]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/inode.c
6b8becfe2057c6b071aa5ec061558770a361797c
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95 };
96
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
109
110 static int btrfs_dirty_inode(struct inode *inode);
111
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
122 {
123 int err;
124
125 err = btrfs_init_acl(trans, inode, dir);
126 if (!err)
127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 return err;
129 }
130
131 /*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 struct btrfs_path *path, int extent_inserted,
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
140 int compress_type,
141 struct page **compressed_pages)
142 {
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
151 unsigned long offset;
152
153 if (compressed_size && compressed_pages)
154 cur_size = compressed_size;
155
156 inode_add_bytes(inode, size);
157
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
161
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
164 key.type = BTRFS_EXTENT_DATA_KEY;
165
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
185 if (compress_type != BTRFS_COMPRESS_NONE) {
186 struct page *cpage;
187 int i = 0;
188 while (compressed_size > 0) {
189 cpage = compressed_pages[i];
190 cur_size = min_t(unsigned long, compressed_size,
191 PAGE_CACHE_SIZE);
192
193 kaddr = kmap_atomic(cpage);
194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 kunmap_atomic(kaddr);
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
202 compress_type);
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
207 kaddr = kmap_atomic(page);
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 kunmap_atomic(kaddr);
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
214 btrfs_release_path(path);
215
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
225 BTRFS_I(inode)->disk_i_size = inode->i_size;
226 ret = btrfs_update_inode(trans, root, inode);
227
228 return ret;
229 fail:
230 return err;
231 }
232
233
234 /*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
244 {
245 struct btrfs_trans_handle *trans;
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
249 u64 aligned_end = ALIGN(end, root->sectorsize);
250 u64 data_len = inline_len;
251 int ret;
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
273 trans = btrfs_join_transaction(root);
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
276 return PTR_ERR(trans);
277 }
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
299 inline_len, compressed_size,
300 compress_type, compressed_pages);
301 if (ret && ret != -ENOSPC) {
302 btrfs_abort_transaction(trans, root, ret);
303 goto out;
304 } else if (ret == -ENOSPC) {
305 ret = 1;
306 goto out;
307 }
308
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 btrfs_free_path(path);
314 btrfs_end_transaction(trans, root);
315 return ret;
316 }
317
318 struct async_extent {
319 u64 start;
320 u64 ram_size;
321 u64 compressed_size;
322 struct page **pages;
323 unsigned long nr_pages;
324 int compress_type;
325 struct list_head list;
326 };
327
328 struct async_cow {
329 struct inode *inode;
330 struct btrfs_root *root;
331 struct page *locked_page;
332 u64 start;
333 u64 end;
334 struct list_head extents;
335 struct btrfs_work work;
336 };
337
338 static noinline int add_async_extent(struct async_cow *cow,
339 u64 start, u64 ram_size,
340 u64 compressed_size,
341 struct page **pages,
342 unsigned long nr_pages,
343 int compress_type)
344 {
345 struct async_extent *async_extent;
346
347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
348 BUG_ON(!async_extent); /* -ENOMEM */
349 async_extent->start = start;
350 async_extent->ram_size = ram_size;
351 async_extent->compressed_size = compressed_size;
352 async_extent->pages = pages;
353 async_extent->nr_pages = nr_pages;
354 async_extent->compress_type = compress_type;
355 list_add_tail(&async_extent->list, &cow->extents);
356 return 0;
357 }
358
359 static inline int inode_need_compress(struct inode *inode)
360 {
361 struct btrfs_root *root = BTRFS_I(inode)->root;
362
363 /* force compress */
364 if (btrfs_test_opt(root, FORCE_COMPRESS))
365 return 1;
366 /* bad compression ratios */
367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368 return 0;
369 if (btrfs_test_opt(root, COMPRESS) ||
370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 BTRFS_I(inode)->force_compress)
372 return 1;
373 return 0;
374 }
375
376 /*
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
380 *
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
386 *
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
390 * are written in the same order that the flusher thread sent them
391 * down.
392 */
393 static noinline void compress_file_range(struct inode *inode,
394 struct page *locked_page,
395 u64 start, u64 end,
396 struct async_cow *async_cow,
397 int *num_added)
398 {
399 struct btrfs_root *root = BTRFS_I(inode)->root;
400 u64 num_bytes;
401 u64 blocksize = root->sectorsize;
402 u64 actual_end;
403 u64 isize = i_size_read(inode);
404 int ret = 0;
405 struct page **pages = NULL;
406 unsigned long nr_pages;
407 unsigned long nr_pages_ret = 0;
408 unsigned long total_compressed = 0;
409 unsigned long total_in = 0;
410 unsigned long max_compressed = 128 * 1024;
411 unsigned long max_uncompressed = 128 * 1024;
412 int i;
413 int will_compress;
414 int compress_type = root->fs_info->compress_type;
415 int redirty = 0;
416
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end - start + 1) < 16 * 1024 &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 btrfs_add_inode_defrag(NULL, inode);
421
422 actual_end = min_t(u64, isize, end + 1);
423 again:
424 will_compress = 0;
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427
428 /*
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
434 *
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
437 */
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
440
441 total_compressed = actual_end - start;
442
443 /*
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
446 */
447 if (total_compressed <= blocksize &&
448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 goto cleanup_and_bail_uncompressed;
450
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
456 *
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
460 */
461 total_compressed = min(total_compressed, max_uncompressed);
462 num_bytes = ALIGN(end - start + 1, blocksize);
463 num_bytes = max(blocksize, num_bytes);
464 total_in = 0;
465 ret = 0;
466
467 /*
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
471 */
472 if (inode_need_compress(inode)) {
473 WARN_ON(pages);
474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
475 if (!pages) {
476 /* just bail out to the uncompressed code */
477 goto cont;
478 }
479
480 if (BTRFS_I(inode)->force_compress)
481 compress_type = BTRFS_I(inode)->force_compress;
482
483 /*
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
488 *
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
491 */
492 extent_range_clear_dirty_for_io(inode, start, end);
493 redirty = 1;
494 ret = btrfs_compress_pages(compress_type,
495 inode->i_mapping, start,
496 total_compressed, pages,
497 nr_pages, &nr_pages_ret,
498 &total_in,
499 &total_compressed,
500 max_compressed);
501
502 if (!ret) {
503 unsigned long offset = total_compressed &
504 (PAGE_CACHE_SIZE - 1);
505 struct page *page = pages[nr_pages_ret - 1];
506 char *kaddr;
507
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
510 */
511 if (offset) {
512 kaddr = kmap_atomic(page);
513 memset(kaddr + offset, 0,
514 PAGE_CACHE_SIZE - offset);
515 kunmap_atomic(kaddr);
516 }
517 will_compress = 1;
518 }
519 }
520 cont:
521 if (start == 0) {
522 /* lets try to make an inline extent */
523 if (ret || total_in < (actual_end - start)) {
524 /* we didn't compress the entire range, try
525 * to make an uncompressed inline extent.
526 */
527 ret = cow_file_range_inline(root, inode, start, end,
528 0, 0, NULL);
529 } else {
530 /* try making a compressed inline extent */
531 ret = cow_file_range_inline(root, inode, start, end,
532 total_compressed,
533 compress_type, pages);
534 }
535 if (ret <= 0) {
536 unsigned long clear_flags = EXTENT_DELALLOC |
537 EXTENT_DEFRAG;
538 unsigned long page_error_op;
539
540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
542
543 /*
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
547 */
548 extent_clear_unlock_delalloc(inode, start, end, NULL,
549 clear_flags, PAGE_UNLOCK |
550 PAGE_CLEAR_DIRTY |
551 PAGE_SET_WRITEBACK |
552 page_error_op |
553 PAGE_END_WRITEBACK);
554 goto free_pages_out;
555 }
556 }
557
558 if (will_compress) {
559 /*
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
562 * things
563 */
564 total_compressed = ALIGN(total_compressed, blocksize);
565
566 /*
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
569 */
570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
571 if (total_compressed >= total_in) {
572 will_compress = 0;
573 } else {
574 num_bytes = total_in;
575 }
576 }
577 if (!will_compress && pages) {
578 /*
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
581 */
582 for (i = 0; i < nr_pages_ret; i++) {
583 WARN_ON(pages[i]->mapping);
584 page_cache_release(pages[i]);
585 }
586 kfree(pages);
587 pages = NULL;
588 total_compressed = 0;
589 nr_pages_ret = 0;
590
591 /* flag the file so we don't compress in the future */
592 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 !(BTRFS_I(inode)->force_compress)) {
594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
595 }
596 }
597 if (will_compress) {
598 *num_added += 1;
599
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
603 */
604 add_async_extent(async_cow, start, num_bytes,
605 total_compressed, pages, nr_pages_ret,
606 compress_type);
607
608 if (start + num_bytes < end) {
609 start += num_bytes;
610 pages = NULL;
611 cond_resched();
612 goto again;
613 }
614 } else {
615 cleanup_and_bail_uncompressed:
616 /*
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
622 */
623 if (page_offset(locked_page) >= start &&
624 page_offset(locked_page) <= end) {
625 __set_page_dirty_nobuffers(locked_page);
626 /* unlocked later on in the async handlers */
627 }
628 if (redirty)
629 extent_range_redirty_for_io(inode, start, end);
630 add_async_extent(async_cow, start, end - start + 1,
631 0, NULL, 0, BTRFS_COMPRESS_NONE);
632 *num_added += 1;
633 }
634
635 return;
636
637 free_pages_out:
638 for (i = 0; i < nr_pages_ret; i++) {
639 WARN_ON(pages[i]->mapping);
640 page_cache_release(pages[i]);
641 }
642 kfree(pages);
643 }
644
645 static void free_async_extent_pages(struct async_extent *async_extent)
646 {
647 int i;
648
649 if (!async_extent->pages)
650 return;
651
652 for (i = 0; i < async_extent->nr_pages; i++) {
653 WARN_ON(async_extent->pages[i]->mapping);
654 page_cache_release(async_extent->pages[i]);
655 }
656 kfree(async_extent->pages);
657 async_extent->nr_pages = 0;
658 async_extent->pages = NULL;
659 }
660
661 /*
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
666 */
667 static noinline void submit_compressed_extents(struct inode *inode,
668 struct async_cow *async_cow)
669 {
670 struct async_extent *async_extent;
671 u64 alloc_hint = 0;
672 struct btrfs_key ins;
673 struct extent_map *em;
674 struct btrfs_root *root = BTRFS_I(inode)->root;
675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 struct extent_io_tree *io_tree;
677 int ret = 0;
678
679 again:
680 while (!list_empty(&async_cow->extents)) {
681 async_extent = list_entry(async_cow->extents.next,
682 struct async_extent, list);
683 list_del(&async_extent->list);
684
685 io_tree = &BTRFS_I(inode)->io_tree;
686
687 retry:
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent->pages) {
690 int page_started = 0;
691 unsigned long nr_written = 0;
692
693 lock_extent(io_tree, async_extent->start,
694 async_extent->start +
695 async_extent->ram_size - 1);
696
697 /* allocate blocks */
698 ret = cow_file_range(inode, async_cow->locked_page,
699 async_extent->start,
700 async_extent->start +
701 async_extent->ram_size - 1,
702 &page_started, &nr_written, 0);
703
704 /* JDM XXX */
705
706 /*
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
711 */
712 if (!page_started && !ret)
713 extent_write_locked_range(io_tree,
714 inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1,
717 btrfs_get_extent,
718 WB_SYNC_ALL);
719 else if (ret)
720 unlock_page(async_cow->locked_page);
721 kfree(async_extent);
722 cond_resched();
723 continue;
724 }
725
726 lock_extent(io_tree, async_extent->start,
727 async_extent->start + async_extent->ram_size - 1);
728
729 ret = btrfs_reserve_extent(root,
730 async_extent->compressed_size,
731 async_extent->compressed_size,
732 0, alloc_hint, &ins, 1, 1);
733 if (ret) {
734 free_async_extent_pages(async_extent);
735
736 if (ret == -ENOSPC) {
737 unlock_extent(io_tree, async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1);
740
741 /*
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
745 * layers.
746 */
747 extent_range_redirty_for_io(inode,
748 async_extent->start,
749 async_extent->start +
750 async_extent->ram_size - 1);
751
752 goto retry;
753 }
754 goto out_free;
755 }
756 /*
757 * here we're doing allocation and writeback of the
758 * compressed pages
759 */
760 btrfs_drop_extent_cache(inode, async_extent->start,
761 async_extent->start +
762 async_extent->ram_size - 1, 0);
763
764 em = alloc_extent_map();
765 if (!em) {
766 ret = -ENOMEM;
767 goto out_free_reserve;
768 }
769 em->start = async_extent->start;
770 em->len = async_extent->ram_size;
771 em->orig_start = em->start;
772 em->mod_start = em->start;
773 em->mod_len = em->len;
774
775 em->block_start = ins.objectid;
776 em->block_len = ins.offset;
777 em->orig_block_len = ins.offset;
778 em->ram_bytes = async_extent->ram_size;
779 em->bdev = root->fs_info->fs_devices->latest_bdev;
780 em->compress_type = async_extent->compress_type;
781 set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783 em->generation = -1;
784
785 while (1) {
786 write_lock(&em_tree->lock);
787 ret = add_extent_mapping(em_tree, em, 1);
788 write_unlock(&em_tree->lock);
789 if (ret != -EEXIST) {
790 free_extent_map(em);
791 break;
792 }
793 btrfs_drop_extent_cache(inode, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1, 0);
796 }
797
798 if (ret)
799 goto out_free_reserve;
800
801 ret = btrfs_add_ordered_extent_compress(inode,
802 async_extent->start,
803 ins.objectid,
804 async_extent->ram_size,
805 ins.offset,
806 BTRFS_ORDERED_COMPRESSED,
807 async_extent->compress_type);
808 if (ret) {
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
812 goto out_free_reserve;
813 }
814
815 /*
816 * clear dirty, set writeback and unlock the pages.
817 */
818 extent_clear_unlock_delalloc(inode, async_extent->start,
819 async_extent->start +
820 async_extent->ram_size - 1,
821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823 PAGE_SET_WRITEBACK);
824 ret = btrfs_submit_compressed_write(inode,
825 async_extent->start,
826 async_extent->ram_size,
827 ins.objectid,
828 ins.offset, async_extent->pages,
829 async_extent->nr_pages);
830 if (ret) {
831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 struct page *p = async_extent->pages[0];
833 const u64 start = async_extent->start;
834 const u64 end = start + async_extent->ram_size - 1;
835
836 p->mapping = inode->i_mapping;
837 tree->ops->writepage_end_io_hook(p, start, end,
838 NULL, 0);
839 p->mapping = NULL;
840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 PAGE_END_WRITEBACK |
842 PAGE_SET_ERROR);
843 free_async_extent_pages(async_extent);
844 }
845 alloc_hint = ins.objectid + ins.offset;
846 kfree(async_extent);
847 cond_resched();
848 }
849 return;
850 out_free_reserve:
851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852 out_free:
853 extent_clear_unlock_delalloc(inode, async_extent->start,
854 async_extent->start +
855 async_extent->ram_size - 1,
856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 PAGE_SET_ERROR);
861 free_async_extent_pages(async_extent);
862 kfree(async_extent);
863 goto again;
864 }
865
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 u64 num_bytes)
868 {
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 struct extent_map *em;
871 u64 alloc_hint = 0;
872
873 read_lock(&em_tree->lock);
874 em = search_extent_mapping(em_tree, start, num_bytes);
875 if (em) {
876 /*
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
880 */
881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 free_extent_map(em);
883 em = search_extent_mapping(em_tree, 0, 0);
884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 alloc_hint = em->block_start;
886 if (em)
887 free_extent_map(em);
888 } else {
889 alloc_hint = em->block_start;
890 free_extent_map(em);
891 }
892 }
893 read_unlock(&em_tree->lock);
894
895 return alloc_hint;
896 }
897
898 /*
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
903 *
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
906 *
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
909 * IO when we return.
910 */
911 static noinline int cow_file_range(struct inode *inode,
912 struct page *locked_page,
913 u64 start, u64 end, int *page_started,
914 unsigned long *nr_written,
915 int unlock)
916 {
917 struct btrfs_root *root = BTRFS_I(inode)->root;
918 u64 alloc_hint = 0;
919 u64 num_bytes;
920 unsigned long ram_size;
921 u64 disk_num_bytes;
922 u64 cur_alloc_size;
923 u64 blocksize = root->sectorsize;
924 struct btrfs_key ins;
925 struct extent_map *em;
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 int ret = 0;
928
929 if (btrfs_is_free_space_inode(inode)) {
930 WARN_ON_ONCE(1);
931 ret = -EINVAL;
932 goto out_unlock;
933 }
934
935 num_bytes = ALIGN(end - start + 1, blocksize);
936 num_bytes = max(blocksize, num_bytes);
937 disk_num_bytes = num_bytes;
938
939 /* if this is a small write inside eof, kick off defrag */
940 if (num_bytes < 64 * 1024 &&
941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 btrfs_add_inode_defrag(NULL, inode);
943
944 if (start == 0) {
945 /* lets try to make an inline extent */
946 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 NULL);
948 if (ret == 0) {
949 extent_clear_unlock_delalloc(inode, start, end, NULL,
950 EXTENT_LOCKED | EXTENT_DELALLOC |
951 EXTENT_DEFRAG, PAGE_UNLOCK |
952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 PAGE_END_WRITEBACK);
954
955 *nr_written = *nr_written +
956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 *page_started = 1;
958 goto out;
959 } else if (ret < 0) {
960 goto out_unlock;
961 }
962 }
963
964 BUG_ON(disk_num_bytes >
965 btrfs_super_total_bytes(root->fs_info->super_copy));
966
967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969
970 while (disk_num_bytes > 0) {
971 unsigned long op;
972
973 cur_alloc_size = disk_num_bytes;
974 ret = btrfs_reserve_extent(root, cur_alloc_size,
975 root->sectorsize, 0, alloc_hint,
976 &ins, 1, 1);
977 if (ret < 0)
978 goto out_unlock;
979
980 em = alloc_extent_map();
981 if (!em) {
982 ret = -ENOMEM;
983 goto out_reserve;
984 }
985 em->start = start;
986 em->orig_start = em->start;
987 ram_size = ins.offset;
988 em->len = ins.offset;
989 em->mod_start = em->start;
990 em->mod_len = em->len;
991
992 em->block_start = ins.objectid;
993 em->block_len = ins.offset;
994 em->orig_block_len = ins.offset;
995 em->ram_bytes = ram_size;
996 em->bdev = root->fs_info->fs_devices->latest_bdev;
997 set_bit(EXTENT_FLAG_PINNED, &em->flags);
998 em->generation = -1;
999
1000 while (1) {
1001 write_lock(&em_tree->lock);
1002 ret = add_extent_mapping(em_tree, em, 1);
1003 write_unlock(&em_tree->lock);
1004 if (ret != -EEXIST) {
1005 free_extent_map(em);
1006 break;
1007 }
1008 btrfs_drop_extent_cache(inode, start,
1009 start + ram_size - 1, 0);
1010 }
1011 if (ret)
1012 goto out_reserve;
1013
1014 cur_alloc_size = ins.offset;
1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 ram_size, cur_alloc_size, 0);
1017 if (ret)
1018 goto out_drop_extent_cache;
1019
1020 if (root->root_key.objectid ==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 ret = btrfs_reloc_clone_csums(inode, start,
1023 cur_alloc_size);
1024 if (ret)
1025 goto out_drop_extent_cache;
1026 }
1027
1028 if (disk_num_bytes < cur_alloc_size)
1029 break;
1030
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
1034 *
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
1037 */
1038 op = unlock ? PAGE_UNLOCK : 0;
1039 op |= PAGE_SET_PRIVATE2;
1040
1041 extent_clear_unlock_delalloc(inode, start,
1042 start + ram_size - 1, locked_page,
1043 EXTENT_LOCKED | EXTENT_DELALLOC,
1044 op);
1045 disk_num_bytes -= cur_alloc_size;
1046 num_bytes -= cur_alloc_size;
1047 alloc_hint = ins.objectid + ins.offset;
1048 start += cur_alloc_size;
1049 }
1050 out:
1051 return ret;
1052
1053 out_drop_extent_cache:
1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055 out_reserve:
1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057 out_unlock:
1058 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063 goto out;
1064 }
1065
1066 /*
1067 * work queue call back to started compression on a file and pages
1068 */
1069 static noinline void async_cow_start(struct btrfs_work *work)
1070 {
1071 struct async_cow *async_cow;
1072 int num_added = 0;
1073 async_cow = container_of(work, struct async_cow, work);
1074
1075 compress_file_range(async_cow->inode, async_cow->locked_page,
1076 async_cow->start, async_cow->end, async_cow,
1077 &num_added);
1078 if (num_added == 0) {
1079 btrfs_add_delayed_iput(async_cow->inode);
1080 async_cow->inode = NULL;
1081 }
1082 }
1083
1084 /*
1085 * work queue call back to submit previously compressed pages
1086 */
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1088 {
1089 struct async_cow *async_cow;
1090 struct btrfs_root *root;
1091 unsigned long nr_pages;
1092
1093 async_cow = container_of(work, struct async_cow, work);
1094
1095 root = async_cow->root;
1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 PAGE_CACHE_SHIFT;
1098
1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100 5 * 1024 * 1024 &&
1101 waitqueue_active(&root->fs_info->async_submit_wait))
1102 wake_up(&root->fs_info->async_submit_wait);
1103
1104 if (async_cow->inode)
1105 submit_compressed_extents(async_cow->inode, async_cow);
1106 }
1107
1108 static noinline void async_cow_free(struct btrfs_work *work)
1109 {
1110 struct async_cow *async_cow;
1111 async_cow = container_of(work, struct async_cow, work);
1112 if (async_cow->inode)
1113 btrfs_add_delayed_iput(async_cow->inode);
1114 kfree(async_cow);
1115 }
1116
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 u64 start, u64 end, int *page_started,
1119 unsigned long *nr_written)
1120 {
1121 struct async_cow *async_cow;
1122 struct btrfs_root *root = BTRFS_I(inode)->root;
1123 unsigned long nr_pages;
1124 u64 cur_end;
1125 int limit = 10 * 1024 * 1024;
1126
1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 1, 0, NULL, GFP_NOFS);
1129 while (start < end) {
1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 BUG_ON(!async_cow); /* -ENOMEM */
1132 async_cow->inode = igrab(inode);
1133 async_cow->root = root;
1134 async_cow->locked_page = locked_page;
1135 async_cow->start = start;
1136
1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 !btrfs_test_opt(root, FORCE_COMPRESS))
1139 cur_end = end;
1140 else
1141 cur_end = min(end, start + 512 * 1024 - 1);
1142
1143 async_cow->end = cur_end;
1144 INIT_LIST_HEAD(&async_cow->extents);
1145
1146 btrfs_init_work(&async_cow->work,
1147 btrfs_delalloc_helper,
1148 async_cow_start, async_cow_submit,
1149 async_cow_free);
1150
1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 PAGE_CACHE_SHIFT;
1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154
1155 btrfs_queue_work(root->fs_info->delalloc_workers,
1156 &async_cow->work);
1157
1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 limit));
1162 }
1163
1164 while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 wait_event(root->fs_info->async_submit_wait,
1167 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 0));
1169 }
1170
1171 *nr_written += nr_pages;
1172 start = cur_end + 1;
1173 }
1174 *page_started = 1;
1175 return 0;
1176 }
1177
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 u64 bytenr, u64 num_bytes)
1180 {
1181 int ret;
1182 struct btrfs_ordered_sum *sums;
1183 LIST_HEAD(list);
1184
1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 bytenr + num_bytes - 1, &list, 0);
1187 if (ret == 0 && list_empty(&list))
1188 return 0;
1189
1190 while (!list_empty(&list)) {
1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 list_del(&sums->list);
1193 kfree(sums);
1194 }
1195 return 1;
1196 }
1197
1198 /*
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1201 *
1202 * If no cow copies or snapshots exist, we write directly to the existing
1203 * blocks on disk
1204 */
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 struct page *locked_page,
1207 u64 start, u64 end, int *page_started, int force,
1208 unsigned long *nr_written)
1209 {
1210 struct btrfs_root *root = BTRFS_I(inode)->root;
1211 struct btrfs_trans_handle *trans;
1212 struct extent_buffer *leaf;
1213 struct btrfs_path *path;
1214 struct btrfs_file_extent_item *fi;
1215 struct btrfs_key found_key;
1216 u64 cow_start;
1217 u64 cur_offset;
1218 u64 extent_end;
1219 u64 extent_offset;
1220 u64 disk_bytenr;
1221 u64 num_bytes;
1222 u64 disk_num_bytes;
1223 u64 ram_bytes;
1224 int extent_type;
1225 int ret, err;
1226 int type;
1227 int nocow;
1228 int check_prev = 1;
1229 bool nolock;
1230 u64 ino = btrfs_ino(inode);
1231
1232 path = btrfs_alloc_path();
1233 if (!path) {
1234 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 EXTENT_LOCKED | EXTENT_DELALLOC |
1236 EXTENT_DO_ACCOUNTING |
1237 EXTENT_DEFRAG, PAGE_UNLOCK |
1238 PAGE_CLEAR_DIRTY |
1239 PAGE_SET_WRITEBACK |
1240 PAGE_END_WRITEBACK);
1241 return -ENOMEM;
1242 }
1243
1244 nolock = btrfs_is_free_space_inode(inode);
1245
1246 if (nolock)
1247 trans = btrfs_join_transaction_nolock(root);
1248 else
1249 trans = btrfs_join_transaction(root);
1250
1251 if (IS_ERR(trans)) {
1252 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 EXTENT_LOCKED | EXTENT_DELALLOC |
1254 EXTENT_DO_ACCOUNTING |
1255 EXTENT_DEFRAG, PAGE_UNLOCK |
1256 PAGE_CLEAR_DIRTY |
1257 PAGE_SET_WRITEBACK |
1258 PAGE_END_WRITEBACK);
1259 btrfs_free_path(path);
1260 return PTR_ERR(trans);
1261 }
1262
1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264
1265 cow_start = (u64)-1;
1266 cur_offset = start;
1267 while (1) {
1268 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269 cur_offset, 0);
1270 if (ret < 0)
1271 goto error;
1272 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &found_key,
1275 path->slots[0] - 1);
1276 if (found_key.objectid == ino &&
1277 found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 path->slots[0]--;
1279 }
1280 check_prev = 0;
1281 next_slot:
1282 leaf = path->nodes[0];
1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 ret = btrfs_next_leaf(root, path);
1285 if (ret < 0)
1286 goto error;
1287 if (ret > 0)
1288 break;
1289 leaf = path->nodes[0];
1290 }
1291
1292 nocow = 0;
1293 disk_bytenr = 0;
1294 num_bytes = 0;
1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296
1297 if (found_key.objectid > ino ||
1298 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 found_key.offset > end)
1300 break;
1301
1302 if (found_key.offset > cur_offset) {
1303 extent_end = found_key.offset;
1304 extent_type = 0;
1305 goto out_check;
1306 }
1307
1308 fi = btrfs_item_ptr(leaf, path->slots[0],
1309 struct btrfs_file_extent_item);
1310 extent_type = btrfs_file_extent_type(leaf, fi);
1311
1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316 extent_offset = btrfs_file_extent_offset(leaf, fi);
1317 extent_end = found_key.offset +
1318 btrfs_file_extent_num_bytes(leaf, fi);
1319 disk_num_bytes =
1320 btrfs_file_extent_disk_num_bytes(leaf, fi);
1321 if (extent_end <= start) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (disk_bytenr == 0)
1326 goto out_check;
1327 if (btrfs_file_extent_compression(leaf, fi) ||
1328 btrfs_file_extent_encryption(leaf, fi) ||
1329 btrfs_file_extent_other_encoding(leaf, fi))
1330 goto out_check;
1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332 goto out_check;
1333 if (btrfs_extent_readonly(root, disk_bytenr))
1334 goto out_check;
1335 if (btrfs_cross_ref_exist(trans, root, ino,
1336 found_key.offset -
1337 extent_offset, disk_bytenr))
1338 goto out_check;
1339 disk_bytenr += extent_offset;
1340 disk_bytenr += cur_offset - found_key.offset;
1341 num_bytes = min(end + 1, extent_end) - cur_offset;
1342 /*
1343 * if there are pending snapshots for this root,
1344 * we fall into common COW way.
1345 */
1346 if (!nolock) {
1347 err = btrfs_start_write_no_snapshoting(root);
1348 if (!err)
1349 goto out_check;
1350 }
1351 /*
1352 * force cow if csum exists in the range.
1353 * this ensure that csum for a given extent are
1354 * either valid or do not exist.
1355 */
1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357 goto out_check;
1358 nocow = 1;
1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 extent_end = found_key.offset +
1361 btrfs_file_extent_inline_len(leaf,
1362 path->slots[0], fi);
1363 extent_end = ALIGN(extent_end, root->sectorsize);
1364 } else {
1365 BUG_ON(1);
1366 }
1367 out_check:
1368 if (extent_end <= start) {
1369 path->slots[0]++;
1370 if (!nolock && nocow)
1371 btrfs_end_write_no_snapshoting(root);
1372 goto next_slot;
1373 }
1374 if (!nocow) {
1375 if (cow_start == (u64)-1)
1376 cow_start = cur_offset;
1377 cur_offset = extent_end;
1378 if (cur_offset > end)
1379 break;
1380 path->slots[0]++;
1381 goto next_slot;
1382 }
1383
1384 btrfs_release_path(path);
1385 if (cow_start != (u64)-1) {
1386 ret = cow_file_range(inode, locked_page,
1387 cow_start, found_key.offset - 1,
1388 page_started, nr_written, 1);
1389 if (ret) {
1390 if (!nolock && nocow)
1391 btrfs_end_write_no_snapshoting(root);
1392 goto error;
1393 }
1394 cow_start = (u64)-1;
1395 }
1396
1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 struct extent_map *em;
1399 struct extent_map_tree *em_tree;
1400 em_tree = &BTRFS_I(inode)->extent_tree;
1401 em = alloc_extent_map();
1402 BUG_ON(!em); /* -ENOMEM */
1403 em->start = cur_offset;
1404 em->orig_start = found_key.offset - extent_offset;
1405 em->len = num_bytes;
1406 em->block_len = num_bytes;
1407 em->block_start = disk_bytenr;
1408 em->orig_block_len = disk_num_bytes;
1409 em->ram_bytes = ram_bytes;
1410 em->bdev = root->fs_info->fs_devices->latest_bdev;
1411 em->mod_start = em->start;
1412 em->mod_len = em->len;
1413 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415 em->generation = -1;
1416 while (1) {
1417 write_lock(&em_tree->lock);
1418 ret = add_extent_mapping(em_tree, em, 1);
1419 write_unlock(&em_tree->lock);
1420 if (ret != -EEXIST) {
1421 free_extent_map(em);
1422 break;
1423 }
1424 btrfs_drop_extent_cache(inode, em->start,
1425 em->start + em->len - 1, 0);
1426 }
1427 type = BTRFS_ORDERED_PREALLOC;
1428 } else {
1429 type = BTRFS_ORDERED_NOCOW;
1430 }
1431
1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433 num_bytes, num_bytes, type);
1434 BUG_ON(ret); /* -ENOMEM */
1435
1436 if (root->root_key.objectid ==
1437 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439 num_bytes);
1440 if (ret) {
1441 if (!nolock && nocow)
1442 btrfs_end_write_no_snapshoting(root);
1443 goto error;
1444 }
1445 }
1446
1447 extent_clear_unlock_delalloc(inode, cur_offset,
1448 cur_offset + num_bytes - 1,
1449 locked_page, EXTENT_LOCKED |
1450 EXTENT_DELALLOC, PAGE_UNLOCK |
1451 PAGE_SET_PRIVATE2);
1452 if (!nolock && nocow)
1453 btrfs_end_write_no_snapshoting(root);
1454 cur_offset = extent_end;
1455 if (cur_offset > end)
1456 break;
1457 }
1458 btrfs_release_path(path);
1459
1460 if (cur_offset <= end && cow_start == (u64)-1) {
1461 cow_start = cur_offset;
1462 cur_offset = end;
1463 }
1464
1465 if (cow_start != (u64)-1) {
1466 ret = cow_file_range(inode, locked_page, cow_start, end,
1467 page_started, nr_written, 1);
1468 if (ret)
1469 goto error;
1470 }
1471
1472 error:
1473 err = btrfs_end_transaction(trans, root);
1474 if (!ret)
1475 ret = err;
1476
1477 if (ret && cur_offset < end)
1478 extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 locked_page, EXTENT_LOCKED |
1480 EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482 PAGE_CLEAR_DIRTY |
1483 PAGE_SET_WRITEBACK |
1484 PAGE_END_WRITEBACK);
1485 btrfs_free_path(path);
1486 return ret;
1487 }
1488
1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490 {
1491
1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494 return 0;
1495
1496 /*
1497 * @defrag_bytes is a hint value, no spinlock held here,
1498 * if is not zero, it means the file is defragging.
1499 * Force cow if given extent needs to be defragged.
1500 */
1501 if (BTRFS_I(inode)->defrag_bytes &&
1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 EXTENT_DEFRAG, 0, NULL))
1504 return 1;
1505
1506 return 0;
1507 }
1508
1509 /*
1510 * extent_io.c call back to do delayed allocation processing
1511 */
1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513 u64 start, u64 end, int *page_started,
1514 unsigned long *nr_written)
1515 {
1516 int ret;
1517 int force_cow = need_force_cow(inode, start, end);
1518
1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520 ret = run_delalloc_nocow(inode, locked_page, start, end,
1521 page_started, 1, nr_written);
1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523 ret = run_delalloc_nocow(inode, locked_page, start, end,
1524 page_started, 0, nr_written);
1525 } else if (!inode_need_compress(inode)) {
1526 ret = cow_file_range(inode, locked_page, start, end,
1527 page_started, nr_written, 1);
1528 } else {
1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 &BTRFS_I(inode)->runtime_flags);
1531 ret = cow_file_range_async(inode, locked_page, start, end,
1532 page_started, nr_written);
1533 }
1534 return ret;
1535 }
1536
1537 static void btrfs_split_extent_hook(struct inode *inode,
1538 struct extent_state *orig, u64 split)
1539 {
1540 u64 size;
1541
1542 /* not delalloc, ignore it */
1543 if (!(orig->state & EXTENT_DELALLOC))
1544 return;
1545
1546 size = orig->end - orig->start + 1;
1547 if (size > BTRFS_MAX_EXTENT_SIZE) {
1548 u64 num_extents;
1549 u64 new_size;
1550
1551 /*
1552 * See the explanation in btrfs_merge_extent_hook, the same
1553 * applies here, just in reverse.
1554 */
1555 new_size = orig->end - split + 1;
1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557 BTRFS_MAX_EXTENT_SIZE);
1558 new_size = split - orig->start;
1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 BTRFS_MAX_EXTENT_SIZE);
1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1563 return;
1564 }
1565
1566 spin_lock(&BTRFS_I(inode)->lock);
1567 BTRFS_I(inode)->outstanding_extents++;
1568 spin_unlock(&BTRFS_I(inode)->lock);
1569 }
1570
1571 /*
1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573 * extents so we can keep track of new extents that are just merged onto old
1574 * extents, such as when we are doing sequential writes, so we can properly
1575 * account for the metadata space we'll need.
