]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
917ab6b6c27741bf551391e78e9a2f1fe3248dd1
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 };
75
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101 };
102
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
115
116 static int btrfs_dirty_inode(struct inode *inode);
117
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
128 {
129 int err;
130
131 err = btrfs_init_acl(trans, inode, dir);
132 if (!err)
133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 return err;
135 }
136
137 /*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 struct btrfs_path *path, int extent_inserted,
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
146 int compress_type,
147 struct page **compressed_pages)
148 {
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
157 unsigned long offset;
158
159 if (compressed_size && compressed_pages)
160 cur_size = compressed_size;
161
162 inode_add_bytes(inode, size);
163
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
167
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
170 key.type = BTRFS_EXTENT_DATA_KEY;
171
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
191 if (compress_type != BTRFS_COMPRESS_NONE) {
192 struct page *cpage;
193 int i = 0;
194 while (compressed_size > 0) {
195 cpage = compressed_pages[i];
196 cur_size = min_t(unsigned long, compressed_size,
197 PAGE_CACHE_SIZE);
198
199 kaddr = kmap_atomic(cpage);
200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 kunmap_atomic(kaddr);
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
208 compress_type);
209 } else {
210 page = find_get_page(inode->i_mapping,
211 start >> PAGE_CACHE_SHIFT);
212 btrfs_set_file_extent_compression(leaf, ei, 0);
213 kaddr = kmap_atomic(page);
214 offset = start & (PAGE_CACHE_SIZE - 1);
215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 kunmap_atomic(kaddr);
217 page_cache_release(page);
218 }
219 btrfs_mark_buffer_dirty(leaf);
220 btrfs_release_path(path);
221
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
231 BTRFS_I(inode)->disk_i_size = inode->i_size;
232 ret = btrfs_update_inode(trans, root, inode);
233
234 return ret;
235 fail:
236 return err;
237 }
238
239
240 /*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
250 {
251 struct btrfs_trans_handle *trans;
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
255 u64 aligned_end = ALIGN(end, root->sectorsize);
256 u64 data_len = inline_len;
257 int ret;
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
266 actual_end > PAGE_CACHE_SIZE ||
267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
279 trans = btrfs_join_transaction(root);
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
282 return PTR_ERR(trans);
283 }
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
305 inline_len, compressed_size,
306 compress_type, compressed_pages);
307 if (ret && ret != -ENOSPC) {
308 btrfs_abort_transaction(trans, root, ret);
309 goto out;
310 } else if (ret == -ENOSPC) {
311 ret = 1;
312 goto out;
313 }
314
315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
325 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
326 btrfs_free_path(path);
327 btrfs_end_transaction(trans, root);
328 return ret;
329 }
330
331 struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
337 int compress_type;
338 struct list_head list;
339 };
340
341 struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349 };
350
351 static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
355 unsigned long nr_pages,
356 int compress_type)
357 {
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 BUG_ON(!async_extent); /* -ENOMEM */
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
367 async_extent->compress_type = compress_type;
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370 }
371
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387 }
388
389 /*
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
393 *
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
399 *
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
403 * are written in the same order that the flusher thread sent them
404 * down.
