2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args
{
60 struct btrfs_root
*root
;
63 static const struct inode_operations btrfs_dir_inode_operations
;
64 static const struct inode_operations btrfs_symlink_inode_operations
;
65 static const struct inode_operations btrfs_dir_ro_inode_operations
;
66 static const struct inode_operations btrfs_special_inode_operations
;
67 static const struct inode_operations btrfs_file_inode_operations
;
68 static const struct address_space_operations btrfs_aops
;
69 static const struct address_space_operations btrfs_symlink_aops
;
70 static const struct file_operations btrfs_dir_file_operations
;
71 static struct extent_io_ops btrfs_extent_io_ops
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
75 struct kmem_cache
*btrfs_trans_handle_cachep
;
76 struct kmem_cache
*btrfs_transaction_cachep
;
77 struct kmem_cache
*btrfs_path_cachep
;
78 struct kmem_cache
*btrfs_free_space_cachep
;
81 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
82 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
83 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
84 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
85 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
86 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
87 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
88 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
91 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
92 static int btrfs_truncate(struct inode
*inode
);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
94 static noinline
int cow_file_range(struct inode
*inode
,
95 struct page
*locked_page
,
96 u64 start
, u64 end
, int *page_started
,
97 unsigned long *nr_written
, int unlock
);
99 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
100 struct inode
*inode
, struct inode
*dir
,
101 const struct qstr
*qstr
)
105 err
= btrfs_init_acl(trans
, inode
, dir
);
107 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
116 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
117 struct btrfs_root
*root
, struct inode
*inode
,
118 u64 start
, size_t size
, size_t compressed_size
,
120 struct page
**compressed_pages
)
122 struct btrfs_key key
;
123 struct btrfs_path
*path
;
124 struct extent_buffer
*leaf
;
125 struct page
*page
= NULL
;
128 struct btrfs_file_extent_item
*ei
;
131 size_t cur_size
= size
;
133 unsigned long offset
;
135 if (compressed_size
&& compressed_pages
)
136 cur_size
= compressed_size
;
138 path
= btrfs_alloc_path();
142 path
->leave_spinning
= 1;
144 key
.objectid
= btrfs_ino(inode
);
146 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
147 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
149 inode_add_bytes(inode
, size
);
150 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
156 leaf
= path
->nodes
[0];
157 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
158 struct btrfs_file_extent_item
);
159 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
160 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
161 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
162 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
163 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
164 ptr
= btrfs_file_extent_inline_start(ei
);
166 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
169 while (compressed_size
> 0) {
170 cpage
= compressed_pages
[i
];
171 cur_size
= min_t(unsigned long, compressed_size
,
174 kaddr
= kmap_atomic(cpage
);
175 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
176 kunmap_atomic(kaddr
);
180 compressed_size
-= cur_size
;
182 btrfs_set_file_extent_compression(leaf
, ei
,
185 page
= find_get_page(inode
->i_mapping
,
186 start
>> PAGE_CACHE_SHIFT
);
187 btrfs_set_file_extent_compression(leaf
, ei
, 0);
188 kaddr
= kmap_atomic(page
);
189 offset
= start
& (PAGE_CACHE_SIZE
- 1);
190 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
191 kunmap_atomic(kaddr
);
192 page_cache_release(page
);
194 btrfs_mark_buffer_dirty(leaf
);
195 btrfs_free_path(path
);
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
206 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
207 ret
= btrfs_update_inode(trans
, root
, inode
);
211 btrfs_free_path(path
);
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
221 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
222 struct btrfs_root
*root
,
223 struct inode
*inode
, u64 start
, u64 end
,
224 size_t compressed_size
, int compress_type
,
225 struct page
**compressed_pages
)
227 u64 isize
= i_size_read(inode
);
228 u64 actual_end
= min(end
+ 1, isize
);
229 u64 inline_len
= actual_end
- start
;
230 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
231 ~((u64
)root
->sectorsize
- 1);
232 u64 data_len
= inline_len
;
236 data_len
= compressed_size
;
239 actual_end
>= PAGE_CACHE_SIZE
||
240 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
242 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
244 data_len
> root
->fs_info
->max_inline
) {
248 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, aligned_end
, 1);
252 if (isize
> actual_end
)
253 inline_len
= min_t(u64
, isize
, actual_end
);
254 ret
= insert_inline_extent(trans
, root
, inode
, start
,
255 inline_len
, compressed_size
,
256 compress_type
, compressed_pages
);
257 if (ret
&& ret
!= -ENOSPC
) {
258 btrfs_abort_transaction(trans
, root
, ret
);
260 } else if (ret
== -ENOSPC
) {
264 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
265 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
269 struct async_extent
{
274 unsigned long nr_pages
;
276 struct list_head list
;
281 struct btrfs_root
*root
;
282 struct page
*locked_page
;
285 struct list_head extents
;
286 struct btrfs_work work
;
289 static noinline
int add_async_extent(struct async_cow
*cow
,
290 u64 start
, u64 ram_size
,
293 unsigned long nr_pages
,
296 struct async_extent
*async_extent
;
298 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
299 BUG_ON(!async_extent
); /* -ENOMEM */
300 async_extent
->start
= start
;
301 async_extent
->ram_size
= ram_size
;
302 async_extent
->compressed_size
= compressed_size
;
303 async_extent
->pages
= pages
;
304 async_extent
->nr_pages
= nr_pages
;
305 async_extent
->compress_type
= compress_type
;
306 list_add_tail(&async_extent
->list
, &cow
->extents
);
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that the flusher thread sent them
327 static noinline
int compress_file_range(struct inode
*inode
,
328 struct page
*locked_page
,
330 struct async_cow
*async_cow
,
333 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
334 struct btrfs_trans_handle
*trans
;
336 u64 blocksize
= root
->sectorsize
;
338 u64 isize
= i_size_read(inode
);
340 struct page
**pages
= NULL
;
341 unsigned long nr_pages
;
342 unsigned long nr_pages_ret
= 0;
343 unsigned long total_compressed
= 0;
344 unsigned long total_in
= 0;
345 unsigned long max_compressed
= 128 * 1024;
346 unsigned long max_uncompressed
= 128 * 1024;
349 int compress_type
= root
->fs_info
->compress_type
;
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end
- start
+ 1) < 16 * 1024 &&
353 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
354 btrfs_add_inode_defrag(NULL
, inode
);
356 actual_end
= min_t(u64
, isize
, end
+ 1);
359 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
360 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
372 if (actual_end
<= start
)
373 goto cleanup_and_bail_uncompressed
;
375 total_compressed
= actual_end
- start
;
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
387 total_compressed
= min(total_compressed
, max_uncompressed
);
388 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
389 num_bytes
= max(blocksize
, num_bytes
);
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
398 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
399 (btrfs_test_opt(root
, COMPRESS
) ||
400 (BTRFS_I(inode
)->force_compress
) ||
401 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
403 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
405 /* just bail out to the uncompressed code */
409 if (BTRFS_I(inode
)->force_compress
)
410 compress_type
= BTRFS_I(inode
)->force_compress
;
412 ret
= btrfs_compress_pages(compress_type
,
413 inode
->i_mapping
, start
,
414 total_compressed
, pages
,
415 nr_pages
, &nr_pages_ret
,
421 unsigned long offset
= total_compressed
&
422 (PAGE_CACHE_SIZE
- 1);
423 struct page
*page
= pages
[nr_pages_ret
- 1];
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
430 kaddr
= kmap_atomic(page
);
431 memset(kaddr
+ offset
, 0,
432 PAGE_CACHE_SIZE
- offset
);
433 kunmap_atomic(kaddr
);
440 trans
= btrfs_join_transaction(root
);
442 ret
= PTR_ERR(trans
);
444 goto cleanup_and_out
;
446 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
448 /* lets try to make an inline extent */
449 if (ret
|| total_in
< (actual_end
- start
)) {
450 /* we didn't compress the entire range, try
451 * to make an uncompressed inline extent.
453 ret
= cow_file_range_inline(trans
, root
, inode
,
454 start
, end
, 0, 0, NULL
);
456 /* try making a compressed inline extent */
457 ret
= cow_file_range_inline(trans
, root
, inode
,
460 compress_type
, pages
);
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
468 extent_clear_unlock_delalloc(inode
,
469 &BTRFS_I(inode
)->io_tree
,
471 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
472 EXTENT_CLEAR_DELALLOC
|
473 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
475 btrfs_end_transaction(trans
, root
);
478 btrfs_end_transaction(trans
, root
);
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
487 total_compressed
= (total_compressed
+ blocksize
- 1) &
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
494 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
495 ~(PAGE_CACHE_SIZE
- 1);
496 if (total_compressed
>= total_in
) {
499 num_bytes
= total_in
;
502 if (!will_compress
&& pages
) {
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
507 for (i
= 0; i
< nr_pages_ret
; i
++) {
508 WARN_ON(pages
[i
]->mapping
);
509 page_cache_release(pages
[i
]);
513 total_compressed
= 0;
516 /* flag the file so we don't compress in the future */
517 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
518 !(BTRFS_I(inode
)->force_compress
)) {
519 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
529 add_async_extent(async_cow
, start
, num_bytes
,
530 total_compressed
, pages
, nr_pages_ret
,
533 if (start
+ num_bytes
< end
) {
540 cleanup_and_bail_uncompressed
:
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
548 if (page_offset(locked_page
) >= start
&&
549 page_offset(locked_page
) <= end
) {
550 __set_page_dirty_nobuffers(locked_page
);
551 /* unlocked later on in the async handlers */
553 add_async_extent(async_cow
, start
, end
- start
+ 1,
554 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
562 for (i
= 0; i
< nr_pages_ret
; i
++) {
563 WARN_ON(pages
[i
]->mapping
);
564 page_cache_release(pages
[i
]);
571 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
573 EXTENT_CLEAR_UNLOCK_PAGE
|
575 EXTENT_CLEAR_DELALLOC
|
576 EXTENT_SET_WRITEBACK
|
577 EXTENT_END_WRITEBACK
);
578 if (!trans
|| IS_ERR(trans
))
579 btrfs_error(root
->fs_info
, ret
, "Failed to join transaction");
581 btrfs_abort_transaction(trans
, root
, ret
);
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
591 static noinline
int submit_compressed_extents(struct inode
*inode
,
592 struct async_cow
*async_cow
)
594 struct async_extent
*async_extent
;
596 struct btrfs_trans_handle
*trans
;
597 struct btrfs_key ins
;
598 struct extent_map
*em
;
599 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
600 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
601 struct extent_io_tree
*io_tree
;
604 if (list_empty(&async_cow
->extents
))
608 while (!list_empty(&async_cow
->extents
)) {
609 async_extent
= list_entry(async_cow
->extents
.next
,
610 struct async_extent
, list
);
611 list_del(&async_extent
->list
);
613 io_tree
= &BTRFS_I(inode
)->io_tree
;
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent
->pages
) {
618 int page_started
= 0;
619 unsigned long nr_written
= 0;
621 lock_extent(io_tree
, async_extent
->start
,
622 async_extent
->start
+
623 async_extent
->ram_size
- 1);
625 /* allocate blocks */
626 ret
= cow_file_range(inode
, async_cow
->locked_page
,
628 async_extent
->start
+
629 async_extent
->ram_size
- 1,
630 &page_started
, &nr_written
, 0);
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
640 if (!page_started
&& !ret
)
641 extent_write_locked_range(io_tree
,
642 inode
, async_extent
->start
,
643 async_extent
->start
+
644 async_extent
->ram_size
- 1,
652 lock_extent(io_tree
, async_extent
->start
,
653 async_extent
->start
+ async_extent
->ram_size
- 1);
655 trans
= btrfs_join_transaction(root
);
657 ret
= PTR_ERR(trans
);
659 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
660 ret
= btrfs_reserve_extent(trans
, root
,
661 async_extent
->compressed_size
,
662 async_extent
->compressed_size
,
663 0, alloc_hint
, &ins
, 1);
664 if (ret
&& ret
!= -ENOSPC
)
665 btrfs_abort_transaction(trans
, root
, ret
);
666 btrfs_end_transaction(trans
, root
);
671 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
672 WARN_ON(async_extent
->pages
[i
]->mapping
);
673 page_cache_release(async_extent
->pages
[i
]);
675 kfree(async_extent
->pages
);
676 async_extent
->nr_pages
= 0;
677 async_extent
->pages
= NULL
;
678 unlock_extent(io_tree
, async_extent
->start
,
679 async_extent
->start
+
680 async_extent
->ram_size
- 1);
683 goto out_free
; /* JDM: Requeue? */
687 * here we're doing allocation and writeback of the
690 btrfs_drop_extent_cache(inode
, async_extent
->start
,
691 async_extent
->start
+
692 async_extent
->ram_size
- 1, 0);
694 em
= alloc_extent_map();
695 BUG_ON(!em
); /* -ENOMEM */
696 em
->start
= async_extent
->start
;
697 em
->len
= async_extent
->ram_size
;
698 em
->orig_start
= em
->start
;
700 em
->block_start
= ins
.objectid
;
701 em
->block_len
= ins
.offset
;
702 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
703 em
->compress_type
= async_extent
->compress_type
;
704 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
705 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
708 write_lock(&em_tree
->lock
);
709 ret
= add_extent_mapping(em_tree
, em
);
710 write_unlock(&em_tree
->lock
);
711 if (ret
!= -EEXIST
) {
715 btrfs_drop_extent_cache(inode
, async_extent
->start
,
716 async_extent
->start
+
717 async_extent
->ram_size
- 1, 0);
720 ret
= btrfs_add_ordered_extent_compress(inode
,
723 async_extent
->ram_size
,
725 BTRFS_ORDERED_COMPRESSED
,
726 async_extent
->compress_type
);
727 BUG_ON(ret
); /* -ENOMEM */
730 * clear dirty, set writeback and unlock the pages.
732 extent_clear_unlock_delalloc(inode
,
733 &BTRFS_I(inode
)->io_tree
,
735 async_extent
->start
+
736 async_extent
->ram_size
- 1,
737 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
738 EXTENT_CLEAR_UNLOCK
|
739 EXTENT_CLEAR_DELALLOC
|
740 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
742 ret
= btrfs_submit_compressed_write(inode
,
744 async_extent
->ram_size
,
746 ins
.offset
, async_extent
->pages
,
747 async_extent
->nr_pages
);
749 BUG_ON(ret
); /* -ENOMEM */
750 alloc_hint
= ins
.objectid
+ ins
.offset
;
762 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
765 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
766 struct extent_map
*em
;
769 read_lock(&em_tree
->lock
);
770 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
777 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
779 em
= search_extent_mapping(em_tree
, 0, 0);
780 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
781 alloc_hint
= em
->block_start
;
785 alloc_hint
= em
->block_start
;
789 read_unlock(&em_tree
->lock
);
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
807 static noinline
int __cow_file_range(struct btrfs_trans_handle
*trans
,
809 struct btrfs_root
*root
,
810 struct page
*locked_page
,
811 u64 start
, u64 end
, int *page_started
,
812 unsigned long *nr_written
,
817 unsigned long ram_size
;
820 u64 blocksize
= root
->sectorsize
;
821 struct btrfs_key ins
;
822 struct extent_map
*em
;
823 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
826 BUG_ON(btrfs_is_free_space_inode(inode
));
828 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
829 num_bytes
= max(blocksize
, num_bytes
);
830 disk_num_bytes
= num_bytes
;
832 /* if this is a small write inside eof, kick off defrag */
833 if (num_bytes
< 64 * 1024 &&
834 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
835 btrfs_add_inode_defrag(trans
, inode
);
838 /* lets try to make an inline extent */
839 ret
= cow_file_range_inline(trans
, root
, inode
,
840 start
, end
, 0, 0, NULL
);
842 extent_clear_unlock_delalloc(inode
,
843 &BTRFS_I(inode
)->io_tree
,
845 EXTENT_CLEAR_UNLOCK_PAGE
|
846 EXTENT_CLEAR_UNLOCK
|
847 EXTENT_CLEAR_DELALLOC
|
849 EXTENT_SET_WRITEBACK
|
850 EXTENT_END_WRITEBACK
);
852 *nr_written
= *nr_written
+
853 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
856 } else if (ret
< 0) {
857 btrfs_abort_transaction(trans
, root
, ret
);
862 BUG_ON(disk_num_bytes
>
863 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
865 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
866 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
868 while (disk_num_bytes
> 0) {
871 cur_alloc_size
= disk_num_bytes
;
872 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
873 root
->sectorsize
, 0, alloc_hint
,
876 btrfs_abort_transaction(trans
, root
, ret
);
880 em
= alloc_extent_map();
881 BUG_ON(!em
); /* -ENOMEM */
883 em
->orig_start
= em
->start
;
884 ram_size
= ins
.offset
;
885 em
->len
= ins
.offset
;
887 em
->block_start
= ins
.objectid
;
888 em
->block_len
= ins
.offset
;
889 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
890 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
893 write_lock(&em_tree
->lock
);
894 ret
= add_extent_mapping(em_tree
, em
);
895 write_unlock(&em_tree
->lock
);
896 if (ret
!= -EEXIST
) {
900 btrfs_drop_extent_cache(inode
, start
,
901 start
+ ram_size
- 1, 0);
904 cur_alloc_size
= ins
.offset
;
905 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
906 ram_size
, cur_alloc_size
, 0);
907 BUG_ON(ret
); /* -ENOMEM */
909 if (root
->root_key
.objectid
==
910 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
911 ret
= btrfs_reloc_clone_csums(inode
, start
,
914 btrfs_abort_transaction(trans
, root
, ret
);
919 if (disk_num_bytes
< cur_alloc_size
)
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
929 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
930 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
933 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
934 start
, start
+ ram_size
- 1,
936 disk_num_bytes
-= cur_alloc_size
;
937 num_bytes
-= cur_alloc_size
;
938 alloc_hint
= ins
.objectid
+ ins
.offset
;
939 start
+= cur_alloc_size
;
945 extent_clear_unlock_delalloc(inode
,
946 &BTRFS_I(inode
)->io_tree
,
947 start
, end
, locked_page
,
948 EXTENT_CLEAR_UNLOCK_PAGE
|
949 EXTENT_CLEAR_UNLOCK
|
950 EXTENT_CLEAR_DELALLOC
|
952 EXTENT_SET_WRITEBACK
|
953 EXTENT_END_WRITEBACK
);
958 static noinline
int cow_file_range(struct inode
*inode
,
959 struct page
*locked_page
,
960 u64 start
, u64 end
, int *page_started
,
961 unsigned long *nr_written
,
964 struct btrfs_trans_handle
*trans
;
965 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
968 trans
= btrfs_join_transaction(root
);
970 extent_clear_unlock_delalloc(inode
,
971 &BTRFS_I(inode
)->io_tree
,
972 start
, end
, locked_page
,
973 EXTENT_CLEAR_UNLOCK_PAGE
|
974 EXTENT_CLEAR_UNLOCK
|
975 EXTENT_CLEAR_DELALLOC
|
977 EXTENT_SET_WRITEBACK
|
978 EXTENT_END_WRITEBACK
);
979 return PTR_ERR(trans
);
981 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
983 ret
= __cow_file_range(trans
, inode
, root
, locked_page
, start
, end
,
984 page_started
, nr_written
, unlock
);
986 btrfs_end_transaction(trans
, root
);
992 * work queue call back to started compression on a file and pages
994 static noinline
void async_cow_start(struct btrfs_work
*work
)
996 struct async_cow
*async_cow
;
998 async_cow
= container_of(work
, struct async_cow
, work
);
1000 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1001 async_cow
->start
, async_cow
->end
, async_cow
,
1003 if (num_added
== 0) {
1004 btrfs_add_delayed_iput(async_cow
->inode
);
1005 async_cow
->inode
= NULL
;
1010 * work queue call back to submit previously compressed pages
1012 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1014 struct async_cow
*async_cow
;
1015 struct btrfs_root
*root
;
1016 unsigned long nr_pages
;
1018 async_cow
= container_of(work
, struct async_cow
, work
);
1020 root
= async_cow
->root
;
1021 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1024 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1026 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1027 wake_up(&root
->fs_info
->async_submit_wait
);
1029 if (async_cow
->inode
)
1030 submit_compressed_extents(async_cow
->inode
, async_cow
);
1033 static noinline
void async_cow_free(struct btrfs_work
*work
)
1035 struct async_cow
*async_cow
;
1036 async_cow
= container_of(work
, struct async_cow
, work
);
1037 if (async_cow
->inode
)
1038 btrfs_add_delayed_iput(async_cow
->inode
);
1042 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1043 u64 start
, u64 end
, int *page_started
,
1044 unsigned long *nr_written
)
1046 struct async_cow
*async_cow
;
1047 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1048 unsigned long nr_pages
;
1050 int limit
= 10 * 1024 * 1024;
1052 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1053 1, 0, NULL
, GFP_NOFS
);
1054 while (start
< end
) {
1055 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1056 BUG_ON(!async_cow
); /* -ENOMEM */
1057 async_cow
->inode
= igrab(inode
);
1058 async_cow
->root
= root
;
1059 async_cow
->locked_page
= locked_page
;
1060 async_cow
->start
= start
;
1062 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
1065 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1067 async_cow
->end
= cur_end
;
1068 INIT_LIST_HEAD(&async_cow
->extents
);
1070 async_cow
->work
.func
= async_cow_start
;
1071 async_cow
->work
.ordered_func
= async_cow_submit
;
1072 async_cow
->work
.ordered_free
= async_cow_free
;
1073 async_cow
->work
.flags
= 0;
1075 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1077 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1079 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
1082 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1083 wait_event(root
->fs_info
->async_submit_wait
,
1084 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1088 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1089 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1090 wait_event(root
->fs_info
->async_submit_wait
,
1091 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1095 *nr_written
+= nr_pages
;
1096 start
= cur_end
+ 1;
1102 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1103 u64 bytenr
, u64 num_bytes
)
1106 struct btrfs_ordered_sum
*sums
;
1109 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1110 bytenr
+ num_bytes
- 1, &list
, 0);
1111 if (ret
== 0 && list_empty(&list
))
1114 while (!list_empty(&list
)) {
1115 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1116 list_del(&sums
->list
);
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1126 * If no cow copies or snapshots exist, we write directly to the existing
1129 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1130 struct page
*locked_page
,
1131 u64 start
, u64 end
, int *page_started
, int force
,
1132 unsigned long *nr_written
)
1134 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1135 struct btrfs_trans_handle
*trans
;
1136 struct extent_buffer
*leaf
;