1576 */
1577 static void btrfs_merge_extent_hook(struct inode *inode,
1578 struct extent_state *new,
1579 struct extent_state *other)
1580 {
1581 u64 new_size, old_size;
1582 u64 num_extents;
1583
1584 /* not delalloc, ignore it */
1585 if (!(other->state & EXTENT_DELALLOC))
1586 return;
1587
1588 if (new->start > other->start)
1589 new_size = new->end - other->start + 1;
1590 else
1591 new_size = other->end - new->start + 1;
1592
1593 /* we're not bigger than the max, unreserve the space and go */
1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 spin_lock(&BTRFS_I(inode)->lock);
1596 BTRFS_I(inode)->outstanding_extents--;
1597 spin_unlock(&BTRFS_I(inode)->lock);
1598 return;
1599 }
1600
1601 /*
1602 * We have to add up either side to figure out how many extents were
1603 * accounted for before we merged into one big extent. If the number of
1604 * extents we accounted for is <= the amount we need for the new range
1605 * then we can return, otherwise drop. Think of it like this
1606 *
1607 * [ 4k][MAX_SIZE]
1608 *
1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 * need 2 outstanding extents, on one side we have 1 and the other side
1611 * we have 1 so they are == and we can return. But in this case
1612 *
1613 * [MAX_SIZE+4k][MAX_SIZE+4k]
1614 *
1615 * Each range on their own accounts for 2 extents, but merged together
1616 * they are only 3 extents worth of accounting, so we need to drop in
1617 * this case.
1618 */
1619 old_size = other->end - other->start + 1;
1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 BTRFS_MAX_EXTENT_SIZE);
1622 old_size = new->end - new->start + 1;
1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 BTRFS_MAX_EXTENT_SIZE);
1625
1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1628 return;
1629
1630 spin_lock(&BTRFS_I(inode)->lock);
1631 BTRFS_I(inode)->outstanding_extents--;
1632 spin_unlock(&BTRFS_I(inode)->lock);
1633 }
1634
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 struct inode *inode)
1637 {
1638 spin_lock(&root->delalloc_lock);
1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 &root->delalloc_inodes);
1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 &BTRFS_I(inode)->runtime_flags);
1644 root->nr_delalloc_inodes++;
1645 if (root->nr_delalloc_inodes == 1) {
1646 spin_lock(&root->fs_info->delalloc_root_lock);
1647 BUG_ON(!list_empty(&root->delalloc_root));
1648 list_add_tail(&root->delalloc_root,
1649 &root->fs_info->delalloc_roots);
1650 spin_unlock(&root->fs_info->delalloc_root_lock);
1651 }
1652 }
1653 spin_unlock(&root->delalloc_lock);
1654 }
1655
1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 struct inode *inode)
1658 {
1659 spin_lock(&root->delalloc_lock);
1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 &BTRFS_I(inode)->runtime_flags);
1664 root->nr_delalloc_inodes--;
1665 if (!root->nr_delalloc_inodes) {
1666 spin_lock(&root->fs_info->delalloc_root_lock);
1667 BUG_ON(list_empty(&root->delalloc_root));
1668 list_del_init(&root->delalloc_root);
1669 spin_unlock(&root->fs_info->delalloc_root_lock);
1670 }
1671 }
1672 spin_unlock(&root->delalloc_lock);
1673 }
1674
1675 /*
1676 * extent_io.c set_bit_hook, used to track delayed allocation
1677 * bytes in this file, and to maintain the list of inodes that
1678 * have pending delalloc work to be done.
1679 */
1680 static void btrfs_set_bit_hook(struct inode *inode,
1681 struct extent_state *state, unsigned *bits)
1682 {
1683
1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685 WARN_ON(1);
1686 /*
1687 * set_bit and clear bit hooks normally require _irqsave/restore
1688 * but in this case, we are only testing for the DELALLOC
1689 * bit, which is only set or cleared with irqs on
1690 */
1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692 struct btrfs_root *root = BTRFS_I(inode)->root;
1693 u64 len = state->end + 1 - state->start;
1694 bool do_list = !btrfs_is_free_space_inode(inode);
1695
1696 if (*bits & EXTENT_FIRST_DELALLOC) {
1697 *bits &= ~EXTENT_FIRST_DELALLOC;
1698 } else {
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 BTRFS_I(inode)->outstanding_extents++;
1701 spin_unlock(&BTRFS_I(inode)->lock);
1702 }
1703
1704 /* For sanity tests */
1705 if (btrfs_test_is_dummy_root(root))
1706 return;
1707
1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 root->fs_info->delalloc_batch);
1710 spin_lock(&BTRFS_I(inode)->lock);
1711 BTRFS_I(inode)->delalloc_bytes += len;
1712 if (*bits & EXTENT_DEFRAG)
1713 BTRFS_I(inode)->defrag_bytes += len;
1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 &BTRFS_I(inode)->runtime_flags))
1716 btrfs_add_delalloc_inodes(root, inode);
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718 }
1719 }
1720
1721 /*
1722 * extent_io.c clear_bit_hook, see set_bit_hook for why
1723 */
1724 static void btrfs_clear_bit_hook(struct inode *inode,
1725 struct extent_state *state,
1726 unsigned *bits)
1727 {
1728 u64 len = state->end + 1 - state->start;
1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 BTRFS_MAX_EXTENT_SIZE);
1731
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 BTRFS_I(inode)->defrag_bytes -= len;
1735 spin_unlock(&BTRFS_I(inode)->lock);
1736
1737 /*
1738 * set_bit and clear bit hooks normally require _irqsave/restore
1739 * but in this case, we are only testing for the DELALLOC
1740 * bit, which is only set or cleared with irqs on
1741 */
1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743 struct btrfs_root *root = BTRFS_I(inode)->root;
1744 bool do_list = !btrfs_is_free_space_inode(inode);
1745
1746 if (*bits & EXTENT_FIRST_DELALLOC) {
1747 *bits &= ~EXTENT_FIRST_DELALLOC;
1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 spin_lock(&BTRFS_I(inode)->lock);
1750 BTRFS_I(inode)->outstanding_extents -= num_extents;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752 }
1753
1754 /*
1755 * We don't reserve metadata space for space cache inodes so we
1756 * don't need to call dellalloc_release_metadata if there is an
1757 * error.
1758 */
1759 if (*bits & EXTENT_DO_ACCOUNTING &&
1760 root != root->fs_info->tree_root)
1761 btrfs_delalloc_release_metadata(inode, len);
1762
1763 /* For sanity tests. */
1764 if (btrfs_test_is_dummy_root(root))
1765 return;
1766
1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768 && do_list && !(state->state & EXTENT_NORESERVE))
1769 btrfs_free_reserved_data_space(inode, len);
1770
1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 root->fs_info->delalloc_batch);
1773 spin_lock(&BTRFS_I(inode)->lock);
1774 BTRFS_I(inode)->delalloc_bytes -= len;
1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777 &BTRFS_I(inode)->runtime_flags))
1778 btrfs_del_delalloc_inode(root, inode);
1779 spin_unlock(&BTRFS_I(inode)->lock);
1780 }
1781 }
1782
1783 /*
1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785 * we don't create bios that span stripes or chunks
1786 */
1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788 size_t size, struct bio *bio,
1789 unsigned long bio_flags)
1790 {
1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1793 u64 length = 0;
1794 u64 map_length;
1795 int ret;
1796
1797 if (bio_flags & EXTENT_BIO_COMPRESSED)
1798 return 0;
1799
1800 length = bio->bi_iter.bi_size;
1801 map_length = length;
1802 ret = btrfs_map_block(root->fs_info, rw, logical,
1803 &map_length, NULL, 0);
1804 /* Will always return 0 with map_multi == NULL */
1805 BUG_ON(ret < 0);
1806 if (map_length < length + size)
1807 return 1;
1808 return 0;
1809 }
1810
1811 /*
1812 * in order to insert checksums into the metadata in large chunks,
1813 * we wait until bio submission time. All the pages in the bio are
1814 * checksummed and sums are attached onto the ordered extent record.
1815 *
1816 * At IO completion time the cums attached on the ordered extent record
1817 * are inserted into the btree
1818 */
1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 struct bio *bio, int mirror_num,
1821 unsigned long bio_flags,
1822 u64 bio_offset)
1823 {
1824 struct btrfs_root *root = BTRFS_I(inode)->root;
1825 int ret = 0;
1826
1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828 BUG_ON(ret); /* -ENOMEM */
1829 return 0;
1830 }
1831
1832 /*
1833 * in order to insert checksums into the metadata in large chunks,
1834 * we wait until bio submission time. All the pages in the bio are
1835 * checksummed and sums are attached onto the ordered extent record.
1836 *
1837 * At IO completion time the cums attached on the ordered extent record
1838 * are inserted into the btree
1839 */
1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841 int mirror_num, unsigned long bio_flags,
1842 u64 bio_offset)
1843 {
1844 struct btrfs_root *root = BTRFS_I(inode)->root;
1845 int ret;
1846
1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848 if (ret) {
1849 bio->bi_error = ret;
1850 bio_endio(bio);
1851 }
1852 return ret;
1853 }
1854
1855 /*
1856 * extent_io.c submission hook. This does the right thing for csum calculation
1857 * on write, or reading the csums from the tree before a read
1858 */
1859 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1860 int mirror_num, unsigned long bio_flags,
1861 u64 bio_offset)
1862 {
1863 struct btrfs_root *root = BTRFS_I(inode)->root;
1864 int ret = 0;
1865 int skip_sum;
1866 int metadata = 0;
1867 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1868
1869 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1870
1871 if (btrfs_is_free_space_inode(inode))
1872 metadata = 2;
1873
1874 if (!(rw & REQ_WRITE)) {
1875 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1876 if (ret)
1877 goto out;
1878
1879 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1880 ret = btrfs_submit_compressed_read(inode, bio,
1881 mirror_num,
1882 bio_flags);
1883 goto out;
1884 } else if (!skip_sum) {
1885 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1886 if (ret)
1887 goto out;
1888 }
1889 goto mapit;
1890 } else if (async && !skip_sum) {
1891 /* csum items have already been cloned */
1892 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1893 goto mapit;
1894 /* we're doing a write, do the async checksumming */
1895 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1896 inode, rw, bio, mirror_num,
1897 bio_flags, bio_offset,
1898 __btrfs_submit_bio_start,
1899 __btrfs_submit_bio_done);
1900 goto out;
1901 } else if (!skip_sum) {
1902 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1903 if (ret)
1904 goto out;
1905 }
1906
1907 mapit:
1908 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1909
1910 out:
1911 if (ret < 0) {
1912 bio->bi_error = ret;
1913 bio_endio(bio);
1914 }
1915 return ret;
1916 }
1917
1918 /*
1919 * given a list of ordered sums record them in the inode. This happens
1920 * at IO completion time based on sums calculated at bio submission time.
1921 */
1922 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1923 struct inode *inode, u64 file_offset,
1924 struct list_head *list)
1925 {
1926 struct btrfs_ordered_sum *sum;
1927
1928 list_for_each_entry(sum, list, list) {
1929 trans->adding_csums = 1;
1930 btrfs_csum_file_blocks(trans,
1931 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1932 trans->adding_csums = 0;
1933 }
1934 return 0;
1935 }
1936
1937 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1938 struct extent_state **cached_state)
1939 {
1940 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1941 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1942 cached_state, GFP_NOFS);
1943 }
1944
1945 /* see btrfs_writepage_start_hook for details on why this is required */
1946 struct btrfs_writepage_fixup {
1947 struct page *page;
1948 struct btrfs_work work;
1949 };
1950
1951 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1952 {
1953 struct btrfs_writepage_fixup *fixup;
1954 struct btrfs_ordered_extent *ordered;
1955 struct extent_state *cached_state = NULL;
1956 struct page *page;
1957 struct inode *inode;
1958 u64 page_start;
1959 u64 page_end;
1960 int ret;
1961
1962 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1963 page = fixup->page;
1964 again:
1965 lock_page(page);
1966 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1967 ClearPageChecked(page);
1968 goto out_page;
1969 }
1970
1971 inode = page->mapping->host;
1972 page_start = page_offset(page);
1973 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1974
1975 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1976 &cached_state);
1977
1978 /* already ordered? We're done */
1979 if (PagePrivate2(page))
1980 goto out;
1981
1982 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1983 if (ordered) {
1984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1985 page_end, &cached_state, GFP_NOFS);
1986 unlock_page(page);
1987 btrfs_start_ordered_extent(inode, ordered, 1);
1988 btrfs_put_ordered_extent(ordered);
1989 goto again;
1990 }
1991
1992 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1993 if (ret) {
1994 mapping_set_error(page->mapping, ret);
1995 end_extent_writepage(page, ret, page_start, page_end);
1996 ClearPageChecked(page);
1997 goto out;
1998 }
1999
2000 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2001 ClearPageChecked(page);
2002 set_page_dirty(page);
2003 out:
2004 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2005 &cached_state, GFP_NOFS);
2006 out_page:
2007 unlock_page(page);
2008 page_cache_release(page);
2009 kfree(fixup);
2010 }
2011
2012 /*
2013 * There are a few paths in the higher layers of the kernel that directly
2014 * set the page dirty bit without asking the filesystem if it is a
2015 * good idea. This causes problems because we want to make sure COW
2016 * properly happens and the data=ordered rules are followed.
2017 *
2018 * In our case any range that doesn't have the ORDERED bit set
2019 * hasn't been properly setup for IO. We kick off an async process
2020 * to fix it up. The async helper will wait for ordered extents, set
2021 * the delalloc bit and make it safe to write the page.
2022 */
2023 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2024 {
2025 struct inode *inode = page->mapping->host;
2026 struct btrfs_writepage_fixup *fixup;
2027 struct btrfs_root *root = BTRFS_I(inode)->root;
2028
2029 /* this page is properly in the ordered list */
2030 if (TestClearPagePrivate2(page))
2031 return 0;
2032
2033 if (PageChecked(page))
2034 return -EAGAIN;
2035
2036 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2037 if (!fixup)
2038 return -EAGAIN;
2039
2040 SetPageChecked(page);
2041 page_cache_get(page);
2042 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2043 btrfs_writepage_fixup_worker, NULL, NULL);
2044 fixup->page = page;
2045 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2046 return -EBUSY;
2047 }
2048
2049 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2050 struct inode *inode, u64 file_pos,
2051 u64 disk_bytenr, u64 disk_num_bytes,
2052 u64 num_bytes, u64 ram_bytes,
2053 u8 compression, u8 encryption,
2054 u16 other_encoding, int extent_type)
2055 {
2056 struct btrfs_root *root = BTRFS_I(inode)->root;
2057 struct btrfs_file_extent_item *fi;
2058 struct btrfs_path *path;
2059 struct extent_buffer *leaf;
2060 struct btrfs_key ins;
2061 int extent_inserted = 0;
2062 int ret;
2063
2064 path = btrfs_alloc_path();
2065 if (!path)
2066 return -ENOMEM;
2067
2068 /*
2069 * we may be replacing one extent in the tree with another.
2070 * The new extent is pinned in the extent map, and we don't want
2071 * to drop it from the cache until it is completely in the btree.
2072 *
2073 * So, tell btrfs_drop_extents to leave this extent in the cache.
2074 * the caller is expected to unpin it and allow it to be merged
2075 * with the others.
2076 */
2077 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2078 file_pos + num_bytes, NULL, 0,
2079 1, sizeof(*fi), &extent_inserted);
2080 if (ret)
2081 goto out;
2082
2083 if (!extent_inserted) {
2084 ins.objectid = btrfs_ino(inode);
2085 ins.offset = file_pos;
2086 ins.type = BTRFS_EXTENT_DATA_KEY;
2087
2088 path->leave_spinning = 1;
2089 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2090 sizeof(*fi));
2091 if (ret)
2092 goto out;
2093 }
2094 leaf = path->nodes[0];
2095 fi = btrfs_item_ptr(leaf, path->slots[0],
2096 struct btrfs_file_extent_item);
2097 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2098 btrfs_set_file_extent_type(leaf, fi, extent_type);
2099 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2100 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2101 btrfs_set_file_extent_offset(leaf, fi, 0);
2102 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2103 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2104 btrfs_set_file_extent_compression(leaf, fi, compression);
2105 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2106 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2107
2108 btrfs_mark_buffer_dirty(leaf);
2109 btrfs_release_path(path);
2110
2111 inode_add_bytes(inode, num_bytes);
2112
2113 ins.objectid = disk_bytenr;
2114 ins.offset = disk_num_bytes;
2115 ins.type = BTRFS_EXTENT_ITEM_KEY;
2116 ret = btrfs_alloc_reserved_file_extent(trans, root,
2117 root->root_key.objectid,
2118 btrfs_ino(inode), file_pos, &ins);
2119 out:
2120 btrfs_free_path(path);
2121
2122 return ret;
2123 }
2124
2125 /* snapshot-aware defrag */
2126 struct sa_defrag_extent_backref {
2127 struct rb_node node;
2128 struct old_sa_defrag_extent *old;
2129 u64 root_id;
2130 u64 inum;
2131 u64 file_pos;
2132 u64 extent_offset;
2133 u64 num_bytes;
2134 u64 generation;
2135 };
2136
2137 struct old_sa_defrag_extent {
2138 struct list_head list;
2139 struct new_sa_defrag_extent *new;
2140
2141 u64 extent_offset;
2142 u64 bytenr;
2143 u64 offset;
2144 u64 len;
2145 int count;
2146 };
2147
2148 struct new_sa_defrag_extent {
2149 struct rb_root root;
2150 struct list_head head;
2151 struct btrfs_path *path;
2152 struct inode *inode;
2153 u64 file_pos;
2154 u64 len;
2155 u64 bytenr;
2156 u64 disk_len;
2157 u8 compress_type;
2158 };
2159
2160 static int backref_comp(struct sa_defrag_extent_backref *b1,
2161 struct sa_defrag_extent_backref *b2)
2162 {
2163 if (b1->root_id < b2->root_id)
2164 return -1;
2165 else if (b1->root_id > b2->root_id)
2166 return 1;
2167
2168 if (b1->inum < b2->inum)
2169 return -1;
2170 else if (b1->inum > b2->inum)
2171 return 1;
2172
2173 if (b1->file_pos < b2->file_pos)
2174 return -1;
2175 else if (b1->file_pos > b2->file_pos)
2176 return 1;
2177
2178 /*
2179 * [------------------------------] ===> (a range of space)
2180 * |<--->| |<---->| =============> (fs/file tree A)
2181 * |<---------------------------->| ===> (fs/file tree B)
2182 *
2183 * A range of space can refer to two file extents in one tree while
2184 * refer to only one file extent in another tree.
2185 *
2186 * So we may process a disk offset more than one time(two extents in A)
2187 * and locate at the same extent(one extent in B), then insert two same
2188 * backrefs(both refer to the extent in B).
2189 */
2190 return 0;
2191 }
2192
2193 static void backref_insert(struct rb_root *root,
2194 struct sa_defrag_extent_backref *backref)
2195 {
2196 struct rb_node **p = &root->rb_node;
2197 struct rb_node *parent = NULL;
2198 struct sa_defrag_extent_backref *entry;
2199 int ret;
2200
2201 while (*p) {
2202 parent = *p;
2203 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2204
2205 ret = backref_comp(backref, entry);
2206 if (ret < 0)
2207 p = &(*p)->rb_left;
2208 else
2209 p = &(*p)->rb_right;
2210 }
2211
2212 rb_link_node(&backref->node, parent, p);
2213 rb_insert_color(&backref->node, root);
2214 }
2215
2216 /*
2217 * Note the backref might has changed, and in this case we just return 0.
2218 */
2219 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2220 void *ctx)
2221 {
2222 struct btrfs_file_extent_item *extent;
2223 struct btrfs_fs_info *fs_info;
2224 struct old_sa_defrag_extent *old = ctx;
2225 struct new_sa_defrag_extent *new = old->new;
2226 struct btrfs_path *path = new->path;
2227 struct btrfs_key key;
2228 struct btrfs_root *root;
2229 struct sa_defrag_extent_backref *backref;
2230 struct extent_buffer *leaf;
2231 struct inode *inode = new->inode;
2232 int slot;
2233 int ret;
2234 u64 extent_offset;
2235 u64 num_bytes;
2236
2237 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2238 inum == btrfs_ino(inode))
2239 return 0;
2240
2241 key.objectid = root_id;
2242 key.type = BTRFS_ROOT_ITEM_KEY;
2243 key.offset = (u64)-1;
2244
2245 fs_info = BTRFS_I(inode)->root->fs_info;
2246 root = btrfs_read_fs_root_no_name(fs_info, &key);
2247 if (IS_ERR(root)) {
2248 if (PTR_ERR(root) == -ENOENT)
2249 return 0;
2250 WARN_ON(1);
2251 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2252 inum, offset, root_id);
2253 return PTR_ERR(root);
2254 }
2255
2256 key.objectid = inum;
2257 key.type = BTRFS_EXTENT_DATA_KEY;
2258 if (offset > (u64)-1 << 32)
2259 key.offset = 0;
2260 else
2261 key.offset = offset;
2262
2263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2264 if (WARN_ON(ret < 0))
2265 return ret;
2266 ret = 0;
2267
2268 while (1) {
2269 cond_resched();
2270
2271 leaf = path->nodes[0];
2272 slot = path->slots[0];
2273
2274 if (slot >= btrfs_header_nritems(leaf)) {
2275 ret = btrfs_next_leaf(root, path);
2276 if (ret < 0) {
2277 goto out;
2278 } else if (ret > 0) {
2279 ret = 0;
2280 goto out;
2281 }
2282 continue;
2283 }
2284
2285 path->slots[0]++;
2286
2287 btrfs_item_key_to_cpu(leaf, &key, slot);
2288
2289 if (key.objectid > inum)
2290 goto out;
2291
2292 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2293 continue;
2294
2295 extent = btrfs_item_ptr(leaf, slot,
2296 struct btrfs_file_extent_item);
2297
2298 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2299 continue;
2300
2301 /*
2302 * 'offset' refers to the exact key.offset,
2303 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2304 * (key.offset - extent_offset).
2305 */
2306 if (key.offset != offset)
2307 continue;
2308
2309 extent_offset = btrfs_file_extent_offset(leaf, extent);
2310 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2311
2312 if (extent_offset >= old->extent_offset + old->offset +
2313 old->len || extent_offset + num_bytes <=
2314 old->extent_offset + old->offset)
2315 continue;
2316 break;
2317 }
2318
2319 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2320 if (!backref) {
2321 ret = -ENOENT;
2322 goto out;
2323 }
2324
2325 backref->root_id = root_id;
2326 backref->inum = inum;
2327 backref->file_pos = offset;
2328 backref->num_bytes = num_bytes;
2329 backref->extent_offset = extent_offset;
2330 backref->generation = btrfs_file_extent_generation(leaf, extent);
2331 backref->old = old;
2332 backref_insert(&new->root, backref);
2333 old->count++;
2334 out:
2335 btrfs_release_path(path);
2336 WARN_ON(ret);
2337 return ret;
2338 }
2339
2340 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2341 struct new_sa_defrag_extent *new)
2342 {
2343 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2344 struct old_sa_defrag_extent *old, *tmp;
2345 int ret;
2346
2347 new->path = path;
2348
2349 list_for_each_entry_safe(old, tmp, &new->head, list) {
2350 ret = iterate_inodes_from_logical(old->bytenr +
2351 old->extent_offset, fs_info,
2352 path, record_one_backref,
2353 old);
2354 if (ret < 0 && ret != -ENOENT)
2355 return false;
2356
2357 /* no backref to be processed for this extent */
2358 if (!old->count) {
2359 list_del(&old->list);
2360 kfree(old);
2361 }
2362 }
2363
2364 if (list_empty(&new->head))
2365 return false;
2366
2367 return true;
2368 }
2369
2370 static int relink_is_mergable(struct extent_buffer *leaf,
2371 struct btrfs_file_extent_item *fi,
2372 struct new_sa_defrag_extent *new)
2373 {
2374 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2375 return 0;
2376
2377 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2378 return 0;
2379
2380 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2381 return 0;
2382
2383 if (btrfs_file_extent_encryption(leaf, fi) ||
2384 btrfs_file_extent_other_encoding(leaf, fi))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 /*
2391 * Note the backref might has changed, and in this case we just return 0.
2392 */
2393 static noinline int relink_extent_backref(struct btrfs_path *path,
2394 struct sa_defrag_extent_backref *prev,
2395 struct sa_defrag_extent_backref *backref)
2396 {
2397 struct btrfs_file_extent_item *extent;
2398 struct btrfs_file_extent_item *item;
2399 struct btrfs_ordered_extent *ordered;
2400 struct btrfs_trans_handle *trans;
2401 struct btrfs_fs_info *fs_info;
2402 struct btrfs_root *root;
2403 struct btrfs_key key;
2404 struct extent_buffer *leaf;
2405 struct old_sa_defrag_extent *old = backref->old;
2406 struct new_sa_defrag_extent *new = old->new;
2407 struct inode *src_inode = new->inode;
2408 struct inode *inode;
2409 struct extent_state *cached = NULL;
2410 int ret = 0;
2411 u64 start;
2412 u64 len;
2413 u64 lock_start;
2414 u64 lock_end;
2415 bool merge = false;
2416 int index;
2417
2418 if (prev && prev->root_id == backref->root_id &&
2419 prev->inum == backref->inum &&
2420 prev->file_pos + prev->num_bytes == backref->file_pos)
2421 merge = true;
2422
2423 /* step 1: get root */
2424 key.objectid = backref->root_id;
2425 key.type = BTRFS_ROOT_ITEM_KEY;
2426 key.offset = (u64)-1;
2427
2428 fs_info = BTRFS_I(src_inode)->root->fs_info;
2429 index = srcu_read_lock(&fs_info->subvol_srcu);
2430
2431 root = btrfs_read_fs_root_no_name(fs_info, &key);
2432 if (IS_ERR(root)) {
2433 srcu_read_unlock(&fs_info->subvol_srcu, index);
2434 if (PTR_ERR(root) == -ENOENT)
2435 return 0;
2436 return PTR_ERR(root);
2437 }
2438
2439 if (btrfs_root_readonly(root)) {
2440 srcu_read_unlock(&fs_info->subvol_srcu, index);
2441 return 0;
2442 }
2443
2444 /* step 2: get inode */
2445 key.objectid = backref->inum;
2446 key.type = BTRFS_INODE_ITEM_KEY;
2447 key.offset = 0;
2448
2449 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2450 if (IS_ERR(inode)) {
2451 srcu_read_unlock(&fs_info->subvol_srcu, index);
2452 return 0;
2453 }
2454
2455 srcu_read_unlock(&fs_info->subvol_srcu, index);
2456
2457 /* step 3: relink backref */
2458 lock_start = backref->file_pos;
2459 lock_end = backref->file_pos + backref->num_bytes - 1;
2460 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2461 0, &cached);
2462
2463 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2464 if (ordered) {
2465 btrfs_put_ordered_extent(ordered);
2466 goto out_unlock;
2467 }
2468
2469 trans = btrfs_join_transaction(root);
2470 if (IS_ERR(trans)) {
2471 ret = PTR_ERR(trans);
2472 goto out_unlock;
2473 }
2474
2475 key.objectid = backref->inum;
2476 key.type = BTRFS_EXTENT_DATA_KEY;
2477 key.offset = backref->file_pos;
2478
2479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2480 if (ret < 0) {
2481 goto out_free_path;
2482 } else if (ret > 0) {
2483 ret = 0;
2484 goto out_free_path;
2485 }
2486
2487 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2488 struct btrfs_file_extent_item);
2489
2490 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2491 backref->generation)
2492 goto out_free_path;
2493
2494 btrfs_release_path(path);
2495
2496 start = backref->file_pos;
2497 if (backref->extent_offset < old->extent_offset + old->offset)
2498 start += old->extent_offset + old->offset -
2499 backref->extent_offset;
2500
2501 len = min(backref->extent_offset + backref->num_bytes,
2502 old->extent_offset + old->offset + old->len);
2503 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2504
2505 ret = btrfs_drop_extents(trans, root, inode, start,
2506 start + len, 1);
2507 if (ret)
2508 goto out_free_path;
2509 again:
2510 key.objectid = btrfs_ino(inode);
2511 key.type = BTRFS_EXTENT_DATA_KEY;
2512 key.offset = start;
2513
2514 path->leave_spinning = 1;
2515 if (merge) {
2516 struct btrfs_file_extent_item *fi;
2517 u64 extent_len;
2518 struct btrfs_key found_key;
2519
2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2521 if (ret < 0)
2522 goto out_free_path;
2523
2524 path->slots[0]--;
2525 leaf = path->nodes[0];
2526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2527
2528 fi = btrfs_item_ptr(leaf, path->slots[0],
2529 struct btrfs_file_extent_item);
2530 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2531
2532 if (extent_len + found_key.offset == start &&
2533 relink_is_mergable(leaf, fi, new)) {
2534 btrfs_set_file_extent_num_bytes(leaf, fi,
2535 extent_len + len);
2536 btrfs_mark_buffer_dirty(leaf);
2537 inode_add_bytes(inode, len);
2538
2539 ret = 1;
2540 goto out_free_path;
2541 } else {
2542 merge = false;
2543 btrfs_release_path(path);
2544 goto again;
2545 }
2546 }
2547
2548 ret = btrfs_insert_empty_item(trans, root, path, &key,
2549 sizeof(*extent));
2550 if (ret) {
2551 btrfs_abort_transaction(trans, root, ret);
2552 goto out_free_path;
2553 }
2554
2555 leaf = path->nodes[0];
2556 item = btrfs_item_ptr(leaf, path->slots[0],
2557 struct btrfs_file_extent_item);
2558 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2559 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2560 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2561 btrfs_set_file_extent_num_bytes(leaf, item, len);
2562 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2563 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2564 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2565 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2566 btrfs_set_file_extent_encryption(leaf, item, 0);
2567 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2568
2569 btrfs_mark_buffer_dirty(leaf);
2570 inode_add_bytes(inode, len);
2571 btrfs_release_path(path);
2572
2573 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2574 new->disk_len, 0,
2575 backref->root_id, backref->inum,
2576 new->file_pos, 0); /* start - extent_offset */
2577 if (ret) {
2578 btrfs_abort_transaction(trans, root, ret);
2579 goto out_free_path;
2580 }
2581
2582 ret = 1;
2583 out_free_path:
2584 btrfs_release_path(path);
2585 path->leave_spinning = 0;
2586 btrfs_end_transaction(trans, root);
2587 out_unlock:
2588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2589 &cached, GFP_NOFS);
2590 iput(inode);
2591 return ret;
2592 }
2593
2594 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2595 {
2596 struct old_sa_defrag_extent *old, *tmp;
2597
2598 if (!new)
2599 return;
2600
2601 list_for_each_entry_safe(old, tmp, &new->head, list) {
2602 list_del(&old->list);
2603 kfree(old);
2604 }
2605 kfree(new);
2606 }
2607
2608 static void relink_file_extents(struct new_sa_defrag_extent *new)
2609 {
2610 struct btrfs_path *path;
2611 struct sa_defrag_extent_backref *backref;
2612 struct sa_defrag_extent_backref *prev = NULL;
2613 struct inode *inode;
2614 struct btrfs_root *root;
2615 struct rb_node *node;
2616 int ret;
2617
2618 inode = new->inode;
2619 root = BTRFS_I(inode)->root;
2620
2621 path = btrfs_alloc_path();
2622 if (!path)
2623 return;
2624
2625 if (!record_extent_backrefs(path, new)) {
2626 btrfs_free_path(path);
2627 goto out;
2628 }
2629 btrfs_release_path(path);
2630
2631 while (1) {
2632 node = rb_first(&new->root);
2633 if (!node)
2634 break;
2635 rb_erase(node, &new->root);
2636
2637 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2638
2639 ret = relink_extent_backref(path, prev, backref);
2640 WARN_ON(ret < 0);
2641
2642 kfree(prev);
2643
2644 if (ret == 1)
2645 prev = backref;
2646 else
2647 prev = NULL;
2648 cond_resched();
2649 }
2650 kfree(prev);
2651
2652 btrfs_free_path(path);
2653 out:
2654 free_sa_defrag_extent(new);
2655
2656 atomic_dec(&root->fs_info->defrag_running);
2657 wake_up(&root->fs_info->transaction_wait);
2658 }
2659
2660 static struct new_sa_defrag_extent *
2661 record_old_file_extents(struct inode *inode,
2662 struct btrfs_ordered_extent *ordered)
2663 {
2664 struct btrfs_root *root = BTRFS_I(inode)->root;
2665 struct btrfs_path *path;
2666 struct btrfs_key key;
2667 struct old_sa_defrag_extent *old;
2668 struct new_sa_defrag_extent *new;
2669 int ret;
2670
2671 new = kmalloc(sizeof(*new), GFP_NOFS);
2672 if (!new)
2673 return NULL;
2674
2675 new->inode = inode;
2676 new->file_pos = ordered->file_offset;
2677 new->len = ordered->len;
2678 new->bytenr = ordered->start;
2679 new->disk_len = ordered->disk_len;
2680 new->compress_type = ordered->compress_type;
2681 new->root = RB_ROOT;
2682 INIT_LIST_HEAD(&new->head);
2683
2684 path = btrfs_alloc_path();
2685 if (!path)
2686 goto out_kfree;
2687
2688 key.objectid = btrfs_ino(inode);
2689 key.type = BTRFS_EXTENT_DATA_KEY;
2690 key.offset = new->file_pos;
2691
2692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2693 if (ret < 0)
2694 goto out_free_path;
2695 if (ret > 0 && path->slots[0] > 0)
2696 path->slots[0]--;
2697
2698 /* find out all the old extents for the file range */
2699 while (1) {
2700 struct btrfs_file_extent_item *extent;
2701 struct extent_buffer *l;
2702 int slot;
2703 u64 num_bytes;
2704 u64 offset;
2705 u64 end;
2706 u64 disk_bytenr;
2707 u64 extent_offset;
2708
2709 l = path->nodes[0];
2710 slot = path->slots[0];
2711
2712 if (slot >= btrfs_header_nritems(l)) {
2713 ret = btrfs_next_leaf(root, path);
2714 if (ret < 0)
2715 goto out_free_path;
2716 else if (ret > 0)
2717 break;
2718 continue;
2719 }
2720
2721 btrfs_item_key_to_cpu(l, &key, slot);
2722
2723 if (key.objectid != btrfs_ino(inode))
2724 break;
2725 if (key.type != BTRFS_EXTENT_DATA_KEY)
2726 break;
2727 if (key.offset >= new->file_pos + new->len)
2728 break;
2729
2730 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2731
2732 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2733 if (key.offset + num_bytes < new->file_pos)
2734 goto next;
2735
2736 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2737 if (!disk_bytenr)
2738 goto next;
2739
2740 extent_offset = btrfs_file_extent_offset(l, extent);
2741
2742 old = kmalloc(sizeof(*old), GFP_NOFS);
2743 if (!old)
2744 goto out_free_path;
2745
2746 offset = max(new->file_pos, key.offset);
2747 end = min(new->file_pos + new->len, key.offset + num_bytes);
2748
2749 old->bytenr = disk_bytenr;
2750 old->extent_offset = extent_offset;
2751 old->offset = offset - key.offset;
2752 old->len = end - offset;
2753 old->new = new;
2754 old->count = 0;
2755 list_add_tail(&old->list, &new->head);
2756 next:
2757 path->slots[0]++;
2758 cond_resched();
2759 }
2760
2761 btrfs_free_path(path);
2762 atomic_inc(&root->fs_info->defrag_running);
2763
2764 return new;
2765
2766 out_free_path:
2767 btrfs_free_path(path);
2768 out_kfree:
2769 free_sa_defrag_extent(new);
2770 return NULL;
2771 }
2772
2773 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2774 u64 start, u64 len)
2775 {
2776 struct btrfs_block_group_cache *cache;
2777
2778 cache = btrfs_lookup_block_group(root->fs_info, start);
2779 ASSERT(cache);
2780
2781 spin_lock(&cache->lock);
2782 cache->delalloc_bytes -= len;
2783 spin_unlock(&cache->lock);
2784
2785 btrfs_put_block_group(cache);
2786 }
2787
2788 /* as ordered data IO finishes, this gets called so we can finish
2789 * an ordered extent if the range of bytes in the file it covers are
2790 * fully written.
