]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
fs/btrfs: use WARN
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 static struct kmem_cache *btrfs_delalloc_work_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_transaction_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79
80 #define S_SHIFT 12
81 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89 };
90
91 static int btrfs_setsize(struct inode *inode, loff_t newsize);
92 static int btrfs_truncate(struct inode *inode);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
98
99 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
100 struct inode *inode, struct inode *dir,
101 const struct qstr *qstr)
102 {
103 int err;
104
105 err = btrfs_init_acl(trans, inode, dir);
106 if (!err)
107 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
108 return err;
109 }
110
111 /*
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
115 */
116 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
117 struct btrfs_root *root, struct inode *inode,
118 u64 start, size_t size, size_t compressed_size,
119 int compress_type,
120 struct page **compressed_pages)
121 {
122 struct btrfs_key key;
123 struct btrfs_path *path;
124 struct extent_buffer *leaf;
125 struct page *page = NULL;
126 char *kaddr;
127 unsigned long ptr;
128 struct btrfs_file_extent_item *ei;
129 int err = 0;
130 int ret;
131 size_t cur_size = size;
132 size_t datasize;
133 unsigned long offset;
134
135 if (compressed_size && compressed_pages)
136 cur_size = compressed_size;
137
138 path = btrfs_alloc_path();
139 if (!path)
140 return -ENOMEM;
141
142 path->leave_spinning = 1;
143
144 key.objectid = btrfs_ino(inode);
145 key.offset = start;
146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
147 datasize = btrfs_file_extent_calc_inline_size(cur_size);
148
149 inode_add_bytes(inode, size);
150 ret = btrfs_insert_empty_item(trans, root, path, &key,
151 datasize);
152 if (ret) {
153 err = ret;
154 goto fail;
155 }
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
165
166 if (compress_type != BTRFS_COMPRESS_NONE) {
167 struct page *cpage;
168 int i = 0;
169 while (compressed_size > 0) {
170 cpage = compressed_pages[i];
171 cur_size = min_t(unsigned long, compressed_size,
172 PAGE_CACHE_SIZE);
173
174 kaddr = kmap_atomic(cpage);
175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
176 kunmap_atomic(kaddr);
177
178 i++;
179 ptr += cur_size;
180 compressed_size -= cur_size;
181 }
182 btrfs_set_file_extent_compression(leaf, ei,
183 compress_type);
184 } else {
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
188 kaddr = kmap_atomic(page);
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
191 kunmap_atomic(kaddr);
192 page_cache_release(page);
193 }
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
196
197 /*
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
201 *
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
205 */
206 BTRFS_I(inode)->disk_i_size = inode->i_size;
207 ret = btrfs_update_inode(trans, root, inode);
208
209 return ret;
210 fail:
211 btrfs_free_path(path);
212 return err;
213 }
214
215
216 /*
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
220 */
221 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
224 size_t compressed_size, int compress_type,
225 struct page **compressed_pages)
226 {
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
248 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
249 if (ret)
250 return ret;
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
257 if (ret && ret != -ENOSPC) {
258 btrfs_abort_transaction(trans, root, ret);
259 return ret;
260 } else if (ret == -ENOSPC) {
261 return 1;
262 }
263
264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 return 0;
267 }
268
269 struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
275 int compress_type;
276 struct list_head list;
277 };
278
279 struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287 };
288
289 static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
293 unsigned long nr_pages,
294 int compress_type)
295 {
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 BUG_ON(!async_extent); /* -ENOMEM */
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
305 async_extent->compress_type = compress_type;
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308 }
309
310 /*
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
314 *
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
320 *
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that the flusher thread sent them
325 * down.
326 */
327 static noinline int compress_file_range(struct inode *inode,
328 struct page *locked_page,
329 u64 start, u64 end,
330 struct async_cow *async_cow,
331 int *num_added)
332 {
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct btrfs_trans_handle *trans;
335 u64 num_bytes;
336 u64 blocksize = root->sectorsize;
337 u64 actual_end;
338 u64 isize = i_size_read(inode);
339 int ret = 0;
340 struct page **pages = NULL;
341 unsigned long nr_pages;
342 unsigned long nr_pages_ret = 0;
343 unsigned long total_compressed = 0;
344 unsigned long total_in = 0;
345 unsigned long max_compressed = 128 * 1024;
346 unsigned long max_uncompressed = 128 * 1024;
347 int i;
348 int will_compress;
349 int compress_type = root->fs_info->compress_type;
350
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end - start + 1) < 16 * 1024 &&
353 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
354 btrfs_add_inode_defrag(NULL, inode);
355
356 actual_end = min_t(u64, isize, end + 1);
357 again:
358 will_compress = 0;
359 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
360 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
361
362 /*
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
368 *
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
371 */
372 if (actual_end <= start)
373 goto cleanup_and_bail_uncompressed;
374
375 total_compressed = actual_end - start;
376
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
382 *
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
386 */
387 total_compressed = min(total_compressed, max_uncompressed);
388 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
389 num_bytes = max(blocksize, num_bytes);
390 total_in = 0;
391 ret = 0;
392
393 /*
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
397 */
398 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
399 (btrfs_test_opt(root, COMPRESS) ||
400 (BTRFS_I(inode)->force_compress) ||
401 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
402 WARN_ON(pages);
403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404 if (!pages) {
405 /* just bail out to the uncompressed code */
406 goto cont;
407 }
408
409 if (BTRFS_I(inode)->force_compress)
410 compress_type = BTRFS_I(inode)->force_compress;
411
412 ret = btrfs_compress_pages(compress_type,
413 inode->i_mapping, start,
414 total_compressed, pages,
415 nr_pages, &nr_pages_ret,
416 &total_in,
417 &total_compressed,
418 max_compressed);
419
420 if (!ret) {
421 unsigned long offset = total_compressed &
422 (PAGE_CACHE_SIZE - 1);
423 struct page *page = pages[nr_pages_ret - 1];
424 char *kaddr;
425
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
428 */
429 if (offset) {
430 kaddr = kmap_atomic(page);
431 memset(kaddr + offset, 0,
432 PAGE_CACHE_SIZE - offset);
433 kunmap_atomic(kaddr);
434 }
435 will_compress = 1;
436 }
437 }
438 cont:
439 if (start == 0) {
440 trans = btrfs_join_transaction(root);
441 if (IS_ERR(trans)) {
442 ret = PTR_ERR(trans);
443 trans = NULL;
444 goto cleanup_and_out;
445 }
446 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
447
448 /* lets try to make an inline extent */
449 if (ret || total_in < (actual_end - start)) {
450 /* we didn't compress the entire range, try
451 * to make an uncompressed inline extent.
452 */
453 ret = cow_file_range_inline(trans, root, inode,
454 start, end, 0, 0, NULL);
455 } else {
456 /* try making a compressed inline extent */
457 ret = cow_file_range_inline(trans, root, inode,
458 start, end,
459 total_compressed,
460 compress_type, pages);
461 }
462 if (ret <= 0) {
463 /*
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
467 */
468 extent_clear_unlock_delalloc(inode,
469 &BTRFS_I(inode)->io_tree,
470 start, end, NULL,
471 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
472 EXTENT_CLEAR_DELALLOC |
473 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
474
475 btrfs_end_transaction(trans, root);
476 goto free_pages_out;
477 }
478 btrfs_end_transaction(trans, root);
479 }
480
481 if (will_compress) {
482 /*
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
485 * things
486 */
487 total_compressed = (total_compressed + blocksize - 1) &
488 ~(blocksize - 1);
489
490 /*
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
493 */
494 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
495 ~(PAGE_CACHE_SIZE - 1);
496 if (total_compressed >= total_in) {
497 will_compress = 0;
498 } else {
499 num_bytes = total_in;
500 }
501 }
502 if (!will_compress && pages) {
503 /*
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
506 */
507 for (i = 0; i < nr_pages_ret; i++) {
508 WARN_ON(pages[i]->mapping);
509 page_cache_release(pages[i]);
510 }
511 kfree(pages);
512 pages = NULL;
513 total_compressed = 0;
514 nr_pages_ret = 0;
515
516 /* flag the file so we don't compress in the future */
517 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
518 !(BTRFS_I(inode)->force_compress)) {
519 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
520 }
521 }
522 if (will_compress) {
523 *num_added += 1;
524
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
528 */
529 add_async_extent(async_cow, start, num_bytes,
530 total_compressed, pages, nr_pages_ret,
531 compress_type);
532
533 if (start + num_bytes < end) {
534 start += num_bytes;
535 pages = NULL;
536 cond_resched();
537 goto again;
538 }
539 } else {
540 cleanup_and_bail_uncompressed:
541 /*
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
547 */
548 if (page_offset(locked_page) >= start &&
549 page_offset(locked_page) <= end) {
550 __set_page_dirty_nobuffers(locked_page);
551 /* unlocked later on in the async handlers */
552 }
553 add_async_extent(async_cow, start, end - start + 1,
554 0, NULL, 0, BTRFS_COMPRESS_NONE);
555 *num_added += 1;
556 }
557
558 out:
559 return ret;
560
561 free_pages_out:
562 for (i = 0; i < nr_pages_ret; i++) {
563 WARN_ON(pages[i]->mapping);
564 page_cache_release(pages[i]);
565 }
566 kfree(pages);
567
568 goto out;
569
570 cleanup_and_out:
571 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
572 start, end, NULL,
573 EXTENT_CLEAR_UNLOCK_PAGE |
574 EXTENT_CLEAR_DIRTY |
575 EXTENT_CLEAR_DELALLOC |
576 EXTENT_SET_WRITEBACK |
577 EXTENT_END_WRITEBACK);
578 if (!trans || IS_ERR(trans))
579 btrfs_error(root->fs_info, ret, "Failed to join transaction");
580 else
581 btrfs_abort_transaction(trans, root, ret);
582 goto free_pages_out;
583 }
584
585 /*
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
590 */
591 static noinline int submit_compressed_extents(struct inode *inode,
592 struct async_cow *async_cow)
593 {
594 struct async_extent *async_extent;
595 u64 alloc_hint = 0;
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key ins;
598 struct extent_map *em;
599 struct btrfs_root *root = BTRFS_I(inode)->root;
600 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
601 struct extent_io_tree *io_tree;
602 int ret = 0;
603
604 if (list_empty(&async_cow->extents))
605 return 0;
606
607
608 while (!list_empty(&async_cow->extents)) {
609 async_extent = list_entry(async_cow->extents.next,
610 struct async_extent, list);
611 list_del(&async_extent->list);
612
613 io_tree = &BTRFS_I(inode)->io_tree;
614
615 retry:
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent->pages) {
618 int page_started = 0;
619 unsigned long nr_written = 0;
620
621 lock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1);
624
625 /* allocate blocks */
626 ret = cow_file_range(inode, async_cow->locked_page,
627 async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1,
630 &page_started, &nr_written, 0);
631
632 /* JDM XXX */
633
634 /*
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
639 */
640 if (!page_started && !ret)
641 extent_write_locked_range(io_tree,
642 inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 btrfs_get_extent,
646 WB_SYNC_ALL);
647 kfree(async_extent);
648 cond_resched();
649 continue;
650 }
651
652 lock_extent(io_tree, async_extent->start,
653 async_extent->start + async_extent->ram_size - 1);
654
655 trans = btrfs_join_transaction(root);
656 if (IS_ERR(trans)) {
657 ret = PTR_ERR(trans);
658 } else {
659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
660 ret = btrfs_reserve_extent(trans, root,
661 async_extent->compressed_size,
662 async_extent->compressed_size,
663 0, alloc_hint, &ins, 1);
664 if (ret && ret != -ENOSPC)
665 btrfs_abort_transaction(trans, root, ret);
666 btrfs_end_transaction(trans, root);
667 }
668
669 if (ret) {
670 int i;
671 for (i = 0; i < async_extent->nr_pages; i++) {
672 WARN_ON(async_extent->pages[i]->mapping);
673 page_cache_release(async_extent->pages[i]);
674 }
675 kfree(async_extent->pages);
676 async_extent->nr_pages = 0;
677 async_extent->pages = NULL;
678 unlock_extent(io_tree, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1);
681 if (ret == -ENOSPC)
682 goto retry;
683 goto out_free; /* JDM: Requeue? */
684 }
685
686 /*
687 * here we're doing allocation and writeback of the
688 * compressed pages
689 */
690 btrfs_drop_extent_cache(inode, async_extent->start,
691 async_extent->start +
692 async_extent->ram_size - 1, 0);
693
694 em = alloc_extent_map();
695 BUG_ON(!em); /* -ENOMEM */
696 em->start = async_extent->start;
697 em->len = async_extent->ram_size;
698 em->orig_start = em->start;
699
700 em->block_start = ins.objectid;
701 em->block_len = ins.offset;
702 em->bdev = root->fs_info->fs_devices->latest_bdev;
703 em->compress_type = async_extent->compress_type;
704 set_bit(EXTENT_FLAG_PINNED, &em->flags);
705 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
706
707 while (1) {
708 write_lock(&em_tree->lock);
709 ret = add_extent_mapping(em_tree, em);
710 write_unlock(&em_tree->lock);
711 if (ret != -EEXIST) {
712 free_extent_map(em);
713 break;
714 }
715 btrfs_drop_extent_cache(inode, async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1, 0);
718 }
719
720 ret = btrfs_add_ordered_extent_compress(inode,
721 async_extent->start,
722 ins.objectid,
723 async_extent->ram_size,
724 ins.offset,
725 BTRFS_ORDERED_COMPRESSED,
726 async_extent->compress_type);
727 BUG_ON(ret); /* -ENOMEM */
728
729 /*
730 * clear dirty, set writeback and unlock the pages.
731 */
732 extent_clear_unlock_delalloc(inode,
733 &BTRFS_I(inode)->io_tree,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
738 EXTENT_CLEAR_UNLOCK |
739 EXTENT_CLEAR_DELALLOC |
740 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
741
742 ret = btrfs_submit_compressed_write(inode,
743 async_extent->start,
744 async_extent->ram_size,
745 ins.objectid,
746 ins.offset, async_extent->pages,
747 async_extent->nr_pages);
748
749 BUG_ON(ret); /* -ENOMEM */
750 alloc_hint = ins.objectid + ins.offset;
751 kfree(async_extent);
752 cond_resched();
753 }
754 ret = 0;
755 out:
756 return ret;
757 out_free:
758 kfree(async_extent);
759 goto out;
760 }
761
762 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
763 u64 num_bytes)
764 {
765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766 struct extent_map *em;
767 u64 alloc_hint = 0;
768
769 read_lock(&em_tree->lock);
770 em = search_extent_mapping(em_tree, start, num_bytes);
771 if (em) {
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
788 }
789 read_unlock(&em_tree->lock);
790
791 return alloc_hint;
792 }
793
794 /*
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
799 *
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
802 *
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
805 * IO when we return.
806 */
807 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
808 struct inode *inode,
809 struct btrfs_root *root,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
814 {
815 u64 alloc_hint = 0;
816 u64 num_bytes;
817 unsigned long ram_size;
818 u64 disk_num_bytes;
819 u64 cur_alloc_size;
820 u64 blocksize = root->sectorsize;
821 struct btrfs_key ins;
822 struct extent_map *em;
823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
824 int ret = 0;
825
826 BUG_ON(btrfs_is_free_space_inode(inode));
827
828 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
829 num_bytes = max(blocksize, num_bytes);
830 disk_num_bytes = num_bytes;
831
832 /* if this is a small write inside eof, kick off defrag */
833 if (num_bytes < 64 * 1024 &&
834 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
835 btrfs_add_inode_defrag(trans, inode);
836
837 if (start == 0) {
838 /* lets try to make an inline extent */
839 ret = cow_file_range_inline(trans, root, inode,
840 start, end, 0, 0, NULL);
841 if (ret == 0) {
842 extent_clear_unlock_delalloc(inode,
843 &BTRFS_I(inode)->io_tree,
844 start, end, NULL,
845 EXTENT_CLEAR_UNLOCK_PAGE |
846 EXTENT_CLEAR_UNLOCK |
847 EXTENT_CLEAR_DELALLOC |
848 EXTENT_CLEAR_DIRTY |
849 EXTENT_SET_WRITEBACK |
850 EXTENT_END_WRITEBACK);
851
852 *nr_written = *nr_written +
853 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
854 *page_started = 1;
855 goto out;
856 } else if (ret < 0) {
857 btrfs_abort_transaction(trans, root, ret);
858 goto out_unlock;
859 }
860 }
861
862 BUG_ON(disk_num_bytes >
863 btrfs_super_total_bytes(root->fs_info->super_copy));
864
865 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
866 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
867
868 while (disk_num_bytes > 0) {
869 unsigned long op;
870
871 cur_alloc_size = disk_num_bytes;
872 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
873 root->sectorsize, 0, alloc_hint,
874 &ins, 1);
875 if (ret < 0) {
876 btrfs_abort_transaction(trans, root, ret);
877 goto out_unlock;
878 }
879
880 em = alloc_extent_map();
881 BUG_ON(!em); /* -ENOMEM */
882 em->start = start;
883 em->orig_start = em->start;
884 ram_size = ins.offset;
885 em->len = ins.offset;
886
887 em->block_start = ins.objectid;
888 em->block_len = ins.offset;
889 em->bdev = root->fs_info->fs_devices->latest_bdev;
890 set_bit(EXTENT_FLAG_PINNED, &em->flags);
891
892 while (1) {
893 write_lock(&em_tree->lock);
894 ret = add_extent_mapping(em_tree, em);
895 write_unlock(&em_tree->lock);
896 if (ret != -EEXIST) {
897 free_extent_map(em);
898 break;
899 }
900 btrfs_drop_extent_cache(inode, start,
901 start + ram_size - 1, 0);
902 }
903
904 cur_alloc_size = ins.offset;
905 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
906 ram_size, cur_alloc_size, 0);
907 BUG_ON(ret); /* -ENOMEM */
908
909 if (root->root_key.objectid ==
910 BTRFS_DATA_RELOC_TREE_OBJECTID) {
911 ret = btrfs_reloc_clone_csums(inode, start,
912 cur_alloc_size);
913 if (ret) {
914 btrfs_abort_transaction(trans, root, ret);
915 goto out_unlock;
916 }
917 }
918
919 if (disk_num_bytes < cur_alloc_size)
920 break;
921
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
925 *
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
928 */
929 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
930 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
931 EXTENT_SET_PRIVATE2;
932
933 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
934 start, start + ram_size - 1,
935 locked_page, op);
936 disk_num_bytes -= cur_alloc_size;
937 num_bytes -= cur_alloc_size;
938 alloc_hint = ins.objectid + ins.offset;
939 start += cur_alloc_size;
940 }
941 out:
942 return ret;
943
944 out_unlock:
945 extent_clear_unlock_delalloc(inode,
946 &BTRFS_I(inode)->io_tree,
947 start, end, locked_page,
948 EXTENT_CLEAR_UNLOCK_PAGE |
949 EXTENT_CLEAR_UNLOCK |
950 EXTENT_CLEAR_DELALLOC |
951 EXTENT_CLEAR_DIRTY |
952 EXTENT_SET_WRITEBACK |
953 EXTENT_END_WRITEBACK);
954
955 goto out;
956 }
957
958 static noinline int cow_file_range(struct inode *inode,
959 struct page *locked_page,
960 u64 start, u64 end, int *page_started,
961 unsigned long *nr_written,
962 int unlock)
963 {
964 struct btrfs_trans_handle *trans;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 int ret;
967
968 trans = btrfs_join_transaction(root);
969 if (IS_ERR(trans)) {
970 extent_clear_unlock_delalloc(inode,
971 &BTRFS_I(inode)->io_tree,
972 start, end, locked_page,
973 EXTENT_CLEAR_UNLOCK_PAGE |
974 EXTENT_CLEAR_UNLOCK |
975 EXTENT_CLEAR_DELALLOC |
976 EXTENT_CLEAR_DIRTY |
977 EXTENT_SET_WRITEBACK |
978 EXTENT_END_WRITEBACK);
979 return PTR_ERR(trans);
980 }
981 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
982
983 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
984 page_started, nr_written, unlock);
985
986 btrfs_end_transaction(trans, root);
987
988 return ret;
989 }
990
991 /*
992 * work queue call back to started compression on a file and pages
993 */
994 static noinline void async_cow_start(struct btrfs_work *work)
995 {
996 struct async_cow *async_cow;
997 int num_added = 0;
998 async_cow = container_of(work, struct async_cow, work);
999
1000 compress_file_range(async_cow->inode, async_cow->locked_page,
1001 async_cow->start, async_cow->end, async_cow,
1002 &num_added);
1003 if (num_added == 0) {
1004 btrfs_add_delayed_iput(async_cow->inode);
1005 async_cow->inode = NULL;
1006 }
1007 }
1008
1009 /*
1010 * work queue call back to submit previously compressed pages
1011 */
1012 static noinline void async_cow_submit(struct btrfs_work *work)
1013 {
1014 struct async_cow *async_cow;
1015 struct btrfs_root *root;
1016 unsigned long nr_pages;
1017
1018 async_cow = container_of(work, struct async_cow, work);
1019
1020 root = async_cow->root;
1021 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1022 PAGE_CACHE_SHIFT;
1023
1024 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1025 5 * 1024 * 1024 &&
1026 waitqueue_active(&root->fs_info->async_submit_wait))
1027 wake_up(&root->fs_info->async_submit_wait);
1028
1029 if (async_cow->inode)
1030 submit_compressed_extents(async_cow->inode, async_cow);
1031 }
1032
1033 static noinline void async_cow_free(struct btrfs_work *work)
1034 {
1035 struct async_cow *async_cow;
1036 async_cow = container_of(work, struct async_cow, work);
1037 if (async_cow->inode)
1038 btrfs_add_delayed_iput(async_cow->inode);
1039 kfree(async_cow);
1040 }
1041
1042 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1043 u64 start, u64 end, int *page_started,
1044 unsigned long *nr_written)
1045 {
1046 struct async_cow *async_cow;
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 unsigned long nr_pages;
1049 u64 cur_end;
1050 int limit = 10 * 1024 * 1024;
1051
1052 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1053 1, 0, NULL, GFP_NOFS);
1054 while (start < end) {
1055 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1056 BUG_ON(!async_cow); /* -ENOMEM */
1057 async_cow->inode = igrab(inode);
1058 async_cow->root = root;
1059 async_cow->locked_page = locked_page;
1060 async_cow->start = start;
1061
1062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1063 cur_end = end;
1064 else
1065 cur_end = min(end, start + 512 * 1024 - 1);
1066
1067 async_cow->end = cur_end;
1068 INIT_LIST_HEAD(&async_cow->extents);
1069
1070 async_cow->work.func = async_cow_start;
1071 async_cow->work.ordered_func = async_cow_submit;
1072 async_cow->work.ordered_free = async_cow_free;
1073 async_cow->work.flags = 0;
1074
1075 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1076 PAGE_CACHE_SHIFT;
1077 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1078
1079 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1080 &async_cow->work);
1081
1082 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1083 wait_event(root->fs_info->async_submit_wait,
1084 (atomic_read(&root->fs_info->async_delalloc_pages) <
1085 limit));
1086 }
1087
1088 while (atomic_read(&root->fs_info->async_submit_draining) &&
1089 atomic_read(&root->fs_info->async_delalloc_pages)) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1092 0));
1093 }
1094
1095 *nr_written += nr_pages;
1096 start = cur_end + 1;
1097 }
1098 *page_started = 1;
1099 return 0;
1100 }
1101
1102 static noinline int csum_exist_in_range(struct btrfs_root *root,
1103 u64 bytenr, u64 num_bytes)
1104 {
1105 int ret;
1106 struct btrfs_ordered_sum *sums;
1107 LIST_HEAD(list);
1108
1109 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1110 bytenr + num_bytes - 1, &list, 0);
1111 if (ret == 0 && list_empty(&list))
1112 return 0;
1113
1114 while (!list_empty(&list)) {
1115 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1116 list_del(&sums->list);
1117 kfree(sums);
1118 }
1119 return 1;
1120 }
1121
1122 /*
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1125 *
1126 * If no cow copies or snapshots exist, we write directly to the existing
1127 * blocks on disk
1128 */
1129 static noinline int run_delalloc_nocow(struct inode *inode,
1130 struct page *locked_page,
1131 u64 start, u64 end, int *page_started, int force,
1132 unsigned long *nr_written)
1133 {
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 struct btrfs_trans_handle *trans;
1136 struct extent_buffer *leaf;
1137 struct btrfs_path *path;
1138 struct btrfs_file_extent_item *fi;
1139 struct btrfs_key found_key;
1140 u64 cow_start;
1141 u64 cur_offset;
1142 u64 extent_end;
1143 u64 extent_offset;
1144 u64 disk_bytenr;
1145 u64 num_bytes;
1146 int extent_type;
1147 int ret, err;
1148 int type;
1149 int nocow;
1150 int check_prev = 1;
1151 bool nolock;
1152 u64 ino = btrfs_ino(inode);
1153
1154 path = btrfs_alloc_path();
1155 if (!path) {
1156 extent_clear_unlock_delalloc(inode,
1157 &BTRFS_I(inode)->io_tree,
1158 start, end, locked_page,
1159 EXTENT_CLEAR_UNLOCK_PAGE |
1160 EXTENT_CLEAR_UNLOCK |
1161 EXTENT_CLEAR_DELALLOC |
1162 EXTENT_CLEAR_DIRTY |
1163 EXTENT_SET_WRITEBACK |
1164 EXTENT_END_WRITEBACK);
1165 return -ENOMEM;
1166 }
1167
1168 nolock = btrfs_is_free_space_inode(inode);
1169
1170 if (nolock)
1171 trans = btrfs_join_transaction_nolock(root);
1172 else
1173 trans = btrfs_join_transaction(root);
1174
1175 if (IS_ERR(trans)) {
1176 extent_clear_unlock_delalloc(inode,
1177 &BTRFS_I(inode)->io_tree,
1178 start, end, locked_page,
1179 EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK |
1181 EXTENT_CLEAR_DELALLOC |
1182 EXTENT_CLEAR_DIRTY |
1183 EXTENT_SET_WRITEBACK |
1184 EXTENT_END_WRITEBACK);
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1187 }
1188
1189 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1190
1191 cow_start = (u64)-1;
1192 cur_offset = start;
1193 while (1) {
1194 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1195 cur_offset, 0);
1196 if (ret < 0) {
1197 btrfs_abort_transaction(trans, root, ret);
1198 goto error;
1199 }
1200 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1201 leaf = path->nodes[0];
1202 btrfs_item_key_to_cpu(leaf, &found_key,
1203 path->slots[0] - 1);
1204 if (found_key.objectid == ino &&
1205 found_key.type == BTRFS_EXTENT_DATA_KEY)
1206 path->slots[0]--;
1207 }
1208 check_prev = 0;
1209 next_slot:
1210 leaf = path->nodes[0];
1211 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0) {
1214 btrfs_abort_transaction(trans, root, ret);
1215 goto error;
1216 }
1217 if (ret > 0)
1218 break;
1219 leaf = path->nodes[0];
1220 }
1221
1222 nocow = 0;
1223 disk_bytenr = 0;
1224 num_bytes = 0;
1225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1226
1227 if (found_key.objectid > ino ||
1228 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1229 found_key.offset > end)
1230 break;
1231
1232 if (found_key.offset > cur_offset) {
1233 extent_end = found_key.offset;
1234 extent_type = 0;
1235 goto out_check;
1236 }
1237
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
1240 extent_type = btrfs_file_extent_type(leaf, fi);
1241
1242 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1243 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1245 extent_offset = btrfs_file_extent_offset(leaf, fi);
1246 extent_end = found_key.offset +
1247 btrfs_file_extent_num_bytes(leaf, fi);
1248 if (extent_end <= start) {
1249 path->slots[0]++;
1250 goto next_slot;
1251 }
1252 if (disk_bytenr == 0)
1253 goto out_check;
1254 if (btrfs_file_extent_compression(leaf, fi) ||
1255 btrfs_file_extent_encryption(leaf, fi) ||
1256 btrfs_file_extent_other_encoding(leaf, fi))
1257 goto out_check;
1258 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1259 goto out_check;
1260 if (btrfs_extent_readonly(root, disk_bytenr))
1261 goto out_check;
1262 if (btrfs_cross_ref_exist(trans, root, ino,
1263 found_key.offset -
1264 extent_offset, disk_bytenr))
1265 goto out_check;
1266 disk_bytenr += extent_offset;
1267 disk_bytenr += cur_offset - found_key.offset;
1268 num_bytes = min(end + 1, extent_end) - cur_offset;
1269 /*
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1273 */
1274 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1275 goto out_check;
1276 nocow = 1;
1277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1278 extent_end = found_key.offset +
1279 btrfs_file_extent_inline_len(leaf, fi);
1280 extent_end = ALIGN(extent_end, root->sectorsize);
1281 } else {
1282 BUG_ON(1);
1283 }
1284 out_check:
1285 if (extent_end <= start) {
1286 path->slots[0]++;
1287 goto next_slot;
1288 }
1289 if (!nocow) {
1290 if (cow_start == (u64)-1)
1291 cow_start = cur_offset;
1292 cur_offset = extent_end;
1293 if (cur_offset > end)
1294 break;
1295 path->slots[0]++;
1296 goto next_slot;
1297 }
1298
1299 btrfs_release_path(path);
1300 if (cow_start != (u64)-1) {
1301 ret = __cow_file_range(trans, inode, root, locked_page,
1302 cow_start, found_key.offset - 1,
1303 page_started, nr_written, 1);
1304 if (ret) {
1305 btrfs_abort_transaction(trans, root, ret);
1306 goto error;
1307 }
1308 cow_start = (u64)-1;
1309 }
1310
1311 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1312 struct extent_map *em;
1313 struct extent_map_tree *em_tree;
1314 em_tree = &BTRFS_I(inode)->extent_tree;
1315 em = alloc_extent_map();
1316 BUG_ON(!em); /* -ENOMEM */
1317 em->start = cur_offset;
1318 em->orig_start = em->start;
1319 em->len = num_bytes;
1320 em->block_len = num_bytes;
1321 em->block_start = disk_bytenr;
1322 em->bdev = root->fs_info->fs_devices->latest_bdev;
1323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1324 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1325 while (1) {
1326 write_lock(&em_tree->lock);
1327 ret = add_extent_mapping(em_tree, em);
1328 write_unlock(&em_tree->lock);
1329 if (ret != -EEXIST) {
1330 free_extent_map(em);
1331 break;
1332 }
1333 btrfs_drop_extent_cache(inode, em->start,
1334 em->start + em->len - 1, 0);
1335 }
1336 type = BTRFS_ORDERED_PREALLOC;
1337 } else {
1338 type = BTRFS_ORDERED_NOCOW;
1339 }
1340
1341 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1342 num_bytes, num_bytes, type);
1343 BUG_ON(ret); /* -ENOMEM */
1344
1345 if (root->root_key.objectid ==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1347 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1348 num_bytes);
1349 if (ret) {
1350 btrfs_abort_transaction(trans, root, ret);
1351 goto error;
1352 }
1353 }
1354
1355 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1356 cur_offset, cur_offset + num_bytes - 1,
1357 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1358 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1359 EXTENT_SET_PRIVATE2);
1360 cur_offset = extent_end;
1361 if (cur_offset > end)
1362 break;
1363 }
1364 btrfs_release_path(path);
1365
1366 if (cur_offset <= end && cow_start == (u64)-1) {
1367 cow_start = cur_offset;
1368 cur_offset = end;
1369 }
1370
1371 if (cow_start != (u64)-1) {
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, end,
1374 page_started, nr_written, 1);
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
1379 }
1380
1381 error:
1382 err = btrfs_end_transaction(trans, root);
1383 if (!ret)
1384 ret = err;
1385
1386 if (ret && cur_offset < end)
1387 extent_clear_unlock_delalloc(inode,
1388 &BTRFS_I(inode)->io_tree,
1389 cur_offset, end, locked_page,
1390 EXTENT_CLEAR_UNLOCK_PAGE |
1391 EXTENT_CLEAR_UNLOCK |
1392 EXTENT_CLEAR_DELALLOC |
1393 EXTENT_CLEAR_DIRTY |
1394 EXTENT_SET_WRITEBACK |
1395 EXTENT_END_WRITEBACK);
1396
1397 btrfs_free_path(path);
1398 return ret;
1399 }
1400
1401 /*
1402 * extent_io.c call back to do delayed allocation processing
1403 */
1404 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
1407 {
1408 int ret;
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410
1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
1413 page_started, 1, nr_written);
1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
1416 page_started, 0, nr_written);
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
1422 } else {
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
1425 ret = cow_file_range_async(inode, locked_page, start, end,
1426 page_started, nr_written);
1427 }
1428 return ret;
1429 }
1430
1431 static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
1433 {
1434 /* not delalloc, ignore it */
1435 if (!(orig->state & EXTENT_DELALLOC))
1436 return;
1437
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
1441 }
1442
1443 /*
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1448 */
1449 static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
1452 {
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1455 return;
1456
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
1460 }
1461
1462 /*
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1466 */
1467 static void btrfs_set_bit_hook(struct inode *inode,
1468 struct extent_state *state, int *bits)
1469 {
1470
1471 /*
1472 * set_bit and clear bit hooks normally require _irqsave/restore
1473 * but in this case, we are only testing for the DELALLOC
1474 * bit, which is only set or cleared with irqs on
1475 */
1476 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1477 struct btrfs_root *root = BTRFS_I(inode)->root;
1478 u64 len = state->end + 1 - state->start;
1479 bool do_list = !btrfs_is_free_space_inode(inode);
1480
1481 if (*bits & EXTENT_FIRST_DELALLOC) {
1482 *bits &= ~EXTENT_FIRST_DELALLOC;
1483 } else {
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1487 }
1488
1489 spin_lock(&root->fs_info->delalloc_lock);
1490 BTRFS_I(inode)->delalloc_bytes += len;
1491 root->fs_info->delalloc_bytes += len;
1492 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1493 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1494 &root->fs_info->delalloc_inodes);
1495 }
1496 spin_unlock(&root->fs_info->delalloc_lock);
1497 }
1498 }
1499
1500 /*
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1502 */
1503 static void btrfs_clear_bit_hook(struct inode *inode,
1504 struct extent_state *state, int *bits)
1505 {
1506 /*
1507 * set_bit and clear bit hooks normally require _irqsave/restore
1508 * but in this case, we are only testing for the DELALLOC
1509 * bit, which is only set or cleared with irqs on
1510 */
1511 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1512 struct btrfs_root *root = BTRFS_I(inode)->root;
1513 u64 len = state->end + 1 - state->start;
1514 bool do_list = !btrfs_is_free_space_inode(inode);
1515
1516 if (*bits & EXTENT_FIRST_DELALLOC) {
1517 *bits &= ~EXTENT_FIRST_DELALLOC;
1518 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->outstanding_extents--;
1521 spin_unlock(&BTRFS_I(inode)->lock);
1522 }
1523
1524 if (*bits & EXTENT_DO_ACCOUNTING)
1525 btrfs_delalloc_release_metadata(inode, len);
1526
1527 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1528 && do_list)
1529 btrfs_free_reserved_data_space(inode, len);
1530
1531 spin_lock(&root->fs_info->delalloc_lock);
1532 root->fs_info->delalloc_bytes -= len;
1533 BTRFS_I(inode)->delalloc_bytes -= len;
1534
1535 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1536 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1537 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1538 }
1539 spin_unlock(&root->fs_info->delalloc_lock);
1540 }
1541 }
1542
1543 /*
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1546 */
1547 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1548 size_t size, struct bio *bio,
1549 unsigned long bio_flags)
1550 {
1551 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1552 struct btrfs_mapping_tree *map_tree;
1553 u64 logical = (u64)bio->bi_sector << 9;
1554 u64 length = 0;
1555 u64 map_length;
1556 int ret;
1557
1558 if (bio_flags & EXTENT_BIO_COMPRESSED)
1559 return 0;
1560
1561 length = bio->bi_size;
1562 map_tree = &root->fs_info->mapping_tree;
1563 map_length = length;
1564 ret = btrfs_map_block(map_tree, READ, logical,
1565 &map_length, NULL, 0);
1566 /* Will always return 0 or 1 with map_multi == NULL */
1567 BUG_ON(ret < 0);
1568 if (map_length < length + size)
1569 return 1;
1570 return 0;
1571 }
1572
1573 /*
1574 * in order to insert checksums into the metadata in large chunks,
1575 * we wait until bio submission time. All the pages in the bio are
1576 * checksummed and sums are attached onto the ordered extent record.