1137 struct btrfs_path
*path
;
1138 struct btrfs_file_extent_item
*fi
;
1139 struct btrfs_key found_key
;
1152 u64 ino
= btrfs_ino(inode
);
1154 path
= btrfs_alloc_path();
1156 extent_clear_unlock_delalloc(inode
,
1157 &BTRFS_I(inode
)->io_tree
,
1158 start
, end
, locked_page
,
1159 EXTENT_CLEAR_UNLOCK_PAGE
|
1160 EXTENT_CLEAR_UNLOCK
|
1161 EXTENT_CLEAR_DELALLOC
|
1162 EXTENT_CLEAR_DIRTY
|
1163 EXTENT_SET_WRITEBACK
|
1164 EXTENT_END_WRITEBACK
);
1168 nolock
= btrfs_is_free_space_inode(inode
);
1171 trans
= btrfs_join_transaction_nolock(root
);
1173 trans
= btrfs_join_transaction(root
);
1175 if (IS_ERR(trans
)) {
1176 extent_clear_unlock_delalloc(inode
,
1177 &BTRFS_I(inode
)->io_tree
,
1178 start
, end
, locked_page
,
1179 EXTENT_CLEAR_UNLOCK_PAGE
|
1180 EXTENT_CLEAR_UNLOCK
|
1181 EXTENT_CLEAR_DELALLOC
|
1182 EXTENT_CLEAR_DIRTY
|
1183 EXTENT_SET_WRITEBACK
|
1184 EXTENT_END_WRITEBACK
);
1185 btrfs_free_path(path
);
1186 return PTR_ERR(trans
);
1189 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1191 cow_start
= (u64
)-1;
1194 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1197 btrfs_abort_transaction(trans
, root
, ret
);
1200 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1201 leaf
= path
->nodes
[0];
1202 btrfs_item_key_to_cpu(leaf
, &found_key
,
1203 path
->slots
[0] - 1);
1204 if (found_key
.objectid
== ino
&&
1205 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1210 leaf
= path
->nodes
[0];
1211 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1212 ret
= btrfs_next_leaf(root
, path
);
1214 btrfs_abort_transaction(trans
, root
, ret
);
1219 leaf
= path
->nodes
[0];
1225 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1227 if (found_key
.objectid
> ino
||
1228 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1229 found_key
.offset
> end
)
1232 if (found_key
.offset
> cur_offset
) {
1233 extent_end
= found_key
.offset
;
1238 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1239 struct btrfs_file_extent_item
);
1240 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1242 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1243 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1244 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1245 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1246 extent_end
= found_key
.offset
+
1247 btrfs_file_extent_num_bytes(leaf
, fi
);
1248 if (extent_end
<= start
) {
1252 if (disk_bytenr
== 0)
1254 if (btrfs_file_extent_compression(leaf
, fi
) ||
1255 btrfs_file_extent_encryption(leaf
, fi
) ||
1256 btrfs_file_extent_other_encoding(leaf
, fi
))
1258 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1260 if (btrfs_extent_readonly(root
, disk_bytenr
))
1262 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1264 extent_offset
, disk_bytenr
))
1266 disk_bytenr
+= extent_offset
;
1267 disk_bytenr
+= cur_offset
- found_key
.offset
;
1268 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1274 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1277 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1278 extent_end
= found_key
.offset
+
1279 btrfs_file_extent_inline_len(leaf
, fi
);
1280 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1285 if (extent_end
<= start
) {
1290 if (cow_start
== (u64
)-1)
1291 cow_start
= cur_offset
;
1292 cur_offset
= extent_end
;
1293 if (cur_offset
> end
)
1299 btrfs_release_path(path
);
1300 if (cow_start
!= (u64
)-1) {
1301 ret
= __cow_file_range(trans
, inode
, root
, locked_page
,
1302 cow_start
, found_key
.offset
- 1,
1303 page_started
, nr_written
, 1);
1305 btrfs_abort_transaction(trans
, root
, ret
);
1308 cow_start
= (u64
)-1;
1311 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1312 struct extent_map
*em
;
1313 struct extent_map_tree
*em_tree
;
1314 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1315 em
= alloc_extent_map();
1316 BUG_ON(!em
); /* -ENOMEM */
1317 em
->start
= cur_offset
;
1318 em
->orig_start
= em
->start
;
1319 em
->len
= num_bytes
;
1320 em
->block_len
= num_bytes
;
1321 em
->block_start
= disk_bytenr
;
1322 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1323 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1324 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
1326 write_lock(&em_tree
->lock
);
1327 ret
= add_extent_mapping(em_tree
, em
);
1328 write_unlock(&em_tree
->lock
);
1329 if (ret
!= -EEXIST
) {
1330 free_extent_map(em
);
1333 btrfs_drop_extent_cache(inode
, em
->start
,
1334 em
->start
+ em
->len
- 1, 0);
1336 type
= BTRFS_ORDERED_PREALLOC
;
1338 type
= BTRFS_ORDERED_NOCOW
;
1341 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1342 num_bytes
, num_bytes
, type
);
1343 BUG_ON(ret
); /* -ENOMEM */
1345 if (root
->root_key
.objectid
==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1347 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1350 btrfs_abort_transaction(trans
, root
, ret
);
1355 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1356 cur_offset
, cur_offset
+ num_bytes
- 1,
1357 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1358 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1359 EXTENT_SET_PRIVATE2
);
1360 cur_offset
= extent_end
;
1361 if (cur_offset
> end
)
1364 btrfs_release_path(path
);
1366 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1367 cow_start
= cur_offset
;
1371 if (cow_start
!= (u64
)-1) {
1372 ret
= __cow_file_range(trans
, inode
, root
, locked_page
,
1374 page_started
, nr_written
, 1);
1376 btrfs_abort_transaction(trans
, root
, ret
);
1382 err
= btrfs_end_transaction(trans
, root
);
1386 if (ret
&& cur_offset
< end
)
1387 extent_clear_unlock_delalloc(inode
,
1388 &BTRFS_I(inode
)->io_tree
,
1389 cur_offset
, end
, locked_page
,
1390 EXTENT_CLEAR_UNLOCK_PAGE
|
1391 EXTENT_CLEAR_UNLOCK
|
1392 EXTENT_CLEAR_DELALLOC
|
1393 EXTENT_CLEAR_DIRTY
|
1394 EXTENT_SET_WRITEBACK
|
1395 EXTENT_END_WRITEBACK
);
1397 btrfs_free_path(path
);
1402 * extent_io.c call back to do delayed allocation processing
1404 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1405 u64 start
, u64 end
, int *page_started
,
1406 unsigned long *nr_written
)
1409 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1411 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) {
1412 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1413 page_started
, 1, nr_written
);
1414 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
) {
1415 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1416 page_started
, 0, nr_written
);
1417 } else if (!btrfs_test_opt(root
, COMPRESS
) &&
1418 !(BTRFS_I(inode
)->force_compress
) &&
1419 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
)) {
1420 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1421 page_started
, nr_written
, 1);
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1424 &BTRFS_I(inode
)->runtime_flags
);
1425 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1426 page_started
, nr_written
);
1431 static void btrfs_split_extent_hook(struct inode
*inode
,
1432 struct extent_state
*orig
, u64 split
)
1434 /* not delalloc, ignore it */
1435 if (!(orig
->state
& EXTENT_DELALLOC
))
1438 spin_lock(&BTRFS_I(inode
)->lock
);
1439 BTRFS_I(inode
)->outstanding_extents
++;
1440 spin_unlock(&BTRFS_I(inode
)->lock
);
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1449 static void btrfs_merge_extent_hook(struct inode
*inode
,
1450 struct extent_state
*new,
1451 struct extent_state
*other
)
1453 /* not delalloc, ignore it */
1454 if (!(other
->state
& EXTENT_DELALLOC
))
1457 spin_lock(&BTRFS_I(inode
)->lock
);
1458 BTRFS_I(inode
)->outstanding_extents
--;
1459 spin_unlock(&BTRFS_I(inode
)->lock
);
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1467 static void btrfs_set_bit_hook(struct inode
*inode
,
1468 struct extent_state
*state
, int *bits
)
1472 * set_bit and clear bit hooks normally require _irqsave/restore
1473 * but in this case, we are only testing for the DELALLOC
1474 * bit, which is only set or cleared with irqs on
1476 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1477 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1478 u64 len
= state
->end
+ 1 - state
->start
;
1479 bool do_list
= !btrfs_is_free_space_inode(inode
);
1481 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1482 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1484 spin_lock(&BTRFS_I(inode
)->lock
);
1485 BTRFS_I(inode
)->outstanding_extents
++;
1486 spin_unlock(&BTRFS_I(inode
)->lock
);
1489 spin_lock(&root
->fs_info
->delalloc_lock
);
1490 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1491 root
->fs_info
->delalloc_bytes
+= len
;
1492 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1493 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1494 &root
->fs_info
->delalloc_inodes
);
1496 spin_unlock(&root
->fs_info
->delalloc_lock
);
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1503 static void btrfs_clear_bit_hook(struct inode
*inode
,
1504 struct extent_state
*state
, int *bits
)
1507 * set_bit and clear bit hooks normally require _irqsave/restore
1508 * but in this case, we are only testing for the DELALLOC
1509 * bit, which is only set or cleared with irqs on
1511 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1512 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1513 u64 len
= state
->end
+ 1 - state
->start
;
1514 bool do_list
= !btrfs_is_free_space_inode(inode
);
1516 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1517 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1518 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1519 spin_lock(&BTRFS_I(inode
)->lock
);
1520 BTRFS_I(inode
)->outstanding_extents
--;
1521 spin_unlock(&BTRFS_I(inode
)->lock
);
1524 if (*bits
& EXTENT_DO_ACCOUNTING
)
1525 btrfs_delalloc_release_metadata(inode
, len
);
1527 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1529 btrfs_free_reserved_data_space(inode
, len
);
1531 spin_lock(&root
->fs_info
->delalloc_lock
);
1532 root
->fs_info
->delalloc_bytes
-= len
;
1533 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1535 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1536 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1537 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1539 spin_unlock(&root
->fs_info
->delalloc_lock
);
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1547 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1548 size_t size
, struct bio
*bio
,
1549 unsigned long bio_flags
)
1551 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1552 struct btrfs_mapping_tree
*map_tree
;
1553 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1558 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1561 length
= bio
->bi_size
;
1562 map_tree
= &root
->fs_info
->mapping_tree
;
1563 map_length
= length
;
1564 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1565 &map_length
, NULL
, 0);
1566 /* Will always return 0 or 1 with map_multi == NULL */
1568 if (map_length
< length
+ size
)
1574 * in order to insert checksums into the metadata in large chunks,
1575 * we wait until bio submission time. All the pages in the bio are
1576 * checksummed and sums are attached onto the ordered extent record.
1578 * At IO completion time the cums attached on the ordered extent record
1579 * are inserted into the btree
1581 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1582 struct bio
*bio
, int mirror_num
,
1583 unsigned long bio_flags
,
1586 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1589 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1590 BUG_ON(ret
); /* -ENOMEM */
1595 * in order to insert checksums into the metadata in large chunks,
1596 * we wait until bio submission time. All the pages in the bio are
1597 * checksummed and sums are attached onto the ordered extent record.
1599 * At IO completion time the cums attached on the ordered extent record
1600 * are inserted into the btree
1602 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1603 int mirror_num
, unsigned long bio_flags
,
1606 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1607 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1611 * extent_io.c submission hook. This does the right thing for csum calculation
1612 * on write, or reading the csums from the tree before a read
1614 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1615 int mirror_num
, unsigned long bio_flags
,
1618 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1623 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1625 if (btrfs_is_free_space_inode(inode
))
1628 if (!(rw
& REQ_WRITE
)) {
1629 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1633 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1634 return btrfs_submit_compressed_read(inode
, bio
,
1635 mirror_num
, bio_flags
);
1636 } else if (!skip_sum
) {
1637 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1642 } else if (!skip_sum
) {
1643 /* csum items have already been cloned */
1644 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1646 /* we're doing a write, do the async checksumming */
1647 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1648 inode
, rw
, bio
, mirror_num
,
1649 bio_flags
, bio_offset
,
1650 __btrfs_submit_bio_start
,
1651 __btrfs_submit_bio_done
);
1655 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1659 * given a list of ordered sums record them in the inode. This happens
1660 * at IO completion time based on sums calculated at bio submission time.
1662 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1663 struct inode
*inode
, u64 file_offset
,
1664 struct list_head
*list
)
1666 struct btrfs_ordered_sum
*sum
;
1668 list_for_each_entry(sum
, list
, list
) {
1669 btrfs_csum_file_blocks(trans
,
1670 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1675 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1676 struct extent_state
**cached_state
)
1678 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1680 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1681 cached_state
, GFP_NOFS
);
1684 /* see btrfs_writepage_start_hook for details on why this is required */
1685 struct btrfs_writepage_fixup
{
1687 struct btrfs_work work
;
1690 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1692 struct btrfs_writepage_fixup
*fixup
;
1693 struct btrfs_ordered_extent
*ordered
;
1694 struct extent_state
*cached_state
= NULL
;
1696 struct inode
*inode
;
1701 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1705 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1706 ClearPageChecked(page
);
1710 inode
= page
->mapping
->host
;
1711 page_start
= page_offset(page
);
1712 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1714 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1717 /* already ordered? We're done */
1718 if (PagePrivate2(page
))
1721 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1723 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1724 page_end
, &cached_state
, GFP_NOFS
);
1726 btrfs_start_ordered_extent(inode
, ordered
, 1);
1727 btrfs_put_ordered_extent(ordered
);
1731 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1733 mapping_set_error(page
->mapping
, ret
);
1734 end_extent_writepage(page
, ret
, page_start
, page_end
);
1735 ClearPageChecked(page
);
1739 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1740 ClearPageChecked(page
);
1741 set_page_dirty(page
);
1743 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1744 &cached_state
, GFP_NOFS
);
1747 page_cache_release(page
);
1752 * There are a few paths in the higher layers of the kernel that directly
1753 * set the page dirty bit without asking the filesystem if it is a
1754 * good idea. This causes problems because we want to make sure COW
1755 * properly happens and the data=ordered rules are followed.
1757 * In our case any range that doesn't have the ORDERED bit set
1758 * hasn't been properly setup for IO. We kick off an async process
1759 * to fix it up. The async helper will wait for ordered extents, set
1760 * the delalloc bit and make it safe to write the page.
1762 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1764 struct inode
*inode
= page
->mapping
->host
;
1765 struct btrfs_writepage_fixup
*fixup
;
1766 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1768 /* this page is properly in the ordered list */
1769 if (TestClearPagePrivate2(page
))
1772 if (PageChecked(page
))
1775 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1779 SetPageChecked(page
);
1780 page_cache_get(page
);
1781 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1783 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1787 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1788 struct inode
*inode
, u64 file_pos
,
1789 u64 disk_bytenr
, u64 disk_num_bytes
,
1790 u64 num_bytes
, u64 ram_bytes
,
1791 u8 compression
, u8 encryption
,
1792 u16 other_encoding
, int extent_type
)
1794 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1795 struct btrfs_file_extent_item
*fi
;
1796 struct btrfs_path
*path
;
1797 struct extent_buffer
*leaf
;
1798 struct btrfs_key ins
;
1801 path
= btrfs_alloc_path();
1805 path
->leave_spinning
= 1;
1808 * we may be replacing one extent in the tree with another.
1809 * The new extent is pinned in the extent map, and we don't want
1810 * to drop it from the cache until it is completely in the btree.
1812 * So, tell btrfs_drop_extents to leave this extent in the cache.
1813 * the caller is expected to unpin it and allow it to be merged
1816 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1817 file_pos
+ num_bytes
, 0);
1821 ins
.objectid
= btrfs_ino(inode
);
1822 ins
.offset
= file_pos
;
1823 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1824 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1827 leaf
= path
->nodes
[0];
1828 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1829 struct btrfs_file_extent_item
);
1830 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1831 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1832 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1833 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1834 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1835 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1836 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1837 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1838 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1839 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1841 btrfs_mark_buffer_dirty(leaf
);
1842 btrfs_release_path(path
);
1844 inode_add_bytes(inode
, num_bytes
);
1846 ins
.objectid
= disk_bytenr
;
1847 ins
.offset
= disk_num_bytes
;
1848 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1849 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1850 root
->root_key
.objectid
,
1851 btrfs_ino(inode
), file_pos
, &ins
);
1853 btrfs_free_path(path
);
1859 * helper function for btrfs_finish_ordered_io, this
1860 * just reads in some of the csum leaves to prime them into ram
1861 * before we start the transaction. It limits the amount of btree
1862 * reads required while inside the transaction.
1864 /* as ordered data IO finishes, this gets called so we can finish
1865 * an ordered extent if the range of bytes in the file it covers are
1868 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
1870 struct inode
*inode
= ordered_extent
->inode
;
1871 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1872 struct btrfs_trans_handle
*trans
= NULL
;
1873 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1874 struct extent_state
*cached_state
= NULL
;
1875 int compress_type
= 0;
1879 nolock
= btrfs_is_free_space_inode(inode
);
1881 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
1886 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1887 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
1888 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1891 trans
= btrfs_join_transaction_nolock(root
);
1893 trans
= btrfs_join_transaction(root
);
1894 if (IS_ERR(trans
)) {
1895 ret
= PTR_ERR(trans
);
1899 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1900 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1901 if (ret
) /* -ENOMEM or corruption */
1902 btrfs_abort_transaction(trans
, root
, ret
);
1907 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1908 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1912 trans
= btrfs_join_transaction_nolock(root
);
1914 trans
= btrfs_join_transaction(root
);
1915 if (IS_ERR(trans
)) {
1916 ret
= PTR_ERR(trans
);
1920 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1922 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1923 compress_type
= ordered_extent
->compress_type
;
1924 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1925 BUG_ON(compress_type
);
1926 ret
= btrfs_mark_extent_written(trans
, inode
,
1927 ordered_extent
->file_offset
,
1928 ordered_extent
->file_offset
+
1929 ordered_extent
->len
);
1931 BUG_ON(root
== root
->fs_info
->tree_root
);
1932 ret
= insert_reserved_file_extent(trans
, inode
,
1933 ordered_extent
->file_offset
,
1934 ordered_extent
->start
,
1935 ordered_extent
->disk_len
,
1936 ordered_extent
->len
,
1937 ordered_extent
->len
,
1938 compress_type
, 0, 0,
1939 BTRFS_FILE_EXTENT_REG
);
1941 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1942 ordered_extent
->file_offset
, ordered_extent
->len
,
1945 btrfs_abort_transaction(trans
, root
, ret
);
1949 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1950 &ordered_extent
->list
);
1952 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1953 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1954 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1955 if (ret
) { /* -ENOMEM or corruption */
1956 btrfs_abort_transaction(trans
, root
, ret
);
1960 btrfs_set_inode_last_trans(trans
, inode
);
1964 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1965 ordered_extent
->file_offset
+
1966 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1968 if (root
!= root
->fs_info
->tree_root
)
1969 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1971 btrfs_end_transaction(trans
, root
);
1974 clear_extent_uptodate(io_tree
, ordered_extent
->file_offset
,
1975 ordered_extent
->file_offset
+
1976 ordered_extent
->len
- 1, NULL
, GFP_NOFS
);
1979 * This needs to be done to make sure anybody waiting knows we are done
1980 * updating everything for this ordered extent.
1982 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1985 btrfs_put_ordered_extent(ordered_extent
);
1986 /* once for the tree */
1987 btrfs_put_ordered_extent(ordered_extent
);
1992 static void finish_ordered_fn(struct btrfs_work
*work
)
1994 struct btrfs_ordered_extent
*ordered_extent
;
1995 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
1996 btrfs_finish_ordered_io(ordered_extent
);
1999 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2000 struct extent_state
*state
, int uptodate
)
2002 struct inode
*inode
= page
->mapping
->host
;
2003 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2004 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2005 struct btrfs_workers
*workers
;
2007 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2009 ClearPagePrivate2(page
);
2010 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2011 end
- start
+ 1, uptodate
))
2014 ordered_extent
->work
.func
= finish_ordered_fn
;
2015 ordered_extent
->work
.flags
= 0;
2017 if (btrfs_is_free_space_inode(inode
))
2018 workers
= &root
->fs_info
->endio_freespace_worker
;
2020 workers
= &root
->fs_info
->endio_write_workers
;
2021 btrfs_queue_worker(workers
, &ordered_extent
->work
);
2027 * when reads are done, we need to check csums to verify the data is correct
2028 * if there's a match, we allow the bio to finish. If not, the code in
2029 * extent_io.c will try to find good copies for us.