405 */
406 static noinline void compress_file_range(struct inode *inode,
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
411 {
412 struct btrfs_root *root = BTRFS_I(inode)->root;
413 u64 num_bytes;
414 u64 blocksize = root->sectorsize;
415 u64 actual_end;
416 u64 isize = i_size_read(inode);
417 int ret = 0;
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
425 int i;
426 int will_compress;
427 int compress_type = root->fs_info->compress_type;
428 int redirty = 0;
429
430 /* if this is a small write inside eof, kick off a defrag */
431 if ((end - start + 1) < SZ_16K &&
432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
434
435 actual_end = min_t(u64, isize, end + 1);
436 again:
437 will_compress = 0;
438 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_CACHE_SIZE);
440
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
454 total_compressed = actual_end - start;
455
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it dosen't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
475 num_bytes = ALIGN(end - start + 1, blocksize);
476 num_bytes = max(blocksize, num_bytes);
477 total_in = 0;
478 ret = 0;
479
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
484 */
485 if (inode_need_compress(inode)) {
486 WARN_ON(pages);
487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
492
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
517 (PAGE_CACHE_SIZE - 1);
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
525 kaddr = kmap_atomic(page);
526 memset(kaddr + offset, 0,
527 PAGE_CACHE_SIZE - offset);
528 kunmap_atomic(kaddr);
529 }
530 will_compress = 1;
531 }
532 }
533 cont:
534 if (start == 0) {
535 /* lets try to make an inline extent */
536 if (ret || total_in < (actual_end - start)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
539 */
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
542 } else {
543 /* try making a compressed inline extent */
544 ret = cow_file_range_inline(root, inode, start, end,
545 total_compressed,
546 compress_type, pages);
547 }
548 if (ret <= 0) {
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
551 unsigned long page_error_op;
552
553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555
556 /*
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
560 */
561 extent_clear_unlock_delalloc(inode, start, end, NULL,
562 clear_flags, PAGE_UNLOCK |
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
565 page_error_op |
566 PAGE_END_WRITEBACK);
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
577 total_compressed = ALIGN(total_compressed, blocksize);
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
583 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
596 WARN_ON(pages[i]->mapping);
597 page_cache_release(pages[i]);
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 }
609 }
610 if (will_compress) {
611 *num_added += 1;
612
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
620
621 if (start + num_bytes < end) {
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
628 cleanup_and_bail_uncompressed:
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 *num_added += 1;
646 }
647
648 return;
649
650 free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
653 page_cache_release(pages[i]);
654 }
655 kfree(pages);
656 }
657
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 page_cache_release(async_extent->pages[i]);
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
672 }
673
674 /*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 struct async_cow *async_cow)
682 {
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
690 int ret = 0;
691
692 again:
693 while (!list_empty(&async_cow->extents)) {
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
697
698 io_tree = &BTRFS_I(inode)->io_tree;
699
700 retry:
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1);
709
710 /* allocate blocks */
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
716
717 /* JDM XXX */
718
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
725 if (!page_started && !ret)
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
732 else if (ret)
733 unlock_page(async_cow->locked_page);
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
740 async_extent->start + async_extent->ram_size - 1);
741
742 ret = btrfs_reserve_extent(root,
743 async_extent->compressed_size,
744 async_extent->compressed_size,
745 0, alloc_hint, &ins, 1, 1);
746 if (ret) {
747 free_async_extent_pages(async_extent);
748
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
765 goto retry;
766 }
767 goto out_free;
768 }
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
777 em = alloc_extent_map();
778 if (!em) {
779 ret = -ENOMEM;
780 goto out_free_reserve;
781 }
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
784 em->orig_start = em->start;
785 em->mod_start = em->start;
786 em->mod_len = em->len;
787
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
790 em->orig_block_len = ins.offset;
791 em->ram_bytes = async_extent->ram_size;
792 em->bdev = root->fs_info->fs_devices->latest_bdev;
793 em->compress_type = async_extent->compress_type;
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 em->generation = -1;
797
798 while (1) {
799 write_lock(&em_tree->lock);
800 ret = add_extent_mapping(em_tree, em, 1);
801 write_unlock(&em_tree->lock);
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
811 if (ret)
812 goto out_free_reserve;
813
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
825 goto out_free_reserve;
826 }
827
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
831 extent_clear_unlock_delalloc(inode, async_extent->start,
832 async_extent->start +
833 async_extent->ram_size - 1,
834 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
835 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
836 PAGE_SET_WRITEBACK);
837 ret = btrfs_submit_compressed_write(inode,
838 async_extent->start,
839 async_extent->ram_size,
840 ins.objectid,
841 ins.offset, async_extent->pages,
842 async_extent->nr_pages);
843 if (ret) {
844 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
845 struct page *p = async_extent->pages[0];
846 const u64 start = async_extent->start;
847 const u64 end = start + async_extent->ram_size - 1;
848
849 p->mapping = inode->i_mapping;
850 tree->ops->writepage_end_io_hook(p, start, end,
851 NULL, 0);
852 p->mapping = NULL;
853 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
854 PAGE_END_WRITEBACK |
855 PAGE_SET_ERROR);
856 free_async_extent_pages(async_extent);
857 }
858 alloc_hint = ins.objectid + ins.offset;
859 kfree(async_extent);
860 cond_resched();
861 }
862 return;
863 out_free_reserve:
864 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
865 out_free:
866 extent_clear_unlock_delalloc(inode, async_extent->start,
867 async_extent->start +
868 async_extent->ram_size - 1,
869 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
870 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
871 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
872 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
873 PAGE_SET_ERROR);
874 free_async_extent_pages(async_extent);
875 kfree(async_extent);
876 goto again;
877 }
878
879 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
880 u64 num_bytes)
881 {
882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 struct extent_map *em;
884 u64 alloc_hint = 0;
885
886 read_lock(&em_tree->lock);
887 em = search_extent_mapping(em_tree, start, num_bytes);
888 if (em) {
889 /*
890 * if block start isn't an actual block number then find the
891 * first block in this inode and use that as a hint. If that
892 * block is also bogus then just don't worry about it.