1577 *
1578 * At IO completion time the cums attached on the ordered extent record
1579 * are inserted into the btree
1580 */
1581 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1582 struct bio *bio, int mirror_num,
1583 unsigned long bio_flags,
1584 u64 bio_offset)
1585 {
1586 struct btrfs_root *root = BTRFS_I(inode)->root;
1587 int ret = 0;
1588
1589 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1590 BUG_ON(ret); /* -ENOMEM */
1591 return 0;
1592 }
1593
1594 /*
1595 * in order to insert checksums into the metadata in large chunks,
1596 * we wait until bio submission time. All the pages in the bio are
1597 * checksummed and sums are attached onto the ordered extent record.
1598 *
1599 * At IO completion time the cums attached on the ordered extent record
1600 * are inserted into the btree
1601 */
1602 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1603 int mirror_num, unsigned long bio_flags,
1604 u64 bio_offset)
1605 {
1606 struct btrfs_root *root = BTRFS_I(inode)->root;
1607 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1608 }
1609
1610 /*
1611 * extent_io.c submission hook. This does the right thing for csum calculation
1612 * on write, or reading the csums from the tree before a read
1613 */
1614 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1615 int mirror_num, unsigned long bio_flags,
1616 u64 bio_offset)
1617 {
1618 struct btrfs_root *root = BTRFS_I(inode)->root;
1619 int ret = 0;
1620 int skip_sum;
1621 int metadata = 0;
1622
1623 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1624
1625 if (btrfs_is_free_space_inode(inode))
1626 metadata = 2;
1627
1628 if (!(rw & REQ_WRITE)) {
1629 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1630 if (ret)
1631 return ret;
1632
1633 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1634 return btrfs_submit_compressed_read(inode, bio,
1635 mirror_num, bio_flags);
1636 } else if (!skip_sum) {
1637 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1638 if (ret)
1639 return ret;
1640 }
1641 goto mapit;
1642 } else if (!skip_sum) {
1643 /* csum items have already been cloned */
1644 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1645 goto mapit;
1646 /* we're doing a write, do the async checksumming */
1647 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1648 inode, rw, bio, mirror_num,
1649 bio_flags, bio_offset,
1650 __btrfs_submit_bio_start,
1651 __btrfs_submit_bio_done);
1652 }
1653
1654 mapit:
1655 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1656 }
1657
1658 /*
1659 * given a list of ordered sums record them in the inode. This happens
1660 * at IO completion time based on sums calculated at bio submission time.
1661 */
1662 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1663 struct inode *inode, u64 file_offset,
1664 struct list_head *list)
1665 {
1666 struct btrfs_ordered_sum *sum;
1667
1668 list_for_each_entry(sum, list, list) {
1669 btrfs_csum_file_blocks(trans,
1670 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1671 }
1672 return 0;
1673 }
1674
1675 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1676 struct extent_state **cached_state)
1677 {
1678 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1679 WARN_ON(1);
1680 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1681 cached_state, GFP_NOFS);
1682 }
1683
1684 /* see btrfs_writepage_start_hook for details on why this is required */
1685 struct btrfs_writepage_fixup {
1686 struct page *page;
1687 struct btrfs_work work;
1688 };
1689
1690 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1691 {
1692 struct btrfs_writepage_fixup *fixup;
1693 struct btrfs_ordered_extent *ordered;
1694 struct extent_state *cached_state = NULL;
1695 struct page *page;
1696 struct inode *inode;
1697 u64 page_start;
1698 u64 page_end;
1699 int ret;
1700
1701 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1702 page = fixup->page;
1703 again:
1704 lock_page(page);
1705 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1706 ClearPageChecked(page);
1707 goto out_page;
1708 }
1709
1710 inode = page->mapping->host;
1711 page_start = page_offset(page);
1712 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1713
1714 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1715 &cached_state);
1716
1717 /* already ordered? We're done */
1718 if (PagePrivate2(page))
1719 goto out;
1720
1721 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1722 if (ordered) {
1723 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1724 page_end, &cached_state, GFP_NOFS);
1725 unlock_page(page);
1726 btrfs_start_ordered_extent(inode, ordered, 1);
1727 btrfs_put_ordered_extent(ordered);
1728 goto again;
1729 }
1730
1731 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1732 if (ret) {
1733 mapping_set_error(page->mapping, ret);
1734 end_extent_writepage(page, ret, page_start, page_end);
1735 ClearPageChecked(page);
1736 goto out;
1737 }
1738
1739 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1740 ClearPageChecked(page);
1741 set_page_dirty(page);
1742 out:
1743 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1744 &cached_state, GFP_NOFS);
1745 out_page:
1746 unlock_page(page);
1747 page_cache_release(page);
1748 kfree(fixup);
1749 }
1750
1751 /*
1752 * There are a few paths in the higher layers of the kernel that directly
1753 * set the page dirty bit without asking the filesystem if it is a
1754 * good idea. This causes problems because we want to make sure COW
1755 * properly happens and the data=ordered rules are followed.
1756 *
1757 * In our case any range that doesn't have the ORDERED bit set
1758 * hasn't been properly setup for IO. We kick off an async process
1759 * to fix it up. The async helper will wait for ordered extents, set
1760 * the delalloc bit and make it safe to write the page.
1761 */
1762 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1763 {
1764 struct inode *inode = page->mapping->host;
1765 struct btrfs_writepage_fixup *fixup;
1766 struct btrfs_root *root = BTRFS_I(inode)->root;
1767
1768 /* this page is properly in the ordered list */
1769 if (TestClearPagePrivate2(page))
1770 return 0;
1771
1772 if (PageChecked(page))
1773 return -EAGAIN;
1774
1775 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1776 if (!fixup)
1777 return -EAGAIN;
1778
1779 SetPageChecked(page);
1780 page_cache_get(page);
1781 fixup->work.func = btrfs_writepage_fixup_worker;
1782 fixup->page = page;
1783 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1784 return -EBUSY;
1785 }
1786
1787 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1788 struct inode *inode, u64 file_pos,
1789 u64 disk_bytenr, u64 disk_num_bytes,
1790 u64 num_bytes, u64 ram_bytes,
1791 u8 compression, u8 encryption,
1792 u16 other_encoding, int extent_type)
1793 {
1794 struct btrfs_root *root = BTRFS_I(inode)->root;
1795 struct btrfs_file_extent_item *fi;
1796 struct btrfs_path *path;
1797 struct extent_buffer *leaf;
1798 struct btrfs_key ins;
1799 int ret;
1800
1801 path = btrfs_alloc_path();
1802 if (!path)
1803 return -ENOMEM;
1804
1805 path->leave_spinning = 1;
1806
1807 /*
1808 * we may be replacing one extent in the tree with another.
1809 * The new extent is pinned in the extent map, and we don't want
1810 * to drop it from the cache until it is completely in the btree.
1811 *
1812 * So, tell btrfs_drop_extents to leave this extent in the cache.
1813 * the caller is expected to unpin it and allow it to be merged
1814 * with the others.
1815 */
1816 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1817 file_pos + num_bytes, 0);
1818 if (ret)
1819 goto out;
1820
1821 ins.objectid = btrfs_ino(inode);
1822 ins.offset = file_pos;
1823 ins.type = BTRFS_EXTENT_DATA_KEY;
1824 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1825 if (ret)
1826 goto out;
1827 leaf = path->nodes[0];
1828 fi = btrfs_item_ptr(leaf, path->slots[0],
1829 struct btrfs_file_extent_item);
1830 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1831 btrfs_set_file_extent_type(leaf, fi, extent_type);
1832 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1833 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1834 btrfs_set_file_extent_offset(leaf, fi, 0);
1835 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1836 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1837 btrfs_set_file_extent_compression(leaf, fi, compression);
1838 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1839 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1840
1841 btrfs_mark_buffer_dirty(leaf);
1842 btrfs_release_path(path);
1843
1844 inode_add_bytes(inode, num_bytes);
1845
1846 ins.objectid = disk_bytenr;
1847 ins.offset = disk_num_bytes;
1848 ins.type = BTRFS_EXTENT_ITEM_KEY;
1849 ret = btrfs_alloc_reserved_file_extent(trans, root,
1850 root->root_key.objectid,
1851 btrfs_ino(inode), file_pos, &ins);
1852 out:
1853 btrfs_free_path(path);
1854
1855 return ret;
1856 }
1857
1858 /*
1859 * helper function for btrfs_finish_ordered_io, this
1860 * just reads in some of the csum leaves to prime them into ram
1861 * before we start the transaction. It limits the amount of btree
1862 * reads required while inside the transaction.
1863 */
1864 /* as ordered data IO finishes, this gets called so we can finish
1865 * an ordered extent if the range of bytes in the file it covers are
1866 * fully written.
1867 */
1868 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1869 {
1870 struct inode *inode = ordered_extent->inode;
1871 struct btrfs_root *root = BTRFS_I(inode)->root;
1872 struct btrfs_trans_handle *trans = NULL;
1873 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1874 struct extent_state *cached_state = NULL;
1875 int compress_type = 0;
1876 int ret;
1877 bool nolock;
1878
1879 nolock = btrfs_is_free_space_inode(inode);
1880
1881 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1882 ret = -EIO;
1883 goto out;
1884 }
1885
1886 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1887 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1888 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1889 if (!ret) {
1890 if (nolock)
1891 trans = btrfs_join_transaction_nolock(root);
1892 else
1893 trans = btrfs_join_transaction(root);
1894 if (IS_ERR(trans)) {
1895 ret = PTR_ERR(trans);
1896 trans = NULL;
1897 goto out;
1898 }
1899 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1900 ret = btrfs_update_inode_fallback(trans, root, inode);
1901 if (ret) /* -ENOMEM or corruption */
1902 btrfs_abort_transaction(trans, root, ret);
1903 }
1904 goto out;
1905 }
1906
1907 lock_extent_bits(io_tree, ordered_extent->file_offset,
1908 ordered_extent->file_offset + ordered_extent->len - 1,
1909 0, &cached_state);
1910
1911 if (nolock)
1912 trans = btrfs_join_transaction_nolock(root);
1913 else
1914 trans = btrfs_join_transaction(root);
1915 if (IS_ERR(trans)) {
1916 ret = PTR_ERR(trans);
1917 trans = NULL;
1918 goto out_unlock;
1919 }
1920 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1921
1922 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1923 compress_type = ordered_extent->compress_type;
1924 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1925 BUG_ON(compress_type);
1926 ret = btrfs_mark_extent_written(trans, inode,
1927 ordered_extent->file_offset,
1928 ordered_extent->file_offset +
1929 ordered_extent->len);
1930 } else {
1931 BUG_ON(root == root->fs_info->tree_root);
1932 ret = insert_reserved_file_extent(trans, inode,
1933 ordered_extent->file_offset,
1934 ordered_extent->start,
1935 ordered_extent->disk_len,
1936 ordered_extent->len,
1937 ordered_extent->len,
1938 compress_type, 0, 0,
1939 BTRFS_FILE_EXTENT_REG);
1940 }
1941 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1942 ordered_extent->file_offset, ordered_extent->len,
1943 trans->transid);
1944 if (ret < 0) {
1945 btrfs_abort_transaction(trans, root, ret);
1946 goto out_unlock;
1947 }
1948
1949 add_pending_csums(trans, inode, ordered_extent->file_offset,
1950 &ordered_extent->list);
1951
1952 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1953 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1954 ret = btrfs_update_inode_fallback(trans, root, inode);
1955 if (ret) { /* -ENOMEM or corruption */
1956 btrfs_abort_transaction(trans, root, ret);
1957 goto out_unlock;
1958 }
1959 } else {
1960 btrfs_set_inode_last_trans(trans, inode);
1961 }
1962 ret = 0;
1963 out_unlock:
1964 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1965 ordered_extent->file_offset +
1966 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1967 out:
1968 if (root != root->fs_info->tree_root)
1969 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1970 if (trans)
1971 btrfs_end_transaction(trans, root);
1972
1973 if (ret)
1974 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1975 ordered_extent->file_offset +
1976 ordered_extent->len - 1, NULL, GFP_NOFS);
1977
1978 /*
1979 * This needs to be done to make sure anybody waiting knows we are done
1980 * updating everything for this ordered extent.
1981 */
1982 btrfs_remove_ordered_extent(inode, ordered_extent);
1983
1984 /* once for us */
1985 btrfs_put_ordered_extent(ordered_extent);
1986 /* once for the tree */
1987 btrfs_put_ordered_extent(ordered_extent);
1988
1989 return ret;
1990 }
1991
1992 static void finish_ordered_fn(struct btrfs_work *work)
1993 {
1994 struct btrfs_ordered_extent *ordered_extent;
1995 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1996 btrfs_finish_ordered_io(ordered_extent);
1997 }
1998
1999 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2000 struct extent_state *state, int uptodate)
2001 {
2002 struct inode *inode = page->mapping->host;
2003 struct btrfs_root *root = BTRFS_I(inode)->root;
2004 struct btrfs_ordered_extent *ordered_extent = NULL;
2005 struct btrfs_workers *workers;
2006
2007 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2008
2009 ClearPagePrivate2(page);
2010 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2011 end - start + 1, uptodate))
2012 return 0;
2013
2014 ordered_extent->work.func = finish_ordered_fn;
2015 ordered_extent->work.flags = 0;
2016
2017 if (btrfs_is_free_space_inode(inode))
2018 workers = &root->fs_info->endio_freespace_worker;
2019 else
2020 workers = &root->fs_info->endio_write_workers;
2021 btrfs_queue_worker(workers, &ordered_extent->work);
2022
2023 return 0;
2024 }
2025
2026 /*
2027 * when reads are done, we need to check csums to verify the data is correct
2028 * if there's a match, we allow the bio to finish. If not, the code in
2029 * extent_io.c will try to find good copies for us.
2030 */
2031 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2032 struct extent_state *state, int mirror)
2033 {
2034 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2035 struct inode *inode = page->mapping->host;
2036 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2037 char *kaddr;
2038 u64 private = ~(u32)0;
2039 int ret;
2040 struct btrfs_root *root = BTRFS_I(inode)->root;
2041 u32 csum = ~(u32)0;
2042
2043 if (PageChecked(page)) {
2044 ClearPageChecked(page);
2045 goto good;
2046 }
2047
2048 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2049 goto good;
2050
2051 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2052 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2053 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2054 GFP_NOFS);
2055 return 0;
2056 }
2057
2058 if (state && state->start == start) {
2059 private = state->private;
2060 ret = 0;
2061 } else {
2062 ret = get_state_private(io_tree, start, &private);
2063 }
2064 kaddr = kmap_atomic(page);
2065 if (ret)
2066 goto zeroit;
2067
2068 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2069 btrfs_csum_final(csum, (char *)&csum);
2070 if (csum != private)
2071 goto zeroit;
2072
2073 kunmap_atomic(kaddr);
2074 good:
2075 return 0;
2076
2077 zeroit:
2078 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2079 "private %llu\n",
2080 (unsigned long long)btrfs_ino(page->mapping->host),
2081 (unsigned long long)start, csum,
2082 (unsigned long long)private);
2083 memset(kaddr + offset, 1, end - start + 1);
2084 flush_dcache_page(page);
2085 kunmap_atomic(kaddr);
2086 if (private == 0)
2087 return 0;
2088 return -EIO;
2089 }
2090
2091 struct delayed_iput {
2092 struct list_head list;
2093 struct inode *inode;
2094 };
2095
2096 /* JDM: If this is fs-wide, why can't we add a pointer to
2097 * btrfs_inode instead and avoid the allocation? */
2098 void btrfs_add_delayed_iput(struct inode *inode)
2099 {
2100 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2101 struct delayed_iput *delayed;
2102
2103 if (atomic_add_unless(&inode->i_count, -1, 1))
2104 return;
2105
2106 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2107 delayed->inode = inode;
2108
2109 spin_lock(&fs_info->delayed_iput_lock);
2110 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2111 spin_unlock(&fs_info->delayed_iput_lock);
2112 }
2113
2114 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2115 {
2116 LIST_HEAD(list);
2117 struct btrfs_fs_info *fs_info = root->fs_info;
2118 struct delayed_iput *delayed;
2119 int empty;
2120
2121 spin_lock(&fs_info->delayed_iput_lock);
2122 empty = list_empty(&fs_info->delayed_iputs);
2123 spin_unlock(&fs_info->delayed_iput_lock);
2124 if (empty)
2125 return;
2126
2127 spin_lock(&fs_info->delayed_iput_lock);
2128 list_splice_init(&fs_info->delayed_iputs, &list);
2129 spin_unlock(&fs_info->delayed_iput_lock);
2130
2131 while (!list_empty(&list)) {
2132 delayed = list_entry(list.next, struct delayed_iput, list);
2133 list_del(&delayed->list);
2134 iput(delayed->inode);
2135 kfree(delayed);
2136 }
2137 }
2138
2139 enum btrfs_orphan_cleanup_state {
2140 ORPHAN_CLEANUP_STARTED = 1,
2141 ORPHAN_CLEANUP_DONE = 2,
2142 };
2143
2144 /*
2145 * This is called in transaction commit time. If there are no orphan
2146 * files in the subvolume, it removes orphan item and frees block_rsv
2147 * structure.
2148 */
2149 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2150 struct btrfs_root *root)
2151 {
2152 struct btrfs_block_rsv *block_rsv;
2153 int ret;
2154
2155 if (atomic_read(&root->orphan_inodes) ||
2156 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2157 return;
2158
2159 spin_lock(&root->orphan_lock);
2160 if (atomic_read(&root->orphan_inodes)) {
2161 spin_unlock(&root->orphan_lock);
2162 return;
2163 }
2164
2165 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2166 spin_unlock(&root->orphan_lock);
2167 return;
2168 }
2169
2170 block_rsv = root->orphan_block_rsv;
2171 root->orphan_block_rsv = NULL;
2172 spin_unlock(&root->orphan_lock);
2173
2174 if (root->orphan_item_inserted &&
2175 btrfs_root_refs(&root->root_item) > 0) {
2176 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2177 root->root_key.objectid);
2178 BUG_ON(ret);
2179 root->orphan_item_inserted = 0;
2180 }
2181
2182 if (block_rsv) {
2183 WARN_ON(block_rsv->size > 0);
2184 btrfs_free_block_rsv(root, block_rsv);
2185 }
2186 }
2187
2188 /*
2189 * This creates an orphan entry for the given inode in case something goes
2190 * wrong in the middle of an unlink/truncate.
2191 *
2192 * NOTE: caller of this function should reserve 5 units of metadata for
2193 * this function.
2194 */
2195 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2196 {
2197 struct btrfs_root *root = BTRFS_I(inode)->root;
2198 struct btrfs_block_rsv *block_rsv = NULL;
2199 int reserve = 0;
2200 int insert = 0;
2201 int ret;
2202
2203 if (!root->orphan_block_rsv) {
2204 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2205 if (!block_rsv)
2206 return -ENOMEM;
2207 }
2208
2209 spin_lock(&root->orphan_lock);
2210 if (!root->orphan_block_rsv) {
2211 root->orphan_block_rsv = block_rsv;
2212 } else if (block_rsv) {
2213 btrfs_free_block_rsv(root, block_rsv);
2214 block_rsv = NULL;
2215 }
2216
2217 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2218 &BTRFS_I(inode)->runtime_flags)) {
2219 #if 0
2220 /*
2221 * For proper ENOSPC handling, we should do orphan
2222 * cleanup when mounting. But this introduces backward
2223 * compatibility issue.
2224 */
2225 if (!xchg(&root->orphan_item_inserted, 1))
2226 insert = 2;
2227 else
2228 insert = 1;
2229 #endif
2230 insert = 1;
2231 atomic_inc(&root->orphan_inodes);
2232 }
2233
2234 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2235 &BTRFS_I(inode)->runtime_flags))
2236 reserve = 1;
2237 spin_unlock(&root->orphan_lock);
2238
2239 /* grab metadata reservation from transaction handle */
2240 if (reserve) {
2241 ret = btrfs_orphan_reserve_metadata(trans, inode);
2242 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2243 }
2244
2245 /* insert an orphan item to track this unlinked/truncated file */
2246 if (insert >= 1) {
2247 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2248 if (ret && ret != -EEXIST) {
2249 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2250 &BTRFS_I(inode)->runtime_flags);
2251 btrfs_abort_transaction(trans, root, ret);
2252 return ret;
2253 }
2254 ret = 0;
2255 }
2256
2257 /* insert an orphan item to track subvolume contains orphan files */
2258 if (insert >= 2) {
2259 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2260 root->root_key.objectid);
2261 if (ret && ret != -EEXIST) {
2262 btrfs_abort_transaction(trans, root, ret);
2263 return ret;
2264 }
2265 }
2266 return 0;
2267 }
2268
2269 /*
2270 * We have done the truncate/delete so we can go ahead and remove the orphan
2271 * item for this particular inode.