2031 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2032 struct extent_state
*state
, int mirror
)
2034 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2035 struct inode
*inode
= page
->mapping
->host
;
2036 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2038 u64
private = ~(u32
)0;
2040 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2043 if (PageChecked(page
)) {
2044 ClearPageChecked(page
);
2048 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2051 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2052 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2053 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
2058 if (state
&& state
->start
== start
) {
2059 private = state
->private;
2062 ret
= get_state_private(io_tree
, start
, &private);
2064 kaddr
= kmap_atomic(page
);
2068 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
2069 btrfs_csum_final(csum
, (char *)&csum
);
2070 if (csum
!= private)
2073 kunmap_atomic(kaddr
);
2078 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
2080 (unsigned long long)btrfs_ino(page
->mapping
->host
),
2081 (unsigned long long)start
, csum
,
2082 (unsigned long long)private);
2083 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2084 flush_dcache_page(page
);
2085 kunmap_atomic(kaddr
);
2091 struct delayed_iput
{
2092 struct list_head list
;
2093 struct inode
*inode
;
2096 /* JDM: If this is fs-wide, why can't we add a pointer to
2097 * btrfs_inode instead and avoid the allocation? */
2098 void btrfs_add_delayed_iput(struct inode
*inode
)
2100 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2101 struct delayed_iput
*delayed
;
2103 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2106 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2107 delayed
->inode
= inode
;
2109 spin_lock(&fs_info
->delayed_iput_lock
);
2110 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2111 spin_unlock(&fs_info
->delayed_iput_lock
);
2114 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2117 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2118 struct delayed_iput
*delayed
;
2121 spin_lock(&fs_info
->delayed_iput_lock
);
2122 empty
= list_empty(&fs_info
->delayed_iputs
);
2123 spin_unlock(&fs_info
->delayed_iput_lock
);
2127 spin_lock(&fs_info
->delayed_iput_lock
);
2128 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2129 spin_unlock(&fs_info
->delayed_iput_lock
);
2131 while (!list_empty(&list
)) {
2132 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2133 list_del(&delayed
->list
);
2134 iput(delayed
->inode
);
2139 enum btrfs_orphan_cleanup_state
{
2140 ORPHAN_CLEANUP_STARTED
= 1,
2141 ORPHAN_CLEANUP_DONE
= 2,
2145 * This is called in transaction commit time. If there are no orphan
2146 * files in the subvolume, it removes orphan item and frees block_rsv
2149 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2150 struct btrfs_root
*root
)
2152 struct btrfs_block_rsv
*block_rsv
;
2155 if (atomic_read(&root
->orphan_inodes
) ||
2156 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2159 spin_lock(&root
->orphan_lock
);
2160 if (atomic_read(&root
->orphan_inodes
)) {
2161 spin_unlock(&root
->orphan_lock
);
2165 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
2166 spin_unlock(&root
->orphan_lock
);
2170 block_rsv
= root
->orphan_block_rsv
;
2171 root
->orphan_block_rsv
= NULL
;
2172 spin_unlock(&root
->orphan_lock
);
2174 if (root
->orphan_item_inserted
&&
2175 btrfs_root_refs(&root
->root_item
) > 0) {
2176 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2177 root
->root_key
.objectid
);
2179 root
->orphan_item_inserted
= 0;
2183 WARN_ON(block_rsv
->size
> 0);
2184 btrfs_free_block_rsv(root
, block_rsv
);
2189 * This creates an orphan entry for the given inode in case something goes
2190 * wrong in the middle of an unlink/truncate.
2192 * NOTE: caller of this function should reserve 5 units of metadata for
2195 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2197 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2198 struct btrfs_block_rsv
*block_rsv
= NULL
;
2203 if (!root
->orphan_block_rsv
) {
2204 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2209 spin_lock(&root
->orphan_lock
);
2210 if (!root
->orphan_block_rsv
) {
2211 root
->orphan_block_rsv
= block_rsv
;
2212 } else if (block_rsv
) {
2213 btrfs_free_block_rsv(root
, block_rsv
);
2217 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2218 &BTRFS_I(inode
)->runtime_flags
)) {
2221 * For proper ENOSPC handling, we should do orphan
2222 * cleanup when mounting. But this introduces backward
2223 * compatibility issue.
2225 if (!xchg(&root
->orphan_item_inserted
, 1))
2231 atomic_inc(&root
->orphan_inodes
);
2234 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2235 &BTRFS_I(inode
)->runtime_flags
))
2237 spin_unlock(&root
->orphan_lock
);
2239 /* grab metadata reservation from transaction handle */
2241 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2242 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
2245 /* insert an orphan item to track this unlinked/truncated file */
2247 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2248 if (ret
&& ret
!= -EEXIST
) {
2249 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2250 &BTRFS_I(inode
)->runtime_flags
);
2251 btrfs_abort_transaction(trans
, root
, ret
);
2257 /* insert an orphan item to track subvolume contains orphan files */
2259 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2260 root
->root_key
.objectid
);
2261 if (ret
&& ret
!= -EEXIST
) {
2262 btrfs_abort_transaction(trans
, root
, ret
);
2270 * We have done the truncate/delete so we can go ahead and remove the orphan
2271 * item for this particular inode.
2273 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2275 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2276 int delete_item
= 0;
2277 int release_rsv
= 0;
2280 spin_lock(&root
->orphan_lock
);
2281 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2282 &BTRFS_I(inode
)->runtime_flags
))
2285 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2286 &BTRFS_I(inode
)->runtime_flags
))
2288 spin_unlock(&root
->orphan_lock
);
2290 if (trans
&& delete_item
) {
2291 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2292 BUG_ON(ret
); /* -ENOMEM or corruption (JDM: Recheck) */
2296 btrfs_orphan_release_metadata(inode
);
2297 atomic_dec(&root
->orphan_inodes
);
2304 * this cleans up any orphans that may be left on the list from the last use
2307 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2309 struct btrfs_path
*path
;
2310 struct extent_buffer
*leaf
;
2311 struct btrfs_key key
, found_key
;
2312 struct btrfs_trans_handle
*trans
;
2313 struct inode
*inode
;
2314 u64 last_objectid
= 0;
2315 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2317 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2320 path
= btrfs_alloc_path();
2327 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2328 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2329 key
.offset
= (u64
)-1;
2332 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2337 * if ret == 0 means we found what we were searching for, which
2338 * is weird, but possible, so only screw with path if we didn't
2339 * find the key and see if we have stuff that matches
2343 if (path
->slots
[0] == 0)
2348 /* pull out the item */
2349 leaf
= path
->nodes
[0];
2350 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2352 /* make sure the item matches what we want */
2353 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2355 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2358 /* release the path since we're done with it */
2359 btrfs_release_path(path
);
2362 * this is where we are basically btrfs_lookup, without the
2363 * crossing root thing. we store the inode number in the
2364 * offset of the orphan item.
2367 if (found_key
.offset
== last_objectid
) {
2368 printk(KERN_ERR
"btrfs: Error removing orphan entry, "
2369 "stopping orphan cleanup\n");
2374 last_objectid
= found_key
.offset
;
2376 found_key
.objectid
= found_key
.offset
;
2377 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2378 found_key
.offset
= 0;
2379 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2380 ret
= PTR_RET(inode
);
2381 if (ret
&& ret
!= -ESTALE
)
2384 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
2385 struct btrfs_root
*dead_root
;
2386 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2387 int is_dead_root
= 0;
2390 * this is an orphan in the tree root. Currently these
2391 * could come from 2 sources:
2392 * a) a snapshot deletion in progress
2393 * b) a free space cache inode
2394 * We need to distinguish those two, as the snapshot
2395 * orphan must not get deleted.
2396 * find_dead_roots already ran before us, so if this
2397 * is a snapshot deletion, we should find the root
2398 * in the dead_roots list
2400 spin_lock(&fs_info
->trans_lock
);
2401 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
2403 if (dead_root
->root_key
.objectid
==
2404 found_key
.objectid
) {
2409 spin_unlock(&fs_info
->trans_lock
);
2411 /* prevent this orphan from being found again */
2412 key
.offset
= found_key
.objectid
- 1;
2417 * Inode is already gone but the orphan item is still there,
2418 * kill the orphan item.
2420 if (ret
== -ESTALE
) {
2421 trans
= btrfs_start_transaction(root
, 1);
2422 if (IS_ERR(trans
)) {
2423 ret
= PTR_ERR(trans
);
2426 printk(KERN_ERR
"auto deleting %Lu\n",
2427 found_key
.objectid
);
2428 ret
= btrfs_del_orphan_item(trans
, root
,
2429 found_key
.objectid
);
2430 BUG_ON(ret
); /* -ENOMEM or corruption (JDM: Recheck) */
2431 btrfs_end_transaction(trans
, root
);
2436 * add this inode to the orphan list so btrfs_orphan_del does
2437 * the proper thing when we hit it
2439 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2440 &BTRFS_I(inode
)->runtime_flags
);
2442 /* if we have links, this was a truncate, lets do that */
2443 if (inode
->i_nlink
) {
2444 if (!S_ISREG(inode
->i_mode
)) {
2450 ret
= btrfs_truncate(inode
);
2455 /* this will do delete_inode and everything for us */
2460 /* release the path since we're done with it */
2461 btrfs_release_path(path
);
2463 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2465 if (root
->orphan_block_rsv
)
2466 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2469 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2470 trans
= btrfs_join_transaction(root
);
2472 btrfs_end_transaction(trans
, root
);
2476 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2478 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2482 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2483 btrfs_free_path(path
);
2488 * very simple check to peek ahead in the leaf looking for xattrs. If we
2489 * don't find any xattrs, we know there can't be any acls.
2491 * slot is the slot the inode is in, objectid is the objectid of the inode
2493 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2494 int slot
, u64 objectid
)
2496 u32 nritems
= btrfs_header_nritems(leaf
);
2497 struct btrfs_key found_key
;
2501 while (slot
< nritems
) {
2502 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2504 /* we found a different objectid, there must not be acls */
2505 if (found_key
.objectid
!= objectid
)
2508 /* we found an xattr, assume we've got an acl */
2509 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2513 * we found a key greater than an xattr key, there can't
2514 * be any acls later on
2516 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2523 * it goes inode, inode backrefs, xattrs, extents,
2524 * so if there are a ton of hard links to an inode there can
2525 * be a lot of backrefs. Don't waste time searching too hard,
2526 * this is just an optimization
2531 /* we hit the end of the leaf before we found an xattr or
2532 * something larger than an xattr. We have to assume the inode
2539 * read an inode from the btree into the in-memory inode
2541 static void btrfs_read_locked_inode(struct inode
*inode
)
2543 struct btrfs_path
*path
;
2544 struct extent_buffer
*leaf
;
2545 struct btrfs_inode_item
*inode_item
;
2546 struct btrfs_timespec
*tspec
;
2547 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2548 struct btrfs_key location
;
2552 bool filled
= false;
2554 ret
= btrfs_fill_inode(inode
, &rdev
);
2558 path
= btrfs_alloc_path();
2562 path
->leave_spinning
= 1;
2563 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2565 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2569 leaf
= path
->nodes
[0];
2574 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2575 struct btrfs_inode_item
);
2576 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2577 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
2578 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
2579 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
2580 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2582 tspec
= btrfs_inode_atime(inode_item
);
2583 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2584 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2586 tspec
= btrfs_inode_mtime(inode_item
);
2587 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2588 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2590 tspec
= btrfs_inode_ctime(inode_item
);
2591 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2592 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2594 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2595 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2596 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
2599 * If we were modified in the current generation and evicted from memory
2600 * and then re-read we need to do a full sync since we don't have any
2601 * idea about which extents were modified before we were evicted from
2604 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
2605 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2606 &BTRFS_I(inode
)->runtime_flags
);
2608 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
2609 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2611 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2613 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2614 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2617 * try to precache a NULL acl entry for files that don't have
2618 * any xattrs or acls
2620 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2623 cache_no_acl(inode
);
2625 btrfs_free_path(path
);
2627 switch (inode
->i_mode
& S_IFMT
) {
2629 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2630 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2631 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2632 inode
->i_fop
= &btrfs_file_operations
;
2633 inode
->i_op
= &btrfs_file_inode_operations
;
2636 inode
->i_fop
= &btrfs_dir_file_operations
;
2637 if (root
== root
->fs_info
->tree_root
)
2638 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2640 inode
->i_op
= &btrfs_dir_inode_operations
;
2643 inode
->i_op
= &btrfs_symlink_inode_operations
;
2644 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2645 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2648 inode
->i_op
= &btrfs_special_inode_operations
;
2649 init_special_inode(inode
, inode
->i_mode
, rdev
);
2653 btrfs_update_iflags(inode
);
2657 btrfs_free_path(path
);
2658 make_bad_inode(inode
);
2662 * given a leaf and an inode, copy the inode fields into the leaf
2664 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2665 struct extent_buffer
*leaf
,
2666 struct btrfs_inode_item
*item
,
2667 struct inode
*inode
)
2669 btrfs_set_inode_uid(leaf
, item
, i_uid_read(inode
));
2670 btrfs_set_inode_gid(leaf
, item
, i_gid_read(inode
));
2671 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2672 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2673 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2675 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2676 inode
->i_atime
.tv_sec
);
2677 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2678 inode
->i_atime
.tv_nsec
);
2680 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2681 inode
->i_mtime
.tv_sec
);
2682 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2683 inode
->i_mtime
.tv_nsec
);
2685 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2686 inode
->i_ctime
.tv_sec
);
2687 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2688 inode
->i_ctime
.tv_nsec
);
2690 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2691 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2692 btrfs_set_inode_sequence(leaf
, item
, inode
->i_version
);
2693 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2694 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2695 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2696 btrfs_set_inode_block_group(leaf
, item
, 0);
2700 * copy everything in the in-memory inode into the btree.
2702 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
2703 struct btrfs_root
*root
, struct inode
*inode
)
2705 struct btrfs_inode_item
*inode_item
;
2706 struct btrfs_path
*path
;
2707 struct extent_buffer
*leaf
;
2710 path
= btrfs_alloc_path();
2714 path
->leave_spinning
= 1;
2715 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2723 btrfs_unlock_up_safe(path
, 1);
2724 leaf
= path
->nodes
[0];
2725 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2726 struct btrfs_inode_item
);
2728 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2729 btrfs_mark_buffer_dirty(leaf
);
2730 btrfs_set_inode_last_trans(trans
, inode
);
2733 btrfs_free_path(path
);
2738 * copy everything in the in-memory inode into the btree.
2740 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2741 struct btrfs_root
*root
, struct inode
*inode
)
2746 * If the inode is a free space inode, we can deadlock during commit
2747 * if we put it into the delayed code.
2749 * The data relocation inode should also be directly updated
2752 if (!btrfs_is_free_space_inode(inode
)
2753 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2754 btrfs_update_root_times(trans
, root
);
2756 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2758 btrfs_set_inode_last_trans(trans
, inode
);
2762 return btrfs_update_inode_item(trans
, root
, inode
);
2765 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
2766 struct btrfs_root
*root
,
2767 struct inode
*inode
)
2771 ret
= btrfs_update_inode(trans
, root
, inode
);
2773 return btrfs_update_inode_item(trans
, root
, inode
);
2778 * unlink helper that gets used here in inode.c and in the tree logging
2779 * recovery code. It remove a link in a directory with a given name, and
2780 * also drops the back refs in the inode to the directory
2782 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2783 struct btrfs_root
*root
,
2784 struct inode
*dir
, struct inode
*inode
,
2785 const char *name
, int name_len
)
2787 struct btrfs_path
*path
;
2789 struct extent_buffer
*leaf
;
2790 struct btrfs_dir_item
*di
;
2791 struct btrfs_key key
;
2793 u64 ino
= btrfs_ino(inode
);
2794 u64 dir_ino
= btrfs_ino(dir
);
2796 path
= btrfs_alloc_path();
2802 path
->leave_spinning
= 1;
2803 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2804 name
, name_len
, -1);
2813 leaf
= path
->nodes
[0];
2814 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2815 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2818 btrfs_release_path(path
);
2820 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2823 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2824 "inode %llu parent %llu\n", name_len
, name
,
2825 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2826 btrfs_abort_transaction(trans
, root
, ret
);
2830 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2832 btrfs_abort_transaction(trans
, root
, ret
);
2836 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2838 if (ret
!= 0 && ret
!= -ENOENT
) {
2839 btrfs_abort_transaction(trans
, root
, ret
);
2843 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2848 btrfs_free_path(path
);
2852 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2853 inode_inc_iversion(inode
);
2854 inode_inc_iversion(dir
);
2855 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2856 ret
= btrfs_update_inode(trans
, root
, dir
);
2861 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2862 struct btrfs_root
*root
,
2863 struct inode
*dir
, struct inode
*inode
,
2864 const char *name
, int name_len
)
2867 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2869 btrfs_drop_nlink(inode
);
2870 ret
= btrfs_update_inode(trans
, root
, inode
);
2876 /* helper to check if there is any shared block in the path */
2877 static int check_path_shared(struct btrfs_root
*root
,
2878 struct btrfs_path
*path
)
2880 struct extent_buffer
*eb
;
2884 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2887 if (!path
->nodes
[level
])
2889 eb
= path
->nodes
[level
];
2890 if (!btrfs_block_can_be_shared(root
, eb
))
2892 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2901 * helper to start transaction for unlink and rmdir.
2903 * unlink and rmdir are special in btrfs, they do not always free space.
2904 * so in enospc case, we should make sure they will free space before
2905 * allowing them to use the global metadata reservation.