893 */
894 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
895 free_extent_map(em);
896 em = search_extent_mapping(em_tree, 0, 0);
897 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
898 alloc_hint = em->block_start;
899 if (em)
900 free_extent_map(em);
901 } else {
902 alloc_hint = em->block_start;
903 free_extent_map(em);
904 }
905 }
906 read_unlock(&em_tree->lock);
907
908 return alloc_hint;
909 }
910
911 /*
912 * when extent_io.c finds a delayed allocation range in the file,
913 * the call backs end up in this code. The basic idea is to
914 * allocate extents on disk for the range, and create ordered data structs
915 * in ram to track those extents.
916 *
917 * locked_page is the page that writepage had locked already. We use
918 * it to make sure we don't do extra locks or unlocks.
919 *
920 * *page_started is set to one if we unlock locked_page and do everything
921 * required to start IO on it. It may be clean and already done with
922 * IO when we return.
923 */
924 static noinline int cow_file_range(struct inode *inode,
925 struct page *locked_page,
926 u64 start, u64 end, int *page_started,
927 unsigned long *nr_written,
928 int unlock)
929 {
930 struct btrfs_root *root = BTRFS_I(inode)->root;
931 u64 alloc_hint = 0;
932 u64 num_bytes;
933 unsigned long ram_size;
934 u64 disk_num_bytes;
935 u64 cur_alloc_size;
936 u64 blocksize = root->sectorsize;
937 struct btrfs_key ins;
938 struct extent_map *em;
939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
940 int ret = 0;
941
942 if (btrfs_is_free_space_inode(inode)) {
943 WARN_ON_ONCE(1);
944 ret = -EINVAL;
945 goto out_unlock;
946 }
947
948 num_bytes = ALIGN(end - start + 1, blocksize);
949 num_bytes = max(blocksize, num_bytes);
950 disk_num_bytes = num_bytes;
951
952 /* if this is a small write inside eof, kick off defrag */
953 if (num_bytes < SZ_64K &&
954 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
955 btrfs_add_inode_defrag(NULL, inode);
956
957 if (start == 0) {
958 /* lets try to make an inline extent */
959 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
960 NULL);
961 if (ret == 0) {
962 extent_clear_unlock_delalloc(inode, start, end, NULL,
963 EXTENT_LOCKED | EXTENT_DELALLOC |
964 EXTENT_DEFRAG, PAGE_UNLOCK |
965 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
966 PAGE_END_WRITEBACK);
967
968 *nr_written = *nr_written +
969 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
970 *page_started = 1;
971 goto out;
972 } else if (ret < 0) {
973 goto out_unlock;
974 }
975 }
976
977 BUG_ON(disk_num_bytes >
978 btrfs_super_total_bytes(root->fs_info->super_copy));
979
980 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
981 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
982
983 while (disk_num_bytes > 0) {
984 unsigned long op;
985
986 cur_alloc_size = disk_num_bytes;
987 ret = btrfs_reserve_extent(root, cur_alloc_size,
988 root->sectorsize, 0, alloc_hint,
989 &ins, 1, 1);
990 if (ret < 0)
991 goto out_unlock;
992
993 em = alloc_extent_map();
994 if (!em) {
995 ret = -ENOMEM;
996 goto out_reserve;
997 }
998 em->start = start;
999 em->orig_start = em->start;
1000 ram_size = ins.offset;
1001 em->len = ins.offset;
1002 em->mod_start = em->start;
1003 em->mod_len = em->len;
1004
1005 em->block_start = ins.objectid;
1006 em->block_len = ins.offset;
1007 em->orig_block_len = ins.offset;
1008 em->ram_bytes = ram_size;
1009 em->bdev = root->fs_info->fs_devices->latest_bdev;
1010 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1011 em->generation = -1;
1012
1013 while (1) {
1014 write_lock(&em_tree->lock);
1015 ret = add_extent_mapping(em_tree, em, 1);
1016 write_unlock(&em_tree->lock);