2791 */
2792 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2793 {
2794 struct inode *inode = ordered_extent->inode;
2795 struct btrfs_root *root = BTRFS_I(inode)->root;
2796 struct btrfs_trans_handle *trans = NULL;
2797 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2798 struct extent_state *cached_state = NULL;
2799 struct new_sa_defrag_extent *new = NULL;
2800 int compress_type = 0;
2801 int ret = 0;
2802 u64 logical_len = ordered_extent->len;
2803 bool nolock;
2804 bool truncated = false;
2805
2806 nolock = btrfs_is_free_space_inode(inode);
2807
2808 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2809 ret = -EIO;
2810 goto out;
2811 }
2812
2813 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2814 ordered_extent->file_offset +
2815 ordered_extent->len - 1);
2816
2817 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2818 truncated = true;
2819 logical_len = ordered_extent->truncated_len;
2820 /* Truncated the entire extent, don't bother adding */
2821 if (!logical_len)
2822 goto out;
2823 }
2824
2825 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2826 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2827 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2828 if (nolock)
2829 trans = btrfs_join_transaction_nolock(root);
2830 else
2831 trans = btrfs_join_transaction(root);
2832 if (IS_ERR(trans)) {
2833 ret = PTR_ERR(trans);
2834 trans = NULL;
2835 goto out;
2836 }
2837 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2838 ret = btrfs_update_inode_fallback(trans, root, inode);
2839 if (ret) /* -ENOMEM or corruption */
2840 btrfs_abort_transaction(trans, root, ret);
2841 goto out;
2842 }
2843
2844 lock_extent_bits(io_tree, ordered_extent->file_offset,
2845 ordered_extent->file_offset + ordered_extent->len - 1,
2846 0, &cached_state);
2847
2848 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2849 ordered_extent->file_offset + ordered_extent->len - 1,
2850 EXTENT_DEFRAG, 1, cached_state);
2851 if (ret) {
2852 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2853 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2854 /* the inode is shared */
2855 new = record_old_file_extents(inode, ordered_extent);
2856
2857 clear_extent_bit(io_tree, ordered_extent->file_offset,
2858 ordered_extent->file_offset + ordered_extent->len - 1,
2859 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2860 }
2861
2862 if (nolock)
2863 trans = btrfs_join_transaction_nolock(root);
2864 else
2865 trans = btrfs_join_transaction(root);
2866 if (IS_ERR(trans)) {
2867 ret = PTR_ERR(trans);
2868 trans = NULL;
2869 goto out_unlock;
2870 }
2871
2872 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2873
2874 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2875 compress_type = ordered_extent->compress_type;
2876 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2877 BUG_ON(compress_type);
2878 ret = btrfs_mark_extent_written(trans, inode,
2879 ordered_extent->file_offset,
2880 ordered_extent->file_offset +
2881 logical_len);
2882 } else {
2883 BUG_ON(root == root->fs_info->tree_root);
2884 ret = insert_reserved_file_extent(trans, inode,
2885 ordered_extent->file_offset,
2886 ordered_extent->start,
2887 ordered_extent->disk_len,
2888 logical_len, logical_len,
2889 compress_type, 0, 0,
2890 BTRFS_FILE_EXTENT_REG);
2891 if (!ret)
2892 btrfs_release_delalloc_bytes(root,
2893 ordered_extent->start,
2894 ordered_extent->disk_len);
2895 }
2896 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2897 ordered_extent->file_offset, ordered_extent->len,
2898 trans->transid);
2899 if (ret < 0) {
2900 btrfs_abort_transaction(trans, root, ret);
2901 goto out_unlock;
2902 }
2903
2904 add_pending_csums(trans, inode, ordered_extent->file_offset,
2905 &ordered_extent->list);
2906
2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2908 ret = btrfs_update_inode_fallback(trans, root, inode);
2909 if (ret) { /* -ENOMEM or corruption */
2910 btrfs_abort_transaction(trans, root, ret);
2911 goto out_unlock;
2912 }
2913 ret = 0;
2914 out_unlock:
2915 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2916 ordered_extent->file_offset +
2917 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2918 out:
2919 if (root != root->fs_info->tree_root)
2920 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2921 if (trans)
2922 btrfs_end_transaction(trans, root);
2923
2924 if (ret || truncated) {
2925 u64 start, end;
2926
2927 if (truncated)
2928 start = ordered_extent->file_offset + logical_len;
2929 else
2930 start = ordered_extent->file_offset;
2931 end = ordered_extent->file_offset + ordered_extent->len - 1;
2932 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2933
2934 /* Drop the cache for the part of the extent we didn't write. */
2935 btrfs_drop_extent_cache(inode, start, end, 0);
2936
2937 /*
2938 * If the ordered extent had an IOERR or something else went
2939 * wrong we need to return the space for this ordered extent
2940 * back to the allocator. We only free the extent in the
2941 * truncated case if we didn't write out the extent at all.
2942 */
2943 if ((ret || !logical_len) &&
2944 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2945 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2946 btrfs_free_reserved_extent(root, ordered_extent->start,
2947 ordered_extent->disk_len, 1);
2948 }
2949
2950
2951 /*
2952 * This needs to be done to make sure anybody waiting knows we are done
2953 * updating everything for this ordered extent.
2954 */
2955 btrfs_remove_ordered_extent(inode, ordered_extent);
2956
2957 /* for snapshot-aware defrag */
2958 if (new) {
2959 if (ret) {
2960 free_sa_defrag_extent(new);
2961 atomic_dec(&root->fs_info->defrag_running);
2962 } else {
2963 relink_file_extents(new);
2964 }
2965 }
2966
2967 /* once for us */
2968 btrfs_put_ordered_extent(ordered_extent);
2969 /* once for the tree */
2970 btrfs_put_ordered_extent(ordered_extent);
2971
2972 return ret;
2973 }
2974
2975 static void finish_ordered_fn(struct btrfs_work *work)
2976 {
2977 struct btrfs_ordered_extent *ordered_extent;
2978 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2979 btrfs_finish_ordered_io(ordered_extent);
2980 }
2981
2982 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2983 struct extent_state *state, int uptodate)
2984 {
2985 struct inode *inode = page->mapping->host;
2986 struct btrfs_root *root = BTRFS_I(inode)->root;
2987 struct btrfs_ordered_extent *ordered_extent = NULL;
2988 struct btrfs_workqueue *wq;
2989 btrfs_work_func_t func;
2990
2991 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2992
2993 ClearPagePrivate2(page);
2994 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2995 end - start + 1, uptodate))
2996 return 0;
2997
2998 if (btrfs_is_free_space_inode(inode)) {
2999 wq = root->fs_info->endio_freespace_worker;
3000 func = btrfs_freespace_write_helper;
3001 } else {
3002 wq = root->fs_info->endio_write_workers;
3003 func = btrfs_endio_write_helper;
3004 }
3005
3006 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3007 NULL);
3008 btrfs_queue_work(wq, &ordered_extent->work);
3009
3010 return 0;
3011 }
3012
3013 static int __readpage_endio_check(struct inode *inode,
3014 struct btrfs_io_bio *io_bio,
3015 int icsum, struct page *page,
3016 int pgoff, u64 start, size_t len)
3017 {
3018 char *kaddr;
3019 u32 csum_expected;
3020 u32 csum = ~(u32)0;
3021 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3022 DEFAULT_RATELIMIT_BURST);
3023
3024 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3025
3026 kaddr = kmap_atomic(page);
3027 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3028 btrfs_csum_final(csum, (char *)&csum);
3029 if (csum != csum_expected)
3030 goto zeroit;
3031
3032 kunmap_atomic(kaddr);
3033 return 0;
3034 zeroit:
3035 if (__ratelimit(&_rs))
3036 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3037 "csum failed ino %llu off %llu csum %u expected csum %u",
3038 btrfs_ino(inode), start, csum, csum_expected);
3039 memset(kaddr + pgoff, 1, len);
3040 flush_dcache_page(page);
3041 kunmap_atomic(kaddr);
3042 if (csum_expected == 0)
3043 return 0;
3044 return -EIO;
3045 }
3046
3047 /*
3048 * when reads are done, we need to check csums to verify the data is correct
3049 * if there's a match, we allow the bio to finish. If not, the code in
3050 * extent_io.c will try to find good copies for us.
3051 */
3052 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3053 u64 phy_offset, struct page *page,
3054 u64 start, u64 end, int mirror)
3055 {
3056 size_t offset = start - page_offset(page);
3057 struct inode *inode = page->mapping->host;
3058 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3059 struct btrfs_root *root = BTRFS_I(inode)->root;
3060
3061 if (PageChecked(page)) {
3062 ClearPageChecked(page);
3063 return 0;
3064 }
3065
3066 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3067 return 0;
3068
3069 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3070 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3071 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3072 GFP_NOFS);
3073 return 0;
3074 }
3075
3076 phy_offset >>= inode->i_sb->s_blocksize_bits;
3077 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3078 start, (size_t)(end - start + 1));
3079 }
3080
3081 struct delayed_iput {
3082 struct list_head list;
3083 struct inode *inode;
3084 };
3085
3086 /* JDM: If this is fs-wide, why can't we add a pointer to
3087 * btrfs_inode instead and avoid the allocation? */
3088 void btrfs_add_delayed_iput(struct inode *inode)
3089 {
3090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3091 struct delayed_iput *delayed;
3092
3093 if (atomic_add_unless(&inode->i_count, -1, 1))
3094 return;
3095
3096 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3097 delayed->inode = inode;
3098
3099 spin_lock(&fs_info->delayed_iput_lock);
3100 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3101 spin_unlock(&fs_info->delayed_iput_lock);
3102 }
3103
3104 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3105 {
3106 LIST_HEAD(list);
3107 struct btrfs_fs_info *fs_info = root->fs_info;
3108 struct delayed_iput *delayed;
3109 int empty;
3110
3111 spin_lock(&fs_info->delayed_iput_lock);
3112 empty = list_empty(&fs_info->delayed_iputs);
3113 spin_unlock(&fs_info->delayed_iput_lock);
3114 if (empty)
3115 return;
3116
3117 down_read(&fs_info->delayed_iput_sem);
3118
3119 spin_lock(&fs_info->delayed_iput_lock);
3120 list_splice_init(&fs_info->delayed_iputs, &list);
3121 spin_unlock(&fs_info->delayed_iput_lock);
3122
3123 while (!list_empty(&list)) {
3124 delayed = list_entry(list.next, struct delayed_iput, list);
3125 list_del(&delayed->list);
3126 iput(delayed->inode);
3127 kfree(delayed);
3128 }
3129
3130 up_read(&root->fs_info->delayed_iput_sem);
3131 }
3132
3133 /*
3134 * This is called in transaction commit time. If there are no orphan
3135 * files in the subvolume, it removes orphan item and frees block_rsv
3136 * structure.
3137 */
3138 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3139 struct btrfs_root *root)
3140 {
3141 struct btrfs_block_rsv *block_rsv;
3142 int ret;
3143
3144 if (atomic_read(&root->orphan_inodes) ||
3145 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3146 return;
3147
3148 spin_lock(&root->orphan_lock);
3149 if (atomic_read(&root->orphan_inodes)) {
3150 spin_unlock(&root->orphan_lock);
3151 return;
3152 }
3153
3154 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3155 spin_unlock(&root->orphan_lock);
3156 return;
3157 }
3158
3159 block_rsv = root->orphan_block_rsv;
3160 root->orphan_block_rsv = NULL;
3161 spin_unlock(&root->orphan_lock);
3162
3163 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3164 btrfs_root_refs(&root->root_item) > 0) {
3165 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3166 root->root_key.objectid);
3167 if (ret)
3168 btrfs_abort_transaction(trans, root, ret);
3169 else
3170 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3171 &root->state);
3172 }
3173
3174 if (block_rsv) {
3175 WARN_ON(block_rsv->size > 0);
3176 btrfs_free_block_rsv(root, block_rsv);
3177 }
3178 }
3179
3180 /*
3181 * This creates an orphan entry for the given inode in case something goes
3182 * wrong in the middle of an unlink/truncate.
3183 *
3184 * NOTE: caller of this function should reserve 5 units of metadata for
3185 * this function.
3186 */
3187 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3188 {
3189 struct btrfs_root *root = BTRFS_I(inode)->root;
3190 struct btrfs_block_rsv *block_rsv = NULL;
3191 int reserve = 0;
3192 int insert = 0;
3193 int ret;
3194
3195 if (!root->orphan_block_rsv) {
3196 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3197 if (!block_rsv)
3198 return -ENOMEM;
3199 }
3200
3201 spin_lock(&root->orphan_lock);
3202 if (!root->orphan_block_rsv) {
3203 root->orphan_block_rsv = block_rsv;
3204 } else if (block_rsv) {
3205 btrfs_free_block_rsv(root, block_rsv);
3206 block_rsv = NULL;
3207 }
3208
3209 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3210 &BTRFS_I(inode)->runtime_flags)) {
3211 #if 0
3212 /*
3213 * For proper ENOSPC handling, we should do orphan
3214 * cleanup when mounting. But this introduces backward
3215 * compatibility issue.
3216 */
3217 if (!xchg(&root->orphan_item_inserted, 1))
3218 insert = 2;
3219 else
3220 insert = 1;
3221 #endif
3222 insert = 1;
3223 atomic_inc(&root->orphan_inodes);
3224 }
3225
3226 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3227 &BTRFS_I(inode)->runtime_flags))
3228 reserve = 1;
3229 spin_unlock(&root->orphan_lock);
3230
3231 /* grab metadata reservation from transaction handle */
3232 if (reserve) {
3233 ret = btrfs_orphan_reserve_metadata(trans, inode);
3234 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3235 }
3236
3237 /* insert an orphan item to track this unlinked/truncated file */
3238 if (insert >= 1) {
3239 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3240 if (ret) {
3241 atomic_dec(&root->orphan_inodes);
3242 if (reserve) {
3243 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3244 &BTRFS_I(inode)->runtime_flags);
3245 btrfs_orphan_release_metadata(inode);
3246 }
3247 if (ret != -EEXIST) {
3248 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 &BTRFS_I(inode)->runtime_flags);
3250 btrfs_abort_transaction(trans, root, ret);
3251 return ret;
3252 }
3253 }
3254 ret = 0;
3255 }
3256
3257 /* insert an orphan item to track subvolume contains orphan files */
3258 if (insert >= 2) {
3259 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3260 root->root_key.objectid);
3261 if (ret && ret != -EEXIST) {
3262 btrfs_abort_transaction(trans, root, ret);
3263 return ret;
3264 }
3265 }
3266 return 0;
3267 }
3268
3269 /*
3270 * We have done the truncate/delete so we can go ahead and remove the orphan
3271 * item for this particular inode.
3272 */
3273 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3274 struct inode *inode)
3275 {
3276 struct btrfs_root *root = BTRFS_I(inode)->root;
3277 int delete_item = 0;
3278 int release_rsv = 0;
3279 int ret = 0;
3280
3281 spin_lock(&root->orphan_lock);
3282 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3283 &BTRFS_I(inode)->runtime_flags))
3284 delete_item = 1;
3285
3286 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3287 &BTRFS_I(inode)->runtime_flags))
3288 release_rsv = 1;
3289 spin_unlock(&root->orphan_lock);
3290
3291 if (delete_item) {
3292 atomic_dec(&root->orphan_inodes);
3293 if (trans)
3294 ret = btrfs_del_orphan_item(trans, root,
3295 btrfs_ino(inode));
3296 }
3297
3298 if (release_rsv)
3299 btrfs_orphan_release_metadata(inode);
3300
3301 return ret;
3302 }
3303
3304 /*
3305 * this cleans up any orphans that may be left on the list from the last use
3306 * of this root.
3307 */
3308 int btrfs_orphan_cleanup(struct btrfs_root *root)
3309 {
3310 struct btrfs_path *path;
3311 struct extent_buffer *leaf;
3312 struct btrfs_key key, found_key;
3313 struct btrfs_trans_handle *trans;
3314 struct inode *inode;
3315 u64 last_objectid = 0;
3316 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3317
3318 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3319 return 0;
3320
3321 path = btrfs_alloc_path();
3322 if (!path) {
3323 ret = -ENOMEM;
3324 goto out;
3325 }
3326 path->reada = -1;
3327
3328 key.objectid = BTRFS_ORPHAN_OBJECTID;
3329 key.type = BTRFS_ORPHAN_ITEM_KEY;
3330 key.offset = (u64)-1;
3331
3332 while (1) {
3333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3334 if (ret < 0)
3335 goto out;
3336
3337 /*
3338 * if ret == 0 means we found what we were searching for, which
3339 * is weird, but possible, so only screw with path if we didn't
3340 * find the key and see if we have stuff that matches
3341 */
3342 if (ret > 0) {
3343 ret = 0;
3344 if (path->slots[0] == 0)
3345 break;
3346 path->slots[0]--;
3347 }
3348
3349 /* pull out the item */
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353 /* make sure the item matches what we want */
3354 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3355 break;
3356 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3357 break;
3358
3359 /* release the path since we're done with it */
3360 btrfs_release_path(path);
3361
3362 /*
3363 * this is where we are basically btrfs_lookup, without the
3364 * crossing root thing. we store the inode number in the
3365 * offset of the orphan item.
3366 */
3367
3368 if (found_key.offset == last_objectid) {
3369 btrfs_err(root->fs_info,
3370 "Error removing orphan entry, stopping orphan cleanup");
3371 ret = -EINVAL;
3372 goto out;
3373 }
3374
3375 last_objectid = found_key.offset;
3376
3377 found_key.objectid = found_key.offset;
3378 found_key.type = BTRFS_INODE_ITEM_KEY;
3379 found_key.offset = 0;
3380 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3381 ret = PTR_ERR_OR_ZERO(inode);
3382 if (ret && ret != -ESTALE)
3383 goto out;
3384
3385 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3386 struct btrfs_root *dead_root;
3387 struct btrfs_fs_info *fs_info = root->fs_info;
3388 int is_dead_root = 0;
3389
3390 /*
3391 * this is an orphan in the tree root. Currently these
3392 * could come from 2 sources:
3393 * a) a snapshot deletion in progress
3394 * b) a free space cache inode
3395 * We need to distinguish those two, as the snapshot
3396 * orphan must not get deleted.
3397 * find_dead_roots already ran before us, so if this
3398 * is a snapshot deletion, we should find the root
3399 * in the dead_roots list
3400 */
3401 spin_lock(&fs_info->trans_lock);
3402 list_for_each_entry(dead_root, &fs_info->dead_roots,
3403 root_list) {
3404 if (dead_root->root_key.objectid ==
3405 found_key.objectid) {
3406 is_dead_root = 1;
3407 break;
3408 }
3409 }
3410 spin_unlock(&fs_info->trans_lock);
3411 if (is_dead_root) {
3412 /* prevent this orphan from being found again */
3413 key.offset = found_key.objectid - 1;
3414 continue;
3415 }
3416 }
3417 /*
3418 * Inode is already gone but the orphan item is still there,
3419 * kill the orphan item.
3420 */
3421 if (ret == -ESTALE) {
3422 trans = btrfs_start_transaction(root, 1);
3423 if (IS_ERR(trans)) {
3424 ret = PTR_ERR(trans);
3425 goto out;
3426 }
3427 btrfs_debug(root->fs_info, "auto deleting %Lu",
3428 found_key.objectid);
3429 ret = btrfs_del_orphan_item(trans, root,
3430 found_key.objectid);
3431 btrfs_end_transaction(trans, root);
3432 if (ret)
3433 goto out;
3434 continue;
3435 }
3436
3437 /*
3438 * add this inode to the orphan list so btrfs_orphan_del does
3439 * the proper thing when we hit it
3440 */
3441 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3442 &BTRFS_I(inode)->runtime_flags);
3443 atomic_inc(&root->orphan_inodes);
3444
3445 /* if we have links, this was a truncate, lets do that */
3446 if (inode->i_nlink) {
3447 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3448 iput(inode);
3449 continue;
3450 }
3451 nr_truncate++;
3452
3453 /* 1 for the orphan item deletion. */
3454 trans = btrfs_start_transaction(root, 1);
3455 if (IS_ERR(trans)) {
3456 iput(inode);
3457 ret = PTR_ERR(trans);
3458 goto out;
3459 }
3460 ret = btrfs_orphan_add(trans, inode);
3461 btrfs_end_transaction(trans, root);
3462 if (ret) {
3463 iput(inode);
3464 goto out;
3465 }
3466
3467 ret = btrfs_truncate(inode);
3468 if (ret)
3469 btrfs_orphan_del(NULL, inode);
3470 } else {
3471 nr_unlink++;
3472 }
3473
3474 /* this will do delete_inode and everything for us */
3475 iput(inode);
3476 if (ret)
3477 goto out;
3478 }
3479 /* release the path since we're done with it */
3480 btrfs_release_path(path);
3481
3482 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3483
3484 if (root->orphan_block_rsv)
3485 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3486 (u64)-1);
3487
3488 if (root->orphan_block_rsv ||
3489 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3490 trans = btrfs_join_transaction(root);
3491 if (!IS_ERR(trans))
3492 btrfs_end_transaction(trans, root);
3493 }
3494
3495 if (nr_unlink)
3496 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3497 if (nr_truncate)
3498 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3499
3500 out:
3501 if (ret)
3502 btrfs_err(root->fs_info,
3503 "could not do orphan cleanup %d", ret);
3504 btrfs_free_path(path);
3505 return ret;
3506 }
3507
3508 /*
3509 * very simple check to peek ahead in the leaf looking for xattrs. If we
3510 * don't find any xattrs, we know there can't be any acls.
3511 *
3512 * slot is the slot the inode is in, objectid is the objectid of the inode
3513 */
3514 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3515 int slot, u64 objectid,
3516 int *first_xattr_slot)
3517 {
3518 u32 nritems = btrfs_header_nritems(leaf);
3519 struct btrfs_key found_key;
3520 static u64 xattr_access = 0;
3521 static u64 xattr_default = 0;
3522 int scanned = 0;
3523
3524 if (!xattr_access) {
3525 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3526 strlen(POSIX_ACL_XATTR_ACCESS));
3527 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3528 strlen(POSIX_ACL_XATTR_DEFAULT));
3529 }
3530
3531 slot++;
3532 *first_xattr_slot = -1;
3533 while (slot < nritems) {
3534 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3535
3536 /* we found a different objectid, there must not be acls */
3537 if (found_key.objectid != objectid)
3538 return 0;
3539
3540 /* we found an xattr, assume we've got an acl */
3541 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3542 if (*first_xattr_slot == -1)
3543 *first_xattr_slot = slot;
3544 if (found_key.offset == xattr_access ||
3545 found_key.offset == xattr_default)
3546 return 1;
3547 }
3548
3549 /*
3550 * we found a key greater than an xattr key, there can't
3551 * be any acls later on
3552 */
3553 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3554 return 0;
3555
3556 slot++;
3557 scanned++;
3558
3559 /*
3560 * it goes inode, inode backrefs, xattrs, extents,
3561 * so if there are a ton of hard links to an inode there can
3562 * be a lot of backrefs. Don't waste time searching too hard,
3563 * this is just an optimization
3564 */
3565 if (scanned >= 8)
3566 break;
3567 }
3568 /* we hit the end of the leaf before we found an xattr or
3569 * something larger than an xattr. We have to assume the inode
3570 * has acls
3571 */
3572 if (*first_xattr_slot == -1)
3573 *first_xattr_slot = slot;
3574 return 1;
3575 }
3576
3577 /*
3578 * read an inode from the btree into the in-memory inode
3579 */
3580 static void btrfs_read_locked_inode(struct inode *inode)
3581 {
3582 struct btrfs_path *path;
3583 struct extent_buffer *leaf;
3584 struct btrfs_inode_item *inode_item;
3585 struct btrfs_root *root = BTRFS_I(inode)->root;
3586 struct btrfs_key location;
3587 unsigned long ptr;
3588 int maybe_acls;
3589 u32 rdev;
3590 int ret;
3591 bool filled = false;
3592 int first_xattr_slot;
3593
3594 ret = btrfs_fill_inode(inode, &rdev);
3595 if (!ret)
3596 filled = true;
3597
3598 path = btrfs_alloc_path();
3599 if (!path)
3600 goto make_bad;
3601
3602 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3603
3604 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3605 if (ret)
3606 goto make_bad;
3607
3608 leaf = path->nodes[0];
3609
3610 if (filled)
3611 goto cache_index;
3612
3613 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3614 struct btrfs_inode_item);
3615 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3616 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3617 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3618 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3619 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3620
3621 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3622 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3623
3624 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3625 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3626
3627 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3628 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3629
3630 BTRFS_I(inode)->i_otime.tv_sec =
3631 btrfs_timespec_sec(leaf, &inode_item->otime);
3632 BTRFS_I(inode)->i_otime.tv_nsec =
3633 btrfs_timespec_nsec(leaf, &inode_item->otime);
3634
3635 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3636 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3637 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3638
3639 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3640 inode->i_generation = BTRFS_I(inode)->generation;
3641 inode->i_rdev = 0;
3642 rdev = btrfs_inode_rdev(leaf, inode_item);
3643
3644 BTRFS_I(inode)->index_cnt = (u64)-1;
3645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3646
3647 cache_index:
3648 /*
3649 * If we were modified in the current generation and evicted from memory
3650 * and then re-read we need to do a full sync since we don't have any
3651 * idea about which extents were modified before we were evicted from
3652 * cache.
3653 *
3654 * This is required for both inode re-read from disk and delayed inode
3655 * in delayed_nodes_tree.
3656 */
3657 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3659 &BTRFS_I(inode)->runtime_flags);
3660
3661 path->slots[0]++;
3662 if (inode->i_nlink != 1 ||
3663 path->slots[0] >= btrfs_header_nritems(leaf))
3664 goto cache_acl;
3665
3666 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3667 if (location.objectid != btrfs_ino(inode))
3668 goto cache_acl;
3669
3670 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3671 if (location.type == BTRFS_INODE_REF_KEY) {
3672 struct btrfs_inode_ref *ref;
3673
3674 ref = (struct btrfs_inode_ref *)ptr;
3675 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3676 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3677 struct btrfs_inode_extref *extref;
3678
3679 extref = (struct btrfs_inode_extref *)ptr;
3680 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3681 extref);
3682 }
3683 cache_acl:
3684 /*
3685 * try to precache a NULL acl entry for files that don't have
3686 * any xattrs or acls
3687 */
3688 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3689 btrfs_ino(inode), &first_xattr_slot);
3690 if (first_xattr_slot != -1) {
3691 path->slots[0] = first_xattr_slot;
3692 ret = btrfs_load_inode_props(inode, path);
3693 if (ret)
3694 btrfs_err(root->fs_info,
3695 "error loading props for ino %llu (root %llu): %d",
3696 btrfs_ino(inode),
3697 root->root_key.objectid, ret);
3698 }
3699 btrfs_free_path(path);
3700
3701 if (!maybe_acls)
3702 cache_no_acl(inode);
3703
3704 switch (inode->i_mode & S_IFMT) {
3705 case S_IFREG:
3706 inode->i_mapping->a_ops = &btrfs_aops;
3707 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3708 inode->i_fop = &btrfs_file_operations;
3709 inode->i_op = &btrfs_file_inode_operations;
3710 break;
3711 case S_IFDIR:
3712 inode->i_fop = &btrfs_dir_file_operations;
3713 if (root == root->fs_info->tree_root)
3714 inode->i_op = &btrfs_dir_ro_inode_operations;
3715 else
3716 inode->i_op = &btrfs_dir_inode_operations;
3717 break;
3718 case S_IFLNK:
3719 inode->i_op = &btrfs_symlink_inode_operations;
3720 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3721 break;
3722 default:
3723 inode->i_op = &btrfs_special_inode_operations;
3724 init_special_inode(inode, inode->i_mode, rdev);
3725 break;
3726 }
3727
3728 btrfs_update_iflags(inode);
3729 return;
3730
3731 make_bad:
3732 btrfs_free_path(path);
3733 make_bad_inode(inode);
3734 }
3735
3736 /*
3737 * given a leaf and an inode, copy the inode fields into the leaf
3738 */
3739 static void fill_inode_item(struct btrfs_trans_handle *trans,
3740 struct extent_buffer *leaf,
3741 struct btrfs_inode_item *item,
3742 struct inode *inode)
3743 {
3744 struct btrfs_map_token token;
3745
3746 btrfs_init_map_token(&token);
3747
3748 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3749 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3750 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3751 &token);
3752 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3753 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3754
3755 btrfs_set_token_timespec_sec(leaf, &item->atime,
3756 inode->i_atime.tv_sec, &token);
3757 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3758 inode->i_atime.tv_nsec, &token);
3759
3760 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3761 inode->i_mtime.tv_sec, &token);
3762 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3763 inode->i_mtime.tv_nsec, &token);
3764
3765 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3766 inode->i_ctime.tv_sec, &token);
3767 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3768 inode->i_ctime.tv_nsec, &token);
3769
3770 btrfs_set_token_timespec_sec(leaf, &item->otime,
3771 BTRFS_I(inode)->i_otime.tv_sec, &token);
3772 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3773 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3774
3775 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3776 &token);
3777 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3778 &token);
3779 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3780 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3781 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3782 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3783 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3784 }
3785
3786 /*
3787 * copy everything in the in-memory inode into the btree.
3788 */
3789 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3790 struct btrfs_root *root, struct inode *inode)
3791 {
3792 struct btrfs_inode_item *inode_item;
3793 struct btrfs_path *path;
3794 struct extent_buffer *leaf;
3795 int ret;
3796
3797 path = btrfs_alloc_path();
3798 if (!path)
3799 return -ENOMEM;
3800
3801 path->leave_spinning = 1;
3802 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3803 1);
3804 if (ret) {
3805 if (ret > 0)
3806 ret = -ENOENT;
3807 goto failed;
3808 }
3809
3810 leaf = path->nodes[0];
3811 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3812 struct btrfs_inode_item);
3813
3814 fill_inode_item(trans, leaf, inode_item, inode);
3815 btrfs_mark_buffer_dirty(leaf);
3816 btrfs_set_inode_last_trans(trans, inode);
3817 ret = 0;
3818 failed:
3819 btrfs_free_path(path);
3820 return ret;
3821 }
3822
3823 /*
3824 * copy everything in the in-memory inode into the btree.
3825 */
3826 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3827 struct btrfs_root *root, struct inode *inode)
3828 {
3829 int ret;
3830
3831 /*
3832 * If the inode is a free space inode, we can deadlock during commit
3833 * if we put it into the delayed code.
3834 *
3835 * The data relocation inode should also be directly updated
3836 * without delay
3837 */
3838 if (!btrfs_is_free_space_inode(inode)
3839 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3840 && !root->fs_info->log_root_recovering) {
3841 btrfs_update_root_times(trans, root);
3842
3843 ret = btrfs_delayed_update_inode(trans, root, inode);
3844 if (!ret)
3845 btrfs_set_inode_last_trans(trans, inode);
3846 return ret;
3847 }
3848
3849 return btrfs_update_inode_item(trans, root, inode);
3850 }
3851
3852 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3853 struct btrfs_root *root,
3854 struct inode *inode)
3855 {
3856 int ret;
3857
3858 ret = btrfs_update_inode(trans, root, inode);
3859 if (ret == -ENOSPC)
3860 return btrfs_update_inode_item(trans, root, inode);
3861 return ret;
3862 }
3863
3864 /*
3865 * unlink helper that gets used here in inode.c and in the tree logging
3866 * recovery code. It remove a link in a directory with a given name, and
3867 * also drops the back refs in the inode to the directory
3868 */
3869 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3870 struct btrfs_root *root,
3871 struct inode *dir, struct inode *inode,
3872 const char *name, int name_len)
3873 {
3874 struct btrfs_path *path;
3875 int ret = 0;
3876 struct extent_buffer *leaf;
3877 struct btrfs_dir_item *di;
3878 struct btrfs_key key;
3879 u64 index;
3880 u64 ino = btrfs_ino(inode);
3881 u64 dir_ino = btrfs_ino(dir);
3882
3883 path = btrfs_alloc_path();
3884 if (!path) {
3885 ret = -ENOMEM;
3886 goto out;
3887 }
3888
3889 path->leave_spinning = 1;
3890 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3891 name, name_len, -1);
3892 if (IS_ERR(di)) {
3893 ret = PTR_ERR(di);
3894 goto err;
3895 }
3896 if (!di) {
3897 ret = -ENOENT;
3898 goto err;
3899 }
3900 leaf = path->nodes[0];
3901 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3902 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3903 if (ret)
3904 goto err;
3905 btrfs_release_path(path);
3906
3907 /*
3908 * If we don't have dir index, we have to get it by looking up
3909 * the inode ref, since we get the inode ref, remove it directly,
3910 * it is unnecessary to do delayed deletion.
3911 *
3912 * But if we have dir index, needn't search inode ref to get it.
3913 * Since the inode ref is close to the inode item, it is better
3914 * that we delay to delete it, and just do this deletion when
3915 * we update the inode item.
3916 */
3917 if (BTRFS_I(inode)->dir_index) {
3918 ret = btrfs_delayed_delete_inode_ref(inode);
3919 if (!ret) {
3920 index = BTRFS_I(inode)->dir_index;
3921 goto skip_backref;
3922 }
3923 }
3924
3925 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3926 dir_ino, &index);
3927 if (ret) {
3928 btrfs_info(root->fs_info,
3929 "failed to delete reference to %.*s, inode %llu parent %llu",
3930 name_len, name, ino, dir_ino);
3931 btrfs_abort_transaction(trans, root, ret);
3932 goto err;
3933 }
3934 skip_backref:
3935 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3936 if (ret) {
3937 btrfs_abort_transaction(trans, root, ret);
3938 goto err;
3939 }
3940
3941 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3942 inode, dir_ino);
3943 if (ret != 0 && ret != -ENOENT) {
3944 btrfs_abort_transaction(trans, root, ret);
3945 goto err;
3946 }
3947
3948 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3949 dir, index);
3950 if (ret == -ENOENT)
3951 ret = 0;
3952 else if (ret)
3953 btrfs_abort_transaction(trans, root, ret);
3954 err:
3955 btrfs_free_path(path);
3956 if (ret)
3957 goto out;
3958
3959 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3960 inode_inc_iversion(inode);
3961 inode_inc_iversion(dir);
3962 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3963 ret = btrfs_update_inode(trans, root, dir);
3964 out:
3965 return ret;
3966 }
3967
3968 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3969 struct btrfs_root *root,
3970 struct inode *dir, struct inode *inode,
3971 const char *name, int name_len)
3972 {
3973 int ret;
3974 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3975 if (!ret) {
3976 drop_nlink(inode);
3977 ret = btrfs_update_inode(trans, root, inode);
3978 }
3979 return ret;
3980 }
3981
3982 /*
3983 * helper to start transaction for unlink and rmdir.
3984 *
3985 * unlink and rmdir are special in btrfs, they do not always free space, so
3986 * if we cannot make our reservations the normal way try and see if there is
3987 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3988 * allow the unlink to occur.