2907 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2908 struct dentry
*dentry
)
2910 struct btrfs_trans_handle
*trans
;
2911 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2912 struct btrfs_path
*path
;
2913 struct btrfs_dir_item
*di
;
2914 struct inode
*inode
= dentry
->d_inode
;
2919 u64 ino
= btrfs_ino(inode
);
2920 u64 dir_ino
= btrfs_ino(dir
);
2923 * 1 for the possible orphan item
2924 * 1 for the dir item
2925 * 1 for the dir index
2926 * 1 for the inode ref
2927 * 1 for the inode ref in the tree log
2928 * 2 for the dir entries in the log
2931 trans
= btrfs_start_transaction(root
, 8);
2932 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2935 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2936 return ERR_PTR(-ENOSPC
);
2938 /* check if there is someone else holds reference */
2939 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2940 return ERR_PTR(-ENOSPC
);
2942 if (atomic_read(&inode
->i_count
) > 2)
2943 return ERR_PTR(-ENOSPC
);
2945 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2946 return ERR_PTR(-ENOSPC
);
2948 path
= btrfs_alloc_path();
2950 root
->fs_info
->enospc_unlink
= 0;
2951 return ERR_PTR(-ENOMEM
);
2954 /* 1 for the orphan item */
2955 trans
= btrfs_start_transaction(root
, 1);
2956 if (IS_ERR(trans
)) {
2957 btrfs_free_path(path
);
2958 root
->fs_info
->enospc_unlink
= 0;
2962 path
->skip_locking
= 1;
2963 path
->search_commit_root
= 1;
2965 ret
= btrfs_lookup_inode(trans
, root
, path
,
2966 &BTRFS_I(dir
)->location
, 0);
2972 if (check_path_shared(root
, path
))
2977 btrfs_release_path(path
);
2979 ret
= btrfs_lookup_inode(trans
, root
, path
,
2980 &BTRFS_I(inode
)->location
, 0);
2986 if (check_path_shared(root
, path
))
2991 btrfs_release_path(path
);
2993 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2994 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
3000 BUG_ON(ret
== 0); /* Corruption */
3001 if (check_path_shared(root
, path
))
3003 btrfs_release_path(path
);
3011 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3012 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
3018 if (check_path_shared(root
, path
))
3024 btrfs_release_path(path
);
3026 ret
= btrfs_get_inode_ref_index(trans
, root
, path
, dentry
->d_name
.name
,
3027 dentry
->d_name
.len
, ino
, dir_ino
, 0,
3034 if (check_path_shared(root
, path
))
3037 btrfs_release_path(path
);
3040 * This is a commit root search, if we can lookup inode item and other
3041 * relative items in the commit root, it means the transaction of
3042 * dir/file creation has been committed, and the dir index item that we
3043 * delay to insert has also been inserted into the commit root. So
3044 * we needn't worry about the delayed insertion of the dir index item
3047 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
3048 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
3053 BUG_ON(ret
== -ENOENT
);
3054 if (check_path_shared(root
, path
))
3059 btrfs_free_path(path
);
3060 /* Migrate the orphan reservation over */
3062 err
= btrfs_block_rsv_migrate(trans
->block_rsv
,
3063 &root
->fs_info
->global_block_rsv
,
3064 trans
->bytes_reserved
);
3067 btrfs_end_transaction(trans
, root
);
3068 root
->fs_info
->enospc_unlink
= 0;
3069 return ERR_PTR(err
);
3072 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
3076 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
3077 struct btrfs_root
*root
)
3079 if (trans
->block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
) {
3080 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3081 trans
->bytes_reserved
);
3082 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3083 BUG_ON(!root
->fs_info
->enospc_unlink
);
3084 root
->fs_info
->enospc_unlink
= 0;
3086 btrfs_end_transaction(trans
, root
);
3089 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3091 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3092 struct btrfs_trans_handle
*trans
;
3093 struct inode
*inode
= dentry
->d_inode
;
3095 unsigned long nr
= 0;
3097 trans
= __unlink_start_trans(dir
, dentry
);
3099 return PTR_ERR(trans
);
3101 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3103 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3104 dentry
->d_name
.name
, dentry
->d_name
.len
);
3108 if (inode
->i_nlink
== 0) {
3109 ret
= btrfs_orphan_add(trans
, inode
);
3115 nr
= trans
->blocks_used
;
3116 __unlink_end_trans(trans
, root
);
3117 btrfs_btree_balance_dirty(root
, nr
);
3121 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3122 struct btrfs_root
*root
,
3123 struct inode
*dir
, u64 objectid
,
3124 const char *name
, int name_len
)
3126 struct btrfs_path
*path
;
3127 struct extent_buffer
*leaf
;
3128 struct btrfs_dir_item
*di
;
3129 struct btrfs_key key
;
3132 u64 dir_ino
= btrfs_ino(dir
);
3134 path
= btrfs_alloc_path();
3138 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3139 name
, name_len
, -1);
3140 if (IS_ERR_OR_NULL(di
)) {
3148 leaf
= path
->nodes
[0];
3149 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3150 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3151 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3153 btrfs_abort_transaction(trans
, root
, ret
);
3156 btrfs_release_path(path
);
3158 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3159 objectid
, root
->root_key
.objectid
,
3160 dir_ino
, &index
, name
, name_len
);
3162 if (ret
!= -ENOENT
) {
3163 btrfs_abort_transaction(trans
, root
, ret
);
3166 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3168 if (IS_ERR_OR_NULL(di
)) {
3173 btrfs_abort_transaction(trans
, root
, ret
);
3177 leaf
= path
->nodes
[0];
3178 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3179 btrfs_release_path(path
);
3182 btrfs_release_path(path
);
3184 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3186 btrfs_abort_transaction(trans
, root
, ret
);
3190 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3191 inode_inc_iversion(dir
);
3192 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3193 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3195 btrfs_abort_transaction(trans
, root
, ret
);
3197 btrfs_free_path(path
);
3201 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3203 struct inode
*inode
= dentry
->d_inode
;
3205 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3206 struct btrfs_trans_handle
*trans
;
3207 unsigned long nr
= 0;
3209 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
3211 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3214 trans
= __unlink_start_trans(dir
, dentry
);
3216 return PTR_ERR(trans
);
3218 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3219 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3220 BTRFS_I(inode
)->location
.objectid
,
3221 dentry
->d_name
.name
,
3222 dentry
->d_name
.len
);
3226 err
= btrfs_orphan_add(trans
, inode
);
3230 /* now the directory is empty */
3231 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3232 dentry
->d_name
.name
, dentry
->d_name
.len
);
3234 btrfs_i_size_write(inode
, 0);
3236 nr
= trans
->blocks_used
;
3237 __unlink_end_trans(trans
, root
);
3238 btrfs_btree_balance_dirty(root
, nr
);
3244 * this can truncate away extent items, csum items and directory items.
3245 * It starts at a high offset and removes keys until it can't find
3246 * any higher than new_size
3248 * csum items that cross the new i_size are truncated to the new size
3251 * min_type is the minimum key type to truncate down to. If set to 0, this
3252 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3254 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3255 struct btrfs_root
*root
,
3256 struct inode
*inode
,
3257 u64 new_size
, u32 min_type
)
3259 struct btrfs_path
*path
;
3260 struct extent_buffer
*leaf
;
3261 struct btrfs_file_extent_item
*fi
;
3262 struct btrfs_key key
;
3263 struct btrfs_key found_key
;
3264 u64 extent_start
= 0;
3265 u64 extent_num_bytes
= 0;
3266 u64 extent_offset
= 0;
3268 u64 mask
= root
->sectorsize
- 1;
3269 u32 found_type
= (u8
)-1;
3272 int pending_del_nr
= 0;
3273 int pending_del_slot
= 0;
3274 int extent_type
= -1;
3277 u64 ino
= btrfs_ino(inode
);
3279 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3281 path
= btrfs_alloc_path();
3287 * We want to drop from the next block forward in case this new size is
3288 * not block aligned since we will be keeping the last block of the
3289 * extent just the way it is.
3291 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3292 btrfs_drop_extent_cache(inode
, (new_size
+ mask
) & (~mask
), (u64
)-1, 0);
3295 * This function is also used to drop the items in the log tree before
3296 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3297 * it is used to drop the loged items. So we shouldn't kill the delayed
3300 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3301 btrfs_kill_delayed_inode_items(inode
);
3304 key
.offset
= (u64
)-1;
3308 path
->leave_spinning
= 1;
3309 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3316 /* there are no items in the tree for us to truncate, we're
3319 if (path
->slots
[0] == 0)
3326 leaf
= path
->nodes
[0];
3327 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3328 found_type
= btrfs_key_type(&found_key
);
3330 if (found_key
.objectid
!= ino
)
3333 if (found_type
< min_type
)
3336 item_end
= found_key
.offset
;
3337 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3338 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3339 struct btrfs_file_extent_item
);
3340 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3341 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3343 btrfs_file_extent_num_bytes(leaf
, fi
);
3344 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3345 item_end
+= btrfs_file_extent_inline_len(leaf
,
3350 if (found_type
> min_type
) {
3353 if (item_end
< new_size
)
3355 if (found_key
.offset
>= new_size
)
3361 /* FIXME, shrink the extent if the ref count is only 1 */
3362 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3365 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3367 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3369 u64 orig_num_bytes
=
3370 btrfs_file_extent_num_bytes(leaf
, fi
);
3371 extent_num_bytes
= new_size
-
3372 found_key
.offset
+ root
->sectorsize
- 1;
3373 extent_num_bytes
= extent_num_bytes
&
3374 ~((u64
)root
->sectorsize
- 1);
3375 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3377 num_dec
= (orig_num_bytes
-
3379 if (root
->ref_cows
&& extent_start
!= 0)
3380 inode_sub_bytes(inode
, num_dec
);
3381 btrfs_mark_buffer_dirty(leaf
);
3384 btrfs_file_extent_disk_num_bytes(leaf
,
3386 extent_offset
= found_key
.offset
-
3387 btrfs_file_extent_offset(leaf
, fi
);
3389 /* FIXME blocksize != 4096 */
3390 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3391 if (extent_start
!= 0) {
3394 inode_sub_bytes(inode
, num_dec
);
3397 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3399 * we can't truncate inline items that have had
3403 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3404 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3405 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3406 u32 size
= new_size
- found_key
.offset
;
3408 if (root
->ref_cows
) {
3409 inode_sub_bytes(inode
, item_end
+ 1 -
3413 btrfs_file_extent_calc_inline_size(size
);
3414 btrfs_truncate_item(trans
, root
, path
,
3416 } else if (root
->ref_cows
) {
3417 inode_sub_bytes(inode
, item_end
+ 1 -
3423 if (!pending_del_nr
) {
3424 /* no pending yet, add ourselves */
3425 pending_del_slot
= path
->slots
[0];
3427 } else if (pending_del_nr
&&
3428 path
->slots
[0] + 1 == pending_del_slot
) {
3429 /* hop on the pending chunk */
3431 pending_del_slot
= path
->slots
[0];
3438 if (found_extent
&& (root
->ref_cows
||
3439 root
== root
->fs_info
->tree_root
)) {
3440 btrfs_set_path_blocking(path
);
3441 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3442 extent_num_bytes
, 0,
3443 btrfs_header_owner(leaf
),
3444 ino
, extent_offset
, 0);
3448 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3451 if (path
->slots
[0] == 0 ||
3452 path
->slots
[0] != pending_del_slot
) {
3453 if (pending_del_nr
) {
3454 ret
= btrfs_del_items(trans
, root
, path
,
3458 btrfs_abort_transaction(trans
,
3464 btrfs_release_path(path
);
3471 if (pending_del_nr
) {
3472 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3475 btrfs_abort_transaction(trans
, root
, ret
);
3478 btrfs_free_path(path
);
3483 * btrfs_truncate_page - read, zero a chunk and write a page
3484 * @inode - inode that we're zeroing
3485 * @from - the offset to start zeroing
3486 * @len - the length to zero, 0 to zero the entire range respective to the
3488 * @front - zero up to the offset instead of from the offset on
3490 * This will find the page for the "from" offset and cow the page and zero the
3491 * part we want to zero. This is used with truncate and hole punching.
3493 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
3496 struct address_space
*mapping
= inode
->i_mapping
;
3497 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3498 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3499 struct btrfs_ordered_extent
*ordered
;
3500 struct extent_state
*cached_state
= NULL
;
3502 u32 blocksize
= root
->sectorsize
;
3503 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3504 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3506 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
3511 if ((offset
& (blocksize
- 1)) == 0 &&
3512 (!len
|| ((len
& (blocksize
- 1)) == 0)))
3514 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3520 page
= find_or_create_page(mapping
, index
, mask
);
3522 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3526 page_start
= page_offset(page
);
3527 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3529 if (!PageUptodate(page
)) {
3530 ret
= btrfs_readpage(NULL
, page
);
3532 if (page
->mapping
!= mapping
) {
3534 page_cache_release(page
);
3537 if (!PageUptodate(page
)) {
3542 wait_on_page_writeback(page
);
3544 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
3545 set_page_extent_mapped(page
);
3547 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3549 unlock_extent_cached(io_tree
, page_start
, page_end
,
3550 &cached_state
, GFP_NOFS
);
3552 page_cache_release(page
);
3553 btrfs_start_ordered_extent(inode
, ordered
, 1);
3554 btrfs_put_ordered_extent(ordered
);
3558 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3559 EXTENT_DIRTY
| EXTENT_DELALLOC
|
3560 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
3561 0, 0, &cached_state
, GFP_NOFS
);
3563 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3566 unlock_extent_cached(io_tree
, page_start
, page_end
,
3567 &cached_state
, GFP_NOFS
);
3572 if (offset
!= PAGE_CACHE_SIZE
) {
3574 len
= PAGE_CACHE_SIZE
- offset
;
3577 memset(kaddr
, 0, offset
);
3579 memset(kaddr
+ offset
, 0, len
);
3580 flush_dcache_page(page
);
3583 ClearPageChecked(page
);
3584 set_page_dirty(page
);
3585 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3590 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3592 page_cache_release(page
);
3598 * This function puts in dummy file extents for the area we're creating a hole
3599 * for. So if we are truncating this file to a larger size we need to insert
3600 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3601 * the range between oldsize and size
3603 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3605 struct btrfs_trans_handle
*trans
;
3606 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3607 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3608 struct extent_map
*em
= NULL
;
3609 struct extent_state
*cached_state
= NULL
;
3610 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3611 u64 mask
= root
->sectorsize
- 1;
3612 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3613 u64 block_end
= (size
+ mask
) & ~mask
;
3619 if (size
<= hole_start
)
3623 struct btrfs_ordered_extent
*ordered
;
3624 btrfs_wait_ordered_range(inode
, hole_start
,
3625 block_end
- hole_start
);
3626 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3628 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3631 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3632 &cached_state
, GFP_NOFS
);
3633 btrfs_put_ordered_extent(ordered
);
3636 cur_offset
= hole_start
;
3638 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3639 block_end
- cur_offset
, 0);
3644 last_byte
= min(extent_map_end(em
), block_end
);
3645 last_byte
= (last_byte
+ mask
) & ~mask
;
3646 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3647 struct extent_map
*hole_em
;
3648 hole_size
= last_byte
- cur_offset
;
3650 trans
= btrfs_start_transaction(root
, 3);
3651 if (IS_ERR(trans
)) {
3652 err
= PTR_ERR(trans
);
3656 err
= btrfs_drop_extents(trans
, root
, inode
,
3658 cur_offset
+ hole_size
, 1);
3660 btrfs_abort_transaction(trans
, root
, err
);
3661 btrfs_end_transaction(trans
, root
);
3665 err
= btrfs_insert_file_extent(trans
, root
,
3666 btrfs_ino(inode
), cur_offset
, 0,
3667 0, hole_size
, 0, hole_size
,
3670 btrfs_abort_transaction(trans
, root
, err
);
3671 btrfs_end_transaction(trans
, root
);
3675 btrfs_drop_extent_cache(inode
, cur_offset
,
3676 cur_offset
+ hole_size
- 1, 0);
3677 hole_em
= alloc_extent_map();
3679 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3680 &BTRFS_I(inode
)->runtime_flags
);
3683 hole_em
->start
= cur_offset
;
3684 hole_em
->len
= hole_size
;
3685 hole_em
->orig_start
= cur_offset
;
3687 hole_em
->block_start
= EXTENT_MAP_HOLE
;
3688 hole_em
->block_len
= 0;
3689 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3690 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
3691 hole_em
->generation
= trans
->transid
;
3694 write_lock(&em_tree
->lock
);
3695 err
= add_extent_mapping(em_tree
, hole_em
);
3697 list_move(&hole_em
->list
,
3698 &em_tree
->modified_extents
);
3699 write_unlock(&em_tree
->lock
);
3702 btrfs_drop_extent_cache(inode
, cur_offset
,
3706 free_extent_map(hole_em
);
3708 btrfs_update_inode(trans
, root
, inode
);
3709 btrfs_end_transaction(trans
, root
);
3711 free_extent_map(em
);
3713 cur_offset
= last_byte
;
3714 if (cur_offset
>= block_end
)
3718 free_extent_map(em
);
3719 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3724 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3726 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3727 struct btrfs_trans_handle
*trans
;
3728 loff_t oldsize
= i_size_read(inode
);
3731 if (newsize
== oldsize
)
3734 if (newsize
> oldsize
) {
3735 truncate_pagecache(inode
, oldsize
, newsize
);
3736 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3740 trans
= btrfs_start_transaction(root
, 1);
3742 return PTR_ERR(trans
);
3744 i_size_write(inode
, newsize
);
3745 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3746 ret
= btrfs_update_inode(trans
, root
, inode
);
3747 btrfs_end_transaction(trans
, root
);
3751 * We're truncating a file that used to have good data down to
3752 * zero. Make sure it gets into the ordered flush list so that
3753 * any new writes get down to disk quickly.
3756 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
3757 &BTRFS_I(inode
)->runtime_flags
);
3759 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3760 truncate_setsize(inode
, newsize
);
3761 ret
= btrfs_truncate(inode
);
3767 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3769 struct inode
*inode
= dentry
->d_inode
;
3770 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3773 if (btrfs_root_readonly(root
))
3776 err
= inode_change_ok(inode
, attr
);
3780 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3781 err
= btrfs_setsize(inode
, attr
->ia_size
);
3786 if (attr
->ia_valid
) {
3787 setattr_copy(inode
, attr
);
3788 inode_inc_iversion(inode
);
3789 err
= btrfs_dirty_inode(inode
);
3791 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
3792 err
= btrfs_acl_chmod(inode
);
3798 void btrfs_evict_inode(struct inode
*inode
)
3800 struct btrfs_trans_handle
*trans
;
3801 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3802 struct btrfs_block_rsv
*rsv
, *global_rsv
;
3803 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
3807 trace_btrfs_inode_evict(inode
);
3809 truncate_inode_pages(&inode
->i_data
, 0);
3810 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3811 btrfs_is_free_space_inode(inode
)))
3814 if (is_bad_inode(inode
)) {
3815 btrfs_orphan_del(NULL
, inode
);
3818 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3819 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3821 if (root
->fs_info
->log_root_recovering
) {
3822 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3823 &BTRFS_I(inode
)->runtime_flags
));
3827 if (inode
->i_nlink
> 0) {
3828 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3832 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
3834 btrfs_orphan_del(NULL
, inode
);
3837 rsv
->size
= min_size
;
3839 global_rsv
= &root
->fs_info
->global_block_rsv
;
3841 btrfs_i_size_write(inode
, 0);
3844 * This is a bit simpler than btrfs_truncate since we've already
3845 * reserved our space for our orphan item in the unlink, so we just
3846 * need to reserve some slack space in case we add bytes and update
3847 * inode item when doing the truncate.
3850 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
3851 BTRFS_RESERVE_FLUSH_LIMIT
);
3854 * Try and steal from the global reserve since we will
3855 * likely not use this space anyway, we want to try as
3856 * hard as possible to get this to work.
3859 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
3862 printk(KERN_WARNING
"Could not get space for a "
3863 "delete, will truncate on mount %d\n", ret
);
3864 btrfs_orphan_del(NULL
, inode
);
3865 btrfs_free_block_rsv(root
, rsv
);
3869 trans
= btrfs_start_transaction_lflush(root
, 1);
3870 if (IS_ERR(trans
)) {
3871 btrfs_orphan_del(NULL
, inode
);
3872 btrfs_free_block_rsv(root
, rsv
);
3876 trans
->block_rsv
= rsv
;
3878 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3882 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3883 ret
= btrfs_update_inode(trans
, root
, inode
);
3886 nr
= trans
->blocks_used
;
3887 btrfs_end_transaction(trans
, root
);
3889 btrfs_btree_balance_dirty(root
, nr
);
3892 btrfs_free_block_rsv(root
, rsv
);
3895 trans
->block_rsv
= root
->orphan_block_rsv
;
3896 ret
= btrfs_orphan_del(trans
, inode
);
3900 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3901 if (!(root
== root
->fs_info
->tree_root
||
3902 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3903 btrfs_return_ino(root
, btrfs_ino(inode
));
3905 nr
= trans
->blocks_used
;
3906 btrfs_end_transaction(trans
, root
);
3907 btrfs_btree_balance_dirty(root
, nr
);
3914 * this returns the key found in the dir entry in the location pointer.
3915 * If no dir entries were found, location->objectid is 0.
3917 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3918 struct btrfs_key
*location
)
3920 const char *name
= dentry
->d_name
.name
;
3921 int namelen
= dentry
->d_name
.len
;
3922 struct btrfs_dir_item
*di
;
3923 struct btrfs_path
*path
;
3924 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3927 path
= btrfs_alloc_path();
3931 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3936 if (IS_ERR_OR_NULL(di
))
3939 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3941 btrfs_free_path(path
);
3944 location
->objectid
= 0;
3949 * when we hit a tree root in a directory, the btrfs part of the inode
3950 * needs to be changed to reflect the root directory of the tree root. This
3951 * is kind of like crossing a mount point.
3953 static int fixup_tree_root_location(struct btrfs_root
*root
,
3955 struct dentry
*dentry
,
3956 struct btrfs_key
*location
,
3957 struct btrfs_root
**sub_root
)
3959 struct btrfs_path
*path
;
3960 struct btrfs_root
*new_root
;
3961 struct btrfs_root_ref
*ref
;
3962 struct extent_buffer
*leaf
;
3966 path
= btrfs_alloc_path();
3973 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3974 BTRFS_I(dir
)->root
->root_key
.objectid
,
3975 location
->objectid
);
3982 leaf
= path
->nodes
[0];
3983 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3984 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
3985 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3988 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3989 (unsigned long)(ref
+ 1),
3990 dentry
->d_name
.len
);
3994 btrfs_release_path(path
);
3996 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3997 if (IS_ERR(new_root
)) {
3998 err
= PTR_ERR(new_root
);
4002 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
4007 *sub_root
= new_root
;
4008 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
4009 location
->type
= BTRFS_INODE_ITEM_KEY
;
4010 location
->offset
= 0;
4013 btrfs_free_path(path
);
4017 static void inode_tree_add(struct inode
*inode
)
4019 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4020 struct btrfs_inode
*entry
;
4022 struct rb_node
*parent
;
4023 u64 ino
= btrfs_ino(inode
);
4025 p
= &root
->inode_tree
.rb_node
;
4028 if (inode_unhashed(inode
))
4031 spin_lock(&root
->inode_lock
);
4034 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
4036 if (ino
< btrfs_ino(&entry
->vfs_inode
))
4037 p
= &parent
->rb_left
;
4038 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
4039 p
= &parent
->rb_right
;
4041 WARN_ON(!(entry
->vfs_inode
.i_state
&
4042 (I_WILL_FREE
| I_FREEING
)));
4043 rb_erase(parent
, &root
->inode_tree
);
4044 RB_CLEAR_NODE(parent
);
4045 spin_unlock(&root
->inode_lock
);
4049 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
4050 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4051 spin_unlock(&root
->inode_lock
);
4054 static void inode_tree_del(struct inode
*inode
)
4056 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4059 spin_lock(&root
->inode_lock
);
4060 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
4061 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4062 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
4063 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4065 spin_unlock(&root
->inode_lock
);
4068 * Free space cache has inodes in the tree root, but the tree root has a
4069 * root_refs of 0, so this could end up dropping the tree root as a
4070 * snapshot, so we need the extra !root->fs_info->tree_root check to
4071 * make sure we don't drop it.