1017 if (ret != -EEXIST) {
1018 free_extent_map(em);
1019 break;
1020 }
1021 btrfs_drop_extent_cache(inode, start,
1022 start + ram_size - 1, 0);
1023 }
1024 if (ret)
1025 goto out_reserve;
1026
1027 cur_alloc_size = ins.offset;
1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1029 ram_size, cur_alloc_size, 0);
1030 if (ret)
1031 goto out_drop_extent_cache;
1032
1033 if (root->root_key.objectid ==
1034 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 ret = btrfs_reloc_clone_csums(inode, start,
1036 cur_alloc_size);
1037 if (ret)
1038 goto out_drop_extent_cache;
1039 }
1040
1041 if (disk_num_bytes < cur_alloc_size)
1042 break;
1043
1044 /* we're not doing compressed IO, don't unlock the first
1045 * page (which the caller expects to stay locked), don't
1046 * clear any dirty bits and don't set any writeback bits
1047 *
1048 * Do set the Private2 bit so we know this page was properly
1049 * setup for writepage
1050 */
1051 op = unlock ? PAGE_UNLOCK : 0;
1052 op |= PAGE_SET_PRIVATE2;
1053
1054 extent_clear_unlock_delalloc(inode, start,
1055 start + ram_size - 1, locked_page,
1056 EXTENT_LOCKED | EXTENT_DELALLOC,
1057 op);
1058 disk_num_bytes -= cur_alloc_size;
1059 num_bytes -= cur_alloc_size;
1060 alloc_hint = ins.objectid + ins.offset;
1061 start += cur_alloc_size;
1062 }
1063 out:
1064 return ret;
1065
1066 out_drop_extent_cache:
1067 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1068 out_reserve:
1069 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1070 out_unlock:
1071 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1072 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1073 EXTENT_DELALLOC | EXTENT_DEFRAG,
1074 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1075 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1076 goto out;
1077 }
1078
1079 /*
1080 * work queue call back to started compression on a file and pages
1081 */
1082 static noinline void async_cow_start(struct btrfs_work *work)
1083 {
1084 struct async_cow *async_cow;
1085 int num_added = 0;
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 compress_file_range(async_cow->inode, async_cow->locked_page,
1089 async_cow->start, async_cow->end, async_cow,
1090 &num_added);
1091 if (num_added == 0) {
1092 btrfs_add_delayed_iput(async_cow->inode);
1093 async_cow->inode = NULL;
1094 }
1095 }
1096
1097 /*
1098 * work queue call back to submit previously compressed pages
1099 */
1100 static noinline void async_cow_submit(struct btrfs_work *work)
1101 {
1102 struct async_cow *async_cow;
1103 struct btrfs_root *root;
1104 unsigned long nr_pages;
1105
1106 async_cow = container_of(work, struct async_cow, work);
1107
1108 root = async_cow->root;
1109 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1110 PAGE_CACHE_SHIFT;
1111
1112 /*
1113 * atomic_sub_return implies a barrier for waitqueue_active
1114 */
1115 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1116 5 * SZ_1M &&
1117 waitqueue_active(&root->fs_info->async_submit_wait))
1118 wake_up(&root->fs_info->async_submit_wait);
1119
1120 if (async_cow->inode)
1121 submit_compressed_extents(async_cow->inode, async_cow);
1122 }
1123
1124 static noinline void async_cow_free(struct btrfs_work *work)
1125 {
1126 struct async_cow *async_cow;
1127 async_cow = container_of(work, struct async_cow, work);
1128 if (async_cow->inode)
1129 btrfs_add_delayed_iput(async_cow->inode);
1130 kfree(async_cow);
1131 }
1132
1133 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1134 u64 start, u64 end, int *page_started,
1135 unsigned long *nr_written)
1136 {
1137 struct async_cow *async_cow;
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 unsigned long nr_pages;
1140 u64 cur_end;
