cond_resched_lock(&root->inode_lock))
5680 goto again;
5681
5682 node = rb_next(node);
5683 }
5684 spin_unlock(&root->inode_lock);
5685 }
5686
5687 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5688 {
5689 struct btrfs_iget_args *args = p;
5690 inode->i_ino = args->location->objectid;
5691 memcpy(&BTRFS_I(inode)->location, args->location,
5692 sizeof(*args->location));
5693 BTRFS_I(inode)->root = args->root;
5694 return 0;
5695 }
5696
5697 static int btrfs_find_actor(struct inode *inode, void *opaque)
5698 {
5699 struct btrfs_iget_args *args = opaque;
5700 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5701 args->root == BTRFS_I(inode)->root;
5702 }
5703
5704 static struct inode *btrfs_iget_locked(struct super_block *s,
5705 struct btrfs_key *location,
5706 struct btrfs_root *root)
5707 {
5708 struct inode *inode;
5709 struct btrfs_iget_args args;
5710 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5711
5712 args.location = location;
5713 args.root = root;
5714
5715 inode = iget5_locked(s, hashval, btrfs_find_actor,
5716 btrfs_init_locked_inode,
5717 (void *)&args);
5718 return inode;
5719 }
5720
5721 /* Get an inode object given its location and corresponding root.
5722 * Returns in *is_new if the inode was read from disk
5723 */
5724 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5725 struct btrfs_root *root, int *new)
5726 {
5727 struct inode *inode;
5728
5729 inode = btrfs_iget_locked(s, location, root);
5730 if (!inode)
5731 return ERR_PTR(-ENOMEM);
5732
5733 if (inode->i_state & I_NEW) {
5734 int ret;
5735
5736 ret = btrfs_read_locked_inode(inode);
5737 if (!is_bad_inode(inode)) {
5738 inode_tree_add(inode);
5739 unlock_new_inode(inode);
5740 if (new)
5741 *new = 1;
5742 } else {
5743 unlock_new_inode(inode);
5744 iput(inode);
5745 ASSERT(ret < 0);
5746 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5747 }
5748 }
5749
5750 return inode;
5751 }
5752
5753 static struct inode *new_simple_dir(struct super_block *s,
5754 struct btrfs_key *key,
5755 struct btrfs_root *root)
5756 {
5757 struct inode *inode = new_inode(s);
5758
5759 if (!inode)
5760 return ERR_PTR(-ENOMEM);
5761
5762 BTRFS_I(inode)->root = root;
5763 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5764 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5765
5766 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5767 inode->i_op = &btrfs_dir_ro_inode_operations;
5768 inode->i_opflags &= ~IOP_XATTR;
5769 inode->i_fop = &simple_dir_operations;
5770 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5771 inode->i_mtime = current_time(inode);
5772 inode->i_atime = inode->i_mtime;
5773 inode->i_ctime = inode->i_mtime;
5774 BTRFS_I(inode)->i_otime = inode->i_mtime;
5775
5776 return inode;
5777 }
5778
5779 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5780 {
5781 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5782 struct inode *inode;
5783 struct btrfs_root *root = BTRFS_I(dir)->root;
5784 struct btrfs_root *sub_root = root;
5785 struct btrfs_key location;
5786 int index;
5787 int ret = 0;
5788
5789 if (dentry->d_name.len > BTRFS_NAME_LEN)
5790 return ERR_PTR(-ENAMETOOLONG);
5791
5792 ret = btrfs_inode_by_name(dir, dentry, &location);
5793 if (ret < 0)
5794 return ERR_PTR(ret);
5795
5796 if (location.objectid == 0)
5797 return ERR_PTR(-ENOENT);
5798
5799 if (location.type == BTRFS_INODE_ITEM_KEY) {
5800 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5801 return inode;
5802 }
5803
5804 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5805
5806 index = srcu_read_lock(&fs_info->subvol_srcu);
5807 ret = fixup_tree_root_location(fs_info, dir, dentry,
5808 &location, &sub_root);
5809 if (ret < 0) {
5810 if (ret != -ENOENT)
5811 inode = ERR_PTR(ret);
5812 else
5813 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5814 } else {
5815 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5816 }
5817 srcu_read_unlock(&fs_info->subvol_srcu, index);
5818
5819 if (!IS_ERR(inode) && root != sub_root) {
5820 down_read(&fs_info->cleanup_work_sem);
5821 if (!(inode->i_sb->s_flags & MS_RDONLY))
5822 ret = btrfs_orphan_cleanup(sub_root);
5823 up_read(&fs_info->cleanup_work_sem);
5824 if (ret) {
5825 iput(inode);
5826 inode = ERR_PTR(ret);
5827 }
5828 }
5829
5830 return inode;
5831 }
5832
5833 static int btrfs_dentry_delete(const struct dentry *dentry)
5834 {
5835 struct btrfs_root *root;
5836 struct inode *inode = d_inode(dentry);
5837
5838 if (!inode && !IS_ROOT(dentry))
5839 inode = d_inode(dentry->d_parent);
5840
5841 if (inode) {
5842 root = BTRFS_I(inode)->root;
5843 if (btrfs_root_refs(&root->root_item) == 0)
5844 return 1;
5845
5846 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5847 return 1;
5848 }
5849 return 0;
5850 }
5851
5852 static void btrfs_dentry_release(struct dentry *dentry)
5853 {
5854 kfree(dentry->d_fsdata);
5855 }
5856
5857 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5858 unsigned int flags)
5859 {
5860 struct inode *inode;
5861
5862 inode = btrfs_lookup_dentry(dir, dentry);
5863 if (IS_ERR(inode)) {
5864 if (PTR_ERR(inode) == -ENOENT)
5865 inode = NULL;
5866 else
5867 return ERR_CAST(inode);
5868 }
5869
5870 return d_splice_alias(inode, dentry);
5871 }
5872
5873 unsigned char btrfs_filetype_table[] = {
5874 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5875 };
5876
5877 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5878 {
5879 struct inode *inode = file_inode(file);
5880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5881 struct btrfs_root *root = BTRFS_I(inode)->root;
5882 struct btrfs_dir_item *di;
5883 struct btrfs_key key;
5884 struct btrfs_key found_key;
5885 struct btrfs_path *path;
5886 struct list_head ins_list;
5887 struct list_head del_list;
5888 int ret;
5889 struct extent_buffer *leaf;
5890 int slot;
5891 unsigned char d_type;
5892 int over = 0;
5893 char tmp_name[32];
5894 char *name_ptr;
5895 int name_len;
5896 bool put = false;
5897 struct btrfs_key location;
5898
5899 if (!dir_emit_dots(file, ctx))
5900 return 0;
5901
5902 path = btrfs_alloc_path();
5903 if (!path)
5904 return -ENOMEM;
5905
5906 path->reada = READA_FORWARD;
5907
5908 INIT_LIST_HEAD(&ins_list);
5909 INIT_LIST_HEAD(&del_list);
5910 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5911
5912 key.type = BTRFS_DIR_INDEX_KEY;
5913 key.offset = ctx->pos;
5914 key.objectid = btrfs_ino(BTRFS_I(inode));
5915
5916 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5917 if (ret < 0)
5918 goto err;
5919
5920 while (1) {
5921 leaf = path->nodes[0];
5922 slot = path->slots[0];
5923 if (slot >= btrfs_header_nritems(leaf)) {
5924 ret = btrfs_next_leaf(root, path);
5925 if (ret < 0)
5926 goto err;
5927 else if (ret > 0)
5928 break;
5929 continue;
5930 }
5931
5932 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5933
5934 if (found_key.objectid != key.objectid)
5935 break;
5936 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5937 break;
5938 if (found_key.offset < ctx->pos)
5939 goto next;
5940 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5941 goto next;
5942
5943 ctx->pos = found_key.offset;
5944
5945 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5946 if (verify_dir_item(fs_info, leaf, slot, di))
5947 goto next;
5948
5949 name_len = btrfs_dir_name_len(leaf, di);
5950 if (name_len <= sizeof(tmp_name)) {
5951 name_ptr = tmp_name;
5952 } else {
5953 name_ptr = kmalloc(name_len, GFP_KERNEL);
5954 if (!name_ptr) {
5955 ret = -ENOMEM;
5956 goto err;
5957 }
5958 }
5959 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5960 name_len);
5961
5962 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5963 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5964
5965 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5966 d_type);
5967
5968 if (name_ptr != tmp_name)
5969 kfree(name_ptr);
5970
5971 if (over)
5972 goto nopos;
5973 ctx->pos++;
5974 next:
5975 path->slots[0]++;
5976 }
5977
5978 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5979 if (ret)
5980 goto nopos;
5981
5982 /*
5983 * Stop new entries from being returned after we return the last
5984 * entry.
5985 *
5986 * New directory entries are assigned a strictly increasing
5987 * offset. This means that new entries created during readdir
5988 * are *guaranteed* to be seen in the future by that readdir.
5989 * This has broken buggy programs which operate on names as
5990 * they're returned by readdir. Until we re-use freed offsets
5991 * we have this hack to stop new entries from being returned
5992 * under the assumption that they'll never reach this huge
5993 * offset.
5994 *
5995 * This is being careful not to overflow 32bit loff_t unless the
5996 * last entry requires it because doing so has broken 32bit apps
5997 * in the past.
5998 */
5999 if (ctx->pos >= INT_MAX)
6000 ctx->pos = LLONG_MAX;
6001 else
6002 ctx->pos = INT_MAX;
6003 nopos:
6004 ret = 0;
6005 err:
6006 if (put)
6007 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6008 btrfs_free_path(path);
6009 return ret;
6010 }
6011
6012 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6013 {
6014 struct btrfs_root *root = BTRFS_I(inode)->root;
6015 struct btrfs_trans_handle *trans;
6016 int ret = 0;
6017 bool nolock = false;
6018
6019 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6020 return 0;
6021
6022 if (btrfs_fs_closing(root->fs_info) &&
6023 btrfs_is_free_space_inode(BTRFS_I(inode)))
6024 nolock = true;
6025
6026 if (wbc->sync_mode == WB_SYNC_ALL) {
6027 if (nolock)
6028 trans = btrfs_join_transaction_nolock(root);
6029 else
6030 trans = btrfs_join_transaction(root);
6031 if (IS_ERR(trans))
6032 return PTR_ERR(trans);
6033 ret = btrfs_commit_transaction(trans);
6034 }
6035 return ret;
6036 }
6037
6038 /*
6039 * This is somewhat expensive, updating the tree every time the
6040 * inode changes. But, it is most likely to find the inode in cache.
6041 * FIXME, needs more benchmarking...there are no reasons other than performance
6042 * to keep or drop this code.
6043 */
6044 static int btrfs_dirty_inode(struct inode *inode)
6045 {
6046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6047 struct btrfs_root *root = BTRFS_I(inode)->root;
6048 struct btrfs_trans_handle *trans;
6049 int ret;
6050
6051 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6052 return 0;
6053
6054 trans = btrfs_join_transaction(root);
6055 if (IS_ERR(trans))
6056 return PTR_ERR(trans);
6057
6058 ret = btrfs_update_inode(trans, root, inode);
6059 if (ret && ret == -ENOSPC) {
6060 /* whoops, lets try again with the full transaction */
6061 btrfs_end_transaction(trans);
6062 trans = btrfs_start_transaction(root, 1);
6063 if (IS_ERR(trans))
6064 return PTR_ERR(trans);
6065
6066 ret = btrfs_update_inode(trans, root, inode);
6067 }
6068 btrfs_end_transaction(trans);
6069 if (BTRFS_I(inode)->delayed_node)
6070 btrfs_balance_delayed_items(fs_info);
6071
6072 return ret;
6073 }
6074
6075 /*
6076 * This is a copy of file_update_time. We need this so we can return error on
6077 * ENOSPC for updating the inode in the case of file write and mmap writes.
6078 */
6079 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6080 int flags)
6081 {
6082 struct btrfs_root *root = BTRFS_I(inode)->root;
6083
6084 if (btrfs_root_readonly(root))
6085 return -EROFS;
6086
6087 if (flags & S_VERSION)
6088 inode_inc_iversion(inode);
6089 if (flags & S_CTIME)
6090 inode->i_ctime = *now;
6091 if (flags & S_MTIME)
6092 inode->i_mtime = *now;
6093 if (flags & S_ATIME)
6094 inode->i_atime = *now;
6095 return btrfs_dirty_inode(inode);
6096 }
6097
6098 /*
6099 * find the highest existing sequence number in a directory
6100 * and then set the in-memory index_cnt variable to reflect
6101 * free sequence numbers
6102 */
6103 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6104 {
6105 struct btrfs_root *root = inode->root;
6106 struct btrfs_key key, found_key;
6107 struct btrfs_path *path;
6108 struct extent_buffer *leaf;
6109 int ret;
6110
6111 key.objectid = btrfs_ino(inode);
6112 key.type = BTRFS_DIR_INDEX_KEY;
6113 key.offset = (u64)-1;
6114
6115 path = btrfs_alloc_path();
6116 if (!path)
6117 return -ENOMEM;
6118
6119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6120 if (ret < 0)
6121 goto out;
6122 /* FIXME: we should be able to handle this */
6123 if (ret == 0)
6124 goto out;
6125 ret = 0;
6126
6127 /*
6128 * MAGIC NUMBER EXPLANATION:
6129 * since we search a directory based on f_pos we have to start at 2
6130 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6131 * else has to start at 2
6132 */
6133 if (path->slots[0] == 0) {
6134 inode->index_cnt = 2;
6135 goto out;
6136 }
6137
6138 path->slots[0]--;
6139
6140 leaf = path->nodes[0];
6141 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6142
6143 if (found_key.objectid != btrfs_ino(inode) ||
6144 found_key.type != BTRFS_DIR_INDEX_KEY) {
6145 inode->index_cnt = 2;
6146 goto out;
6147 }
6148
6149 inode->index_cnt = found_key.offset + 1;
6150 out:
6151 btrfs_free_path(path);
6152 return ret;
6153 }
6154
6155 /*
6156 * helper to find a free sequence number in a given directory. This current
6157 * code is very simple, later versions will do smarter things in the btree
6158 */
6159 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6160 {
6161 int ret = 0;
6162
6163 if (dir->index_cnt == (u64)-1) {
6164 ret = btrfs_inode_delayed_dir_index_count(dir);
6165 if (ret) {
6166 ret = btrfs_set_inode_index_count(dir);
6167 if (ret)
6168 return ret;
6169 }
6170 }
6171
6172 *index = dir->index_cnt;
6173 dir->index_cnt++;
6174
6175 return ret;
6176 }
6177
6178 static int btrfs_insert_inode_locked(struct inode *inode)
6179 {
6180 struct btrfs_iget_args args;
6181 args.location = &BTRFS_I(inode)->location;
6182 args.root = BTRFS_I(inode)->root;
6183
6184 return insert_inode_locked4(inode,
6185 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6186 btrfs_find_actor, &args);
6187 }
6188
6189 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6190 struct btrfs_root *root,
6191 struct inode *dir,
6192 const char *name, int name_len,
6193 u64 ref_objectid, u64 objectid,
6194 umode_t mode, u64 *index)
6195 {
6196 struct btrfs_fs_info *fs_info = root->fs_info;
6197 struct inode *inode;
6198 struct btrfs_inode_item *inode_item;
6199 struct btrfs_key *location;
6200 struct btrfs_path *path;
6201 struct btrfs_inode_ref *ref;
6202 struct btrfs_key key[2];
6203 u32 sizes[2];
6204 int nitems = name ? 2 : 1;
6205 unsigned long ptr;
6206 int ret;
6207
6208 path = btrfs_alloc_path();
6209 if (!path)
6210 return ERR_PTR(-ENOMEM);
6211
6212 inode = new_inode(fs_info->sb);
6213 if (!inode) {
6214 btrfs_free_path(path);
6215 return ERR_PTR(-ENOMEM);
6216 }
6217
6218 /*
6219 * O_TMPFILE, set link count to 0, so that after this point,
6220 * we fill in an inode item with the correct link count.
6221 */
6222 if (!name)
6223 set_nlink(inode, 0);
6224
6225 /*
6226 * we have to initialize this early, so we can reclaim the inode
6227 * number if we fail afterwards in this function.
6228 */
6229 inode->i_ino = objectid;
6230
6231 if (dir && name) {
6232 trace_btrfs_inode_request(dir);
6233
6234 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6235 if (ret) {
6236 btrfs_free_path(path);
6237 iput(inode);
6238 return ERR_PTR(ret);
6239 }
6240 } else if (dir) {
6241 *index = 0;
6242 }
6243 /*
6244 * index_cnt is ignored for everything but a dir,
6245 * btrfs_get_inode_index_count has an explanation for the magic
6246 * number
6247 */
6248 BTRFS_I(inode)->index_cnt = 2;
6249 BTRFS_I(inode)->dir_index = *index;
6250 BTRFS_I(inode)->root = root;
6251 BTRFS_I(inode)->generation = trans->transid;
6252 inode->i_generation = BTRFS_I(inode)->generation;
6253
6254 /*
6255 * We could have gotten an inode number from somebody who was fsynced
6256 * and then removed in this same transaction, so let's just set full
6257 * sync since it will be a full sync anyway and this will blow away the
6258 * old info in the log.
6259 */
6260 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6261
6262 key[0].objectid = objectid;
6263 key[0].type = BTRFS_INODE_ITEM_KEY;
6264 key[0].offset = 0;
6265
6266 sizes[0] = sizeof(struct btrfs_inode_item);
6267
6268 if (name) {
6269 /*
6270 * Start new inodes with an inode_ref. This is slightly more
6271 * efficient for small numbers of hard links since they will
6272 * be packed into one item. Extended refs will kick in if we
6273 * add more hard links than can fit in the ref item.
6274 */
6275 key[1].objectid = objectid;
6276 key[1].type = BTRFS_INODE_REF_KEY;
6277 key[1].offset = ref_objectid;
6278
6279 sizes[1] = name_len + sizeof(*ref);
6280 }
6281
6282 location = &BTRFS_I(inode)->location;
6283 location->objectid = objectid;
6284 location->offset = 0;
6285 location->type = BTRFS_INODE_ITEM_KEY;
6286
6287 ret = btrfs_insert_inode_locked(inode);
6288 if (ret < 0)
6289 goto fail;
6290
6291 path->leave_spinning = 1;
6292 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6293 if (ret != 0)
6294 goto fail_unlock;
6295
6296 inode_init_owner(inode, dir, mode);
6297 inode_set_bytes(inode, 0);
6298
6299 inode->i_mtime = current_time(inode);
6300 inode->i_atime = inode->i_mtime;
6301 inode->i_ctime = inode->i_mtime;
6302 BTRFS_I(inode)->i_otime = inode->i_mtime;
6303
6304 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6305 struct btrfs_inode_item);
6306 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6307 sizeof(*inode_item));
6308 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6309
6310 if (name) {
6311 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6312 struct btrfs_inode_ref);
6313 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6314 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6315 ptr = (unsigned long)(ref + 1);
6316 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6317 }
6318
6319 btrfs_mark_buffer_dirty(path->nodes[0]);
6320 btrfs_free_path(path);
6321
6322 btrfs_inherit_iflags(inode, dir);
6323
6324 if (S_ISREG(mode)) {
6325 if (btrfs_test_opt(fs_info, NODATASUM))
6326 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6327 if (btrfs_test_opt(fs_info, NODATACOW))
6328 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6329 BTRFS_INODE_NODATASUM;
6330 }
6331
6332 inode_tree_add(inode);
6333
6334 trace_btrfs_inode_new(inode);
6335 btrfs_set_inode_last_trans(trans, inode);
6336
6337 btrfs_update_root_times(trans, root);
6338
6339 ret = btrfs_inode_inherit_props(trans, inode, dir);
6340 if (ret)
6341 btrfs_err(fs_info,
6342 "error inheriting props for ino %llu (root %llu): %d",
6343 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6344
6345 return inode;
6346
6347 fail_unlock:
6348 unlock_new_inode(inode);
6349 fail:
6350 if (dir && name)
6351 BTRFS_I(dir)->index_cnt--;
6352 btrfs_free_path(path);
6353 iput(inode);
6354 return ERR_PTR(ret);
6355 }
6356
6357 static inline u8 btrfs_inode_type(struct inode *inode)
6358 {
6359 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6360 }
6361
6362 /*
6363 * utility function to add 'inode' into 'parent_inode' with
6364 * a give name and a given sequence number.