4073 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
4074 root
!= root
->fs_info
->tree_root
) {
4075 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
4076 spin_lock(&root
->inode_lock
);
4077 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4078 spin_unlock(&root
->inode_lock
);
4080 btrfs_add_dead_root(root
);
4084 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
4086 struct rb_node
*node
;
4087 struct rb_node
*prev
;
4088 struct btrfs_inode
*entry
;
4089 struct inode
*inode
;
4092 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4094 spin_lock(&root
->inode_lock
);
4096 node
= root
->inode_tree
.rb_node
;
4100 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4102 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
4103 node
= node
->rb_left
;
4104 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
4105 node
= node
->rb_right
;
4111 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4112 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
4116 prev
= rb_next(prev
);
4120 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4121 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
4122 inode
= igrab(&entry
->vfs_inode
);
4124 spin_unlock(&root
->inode_lock
);
4125 if (atomic_read(&inode
->i_count
) > 1)
4126 d_prune_aliases(inode
);
4128 * btrfs_drop_inode will have it removed from
4129 * the inode cache when its usage count
4134 spin_lock(&root
->inode_lock
);
4138 if (cond_resched_lock(&root
->inode_lock
))
4141 node
= rb_next(node
);
4143 spin_unlock(&root
->inode_lock
);
4146 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4148 struct btrfs_iget_args
*args
= p
;
4149 inode
->i_ino
= args
->ino
;
4150 BTRFS_I(inode
)->root
= args
->root
;
4154 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4156 struct btrfs_iget_args
*args
= opaque
;
4157 return args
->ino
== btrfs_ino(inode
) &&
4158 args
->root
== BTRFS_I(inode
)->root
;
4161 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4163 struct btrfs_root
*root
)
4165 struct inode
*inode
;
4166 struct btrfs_iget_args args
;
4167 args
.ino
= objectid
;
4170 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4171 btrfs_init_locked_inode
,
4176 /* Get an inode object given its location and corresponding root.
4177 * Returns in *is_new if the inode was read from disk
4179 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4180 struct btrfs_root
*root
, int *new)
4182 struct inode
*inode
;
4184 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4186 return ERR_PTR(-ENOMEM
);
4188 if (inode
->i_state
& I_NEW
) {
4189 BTRFS_I(inode
)->root
= root
;
4190 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4191 btrfs_read_locked_inode(inode
);
4192 if (!is_bad_inode(inode
)) {
4193 inode_tree_add(inode
);
4194 unlock_new_inode(inode
);
4198 unlock_new_inode(inode
);
4200 inode
= ERR_PTR(-ESTALE
);
4207 static struct inode
*new_simple_dir(struct super_block
*s
,
4208 struct btrfs_key
*key
,
4209 struct btrfs_root
*root
)
4211 struct inode
*inode
= new_inode(s
);
4214 return ERR_PTR(-ENOMEM
);
4216 BTRFS_I(inode
)->root
= root
;
4217 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4218 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
4220 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4221 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
4222 inode
->i_fop
= &simple_dir_operations
;
4223 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4224 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4229 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4231 struct inode
*inode
;
4232 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4233 struct btrfs_root
*sub_root
= root
;
4234 struct btrfs_key location
;
4238 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4239 return ERR_PTR(-ENAMETOOLONG
);
4241 if (unlikely(d_need_lookup(dentry
))) {
4242 memcpy(&location
, dentry
->d_fsdata
, sizeof(struct btrfs_key
));
4243 kfree(dentry
->d_fsdata
);
4244 dentry
->d_fsdata
= NULL
;
4245 /* This thing is hashed, drop it for now */
4248 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4252 return ERR_PTR(ret
);
4254 if (location
.objectid
== 0)
4257 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4258 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4262 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4264 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4265 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4266 &location
, &sub_root
);
4269 inode
= ERR_PTR(ret
);
4271 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4273 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4275 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4277 if (!IS_ERR(inode
) && root
!= sub_root
) {
4278 down_read(&root
->fs_info
->cleanup_work_sem
);
4279 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4280 ret
= btrfs_orphan_cleanup(sub_root
);
4281 up_read(&root
->fs_info
->cleanup_work_sem
);
4283 inode
= ERR_PTR(ret
);
4289 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4291 struct btrfs_root
*root
;
4292 struct inode
*inode
= dentry
->d_inode
;
4294 if (!inode
&& !IS_ROOT(dentry
))
4295 inode
= dentry
->d_parent
->d_inode
;
4298 root
= BTRFS_I(inode
)->root
;
4299 if (btrfs_root_refs(&root
->root_item
) == 0)
4302 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
4308 static void btrfs_dentry_release(struct dentry
*dentry
)
4310 if (dentry
->d_fsdata
)
4311 kfree(dentry
->d_fsdata
);
4314 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4319 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
4320 if (unlikely(d_need_lookup(dentry
))) {
4321 spin_lock(&dentry
->d_lock
);
4322 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
4323 spin_unlock(&dentry
->d_lock
);
4328 unsigned char btrfs_filetype_table
[] = {
4329 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4332 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4335 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4336 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4337 struct btrfs_item
*item
;
4338 struct btrfs_dir_item
*di
;
4339 struct btrfs_key key
;
4340 struct btrfs_key found_key
;
4341 struct btrfs_path
*path
;
4342 struct list_head ins_list
;
4343 struct list_head del_list
;
4345 struct extent_buffer
*leaf
;
4347 unsigned char d_type
;
4352 int key_type
= BTRFS_DIR_INDEX_KEY
;
4356 int is_curr
= 0; /* filp->f_pos points to the current index? */
4358 /* FIXME, use a real flag for deciding about the key type */
4359 if (root
->fs_info
->tree_root
== root
)
4360 key_type
= BTRFS_DIR_ITEM_KEY
;
4362 /* special case for "." */
4363 if (filp
->f_pos
== 0) {
4364 over
= filldir(dirent
, ".", 1,
4365 filp
->f_pos
, btrfs_ino(inode
), DT_DIR
);
4370 /* special case for .., just use the back ref */
4371 if (filp
->f_pos
== 1) {
4372 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4373 over
= filldir(dirent
, "..", 2,
4374 filp
->f_pos
, pino
, DT_DIR
);
4379 path
= btrfs_alloc_path();
4385 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4386 INIT_LIST_HEAD(&ins_list
);
4387 INIT_LIST_HEAD(&del_list
);
4388 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4391 btrfs_set_key_type(&key
, key_type
);
4392 key
.offset
= filp
->f_pos
;
4393 key
.objectid
= btrfs_ino(inode
);
4395 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4400 leaf
= path
->nodes
[0];
4401 slot
= path
->slots
[0];
4402 if (slot
>= btrfs_header_nritems(leaf
)) {
4403 ret
= btrfs_next_leaf(root
, path
);
4411 item
= btrfs_item_nr(leaf
, slot
);
4412 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4414 if (found_key
.objectid
!= key
.objectid
)
4416 if (btrfs_key_type(&found_key
) != key_type
)
4418 if (found_key
.offset
< filp
->f_pos
)
4420 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4421 btrfs_should_delete_dir_index(&del_list
,
4425 filp
->f_pos
= found_key
.offset
;
4428 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4430 di_total
= btrfs_item_size(leaf
, item
);
4432 while (di_cur
< di_total
) {
4433 struct btrfs_key location
;
4435 if (verify_dir_item(root
, leaf
, di
))
4438 name_len
= btrfs_dir_name_len(leaf
, di
);
4439 if (name_len
<= sizeof(tmp_name
)) {
4440 name_ptr
= tmp_name
;
4442 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4448 read_extent_buffer(leaf
, name_ptr
,
4449 (unsigned long)(di
+ 1), name_len
);
4451 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4452 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4455 /* is this a reference to our own snapshot? If so
4458 * In contrast to old kernels, we insert the snapshot's
4459 * dir item and dir index after it has been created, so
4460 * we won't find a reference to our own snapshot. We
4461 * still keep the following code for backward
4464 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4465 location
.objectid
== root
->root_key
.objectid
) {
4469 over
= filldir(dirent
, name_ptr
, name_len
,
4470 found_key
.offset
, location
.objectid
,
4474 if (name_ptr
!= tmp_name
)
4479 di_len
= btrfs_dir_name_len(leaf
, di
) +
4480 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4482 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4488 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4491 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4497 /* Reached end of directory/root. Bump pos past the last item. */
4498 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4500 * 32-bit glibc will use getdents64, but then strtol -
4501 * so the last number we can serve is this.
4503 filp
->f_pos
= 0x7fffffff;
4509 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4510 btrfs_put_delayed_items(&ins_list
, &del_list
);
4511 btrfs_free_path(path
);
4515 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4517 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4518 struct btrfs_trans_handle
*trans
;
4520 bool nolock
= false;
4522 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
4525 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
4528 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4530 trans
= btrfs_join_transaction_nolock(root
);
4532 trans
= btrfs_join_transaction(root
);
4534 return PTR_ERR(trans
);
4535 ret
= btrfs_commit_transaction(trans
, root
);
4541 * This is somewhat expensive, updating the tree every time the
4542 * inode changes. But, it is most likely to find the inode in cache.
4543 * FIXME, needs more benchmarking...there are no reasons other than performance
4544 * to keep or drop this code.
4546 int btrfs_dirty_inode(struct inode
*inode
)
4548 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4549 struct btrfs_trans_handle
*trans
;
4552 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
4555 trans
= btrfs_join_transaction(root
);
4557 return PTR_ERR(trans
);
4559 ret
= btrfs_update_inode(trans
, root
, inode
);
4560 if (ret
&& ret
== -ENOSPC
) {
4561 /* whoops, lets try again with the full transaction */
4562 btrfs_end_transaction(trans
, root
);
4563 trans
= btrfs_start_transaction(root
, 1);
4565 return PTR_ERR(trans
);
4567 ret
= btrfs_update_inode(trans
, root
, inode
);
4569 btrfs_end_transaction(trans
, root
);
4570 if (BTRFS_I(inode
)->delayed_node
)
4571 btrfs_balance_delayed_items(root
);
4577 * This is a copy of file_update_time. We need this so we can return error on
4578 * ENOSPC for updating the inode in the case of file write and mmap writes.
4580 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
4583 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4585 if (btrfs_root_readonly(root
))
4588 if (flags
& S_VERSION
)
4589 inode_inc_iversion(inode
);
4590 if (flags
& S_CTIME
)
4591 inode
->i_ctime
= *now
;
4592 if (flags
& S_MTIME
)
4593 inode
->i_mtime
= *now
;
4594 if (flags
& S_ATIME
)
4595 inode
->i_atime
= *now
;
4596 return btrfs_dirty_inode(inode
);
4600 * find the highest existing sequence number in a directory
4601 * and then set the in-memory index_cnt variable to reflect
4602 * free sequence numbers
4604 static int btrfs_set_inode_index_count(struct inode
*inode
)
4606 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4607 struct btrfs_key key
, found_key
;
4608 struct btrfs_path
*path
;
4609 struct extent_buffer
*leaf
;
4612 key
.objectid
= btrfs_ino(inode
);
4613 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4614 key
.offset
= (u64
)-1;
4616 path
= btrfs_alloc_path();
4620 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4623 /* FIXME: we should be able to handle this */
4629 * MAGIC NUMBER EXPLANATION:
4630 * since we search a directory based on f_pos we have to start at 2
4631 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4632 * else has to start at 2
4634 if (path
->slots
[0] == 0) {
4635 BTRFS_I(inode
)->index_cnt
= 2;
4641 leaf
= path
->nodes
[0];
4642 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4644 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4645 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4646 BTRFS_I(inode
)->index_cnt
= 2;
4650 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4652 btrfs_free_path(path
);
4657 * helper to find a free sequence number in a given directory. This current
4658 * code is very simple, later versions will do smarter things in the btree
4660 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4664 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4665 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4667 ret
= btrfs_set_inode_index_count(dir
);
4673 *index
= BTRFS_I(dir
)->index_cnt
;
4674 BTRFS_I(dir
)->index_cnt
++;
4679 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4680 struct btrfs_root
*root
,
4682 const char *name
, int name_len
,
4683 u64 ref_objectid
, u64 objectid
,
4684 umode_t mode
, u64
*index
)
4686 struct inode
*inode
;
4687 struct btrfs_inode_item
*inode_item
;
4688 struct btrfs_key
*location
;
4689 struct btrfs_path
*path
;
4690 struct btrfs_inode_ref
*ref
;
4691 struct btrfs_key key
[2];
4697 path
= btrfs_alloc_path();
4699 return ERR_PTR(-ENOMEM
);
4701 inode
= new_inode(root
->fs_info
->sb
);
4703 btrfs_free_path(path
);
4704 return ERR_PTR(-ENOMEM
);
4708 * we have to initialize this early, so we can reclaim the inode
4709 * number if we fail afterwards in this function.
4711 inode
->i_ino
= objectid
;
4714 trace_btrfs_inode_request(dir
);
4716 ret
= btrfs_set_inode_index(dir
, index
);
4718 btrfs_free_path(path
);
4720 return ERR_PTR(ret
);
4724 * index_cnt is ignored for everything but a dir,
4725 * btrfs_get_inode_index_count has an explanation for the magic
4728 BTRFS_I(inode
)->index_cnt
= 2;
4729 BTRFS_I(inode
)->root
= root
;
4730 BTRFS_I(inode
)->generation
= trans
->transid
;
4731 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4734 * We could have gotten an inode number from somebody who was fsynced
4735 * and then removed in this same transaction, so let's just set full
4736 * sync since it will be a full sync anyway and this will blow away the
4737 * old info in the log.
4739 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
4746 key
[0].objectid
= objectid
;
4747 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4751 * Start new inodes with an inode_ref. This is slightly more
4752 * efficient for small numbers of hard links since they will
4753 * be packed into one item. Extended refs will kick in if we
4754 * add more hard links than can fit in the ref item.
4756 key
[1].objectid
= objectid
;
4757 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4758 key
[1].offset
= ref_objectid
;
4760 sizes
[0] = sizeof(struct btrfs_inode_item
);
4761 sizes
[1] = name_len
+ sizeof(*ref
);
4763 path
->leave_spinning
= 1;
4764 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4768 inode_init_owner(inode
, dir
, mode
);
4769 inode_set_bytes(inode
, 0);
4770 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4771 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4772 struct btrfs_inode_item
);
4773 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
4774 sizeof(*inode_item
));
4775 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4777 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4778 struct btrfs_inode_ref
);
4779 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4780 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4781 ptr
= (unsigned long)(ref
+ 1);
4782 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4784 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4785 btrfs_free_path(path
);
4787 location
= &BTRFS_I(inode
)->location
;
4788 location
->objectid
= objectid
;
4789 location
->offset
= 0;
4790 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4792 btrfs_inherit_iflags(inode
, dir
);
4794 if (S_ISREG(mode
)) {
4795 if (btrfs_test_opt(root
, NODATASUM
))
4796 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4797 if (btrfs_test_opt(root
, NODATACOW
) ||
4798 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4799 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4802 insert_inode_hash(inode
);
4803 inode_tree_add(inode
);
4805 trace_btrfs_inode_new(inode
);
4806 btrfs_set_inode_last_trans(trans
, inode
);
4808 btrfs_update_root_times(trans
, root
);
4813 BTRFS_I(dir
)->index_cnt
--;
4814 btrfs_free_path(path
);
4816 return ERR_PTR(ret
);
4819 static inline u8
btrfs_inode_type(struct inode
*inode
)
4821 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4825 * utility function to add 'inode' into 'parent_inode' with
4826 * a give name and a given sequence number.
4827 * if 'add_backref' is true, also insert a backref from the
4828 * inode to the parent directory.
4830 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4831 struct inode
*parent_inode
, struct inode
*inode
,
4832 const char *name
, int name_len
, int add_backref
, u64 index
)
4835 struct btrfs_key key
;
4836 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4837 u64 ino
= btrfs_ino(inode
);
4838 u64 parent_ino
= btrfs_ino(parent_inode
);
4840 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4841 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4844 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4848 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4849 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4850 key
.objectid
, root
->root_key
.objectid
,
4851 parent_ino
, index
, name
, name_len
);
4852 } else if (add_backref
) {
4853 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4857 /* Nothing to clean up yet */
4861 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4863 btrfs_inode_type(inode
), index
);
4867 btrfs_abort_transaction(trans
, root
, ret
);
4871 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4873 inode_inc_iversion(parent_inode
);
4874 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4875 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4877 btrfs_abort_transaction(trans
, root
, ret
);
4881 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4884 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4885 key
.objectid
, root
->root_key
.objectid
,
4886 parent_ino
, &local_index
, name
, name_len
);
4888 } else if (add_backref
) {
4892 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
4893 ino
, parent_ino
, &local_index
);
4898 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4899 struct inode
*dir
, struct dentry
*dentry
,
4900 struct inode
*inode
, int backref
, u64 index
)
4902 int err
= btrfs_add_link(trans
, dir
, inode
,
4903 dentry
->d_name
.name
, dentry
->d_name
.len
,
4910 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4911 umode_t mode
, dev_t rdev
)
4913 struct btrfs_trans_handle
*trans
;
4914 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4915 struct inode
*inode
= NULL
;
4919 unsigned long nr
= 0;
4922 if (!new_valid_dev(rdev
))
4926 * 2 for inode item and ref
4928 * 1 for xattr if selinux is on
4930 trans
= btrfs_start_transaction(root
, 5);
4932 return PTR_ERR(trans
);
4934 err
= btrfs_find_free_ino(root
, &objectid
);
4938 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4939 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4941 if (IS_ERR(inode
)) {
4942 err
= PTR_ERR(inode
);
4946 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4953 * If the active LSM wants to access the inode during
4954 * d_instantiate it needs these. Smack checks to see
4955 * if the filesystem supports xattrs by looking at the
4959 inode
->i_op
= &btrfs_special_inode_operations
;
4960 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4964 init_special_inode(inode
, inode
->i_mode
, rdev
);
4965 btrfs_update_inode(trans
, root
, inode
);
4966 d_instantiate(dentry
, inode
);
4969 nr
= trans
->blocks_used
;
4970 btrfs_end_transaction(trans
, root
);
4971 btrfs_btree_balance_dirty(root
, nr
);
4973 inode_dec_link_count(inode
);
4979 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4980 umode_t mode
, bool excl
)
4982 struct btrfs_trans_handle
*trans
;
4983 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4984 struct inode
*inode
= NULL
;
4987 unsigned long nr
= 0;
4992 * 2 for inode item and ref
4994 * 1 for xattr if selinux is on
4996 trans
= btrfs_start_transaction(root
, 5);
4998 return PTR_ERR(trans
);
5000 err
= btrfs_find_free_ino(root
, &objectid
);
5004 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5005 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5007 if (IS_ERR(inode
)) {
5008 err
= PTR_ERR(inode
);
5012 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5019 * If the active LSM wants to access the inode during
5020 * d_instantiate it needs these. Smack checks to see
5021 * if the filesystem supports xattrs by looking at the
5024 inode
->i_fop
= &btrfs_file_operations
;
5025 inode
->i_op
= &btrfs_file_inode_operations
;
5027 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5031 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5032 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5033 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5034 d_instantiate(dentry
, inode
);
5037 nr
= trans
->blocks_used
;
5038 btrfs_end_transaction(trans
, root
);
5040 inode_dec_link_count(inode
);
5043 btrfs_btree_balance_dirty(root
, nr
);
5047 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
5048 struct dentry
*dentry
)
5050 struct btrfs_trans_handle
*trans
;
5051 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5052 struct inode
*inode
= old_dentry
->d_inode
;
5054 unsigned long nr
= 0;
5058 /* do not allow sys_link's with other subvols of the same device */
5059 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
5062 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
5065 err
= btrfs_set_inode_index(dir
, &index
);
5070 * 2 items for inode and inode ref
5071 * 2 items for dir items
5072 * 1 item for parent inode
5074 trans
= btrfs_start_transaction(root
, 5);
5075 if (IS_ERR(trans
)) {
5076 err
= PTR_ERR(trans
);
5080 btrfs_inc_nlink(inode
);
5081 inode_inc_iversion(inode
);
5082 inode
->i_ctime
= CURRENT_TIME
;
5085 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
5090 struct dentry
*parent
= dentry
->d_parent
;
5091 err
= btrfs_update_inode(trans
, root
, inode
);
5094 d_instantiate(dentry
, inode
);
5095 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
5098 nr
= trans
->blocks_used
;
5099 btrfs_end_transaction(trans
, root
);
5102 inode_dec_link_count(inode
);
5105 btrfs_btree_balance_dirty(root
, nr
);
5109 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
5111 struct inode
*inode
= NULL
;
5112 struct btrfs_trans_handle
*trans
;
5113 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5115 int drop_on_err
= 0;
5118 unsigned long nr
= 1;
5121 * 2 items for inode and ref
5122 * 2 items for dir items
5123 * 1 for xattr if selinux is on
5125 trans
= btrfs_start_transaction(root
, 5);
5127 return PTR_ERR(trans
);
5129 err
= btrfs_find_free_ino(root
, &objectid
);
5133 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5134 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5135 S_IFDIR
| mode
, &index
);
5136 if (IS_ERR(inode
)) {
5137 err
= PTR_ERR(inode
);
5143 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5147 inode
->i_op
= &btrfs_dir_inode_operations
;
5148 inode
->i_fop
= &btrfs_dir_file_operations
;
5150 btrfs_i_size_write(inode
, 0);
5151 err
= btrfs_update_inode(trans
, root
, inode
);
5155 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
5156 dentry
->d_name
.len
, 0, index
);
5160 d_instantiate(dentry
, inode
);
5164 nr
= trans
->blocks_used
;
5165 btrfs_end_transaction(trans
, root
);
5168 btrfs_btree_balance_dirty(root
, nr
);
5172 /* helper for btfs_get_extent. Given an existing extent in the tree,
5173 * and an extent that you want to insert, deal with overlap and insert
5174 * the new extent into the tree.