2272 */
2273 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2274 {
2275 struct btrfs_root *root = BTRFS_I(inode)->root;
2276 int delete_item = 0;
2277 int release_rsv = 0;
2278 int ret = 0;
2279
2280 spin_lock(&root->orphan_lock);
2281 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2282 &BTRFS_I(inode)->runtime_flags))
2283 delete_item = 1;
2284
2285 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2286 &BTRFS_I(inode)->runtime_flags))
2287 release_rsv = 1;
2288 spin_unlock(&root->orphan_lock);
2289
2290 if (trans && delete_item) {
2291 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2292 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2293 }
2294
2295 if (release_rsv) {
2296 btrfs_orphan_release_metadata(inode);
2297 atomic_dec(&root->orphan_inodes);
2298 }
2299
2300 return 0;
2301 }
2302
2303 /*
2304 * this cleans up any orphans that may be left on the list from the last use
2305 * of this root.
2306 */
2307 int btrfs_orphan_cleanup(struct btrfs_root *root)
2308 {
2309 struct btrfs_path *path;
2310 struct extent_buffer *leaf;
2311 struct btrfs_key key, found_key;
2312 struct btrfs_trans_handle *trans;
2313 struct inode *inode;
2314 u64 last_objectid = 0;
2315 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2316
2317 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2318 return 0;
2319
2320 path = btrfs_alloc_path();
2321 if (!path) {
2322 ret = -ENOMEM;
2323 goto out;
2324 }
2325 path->reada = -1;
2326
2327 key.objectid = BTRFS_ORPHAN_OBJECTID;
2328 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2329 key.offset = (u64)-1;
2330
2331 while (1) {
2332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2333 if (ret < 0)
2334 goto out;
2335
2336 /*
2337 * if ret == 0 means we found what we were searching for, which
2338 * is weird, but possible, so only screw with path if we didn't
2339 * find the key and see if we have stuff that matches
2340 */
2341 if (ret > 0) {
2342 ret = 0;
2343 if (path->slots[0] == 0)
2344 break;
2345 path->slots[0]--;
2346 }
2347
2348 /* pull out the item */
2349 leaf = path->nodes[0];
2350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2351
2352 /* make sure the item matches what we want */
2353 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2354 break;
2355 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2356 break;
2357
2358 /* release the path since we're done with it */
2359 btrfs_release_path(path);
2360
2361 /*
2362 * this is where we are basically btrfs_lookup, without the
2363 * crossing root thing. we store the inode number in the
2364 * offset of the orphan item.
2365 */
2366
2367 if (found_key.offset == last_objectid) {
2368 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2369 "stopping orphan cleanup\n");
2370 ret = -EINVAL;
2371 goto out;
2372 }
2373
2374 last_objectid = found_key.offset;
2375
2376 found_key.objectid = found_key.offset;
2377 found_key.type = BTRFS_INODE_ITEM_KEY;
2378 found_key.offset = 0;
2379 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2380 ret = PTR_RET(inode);
2381 if (ret && ret != -ESTALE)
2382 goto out;
2383
2384 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2385 struct btrfs_root *dead_root;
2386 struct btrfs_fs_info *fs_info = root->fs_info;
2387 int is_dead_root = 0;
2388
2389 /*
2390 * this is an orphan in the tree root. Currently these
2391 * could come from 2 sources:
2392 * a) a snapshot deletion in progress
2393 * b) a free space cache inode
2394 * We need to distinguish those two, as the snapshot
2395 * orphan must not get deleted.
2396 * find_dead_roots already ran before us, so if this
2397 * is a snapshot deletion, we should find the root
2398 * in the dead_roots list
2399 */
2400 spin_lock(&fs_info->trans_lock);
2401 list_for_each_entry(dead_root, &fs_info->dead_roots,
2402 root_list) {
2403 if (dead_root->root_key.objectid ==
2404 found_key.objectid) {
2405 is_dead_root = 1;
2406 break;
2407 }
2408 }
2409 spin_unlock(&fs_info->trans_lock);
2410 if (is_dead_root) {
2411 /* prevent this orphan from being found again */
2412 key.offset = found_key.objectid - 1;
2413 continue;
2414 }
2415 }
2416 /*
2417 * Inode is already gone but the orphan item is still there,
2418 * kill the orphan item.
2419 */
2420 if (ret == -ESTALE) {
2421 trans = btrfs_start_transaction(root, 1);
2422 if (IS_ERR(trans)) {
2423 ret = PTR_ERR(trans);
2424 goto out;
2425 }
2426 printk(KERN_ERR "auto deleting %Lu\n",
2427 found_key.objectid);
2428 ret = btrfs_del_orphan_item(trans, root,
2429 found_key.objectid);
2430 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2431 btrfs_end_transaction(trans, root);
2432 continue;
2433 }
2434
2435 /*
2436 * add this inode to the orphan list so btrfs_orphan_del does
2437 * the proper thing when we hit it
2438 */
2439 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2440 &BTRFS_I(inode)->runtime_flags);
2441
2442 /* if we have links, this was a truncate, lets do that */
2443 if (inode->i_nlink) {
2444 if (!S_ISREG(inode->i_mode)) {
2445 WARN_ON(1);
2446 iput(inode);
2447 continue;
2448 }
2449 nr_truncate++;
2450 ret = btrfs_truncate(inode);
2451 } else {
2452 nr_unlink++;
2453 }
2454
2455 /* this will do delete_inode and everything for us */
2456 iput(inode);
2457 if (ret)
2458 goto out;
2459 }
2460 /* release the path since we're done with it */
2461 btrfs_release_path(path);
2462
2463 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2464
2465 if (root->orphan_block_rsv)
2466 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2467 (u64)-1);
2468
2469 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2470 trans = btrfs_join_transaction(root);
2471 if (!IS_ERR(trans))
2472 btrfs_end_transaction(trans, root);
2473 }
2474
2475 if (nr_unlink)
2476 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2477 if (nr_truncate)
2478 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2479
2480 out:
2481 if (ret)
2482 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2483 btrfs_free_path(path);
2484 return ret;
2485 }
2486
2487 /*
2488 * very simple check to peek ahead in the leaf looking for xattrs. If we
2489 * don't find any xattrs, we know there can't be any acls.
2490 *
2491 * slot is the slot the inode is in, objectid is the objectid of the inode
2492 */
2493 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2494 int slot, u64 objectid)
2495 {
2496 u32 nritems = btrfs_header_nritems(leaf);
2497 struct btrfs_key found_key;
2498 int scanned = 0;
2499
2500 slot++;
2501 while (slot < nritems) {
2502 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2503
2504 /* we found a different objectid, there must not be acls */
2505 if (found_key.objectid != objectid)
2506 return 0;
2507
2508 /* we found an xattr, assume we've got an acl */
2509 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2510 return 1;
2511
2512 /*
2513 * we found a key greater than an xattr key, there can't
2514 * be any acls later on
2515 */
2516 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2517 return 0;
2518
2519 slot++;
2520 scanned++;
2521
2522 /*
2523 * it goes inode, inode backrefs, xattrs, extents,
2524 * so if there are a ton of hard links to an inode there can
2525 * be a lot of backrefs. Don't waste time searching too hard,
2526 * this is just an optimization
2527 */
2528 if (scanned >= 8)
2529 break;
2530 }
2531 /* we hit the end of the leaf before we found an xattr or
2532 * something larger than an xattr. We have to assume the inode
2533 * has acls
2534 */
2535 return 1;
2536 }
2537
2538 /*
2539 * read an inode from the btree into the in-memory inode
2540 */
2541 static void btrfs_read_locked_inode(struct inode *inode)
2542 {
2543 struct btrfs_path *path;
2544 struct extent_buffer *leaf;
2545 struct btrfs_inode_item *inode_item;
2546 struct btrfs_timespec *tspec;
2547 struct btrfs_root *root = BTRFS_I(inode)->root;
2548 struct btrfs_key location;
2549 int maybe_acls;
2550 u32 rdev;
2551 int ret;
2552 bool filled = false;
2553
2554 ret = btrfs_fill_inode(inode, &rdev);
2555 if (!ret)
2556 filled = true;
2557
2558 path = btrfs_alloc_path();
2559 if (!path)
2560 goto make_bad;
2561
2562 path->leave_spinning = 1;
2563 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2564
2565 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2566 if (ret)
2567 goto make_bad;
2568
2569 leaf = path->nodes[0];
2570
2571 if (filled)
2572 goto cache_acl;
2573
2574 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2575 struct btrfs_inode_item);
2576 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2577 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2578 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2579 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
2580 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2581
2582 tspec = btrfs_inode_atime(inode_item);
2583 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2584 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2585
2586 tspec = btrfs_inode_mtime(inode_item);
2587 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2588 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2589
2590 tspec = btrfs_inode_ctime(inode_item);
2591 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2592 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2593
2594 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2595 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2596 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2597
2598 /*
2599 * If we were modified in the current generation and evicted from memory
2600 * and then re-read we need to do a full sync since we don't have any
2601 * idea about which extents were modified before we were evicted from
2602 * cache.
2603 */
2604 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2605 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2606 &BTRFS_I(inode)->runtime_flags);
2607
2608 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2609 inode->i_generation = BTRFS_I(inode)->generation;
2610 inode->i_rdev = 0;
2611 rdev = btrfs_inode_rdev(leaf, inode_item);
2612
2613 BTRFS_I(inode)->index_cnt = (u64)-1;
2614 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2615 cache_acl:
2616 /*
2617 * try to precache a NULL acl entry for files that don't have
2618 * any xattrs or acls
2619 */
2620 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2621 btrfs_ino(inode));
2622 if (!maybe_acls)
2623 cache_no_acl(inode);
2624
2625 btrfs_free_path(path);
2626
2627 switch (inode->i_mode & S_IFMT) {
2628 case S_IFREG:
2629 inode->i_mapping->a_ops = &btrfs_aops;
2630 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2631 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2632 inode->i_fop = &btrfs_file_operations;
2633 inode->i_op = &btrfs_file_inode_operations;
2634 break;
2635 case S_IFDIR:
2636 inode->i_fop = &btrfs_dir_file_operations;
2637 if (root == root->fs_info->tree_root)
2638 inode->i_op = &btrfs_dir_ro_inode_operations;
2639 else
2640 inode->i_op = &btrfs_dir_inode_operations;
2641 break;
2642 case S_IFLNK:
2643 inode->i_op = &btrfs_symlink_inode_operations;
2644 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2645 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2646 break;
2647 default:
2648 inode->i_op = &btrfs_special_inode_operations;
2649 init_special_inode(inode, inode->i_mode, rdev);
2650 break;
2651 }
2652
2653 btrfs_update_iflags(inode);
2654 return;
2655
2656 make_bad:
2657 btrfs_free_path(path);
2658 make_bad_inode(inode);
2659 }
2660
2661 /*
2662 * given a leaf and an inode, copy the inode fields into the leaf
2663 */
2664 static void fill_inode_item(struct btrfs_trans_handle *trans,
2665 struct extent_buffer *leaf,
2666 struct btrfs_inode_item *item,
2667 struct inode *inode)
2668 {
2669 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2670 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
2671 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2672 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2673 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2674
2675 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2676 inode->i_atime.tv_sec);
2677 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2678 inode->i_atime.tv_nsec);
2679
2680 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2681 inode->i_mtime.tv_sec);
2682 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2683 inode->i_mtime.tv_nsec);
2684
2685 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2686 inode->i_ctime.tv_sec);
2687 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2688 inode->i_ctime.tv_nsec);
2689
2690 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2691 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2692 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2693 btrfs_set_inode_transid(leaf, item, trans->transid);
2694 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2695 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2696 btrfs_set_inode_block_group(leaf, item, 0);
2697 }
2698
2699 /*
2700 * copy everything in the in-memory inode into the btree.
2701 */
2702 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2703 struct btrfs_root *root, struct inode *inode)
2704 {
2705 struct btrfs_inode_item *inode_item;
2706 struct btrfs_path *path;
2707 struct extent_buffer *leaf;
2708 int ret;
2709
2710 path = btrfs_alloc_path();
2711 if (!path)
2712 return -ENOMEM;
2713
2714 path->leave_spinning = 1;
2715 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2716 1);
2717 if (ret) {
2718 if (ret > 0)
2719 ret = -ENOENT;
2720 goto failed;
2721 }
2722
2723 btrfs_unlock_up_safe(path, 1);
2724 leaf = path->nodes[0];
2725 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2726 struct btrfs_inode_item);
2727
2728 fill_inode_item(trans, leaf, inode_item, inode);
2729 btrfs_mark_buffer_dirty(leaf);
2730 btrfs_set_inode_last_trans(trans, inode);
2731 ret = 0;
2732 failed:
2733 btrfs_free_path(path);
2734 return ret;
2735 }
2736
2737 /*
2738 * copy everything in the in-memory inode into the btree.
2739 */
2740 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2741 struct btrfs_root *root, struct inode *inode)
2742 {
2743 int ret;
2744
2745 /*
2746 * If the inode is a free space inode, we can deadlock during commit
2747 * if we put it into the delayed code.
2748 *
2749 * The data relocation inode should also be directly updated
2750 * without delay
2751 */
2752 if (!btrfs_is_free_space_inode(inode)
2753 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2754 btrfs_update_root_times(trans, root);
2755
2756 ret = btrfs_delayed_update_inode(trans, root, inode);
2757 if (!ret)
2758 btrfs_set_inode_last_trans(trans, inode);
2759 return ret;
2760 }
2761
2762 return btrfs_update_inode_item(trans, root, inode);
2763 }
2764
2765 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root,
2767 struct inode *inode)
2768 {
2769 int ret;
2770
2771 ret = btrfs_update_inode(trans, root, inode);
2772 if (ret == -ENOSPC)
2773 return btrfs_update_inode_item(trans, root, inode);
2774 return ret;
2775 }
2776
2777 /*
2778 * unlink helper that gets used here in inode.c and in the tree logging
2779 * recovery code. It remove a link in a directory with a given name, and
2780 * also drops the back refs in the inode to the directory
2781 */
2782 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2783 struct btrfs_root *root,
2784 struct inode *dir, struct inode *inode,
2785 const char *name, int name_len)
2786 {
2787 struct btrfs_path *path;
2788 int ret = 0;
2789 struct extent_buffer *leaf;
2790 struct btrfs_dir_item *di;
2791 struct btrfs_key key;
2792 u64 index;
2793 u64 ino = btrfs_ino(inode);
2794 u64 dir_ino = btrfs_ino(dir);
2795
2796 path = btrfs_alloc_path();
2797 if (!path) {
2798 ret = -ENOMEM;
2799 goto out;
2800 }
2801
2802 path->leave_spinning = 1;
2803 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2804 name, name_len, -1);
2805 if (IS_ERR(di)) {
2806 ret = PTR_ERR(di);
2807 goto err;
2808 }
2809 if (!di) {
2810 ret = -ENOENT;
2811 goto err;
2812 }
2813 leaf = path->nodes[0];
2814 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2815 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2816 if (ret)
2817 goto err;
2818 btrfs_release_path(path);
2819
2820 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2821 dir_ino, &index);
2822 if (ret) {
2823 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2824 "inode %llu parent %llu\n", name_len, name,
2825 (unsigned long long)ino, (unsigned long long)dir_ino);
2826 btrfs_abort_transaction(trans, root, ret);
2827 goto err;
2828 }
2829
2830 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2831 if (ret) {
2832 btrfs_abort_transaction(trans, root, ret);
2833 goto err;
2834 }
2835
2836 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2837 inode, dir_ino);
2838 if (ret != 0 && ret != -ENOENT) {
2839 btrfs_abort_transaction(trans, root, ret);
2840 goto err;
2841 }
2842
2843 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2844 dir, index);
2845 if (ret == -ENOENT)
2846 ret = 0;
2847 err:
2848 btrfs_free_path(path);
2849 if (ret)
2850 goto out;
2851
2852 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2853 inode_inc_iversion(inode);
2854 inode_inc_iversion(dir);
2855 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2856 ret = btrfs_update_inode(trans, root, dir);
2857 out:
2858 return ret;
2859 }
2860
2861 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2862 struct btrfs_root *root,
2863 struct inode *dir, struct inode *inode,
2864 const char *name, int name_len)
2865 {
2866 int ret;
2867 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2868 if (!ret) {
2869 btrfs_drop_nlink(inode);
2870 ret = btrfs_update_inode(trans, root, inode);
2871 }
2872 return ret;
2873 }
2874
2875
2876 /* helper to check if there is any shared block in the path */
2877 static int check_path_shared(struct btrfs_root *root,
2878 struct btrfs_path *path)
2879 {
2880 struct extent_buffer *eb;
2881 int level;
2882 u64 refs = 1;
2883
2884 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2885 int ret;
2886
2887 if (!path->nodes[level])
2888 break;
2889 eb = path->nodes[level];
2890 if (!btrfs_block_can_be_shared(root, eb))
2891 continue;
2892 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2893 &refs, NULL);
2894 if (refs > 1)
2895 return 1;
2896 }
2897 return 0;
2898 }
2899
2900 /*
2901 * helper to start transaction for unlink and rmdir.
2902 *
2903 * unlink and rmdir are special in btrfs, they do not always free space.
2904 * so in enospc case, we should make sure they will free space before
2905 * allowing them to use the global metadata reservation.
2906 */
2907 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2908 struct dentry *dentry)
2909 {
2910 struct btrfs_trans_handle *trans;
2911 struct btrfs_root *root = BTRFS_I(dir)->root;
2912 struct btrfs_path *path;
2913 struct btrfs_dir_item *di;
2914 struct inode *inode = dentry->d_inode;
2915 u64 index;
2916 int check_link = 1;
2917 int err = -ENOSPC;
2918 int ret;
2919 u64 ino = btrfs_ino(inode);
2920 u64 dir_ino = btrfs_ino(dir);
2921
2922 /*
2923 * 1 for the possible orphan item
2924 * 1 for the dir item
2925 * 1 for the dir index
2926 * 1 for the inode ref
2927 * 1 for the inode ref in the tree log
2928 * 2 for the dir entries in the log
2929 * 1 for the inode
2930 */
2931 trans = btrfs_start_transaction(root, 8);
2932 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2933 return trans;
2934
2935 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2936 return ERR_PTR(-ENOSPC);
2937
2938 /* check if there is someone else holds reference */
2939 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2940 return ERR_PTR(-ENOSPC);
2941
2942 if (atomic_read(&inode->i_count) > 2)
2943 return ERR_PTR(-ENOSPC);
2944
2945 if (xchg(&root->fs_info->enospc_unlink, 1))
2946 return ERR_PTR(-ENOSPC);
2947
2948 path = btrfs_alloc_path();
2949 if (!path) {
2950 root->fs_info->enospc_unlink = 0;
2951 return ERR_PTR(-ENOMEM);
2952 }
2953
2954 /* 1 for the orphan item */
2955 trans = btrfs_start_transaction(root, 1);
2956 if (IS_ERR(trans)) {
2957 btrfs_free_path(path);
2958 root->fs_info->enospc_unlink = 0;
2959 return trans;
2960 }
2961
2962 path->skip_locking = 1;
2963 path->search_commit_root = 1;
2964
2965 ret = btrfs_lookup_inode(trans, root, path,
2966 &BTRFS_I(dir)->location, 0);
2967 if (ret < 0) {
2968 err = ret;
2969 goto out;
2970 }
2971 if (ret == 0) {
2972 if (check_path_shared(root, path))
2973 goto out;
2974 } else {
2975 check_link = 0;
2976 }
2977 btrfs_release_path(path);
2978
2979 ret = btrfs_lookup_inode(trans, root, path,
2980 &BTRFS_I(inode)->location, 0);
2981 if (ret < 0) {
2982 err = ret;
2983 goto out;
2984 }
2985 if (ret == 0) {
2986 if (check_path_shared(root, path))
2987 goto out;
2988 } else {
2989 check_link = 0;
2990 }
2991 btrfs_release_path(path);
2992
2993 if (ret == 0 && S_ISREG(inode->i_mode)) {
2994 ret = btrfs_lookup_file_extent(trans, root, path,
2995 ino, (u64)-1, 0);
2996 if (ret < 0) {
2997 err = ret;
2998 goto out;
2999 }
3000 BUG_ON(ret == 0); /* Corruption */
3001 if (check_path_shared(root, path))
3002 goto out;
3003 btrfs_release_path(path);
3004 }
3005
3006 if (!check_link) {
3007 err = 0;
3008 goto out;
3009 }
3010
3011 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3012 dentry->d_name.name, dentry->d_name.len, 0);
3013 if (IS_ERR(di)) {
3014 err = PTR_ERR(di);
3015 goto out;
3016 }
3017 if (di) {
3018 if (check_path_shared(root, path))
3019 goto out;
3020 } else {
3021 err = 0;
3022 goto out;
3023 }
3024 btrfs_release_path(path);
3025
3026 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3027 dentry->d_name.len, ino, dir_ino, 0,
3028 &index);
3029 if (ret) {
3030 err = ret;
3031 goto out;
3032 }
3033
3034 if (check_path_shared(root, path))
3035 goto out;
3036
3037 btrfs_release_path(path);
3038
3039 /*
3040 * This is a commit root search, if we can lookup inode item and other
3041 * relative items in the commit root, it means the transaction of
3042 * dir/file creation has been committed, and the dir index item that we
3043 * delay to insert has also been inserted into the commit root. So
3044 * we needn't worry about the delayed insertion of the dir index item
3045 * here.
3046 */
3047 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3048 dentry->d_name.name, dentry->d_name.len, 0);
3049 if (IS_ERR(di)) {
3050 err = PTR_ERR(di);
3051 goto out;
3052 }
3053 BUG_ON(ret == -ENOENT);
3054 if (check_path_shared(root, path))
3055 goto out;
3056
3057 err = 0;
3058 out:
3059 btrfs_free_path(path);
3060 /* Migrate the orphan reservation over */
3061 if (!err)
3062 err = btrfs_block_rsv_migrate(trans->block_rsv,
3063 &root->fs_info->global_block_rsv,
3064 trans->bytes_reserved);
3065
3066 if (err) {
3067 btrfs_end_transaction(trans, root);
3068 root->fs_info->enospc_unlink = 0;
3069 return ERR_PTR(err);
3070 }
3071
3072 trans->block_rsv = &root->fs_info->global_block_rsv;
3073 return trans;
3074 }
3075
3076 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root)
3078 {
3079 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3080 btrfs_block_rsv_release(root, trans->block_rsv,
3081 trans->bytes_reserved);
3082 trans->block_rsv = &root->fs_info->trans_block_rsv;
3083 BUG_ON(!root->fs_info->enospc_unlink);
3084 root->fs_info->enospc_unlink = 0;
3085 }
3086 btrfs_end_transaction(trans, root);
3087 }
3088
3089 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3090 {
3091 struct btrfs_root *root = BTRFS_I(dir)->root;
3092 struct btrfs_trans_handle *trans;
3093 struct inode *inode = dentry->d_inode;
3094 int ret;
3095 unsigned long nr = 0;
3096
3097 trans = __unlink_start_trans(dir, dentry);
3098 if (IS_ERR(trans))
3099 return PTR_ERR(trans);
3100
3101 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3102
3103 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3104 dentry->d_name.name, dentry->d_name.len);
3105 if (ret)
3106 goto out;
3107
3108 if (inode->i_nlink == 0) {
3109 ret = btrfs_orphan_add(trans, inode);
3110 if (ret)
3111 goto out;
3112 }
3113
3114 out:
3115 nr = trans->blocks_used;
3116 __unlink_end_trans(trans, root);
3117 btrfs_btree_balance_dirty(root, nr);
3118 return ret;
3119 }
3120
3121 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3122 struct btrfs_root *root,
3123 struct inode *dir, u64 objectid,
3124 const char *name, int name_len)
3125 {
3126 struct btrfs_path *path;
3127 struct extent_buffer *leaf;
3128 struct btrfs_dir_item *di;
3129 struct btrfs_key key;
3130 u64 index;
3131 int ret;
3132 u64 dir_ino = btrfs_ino(dir);
3133
3134 path = btrfs_alloc_path();
3135 if (!path)
3136 return -ENOMEM;
3137
3138 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3139 name, name_len, -1);
3140 if (IS_ERR_OR_NULL(di)) {
3141 if (!di)
3142 ret = -ENOENT;
3143 else
3144 ret = PTR_ERR(di);
3145 goto out;
3146 }
3147
3148 leaf = path->nodes[0];
3149 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3150 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3151 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3152 if (ret) {
3153 btrfs_abort_transaction(trans, root, ret);
3154 goto out;
3155 }
3156 btrfs_release_path(path);
3157
3158 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3159 objectid, root->root_key.objectid,
3160 dir_ino, &index, name, name_len);
3161 if (ret < 0) {
3162 if (ret != -ENOENT) {
3163 btrfs_abort_transaction(trans, root, ret);
3164 goto out;
3165 }
3166 di = btrfs_search_dir_index_item(root, path, dir_ino,
3167 name, name_len);
3168 if (IS_ERR_OR_NULL(di)) {
3169 if (!di)
3170 ret = -ENOENT;
3171 else
3172 ret = PTR_ERR(di);
3173 btrfs_abort_transaction(trans, root, ret);
3174 goto out;
3175 }
3176
3177 leaf = path->nodes[0];
3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3179 btrfs_release_path(path);
3180 index = key.offset;
3181 }
3182 btrfs_release_path(path);
3183
3184 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3185 if (ret) {
3186 btrfs_abort_transaction(trans, root, ret);
3187 goto out;
3188 }
3189
3190 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3191 inode_inc_iversion(dir);
3192 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3193 ret = btrfs_update_inode_fallback(trans, root, dir);
3194 if (ret)
3195 btrfs_abort_transaction(trans, root, ret);
3196 out:
3197 btrfs_free_path(path);
3198 return ret;
3199 }
3200
3201 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3202 {
3203 struct inode *inode = dentry->d_inode;
3204 int err = 0;
3205 struct btrfs_root *root = BTRFS_I(dir)->root;
3206 struct btrfs_trans_handle *trans;
3207 unsigned long nr = 0;
3208
3209 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3210 return -ENOTEMPTY;
3211 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3212 return -EPERM;
3213
3214 trans = __unlink_start_trans(dir, dentry);
3215 if (IS_ERR(trans))
3216 return PTR_ERR(trans);
3217
3218 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3219 err = btrfs_unlink_subvol(trans, root, dir,
3220 BTRFS_I(inode)->location.objectid,
3221 dentry->d_name.name,
3222 dentry->d_name.len);
3223 goto out;
3224 }
3225
3226 err = btrfs_orphan_add(trans, inode);
3227 if (err)
3228 goto out;
3229
3230 /* now the directory is empty */
3231 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3232 dentry->d_name.name, dentry->d_name.len);
3233 if (!err)
3234 btrfs_i_size_write(inode, 0);
3235 out:
3236 nr = trans->blocks_used;
3237 __unlink_end_trans(trans, root);
3238 btrfs_btree_balance_dirty(root, nr);
3239
3240 return err;
3241 }
3242
3243 /*
3244 * this can truncate away extent items, csum items and directory items.
3245 * It starts at a high offset and removes keys until it can't find
3246 * any higher than new_size
3247 *
3248 * csum items that cross the new i_size are truncated to the new size
3249 * as well.
3250 *
3251 * min_type is the minimum key type to truncate down to. If set to 0, this
3252 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3253 */
3254 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3255 struct btrfs_root *root,
3256 struct inode *inode,
3257 u64 new_size, u32 min_type)
3258 {
3259 struct btrfs_path *path;
3260 struct extent_buffer *leaf;
3261 struct btrfs_file_extent_item *fi;
3262 struct btrfs_key key;
3263 struct btrfs_key found_key;
3264 u64 extent_start = 0;
3265 u64 extent_num_bytes = 0;
3266 u64 extent_offset = 0;
3267 u64 item_end = 0;
3268 u64 mask = root->sectorsize - 1;
3269 u32 found_type = (u8)-1;
3270 int found_extent;
3271 int del_item;
3272 int pending_del_nr = 0;
3273 int pending_del_slot = 0;
3274 int extent_type = -1;
3275 int ret;
3276 int err = 0;
3277 u64 ino = btrfs_ino(inode);
3278
3279 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3280
3281 path = btrfs_alloc_path();
3282 if (!path)
3283 return -ENOMEM;
3284 path->reada = -1;
3285
3286 /*
3287 * We want to drop from the next block forward in case this new size is
3288 * not block aligned since we will be keeping the last block of the
3289 * extent just the way it is.