6365 * if 'add_backref' is true, also insert a backref from the
6366 * inode to the parent directory.
6367 */
6368 int btrfs_add_link(struct btrfs_trans_handle *trans,
6369 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6370 const char *name, int name_len, int add_backref, u64 index)
6371 {
6372 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6373 int ret = 0;
6374 struct btrfs_key key;
6375 struct btrfs_root *root = parent_inode->root;
6376 u64 ino = btrfs_ino(inode);
6377 u64 parent_ino = btrfs_ino(parent_inode);
6378
6379 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6380 memcpy(&key, &inode->root->root_key, sizeof(key));
6381 } else {
6382 key.objectid = ino;
6383 key.type = BTRFS_INODE_ITEM_KEY;
6384 key.offset = 0;
6385 }
6386
6387 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6388 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6389 root->root_key.objectid, parent_ino,
6390 index, name, name_len);
6391 } else if (add_backref) {
6392 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6393 parent_ino, index);
6394 }
6395
6396 /* Nothing to clean up yet */
6397 if (ret)
6398 return ret;
6399
6400 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6401 parent_inode, &key,
6402 btrfs_inode_type(&inode->vfs_inode), index);
6403 if (ret == -EEXIST || ret == -EOVERFLOW)
6404 goto fail_dir_item;
6405 else if (ret) {
6406 btrfs_abort_transaction(trans, ret);
6407 return ret;
6408 }
6409
6410 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6411 name_len * 2);
6412 inode_inc_iversion(&parent_inode->vfs_inode);
6413 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6414 current_time(&parent_inode->vfs_inode);
6415 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6416 if (ret)
6417 btrfs_abort_transaction(trans, ret);
6418 return ret;
6419
6420 fail_dir_item:
6421 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6422 u64 local_index;
6423 int err;
6424 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6425 root->root_key.objectid, parent_ino,
6426 &local_index, name, name_len);
6427
6428 } else if (add_backref) {
6429 u64 local_index;
6430 int err;
6431
6432 err = btrfs_del_inode_ref(trans, root, name, name_len,
6433 ino, parent_ino, &local_index);
6434 }
6435 return ret;
6436 }
6437
6438 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6439 struct btrfs_inode *dir, struct dentry *dentry,
6440 struct btrfs_inode *inode, int backref, u64 index)
6441 {
6442 int err = btrfs_add_link(trans, dir, inode,
6443 dentry->d_name.name, dentry->d_name.len,
6444 backref, index);
6445 if (err > 0)
6446 err = -EEXIST;
6447 return err;
6448 }
6449
6450 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6451 umode_t mode, dev_t rdev)
6452 {
6453 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6454 struct btrfs_trans_handle *trans;
6455 struct btrfs_root *root = BTRFS_I(dir)->root;
6456 struct inode *inode = NULL;
6457 int err;
6458 int drop_inode = 0;
6459 u64 objectid;
6460 u64 index = 0;
6461
6462 /*
6463 * 2 for inode item and ref
6464 * 2 for dir items
6465 * 1 for xattr if selinux is on
6466 */
6467 trans = btrfs_start_transaction(root, 5);
6468 if (IS_ERR(trans))
6469 return PTR_ERR(trans);
6470
6471 err = btrfs_find_free_ino(root, &objectid);
6472 if (err)
6473 goto out_unlock;
6474
6475 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6476 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6477 mode, &index);
6478 if (IS_ERR(inode)) {
6479 err = PTR_ERR(inode);
6480 goto out_unlock;
6481 }
6482
6483 /*
6484 * If the active LSM wants to access the inode during
6485 * d_instantiate it needs these. Smack checks to see
6486 * if the filesystem supports xattrs by looking at the
6487 * ops vector.
6488 */
6489 inode->i_op = &btrfs_special_inode_operations;
6490 init_special_inode(inode, inode->i_mode, rdev);
6491
6492 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6493 if (err)
6494 goto out_unlock_inode;
6495
6496 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6497 0, index);
6498 if (err) {
6499 goto out_unlock_inode;
6500 } else {
6501 btrfs_update_inode(trans, root, inode);
6502 unlock_new_inode(inode);
6503 d_instantiate(dentry, inode);
6504 }
6505
6506 out_unlock:
6507 btrfs_end_transaction(trans);
6508 btrfs_balance_delayed_items(fs_info);
6509 btrfs_btree_balance_dirty(fs_info);
6510 if (drop_inode) {
6511 inode_dec_link_count(inode);
6512 iput(inode);
6513 }
6514 return err;
6515
6516 out_unlock_inode:
6517 drop_inode = 1;
6518 unlock_new_inode(inode);
6519 goto out_unlock;
6520
6521 }
6522
6523 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6524 umode_t mode, bool excl)
6525 {
6526 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6527 struct btrfs_trans_handle *trans;
6528 struct btrfs_root *root = BTRFS_I(dir)->root;
6529 struct inode *inode = NULL;
6530 int drop_inode_on_err = 0;
6531 int err;
6532 u64 objectid;
6533 u64 index = 0;
6534
6535 /*
6536 * 2 for inode item and ref
6537 * 2 for dir items
6538 * 1 for xattr if selinux is on
6539 */
6540 trans = btrfs_start_transaction(root, 5);
6541 if (IS_ERR(trans))
6542 return PTR_ERR(trans);
6543
6544 err = btrfs_find_free_ino(root, &objectid);
6545 if (err)
6546 goto out_unlock;
6547
6548 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6549 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6550 mode, &index);
6551 if (IS_ERR(inode)) {
6552 err = PTR_ERR(inode);
6553 goto out_unlock;
6554 }
6555 drop_inode_on_err = 1;
6556 /*
6557 * If the active LSM wants to access the inode during
6558 * d_instantiate it needs these. Smack checks to see
6559 * if the filesystem supports xattrs by looking at the
6560 * ops vector.
6561 */
6562 inode->i_fop = &btrfs_file_operations;
6563 inode->i_op = &btrfs_file_inode_operations;
6564 inode->i_mapping->a_ops = &btrfs_aops;
6565
6566 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6567 if (err)
6568 goto out_unlock_inode;
6569
6570 err = btrfs_update_inode(trans, root, inode);
6571 if (err)
6572 goto out_unlock_inode;
6573
6574 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6575 0, index);
6576 if (err)
6577 goto out_unlock_inode;
6578
6579 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6580 unlock_new_inode(inode);
6581 d_instantiate(dentry, inode);
6582
6583 out_unlock:
6584 btrfs_end_transaction(trans);
6585 if (err && drop_inode_on_err) {
6586 inode_dec_link_count(inode);
6587 iput(inode);
6588 }
6589 btrfs_balance_delayed_items(fs_info);
6590 btrfs_btree_balance_dirty(fs_info);
6591 return err;
6592
6593 out_unlock_inode:
6594 unlock_new_inode(inode);
6595 goto out_unlock;
6596
6597 }
6598
6599 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6600 struct dentry *dentry)
6601 {
6602 struct btrfs_trans_handle *trans = NULL;
6603 struct btrfs_root *root = BTRFS_I(dir)->root;
6604 struct inode *inode = d_inode(old_dentry);
6605 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6606 u64 index;
6607 int err;
6608 int drop_inode = 0;
6609
6610 /* do not allow sys_link's with other subvols of the same device */
6611 if (root->objectid != BTRFS_I(inode)->root->objectid)
6612 return -EXDEV;
6613
6614 if (inode->i_nlink >= BTRFS_LINK_MAX)
6615 return -EMLINK;
6616
6617 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6618 if (err)
6619 goto fail;
6620
6621 /*
6622 * 2 items for inode and inode ref
6623 * 2 items for dir items
6624 * 1 item for parent inode
6625 */
6626 trans = btrfs_start_transaction(root, 5);
6627 if (IS_ERR(trans)) {
6628 err = PTR_ERR(trans);
6629 trans = NULL;
6630 goto fail;
6631 }
6632
6633 /* There are several dir indexes for this inode, clear the cache. */
6634 BTRFS_I(inode)->dir_index = 0ULL;
6635 inc_nlink(inode);
6636 inode_inc_iversion(inode);
6637 inode->i_ctime = current_time(inode);
6638 ihold(inode);
6639 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6640
6641 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6642 1, index);
6643
6644 if (err) {
6645 drop_inode = 1;
6646 } else {
6647 struct dentry *parent = dentry->d_parent;
6648 err = btrfs_update_inode(trans, root, inode);
6649 if (err)
6650 goto fail;
6651 if (inode->i_nlink == 1) {
6652 /*
6653 * If new hard link count is 1, it's a file created
6654 * with open(2) O_TMPFILE flag.
6655 */
6656 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6657 if (err)
6658 goto fail;
6659 }
6660 d_instantiate(dentry, inode);
6661 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6662 }
6663
6664 btrfs_balance_delayed_items(fs_info);
6665 fail:
6666 if (trans)
6667 btrfs_end_transaction(trans);
6668 if (drop_inode) {
6669 inode_dec_link_count(inode);
6670 iput(inode);
6671 }
6672 btrfs_btree_balance_dirty(fs_info);
6673 return err;
6674 }
6675
6676 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6677 {
6678 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6679 struct inode *inode = NULL;
6680 struct btrfs_trans_handle *trans;
6681 struct btrfs_root *root = BTRFS_I(dir)->root;
6682 int err = 0;
6683 int drop_on_err = 0;
6684 u64 objectid = 0;
6685 u64 index = 0;
6686
6687 /*
6688 * 2 items for inode and ref
6689 * 2 items for dir items
6690 * 1 for xattr if selinux is on
6691 */
6692 trans = btrfs_start_transaction(root, 5);
6693 if (IS_ERR(trans))
6694 return PTR_ERR(trans);
6695
6696 err = btrfs_find_free_ino(root, &objectid);
6697 if (err)
6698 goto out_fail;
6699
6700 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6701 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6702 S_IFDIR | mode, &index);
6703 if (IS_ERR(inode)) {
6704 err = PTR_ERR(inode);
6705 goto out_fail;
6706 }
6707
6708 drop_on_err = 1;
6709 /* these must be set before we unlock the inode */
6710 inode->i_op = &btrfs_dir_inode_operations;
6711 inode->i_fop = &btrfs_dir_file_operations;
6712
6713 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6714 if (err)
6715 goto out_fail_inode;
6716
6717 btrfs_i_size_write(BTRFS_I(inode), 0);
6718 err = btrfs_update_inode(trans, root, inode);
6719 if (err)
6720 goto out_fail_inode;
6721
6722 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6723 dentry->d_name.name,
6724 dentry->d_name.len, 0, index);
6725 if (err)
6726 goto out_fail_inode;
6727
6728 d_instantiate(dentry, inode);
6729 /*
6730 * mkdir is special. We're unlocking after we call d_instantiate
6731 * to avoid a race with nfsd calling d_instantiate.
6732 */
6733 unlock_new_inode(inode);
6734 drop_on_err = 0;
6735
6736 out_fail:
6737 btrfs_end_transaction(trans);
6738 if (drop_on_err) {
6739 inode_dec_link_count(inode);
6740 iput(inode);
6741 }
6742 btrfs_balance_delayed_items(fs_info);
6743 btrfs_btree_balance_dirty(fs_info);
6744 return err;
6745
6746 out_fail_inode:
6747 unlock_new_inode(inode);
6748 goto out_fail;
6749 }
6750
6751 /* Find next extent map of a given extent map, caller needs to ensure locks */
6752 static struct extent_map *next_extent_map(struct extent_map *em)
6753 {
6754 struct rb_node *next;
6755
6756 next = rb_next(&em->rb_node);
6757 if (!next)
6758 return NULL;
6759 return container_of(next, struct extent_map, rb_node);
6760 }
6761
6762 static struct extent_map *prev_extent_map(struct extent_map *em)
6763 {
6764 struct rb_node *prev;
6765
6766 prev = rb_prev(&em->rb_node);
6767 if (!prev)
6768 return NULL;
6769 return container_of(prev, struct extent_map, rb_node);
6770 }
6771
6772 /* helper for btfs_get_extent. Given an existing extent in the tree,
6773 * the existing extent is the nearest extent to map_start,
6774 * and an extent that you want to insert, deal with overlap and insert
6775 * the best fitted new extent into the tree.
6776 */
6777 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6778 struct extent_map *existing,
6779 struct extent_map *em,
6780 u64 map_start)
6781 {
6782 struct extent_map *prev;
6783 struct extent_map *next;
6784 u64 start;
6785 u64 end;
6786 u64 start_diff;
6787
6788 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6789
6790 if (existing->start > map_start) {
6791 next = existing;
6792 prev = prev_extent_map(next);
6793 } else {
6794 prev = existing;
6795 next = next_extent_map(prev);
6796 }
6797
6798 start = prev ? extent_map_end(prev) : em->start;
6799 start = max_t(u64, start, em->start);
6800 end = next ? next->start : extent_map_end(em);
6801 end = min_t(u64, end, extent_map_end(em));
6802 start_diff = start - em->start;
6803 em->start = start;
6804 em->len = end - start;
6805 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6806 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6807 em->block_start += start_diff;
6808 em->block_len -= start_diff;
6809 }
6810 return add_extent_mapping(em_tree, em, 0);
6811 }
6812
6813 static noinline int uncompress_inline(struct btrfs_path *path,
6814 struct page *page,
6815 size_t pg_offset, u64 extent_offset,
6816 struct btrfs_file_extent_item *item)
6817 {
6818 int ret;
6819 struct extent_buffer *leaf = path->nodes[0];
6820 char *tmp;
6821 size_t max_size;
6822 unsigned long inline_size;
6823 unsigned long ptr;
6824 int compress_type;
6825
6826 WARN_ON(pg_offset != 0);
6827 compress_type = btrfs_file_extent_compression(leaf, item);
6828 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6829 inline_size = btrfs_file_extent_inline_item_len(leaf,
6830 btrfs_item_nr(path->slots[0]));
6831 tmp = kmalloc(inline_size, GFP_NOFS);
6832 if (!tmp)
6833 return -ENOMEM;
6834 ptr = btrfs_file_extent_inline_start(item);
6835
6836 read_extent_buffer(leaf, tmp, ptr, inline_size);
6837
6838 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6839 ret = btrfs_decompress(compress_type, tmp, page,
6840 extent_offset, inline_size, max_size);
6841
6842 /*
6843 * decompression code contains a memset to fill in any space between the end
6844 * of the uncompressed data and the end of max_size in case the decompressed
6845 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6846 * the end of an inline extent and the beginning of the next block, so we
6847 * cover that region here.
6848 */
6849
6850 if (max_size + pg_offset < PAGE_SIZE) {
6851 char *map = kmap(page);
6852 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6853 kunmap(page);
6854 }
6855 kfree(tmp);
6856 return ret;
6857 }
6858
6859 /*
6860 * a bit scary, this does extent mapping from logical file offset to the disk.
6861 * the ugly parts come from merging extents from the disk with the in-ram
6862 * representation. This gets more complex because of the data=ordered code,
6863 * where the in-ram extents might be locked pending data=ordered completion.
6864 *
6865 * This also copies inline extents directly into the page.
6866 */
6867 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6868 struct page *page,
6869 size_t pg_offset, u64 start, u64 len,
6870 int create)
6871 {
6872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6873 int ret;
6874 int err = 0;
6875 u64 extent_start = 0;
6876 u64 extent_end = 0;
6877 u64 objectid = btrfs_ino(inode);
6878 u32 found_type;
6879 struct btrfs_path *path = NULL;
6880 struct btrfs_root *root = inode->root;
6881 struct btrfs_file_extent_item *item;
6882 struct extent_buffer *leaf;
6883 struct btrfs_key found_key;
6884 struct extent_map *em = NULL;
6885 struct extent_map_tree *em_tree = &inode->extent_tree;
6886 struct extent_io_tree *io_tree = &inode->io_tree;
6887 struct btrfs_trans_handle *trans = NULL;
6888 const bool new_inline = !page || create;
6889
6890 again:
6891 read_lock(&em_tree->lock);
6892 em = lookup_extent_mapping(em_tree, start, len);
6893 if (em)
6894 em->bdev = fs_info->fs_devices->latest_bdev;
6895 read_unlock(&em_tree->lock);
6896
6897 if (em) {
6898 if (em->start > start || em->start + em->len <= start)
6899 free_extent_map(em);
6900 else if (em->block_start == EXTENT_MAP_INLINE && page)
6901 free_extent_map(em);
6902 else
6903 goto out;
6904 }
6905 em = alloc_extent_map();
6906 if (!em) {
6907 err = -ENOMEM;
6908 goto out;
6909 }
6910 em->bdev = fs_info->fs_devices->latest_bdev;
6911 em->start = EXTENT_MAP_HOLE;
6912 em->orig_start = EXTENT_MAP_HOLE;
6913 em->len = (u64)-1;
6914 em->block_len = (u64)-1;
6915
6916 if (!path) {
6917 path = btrfs_alloc_path();
6918 if (!path) {
6919 err = -ENOMEM;
6920 goto out;
6921 }
6922 /*
6923 * Chances are we'll be called again, so go ahead and do
6924 * readahead
6925 */
6926 path->reada = READA_FORWARD;
6927 }
6928
6929 ret = btrfs_lookup_file_extent(trans, root, path,
6930 objectid, start, trans != NULL);
6931 if (ret < 0) {
6932 err = ret;
6933 goto out;
6934 }
6935
6936 if (ret != 0) {
6937 if (path->slots[0] == 0)
6938 goto not_found;
6939 path->slots[0]--;
6940 }
6941
6942 leaf = path->nodes[0];
6943 item = btrfs_item_ptr(leaf, path->slots[0],
6944 struct btrfs_file_extent_item);
6945 /* are we inside the extent that was found? */
6946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6947 found_type = found_key.type;
6948 if (found_key.objectid != objectid ||
6949 found_type != BTRFS_EXTENT_DATA_KEY) {
6950 /*
6951 * If we backup past the first extent we want to move forward
6952 * and see if there is an extent in front of us, otherwise we'll
6953 * say there is a hole for our whole search range which can
6954 * cause problems.