3989 */
3990 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3991 {
3992 struct btrfs_trans_handle *trans;
3993 struct btrfs_root *root = BTRFS_I(dir)->root;
3994 int ret;
3995
3996 /*
3997 * 1 for the possible orphan item
3998 * 1 for the dir item
3999 * 1 for the dir index
4000 * 1 for the inode ref
4001 * 1 for the inode
4002 */
4003 trans = btrfs_start_transaction(root, 5);
4004 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4005 return trans;
4006
4007 if (PTR_ERR(trans) == -ENOSPC) {
4008 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4009
4010 trans = btrfs_start_transaction(root, 0);
4011 if (IS_ERR(trans))
4012 return trans;
4013 ret = btrfs_cond_migrate_bytes(root->fs_info,
4014 &root->fs_info->trans_block_rsv,
4015 num_bytes, 5);
4016 if (ret) {
4017 btrfs_end_transaction(trans, root);
4018 return ERR_PTR(ret);
4019 }
4020 trans->block_rsv = &root->fs_info->trans_block_rsv;
4021 trans->bytes_reserved = num_bytes;
4022 }
4023 return trans;
4024 }
4025
4026 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4027 {
4028 struct btrfs_root *root = BTRFS_I(dir)->root;
4029 struct btrfs_trans_handle *trans;
4030 struct inode *inode = d_inode(dentry);
4031 int ret;
4032
4033 trans = __unlink_start_trans(dir);
4034 if (IS_ERR(trans))
4035 return PTR_ERR(trans);
4036
4037 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4038
4039 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4040 dentry->d_name.name, dentry->d_name.len);
4041 if (ret)
4042 goto out;
4043
4044 if (inode->i_nlink == 0) {
4045 ret = btrfs_orphan_add(trans, inode);
4046 if (ret)
4047 goto out;
4048 }
4049
4050 out:
4051 btrfs_end_transaction(trans, root);
4052 btrfs_btree_balance_dirty(root);
4053 return ret;
4054 }
4055
4056 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4057 struct btrfs_root *root,
4058 struct inode *dir, u64 objectid,
4059 const char *name, int name_len)
4060 {
4061 struct btrfs_path *path;
4062 struct extent_buffer *leaf;
4063 struct btrfs_dir_item *di;
4064 struct btrfs_key key;
4065 u64 index;
4066 int ret;
4067 u64 dir_ino = btrfs_ino(dir);
4068
4069 path = btrfs_alloc_path();
4070 if (!path)
4071 return -ENOMEM;
4072
4073 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4074 name, name_len, -1);
4075 if (IS_ERR_OR_NULL(di)) {
4076 if (!di)
4077 ret = -ENOENT;
4078 else
4079 ret = PTR_ERR(di);
4080 goto out;
4081 }
4082
4083 leaf = path->nodes[0];
4084 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4085 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4086 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4087 if (ret) {
4088 btrfs_abort_transaction(trans, root, ret);
4089 goto out;
4090 }
4091 btrfs_release_path(path);
4092
4093 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4094 objectid, root->root_key.objectid,
4095 dir_ino, &index, name, name_len);
4096 if (ret < 0) {
4097 if (ret != -ENOENT) {
4098 btrfs_abort_transaction(trans, root, ret);
4099 goto out;
4100 }
4101 di = btrfs_search_dir_index_item(root, path, dir_ino,
4102 name, name_len);
4103 if (IS_ERR_OR_NULL(di)) {
4104 if (!di)
4105 ret = -ENOENT;
4106 else
4107 ret = PTR_ERR(di);
4108 btrfs_abort_transaction(trans, root, ret);
4109 goto out;
4110 }
4111
4112 leaf = path->nodes[0];
4113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4114 btrfs_release_path(path);
4115 index = key.offset;
4116 }
4117 btrfs_release_path(path);
4118
4119 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4120 if (ret) {
4121 btrfs_abort_transaction(trans, root, ret);
4122 goto out;
4123 }
4124
4125 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4126 inode_inc_iversion(dir);
4127 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4128 ret = btrfs_update_inode_fallback(trans, root, dir);
4129 if (ret)
4130 btrfs_abort_transaction(trans, root, ret);
4131 out:
4132 btrfs_free_path(path);
4133 return ret;
4134 }
4135
4136 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4137 {
4138 struct inode *inode = d_inode(dentry);
4139 int err = 0;
4140 struct btrfs_root *root = BTRFS_I(dir)->root;
4141 struct btrfs_trans_handle *trans;
4142
4143 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4144 return -ENOTEMPTY;
4145 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4146 return -EPERM;
4147
4148 trans = __unlink_start_trans(dir);
4149 if (IS_ERR(trans))
4150 return PTR_ERR(trans);
4151
4152 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4153 err = btrfs_unlink_subvol(trans, root, dir,
4154 BTRFS_I(inode)->location.objectid,
4155 dentry->d_name.name,
4156 dentry->d_name.len);
4157 goto out;
4158 }
4159
4160 err = btrfs_orphan_add(trans, inode);
4161 if (err)
4162 goto out;
4163
4164 /* now the directory is empty */
4165 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4166 dentry->d_name.name, dentry->d_name.len);
4167 if (!err)
4168 btrfs_i_size_write(inode, 0);
4169 out:
4170 btrfs_end_transaction(trans, root);
4171 btrfs_btree_balance_dirty(root);
4172
4173 return err;
4174 }
4175
4176 static int truncate_space_check(struct btrfs_trans_handle *trans,
4177 struct btrfs_root *root,
4178 u64 bytes_deleted)
4179 {
4180 int ret;
4181
4182 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4183 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4184 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4185 if (!ret)
4186 trans->bytes_reserved += bytes_deleted;
4187 return ret;
4188
4189 }
4190
4191 /*
4192 * this can truncate away extent items, csum items and directory items.
4193 * It starts at a high offset and removes keys until it can't find
4194 * any higher than new_size
4195 *
4196 * csum items that cross the new i_size are truncated to the new size
4197 * as well.
4198 *
4199 * min_type is the minimum key type to truncate down to. If set to 0, this
4200 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4201 */
4202 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4203 struct btrfs_root *root,
4204 struct inode *inode,
4205 u64 new_size, u32 min_type)
4206 {
4207 struct btrfs_path *path;
4208 struct extent_buffer *leaf;
4209 struct btrfs_file_extent_item *fi;
4210 struct btrfs_key key;
4211 struct btrfs_key found_key;
4212 u64 extent_start = 0;
4213 u64 extent_num_bytes = 0;
4214 u64 extent_offset = 0;
4215 u64 item_end = 0;
4216 u64 last_size = (u64)-1;
4217 u32 found_type = (u8)-1;
4218 int found_extent;
4219 int del_item;
4220 int pending_del_nr = 0;
4221 int pending_del_slot = 0;
4222 int extent_type = -1;
4223 int ret;
4224 int err = 0;
4225 u64 ino = btrfs_ino(inode);
4226 u64 bytes_deleted = 0;
4227 bool be_nice = 0;
4228 bool should_throttle = 0;
4229 bool should_end = 0;
4230
4231 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4232
4233 /*
4234 * for non-free space inodes and ref cows, we want to back off from
4235 * time to time
4236 */
4237 if (!btrfs_is_free_space_inode(inode) &&
4238 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4239 be_nice = 1;
4240
4241 path = btrfs_alloc_path();
4242 if (!path)
4243 return -ENOMEM;
4244 path->reada = -1;
4245
4246 /*
4247 * We want to drop from the next block forward in case this new size is
4248 * not block aligned since we will be keeping the last block of the
4249 * extent just the way it is.
4250 */
4251 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4252 root == root->fs_info->tree_root)
4253 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4254 root->sectorsize), (u64)-1, 0);
4255
4256 /*
4257 * This function is also used to drop the items in the log tree before
4258 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4259 * it is used to drop the loged items. So we shouldn't kill the delayed
4260 * items.
4261 */
4262 if (min_type == 0 && root == BTRFS_I(inode)->root)
4263 btrfs_kill_delayed_inode_items(inode);
4264
4265 key.objectid = ino;
4266 key.offset = (u64)-1;
4267 key.type = (u8)-1;
4268
4269 search_again:
4270 /*
4271 * with a 16K leaf size and 128MB extents, you can actually queue
4272 * up a huge file in a single leaf. Most of the time that
4273 * bytes_deleted is > 0, it will be huge by the time we get here
4274 */
4275 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4276 if (btrfs_should_end_transaction(trans, root)) {
4277 err = -EAGAIN;
4278 goto error;
4279 }
4280 }
4281
4282
4283 path->leave_spinning = 1;
4284 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4285 if (ret < 0) {
4286 err = ret;
4287 goto out;
4288 }
4289
4290 if (ret > 0) {
4291 /* there are no items in the tree for us to truncate, we're
4292 * done
4293 */
4294 if (path->slots[0] == 0)
4295 goto out;
4296 path->slots[0]--;
4297 }
4298
4299 while (1) {
4300 fi = NULL;
4301 leaf = path->nodes[0];
4302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4303 found_type = found_key.type;
4304
4305 if (found_key.objectid != ino)
4306 break;
4307
4308 if (found_type < min_type)
4309 break;
4310
4311 item_end = found_key.offset;
4312 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4313 fi = btrfs_item_ptr(leaf, path->slots[0],
4314 struct btrfs_file_extent_item);
4315 extent_type = btrfs_file_extent_type(leaf, fi);
4316 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4317 item_end +=
4318 btrfs_file_extent_num_bytes(leaf, fi);
4319 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4320 item_end += btrfs_file_extent_inline_len(leaf,
4321 path->slots[0], fi);
4322 }
4323 item_end--;
4324 }
4325 if (found_type > min_type) {
4326 del_item = 1;
4327 } else {
4328 if (item_end < new_size)
4329 break;
4330 if (found_key.offset >= new_size)
4331 del_item = 1;
4332 else
4333 del_item = 0;
4334 }
4335 found_extent = 0;
4336 /* FIXME, shrink the extent if the ref count is only 1 */
4337 if (found_type != BTRFS_EXTENT_DATA_KEY)
4338 goto delete;
4339
4340 if (del_item)
4341 last_size = found_key.offset;
4342 else
4343 last_size = new_size;
4344
4345 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4346 u64 num_dec;
4347 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4348 if (!del_item) {
4349 u64 orig_num_bytes =
4350 btrfs_file_extent_num_bytes(leaf, fi);
4351 extent_num_bytes = ALIGN(new_size -
4352 found_key.offset,
4353 root->sectorsize);
4354 btrfs_set_file_extent_num_bytes(leaf, fi,
4355 extent_num_bytes);
4356 num_dec = (orig_num_bytes -
4357 extent_num_bytes);
4358 if (test_bit(BTRFS_ROOT_REF_COWS,
4359 &root->state) &&
4360 extent_start != 0)
4361 inode_sub_bytes(inode, num_dec);
4362 btrfs_mark_buffer_dirty(leaf);
4363 } else {
4364 extent_num_bytes =
4365 btrfs_file_extent_disk_num_bytes(leaf,
4366 fi);
4367 extent_offset = found_key.offset -
4368 btrfs_file_extent_offset(leaf, fi);
4369
4370 /* FIXME blocksize != 4096 */
4371 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4372 if (extent_start != 0) {
4373 found_extent = 1;
4374 if (test_bit(BTRFS_ROOT_REF_COWS,
4375 &root->state))
4376 inode_sub_bytes(inode, num_dec);
4377 }
4378 }
4379 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4380 /*
4381 * we can't truncate inline items that have had
4382 * special encodings
4383 */
4384 if (!del_item &&
4385 btrfs_file_extent_compression(leaf, fi) == 0 &&
4386 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4387 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4388 u32 size = new_size - found_key.offset;
4389
4390 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4391 inode_sub_bytes(inode, item_end + 1 -
4392 new_size);
4393
4394 /*
4395 * update the ram bytes to properly reflect
4396 * the new size of our item
4397 */
4398 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4399 size =
4400 btrfs_file_extent_calc_inline_size(size);
4401 btrfs_truncate_item(root, path, size, 1);
4402 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4403 &root->state)) {
4404 inode_sub_bytes(inode, item_end + 1 -
4405 found_key.offset);
4406 }
4407 }
4408 delete:
4409 if (del_item) {
4410 if (!pending_del_nr) {
4411 /* no pending yet, add ourselves */
4412 pending_del_slot = path->slots[0];
4413 pending_del_nr = 1;
4414 } else if (pending_del_nr &&
4415 path->slots[0] + 1 == pending_del_slot) {
4416 /* hop on the pending chunk */
4417 pending_del_nr++;
4418 pending_del_slot = path->slots[0];
4419 } else {
4420 BUG();
4421 }
4422 } else {
4423 break;
4424 }
4425 should_throttle = 0;
4426
4427 if (found_extent &&
4428 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4429 root == root->fs_info->tree_root)) {
4430 btrfs_set_path_blocking(path);
4431 bytes_deleted += extent_num_bytes;
4432 ret = btrfs_free_extent(trans, root, extent_start,
4433 extent_num_bytes, 0,
4434 btrfs_header_owner(leaf),
4435 ino, extent_offset, 0);
4436 BUG_ON(ret);
4437 if (btrfs_should_throttle_delayed_refs(trans, root))
4438 btrfs_async_run_delayed_refs(root,
4439 trans->delayed_ref_updates * 2, 0);
4440 if (be_nice) {
4441 if (truncate_space_check(trans, root,
4442 extent_num_bytes)) {
4443 should_end = 1;
4444 }
4445 if (btrfs_should_throttle_delayed_refs(trans,
4446 root)) {
4447 should_throttle = 1;
4448 }
4449 }
4450 }
4451
4452 if (found_type == BTRFS_INODE_ITEM_KEY)
4453 break;
4454
4455 if (path->slots[0] == 0 ||
4456 path->slots[0] != pending_del_slot ||
4457 should_throttle || should_end) {
4458 if (pending_del_nr) {
4459 ret = btrfs_del_items(trans, root, path,
4460 pending_del_slot,
4461 pending_del_nr);
4462 if (ret) {
4463 btrfs_abort_transaction(trans,
4464 root, ret);
4465 goto error;
4466 }
4467 pending_del_nr = 0;
4468 }
4469 btrfs_release_path(path);
4470 if (should_throttle) {
4471 unsigned long updates = trans->delayed_ref_updates;
4472 if (updates) {
4473 trans->delayed_ref_updates = 0;
4474 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4475 if (ret && !err)
4476 err = ret;
4477 }
4478 }
4479 /*
4480 * if we failed to refill our space rsv, bail out
4481 * and let the transaction restart
4482 */
4483 if (should_end) {
4484 err = -EAGAIN;
4485 goto error;
4486 }
4487 goto search_again;
4488 } else {
4489 path->slots[0]--;
4490 }
4491 }
4492 out:
4493 if (pending_del_nr) {
4494 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4495 pending_del_nr);
4496 if (ret)
4497 btrfs_abort_transaction(trans, root, ret);
4498 }
4499 error:
4500 if (last_size != (u64)-1 &&
4501 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4502 btrfs_ordered_update_i_size(inode, last_size, NULL);
4503
4504 btrfs_free_path(path);
4505
4506 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4507 unsigned long updates = trans->delayed_ref_updates;
4508 if (updates) {
4509 trans->delayed_ref_updates = 0;
4510 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4511 if (ret && !err)
4512 err = ret;
4513 }
4514 }
4515 return err;
4516 }
4517
4518 /*
4519 * btrfs_truncate_page - read, zero a chunk and write a page
4520 * @inode - inode that we're zeroing
4521 * @from - the offset to start zeroing
4522 * @len - the length to zero, 0 to zero the entire range respective to the
4523 * offset
4524 * @front - zero up to the offset instead of from the offset on
4525 *
4526 * This will find the page for the "from" offset and cow the page and zero the
4527 * part we want to zero. This is used with truncate and hole punching.
4528 */
4529 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4530 int front)
4531 {
4532 struct address_space *mapping = inode->i_mapping;
4533 struct btrfs_root *root = BTRFS_I(inode)->root;
4534 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4535 struct btrfs_ordered_extent *ordered;
4536 struct extent_state *cached_state = NULL;
4537 char *kaddr;
4538 u32 blocksize = root->sectorsize;
4539 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4540 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4541 struct page *page;
4542 gfp_t mask = btrfs_alloc_write_mask(mapping);
4543 int ret = 0;
4544 u64 page_start;
4545 u64 page_end;
4546
4547 if ((offset & (blocksize - 1)) == 0 &&
4548 (!len || ((len & (blocksize - 1)) == 0)))
4549 goto out;
4550 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4551 if (ret)
4552 goto out;
4553
4554 again:
4555 page = find_or_create_page(mapping, index, mask);
4556 if (!page) {
4557 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4558 ret = -ENOMEM;
4559 goto out;
4560 }
4561
4562 page_start = page_offset(page);
4563 page_end = page_start + PAGE_CACHE_SIZE - 1;
4564
4565 if (!PageUptodate(page)) {
4566 ret = btrfs_readpage(NULL, page);
4567 lock_page(page);
4568 if (page->mapping != mapping) {
4569 unlock_page(page);
4570 page_cache_release(page);
4571 goto again;
4572 }
4573 if (!PageUptodate(page)) {
4574 ret = -EIO;
4575 goto out_unlock;
4576 }
4577 }
4578 wait_on_page_writeback(page);
4579
4580 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4581 set_page_extent_mapped(page);
4582
4583 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4584 if (ordered) {
4585 unlock_extent_cached(io_tree, page_start, page_end,
4586 &cached_state, GFP_NOFS);
4587 unlock_page(page);
4588 page_cache_release(page);
4589 btrfs_start_ordered_extent(inode, ordered, 1);
4590 btrfs_put_ordered_extent(ordered);
4591 goto again;
4592 }
4593
4594 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4595 EXTENT_DIRTY | EXTENT_DELALLOC |
4596 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4597 0, 0, &cached_state, GFP_NOFS);
4598
4599 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4600 &cached_state);
4601 if (ret) {
4602 unlock_extent_cached(io_tree, page_start, page_end,
4603 &cached_state, GFP_NOFS);
4604 goto out_unlock;
4605 }
4606
4607 if (offset != PAGE_CACHE_SIZE) {
4608 if (!len)
4609 len = PAGE_CACHE_SIZE - offset;
4610 kaddr = kmap(page);
4611 if (front)
4612 memset(kaddr, 0, offset);
4613 else
4614 memset(kaddr + offset, 0, len);
4615 flush_dcache_page(page);
4616 kunmap(page);
4617 }
4618 ClearPageChecked(page);
4619 set_page_dirty(page);
4620 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4621 GFP_NOFS);
4622
4623 out_unlock:
4624 if (ret)
4625 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4626 unlock_page(page);
4627 page_cache_release(page);
4628 out:
4629 return ret;
4630 }
4631
4632 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4633 u64 offset, u64 len)
4634 {
4635 struct btrfs_trans_handle *trans;
4636 int ret;
4637
4638 /*
4639 * Still need to make sure the inode looks like it's been updated so
4640 * that any holes get logged if we fsync.
4641 */
4642 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4643 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4644 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4645 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4646 return 0;
4647 }
4648
4649 /*
4650 * 1 - for the one we're dropping
4651 * 1 - for the one we're adding
4652 * 1 - for updating the inode.
4653 */
4654 trans = btrfs_start_transaction(root, 3);
4655 if (IS_ERR(trans))
4656 return PTR_ERR(trans);
4657
4658 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4659 if (ret) {
4660 btrfs_abort_transaction(trans, root, ret);
4661 btrfs_end_transaction(trans, root);
4662 return ret;
4663 }
4664
4665 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4666 0, 0, len, 0, len, 0, 0, 0);
4667 if (ret)
4668 btrfs_abort_transaction(trans, root, ret);
4669 else
4670 btrfs_update_inode(trans, root, inode);
4671 btrfs_end_transaction(trans, root);
4672 return ret;
4673 }
4674
4675 /*
4676 * This function puts in dummy file extents for the area we're creating a hole
4677 * for. So if we are truncating this file to a larger size we need to insert
4678 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4679 * the range between oldsize and size
4680 */
4681 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4682 {
4683 struct btrfs_root *root = BTRFS_I(inode)->root;
4684 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4685 struct extent_map *em = NULL;
4686 struct extent_state *cached_state = NULL;
4687 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4688 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4689 u64 block_end = ALIGN(size, root->sectorsize);
4690 u64 last_byte;
4691 u64 cur_offset;
4692 u64 hole_size;
4693 int err = 0;
4694
4695 /*
4696 * If our size started in the middle of a page we need to zero out the
4697 * rest of the page before we expand the i_size, otherwise we could
4698 * expose stale data.
4699 */
4700 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4701 if (err)
4702 return err;
4703
4704 if (size <= hole_start)
4705 return 0;
4706
4707 while (1) {
4708 struct btrfs_ordered_extent *ordered;
4709
4710 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4711 &cached_state);
4712 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4713 block_end - hole_start);
4714 if (!ordered)
4715 break;
4716 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4717 &cached_state, GFP_NOFS);
4718 btrfs_start_ordered_extent(inode, ordered, 1);
4719 btrfs_put_ordered_extent(ordered);
4720 }
4721
4722 cur_offset = hole_start;
4723 while (1) {
4724 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4725 block_end - cur_offset, 0);
4726 if (IS_ERR(em)) {
4727 err = PTR_ERR(em);
4728 em = NULL;
4729 break;
4730 }
4731 last_byte = min(extent_map_end(em), block_end);
4732 last_byte = ALIGN(last_byte , root->sectorsize);
4733 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4734 struct extent_map *hole_em;
4735 hole_size = last_byte - cur_offset;
4736
4737 err = maybe_insert_hole(root, inode, cur_offset,
4738 hole_size);
4739 if (err)
4740 break;
4741 btrfs_drop_extent_cache(inode, cur_offset,
4742 cur_offset + hole_size - 1, 0);
4743 hole_em = alloc_extent_map();
4744 if (!hole_em) {
4745 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4746 &BTRFS_I(inode)->runtime_flags);
4747 goto next;
4748 }
4749 hole_em->start = cur_offset;
4750 hole_em->len = hole_size;
4751 hole_em->orig_start = cur_offset;
4752
4753 hole_em->block_start = EXTENT_MAP_HOLE;
4754 hole_em->block_len = 0;
4755 hole_em->orig_block_len = 0;
4756 hole_em->ram_bytes = hole_size;
4757 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4758 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4759 hole_em->generation = root->fs_info->generation;
4760
4761 while (1) {
4762 write_lock(&em_tree->lock);
4763 err = add_extent_mapping(em_tree, hole_em, 1);
4764 write_unlock(&em_tree->lock);
4765 if (err != -EEXIST)
4766 break;
4767 btrfs_drop_extent_cache(inode, cur_offset,
4768 cur_offset +
4769 hole_size - 1, 0);
4770 }
4771 free_extent_map(hole_em);
4772 }
4773 next:
4774 free_extent_map(em);
4775 em = NULL;
4776 cur_offset = last_byte;
4777 if (cur_offset >= block_end)
4778 break;
4779 }
4780 free_extent_map(em);
4781 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4782 GFP_NOFS);
4783 return err;
4784 }
4785
4786 static int wait_snapshoting_atomic_t(atomic_t *a)
4787 {
4788 schedule();
4789 return 0;
4790 }
4791
4792 static void wait_for_snapshot_creation(struct btrfs_root *root)
4793 {
4794 while (true) {
4795 int ret;
4796
4797 ret = btrfs_start_write_no_snapshoting(root);
4798 if (ret)
4799 break;
4800 wait_on_atomic_t(&root->will_be_snapshoted,
4801 wait_snapshoting_atomic_t,
4802 TASK_UNINTERRUPTIBLE);
4803 }
4804 }
4805
4806 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4807 {
4808 struct btrfs_root *root = BTRFS_I(inode)->root;
4809 struct btrfs_trans_handle *trans;
4810 loff_t oldsize = i_size_read(inode);
4811 loff_t newsize = attr->ia_size;
4812 int mask = attr->ia_valid;
4813 int ret;
4814
4815 /*
4816 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4817 * special case where we need to update the times despite not having
4818 * these flags set. For all other operations the VFS set these flags
4819 * explicitly if it wants a timestamp update.
4820 */
4821 if (newsize != oldsize) {
4822 inode_inc_iversion(inode);
4823 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4824 inode->i_ctime = inode->i_mtime =
4825 current_fs_time(inode->i_sb);
4826 }
4827
4828 if (newsize > oldsize) {
4829 truncate_pagecache(inode, newsize);
4830 /*
4831 * Don't do an expanding truncate while snapshoting is ongoing.
4832 * This is to ensure the snapshot captures a fully consistent
4833 * state of this file - if the snapshot captures this expanding
4834 * truncation, it must capture all writes that happened before
4835 * this truncation.
4836 */
4837 wait_for_snapshot_creation(root);
4838 ret = btrfs_cont_expand(inode, oldsize, newsize);
4839 if (ret) {
4840 btrfs_end_write_no_snapshoting(root);
4841 return ret;
4842 }
4843
4844 trans = btrfs_start_transaction(root, 1);
4845 if (IS_ERR(trans)) {
4846 btrfs_end_write_no_snapshoting(root);
4847 return PTR_ERR(trans);
4848 }
4849
4850 i_size_write(inode, newsize);
4851 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4852 ret = btrfs_update_inode(trans, root, inode);
4853 btrfs_end_write_no_snapshoting(root);
4854 btrfs_end_transaction(trans, root);
4855 } else {
4856
4857 /*
4858 * We're truncating a file that used to have good data down to
4859 * zero. Make sure it gets into the ordered flush list so that
4860 * any new writes get down to disk quickly.
4861 */
4862 if (newsize == 0)
4863 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4864 &BTRFS_I(inode)->runtime_flags);
4865
4866 /*
4867 * 1 for the orphan item we're going to add
4868 * 1 for the orphan item deletion.
4869 */
4870 trans = btrfs_start_transaction(root, 2);
4871 if (IS_ERR(trans))
4872 return PTR_ERR(trans);
4873
4874 /*
4875 * We need to do this in case we fail at _any_ point during the
4876 * actual truncate. Once we do the truncate_setsize we could
4877 * invalidate pages which forces any outstanding ordered io to
4878 * be instantly completed which will give us extents that need
4879 * to be truncated. If we fail to get an orphan inode down we
4880 * could have left over extents that were never meant to live,
4881 * so we need to garuntee from this point on that everything
4882 * will be consistent.
4883 */
4884 ret = btrfs_orphan_add(trans, inode);
4885 btrfs_end_transaction(trans, root);
4886 if (ret)
4887 return ret;
4888
4889 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4890 truncate_setsize(inode, newsize);
4891
4892 /* Disable nonlocked read DIO to avoid the end less truncate */
4893 btrfs_inode_block_unlocked_dio(inode);
4894 inode_dio_wait(inode);
4895 btrfs_inode_resume_unlocked_dio(inode);
4896
4897 ret = btrfs_truncate(inode);
4898 if (ret && inode->i_nlink) {
4899 int err;
4900
4901 /*
4902 * failed to truncate, disk_i_size is only adjusted down
4903 * as we remove extents, so it should represent the true
4904 * size of the inode, so reset the in memory size and
4905 * delete our orphan entry.
4906 */
4907 trans = btrfs_join_transaction(root);
4908 if (IS_ERR(trans)) {
4909 btrfs_orphan_del(NULL, inode);
4910 return ret;
4911 }
4912 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4913 err = btrfs_orphan_del(trans, inode);
4914 if (err)
4915 btrfs_abort_transaction(trans, root, err);
4916 btrfs_end_transaction(trans, root);
4917 }
4918 }
4919
4920 return ret;
4921 }
4922
4923 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4924 {
4925 struct inode *inode = d_inode(dentry);
4926 struct btrfs_root *root = BTRFS_I(inode)->root;
4927 int err;
4928
4929 if (btrfs_root_readonly(root))
4930 return -EROFS;
4931
4932 err = inode_change_ok(inode, attr);
4933 if (err)
4934 return err;
4935
4936 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4937 err = btrfs_setsize(inode, attr);
4938 if (err)
4939 return err;
4940 }
4941
4942 if (attr->ia_valid) {
4943 setattr_copy(inode, attr);
4944 inode_inc_iversion(inode);
4945 err = btrfs_dirty_inode(inode);
4946
4947 if (!err && attr->ia_valid & ATTR_MODE)
4948 err = posix_acl_chmod(inode, inode->i_mode);
4949 }
4950
4951 return err;
4952 }
4953
4954 /*
4955 * While truncating the inode pages during eviction, we get the VFS calling
4956 * btrfs_invalidatepage() against each page of the inode. This is slow because
4957 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4958 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4959 * extent_state structures over and over, wasting lots of time.
4960 *
4961 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4962 * those expensive operations on a per page basis and do only the ordered io
4963 * finishing, while we release here the extent_map and extent_state structures,
4964 * without the excessive merging and splitting.
4965 */
4966 static void evict_inode_truncate_pages(struct inode *inode)
4967 {
4968 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4969 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4970 struct rb_node *node;
4971
4972 ASSERT(inode->i_state & I_FREEING);
4973 truncate_inode_pages_final(&inode->i_data);
4974
4975 write_lock(&map_tree->lock);
4976 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4977 struct extent_map *em;
4978
4979 node = rb_first(&map_tree->map);
4980 em = rb_entry(node, struct extent_map, rb_node);
4981 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4982 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4983 remove_extent_mapping(map_tree, em);
4984 free_extent_map(em);
4985 if (need_resched()) {
4986 write_unlock(&map_tree->lock);
4987 cond_resched();
4988 write_lock(&map_tree->lock);
4989 }
4990 }
4991 write_unlock(&map_tree->lock);
4992
4993 /*
4994 * Keep looping until we have no more ranges in the io tree.
4995 * We can have ongoing bios started by readpages (called from readahead)
4996 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
4997 * still in progress (unlocked the pages in the bio but did not yet
4998 * unlocked the ranges in the io tree). Therefore this means some
4999 * ranges can still be locked and eviction started because before
5000 * submitting those bios, which are executed by a separate task (work
5001 * queue kthread), inode references (inode->i_count) were not taken
5002 * (which would be dropped in the end io callback of each bio).
5003 * Therefore here we effectively end up waiting for those bios and
5004 * anyone else holding locked ranges without having bumped the inode's
5005 * reference count - if we don't do it, when they access the inode's
5006 * io_tree to unlock a range it may be too late, leading to an
5007 * use-after-free issue.
5008 */
5009 spin_lock(&io_tree->lock);
5010 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5011 struct extent_state *state;
5012 struct extent_state *cached_state = NULL;
5013 u64 start;
5014 u64 end;
5015
5016 node = rb_first(&io_tree->state);
5017 state = rb_entry(node, struct extent_state, rb_node);
5018 start = state->start;
5019 end = state->end;
5020 spin_unlock(&io_tree->lock);
5021
5022 lock_extent_bits(io_tree, start, end, 0, &cached_state);
5023 clear_extent_bit(io_tree, start, end,
5024 EXTENT_LOCKED | EXTENT_DIRTY |
5025 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5026 EXTENT_DEFRAG, 1, 1,
5027 &cached_state, GFP_NOFS);
5028
5029 cond_resched();
5030 spin_lock(&io_tree->lock);
5031 }
5032 spin_unlock(&io_tree->lock);
5033 }
5034
5035 void btrfs_evict_inode(struct inode *inode)
5036 {
5037 struct btrfs_trans_handle *trans;
5038 struct btrfs_root *root = BTRFS_I(inode)->root;
5039 struct btrfs_block_rsv *rsv, *global_rsv;
5040 int steal_from_global = 0;
5041 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5042 int ret;
5043
5044 trace_btrfs_inode_evict(inode);
5045
5046 evict_inode_truncate_pages(inode);
5047
5048 if (inode->i_nlink &&
5049 ((btrfs_root_refs(&root->root_item) != 0 &&
5050 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5051 btrfs_is_free_space_inode(inode)))
5052 goto no_delete;
5053
5054 if (is_bad_inode(inode)) {
5055 btrfs_orphan_del(NULL, inode);
5056 goto no_delete;
5057 }
5058 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5059 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5060
5061 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5062
5063 if (root->fs_info->log_root_recovering) {
5064 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5065 &BTRFS_I(inode)->runtime_flags));
5066 goto no_delete;
5067 }
5068
5069 if (inode->i_nlink > 0) {
5070 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5071 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5072 goto no_delete;
5073 }
5074
5075 ret = btrfs_commit_inode_delayed_inode(inode);
5076 if (ret) {
5077 btrfs_orphan_del(NULL, inode);
5078 goto no_delete;
5079 }
5080
5081 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5082 if (!rsv) {
5083 btrfs_orphan_del(NULL, inode);
5084 goto no_delete;
5085 }
5086 rsv->size = min_size;
5087 rsv->failfast = 1;
5088 global_rsv = &root->fs_info->global_block_rsv;
5089
5090 btrfs_i_size_write(inode, 0);
5091
5092 /*
5093 * This is a bit simpler than btrfs_truncate since we've already
5094 * reserved our space for our orphan item in the unlink, so we just
5095 * need to reserve some slack space in case we add bytes and update
5096 * inode item when doing the truncate.
5097 */
5098 while (1) {
5099 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5100 BTRFS_RESERVE_FLUSH_LIMIT);
5101
5102 /*
5103 * Try and steal from the global reserve since we will
5104 * likely not use this space anyway, we want to try as
5105 * hard as possible to get this to work.
5106 */
5107 if (ret)
5108 steal_from_global++;
5109 else
5110 steal_from_global = 0;
5111 ret = 0;
5112
5113 /*
5114 * steal_from_global == 0: we reserved stuff, hooray!
5115 * steal_from_global == 1: we didn't reserve stuff, boo!
5116 * steal_from_global == 2: we've committed, still not a lot of
5117 * room but maybe we'll have room in the global reserve this
5118 * time.
5119 * steal_from_global == 3: abandon all hope!
5120 */
5121 if (steal_from_global > 2) {
5122 btrfs_warn(root->fs_info,
5123 "Could not get space for a delete, will truncate on mount %d",
5124 ret);
5125 btrfs_orphan_del(NULL, inode);
5126 btrfs_free_block_rsv(root, rsv);
5127 goto no_delete;
5128 }
5129
5130 trans = btrfs_join_transaction(root);
5131 if (IS_ERR(trans)) {
5132 btrfs_orphan_del(NULL, inode);
5133 btrfs_free_block_rsv(root, rsv);
5134 goto no_delete;
5135 }
5136
5137 /*
5138 * We can't just steal from the global reserve, we need tomake
5139 * sure there is room to do it, if not we need to commit and try
5140 * again.
5141 */
5142 if (steal_from_global) {
5143 if (!btrfs_check_space_for_delayed_refs(trans, root))
5144 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5145 min_size);
5146 else
5147 ret = -ENOSPC;
5148 }
5149
5150 /*
5151 * Couldn't steal from the global reserve, we have too much
5152 * pending stuff built up, commit the transaction and try it
5153 * again.
5154 */
5155 if (ret) {
5156 ret = btrfs_commit_transaction(trans, root);
5157 if (ret) {
5158 btrfs_orphan_del(NULL, inode);
5159 btrfs_free_block_rsv(root, rsv);
5160 goto no_delete;
5161 }
5162 continue;
5163 } else {
5164 steal_from_global = 0;
5165 }
5166
5167 trans->block_rsv = rsv;
5168
5169 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5170 if (ret != -ENOSPC && ret != -EAGAIN)
5171 break;
5172
5173 trans->block_rsv = &root->fs_info->trans_block_rsv;
5174 btrfs_end_transaction(trans, root);
5175 trans = NULL;
5176 btrfs_btree_balance_dirty(root);
5177 }
5178
5179 btrfs_free_block_rsv(root, rsv);
5180
5181 /*
5182 * Errors here aren't a big deal, it just means we leave orphan items
5183 * in the tree. They will be cleaned up on the next mount.
5184 */
5185 if (ret == 0) {
5186 trans->block_rsv = root->orphan_block_rsv;
5187 btrfs_orphan_del(trans, inode);
5188 } else {
5189 btrfs_orphan_del(NULL, inode);
5190 }
5191
5192 trans->block_rsv = &root->fs_info->trans_block_rsv;
5193 if (!(root == root->fs_info->tree_root ||
5194 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5195 btrfs_return_ino(root, btrfs_ino(inode));
5196
5197 btrfs_end_transaction(trans, root);
5198 btrfs_btree_balance_dirty(root);
5199 no_delete:
5200 btrfs_remove_delayed_node(inode);
5201 clear_inode(inode);
5202 return;
5203 }
5204
5205 /*
5206 * this returns the key found in the dir entry in the location pointer.
5207 * If no dir entries were found, location->objectid is 0.
5208 */
5209 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5210 struct btrfs_key *location)
5211 {
5212 const char *name = dentry->d_name.name;
5213 int namelen = dentry->d_name.len;
5214 struct btrfs_dir_item *di;
5215 struct btrfs_path *path;
5216 struct btrfs_root *root = BTRFS_I(dir)->root;
5217 int ret = 0;
5218
5219 path = btrfs_alloc_path();
5220 if (!path)
5221 return -ENOMEM;
5222
5223 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5224 namelen, 0);
5225 if (IS_ERR(di))
5226 ret = PTR_ERR(di);
5227
5228 if (IS_ERR_OR_NULL(di))
5229 goto out_err;
5230
5231 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5232 out:
5233 btrfs_free_path(path);
5234 return ret;
5235 out_err:
5236 location->objectid = 0;
5237 goto out;
5238 }
5239
5240 /*
5241 * when we hit a tree root in a directory, the btrfs part of the inode
5242 * needs to be changed to reflect the root directory of the tree root. This
5243 * is kind of like crossing a mount point.