5176 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
5177 struct extent_map
*existing
,
5178 struct extent_map
*em
,
5179 u64 map_start
, u64 map_len
)
5183 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
5184 start_diff
= map_start
- em
->start
;
5185 em
->start
= map_start
;
5187 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
5188 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
5189 em
->block_start
+= start_diff
;
5190 em
->block_len
-= start_diff
;
5192 return add_extent_mapping(em_tree
, em
);
5195 static noinline
int uncompress_inline(struct btrfs_path
*path
,
5196 struct inode
*inode
, struct page
*page
,
5197 size_t pg_offset
, u64 extent_offset
,
5198 struct btrfs_file_extent_item
*item
)
5201 struct extent_buffer
*leaf
= path
->nodes
[0];
5204 unsigned long inline_size
;
5208 WARN_ON(pg_offset
!= 0);
5209 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5210 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
5211 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
5212 btrfs_item_nr(leaf
, path
->slots
[0]));
5213 tmp
= kmalloc(inline_size
, GFP_NOFS
);
5216 ptr
= btrfs_file_extent_inline_start(item
);
5218 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
5220 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
5221 ret
= btrfs_decompress(compress_type
, tmp
, page
,
5222 extent_offset
, inline_size
, max_size
);
5224 char *kaddr
= kmap_atomic(page
);
5225 unsigned long copy_size
= min_t(u64
,
5226 PAGE_CACHE_SIZE
- pg_offset
,
5227 max_size
- extent_offset
);
5228 memset(kaddr
+ pg_offset
, 0, copy_size
);
5229 kunmap_atomic(kaddr
);
5236 * a bit scary, this does extent mapping from logical file offset to the disk.
5237 * the ugly parts come from merging extents from the disk with the in-ram
5238 * representation. This gets more complex because of the data=ordered code,
5239 * where the in-ram extents might be locked pending data=ordered completion.
5241 * This also copies inline extents directly into the page.
5244 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
5245 size_t pg_offset
, u64 start
, u64 len
,
5251 u64 extent_start
= 0;
5253 u64 objectid
= btrfs_ino(inode
);
5255 struct btrfs_path
*path
= NULL
;
5256 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5257 struct btrfs_file_extent_item
*item
;
5258 struct extent_buffer
*leaf
;
5259 struct btrfs_key found_key
;
5260 struct extent_map
*em
= NULL
;
5261 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5262 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5263 struct btrfs_trans_handle
*trans
= NULL
;
5267 read_lock(&em_tree
->lock
);
5268 em
= lookup_extent_mapping(em_tree
, start
, len
);
5270 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5271 read_unlock(&em_tree
->lock
);
5274 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5275 free_extent_map(em
);
5276 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5277 free_extent_map(em
);
5281 em
= alloc_extent_map();
5286 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5287 em
->start
= EXTENT_MAP_HOLE
;
5288 em
->orig_start
= EXTENT_MAP_HOLE
;
5290 em
->block_len
= (u64
)-1;
5293 path
= btrfs_alloc_path();
5299 * Chances are we'll be called again, so go ahead and do
5305 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5306 objectid
, start
, trans
!= NULL
);
5313 if (path
->slots
[0] == 0)
5318 leaf
= path
->nodes
[0];
5319 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5320 struct btrfs_file_extent_item
);
5321 /* are we inside the extent that was found? */
5322 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5323 found_type
= btrfs_key_type(&found_key
);
5324 if (found_key
.objectid
!= objectid
||
5325 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5329 found_type
= btrfs_file_extent_type(leaf
, item
);
5330 extent_start
= found_key
.offset
;
5331 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5332 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5333 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5334 extent_end
= extent_start
+
5335 btrfs_file_extent_num_bytes(leaf
, item
);
5336 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5338 size
= btrfs_file_extent_inline_len(leaf
, item
);
5339 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5340 ~((u64
)root
->sectorsize
- 1);
5343 if (start
>= extent_end
) {
5345 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5346 ret
= btrfs_next_leaf(root
, path
);
5353 leaf
= path
->nodes
[0];
5355 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5356 if (found_key
.objectid
!= objectid
||
5357 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5359 if (start
+ len
<= found_key
.offset
)
5362 em
->len
= found_key
.offset
- start
;
5366 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5367 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5368 em
->start
= extent_start
;
5369 em
->len
= extent_end
- extent_start
;
5370 em
->orig_start
= extent_start
-
5371 btrfs_file_extent_offset(leaf
, item
);
5372 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5374 em
->block_start
= EXTENT_MAP_HOLE
;
5377 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5378 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5379 em
->compress_type
= compress_type
;
5380 em
->block_start
= bytenr
;
5381 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5384 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5385 em
->block_start
= bytenr
;
5386 em
->block_len
= em
->len
;
5387 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5388 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5391 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5395 size_t extent_offset
;
5398 em
->block_start
= EXTENT_MAP_INLINE
;
5399 if (!page
|| create
) {
5400 em
->start
= extent_start
;
5401 em
->len
= extent_end
- extent_start
;
5405 size
= btrfs_file_extent_inline_len(leaf
, item
);
5406 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5407 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5408 size
- extent_offset
);
5409 em
->start
= extent_start
+ extent_offset
;
5410 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5411 ~((u64
)root
->sectorsize
- 1);
5412 em
->orig_start
= EXTENT_MAP_INLINE
;
5413 if (compress_type
) {
5414 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5415 em
->compress_type
= compress_type
;
5417 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5418 if (create
== 0 && !PageUptodate(page
)) {
5419 if (btrfs_file_extent_compression(leaf
, item
) !=
5420 BTRFS_COMPRESS_NONE
) {
5421 ret
= uncompress_inline(path
, inode
, page
,
5423 extent_offset
, item
);
5424 BUG_ON(ret
); /* -ENOMEM */
5427 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5429 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5430 memset(map
+ pg_offset
+ copy_size
, 0,
5431 PAGE_CACHE_SIZE
- pg_offset
-
5436 flush_dcache_page(page
);
5437 } else if (create
&& PageUptodate(page
)) {
5441 free_extent_map(em
);
5444 btrfs_release_path(path
);
5445 trans
= btrfs_join_transaction(root
);
5448 return ERR_CAST(trans
);
5452 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5455 btrfs_mark_buffer_dirty(leaf
);
5457 set_extent_uptodate(io_tree
, em
->start
,
5458 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5461 WARN(1, KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5467 em
->block_start
= EXTENT_MAP_HOLE
;
5468 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5470 btrfs_release_path(path
);
5471 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5472 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5473 "[%llu %llu]\n", (unsigned long long)em
->start
,
5474 (unsigned long long)em
->len
,
5475 (unsigned long long)start
,
5476 (unsigned long long)len
);
5482 write_lock(&em_tree
->lock
);
5483 ret
= add_extent_mapping(em_tree
, em
);
5484 /* it is possible that someone inserted the extent into the tree
5485 * while we had the lock dropped. It is also possible that
5486 * an overlapping map exists in the tree
5488 if (ret
== -EEXIST
) {
5489 struct extent_map
*existing
;
5493 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5494 if (existing
&& (existing
->start
> start
||
5495 existing
->start
+ existing
->len
<= start
)) {
5496 free_extent_map(existing
);
5500 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5503 err
= merge_extent_mapping(em_tree
, existing
,
5506 free_extent_map(existing
);
5508 free_extent_map(em
);
5513 free_extent_map(em
);
5517 free_extent_map(em
);
5522 write_unlock(&em_tree
->lock
);
5526 trace_btrfs_get_extent(root
, em
);
5529 btrfs_free_path(path
);
5531 ret
= btrfs_end_transaction(trans
, root
);
5536 free_extent_map(em
);
5537 return ERR_PTR(err
);
5539 BUG_ON(!em
); /* Error is always set */
5543 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5544 size_t pg_offset
, u64 start
, u64 len
,
5547 struct extent_map
*em
;
5548 struct extent_map
*hole_em
= NULL
;
5549 u64 range_start
= start
;
5555 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5560 * if our em maps to a hole, there might
5561 * actually be delalloc bytes behind it
5563 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5569 /* check to see if we've wrapped (len == -1 or similar) */
5578 /* ok, we didn't find anything, lets look for delalloc */
5579 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5580 end
, len
, EXTENT_DELALLOC
, 1);
5581 found_end
= range_start
+ found
;
5582 if (found_end
< range_start
)
5583 found_end
= (u64
)-1;
5586 * we didn't find anything useful, return
5587 * the original results from get_extent()
5589 if (range_start
> end
|| found_end
<= start
) {
5595 /* adjust the range_start to make sure it doesn't
5596 * go backwards from the start they passed in
5598 range_start
= max(start
,range_start
);
5599 found
= found_end
- range_start
;
5602 u64 hole_start
= start
;
5605 em
= alloc_extent_map();
5611 * when btrfs_get_extent can't find anything it
5612 * returns one huge hole
5614 * make sure what it found really fits our range, and
5615 * adjust to make sure it is based on the start from
5619 u64 calc_end
= extent_map_end(hole_em
);
5621 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5622 free_extent_map(hole_em
);
5625 hole_start
= max(hole_em
->start
, start
);
5626 hole_len
= calc_end
- hole_start
;
5630 if (hole_em
&& range_start
> hole_start
) {
5631 /* our hole starts before our delalloc, so we
5632 * have to return just the parts of the hole
5633 * that go until the delalloc starts
5635 em
->len
= min(hole_len
,
5636 range_start
- hole_start
);
5637 em
->start
= hole_start
;
5638 em
->orig_start
= hole_start
;
5640 * don't adjust block start at all,
5641 * it is fixed at EXTENT_MAP_HOLE
5643 em
->block_start
= hole_em
->block_start
;
5644 em
->block_len
= hole_len
;
5646 em
->start
= range_start
;
5648 em
->orig_start
= range_start
;
5649 em
->block_start
= EXTENT_MAP_DELALLOC
;
5650 em
->block_len
= found
;
5652 } else if (hole_em
) {
5657 free_extent_map(hole_em
);
5659 free_extent_map(em
);
5660 return ERR_PTR(err
);
5665 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5666 struct extent_map
*em
,
5669 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5670 struct btrfs_trans_handle
*trans
;
5671 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5672 struct btrfs_key ins
;
5675 bool insert
= false;
5678 * Ok if the extent map we looked up is a hole and is for the exact
5679 * range we want, there is no reason to allocate a new one, however if
5680 * it is not right then we need to free this one and drop the cache for
5683 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5685 free_extent_map(em
);
5688 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5691 trans
= btrfs_join_transaction(root
);
5693 return ERR_CAST(trans
);
5695 if (start
<= BTRFS_I(inode
)->disk_i_size
&& len
< 64 * 1024)
5696 btrfs_add_inode_defrag(trans
, inode
);
5698 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5700 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5701 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5702 alloc_hint
, &ins
, 1);
5709 em
= alloc_extent_map();
5711 em
= ERR_PTR(-ENOMEM
);
5717 em
->orig_start
= em
->start
;
5718 em
->len
= ins
.offset
;
5720 em
->block_start
= ins
.objectid
;
5721 em
->block_len
= ins
.offset
;
5722 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5725 * We need to do this because if we're using the original em we searched
5726 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5729 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5732 write_lock(&em_tree
->lock
);
5733 ret
= add_extent_mapping(em_tree
, em
);
5734 write_unlock(&em_tree
->lock
);
5737 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5740 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5741 ins
.offset
, ins
.offset
, 0);
5743 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5747 btrfs_end_transaction(trans
, root
);
5752 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5753 * block must be cow'd
5755 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5756 struct inode
*inode
, u64 offset
, u64 len
)
5758 struct btrfs_path
*path
;
5760 struct extent_buffer
*leaf
;
5761 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5762 struct btrfs_file_extent_item
*fi
;
5763 struct btrfs_key key
;
5771 path
= btrfs_alloc_path();
5775 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5780 slot
= path
->slots
[0];
5783 /* can't find the item, must cow */
5790 leaf
= path
->nodes
[0];
5791 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5792 if (key
.objectid
!= btrfs_ino(inode
) ||
5793 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5794 /* not our file or wrong item type, must cow */
5798 if (key
.offset
> offset
) {
5799 /* Wrong offset, must cow */
5803 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5804 found_type
= btrfs_file_extent_type(leaf
, fi
);
5805 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5806 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5807 /* not a regular extent, must cow */
5810 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5811 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5813 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5814 if (extent_end
< offset
+ len
) {
5815 /* extent doesn't include our full range, must cow */
5819 if (btrfs_extent_readonly(root
, disk_bytenr
))
5823 * look for other files referencing this extent, if we
5824 * find any we must cow
5826 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5827 key
.offset
- backref_offset
, disk_bytenr
))
5831 * adjust disk_bytenr and num_bytes to cover just the bytes
5832 * in this extent we are about to write. If there
5833 * are any csums in that range we have to cow in order
5834 * to keep the csums correct
5836 disk_bytenr
+= backref_offset
;
5837 disk_bytenr
+= offset
- key
.offset
;
5838 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5839 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5842 * all of the above have passed, it is safe to overwrite this extent
5847 btrfs_free_path(path
);
5851 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
5852 struct extent_state
**cached_state
, int writing
)
5854 struct btrfs_ordered_extent
*ordered
;
5858 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
5861 * We're concerned with the entire range that we're going to be
5862 * doing DIO to, so we need to make sure theres no ordered
5863 * extents in this range.
5865 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
5866 lockend
- lockstart
+ 1);
5869 * We need to make sure there are no buffered pages in this
5870 * range either, we could have raced between the invalidate in
5871 * generic_file_direct_write and locking the extent. The
5872 * invalidate needs to happen so that reads after a write do not
5875 if (!ordered
&& (!writing
||
5876 !test_range_bit(&BTRFS_I(inode
)->io_tree
,
5877 lockstart
, lockend
, EXTENT_UPTODATE
, 0,
5881 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
5882 cached_state
, GFP_NOFS
);
5885 btrfs_start_ordered_extent(inode
, ordered
, 1);
5886 btrfs_put_ordered_extent(ordered
);
5888 /* Screw you mmap */
5889 ret
= filemap_write_and_wait_range(inode
->i_mapping
,
5896 * If we found a page that couldn't be invalidated just
5897 * fall back to buffered.
5899 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
5900 lockstart
>> PAGE_CACHE_SHIFT
,
5901 lockend
>> PAGE_CACHE_SHIFT
);
5912 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
5913 u64 len
, u64 orig_start
,
5914 u64 block_start
, u64 block_len
,
5917 struct extent_map_tree
*em_tree
;
5918 struct extent_map
*em
;
5919 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5922 em_tree
= &BTRFS_I(inode
)->extent_tree
;
5923 em
= alloc_extent_map();
5925 return ERR_PTR(-ENOMEM
);
5928 em
->orig_start
= orig_start
;
5930 em
->block_len
= block_len
;
5931 em
->block_start
= block_start
;
5932 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5933 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5934 if (type
== BTRFS_ORDERED_PREALLOC
)
5935 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5938 btrfs_drop_extent_cache(inode
, em
->start
,
5939 em
->start
+ em
->len
- 1, 0);
5940 write_lock(&em_tree
->lock
);
5941 ret
= add_extent_mapping(em_tree
, em
);
5942 write_unlock(&em_tree
->lock
);
5943 } while (ret
== -EEXIST
);
5946 free_extent_map(em
);
5947 return ERR_PTR(ret
);
5954 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5955 struct buffer_head
*bh_result
, int create
)
5957 struct extent_map
*em
;
5958 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5959 struct extent_state
*cached_state
= NULL
;
5960 u64 start
= iblock
<< inode
->i_blkbits
;
5961 u64 lockstart
, lockend
;
5962 u64 len
= bh_result
->b_size
;
5963 struct btrfs_trans_handle
*trans
;
5964 int unlock_bits
= EXTENT_LOCKED
;
5968 ret
= btrfs_delalloc_reserve_space(inode
, len
);
5971 unlock_bits
|= EXTENT_DELALLOC
| EXTENT_DIRTY
;
5973 len
= min_t(u64
, len
, root
->sectorsize
);
5977 lockend
= start
+ len
- 1;
5980 * If this errors out it's because we couldn't invalidate pagecache for
5981 * this range and we need to fallback to buffered.
5983 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
5987 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
5988 lockend
, EXTENT_DELALLOC
, NULL
,
5989 &cached_state
, GFP_NOFS
);
5994 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
6001 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6002 * io. INLINE is special, and we could probably kludge it in here, but
6003 * it's still buffered so for safety lets just fall back to the generic
6006 * For COMPRESSED we _have_ to read the entire extent in so we can
6007 * decompress it, so there will be buffering required no matter what we
6008 * do, so go ahead and fallback to buffered.
6010 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6011 * to buffered IO. Don't blame me, this is the price we pay for using
6014 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
6015 em
->block_start
== EXTENT_MAP_INLINE
) {
6016 free_extent_map(em
);
6021 /* Just a good old fashioned hole, return */
6022 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
6023 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
6024 free_extent_map(em
);
6030 * We don't allocate a new extent in the following cases
6032 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6034 * 2) The extent is marked as PREALLOC. We're good to go here and can
6035 * just use the extent.
6039 len
= min(len
, em
->len
- (start
- em
->start
));
6040 lockstart
= start
+ len
;
6044 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
6045 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
6046 em
->block_start
!= EXTENT_MAP_HOLE
)) {
6051 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6052 type
= BTRFS_ORDERED_PREALLOC
;
6054 type
= BTRFS_ORDERED_NOCOW
;
6055 len
= min(len
, em
->len
- (start
- em
->start
));
6056 block_start
= em
->block_start
+ (start
- em
->start
);
6059 * we're not going to log anything, but we do need
6060 * to make sure the current transaction stays open
6061 * while we look for nocow cross refs
6063 trans
= btrfs_join_transaction(root
);
6067 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
6068 u64 orig_start
= em
->start
;
6070 if (type
== BTRFS_ORDERED_PREALLOC
) {
6071 free_extent_map(em
);
6072 em
= create_pinned_em(inode
, start
, len
,
6074 block_start
, len
, type
);
6076 btrfs_end_transaction(trans
, root
);
6081 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
6082 block_start
, len
, len
, type
);
6083 btrfs_end_transaction(trans
, root
);
6085 free_extent_map(em
);
6090 btrfs_end_transaction(trans
, root
);
6094 * this will cow the extent, reset the len in case we changed
6097 len
= bh_result
->b_size
;
6098 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
6103 len
= min(len
, em
->len
- (start
- em
->start
));
6105 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
6107 bh_result
->b_size
= len
;
6108 bh_result
->b_bdev
= em
->bdev
;
6109 set_buffer_mapped(bh_result
);
6111 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6112 set_buffer_new(bh_result
);
6115 * Need to update the i_size under the extent lock so buffered
6116 * readers will get the updated i_size when we unlock.
6118 if (start
+ len
> i_size_read(inode
))
6119 i_size_write(inode
, start
+ len
);
6123 * In the case of write we need to clear and unlock the entire range,
6124 * in the case of read we need to unlock only the end area that we
6125 * aren't using if there is any left over space.