3290 */
3291 if (root->ref_cows || root == root->fs_info->tree_root)
3292 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
3293
3294 /*
3295 * This function is also used to drop the items in the log tree before
3296 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3297 * it is used to drop the loged items. So we shouldn't kill the delayed
3298 * items.
3299 */
3300 if (min_type == 0 && root == BTRFS_I(inode)->root)
3301 btrfs_kill_delayed_inode_items(inode);
3302
3303 key.objectid = ino;
3304 key.offset = (u64)-1;
3305 key.type = (u8)-1;
3306
3307 search_again:
3308 path->leave_spinning = 1;
3309 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3310 if (ret < 0) {
3311 err = ret;
3312 goto out;
3313 }
3314
3315 if (ret > 0) {
3316 /* there are no items in the tree for us to truncate, we're
3317 * done
3318 */
3319 if (path->slots[0] == 0)
3320 goto out;
3321 path->slots[0]--;
3322 }
3323
3324 while (1) {
3325 fi = NULL;
3326 leaf = path->nodes[0];
3327 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3328 found_type = btrfs_key_type(&found_key);
3329
3330 if (found_key.objectid != ino)
3331 break;
3332
3333 if (found_type < min_type)
3334 break;
3335
3336 item_end = found_key.offset;
3337 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3338 fi = btrfs_item_ptr(leaf, path->slots[0],
3339 struct btrfs_file_extent_item);
3340 extent_type = btrfs_file_extent_type(leaf, fi);
3341 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3342 item_end +=
3343 btrfs_file_extent_num_bytes(leaf, fi);
3344 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3345 item_end += btrfs_file_extent_inline_len(leaf,
3346 fi);
3347 }
3348 item_end--;
3349 }
3350 if (found_type > min_type) {
3351 del_item = 1;
3352 } else {
3353 if (item_end < new_size)
3354 break;
3355 if (found_key.offset >= new_size)
3356 del_item = 1;
3357 else
3358 del_item = 0;
3359 }
3360 found_extent = 0;
3361 /* FIXME, shrink the extent if the ref count is only 1 */
3362 if (found_type != BTRFS_EXTENT_DATA_KEY)
3363 goto delete;
3364
3365 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3366 u64 num_dec;
3367 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3368 if (!del_item) {
3369 u64 orig_num_bytes =
3370 btrfs_file_extent_num_bytes(leaf, fi);
3371 extent_num_bytes = new_size -
3372 found_key.offset + root->sectorsize - 1;
3373 extent_num_bytes = extent_num_bytes &
3374 ~((u64)root->sectorsize - 1);
3375 btrfs_set_file_extent_num_bytes(leaf, fi,
3376 extent_num_bytes);
3377 num_dec = (orig_num_bytes -
3378 extent_num_bytes);
3379 if (root->ref_cows && extent_start != 0)
3380 inode_sub_bytes(inode, num_dec);
3381 btrfs_mark_buffer_dirty(leaf);
3382 } else {
3383 extent_num_bytes =
3384 btrfs_file_extent_disk_num_bytes(leaf,
3385 fi);
3386 extent_offset = found_key.offset -
3387 btrfs_file_extent_offset(leaf, fi);
3388
3389 /* FIXME blocksize != 4096 */
3390 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3391 if (extent_start != 0) {
3392 found_extent = 1;
3393 if (root->ref_cows)
3394 inode_sub_bytes(inode, num_dec);
3395 }
3396 }
3397 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3398 /*
3399 * we can't truncate inline items that have had
3400 * special encodings
3401 */
3402 if (!del_item &&
3403 btrfs_file_extent_compression(leaf, fi) == 0 &&
3404 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3405 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3406 u32 size = new_size - found_key.offset;
3407
3408 if (root->ref_cows) {
3409 inode_sub_bytes(inode, item_end + 1 -
3410 new_size);
3411 }
3412 size =
3413 btrfs_file_extent_calc_inline_size(size);
3414 btrfs_truncate_item(trans, root, path,
3415 size, 1);
3416 } else if (root->ref_cows) {
3417 inode_sub_bytes(inode, item_end + 1 -
3418 found_key.offset);
3419 }
3420 }
3421 delete:
3422 if (del_item) {
3423 if (!pending_del_nr) {
3424 /* no pending yet, add ourselves */
3425 pending_del_slot = path->slots[0];
3426 pending_del_nr = 1;
3427 } else if (pending_del_nr &&
3428 path->slots[0] + 1 == pending_del_slot) {
3429 /* hop on the pending chunk */
3430 pending_del_nr++;
3431 pending_del_slot = path->slots[0];
3432 } else {
3433 BUG();
3434 }
3435 } else {
3436 break;
3437 }
3438 if (found_extent && (root->ref_cows ||
3439 root == root->fs_info->tree_root)) {
3440 btrfs_set_path_blocking(path);
3441 ret = btrfs_free_extent(trans, root, extent_start,
3442 extent_num_bytes, 0,
3443 btrfs_header_owner(leaf),
3444 ino, extent_offset, 0);
3445 BUG_ON(ret);
3446 }
3447
3448 if (found_type == BTRFS_INODE_ITEM_KEY)
3449 break;
3450
3451 if (path->slots[0] == 0 ||
3452 path->slots[0] != pending_del_slot) {
3453 if (pending_del_nr) {
3454 ret = btrfs_del_items(trans, root, path,
3455 pending_del_slot,
3456 pending_del_nr);
3457 if (ret) {
3458 btrfs_abort_transaction(trans,
3459 root, ret);
3460 goto error;
3461 }
3462 pending_del_nr = 0;
3463 }
3464 btrfs_release_path(path);
3465 goto search_again;
3466 } else {
3467 path->slots[0]--;
3468 }
3469 }
3470 out:
3471 if (pending_del_nr) {
3472 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3473 pending_del_nr);
3474 if (ret)
3475 btrfs_abort_transaction(trans, root, ret);
3476 }
3477 error:
3478 btrfs_free_path(path);
3479 return err;
3480 }
3481
3482 /*
3483 * btrfs_truncate_page - read, zero a chunk and write a page
3484 * @inode - inode that we're zeroing
3485 * @from - the offset to start zeroing
3486 * @len - the length to zero, 0 to zero the entire range respective to the
3487 * offset
3488 * @front - zero up to the offset instead of from the offset on
3489 *
3490 * This will find the page for the "from" offset and cow the page and zero the
3491 * part we want to zero. This is used with truncate and hole punching.
3492 */
3493 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3494 int front)
3495 {
3496 struct address_space *mapping = inode->i_mapping;
3497 struct btrfs_root *root = BTRFS_I(inode)->root;
3498 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3499 struct btrfs_ordered_extent *ordered;
3500 struct extent_state *cached_state = NULL;
3501 char *kaddr;
3502 u32 blocksize = root->sectorsize;
3503 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3504 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3505 struct page *page;
3506 gfp_t mask = btrfs_alloc_write_mask(mapping);
3507 int ret = 0;
3508 u64 page_start;
3509 u64 page_end;
3510
3511 if ((offset & (blocksize - 1)) == 0 &&
3512 (!len || ((len & (blocksize - 1)) == 0)))
3513 goto out;
3514 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3515 if (ret)
3516 goto out;
3517
3518 ret = -ENOMEM;
3519 again:
3520 page = find_or_create_page(mapping, index, mask);
3521 if (!page) {
3522 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3523 goto out;
3524 }
3525
3526 page_start = page_offset(page);
3527 page_end = page_start + PAGE_CACHE_SIZE - 1;
3528
3529 if (!PageUptodate(page)) {
3530 ret = btrfs_readpage(NULL, page);
3531 lock_page(page);
3532 if (page->mapping != mapping) {
3533 unlock_page(page);
3534 page_cache_release(page);
3535 goto again;
3536 }
3537 if (!PageUptodate(page)) {
3538 ret = -EIO;
3539 goto out_unlock;
3540 }
3541 }
3542 wait_on_page_writeback(page);
3543
3544 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3545 set_page_extent_mapped(page);
3546
3547 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3548 if (ordered) {
3549 unlock_extent_cached(io_tree, page_start, page_end,
3550 &cached_state, GFP_NOFS);
3551 unlock_page(page);
3552 page_cache_release(page);
3553 btrfs_start_ordered_extent(inode, ordered, 1);
3554 btrfs_put_ordered_extent(ordered);
3555 goto again;
3556 }
3557
3558 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3559 EXTENT_DIRTY | EXTENT_DELALLOC |
3560 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
3561 0, 0, &cached_state, GFP_NOFS);
3562
3563 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3564 &cached_state);
3565 if (ret) {
3566 unlock_extent_cached(io_tree, page_start, page_end,
3567 &cached_state, GFP_NOFS);
3568 goto out_unlock;
3569 }
3570
3571 ret = 0;
3572 if (offset != PAGE_CACHE_SIZE) {
3573 if (!len)
3574 len = PAGE_CACHE_SIZE - offset;
3575 kaddr = kmap(page);
3576 if (front)
3577 memset(kaddr, 0, offset);
3578 else
3579 memset(kaddr + offset, 0, len);
3580 flush_dcache_page(page);
3581 kunmap(page);
3582 }
3583 ClearPageChecked(page);
3584 set_page_dirty(page);
3585 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3586 GFP_NOFS);
3587
3588 out_unlock:
3589 if (ret)
3590 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3591 unlock_page(page);
3592 page_cache_release(page);
3593 out:
3594 return ret;
3595 }
3596
3597 /*
3598 * This function puts in dummy file extents for the area we're creating a hole
3599 * for. So if we are truncating this file to a larger size we need to insert
3600 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3601 * the range between oldsize and size
3602 */
3603 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3604 {
3605 struct btrfs_trans_handle *trans;
3606 struct btrfs_root *root = BTRFS_I(inode)->root;
3607 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3608 struct extent_map *em = NULL;
3609 struct extent_state *cached_state = NULL;
3610 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3611 u64 mask = root->sectorsize - 1;
3612 u64 hole_start = (oldsize + mask) & ~mask;
3613 u64 block_end = (size + mask) & ~mask;
3614 u64 last_byte;
3615 u64 cur_offset;
3616 u64 hole_size;
3617 int err = 0;
3618
3619 if (size <= hole_start)
3620 return 0;
3621
3622 while (1) {
3623 struct btrfs_ordered_extent *ordered;
3624 btrfs_wait_ordered_range(inode, hole_start,
3625 block_end - hole_start);
3626 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3627 &cached_state);
3628 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3629 if (!ordered)
3630 break;
3631 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3632 &cached_state, GFP_NOFS);
3633 btrfs_put_ordered_extent(ordered);
3634 }
3635
3636 cur_offset = hole_start;
3637 while (1) {
3638 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3639 block_end - cur_offset, 0);
3640 if (IS_ERR(em)) {
3641 err = PTR_ERR(em);
3642 break;
3643 }
3644 last_byte = min(extent_map_end(em), block_end);
3645 last_byte = (last_byte + mask) & ~mask;
3646 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3647 struct extent_map *hole_em;
3648 hole_size = last_byte - cur_offset;
3649
3650 trans = btrfs_start_transaction(root, 3);
3651 if (IS_ERR(trans)) {
3652 err = PTR_ERR(trans);
3653 break;
3654 }
3655
3656 err = btrfs_drop_extents(trans, root, inode,
3657 cur_offset,
3658 cur_offset + hole_size, 1);
3659 if (err) {
3660 btrfs_abort_transaction(trans, root, err);
3661 btrfs_end_transaction(trans, root);
3662 break;
3663 }
3664
3665 err = btrfs_insert_file_extent(trans, root,
3666 btrfs_ino(inode), cur_offset, 0,
3667 0, hole_size, 0, hole_size,
3668 0, 0, 0);
3669 if (err) {
3670 btrfs_abort_transaction(trans, root, err);
3671 btrfs_end_transaction(trans, root);
3672 break;
3673 }
3674
3675 btrfs_drop_extent_cache(inode, cur_offset,
3676 cur_offset + hole_size - 1, 0);
3677 hole_em = alloc_extent_map();
3678 if (!hole_em) {
3679 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3680 &BTRFS_I(inode)->runtime_flags);
3681 goto next;
3682 }
3683 hole_em->start = cur_offset;
3684 hole_em->len = hole_size;
3685 hole_em->orig_start = cur_offset;
3686
3687 hole_em->block_start = EXTENT_MAP_HOLE;
3688 hole_em->block_len = 0;
3689 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3690 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3691 hole_em->generation = trans->transid;
3692
3693 while (1) {
3694 write_lock(&em_tree->lock);
3695 err = add_extent_mapping(em_tree, hole_em);
3696 if (!err)
3697 list_move(&hole_em->list,
3698 &em_tree->modified_extents);
3699 write_unlock(&em_tree->lock);
3700 if (err != -EEXIST)
3701 break;
3702 btrfs_drop_extent_cache(inode, cur_offset,
3703 cur_offset +
3704 hole_size - 1, 0);
3705 }
3706 free_extent_map(hole_em);
3707 next:
3708 btrfs_update_inode(trans, root, inode);
3709 btrfs_end_transaction(trans, root);
3710 }
3711 free_extent_map(em);
3712 em = NULL;
3713 cur_offset = last_byte;
3714 if (cur_offset >= block_end)
3715 break;
3716 }
3717
3718 free_extent_map(em);
3719 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3720 GFP_NOFS);
3721 return err;
3722 }
3723
3724 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3725 {
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 struct btrfs_trans_handle *trans;
3728 loff_t oldsize = i_size_read(inode);
3729 int ret;
3730
3731 if (newsize == oldsize)
3732 return 0;
3733
3734 if (newsize > oldsize) {
3735 truncate_pagecache(inode, oldsize, newsize);
3736 ret = btrfs_cont_expand(inode, oldsize, newsize);
3737 if (ret)
3738 return ret;
3739
3740 trans = btrfs_start_transaction(root, 1);
3741 if (IS_ERR(trans))
3742 return PTR_ERR(trans);
3743
3744 i_size_write(inode, newsize);
3745 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3746 ret = btrfs_update_inode(trans, root, inode);
3747 btrfs_end_transaction(trans, root);
3748 } else {
3749
3750 /*
3751 * We're truncating a file that used to have good data down to
3752 * zero. Make sure it gets into the ordered flush list so that
3753 * any new writes get down to disk quickly.
3754 */
3755 if (newsize == 0)
3756 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3757 &BTRFS_I(inode)->runtime_flags);
3758
3759 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3760 truncate_setsize(inode, newsize);
3761 ret = btrfs_truncate(inode);
3762 }
3763
3764 return ret;
3765 }
3766
3767 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3768 {
3769 struct inode *inode = dentry->d_inode;
3770 struct btrfs_root *root = BTRFS_I(inode)->root;
3771 int err;
3772
3773 if (btrfs_root_readonly(root))
3774 return -EROFS;
3775
3776 err = inode_change_ok(inode, attr);
3777 if (err)
3778 return err;
3779
3780 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3781 err = btrfs_setsize(inode, attr->ia_size);
3782 if (err)
3783 return err;
3784 }
3785
3786 if (attr->ia_valid) {
3787 setattr_copy(inode, attr);
3788 inode_inc_iversion(inode);
3789 err = btrfs_dirty_inode(inode);
3790
3791 if (!err && attr->ia_valid & ATTR_MODE)
3792 err = btrfs_acl_chmod(inode);
3793 }
3794
3795 return err;
3796 }
3797
3798 void btrfs_evict_inode(struct inode *inode)
3799 {
3800 struct btrfs_trans_handle *trans;
3801 struct btrfs_root *root = BTRFS_I(inode)->root;
3802 struct btrfs_block_rsv *rsv, *global_rsv;
3803 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3804 unsigned long nr;
3805 int ret;
3806
3807 trace_btrfs_inode_evict(inode);
3808
3809 truncate_inode_pages(&inode->i_data, 0);
3810 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3811 btrfs_is_free_space_inode(inode)))
3812 goto no_delete;
3813
3814 if (is_bad_inode(inode)) {
3815 btrfs_orphan_del(NULL, inode);
3816 goto no_delete;
3817 }
3818 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3819 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3820
3821 if (root->fs_info->log_root_recovering) {
3822 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3823 &BTRFS_I(inode)->runtime_flags));
3824 goto no_delete;
3825 }
3826
3827 if (inode->i_nlink > 0) {
3828 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3829 goto no_delete;
3830 }
3831
3832 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3833 if (!rsv) {
3834 btrfs_orphan_del(NULL, inode);
3835 goto no_delete;
3836 }
3837 rsv->size = min_size;
3838 rsv->failfast = 1;
3839 global_rsv = &root->fs_info->global_block_rsv;
3840
3841 btrfs_i_size_write(inode, 0);
3842
3843 /*
3844 * This is a bit simpler than btrfs_truncate since we've already
3845 * reserved our space for our orphan item in the unlink, so we just
3846 * need to reserve some slack space in case we add bytes and update
3847 * inode item when doing the truncate.
3848 */
3849 while (1) {
3850 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3851 BTRFS_RESERVE_FLUSH_LIMIT);
3852
3853 /*
3854 * Try and steal from the global reserve since we will
3855 * likely not use this space anyway, we want to try as
3856 * hard as possible to get this to work.
3857 */
3858 if (ret)
3859 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3860
3861 if (ret) {
3862 printk(KERN_WARNING "Could not get space for a "
3863 "delete, will truncate on mount %d\n", ret);
3864 btrfs_orphan_del(NULL, inode);
3865 btrfs_free_block_rsv(root, rsv);
3866 goto no_delete;
3867 }
3868
3869 trans = btrfs_start_transaction_lflush(root, 1);
3870 if (IS_ERR(trans)) {
3871 btrfs_orphan_del(NULL, inode);
3872 btrfs_free_block_rsv(root, rsv);
3873 goto no_delete;
3874 }
3875
3876 trans->block_rsv = rsv;
3877
3878 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3879 if (ret != -ENOSPC)
3880 break;
3881
3882 trans->block_rsv = &root->fs_info->trans_block_rsv;
3883 ret = btrfs_update_inode(trans, root, inode);
3884 BUG_ON(ret);
3885
3886 nr = trans->blocks_used;
3887 btrfs_end_transaction(trans, root);
3888 trans = NULL;
3889 btrfs_btree_balance_dirty(root, nr);
3890 }
3891
3892 btrfs_free_block_rsv(root, rsv);
3893
3894 if (ret == 0) {
3895 trans->block_rsv = root->orphan_block_rsv;
3896 ret = btrfs_orphan_del(trans, inode);
3897 BUG_ON(ret);
3898 }
3899
3900 trans->block_rsv = &root->fs_info->trans_block_rsv;
3901 if (!(root == root->fs_info->tree_root ||
3902 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3903 btrfs_return_ino(root, btrfs_ino(inode));
3904
3905 nr = trans->blocks_used;
3906 btrfs_end_transaction(trans, root);
3907 btrfs_btree_balance_dirty(root, nr);
3908 no_delete:
3909 clear_inode(inode);
3910 return;
3911 }
3912
3913 /*
3914 * this returns the key found in the dir entry in the location pointer.
3915 * If no dir entries were found, location->objectid is 0.
3916 */
3917 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3918 struct btrfs_key *location)
3919 {
3920 const char *name = dentry->d_name.name;
3921 int namelen = dentry->d_name.len;
3922 struct btrfs_dir_item *di;
3923 struct btrfs_path *path;
3924 struct btrfs_root *root = BTRFS_I(dir)->root;
3925 int ret = 0;
3926
3927 path = btrfs_alloc_path();
3928 if (!path)
3929 return -ENOMEM;
3930
3931 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3932 namelen, 0);
3933 if (IS_ERR(di))
3934 ret = PTR_ERR(di);
3935
3936 if (IS_ERR_OR_NULL(di))
3937 goto out_err;
3938
3939 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3940 out:
3941 btrfs_free_path(path);
3942 return ret;
3943 out_err:
3944 location->objectid = 0;
3945 goto out;
3946 }
3947
3948 /*
3949 * when we hit a tree root in a directory, the btrfs part of the inode
3950 * needs to be changed to reflect the root directory of the tree root. This
3951 * is kind of like crossing a mount point.
3952 */
3953 static int fixup_tree_root_location(struct btrfs_root *root,
3954 struct inode *dir,
3955 struct dentry *dentry,
3956 struct btrfs_key *location,
3957 struct btrfs_root **sub_root)
3958 {
3959 struct btrfs_path *path;
3960 struct btrfs_root *new_root;
3961 struct btrfs_root_ref *ref;
3962 struct extent_buffer *leaf;
3963 int ret;
3964 int err = 0;
3965
3966 path = btrfs_alloc_path();
3967 if (!path) {
3968 err = -ENOMEM;
3969 goto out;
3970 }
3971
3972 err = -ENOENT;
3973 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3974 BTRFS_I(dir)->root->root_key.objectid,
3975 location->objectid);
3976 if (ret) {
3977 if (ret < 0)
3978 err = ret;
3979 goto out;
3980 }
3981
3982 leaf = path->nodes[0];
3983 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3984 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3985 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3986 goto out;
3987
3988 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3989 (unsigned long)(ref + 1),
3990 dentry->d_name.len);
3991 if (ret)
3992 goto out;
3993
3994 btrfs_release_path(path);
3995
3996 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3997 if (IS_ERR(new_root)) {
3998 err = PTR_ERR(new_root);
3999 goto out;
4000 }
4001
4002 if (btrfs_root_refs(&new_root->root_item) == 0) {
4003 err = -ENOENT;
4004 goto out;
4005 }
4006
4007 *sub_root = new_root;
4008 location->objectid = btrfs_root_dirid(&new_root->root_item);
4009 location->type = BTRFS_INODE_ITEM_KEY;
4010 location->offset = 0;
4011 err = 0;
4012 out:
4013 btrfs_free_path(path);
4014 return err;
4015 }
4016
4017 static void inode_tree_add(struct inode *inode)
4018 {
4019 struct btrfs_root *root = BTRFS_I(inode)->root;
4020 struct btrfs_inode *entry;
4021 struct rb_node **p;
4022 struct rb_node *parent;
4023 u64 ino = btrfs_ino(inode);
4024 again:
4025 p = &root->inode_tree.rb_node;
4026 parent = NULL;
4027
4028 if (inode_unhashed(inode))
4029 return;
4030
4031 spin_lock(&root->inode_lock);
4032 while (*p) {
4033 parent = *p;
4034 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4035
4036 if (ino < btrfs_ino(&entry->vfs_inode))
4037 p = &parent->rb_left;
4038 else if (ino > btrfs_ino(&entry->vfs_inode))
4039 p = &parent->rb_right;
4040 else {
4041 WARN_ON(!(entry->vfs_inode.i_state &
4042 (I_WILL_FREE | I_FREEING)));
4043 rb_erase(parent, &root->inode_tree);
4044 RB_CLEAR_NODE(parent);
4045 spin_unlock(&root->inode_lock);
4046 goto again;
4047 }
4048 }
4049 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4050 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4051 spin_unlock(&root->inode_lock);
4052 }
4053
4054 static void inode_tree_del(struct inode *inode)
4055 {
4056 struct btrfs_root *root = BTRFS_I(inode)->root;
4057 int empty = 0;
4058
4059 spin_lock(&root->inode_lock);
4060 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4061 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4062 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4063 empty = RB_EMPTY_ROOT(&root->inode_tree);
4064 }
4065 spin_unlock(&root->inode_lock);
4066
4067 /*
4068 * Free space cache has inodes in the tree root, but the tree root has a
4069 * root_refs of 0, so this could end up dropping the tree root as a
4070 * snapshot, so we need the extra !root->fs_info->tree_root check to
4071 * make sure we don't drop it.
4072 */
4073 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4074 root != root->fs_info->tree_root) {
4075 synchronize_srcu(&root->fs_info->subvol_srcu);
4076 spin_lock(&root->inode_lock);
4077 empty = RB_EMPTY_ROOT(&root->inode_tree);
4078 spin_unlock(&root->inode_lock);
4079 if (empty)
4080 btrfs_add_dead_root(root);
4081 }
4082 }
4083
4084 void btrfs_invalidate_inodes(struct btrfs_root *root)
4085 {
4086 struct rb_node *node;
4087 struct rb_node *prev;
4088 struct btrfs_inode *entry;
4089 struct inode *inode;
4090 u64 objectid = 0;
4091
4092 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4093
4094 spin_lock(&root->inode_lock);
4095 again:
4096 node = root->inode_tree.rb_node;
4097 prev = NULL;
4098 while (node) {
4099 prev = node;
4100 entry = rb_entry(node, struct btrfs_inode, rb_node);
4101
4102 if (objectid < btrfs_ino(&entry->vfs_inode))
4103 node = node->rb_left;
4104 else if (objectid > btrfs_ino(&entry->vfs_inode))
4105 node = node->rb_right;
4106 else
4107 break;
4108 }
4109 if (!node) {
4110 while (prev) {
4111 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4112 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4113 node = prev;
4114 break;
4115 }
4116 prev = rb_next(prev);
4117 }
4118 }
4119 while (node) {
4120 entry = rb_entry(node, struct btrfs_inode, rb_node);
4121 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4122 inode = igrab(&entry->vfs_inode);
4123 if (inode) {
4124 spin_unlock(&root->inode_lock);
4125 if (atomic_read(&inode->i_count) > 1)
4126 d_prune_aliases(inode);
4127 /*
4128 * btrfs_drop_inode will have it removed from
4129 * the inode cache when its usage count
4130 * hits zero.
4131 */
4132 iput(inode);
4133 cond_resched();
4134 spin_lock(&root->inode_lock);
4135 goto again;
4136 }
4137
4138 if (cond_resched_lock(&root->inode_lock))
4139 goto again;
4140
4141 node = rb_next(node);
4142 }
4143 spin_unlock(&root->inode_lock);
4144 }
4145
4146 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4147 {
4148 struct btrfs_iget_args *args = p;
4149 inode->i_ino = args->ino;
4150 BTRFS_I(inode)->root = args->root;
4151 return 0;
4152 }
4153
4154 static int btrfs_find_actor(struct inode *inode, void *opaque)
4155 {
4156 struct btrfs_iget_args *args = opaque;
4157 return args->ino == btrfs_ino(inode) &&
4158 args->root == BTRFS_I(inode)->root;
4159 }
4160
4161 static struct inode *btrfs_iget_locked(struct super_block *s,
4162 u64 objectid,
4163 struct btrfs_root *root)
4164 {
4165 struct inode *inode;
4166 struct btrfs_iget_args args;
4167 args.ino = objectid;
4168 args.root = root;
4169
4170 inode = iget5_locked(s, objectid, btrfs_find_actor,
4171 btrfs_init_locked_inode,
4172 (void *)&args);
4173 return inode;
4174 }
4175
4176 /* Get an inode object given its location and corresponding root.