1141 int limit = 10 * SZ_1M;
1142
1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1144 1, 0, NULL, GFP_NOFS);
1145 while (start < end) {
1146 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1147 BUG_ON(!async_cow); /* -ENOMEM */
1148 async_cow->inode = igrab(inode);
1149 async_cow->root = root;
1150 async_cow->locked_page = locked_page;
1151 async_cow->start = start;
1152
1153 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1154 !btrfs_test_opt(root, FORCE_COMPRESS))
1155 cur_end = end;
1156 else
1157 cur_end = min(end, start + SZ_512K - 1);
1158
1159 async_cow->end = cur_end;
1160 INIT_LIST_HEAD(&async_cow->extents);
1161
1162 btrfs_init_work(&async_cow->work,
1163 btrfs_delalloc_helper,
1164 async_cow_start, async_cow_submit,
1165 async_cow_free);
1166
1167 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1168 PAGE_CACHE_SHIFT;
1169 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1170
1171 btrfs_queue_work(root->fs_info->delalloc_workers,
1172 &async_cow->work);
1173
1174 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1175 wait_event(root->fs_info->async_submit_wait,
1176 (atomic_read(&root->fs_info->async_delalloc_pages) <
1177 limit));
1178 }
1179
1180 while (atomic_read(&root->fs_info->async_submit_draining) &&
1181 atomic_read(&root->fs_info->async_delalloc_pages)) {
1182 wait_event(root->fs_info->async_submit_wait,
1183 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1184 0));
1185 }
1186
1187 *nr_written += nr_pages;
1188 start = cur_end + 1;
1189 }
1190 *page_started = 1;
1191 return 0;
1192 }
1193
1194 static noinline int csum_exist_in_range(struct btrfs_root *root,
1195 u64 bytenr, u64 num_bytes)
1196 {
1197 int ret;
1198 struct btrfs_ordered_sum *sums;
1199 LIST_HEAD(list);
1200
1201 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1202 bytenr + num_bytes - 1, &list, 0);
1203 if (ret == 0 && list_empty(&list))
1204 return 0;
1205
1206 while (!list_empty(&list)) {
1207 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1208 list_del(&sums->list);
1209 kfree(sums);
1210 }
1211 return 1;
1212 }
1213
1214 /*
1215 * when nowcow writeback call back. This checks for snapshots or COW copies
1216 * of the extents that exist in the file, and COWs the file as required.
1217 *
1218 * If no cow copies or snapshots exist, we write directly to the existing
1219 * blocks on disk
1220 */
1221 static noinline int run_delalloc_nocow(struct inode *inode,
1222 struct page *locked_page,
1223 u64 start, u64 end, int *page_started, int force,
1224 unsigned long *nr_written)
1225 {
1226 struct btrfs_root *root = BTRFS_I(inode)->root;
1227 struct btrfs_trans_handle *trans;
1228 struct extent_buffer *leaf;
1229 struct btrfs_path *path;
1230 struct btrfs_file_extent_item *fi;
1231 struct btrfs_key found_key;
1232 u64 cow_start;
1233 u64 cur_offset;
1234 u64 extent_end;
1235 u64 extent_offset;
1236 u64 disk_bytenr;
1237 u64 num_bytes;
1238 u64 disk_num_bytes;
1239 u64 ram_bytes;
1240 int extent_type;
1241 int ret, err;
1242 int type;
1243 int nocow;
1244 int check_prev = 1;
1245 bool nolock;
1246 u64 ino = btrfs_ino(inode);
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1251 EXTENT_LOCKED | EXTENT_DELALLOC |
1252 EXTENT_DO_ACCOUNTING |
1253 EXTENT_DEFRAG, PAGE_UNLOCK |
1254 PAGE_CLEAR_DIRTY |
1255 PAGE_SET_WRITEBACK |
1256 PAGE_END_WRITEBACK);
1257 return -ENOMEM;
1258 }
1259
1260 nolock = btrfs_is_free_space_inode(inode);
1261
1262 if (nolock)
1263 trans = btrfs_join_transaction_nolock(root);
1264 else
1265 trans = btrfs_join_transaction(root);
1266
1267 if (IS_ERR(trans)) {
1268 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1269 EXTENT_LOCKED | EXTENT_DELALLOC |