6127 if (lockstart
< lockend
) {
6128 if (create
&& len
< lockend
- lockstart
) {
6129 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6130 lockstart
+ len
- 1,
6131 unlock_bits
| EXTENT_DEFRAG
, 1, 0,
6132 &cached_state
, GFP_NOFS
);
6134 * Beside unlock, we also need to cleanup reserved space
6135 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6137 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
6138 lockstart
+ len
, lockend
,
6139 unlock_bits
| EXTENT_DO_ACCOUNTING
|
6140 EXTENT_DEFRAG
, 1, 0, NULL
, GFP_NOFS
);
6142 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6143 lockend
, unlock_bits
, 1, 0,
6144 &cached_state
, GFP_NOFS
);
6147 free_extent_state(cached_state
);
6150 free_extent_map(em
);
6156 unlock_bits
|= EXTENT_DO_ACCOUNTING
;
6158 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6159 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
6163 struct btrfs_dio_private
{
6164 struct inode
*inode
;
6170 /* number of bios pending for this dio */
6171 atomic_t pending_bios
;
6176 struct bio
*orig_bio
;
6179 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
6181 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6182 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
6183 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6184 struct inode
*inode
= dip
->inode
;
6185 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6188 start
= dip
->logical_offset
;
6190 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
6191 struct page
*page
= bvec
->bv_page
;
6194 u64
private = ~(u32
)0;
6195 unsigned long flags
;
6197 if (get_state_private(&BTRFS_I(inode
)->io_tree
,
6200 local_irq_save(flags
);
6201 kaddr
= kmap_atomic(page
);
6202 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
6203 csum
, bvec
->bv_len
);
6204 btrfs_csum_final(csum
, (char *)&csum
);
6205 kunmap_atomic(kaddr
);
6206 local_irq_restore(flags
);
6208 flush_dcache_page(bvec
->bv_page
);
6209 if (csum
!= private) {
6211 printk(KERN_ERR
"btrfs csum failed ino %llu off"
6212 " %llu csum %u private %u\n",
6213 (unsigned long long)btrfs_ino(inode
),
6214 (unsigned long long)start
,
6215 csum
, (unsigned)private);
6220 start
+= bvec
->bv_len
;
6222 } while (bvec
<= bvec_end
);
6224 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
6225 dip
->logical_offset
+ dip
->bytes
- 1);
6226 bio
->bi_private
= dip
->private;
6230 /* If we had a csum failure make sure to clear the uptodate flag */
6232 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
6233 dio_end_io(bio
, err
);
6236 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
6238 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6239 struct inode
*inode
= dip
->inode
;
6240 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6241 struct btrfs_ordered_extent
*ordered
= NULL
;
6242 u64 ordered_offset
= dip
->logical_offset
;
6243 u64 ordered_bytes
= dip
->bytes
;
6249 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
6251 ordered_bytes
, !err
);
6255 ordered
->work
.func
= finish_ordered_fn
;
6256 ordered
->work
.flags
= 0;
6257 btrfs_queue_worker(&root
->fs_info
->endio_write_workers
,
6261 * our bio might span multiple ordered extents. If we haven't
6262 * completed the accounting for the whole dio, go back and try again
6264 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
6265 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
6271 bio
->bi_private
= dip
->private;
6275 /* If we had an error make sure to clear the uptodate flag */
6277 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
6278 dio_end_io(bio
, err
);
6281 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
6282 struct bio
*bio
, int mirror_num
,
6283 unsigned long bio_flags
, u64 offset
)
6286 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6287 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
6288 BUG_ON(ret
); /* -ENOMEM */
6292 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
6294 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6297 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
6298 "sector %#Lx len %u err no %d\n",
6299 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
6300 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
6304 * before atomic variable goto zero, we must make sure
6305 * dip->errors is perceived to be set.
6307 smp_mb__before_atomic_dec();
6310 /* if there are more bios still pending for this dio, just exit */
6311 if (!atomic_dec_and_test(&dip
->pending_bios
))
6315 bio_io_error(dip
->orig_bio
);
6317 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
6318 bio_endio(dip
->orig_bio
, 0);
6324 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
6325 u64 first_sector
, gfp_t gfp_flags
)
6327 int nr_vecs
= bio_get_nr_vecs(bdev
);
6328 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
6331 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
6332 int rw
, u64 file_offset
, int skip_sum
,
6335 int write
= rw
& REQ_WRITE
;
6336 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6342 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
6350 if (write
&& async_submit
) {
6351 ret
= btrfs_wq_submit_bio(root
->fs_info
,
6352 inode
, rw
, bio
, 0, 0,
6354 __btrfs_submit_bio_start_direct_io
,
6355 __btrfs_submit_bio_done
);
6359 * If we aren't doing async submit, calculate the csum of the
6362 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
6365 } else if (!skip_sum
) {
6366 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
, file_offset
);
6372 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
6378 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
6381 struct inode
*inode
= dip
->inode
;
6382 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6383 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6385 struct bio
*orig_bio
= dip
->orig_bio
;
6386 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
6387 u64 start_sector
= orig_bio
->bi_sector
;
6388 u64 file_offset
= dip
->logical_offset
;
6393 int async_submit
= 0;
6395 map_length
= orig_bio
->bi_size
;
6396 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6397 &map_length
, NULL
, 0);
6403 if (map_length
>= orig_bio
->bi_size
) {
6409 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
6412 bio
->bi_private
= dip
;
6413 bio
->bi_end_io
= btrfs_end_dio_bio
;
6414 atomic_inc(&dip
->pending_bios
);
6416 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
6417 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
6418 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6419 bvec
->bv_offset
) < bvec
->bv_len
)) {
6421 * inc the count before we submit the bio so
6422 * we know the end IO handler won't happen before
6423 * we inc the count. Otherwise, the dip might get freed
6424 * before we're done setting it up
6426 atomic_inc(&dip
->pending_bios
);
6427 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6428 file_offset
, skip_sum
,
6432 atomic_dec(&dip
->pending_bios
);
6436 start_sector
+= submit_len
>> 9;
6437 file_offset
+= submit_len
;
6442 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6443 start_sector
, GFP_NOFS
);
6446 bio
->bi_private
= dip
;
6447 bio
->bi_end_io
= btrfs_end_dio_bio
;
6449 map_length
= orig_bio
->bi_size
;
6450 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6451 &map_length
, NULL
, 0);
6457 submit_len
+= bvec
->bv_len
;
6464 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6473 * before atomic variable goto zero, we must
6474 * make sure dip->errors is perceived to be set.
6476 smp_mb__before_atomic_dec();
6477 if (atomic_dec_and_test(&dip
->pending_bios
))
6478 bio_io_error(dip
->orig_bio
);
6480 /* bio_end_io() will handle error, so we needn't return it */
6484 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6487 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6488 struct btrfs_dio_private
*dip
;
6489 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6491 int write
= rw
& REQ_WRITE
;
6494 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6496 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6502 dip
->private = bio
->bi_private
;
6504 dip
->logical_offset
= file_offset
;
6508 dip
->bytes
+= bvec
->bv_len
;
6510 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6512 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6513 bio
->bi_private
= dip
;
6515 dip
->orig_bio
= bio
;
6516 atomic_set(&dip
->pending_bios
, 0);
6519 bio
->bi_end_io
= btrfs_endio_direct_write
;
6521 bio
->bi_end_io
= btrfs_endio_direct_read
;
6523 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6528 * If this is a write, we need to clean up the reserved space and kill
6529 * the ordered extent.
6532 struct btrfs_ordered_extent
*ordered
;
6533 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6534 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6535 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6536 btrfs_free_reserved_extent(root
, ordered
->start
,
6538 btrfs_put_ordered_extent(ordered
);
6539 btrfs_put_ordered_extent(ordered
);
6541 bio_endio(bio
, ret
);
6544 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6545 const struct iovec
*iov
, loff_t offset
,
6546 unsigned long nr_segs
)
6552 unsigned blocksize_mask
= root
->sectorsize
- 1;
6553 ssize_t retval
= -EINVAL
;
6554 loff_t end
= offset
;
6556 if (offset
& blocksize_mask
)
6559 /* Check the memory alignment. Blocks cannot straddle pages */
6560 for (seg
= 0; seg
< nr_segs
; seg
++) {
6561 addr
= (unsigned long)iov
[seg
].iov_base
;
6562 size
= iov
[seg
].iov_len
;
6564 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6567 /* If this is a write we don't need to check anymore */
6572 * Check to make sure we don't have duplicate iov_base's in this
6573 * iovec, if so return EINVAL, otherwise we'll get csum errors
6574 * when reading back.
6576 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6577 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6586 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6587 const struct iovec
*iov
, loff_t offset
,
6588 unsigned long nr_segs
)
6590 struct file
*file
= iocb
->ki_filp
;
6591 struct inode
*inode
= file
->f_mapping
->host
;
6593 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6597 return __blockdev_direct_IO(rw
, iocb
, inode
,
6598 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6599 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6600 btrfs_submit_direct
, 0);
6603 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6604 __u64 start
, __u64 len
)
6606 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6609 int btrfs_readpage(struct file
*file
, struct page
*page
)
6611 struct extent_io_tree
*tree
;
6612 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6613 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
6616 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6618 struct extent_io_tree
*tree
;
6621 if (current
->flags
& PF_MEMALLOC
) {
6622 redirty_page_for_writepage(wbc
, page
);
6626 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6627 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6630 int btrfs_writepages(struct address_space
*mapping
,
6631 struct writeback_control
*wbc
)
6633 struct extent_io_tree
*tree
;
6635 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6636 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6640 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6641 struct list_head
*pages
, unsigned nr_pages
)
6643 struct extent_io_tree
*tree
;
6644 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6645 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6648 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6650 struct extent_io_tree
*tree
;
6651 struct extent_map_tree
*map
;
6654 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6655 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6656 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6658 ClearPagePrivate(page
);
6659 set_page_private(page
, 0);
6660 page_cache_release(page
);
6665 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6667 if (PageWriteback(page
) || PageDirty(page
))
6669 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6672 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6674 struct inode
*inode
= page
->mapping
->host
;
6675 struct extent_io_tree
*tree
;
6676 struct btrfs_ordered_extent
*ordered
;
6677 struct extent_state
*cached_state
= NULL
;
6678 u64 page_start
= page_offset(page
);
6679 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6682 * we have the page locked, so new writeback can't start,
6683 * and the dirty bit won't be cleared while we are here.
6685 * Wait for IO on this page so that we can safely clear
6686 * the PagePrivate2 bit and do ordered accounting
6688 wait_on_page_writeback(page
);
6690 tree
= &BTRFS_I(inode
)->io_tree
;
6692 btrfs_releasepage(page
, GFP_NOFS
);
6695 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
6696 ordered
= btrfs_lookup_ordered_extent(inode
,
6700 * IO on this page will never be started, so we need
6701 * to account for any ordered extents now
6703 clear_extent_bit(tree
, page_start
, page_end
,
6704 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6705 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
6706 EXTENT_DEFRAG
, 1, 0, &cached_state
, GFP_NOFS
);
6708 * whoever cleared the private bit is responsible
6709 * for the finish_ordered_io
6711 if (TestClearPagePrivate2(page
) &&
6712 btrfs_dec_test_ordered_pending(inode
, &ordered
, page_start
,
6713 PAGE_CACHE_SIZE
, 1)) {
6714 btrfs_finish_ordered_io(ordered
);
6716 btrfs_put_ordered_extent(ordered
);
6717 cached_state
= NULL
;
6718 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
6720 clear_extent_bit(tree
, page_start
, page_end
,
6721 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6722 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
6723 &cached_state
, GFP_NOFS
);
6724 __btrfs_releasepage(page
, GFP_NOFS
);
6726 ClearPageChecked(page
);
6727 if (PagePrivate(page
)) {
6728 ClearPagePrivate(page
);
6729 set_page_private(page
, 0);
6730 page_cache_release(page
);
6735 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6736 * called from a page fault handler when a page is first dirtied. Hence we must
6737 * be careful to check for EOF conditions here. We set the page up correctly
6738 * for a written page which means we get ENOSPC checking when writing into
6739 * holes and correct delalloc and unwritten extent mapping on filesystems that
6740 * support these features.
6742 * We are not allowed to take the i_mutex here so we have to play games to
6743 * protect against truncate races as the page could now be beyond EOF. Because
6744 * vmtruncate() writes the inode size before removing pages, once we have the
6745 * page lock we can determine safely if the page is beyond EOF. If it is not
6746 * beyond EOF, then the page is guaranteed safe against truncation until we
6749 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6751 struct page
*page
= vmf
->page
;
6752 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6753 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6754 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6755 struct btrfs_ordered_extent
*ordered
;
6756 struct extent_state
*cached_state
= NULL
;
6758 unsigned long zero_start
;
6765 sb_start_pagefault(inode
->i_sb
);
6766 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6768 ret
= file_update_time(vma
->vm_file
);
6774 else /* -ENOSPC, -EIO, etc */
6775 ret
= VM_FAULT_SIGBUS
;
6781 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6784 size
= i_size_read(inode
);
6785 page_start
= page_offset(page
);
6786 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6788 if ((page
->mapping
!= inode
->i_mapping
) ||
6789 (page_start
>= size
)) {
6790 /* page got truncated out from underneath us */
6793 wait_on_page_writeback(page
);
6795 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
6796 set_page_extent_mapped(page
);
6799 * we can't set the delalloc bits if there are pending ordered
6800 * extents. Drop our locks and wait for them to finish
6802 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6804 unlock_extent_cached(io_tree
, page_start
, page_end
,
6805 &cached_state
, GFP_NOFS
);
6807 btrfs_start_ordered_extent(inode
, ordered
, 1);
6808 btrfs_put_ordered_extent(ordered
);
6813 * XXX - page_mkwrite gets called every time the page is dirtied, even
6814 * if it was already dirty, so for space accounting reasons we need to
6815 * clear any delalloc bits for the range we are fixing to save. There
6816 * is probably a better way to do this, but for now keep consistent with
6817 * prepare_pages in the normal write path.
6819 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6820 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6821 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
6822 0, 0, &cached_state
, GFP_NOFS
);
6824 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6827 unlock_extent_cached(io_tree
, page_start
, page_end
,
6828 &cached_state
, GFP_NOFS
);
6829 ret
= VM_FAULT_SIGBUS
;
6834 /* page is wholly or partially inside EOF */
6835 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6836 zero_start
= size
& ~PAGE_CACHE_MASK
;
6838 zero_start
= PAGE_CACHE_SIZE
;
6840 if (zero_start
!= PAGE_CACHE_SIZE
) {
6842 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6843 flush_dcache_page(page
);
6846 ClearPageChecked(page
);
6847 set_page_dirty(page
);
6848 SetPageUptodate(page
);
6850 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6851 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6852 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
6854 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6858 sb_end_pagefault(inode
->i_sb
);
6859 return VM_FAULT_LOCKED
;
6863 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6865 sb_end_pagefault(inode
->i_sb
);
6869 static int btrfs_truncate(struct inode
*inode
)
6871 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6872 struct btrfs_block_rsv
*rsv
;
6875 struct btrfs_trans_handle
*trans
;
6877 u64 mask
= root
->sectorsize
- 1;
6878 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
6880 ret
= btrfs_truncate_page(inode
, inode
->i_size
, 0, 0);
6884 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6885 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6888 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6889 * 3 things going on here
6891 * 1) We need to reserve space for our orphan item and the space to
6892 * delete our orphan item. Lord knows we don't want to have a dangling
6893 * orphan item because we didn't reserve space to remove it.
6895 * 2) We need to reserve space to update our inode.
6897 * 3) We need to have something to cache all the space that is going to
6898 * be free'd up by the truncate operation, but also have some slack
6899 * space reserved in case it uses space during the truncate (thank you
6900 * very much snapshotting).
6902 * And we need these to all be seperate. The fact is we can use alot of
6903 * space doing the truncate, and we have no earthly idea how much space
6904 * we will use, so we need the truncate reservation to be seperate so it
6905 * doesn't end up using space reserved for updating the inode or
6906 * removing the orphan item. We also need to be able to stop the
6907 * transaction and start a new one, which means we need to be able to
6908 * update the inode several times, and we have no idea of knowing how
6909 * many times that will be, so we can't just reserve 1 item for the
6910 * entirety of the opration, so that has to be done seperately as well.
6911 * Then there is the orphan item, which does indeed need to be held on
6912 * to for the whole operation, and we need nobody to touch this reserved
6913 * space except the orphan code.
6915 * So that leaves us with
6917 * 1) root->orphan_block_rsv - for the orphan deletion.
6918 * 2) rsv - for the truncate reservation, which we will steal from the
6919 * transaction reservation.
6920 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6921 * updating the inode.
6923 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
6926 rsv
->size
= min_size
;
6930 * 1 for the truncate slack space
6931 * 1 for the orphan item we're going to add
6932 * 1 for the orphan item deletion
6933 * 1 for updating the inode.
6935 trans
= btrfs_start_transaction(root
, 4);
6936 if (IS_ERR(trans
)) {
6937 err
= PTR_ERR(trans
);
6941 /* Migrate the slack space for the truncate to our reserve */
6942 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
6946 ret
= btrfs_orphan_add(trans
, inode
);
6948 btrfs_end_transaction(trans
, root
);
6953 * setattr is responsible for setting the ordered_data_close flag,
6954 * but that is only tested during the last file release. That
6955 * could happen well after the next commit, leaving a great big
6956 * window where new writes may get lost if someone chooses to write
6957 * to this file after truncating to zero
6959 * The inode doesn't have any dirty data here, and so if we commit
6960 * this is a noop. If someone immediately starts writing to the inode
6961 * it is very likely we'll catch some of their writes in this
6962 * transaction, and the commit will find this file on the ordered
6963 * data list with good things to send down.
6965 * This is a best effort solution, there is still a window where
6966 * using truncate to replace the contents of the file will
6967 * end up with a zero length file after a crash.
6969 if (inode
->i_size
== 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
6970 &BTRFS_I(inode
)->runtime_flags
))
6971 btrfs_add_ordered_operation(trans
, root
, inode
);
6974 * So if we truncate and then write and fsync we normally would just
6975 * write the extents that changed, which is a problem if we need to
6976 * first truncate that entire inode. So set this flag so we write out
6977 * all of the extents in the inode to the sync log so we're completely
6980 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6981 trans
->block_rsv
= rsv
;
6984 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6986 BTRFS_EXTENT_DATA_KEY
);
6987 if (ret
!= -ENOSPC
) {
6992 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6993 ret
= btrfs_update_inode(trans
, root
, inode
);
6999 nr
= trans
->blocks_used
;
7000 btrfs_end_transaction(trans
, root
);
7001 btrfs_btree_balance_dirty(root
, nr
);
7003 trans
= btrfs_start_transaction(root
, 2);
7004 if (IS_ERR(trans
)) {
7005 ret
= err
= PTR_ERR(trans
);
7010 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
7012 BUG_ON(ret
); /* shouldn't happen */
7013 trans
->block_rsv
= rsv
;
7016 if (ret
== 0 && inode
->i_nlink
> 0) {
7017 trans
->block_rsv
= root
->orphan_block_rsv
;
7018 ret
= btrfs_orphan_del(trans
, inode
);
7021 } else if (ret
&& inode
->i_nlink
> 0) {
7023 * Failed to do the truncate, remove us from the in memory
7026 ret
= btrfs_orphan_del(NULL
, inode
);
7030 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7031 ret
= btrfs_update_inode(trans
, root
, inode
);
7035 nr
= trans
->blocks_used
;
7036 ret
= btrfs_end_transaction(trans
, root
);
7037 btrfs_btree_balance_dirty(root
, nr
);
7041 btrfs_free_block_rsv(root
, rsv
);
7050 * create a new subvolume directory/inode (helper for the ioctl).