6955 */
6956 extent_end = start;
6957 goto next;
6958 }
6959
6960 found_type = btrfs_file_extent_type(leaf, item);
6961 extent_start = found_key.offset;
6962 if (found_type == BTRFS_FILE_EXTENT_REG ||
6963 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6964 extent_end = extent_start +
6965 btrfs_file_extent_num_bytes(leaf, item);
6966
6967 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6968 extent_start);
6969 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6970 size_t size;
6971 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6972 extent_end = ALIGN(extent_start + size,
6973 fs_info->sectorsize);
6974
6975 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6976 path->slots[0],
6977 extent_start);
6978 }
6979 next:
6980 if (start >= extent_end) {
6981 path->slots[0]++;
6982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6983 ret = btrfs_next_leaf(root, path);
6984 if (ret < 0) {
6985 err = ret;
6986 goto out;
6987 }
6988 if (ret > 0)
6989 goto not_found;
6990 leaf = path->nodes[0];
6991 }
6992 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6993 if (found_key.objectid != objectid ||
6994 found_key.type != BTRFS_EXTENT_DATA_KEY)
6995 goto not_found;
6996 if (start + len <= found_key.offset)
6997 goto not_found;
6998 if (start > found_key.offset)
6999 goto next;
7000 em->start = start;
7001 em->orig_start = start;
7002 em->len = found_key.offset - start;
7003 goto not_found_em;
7004 }
7005
7006 btrfs_extent_item_to_extent_map(inode, path, item,
7007 new_inline, em);
7008
7009 if (found_type == BTRFS_FILE_EXTENT_REG ||
7010 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7011 goto insert;
7012 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7013 unsigned long ptr;
7014 char *map;
7015 size_t size;
7016 size_t extent_offset;
7017 size_t copy_size;
7018
7019 if (new_inline)
7020 goto out;
7021
7022 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7023 extent_offset = page_offset(page) + pg_offset - extent_start;
7024 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7025 size - extent_offset);
7026 em->start = extent_start + extent_offset;
7027 em->len = ALIGN(copy_size, fs_info->sectorsize);
7028 em->orig_block_len = em->len;
7029 em->orig_start = em->start;
7030 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7031 if (create == 0 && !PageUptodate(page)) {
7032 if (btrfs_file_extent_compression(leaf, item) !=
7033 BTRFS_COMPRESS_NONE) {
7034 ret = uncompress_inline(path, page, pg_offset,
7035 extent_offset, item);
7036 if (ret) {
7037 err = ret;
7038 goto out;
7039 }
7040 } else {
7041 map = kmap(page);
7042 read_extent_buffer(leaf, map + pg_offset, ptr,
7043 copy_size);
7044 if (pg_offset + copy_size < PAGE_SIZE) {
7045 memset(map + pg_offset + copy_size, 0,
7046 PAGE_SIZE - pg_offset -
7047 copy_size);
7048 }
7049 kunmap(page);
7050 }
7051 flush_dcache_page(page);
7052 } else if (create && PageUptodate(page)) {
7053 BUG();
7054 if (!trans) {
7055 kunmap(page);
7056 free_extent_map(em);
7057 em = NULL;
7058
7059 btrfs_release_path(path);
7060 trans = btrfs_join_transaction(root);
7061
7062 if (IS_ERR(trans))
7063 return ERR_CAST(trans);
7064 goto again;
7065 }
7066 map = kmap(page);
7067 write_extent_buffer(leaf, map + pg_offset, ptr,
7068 copy_size);
7069 kunmap(page);
7070 btrfs_mark_buffer_dirty(leaf);
7071 }
7072 set_extent_uptodate(io_tree, em->start,
7073 extent_map_end(em) - 1, NULL, GFP_NOFS);
7074 goto insert;
7075 }
7076 not_found:
7077 em->start = start;
7078 em->orig_start = start;
7079 em->len = len;
7080 not_found_em:
7081 em->block_start = EXTENT_MAP_HOLE;
7082 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7083 insert:
7084 btrfs_release_path(path);
7085 if (em->start > start || extent_map_end(em) <= start) {
7086 btrfs_err(fs_info,
7087 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7088 em->start, em->len, start, len);
7089 err = -EIO;
7090 goto out;
7091 }
7092
7093 err = 0;
7094 write_lock(&em_tree->lock);
7095 ret = add_extent_mapping(em_tree, em, 0);
7096 /* it is possible that someone inserted the extent into the tree
7097 * while we had the lock dropped. It is also possible that
7098 * an overlapping map exists in the tree
7099 */
7100 if (ret == -EEXIST) {
7101 struct extent_map *existing;
7102
7103 ret = 0;
7104
7105 existing = search_extent_mapping(em_tree, start, len);
7106 /*
7107 * existing will always be non-NULL, since there must be
7108 * extent causing the -EEXIST.
7109 */
7110 if (existing->start == em->start &&
7111 extent_map_end(existing) >= extent_map_end(em) &&
7112 em->block_start == existing->block_start) {
7113 /*
7114 * The existing extent map already encompasses the
7115 * entire extent map we tried to add.
7116 */
7117 free_extent_map(em);
7118 em = existing;
7119 err = 0;
7120
7121 } else if (start >= extent_map_end(existing) ||
7122 start <= existing->start) {
7123 /*
7124 * The existing extent map is the one nearest to
7125 * the [start, start + len) range which overlaps
7126 */
7127 err = merge_extent_mapping(em_tree, existing,
7128 em, start);
7129 free_extent_map(existing);
7130 if (err) {
7131 free_extent_map(em);
7132 em = NULL;
7133 }
7134 } else {
7135 free_extent_map(em);
7136 em = existing;
7137 err = 0;
7138 }
7139 }
7140 write_unlock(&em_tree->lock);
7141 out:
7142
7143 trace_btrfs_get_extent(root, inode, em);
7144
7145 btrfs_free_path(path);
7146 if (trans) {
7147 ret = btrfs_end_transaction(trans);
7148 if (!err)
7149 err = ret;
7150 }
7151 if (err) {
7152 free_extent_map(em);
7153 return ERR_PTR(err);
7154 }
7155 BUG_ON(!em); /* Error is always set */
7156 return em;
7157 }
7158
7159 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7160 struct page *page,
7161 size_t pg_offset, u64 start, u64 len,
7162 int create)
7163 {
7164 struct extent_map *em;
7165 struct extent_map *hole_em = NULL;
7166 u64 range_start = start;
7167 u64 end;
7168 u64 found;
7169 u64 found_end;
7170 int err = 0;
7171
7172 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7173 if (IS_ERR(em))
7174 return em;
7175 /*
7176 * If our em maps to:
7177 * - a hole or
7178 * - a pre-alloc extent,
7179 * there might actually be delalloc bytes behind it.
7180 */
7181 if (em->block_start != EXTENT_MAP_HOLE &&
7182 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7183 return em;
7184 else
7185 hole_em = em;
7186
7187 /* check to see if we've wrapped (len == -1 or similar) */
7188 end = start + len;
7189 if (end < start)
7190 end = (u64)-1;
7191 else
7192 end -= 1;
7193
7194 em = NULL;
7195
7196 /* ok, we didn't find anything, lets look for delalloc */
7197 found = count_range_bits(&inode->io_tree, &range_start,
7198 end, len, EXTENT_DELALLOC, 1);
7199 found_end = range_start + found;
7200 if (found_end < range_start)
7201 found_end = (u64)-1;
7202
7203 /*
7204 * we didn't find anything useful, return
7205 * the original results from get_extent()
7206 */
7207 if (range_start > end || found_end <= start) {
7208 em = hole_em;
7209 hole_em = NULL;
7210 goto out;
7211 }
7212
7213 /* adjust the range_start to make sure it doesn't
7214 * go backwards from the start they passed in
7215 */
7216 range_start = max(start, range_start);
7217 found = found_end - range_start;
7218
7219 if (found > 0) {
7220 u64 hole_start = start;
7221 u64 hole_len = len;
7222
7223 em = alloc_extent_map();
7224 if (!em) {
7225 err = -ENOMEM;
7226 goto out;
7227 }
7228 /*
7229 * when btrfs_get_extent can't find anything it
7230 * returns one huge hole
7231 *
7232 * make sure what it found really fits our range, and
7233 * adjust to make sure it is based on the start from
7234 * the caller
7235 */
7236 if (hole_em) {
7237 u64 calc_end = extent_map_end(hole_em);
7238
7239 if (calc_end <= start || (hole_em->start > end)) {
7240 free_extent_map(hole_em);
7241 hole_em = NULL;
7242 } else {
7243 hole_start = max(hole_em->start, start);
7244 hole_len = calc_end - hole_start;
7245 }
7246 }
7247 em->bdev = NULL;
7248 if (hole_em && range_start > hole_start) {
7249 /* our hole starts before our delalloc, so we
7250 * have to return just the parts of the hole
7251 * that go until the delalloc starts
7252 */
7253 em->len = min(hole_len,
7254 range_start - hole_start);
7255 em->start = hole_start;
7256 em->orig_start = hole_start;
7257 /*
7258 * don't adjust block start at all,
7259 * it is fixed at EXTENT_MAP_HOLE
7260 */
7261 em->block_start = hole_em->block_start;
7262 em->block_len = hole_len;
7263 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7264 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7265 } else {
7266 em->start = range_start;
7267 em->len = found;
7268 em->orig_start = range_start;
7269 em->block_start = EXTENT_MAP_DELALLOC;
7270 em->block_len = found;
7271 }
7272 } else if (hole_em) {
7273 return hole_em;
7274 }
7275 out:
7276
7277 free_extent_map(hole_em);
7278 if (err) {
7279 free_extent_map(em);
7280 return ERR_PTR(err);
7281 }
7282 return em;
7283 }
7284
7285 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7286 const u64 start,
7287 const u64 len,
7288 const u64 orig_start,
7289 const u64 block_start,
7290 const u64 block_len,
7291 const u64 orig_block_len,
7292 const u64 ram_bytes,
7293 const int type)
7294 {
7295 struct extent_map *em = NULL;
7296 int ret;
7297
7298 if (type != BTRFS_ORDERED_NOCOW) {
7299 em = create_io_em(inode, start, len, orig_start,
7300 block_start, block_len, orig_block_len,
7301 ram_bytes,
7302 BTRFS_COMPRESS_NONE, /* compress_type */
7303 type);
7304 if (IS_ERR(em))
7305 goto out;
7306 }
7307 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7308 len, block_len, type);
7309 if (ret) {
7310 if (em) {
7311 free_extent_map(em);
7312 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7313 start + len - 1, 0);
7314 }
7315 em = ERR_PTR(ret);
7316 }
7317 out:
7318
7319 return em;
7320 }
7321
7322 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7323 u64 start, u64 len)
7324 {
7325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7326 struct btrfs_root *root = BTRFS_I(inode)->root;
7327 struct extent_map *em;
7328 struct btrfs_key ins;
7329 u64 alloc_hint;
7330 int ret;
7331
7332 alloc_hint = get_extent_allocation_hint(inode, start, len);
7333 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7334 0, alloc_hint, &ins, 1, 1);
7335 if (ret)
7336 return ERR_PTR(ret);
7337
7338 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7339 ins.objectid, ins.offset, ins.offset,
7340 ins.offset, BTRFS_ORDERED_REGULAR);
7341 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7342 if (IS_ERR(em))
7343 btrfs_free_reserved_extent(fs_info, ins.objectid,
7344 ins.offset, 1);
7345
7346 return em;
7347 }
7348
7349 /*
7350 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7351 * block must be cow'd
7352 */
7353 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7354 u64 *orig_start, u64 *orig_block_len,
7355 u64 *ram_bytes)
7356 {
7357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7358 struct btrfs_path *path;
7359 int ret;
7360 struct extent_buffer *leaf;
7361 struct btrfs_root *root = BTRFS_I(inode)->root;
7362 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7363 struct btrfs_file_extent_item *fi;
7364 struct btrfs_key key;
7365 u64 disk_bytenr;
7366 u64 backref_offset;
7367 u64 extent_end;
7368 u64 num_bytes;
7369 int slot;
7370 int found_type;
7371 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7372
7373 path = btrfs_alloc_path();
7374 if (!path)
7375 return -ENOMEM;
7376
7377 ret = btrfs_lookup_file_extent(NULL, root, path,
7378 btrfs_ino(BTRFS_I(inode)), offset, 0);
7379 if (ret < 0)
7380 goto out;
7381
7382 slot = path->slots[0];
7383 if (ret == 1) {
7384 if (slot == 0) {
7385 /* can't find the item, must cow */
7386 ret = 0;
7387 goto out;
7388 }
7389 slot--;
7390 }
7391 ret = 0;
7392 leaf = path->nodes[0];
7393 btrfs_item_key_to_cpu(leaf, &key, slot);
7394 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7395 key.type != BTRFS_EXTENT_DATA_KEY) {
7396 /* not our file or wrong item type, must cow */
7397 goto out;
7398 }
7399
7400 if (key.offset > offset) {
7401 /* Wrong offset, must cow */
7402 goto out;
7403 }
7404
7405 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7406 found_type = btrfs_file_extent_type(leaf, fi);
7407 if (found_type != BTRFS_FILE_EXTENT_REG &&
7408 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7409 /* not a regular extent, must cow */
7410 goto out;
7411 }
7412
7413 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7414 goto out;
7415
7416 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7417 if (extent_end <= offset)
7418 goto out;
7419
7420 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7421 if (disk_bytenr == 0)
7422 goto out;
7423
7424 if (btrfs_file_extent_compression(leaf, fi) ||
7425 btrfs_file_extent_encryption(leaf, fi) ||
7426 btrfs_file_extent_other_encoding(leaf, fi))
7427 goto out;
7428
7429 backref_offset = btrfs_file_extent_offset(leaf, fi);
7430
7431 if (orig_start) {
7432 *orig_start = key.offset - backref_offset;
7433 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7434 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7435 }
7436
7437 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7438 goto out;
7439
7440 num_bytes = min(offset + *len, extent_end) - offset;
7441 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7442 u64 range_end;
7443
7444 range_end = round_up(offset + num_bytes,
7445 root->fs_info->sectorsize) - 1;
7446 ret = test_range_bit(io_tree, offset, range_end,
7447 EXTENT_DELALLOC, 0, NULL);
7448 if (ret) {
7449 ret = -EAGAIN;
7450 goto out;
7451 }
7452 }
7453
7454 btrfs_release_path(path);
7455
7456 /*
7457 * look for other files referencing this extent, if we
7458 * find any we must cow
7459 */
7460
7461 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7462 key.offset - backref_offset, disk_bytenr);
7463 if (ret) {
7464 ret = 0;
7465 goto out;
7466 }
7467
7468 /*
7469 * adjust disk_bytenr and num_bytes to cover just the bytes
7470 * in this extent we are about to write. If there
7471 * are any csums in that range we have to cow in order
7472 * to keep the csums correct
7473 */
7474 disk_bytenr += backref_offset;
7475 disk_bytenr += offset - key.offset;
7476 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7477 goto out;
7478 /*
7479 * all of the above have passed, it is safe to overwrite this extent
7480 * without cow
7481 */
7482 *len = num_bytes;
7483 ret = 1;
7484 out:
7485 btrfs_free_path(path);
7486 return ret;
7487 }
7488
7489 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7490 {
7491 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7492 bool found = false;
7493 void **pagep = NULL;
7494 struct page *page = NULL;
7495 unsigned long start_idx;
7496 unsigned long end_idx;
7497
7498 start_idx = start >> PAGE_SHIFT;
7499
7500 /*
7501 * end is the last byte in the last page. end == start is legal
7502 */
7503 end_idx = end >> PAGE_SHIFT;
7504
7505 rcu_read_lock();
7506
7507 /* Most of the code in this while loop is lifted from
7508 * find_get_page. It's been modified to begin searching from a
7509 * page and return just the first page found in that range. If the
7510 * found idx is less than or equal to the end idx then we know that
7511 * a page exists. If no pages are found or if those pages are
7512 * outside of the range then we're fine (yay!) */
7513 while (page == NULL &&
7514 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7515 page = radix_tree_deref_slot(pagep);
7516 if (unlikely(!page))
7517 break;
7518
7519 if (radix_tree_exception(page)) {
7520 if (radix_tree_deref_retry(page)) {
7521 page = NULL;
7522 continue;
7523 }
7524 /*
7525 * Otherwise, shmem/tmpfs must be storing a swap entry
7526 * here as an exceptional entry: so return it without
7527 * attempting to raise page count.
7528 */
7529 page = NULL;
7530 break; /* TODO: Is this relevant for this use case? */
7531 }
7532
7533 if (!page_cache_get_speculative(page)) {
7534 page = NULL;
7535 continue;
7536 }
7537
7538 /*
7539 * Has the page moved?
7540 * This is part of the lockless pagecache protocol. See
7541 * include/linux/pagemap.h for details.
7542 */
7543 if (unlikely(page != *pagep)) {
7544 put_page(page);
7545 page = NULL;
7546 }
7547 }
7548
7549 if (page) {
7550 if (page->index <= end_idx)
7551 found = true;
7552 put_page(page);
7553 }
7554
7555 rcu_read_unlock();
7556 return found;
7557 }
7558
7559 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7560 struct extent_state **cached_state, int writing)
7561 {
7562 struct btrfs_ordered_extent *ordered;
7563 int ret = 0;
7564
7565 while (1) {
7566 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7567 cached_state);
7568 /*
7569 * We're concerned with the entire range that we're going to be
7570 * doing DIO to, so we need to make sure there's no ordered
7571 * extents in this range.
7572 */
7573 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7574 lockend - lockstart + 1);
7575
7576 /*
7577 * We need to make sure there are no buffered pages in this
7578 * range either, we could have raced between the invalidate in
7579 * generic_file_direct_write and locking the extent. The
7580 * invalidate needs to happen so that reads after a write do not
7581 * get stale data.
7582 */
7583 if (!ordered &&
7584 (!writing ||
7585 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7586 break;
7587
7588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7589 cached_state, GFP_NOFS);
7590
7591 if (ordered) {
7592 /*
7593 * If we are doing a DIO read and the ordered extent we
7594 * found is for a buffered write, we can not wait for it
7595 * to complete and retry, because if we do so we can
7596 * deadlock with concurrent buffered writes on page
7597 * locks. This happens only if our DIO read covers more
7598 * than one extent map, if at this point has already
7599 * created an ordered extent for a previous extent map
7600 * and locked its range in the inode's io tree, and a
7601 * concurrent write against that previous extent map's
7602 * range and this range started (we unlock the ranges
7603 * in the io tree only when the bios complete and
7604 * buffered writes always lock pages before attempting
7605 * to lock range in the io tree).
7606 */
7607 if (writing ||
7608 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7609 btrfs_start_ordered_extent(inode, ordered, 1);
7610 else
7611 ret = -ENOTBLK;
7612 btrfs_put_ordered_extent(ordered);
7613 } else {
7614 /*
7615 * We could trigger writeback for this range (and wait
7616 * for it to complete) and then invalidate the pages for
7617 * this range (through invalidate_inode_pages2_range()),
7618 * but that can lead us to a deadlock with a concurrent
7619 * call to readpages() (a buffered read or a defrag call
7620 * triggered a readahead) on a page lock due to an
7621 * ordered dio extent we created before but did not have
7622 * yet a corresponding bio submitted (whence it can not
7623 * complete), which makes readpages() wait for that
7624 * ordered extent to complete while holding a lock on
7625 * that page.
7626 */
7627 ret = -ENOTBLK;
7628 }
7629
7630 if (ret)
7631 break;
7632
7633 cond_resched();
7634 }
7635
7636 return ret;
7637 }
7638
7639 /* The callers of this must take lock_extent() */
7640 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7641 u64 orig_start, u64 block_start,
7642 u64 block_len, u64 orig_block_len,
7643 u64 ram_bytes, int compress_type,
7644 int type)
7645 {
7646 struct extent_map_tree *em_tree;
7647 struct extent_map *em;
7648 struct btrfs_root *root = BTRFS_I(inode)->root;
7649 int ret;
7650
7651 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7652 type == BTRFS_ORDERED_COMPRESSED ||
7653 type == BTRFS_ORDERED_NOCOW ||
7654 type == BTRFS_ORDERED_REGULAR);
7655
7656 em_tree = &BTRFS_I(inode)->extent_tree;
7657 em = alloc_extent_map();
7658 if (!em)
7659 return ERR_PTR(-ENOMEM);
7660
7661 em->start = start;
7662 em->orig_start = orig_start;
7663 em->len = len;
7664 em->block_len = block_len;
7665 em->block_start = block_start;
7666 em->bdev = root->fs_info->fs_devices->latest_bdev;
7667 em->orig_block_len = orig_block_len;
7668 em->ram_bytes = ram_bytes;
7669 em->generation = -1;
7670 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7671 if (type == BTRFS_ORDERED_PREALLOC) {
7672 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7673 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7674 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7675 em->compress_type = compress_type;
7676 }
7677
7678 do {
7679 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7680 em->start + em->len - 1, 0);
7681 write_lock(&em_tree->lock);
7682 ret = add_extent_mapping(em_tree, em, 1);
7683 write_unlock(&em_tree->lock);
7684 /*
7685 * The caller has taken lock_extent(), who could race with us
7686 * to add em?