4177 * Returns in *is_new if the inode was read from disk
4178 */
4179 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4180 struct btrfs_root *root, int *new)
4181 {
4182 struct inode *inode;
4183
4184 inode = btrfs_iget_locked(s, location->objectid, root);
4185 if (!inode)
4186 return ERR_PTR(-ENOMEM);
4187
4188 if (inode->i_state & I_NEW) {
4189 BTRFS_I(inode)->root = root;
4190 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4191 btrfs_read_locked_inode(inode);
4192 if (!is_bad_inode(inode)) {
4193 inode_tree_add(inode);
4194 unlock_new_inode(inode);
4195 if (new)
4196 *new = 1;
4197 } else {
4198 unlock_new_inode(inode);
4199 iput(inode);
4200 inode = ERR_PTR(-ESTALE);
4201 }
4202 }
4203
4204 return inode;
4205 }
4206
4207 static struct inode *new_simple_dir(struct super_block *s,
4208 struct btrfs_key *key,
4209 struct btrfs_root *root)
4210 {
4211 struct inode *inode = new_inode(s);
4212
4213 if (!inode)
4214 return ERR_PTR(-ENOMEM);
4215
4216 BTRFS_I(inode)->root = root;
4217 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4218 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4219
4220 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4221 inode->i_op = &btrfs_dir_ro_inode_operations;
4222 inode->i_fop = &simple_dir_operations;
4223 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4224 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4225
4226 return inode;
4227 }
4228
4229 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4230 {
4231 struct inode *inode;
4232 struct btrfs_root *root = BTRFS_I(dir)->root;
4233 struct btrfs_root *sub_root = root;
4234 struct btrfs_key location;
4235 int index;
4236 int ret = 0;
4237
4238 if (dentry->d_name.len > BTRFS_NAME_LEN)
4239 return ERR_PTR(-ENAMETOOLONG);
4240
4241 if (unlikely(d_need_lookup(dentry))) {
4242 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4243 kfree(dentry->d_fsdata);
4244 dentry->d_fsdata = NULL;
4245 /* This thing is hashed, drop it for now */
4246 d_drop(dentry);
4247 } else {
4248 ret = btrfs_inode_by_name(dir, dentry, &location);
4249 }
4250
4251 if (ret < 0)
4252 return ERR_PTR(ret);
4253
4254 if (location.objectid == 0)
4255 return NULL;
4256
4257 if (location.type == BTRFS_INODE_ITEM_KEY) {
4258 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4259 return inode;
4260 }
4261
4262 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4263
4264 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4265 ret = fixup_tree_root_location(root, dir, dentry,
4266 &location, &sub_root);
4267 if (ret < 0) {
4268 if (ret != -ENOENT)
4269 inode = ERR_PTR(ret);
4270 else
4271 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4272 } else {
4273 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4274 }
4275 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4276
4277 if (!IS_ERR(inode) && root != sub_root) {
4278 down_read(&root->fs_info->cleanup_work_sem);
4279 if (!(inode->i_sb->s_flags & MS_RDONLY))
4280 ret = btrfs_orphan_cleanup(sub_root);
4281 up_read(&root->fs_info->cleanup_work_sem);
4282 if (ret)
4283 inode = ERR_PTR(ret);
4284 }
4285
4286 return inode;
4287 }
4288
4289 static int btrfs_dentry_delete(const struct dentry *dentry)
4290 {
4291 struct btrfs_root *root;
4292 struct inode *inode = dentry->d_inode;
4293
4294 if (!inode && !IS_ROOT(dentry))
4295 inode = dentry->d_parent->d_inode;
4296
4297 if (inode) {
4298 root = BTRFS_I(inode)->root;
4299 if (btrfs_root_refs(&root->root_item) == 0)
4300 return 1;
4301
4302 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4303 return 1;
4304 }
4305 return 0;
4306 }
4307
4308 static void btrfs_dentry_release(struct dentry *dentry)
4309 {
4310 if (dentry->d_fsdata)
4311 kfree(dentry->d_fsdata);
4312 }
4313
4314 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4315 unsigned int flags)
4316 {
4317 struct dentry *ret;
4318
4319 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4320 if (unlikely(d_need_lookup(dentry))) {
4321 spin_lock(&dentry->d_lock);
4322 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4323 spin_unlock(&dentry->d_lock);
4324 }
4325 return ret;
4326 }
4327
4328 unsigned char btrfs_filetype_table[] = {
4329 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4330 };
4331
4332 static int btrfs_real_readdir(struct file *filp, void *dirent,
4333 filldir_t filldir)
4334 {
4335 struct inode *inode = filp->f_dentry->d_inode;
4336 struct btrfs_root *root = BTRFS_I(inode)->root;
4337 struct btrfs_item *item;
4338 struct btrfs_dir_item *di;
4339 struct btrfs_key key;
4340 struct btrfs_key found_key;
4341 struct btrfs_path *path;
4342 struct list_head ins_list;
4343 struct list_head del_list;
4344 int ret;
4345 struct extent_buffer *leaf;
4346 int slot;
4347 unsigned char d_type;
4348 int over = 0;
4349 u32 di_cur;
4350 u32 di_total;
4351 u32 di_len;
4352 int key_type = BTRFS_DIR_INDEX_KEY;
4353 char tmp_name[32];
4354 char *name_ptr;
4355 int name_len;
4356 int is_curr = 0; /* filp->f_pos points to the current index? */
4357
4358 /* FIXME, use a real flag for deciding about the key type */
4359 if (root->fs_info->tree_root == root)
4360 key_type = BTRFS_DIR_ITEM_KEY;
4361
4362 /* special case for "." */
4363 if (filp->f_pos == 0) {
4364 over = filldir(dirent, ".", 1,
4365 filp->f_pos, btrfs_ino(inode), DT_DIR);
4366 if (over)
4367 return 0;
4368 filp->f_pos = 1;
4369 }
4370 /* special case for .., just use the back ref */
4371 if (filp->f_pos == 1) {
4372 u64 pino = parent_ino(filp->f_path.dentry);
4373 over = filldir(dirent, "..", 2,
4374 filp->f_pos, pino, DT_DIR);
4375 if (over)
4376 return 0;
4377 filp->f_pos = 2;
4378 }
4379 path = btrfs_alloc_path();
4380 if (!path)
4381 return -ENOMEM;
4382
4383 path->reada = 1;
4384
4385 if (key_type == BTRFS_DIR_INDEX_KEY) {
4386 INIT_LIST_HEAD(&ins_list);
4387 INIT_LIST_HEAD(&del_list);
4388 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4389 }
4390
4391 btrfs_set_key_type(&key, key_type);
4392 key.offset = filp->f_pos;
4393 key.objectid = btrfs_ino(inode);
4394
4395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4396 if (ret < 0)
4397 goto err;
4398
4399 while (1) {
4400 leaf = path->nodes[0];
4401 slot = path->slots[0];
4402 if (slot >= btrfs_header_nritems(leaf)) {
4403 ret = btrfs_next_leaf(root, path);
4404 if (ret < 0)
4405 goto err;
4406 else if (ret > 0)
4407 break;
4408 continue;
4409 }
4410
4411 item = btrfs_item_nr(leaf, slot);
4412 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4413
4414 if (found_key.objectid != key.objectid)
4415 break;
4416 if (btrfs_key_type(&found_key) != key_type)
4417 break;
4418 if (found_key.offset < filp->f_pos)
4419 goto next;
4420 if (key_type == BTRFS_DIR_INDEX_KEY &&
4421 btrfs_should_delete_dir_index(&del_list,
4422 found_key.offset))
4423 goto next;
4424
4425 filp->f_pos = found_key.offset;
4426 is_curr = 1;
4427
4428 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4429 di_cur = 0;
4430 di_total = btrfs_item_size(leaf, item);
4431
4432 while (di_cur < di_total) {
4433 struct btrfs_key location;
4434
4435 if (verify_dir_item(root, leaf, di))
4436 break;
4437
4438 name_len = btrfs_dir_name_len(leaf, di);
4439 if (name_len <= sizeof(tmp_name)) {
4440 name_ptr = tmp_name;
4441 } else {
4442 name_ptr = kmalloc(name_len, GFP_NOFS);
4443 if (!name_ptr) {
4444 ret = -ENOMEM;
4445 goto err;
4446 }
4447 }
4448 read_extent_buffer(leaf, name_ptr,
4449 (unsigned long)(di + 1), name_len);
4450
4451 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4452 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4453
4454
4455 /* is this a reference to our own snapshot? If so
4456 * skip it.
4457 *
4458 * In contrast to old kernels, we insert the snapshot's
4459 * dir item and dir index after it has been created, so
4460 * we won't find a reference to our own snapshot. We
4461 * still keep the following code for backward
4462 * compatibility.
4463 */
4464 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4465 location.objectid == root->root_key.objectid) {
4466 over = 0;
4467 goto skip;
4468 }
4469 over = filldir(dirent, name_ptr, name_len,
4470 found_key.offset, location.objectid,
4471 d_type);
4472
4473 skip:
4474 if (name_ptr != tmp_name)
4475 kfree(name_ptr);
4476
4477 if (over)
4478 goto nopos;
4479 di_len = btrfs_dir_name_len(leaf, di) +
4480 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4481 di_cur += di_len;
4482 di = (struct btrfs_dir_item *)((char *)di + di_len);
4483 }
4484 next:
4485 path->slots[0]++;
4486 }
4487
4488 if (key_type == BTRFS_DIR_INDEX_KEY) {
4489 if (is_curr)
4490 filp->f_pos++;
4491 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4492 &ins_list);
4493 if (ret)
4494 goto nopos;
4495 }
4496
4497 /* Reached end of directory/root. Bump pos past the last item. */
4498 if (key_type == BTRFS_DIR_INDEX_KEY)
4499 /*
4500 * 32-bit glibc will use getdents64, but then strtol -
4501 * so the last number we can serve is this.
4502 */
4503 filp->f_pos = 0x7fffffff;
4504 else
4505 filp->f_pos++;
4506 nopos:
4507 ret = 0;
4508 err:
4509 if (key_type == BTRFS_DIR_INDEX_KEY)
4510 btrfs_put_delayed_items(&ins_list, &del_list);
4511 btrfs_free_path(path);
4512 return ret;
4513 }
4514
4515 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4516 {
4517 struct btrfs_root *root = BTRFS_I(inode)->root;
4518 struct btrfs_trans_handle *trans;
4519 int ret = 0;
4520 bool nolock = false;
4521
4522 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4523 return 0;
4524
4525 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4526 nolock = true;
4527
4528 if (wbc->sync_mode == WB_SYNC_ALL) {
4529 if (nolock)
4530 trans = btrfs_join_transaction_nolock(root);
4531 else
4532 trans = btrfs_join_transaction(root);
4533 if (IS_ERR(trans))
4534 return PTR_ERR(trans);
4535 ret = btrfs_commit_transaction(trans, root);
4536 }
4537 return ret;
4538 }
4539
4540 /*
4541 * This is somewhat expensive, updating the tree every time the
4542 * inode changes. But, it is most likely to find the inode in cache.
4543 * FIXME, needs more benchmarking...there are no reasons other than performance
4544 * to keep or drop this code.
4545 */
4546 int btrfs_dirty_inode(struct inode *inode)
4547 {
4548 struct btrfs_root *root = BTRFS_I(inode)->root;
4549 struct btrfs_trans_handle *trans;
4550 int ret;
4551
4552 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4553 return 0;
4554
4555 trans = btrfs_join_transaction(root);
4556 if (IS_ERR(trans))
4557 return PTR_ERR(trans);
4558
4559 ret = btrfs_update_inode(trans, root, inode);
4560 if (ret && ret == -ENOSPC) {
4561 /* whoops, lets try again with the full transaction */
4562 btrfs_end_transaction(trans, root);
4563 trans = btrfs_start_transaction(root, 1);
4564 if (IS_ERR(trans))
4565 return PTR_ERR(trans);
4566
4567 ret = btrfs_update_inode(trans, root, inode);
4568 }
4569 btrfs_end_transaction(trans, root);
4570 if (BTRFS_I(inode)->delayed_node)
4571 btrfs_balance_delayed_items(root);
4572
4573 return ret;
4574 }
4575
4576 /*
4577 * This is a copy of file_update_time. We need this so we can return error on
4578 * ENOSPC for updating the inode in the case of file write and mmap writes.
4579 */
4580 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4581 int flags)
4582 {
4583 struct btrfs_root *root = BTRFS_I(inode)->root;
4584
4585 if (btrfs_root_readonly(root))
4586 return -EROFS;
4587
4588 if (flags & S_VERSION)
4589 inode_inc_iversion(inode);
4590 if (flags & S_CTIME)
4591 inode->i_ctime = *now;
4592 if (flags & S_MTIME)
4593 inode->i_mtime = *now;
4594 if (flags & S_ATIME)
4595 inode->i_atime = *now;
4596 return btrfs_dirty_inode(inode);
4597 }
4598
4599 /*
4600 * find the highest existing sequence number in a directory
4601 * and then set the in-memory index_cnt variable to reflect
4602 * free sequence numbers
4603 */
4604 static int btrfs_set_inode_index_count(struct inode *inode)
4605 {
4606 struct btrfs_root *root = BTRFS_I(inode)->root;
4607 struct btrfs_key key, found_key;
4608 struct btrfs_path *path;
4609 struct extent_buffer *leaf;
4610 int ret;
4611
4612 key.objectid = btrfs_ino(inode);
4613 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4614 key.offset = (u64)-1;
4615
4616 path = btrfs_alloc_path();
4617 if (!path)
4618 return -ENOMEM;
4619
4620 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4621 if (ret < 0)
4622 goto out;
4623 /* FIXME: we should be able to handle this */
4624 if (ret == 0)
4625 goto out;
4626 ret = 0;
4627
4628 /*
4629 * MAGIC NUMBER EXPLANATION:
4630 * since we search a directory based on f_pos we have to start at 2
4631 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4632 * else has to start at 2
4633 */
4634 if (path->slots[0] == 0) {
4635 BTRFS_I(inode)->index_cnt = 2;
4636 goto out;
4637 }
4638
4639 path->slots[0]--;
4640
4641 leaf = path->nodes[0];
4642 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4643
4644 if (found_key.objectid != btrfs_ino(inode) ||
4645 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4646 BTRFS_I(inode)->index_cnt = 2;
4647 goto out;
4648 }
4649
4650 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4651 out:
4652 btrfs_free_path(path);
4653 return ret;
4654 }
4655
4656 /*
4657 * helper to find a free sequence number in a given directory. This current
4658 * code is very simple, later versions will do smarter things in the btree
4659 */
4660 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4661 {
4662 int ret = 0;
4663
4664 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4665 ret = btrfs_inode_delayed_dir_index_count(dir);
4666 if (ret) {
4667 ret = btrfs_set_inode_index_count(dir);
4668 if (ret)
4669 return ret;
4670 }
4671 }
4672
4673 *index = BTRFS_I(dir)->index_cnt;
4674 BTRFS_I(dir)->index_cnt++;
4675
4676 return ret;
4677 }
4678
4679 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4680 struct btrfs_root *root,
4681 struct inode *dir,
4682 const char *name, int name_len,
4683 u64 ref_objectid, u64 objectid,
4684 umode_t mode, u64 *index)
4685 {
4686 struct inode *inode;
4687 struct btrfs_inode_item *inode_item;
4688 struct btrfs_key *location;
4689 struct btrfs_path *path;
4690 struct btrfs_inode_ref *ref;
4691 struct btrfs_key key[2];
4692 u32 sizes[2];
4693 unsigned long ptr;
4694 int ret;
4695 int owner;
4696
4697 path = btrfs_alloc_path();
4698 if (!path)
4699 return ERR_PTR(-ENOMEM);
4700
4701 inode = new_inode(root->fs_info->sb);
4702 if (!inode) {
4703 btrfs_free_path(path);
4704 return ERR_PTR(-ENOMEM);
4705 }
4706
4707 /*
4708 * we have to initialize this early, so we can reclaim the inode
4709 * number if we fail afterwards in this function.
4710 */
4711 inode->i_ino = objectid;
4712
4713 if (dir) {
4714 trace_btrfs_inode_request(dir);
4715
4716 ret = btrfs_set_inode_index(dir, index);
4717 if (ret) {
4718 btrfs_free_path(path);
4719 iput(inode);
4720 return ERR_PTR(ret);
4721 }
4722 }
4723 /*
4724 * index_cnt is ignored for everything but a dir,
4725 * btrfs_get_inode_index_count has an explanation for the magic
4726 * number
4727 */
4728 BTRFS_I(inode)->index_cnt = 2;
4729 BTRFS_I(inode)->root = root;
4730 BTRFS_I(inode)->generation = trans->transid;
4731 inode->i_generation = BTRFS_I(inode)->generation;
4732
4733 /*
4734 * We could have gotten an inode number from somebody who was fsynced
4735 * and then removed in this same transaction, so let's just set full
4736 * sync since it will be a full sync anyway and this will blow away the
4737 * old info in the log.
4738 */
4739 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4740
4741 if (S_ISDIR(mode))
4742 owner = 0;
4743 else
4744 owner = 1;
4745
4746 key[0].objectid = objectid;
4747 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4748 key[0].offset = 0;
4749
4750 /*
4751 * Start new inodes with an inode_ref. This is slightly more
4752 * efficient for small numbers of hard links since they will
4753 * be packed into one item. Extended refs will kick in if we
4754 * add more hard links than can fit in the ref item.
4755 */
4756 key[1].objectid = objectid;
4757 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4758 key[1].offset = ref_objectid;
4759
4760 sizes[0] = sizeof(struct btrfs_inode_item);
4761 sizes[1] = name_len + sizeof(*ref);
4762
4763 path->leave_spinning = 1;
4764 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4765 if (ret != 0)
4766 goto fail;
4767
4768 inode_init_owner(inode, dir, mode);
4769 inode_set_bytes(inode, 0);
4770 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4771 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4772 struct btrfs_inode_item);
4773 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4774 sizeof(*inode_item));
4775 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4776
4777 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4778 struct btrfs_inode_ref);
4779 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4780 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4781 ptr = (unsigned long)(ref + 1);
4782 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4783
4784 btrfs_mark_buffer_dirty(path->nodes[0]);
4785 btrfs_free_path(path);
4786
4787 location = &BTRFS_I(inode)->location;
4788 location->objectid = objectid;
4789 location->offset = 0;
4790 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4791
4792 btrfs_inherit_iflags(inode, dir);
4793
4794 if (S_ISREG(mode)) {
4795 if (btrfs_test_opt(root, NODATASUM))
4796 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4797 if (btrfs_test_opt(root, NODATACOW) ||
4798 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4799 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4800 }
4801
4802 insert_inode_hash(inode);
4803 inode_tree_add(inode);
4804
4805 trace_btrfs_inode_new(inode);
4806 btrfs_set_inode_last_trans(trans, inode);
4807
4808 btrfs_update_root_times(trans, root);
4809
4810 return inode;
4811 fail:
4812 if (dir)
4813 BTRFS_I(dir)->index_cnt--;
4814 btrfs_free_path(path);
4815 iput(inode);
4816 return ERR_PTR(ret);
4817 }
4818
4819 static inline u8 btrfs_inode_type(struct inode *inode)
4820 {
4821 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4822 }
4823
4824 /*
4825 * utility function to add 'inode' into 'parent_inode' with
4826 * a give name and a given sequence number.
4827 * if 'add_backref' is true, also insert a backref from the
4828 * inode to the parent directory.
4829 */
4830 int btrfs_add_link(struct btrfs_trans_handle *trans,
4831 struct inode *parent_inode, struct inode *inode,
4832 const char *name, int name_len, int add_backref, u64 index)
4833 {
4834 int ret = 0;
4835 struct btrfs_key key;
4836 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4837 u64 ino = btrfs_ino(inode);
4838 u64 parent_ino = btrfs_ino(parent_inode);
4839
4840 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4841 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4842 } else {
4843 key.objectid = ino;
4844 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4845 key.offset = 0;
4846 }
4847
4848 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4849 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4850 key.objectid, root->root_key.objectid,
4851 parent_ino, index, name, name_len);
4852 } else if (add_backref) {
4853 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4854 parent_ino, index);
4855 }
4856
4857 /* Nothing to clean up yet */
4858 if (ret)
4859 return ret;
4860
4861 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4862 parent_inode, &key,
4863 btrfs_inode_type(inode), index);
4864 if (ret == -EEXIST)
4865 goto fail_dir_item;
4866 else if (ret) {
4867 btrfs_abort_transaction(trans, root, ret);
4868 return ret;
4869 }
4870
4871 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4872 name_len * 2);
4873 inode_inc_iversion(parent_inode);
4874 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4875 ret = btrfs_update_inode(trans, root, parent_inode);
4876 if (ret)
4877 btrfs_abort_transaction(trans, root, ret);
4878 return ret;
4879
4880 fail_dir_item:
4881 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4882 u64 local_index;
4883 int err;
4884 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4885 key.objectid, root->root_key.objectid,
4886 parent_ino, &local_index, name, name_len);
4887
4888 } else if (add_backref) {
4889 u64 local_index;
4890 int err;
4891
4892 err = btrfs_del_inode_ref(trans, root, name, name_len,
4893 ino, parent_ino, &local_index);
4894 }
4895 return ret;
4896 }
4897
4898 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4899 struct inode *dir, struct dentry *dentry,
4900 struct inode *inode, int backref, u64 index)
4901 {
4902 int err = btrfs_add_link(trans, dir, inode,
4903 dentry->d_name.name, dentry->d_name.len,
4904 backref, index);
4905 if (err > 0)
4906 err = -EEXIST;
4907 return err;
4908 }
4909
4910 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4911 umode_t mode, dev_t rdev)
4912 {
4913 struct btrfs_trans_handle *trans;
4914 struct btrfs_root *root = BTRFS_I(dir)->root;
4915 struct inode *inode = NULL;
4916 int err;
4917 int drop_inode = 0;
4918 u64 objectid;
4919 unsigned long nr = 0;
4920 u64 index = 0;
4921
4922 if (!new_valid_dev(rdev))
4923 return -EINVAL;
4924
4925 /*
4926 * 2 for inode item and ref
4927 * 2 for dir items
4928 * 1 for xattr if selinux is on
4929 */
4930 trans = btrfs_start_transaction(root, 5);
4931 if (IS_ERR(trans))
4932 return PTR_ERR(trans);
4933
4934 err = btrfs_find_free_ino(root, &objectid);
4935 if (err)
4936 goto out_unlock;
4937
4938 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4939 dentry->d_name.len, btrfs_ino(dir), objectid,
4940 mode, &index);
4941 if (IS_ERR(inode)) {
4942 err = PTR_ERR(inode);
4943 goto out_unlock;
4944 }
4945
4946 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4947 if (err) {
4948 drop_inode = 1;
4949 goto out_unlock;
4950 }
4951
4952 /*
4953 * If the active LSM wants to access the inode during
4954 * d_instantiate it needs these. Smack checks to see
4955 * if the filesystem supports xattrs by looking at the
4956 * ops vector.
4957 */
4958
4959 inode->i_op = &btrfs_special_inode_operations;
4960 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4961 if (err)
4962 drop_inode = 1;
4963 else {
4964 init_special_inode(inode, inode->i_mode, rdev);
4965 btrfs_update_inode(trans, root, inode);
4966 d_instantiate(dentry, inode);
4967 }
4968 out_unlock:
4969 nr = trans->blocks_used;
4970 btrfs_end_transaction(trans, root);
4971 btrfs_btree_balance_dirty(root, nr);
4972 if (drop_inode) {
4973 inode_dec_link_count(inode);
4974 iput(inode);
4975 }
4976 return err;
4977 }
4978
4979 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4980 umode_t mode, bool excl)
4981 {
4982 struct btrfs_trans_handle *trans;
4983 struct btrfs_root *root = BTRFS_I(dir)->root;
4984 struct inode *inode = NULL;
4985 int drop_inode = 0;
4986 int err;
4987 unsigned long nr = 0;
4988 u64 objectid;
4989 u64 index = 0;
4990
4991 /*
4992 * 2 for inode item and ref
4993 * 2 for dir items
4994 * 1 for xattr if selinux is on
4995 */
4996 trans = btrfs_start_transaction(root, 5);
4997 if (IS_ERR(trans))
4998 return PTR_ERR(trans);
4999
5000 err = btrfs_find_free_ino(root, &objectid);
5001 if (err)
5002 goto out_unlock;
5003
5004 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5005 dentry->d_name.len, btrfs_ino(dir), objectid,
5006 mode, &index);
5007 if (IS_ERR(inode)) {
5008 err = PTR_ERR(inode);
5009 goto out_unlock;
5010 }
5011
5012 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5013 if (err) {
5014 drop_inode = 1;
5015 goto out_unlock;
5016 }
5017
5018 /*
5019 * If the active LSM wants to access the inode during
5020 * d_instantiate it needs these. Smack checks to see
5021 * if the filesystem supports xattrs by looking at the
5022 * ops vector.
5023 */
5024 inode->i_fop = &btrfs_file_operations;
5025 inode->i_op = &btrfs_file_inode_operations;
5026
5027 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5028 if (err)
5029 drop_inode = 1;
5030 else {
5031 inode->i_mapping->a_ops = &btrfs_aops;
5032 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5033 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5034 d_instantiate(dentry, inode);
5035 }
5036 out_unlock:
5037 nr = trans->blocks_used;
5038 btrfs_end_transaction(trans, root);
5039 if (drop_inode) {
5040 inode_dec_link_count(inode);
5041 iput(inode);
5042 }
5043 btrfs_btree_balance_dirty(root, nr);
5044 return err;
5045 }
5046
5047 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5048 struct dentry *dentry)
5049 {
5050 struct btrfs_trans_handle *trans;
5051 struct btrfs_root *root = BTRFS_I(dir)->root;
5052 struct inode *inode = old_dentry->d_inode;
5053 u64 index;
5054 unsigned long nr = 0;
5055 int err;
5056 int drop_inode = 0;
5057
5058 /* do not allow sys_link's with other subvols of the same device */
5059 if (root->objectid != BTRFS_I(inode)->root->objectid)
5060 return -EXDEV;
5061
5062 if (inode->i_nlink >= BTRFS_LINK_MAX)
5063 return -EMLINK;
5064
5065 err = btrfs_set_inode_index(dir, &index);
5066 if (err)
5067 goto fail;
5068
5069 /*
5070 * 2 items for inode and inode ref
5071 * 2 items for dir items
5072 * 1 item for parent inode
5073 */
5074 trans = btrfs_start_transaction(root, 5);
5075 if (IS_ERR(trans)) {
5076 err = PTR_ERR(trans);
5077 goto fail;
5078 }
5079
5080 btrfs_inc_nlink(inode);
5081 inode_inc_iversion(inode);
5082 inode->i_ctime = CURRENT_TIME;
5083 ihold(inode);
5084
5085 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5086
5087 if (err) {
5088 drop_inode = 1;
5089 } else {
5090 struct dentry *parent = dentry->d_parent;
5091 err = btrfs_update_inode(trans, root, inode);
5092 if (err)
5093 goto fail;
5094 d_instantiate(dentry, inode);
5095 btrfs_log_new_name(trans, inode, NULL, parent);
5096 }
5097
5098 nr = trans->blocks_used;
5099 btrfs_end_transaction(trans, root);
5100 fail:
5101 if (drop_inode) {
5102 inode_dec_link_count(inode);
5103 iput(inode);
5104 }
5105 btrfs_btree_balance_dirty(root, nr);
5106 return err;
5107 }
5108
5109 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5110 {
5111 struct inode *inode = NULL;
5112 struct btrfs_trans_handle *trans;
5113 struct btrfs_root *root = BTRFS_I(dir)->root;
5114 int err = 0;
5115 int drop_on_err = 0;
5116 u64 objectid = 0;
5117 u64 index = 0;
5118 unsigned long nr = 1;
5119
5120 /*
5121 * 2 items for inode and ref
5122 * 2 items for dir items
5123 * 1 for xattr if selinux is on
5124 */
5125 trans = btrfs_start_transaction(root, 5);
5126 if (IS_ERR(trans))
5127 return PTR_ERR(trans);
5128
5129 err = btrfs_find_free_ino(root, &objectid);
5130 if (err)
5131 goto out_fail;
5132
5133 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5134 dentry->d_name.len, btrfs_ino(dir), objectid,
5135 S_IFDIR | mode, &index);
5136 if (IS_ERR(inode)) {
5137 err = PTR_ERR(inode);
5138 goto out_fail;
5139 }
5140
5141 drop_on_err = 1;
5142
5143 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5144 if (err)
5145 goto out_fail;
5146
5147 inode->i_op = &btrfs_dir_inode_operations;
5148 inode->i_fop = &btrfs_dir_file_operations;
5149
5150 btrfs_i_size_write(inode, 0);
5151 err = btrfs_update_inode(trans, root, inode);
5152 if (err)
5153 goto out_fail;
5154
5155 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5156 dentry->d_name.len, 0, index);
5157 if (err)
5158 goto out_fail;
5159
5160 d_instantiate(dentry, inode);
5161 drop_on_err = 0;
5162
5163 out_fail:
5164 nr = trans->blocks_used;
5165 btrfs_end_transaction(trans, root);
5166 if (drop_on_err)
5167 iput(inode);
5168 btrfs_btree_balance_dirty(root, nr);
5169 return err;
5170 }
5171
5172 /* helper for btfs_get_extent. Given an existing extent in the tree,
5173 * and an extent that you want to insert, deal with overlap and insert
5174 * the new extent into the tree.