7052 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
7053 struct btrfs_root
*new_root
, u64 new_dirid
)
7055 struct inode
*inode
;
7059 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
7060 new_dirid
, new_dirid
,
7061 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
7064 return PTR_ERR(inode
);
7065 inode
->i_op
= &btrfs_dir_inode_operations
;
7066 inode
->i_fop
= &btrfs_dir_file_operations
;
7068 set_nlink(inode
, 1);
7069 btrfs_i_size_write(inode
, 0);
7071 err
= btrfs_update_inode(trans
, new_root
, inode
);
7077 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
7079 struct btrfs_inode
*ei
;
7080 struct inode
*inode
;
7082 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
7089 ei
->last_sub_trans
= 0;
7090 ei
->logged_trans
= 0;
7091 ei
->delalloc_bytes
= 0;
7092 ei
->disk_i_size
= 0;
7095 ei
->index_cnt
= (u64
)-1;
7096 ei
->last_unlink_trans
= 0;
7097 ei
->last_log_commit
= 0;
7099 spin_lock_init(&ei
->lock
);
7100 ei
->outstanding_extents
= 0;
7101 ei
->reserved_extents
= 0;
7103 ei
->runtime_flags
= 0;
7104 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
7106 ei
->delayed_node
= NULL
;
7108 inode
= &ei
->vfs_inode
;
7109 extent_map_tree_init(&ei
->extent_tree
);
7110 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
7111 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
7112 ei
->io_tree
.track_uptodate
= 1;
7113 ei
->io_failure_tree
.track_uptodate
= 1;
7114 mutex_init(&ei
->log_mutex
);
7115 mutex_init(&ei
->delalloc_mutex
);
7116 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
7117 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
7118 INIT_LIST_HEAD(&ei
->ordered_operations
);
7119 RB_CLEAR_NODE(&ei
->rb_node
);
7124 static void btrfs_i_callback(struct rcu_head
*head
)
7126 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
7127 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
7130 void btrfs_destroy_inode(struct inode
*inode
)
7132 struct btrfs_ordered_extent
*ordered
;
7133 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7135 WARN_ON(!hlist_empty(&inode
->i_dentry
));
7136 WARN_ON(inode
->i_data
.nrpages
);
7137 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
7138 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
7139 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
7140 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
7143 * This can happen where we create an inode, but somebody else also
7144 * created the same inode and we need to destroy the one we already
7151 * Make sure we're properly removed from the ordered operation
7155 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
7156 spin_lock(&root
->fs_info
->ordered_extent_lock
);
7157 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
7158 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
7161 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
7162 &BTRFS_I(inode
)->runtime_flags
)) {
7163 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
7164 (unsigned long long)btrfs_ino(inode
));
7165 atomic_dec(&root
->orphan_inodes
);
7169 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
7173 printk(KERN_ERR
"btrfs found ordered "
7174 "extent %llu %llu on inode cleanup\n",
7175 (unsigned long long)ordered
->file_offset
,
7176 (unsigned long long)ordered
->len
);
7177 btrfs_remove_ordered_extent(inode
, ordered
);
7178 btrfs_put_ordered_extent(ordered
);
7179 btrfs_put_ordered_extent(ordered
);
7182 inode_tree_del(inode
);
7183 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
7185 btrfs_remove_delayed_node(inode
);
7186 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
7189 int btrfs_drop_inode(struct inode
*inode
)
7191 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7193 if (btrfs_root_refs(&root
->root_item
) == 0 &&
7194 !btrfs_is_free_space_inode(inode
))
7197 return generic_drop_inode(inode
);
7200 static void init_once(void *foo
)
7202 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
7204 inode_init_once(&ei
->vfs_inode
);
7207 void btrfs_destroy_cachep(void)
7210 * Make sure all delayed rcu free inodes are flushed before we
7214 if (btrfs_inode_cachep
)
7215 kmem_cache_destroy(btrfs_inode_cachep
);
7216 if (btrfs_trans_handle_cachep
)
7217 kmem_cache_destroy(btrfs_trans_handle_cachep
);
7218 if (btrfs_transaction_cachep
)
7219 kmem_cache_destroy(btrfs_transaction_cachep
);
7220 if (btrfs_path_cachep
)
7221 kmem_cache_destroy(btrfs_path_cachep
);
7222 if (btrfs_free_space_cachep
)
7223 kmem_cache_destroy(btrfs_free_space_cachep
);
7224 if (btrfs_delalloc_work_cachep
)
7225 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
7228 int btrfs_init_cachep(void)
7230 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
7231 sizeof(struct btrfs_inode
), 0,
7232 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
7233 if (!btrfs_inode_cachep
)
7236 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
7237 sizeof(struct btrfs_trans_handle
), 0,
7238 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7239 if (!btrfs_trans_handle_cachep
)
7242 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
7243 sizeof(struct btrfs_transaction
), 0,
7244 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7245 if (!btrfs_transaction_cachep
)
7248 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
7249 sizeof(struct btrfs_path
), 0,
7250 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7251 if (!btrfs_path_cachep
)
7254 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
7255 sizeof(struct btrfs_free_space
), 0,
7256 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7257 if (!btrfs_free_space_cachep
)
7260 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
7261 sizeof(struct btrfs_delalloc_work
), 0,
7262 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
7264 if (!btrfs_delalloc_work_cachep
)
7269 btrfs_destroy_cachep();
7273 static int btrfs_getattr(struct vfsmount
*mnt
,
7274 struct dentry
*dentry
, struct kstat
*stat
)
7276 struct inode
*inode
= dentry
->d_inode
;
7277 u32 blocksize
= inode
->i_sb
->s_blocksize
;
7279 generic_fillattr(inode
, stat
);
7280 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
7281 stat
->blksize
= PAGE_CACHE_SIZE
;
7282 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
7283 ALIGN(BTRFS_I(inode
)->delalloc_bytes
, blocksize
)) >> 9;
7288 * If a file is moved, it will inherit the cow and compression flags of the new
7291 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
7293 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
7294 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
7296 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
7297 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
7299 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
7301 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
) {
7302 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
7303 b_inode
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
7305 b_inode
->flags
&= ~(BTRFS_INODE_COMPRESS
|
7306 BTRFS_INODE_NOCOMPRESS
);
7310 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
7311 struct inode
*new_dir
, struct dentry
*new_dentry
)
7313 struct btrfs_trans_handle
*trans
;
7314 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
7315 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
7316 struct inode
*new_inode
= new_dentry
->d_inode
;
7317 struct inode
*old_inode
= old_dentry
->d_inode
;
7318 struct timespec ctime
= CURRENT_TIME
;
7322 u64 old_ino
= btrfs_ino(old_inode
);
7324 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
7327 /* we only allow rename subvolume link between subvolumes */
7328 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
7331 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
7332 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
7335 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
7336 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
7339 * we're using rename to replace one file with another.
7340 * and the replacement file is large. Start IO on it now so
7341 * we don't add too much work to the end of the transaction
7343 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
7344 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
7345 filemap_flush(old_inode
->i_mapping
);
7347 /* close the racy window with snapshot create/destroy ioctl */
7348 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7349 down_read(&root
->fs_info
->subvol_sem
);
7351 * We want to reserve the absolute worst case amount of items. So if
7352 * both inodes are subvols and we need to unlink them then that would
7353 * require 4 item modifications, but if they are both normal inodes it
7354 * would require 5 item modifications, so we'll assume their normal
7355 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7356 * should cover the worst case number of items we'll modify.
7358 trans
= btrfs_start_transaction(root
, 20);
7359 if (IS_ERR(trans
)) {
7360 ret
= PTR_ERR(trans
);
7365 btrfs_record_root_in_trans(trans
, dest
);
7367 ret
= btrfs_set_inode_index(new_dir
, &index
);
7371 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7372 /* force full log commit if subvolume involved. */
7373 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7375 ret
= btrfs_insert_inode_ref(trans
, dest
,
7376 new_dentry
->d_name
.name
,
7377 new_dentry
->d_name
.len
,
7379 btrfs_ino(new_dir
), index
);
7383 * this is an ugly little race, but the rename is required
7384 * to make sure that if we crash, the inode is either at the
7385 * old name or the new one. pinning the log transaction lets
7386 * us make sure we don't allow a log commit to come in after
7387 * we unlink the name but before we add the new name back in.
7389 btrfs_pin_log_trans(root
);
7392 * make sure the inode gets flushed if it is replacing
7395 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7396 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7398 inode_inc_iversion(old_dir
);
7399 inode_inc_iversion(new_dir
);
7400 inode_inc_iversion(old_inode
);
7401 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7402 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7403 old_inode
->i_ctime
= ctime
;
7405 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7406 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7408 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7409 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7410 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7411 old_dentry
->d_name
.name
,
7412 old_dentry
->d_name
.len
);
7414 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7415 old_dentry
->d_inode
,
7416 old_dentry
->d_name
.name
,
7417 old_dentry
->d_name
.len
);
7419 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7422 btrfs_abort_transaction(trans
, root
, ret
);
7427 inode_inc_iversion(new_inode
);
7428 new_inode
->i_ctime
= CURRENT_TIME
;
7429 if (unlikely(btrfs_ino(new_inode
) ==
7430 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7431 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7432 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7434 new_dentry
->d_name
.name
,
7435 new_dentry
->d_name
.len
);
7436 BUG_ON(new_inode
->i_nlink
== 0);
7438 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7439 new_dentry
->d_inode
,
7440 new_dentry
->d_name
.name
,
7441 new_dentry
->d_name
.len
);
7443 if (!ret
&& new_inode
->i_nlink
== 0) {
7444 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7448 btrfs_abort_transaction(trans
, root
, ret
);
7453 fixup_inode_flags(new_dir
, old_inode
);
7455 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7456 new_dentry
->d_name
.name
,
7457 new_dentry
->d_name
.len
, 0, index
);
7459 btrfs_abort_transaction(trans
, root
, ret
);
7463 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7464 struct dentry
*parent
= new_dentry
->d_parent
;
7465 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7466 btrfs_end_log_trans(root
);
7469 btrfs_end_transaction(trans
, root
);
7471 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7472 up_read(&root
->fs_info
->subvol_sem
);
7477 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
7479 struct btrfs_delalloc_work
*delalloc_work
;
7481 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
7483 if (delalloc_work
->wait
)
7484 btrfs_wait_ordered_range(delalloc_work
->inode
, 0, (u64
)-1);
7486 filemap_flush(delalloc_work
->inode
->i_mapping
);
7488 if (delalloc_work
->delay_iput
)
7489 btrfs_add_delayed_iput(delalloc_work
->inode
);
7491 iput(delalloc_work
->inode
);
7492 complete(&delalloc_work
->completion
);
7495 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
7496 int wait
, int delay_iput
)
7498 struct btrfs_delalloc_work
*work
;
7500 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
7504 init_completion(&work
->completion
);
7505 INIT_LIST_HEAD(&work
->list
);
7506 work
->inode
= inode
;
7508 work
->delay_iput
= delay_iput
;
7509 work
->work
.func
= btrfs_run_delalloc_work
;
7514 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
7516 wait_for_completion(&work
->completion
);
7517 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
7521 * some fairly slow code that needs optimization. This walks the list
7522 * of all the inodes with pending delalloc and forces them to disk.
7524 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7526 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7527 struct btrfs_inode
*binode
;
7528 struct inode
*inode
;
7529 struct btrfs_delalloc_work
*work
, *next
;
7530 struct list_head works
;
7533 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7536 INIT_LIST_HEAD(&works
);
7538 spin_lock(&root
->fs_info
->delalloc_lock
);
7539 while (!list_empty(head
)) {
7540 binode
= list_entry(head
->next
, struct btrfs_inode
,
7542 inode
= igrab(&binode
->vfs_inode
);
7544 list_del_init(&binode
->delalloc_inodes
);
7545 spin_unlock(&root
->fs_info
->delalloc_lock
);
7547 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
7552 list_add_tail(&work
->list
, &works
);
7553 btrfs_queue_worker(&root
->fs_info
->flush_workers
,
7557 spin_lock(&root
->fs_info
->delalloc_lock
);
7559 spin_unlock(&root
->fs_info
->delalloc_lock
);
7561 /* the filemap_flush will queue IO into the worker threads, but
7562 * we have to make sure the IO is actually started and that
7563 * ordered extents get created before we return
7565 atomic_inc(&root
->fs_info
->async_submit_draining
);
7566 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7567 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7568 wait_event(root
->fs_info
->async_submit_wait
,
7569 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7570 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7572 atomic_dec(&root
->fs_info
->async_submit_draining
);
7574 list_for_each_entry_safe(work
, next
, &works
, list
) {
7575 list_del_init(&work
->list
);
7576 btrfs_wait_and_free_delalloc_work(work
);
7581 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7582 const char *symname
)
7584 struct btrfs_trans_handle
*trans
;
7585 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7586 struct btrfs_path
*path
;
7587 struct btrfs_key key
;
7588 struct inode
*inode
= NULL
;
7596 struct btrfs_file_extent_item
*ei
;
7597 struct extent_buffer
*leaf
;
7598 unsigned long nr
= 0;
7600 name_len
= strlen(symname
) + 1;
7601 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7602 return -ENAMETOOLONG
;
7605 * 2 items for inode item and ref
7606 * 2 items for dir items
7607 * 1 item for xattr if selinux is on
7609 trans
= btrfs_start_transaction(root
, 5);
7611 return PTR_ERR(trans
);
7613 err
= btrfs_find_free_ino(root
, &objectid
);
7617 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7618 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7619 S_IFLNK
|S_IRWXUGO
, &index
);
7620 if (IS_ERR(inode
)) {
7621 err
= PTR_ERR(inode
);
7625 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7632 * If the active LSM wants to access the inode during
7633 * d_instantiate it needs these. Smack checks to see
7634 * if the filesystem supports xattrs by looking at the
7637 inode
->i_fop
= &btrfs_file_operations
;
7638 inode
->i_op
= &btrfs_file_inode_operations
;
7640 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7644 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7645 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7646 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7651 path
= btrfs_alloc_path();
7657 key
.objectid
= btrfs_ino(inode
);
7659 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7660 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7661 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7665 btrfs_free_path(path
);
7668 leaf
= path
->nodes
[0];
7669 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7670 struct btrfs_file_extent_item
);
7671 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7672 btrfs_set_file_extent_type(leaf
, ei
,
7673 BTRFS_FILE_EXTENT_INLINE
);
7674 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7675 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7676 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7677 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7679 ptr
= btrfs_file_extent_inline_start(ei
);
7680 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7681 btrfs_mark_buffer_dirty(leaf
);
7682 btrfs_free_path(path
);
7684 inode
->i_op
= &btrfs_symlink_inode_operations
;
7685 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7686 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7687 inode_set_bytes(inode
, name_len
);
7688 btrfs_i_size_write(inode
, name_len
- 1);
7689 err
= btrfs_update_inode(trans
, root
, inode
);
7695 d_instantiate(dentry
, inode
);
7696 nr
= trans
->blocks_used
;
7697 btrfs_end_transaction(trans
, root
);
7699 inode_dec_link_count(inode
);
7702 btrfs_btree_balance_dirty(root
, nr
);
7706 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7707 u64 start
, u64 num_bytes
, u64 min_size
,
7708 loff_t actual_len
, u64
*alloc_hint
,
7709 struct btrfs_trans_handle
*trans
)
7711 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
7712 struct extent_map
*em
;
7713 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7714 struct btrfs_key ins
;
7715 u64 cur_offset
= start
;
7718 bool own_trans
= true;
7722 while (num_bytes
> 0) {
7724 trans
= btrfs_start_transaction(root
, 3);
7725 if (IS_ERR(trans
)) {
7726 ret
= PTR_ERR(trans
);
7731 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7732 0, *alloc_hint
, &ins
, 1);
7735 btrfs_end_transaction(trans
, root
);
7739 ret
= insert_reserved_file_extent(trans
, inode
,
7740 cur_offset
, ins
.objectid
,
7741 ins
.offset
, ins
.offset
,
7742 ins
.offset
, 0, 0, 0,
7743 BTRFS_FILE_EXTENT_PREALLOC
);
7745 btrfs_abort_transaction(trans
, root
, ret
);
7747 btrfs_end_transaction(trans
, root
);
7750 btrfs_drop_extent_cache(inode
, cur_offset
,
7751 cur_offset
+ ins
.offset
-1, 0);
7753 em
= alloc_extent_map();
7755 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
7756 &BTRFS_I(inode
)->runtime_flags
);
7760 em
->start
= cur_offset
;
7761 em
->orig_start
= cur_offset
;
7762 em
->len
= ins
.offset
;
7763 em
->block_start
= ins
.objectid
;
7764 em
->block_len
= ins
.offset
;
7765 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7766 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7767 em
->generation
= trans
->transid
;
7770 write_lock(&em_tree
->lock
);
7771 ret
= add_extent_mapping(em_tree
, em
);
7773 list_move(&em
->list
,
7774 &em_tree
->modified_extents
);
7775 write_unlock(&em_tree
->lock
);
7778 btrfs_drop_extent_cache(inode
, cur_offset
,
7779 cur_offset
+ ins
.offset
- 1,
7782 free_extent_map(em
);
7784 num_bytes
-= ins
.offset
;
7785 cur_offset
+= ins
.offset
;
7786 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7788 inode_inc_iversion(inode
);
7789 inode
->i_ctime
= CURRENT_TIME
;
7790 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7791 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7792 (actual_len
> inode
->i_size
) &&
7793 (cur_offset
> inode
->i_size
)) {
7794 if (cur_offset
> actual_len
)
7795 i_size
= actual_len
;
7797 i_size
= cur_offset
;
7798 i_size_write(inode
, i_size
);
7799 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7802 ret
= btrfs_update_inode(trans
, root
, inode
);
7805 btrfs_abort_transaction(trans
, root
, ret
);
7807 btrfs_end_transaction(trans
, root
);
7812 btrfs_end_transaction(trans
, root
);
7817 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7818 u64 start
, u64 num_bytes
, u64 min_size
,
7819 loff_t actual_len
, u64
*alloc_hint
)
7821 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7822 min_size
, actual_len
, alloc_hint
,
7826 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7827 struct btrfs_trans_handle
*trans
, int mode
,
7828 u64 start
, u64 num_bytes
, u64 min_size
,
7829 loff_t actual_len
, u64
*alloc_hint
)
7831 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7832 min_size
, actual_len
, alloc_hint
, trans
);
7835 static int btrfs_set_page_dirty(struct page
*page
)
7837 return __set_page_dirty_nobuffers(page
);
7840 static int btrfs_permission(struct inode
*inode
, int mask
)
7842 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7843 umode_t mode
= inode
->i_mode
;
7845 if (mask
& MAY_WRITE
&&
7846 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7847 if (btrfs_root_readonly(root
))
7849 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7852 return generic_permission(inode
, mask
);
7855 static const struct inode_operations btrfs_dir_inode_operations
= {
7856 .getattr
= btrfs_getattr
,
7857 .lookup
= btrfs_lookup
,
7858 .create
= btrfs_create
,
7859 .unlink
= btrfs_unlink
,
7861 .mkdir
= btrfs_mkdir
,
7862 .rmdir
= btrfs_rmdir
,
7863 .rename
= btrfs_rename
,
7864 .symlink
= btrfs_symlink
,
7865 .setattr
= btrfs_setattr
,
7866 .mknod
= btrfs_mknod
,
7867 .setxattr
= btrfs_setxattr
,
7868 .getxattr
= btrfs_getxattr
,
7869 .listxattr
= btrfs_listxattr
,
7870 .removexattr
= btrfs_removexattr
,
7871 .permission
= btrfs_permission
,
7872 .get_acl
= btrfs_get_acl
,
7874 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7875 .lookup
= btrfs_lookup
,
7876 .permission
= btrfs_permission
,
7877 .get_acl
= btrfs_get_acl
,
7880 static const struct file_operations btrfs_dir_file_operations
= {
7881 .llseek
= generic_file_llseek
,
7882 .read
= generic_read_dir
,
7883 .readdir
= btrfs_real_readdir
,
7884 .unlocked_ioctl
= btrfs_ioctl
,
7885 #ifdef CONFIG_COMPAT
7886 .compat_ioctl
= btrfs_ioctl
,
7888 .release
= btrfs_release_file
,
7889 .fsync
= btrfs_sync_file
,
7892 static struct extent_io_ops btrfs_extent_io_ops
= {
7893 .fill_delalloc
= run_delalloc_range
,
7894 .submit_bio_hook
= btrfs_submit_bio_hook
,
7895 .merge_bio_hook
= btrfs_merge_bio_hook
,
7896 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7897 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7898 .writepage_start_hook
= btrfs_writepage_start_hook
,
7899 .set_bit_hook
= btrfs_set_bit_hook
,
7900 .clear_bit_hook
= btrfs_clear_bit_hook
,
7901 .merge_extent_hook
= btrfs_merge_extent_hook
,
7902 .split_extent_hook
= btrfs_split_extent_hook
,
7906 * btrfs doesn't support the bmap operation because swapfiles
7907 * use bmap to make a mapping of extents in the file. They assume
7908 * these extents won't change over the life of the file and they
7909 * use the bmap result to do IO directly to the drive.
7911 * the btrfs bmap call would return logical addresses that aren't
7912 * suitable for IO and they also will change frequently as COW
7913 * operations happen. So, swapfile + btrfs == corruption.
7915 * For now we're avoiding this by dropping bmap.
7917 static const struct address_space_operations btrfs_aops
= {
7918 .readpage
= btrfs_readpage
,
7919 .writepage
= btrfs_writepage
,
7920 .writepages
= btrfs_writepages
,
7921 .readpages
= btrfs_readpages
,
7922 .direct_IO
= btrfs_direct_IO
,
7923 .invalidatepage
= btrfs_invalidatepage
,
7924 .releasepage
= btrfs_releasepage
,
7925 .set_page_dirty
= btrfs_set_page_dirty
,
7926 .error_remove_page
= generic_error_remove_page
,
7929 static const struct address_space_operations btrfs_symlink_aops
= {
7930 .readpage
= btrfs_readpage
,
7931 .writepage
= btrfs_writepage
,
7932 .invalidatepage
= btrfs_invalidatepage
,
7933 .releasepage
= btrfs_releasepage
,
7936 static const struct inode_operations btrfs_file_inode_operations
= {
7937 .getattr
= btrfs_getattr
,
7938 .setattr
= btrfs_setattr
,
7939 .setxattr
= btrfs_setxattr
,
7940 .getxattr
= btrfs_getxattr
,
7941 .listxattr
= btrfs_listxattr
,
7942 .removexattr
= btrfs_removexattr
,
7943 .permission
= btrfs_permission
,
7944 .fiemap
= btrfs_fiemap
,
7945 .get_acl
= btrfs_get_acl
,
7946 .update_time
= btrfs_update_time
,
7948 static const struct inode_operations btrfs_special_inode_operations
= {
7949 .getattr
= btrfs_getattr
,
7950 .setattr
= btrfs_setattr
,
7951 .permission
= btrfs_permission
,
7952 .setxattr
= btrfs_setxattr
,
7953 .getxattr
= btrfs_getxattr
,
7954 .listxattr
= btrfs_listxattr
,
7955 .removexattr
= btrfs_removexattr
,
7956 .get_acl
= btrfs_get_acl
,
7957 .update_time
= btrfs_update_time
,
7959 static const struct inode_operations btrfs_symlink_inode_operations
= {
7960 .readlink
= generic_readlink
,
7961 .follow_link
= page_follow_link_light
,
7962 .put_link
= page_put_link
,
7963 .getattr
= btrfs_getattr
,
7964 .setattr
= btrfs_setattr
,
7965 .permission
= btrfs_permission
,
7966 .setxattr
= btrfs_setxattr
,
7967 .getxattr
= btrfs_getxattr
,
7968 .listxattr
= btrfs_listxattr
,
7969 .removexattr
= btrfs_removexattr
,
7970 .get_acl
= btrfs_get_acl
,
7971 .update_time
= btrfs_update_time
,
7974 const struct dentry_operations btrfs_dentry_operations
= {
7975 .d_delete
= btrfs_dentry_delete
,
7976 .d_release
= btrfs_dentry_release
,