7687 */
7688 } while (ret == -EEXIST);
7689
7690 if (ret) {
7691 free_extent_map(em);
7692 return ERR_PTR(ret);
7693 }
7694
7695 /* em got 2 refs now, callers needs to do free_extent_map once. */
7696 return em;
7697 }
7698
7699 static void adjust_dio_outstanding_extents(struct inode *inode,
7700 struct btrfs_dio_data *dio_data,
7701 const u64 len)
7702 {
7703 unsigned num_extents = count_max_extents(len);
7704
7705 /*
7706 * If we have an outstanding_extents count still set then we're
7707 * within our reservation, otherwise we need to adjust our inode
7708 * counter appropriately.
7709 */
7710 if (dio_data->outstanding_extents >= num_extents) {
7711 dio_data->outstanding_extents -= num_extents;
7712 } else {
7713 /*
7714 * If dio write length has been split due to no large enough
7715 * contiguous space, we need to compensate our inode counter
7716 * appropriately.
7717 */
7718 u64 num_needed = num_extents - dio_data->outstanding_extents;
7719
7720 spin_lock(&BTRFS_I(inode)->lock);
7721 BTRFS_I(inode)->outstanding_extents += num_needed;
7722 spin_unlock(&BTRFS_I(inode)->lock);
7723 }
7724 }
7725
7726 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7727 struct buffer_head *bh_result, int create)
7728 {
7729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7730 struct extent_map *em;
7731 struct extent_state *cached_state = NULL;
7732 struct btrfs_dio_data *dio_data = NULL;
7733 u64 start = iblock << inode->i_blkbits;
7734 u64 lockstart, lockend;
7735 u64 len = bh_result->b_size;
7736 int unlock_bits = EXTENT_LOCKED;
7737 int ret = 0;
7738
7739 if (create)
7740 unlock_bits |= EXTENT_DIRTY;
7741 else
7742 len = min_t(u64, len, fs_info->sectorsize);
7743
7744 lockstart = start;
7745 lockend = start + len - 1;
7746
7747 if (current->journal_info) {
7748 /*
7749 * Need to pull our outstanding extents and set journal_info to NULL so
7750 * that anything that needs to check if there's a transaction doesn't get
7751 * confused.
7752 */
7753 dio_data = current->journal_info;
7754 current->journal_info = NULL;
7755 }
7756
7757 /*
7758 * If this errors out it's because we couldn't invalidate pagecache for
7759 * this range and we need to fallback to buffered.
7760 */
7761 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7762 create)) {
7763 ret = -ENOTBLK;
7764 goto err;
7765 }
7766
7767 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7768 if (IS_ERR(em)) {
7769 ret = PTR_ERR(em);
7770 goto unlock_err;
7771 }
7772
7773 /*
7774 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7775 * io. INLINE is special, and we could probably kludge it in here, but
7776 * it's still buffered so for safety lets just fall back to the generic
7777 * buffered path.
7778 *
7779 * For COMPRESSED we _have_ to read the entire extent in so we can
7780 * decompress it, so there will be buffering required no matter what we
7781 * do, so go ahead and fallback to buffered.
7782 *
7783 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7784 * to buffered IO. Don't blame me, this is the price we pay for using
7785 * the generic code.
7786 */
7787 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7788 em->block_start == EXTENT_MAP_INLINE) {
7789 free_extent_map(em);
7790 ret = -ENOTBLK;
7791 goto unlock_err;
7792 }
7793
7794 /* Just a good old fashioned hole, return */
7795 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7796 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7797 free_extent_map(em);
7798 goto unlock_err;
7799 }
7800
7801 /*
7802 * We don't allocate a new extent in the following cases
7803 *
7804 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7805 * existing extent.
7806 * 2) The extent is marked as PREALLOC. We're good to go here and can
7807 * just use the extent.
7808 *
7809 */
7810 if (!create) {
7811 len = min(len, em->len - (start - em->start));
7812 lockstart = start + len;
7813 goto unlock;
7814 }
7815
7816 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7817 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7818 em->block_start != EXTENT_MAP_HOLE)) {
7819 int type;
7820 u64 block_start, orig_start, orig_block_len, ram_bytes;
7821
7822 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7823 type = BTRFS_ORDERED_PREALLOC;
7824 else
7825 type = BTRFS_ORDERED_NOCOW;
7826 len = min(len, em->len - (start - em->start));
7827 block_start = em->block_start + (start - em->start);
7828
7829 if (can_nocow_extent(inode, start, &len, &orig_start,
7830 &orig_block_len, &ram_bytes) == 1 &&
7831 btrfs_inc_nocow_writers(fs_info, block_start)) {
7832 struct extent_map *em2;
7833
7834 em2 = btrfs_create_dio_extent(inode, start, len,
7835 orig_start, block_start,
7836 len, orig_block_len,
7837 ram_bytes, type);
7838 btrfs_dec_nocow_writers(fs_info, block_start);
7839 if (type == BTRFS_ORDERED_PREALLOC) {
7840 free_extent_map(em);
7841 em = em2;
7842 }
7843 if (em2 && IS_ERR(em2)) {
7844 ret = PTR_ERR(em2);
7845 goto unlock_err;
7846 }
7847 /*
7848 * For inode marked NODATACOW or extent marked PREALLOC,
7849 * use the existing or preallocated extent, so does not
7850 * need to adjust btrfs_space_info's bytes_may_use.
7851 */
7852 btrfs_free_reserved_data_space_noquota(inode,
7853 start, len);
7854 goto unlock;
7855 }
7856 }
7857
7858 /*
7859 * this will cow the extent, reset the len in case we changed
7860 * it above
7861 */
7862 len = bh_result->b_size;
7863 free_extent_map(em);
7864 em = btrfs_new_extent_direct(inode, start, len);
7865 if (IS_ERR(em)) {
7866 ret = PTR_ERR(em);
7867 goto unlock_err;
7868 }
7869 len = min(len, em->len - (start - em->start));
7870 unlock:
7871 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7872 inode->i_blkbits;
7873 bh_result->b_size = len;
7874 bh_result->b_bdev = em->bdev;
7875 set_buffer_mapped(bh_result);
7876 if (create) {
7877 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7878 set_buffer_new(bh_result);
7879
7880 /*
7881 * Need to update the i_size under the extent lock so buffered
7882 * readers will get the updated i_size when we unlock.
7883 */
7884 if (!dio_data->overwrite && start + len > i_size_read(inode))
7885 i_size_write(inode, start + len);
7886
7887 adjust_dio_outstanding_extents(inode, dio_data, len);
7888 WARN_ON(dio_data->reserve < len);
7889 dio_data->reserve -= len;
7890 dio_data->unsubmitted_oe_range_end = start + len;
7891 current->journal_info = dio_data;
7892 }
7893
7894 /*
7895 * In the case of write we need to clear and unlock the entire range,
7896 * in the case of read we need to unlock only the end area that we
7897 * aren't using if there is any left over space.
7898 */
7899 if (lockstart < lockend) {
7900 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7901 lockend, unlock_bits, 1, 0,
7902 &cached_state, GFP_NOFS);
7903 } else {
7904 free_extent_state(cached_state);
7905 }
7906
7907 free_extent_map(em);
7908
7909 return 0;
7910
7911 unlock_err:
7912 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7913 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7914 err:
7915 if (dio_data)
7916 current->journal_info = dio_data;
7917 /*
7918 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7919 * write less data then expected, so that we don't underflow our inode's
7920 * outstanding extents counter.
7921 */
7922 if (create && dio_data)
7923 adjust_dio_outstanding_extents(inode, dio_data, len);
7924
7925 return ret;
7926 }
7927
7928 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7929 int mirror_num)
7930 {
7931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7932 int ret;
7933
7934 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7935
7936 bio_get(bio);
7937
7938 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7939 if (ret)
7940 goto err;
7941
7942 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7943 err:
7944 bio_put(bio);
7945 return ret;
7946 }
7947
7948 static int btrfs_check_dio_repairable(struct inode *inode,
7949 struct bio *failed_bio,
7950 struct io_failure_record *failrec,
7951 int failed_mirror)
7952 {
7953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7954 int num_copies;
7955
7956 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7957 if (num_copies == 1) {
7958 /*
7959 * we only have a single copy of the data, so don't bother with
7960 * all the retry and error correction code that follows. no
7961 * matter what the error is, it is very likely to persist.
7962 */
7963 btrfs_debug(fs_info,
7964 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7965 num_copies, failrec->this_mirror, failed_mirror);
7966 return 0;
7967 }
7968
7969 failrec->failed_mirror = failed_mirror;
7970 failrec->this_mirror++;
7971 if (failrec->this_mirror == failed_mirror)
7972 failrec->this_mirror++;
7973
7974 if (failrec->this_mirror > num_copies) {
7975 btrfs_debug(fs_info,
7976 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7977 num_copies, failrec->this_mirror, failed_mirror);
7978 return 0;
7979 }
7980
7981 return 1;
7982 }
7983
7984 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7985 struct page *page, unsigned int pgoff,
7986 u64 start, u64 end, int failed_mirror,
7987 bio_end_io_t *repair_endio, void *repair_arg)
7988 {
7989 struct io_failure_record *failrec;
7990 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7991 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7992 struct bio *bio;
7993 int isector;
7994 int read_mode = 0;
7995 int segs;
7996 int ret;
7997
7998 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7999
8000 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8001 if (ret)
8002 return ret;
8003
8004 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8005 failed_mirror);
8006 if (!ret) {
8007 free_io_failure(failure_tree, io_tree, failrec);
8008 return -EIO;
8009 }
8010
8011 segs = bio_segments(failed_bio);
8012 if (segs > 1 ||
8013 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
8014 read_mode |= REQ_FAILFAST_DEV;
8015
8016 isector = start - btrfs_io_bio(failed_bio)->logical;
8017 isector >>= inode->i_sb->s_blocksize_bits;
8018 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8019 pgoff, isector, repair_endio, repair_arg);
8020 if (!bio) {
8021 free_io_failure(failure_tree, io_tree, failrec);
8022 return -EIO;
8023 }
8024 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8025
8026 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8027 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8028 read_mode, failrec->this_mirror, failrec->in_validation);
8029
8030 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8031 if (ret) {
8032 free_io_failure(failure_tree, io_tree, failrec);
8033 bio_put(bio);
8034 }
8035
8036 return ret;
8037 }
8038
8039 struct btrfs_retry_complete {
8040 struct completion done;
8041 struct inode *inode;
8042 u64 start;
8043 int uptodate;
8044 };
8045
8046 static void btrfs_retry_endio_nocsum(struct bio *bio)
8047 {
8048 struct btrfs_retry_complete *done = bio->bi_private;
8049 struct inode *inode = done->inode;
8050 struct bio_vec *bvec;
8051 struct extent_io_tree *io_tree, *failure_tree;
8052 int i;
8053
8054 if (bio->bi_error)
8055 goto end;
8056
8057 ASSERT(bio->bi_vcnt == 1);
8058 io_tree = &BTRFS_I(inode)->io_tree;
8059 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8060 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8061
8062 done->uptodate = 1;
8063 bio_for_each_segment_all(bvec, bio, i)
8064 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8065 io_tree, done->start, bvec->bv_page,
8066 btrfs_ino(BTRFS_I(inode)), 0);
8067 end:
8068 complete(&done->done);
8069 bio_put(bio);
8070 }
8071
8072 static int __btrfs_correct_data_nocsum(struct inode *inode,
8073 struct btrfs_io_bio *io_bio)
8074 {
8075 struct btrfs_fs_info *fs_info;
8076 struct bio_vec bvec;
8077 struct bvec_iter iter;
8078 struct btrfs_retry_complete done;
8079 u64 start;
8080 unsigned int pgoff;
8081 u32 sectorsize;
8082 int nr_sectors;
8083 int ret;
8084 int err = 0;
8085
8086 fs_info = BTRFS_I(inode)->root->fs_info;
8087 sectorsize = fs_info->sectorsize;
8088
8089 start = io_bio->logical;
8090 done.inode = inode;
8091 io_bio->bio.bi_iter = io_bio->iter;
8092
8093 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8094 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8095 pgoff = bvec.bv_offset;
8096
8097 next_block_or_try_again:
8098 done.uptodate = 0;
8099 done.start = start;
8100 init_completion(&done.done);
8101
8102 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8103 pgoff, start, start + sectorsize - 1,
8104 io_bio->mirror_num,
8105 btrfs_retry_endio_nocsum, &done);
8106 if (ret) {
8107 err = ret;
8108 goto next;
8109 }
8110
8111 wait_for_completion(&done.done);
8112
8113 if (!done.uptodate) {
8114 /* We might have another mirror, so try again */
8115 goto next_block_or_try_again;
8116 }
8117
8118 next:
8119 start += sectorsize;
8120
8121 nr_sectors--;
8122 if (nr_sectors) {
8123 pgoff += sectorsize;
8124 ASSERT(pgoff < PAGE_SIZE);
8125 goto next_block_or_try_again;
8126 }
8127 }
8128
8129 return err;
8130 }
8131
8132 static void btrfs_retry_endio(struct bio *bio)
8133 {
8134 struct btrfs_retry_complete *done = bio->bi_private;
8135 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8136 struct extent_io_tree *io_tree, *failure_tree;
8137 struct inode *inode = done->inode;
8138 struct bio_vec *bvec;
8139 int uptodate;
8140 int ret;
8141 int i;
8142
8143 if (bio->bi_error)
8144 goto end;
8145
8146 uptodate = 1;
8147
8148 ASSERT(bio->bi_vcnt == 1);
8149 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8150
8151 io_tree = &BTRFS_I(inode)->io_tree;
8152 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8153
8154 bio_for_each_segment_all(bvec, bio, i) {
8155 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8156 bvec->bv_offset, done->start,
8157 bvec->bv_len);
8158 if (!ret)
8159 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8160 failure_tree, io_tree, done->start,
8161 bvec->bv_page,
8162 btrfs_ino(BTRFS_I(inode)),
8163 bvec->bv_offset);
8164 else
8165 uptodate = 0;
8166 }
8167
8168 done->uptodate = uptodate;
8169 end:
8170 complete(&done->done);
8171 bio_put(bio);
8172 }
8173
8174 static int __btrfs_subio_endio_read(struct inode *inode,
8175 struct btrfs_io_bio *io_bio, int err)
8176 {
8177 struct btrfs_fs_info *fs_info;
8178 struct bio_vec bvec;
8179 struct bvec_iter iter;
8180 struct btrfs_retry_complete done;
8181 u64 start;
8182 u64 offset = 0;
8183 u32 sectorsize;
8184 int nr_sectors;
8185 unsigned int pgoff;
8186 int csum_pos;
8187 bool uptodate = (err == 0);
8188 int ret;
8189
8190 fs_info = BTRFS_I(inode)->root->fs_info;
8191 sectorsize = fs_info->sectorsize;
8192
8193 err = 0;
8194 start = io_bio->logical;
8195 done.inode = inode;
8196 io_bio->bio.bi_iter = io_bio->iter;
8197
8198 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8199 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8200
8201 pgoff = bvec.bv_offset;
8202 next_block:
8203 if (uptodate) {
8204 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8205 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8206 bvec.bv_page, pgoff, start, sectorsize);
8207 if (likely(!ret))
8208 goto next;
8209 }
8210 try_again:
8211 done.uptodate = 0;
8212 done.start = start;
8213 init_completion(&done.done);
8214
8215 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8216 pgoff, start, start + sectorsize - 1,
8217 io_bio->mirror_num,
8218 btrfs_retry_endio, &done);
8219 if (ret) {
8220 err = ret;
8221 goto next;
8222 }
8223
8224 wait_for_completion(&done.done);
8225
8226 if (!done.uptodate) {
8227 /* We might have another mirror, so try again */
8228 goto try_again;
8229 }
8230 next:
8231 offset += sectorsize;
8232 start += sectorsize;
8233
8234 ASSERT(nr_sectors);
8235
8236 nr_sectors--;
8237 if (nr_sectors) {
8238 pgoff += sectorsize;
8239 ASSERT(pgoff < PAGE_SIZE);
8240 goto next_block;
8241 }
8242 }
8243
8244 return err;
8245 }
8246
8247 static int btrfs_subio_endio_read(struct inode *inode,
8248 struct btrfs_io_bio *io_bio, int err)
8249 {
8250 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8251
8252 if (skip_csum) {
8253 if (unlikely(err))
8254 return __btrfs_correct_data_nocsum(inode, io_bio);
8255 else
8256 return 0;
8257 } else {
8258 return __btrfs_subio_endio_read(inode, io_bio, err);
8259 }
8260 }
8261
8262 static void btrfs_endio_direct_read(struct bio *bio)
8263 {
8264 struct btrfs_dio_private *dip = bio->bi_private;
8265 struct inode *inode = dip->inode;
8266 struct bio *dio_bio;
8267 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8268 int err = bio->bi_error;
8269
8270 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) {
8271 err = btrfs_subio_endio_read(inode, io_bio, err);
8272 if (!err)
8273 bio->bi_error = 0;
8274 }
8275
8276 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8277 dip->logical_offset + dip->bytes - 1);
8278 dio_bio = dip->dio_bio;
8279
8280 kfree(dip);
8281
8282 dio_bio->bi_error = bio->bi_error;
8283 dio_end_io(dio_bio, bio->bi_error);
8284
8285 if (io_bio->end_io)
8286 io_bio->end_io(io_bio, err);
8287 bio_put(bio);
8288 }
8289
8290 static void __endio_write_update_ordered(struct inode *inode,
8291 const u64 offset, const u64 bytes,
8292 const bool uptodate)
8293 {
8294 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8295 struct btrfs_ordered_extent *ordered = NULL;
8296 struct btrfs_workqueue *wq;
8297 btrfs_work_func_t func;
8298 u64 ordered_offset = offset;
8299 u64 ordered_bytes = bytes;
8300 int ret;
8301
8302 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8303 wq = fs_info->endio_freespace_worker;
8304 func = btrfs_freespace_write_helper;
8305 } else {
8306 wq = fs_info->endio_write_workers;
8307 func = btrfs_endio_write_helper;
8308 }
8309
8310 again:
8311 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8312 &ordered_offset,
8313 ordered_bytes,
8314 uptodate);
8315 if (!ret)
8316 goto out_test;
8317
8318 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8319 btrfs_queue_work(wq, &ordered->work);
8320 out_test:
8321 /*
8322 * our bio might span multiple ordered extents. If we haven't
8323 * completed the accounting for the whole dio, go back and try again
8324 */
8325 if (ordered_offset < offset + bytes) {
8326 ordered_bytes = offset + bytes - ordered_offset;
8327 ordered = NULL;
8328 goto again;
8329 }
8330 }
8331
8332 static void btrfs_endio_direct_write(struct bio *bio)
8333 {
8334 struct btrfs_dio_private *dip = bio->bi_private;
8335 struct bio *dio_bio = dip->dio_bio;
8336
8337 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8338 dip->bytes, !bio->bi_error);
8339
8340 kfree(dip);
8341
8342 dio_bio->bi_error = bio->bi_error;
8343 dio_end_io(dio_bio, bio->bi_error);
8344 bio_put(bio);
8345 }
8346
8347 static int __btrfs_submit_bio_start_direct_io(void *private_data,
8348 struct bio *bio, int mirror_num,
8349 unsigned long bio_flags, u64 offset)
8350 {
8351 struct inode *inode = private_data;
8352 int ret;
8353 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8354 BUG_ON(ret); /* -ENOMEM */
8355 return 0;
8356 }
8357
8358 static void btrfs_end_dio_bio(struct bio *bio)
8359 {
8360 struct btrfs_dio_private *dip = bio->bi_private;
8361 int err = bio->bi_error;
8362
8363 if (err)
8364 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8365 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8366 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8367 bio->bi_opf,
8368 (unsigned long long)bio->bi_iter.bi_sector,
8369 bio->bi_iter.bi_size, err);
8370
8371 if (dip->subio_endio)
8372 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8373
8374 if (err) {
8375 dip->errors = 1;
8376
8377 /*
8378 * before atomic variable goto zero, we must make sure
8379 * dip->errors is perceived to be set.