5175 */
5176 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5177 struct extent_map *existing,
5178 struct extent_map *em,
5179 u64 map_start, u64 map_len)
5180 {
5181 u64 start_diff;
5182
5183 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5184 start_diff = map_start - em->start;
5185 em->start = map_start;
5186 em->len = map_len;
5187 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5188 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5189 em->block_start += start_diff;
5190 em->block_len -= start_diff;
5191 }
5192 return add_extent_mapping(em_tree, em);
5193 }
5194
5195 static noinline int uncompress_inline(struct btrfs_path *path,
5196 struct inode *inode, struct page *page,
5197 size_t pg_offset, u64 extent_offset,
5198 struct btrfs_file_extent_item *item)
5199 {
5200 int ret;
5201 struct extent_buffer *leaf = path->nodes[0];
5202 char *tmp;
5203 size_t max_size;
5204 unsigned long inline_size;
5205 unsigned long ptr;
5206 int compress_type;
5207
5208 WARN_ON(pg_offset != 0);
5209 compress_type = btrfs_file_extent_compression(leaf, item);
5210 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5211 inline_size = btrfs_file_extent_inline_item_len(leaf,
5212 btrfs_item_nr(leaf, path->slots[0]));
5213 tmp = kmalloc(inline_size, GFP_NOFS);
5214 if (!tmp)
5215 return -ENOMEM;
5216 ptr = btrfs_file_extent_inline_start(item);
5217
5218 read_extent_buffer(leaf, tmp, ptr, inline_size);
5219
5220 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5221 ret = btrfs_decompress(compress_type, tmp, page,
5222 extent_offset, inline_size, max_size);
5223 if (ret) {
5224 char *kaddr = kmap_atomic(page);
5225 unsigned long copy_size = min_t(u64,
5226 PAGE_CACHE_SIZE - pg_offset,
5227 max_size - extent_offset);
5228 memset(kaddr + pg_offset, 0, copy_size);
5229 kunmap_atomic(kaddr);
5230 }
5231 kfree(tmp);
5232 return 0;
5233 }
5234
5235 /*
5236 * a bit scary, this does extent mapping from logical file offset to the disk.
5237 * the ugly parts come from merging extents from the disk with the in-ram
5238 * representation. This gets more complex because of the data=ordered code,
5239 * where the in-ram extents might be locked pending data=ordered completion.
5240 *
5241 * This also copies inline extents directly into the page.
5242 */
5243
5244 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5245 size_t pg_offset, u64 start, u64 len,
5246 int create)
5247 {
5248 int ret;
5249 int err = 0;
5250 u64 bytenr;
5251 u64 extent_start = 0;
5252 u64 extent_end = 0;
5253 u64 objectid = btrfs_ino(inode);
5254 u32 found_type;
5255 struct btrfs_path *path = NULL;
5256 struct btrfs_root *root = BTRFS_I(inode)->root;
5257 struct btrfs_file_extent_item *item;
5258 struct extent_buffer *leaf;
5259 struct btrfs_key found_key;
5260 struct extent_map *em = NULL;
5261 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5262 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5263 struct btrfs_trans_handle *trans = NULL;
5264 int compress_type;
5265
5266 again:
5267 read_lock(&em_tree->lock);
5268 em = lookup_extent_mapping(em_tree, start, len);
5269 if (em)
5270 em->bdev = root->fs_info->fs_devices->latest_bdev;
5271 read_unlock(&em_tree->lock);
5272
5273 if (em) {
5274 if (em->start > start || em->start + em->len <= start)
5275 free_extent_map(em);
5276 else if (em->block_start == EXTENT_MAP_INLINE && page)
5277 free_extent_map(em);
5278 else
5279 goto out;
5280 }
5281 em = alloc_extent_map();
5282 if (!em) {
5283 err = -ENOMEM;
5284 goto out;
5285 }
5286 em->bdev = root->fs_info->fs_devices->latest_bdev;
5287 em->start = EXTENT_MAP_HOLE;
5288 em->orig_start = EXTENT_MAP_HOLE;
5289 em->len = (u64)-1;
5290 em->block_len = (u64)-1;
5291
5292 if (!path) {
5293 path = btrfs_alloc_path();
5294 if (!path) {
5295 err = -ENOMEM;
5296 goto out;
5297 }
5298 /*
5299 * Chances are we'll be called again, so go ahead and do
5300 * readahead
5301 */
5302 path->reada = 1;
5303 }
5304
5305 ret = btrfs_lookup_file_extent(trans, root, path,
5306 objectid, start, trans != NULL);
5307 if (ret < 0) {
5308 err = ret;
5309 goto out;
5310 }
5311
5312 if (ret != 0) {
5313 if (path->slots[0] == 0)
5314 goto not_found;
5315 path->slots[0]--;
5316 }
5317
5318 leaf = path->nodes[0];
5319 item = btrfs_item_ptr(leaf, path->slots[0],
5320 struct btrfs_file_extent_item);
5321 /* are we inside the extent that was found? */
5322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5323 found_type = btrfs_key_type(&found_key);
5324 if (found_key.objectid != objectid ||
5325 found_type != BTRFS_EXTENT_DATA_KEY) {
5326 goto not_found;
5327 }
5328
5329 found_type = btrfs_file_extent_type(leaf, item);
5330 extent_start = found_key.offset;
5331 compress_type = btrfs_file_extent_compression(leaf, item);
5332 if (found_type == BTRFS_FILE_EXTENT_REG ||
5333 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5334 extent_end = extent_start +
5335 btrfs_file_extent_num_bytes(leaf, item);
5336 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5337 size_t size;
5338 size = btrfs_file_extent_inline_len(leaf, item);
5339 extent_end = (extent_start + size + root->sectorsize - 1) &
5340 ~((u64)root->sectorsize - 1);
5341 }
5342
5343 if (start >= extent_end) {
5344 path->slots[0]++;
5345 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5346 ret = btrfs_next_leaf(root, path);
5347 if (ret < 0) {
5348 err = ret;
5349 goto out;
5350 }
5351 if (ret > 0)
5352 goto not_found;
5353 leaf = path->nodes[0];
5354 }
5355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5356 if (found_key.objectid != objectid ||
5357 found_key.type != BTRFS_EXTENT_DATA_KEY)
5358 goto not_found;
5359 if (start + len <= found_key.offset)
5360 goto not_found;
5361 em->start = start;
5362 em->len = found_key.offset - start;
5363 goto not_found_em;
5364 }
5365
5366 if (found_type == BTRFS_FILE_EXTENT_REG ||
5367 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5368 em->start = extent_start;
5369 em->len = extent_end - extent_start;
5370 em->orig_start = extent_start -
5371 btrfs_file_extent_offset(leaf, item);
5372 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5373 if (bytenr == 0) {
5374 em->block_start = EXTENT_MAP_HOLE;
5375 goto insert;
5376 }
5377 if (compress_type != BTRFS_COMPRESS_NONE) {
5378 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5379 em->compress_type = compress_type;
5380 em->block_start = bytenr;
5381 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5382 item);
5383 } else {
5384 bytenr += btrfs_file_extent_offset(leaf, item);
5385 em->block_start = bytenr;
5386 em->block_len = em->len;
5387 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5388 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5389 }
5390 goto insert;
5391 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5392 unsigned long ptr;
5393 char *map;
5394 size_t size;
5395 size_t extent_offset;
5396 size_t copy_size;
5397
5398 em->block_start = EXTENT_MAP_INLINE;
5399 if (!page || create) {
5400 em->start = extent_start;
5401 em->len = extent_end - extent_start;
5402 goto out;
5403 }
5404
5405 size = btrfs_file_extent_inline_len(leaf, item);
5406 extent_offset = page_offset(page) + pg_offset - extent_start;
5407 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5408 size - extent_offset);
5409 em->start = extent_start + extent_offset;
5410 em->len = (copy_size + root->sectorsize - 1) &
5411 ~((u64)root->sectorsize - 1);
5412 em->orig_start = EXTENT_MAP_INLINE;
5413 if (compress_type) {
5414 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5415 em->compress_type = compress_type;
5416 }
5417 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5418 if (create == 0 && !PageUptodate(page)) {
5419 if (btrfs_file_extent_compression(leaf, item) !=
5420 BTRFS_COMPRESS_NONE) {
5421 ret = uncompress_inline(path, inode, page,
5422 pg_offset,
5423 extent_offset, item);
5424 BUG_ON(ret); /* -ENOMEM */
5425 } else {
5426 map = kmap(page);
5427 read_extent_buffer(leaf, map + pg_offset, ptr,
5428 copy_size);
5429 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5430 memset(map + pg_offset + copy_size, 0,
5431 PAGE_CACHE_SIZE - pg_offset -
5432 copy_size);
5433 }
5434 kunmap(page);
5435 }
5436 flush_dcache_page(page);
5437 } else if (create && PageUptodate(page)) {
5438 BUG();
5439 if (!trans) {
5440 kunmap(page);
5441 free_extent_map(em);
5442 em = NULL;
5443
5444 btrfs_release_path(path);
5445 trans = btrfs_join_transaction(root);
5446
5447 if (IS_ERR(trans))
5448 return ERR_CAST(trans);
5449 goto again;
5450 }
5451 map = kmap(page);
5452 write_extent_buffer(leaf, map + pg_offset, ptr,
5453 copy_size);
5454 kunmap(page);
5455 btrfs_mark_buffer_dirty(leaf);
5456 }
5457 set_extent_uptodate(io_tree, em->start,
5458 extent_map_end(em) - 1, NULL, GFP_NOFS);
5459 goto insert;
5460 } else {
5461 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
5462 }
5463 not_found:
5464 em->start = start;
5465 em->len = len;
5466 not_found_em:
5467 em->block_start = EXTENT_MAP_HOLE;
5468 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5469 insert:
5470 btrfs_release_path(path);
5471 if (em->start > start || extent_map_end(em) <= start) {
5472 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5473 "[%llu %llu]\n", (unsigned long long)em->start,
5474 (unsigned long long)em->len,
5475 (unsigned long long)start,
5476 (unsigned long long)len);
5477 err = -EIO;
5478 goto out;
5479 }
5480
5481 err = 0;
5482 write_lock(&em_tree->lock);
5483 ret = add_extent_mapping(em_tree, em);
5484 /* it is possible that someone inserted the extent into the tree
5485 * while we had the lock dropped. It is also possible that
5486 * an overlapping map exists in the tree
5487 */
5488 if (ret == -EEXIST) {
5489 struct extent_map *existing;
5490
5491 ret = 0;
5492
5493 existing = lookup_extent_mapping(em_tree, start, len);
5494 if (existing && (existing->start > start ||
5495 existing->start + existing->len <= start)) {
5496 free_extent_map(existing);
5497 existing = NULL;
5498 }
5499 if (!existing) {
5500 existing = lookup_extent_mapping(em_tree, em->start,
5501 em->len);
5502 if (existing) {
5503 err = merge_extent_mapping(em_tree, existing,
5504 em, start,
5505 root->sectorsize);
5506 free_extent_map(existing);
5507 if (err) {
5508 free_extent_map(em);
5509 em = NULL;
5510 }
5511 } else {
5512 err = -EIO;
5513 free_extent_map(em);
5514 em = NULL;
5515 }
5516 } else {
5517 free_extent_map(em);
5518 em = existing;
5519 err = 0;
5520 }
5521 }
5522 write_unlock(&em_tree->lock);
5523 out:
5524
5525 if (em)
5526 trace_btrfs_get_extent(root, em);
5527
5528 if (path)
5529 btrfs_free_path(path);
5530 if (trans) {
5531 ret = btrfs_end_transaction(trans, root);
5532 if (!err)
5533 err = ret;
5534 }
5535 if (err) {
5536 free_extent_map(em);
5537 return ERR_PTR(err);
5538 }
5539 BUG_ON(!em); /* Error is always set */
5540 return em;
5541 }
5542
5543 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5544 size_t pg_offset, u64 start, u64 len,
5545 int create)
5546 {
5547 struct extent_map *em;
5548 struct extent_map *hole_em = NULL;
5549 u64 range_start = start;
5550 u64 end;
5551 u64 found;
5552 u64 found_end;
5553 int err = 0;
5554
5555 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5556 if (IS_ERR(em))
5557 return em;
5558 if (em) {
5559 /*
5560 * if our em maps to a hole, there might
5561 * actually be delalloc bytes behind it
5562 */
5563 if (em->block_start != EXTENT_MAP_HOLE)
5564 return em;
5565 else
5566 hole_em = em;
5567 }
5568
5569 /* check to see if we've wrapped (len == -1 or similar) */
5570 end = start + len;
5571 if (end < start)
5572 end = (u64)-1;
5573 else
5574 end -= 1;
5575
5576 em = NULL;
5577
5578 /* ok, we didn't find anything, lets look for delalloc */
5579 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5580 end, len, EXTENT_DELALLOC, 1);
5581 found_end = range_start + found;
5582 if (found_end < range_start)
5583 found_end = (u64)-1;
5584
5585 /*
5586 * we didn't find anything useful, return
5587 * the original results from get_extent()
5588 */
5589 if (range_start > end || found_end <= start) {
5590 em = hole_em;
5591 hole_em = NULL;
5592 goto out;
5593 }
5594
5595 /* adjust the range_start to make sure it doesn't
5596 * go backwards from the start they passed in
5597 */
5598 range_start = max(start,range_start);
5599 found = found_end - range_start;
5600
5601 if (found > 0) {
5602 u64 hole_start = start;
5603 u64 hole_len = len;
5604
5605 em = alloc_extent_map();
5606 if (!em) {
5607 err = -ENOMEM;
5608 goto out;
5609 }
5610 /*
5611 * when btrfs_get_extent can't find anything it
5612 * returns one huge hole
5613 *
5614 * make sure what it found really fits our range, and
5615 * adjust to make sure it is based on the start from
5616 * the caller
5617 */
5618 if (hole_em) {
5619 u64 calc_end = extent_map_end(hole_em);
5620
5621 if (calc_end <= start || (hole_em->start > end)) {
5622 free_extent_map(hole_em);
5623 hole_em = NULL;
5624 } else {
5625 hole_start = max(hole_em->start, start);
5626 hole_len = calc_end - hole_start;
5627 }
5628 }
5629 em->bdev = NULL;
5630 if (hole_em && range_start > hole_start) {
5631 /* our hole starts before our delalloc, so we
5632 * have to return just the parts of the hole
5633 * that go until the delalloc starts
5634 */
5635 em->len = min(hole_len,
5636 range_start - hole_start);
5637 em->start = hole_start;
5638 em->orig_start = hole_start;
5639 /*
5640 * don't adjust block start at all,
5641 * it is fixed at EXTENT_MAP_HOLE
5642 */
5643 em->block_start = hole_em->block_start;
5644 em->block_len = hole_len;
5645 } else {
5646 em->start = range_start;
5647 em->len = found;
5648 em->orig_start = range_start;
5649 em->block_start = EXTENT_MAP_DELALLOC;
5650 em->block_len = found;
5651 }
5652 } else if (hole_em) {
5653 return hole_em;
5654 }
5655 out:
5656
5657 free_extent_map(hole_em);
5658 if (err) {
5659 free_extent_map(em);
5660 return ERR_PTR(err);
5661 }
5662 return em;
5663 }
5664
5665 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5666 struct extent_map *em,
5667 u64 start, u64 len)
5668 {
5669 struct btrfs_root *root = BTRFS_I(inode)->root;
5670 struct btrfs_trans_handle *trans;
5671 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5672 struct btrfs_key ins;
5673 u64 alloc_hint;
5674 int ret;
5675 bool insert = false;
5676
5677 /*
5678 * Ok if the extent map we looked up is a hole and is for the exact
5679 * range we want, there is no reason to allocate a new one, however if
5680 * it is not right then we need to free this one and drop the cache for
5681 * our range.
5682 */
5683 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5684 em->len != len) {
5685 free_extent_map(em);
5686 em = NULL;
5687 insert = true;
5688 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5689 }
5690
5691 trans = btrfs_join_transaction(root);
5692 if (IS_ERR(trans))
5693 return ERR_CAST(trans);
5694
5695 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5696 btrfs_add_inode_defrag(trans, inode);
5697
5698 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5699
5700 alloc_hint = get_extent_allocation_hint(inode, start, len);
5701 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5702 alloc_hint, &ins, 1);
5703 if (ret) {
5704 em = ERR_PTR(ret);
5705 goto out;
5706 }
5707
5708 if (!em) {
5709 em = alloc_extent_map();
5710 if (!em) {
5711 em = ERR_PTR(-ENOMEM);
5712 goto out;
5713 }
5714 }
5715
5716 em->start = start;
5717 em->orig_start = em->start;
5718 em->len = ins.offset;
5719
5720 em->block_start = ins.objectid;
5721 em->block_len = ins.offset;
5722 em->bdev = root->fs_info->fs_devices->latest_bdev;
5723
5724 /*
5725 * We need to do this because if we're using the original em we searched
5726 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5727 */
5728 em->flags = 0;
5729 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5730
5731 while (insert) {
5732 write_lock(&em_tree->lock);
5733 ret = add_extent_mapping(em_tree, em);
5734 write_unlock(&em_tree->lock);
5735 if (ret != -EEXIST)
5736 break;
5737 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5738 }
5739
5740 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5741 ins.offset, ins.offset, 0);
5742 if (ret) {
5743 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5744 em = ERR_PTR(ret);
5745 }
5746 out:
5747 btrfs_end_transaction(trans, root);
5748 return em;
5749 }
5750
5751 /*
5752 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5753 * block must be cow'd
5754 */
5755 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5756 struct inode *inode, u64 offset, u64 len)
5757 {
5758 struct btrfs_path *path;
5759 int ret;
5760 struct extent_buffer *leaf;
5761 struct btrfs_root *root = BTRFS_I(inode)->root;
5762 struct btrfs_file_extent_item *fi;
5763 struct btrfs_key key;
5764 u64 disk_bytenr;
5765 u64 backref_offset;
5766 u64 extent_end;
5767 u64 num_bytes;
5768 int slot;
5769 int found_type;
5770
5771 path = btrfs_alloc_path();
5772 if (!path)
5773 return -ENOMEM;
5774
5775 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5776 offset, 0);
5777 if (ret < 0)
5778 goto out;
5779
5780 slot = path->slots[0];
5781 if (ret == 1) {
5782 if (slot == 0) {
5783 /* can't find the item, must cow */
5784 ret = 0;
5785 goto out;
5786 }
5787 slot--;
5788 }
5789 ret = 0;
5790 leaf = path->nodes[0];
5791 btrfs_item_key_to_cpu(leaf, &key, slot);
5792 if (key.objectid != btrfs_ino(inode) ||
5793 key.type != BTRFS_EXTENT_DATA_KEY) {
5794 /* not our file or wrong item type, must cow */
5795 goto out;
5796 }
5797
5798 if (key.offset > offset) {
5799 /* Wrong offset, must cow */
5800 goto out;
5801 }
5802
5803 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5804 found_type = btrfs_file_extent_type(leaf, fi);
5805 if (found_type != BTRFS_FILE_EXTENT_REG &&
5806 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5807 /* not a regular extent, must cow */
5808 goto out;
5809 }
5810 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5811 backref_offset = btrfs_file_extent_offset(leaf, fi);
5812
5813 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5814 if (extent_end < offset + len) {
5815 /* extent doesn't include our full range, must cow */
5816 goto out;
5817 }
5818
5819 if (btrfs_extent_readonly(root, disk_bytenr))
5820 goto out;
5821
5822 /*
5823 * look for other files referencing this extent, if we
5824 * find any we must cow
5825 */
5826 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5827 key.offset - backref_offset, disk_bytenr))
5828 goto out;
5829
5830 /*
5831 * adjust disk_bytenr and num_bytes to cover just the bytes
5832 * in this extent we are about to write. If there
5833 * are any csums in that range we have to cow in order
5834 * to keep the csums correct
5835 */
5836 disk_bytenr += backref_offset;
5837 disk_bytenr += offset - key.offset;
5838 num_bytes = min(offset + len, extent_end) - offset;
5839 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5840 goto out;
5841 /*
5842 * all of the above have passed, it is safe to overwrite this extent
5843 * without cow
5844 */
5845 ret = 1;
5846 out:
5847 btrfs_free_path(path);
5848 return ret;
5849 }
5850
5851 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5852 struct extent_state **cached_state, int writing)
5853 {
5854 struct btrfs_ordered_extent *ordered;
5855 int ret = 0;
5856
5857 while (1) {
5858 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5859 0, cached_state);
5860 /*
5861 * We're concerned with the entire range that we're going to be
5862 * doing DIO to, so we need to make sure theres no ordered
5863 * extents in this range.
5864 */
5865 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5866 lockend - lockstart + 1);
5867
5868 /*
5869 * We need to make sure there are no buffered pages in this
5870 * range either, we could have raced between the invalidate in
5871 * generic_file_direct_write and locking the extent. The
5872 * invalidate needs to happen so that reads after a write do not
5873 * get stale data.
5874 */
5875 if (!ordered && (!writing ||
5876 !test_range_bit(&BTRFS_I(inode)->io_tree,
5877 lockstart, lockend, EXTENT_UPTODATE, 0,
5878 *cached_state)))
5879 break;
5880
5881 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5882 cached_state, GFP_NOFS);
5883
5884 if (ordered) {
5885 btrfs_start_ordered_extent(inode, ordered, 1);
5886 btrfs_put_ordered_extent(ordered);
5887 } else {
5888 /* Screw you mmap */
5889 ret = filemap_write_and_wait_range(inode->i_mapping,
5890 lockstart,
5891 lockend);
5892 if (ret)
5893 break;
5894
5895 /*
5896 * If we found a page that couldn't be invalidated just
5897 * fall back to buffered.
5898 */
5899 ret = invalidate_inode_pages2_range(inode->i_mapping,
5900 lockstart >> PAGE_CACHE_SHIFT,
5901 lockend >> PAGE_CACHE_SHIFT);
5902 if (ret)
5903 break;
5904 }
5905
5906 cond_resched();
5907 }
5908
5909 return ret;
5910 }
5911
5912 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5913 u64 len, u64 orig_start,
5914 u64 block_start, u64 block_len,
5915 int type)
5916 {
5917 struct extent_map_tree *em_tree;
5918 struct extent_map *em;
5919 struct btrfs_root *root = BTRFS_I(inode)->root;
5920 int ret;
5921
5922 em_tree = &BTRFS_I(inode)->extent_tree;
5923 em = alloc_extent_map();
5924 if (!em)
5925 return ERR_PTR(-ENOMEM);
5926
5927 em->start = start;
5928 em->orig_start = orig_start;
5929 em->len = len;
5930 em->block_len = block_len;
5931 em->block_start = block_start;
5932 em->bdev = root->fs_info->fs_devices->latest_bdev;
5933 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5934 if (type == BTRFS_ORDERED_PREALLOC)
5935 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5936
5937 do {
5938 btrfs_drop_extent_cache(inode, em->start,
5939 em->start + em->len - 1, 0);
5940 write_lock(&em_tree->lock);
5941 ret = add_extent_mapping(em_tree, em);
5942 write_unlock(&em_tree->lock);
5943 } while (ret == -EEXIST);
5944
5945 if (ret) {
5946 free_extent_map(em);
5947 return ERR_PTR(ret);
5948 }
5949
5950 return em;
5951 }
5952
5953
5954 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5955 struct buffer_head *bh_result, int create)
5956 {
5957 struct extent_map *em;
5958 struct btrfs_root *root = BTRFS_I(inode)->root;
5959 struct extent_state *cached_state = NULL;
5960 u64 start = iblock << inode->i_blkbits;
5961 u64 lockstart, lockend;
5962 u64 len = bh_result->b_size;
5963 struct btrfs_trans_handle *trans;
5964 int unlock_bits = EXTENT_LOCKED;
5965 int ret;
5966
5967 if (create) {
5968 ret = btrfs_delalloc_reserve_space(inode, len);
5969 if (ret)
5970 return ret;
5971 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5972 } else {
5973 len = min_t(u64, len, root->sectorsize);
5974 }
5975
5976 lockstart = start;
5977 lockend = start + len - 1;
5978
5979 /*
5980 * If this errors out it's because we couldn't invalidate pagecache for
5981 * this range and we need to fallback to buffered.
5982 */
5983 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5984 return -ENOTBLK;
5985
5986 if (create) {
5987 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5988 lockend, EXTENT_DELALLOC, NULL,
5989 &cached_state, GFP_NOFS);
5990 if (ret)
5991 goto unlock_err;
5992 }
5993
5994 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5995 if (IS_ERR(em)) {
5996 ret = PTR_ERR(em);
5997 goto unlock_err;
5998 }
5999
6000 /*
6001 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6002 * io. INLINE is special, and we could probably kludge it in here, but
6003 * it's still buffered so for safety lets just fall back to the generic
6004 * buffered path.
6005 *
6006 * For COMPRESSED we _have_ to read the entire extent in so we can
6007 * decompress it, so there will be buffering required no matter what we
6008 * do, so go ahead and fallback to buffered.
6009 *
6010 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6011 * to buffered IO. Don't blame me, this is the price we pay for using
6012 * the generic code.
6013 */
6014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6015 em->block_start == EXTENT_MAP_INLINE) {
6016 free_extent_map(em);
6017 ret = -ENOTBLK;
6018 goto unlock_err;
6019 }
6020
6021 /* Just a good old fashioned hole, return */
6022 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6023 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6024 free_extent_map(em);
6025 ret = 0;
6026 goto unlock_err;
6027 }
6028
6029 /*
6030 * We don't allocate a new extent in the following cases
6031 *
6032 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6033 * existing extent.
6034 * 2) The extent is marked as PREALLOC. We're good to go here and can
6035 * just use the extent.
6036 *
6037 */
6038 if (!create) {
6039 len = min(len, em->len - (start - em->start));
6040 lockstart = start + len;
6041 goto unlock;
6042 }
6043
6044 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6045 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6046 em->block_start != EXTENT_MAP_HOLE)) {
6047 int type;
6048 int ret;
6049 u64 block_start;
6050
6051 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6052 type = BTRFS_ORDERED_PREALLOC;
6053 else
6054 type = BTRFS_ORDERED_NOCOW;
6055 len = min(len, em->len - (start - em->start));
6056 block_start = em->block_start + (start - em->start);
6057
6058 /*
6059 * we're not going to log anything, but we do need
6060 * to make sure the current transaction stays open
6061 * while we look for nocow cross refs
6062 */
6063 trans = btrfs_join_transaction(root);
6064 if (IS_ERR(trans))
6065 goto must_cow;
6066
6067 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6068 u64 orig_start = em->start;
6069
6070 if (type == BTRFS_ORDERED_PREALLOC) {
6071 free_extent_map(em);
6072 em = create_pinned_em(inode, start, len,
6073 orig_start,
6074 block_start, len, type);
6075 if (IS_ERR(em)) {
6076 btrfs_end_transaction(trans, root);
6077 goto unlock_err;
6078 }
6079 }
6080
6081 ret = btrfs_add_ordered_extent_dio(inode, start,
6082 block_start, len, len, type);
6083 btrfs_end_transaction(trans, root);
6084 if (ret) {
6085 free_extent_map(em);
6086 goto unlock_err;
6087 }
6088 goto unlock;
6089 }
6090 btrfs_end_transaction(trans, root);
6091 }
6092 must_cow:
6093 /*
6094 * this will cow the extent, reset the len in case we changed
6095 * it above
6096 */
6097 len = bh_result->b_size;
6098 em = btrfs_new_extent_direct(inode, em, start, len);
6099 if (IS_ERR(em)) {
6100 ret = PTR_ERR(em);
6101 goto unlock_err;
6102 }
6103 len = min(len, em->len - (start - em->start));
6104 unlock:
6105 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6106 inode->i_blkbits;
6107 bh_result->b_size = len;
6108 bh_result->b_bdev = em->bdev;
6109 set_buffer_mapped(bh_result);
6110 if (create) {
6111 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6112 set_buffer_new(bh_result);
6113
6114 /*
6115 * Need to update the i_size under the extent lock so buffered
6116 * readers will get the updated i_size when we unlock.
6117 */
6118 if (start + len > i_size_read(inode))
6119 i_size_write(inode, start + len);
6120 }
6121
6122 /*
6123 * In the case of write we need to clear and unlock the entire range,
6124 * in the case of read we need to unlock only the end area that we
6125 * aren't using if there is any left over space.