5244 */
5245 static int fixup_tree_root_location(struct btrfs_root *root,
5246 struct inode *dir,
5247 struct dentry *dentry,
5248 struct btrfs_key *location,
5249 struct btrfs_root **sub_root)
5250 {
5251 struct btrfs_path *path;
5252 struct btrfs_root *new_root;
5253 struct btrfs_root_ref *ref;
5254 struct extent_buffer *leaf;
5255 struct btrfs_key key;
5256 int ret;
5257 int err = 0;
5258
5259 path = btrfs_alloc_path();
5260 if (!path) {
5261 err = -ENOMEM;
5262 goto out;
5263 }
5264
5265 err = -ENOENT;
5266 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5267 key.type = BTRFS_ROOT_REF_KEY;
5268 key.offset = location->objectid;
5269
5270 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5271 0, 0);
5272 if (ret) {
5273 if (ret < 0)
5274 err = ret;
5275 goto out;
5276 }
5277
5278 leaf = path->nodes[0];
5279 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5280 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5281 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5282 goto out;
5283
5284 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5285 (unsigned long)(ref + 1),
5286 dentry->d_name.len);
5287 if (ret)
5288 goto out;
5289
5290 btrfs_release_path(path);
5291
5292 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5293 if (IS_ERR(new_root)) {
5294 err = PTR_ERR(new_root);
5295 goto out;
5296 }
5297
5298 *sub_root = new_root;
5299 location->objectid = btrfs_root_dirid(&new_root->root_item);
5300 location->type = BTRFS_INODE_ITEM_KEY;
5301 location->offset = 0;
5302 err = 0;
5303 out:
5304 btrfs_free_path(path);
5305 return err;
5306 }
5307
5308 static void inode_tree_add(struct inode *inode)
5309 {
5310 struct btrfs_root *root = BTRFS_I(inode)->root;
5311 struct btrfs_inode *entry;
5312 struct rb_node **p;
5313 struct rb_node *parent;
5314 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5315 u64 ino = btrfs_ino(inode);
5316
5317 if (inode_unhashed(inode))
5318 return;
5319 parent = NULL;
5320 spin_lock(&root->inode_lock);
5321 p = &root->inode_tree.rb_node;
5322 while (*p) {
5323 parent = *p;
5324 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5325
5326 if (ino < btrfs_ino(&entry->vfs_inode))
5327 p = &parent->rb_left;
5328 else if (ino > btrfs_ino(&entry->vfs_inode))
5329 p = &parent->rb_right;
5330 else {
5331 WARN_ON(!(entry->vfs_inode.i_state &
5332 (I_WILL_FREE | I_FREEING)));
5333 rb_replace_node(parent, new, &root->inode_tree);
5334 RB_CLEAR_NODE(parent);
5335 spin_unlock(&root->inode_lock);
5336 return;
5337 }
5338 }
5339 rb_link_node(new, parent, p);
5340 rb_insert_color(new, &root->inode_tree);
5341 spin_unlock(&root->inode_lock);
5342 }
5343
5344 static void inode_tree_del(struct inode *inode)
5345 {
5346 struct btrfs_root *root = BTRFS_I(inode)->root;
5347 int empty = 0;
5348
5349 spin_lock(&root->inode_lock);
5350 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5351 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5352 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5353 empty = RB_EMPTY_ROOT(&root->inode_tree);
5354 }
5355 spin_unlock(&root->inode_lock);
5356
5357 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5358 synchronize_srcu(&root->fs_info->subvol_srcu);
5359 spin_lock(&root->inode_lock);
5360 empty = RB_EMPTY_ROOT(&root->inode_tree);
5361 spin_unlock(&root->inode_lock);
5362 if (empty)
5363 btrfs_add_dead_root(root);
5364 }
5365 }
5366
5367 void btrfs_invalidate_inodes(struct btrfs_root *root)
5368 {
5369 struct rb_node *node;
5370 struct rb_node *prev;
5371 struct btrfs_inode *entry;
5372 struct inode *inode;
5373 u64 objectid = 0;
5374
5375 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5376 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5377
5378 spin_lock(&root->inode_lock);
5379 again:
5380 node = root->inode_tree.rb_node;
5381 prev = NULL;
5382 while (node) {
5383 prev = node;
5384 entry = rb_entry(node, struct btrfs_inode, rb_node);
5385
5386 if (objectid < btrfs_ino(&entry->vfs_inode))
5387 node = node->rb_left;
5388 else if (objectid > btrfs_ino(&entry->vfs_inode))
5389 node = node->rb_right;
5390 else
5391 break;
5392 }
5393 if (!node) {
5394 while (prev) {
5395 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5396 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5397 node = prev;
5398 break;
5399 }
5400 prev = rb_next(prev);
5401 }
5402 }
5403 while (node) {
5404 entry = rb_entry(node, struct btrfs_inode, rb_node);
5405 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5406 inode = igrab(&entry->vfs_inode);
5407 if (inode) {
5408 spin_unlock(&root->inode_lock);
5409 if (atomic_read(&inode->i_count) > 1)
5410 d_prune_aliases(inode);
5411 /*
5412 * btrfs_drop_inode will have it removed from
5413 * the inode cache when its usage count
5414 * hits zero.
5415 */
5416 iput(inode);
5417 cond_resched();
5418 spin_lock(&root->inode_lock);
5419 goto again;
5420 }
5421
5422 if (cond_resched_lock(&root->inode_lock))
5423 goto again;
5424
5425 node = rb_next(node);
5426 }
5427 spin_unlock(&root->inode_lock);
5428 }
5429
5430 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5431 {
5432 struct btrfs_iget_args *args = p;
5433 inode->i_ino = args->location->objectid;
5434 memcpy(&BTRFS_I(inode)->location, args->location,
5435 sizeof(*args->location));
5436 BTRFS_I(inode)->root = args->root;
5437 return 0;
5438 }
5439
5440 static int btrfs_find_actor(struct inode *inode, void *opaque)
5441 {
5442 struct btrfs_iget_args *args = opaque;
5443 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5444 args->root == BTRFS_I(inode)->root;
5445 }
5446
5447 static struct inode *btrfs_iget_locked(struct super_block *s,
5448 struct btrfs_key *location,
5449 struct btrfs_root *root)
5450 {
5451 struct inode *inode;
5452 struct btrfs_iget_args args;
5453 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5454
5455 args.location = location;
5456 args.root = root;
5457
5458 inode = iget5_locked(s, hashval, btrfs_find_actor,
5459 btrfs_init_locked_inode,
5460 (void *)&args);
5461 return inode;
5462 }
5463
5464 /* Get an inode object given its location and corresponding root.
5465 * Returns in *is_new if the inode was read from disk
5466 */
5467 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5468 struct btrfs_root *root, int *new)
5469 {
5470 struct inode *inode;
5471
5472 inode = btrfs_iget_locked(s, location, root);
5473 if (!inode)
5474 return ERR_PTR(-ENOMEM);
5475
5476 if (inode->i_state & I_NEW) {
5477 btrfs_read_locked_inode(inode);
5478 if (!is_bad_inode(inode)) {
5479 inode_tree_add(inode);
5480 unlock_new_inode(inode);
5481 if (new)
5482 *new = 1;
5483 } else {
5484 unlock_new_inode(inode);
5485 iput(inode);
5486 inode = ERR_PTR(-ESTALE);
5487 }
5488 }
5489
5490 return inode;
5491 }
5492
5493 static struct inode *new_simple_dir(struct super_block *s,
5494 struct btrfs_key *key,
5495 struct btrfs_root *root)
5496 {
5497 struct inode *inode = new_inode(s);
5498
5499 if (!inode)
5500 return ERR_PTR(-ENOMEM);
5501
5502 BTRFS_I(inode)->root = root;
5503 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5504 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5505
5506 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5507 inode->i_op = &btrfs_dir_ro_inode_operations;
5508 inode->i_fop = &simple_dir_operations;
5509 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5510 inode->i_mtime = CURRENT_TIME;
5511 inode->i_atime = inode->i_mtime;
5512 inode->i_ctime = inode->i_mtime;
5513 BTRFS_I(inode)->i_otime = inode->i_mtime;
5514
5515 return inode;
5516 }
5517
5518 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5519 {
5520 struct inode *inode;
5521 struct btrfs_root *root = BTRFS_I(dir)->root;
5522 struct btrfs_root *sub_root = root;
5523 struct btrfs_key location;
5524 int index;
5525 int ret = 0;
5526
5527 if (dentry->d_name.len > BTRFS_NAME_LEN)
5528 return ERR_PTR(-ENAMETOOLONG);
5529
5530 ret = btrfs_inode_by_name(dir, dentry, &location);
5531 if (ret < 0)
5532 return ERR_PTR(ret);
5533
5534 if (location.objectid == 0)
5535 return ERR_PTR(-ENOENT);
5536
5537 if (location.type == BTRFS_INODE_ITEM_KEY) {
5538 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5539 return inode;
5540 }
5541
5542 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5543
5544 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5545 ret = fixup_tree_root_location(root, dir, dentry,
5546 &location, &sub_root);
5547 if (ret < 0) {
5548 if (ret != -ENOENT)
5549 inode = ERR_PTR(ret);
5550 else
5551 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5552 } else {
5553 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5554 }
5555 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5556
5557 if (!IS_ERR(inode) && root != sub_root) {
5558 down_read(&root->fs_info->cleanup_work_sem);
5559 if (!(inode->i_sb->s_flags & MS_RDONLY))
5560 ret = btrfs_orphan_cleanup(sub_root);
5561 up_read(&root->fs_info->cleanup_work_sem);
5562 if (ret) {
5563 iput(inode);
5564 inode = ERR_PTR(ret);
5565 }
5566 }
5567
5568 return inode;
5569 }
5570
5571 static int btrfs_dentry_delete(const struct dentry *dentry)
5572 {
5573 struct btrfs_root *root;
5574 struct inode *inode = d_inode(dentry);
5575
5576 if (!inode && !IS_ROOT(dentry))
5577 inode = d_inode(dentry->d_parent);
5578
5579 if (inode) {
5580 root = BTRFS_I(inode)->root;
5581 if (btrfs_root_refs(&root->root_item) == 0)
5582 return 1;
5583
5584 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5585 return 1;
5586 }
5587 return 0;
5588 }
5589
5590 static void btrfs_dentry_release(struct dentry *dentry)
5591 {
5592 kfree(dentry->d_fsdata);
5593 }
5594
5595 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5596 unsigned int flags)
5597 {
5598 struct inode *inode;
5599
5600 inode = btrfs_lookup_dentry(dir, dentry);
5601 if (IS_ERR(inode)) {
5602 if (PTR_ERR(inode) == -ENOENT)
5603 inode = NULL;
5604 else
5605 return ERR_CAST(inode);
5606 }
5607
5608 return d_splice_alias(inode, dentry);
5609 }
5610
5611 unsigned char btrfs_filetype_table[] = {
5612 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5613 };
5614
5615 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5616 {
5617 struct inode *inode = file_inode(file);
5618 struct btrfs_root *root = BTRFS_I(inode)->root;
5619 struct btrfs_item *item;
5620 struct btrfs_dir_item *di;
5621 struct btrfs_key key;
5622 struct btrfs_key found_key;
5623 struct btrfs_path *path;
5624 struct list_head ins_list;
5625 struct list_head del_list;
5626 int ret;
5627 struct extent_buffer *leaf;
5628 int slot;
5629 unsigned char d_type;
5630 int over = 0;
5631 u32 di_cur;
5632 u32 di_total;
5633 u32 di_len;
5634 int key_type = BTRFS_DIR_INDEX_KEY;
5635 char tmp_name[32];
5636 char *name_ptr;
5637 int name_len;
5638 int is_curr = 0; /* ctx->pos points to the current index? */
5639
5640 /* FIXME, use a real flag for deciding about the key type */
5641 if (root->fs_info->tree_root == root)
5642 key_type = BTRFS_DIR_ITEM_KEY;
5643
5644 if (!dir_emit_dots(file, ctx))
5645 return 0;
5646
5647 path = btrfs_alloc_path();
5648 if (!path)
5649 return -ENOMEM;
5650
5651 path->reada = 1;
5652
5653 if (key_type == BTRFS_DIR_INDEX_KEY) {
5654 INIT_LIST_HEAD(&ins_list);
5655 INIT_LIST_HEAD(&del_list);
5656 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5657 }
5658
5659 key.type = key_type;
5660 key.offset = ctx->pos;
5661 key.objectid = btrfs_ino(inode);
5662
5663 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5664 if (ret < 0)
5665 goto err;
5666
5667 while (1) {
5668 leaf = path->nodes[0];
5669 slot = path->slots[0];
5670 if (slot >= btrfs_header_nritems(leaf)) {
5671 ret = btrfs_next_leaf(root, path);
5672 if (ret < 0)
5673 goto err;
5674 else if (ret > 0)
5675 break;
5676 continue;
5677 }
5678
5679 item = btrfs_item_nr(slot);
5680 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5681
5682 if (found_key.objectid != key.objectid)
5683 break;
5684 if (found_key.type != key_type)
5685 break;
5686 if (found_key.offset < ctx->pos)
5687 goto next;
5688 if (key_type == BTRFS_DIR_INDEX_KEY &&
5689 btrfs_should_delete_dir_index(&del_list,
5690 found_key.offset))
5691 goto next;
5692
5693 ctx->pos = found_key.offset;
5694 is_curr = 1;
5695
5696 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5697 di_cur = 0;
5698 di_total = btrfs_item_size(leaf, item);
5699
5700 while (di_cur < di_total) {
5701 struct btrfs_key location;
5702
5703 if (verify_dir_item(root, leaf, di))
5704 break;
5705
5706 name_len = btrfs_dir_name_len(leaf, di);
5707 if (name_len <= sizeof(tmp_name)) {
5708 name_ptr = tmp_name;
5709 } else {
5710 name_ptr = kmalloc(name_len, GFP_NOFS);
5711 if (!name_ptr) {
5712 ret = -ENOMEM;
5713 goto err;
5714 }
5715 }
5716 read_extent_buffer(leaf, name_ptr,
5717 (unsigned long)(di + 1), name_len);
5718
5719 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5720 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5721
5722
5723 /* is this a reference to our own snapshot? If so
5724 * skip it.
5725 *
5726 * In contrast to old kernels, we insert the snapshot's
5727 * dir item and dir index after it has been created, so
5728 * we won't find a reference to our own snapshot. We
5729 * still keep the following code for backward
5730 * compatibility.
5731 */
5732 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5733 location.objectid == root->root_key.objectid) {
5734 over = 0;
5735 goto skip;
5736 }
5737 over = !dir_emit(ctx, name_ptr, name_len,
5738 location.objectid, d_type);
5739
5740 skip:
5741 if (name_ptr != tmp_name)
5742 kfree(name_ptr);
5743
5744 if (over)
5745 goto nopos;
5746 di_len = btrfs_dir_name_len(leaf, di) +
5747 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5748 di_cur += di_len;
5749 di = (struct btrfs_dir_item *)((char *)di + di_len);
5750 }
5751 next:
5752 path->slots[0]++;
5753 }
5754
5755 if (key_type == BTRFS_DIR_INDEX_KEY) {
5756 if (is_curr)
5757 ctx->pos++;
5758 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5759 if (ret)
5760 goto nopos;
5761 }
5762
5763 /* Reached end of directory/root. Bump pos past the last item. */
5764 ctx->pos++;
5765
5766 /*
5767 * Stop new entries from being returned after we return the last
5768 * entry.
5769 *
5770 * New directory entries are assigned a strictly increasing
5771 * offset. This means that new entries created during readdir
5772 * are *guaranteed* to be seen in the future by that readdir.
5773 * This has broken buggy programs which operate on names as
5774 * they're returned by readdir. Until we re-use freed offsets
5775 * we have this hack to stop new entries from being returned
5776 * under the assumption that they'll never reach this huge
5777 * offset.
5778 *
5779 * This is being careful not to overflow 32bit loff_t unless the
5780 * last entry requires it because doing so has broken 32bit apps
5781 * in the past.
5782 */
5783 if (key_type == BTRFS_DIR_INDEX_KEY) {
5784 if (ctx->pos >= INT_MAX)
5785 ctx->pos = LLONG_MAX;
5786 else
5787 ctx->pos = INT_MAX;
5788 }
5789 nopos:
5790 ret = 0;
5791 err:
5792 if (key_type == BTRFS_DIR_INDEX_KEY)
5793 btrfs_put_delayed_items(&ins_list, &del_list);
5794 btrfs_free_path(path);
5795 return ret;
5796 }
5797
5798 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5799 {
5800 struct btrfs_root *root = BTRFS_I(inode)->root;
5801 struct btrfs_trans_handle *trans;
5802 int ret = 0;
5803 bool nolock = false;
5804
5805 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5806 return 0;
5807
5808 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5809 nolock = true;
5810
5811 if (wbc->sync_mode == WB_SYNC_ALL) {
5812 if (nolock)
5813 trans = btrfs_join_transaction_nolock(root);
5814 else
5815 trans = btrfs_join_transaction(root);
5816 if (IS_ERR(trans))
5817 return PTR_ERR(trans);
5818 ret = btrfs_commit_transaction(trans, root);
5819 }
5820 return ret;
5821 }
5822
5823 /*
5824 * This is somewhat expensive, updating the tree every time the
5825 * inode changes. But, it is most likely to find the inode in cache.
5826 * FIXME, needs more benchmarking...there are no reasons other than performance
5827 * to keep or drop this code.
5828 */
5829 static int btrfs_dirty_inode(struct inode *inode)
5830 {
5831 struct btrfs_root *root = BTRFS_I(inode)->root;
5832 struct btrfs_trans_handle *trans;
5833 int ret;
5834
5835 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5836 return 0;
5837
5838 trans = btrfs_join_transaction(root);
5839 if (IS_ERR(trans))
5840 return PTR_ERR(trans);
5841
5842 ret = btrfs_update_inode(trans, root, inode);
5843 if (ret && ret == -ENOSPC) {
5844 /* whoops, lets try again with the full transaction */
5845 btrfs_end_transaction(trans, root);
5846 trans = btrfs_start_transaction(root, 1);
5847 if (IS_ERR(trans))
5848 return PTR_ERR(trans);
5849
5850 ret = btrfs_update_inode(trans, root, inode);
5851 }
5852 btrfs_end_transaction(trans, root);
5853 if (BTRFS_I(inode)->delayed_node)
5854 btrfs_balance_delayed_items(root);
5855
5856 return ret;
5857 }
5858
5859 /*
5860 * This is a copy of file_update_time. We need this so we can return error on
5861 * ENOSPC for updating the inode in the case of file write and mmap writes.
5862 */
5863 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5864 int flags)
5865 {
5866 struct btrfs_root *root = BTRFS_I(inode)->root;
5867
5868 if (btrfs_root_readonly(root))
5869 return -EROFS;
5870
5871 if (flags & S_VERSION)
5872 inode_inc_iversion(inode);
5873 if (flags & S_CTIME)
5874 inode->i_ctime = *now;
5875 if (flags & S_MTIME)
5876 inode->i_mtime = *now;
5877 if (flags & S_ATIME)
5878 inode->i_atime = *now;
5879 return btrfs_dirty_inode(inode);
5880 }
5881
5882 /*
5883 * find the highest existing sequence number in a directory
5884 * and then set the in-memory index_cnt variable to reflect
5885 * free sequence numbers
5886 */
5887 static int btrfs_set_inode_index_count(struct inode *inode)
5888 {
5889 struct btrfs_root *root = BTRFS_I(inode)->root;
5890 struct btrfs_key key, found_key;
5891 struct btrfs_path *path;
5892 struct extent_buffer *leaf;
5893 int ret;
5894
5895 key.objectid = btrfs_ino(inode);
5896 key.type = BTRFS_DIR_INDEX_KEY;
5897 key.offset = (u64)-1;
5898
5899 path = btrfs_alloc_path();
5900 if (!path)
5901 return -ENOMEM;
5902
5903 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5904 if (ret < 0)
5905 goto out;
5906 /* FIXME: we should be able to handle this */
5907 if (ret == 0)
5908 goto out;
5909 ret = 0;
5910
5911 /*
5912 * MAGIC NUMBER EXPLANATION:
5913 * since we search a directory based on f_pos we have to start at 2
5914 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5915 * else has to start at 2
5916 */
5917 if (path->slots[0] == 0) {
5918 BTRFS_I(inode)->index_cnt = 2;
5919 goto out;
5920 }
5921
5922 path->slots[0]--;
5923
5924 leaf = path->nodes[0];
5925 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5926
5927 if (found_key.objectid != btrfs_ino(inode) ||
5928 found_key.type != BTRFS_DIR_INDEX_KEY) {
5929 BTRFS_I(inode)->index_cnt = 2;
5930 goto out;
5931 }
5932
5933 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5934 out:
5935 btrfs_free_path(path);
5936 return ret;
5937 }
5938
5939 /*
5940 * helper to find a free sequence number in a given directory. This current
5941 * code is very simple, later versions will do smarter things in the btree
5942 */
5943 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5944 {
5945 int ret = 0;
5946
5947 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5948 ret = btrfs_inode_delayed_dir_index_count(dir);
5949 if (ret) {
5950 ret = btrfs_set_inode_index_count(dir);
5951 if (ret)
5952 return ret;
5953 }
5954 }
5955
5956 *index = BTRFS_I(dir)->index_cnt;
5957 BTRFS_I(dir)->index_cnt++;
5958
5959 return ret;
5960 }
5961
5962 static int btrfs_insert_inode_locked(struct inode *inode)
5963 {
5964 struct btrfs_iget_args args;
5965 args.location = &BTRFS_I(inode)->location;
5966 args.root = BTRFS_I(inode)->root;
5967
5968 return insert_inode_locked4(inode,
5969 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5970 btrfs_find_actor, &args);
5971 }
5972
5973 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5974 struct btrfs_root *root,
5975 struct inode *dir,
5976 const char *name, int name_len,
5977 u64 ref_objectid, u64 objectid,
5978 umode_t mode, u64 *index)
5979 {
5980 struct inode *inode;
5981 struct btrfs_inode_item *inode_item;
5982 struct btrfs_key *location;
5983 struct btrfs_path *path;
5984 struct btrfs_inode_ref *ref;
5985 struct btrfs_key key[2];
5986 u32 sizes[2];
5987 int nitems = name ? 2 : 1;
5988 unsigned long ptr;
5989 int ret;
5990
5991 path = btrfs_alloc_path();
5992 if (!path)
5993 return ERR_PTR(-ENOMEM);
5994
5995 inode = new_inode(root->fs_info->sb);
5996 if (!inode) {
5997 btrfs_free_path(path);
5998 return ERR_PTR(-ENOMEM);
5999 }
6000
6001 /*
6002 * O_TMPFILE, set link count to 0, so that after this point,
6003 * we fill in an inode item with the correct link count.
6004 */
6005 if (!name)
6006 set_nlink(inode, 0);
6007
6008 /*
6009 * we have to initialize this early, so we can reclaim the inode
6010 * number if we fail afterwards in this function.
6011 */
6012 inode->i_ino = objectid;
6013
6014 if (dir && name) {
6015 trace_btrfs_inode_request(dir);
6016
6017 ret = btrfs_set_inode_index(dir, index);
6018 if (ret) {
6019 btrfs_free_path(path);
6020 iput(inode);
6021 return ERR_PTR(ret);
6022 }
6023 } else if (dir) {
6024 *index = 0;
6025 }
6026 /*
6027 * index_cnt is ignored for everything but a dir,
6028 * btrfs_get_inode_index_count has an explanation for the magic
6029 * number
6030 */
6031 BTRFS_I(inode)->index_cnt = 2;
6032 BTRFS_I(inode)->dir_index = *index;
6033 BTRFS_I(inode)->root = root;
6034 BTRFS_I(inode)->generation = trans->transid;
6035 inode->i_generation = BTRFS_I(inode)->generation;
6036
6037 /*
6038 * We could have gotten an inode number from somebody who was fsynced
6039 * and then removed in this same transaction, so let's just set full
6040 * sync since it will be a full sync anyway and this will blow away the
6041 * old info in the log.
6042 */
6043 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6044
6045 key[0].objectid = objectid;
6046 key[0].type = BTRFS_INODE_ITEM_KEY;
6047 key[0].offset = 0;
6048
6049 sizes[0] = sizeof(struct btrfs_inode_item);
6050
6051 if (name) {
6052 /*
6053 * Start new inodes with an inode_ref. This is slightly more
6054 * efficient for small numbers of hard links since they will
6055 * be packed into one item. Extended refs will kick in if we
6056 * add more hard links than can fit in the ref item.
6057 */
6058 key[1].objectid = objectid;
6059 key[1].type = BTRFS_INODE_REF_KEY;
6060 key[1].offset = ref_objectid;
6061
6062 sizes[1] = name_len + sizeof(*ref);
6063 }
6064
6065 location = &BTRFS_I(inode)->location;
6066 location->objectid = objectid;
6067 location->offset = 0;
6068 location->type = BTRFS_INODE_ITEM_KEY;
6069
6070 ret = btrfs_insert_inode_locked(inode);
6071 if (ret < 0)
6072 goto fail;
6073
6074 path->leave_spinning = 1;
6075 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6076 if (ret != 0)
6077 goto fail_unlock;
6078
6079 inode_init_owner(inode, dir, mode);
6080 inode_set_bytes(inode, 0);
6081
6082 inode->i_mtime = CURRENT_TIME;
6083 inode->i_atime = inode->i_mtime;
6084 inode->i_ctime = inode->i_mtime;
6085 BTRFS_I(inode)->i_otime = inode->i_mtime;
6086
6087 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6088 struct btrfs_inode_item);
6089 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6090 sizeof(*inode_item));
6091 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6092
6093 if (name) {
6094 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6095 struct btrfs_inode_ref);
6096 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6097 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6098 ptr = (unsigned long)(ref + 1);
6099 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6100 }
6101
6102 btrfs_mark_buffer_dirty(path->nodes[0]);
6103 btrfs_free_path(path);
6104
6105 btrfs_inherit_iflags(inode, dir);
6106
6107 if (S_ISREG(mode)) {
6108 if (btrfs_test_opt(root, NODATASUM))
6109 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6110 if (btrfs_test_opt(root, NODATACOW))
6111 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6112 BTRFS_INODE_NODATASUM;
6113 }
6114
6115 inode_tree_add(inode);
6116
6117 trace_btrfs_inode_new(inode);
6118 btrfs_set_inode_last_trans(trans, inode);
6119
6120 btrfs_update_root_times(trans, root);
6121
6122 ret = btrfs_inode_inherit_props(trans, inode, dir);
6123 if (ret)
6124 btrfs_err(root->fs_info,
6125 "error inheriting props for ino %llu (root %llu): %d",
6126 btrfs_ino(inode), root->root_key.objectid, ret);
6127
6128 return inode;
6129
6130 fail_unlock:
6131 unlock_new_inode(inode);
6132 fail:
6133 if (dir && name)
6134 BTRFS_I(dir)->index_cnt--;
6135 btrfs_free_path(path);
6136 iput(inode);
6137 return ERR_PTR(ret);
6138 }
6139
6140 static inline u8 btrfs_inode_type(struct inode *inode)
6141 {
6142 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6143 }
6144
6145 /*
6146 * utility function to add 'inode' into 'parent_inode' with
6147 * a give name and a given sequence number.
6148 * if 'add_backref' is true, also insert a backref from the
6149 * inode to the parent directory.
6150 */
6151 int btrfs_add_link(struct btrfs_trans_handle *trans,
6152 struct inode *parent_inode, struct inode *inode,
6153 const char *name, int name_len, int add_backref, u64 index)
6154 {
6155 int ret = 0;
6156 struct btrfs_key key;
6157 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6158 u64 ino = btrfs_ino(inode);
6159 u64 parent_ino = btrfs_ino(parent_inode);
6160
6161 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6162 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6163 } else {
6164 key.objectid = ino;
6165 key.type = BTRFS_INODE_ITEM_KEY;
6166 key.offset = 0;
6167 }
6168
6169 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6170 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6171 key.objectid, root->root_key.objectid,
6172 parent_ino, index, name, name_len);
6173 } else if (add_backref) {
6174 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6175 parent_ino, index);
6176 }
6177
6178 /* Nothing to clean up yet */
6179 if (ret)
6180 return ret;
6181
6182 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6183 parent_inode, &key,
6184 btrfs_inode_type(inode), index);
6185 if (ret == -EEXIST || ret == -EOVERFLOW)
6186 goto fail_dir_item;
6187 else if (ret) {
6188 btrfs_abort_transaction(trans, root, ret);
6189 return ret;
6190 }
6191
6192 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6193 name_len * 2);
6194 inode_inc_iversion(parent_inode);
6195 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6196 ret = btrfs_update_inode(trans, root, parent_inode);
6197 if (ret)
6198 btrfs_abort_transaction(trans, root, ret);
6199 return ret;
6200
6201 fail_dir_item:
6202 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6203 u64 local_index;
6204 int err;
6205 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6206 key.objectid, root->root_key.objectid,
6207 parent_ino, &local_index, name, name_len);
6208
6209 } else if (add_backref) {
6210 u64 local_index;
6211 int err;
6212
6213 err = btrfs_del_inode_ref(trans, root, name, name_len,
6214 ino, parent_ino, &local_index);
6215 }
6216 return ret;
6217 }
6218
6219 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6220 struct inode *dir, struct dentry *dentry,
6221 struct inode *inode, int backref, u64 index)
6222 {
6223 int err = btrfs_add_link(trans, dir, inode,
6224 dentry->d_name.name, dentry->d_name.len,
6225 backref, index);
6226 if (err > 0)
6227 err = -EEXIST;
6228 return err;
6229 }
6230
6231 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6232 umode_t mode, dev_t rdev)
6233 {
6234 struct btrfs_trans_handle *trans;
6235 struct btrfs_root *root = BTRFS_I(dir)->root;
6236 struct inode *inode = NULL;
6237 int err;
6238 int drop_inode = 0;
6239 u64 objectid;
6240 u64 index = 0;
6241
6242 if (!new_valid_dev(rdev))
6243 return -EINVAL;
6244
6245 /*
6246 * 2 for inode item and ref
6247 * 2 for dir items
6248 * 1 for xattr if selinux is on
6249 */
6250 trans = btrfs_start_transaction(root, 5);
6251 if (IS_ERR(trans))
6252 return PTR_ERR(trans);
6253
6254 err = btrfs_find_free_ino(root, &objectid);
6255 if (err)
6256 goto out_unlock;
6257
6258 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6259 dentry->d_name.len, btrfs_ino(dir), objectid,
6260 mode, &index);
6261 if (IS_ERR(inode)) {
6262 err = PTR_ERR(inode);
6263 goto out_unlock;
6264 }
6265
6266 /*
6267 * If the active LSM wants to access the inode during
6268 * d_instantiate it needs these. Smack checks to see
6269 * if the filesystem supports xattrs by looking at the
6270 * ops vector.
6271 */
6272 inode->i_op = &btrfs_special_inode_operations;
6273 init_special_inode(inode, inode->i_mode, rdev);
6274
6275 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6276 if (err)
6277 goto out_unlock_inode;
6278
6279 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6280 if (err) {
6281 goto out_unlock_inode;
6282 } else {
6283 btrfs_update_inode(trans, root, inode);
6284 unlock_new_inode(inode);
6285 d_instantiate(dentry, inode);
6286 }
6287
6288 out_unlock:
6289 btrfs_end_transaction(trans, root);
6290 btrfs_balance_delayed_items(root);
6291 btrfs_btree_balance_dirty(root);
6292 if (drop_inode) {
6293 inode_dec_link_count(inode);
6294 iput(inode);
6295 }
6296 return err;
6297
6298 out_unlock_inode:
6299 drop_inode = 1;
6300 unlock_new_inode(inode);
6301 goto out_unlock;
6302
6303 }
6304
6305 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6306 umode_t mode, bool excl)
6307 {
6308 struct btrfs_trans_handle *trans;
6309 struct btrfs_root *root = BTRFS_I(dir)->root;
6310 struct inode *inode = NULL;
6311 int drop_inode_on_err = 0;
6312 int err;
6313 u64 objectid;
6314 u64 index = 0;
6315
6316 /*
6317 * 2 for inode item and ref
6318 * 2 for dir items
6319 * 1 for xattr if selinux is on
6320 */
6321 trans = btrfs_start_transaction(root, 5);
6322 if (IS_ERR(trans))
6323 return PTR_ERR(trans);
6324
6325 err = btrfs_find_free_ino(root, &objectid);
6326 if (err)
6327 goto out_unlock;
6328
6329 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6330 dentry->d_name.len, btrfs_ino(dir), objectid,
6331 mode, &index);
6332 if (IS_ERR(inode)) {
6333 err = PTR_ERR(inode);
6334 goto out_unlock;
6335 }
6336 drop_inode_on_err = 1;
6337 /*
6338 * If the active LSM wants to access the inode during
6339 * d_instantiate it needs these. Smack checks to see
6340 * if the filesystem supports xattrs by looking at the
6341 * ops vector.
6342 */
6343 inode->i_fop = &btrfs_file_operations;
6344 inode->i_op = &btrfs_file_inode_operations;
6345 inode->i_mapping->a_ops = &btrfs_aops;
6346
6347 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6348 if (err)
6349 goto out_unlock_inode;
6350
6351 err = btrfs_update_inode(trans, root, inode);
6352 if (err)
6353 goto out_unlock_inode;
6354
6355 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6356 if (err)
6357 goto out_unlock_inode;
6358
6359 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6360 unlock_new_inode(inode);
6361 d_instantiate(dentry, inode);
6362
6363 out_unlock:
6364 btrfs_end_transaction(trans, root);
6365 if (err && drop_inode_on_err) {
6366 inode_dec_link_count(inode);
6367 iput(inode);
6368 }
6369 btrfs_balance_delayed_items(root);
6370 btrfs_btree_balance_dirty(root);
6371 return err;
6372
6373 out_unlock_inode:
6374 unlock_new_inode(inode);
6375 goto out_unlock;
6376
6377 }
6378
6379 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6380 struct dentry *dentry)
6381 {
6382 struct btrfs_trans_handle *trans;
6383 struct btrfs_root *root = BTRFS_I(dir)->root;
6384 struct inode *inode = d_inode(old_dentry);
6385 u64 index;
6386 int err;
6387 int drop_inode = 0;
6388
6389 /* do not allow sys_link's with other subvols of the same device */
6390 if (root->objectid != BTRFS_I(inode)->root->objectid)
6391 return -EXDEV;
6392
6393 if (inode->i_nlink >= BTRFS_LINK_MAX)
6394 return -EMLINK;
6395
6396 err = btrfs_set_inode_index(dir, &index);
6397 if (err)
6398 goto fail;
6399
6400 /*
6401 * 2 items for inode and inode ref
6402 * 2 items for dir items
6403 * 1 item for parent inode
6404 */
6405 trans = btrfs_start_transaction(root, 5);
6406 if (IS_ERR(trans)) {
6407 err = PTR_ERR(trans);
6408 goto fail;
6409 }
6410
6411 /* There are several dir indexes for this inode, clear the cache. */
6412 BTRFS_I(inode)->dir_index = 0ULL;
6413 inc_nlink(inode);
6414 inode_inc_iversion(inode);
6415 inode->i_ctime = CURRENT_TIME;
6416 ihold(inode);
6417 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6418
6419 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6420
6421 if (err) {
6422 drop_inode = 1;
6423 } else {
6424 struct dentry *parent = dentry->d_parent;
6425 err = btrfs_update_inode(trans, root, inode);
6426 if (err)
6427 goto fail;
6428 if (inode->i_nlink == 1) {
6429 /*
6430 * If new hard link count is 1, it's a file created
6431 * with open(2) O_TMPFILE flag.