8380 */
8381 smp_mb__before_atomic();
8382 }
8383
8384 /* if there are more bios still pending for this dio, just exit */
8385 if (!atomic_dec_and_test(&dip->pending_bios))
8386 goto out;
8387
8388 if (dip->errors) {
8389 bio_io_error(dip->orig_bio);
8390 } else {
8391 dip->dio_bio->bi_error = 0;
8392 bio_endio(dip->orig_bio);
8393 }
8394 out:
8395 bio_put(bio);
8396 }
8397
8398 static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8399 struct btrfs_dio_private *dip,
8400 struct bio *bio,
8401 u64 file_offset)
8402 {
8403 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8404 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8405 int ret;
8406
8407 /*
8408 * We load all the csum data we need when we submit
8409 * the first bio to reduce the csum tree search and
8410 * contention.
8411 */
8412 if (dip->logical_offset == file_offset) {
8413 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8414 file_offset);
8415 if (ret)
8416 return ret;
8417 }
8418
8419 if (bio == dip->orig_bio)
8420 return 0;
8421
8422 file_offset -= dip->logical_offset;
8423 file_offset >>= inode->i_sb->s_blocksize_bits;
8424 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8425
8426 return 0;
8427 }
8428
8429 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8430 u64 file_offset, int skip_sum,
8431 int async_submit)
8432 {
8433 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8434 struct btrfs_dio_private *dip = bio->bi_private;
8435 bool write = bio_op(bio) == REQ_OP_WRITE;
8436 int ret;
8437
8438 if (async_submit)
8439 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8440
8441 bio_get(bio);
8442
8443 if (!write) {
8444 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8445 if (ret)
8446 goto err;
8447 }
8448
8449 if (skip_sum)
8450 goto map;
8451
8452 if (write && async_submit) {
8453 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8454 file_offset, inode,
8455 __btrfs_submit_bio_start_direct_io,
8456 __btrfs_submit_bio_done);
8457 goto err;
8458 } else if (write) {
8459 /*
8460 * If we aren't doing async submit, calculate the csum of the
8461 * bio now.
8462 */
8463 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8464 if (ret)
8465 goto err;
8466 } else {
8467 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8468 file_offset);
8469 if (ret)
8470 goto err;
8471 }
8472 map:
8473 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8474 err:
8475 bio_put(bio);
8476 return ret;
8477 }
8478
8479 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8480 int skip_sum)
8481 {
8482 struct inode *inode = dip->inode;
8483 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8484 struct bio *bio;
8485 struct bio *orig_bio = dip->orig_bio;
8486 u64 start_sector = orig_bio->bi_iter.bi_sector;
8487 u64 file_offset = dip->logical_offset;
8488 u64 map_length;
8489 int async_submit = 0;
8490 u64 submit_len;
8491 int clone_offset = 0;
8492 int clone_len;
8493 int ret;
8494
8495 map_length = orig_bio->bi_iter.bi_size;
8496 submit_len = map_length;
8497 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8498 &map_length, NULL, 0);
8499 if (ret)
8500 return -EIO;
8501
8502 if (map_length >= submit_len) {
8503 bio = orig_bio;
8504 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8505 goto submit;
8506 }
8507
8508 /* async crcs make it difficult to collect full stripe writes. */
8509 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8510 async_submit = 0;
8511 else
8512 async_submit = 1;
8513
8514 /* bio split */
8515 ASSERT(map_length <= INT_MAX);
8516 atomic_inc(&dip->pending_bios);
8517 do {
8518 clone_len = min_t(int, submit_len, map_length);
8519
8520 /*
8521 * This will never fail as it's passing GPF_NOFS and
8522 * the allocation is backed by btrfs_bioset.
8523 */
8524 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8525 clone_len);
8526 bio->bi_private = dip;
8527 bio->bi_end_io = btrfs_end_dio_bio;
8528 btrfs_io_bio(bio)->logical = file_offset;
8529
8530 ASSERT(submit_len >= clone_len);
8531 submit_len -= clone_len;
8532 if (submit_len == 0)
8533 break;
8534
8535 /*
8536 * Increase the count before we submit the bio so we know
8537 * the end IO handler won't happen before we increase the
8538 * count. Otherwise, the dip might get freed before we're
8539 * done setting it up.
8540 */
8541 atomic_inc(&dip->pending_bios);
8542
8543 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8544 async_submit);
8545 if (ret) {
8546 bio_put(bio);
8547 atomic_dec(&dip->pending_bios);
8548 goto out_err;
8549 }
8550
8551 clone_offset += clone_len;
8552 start_sector += clone_len >> 9;
8553 file_offset += clone_len;
8554
8555 map_length = submit_len;
8556 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8557 start_sector << 9, &map_length, NULL, 0);
8558 if (ret)
8559 goto out_err;
8560 } while (submit_len > 0);
8561
8562 submit:
8563 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8564 async_submit);
8565 if (!ret)
8566 return 0;
8567
8568 bio_put(bio);
8569 out_err:
8570 dip->errors = 1;
8571 /*
8572 * before atomic variable goto zero, we must
8573 * make sure dip->errors is perceived to be set.
8574 */
8575 smp_mb__before_atomic();
8576 if (atomic_dec_and_test(&dip->pending_bios))
8577 bio_io_error(dip->orig_bio);
8578
8579 /* bio_end_io() will handle error, so we needn't return it */
8580 return 0;
8581 }
8582
8583 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8584 loff_t file_offset)
8585 {
8586 struct btrfs_dio_private *dip = NULL;
8587 struct bio *bio = NULL;
8588 struct btrfs_io_bio *io_bio;
8589 int skip_sum;
8590 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8591 int ret = 0;
8592
8593 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8594
8595 bio = btrfs_bio_clone(dio_bio);
8596
8597 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8598 if (!dip) {
8599 ret = -ENOMEM;
8600 goto free_ordered;
8601 }
8602
8603 dip->private = dio_bio->bi_private;
8604 dip->inode = inode;
8605 dip->logical_offset = file_offset;
8606 dip->bytes = dio_bio->bi_iter.bi_size;
8607 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8608 bio->bi_private = dip;
8609 dip->orig_bio = bio;
8610 dip->dio_bio = dio_bio;
8611 atomic_set(&dip->pending_bios, 0);
8612 io_bio = btrfs_io_bio(bio);
8613 io_bio->logical = file_offset;
8614
8615 if (write) {
8616 bio->bi_end_io = btrfs_endio_direct_write;
8617 } else {
8618 bio->bi_end_io = btrfs_endio_direct_read;
8619 dip->subio_endio = btrfs_subio_endio_read;
8620 }
8621
8622 /*
8623 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8624 * even if we fail to submit a bio, because in such case we do the
8625 * corresponding error handling below and it must not be done a second
8626 * time by btrfs_direct_IO().
8627 */
8628 if (write) {
8629 struct btrfs_dio_data *dio_data = current->journal_info;
8630
8631 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8632 dip->bytes;
8633 dio_data->unsubmitted_oe_range_start =
8634 dio_data->unsubmitted_oe_range_end;
8635 }
8636
8637 ret = btrfs_submit_direct_hook(dip, skip_sum);
8638 if (!ret)
8639 return;
8640
8641 if (io_bio->end_io)
8642 io_bio->end_io(io_bio, ret);
8643
8644 free_ordered:
8645 /*
8646 * If we arrived here it means either we failed to submit the dip
8647 * or we either failed to clone the dio_bio or failed to allocate the
8648 * dip. If we cloned the dio_bio and allocated the dip, we can just
8649 * call bio_endio against our io_bio so that we get proper resource
8650 * cleanup if we fail to submit the dip, otherwise, we must do the
8651 * same as btrfs_endio_direct_[write|read] because we can't call these
8652 * callbacks - they require an allocated dip and a clone of dio_bio.
8653 */
8654 if (bio && dip) {
8655 bio_io_error(bio);
8656 /*
8657 * The end io callbacks free our dip, do the final put on bio
8658 * and all the cleanup and final put for dio_bio (through
8659 * dio_end_io()).
8660 */
8661 dip = NULL;
8662 bio = NULL;
8663 } else {
8664 if (write)
8665 __endio_write_update_ordered(inode,
8666 file_offset,
8667 dio_bio->bi_iter.bi_size,
8668 false);
8669 else
8670 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8671 file_offset + dio_bio->bi_iter.bi_size - 1);
8672
8673 dio_bio->bi_error = -EIO;
8674 /*
8675 * Releases and cleans up our dio_bio, no need to bio_put()
8676 * nor bio_endio()/bio_io_error() against dio_bio.
8677 */
8678 dio_end_io(dio_bio, ret);
8679 }
8680 if (bio)
8681 bio_put(bio);
8682 kfree(dip);
8683 }
8684
8685 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8686 struct kiocb *iocb,
8687 const struct iov_iter *iter, loff_t offset)
8688 {
8689 int seg;
8690 int i;
8691 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8692 ssize_t retval = -EINVAL;
8693
8694 if (offset & blocksize_mask)
8695 goto out;
8696
8697 if (iov_iter_alignment(iter) & blocksize_mask)
8698 goto out;
8699
8700 /* If this is a write we don't need to check anymore */
8701 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8702 return 0;
8703 /*
8704 * Check to make sure we don't have duplicate iov_base's in this
8705 * iovec, if so return EINVAL, otherwise we'll get csum errors
8706 * when reading back.
8707 */
8708 for (seg = 0; seg < iter->nr_segs; seg++) {
8709 for (i = seg + 1; i < iter->nr_segs; i++) {
8710 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8711 goto out;
8712 }
8713 }
8714 retval = 0;
8715 out:
8716 return retval;
8717 }
8718
8719 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8720 {
8721 struct file *file = iocb->ki_filp;
8722 struct inode *inode = file->f_mapping->host;
8723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8724 struct btrfs_dio_data dio_data = { 0 };
8725 struct extent_changeset *data_reserved = NULL;
8726 loff_t offset = iocb->ki_pos;
8727 size_t count = 0;
8728 int flags = 0;
8729 bool wakeup = true;
8730 bool relock = false;
8731 ssize_t ret;
8732
8733 if (check_direct_IO(fs_info, iocb, iter, offset))
8734 return 0;
8735
8736 inode_dio_begin(inode);
8737 smp_mb__after_atomic();
8738
8739 /*
8740 * The generic stuff only does filemap_write_and_wait_range, which
8741 * isn't enough if we've written compressed pages to this area, so
8742 * we need to flush the dirty pages again to make absolutely sure
8743 * that any outstanding dirty pages are on disk.
8744 */
8745 count = iov_iter_count(iter);
8746 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8747 &BTRFS_I(inode)->runtime_flags))
8748 filemap_fdatawrite_range(inode->i_mapping, offset,
8749 offset + count - 1);
8750
8751 if (iov_iter_rw(iter) == WRITE) {
8752 /*
8753 * If the write DIO is beyond the EOF, we need update
8754 * the isize, but it is protected by i_mutex. So we can
8755 * not unlock the i_mutex at this case.
8756 */
8757 if (offset + count <= inode->i_size) {
8758 dio_data.overwrite = 1;
8759 inode_unlock(inode);
8760 relock = true;
8761 }
8762 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8763 offset, count);
8764 if (ret)
8765 goto out;
8766 dio_data.outstanding_extents = count_max_extents(count);
8767
8768 /*
8769 * We need to know how many extents we reserved so that we can
8770 * do the accounting properly if we go over the number we
8771 * originally calculated. Abuse current->journal_info for this.
8772 */
8773 dio_data.reserve = round_up(count,
8774 fs_info->sectorsize);
8775 dio_data.unsubmitted_oe_range_start = (u64)offset;
8776 dio_data.unsubmitted_oe_range_end = (u64)offset;
8777 current->journal_info = &dio_data;
8778 down_read(&BTRFS_I(inode)->dio_sem);
8779 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8780 &BTRFS_I(inode)->runtime_flags)) {
8781 inode_dio_end(inode);
8782 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8783 wakeup = false;
8784 }
8785
8786 ret = __blockdev_direct_IO(iocb, inode,
8787 fs_info->fs_devices->latest_bdev,
8788 iter, btrfs_get_blocks_direct, NULL,
8789 btrfs_submit_direct, flags);
8790 if (iov_iter_rw(iter) == WRITE) {
8791 up_read(&BTRFS_I(inode)->dio_sem);
8792 current->journal_info = NULL;
8793 if (ret < 0 && ret != -EIOCBQUEUED) {
8794 if (dio_data.reserve)
8795 btrfs_delalloc_release_space(inode, data_reserved,
8796 offset, dio_data.reserve);
8797 /*
8798 * On error we might have left some ordered extents
8799 * without submitting corresponding bios for them, so
8800 * cleanup them up to avoid other tasks getting them
8801 * and waiting for them to complete forever.
8802 */
8803 if (dio_data.unsubmitted_oe_range_start <
8804 dio_data.unsubmitted_oe_range_end)
8805 __endio_write_update_ordered(inode,
8806 dio_data.unsubmitted_oe_range_start,
8807 dio_data.unsubmitted_oe_range_end -
8808 dio_data.unsubmitted_oe_range_start,
8809 false);
8810 } else if (ret >= 0 && (size_t)ret < count)
8811 btrfs_delalloc_release_space(inode, data_reserved,
8812 offset, count - (size_t)ret);
8813 }
8814 out:
8815 if (wakeup)
8816 inode_dio_end(inode);
8817 if (relock)
8818 inode_lock(inode);
8819
8820 extent_changeset_free(data_reserved);
8821 return ret;
8822 }
8823
8824 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8825
8826 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8827 __u64 start, __u64 len)
8828 {
8829 int ret;
8830
8831 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8832 if (ret)
8833 return ret;
8834
8835 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8836 }
8837
8838 int btrfs_readpage(struct file *file, struct page *page)
8839 {
8840 struct extent_io_tree *tree;
8841 tree = &BTRFS_I(page->mapping->host)->io_tree;
8842 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8843 }
8844
8845 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8846 {
8847 struct extent_io_tree *tree;
8848 struct inode *inode = page->mapping->host;
8849 int ret;
8850
8851 if (current->flags & PF_MEMALLOC) {
8852 redirty_page_for_writepage(wbc, page);
8853 unlock_page(page);
8854 return 0;
8855 }
8856
8857 /*
8858 * If we are under memory pressure we will call this directly from the
8859 * VM, we need to make sure we have the inode referenced for the ordered
8860 * extent. If not just return like we didn't do anything.
8861 */
8862 if (!igrab(inode)) {
8863 redirty_page_for_writepage(wbc, page);
8864 return AOP_WRITEPAGE_ACTIVATE;
8865 }
8866 tree = &BTRFS_I(page->mapping->host)->io_tree;
8867 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8868 btrfs_add_delayed_iput(inode);
8869 return ret;
8870 }
8871
8872 static int btrfs_writepages(struct address_space *mapping,
8873 struct writeback_control *wbc)
8874 {
8875 struct extent_io_tree *tree;
8876
8877 tree = &BTRFS_I(mapping->host)->io_tree;
8878 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8879 }
8880
8881 static int
8882 btrfs_readpages(struct file *file, struct address_space *mapping,
8883 struct list_head *pages, unsigned nr_pages)
8884 {
8885 struct extent_io_tree *tree;
8886 tree = &BTRFS_I(mapping->host)->io_tree;
8887 return extent_readpages(tree, mapping, pages, nr_pages,
8888 btrfs_get_extent);
8889 }
8890 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8891 {
8892 struct extent_io_tree *tree;
8893 struct extent_map_tree *map;
8894 int ret;
8895
8896 tree = &BTRFS_I(page->mapping->host)->io_tree;
8897 map = &BTRFS_I(page->mapping->host)->extent_tree;
8898 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8899 if (ret == 1) {
8900 ClearPagePrivate(page);
8901 set_page_private(page, 0);
8902 put_page(page);
8903 }
8904 return ret;
8905 }
8906
8907 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8908 {
8909 if (PageWriteback(page) || PageDirty(page))
8910 return 0;
8911 return __btrfs_releasepage(page, gfp_flags);
8912 }
8913
8914 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8915 unsigned int length)
8916 {
8917 struct inode *inode = page->mapping->host;
8918 struct extent_io_tree *tree;
8919 struct btrfs_ordered_extent *ordered;
8920 struct extent_state *cached_state = NULL;
8921 u64 page_start = page_offset(page);
8922 u64 page_end = page_start + PAGE_SIZE - 1;
8923 u64 start;
8924 u64 end;
8925 int inode_evicting = inode->i_state & I_FREEING;
8926
8927 /*
8928 * we have the page locked, so new writeback can't start,
8929 * and the dirty bit won't be cleared while we are here.
8930 *
8931 * Wait for IO on this page so that we can safely clear
8932 * the PagePrivate2 bit and do ordered accounting
8933 */
8934 wait_on_page_writeback(page);
8935
8936 tree = &BTRFS_I(inode)->io_tree;
8937 if (offset) {
8938 btrfs_releasepage(page, GFP_NOFS);
8939 return;
8940 }
8941
8942 if (!inode_evicting)
8943 lock_extent_bits(tree, page_start, page_end, &cached_state);
8944 again:
8945 start = page_start;
8946 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8947 page_end - start + 1);
8948 if (ordered) {
8949 end = min(page_end, ordered->file_offset + ordered->len - 1);
8950 /*
8951 * IO on this page will never be started, so we need
8952 * to account for any ordered extents now
8953 */
8954 if (!inode_evicting)
8955 clear_extent_bit(tree, start, end,
8956 EXTENT_DIRTY | EXTENT_DELALLOC |
8957 EXTENT_DELALLOC_NEW |
8958 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8959 EXTENT_DEFRAG, 1, 0, &cached_state,
8960 GFP_NOFS);
8961 /*
8962 * whoever cleared the private bit is responsible
8963 * for the finish_ordered_io
8964 */
8965 if (TestClearPagePrivate2(page)) {
8966 struct btrfs_ordered_inode_tree *tree;
8967 u64 new_len;
8968
8969 tree = &BTRFS_I(inode)->ordered_tree;
8970
8971 spin_lock_irq(&tree->lock);
8972 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8973 new_len = start - ordered->file_offset;
8974 if (new_len < ordered->truncated_len)
8975 ordered->truncated_len = new_len;
8976 spin_unlock_irq(&tree->lock);
8977
8978 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8979 start,
8980 end - start + 1, 1))
8981 btrfs_finish_ordered_io(ordered);
8982 }
8983 btrfs_put_ordered_extent(ordered);
8984 if (!inode_evicting) {
8985 cached_state = NULL;
8986 lock_extent_bits(tree, start, end,
8987 &cached_state);
8988 }
8989
8990 start = end + 1;
8991 if (start < page_end)
8992 goto again;
8993 }
8994
8995 /*
8996 * Qgroup reserved space handler
8997 * Page here will be either
8998 * 1) Already written to disk
8999 * In this case, its reserved space is released from data rsv map
9000 * and will be freed by delayed_ref handler finally.
9001 * So even we call qgroup_free_data(), it won't decrease reserved
9002 * space.
9003 * 2) Not written to disk
9004 * This means the reserved space should be freed here. However,
9005 * if a truncate invalidates the page (by clearing PageDirty)
9006 * and the page is accounted for while allocating extent
9007 * in btrfs_check_data_free_space() we let delayed_ref to
9008 * free the entire extent.