6126 */
6127 if (lockstart < lockend) {
6128 if (create && len < lockend - lockstart) {
6129 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6130 lockstart + len - 1,
6131 unlock_bits | EXTENT_DEFRAG, 1, 0,
6132 &cached_state, GFP_NOFS);
6133 /*
6134 * Beside unlock, we also need to cleanup reserved space
6135 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6136 */
6137 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6138 lockstart + len, lockend,
6139 unlock_bits | EXTENT_DO_ACCOUNTING |
6140 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
6141 } else {
6142 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6143 lockend, unlock_bits, 1, 0,
6144 &cached_state, GFP_NOFS);
6145 }
6146 } else {
6147 free_extent_state(cached_state);
6148 }
6149
6150 free_extent_map(em);
6151
6152 return 0;
6153
6154 unlock_err:
6155 if (create)
6156 unlock_bits |= EXTENT_DO_ACCOUNTING;
6157
6158 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6159 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6160 return ret;
6161 }
6162
6163 struct btrfs_dio_private {
6164 struct inode *inode;
6165 u64 logical_offset;
6166 u64 disk_bytenr;
6167 u64 bytes;
6168 void *private;
6169
6170 /* number of bios pending for this dio */
6171 atomic_t pending_bios;
6172
6173 /* IO errors */
6174 int errors;
6175
6176 struct bio *orig_bio;
6177 };
6178
6179 static void btrfs_endio_direct_read(struct bio *bio, int err)
6180 {
6181 struct btrfs_dio_private *dip = bio->bi_private;
6182 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6183 struct bio_vec *bvec = bio->bi_io_vec;
6184 struct inode *inode = dip->inode;
6185 struct btrfs_root *root = BTRFS_I(inode)->root;
6186 u64 start;
6187
6188 start = dip->logical_offset;
6189 do {
6190 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6191 struct page *page = bvec->bv_page;
6192 char *kaddr;
6193 u32 csum = ~(u32)0;
6194 u64 private = ~(u32)0;
6195 unsigned long flags;
6196
6197 if (get_state_private(&BTRFS_I(inode)->io_tree,
6198 start, &private))
6199 goto failed;
6200 local_irq_save(flags);
6201 kaddr = kmap_atomic(page);
6202 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6203 csum, bvec->bv_len);
6204 btrfs_csum_final(csum, (char *)&csum);
6205 kunmap_atomic(kaddr);
6206 local_irq_restore(flags);
6207
6208 flush_dcache_page(bvec->bv_page);
6209 if (csum != private) {
6210 failed:
6211 printk(KERN_ERR "btrfs csum failed ino %llu off"
6212 " %llu csum %u private %u\n",
6213 (unsigned long long)btrfs_ino(inode),
6214 (unsigned long long)start,
6215 csum, (unsigned)private);
6216 err = -EIO;
6217 }
6218 }
6219
6220 start += bvec->bv_len;
6221 bvec++;
6222 } while (bvec <= bvec_end);
6223
6224 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6225 dip->logical_offset + dip->bytes - 1);
6226 bio->bi_private = dip->private;
6227
6228 kfree(dip);
6229
6230 /* If we had a csum failure make sure to clear the uptodate flag */
6231 if (err)
6232 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6233 dio_end_io(bio, err);
6234 }
6235
6236 static void btrfs_endio_direct_write(struct bio *bio, int err)
6237 {
6238 struct btrfs_dio_private *dip = bio->bi_private;
6239 struct inode *inode = dip->inode;
6240 struct btrfs_root *root = BTRFS_I(inode)->root;
6241 struct btrfs_ordered_extent *ordered = NULL;
6242 u64 ordered_offset = dip->logical_offset;
6243 u64 ordered_bytes = dip->bytes;
6244 int ret;
6245
6246 if (err)
6247 goto out_done;
6248 again:
6249 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6250 &ordered_offset,
6251 ordered_bytes, !err);
6252 if (!ret)
6253 goto out_test;
6254
6255 ordered->work.func = finish_ordered_fn;
6256 ordered->work.flags = 0;
6257 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6258 &ordered->work);
6259 out_test:
6260 /*
6261 * our bio might span multiple ordered extents. If we haven't
6262 * completed the accounting for the whole dio, go back and try again
6263 */
6264 if (ordered_offset < dip->logical_offset + dip->bytes) {
6265 ordered_bytes = dip->logical_offset + dip->bytes -
6266 ordered_offset;
6267 ordered = NULL;
6268 goto again;
6269 }
6270 out_done:
6271 bio->bi_private = dip->private;
6272
6273 kfree(dip);
6274
6275 /* If we had an error make sure to clear the uptodate flag */
6276 if (err)
6277 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6278 dio_end_io(bio, err);
6279 }
6280
6281 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6282 struct bio *bio, int mirror_num,
6283 unsigned long bio_flags, u64 offset)
6284 {
6285 int ret;
6286 struct btrfs_root *root = BTRFS_I(inode)->root;
6287 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6288 BUG_ON(ret); /* -ENOMEM */
6289 return 0;
6290 }
6291
6292 static void btrfs_end_dio_bio(struct bio *bio, int err)
6293 {
6294 struct btrfs_dio_private *dip = bio->bi_private;
6295
6296 if (err) {
6297 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6298 "sector %#Lx len %u err no %d\n",
6299 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6300 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6301 dip->errors = 1;
6302
6303 /*
6304 * before atomic variable goto zero, we must make sure
6305 * dip->errors is perceived to be set.
6306 */
6307 smp_mb__before_atomic_dec();
6308 }
6309
6310 /* if there are more bios still pending for this dio, just exit */
6311 if (!atomic_dec_and_test(&dip->pending_bios))
6312 goto out;
6313
6314 if (dip->errors)
6315 bio_io_error(dip->orig_bio);
6316 else {
6317 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6318 bio_endio(dip->orig_bio, 0);
6319 }
6320 out:
6321 bio_put(bio);
6322 }
6323
6324 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6325 u64 first_sector, gfp_t gfp_flags)
6326 {
6327 int nr_vecs = bio_get_nr_vecs(bdev);
6328 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6329 }
6330
6331 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6332 int rw, u64 file_offset, int skip_sum,
6333 int async_submit)
6334 {
6335 int write = rw & REQ_WRITE;
6336 struct btrfs_root *root = BTRFS_I(inode)->root;
6337 int ret;
6338
6339 bio_get(bio);
6340
6341 if (!write) {
6342 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6343 if (ret)
6344 goto err;
6345 }
6346
6347 if (skip_sum)
6348 goto map;
6349
6350 if (write && async_submit) {
6351 ret = btrfs_wq_submit_bio(root->fs_info,
6352 inode, rw, bio, 0, 0,
6353 file_offset,
6354 __btrfs_submit_bio_start_direct_io,
6355 __btrfs_submit_bio_done);
6356 goto err;
6357 } else if (write) {
6358 /*
6359 * If we aren't doing async submit, calculate the csum of the
6360 * bio now.
6361 */
6362 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6363 if (ret)
6364 goto err;
6365 } else if (!skip_sum) {
6366 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6367 if (ret)
6368 goto err;
6369 }
6370
6371 map:
6372 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6373 err:
6374 bio_put(bio);
6375 return ret;
6376 }
6377
6378 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6379 int skip_sum)
6380 {
6381 struct inode *inode = dip->inode;
6382 struct btrfs_root *root = BTRFS_I(inode)->root;
6383 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6384 struct bio *bio;
6385 struct bio *orig_bio = dip->orig_bio;
6386 struct bio_vec *bvec = orig_bio->bi_io_vec;
6387 u64 start_sector = orig_bio->bi_sector;
6388 u64 file_offset = dip->logical_offset;
6389 u64 submit_len = 0;
6390 u64 map_length;
6391 int nr_pages = 0;
6392 int ret = 0;
6393 int async_submit = 0;
6394
6395 map_length = orig_bio->bi_size;
6396 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6397 &map_length, NULL, 0);
6398 if (ret) {
6399 bio_put(orig_bio);
6400 return -EIO;
6401 }
6402
6403 if (map_length >= orig_bio->bi_size) {
6404 bio = orig_bio;
6405 goto submit;
6406 }
6407
6408 async_submit = 1;
6409 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6410 if (!bio)
6411 return -ENOMEM;
6412 bio->bi_private = dip;
6413 bio->bi_end_io = btrfs_end_dio_bio;
6414 atomic_inc(&dip->pending_bios);
6415
6416 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6417 if (unlikely(map_length < submit_len + bvec->bv_len ||
6418 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6419 bvec->bv_offset) < bvec->bv_len)) {
6420 /*
6421 * inc the count before we submit the bio so
6422 * we know the end IO handler won't happen before
6423 * we inc the count. Otherwise, the dip might get freed
6424 * before we're done setting it up
6425 */
6426 atomic_inc(&dip->pending_bios);
6427 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6428 file_offset, skip_sum,
6429 async_submit);
6430 if (ret) {
6431 bio_put(bio);
6432 atomic_dec(&dip->pending_bios);
6433 goto out_err;
6434 }
6435
6436 start_sector += submit_len >> 9;
6437 file_offset += submit_len;
6438
6439 submit_len = 0;
6440 nr_pages = 0;
6441
6442 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6443 start_sector, GFP_NOFS);
6444 if (!bio)
6445 goto out_err;
6446 bio->bi_private = dip;
6447 bio->bi_end_io = btrfs_end_dio_bio;
6448
6449 map_length = orig_bio->bi_size;
6450 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6451 &map_length, NULL, 0);
6452 if (ret) {
6453 bio_put(bio);
6454 goto out_err;
6455 }
6456 } else {
6457 submit_len += bvec->bv_len;
6458 nr_pages ++;
6459 bvec++;
6460 }
6461 }
6462
6463 submit:
6464 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6465 async_submit);
6466 if (!ret)
6467 return 0;
6468
6469 bio_put(bio);
6470 out_err:
6471 dip->errors = 1;
6472 /*
6473 * before atomic variable goto zero, we must
6474 * make sure dip->errors is perceived to be set.
6475 */
6476 smp_mb__before_atomic_dec();
6477 if (atomic_dec_and_test(&dip->pending_bios))
6478 bio_io_error(dip->orig_bio);
6479
6480 /* bio_end_io() will handle error, so we needn't return it */
6481 return 0;
6482 }
6483
6484 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6485 loff_t file_offset)
6486 {
6487 struct btrfs_root *root = BTRFS_I(inode)->root;
6488 struct btrfs_dio_private *dip;
6489 struct bio_vec *bvec = bio->bi_io_vec;
6490 int skip_sum;
6491 int write = rw & REQ_WRITE;
6492 int ret = 0;
6493
6494 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6495
6496 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6497 if (!dip) {
6498 ret = -ENOMEM;
6499 goto free_ordered;
6500 }
6501
6502 dip->private = bio->bi_private;
6503 dip->inode = inode;
6504 dip->logical_offset = file_offset;
6505
6506 dip->bytes = 0;
6507 do {
6508 dip->bytes += bvec->bv_len;
6509 bvec++;
6510 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6511
6512 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6513 bio->bi_private = dip;
6514 dip->errors = 0;
6515 dip->orig_bio = bio;
6516 atomic_set(&dip->pending_bios, 0);
6517
6518 if (write)
6519 bio->bi_end_io = btrfs_endio_direct_write;
6520 else
6521 bio->bi_end_io = btrfs_endio_direct_read;
6522
6523 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6524 if (!ret)
6525 return;
6526 free_ordered:
6527 /*
6528 * If this is a write, we need to clean up the reserved space and kill
6529 * the ordered extent.
6530 */
6531 if (write) {
6532 struct btrfs_ordered_extent *ordered;
6533 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6534 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6535 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6536 btrfs_free_reserved_extent(root, ordered->start,
6537 ordered->disk_len);
6538 btrfs_put_ordered_extent(ordered);
6539 btrfs_put_ordered_extent(ordered);
6540 }
6541 bio_endio(bio, ret);
6542 }
6543
6544 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6545 const struct iovec *iov, loff_t offset,
6546 unsigned long nr_segs)
6547 {
6548 int seg;
6549 int i;
6550 size_t size;
6551 unsigned long addr;
6552 unsigned blocksize_mask = root->sectorsize - 1;
6553 ssize_t retval = -EINVAL;
6554 loff_t end = offset;
6555
6556 if (offset & blocksize_mask)
6557 goto out;
6558
6559 /* Check the memory alignment. Blocks cannot straddle pages */
6560 for (seg = 0; seg < nr_segs; seg++) {
6561 addr = (unsigned long)iov[seg].iov_base;
6562 size = iov[seg].iov_len;
6563 end += size;
6564 if ((addr & blocksize_mask) || (size & blocksize_mask))
6565 goto out;
6566
6567 /* If this is a write we don't need to check anymore */
6568 if (rw & WRITE)
6569 continue;
6570
6571 /*
6572 * Check to make sure we don't have duplicate iov_base's in this
6573 * iovec, if so return EINVAL, otherwise we'll get csum errors
6574 * when reading back.
6575 */
6576 for (i = seg + 1; i < nr_segs; i++) {
6577 if (iov[seg].iov_base == iov[i].iov_base)
6578 goto out;
6579 }
6580 }
6581 retval = 0;
6582 out:
6583 return retval;
6584 }
6585
6586 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6587 const struct iovec *iov, loff_t offset,
6588 unsigned long nr_segs)
6589 {
6590 struct file *file = iocb->ki_filp;
6591 struct inode *inode = file->f_mapping->host;
6592
6593 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6594 offset, nr_segs))
6595 return 0;
6596
6597 return __blockdev_direct_IO(rw, iocb, inode,
6598 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6599 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6600 btrfs_submit_direct, 0);
6601 }
6602
6603 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6604 __u64 start, __u64 len)
6605 {
6606 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6607 }
6608
6609 int btrfs_readpage(struct file *file, struct page *page)
6610 {
6611 struct extent_io_tree *tree;
6612 tree = &BTRFS_I(page->mapping->host)->io_tree;
6613 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6614 }
6615
6616 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6617 {
6618 struct extent_io_tree *tree;
6619
6620
6621 if (current->flags & PF_MEMALLOC) {
6622 redirty_page_for_writepage(wbc, page);
6623 unlock_page(page);
6624 return 0;
6625 }
6626 tree = &BTRFS_I(page->mapping->host)->io_tree;
6627 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6628 }
6629
6630 int btrfs_writepages(struct address_space *mapping,
6631 struct writeback_control *wbc)
6632 {
6633 struct extent_io_tree *tree;
6634
6635 tree = &BTRFS_I(mapping->host)->io_tree;
6636 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6637 }
6638
6639 static int
6640 btrfs_readpages(struct file *file, struct address_space *mapping,
6641 struct list_head *pages, unsigned nr_pages)
6642 {
6643 struct extent_io_tree *tree;
6644 tree = &BTRFS_I(mapping->host)->io_tree;
6645 return extent_readpages(tree, mapping, pages, nr_pages,
6646 btrfs_get_extent);
6647 }
6648 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6649 {
6650 struct extent_io_tree *tree;
6651 struct extent_map_tree *map;
6652 int ret;
6653
6654 tree = &BTRFS_I(page->mapping->host)->io_tree;
6655 map = &BTRFS_I(page->mapping->host)->extent_tree;
6656 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6657 if (ret == 1) {
6658 ClearPagePrivate(page);
6659 set_page_private(page, 0);
6660 page_cache_release(page);
6661 }
6662 return ret;
6663 }
6664
6665 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6666 {
6667 if (PageWriteback(page) || PageDirty(page))
6668 return 0;
6669 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6670 }
6671
6672 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6673 {
6674 struct inode *inode = page->mapping->host;
6675 struct extent_io_tree *tree;
6676 struct btrfs_ordered_extent *ordered;
6677 struct extent_state *cached_state = NULL;
6678 u64 page_start = page_offset(page);
6679 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6680
6681 /*
6682 * we have the page locked, so new writeback can't start,
6683 * and the dirty bit won't be cleared while we are here.
6684 *
6685 * Wait for IO on this page so that we can safely clear
6686 * the PagePrivate2 bit and do ordered accounting
6687 */
6688 wait_on_page_writeback(page);
6689
6690 tree = &BTRFS_I(inode)->io_tree;
6691 if (offset) {
6692 btrfs_releasepage(page, GFP_NOFS);
6693 return;
6694 }
6695 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6696 ordered = btrfs_lookup_ordered_extent(inode,
6697 page_offset(page));
6698 if (ordered) {
6699 /*
6700 * IO on this page will never be started, so we need
6701 * to account for any ordered extents now
6702 */
6703 clear_extent_bit(tree, page_start, page_end,
6704 EXTENT_DIRTY | EXTENT_DELALLOC |
6705 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6706 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
6707 /*
6708 * whoever cleared the private bit is responsible
6709 * for the finish_ordered_io
6710 */
6711 if (TestClearPagePrivate2(page) &&
6712 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6713 PAGE_CACHE_SIZE, 1)) {
6714 btrfs_finish_ordered_io(ordered);
6715 }
6716 btrfs_put_ordered_extent(ordered);
6717 cached_state = NULL;
6718 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6719 }
6720 clear_extent_bit(tree, page_start, page_end,
6721 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6722 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6723 &cached_state, GFP_NOFS);
6724 __btrfs_releasepage(page, GFP_NOFS);
6725
6726 ClearPageChecked(page);
6727 if (PagePrivate(page)) {
6728 ClearPagePrivate(page);
6729 set_page_private(page, 0);
6730 page_cache_release(page);
6731 }
6732 }
6733
6734 /*
6735 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6736 * called from a page fault handler when a page is first dirtied. Hence we must
6737 * be careful to check for EOF conditions here. We set the page up correctly
6738 * for a written page which means we get ENOSPC checking when writing into
6739 * holes and correct delalloc and unwritten extent mapping on filesystems that
6740 * support these features.
6741 *
6742 * We are not allowed to take the i_mutex here so we have to play games to
6743 * protect against truncate races as the page could now be beyond EOF. Because
6744 * vmtruncate() writes the inode size before removing pages, once we have the
6745 * page lock we can determine safely if the page is beyond EOF. If it is not
6746 * beyond EOF, then the page is guaranteed safe against truncation until we
6747 * unlock the page.
6748 */
6749 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6750 {
6751 struct page *page = vmf->page;
6752 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6753 struct btrfs_root *root = BTRFS_I(inode)->root;
6754 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6755 struct btrfs_ordered_extent *ordered;
6756 struct extent_state *cached_state = NULL;
6757 char *kaddr;
6758 unsigned long zero_start;
6759 loff_t size;
6760 int ret;
6761 int reserved = 0;
6762 u64 page_start;
6763 u64 page_end;
6764
6765 sb_start_pagefault(inode->i_sb);
6766 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6767 if (!ret) {
6768 ret = file_update_time(vma->vm_file);
6769 reserved = 1;
6770 }
6771 if (ret) {
6772 if (ret == -ENOMEM)
6773 ret = VM_FAULT_OOM;
6774 else /* -ENOSPC, -EIO, etc */
6775 ret = VM_FAULT_SIGBUS;
6776 if (reserved)
6777 goto out;
6778 goto out_noreserve;
6779 }
6780
6781 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6782 again:
6783 lock_page(page);
6784 size = i_size_read(inode);
6785 page_start = page_offset(page);
6786 page_end = page_start + PAGE_CACHE_SIZE - 1;
6787
6788 if ((page->mapping != inode->i_mapping) ||
6789 (page_start >= size)) {
6790 /* page got truncated out from underneath us */
6791 goto out_unlock;
6792 }
6793 wait_on_page_writeback(page);
6794
6795 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6796 set_page_extent_mapped(page);
6797
6798 /*
6799 * we can't set the delalloc bits if there are pending ordered
6800 * extents. Drop our locks and wait for them to finish
6801 */
6802 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6803 if (ordered) {
6804 unlock_extent_cached(io_tree, page_start, page_end,
6805 &cached_state, GFP_NOFS);
6806 unlock_page(page);
6807 btrfs_start_ordered_extent(inode, ordered, 1);
6808 btrfs_put_ordered_extent(ordered);
6809 goto again;
6810 }
6811
6812 /*
6813 * XXX - page_mkwrite gets called every time the page is dirtied, even
6814 * if it was already dirty, so for space accounting reasons we need to
6815 * clear any delalloc bits for the range we are fixing to save. There
6816 * is probably a better way to do this, but for now keep consistent with
6817 * prepare_pages in the normal write path.
6818 */
6819 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6820 EXTENT_DIRTY | EXTENT_DELALLOC |
6821 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
6822 0, 0, &cached_state, GFP_NOFS);
6823
6824 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6825 &cached_state);
6826 if (ret) {
6827 unlock_extent_cached(io_tree, page_start, page_end,
6828 &cached_state, GFP_NOFS);
6829 ret = VM_FAULT_SIGBUS;
6830 goto out_unlock;
6831 }
6832 ret = 0;
6833
6834 /* page is wholly or partially inside EOF */
6835 if (page_start + PAGE_CACHE_SIZE > size)
6836 zero_start = size & ~PAGE_CACHE_MASK;
6837 else
6838 zero_start = PAGE_CACHE_SIZE;
6839
6840 if (zero_start != PAGE_CACHE_SIZE) {
6841 kaddr = kmap(page);
6842 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6843 flush_dcache_page(page);
6844 kunmap(page);
6845 }
6846 ClearPageChecked(page);
6847 set_page_dirty(page);
6848 SetPageUptodate(page);
6849
6850 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6851 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6852 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
6853
6854 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6855
6856 out_unlock:
6857 if (!ret) {
6858 sb_end_pagefault(inode->i_sb);
6859 return VM_FAULT_LOCKED;
6860 }
6861 unlock_page(page);
6862 out:
6863 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6864 out_noreserve:
6865 sb_end_pagefault(inode->i_sb);
6866 return ret;
6867 }
6868
6869 static int btrfs_truncate(struct inode *inode)
6870 {
6871 struct btrfs_root *root = BTRFS_I(inode)->root;
6872 struct btrfs_block_rsv *rsv;
6873 int ret;
6874 int err = 0;
6875 struct btrfs_trans_handle *trans;
6876 unsigned long nr;
6877 u64 mask = root->sectorsize - 1;
6878 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6879
6880 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
6881 if (ret)
6882 return ret;
6883
6884 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6885 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6886
6887 /*
6888 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6889 * 3 things going on here
6890 *
6891 * 1) We need to reserve space for our orphan item and the space to
6892 * delete our orphan item. Lord knows we don't want to have a dangling
6893 * orphan item because we didn't reserve space to remove it.
6894 *
6895 * 2) We need to reserve space to update our inode.
6896 *
6897 * 3) We need to have something to cache all the space that is going to
6898 * be free'd up by the truncate operation, but also have some slack
6899 * space reserved in case it uses space during the truncate (thank you
6900 * very much snapshotting).
6901 *
6902 * And we need these to all be seperate. The fact is we can use alot of
6903 * space doing the truncate, and we have no earthly idea how much space
6904 * we will use, so we need the truncate reservation to be seperate so it
6905 * doesn't end up using space reserved for updating the inode or
6906 * removing the orphan item. We also need to be able to stop the
6907 * transaction and start a new one, which means we need to be able to
6908 * update the inode several times, and we have no idea of knowing how
6909 * many times that will be, so we can't just reserve 1 item for the
6910 * entirety of the opration, so that has to be done seperately as well.
6911 * Then there is the orphan item, which does indeed need to be held on
6912 * to for the whole operation, and we need nobody to touch this reserved
6913 * space except the orphan code.
6914 *
6915 * So that leaves us with
6916 *
6917 * 1) root->orphan_block_rsv - for the orphan deletion.
6918 * 2) rsv - for the truncate reservation, which we will steal from the
6919 * transaction reservation.
6920 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6921 * updating the inode.
6922 */
6923 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
6924 if (!rsv)
6925 return -ENOMEM;
6926 rsv->size = min_size;
6927 rsv->failfast = 1;
6928
6929 /*
6930 * 1 for the truncate slack space
6931 * 1 for the orphan item we're going to add
6932 * 1 for the orphan item deletion
6933 * 1 for updating the inode.
6934 */
6935 trans = btrfs_start_transaction(root, 4);
6936 if (IS_ERR(trans)) {
6937 err = PTR_ERR(trans);
6938 goto out;
6939 }
6940
6941 /* Migrate the slack space for the truncate to our reserve */
6942 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6943 min_size);
6944 BUG_ON(ret);
6945
6946 ret = btrfs_orphan_add(trans, inode);
6947 if (ret) {
6948 btrfs_end_transaction(trans, root);
6949 goto out;
6950 }
6951
6952 /*
6953 * setattr is responsible for setting the ordered_data_close flag,
6954 * but that is only tested during the last file release. That
6955 * could happen well after the next commit, leaving a great big
6956 * window where new writes may get lost if someone chooses to write
6957 * to this file after truncating to zero
6958 *
6959 * The inode doesn't have any dirty data here, and so if we commit
6960 * this is a noop. If someone immediately starts writing to the inode
6961 * it is very likely we'll catch some of their writes in this
6962 * transaction, and the commit will find this file on the ordered
6963 * data list with good things to send down.
6964 *
6965 * This is a best effort solution, there is still a window where
6966 * using truncate to replace the contents of the file will
6967 * end up with a zero length file after a crash.
6968 */
6969 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6970 &BTRFS_I(inode)->runtime_flags))
6971 btrfs_add_ordered_operation(trans, root, inode);
6972
6973 /*
6974 * So if we truncate and then write and fsync we normally would just
6975 * write the extents that changed, which is a problem if we need to
6976 * first truncate that entire inode. So set this flag so we write out
6977 * all of the extents in the inode to the sync log so we're completely
6978 * safe.
6979 */
6980 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6981 trans->block_rsv = rsv;
6982
6983 while (1) {
6984 ret = btrfs_truncate_inode_items(trans, root, inode,
6985 inode->i_size,
6986 BTRFS_EXTENT_DATA_KEY);
6987 if (ret != -ENOSPC) {
6988 err = ret;
6989 break;
6990 }
6991
6992 trans->block_rsv = &root->fs_info->trans_block_rsv;
6993 ret = btrfs_update_inode(trans, root, inode);
6994 if (ret) {
6995 err = ret;
6996 break;
6997 }
6998
6999 nr = trans->blocks_used;
7000 btrfs_end_transaction(trans, root);
7001 btrfs_btree_balance_dirty(root, nr);
7002
7003 trans = btrfs_start_transaction(root, 2);
7004 if (IS_ERR(trans)) {
7005 ret = err = PTR_ERR(trans);
7006 trans = NULL;
7007 break;
7008 }
7009
7010 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7011 rsv, min_size);
7012 BUG_ON(ret); /* shouldn't happen */
7013 trans->block_rsv = rsv;
7014 }
7015
7016 if (ret == 0 && inode->i_nlink > 0) {
7017 trans->block_rsv = root->orphan_block_rsv;
7018 ret = btrfs_orphan_del(trans, inode);
7019 if (ret)
7020 err = ret;
7021 } else if (ret && inode->i_nlink > 0) {
7022 /*
7023 * Failed to do the truncate, remove us from the in memory
7024 * orphan list.
7025 */
7026 ret = btrfs_orphan_del(NULL, inode);
7027 }
7028
7029 if (trans) {
7030 trans->block_rsv = &root->fs_info->trans_block_rsv;
7031 ret = btrfs_update_inode(trans, root, inode);
7032 if (ret && !err)
7033 err = ret;
7034
7035 nr = trans->blocks_used;
7036 ret = btrfs_end_transaction(trans, root);
7037 btrfs_btree_balance_dirty(root, nr);
7038 }
7039
7040 out:
7041 btrfs_free_block_rsv(root, rsv);
7042
7043 if (ret && !err)
7044 err = ret;
7045
7046 return err;
7047 }
7048
7049 /*
7050 * create a new subvolume directory/inode (helper for the ioctl).
7051 */
7052 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7053 struct btrfs_root *new_root, u64 new_dirid)
7054 {
7055 struct inode *inode;
7056 int err;
7057 u64 index = 0;
7058
7059 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7060 new_dirid, new_dirid,
7061 S_IFDIR | (~current_umask() & S_IRWXUGO),
7062 &index);
7063 if (IS_ERR(inode))
7064 return PTR_ERR(inode);
7065 inode->i_op = &btrfs_dir_inode_operations;
7066 inode->i_fop = &btrfs_dir_file_operations;
7067
7068 set_nlink(inode, 1);
7069 btrfs_i_size_write(inode, 0);
7070
7071 err = btrfs_update_inode(trans, new_root, inode);
7072
7073 iput(inode);
7074 return err;
7075 }
7076
7077 struct inode *btrfs_alloc_inode(struct super_block *sb)
7078 {
7079 struct btrfs_inode *ei;
7080 struct inode *inode;
7081
7082 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7083 if (!ei)
7084 return NULL;
7085
7086 ei->root = NULL;
7087 ei->generation = 0;
7088 ei->last_trans = 0;
7089 ei->last_sub_trans = 0;
7090 ei->logged_trans = 0;
7091 ei->delalloc_bytes = 0;
7092 ei->disk_i_size = 0;
7093 ei->flags = 0;
7094 ei->csum_bytes = 0;
7095 ei->index_cnt = (u64)-1;
7096 ei->last_unlink_trans = 0;
7097 ei->last_log_commit = 0;
7098
7099 spin_lock_init(&ei->lock);
7100 ei->outstanding_extents = 0;
7101 ei->reserved_extents = 0;
7102
7103 ei->runtime_flags = 0;
7104 ei->force_compress = BTRFS_COMPRESS_NONE;
7105
7106 ei->delayed_node = NULL;
7107
7108 inode = &ei->vfs_inode;
7109 extent_map_tree_init(&ei->extent_tree);
7110 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7111 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7112 ei->io_tree.track_uptodate = 1;
7113 ei->io_failure_tree.track_uptodate = 1;
7114 mutex_init(&ei->log_mutex);
7115 mutex_init(&ei->delalloc_mutex);
7116 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7117 INIT_LIST_HEAD(&ei->delalloc_inodes);
7118 INIT_LIST_HEAD(&ei->ordered_operations);
7119 RB_CLEAR_NODE(&ei->rb_node);
7120
7121 return inode;
7122 }
7123
7124 static void btrfs_i_callback(struct rcu_head *head)
7125 {
7126 struct inode *inode = container_of(head, struct inode, i_rcu);
7127 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7128 }
7129
7130 void btrfs_destroy_inode(struct inode *inode)
7131 {
7132 struct btrfs_ordered_extent *ordered;
7133 struct btrfs_root *root = BTRFS_I(inode)->root;
7134
7135 WARN_ON(!hlist_empty(&inode->i_dentry));
7136 WARN_ON(inode->i_data.nrpages);
7137 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7138 WARN_ON(BTRFS_I(inode)->reserved_extents);
7139 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7140 WARN_ON(BTRFS_I(inode)->csum_bytes);
7141
7142 /*
7143 * This can happen where we create an inode, but somebody else also
7144 * created the same inode and we need to destroy the one we already
7145 * created.