6432 */
6433 err = btrfs_orphan_del(trans, inode);
6434 if (err)
6435 goto fail;
6436 }
6437 d_instantiate(dentry, inode);
6438 btrfs_log_new_name(trans, inode, NULL, parent);
6439 }
6440
6441 btrfs_end_transaction(trans, root);
6442 btrfs_balance_delayed_items(root);
6443 fail:
6444 if (drop_inode) {
6445 inode_dec_link_count(inode);
6446 iput(inode);
6447 }
6448 btrfs_btree_balance_dirty(root);
6449 return err;
6450 }
6451
6452 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6453 {
6454 struct inode *inode = NULL;
6455 struct btrfs_trans_handle *trans;
6456 struct btrfs_root *root = BTRFS_I(dir)->root;
6457 int err = 0;
6458 int drop_on_err = 0;
6459 u64 objectid = 0;
6460 u64 index = 0;
6461
6462 /*
6463 * 2 items for inode and ref
6464 * 2 items for dir items
6465 * 1 for xattr if selinux is on
6466 */
6467 trans = btrfs_start_transaction(root, 5);
6468 if (IS_ERR(trans))
6469 return PTR_ERR(trans);
6470
6471 err = btrfs_find_free_ino(root, &objectid);
6472 if (err)
6473 goto out_fail;
6474
6475 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6476 dentry->d_name.len, btrfs_ino(dir), objectid,
6477 S_IFDIR | mode, &index);
6478 if (IS_ERR(inode)) {
6479 err = PTR_ERR(inode);
6480 goto out_fail;
6481 }
6482
6483 drop_on_err = 1;
6484 /* these must be set before we unlock the inode */
6485 inode->i_op = &btrfs_dir_inode_operations;
6486 inode->i_fop = &btrfs_dir_file_operations;
6487
6488 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6489 if (err)
6490 goto out_fail_inode;
6491
6492 btrfs_i_size_write(inode, 0);
6493 err = btrfs_update_inode(trans, root, inode);
6494 if (err)
6495 goto out_fail_inode;
6496
6497 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6498 dentry->d_name.len, 0, index);
6499 if (err)
6500 goto out_fail_inode;
6501
6502 d_instantiate(dentry, inode);
6503 /*
6504 * mkdir is special. We're unlocking after we call d_instantiate
6505 * to avoid a race with nfsd calling d_instantiate.
6506 */
6507 unlock_new_inode(inode);
6508 drop_on_err = 0;
6509
6510 out_fail:
6511 btrfs_end_transaction(trans, root);
6512 if (drop_on_err) {
6513 inode_dec_link_count(inode);
6514 iput(inode);
6515 }
6516 btrfs_balance_delayed_items(root);
6517 btrfs_btree_balance_dirty(root);
6518 return err;
6519
6520 out_fail_inode:
6521 unlock_new_inode(inode);
6522 goto out_fail;
6523 }
6524
6525 /* Find next extent map of a given extent map, caller needs to ensure locks */
6526 static struct extent_map *next_extent_map(struct extent_map *em)
6527 {
6528 struct rb_node *next;
6529
6530 next = rb_next(&em->rb_node);
6531 if (!next)
6532 return NULL;
6533 return container_of(next, struct extent_map, rb_node);
6534 }
6535
6536 static struct extent_map *prev_extent_map(struct extent_map *em)
6537 {
6538 struct rb_node *prev;
6539
6540 prev = rb_prev(&em->rb_node);
6541 if (!prev)
6542 return NULL;
6543 return container_of(prev, struct extent_map, rb_node);
6544 }
6545
6546 /* helper for btfs_get_extent. Given an existing extent in the tree,
6547 * the existing extent is the nearest extent to map_start,
6548 * and an extent that you want to insert, deal with overlap and insert
6549 * the best fitted new extent into the tree.
6550 */
6551 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6552 struct extent_map *existing,
6553 struct extent_map *em,
6554 u64 map_start)
6555 {
6556 struct extent_map *prev;
6557 struct extent_map *next;
6558 u64 start;
6559 u64 end;
6560 u64 start_diff;
6561
6562 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6563
6564 if (existing->start > map_start) {
6565 next = existing;
6566 prev = prev_extent_map(next);
6567 } else {
6568 prev = existing;
6569 next = next_extent_map(prev);
6570 }
6571
6572 start = prev ? extent_map_end(prev) : em->start;
6573 start = max_t(u64, start, em->start);
6574 end = next ? next->start : extent_map_end(em);
6575 end = min_t(u64, end, extent_map_end(em));
6576 start_diff = start - em->start;
6577 em->start = start;
6578 em->len = end - start;
6579 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6580 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6581 em->block_start += start_diff;
6582 em->block_len -= start_diff;
6583 }
6584 return add_extent_mapping(em_tree, em, 0);
6585 }
6586
6587 static noinline int uncompress_inline(struct btrfs_path *path,
6588 struct inode *inode, struct page *page,
6589 size_t pg_offset, u64 extent_offset,
6590 struct btrfs_file_extent_item *item)
6591 {
6592 int ret;
6593 struct extent_buffer *leaf = path->nodes[0];
6594 char *tmp;
6595 size_t max_size;
6596 unsigned long inline_size;
6597 unsigned long ptr;
6598 int compress_type;
6599
6600 WARN_ON(pg_offset != 0);
6601 compress_type = btrfs_file_extent_compression(leaf, item);
6602 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6603 inline_size = btrfs_file_extent_inline_item_len(leaf,
6604 btrfs_item_nr(path->slots[0]));
6605 tmp = kmalloc(inline_size, GFP_NOFS);
6606 if (!tmp)
6607 return -ENOMEM;
6608 ptr = btrfs_file_extent_inline_start(item);
6609
6610 read_extent_buffer(leaf, tmp, ptr, inline_size);
6611
6612 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6613 ret = btrfs_decompress(compress_type, tmp, page,
6614 extent_offset, inline_size, max_size);
6615 kfree(tmp);
6616 return ret;
6617 }
6618
6619 /*
6620 * a bit scary, this does extent mapping from logical file offset to the disk.
6621 * the ugly parts come from merging extents from the disk with the in-ram
6622 * representation. This gets more complex because of the data=ordered code,
6623 * where the in-ram extents might be locked pending data=ordered completion.
6624 *
6625 * This also copies inline extents directly into the page.
6626 */
6627
6628 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6629 size_t pg_offset, u64 start, u64 len,
6630 int create)
6631 {
6632 int ret;
6633 int err = 0;
6634 u64 extent_start = 0;
6635 u64 extent_end = 0;
6636 u64 objectid = btrfs_ino(inode);
6637 u32 found_type;
6638 struct btrfs_path *path = NULL;
6639 struct btrfs_root *root = BTRFS_I(inode)->root;
6640 struct btrfs_file_extent_item *item;
6641 struct extent_buffer *leaf;
6642 struct btrfs_key found_key;
6643 struct extent_map *em = NULL;
6644 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6645 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6646 struct btrfs_trans_handle *trans = NULL;
6647 const bool new_inline = !page || create;
6648
6649 again:
6650 read_lock(&em_tree->lock);
6651 em = lookup_extent_mapping(em_tree, start, len);
6652 if (em)
6653 em->bdev = root->fs_info->fs_devices->latest_bdev;
6654 read_unlock(&em_tree->lock);
6655
6656 if (em) {
6657 if (em->start > start || em->start + em->len <= start)
6658 free_extent_map(em);
6659 else if (em->block_start == EXTENT_MAP_INLINE && page)
6660 free_extent_map(em);
6661 else
6662 goto out;
6663 }
6664 em = alloc_extent_map();
6665 if (!em) {
6666 err = -ENOMEM;
6667 goto out;
6668 }
6669 em->bdev = root->fs_info->fs_devices->latest_bdev;
6670 em->start = EXTENT_MAP_HOLE;
6671 em->orig_start = EXTENT_MAP_HOLE;
6672 em->len = (u64)-1;
6673 em->block_len = (u64)-1;
6674
6675 if (!path) {
6676 path = btrfs_alloc_path();
6677 if (!path) {
6678 err = -ENOMEM;
6679 goto out;
6680 }
6681 /*
6682 * Chances are we'll be called again, so go ahead and do
6683 * readahead
6684 */
6685 path->reada = 1;
6686 }
6687
6688 ret = btrfs_lookup_file_extent(trans, root, path,
6689 objectid, start, trans != NULL);
6690 if (ret < 0) {
6691 err = ret;
6692 goto out;
6693 }
6694
6695 if (ret != 0) {
6696 if (path->slots[0] == 0)
6697 goto not_found;
6698 path->slots[0]--;
6699 }
6700
6701 leaf = path->nodes[0];
6702 item = btrfs_item_ptr(leaf, path->slots[0],
6703 struct btrfs_file_extent_item);
6704 /* are we inside the extent that was found? */
6705 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6706 found_type = found_key.type;
6707 if (found_key.objectid != objectid ||
6708 found_type != BTRFS_EXTENT_DATA_KEY) {
6709 /*
6710 * If we backup past the first extent we want to move forward
6711 * and see if there is an extent in front of us, otherwise we'll
6712 * say there is a hole for our whole search range which can
6713 * cause problems.
6714 */
6715 extent_end = start;
6716 goto next;
6717 }
6718
6719 found_type = btrfs_file_extent_type(leaf, item);
6720 extent_start = found_key.offset;
6721 if (found_type == BTRFS_FILE_EXTENT_REG ||
6722 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6723 extent_end = extent_start +
6724 btrfs_file_extent_num_bytes(leaf, item);
6725 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6726 size_t size;
6727 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6728 extent_end = ALIGN(extent_start + size, root->sectorsize);
6729 }
6730 next:
6731 if (start >= extent_end) {
6732 path->slots[0]++;
6733 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6734 ret = btrfs_next_leaf(root, path);
6735 if (ret < 0) {
6736 err = ret;
6737 goto out;
6738 }
6739 if (ret > 0)
6740 goto not_found;
6741 leaf = path->nodes[0];
6742 }
6743 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6744 if (found_key.objectid != objectid ||
6745 found_key.type != BTRFS_EXTENT_DATA_KEY)
6746 goto not_found;
6747 if (start + len <= found_key.offset)
6748 goto not_found;
6749 if (start > found_key.offset)
6750 goto next;
6751 em->start = start;
6752 em->orig_start = start;
6753 em->len = found_key.offset - start;
6754 goto not_found_em;
6755 }
6756
6757 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6758
6759 if (found_type == BTRFS_FILE_EXTENT_REG ||
6760 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6761 goto insert;
6762 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6763 unsigned long ptr;
6764 char *map;
6765 size_t size;
6766 size_t extent_offset;
6767 size_t copy_size;
6768
6769 if (new_inline)
6770 goto out;
6771
6772 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6773 extent_offset = page_offset(page) + pg_offset - extent_start;
6774 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6775 size - extent_offset);
6776 em->start = extent_start + extent_offset;
6777 em->len = ALIGN(copy_size, root->sectorsize);
6778 em->orig_block_len = em->len;
6779 em->orig_start = em->start;
6780 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6781 if (create == 0 && !PageUptodate(page)) {
6782 if (btrfs_file_extent_compression(leaf, item) !=
6783 BTRFS_COMPRESS_NONE) {
6784 ret = uncompress_inline(path, inode, page,
6785 pg_offset,
6786 extent_offset, item);
6787 if (ret) {
6788 err = ret;
6789 goto out;
6790 }
6791 } else {
6792 map = kmap(page);
6793 read_extent_buffer(leaf, map + pg_offset, ptr,
6794 copy_size);
6795 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6796 memset(map + pg_offset + copy_size, 0,
6797 PAGE_CACHE_SIZE - pg_offset -
6798 copy_size);
6799 }
6800 kunmap(page);
6801 }
6802 flush_dcache_page(page);
6803 } else if (create && PageUptodate(page)) {
6804 BUG();
6805 if (!trans) {
6806 kunmap(page);
6807 free_extent_map(em);
6808 em = NULL;
6809
6810 btrfs_release_path(path);
6811 trans = btrfs_join_transaction(root);
6812
6813 if (IS_ERR(trans))
6814 return ERR_CAST(trans);
6815 goto again;
6816 }
6817 map = kmap(page);
6818 write_extent_buffer(leaf, map + pg_offset, ptr,
6819 copy_size);
6820 kunmap(page);
6821 btrfs_mark_buffer_dirty(leaf);
6822 }
6823 set_extent_uptodate(io_tree, em->start,
6824 extent_map_end(em) - 1, NULL, GFP_NOFS);
6825 goto insert;
6826 }
6827 not_found:
6828 em->start = start;
6829 em->orig_start = start;
6830 em->len = len;
6831 not_found_em:
6832 em->block_start = EXTENT_MAP_HOLE;
6833 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6834 insert:
6835 btrfs_release_path(path);
6836 if (em->start > start || extent_map_end(em) <= start) {
6837 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6838 em->start, em->len, start, len);
6839 err = -EIO;
6840 goto out;
6841 }
6842
6843 err = 0;
6844 write_lock(&em_tree->lock);
6845 ret = add_extent_mapping(em_tree, em, 0);
6846 /* it is possible that someone inserted the extent into the tree
6847 * while we had the lock dropped. It is also possible that
6848 * an overlapping map exists in the tree
6849 */
6850 if (ret == -EEXIST) {
6851 struct extent_map *existing;
6852
6853 ret = 0;
6854
6855 existing = search_extent_mapping(em_tree, start, len);
6856 /*
6857 * existing will always be non-NULL, since there must be
6858 * extent causing the -EEXIST.
6859 */
6860 if (start >= extent_map_end(existing) ||
6861 start <= existing->start) {
6862 /*
6863 * The existing extent map is the one nearest to
6864 * the [start, start + len) range which overlaps
6865 */
6866 err = merge_extent_mapping(em_tree, existing,
6867 em, start);
6868 free_extent_map(existing);
6869 if (err) {
6870 free_extent_map(em);
6871 em = NULL;
6872 }
6873 } else {
6874 free_extent_map(em);
6875 em = existing;
6876 err = 0;
6877 }
6878 }
6879 write_unlock(&em_tree->lock);
6880 out:
6881
6882 trace_btrfs_get_extent(root, em);
6883
6884 if (path)
6885 btrfs_free_path(path);
6886 if (trans) {
6887 ret = btrfs_end_transaction(trans, root);
6888 if (!err)
6889 err = ret;
6890 }
6891 if (err) {
6892 free_extent_map(em);
6893 return ERR_PTR(err);
6894 }
6895 BUG_ON(!em); /* Error is always set */
6896 return em;
6897 }
6898
6899 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6900 size_t pg_offset, u64 start, u64 len,
6901 int create)
6902 {
6903 struct extent_map *em;
6904 struct extent_map *hole_em = NULL;
6905 u64 range_start = start;
6906 u64 end;
6907 u64 found;
6908 u64 found_end;
6909 int err = 0;
6910
6911 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6912 if (IS_ERR(em))
6913 return em;
6914 if (em) {
6915 /*
6916 * if our em maps to
6917 * - a hole or
6918 * - a pre-alloc extent,
6919 * there might actually be delalloc bytes behind it.
6920 */
6921 if (em->block_start != EXTENT_MAP_HOLE &&
6922 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6923 return em;
6924 else
6925 hole_em = em;
6926 }
6927
6928 /* check to see if we've wrapped (len == -1 or similar) */
6929 end = start + len;
6930 if (end < start)
6931 end = (u64)-1;
6932 else
6933 end -= 1;
6934
6935 em = NULL;
6936
6937 /* ok, we didn't find anything, lets look for delalloc */
6938 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6939 end, len, EXTENT_DELALLOC, 1);
6940 found_end = range_start + found;
6941 if (found_end < range_start)
6942 found_end = (u64)-1;
6943
6944 /*
6945 * we didn't find anything useful, return
6946 * the original results from get_extent()
6947 */
6948 if (range_start > end || found_end <= start) {
6949 em = hole_em;
6950 hole_em = NULL;
6951 goto out;
6952 }
6953
6954 /* adjust the range_start to make sure it doesn't
6955 * go backwards from the start they passed in
6956 */
6957 range_start = max(start, range_start);
6958 found = found_end - range_start;
6959
6960 if (found > 0) {
6961 u64 hole_start = start;
6962 u64 hole_len = len;
6963
6964 em = alloc_extent_map();
6965 if (!em) {
6966 err = -ENOMEM;
6967 goto out;
6968 }
6969 /*
6970 * when btrfs_get_extent can't find anything it
6971 * returns one huge hole
6972 *
6973 * make sure what it found really fits our range, and
6974 * adjust to make sure it is based on the start from
6975 * the caller
6976 */
6977 if (hole_em) {
6978 u64 calc_end = extent_map_end(hole_em);
6979
6980 if (calc_end <= start || (hole_em->start > end)) {
6981 free_extent_map(hole_em);
6982 hole_em = NULL;
6983 } else {
6984 hole_start = max(hole_em->start, start);
6985 hole_len = calc_end - hole_start;
6986 }
6987 }
6988 em->bdev = NULL;
6989 if (hole_em && range_start > hole_start) {
6990 /* our hole starts before our delalloc, so we
6991 * have to return just the parts of the hole
6992 * that go until the delalloc starts
6993 */
6994 em->len = min(hole_len,
6995 range_start - hole_start);
6996 em->start = hole_start;
6997 em->orig_start = hole_start;
6998 /*
6999 * don't adjust block start at all,
7000 * it is fixed at EXTENT_MAP_HOLE
7001 */
7002 em->block_start = hole_em->block_start;
7003 em->block_len = hole_len;
7004 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7005 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7006 } else {
7007 em->start = range_start;
7008 em->len = found;
7009 em->orig_start = range_start;
7010 em->block_start = EXTENT_MAP_DELALLOC;
7011 em->block_len = found;
7012 }
7013 } else if (hole_em) {
7014 return hole_em;
7015 }
7016 out:
7017
7018 free_extent_map(hole_em);
7019 if (err) {
7020 free_extent_map(em);
7021 return ERR_PTR(err);
7022 }
7023 return em;
7024 }
7025
7026 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7027 u64 start, u64 len)
7028 {
7029 struct btrfs_root *root = BTRFS_I(inode)->root;
7030 struct extent_map *em;
7031 struct btrfs_key ins;
7032 u64 alloc_hint;
7033 int ret;
7034
7035 alloc_hint = get_extent_allocation_hint(inode, start, len);
7036 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7037 alloc_hint, &ins, 1, 1);
7038 if (ret)
7039 return ERR_PTR(ret);
7040
7041 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7042 ins.offset, ins.offset, ins.offset, 0);
7043 if (IS_ERR(em)) {
7044 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7045 return em;
7046 }
7047
7048 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7049 ins.offset, ins.offset, 0);
7050 if (ret) {
7051 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7052 free_extent_map(em);
7053 return ERR_PTR(ret);
7054 }
7055
7056 return em;
7057 }
7058
7059 /*
7060 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7061 * block must be cow'd
7062 */
7063 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7064 u64 *orig_start, u64 *orig_block_len,
7065 u64 *ram_bytes)
7066 {
7067 struct btrfs_trans_handle *trans;
7068 struct btrfs_path *path;
7069 int ret;
7070 struct extent_buffer *leaf;
7071 struct btrfs_root *root = BTRFS_I(inode)->root;
7072 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7073 struct btrfs_file_extent_item *fi;
7074 struct btrfs_key key;
7075 u64 disk_bytenr;
7076 u64 backref_offset;
7077 u64 extent_end;
7078 u64 num_bytes;
7079 int slot;
7080 int found_type;
7081 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7082
7083 path = btrfs_alloc_path();
7084 if (!path)
7085 return -ENOMEM;
7086
7087 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7088 offset, 0);
7089 if (ret < 0)
7090 goto out;
7091
7092 slot = path->slots[0];
7093 if (ret == 1) {
7094 if (slot == 0) {
7095 /* can't find the item, must cow */
7096 ret = 0;
7097 goto out;
7098 }
7099 slot--;
7100 }
7101 ret = 0;
7102 leaf = path->nodes[0];
7103 btrfs_item_key_to_cpu(leaf, &key, slot);
7104 if (key.objectid != btrfs_ino(inode) ||
7105 key.type != BTRFS_EXTENT_DATA_KEY) {
7106 /* not our file or wrong item type, must cow */
7107 goto out;
7108 }
7109
7110 if (key.offset > offset) {
7111 /* Wrong offset, must cow */
7112 goto out;
7113 }
7114
7115 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7116 found_type = btrfs_file_extent_type(leaf, fi);
7117 if (found_type != BTRFS_FILE_EXTENT_REG &&
7118 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7119 /* not a regular extent, must cow */
7120 goto out;
7121 }
7122
7123 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7124 goto out;
7125
7126 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7127 if (extent_end <= offset)
7128 goto out;
7129
7130 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7131 if (disk_bytenr == 0)
7132 goto out;
7133
7134 if (btrfs_file_extent_compression(leaf, fi) ||
7135 btrfs_file_extent_encryption(leaf, fi) ||
7136 btrfs_file_extent_other_encoding(leaf, fi))
7137 goto out;
7138
7139 backref_offset = btrfs_file_extent_offset(leaf, fi);
7140
7141 if (orig_start) {
7142 *orig_start = key.offset - backref_offset;
7143 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7144 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7145 }
7146
7147 if (btrfs_extent_readonly(root, disk_bytenr))
7148 goto out;
7149
7150 num_bytes = min(offset + *len, extent_end) - offset;
7151 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7152 u64 range_end;
7153
7154 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7155 ret = test_range_bit(io_tree, offset, range_end,
7156 EXTENT_DELALLOC, 0, NULL);
7157 if (ret) {
7158 ret = -EAGAIN;
7159 goto out;
7160 }
7161 }
7162
7163 btrfs_release_path(path);
7164
7165 /*
7166 * look for other files referencing this extent, if we
7167 * find any we must cow
7168 */
7169 trans = btrfs_join_transaction(root);
7170 if (IS_ERR(trans)) {
7171 ret = 0;
7172 goto out;
7173 }
7174
7175 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7176 key.offset - backref_offset, disk_bytenr);
7177 btrfs_end_transaction(trans, root);
7178 if (ret) {
7179 ret = 0;
7180 goto out;
7181 }
7182
7183 /*
7184 * adjust disk_bytenr and num_bytes to cover just the bytes
7185 * in this extent we are about to write. If there
7186 * are any csums in that range we have to cow in order
7187 * to keep the csums correct
7188 */
7189 disk_bytenr += backref_offset;
7190 disk_bytenr += offset - key.offset;
7191 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7192 goto out;
7193 /*
7194 * all of the above have passed, it is safe to overwrite this extent
7195 * without cow
7196 */
7197 *len = num_bytes;
7198 ret = 1;
7199 out:
7200 btrfs_free_path(path);
7201 return ret;
7202 }
7203
7204 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7205 {
7206 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7207 int found = false;
7208 void **pagep = NULL;
7209 struct page *page = NULL;
7210 int start_idx;
7211 int end_idx;
7212
7213 start_idx = start >> PAGE_CACHE_SHIFT;
7214
7215 /*
7216 * end is the last byte in the last page. end == start is legal
7217 */
7218 end_idx = end >> PAGE_CACHE_SHIFT;
7219
7220 rcu_read_lock();
7221
7222 /* Most of the code in this while loop is lifted from
7223 * find_get_page. It's been modified to begin searching from a
7224 * page and return just the first page found in that range. If the
7225 * found idx is less than or equal to the end idx then we know that
7226 * a page exists. If no pages are found or if those pages are
7227 * outside of the range then we're fine (yay!) */
7228 while (page == NULL &&
7229 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7230 page = radix_tree_deref_slot(pagep);
7231 if (unlikely(!page))
7232 break;
7233
7234 if (radix_tree_exception(page)) {
7235 if (radix_tree_deref_retry(page)) {
7236 page = NULL;
7237 continue;
7238 }
7239 /*
7240 * Otherwise, shmem/tmpfs must be storing a swap entry
7241 * here as an exceptional entry: so return it without
7242 * attempting to raise page count.
7243 */
7244 page = NULL;
7245 break; /* TODO: Is this relevant for this use case? */
7246 }
7247
7248 if (!page_cache_get_speculative(page)) {
7249 page = NULL;
7250 continue;
7251 }
7252
7253 /*
7254 * Has the page moved?
7255 * This is part of the lockless pagecache protocol. See
7256 * include/linux/pagemap.h for details.
7257 */
7258 if (unlikely(page != *pagep)) {
7259 page_cache_release(page);
7260 page = NULL;
7261 }
7262 }
7263
7264 if (page) {
7265 if (page->index <= end_idx)
7266 found = true;
7267 page_cache_release(page);
7268 }
7269
7270 rcu_read_unlock();
7271 return found;
7272 }
7273
7274 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7275 struct extent_state **cached_state, int writing)
7276 {
7277 struct btrfs_ordered_extent *ordered;
7278 int ret = 0;
7279
7280 while (1) {
7281 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7282 0, cached_state);
7283 /*
7284 * We're concerned with the entire range that we're going to be
7285 * doing DIO to, so we need to make sure theres no ordered
7286 * extents in this range.
7287 */
7288 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7289 lockend - lockstart + 1);
7290
7291 /*
7292 * We need to make sure there are no buffered pages in this
7293 * range either, we could have raced between the invalidate in
7294 * generic_file_direct_write and locking the extent. The
7295 * invalidate needs to happen so that reads after a write do not
7296 * get stale data.
7297 */
7298 if (!ordered &&
7299 (!writing ||
7300 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7301 break;
7302
7303 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7304 cached_state, GFP_NOFS);
7305
7306 if (ordered) {
7307 btrfs_start_ordered_extent(inode, ordered, 1);
7308 btrfs_put_ordered_extent(ordered);
7309 } else {
7310 /* Screw you mmap */
7311 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7312 if (ret)
7313 break;
7314 ret = filemap_fdatawait_range(inode->i_mapping,
7315 lockstart,
7316 lockend);
7317 if (ret)
7318 break;
7319
7320 /*
7321 * If we found a page that couldn't be invalidated just
7322 * fall back to buffered.
7323 */
7324 ret = invalidate_inode_pages2_range(inode->i_mapping,
7325 lockstart >> PAGE_CACHE_SHIFT,
7326 lockend >> PAGE_CACHE_SHIFT);
7327 if (ret)
7328 break;
7329 }
7330
7331 cond_resched();
7332 }
7333
7334 return ret;
7335 }
7336
7337 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7338 u64 len, u64 orig_start,
7339 u64 block_start, u64 block_len,
7340 u64 orig_block_len, u64 ram_bytes,
7341 int type)
7342 {
7343 struct extent_map_tree *em_tree;
7344 struct extent_map *em;
7345 struct btrfs_root *root = BTRFS_I(inode)->root;
7346 int ret;
7347
7348 em_tree = &BTRFS_I(inode)->extent_tree;
7349 em = alloc_extent_map();
7350 if (!em)
7351 return ERR_PTR(-ENOMEM);
7352
7353 em->start = start;
7354 em->orig_start = orig_start;
7355 em->mod_start = start;
7356 em->mod_len = len;
7357 em->len = len;
7358 em->block_len = block_len;
7359 em->block_start = block_start;
7360 em->bdev = root->fs_info->fs_devices->latest_bdev;
7361 em->orig_block_len = orig_block_len;
7362 em->ram_bytes = ram_bytes;
7363 em->generation = -1;
7364 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7365 if (type == BTRFS_ORDERED_PREALLOC)
7366 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7367
7368 do {
7369 btrfs_drop_extent_cache(inode, em->start,
7370 em->start + em->len - 1, 0);
7371 write_lock(&em_tree->lock);
7372 ret = add_extent_mapping(em_tree, em, 1);
7373 write_unlock(&em_tree->lock);
7374 } while (ret == -EEXIST);
7375
7376 if (ret) {
7377 free_extent_map(em);
7378 return ERR_PTR(ret);
7379 }
7380
7381 return em;
7382 }
7383
7384
7385 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7386 struct buffer_head *bh_result, int create)
7387 {
7388 struct extent_map *em;
7389 struct btrfs_root *root = BTRFS_I(inode)->root;
7390 struct extent_state *cached_state = NULL;
7391 u64 start = iblock << inode->i_blkbits;
7392 u64 lockstart, lockend;
7393 u64 len = bh_result->b_size;
7394 u64 *outstanding_extents = NULL;
7395 int unlock_bits = EXTENT_LOCKED;
7396 int ret = 0;
7397
7398 if (create)
7399 unlock_bits |= EXTENT_DIRTY;
7400 else
7401 len = min_t(u64, len, root->sectorsize);
7402
7403 lockstart = start;
7404 lockend = start + len - 1;
7405
7406 if (current->journal_info) {
7407 /*
7408 * Need to pull our outstanding extents and set journal_info to NULL so
7409 * that anything that needs to check if there's a transction doesn't get
7410 * confused.
7411 */
7412 outstanding_extents = current->journal_info;
7413 current->journal_info = NULL;
7414 }
7415
7416 /*
7417 * If this errors out it's because we couldn't invalidate pagecache for
7418 * this range and we need to fallback to buffered.
7419 */
7420 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7421 return -ENOTBLK;
7422
7423 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7424 if (IS_ERR(em)) {
7425 ret = PTR_ERR(em);
7426 goto unlock_err;
7427 }
7428
7429 /*
7430 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7431 * io. INLINE is special, and we could probably kludge it in here, but
7432 * it's still buffered so for safety lets just fall back to the generic
7433 * buffered path.
7434 *
7435 * For COMPRESSED we _have_ to read the entire extent in so we can
7436 * decompress it, so there will be buffering required no matter what we
7437 * do, so go ahead and fallback to buffered.
7438 *
7439 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7440 * to buffered IO. Don't blame me, this is the price we pay for using
7441 * the generic code.
7442 */
7443 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7444 em->block_start == EXTENT_MAP_INLINE) {
7445 free_extent_map(em);
7446 ret = -ENOTBLK;
7447 goto unlock_err;
7448 }
7449
7450 /* Just a good old fashioned hole, return */
7451 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7452 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7453 free_extent_map(em);
7454 goto unlock_err;
7455 }
7456
7457 /*
7458 * We don't allocate a new extent in the following cases
7459 *
7460 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7461 * existing extent.
7462 * 2) The extent is marked as PREALLOC. We're good to go here and can
7463 * just use the extent.
7464 *
7465 */
7466 if (!create) {
7467 len = min(len, em->len - (start - em->start));
7468 lockstart = start + len;
7469 goto unlock;
7470 }
7471
7472 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7473 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7474 em->block_start != EXTENT_MAP_HOLE)) {
7475 int type;
7476 u64 block_start, orig_start, orig_block_len, ram_bytes;
7477
7478 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7479 type = BTRFS_ORDERED_PREALLOC;
7480 else
7481 type = BTRFS_ORDERED_NOCOW;
7482 len = min(len, em->len - (start - em->start));
7483 block_start = em->block_start + (start - em->start);
7484
7485 if (can_nocow_extent(inode, start, &len, &orig_start,
7486 &orig_block_len, &ram_bytes) == 1) {
7487 if (type == BTRFS_ORDERED_PREALLOC) {
7488 free_extent_map(em);
7489 em = create_pinned_em(inode, start, len,
7490 orig_start,
7491 block_start, len,
7492 orig_block_len,
7493 ram_bytes, type);
7494 if (IS_ERR(em)) {
7495 ret = PTR_ERR(em);
7496 goto unlock_err;
7497 }
7498 }
7499
7500 ret = btrfs_add_ordered_extent_dio(inode, start,
7501 block_start, len, len, type);
7502 if (ret) {
7503 free_extent_map(em);
7504 goto unlock_err;
7505 }
7506 goto unlock;
7507 }
7508 }
7509
7510 /*
7511 * this will cow the extent, reset the len in case we changed
7512 * it above
7513 */
7514 len = bh_result->b_size;
7515 free_extent_map(em);
7516 em = btrfs_new_extent_direct(inode, start, len);
7517 if (IS_ERR(em)) {
7518 ret = PTR_ERR(em);
7519 goto unlock_err;
7520 }
7521 len = min(len, em->len - (start - em->start));
7522 unlock:
7523 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7524 inode->i_blkbits;
7525 bh_result->b_size = len;
7526 bh_result->b_bdev = em->bdev;
7527 set_buffer_mapped(bh_result);
7528 if (create) {
7529 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7530 set_buffer_new(bh_result);
7531
7532 /*
7533 * Need to update the i_size under the extent lock so buffered
7534 * readers will get the updated i_size when we unlock.
7535 */
7536 if (start + len > i_size_read(inode))
7537 i_size_write(inode, start + len);
7538
7539 /*
7540 * If we have an outstanding_extents count still set then we're
7541 * within our reservation, otherwise we need to adjust our inode
7542 * counter appropriately.
7543 */
7544 if (*outstanding_extents) {
7545 (*outstanding_extents)--;
7546 } else {
7547 spin_lock(&BTRFS_I(inode)->lock);
7548 BTRFS_I(inode)->outstanding_extents++;
7549 spin_unlock(&BTRFS_I(inode)->lock);
7550 }
7551
7552 current->journal_info = outstanding_extents;
7553 btrfs_free_reserved_data_space(inode, len);
7554 set_bit(BTRFS_INODE_DIO_READY, &BTRFS_I(inode)->runtime_flags);
7555 }
7556
7557 /*
7558 * In the case of write we need to clear and unlock the entire range,
7559 * in the case of read we need to unlock only the end area that we
7560 * aren't using if there is any left over space.
7561 */
7562 if (lockstart < lockend) {
7563 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7564 lockend, unlock_bits, 1, 0,
7565 &cached_state, GFP_NOFS);
7566 } else {
7567 free_extent_state(cached_state);
7568 }
7569
7570 free_extent_map(em);
7571
7572 return 0;
7573
7574 unlock_err:
7575 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7576 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7577 if (outstanding_extents)
7578 current->journal_info = outstanding_extents;
7579 return ret;
7580 }
7581
7582 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7583 int rw, int mirror_num)
7584 {
7585 struct btrfs_root *root = BTRFS_I(inode)->root;
7586 int ret;
7587
7588 BUG_ON(rw & REQ_WRITE);
7589
7590 bio_get(bio);
7591
7592 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7593 BTRFS_WQ_ENDIO_DIO_REPAIR);
7594 if (ret)
7595 goto err;
7596
7597 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7598 err:
7599 bio_put(bio);
7600 return ret;
7601 }
7602
7603 static int btrfs_check_dio_repairable(struct inode *inode,
7604 struct bio *failed_bio,
7605 struct io_failure_record *failrec,
7606 int failed_mirror)
7607 {
7608 int num_copies;
7609
7610 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7611 failrec->logical, failrec->len);
7612 if (num_copies == 1) {
7613 /*
7614 * we only have a single copy of the data, so don't bother with
7615 * all the retry and error correction code that follows. no
7616 * matter what the error is, it is very likely to persist.