9009 */
9010 if (PageDirty(page))
9011 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9012 if (!inode_evicting) {
9013 clear_extent_bit(tree, page_start, page_end,
9014 EXTENT_LOCKED | EXTENT_DIRTY |
9015 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9016 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9017 &cached_state, GFP_NOFS);
9018
9019 __btrfs_releasepage(page, GFP_NOFS);
9020 }
9021
9022 ClearPageChecked(page);
9023 if (PagePrivate(page)) {
9024 ClearPagePrivate(page);
9025 set_page_private(page, 0);
9026 put_page(page);
9027 }
9028 }
9029
9030 /*
9031 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9032 * called from a page fault handler when a page is first dirtied. Hence we must
9033 * be careful to check for EOF conditions here. We set the page up correctly
9034 * for a written page which means we get ENOSPC checking when writing into
9035 * holes and correct delalloc and unwritten extent mapping on filesystems that
9036 * support these features.
9037 *
9038 * We are not allowed to take the i_mutex here so we have to play games to
9039 * protect against truncate races as the page could now be beyond EOF. Because
9040 * vmtruncate() writes the inode size before removing pages, once we have the
9041 * page lock we can determine safely if the page is beyond EOF. If it is not
9042 * beyond EOF, then the page is guaranteed safe against truncation until we
9043 * unlock the page.
9044 */
9045 int btrfs_page_mkwrite(struct vm_fault *vmf)
9046 {
9047 struct page *page = vmf->page;
9048 struct inode *inode = file_inode(vmf->vma->vm_file);
9049 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9050 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9051 struct btrfs_ordered_extent *ordered;
9052 struct extent_state *cached_state = NULL;
9053 struct extent_changeset *data_reserved = NULL;
9054 char *kaddr;
9055 unsigned long zero_start;
9056 loff_t size;
9057 int ret;
9058 int reserved = 0;
9059 u64 reserved_space;
9060 u64 page_start;
9061 u64 page_end;
9062 u64 end;
9063
9064 reserved_space = PAGE_SIZE;
9065
9066 sb_start_pagefault(inode->i_sb);
9067 page_start = page_offset(page);
9068 page_end = page_start + PAGE_SIZE - 1;
9069 end = page_end;
9070
9071 /*
9072 * Reserving delalloc space after obtaining the page lock can lead to
9073 * deadlock. For example, if a dirty page is locked by this function
9074 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9075 * dirty page write out, then the btrfs_writepage() function could
9076 * end up waiting indefinitely to get a lock on the page currently
9077 * being processed by btrfs_page_mkwrite() function.
9078 */
9079 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9080 reserved_space);
9081 if (!ret) {
9082 ret = file_update_time(vmf->vma->vm_file);
9083 reserved = 1;
9084 }
9085 if (ret) {
9086 if (ret == -ENOMEM)
9087 ret = VM_FAULT_OOM;
9088 else /* -ENOSPC, -EIO, etc */
9089 ret = VM_FAULT_SIGBUS;
9090 if (reserved)
9091 goto out;
9092 goto out_noreserve;
9093 }
9094
9095 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9096 again:
9097 lock_page(page);
9098 size = i_size_read(inode);
9099
9100 if ((page->mapping != inode->i_mapping) ||
9101 (page_start >= size)) {
9102 /* page got truncated out from underneath us */
9103 goto out_unlock;
9104 }
9105 wait_on_page_writeback(page);
9106
9107 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9108 set_page_extent_mapped(page);
9109
9110 /*
9111 * we can't set the delalloc bits if there are pending ordered
9112 * extents. Drop our locks and wait for them to finish
9113 */
9114 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9115 PAGE_SIZE);
9116 if (ordered) {
9117 unlock_extent_cached(io_tree, page_start, page_end,
9118 &cached_state, GFP_NOFS);
9119 unlock_page(page);
9120 btrfs_start_ordered_extent(inode, ordered, 1);
9121 btrfs_put_ordered_extent(ordered);
9122 goto again;
9123 }
9124
9125 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9126 reserved_space = round_up(size - page_start,
9127 fs_info->sectorsize);
9128 if (reserved_space < PAGE_SIZE) {
9129 end = page_start + reserved_space - 1;
9130 spin_lock(&BTRFS_I(inode)->lock);
9131 BTRFS_I(inode)->outstanding_extents++;
9132 spin_unlock(&BTRFS_I(inode)->lock);
9133 btrfs_delalloc_release_space(inode, data_reserved,
9134 page_start, PAGE_SIZE - reserved_space);
9135 }
9136 }
9137
9138 /*
9139 * page_mkwrite gets called when the page is firstly dirtied after it's
9140 * faulted in, but write(2) could also dirty a page and set delalloc
9141 * bits, thus in this case for space account reason, we still need to
9142 * clear any delalloc bits within this page range since we have to
9143 * reserve data&meta space before lock_page() (see above comments).
9144 */
9145 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9146 EXTENT_DIRTY | EXTENT_DELALLOC |
9147 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9148 0, 0, &cached_state, GFP_NOFS);
9149
9150 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9151 &cached_state, 0);
9152 if (ret) {
9153 unlock_extent_cached(io_tree, page_start, page_end,
9154 &cached_state, GFP_NOFS);
9155 ret = VM_FAULT_SIGBUS;
9156 goto out_unlock;
9157 }
9158 ret = 0;
9159
9160 /* page is wholly or partially inside EOF */
9161 if (page_start + PAGE_SIZE > size)
9162 zero_start = size & ~PAGE_MASK;
9163 else
9164 zero_start = PAGE_SIZE;
9165
9166 if (zero_start != PAGE_SIZE) {
9167 kaddr = kmap(page);
9168 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9169 flush_dcache_page(page);
9170 kunmap(page);
9171 }
9172 ClearPageChecked(page);
9173 set_page_dirty(page);
9174 SetPageUptodate(page);
9175
9176 BTRFS_I(inode)->last_trans = fs_info->generation;
9177 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9178 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9179
9180 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9181
9182 out_unlock:
9183 if (!ret) {
9184 sb_end_pagefault(inode->i_sb);
9185 extent_changeset_free(data_reserved);
9186 return VM_FAULT_LOCKED;
9187 }
9188 unlock_page(page);
9189 out:
9190 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9191 reserved_space);
9192 out_noreserve:
9193 sb_end_pagefault(inode->i_sb);
9194 extent_changeset_free(data_reserved);
9195 return ret;
9196 }
9197
9198 static int btrfs_truncate(struct inode *inode)
9199 {
9200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9201 struct btrfs_root *root = BTRFS_I(inode)->root;
9202 struct btrfs_block_rsv *rsv;
9203 int ret = 0;
9204 int err = 0;
9205 struct btrfs_trans_handle *trans;
9206 u64 mask = fs_info->sectorsize - 1;
9207 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9208
9209 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9210 (u64)-1);
9211 if (ret)
9212 return ret;
9213
9214 /*
9215 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9216 * 3 things going on here
9217 *
9218 * 1) We need to reserve space for our orphan item and the space to
9219 * delete our orphan item. Lord knows we don't want to have a dangling
9220 * orphan item because we didn't reserve space to remove it.
9221 *
9222 * 2) We need to reserve space to update our inode.
9223 *
9224 * 3) We need to have something to cache all the space that is going to
9225 * be free'd up by the truncate operation, but also have some slack
9226 * space reserved in case it uses space during the truncate (thank you
9227 * very much snapshotting).
9228 *
9229 * And we need these to all be separate. The fact is we can use a lot of
9230 * space doing the truncate, and we have no earthly idea how much space
9231 * we will use, so we need the truncate reservation to be separate so it
9232 * doesn't end up using space reserved for updating the inode or
9233 * removing the orphan item. We also need to be able to stop the
9234 * transaction and start a new one, which means we need to be able to
9235 * update the inode several times, and we have no idea of knowing how
9236 * many times that will be, so we can't just reserve 1 item for the
9237 * entirety of the operation, so that has to be done separately as well.
9238 * Then there is the orphan item, which does indeed need to be held on
9239 * to for the whole operation, and we need nobody to touch this reserved
9240 * space except the orphan code.
9241 *
9242 * So that leaves us with
9243 *
9244 * 1) root->orphan_block_rsv - for the orphan deletion.
9245 * 2) rsv - for the truncate reservation, which we will steal from the
9246 * transaction reservation.
9247 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9248 * updating the inode.
9249 */
9250 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9251 if (!rsv)
9252 return -ENOMEM;
9253 rsv->size = min_size;
9254 rsv->failfast = 1;
9255
9256 /*
9257 * 1 for the truncate slack space
9258 * 1 for updating the inode.
9259 */
9260 trans = btrfs_start_transaction(root, 2);
9261 if (IS_ERR(trans)) {
9262 err = PTR_ERR(trans);
9263 goto out;
9264 }
9265
9266 /* Migrate the slack space for the truncate to our reserve */
9267 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9268 min_size, 0);
9269 BUG_ON(ret);
9270
9271 /*
9272 * So if we truncate and then write and fsync we normally would just
9273 * write the extents that changed, which is a problem if we need to
9274 * first truncate that entire inode. So set this flag so we write out
9275 * all of the extents in the inode to the sync log so we're completely
9276 * safe.
9277 */
9278 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9279 trans->block_rsv = rsv;
9280
9281 while (1) {
9282 ret = btrfs_truncate_inode_items(trans, root, inode,
9283 inode->i_size,
9284 BTRFS_EXTENT_DATA_KEY);
9285 if (ret != -ENOSPC && ret != -EAGAIN) {
9286 err = ret;
9287 break;
9288 }
9289
9290 trans->block_rsv = &fs_info->trans_block_rsv;
9291 ret = btrfs_update_inode(trans, root, inode);
9292 if (ret) {
9293 err = ret;
9294 break;
9295 }
9296
9297 btrfs_end_transaction(trans);
9298 btrfs_btree_balance_dirty(fs_info);
9299
9300 trans = btrfs_start_transaction(root, 2);
9301 if (IS_ERR(trans)) {
9302 ret = err = PTR_ERR(trans);
9303 trans = NULL;
9304 break;
9305 }
9306
9307 btrfs_block_rsv_release(fs_info, rsv, -1);
9308 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9309 rsv, min_size, 0);
9310 BUG_ON(ret); /* shouldn't happen */
9311 trans->block_rsv = rsv;
9312 }
9313
9314 if (ret == 0 && inode->i_nlink > 0) {
9315 trans->block_rsv = root->orphan_block_rsv;
9316 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9317 if (ret)
9318 err = ret;
9319 }
9320
9321 if (trans) {
9322 trans->block_rsv = &fs_info->trans_block_rsv;
9323 ret = btrfs_update_inode(trans, root, inode);
9324 if (ret && !err)
9325 err = ret;
9326
9327 ret = btrfs_end_transaction(trans);
9328 btrfs_btree_balance_dirty(fs_info);
9329 }
9330 out:
9331 btrfs_free_block_rsv(fs_info, rsv);
9332
9333 if (ret && !err)
9334 err = ret;
9335
9336 return err;
9337 }
9338
9339 /*
9340 * create a new subvolume directory/inode (helper for the ioctl).
9341 */
9342 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9343 struct btrfs_root *new_root,
9344 struct btrfs_root *parent_root,
9345 u64 new_dirid)
9346 {
9347 struct inode *inode;
9348 int err;
9349 u64 index = 0;
9350
9351 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9352 new_dirid, new_dirid,
9353 S_IFDIR | (~current_umask() & S_IRWXUGO),
9354 &index);
9355 if (IS_ERR(inode))
9356 return PTR_ERR(inode);
9357 inode->i_op = &btrfs_dir_inode_operations;
9358 inode->i_fop = &btrfs_dir_file_operations;
9359
9360 set_nlink(inode, 1);
9361 btrfs_i_size_write(BTRFS_I(inode), 0);
9362 unlock_new_inode(inode);
9363
9364 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9365 if (err)
9366 btrfs_err(new_root->fs_info,
9367 "error inheriting subvolume %llu properties: %d",
9368 new_root->root_key.objectid, err);
9369
9370 err = btrfs_update_inode(trans, new_root, inode);
9371
9372 iput(inode);
9373 return err;
9374 }
9375
9376 struct inode *btrfs_alloc_inode(struct super_block *sb)
9377 {
9378 struct btrfs_inode *ei;
9379 struct inode *inode;
9380
9381 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9382 if (!ei)
9383 return NULL;
9384
9385 ei->root = NULL;
9386 ei->generation = 0;
9387 ei->last_trans = 0;
9388 ei->last_sub_trans = 0;
9389 ei->logged_trans = 0;
9390 ei->delalloc_bytes = 0;
9391 ei->new_delalloc_bytes = 0;
9392 ei->defrag_bytes = 0;
9393 ei->disk_i_size = 0;
9394 ei->flags = 0;
9395 ei->csum_bytes = 0;
9396 ei->index_cnt = (u64)-1;
9397 ei->dir_index = 0;
9398 ei->last_unlink_trans = 0;
9399 ei->last_log_commit = 0;
9400 ei->delayed_iput_count = 0;
9401
9402 spin_lock_init(&ei->lock);
9403 ei->outstanding_extents = 0;
9404 ei->reserved_extents = 0;
9405
9406 ei->runtime_flags = 0;
9407 ei->force_compress = BTRFS_COMPRESS_NONE;
9408
9409 ei->delayed_node = NULL;
9410
9411 ei->i_otime.tv_sec = 0;
9412 ei->i_otime.tv_nsec = 0;
9413
9414 inode = &ei->vfs_inode;
9415 extent_map_tree_init(&ei->extent_tree);
9416 extent_io_tree_init(&ei->io_tree, inode);
9417 extent_io_tree_init(&ei->io_failure_tree, inode);
9418 ei->io_tree.track_uptodate = 1;
9419 ei->io_failure_tree.track_uptodate = 1;
9420 atomic_set(&ei->sync_writers, 0);
9421 mutex_init(&ei->log_mutex);
9422 mutex_init(&ei->delalloc_mutex);
9423 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9424 INIT_LIST_HEAD(&ei->delalloc_inodes);
9425 INIT_LIST_HEAD(&ei->delayed_iput);
9426 RB_CLEAR_NODE(&ei->rb_node);
9427 init_rwsem(&ei->dio_sem);
9428
9429 return inode;
9430 }
9431
9432 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9433 void btrfs_test_destroy_inode(struct inode *inode)
9434 {
9435 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9436 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9437 }
9438 #endif
9439
9440 static void btrfs_i_callback(struct rcu_head *head)
9441 {
9442 struct inode *inode = container_of(head, struct inode, i_rcu);
9443 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9444 }
9445
9446 void btrfs_destroy_inode(struct inode *inode)
9447 {
9448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9449 struct btrfs_ordered_extent *ordered;
9450 struct btrfs_root *root = BTRFS_I(inode)->root;
9451
9452 WARN_ON(!hlist_empty(&inode->i_dentry));
9453 WARN_ON(inode->i_data.nrpages);
9454 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9455 WARN_ON(BTRFS_I(inode)->reserved_extents);
9456 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9457 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9458 WARN_ON(BTRFS_I(inode)->csum_bytes);
9459 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9460
9461 /*
9462 * This can happen where we create an inode, but somebody else also
9463 * created the same inode and we need to destroy the one we already
9464 * created.
9465 */
9466 if (!root)
9467 goto free;
9468
9469 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9470 &BTRFS_I(inode)->runtime_flags)) {
9471 btrfs_info(fs_info, "inode %llu still on the orphan list",
9472 btrfs_ino(BTRFS_I(inode)));
9473 atomic_dec(&root->orphan_inodes);
9474 }
9475
9476 while (1) {
9477 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9478 if (!ordered)
9479 break;
9480 else {
9481 btrfs_err(fs_info,
9482 "found ordered extent %llu %llu on inode cleanup",
9483 ordered->file_offset, ordered->len);
9484 btrfs_remove_ordered_extent(inode, ordered);
9485 btrfs_put_ordered_extent(ordered);
9486 btrfs_put_ordered_extent(ordered);
9487 }
9488 }
9489 btrfs_qgroup_check_reserved_leak(inode);
9490 inode_tree_del(inode);
9491 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9492 free:
9493 call_rcu(&inode->i_rcu, btrfs_i_callback);
9494 }
9495
9496 int btrfs_drop_inode(struct inode *inode)
9497 {
9498 struct btrfs_root *root = BTRFS_I(inode)->root;
9499
9500 if (root == NULL)
9501 return 1;
9502
9503 /* the snap/subvol tree is on deleting */
9504 if (btrfs_root_refs(&root->root_item) == 0)
9505 return 1;
9506 else
9507 return generic_drop_inode(inode);
9508 }
9509
9510 static void init_once(void *foo)
9511 {
9512 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9513
9514 inode_init_once(&ei->vfs_inode);
9515 }
9516
9517 void btrfs_destroy_cachep(void)
9518 {
9519 /*
9520 * Make sure all delayed rcu free inodes are flushed before we
9521 * destroy cache.
9522 */
9523 rcu_barrier();
9524 kmem_cache_destroy(btrfs_inode_cachep);
9525 kmem_cache_destroy(btrfs_trans_handle_cachep);
9526 kmem_cache_destroy(btrfs_path_cachep);
9527 kmem_cache_destroy(btrfs_free_space_cachep);
9528 }
9529
9530 int btrfs_init_cachep(void)
9531 {
9532 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9533 sizeof(struct btrfs_inode), 0,
9534 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9535 init_once);
9536 if (!btrfs_inode_cachep)
9537 goto fail;
9538
9539 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9540 sizeof(struct btrfs_trans_handle), 0,
9541 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9542 if (!btrfs_trans_handle_cachep)
9543 goto fail;
9544
9545 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9546 sizeof(struct btrfs_path), 0,
9547 SLAB_MEM_SPREAD, NULL);
9548 if (!btrfs_path_cachep)
9549 goto fail;
9550
9551 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9552 sizeof(struct btrfs_free_space), 0,
9553 SLAB_MEM_SPREAD, NULL);
9554 if (!btrfs_free_space_cachep)
9555 goto fail;
9556
9557 return 0;
9558 fail:
9559 btrfs_destroy_cachep();
9560 return -ENOMEM;
9561 }
9562
9563 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9564 u32 request_mask, unsigned int flags)
9565 {
9566 u64 delalloc_bytes;
9567 struct inode *inode = d_inode(path->dentry);
9568 u32 blocksize = inode->i_sb->s_blocksize;
9569 u32 bi_flags = BTRFS_I(inode)->flags;
9570
9571 stat->result_mask |= STATX_BTIME;
9572 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9573 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9574 if (bi_flags & BTRFS_INODE_APPEND)
9575 stat->attributes |= STATX_ATTR_APPEND;
9576 if (bi_flags & BTRFS_INODE_COMPRESS)
9577 stat->attributes |= STATX_ATTR_COMPRESSED;
9578 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9579 stat->attributes |= STATX_ATTR_IMMUTABLE;
9580 if (bi_flags & BTRFS_INODE_NODUMP)
9581 stat->attributes |= STATX_ATTR_NODUMP;
9582
9583 stat->attributes_mask |= (STATX_ATTR_APPEND |
9584 STATX_ATTR_COMPRESSED |
9585 STATX_ATTR_IMMUTABLE |
9586 STATX_ATTR_NODUMP);
9587
9588 generic_fillattr(inode, stat);
9589 stat->dev = BTRFS_I(inode)->root->anon_dev;
9590
9591 spin_lock(&BTRFS_I(inode)->lock);
9592 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9593 spin_unlock(&BTRFS_I(inode)->lock);
9594 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9595 ALIGN(delalloc_bytes, blocksize)) >> 9;
9596 return 0;
9597 }
9598
9599 static int btrfs_rename_exchange(struct inode *old_dir,
9600 struct dentry *old_dentry,
9601 struct inode *new_dir,
9602 struct dentry *new_dentry)
9603 {
9604 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9605 struct btrfs_trans_handle *trans;
9606 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9607 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9608 struct inode *new_inode = new_dentry->d_inode;
9609 struct inode *old_inode = old_dentry->d_inode;
9610 struct timespec ctime = current_time(old_inode);
9611 struct dentry *parent;
9612 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9613 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9614 u64 old_idx = 0;
9615 u64 new_idx = 0;
9616 u64 root_objectid;
9617 int ret;
9618 bool root_log_pinned = false;
9619 bool dest_log_pinned = false;
9620
9621 /* we only allow rename subvolume link between subvolumes */
9622 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9623 return -EXDEV;
9624
9625 /* close the race window with snapshot create/destroy ioctl */
9626 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9627 down_read(&fs_info->subvol_sem);
9628 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9629 down_read(&fs_info->subvol_sem);
9630
9631 /*
9632 * We want to reserve the absolute worst case amount of items. So if
9633 * both inodes are subvols and we need to unlink them then that would
9634 * require 4 item modifications, but if they are both normal inodes it
9635 * would require 5 item modifications, so we'll assume their normal
9636 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9637 * should cover the worst case number of items we'll modify.