7146 */
7147 if (!root)
7148 goto free;
7149
7150 /*
7151 * Make sure we're properly removed from the ordered operation
7152 * lists.
7153 */
7154 smp_mb();
7155 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7156 spin_lock(&root->fs_info->ordered_extent_lock);
7157 list_del_init(&BTRFS_I(inode)->ordered_operations);
7158 spin_unlock(&root->fs_info->ordered_extent_lock);
7159 }
7160
7161 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7162 &BTRFS_I(inode)->runtime_flags)) {
7163 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7164 (unsigned long long)btrfs_ino(inode));
7165 atomic_dec(&root->orphan_inodes);
7166 }
7167
7168 while (1) {
7169 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7170 if (!ordered)
7171 break;
7172 else {
7173 printk(KERN_ERR "btrfs found ordered "
7174 "extent %llu %llu on inode cleanup\n",
7175 (unsigned long long)ordered->file_offset,
7176 (unsigned long long)ordered->len);
7177 btrfs_remove_ordered_extent(inode, ordered);
7178 btrfs_put_ordered_extent(ordered);
7179 btrfs_put_ordered_extent(ordered);
7180 }
7181 }
7182 inode_tree_del(inode);
7183 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7184 free:
7185 btrfs_remove_delayed_node(inode);
7186 call_rcu(&inode->i_rcu, btrfs_i_callback);
7187 }
7188
7189 int btrfs_drop_inode(struct inode *inode)
7190 {
7191 struct btrfs_root *root = BTRFS_I(inode)->root;
7192
7193 if (btrfs_root_refs(&root->root_item) == 0 &&
7194 !btrfs_is_free_space_inode(inode))
7195 return 1;
7196 else
7197 return generic_drop_inode(inode);
7198 }
7199
7200 static void init_once(void *foo)
7201 {
7202 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7203
7204 inode_init_once(&ei->vfs_inode);
7205 }
7206
7207 void btrfs_destroy_cachep(void)
7208 {
7209 /*
7210 * Make sure all delayed rcu free inodes are flushed before we
7211 * destroy cache.
7212 */
7213 rcu_barrier();
7214 if (btrfs_inode_cachep)
7215 kmem_cache_destroy(btrfs_inode_cachep);
7216 if (btrfs_trans_handle_cachep)
7217 kmem_cache_destroy(btrfs_trans_handle_cachep);
7218 if (btrfs_transaction_cachep)
7219 kmem_cache_destroy(btrfs_transaction_cachep);
7220 if (btrfs_path_cachep)
7221 kmem_cache_destroy(btrfs_path_cachep);
7222 if (btrfs_free_space_cachep)
7223 kmem_cache_destroy(btrfs_free_space_cachep);
7224 if (btrfs_delalloc_work_cachep)
7225 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7226 }
7227
7228 int btrfs_init_cachep(void)
7229 {
7230 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7231 sizeof(struct btrfs_inode), 0,
7232 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7233 if (!btrfs_inode_cachep)
7234 goto fail;
7235
7236 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7237 sizeof(struct btrfs_trans_handle), 0,
7238 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7239 if (!btrfs_trans_handle_cachep)
7240 goto fail;
7241
7242 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7243 sizeof(struct btrfs_transaction), 0,
7244 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7245 if (!btrfs_transaction_cachep)
7246 goto fail;
7247
7248 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7249 sizeof(struct btrfs_path), 0,
7250 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7251 if (!btrfs_path_cachep)
7252 goto fail;
7253
7254 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7255 sizeof(struct btrfs_free_space), 0,
7256 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7257 if (!btrfs_free_space_cachep)
7258 goto fail;
7259
7260 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7261 sizeof(struct btrfs_delalloc_work), 0,
7262 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7263 NULL);
7264 if (!btrfs_delalloc_work_cachep)
7265 goto fail;
7266
7267 return 0;
7268 fail:
7269 btrfs_destroy_cachep();
7270 return -ENOMEM;
7271 }
7272
7273 static int btrfs_getattr(struct vfsmount *mnt,
7274 struct dentry *dentry, struct kstat *stat)
7275 {
7276 struct inode *inode = dentry->d_inode;
7277 u32 blocksize = inode->i_sb->s_blocksize;
7278
7279 generic_fillattr(inode, stat);
7280 stat->dev = BTRFS_I(inode)->root->anon_dev;
7281 stat->blksize = PAGE_CACHE_SIZE;
7282 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7283 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7284 return 0;
7285 }
7286
7287 /*
7288 * If a file is moved, it will inherit the cow and compression flags of the new
7289 * directory.
7290 */
7291 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7292 {
7293 struct btrfs_inode *b_dir = BTRFS_I(dir);
7294 struct btrfs_inode *b_inode = BTRFS_I(inode);
7295
7296 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7297 b_inode->flags |= BTRFS_INODE_NODATACOW;
7298 else
7299 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7300
7301 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7302 b_inode->flags |= BTRFS_INODE_COMPRESS;
7303 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7304 } else {
7305 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7306 BTRFS_INODE_NOCOMPRESS);
7307 }
7308 }
7309
7310 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7311 struct inode *new_dir, struct dentry *new_dentry)
7312 {
7313 struct btrfs_trans_handle *trans;
7314 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7315 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7316 struct inode *new_inode = new_dentry->d_inode;
7317 struct inode *old_inode = old_dentry->d_inode;
7318 struct timespec ctime = CURRENT_TIME;
7319 u64 index = 0;
7320 u64 root_objectid;
7321 int ret;
7322 u64 old_ino = btrfs_ino(old_inode);
7323
7324 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7325 return -EPERM;
7326
7327 /* we only allow rename subvolume link between subvolumes */
7328 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7329 return -EXDEV;
7330
7331 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7332 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7333 return -ENOTEMPTY;
7334
7335 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7336 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7337 return -ENOTEMPTY;
7338 /*
7339 * we're using rename to replace one file with another.
7340 * and the replacement file is large. Start IO on it now so
7341 * we don't add too much work to the end of the transaction
7342 */
7343 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7344 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7345 filemap_flush(old_inode->i_mapping);
7346
7347 /* close the racy window with snapshot create/destroy ioctl */
7348 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7349 down_read(&root->fs_info->subvol_sem);
7350 /*
7351 * We want to reserve the absolute worst case amount of items. So if
7352 * both inodes are subvols and we need to unlink them then that would
7353 * require 4 item modifications, but if they are both normal inodes it
7354 * would require 5 item modifications, so we'll assume their normal
7355 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7356 * should cover the worst case number of items we'll modify.
7357 */
7358 trans = btrfs_start_transaction(root, 20);
7359 if (IS_ERR(trans)) {
7360 ret = PTR_ERR(trans);
7361 goto out_notrans;
7362 }
7363
7364 if (dest != root)
7365 btrfs_record_root_in_trans(trans, dest);
7366
7367 ret = btrfs_set_inode_index(new_dir, &index);
7368 if (ret)
7369 goto out_fail;
7370
7371 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7372 /* force full log commit if subvolume involved. */
7373 root->fs_info->last_trans_log_full_commit = trans->transid;
7374 } else {
7375 ret = btrfs_insert_inode_ref(trans, dest,
7376 new_dentry->d_name.name,
7377 new_dentry->d_name.len,
7378 old_ino,
7379 btrfs_ino(new_dir), index);
7380 if (ret)
7381 goto out_fail;
7382 /*
7383 * this is an ugly little race, but the rename is required
7384 * to make sure that if we crash, the inode is either at the
7385 * old name or the new one. pinning the log transaction lets
7386 * us make sure we don't allow a log commit to come in after
7387 * we unlink the name but before we add the new name back in.
7388 */
7389 btrfs_pin_log_trans(root);
7390 }
7391 /*
7392 * make sure the inode gets flushed if it is replacing
7393 * something.
7394 */
7395 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7396 btrfs_add_ordered_operation(trans, root, old_inode);
7397
7398 inode_inc_iversion(old_dir);
7399 inode_inc_iversion(new_dir);
7400 inode_inc_iversion(old_inode);
7401 old_dir->i_ctime = old_dir->i_mtime = ctime;
7402 new_dir->i_ctime = new_dir->i_mtime = ctime;
7403 old_inode->i_ctime = ctime;
7404
7405 if (old_dentry->d_parent != new_dentry->d_parent)
7406 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7407
7408 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7409 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7410 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7411 old_dentry->d_name.name,
7412 old_dentry->d_name.len);
7413 } else {
7414 ret = __btrfs_unlink_inode(trans, root, old_dir,
7415 old_dentry->d_inode,
7416 old_dentry->d_name.name,
7417 old_dentry->d_name.len);
7418 if (!ret)
7419 ret = btrfs_update_inode(trans, root, old_inode);
7420 }
7421 if (ret) {
7422 btrfs_abort_transaction(trans, root, ret);
7423 goto out_fail;
7424 }
7425
7426 if (new_inode) {
7427 inode_inc_iversion(new_inode);
7428 new_inode->i_ctime = CURRENT_TIME;
7429 if (unlikely(btrfs_ino(new_inode) ==
7430 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7431 root_objectid = BTRFS_I(new_inode)->location.objectid;
7432 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7433 root_objectid,
7434 new_dentry->d_name.name,
7435 new_dentry->d_name.len);
7436 BUG_ON(new_inode->i_nlink == 0);
7437 } else {
7438 ret = btrfs_unlink_inode(trans, dest, new_dir,
7439 new_dentry->d_inode,
7440 new_dentry->d_name.name,
7441 new_dentry->d_name.len);
7442 }
7443 if (!ret && new_inode->i_nlink == 0) {
7444 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7445 BUG_ON(ret);
7446 }
7447 if (ret) {
7448 btrfs_abort_transaction(trans, root, ret);
7449 goto out_fail;
7450 }
7451 }
7452
7453 fixup_inode_flags(new_dir, old_inode);
7454
7455 ret = btrfs_add_link(trans, new_dir, old_inode,
7456 new_dentry->d_name.name,
7457 new_dentry->d_name.len, 0, index);
7458 if (ret) {
7459 btrfs_abort_transaction(trans, root, ret);
7460 goto out_fail;
7461 }
7462
7463 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7464 struct dentry *parent = new_dentry->d_parent;
7465 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7466 btrfs_end_log_trans(root);
7467 }
7468 out_fail:
7469 btrfs_end_transaction(trans, root);
7470 out_notrans:
7471 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7472 up_read(&root->fs_info->subvol_sem);
7473
7474 return ret;
7475 }
7476
7477 static void btrfs_run_delalloc_work(struct btrfs_work *work)
7478 {
7479 struct btrfs_delalloc_work *delalloc_work;
7480
7481 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7482 work);
7483 if (delalloc_work->wait)
7484 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7485 else
7486 filemap_flush(delalloc_work->inode->i_mapping);
7487
7488 if (delalloc_work->delay_iput)
7489 btrfs_add_delayed_iput(delalloc_work->inode);
7490 else
7491 iput(delalloc_work->inode);
7492 complete(&delalloc_work->completion);
7493 }
7494
7495 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7496 int wait, int delay_iput)
7497 {
7498 struct btrfs_delalloc_work *work;
7499
7500 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7501 if (!work)
7502 return NULL;
7503
7504 init_completion(&work->completion);
7505 INIT_LIST_HEAD(&work->list);
7506 work->inode = inode;
7507 work->wait = wait;
7508 work->delay_iput = delay_iput;
7509 work->work.func = btrfs_run_delalloc_work;
7510
7511 return work;
7512 }
7513
7514 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7515 {
7516 wait_for_completion(&work->completion);
7517 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7518 }
7519
7520 /*
7521 * some fairly slow code that needs optimization. This walks the list
7522 * of all the inodes with pending delalloc and forces them to disk.
7523 */
7524 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7525 {
7526 struct list_head *head = &root->fs_info->delalloc_inodes;
7527 struct btrfs_inode *binode;
7528 struct inode *inode;
7529 struct btrfs_delalloc_work *work, *next;
7530 struct list_head works;
7531 int ret = 0;
7532
7533 if (root->fs_info->sb->s_flags & MS_RDONLY)
7534 return -EROFS;
7535
7536 INIT_LIST_HEAD(&works);
7537
7538 spin_lock(&root->fs_info->delalloc_lock);
7539 while (!list_empty(head)) {
7540 binode = list_entry(head->next, struct btrfs_inode,
7541 delalloc_inodes);
7542 inode = igrab(&binode->vfs_inode);
7543 if (!inode)
7544 list_del_init(&binode->delalloc_inodes);
7545 spin_unlock(&root->fs_info->delalloc_lock);
7546 if (inode) {
7547 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7548 if (!work) {
7549 ret = -ENOMEM;
7550 goto out;
7551 }
7552 list_add_tail(&work->list, &works);
7553 btrfs_queue_worker(&root->fs_info->flush_workers,
7554 &work->work);
7555 }
7556 cond_resched();
7557 spin_lock(&root->fs_info->delalloc_lock);
7558 }
7559 spin_unlock(&root->fs_info->delalloc_lock);
7560
7561 /* the filemap_flush will queue IO into the worker threads, but
7562 * we have to make sure the IO is actually started and that
7563 * ordered extents get created before we return
7564 */
7565 atomic_inc(&root->fs_info->async_submit_draining);
7566 while (atomic_read(&root->fs_info->nr_async_submits) ||
7567 atomic_read(&root->fs_info->async_delalloc_pages)) {
7568 wait_event(root->fs_info->async_submit_wait,
7569 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7570 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7571 }
7572 atomic_dec(&root->fs_info->async_submit_draining);
7573 out:
7574 list_for_each_entry_safe(work, next, &works, list) {
7575 list_del_init(&work->list);
7576 btrfs_wait_and_free_delalloc_work(work);
7577 }
7578 return ret;
7579 }
7580
7581 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7582 const char *symname)
7583 {
7584 struct btrfs_trans_handle *trans;
7585 struct btrfs_root *root = BTRFS_I(dir)->root;
7586 struct btrfs_path *path;
7587 struct btrfs_key key;
7588 struct inode *inode = NULL;
7589 int err;
7590 int drop_inode = 0;
7591 u64 objectid;
7592 u64 index = 0 ;
7593 int name_len;
7594 int datasize;
7595 unsigned long ptr;
7596 struct btrfs_file_extent_item *ei;
7597 struct extent_buffer *leaf;
7598 unsigned long nr = 0;
7599
7600 name_len = strlen(symname) + 1;
7601 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7602 return -ENAMETOOLONG;
7603
7604 /*
7605 * 2 items for inode item and ref
7606 * 2 items for dir items
7607 * 1 item for xattr if selinux is on
7608 */
7609 trans = btrfs_start_transaction(root, 5);
7610 if (IS_ERR(trans))
7611 return PTR_ERR(trans);
7612
7613 err = btrfs_find_free_ino(root, &objectid);
7614 if (err)
7615 goto out_unlock;
7616
7617 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7618 dentry->d_name.len, btrfs_ino(dir), objectid,
7619 S_IFLNK|S_IRWXUGO, &index);
7620 if (IS_ERR(inode)) {
7621 err = PTR_ERR(inode);
7622 goto out_unlock;
7623 }
7624
7625 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7626 if (err) {
7627 drop_inode = 1;
7628 goto out_unlock;
7629 }
7630
7631 /*
7632 * If the active LSM wants to access the inode during
7633 * d_instantiate it needs these. Smack checks to see
7634 * if the filesystem supports xattrs by looking at the
7635 * ops vector.
7636 */
7637 inode->i_fop = &btrfs_file_operations;
7638 inode->i_op = &btrfs_file_inode_operations;
7639
7640 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7641 if (err)
7642 drop_inode = 1;
7643 else {
7644 inode->i_mapping->a_ops = &btrfs_aops;
7645 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7646 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7647 }
7648 if (drop_inode)
7649 goto out_unlock;
7650
7651 path = btrfs_alloc_path();
7652 if (!path) {
7653 err = -ENOMEM;
7654 drop_inode = 1;
7655 goto out_unlock;
7656 }
7657 key.objectid = btrfs_ino(inode);
7658 key.offset = 0;
7659 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7660 datasize = btrfs_file_extent_calc_inline_size(name_len);
7661 err = btrfs_insert_empty_item(trans, root, path, &key,
7662 datasize);
7663 if (err) {
7664 drop_inode = 1;
7665 btrfs_free_path(path);
7666 goto out_unlock;
7667 }
7668 leaf = path->nodes[0];
7669 ei = btrfs_item_ptr(leaf, path->slots[0],
7670 struct btrfs_file_extent_item);
7671 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7672 btrfs_set_file_extent_type(leaf, ei,
7673 BTRFS_FILE_EXTENT_INLINE);
7674 btrfs_set_file_extent_encryption(leaf, ei, 0);
7675 btrfs_set_file_extent_compression(leaf, ei, 0);
7676 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7677 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7678
7679 ptr = btrfs_file_extent_inline_start(ei);
7680 write_extent_buffer(leaf, symname, ptr, name_len);
7681 btrfs_mark_buffer_dirty(leaf);
7682 btrfs_free_path(path);
7683
7684 inode->i_op = &btrfs_symlink_inode_operations;
7685 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7686 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7687 inode_set_bytes(inode, name_len);
7688 btrfs_i_size_write(inode, name_len - 1);
7689 err = btrfs_update_inode(trans, root, inode);
7690 if (err)
7691 drop_inode = 1;
7692
7693 out_unlock:
7694 if (!err)
7695 d_instantiate(dentry, inode);
7696 nr = trans->blocks_used;
7697 btrfs_end_transaction(trans, root);
7698 if (drop_inode) {
7699 inode_dec_link_count(inode);
7700 iput(inode);
7701 }
7702 btrfs_btree_balance_dirty(root, nr);
7703 return err;
7704 }
7705
7706 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7707 u64 start, u64 num_bytes, u64 min_size,
7708 loff_t actual_len, u64 *alloc_hint,
7709 struct btrfs_trans_handle *trans)
7710 {
7711 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7712 struct extent_map *em;
7713 struct btrfs_root *root = BTRFS_I(inode)->root;
7714 struct btrfs_key ins;
7715 u64 cur_offset = start;
7716 u64 i_size;
7717 int ret = 0;
7718 bool own_trans = true;
7719
7720 if (trans)
7721 own_trans = false;
7722 while (num_bytes > 0) {
7723 if (own_trans) {
7724 trans = btrfs_start_transaction(root, 3);
7725 if (IS_ERR(trans)) {
7726 ret = PTR_ERR(trans);
7727 break;
7728 }
7729 }
7730
7731 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7732 0, *alloc_hint, &ins, 1);
7733 if (ret) {
7734 if (own_trans)
7735 btrfs_end_transaction(trans, root);
7736 break;
7737 }
7738
7739 ret = insert_reserved_file_extent(trans, inode,
7740 cur_offset, ins.objectid,
7741 ins.offset, ins.offset,
7742 ins.offset, 0, 0, 0,
7743 BTRFS_FILE_EXTENT_PREALLOC);
7744 if (ret) {
7745 btrfs_abort_transaction(trans, root, ret);
7746 if (own_trans)
7747 btrfs_end_transaction(trans, root);
7748 break;
7749 }
7750 btrfs_drop_extent_cache(inode, cur_offset,
7751 cur_offset + ins.offset -1, 0);
7752
7753 em = alloc_extent_map();
7754 if (!em) {
7755 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7756 &BTRFS_I(inode)->runtime_flags);
7757 goto next;
7758 }
7759
7760 em->start = cur_offset;
7761 em->orig_start = cur_offset;
7762 em->len = ins.offset;
7763 em->block_start = ins.objectid;
7764 em->block_len = ins.offset;
7765 em->bdev = root->fs_info->fs_devices->latest_bdev;
7766 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7767 em->generation = trans->transid;
7768
7769 while (1) {
7770 write_lock(&em_tree->lock);
7771 ret = add_extent_mapping(em_tree, em);
7772 if (!ret)
7773 list_move(&em->list,
7774 &em_tree->modified_extents);
7775 write_unlock(&em_tree->lock);
7776 if (ret != -EEXIST)
7777 break;
7778 btrfs_drop_extent_cache(inode, cur_offset,
7779 cur_offset + ins.offset - 1,
7780 0);
7781 }
7782 free_extent_map(em);
7783 next:
7784 num_bytes -= ins.offset;
7785 cur_offset += ins.offset;
7786 *alloc_hint = ins.objectid + ins.offset;
7787
7788 inode_inc_iversion(inode);
7789 inode->i_ctime = CURRENT_TIME;
7790 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7791 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7792 (actual_len > inode->i_size) &&
7793 (cur_offset > inode->i_size)) {
7794 if (cur_offset > actual_len)
7795 i_size = actual_len;
7796 else
7797 i_size = cur_offset;
7798 i_size_write(inode, i_size);
7799 btrfs_ordered_update_i_size(inode, i_size, NULL);
7800 }
7801
7802 ret = btrfs_update_inode(trans, root, inode);
7803
7804 if (ret) {
7805 btrfs_abort_transaction(trans, root, ret);
7806 if (own_trans)
7807 btrfs_end_transaction(trans, root);
7808 break;
7809 }
7810
7811 if (own_trans)
7812 btrfs_end_transaction(trans, root);
7813 }
7814 return ret;
7815 }
7816
7817 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7818 u64 start, u64 num_bytes, u64 min_size,
7819 loff_t actual_len, u64 *alloc_hint)
7820 {
7821 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7822 min_size, actual_len, alloc_hint,
7823 NULL);
7824 }
7825
7826 int btrfs_prealloc_file_range_trans(struct inode *inode,
7827 struct btrfs_trans_handle *trans, int mode,
7828 u64 start, u64 num_bytes, u64 min_size,
7829 loff_t actual_len, u64 *alloc_hint)
7830 {
7831 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7832 min_size, actual_len, alloc_hint, trans);
7833 }
7834
7835 static int btrfs_set_page_dirty(struct page *page)
7836 {
7837 return __set_page_dirty_nobuffers(page);
7838 }
7839
7840 static int btrfs_permission(struct inode *inode, int mask)
7841 {
7842 struct btrfs_root *root = BTRFS_I(inode)->root;
7843 umode_t mode = inode->i_mode;
7844
7845 if (mask & MAY_WRITE &&
7846 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7847 if (btrfs_root_readonly(root))
7848 return -EROFS;
7849 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7850 return -EACCES;
7851 }
7852 return generic_permission(inode, mask);
7853 }
7854
7855 static const struct inode_operations btrfs_dir_inode_operations = {
7856 .getattr = btrfs_getattr,
7857 .lookup = btrfs_lookup,
7858 .create = btrfs_create,
7859 .unlink = btrfs_unlink,
7860 .link = btrfs_link,
7861 .mkdir = btrfs_mkdir,
7862 .rmdir = btrfs_rmdir,
7863 .rename = btrfs_rename,
7864 .symlink = btrfs_symlink,
7865 .setattr = btrfs_setattr,
7866 .mknod = btrfs_mknod,
7867 .setxattr = btrfs_setxattr,
7868 .getxattr = btrfs_getxattr,
7869 .listxattr = btrfs_listxattr,
7870 .removexattr = btrfs_removexattr,
7871 .permission = btrfs_permission,
7872 .get_acl = btrfs_get_acl,
7873 };
7874 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7875 .lookup = btrfs_lookup,
7876 .permission = btrfs_permission,
7877 .get_acl = btrfs_get_acl,
7878 };
7879
7880 static const struct file_operations btrfs_dir_file_operations = {
7881 .llseek = generic_file_llseek,
7882 .read = generic_read_dir,
7883 .readdir = btrfs_real_readdir,
7884 .unlocked_ioctl = btrfs_ioctl,
7885 #ifdef CONFIG_COMPAT
7886 .compat_ioctl = btrfs_ioctl,
7887 #endif
7888 .release = btrfs_release_file,
7889 .fsync = btrfs_sync_file,
7890 };
7891
7892 static struct extent_io_ops btrfs_extent_io_ops = {
7893 .fill_delalloc = run_delalloc_range,
7894 .submit_bio_hook = btrfs_submit_bio_hook,
7895 .merge_bio_hook = btrfs_merge_bio_hook,
7896 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7897 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7898 .writepage_start_hook = btrfs_writepage_start_hook,
7899 .set_bit_hook = btrfs_set_bit_hook,
7900 .clear_bit_hook = btrfs_clear_bit_hook,
7901 .merge_extent_hook = btrfs_merge_extent_hook,
7902 .split_extent_hook = btrfs_split_extent_hook,
7903 };
7904
7905 /*
7906 * btrfs doesn't support the bmap operation because swapfiles
7907 * use bmap to make a mapping of extents in the file. They assume
7908 * these extents won't change over the life of the file and they
7909 * use the bmap result to do IO directly to the drive.
7910 *
7911 * the btrfs bmap call would return logical addresses that aren't
7912 * suitable for IO and they also will change frequently as COW
7913 * operations happen. So, swapfile + btrfs == corruption.
7914 *
7915 * For now we're avoiding this by dropping bmap.
7916 */
7917 static const struct address_space_operations btrfs_aops = {
7918 .readpage = btrfs_readpage,
7919 .writepage = btrfs_writepage,
7920 .writepages = btrfs_writepages,
7921 .readpages = btrfs_readpages,
7922 .direct_IO = btrfs_direct_IO,
7923 .invalidatepage = btrfs_invalidatepage,
7924 .releasepage = btrfs_releasepage,
7925 .set_page_dirty = btrfs_set_page_dirty,
7926 .error_remove_page = generic_error_remove_page,
7927 };
7928
7929 static const struct address_space_operations btrfs_symlink_aops = {
7930 .readpage = btrfs_readpage,
7931 .writepage = btrfs_writepage,
7932 .invalidatepage = btrfs_invalidatepage,
7933 .releasepage = btrfs_releasepage,
7934 };
7935
7936 static const struct inode_operations btrfs_file_inode_operations = {
7937 .getattr = btrfs_getattr,
7938 .setattr = btrfs_setattr,
7939 .setxattr = btrfs_setxattr,
7940 .getxattr = btrfs_getxattr,
7941 .listxattr = btrfs_listxattr,
7942 .removexattr = btrfs_removexattr,
7943 .permission = btrfs_permission,
7944 .fiemap = btrfs_fiemap,
7945 .get_acl = btrfs_get_acl,
7946 .update_time = btrfs_update_time,
7947 };
7948 static const struct inode_operations btrfs_special_inode_operations = {
7949 .getattr = btrfs_getattr,
7950 .setattr = btrfs_setattr,
7951 .permission = btrfs_permission,
7952 .setxattr = btrfs_setxattr,
7953 .getxattr = btrfs_getxattr,
7954 .listxattr = btrfs_listxattr,
7955 .removexattr = btrfs_removexattr,
7956 .get_acl = btrfs_get_acl,
7957 .update_time = btrfs_update_time,
7958 };
7959 static const struct inode_operations btrfs_symlink_inode_operations = {
7960 .readlink = generic_readlink,
7961 .follow_link = page_follow_link_light,
7962 .put_link = page_put_link,
7963 .getattr = btrfs_getattr,
7964 .setattr = btrfs_setattr,
7965 .permission = btrfs_permission,
7966 .setxattr = btrfs_setxattr,
7967 .getxattr = btrfs_getxattr,
7968 .listxattr = btrfs_listxattr,
7969 .removexattr = btrfs_removexattr,
7970 .get_acl = btrfs_get_acl,
7971 .update_time = btrfs_update_time,
7972 };
7973
7974 const struct dentry_operations btrfs_dentry_operations = {
7975 .d_delete = btrfs_dentry_delete,
7976 .d_release = btrfs_dentry_release,
7977 };