7617 */
7618 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7619 num_copies, failrec->this_mirror, failed_mirror);
7620 return 0;
7621 }
7622
7623 failrec->failed_mirror = failed_mirror;
7624 failrec->this_mirror++;
7625 if (failrec->this_mirror == failed_mirror)
7626 failrec->this_mirror++;
7627
7628 if (failrec->this_mirror > num_copies) {
7629 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7630 num_copies, failrec->this_mirror, failed_mirror);
7631 return 0;
7632 }
7633
7634 return 1;
7635 }
7636
7637 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7638 struct page *page, u64 start, u64 end,
7639 int failed_mirror, bio_end_io_t *repair_endio,
7640 void *repair_arg)
7641 {
7642 struct io_failure_record *failrec;
7643 struct bio *bio;
7644 int isector;
7645 int read_mode;
7646 int ret;
7647
7648 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7649
7650 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7651 if (ret)
7652 return ret;
7653
7654 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7655 failed_mirror);
7656 if (!ret) {
7657 free_io_failure(inode, failrec);
7658 return -EIO;
7659 }
7660
7661 if (failed_bio->bi_vcnt > 1)
7662 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7663 else
7664 read_mode = READ_SYNC;
7665
7666 isector = start - btrfs_io_bio(failed_bio)->logical;
7667 isector >>= inode->i_sb->s_blocksize_bits;
7668 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7669 0, isector, repair_endio, repair_arg);
7670 if (!bio) {
7671 free_io_failure(inode, failrec);
7672 return -EIO;
7673 }
7674
7675 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7676 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7677 read_mode, failrec->this_mirror, failrec->in_validation);
7678
7679 ret = submit_dio_repair_bio(inode, bio, read_mode,
7680 failrec->this_mirror);
7681 if (ret) {
7682 free_io_failure(inode, failrec);
7683 bio_put(bio);
7684 }
7685
7686 return ret;
7687 }
7688
7689 struct btrfs_retry_complete {
7690 struct completion done;
7691 struct inode *inode;
7692 u64 start;
7693 int uptodate;
7694 };
7695
7696 static void btrfs_retry_endio_nocsum(struct bio *bio)
7697 {
7698 struct btrfs_retry_complete *done = bio->bi_private;
7699 struct bio_vec *bvec;
7700 int i;
7701
7702 if (bio->bi_error)
7703 goto end;
7704
7705 done->uptodate = 1;
7706 bio_for_each_segment_all(bvec, bio, i)
7707 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7708 end:
7709 complete(&done->done);
7710 bio_put(bio);
7711 }
7712
7713 static int __btrfs_correct_data_nocsum(struct inode *inode,
7714 struct btrfs_io_bio *io_bio)
7715 {
7716 struct bio_vec *bvec;
7717 struct btrfs_retry_complete done;
7718 u64 start;
7719 int i;
7720 int ret;
7721
7722 start = io_bio->logical;
7723 done.inode = inode;
7724
7725 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7726 try_again:
7727 done.uptodate = 0;
7728 done.start = start;
7729 init_completion(&done.done);
7730
7731 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7732 start + bvec->bv_len - 1,
7733 io_bio->mirror_num,
7734 btrfs_retry_endio_nocsum, &done);
7735 if (ret)
7736 return ret;
7737
7738 wait_for_completion(&done.done);
7739
7740 if (!done.uptodate) {
7741 /* We might have another mirror, so try again */
7742 goto try_again;
7743 }
7744
7745 start += bvec->bv_len;
7746 }
7747
7748 return 0;
7749 }
7750
7751 static void btrfs_retry_endio(struct bio *bio)
7752 {
7753 struct btrfs_retry_complete *done = bio->bi_private;
7754 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7755 struct bio_vec *bvec;
7756 int uptodate;
7757 int ret;
7758 int i;
7759
7760 if (bio->bi_error)
7761 goto end;
7762
7763 uptodate = 1;
7764 bio_for_each_segment_all(bvec, bio, i) {
7765 ret = __readpage_endio_check(done->inode, io_bio, i,
7766 bvec->bv_page, 0,
7767 done->start, bvec->bv_len);
7768 if (!ret)
7769 clean_io_failure(done->inode, done->start,
7770 bvec->bv_page, 0);
7771 else
7772 uptodate = 0;
7773 }
7774
7775 done->uptodate = uptodate;
7776 end:
7777 complete(&done->done);
7778 bio_put(bio);
7779 }
7780
7781 static int __btrfs_subio_endio_read(struct inode *inode,
7782 struct btrfs_io_bio *io_bio, int err)
7783 {
7784 struct bio_vec *bvec;
7785 struct btrfs_retry_complete done;
7786 u64 start;
7787 u64 offset = 0;
7788 int i;
7789 int ret;
7790
7791 err = 0;
7792 start = io_bio->logical;
7793 done.inode = inode;
7794
7795 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7796 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7797 0, start, bvec->bv_len);
7798 if (likely(!ret))
7799 goto next;
7800 try_again:
7801 done.uptodate = 0;
7802 done.start = start;
7803 init_completion(&done.done);
7804
7805 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7806 start + bvec->bv_len - 1,
7807 io_bio->mirror_num,
7808 btrfs_retry_endio, &done);
7809 if (ret) {
7810 err = ret;
7811 goto next;
7812 }
7813
7814 wait_for_completion(&done.done);
7815
7816 if (!done.uptodate) {
7817 /* We might have another mirror, so try again */
7818 goto try_again;
7819 }
7820 next:
7821 offset += bvec->bv_len;
7822 start += bvec->bv_len;
7823 }
7824
7825 return err;
7826 }
7827
7828 static int btrfs_subio_endio_read(struct inode *inode,
7829 struct btrfs_io_bio *io_bio, int err)
7830 {
7831 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7832
7833 if (skip_csum) {
7834 if (unlikely(err))
7835 return __btrfs_correct_data_nocsum(inode, io_bio);
7836 else
7837 return 0;
7838 } else {
7839 return __btrfs_subio_endio_read(inode, io_bio, err);
7840 }
7841 }
7842
7843 static void btrfs_endio_direct_read(struct bio *bio)
7844 {
7845 struct btrfs_dio_private *dip = bio->bi_private;
7846 struct inode *inode = dip->inode;
7847 struct bio *dio_bio;
7848 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7849 int err = bio->bi_error;
7850
7851 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7852 err = btrfs_subio_endio_read(inode, io_bio, err);
7853
7854 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7855 dip->logical_offset + dip->bytes - 1);
7856 dio_bio = dip->dio_bio;
7857
7858 kfree(dip);
7859
7860 dio_end_io(dio_bio, bio->bi_error);
7861
7862 if (io_bio->end_io)
7863 io_bio->end_io(io_bio, err);
7864 bio_put(bio);
7865 }
7866
7867 static void btrfs_endio_direct_write(struct bio *bio)
7868 {
7869 struct btrfs_dio_private *dip = bio->bi_private;
7870 struct inode *inode = dip->inode;
7871 struct btrfs_root *root = BTRFS_I(inode)->root;
7872 struct btrfs_ordered_extent *ordered = NULL;
7873 u64 ordered_offset = dip->logical_offset;
7874 u64 ordered_bytes = dip->bytes;
7875 struct bio *dio_bio;
7876 int ret;
7877
7878 again:
7879 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7880 &ordered_offset,
7881 ordered_bytes,
7882 !bio->bi_error);
7883 if (!ret)
7884 goto out_test;
7885
7886 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7887 finish_ordered_fn, NULL, NULL);
7888 btrfs_queue_work(root->fs_info->endio_write_workers,
7889 &ordered->work);
7890 out_test:
7891 /*
7892 * our bio might span multiple ordered extents. If we haven't
7893 * completed the accounting for the whole dio, go back and try again
7894 */
7895 if (ordered_offset < dip->logical_offset + dip->bytes) {
7896 ordered_bytes = dip->logical_offset + dip->bytes -
7897 ordered_offset;
7898 ordered = NULL;
7899 goto again;
7900 }
7901 dio_bio = dip->dio_bio;
7902
7903 kfree(dip);
7904
7905 dio_end_io(dio_bio, bio->bi_error);
7906 bio_put(bio);
7907 }
7908
7909 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7910 struct bio *bio, int mirror_num,
7911 unsigned long bio_flags, u64 offset)
7912 {
7913 int ret;
7914 struct btrfs_root *root = BTRFS_I(inode)->root;
7915 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7916 BUG_ON(ret); /* -ENOMEM */
7917 return 0;
7918 }
7919
7920 static void btrfs_end_dio_bio(struct bio *bio)
7921 {
7922 struct btrfs_dio_private *dip = bio->bi_private;
7923 int err = bio->bi_error;
7924
7925 if (err)
7926 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7927 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7928 btrfs_ino(dip->inode), bio->bi_rw,
7929 (unsigned long long)bio->bi_iter.bi_sector,
7930 bio->bi_iter.bi_size, err);
7931
7932 if (dip->subio_endio)
7933 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7934
7935 if (err) {
7936 dip->errors = 1;
7937
7938 /*
7939 * before atomic variable goto zero, we must make sure
7940 * dip->errors is perceived to be set.
7941 */
7942 smp_mb__before_atomic();
7943 }
7944
7945 /* if there are more bios still pending for this dio, just exit */
7946 if (!atomic_dec_and_test(&dip->pending_bios))
7947 goto out;
7948
7949 if (dip->errors) {
7950 bio_io_error(dip->orig_bio);
7951 } else {
7952 dip->dio_bio->bi_error = 0;
7953 bio_endio(dip->orig_bio);
7954 }
7955 out:
7956 bio_put(bio);
7957 }
7958
7959 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7960 u64 first_sector, gfp_t gfp_flags)
7961 {
7962 int nr_vecs = bio_get_nr_vecs(bdev);
7963 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7964 }
7965
7966 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7967 struct inode *inode,
7968 struct btrfs_dio_private *dip,
7969 struct bio *bio,
7970 u64 file_offset)
7971 {
7972 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7973 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7974 int ret;
7975
7976 /*
7977 * We load all the csum data we need when we submit
7978 * the first bio to reduce the csum tree search and
7979 * contention.
7980 */
7981 if (dip->logical_offset == file_offset) {
7982 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7983 file_offset);
7984 if (ret)
7985 return ret;
7986 }
7987
7988 if (bio == dip->orig_bio)
7989 return 0;
7990
7991 file_offset -= dip->logical_offset;
7992 file_offset >>= inode->i_sb->s_blocksize_bits;
7993 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7994
7995 return 0;
7996 }
7997
7998 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7999 int rw, u64 file_offset, int skip_sum,
8000 int async_submit)
8001 {
8002 struct btrfs_dio_private *dip = bio->bi_private;
8003 int write = rw & REQ_WRITE;
8004 struct btrfs_root *root = BTRFS_I(inode)->root;
8005 int ret;
8006
8007 if (async_submit)
8008 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8009
8010 bio_get(bio);
8011
8012 if (!write) {
8013 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8014 BTRFS_WQ_ENDIO_DATA);
8015 if (ret)
8016 goto err;
8017 }
8018
8019 if (skip_sum)
8020 goto map;
8021
8022 if (write && async_submit) {
8023 ret = btrfs_wq_submit_bio(root->fs_info,
8024 inode, rw, bio, 0, 0,
8025 file_offset,
8026 __btrfs_submit_bio_start_direct_io,
8027 __btrfs_submit_bio_done);
8028 goto err;
8029 } else if (write) {
8030 /*
8031 * If we aren't doing async submit, calculate the csum of the
8032 * bio now.
8033 */
8034 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8035 if (ret)
8036 goto err;
8037 } else {
8038 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8039 file_offset);
8040 if (ret)
8041 goto err;
8042 }
8043 map:
8044 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8045 err:
8046 bio_put(bio);
8047 return ret;
8048 }
8049
8050 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8051 int skip_sum)
8052 {
8053 struct inode *inode = dip->inode;
8054 struct btrfs_root *root = BTRFS_I(inode)->root;
8055 struct bio *bio;
8056 struct bio *orig_bio = dip->orig_bio;
8057 struct bio_vec *bvec = orig_bio->bi_io_vec;
8058 u64 start_sector = orig_bio->bi_iter.bi_sector;
8059 u64 file_offset = dip->logical_offset;
8060 u64 submit_len = 0;
8061 u64 map_length;
8062 int nr_pages = 0;
8063 int ret;
8064 int async_submit = 0;
8065
8066 map_length = orig_bio->bi_iter.bi_size;
8067 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8068 &map_length, NULL, 0);
8069 if (ret)
8070 return -EIO;
8071
8072 if (map_length >= orig_bio->bi_iter.bi_size) {
8073 bio = orig_bio;
8074 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8075 goto submit;
8076 }
8077
8078 /* async crcs make it difficult to collect full stripe writes. */
8079 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8080 async_submit = 0;
8081 else
8082 async_submit = 1;
8083
8084 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8085 if (!bio)
8086 return -ENOMEM;
8087
8088 bio->bi_private = dip;
8089 bio->bi_end_io = btrfs_end_dio_bio;
8090 btrfs_io_bio(bio)->logical = file_offset;
8091 atomic_inc(&dip->pending_bios);
8092
8093 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8094 if (map_length < submit_len + bvec->bv_len ||
8095 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8096 bvec->bv_offset) < bvec->bv_len) {
8097 /*
8098 * inc the count before we submit the bio so
8099 * we know the end IO handler won't happen before
8100 * we inc the count. Otherwise, the dip might get freed
8101 * before we're done setting it up
8102 */
8103 atomic_inc(&dip->pending_bios);
8104 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8105 file_offset, skip_sum,
8106 async_submit);
8107 if (ret) {
8108 bio_put(bio);
8109 atomic_dec(&dip->pending_bios);
8110 goto out_err;
8111 }
8112
8113 start_sector += submit_len >> 9;
8114 file_offset += submit_len;
8115
8116 submit_len = 0;
8117 nr_pages = 0;
8118
8119 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8120 start_sector, GFP_NOFS);
8121 if (!bio)
8122 goto out_err;
8123 bio->bi_private = dip;
8124 bio->bi_end_io = btrfs_end_dio_bio;
8125 btrfs_io_bio(bio)->logical = file_offset;
8126
8127 map_length = orig_bio->bi_iter.bi_size;
8128 ret = btrfs_map_block(root->fs_info, rw,
8129 start_sector << 9,
8130 &map_length, NULL, 0);
8131 if (ret) {
8132 bio_put(bio);
8133 goto out_err;
8134 }
8135 } else {
8136 submit_len += bvec->bv_len;
8137 nr_pages++;
8138 bvec++;
8139 }
8140 }
8141
8142 submit:
8143 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8144 async_submit);
8145 if (!ret)
8146 return 0;
8147
8148 bio_put(bio);
8149 out_err:
8150 dip->errors = 1;
8151 /*
8152 * before atomic variable goto zero, we must
8153 * make sure dip->errors is perceived to be set.
8154 */
8155 smp_mb__before_atomic();
8156 if (atomic_dec_and_test(&dip->pending_bios))
8157 bio_io_error(dip->orig_bio);
8158
8159 /* bio_end_io() will handle error, so we needn't return it */
8160 return 0;
8161 }
8162
8163 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8164 struct inode *inode, loff_t file_offset)
8165 {
8166 struct btrfs_dio_private *dip = NULL;
8167 struct bio *io_bio = NULL;
8168 struct btrfs_io_bio *btrfs_bio;
8169 int skip_sum;
8170 int write = rw & REQ_WRITE;
8171 int ret = 0;
8172
8173 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8174
8175 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8176 if (!io_bio) {
8177 ret = -ENOMEM;
8178 goto free_ordered;
8179 }
8180
8181 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8182 if (!dip) {
8183 ret = -ENOMEM;
8184 goto free_ordered;
8185 }
8186
8187 dip->private = dio_bio->bi_private;
8188 dip->inode = inode;
8189 dip->logical_offset = file_offset;
8190 dip->bytes = dio_bio->bi_iter.bi_size;
8191 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8192 io_bio->bi_private = dip;
8193 dip->orig_bio = io_bio;
8194 dip->dio_bio = dio_bio;
8195 atomic_set(&dip->pending_bios, 0);
8196 btrfs_bio = btrfs_io_bio(io_bio);
8197 btrfs_bio->logical = file_offset;
8198
8199 if (write) {
8200 io_bio->bi_end_io = btrfs_endio_direct_write;
8201 } else {
8202 io_bio->bi_end_io = btrfs_endio_direct_read;
8203 dip->subio_endio = btrfs_subio_endio_read;
8204 }
8205
8206 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8207 if (!ret)
8208 return;
8209
8210 if (btrfs_bio->end_io)
8211 btrfs_bio->end_io(btrfs_bio, ret);
8212
8213 free_ordered:
8214 /*
8215 * If we arrived here it means either we failed to submit the dip
8216 * or we either failed to clone the dio_bio or failed to allocate the
8217 * dip. If we cloned the dio_bio and allocated the dip, we can just
8218 * call bio_endio against our io_bio so that we get proper resource
8219 * cleanup if we fail to submit the dip, otherwise, we must do the
8220 * same as btrfs_endio_direct_[write|read] because we can't call these
8221 * callbacks - they require an allocated dip and a clone of dio_bio.
8222 */
8223 if (io_bio && dip) {
8224 io_bio->bi_error = -EIO;
8225 bio_endio(io_bio);
8226 /*
8227 * The end io callbacks free our dip, do the final put on io_bio
8228 * and all the cleanup and final put for dio_bio (through
8229 * dio_end_io()).
8230 */
8231 dip = NULL;
8232 io_bio = NULL;
8233 } else {
8234 if (write) {
8235 struct btrfs_ordered_extent *ordered;
8236
8237 ordered = btrfs_lookup_ordered_extent(inode,
8238 file_offset);
8239 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8240 /*
8241 * Decrements our ref on the ordered extent and removes
8242 * the ordered extent from the inode's ordered tree,
8243 * doing all the proper resource cleanup such as for the
8244 * reserved space and waking up any waiters for this
8245 * ordered extent (through btrfs_remove_ordered_extent).
8246 */
8247 btrfs_finish_ordered_io(ordered);
8248 } else {
8249 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8250 file_offset + dio_bio->bi_iter.bi_size - 1);
8251 }
8252 dio_bio->bi_error = -EIO;
8253 /*
8254 * Releases and cleans up our dio_bio, no need to bio_put()
8255 * nor bio_endio()/bio_io_error() against dio_bio.
8256 */
8257 dio_end_io(dio_bio, ret);
8258 }
8259 if (io_bio)
8260 bio_put(io_bio);
8261 kfree(dip);
8262 }
8263
8264 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8265 const struct iov_iter *iter, loff_t offset)
8266 {
8267 int seg;
8268 int i;
8269 unsigned blocksize_mask = root->sectorsize - 1;
8270 ssize_t retval = -EINVAL;
8271
8272 if (offset & blocksize_mask)
8273 goto out;
8274
8275 if (iov_iter_alignment(iter) & blocksize_mask)
8276 goto out;
8277
8278 /* If this is a write we don't need to check anymore */
8279 if (iov_iter_rw(iter) == WRITE)
8280 return 0;
8281 /*
8282 * Check to make sure we don't have duplicate iov_base's in this
8283 * iovec, if so return EINVAL, otherwise we'll get csum errors
8284 * when reading back.
8285 */
8286 for (seg = 0; seg < iter->nr_segs; seg++) {
8287 for (i = seg + 1; i < iter->nr_segs; i++) {
8288 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8289 goto out;
8290 }
8291 }
8292 retval = 0;
8293 out:
8294 return retval;
8295 }
8296
8297 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8298 loff_t offset)
8299 {
8300 struct file *file = iocb->ki_filp;
8301 struct inode *inode = file->f_mapping->host;
8302 u64 outstanding_extents = 0;
8303 size_t count = 0;
8304 int flags = 0;
8305 bool wakeup = true;
8306 bool relock = false;
8307 ssize_t ret;
8308
8309 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8310 return 0;
8311
8312 inode_dio_begin(inode);
8313 smp_mb__after_atomic();
8314
8315 /*
8316 * The generic stuff only does filemap_write_and_wait_range, which
8317 * isn't enough if we've written compressed pages to this area, so
8318 * we need to flush the dirty pages again to make absolutely sure
8319 * that any outstanding dirty pages are on disk.
8320 */
8321 count = iov_iter_count(iter);
8322 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8323 &BTRFS_I(inode)->runtime_flags))
8324 filemap_fdatawrite_range(inode->i_mapping, offset,
8325 offset + count - 1);
8326
8327 if (iov_iter_rw(iter) == WRITE) {
8328 /*
8329 * If the write DIO is beyond the EOF, we need update
8330 * the isize, but it is protected by i_mutex. So we can
8331 * not unlock the i_mutex at this case.
8332 */
8333 if (offset + count <= inode->i_size) {
8334 mutex_unlock(&inode->i_mutex);
8335 relock = true;
8336 }
8337 ret = btrfs_delalloc_reserve_space(inode, count);
8338 if (ret)
8339 goto out;
8340 outstanding_extents = div64_u64(count +
8341 BTRFS_MAX_EXTENT_SIZE - 1,
8342 BTRFS_MAX_EXTENT_SIZE);
8343
8344 /*
8345 * We need to know how many extents we reserved so that we can
8346 * do the accounting properly if we go over the number we
8347 * originally calculated. Abuse current->journal_info for this.
8348 */
8349 current->journal_info = &outstanding_extents;
8350 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8351 &BTRFS_I(inode)->runtime_flags)) {
8352 inode_dio_end(inode);
8353 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8354 wakeup = false;
8355 }
8356
8357 ret = __blockdev_direct_IO(iocb, inode,
8358 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8359 iter, offset, btrfs_get_blocks_direct, NULL,
8360 btrfs_submit_direct, flags);
8361 if (iov_iter_rw(iter) == WRITE) {
8362 current->journal_info = NULL;
8363 if (ret < 0 && ret != -EIOCBQUEUED) {
8364 /*
8365 * If the error comes from submitting stage,
8366 * btrfs_get_blocsk_direct() has free'd data space,
8367 * and metadata space will be handled by
8368 * finish_ordered_fn, don't do that again to make
8369 * sure bytes_may_use is correct.
8370 */
8371 if (!test_and_clear_bit(BTRFS_INODE_DIO_READY,
8372 &BTRFS_I(inode)->runtime_flags))
8373 btrfs_delalloc_release_space(inode, count);
8374 } else if (ret >= 0 && (size_t)ret < count)
8375 btrfs_delalloc_release_space(inode,
8376 count - (size_t)ret);
8377 }
8378 out:
8379 if (wakeup)
8380 inode_dio_end(inode);
8381 if (relock)
8382 mutex_lock(&inode->i_mutex);
8383
8384 return ret;
8385 }
8386
8387 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8388
8389 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8390 __u64 start, __u64 len)
8391 {
8392 int ret;
8393
8394 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8395 if (ret)
8396 return ret;
8397
8398 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8399 }
8400
8401 int btrfs_readpage(struct file *file, struct page *page)
8402 {
8403 struct extent_io_tree *tree;
8404 tree = &BTRFS_I(page->mapping->host)->io_tree;
8405 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8406 }
8407
8408 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8409 {
8410 struct extent_io_tree *tree;
8411
8412
8413 if (current->flags & PF_MEMALLOC) {
8414 redirty_page_for_writepage(wbc, page);
8415 unlock_page(page);
8416 return 0;
8417 }
8418 tree = &BTRFS_I(page->mapping->host)->io_tree;
8419 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8420 }
8421
8422 static int btrfs_writepages(struct address_space *mapping,
8423 struct writeback_control *wbc)
8424 {
8425 struct extent_io_tree *tree;
8426
8427 tree = &BTRFS_I(mapping->host)->io_tree;
8428 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8429 }
8430
8431 static int
8432 btrfs_readpages(struct file *file, struct address_space *mapping,
8433 struct list_head *pages, unsigned nr_pages)
8434 {
8435 struct extent_io_tree *tree;
8436 tree = &BTRFS_I(mapping->host)->io_tree;
8437 return extent_readpages(tree, mapping, pages, nr_pages,
8438 btrfs_get_extent);
8439 }
8440 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8441 {
8442 struct extent_io_tree *tree;
8443 struct extent_map_tree *map;
8444 int ret;
8445
8446 tree = &BTRFS_I(page->mapping->host)->io_tree;
8447 map = &BTRFS_I(page->mapping->host)->extent_tree;
8448 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8449 if (ret == 1) {
8450 ClearPagePrivate(page);
8451 set_page_private(page, 0);
8452 page_cache_release(page);
8453 }
8454 return ret;
8455 }
8456
8457 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8458 {
8459 if (PageWriteback(page) || PageDirty(page))
8460 return 0;
8461 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8462 }
8463
8464 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8465 unsigned int length)
8466 {
8467 struct inode *inode = page->mapping->host;
8468 struct extent_io_tree *tree;
8469 struct btrfs_ordered_extent *ordered;
8470 struct extent_state *cached_state = NULL;
8471 u64 page_start = page_offset(page);
8472 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8473 int inode_evicting = inode->i_state & I_FREEING;
8474
8475 /*
8476 * we have the page locked, so new writeback can't start,
8477 * and the dirty bit won't be cleared while we are here.
8478 *
8479 * Wait for IO on this page so that we can safely clear
8480 * the PagePrivate2 bit and do ordered accounting
8481 */
8482 wait_on_page_writeback(page);
8483
8484 tree = &BTRFS_I(inode)->io_tree;
8485 if (offset) {
8486 btrfs_releasepage(page, GFP_NOFS);
8487 return;
8488 }
8489
8490 if (!inode_evicting)
8491 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8492 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8493 if (ordered) {
8494 /*
8495 * IO on this page will never be started, so we need
8496 * to account for any ordered extents now
8497 */
8498 if (!inode_evicting)
8499 clear_extent_bit(tree, page_start, page_end,
8500 EXTENT_DIRTY | EXTENT_DELALLOC |
8501 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8502 EXTENT_DEFRAG, 1, 0, &cached_state,
8503 GFP_NOFS);
8504 /*
8505 * whoever cleared the private bit is responsible
8506 * for the finish_ordered_io
8507 */
8508 if (TestClearPagePrivate2(page)) {
8509 struct btrfs_ordered_inode_tree *tree;
8510 u64 new_len;
8511
8512 tree = &BTRFS_I(inode)->ordered_tree;
8513
8514 spin_lock_irq(&tree->lock);
8515 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8516 new_len = page_start - ordered->file_offset;
8517 if (new_len < ordered->truncated_len)
8518 ordered->truncated_len = new_len;
8519 spin_unlock_irq(&tree->lock);
8520
8521 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8522 page_start,
8523 PAGE_CACHE_SIZE, 1))
8524 btrfs_finish_ordered_io(ordered);
8525 }
8526 btrfs_put_ordered_extent(ordered);
8527 if (!inode_evicting) {
8528 cached_state = NULL;
8529 lock_extent_bits(tree, page_start, page_end, 0,
8530 &cached_state);
8531 }
8532 }
8533
8534 if (!inode_evicting) {
8535 clear_extent_bit(tree, page_start, page_end,
8536 EXTENT_LOCKED | EXTENT_DIRTY |
8537 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8538 EXTENT_DEFRAG, 1, 1,
8539 &cached_state, GFP_NOFS);
8540
8541 __btrfs_releasepage(page, GFP_NOFS);
8542 }
8543
8544 ClearPageChecked(page);
8545 if (PagePrivate(page)) {
8546 ClearPagePrivate(page);
8547 set_page_private(page, 0);
8548 page_cache_release(page);
8549 }
8550 }
8551
8552 /*
8553 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8554 * called from a page fault handler when a page is first dirtied. Hence we must
8555 * be careful to check for EOF conditions here. We set the page up correctly
8556 * for a written page which means we get ENOSPC checking when writing into
8557 * holes and correct delalloc and unwritten extent mapping on filesystems that
8558 * support these features.
8559 *
8560 * We are not allowed to take the i_mutex here so we have to play games to
8561 * protect against truncate races as the page could now be beyond EOF. Because
8562 * vmtruncate() writes the inode size before removing pages, once we have the
8563 * page lock we can determine safely if the page is beyond EOF. If it is not
8564 * beyond EOF, then the page is guaranteed safe against truncation until we
8565 * unlock the page.
8566 */
8567 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8568 {
8569 struct page *page = vmf->page;
8570 struct inode *inode = file_inode(vma->vm_file);
8571 struct btrfs_root *root = BTRFS_I(inode)->root;
8572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8573 struct btrfs_ordered_extent *ordered;
8574 struct extent_state *cached_state = NULL;
8575 char *kaddr;
8576 unsigned long zero_start;
8577 loff_t size;
8578 int ret;
8579 int reserved = 0;
8580 u64 page_start;
8581 u64 page_end;
8582
8583 sb_start_pagefault(inode->i_sb);
8584 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8585 if (!ret) {
8586 ret = file_update_time(vma->vm_file);
8587 reserved = 1;
8588 }
8589 if (ret) {
8590 if (ret == -ENOMEM)
8591 ret = VM_FAULT_OOM;
8592 else /* -ENOSPC, -EIO, etc */
8593 ret = VM_FAULT_SIGBUS;
8594 if (reserved)
8595 goto out;
8596 goto out_noreserve;
8597 }
8598
8599 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8600 again:
8601 lock_page(page);
8602 size = i_size_read(inode);
8603 page_start = page_offset(page);
8604 page_end = page_start + PAGE_CACHE_SIZE - 1;
8605
8606 if ((page->mapping != inode->i_mapping) ||
8607 (page_start >= size)) {
8608 /* page got truncated out from underneath us */
8609 goto out_unlock;
8610 }
8611 wait_on_page_writeback(page);
8612
8613 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8614 set_page_extent_mapped(page);
8615
8616 /*
8617 * we can't set the delalloc bits if there are pending ordered
8618 * extents. Drop our locks and wait for them to finish
8619 */
8620 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8621 if (ordered) {
8622 unlock_extent_cached(io_tree, page_start, page_end,
8623 &cached_state, GFP_NOFS);
8624 unlock_page(page);
8625 btrfs_start_ordered_extent(inode, ordered, 1);
8626 btrfs_put_ordered_extent(ordered);
8627 goto again;
8628 }
8629
8630 /*
8631 * XXX - page_mkwrite gets called every time the page is dirtied, even
8632 * if it was already dirty, so for space accounting reasons we need to
8633 * clear any delalloc bits for the range we are fixing to save. There
8634 * is probably a better way to do this, but for now keep consistent with
8635 * prepare_pages in the normal write path.
8636 */
8637 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8638 EXTENT_DIRTY | EXTENT_DELALLOC |
8639 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8640 0, 0, &cached_state, GFP_NOFS);
8641
8642 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8643 &cached_state);
8644 if (ret) {
8645 unlock_extent_cached(io_tree, page_start, page_end,
8646 &cached_state, GFP_NOFS);
8647 ret = VM_FAULT_SIGBUS;
8648 goto out_unlock;
8649 }
8650 ret = 0;
8651
8652 /* page is wholly or partially inside EOF */
8653 if (page_start + PAGE_CACHE_SIZE > size)
8654 zero_start = size & ~PAGE_CACHE_MASK;
8655 else
8656 zero_start = PAGE_CACHE_SIZE;
8657
8658 if (zero_start != PAGE_CACHE_SIZE) {
8659 kaddr = kmap(page);
8660 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8661 flush_dcache_page(page);
8662 kunmap(page);
8663 }
8664 ClearPageChecked(page);
8665 set_page_dirty(page);
8666 SetPageUptodate(page);
8667
8668 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8669 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8670 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8671
8672 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8673
8674 out_unlock:
8675 if (!ret) {
8676 sb_end_pagefault(inode->i_sb);
8677 return VM_FAULT_LOCKED;
8678 }
8679 unlock_page(page);
8680 out:
8681 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8682 out_noreserve:
8683 sb_end_pagefault(inode->i_sb);
8684 return ret;
8685 }
8686
8687 static int btrfs_truncate(struct inode *inode)
8688 {
8689 struct btrfs_root *root = BTRFS_I(inode)->root;
8690 struct btrfs_block_rsv *rsv;
8691 int ret = 0;
8692 int err = 0;
8693 struct btrfs_trans_handle *trans;
8694 u64 mask = root->sectorsize - 1;
8695 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8696
8697 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8698 (u64)-1);
8699 if (ret)
8700 return ret;
8701
8702 /*
8703 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8704 * 3 things going on here
8705 *
8706 * 1) We need to reserve space for our orphan item and the space to
8707 * delete our orphan item. Lord knows we don't want to have a dangling
8708 * orphan item because we didn't reserve space to remove it.
8709 *
8710 * 2) We need to reserve space to update our inode.
8711 *
8712 * 3) We need to have something to cache all the space that is going to
8713 * be free'd up by the truncate operation, but also have some slack
8714 * space reserved in case it uses space during the truncate (thank you
8715 * very much snapshotting).
8716 *
8717 * And we need these to all be seperate. The fact is we can use alot of
8718 * space doing the truncate, and we have no earthly idea how much space
8719 * we will use, so we need the truncate reservation to be seperate so it
8720 * doesn't end up using space reserved for updating the inode or
8721 * removing the orphan item. We also need to be able to stop the
8722 * transaction and start a new one, which means we need to be able to
8723 * update the inode several times, and we have no idea of knowing how
8724 * many times that will be, so we can't just reserve 1 item for the
8725 * entirety of the opration, so that has to be done seperately as well.
8726 * Then there is the orphan item, which does indeed need to be held on
8727 * to for the whole operation, and we need nobody to touch this reserved
8728 * space except the orphan code.
8729 *
8730 * So that leaves us with
8731 *
8732 * 1) root->orphan_block_rsv - for the orphan deletion.
8733 * 2) rsv - for the truncate reservation, which we will steal from the
8734 * transaction reservation.
8735 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8736 * updating the inode.
8737 */
8738 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8739 if (!rsv)
8740 return -ENOMEM;
8741 rsv->size = min_size;
8742 rsv->failfast = 1;
8743
8744 /*
8745 * 1 for the truncate slack space
8746 * 1 for updating the inode.
8747 */
8748 trans = btrfs_start_transaction(root, 2);
8749 if (IS_ERR(trans)) {
8750 err = PTR_ERR(trans);
8751 goto out;
8752 }
8753
8754 /* Migrate the slack space for the truncate to our reserve */
8755 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8756 min_size);
8757 BUG_ON(ret);
8758
8759 /*
8760 * So if we truncate and then write and fsync we normally would just
8761 * write the extents that changed, which is a problem if we need to
8762 * first truncate that entire inode. So set this flag so we write out
8763 * all of the extents in the inode to the sync log so we're completely
8764 * safe.
8765 */
8766 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8767 trans->block_rsv = rsv;
8768
8769 while (1) {
8770 ret = btrfs_truncate_inode_items(trans, root, inode,
8771 inode->i_size,
8772 BTRFS_EXTENT_DATA_KEY);
8773 if (ret != -ENOSPC && ret != -EAGAIN) {
8774 err = ret;
8775 break;
8776 }
8777
8778 trans->block_rsv = &root->fs_info->trans_block_rsv;
8779 ret = btrfs_update_inode(trans, root, inode);
8780 if (ret) {
8781 err = ret;
8782 break;
8783 }
8784
8785 btrfs_end_transaction(trans, root);
8786 btrfs_btree_balance_dirty(root);
8787
8788 trans = btrfs_start_transaction(root, 2);
8789 if (IS_ERR(trans)) {
8790 ret = err = PTR_ERR(trans);
8791 trans = NULL;
8792 break;
8793 }
8794
8795 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8796 rsv, min_size);
8797 BUG_ON(ret); /* shouldn't happen */
8798 trans->block_rsv = rsv;
8799 }
8800
8801 if (ret == 0 && inode->i_nlink > 0) {
8802 trans->block_rsv = root->orphan_block_rsv;
8803 ret = btrfs_orphan_del(trans, inode);
8804 if (ret)
8805 err = ret;
8806 }
8807
8808 if (trans) {
8809 trans->block_rsv = &root->fs_info->trans_block_rsv;
8810 ret = btrfs_update_inode(trans, root, inode);
8811 if (ret && !err)
8812 err = ret;
8813
8814 ret = btrfs_end_transaction(trans, root);
8815 btrfs_btree_balance_dirty(root);
8816 }
8817
8818 out:
8819 btrfs_free_block_rsv(root, rsv);
8820
8821 if (ret && !err)
8822 err = ret;
8823
8824 return err;
8825 }
8826
8827 /*
8828 * create a new subvolume directory/inode (helper for the ioctl).