9638 */
9639 trans = btrfs_start_transaction(root, 12);
9640 if (IS_ERR(trans)) {
9641 ret = PTR_ERR(trans);
9642 goto out_notrans;
9643 }
9644
9645 /*
9646 * We need to find a free sequence number both in the source and
9647 * in the destination directory for the exchange.
9648 */
9649 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9650 if (ret)
9651 goto out_fail;
9652 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9653 if (ret)
9654 goto out_fail;
9655
9656 BTRFS_I(old_inode)->dir_index = 0ULL;
9657 BTRFS_I(new_inode)->dir_index = 0ULL;
9658
9659 /* Reference for the source. */
9660 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9661 /* force full log commit if subvolume involved. */
9662 btrfs_set_log_full_commit(fs_info, trans);
9663 } else {
9664 btrfs_pin_log_trans(root);
9665 root_log_pinned = true;
9666 ret = btrfs_insert_inode_ref(trans, dest,
9667 new_dentry->d_name.name,
9668 new_dentry->d_name.len,
9669 old_ino,
9670 btrfs_ino(BTRFS_I(new_dir)),
9671 old_idx);
9672 if (ret)
9673 goto out_fail;
9674 }
9675
9676 /* And now for the dest. */
9677 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9678 /* force full log commit if subvolume involved. */
9679 btrfs_set_log_full_commit(fs_info, trans);
9680 } else {
9681 btrfs_pin_log_trans(dest);
9682 dest_log_pinned = true;
9683 ret = btrfs_insert_inode_ref(trans, root,
9684 old_dentry->d_name.name,
9685 old_dentry->d_name.len,
9686 new_ino,
9687 btrfs_ino(BTRFS_I(old_dir)),
9688 new_idx);
9689 if (ret)
9690 goto out_fail;
9691 }
9692
9693 /* Update inode version and ctime/mtime. */
9694 inode_inc_iversion(old_dir);
9695 inode_inc_iversion(new_dir);
9696 inode_inc_iversion(old_inode);
9697 inode_inc_iversion(new_inode);
9698 old_dir->i_ctime = old_dir->i_mtime = ctime;
9699 new_dir->i_ctime = new_dir->i_mtime = ctime;
9700 old_inode->i_ctime = ctime;
9701 new_inode->i_ctime = ctime;
9702
9703 if (old_dentry->d_parent != new_dentry->d_parent) {
9704 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9705 BTRFS_I(old_inode), 1);
9706 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9707 BTRFS_I(new_inode), 1);
9708 }
9709
9710 /* src is a subvolume */
9711 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9712 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9713 ret = btrfs_unlink_subvol(trans, root, old_dir,
9714 root_objectid,
9715 old_dentry->d_name.name,
9716 old_dentry->d_name.len);
9717 } else { /* src is an inode */
9718 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9719 BTRFS_I(old_dentry->d_inode),
9720 old_dentry->d_name.name,
9721 old_dentry->d_name.len);
9722 if (!ret)
9723 ret = btrfs_update_inode(trans, root, old_inode);
9724 }
9725 if (ret) {
9726 btrfs_abort_transaction(trans, ret);
9727 goto out_fail;
9728 }
9729
9730 /* dest is a subvolume */
9731 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9732 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9733 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9734 root_objectid,
9735 new_dentry->d_name.name,
9736 new_dentry->d_name.len);
9737 } else { /* dest is an inode */
9738 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9739 BTRFS_I(new_dentry->d_inode),
9740 new_dentry->d_name.name,
9741 new_dentry->d_name.len);
9742 if (!ret)
9743 ret = btrfs_update_inode(trans, dest, new_inode);
9744 }
9745 if (ret) {
9746 btrfs_abort_transaction(trans, ret);
9747 goto out_fail;
9748 }
9749
9750 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9751 new_dentry->d_name.name,
9752 new_dentry->d_name.len, 0, old_idx);
9753 if (ret) {
9754 btrfs_abort_transaction(trans, ret);
9755 goto out_fail;
9756 }
9757
9758 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9759 old_dentry->d_name.name,
9760 old_dentry->d_name.len, 0, new_idx);
9761 if (ret) {
9762 btrfs_abort_transaction(trans, ret);
9763 goto out_fail;
9764 }
9765
9766 if (old_inode->i_nlink == 1)
9767 BTRFS_I(old_inode)->dir_index = old_idx;
9768 if (new_inode->i_nlink == 1)
9769 BTRFS_I(new_inode)->dir_index = new_idx;
9770
9771 if (root_log_pinned) {
9772 parent = new_dentry->d_parent;
9773 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9774 parent);
9775 btrfs_end_log_trans(root);
9776 root_log_pinned = false;
9777 }
9778 if (dest_log_pinned) {
9779 parent = old_dentry->d_parent;
9780 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9781 parent);
9782 btrfs_end_log_trans(dest);
9783 dest_log_pinned = false;
9784 }
9785 out_fail:
9786 /*
9787 * If we have pinned a log and an error happened, we unpin tasks
9788 * trying to sync the log and force them to fallback to a transaction
9789 * commit if the log currently contains any of the inodes involved in
9790 * this rename operation (to ensure we do not persist a log with an
9791 * inconsistent state for any of these inodes or leading to any
9792 * inconsistencies when replayed). If the transaction was aborted, the
9793 * abortion reason is propagated to userspace when attempting to commit
9794 * the transaction. If the log does not contain any of these inodes, we
9795 * allow the tasks to sync it.
9796 */
9797 if (ret && (root_log_pinned || dest_log_pinned)) {
9798 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9799 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9800 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9801 (new_inode &&
9802 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9803 btrfs_set_log_full_commit(fs_info, trans);
9804
9805 if (root_log_pinned) {
9806 btrfs_end_log_trans(root);
9807 root_log_pinned = false;
9808 }
9809 if (dest_log_pinned) {
9810 btrfs_end_log_trans(dest);
9811 dest_log_pinned = false;
9812 }
9813 }
9814 ret = btrfs_end_transaction(trans);
9815 out_notrans:
9816 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9817 up_read(&fs_info->subvol_sem);
9818 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9819 up_read(&fs_info->subvol_sem);
9820
9821 return ret;
9822 }
9823
9824 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9825 struct btrfs_root *root,
9826 struct inode *dir,
9827 struct dentry *dentry)
9828 {
9829 int ret;
9830 struct inode *inode;
9831 u64 objectid;
9832 u64 index;
9833
9834 ret = btrfs_find_free_ino(root, &objectid);
9835 if (ret)
9836 return ret;
9837
9838 inode = btrfs_new_inode(trans, root, dir,
9839 dentry->d_name.name,
9840 dentry->d_name.len,
9841 btrfs_ino(BTRFS_I(dir)),
9842 objectid,
9843 S_IFCHR | WHITEOUT_MODE,
9844 &index);
9845
9846 if (IS_ERR(inode)) {
9847 ret = PTR_ERR(inode);
9848 return ret;
9849 }
9850
9851 inode->i_op = &btrfs_special_inode_operations;
9852 init_special_inode(inode, inode->i_mode,
9853 WHITEOUT_DEV);
9854
9855 ret = btrfs_init_inode_security(trans, inode, dir,
9856 &dentry->d_name);
9857 if (ret)
9858 goto out;
9859
9860 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9861 BTRFS_I(inode), 0, index);
9862 if (ret)
9863 goto out;
9864
9865 ret = btrfs_update_inode(trans, root, inode);
9866 out:
9867 unlock_new_inode(inode);
9868 if (ret)
9869 inode_dec_link_count(inode);
9870 iput(inode);
9871
9872 return ret;
9873 }
9874
9875 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9876 struct inode *new_dir, struct dentry *new_dentry,
9877 unsigned int flags)
9878 {
9879 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9880 struct btrfs_trans_handle *trans;
9881 unsigned int trans_num_items;
9882 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9883 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9884 struct inode *new_inode = d_inode(new_dentry);
9885 struct inode *old_inode = d_inode(old_dentry);
9886 u64 index = 0;
9887 u64 root_objectid;
9888 int ret;
9889 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9890 bool log_pinned = false;
9891
9892 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9893 return -EPERM;
9894
9895 /* we only allow rename subvolume link between subvolumes */
9896 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9897 return -EXDEV;
9898
9899 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9900 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9901 return -ENOTEMPTY;
9902
9903 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9904 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9905 return -ENOTEMPTY;
9906
9907
9908 /* check for collisions, even if the name isn't there */
9909 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9910 new_dentry->d_name.name,
9911 new_dentry->d_name.len);
9912
9913 if (ret) {
9914 if (ret == -EEXIST) {
9915 /* we shouldn't get
9916 * eexist without a new_inode */
9917 if (WARN_ON(!new_inode)) {
9918 return ret;
9919 }
9920 } else {
9921 /* maybe -EOVERFLOW */
9922 return ret;
9923 }
9924 }
9925 ret = 0;
9926
9927 /*
9928 * we're using rename to replace one file with another. Start IO on it
9929 * now so we don't add too much work to the end of the transaction
9930 */
9931 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9932 filemap_flush(old_inode->i_mapping);
9933
9934 /* close the racy window with snapshot create/destroy ioctl */
9935 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9936 down_read(&fs_info->subvol_sem);
9937 /*
9938 * We want to reserve the absolute worst case amount of items. So if
9939 * both inodes are subvols and we need to unlink them then that would
9940 * require 4 item modifications, but if they are both normal inodes it
9941 * would require 5 item modifications, so we'll assume they are normal
9942 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9943 * should cover the worst case number of items we'll modify.
9944 * If our rename has the whiteout flag, we need more 5 units for the
9945 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9946 * when selinux is enabled).
9947 */
9948 trans_num_items = 11;
9949 if (flags & RENAME_WHITEOUT)
9950 trans_num_items += 5;
9951 trans = btrfs_start_transaction(root, trans_num_items);
9952 if (IS_ERR(trans)) {
9953 ret = PTR_ERR(trans);
9954 goto out_notrans;
9955 }
9956
9957 if (dest != root)
9958 btrfs_record_root_in_trans(trans, dest);
9959
9960 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9961 if (ret)
9962 goto out_fail;
9963
9964 BTRFS_I(old_inode)->dir_index = 0ULL;
9965 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9966 /* force full log commit if subvolume involved. */
9967 btrfs_set_log_full_commit(fs_info, trans);
9968 } else {
9969 btrfs_pin_log_trans(root);
9970 log_pinned = true;
9971 ret = btrfs_insert_inode_ref(trans, dest,
9972 new_dentry->d_name.name,
9973 new_dentry->d_name.len,
9974 old_ino,
9975 btrfs_ino(BTRFS_I(new_dir)), index);
9976 if (ret)
9977 goto out_fail;
9978 }
9979
9980 inode_inc_iversion(old_dir);
9981 inode_inc_iversion(new_dir);
9982 inode_inc_iversion(old_inode);
9983 old_dir->i_ctime = old_dir->i_mtime =
9984 new_dir->i_ctime = new_dir->i_mtime =
9985 old_inode->i_ctime = current_time(old_dir);
9986
9987 if (old_dentry->d_parent != new_dentry->d_parent)
9988 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9989 BTRFS_I(old_inode), 1);
9990
9991 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9992 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9993 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9994 old_dentry->d_name.name,
9995 old_dentry->d_name.len);
9996 } else {
9997 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9998 BTRFS_I(d_inode(old_dentry)),
9999 old_dentry->d_name.name,
10000 old_dentry->d_name.len);
10001 if (!ret)
10002 ret = btrfs_update_inode(trans, root, old_inode);
10003 }
10004 if (ret) {
10005 btrfs_abort_transaction(trans, ret);
10006 goto out_fail;
10007 }
10008
10009 if (new_inode) {
10010 inode_inc_iversion(new_inode);
10011 new_inode->i_ctime = current_time(new_inode);
10012 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10013 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10014 root_objectid = BTRFS_I(new_inode)->location.objectid;
10015 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10016 root_objectid,
10017 new_dentry->d_name.name,
10018 new_dentry->d_name.len);
10019 BUG_ON(new_inode->i_nlink == 0);
10020 } else {
10021 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10022 BTRFS_I(d_inode(new_dentry)),
10023 new_dentry->d_name.name,
10024 new_dentry->d_name.len);
10025 }
10026 if (!ret && new_inode->i_nlink == 0)
10027 ret = btrfs_orphan_add(trans,
10028 BTRFS_I(d_inode(new_dentry)));
10029 if (ret) {
10030 btrfs_abort_transaction(trans, ret);
10031 goto out_fail;
10032 }
10033 }
10034
10035 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10036 new_dentry->d_name.name,
10037 new_dentry->d_name.len, 0, index);
10038 if (ret) {
10039 btrfs_abort_transaction(trans, ret);
10040 goto out_fail;
10041 }
10042
10043 if (old_inode->i_nlink == 1)
10044 BTRFS_I(old_inode)->dir_index = index;
10045
10046 if (log_pinned) {
10047 struct dentry *parent = new_dentry->d_parent;
10048
10049 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10050 parent);
10051 btrfs_end_log_trans(root);
10052 log_pinned = false;
10053 }
10054
10055 if (flags & RENAME_WHITEOUT) {
10056 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10057 old_dentry);
10058
10059 if (ret) {
10060 btrfs_abort_transaction(trans, ret);
10061 goto out_fail;
10062 }
10063 }
10064 out_fail:
10065 /*
10066 * If we have pinned the log and an error happened, we unpin tasks
10067 * trying to sync the log and force them to fallback to a transaction
10068 * commit if the log currently contains any of the inodes involved in
10069 * this rename operation (to ensure we do not persist a log with an
10070 * inconsistent state for any of these inodes or leading to any
10071 * inconsistencies when replayed). If the transaction was aborted, the
10072 * abortion reason is propagated to userspace when attempting to commit
10073 * the transaction. If the log does not contain any of these inodes, we
10074 * allow the tasks to sync it.
10075 */
10076 if (ret && log_pinned) {
10077 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10078 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10079 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10080 (new_inode &&
10081 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10082 btrfs_set_log_full_commit(fs_info, trans);
10083
10084 btrfs_end_log_trans(root);
10085 log_pinned = false;
10086 }
10087 btrfs_end_transaction(trans);
10088 out_notrans:
10089 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10090 up_read(&fs_info->subvol_sem);
10091
10092 return ret;
10093 }
10094
10095 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10096 struct inode *new_dir, struct dentry *new_dentry,
10097 unsigned int flags)
10098 {
10099 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10100 return -EINVAL;
10101
10102 if (flags & RENAME_EXCHANGE)
10103 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10104 new_dentry);
10105
10106 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10107 }
10108
10109 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10110 {
10111 struct btrfs_delalloc_work *delalloc_work;
10112 struct inode *inode;
10113
10114 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10115 work);
10116 inode = delalloc_work->inode;
10117 filemap_flush(inode->i_mapping);
10118 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10119 &BTRFS_I(inode)->runtime_flags))
10120 filemap_flush(inode->i_mapping);
10121
10122 if (delalloc_work->delay_iput)
10123 btrfs_add_delayed_iput(inode);
10124 else
10125 iput(inode);
10126 complete(&delalloc_work->completion);
10127 }
10128
10129 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10130 int delay_iput)
10131 {
10132 struct btrfs_delalloc_work *work;
10133
10134 work = kmalloc(sizeof(*work), GFP_NOFS);
10135 if (!work)
10136 return NULL;
10137
10138 init_completion(&work->completion);
10139 INIT_LIST_HEAD(&work->list);
10140 work->inode = inode;
10141 work->delay_iput = delay_iput;
10142 WARN_ON_ONCE(!inode);
10143 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10144 btrfs_run_delalloc_work, NULL, NULL);
10145
10146 return work;
10147 }
10148
10149 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10150 {
10151 wait_for_completion(&work->completion);
10152 kfree(work);
10153 }
10154
10155 /*
10156 * some fairly slow code that needs optimization. This walks the list
10157 * of all the inodes with pending delalloc and forces them to disk.
10158 */
10159 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10160 int nr)
10161 {
10162 struct btrfs_inode *binode;
10163 struct inode *inode;
10164 struct btrfs_delalloc_work *work, *next;
10165 struct list_head works;
10166 struct list_head splice;
10167 int ret = 0;
10168
10169 INIT_LIST_HEAD(&works);
10170 INIT_LIST_HEAD(&splice);
10171
10172 mutex_lock(&root->delalloc_mutex);
10173 spin_lock(&root->delalloc_lock);
10174 list_splice_init(&root->delalloc_inodes, &splice);
10175 while (!list_empty(&splice)) {
10176 binode = list_entry(splice.next, struct btrfs_inode,
10177 delalloc_inodes);
10178
10179 list_move_tail(&binode->delalloc_inodes,
10180 &root->delalloc_inodes);
10181 inode = igrab(&binode->vfs_inode);
10182 if (!inode) {
10183 cond_resched_lock(&root->delalloc_lock);
10184 continue;
10185 }
10186 spin_unlock(&root->delalloc_lock);
10187
10188 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10189 if (!work) {
10190 if (delay_iput)
10191 btrfs_add_delayed_iput(inode);
10192 else
10193 iput(inode);
10194 ret = -ENOMEM;
10195 goto out;
10196 }
10197 list_add_tail(&work->list, &works);
10198 btrfs_queue_work(root->fs_info->flush_workers,
10199 &work->work);
10200 ret++;
10201 if (nr != -1 && ret >= nr)
10202 goto out;
10203 cond_resched();
10204 spin_lock(&root->delalloc_lock);
10205 }
10206 spin_unlock(&root->delalloc_lock);
10207
10208 out:
10209 list_for_each_entry_safe(work, next, &works, list) {
10210 list_del_init(&work->list);
10211 btrfs_wait_and_free_delalloc_work(work);
10212 }
10213
10214 if (!list_empty_careful(&splice)) {
10215 spin_lock(&root->delalloc_lock);
10216 list_splice_tail(&splice, &root->delalloc_inodes);
10217 spin_unlock(&root->delalloc_lock);
10218 }
10219 mutex_unlock(&root->delalloc_mutex);
10220 return ret;
10221 }
10222
10223 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10224 {
10225 struct btrfs_fs_info *fs_info = root->fs_info;
10226 int ret;
10227
10228 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10229 return -EROFS;
10230
10231 ret = __start_delalloc_inodes(root, delay_iput, -1);
10232 if (ret > 0)
10233 ret = 0;
10234 /*
10235 * the filemap_flush will queue IO into the worker threads, but
10236 * we have to make sure the IO is actually started and that
10237 * ordered extents get created before we return
10238 */
10239 atomic_inc(&fs_info->async_submit_draining);
10240 while (atomic_read(&fs_info->nr_async_submits) ||
10241 atomic_read(&fs_info->async_delalloc_pages)) {
10242 wait_event(fs_info->async_submit_wait,
10243 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10244 atomic_read(&fs_info->async_delalloc_pages) == 0));
10245 }
10246 atomic_dec(&fs_info->async_submit_draining);
10247 return ret;
10248 }
10249
10250 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10251 int nr)
10252 {
10253 struct btrfs_root *root;
10254 struct list_head splice;
10255 int ret;
10256
10257 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10258 return -EROFS;
10259
10260 INIT_LIST_HEAD(&splice);
10261
10262 mutex_lock(&fs_info->delalloc_root_mutex);
10263 spin_lock(&fs_info->delalloc_root_lock);
10264 list_splice_init(&fs_info->delalloc_roots, &splice);
10265 while (!list_empty(&splice) && nr) {
10266 root = list_first_entry(&splice, struct btrfs_root,
10267 delalloc_root);
10268 root = btrfs_grab_fs_root(root);
10269 BUG_ON(!root);
10270 list_move_tail(&root->delalloc_root,
10271 &fs_info->delalloc_roots);
10272 spin_unlock(&fs_info->delalloc_root_lock);
10273
10274 ret = __start_delalloc_inodes(root, delay_iput, nr);
10275 btrfs_put_fs_root(root);
10276 if (ret < 0)
10277 goto out;
10278
10279 if (nr != -1) {
10280 nr -= ret;
10281 WARN_ON(nr < 0);
10282 }
10283 spin_lock(&fs_info->delalloc_root_lock);
10284 }
10285 spin_unlock(&fs_info->delalloc_root_lock);
10286
10287 ret = 0;
10288 atomic_inc(&fs_info->async_submit_draining);
10289 while (atomic_read(&fs_info->nr_async_submits) ||
10290 atomic_read(&fs_info->async_delalloc_pages)) {
10291 wait_event(fs_info->async_submit_wait,
10292 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10293 atomic_read(&fs_info->async_delalloc_pages) == 0));
10294 }
10295 atomic_dec(&fs_info->async_submit_draining);
10296 out:
10297 if (!list_empty_careful(&splice)) {
10298 spin_lock(&fs_info->delalloc_root_lock);
10299 list_splice_tail(&splice, &fs_info->delalloc_roots);
10300 spin_unlock(&fs_info->delalloc_root_lock);
10301 }
10302 mutex_unlock(&fs_info->delalloc_root_mutex);
10303 return ret;
10304 }
10305
10306 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10307 const char *symname)
10308 {
10309 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10310 struct btrfs_trans_handle *trans;
10311 struct btrfs_root *root = BTRFS_I(dir)->root;
10312 struct btrfs_path *path;
10313 struct btrfs_key key;
10314 struct inode *inode = NULL;
10315 int err;
10316 int drop_inode = 0;
10317 u64 objectid;
10318 u64 index = 0;
10319 int name_len;
10320 int datasize;
10321 unsigned long ptr;
10322 struct btrfs_file_extent_item *ei;
10323 struct extent_buffer *leaf;
10324
10325 name_len = strlen(symname);
10326 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10327 return -ENAMETOOLONG;
10328
10329 /*
10330 * 2 items for inode item and ref
10331 * 2 items for dir items
10332 * 1 item for updating parent inode item
10333 * 1 item for the inline extent item
10334 * 1 item for xattr if selinux is on
10335 */
10336 trans = btrfs_start_transaction(root, 7);
10337 if (IS_ERR(trans))
10338 return PTR_ERR(trans);
10339
10340 err = btrfs_find_free_ino(root, &objectid);
10341 if (err)
10342 goto out_unlock;
10343
10344 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10345 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10346 objectid, S_IFLNK|S_IRWXUGO, &index);
10347 if (IS_ERR(inode)) {
10348 err = PTR_ERR(inode);
10349 goto out_unlock;
10350 }
10351
10352 /*
10353 * If the active LSM wants to access the inode during
10354 * d_instantiate it needs these. Smack checks to see
10355 * if the filesystem supports xattrs by looking at the
10356 * ops vector.
10357 */
10358 inode->i_fop = &btrfs_file_operations;
10359 inode->i_op = &btrfs_file_inode_operations;
10360 inode->i_mapping->a_ops = &btrfs_aops;
10361 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10362
10363 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10364 if (err)
10365 goto out_unlock_inode;
10366
10367 path = btrfs_alloc_path();
10368 if (!path) {
10369 err = -ENOMEM;
10370 goto out_unlock_inode;
10371 }
10372 key.objectid = btrfs_ino(BTRFS_I(inode));
10373 key.offset = 0;
10374 key.type = BTRFS_EXTENT_DATA_KEY;
10375 datasize = btrfs_file_extent_calc_inline_size(name_len);
10376 err = btrfs_insert_empty_item(trans, root, path, &key,
10377 datasize);
10378 if (err) {
10379 btrfs_free_path(path);
10380 goto out_unlock_inode;
10381 }
10382 leaf = path->nodes[0];
10383 ei = btrfs_item_ptr(leaf, path->slots[0],
10384 struct btrfs_file_extent_item);
10385 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10386 btrfs_set_file_extent_type(leaf, ei,
10387 BTRFS_FILE_EXTENT_INLINE);
10388 btrfs_set_file_extent_encryption(leaf, ei, 0);
10389 btrfs_set_file_extent_compression(leaf, ei, 0);
10390 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10391 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10392
10393 ptr = btrfs_file_extent_inline_start(ei);
10394 write_extent_buffer(leaf, symname, ptr, name_len);
10395 btrfs_mark_buffer_dirty(leaf);
10396 btrfs_free_path(path);
10397
10398 inode->i_op = &btrfs_symlink_inode_operations;
10399 inode_nohighmem(inode);
10400 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10401 inode_set_bytes(inode, name_len);
10402 btrfs_i_size_write(BTRFS_I(inode), name_len);
10403 err = btrfs_update_inode(trans, root, inode);
10404 /*
10405 * Last step, add directory indexes for our symlink inode. This is the
10406 * last step to avoid extra cleanup of these indexes if an error happens
10407 * elsewhere above.
10408 */
10409 if (!err)
10410 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10411 BTRFS_I(inode), 0, index);
10412 if (err) {
10413 drop_inode = 1;
10414 goto out_unlock_inode;
10415 }
10416
10417 unlock_new_inode(inode);
10418 d_instantiate(dentry, inode);
10419
10420 out_unlock:
10421 btrfs_end_transaction(trans);
10422 if (drop_inode) {
10423 inode_dec_link_count(inode);
10424 iput(inode);
10425 }
10426 btrfs_btree_balance_dirty(fs_info);
10427 return err;
10428
10429 out_unlock_inode:
10430 drop_inode = 1;
10431 unlock_new_inode(inode);
10432 goto out_unlock;
10433 }
10434
10435 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10436 u64 start, u64 num_bytes, u64 min_size,
10437 loff_t actual_len, u64 *alloc_hint,
10438 struct btrfs_trans_handle *trans)
10439 {
10440 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10441 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10442 struct extent_map *em;
10443 struct btrfs_root *root = BTRFS_I(inode)->root;
10444 struct btrfs_key ins;
10445 u64 cur_offset = start;
10446 u64 i_size;
10447 u64 cur_bytes;
10448 u64 last_alloc = (u64)-1;
10449 int ret = 0;
10450 bool own_trans = true;
10451 u64 end = start + num_bytes - 1;
10452
10453 if (trans)
10454 own_trans = false;
10455 while (num_bytes > 0) {
10456 if (own_trans) {
10457 trans = btrfs_start_transaction(root, 3);
10458 if (IS_ERR(trans)) {
10459 ret = PTR_ERR(trans);
10460 break;
10461 }
10462 }
10463
10464 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10465 cur_bytes = max(cur_bytes, min_size);
10466 /*
10467 * If we are severely fragmented we could end up with really
10468 * small allocations, so if the allocator is returning small
10469 * chunks lets make its job easier by only searching for those
10470 * sized chunks.
10471 */
10472 cur_bytes = min(cur_bytes, last_alloc);
10473 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10474 min_size, 0, *alloc_hint, &ins, 1, 0);
10475 if (ret) {
10476 if (own_trans)
10477 btrfs_end_transaction(trans);
10478 break;
10479 }
10480 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10481
10482 last_alloc = ins.offset;
10483 ret = insert_reserved_file_extent(trans, inode,
10484 cur_offset, ins.objectid,
10485 ins.offset, ins.offset,
10486 ins.offset, 0, 0, 0,
10487 BTRFS_FILE_EXTENT_PREALLOC);
10488 if (ret) {
10489 btrfs_free_reserved_extent(fs_info, ins.objectid,
10490 ins.offset, 0);
10491 btrfs_abort_transaction(trans, ret);
10492 if (own_trans)
10493 btrfs_end_transaction(trans);
10494 break;
10495 }
10496
10497 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10498 cur_offset + ins.offset -1, 0);
10499
10500 em = alloc_extent_map();
10501 if (!em) {
10502 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10503 &BTRFS_I(inode)->runtime_flags);
10504 goto next;
10505 }
10506
10507 em->start = cur_offset;
10508 em->orig_start = cur_offset;
10509 em->len = ins.offset;
10510 em->block_start = ins.objectid;
10511 em->block_len = ins.offset;
10512 em->orig_block_len = ins.offset;
10513 em->ram_bytes = ins.offset;
10514 em->bdev = fs_info->fs_devices->latest_bdev;
10515 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10516 em->generation = trans->transid;
10517
10518 while (1) {
10519 write_lock(&em_tree->lock);
10520 ret = add_extent_mapping(em_tree, em, 1);
10521 write_unlock(&em_tree->lock);
10522 if (ret != -EEXIST)
10523 break;
10524 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10525 cur_offset + ins.offset - 1,
10526 0);
10527 }
10528 free_extent_map(em);
10529 next:
10530 num_bytes -= ins.offset;
10531 cur_offset += ins.offset;
10532 *alloc_hint = ins.objectid + ins.offset;
10533
10534 inode_inc_iversion(inode);
10535 inode->i_ctime = current_time(inode);
10536 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10537 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10538 (actual_len > inode->i_size) &&
10539 (cur_offset > inode->i_size)) {
10540 if (cur_offset > actual_len)
10541 i_size = actual_len;
10542 else
10543 i_size = cur_offset;
10544 i_size_write(inode, i_size);
10545 btrfs_ordered_update_i_size(inode, i_size, NULL);
10546 }
10547
10548 ret = btrfs_update_inode(trans, root, inode);
10549
10550 if (ret) {
10551 btrfs_abort_transaction(trans, ret);
10552 if (own_trans)
10553 btrfs_end_transaction(trans);
10554 break;
10555 }
10556
10557 if (own_trans)
10558 btrfs_end_transaction(trans);
10559 }
10560 if (cur_offset < end)
10561 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10562 end - cur_offset + 1);
10563 return ret;
10564 }
10565
10566 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10567 u64 start, u64 num_bytes, u64 min_size,
10568 loff_t actual_len, u64 *alloc_hint)
10569 {
10570 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10571 min_size, actual_len, alloc_hint,
10572 NULL);
10573 }
10574
10575 int btrfs_prealloc_file_range_trans(struct inode *inode,
10576 struct btrfs_trans_handle *trans, int mode,
10577 u64 start, u64 num_bytes, u64 min_size,
10578 loff_t actual_len, u64 *alloc_hint)
10579 {
10580 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10581 min_size, actual_len, alloc_hint, trans);
10582 }
10583
10584 static int btrfs_set_page_dirty(struct page *page)
10585 {
10586 return __set_page_dirty_nobuffers(page);
10587 }
10588
10589 static int btrfs_permission(struct inode *inode, int mask)
10590 {
10591 struct btrfs_root *root = BTRFS_I(inode)->root;
10592 umode_t mode = inode->i_mode;
10593
10594 if (mask & MAY_WRITE &&
10595 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10596 if (btrfs_root_readonly(root))
10597 return -EROFS;
10598 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10599 return -EACCES;
10600 }
10601 return generic_permission(inode, mask);
10602 }
10603
10604 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10605 {
10606 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10607 struct btrfs_trans_handle *trans;
10608 struct btrfs_root *root = BTRFS_I(dir)->root;
10609 struct inode *inode = NULL;
10610 u64 objectid;
10611 u64 index;
10612 int ret = 0;
10613
10614 /*
10615 * 5 units required for adding orphan entry
10616 */
10617 trans = btrfs_start_transaction(root, 5);
10618 if (IS_ERR(trans))
10619 return PTR_ERR(trans);
10620
10621 ret = btrfs_find_free_ino(root, &objectid);
10622 if (ret)
10623 goto out;
10624
10625 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10626 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10627 if (IS_ERR(inode)) {
10628 ret = PTR_ERR(inode);
10629 inode = NULL;
10630 goto out;
10631 }
10632
10633 inode->i_fop = &btrfs_file_operations;
10634 inode->i_op = &btrfs_file_inode_operations;
10635
10636 inode->i_mapping->a_ops = &btrfs_aops;
10637 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10638
10639 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10640 if (ret)
10641 goto out_inode;
10642
10643 ret = btrfs_update_inode(trans, root, inode);
10644 if (ret)
10645 goto out_inode;
10646 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10647 if (ret)
10648 goto out_inode;
10649
10650 /*
10651 * We set number of links to 0 in btrfs_new_inode(), and here we set
10652 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10653 * through:
10654 *
10655 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10656 */
10657 set_nlink(inode, 1);
10658 unlock_new_inode(inode);
10659 d_tmpfile(dentry, inode);
10660 mark_inode_dirty(inode);
10661
10662 out:
10663 btrfs_end_transaction(trans);
10664 if (ret)
10665 iput(inode);
10666 btrfs_balance_delayed_items(fs_info);
10667 btrfs_btree_balance_dirty(fs_info);
10668 return ret;
10669
10670 out_inode:
10671 unlock_new_inode(inode);
10672 goto out;
10673
10674 }
10675
10676 __attribute__((const))
10677 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10678 {
10679 return -EAGAIN;
10680 }
10681
10682 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10683 {
10684 struct inode *inode = private_data;
10685 return btrfs_sb(inode->i_sb);
10686 }
10687
10688 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10689 u64 start, u64 end)
10690 {
10691 struct inode *inode = private_data;
10692 u64 isize;
10693
10694 isize = i_size_read(inode);
10695 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10696 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10697 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10698 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10699 }
10700 }
10701
10702 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10703 {
10704 struct inode *inode = private_data;
10705 unsigned long index = start >> PAGE_SHIFT;
10706 unsigned long end_index = end >> PAGE_SHIFT;
10707 struct page *page;
10708
10709 while (index <= end_index) {
10710 page = find_get_page(inode->i_mapping, index);
10711 ASSERT(page); /* Pages should be in the extent_io_tree */
10712 set_page_writeback(page);
10713 put_page(page);
10714 index++;
10715 }
10716 }
10717
10718 static const struct inode_operations btrfs_dir_inode_operations = {
10719 .getattr = btrfs_getattr,
10720 .lookup = btrfs_lookup,
10721 .create = btrfs_create,
10722 .unlink = btrfs_unlink,
10723 .link = btrfs_link,
10724 .mkdir = btrfs_mkdir,
10725 .rmdir = btrfs_rmdir,
10726 .rename = btrfs_rename2,
10727 .symlink = btrfs_symlink,
10728 .setattr = btrfs_setattr,
10729 .mknod = btrfs_mknod,
10730 .listxattr = btrfs_listxattr,
10731 .permission = btrfs_permission,
10732 .get_acl = btrfs_get_acl,
10733 .set_acl = btrfs_set_acl,
10734 .update_time = btrfs_update_time,
10735 .tmpfile = btrfs_tmpfile,
10736 };
10737 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10738 .lookup = btrfs_lookup,
10739 .permission = btrfs_permission,
10740 .update_time = btrfs_update_time,
10741 };
10742
10743 static const struct file_operations btrfs_dir_file_operations = {
10744 .llseek = generic_file_llseek,
10745 .read = generic_read_dir,
10746 .iterate_shared = btrfs_real_readdir,
10747 .unlocked_ioctl = btrfs_ioctl,
10748 #ifdef CONFIG_COMPAT
10749 .compat_ioctl = btrfs_compat_ioctl,
10750 #endif
10751 .release = btrfs_release_file,
10752 .fsync = btrfs_sync_file,
10753 };
10754
10755 static const struct extent_io_ops btrfs_extent_io_ops = {
10756 /* mandatory callbacks */
10757 .submit_bio_hook = btrfs_submit_bio_hook,
10758 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10759 .merge_bio_hook = btrfs_merge_bio_hook,
10760 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10761 .tree_fs_info = iotree_fs_info,
10762 .set_range_writeback = btrfs_set_range_writeback,
10763
10764 /* optional callbacks */
10765 .fill_delalloc = run_delalloc_range,
10766 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10767 .writepage_start_hook = btrfs_writepage_start_hook,
10768 .set_bit_hook = btrfs_set_bit_hook,
10769 .clear_bit_hook = btrfs_clear_bit_hook,
10770 .merge_extent_hook = btrfs_merge_extent_hook,
10771 .split_extent_hook = btrfs_split_extent_hook,
10772 .check_extent_io_range = btrfs_check_extent_io_range,
10773 };
10774
10775 /*
10776 * btrfs doesn't support the bmap operation because swapfiles
10777 * use bmap to make a mapping of extents in the file. They assume
10778 * these extents won't change over the life of the file and they
10779 * use the bmap result to do IO directly to the drive.
10780 *
10781 * the btrfs bmap call would return logical addresses that aren't
10782 * suitable for IO and they also will change frequently as COW
10783 * operations happen. So, swapfile + btrfs == corruption.
10784 *
10785 * For now we're avoiding this by dropping bmap.
10786 */
10787 static const struct address_space_operations btrfs_aops = {
10788 .readpage = btrfs_readpage,
10789 .writepage = btrfs_writepage,
10790 .writepages = btrfs_writepages,
10791 .readpages = btrfs_readpages,
10792 .direct_IO = btrfs_direct_IO,
10793 .invalidatepage = btrfs_invalidatepage,
10794 .releasepage = btrfs_releasepage,
10795 .set_page_dirty = btrfs_set_page_dirty,
10796 .error_remove_page = generic_error_remove_page,
10797 };
10798
10799 static const struct address_space_operations btrfs_symlink_aops = {
10800 .readpage = btrfs_readpage,
10801 .writepage = btrfs_writepage,
10802 .invalidatepage = btrfs_invalidatepage,
10803 .releasepage = btrfs_releasepage,
10804 };
10805
10806 static const struct inode_operations btrfs_file_inode_operations = {
10807 .getattr = btrfs_getattr,
10808 .setattr = btrfs_setattr,
10809 .listxattr = btrfs_listxattr,
10810 .permission = btrfs_permission,
10811 .fiemap = btrfs_fiemap,
10812 .get_acl = btrfs_get_acl,
10813 .set_acl = btrfs_set_acl,
10814 .update_time = btrfs_update_time,
10815 };
10816 static const struct inode_operations btrfs_special_inode_operations = {
10817 .getattr = btrfs_getattr,
10818 .setattr = btrfs_setattr,
10819 .permission = btrfs_permission,
10820 .listxattr = btrfs_listxattr,
10821 .get_acl = btrfs_get_acl,
10822 .set_acl = btrfs_set_acl,
10823 .update_time = btrfs_update_time,
10824 };
10825 static const struct inode_operations btrfs_symlink_inode_operations = {
10826 .get_link = page_get_link,
10827 .getattr = btrfs_getattr,
10828 .setattr = btrfs_setattr,
10829 .permission = btrfs_permission,
10830 .listxattr = btrfs_listxattr,
10831 .update_time = btrfs_update_time,
10832 };
10833
10834 const struct dentry_operations btrfs_dentry_operations = {
10835 .d_delete = btrfs_dentry_delete,
10836 .d_release = btrfs_dentry_release,
10837 };