8829 */
8830 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8831 struct btrfs_root *new_root,
8832 struct btrfs_root *parent_root,
8833 u64 new_dirid)
8834 {
8835 struct inode *inode;
8836 int err;
8837 u64 index = 0;
8838
8839 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8840 new_dirid, new_dirid,
8841 S_IFDIR | (~current_umask() & S_IRWXUGO),
8842 &index);
8843 if (IS_ERR(inode))
8844 return PTR_ERR(inode);
8845 inode->i_op = &btrfs_dir_inode_operations;
8846 inode->i_fop = &btrfs_dir_file_operations;
8847
8848 set_nlink(inode, 1);
8849 btrfs_i_size_write(inode, 0);
8850 unlock_new_inode(inode);
8851
8852 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8853 if (err)
8854 btrfs_err(new_root->fs_info,
8855 "error inheriting subvolume %llu properties: %d",
8856 new_root->root_key.objectid, err);
8857
8858 err = btrfs_update_inode(trans, new_root, inode);
8859
8860 iput(inode);
8861 return err;
8862 }
8863
8864 struct inode *btrfs_alloc_inode(struct super_block *sb)
8865 {
8866 struct btrfs_inode *ei;
8867 struct inode *inode;
8868
8869 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8870 if (!ei)
8871 return NULL;
8872
8873 ei->root = NULL;
8874 ei->generation = 0;
8875 ei->last_trans = 0;
8876 ei->last_sub_trans = 0;
8877 ei->logged_trans = 0;
8878 ei->delalloc_bytes = 0;
8879 ei->defrag_bytes = 0;
8880 ei->disk_i_size = 0;
8881 ei->flags = 0;
8882 ei->csum_bytes = 0;
8883 ei->index_cnt = (u64)-1;
8884 ei->dir_index = 0;
8885 ei->last_unlink_trans = 0;
8886 ei->last_log_commit = 0;
8887
8888 spin_lock_init(&ei->lock);
8889 ei->outstanding_extents = 0;
8890 ei->reserved_extents = 0;
8891
8892 ei->runtime_flags = 0;
8893 ei->force_compress = BTRFS_COMPRESS_NONE;
8894
8895 ei->delayed_node = NULL;
8896
8897 ei->i_otime.tv_sec = 0;
8898 ei->i_otime.tv_nsec = 0;
8899
8900 inode = &ei->vfs_inode;
8901 extent_map_tree_init(&ei->extent_tree);
8902 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8903 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8904 ei->io_tree.track_uptodate = 1;
8905 ei->io_failure_tree.track_uptodate = 1;
8906 atomic_set(&ei->sync_writers, 0);
8907 mutex_init(&ei->log_mutex);
8908 mutex_init(&ei->delalloc_mutex);
8909 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8910 INIT_LIST_HEAD(&ei->delalloc_inodes);
8911 RB_CLEAR_NODE(&ei->rb_node);
8912
8913 return inode;
8914 }
8915
8916 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8917 void btrfs_test_destroy_inode(struct inode *inode)
8918 {
8919 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8920 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8921 }
8922 #endif
8923
8924 static void btrfs_i_callback(struct rcu_head *head)
8925 {
8926 struct inode *inode = container_of(head, struct inode, i_rcu);
8927 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8928 }
8929
8930 void btrfs_destroy_inode(struct inode *inode)
8931 {
8932 struct btrfs_ordered_extent *ordered;
8933 struct btrfs_root *root = BTRFS_I(inode)->root;
8934
8935 WARN_ON(!hlist_empty(&inode->i_dentry));
8936 WARN_ON(inode->i_data.nrpages);
8937 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8938 WARN_ON(BTRFS_I(inode)->reserved_extents);
8939 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8940 WARN_ON(BTRFS_I(inode)->csum_bytes);
8941 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8942
8943 /*
8944 * This can happen where we create an inode, but somebody else also
8945 * created the same inode and we need to destroy the one we already
8946 * created.
8947 */
8948 if (!root)
8949 goto free;
8950
8951 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8952 &BTRFS_I(inode)->runtime_flags)) {
8953 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8954 btrfs_ino(inode));
8955 atomic_dec(&root->orphan_inodes);
8956 }
8957
8958 while (1) {
8959 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8960 if (!ordered)
8961 break;
8962 else {
8963 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8964 ordered->file_offset, ordered->len);
8965 btrfs_remove_ordered_extent(inode, ordered);
8966 btrfs_put_ordered_extent(ordered);
8967 btrfs_put_ordered_extent(ordered);
8968 }
8969 }
8970 inode_tree_del(inode);
8971 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8972 free:
8973 call_rcu(&inode->i_rcu, btrfs_i_callback);
8974 }
8975
8976 int btrfs_drop_inode(struct inode *inode)
8977 {
8978 struct btrfs_root *root = BTRFS_I(inode)->root;
8979
8980 if (root == NULL)
8981 return 1;
8982
8983 /* the snap/subvol tree is on deleting */
8984 if (btrfs_root_refs(&root->root_item) == 0)
8985 return 1;
8986 else
8987 return generic_drop_inode(inode);
8988 }
8989
8990 static void init_once(void *foo)
8991 {
8992 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8993
8994 inode_init_once(&ei->vfs_inode);
8995 }
8996
8997 void btrfs_destroy_cachep(void)
8998 {
8999 /*
9000 * Make sure all delayed rcu free inodes are flushed before we
9001 * destroy cache.
9002 */
9003 rcu_barrier();
9004 if (btrfs_inode_cachep)
9005 kmem_cache_destroy(btrfs_inode_cachep);
9006 if (btrfs_trans_handle_cachep)
9007 kmem_cache_destroy(btrfs_trans_handle_cachep);
9008 if (btrfs_transaction_cachep)
9009 kmem_cache_destroy(btrfs_transaction_cachep);
9010 if (btrfs_path_cachep)
9011 kmem_cache_destroy(btrfs_path_cachep);
9012 if (btrfs_free_space_cachep)
9013 kmem_cache_destroy(btrfs_free_space_cachep);
9014 if (btrfs_delalloc_work_cachep)
9015 kmem_cache_destroy(btrfs_delalloc_work_cachep);
9016 }
9017
9018 int btrfs_init_cachep(void)
9019 {
9020 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9021 sizeof(struct btrfs_inode), 0,
9022 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9023 if (!btrfs_inode_cachep)
9024 goto fail;
9025
9026 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9027 sizeof(struct btrfs_trans_handle), 0,
9028 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9029 if (!btrfs_trans_handle_cachep)
9030 goto fail;
9031
9032 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9033 sizeof(struct btrfs_transaction), 0,
9034 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9035 if (!btrfs_transaction_cachep)
9036 goto fail;
9037
9038 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9039 sizeof(struct btrfs_path), 0,
9040 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9041 if (!btrfs_path_cachep)
9042 goto fail;
9043
9044 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9045 sizeof(struct btrfs_free_space), 0,
9046 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9047 if (!btrfs_free_space_cachep)
9048 goto fail;
9049
9050 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9051 sizeof(struct btrfs_delalloc_work), 0,
9052 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9053 NULL);
9054 if (!btrfs_delalloc_work_cachep)
9055 goto fail;
9056
9057 return 0;
9058 fail:
9059 btrfs_destroy_cachep();
9060 return -ENOMEM;
9061 }
9062
9063 static int btrfs_getattr(struct vfsmount *mnt,
9064 struct dentry *dentry, struct kstat *stat)
9065 {
9066 u64 delalloc_bytes;
9067 struct inode *inode = d_inode(dentry);
9068 u32 blocksize = inode->i_sb->s_blocksize;
9069
9070 generic_fillattr(inode, stat);
9071 stat->dev = BTRFS_I(inode)->root->anon_dev;
9072 stat->blksize = PAGE_CACHE_SIZE;
9073
9074 spin_lock(&BTRFS_I(inode)->lock);
9075 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9076 spin_unlock(&BTRFS_I(inode)->lock);
9077 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9078 ALIGN(delalloc_bytes, blocksize)) >> 9;
9079 return 0;
9080 }
9081
9082 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9083 struct inode *new_dir, struct dentry *new_dentry)
9084 {
9085 struct btrfs_trans_handle *trans;
9086 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9087 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9088 struct inode *new_inode = d_inode(new_dentry);
9089 struct inode *old_inode = d_inode(old_dentry);
9090 struct timespec ctime = CURRENT_TIME;
9091 u64 index = 0;
9092 u64 root_objectid;
9093 int ret;
9094 u64 old_ino = btrfs_ino(old_inode);
9095
9096 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9097 return -EPERM;
9098
9099 /* we only allow rename subvolume link between subvolumes */
9100 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9101 return -EXDEV;
9102
9103 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9104 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9105 return -ENOTEMPTY;
9106
9107 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9108 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9109 return -ENOTEMPTY;
9110
9111
9112 /* check for collisions, even if the name isn't there */
9113 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9114 new_dentry->d_name.name,
9115 new_dentry->d_name.len);
9116
9117 if (ret) {
9118 if (ret == -EEXIST) {
9119 /* we shouldn't get
9120 * eexist without a new_inode */
9121 if (WARN_ON(!new_inode)) {
9122 return ret;
9123 }
9124 } else {
9125 /* maybe -EOVERFLOW */
9126 return ret;
9127 }
9128 }
9129 ret = 0;
9130
9131 /*
9132 * we're using rename to replace one file with another. Start IO on it
9133 * now so we don't add too much work to the end of the transaction
9134 */
9135 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9136 filemap_flush(old_inode->i_mapping);
9137
9138 /* close the racy window with snapshot create/destroy ioctl */
9139 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9140 down_read(&root->fs_info->subvol_sem);
9141 /*
9142 * We want to reserve the absolute worst case amount of items. So if
9143 * both inodes are subvols and we need to unlink them then that would
9144 * require 4 item modifications, but if they are both normal inodes it
9145 * would require 5 item modifications, so we'll assume their normal
9146 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9147 * should cover the worst case number of items we'll modify.
9148 */
9149 trans = btrfs_start_transaction(root, 11);
9150 if (IS_ERR(trans)) {
9151 ret = PTR_ERR(trans);
9152 goto out_notrans;
9153 }
9154
9155 if (dest != root)
9156 btrfs_record_root_in_trans(trans, dest);
9157
9158 ret = btrfs_set_inode_index(new_dir, &index);
9159 if (ret)
9160 goto out_fail;
9161
9162 BTRFS_I(old_inode)->dir_index = 0ULL;
9163 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9164 /* force full log commit if subvolume involved. */
9165 btrfs_set_log_full_commit(root->fs_info, trans);
9166 } else {
9167 ret = btrfs_insert_inode_ref(trans, dest,
9168 new_dentry->d_name.name,
9169 new_dentry->d_name.len,
9170 old_ino,
9171 btrfs_ino(new_dir), index);
9172 if (ret)
9173 goto out_fail;
9174 /*
9175 * this is an ugly little race, but the rename is required
9176 * to make sure that if we crash, the inode is either at the
9177 * old name or the new one. pinning the log transaction lets
9178 * us make sure we don't allow a log commit to come in after
9179 * we unlink the name but before we add the new name back in.
9180 */
9181 btrfs_pin_log_trans(root);
9182 }
9183
9184 inode_inc_iversion(old_dir);
9185 inode_inc_iversion(new_dir);
9186 inode_inc_iversion(old_inode);
9187 old_dir->i_ctime = old_dir->i_mtime = ctime;
9188 new_dir->i_ctime = new_dir->i_mtime = ctime;
9189 old_inode->i_ctime = ctime;
9190
9191 if (old_dentry->d_parent != new_dentry->d_parent)
9192 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9193
9194 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9195 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9196 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9197 old_dentry->d_name.name,
9198 old_dentry->d_name.len);
9199 } else {
9200 ret = __btrfs_unlink_inode(trans, root, old_dir,
9201 d_inode(old_dentry),
9202 old_dentry->d_name.name,
9203 old_dentry->d_name.len);
9204 if (!ret)
9205 ret = btrfs_update_inode(trans, root, old_inode);
9206 }
9207 if (ret) {
9208 btrfs_abort_transaction(trans, root, ret);
9209 goto out_fail;
9210 }
9211
9212 if (new_inode) {
9213 inode_inc_iversion(new_inode);
9214 new_inode->i_ctime = CURRENT_TIME;
9215 if (unlikely(btrfs_ino(new_inode) ==
9216 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9217 root_objectid = BTRFS_I(new_inode)->location.objectid;
9218 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9219 root_objectid,
9220 new_dentry->d_name.name,
9221 new_dentry->d_name.len);
9222 BUG_ON(new_inode->i_nlink == 0);
9223 } else {
9224 ret = btrfs_unlink_inode(trans, dest, new_dir,
9225 d_inode(new_dentry),
9226 new_dentry->d_name.name,
9227 new_dentry->d_name.len);
9228 }
9229 if (!ret && new_inode->i_nlink == 0)
9230 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9231 if (ret) {
9232 btrfs_abort_transaction(trans, root, ret);
9233 goto out_fail;
9234 }
9235 }
9236
9237 ret = btrfs_add_link(trans, new_dir, old_inode,
9238 new_dentry->d_name.name,
9239 new_dentry->d_name.len, 0, index);
9240 if (ret) {
9241 btrfs_abort_transaction(trans, root, ret);
9242 goto out_fail;
9243 }
9244
9245 if (old_inode->i_nlink == 1)
9246 BTRFS_I(old_inode)->dir_index = index;
9247
9248 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9249 struct dentry *parent = new_dentry->d_parent;
9250 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9251 btrfs_end_log_trans(root);
9252 }
9253 out_fail:
9254 btrfs_end_transaction(trans, root);
9255 out_notrans:
9256 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9257 up_read(&root->fs_info->subvol_sem);
9258
9259 return ret;
9260 }
9261
9262 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9263 struct inode *new_dir, struct dentry *new_dentry,
9264 unsigned int flags)
9265 {
9266 if (flags & ~RENAME_NOREPLACE)
9267 return -EINVAL;
9268
9269 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9270 }
9271
9272 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9273 {
9274 struct btrfs_delalloc_work *delalloc_work;
9275 struct inode *inode;
9276
9277 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9278 work);
9279 inode = delalloc_work->inode;
9280 if (delalloc_work->wait) {
9281 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9282 } else {
9283 filemap_flush(inode->i_mapping);
9284 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9285 &BTRFS_I(inode)->runtime_flags))
9286 filemap_flush(inode->i_mapping);
9287 }
9288
9289 if (delalloc_work->delay_iput)
9290 btrfs_add_delayed_iput(inode);
9291 else
9292 iput(inode);
9293 complete(&delalloc_work->completion);
9294 }
9295
9296 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9297 int wait, int delay_iput)
9298 {
9299 struct btrfs_delalloc_work *work;
9300
9301 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9302 if (!work)
9303 return NULL;
9304
9305 init_completion(&work->completion);
9306 INIT_LIST_HEAD(&work->list);
9307 work->inode = inode;
9308 work->wait = wait;
9309 work->delay_iput = delay_iput;
9310 WARN_ON_ONCE(!inode);
9311 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9312 btrfs_run_delalloc_work, NULL, NULL);
9313
9314 return work;
9315 }
9316
9317 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9318 {
9319 wait_for_completion(&work->completion);
9320 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9321 }
9322
9323 /*
9324 * some fairly slow code that needs optimization. This walks the list
9325 * of all the inodes with pending delalloc and forces them to disk.
9326 */
9327 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9328 int nr)
9329 {
9330 struct btrfs_inode *binode;
9331 struct inode *inode;
9332 struct btrfs_delalloc_work *work, *next;
9333 struct list_head works;
9334 struct list_head splice;
9335 int ret = 0;
9336
9337 INIT_LIST_HEAD(&works);
9338 INIT_LIST_HEAD(&splice);
9339
9340 mutex_lock(&root->delalloc_mutex);
9341 spin_lock(&root->delalloc_lock);
9342 list_splice_init(&root->delalloc_inodes, &splice);
9343 while (!list_empty(&splice)) {
9344 binode = list_entry(splice.next, struct btrfs_inode,
9345 delalloc_inodes);
9346
9347 list_move_tail(&binode->delalloc_inodes,
9348 &root->delalloc_inodes);
9349 inode = igrab(&binode->vfs_inode);
9350 if (!inode) {
9351 cond_resched_lock(&root->delalloc_lock);
9352 continue;
9353 }
9354 spin_unlock(&root->delalloc_lock);
9355
9356 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9357 if (!work) {
9358 if (delay_iput)
9359 btrfs_add_delayed_iput(inode);
9360 else
9361 iput(inode);
9362 ret = -ENOMEM;
9363 goto out;
9364 }
9365 list_add_tail(&work->list, &works);
9366 btrfs_queue_work(root->fs_info->flush_workers,
9367 &work->work);
9368 ret++;
9369 if (nr != -1 && ret >= nr)
9370 goto out;
9371 cond_resched();
9372 spin_lock(&root->delalloc_lock);
9373 }
9374 spin_unlock(&root->delalloc_lock);
9375
9376 out:
9377 list_for_each_entry_safe(work, next, &works, list) {
9378 list_del_init(&work->list);
9379 btrfs_wait_and_free_delalloc_work(work);
9380 }
9381
9382 if (!list_empty_careful(&splice)) {
9383 spin_lock(&root->delalloc_lock);
9384 list_splice_tail(&splice, &root->delalloc_inodes);
9385 spin_unlock(&root->delalloc_lock);
9386 }
9387 mutex_unlock(&root->delalloc_mutex);
9388 return ret;
9389 }
9390
9391 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9392 {
9393 int ret;
9394
9395 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9396 return -EROFS;
9397
9398 ret = __start_delalloc_inodes(root, delay_iput, -1);
9399 if (ret > 0)
9400 ret = 0;
9401 /*
9402 * the filemap_flush will queue IO into the worker threads, but
9403 * we have to make sure the IO is actually started and that
9404 * ordered extents get created before we return
9405 */
9406 atomic_inc(&root->fs_info->async_submit_draining);
9407 while (atomic_read(&root->fs_info->nr_async_submits) ||
9408 atomic_read(&root->fs_info->async_delalloc_pages)) {
9409 wait_event(root->fs_info->async_submit_wait,
9410 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9411 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9412 }
9413 atomic_dec(&root->fs_info->async_submit_draining);
9414 return ret;
9415 }
9416
9417 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9418 int nr)
9419 {
9420 struct btrfs_root *root;
9421 struct list_head splice;
9422 int ret;
9423
9424 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9425 return -EROFS;
9426
9427 INIT_LIST_HEAD(&splice);
9428
9429 mutex_lock(&fs_info->delalloc_root_mutex);
9430 spin_lock(&fs_info->delalloc_root_lock);
9431 list_splice_init(&fs_info->delalloc_roots, &splice);
9432 while (!list_empty(&splice) && nr) {
9433 root = list_first_entry(&splice, struct btrfs_root,
9434 delalloc_root);
9435 root = btrfs_grab_fs_root(root);
9436 BUG_ON(!root);
9437 list_move_tail(&root->delalloc_root,
9438 &fs_info->delalloc_roots);
9439 spin_unlock(&fs_info->delalloc_root_lock);
9440
9441 ret = __start_delalloc_inodes(root, delay_iput, nr);
9442 btrfs_put_fs_root(root);
9443 if (ret < 0)
9444 goto out;
9445
9446 if (nr != -1) {
9447 nr -= ret;
9448 WARN_ON(nr < 0);
9449 }
9450 spin_lock(&fs_info->delalloc_root_lock);
9451 }
9452 spin_unlock(&fs_info->delalloc_root_lock);
9453
9454 ret = 0;
9455 atomic_inc(&fs_info->async_submit_draining);
9456 while (atomic_read(&fs_info->nr_async_submits) ||
9457 atomic_read(&fs_info->async_delalloc_pages)) {
9458 wait_event(fs_info->async_submit_wait,
9459 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9460 atomic_read(&fs_info->async_delalloc_pages) == 0));
9461 }
9462 atomic_dec(&fs_info->async_submit_draining);
9463 out:
9464 if (!list_empty_careful(&splice)) {
9465 spin_lock(&fs_info->delalloc_root_lock);
9466 list_splice_tail(&splice, &fs_info->delalloc_roots);
9467 spin_unlock(&fs_info->delalloc_root_lock);
9468 }
9469 mutex_unlock(&fs_info->delalloc_root_mutex);
9470 return ret;
9471 }
9472
9473 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9474 const char *symname)
9475 {
9476 struct btrfs_trans_handle *trans;
9477 struct btrfs_root *root = BTRFS_I(dir)->root;
9478 struct btrfs_path *path;
9479 struct btrfs_key key;
9480 struct inode *inode = NULL;
9481 int err;
9482 int drop_inode = 0;
9483 u64 objectid;
9484 u64 index = 0;
9485 int name_len;
9486 int datasize;
9487 unsigned long ptr;
9488 struct btrfs_file_extent_item *ei;
9489 struct extent_buffer *leaf;
9490
9491 name_len = strlen(symname);
9492 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9493 return -ENAMETOOLONG;
9494
9495 /*
9496 * 2 items for inode item and ref
9497 * 2 items for dir items
9498 * 1 item for xattr if selinux is on
9499 */
9500 trans = btrfs_start_transaction(root, 5);
9501 if (IS_ERR(trans))
9502 return PTR_ERR(trans);
9503
9504 err = btrfs_find_free_ino(root, &objectid);
9505 if (err)
9506 goto out_unlock;
9507
9508 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9509 dentry->d_name.len, btrfs_ino(dir), objectid,
9510 S_IFLNK|S_IRWXUGO, &index);
9511 if (IS_ERR(inode)) {
9512 err = PTR_ERR(inode);
9513 goto out_unlock;
9514 }
9515
9516 /*
9517 * If the active LSM wants to access the inode during
9518 * d_instantiate it needs these. Smack checks to see
9519 * if the filesystem supports xattrs by looking at the
9520 * ops vector.
9521 */
9522 inode->i_fop = &btrfs_file_operations;
9523 inode->i_op = &btrfs_file_inode_operations;
9524 inode->i_mapping->a_ops = &btrfs_aops;
9525 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9526
9527 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9528 if (err)
9529 goto out_unlock_inode;
9530
9531 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9532 if (err)
9533 goto out_unlock_inode;
9534
9535 path = btrfs_alloc_path();
9536 if (!path) {
9537 err = -ENOMEM;
9538 goto out_unlock_inode;
9539 }
9540 key.objectid = btrfs_ino(inode);
9541 key.offset = 0;
9542 key.type = BTRFS_EXTENT_DATA_KEY;
9543 datasize = btrfs_file_extent_calc_inline_size(name_len);
9544 err = btrfs_insert_empty_item(trans, root, path, &key,
9545 datasize);
9546 if (err) {
9547 btrfs_free_path(path);
9548 goto out_unlock_inode;
9549 }
9550 leaf = path->nodes[0];
9551 ei = btrfs_item_ptr(leaf, path->slots[0],
9552 struct btrfs_file_extent_item);
9553 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9554 btrfs_set_file_extent_type(leaf, ei,
9555 BTRFS_FILE_EXTENT_INLINE);
9556 btrfs_set_file_extent_encryption(leaf, ei, 0);
9557 btrfs_set_file_extent_compression(leaf, ei, 0);
9558 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9559 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9560
9561 ptr = btrfs_file_extent_inline_start(ei);
9562 write_extent_buffer(leaf, symname, ptr, name_len);
9563 btrfs_mark_buffer_dirty(leaf);
9564 btrfs_free_path(path);
9565
9566 inode->i_op = &btrfs_symlink_inode_operations;
9567 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9568 inode_set_bytes(inode, name_len);
9569 btrfs_i_size_write(inode, name_len);
9570 err = btrfs_update_inode(trans, root, inode);
9571 if (err) {
9572 drop_inode = 1;
9573 goto out_unlock_inode;
9574 }
9575
9576 unlock_new_inode(inode);
9577 d_instantiate(dentry, inode);
9578
9579 out_unlock:
9580 btrfs_end_transaction(trans, root);
9581 if (drop_inode) {
9582 inode_dec_link_count(inode);
9583 iput(inode);
9584 }
9585 btrfs_btree_balance_dirty(root);
9586 return err;
9587
9588 out_unlock_inode:
9589 drop_inode = 1;
9590 unlock_new_inode(inode);
9591 goto out_unlock;
9592 }
9593
9594 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9595 u64 start, u64 num_bytes, u64 min_size,
9596 loff_t actual_len, u64 *alloc_hint,
9597 struct btrfs_trans_handle *trans)
9598 {
9599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9600 struct extent_map *em;
9601 struct btrfs_root *root = BTRFS_I(inode)->root;
9602 struct btrfs_key ins;
9603 u64 cur_offset = start;
9604 u64 i_size;
9605 u64 cur_bytes;
9606 int ret = 0;
9607 bool own_trans = true;
9608
9609 if (trans)
9610 own_trans = false;
9611 while (num_bytes > 0) {
9612 if (own_trans) {
9613 trans = btrfs_start_transaction(root, 3);
9614 if (IS_ERR(trans)) {
9615 ret = PTR_ERR(trans);
9616 break;
9617 }
9618 }
9619
9620 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9621 cur_bytes = max(cur_bytes, min_size);
9622 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9623 *alloc_hint, &ins, 1, 0);
9624 if (ret) {
9625 if (own_trans)
9626 btrfs_end_transaction(trans, root);
9627 break;
9628 }
9629
9630 ret = insert_reserved_file_extent(trans, inode,
9631 cur_offset, ins.objectid,
9632 ins.offset, ins.offset,
9633 ins.offset, 0, 0, 0,
9634 BTRFS_FILE_EXTENT_PREALLOC);
9635 if (ret) {
9636 btrfs_free_reserved_extent(root, ins.objectid,
9637 ins.offset, 0);
9638 btrfs_abort_transaction(trans, root, ret);
9639 if (own_trans)
9640 btrfs_end_transaction(trans, root);
9641 break;
9642 }
9643
9644 btrfs_drop_extent_cache(inode, cur_offset,
9645 cur_offset + ins.offset -1, 0);
9646
9647 em = alloc_extent_map();
9648 if (!em) {
9649 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9650 &BTRFS_I(inode)->runtime_flags);
9651 goto next;
9652 }
9653
9654 em->start = cur_offset;
9655 em->orig_start = cur_offset;
9656 em->len = ins.offset;
9657 em->block_start = ins.objectid;
9658 em->block_len = ins.offset;
9659 em->orig_block_len = ins.offset;
9660 em->ram_bytes = ins.offset;
9661 em->bdev = root->fs_info->fs_devices->latest_bdev;
9662 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9663 em->generation = trans->transid;
9664
9665 while (1) {
9666 write_lock(&em_tree->lock);
9667 ret = add_extent_mapping(em_tree, em, 1);
9668 write_unlock(&em_tree->lock);
9669 if (ret != -EEXIST)
9670 break;
9671 btrfs_drop_extent_cache(inode, cur_offset,
9672 cur_offset + ins.offset - 1,
9673 0);
9674 }
9675 free_extent_map(em);
9676 next:
9677 num_bytes -= ins.offset;
9678 cur_offset += ins.offset;
9679 *alloc_hint = ins.objectid + ins.offset;
9680
9681 inode_inc_iversion(inode);
9682 inode->i_ctime = CURRENT_TIME;
9683 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9684 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9685 (actual_len > inode->i_size) &&
9686 (cur_offset > inode->i_size)) {
9687 if (cur_offset > actual_len)
9688 i_size = actual_len;
9689 else
9690 i_size = cur_offset;
9691 i_size_write(inode, i_size);
9692 btrfs_ordered_update_i_size(inode, i_size, NULL);
9693 }
9694
9695 ret = btrfs_update_inode(trans, root, inode);
9696
9697 if (ret) {
9698 btrfs_abort_transaction(trans, root, ret);
9699 if (own_trans)
9700 btrfs_end_transaction(trans, root);
9701 break;
9702 }
9703
9704 if (own_trans)
9705 btrfs_end_transaction(trans, root);
9706 }
9707 return ret;
9708 }
9709
9710 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9711 u64 start, u64 num_bytes, u64 min_size,
9712 loff_t actual_len, u64 *alloc_hint)
9713 {
9714 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9715 min_size, actual_len, alloc_hint,
9716 NULL);
9717 }
9718
9719 int btrfs_prealloc_file_range_trans(struct inode *inode,
9720 struct btrfs_trans_handle *trans, int mode,
9721 u64 start, u64 num_bytes, u64 min_size,
9722 loff_t actual_len, u64 *alloc_hint)
9723 {
9724 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9725 min_size, actual_len, alloc_hint, trans);
9726 }
9727
9728 static int btrfs_set_page_dirty(struct page *page)
9729 {
9730 return __set_page_dirty_nobuffers(page);
9731 }
9732
9733 static int btrfs_permission(struct inode *inode, int mask)
9734 {
9735 struct btrfs_root *root = BTRFS_I(inode)->root;
9736 umode_t mode = inode->i_mode;
9737
9738 if (mask & MAY_WRITE &&
9739 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9740 if (btrfs_root_readonly(root))
9741 return -EROFS;
9742 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9743 return -EACCES;
9744 }
9745 return generic_permission(inode, mask);
9746 }
9747
9748 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9749 {
9750 struct btrfs_trans_handle *trans;
9751 struct btrfs_root *root = BTRFS_I(dir)->root;
9752 struct inode *inode = NULL;
9753 u64 objectid;
9754 u64 index;
9755 int ret = 0;
9756
9757 /*
9758 * 5 units required for adding orphan entry
9759 */
9760 trans = btrfs_start_transaction(root, 5);
9761 if (IS_ERR(trans))
9762 return PTR_ERR(trans);
9763
9764 ret = btrfs_find_free_ino(root, &objectid);
9765 if (ret)
9766 goto out;
9767
9768 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9769 btrfs_ino(dir), objectid, mode, &index);
9770 if (IS_ERR(inode)) {
9771 ret = PTR_ERR(inode);
9772 inode = NULL;
9773 goto out;
9774 }
9775
9776 inode->i_fop = &btrfs_file_operations;
9777 inode->i_op = &btrfs_file_inode_operations;
9778
9779 inode->i_mapping->a_ops = &btrfs_aops;
9780 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9781
9782 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9783 if (ret)
9784 goto out_inode;
9785
9786 ret = btrfs_update_inode(trans, root, inode);
9787 if (ret)
9788 goto out_inode;
9789 ret = btrfs_orphan_add(trans, inode);
9790 if (ret)
9791 goto out_inode;
9792
9793 /*
9794 * We set number of links to 0 in btrfs_new_inode(), and here we set
9795 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9796 * through:
9797 *
9798 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9799 */
9800 set_nlink(inode, 1);
9801 unlock_new_inode(inode);
9802 d_tmpfile(dentry, inode);
9803 mark_inode_dirty(inode);
9804
9805 out:
9806 btrfs_end_transaction(trans, root);
9807 if (ret)
9808 iput(inode);
9809 btrfs_balance_delayed_items(root);
9810 btrfs_btree_balance_dirty(root);
9811 return ret;
9812
9813 out_inode:
9814 unlock_new_inode(inode);
9815 goto out;
9816
9817 }
9818
9819 /* Inspired by filemap_check_errors() */
9820 int btrfs_inode_check_errors(struct inode *inode)
9821 {
9822 int ret = 0;
9823
9824 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9825 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9826 ret = -ENOSPC;
9827 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9828 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9829 ret = -EIO;
9830
9831 return ret;
9832 }
9833
9834 static const struct inode_operations btrfs_dir_inode_operations = {
9835 .getattr = btrfs_getattr,
9836 .lookup = btrfs_lookup,
9837 .create = btrfs_create,
9838 .unlink = btrfs_unlink,
9839 .link = btrfs_link,
9840 .mkdir = btrfs_mkdir,
9841 .rmdir = btrfs_rmdir,
9842 .rename2 = btrfs_rename2,
9843 .symlink = btrfs_symlink,
9844 .setattr = btrfs_setattr,
9845 .mknod = btrfs_mknod,
9846 .setxattr = btrfs_setxattr,
9847 .getxattr = btrfs_getxattr,
9848 .listxattr = btrfs_listxattr,
9849 .removexattr = btrfs_removexattr,
9850 .permission = btrfs_permission,
9851 .get_acl = btrfs_get_acl,
9852 .set_acl = btrfs_set_acl,
9853 .update_time = btrfs_update_time,
9854 .tmpfile = btrfs_tmpfile,
9855 };
9856 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9857 .lookup = btrfs_lookup,
9858 .permission = btrfs_permission,
9859 .get_acl = btrfs_get_acl,
9860 .set_acl = btrfs_set_acl,
9861 .update_time = btrfs_update_time,
9862 };
9863
9864 static const struct file_operations btrfs_dir_file_operations = {
9865 .llseek = generic_file_llseek,
9866 .read = generic_read_dir,
9867 .iterate = btrfs_real_readdir,
9868 .unlocked_ioctl = btrfs_ioctl,
9869 #ifdef CONFIG_COMPAT
9870 .compat_ioctl = btrfs_ioctl,
9871 #endif
9872 .release = btrfs_release_file,
9873 .fsync = btrfs_sync_file,
9874 };
9875
9876 static struct extent_io_ops btrfs_extent_io_ops = {
9877 .fill_delalloc = run_delalloc_range,
9878 .submit_bio_hook = btrfs_submit_bio_hook,
9879 .merge_bio_hook = btrfs_merge_bio_hook,
9880 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9881 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9882 .writepage_start_hook = btrfs_writepage_start_hook,
9883 .set_bit_hook = btrfs_set_bit_hook,
9884 .clear_bit_hook = btrfs_clear_bit_hook,
9885 .merge_extent_hook = btrfs_merge_extent_hook,
9886 .split_extent_hook = btrfs_split_extent_hook,
9887 };
9888
9889 /*
9890 * btrfs doesn't support the bmap operation because swapfiles
9891 * use bmap to make a mapping of extents in the file. They assume
9892 * these extents won't change over the life of the file and they
9893 * use the bmap result to do IO directly to the drive.
9894 *
9895 * the btrfs bmap call would return logical addresses that aren't
9896 * suitable for IO and they also will change frequently as COW
9897 * operations happen. So, swapfile + btrfs == corruption.
9898 *
9899 * For now we're avoiding this by dropping bmap.
9900 */
9901 static const struct address_space_operations btrfs_aops = {
9902 .readpage = btrfs_readpage,
9903 .writepage = btrfs_writepage,
9904 .writepages = btrfs_writepages,
9905 .readpages = btrfs_readpages,
9906 .direct_IO = btrfs_direct_IO,
9907 .invalidatepage = btrfs_invalidatepage,
9908 .releasepage = btrfs_releasepage,
9909 .set_page_dirty = btrfs_set_page_dirty,
9910 .error_remove_page = generic_error_remove_page,
9911 };
9912
9913 static const struct address_space_operations btrfs_symlink_aops = {
9914 .readpage = btrfs_readpage,
9915 .writepage = btrfs_writepage,
9916 .invalidatepage = btrfs_invalidatepage,
9917 .releasepage = btrfs_releasepage,
9918 };
9919
9920 static const struct inode_operations btrfs_file_inode_operations = {
9921 .getattr = btrfs_getattr,
9922 .setattr = btrfs_setattr,
9923 .setxattr = btrfs_setxattr,
9924 .getxattr = btrfs_getxattr,
9925 .listxattr = btrfs_listxattr,
9926 .removexattr = btrfs_removexattr,
9927 .permission = btrfs_permission,
9928 .fiemap = btrfs_fiemap,
9929 .get_acl = btrfs_get_acl,
9930 .set_acl = btrfs_set_acl,
9931 .update_time = btrfs_update_time,
9932 };
9933 static const struct inode_operations btrfs_special_inode_operations = {
9934 .getattr = btrfs_getattr,
9935 .setattr = btrfs_setattr,
9936 .permission = btrfs_permission,
9937 .setxattr = btrfs_setxattr,
9938 .getxattr = btrfs_getxattr,
9939 .listxattr = btrfs_listxattr,
9940 .removexattr = btrfs_removexattr,
9941 .get_acl = btrfs_get_acl,
9942 .set_acl = btrfs_set_acl,
9943 .update_time = btrfs_update_time,
9944 };
9945 static const struct inode_operations btrfs_symlink_inode_operations = {
9946 .readlink = generic_readlink,
9947 .follow_link = page_follow_link_light,
9948 .put_link = page_put_link,
9949 .getattr = btrfs_getattr,
9950 .setattr = btrfs_setattr,
9951 .permission = btrfs_permission,
9952 .setxattr = btrfs_setxattr,
9953 .getxattr = btrfs_getxattr,
9954 .listxattr = btrfs_listxattr,
9955 .removexattr = btrfs_removexattr,
9956 .update_time = btrfs_update_time,
9957 };
9958
9959 const struct dentry_operations btrfs_dentry_operations = {
9960 .d_delete = btrfs_dentry_delete,
9961 .d_release = btrfs_dentry_release,
9962 };