1270 EXTENT_DO_ACCOUNTING |
1271 EXTENT_DEFRAG, PAGE_UNLOCK |
1272 PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK |
1274 PAGE_END_WRITEBACK);
1275 btrfs_free_path(path);
1276 return PTR_ERR(trans);
1277 }
1278
1279 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1280
1281 cow_start = (u64)-1;
1282 cur_offset = start;
1283 while (1) {
1284 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1285 cur_offset, 0);
1286 if (ret < 0)
1287 goto error;
1288 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &found_key,
1291 path->slots[0] - 1);
1292 if (found_key.objectid == ino &&
1293 found_key.type == BTRFS_EXTENT_DATA_KEY)
1294 path->slots[0]--;
1295 }
1296 check_prev = 0;
1297 next_slot:
1298 leaf = path->nodes[0];
1299 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1300 ret = btrfs_next_leaf(root, path);
1301 if (ret < 0)
1302 goto error;
1303 if (ret > 0)
1304 break;
1305 leaf = path->nodes[0];
1306 }
1307
1308 nocow = 0;
1309 disk_bytenr = 0;
1310 num_bytes = 0;
1311 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1312
1313 if (found_key.objectid > ino)
1314 break;
1315 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1316 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1317 path->slots[0]++;
1318 goto next_slot;
1319 }
1320 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1321 found_key.offset > end)
1322 break;
1323
1324 if (found_key.offset > cur_offset) {
1325 extent_end = found_key.offset;
1326 extent_type = 0;
1327 goto out_check;
1328 }
1329
1330 fi = btrfs_item_ptr(leaf, path->slots[0],
1331 struct btrfs_file_extent_item);
1332 extent_type = btrfs_file_extent_type(leaf, fi);
1333
1334 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1335 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1336 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1338 extent_offset = btrfs_file_extent_offset(leaf, fi);
1339 extent_end = found_key.offset +
1340 btrfs_file_extent_num_bytes(leaf, fi);
1341 disk_num_bytes =
1342 btrfs_file_extent_disk_num_bytes(leaf, fi);
1343 if (extent_end <= start) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
1347 if (disk_bytenr == 0)
1348 goto out_check;
1349 if (btrfs_file_extent_compression(leaf, fi) ||
1350 btrfs_file_extent_encryption(leaf, fi) ||
1351 btrfs_file_extent_other_encoding(leaf, fi))
1352 goto out_check;
1353 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1354 goto out_check;
1355 if (btrfs_extent_readonly(root, disk_bytenr))
1356 goto out_check;
1357 if (btrfs_cross_ref_exist(trans, root, ino,
1358 found_key.offset -
1359 extent_offset, disk_bytenr))
1360 goto out_check;
1361 disk_bytenr += extent_offset;
1362 disk_bytenr += cur_offset - found_key.offset;
1363 num_bytes = min(end + 1, extent_end) - cur_offset;
1364 /*
1365 * if there are pending snapshots for this root,
1366 * we fall into common COW way.
1367 */
1368 if (!nolock) {
1369 err = btrfs_start_write_no_snapshoting(root);
1370 if (!err)
1371 goto out_check;
1372 }
1373 /*
1374 * force cow if csum exists in the range.
1375 * this ensure that csum for a given extent are
1376 * either valid or do not exist.
1377 */
1378 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1379 goto out_check;
1380 nocow = 1;
1381 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1382 extent_end = found_key.offset +
1383 btrfs_file_extent_inline_len(leaf,
1384 path->slots[0], fi);
1385 extent_end = ALIGN(extent_end, root->sectorsize);
1386 } else {
1387 BUG_ON(1);
1388 }
1389 out_check:
1390 if (extent_end <= start) {
1391 path->slots[0]++;
1392 if (!nolock && nocow)
1393 btrfs_end_write_no_snapshoting(root);
1394 goto next_slot;
1395 }
1396 if (!nocow) {
1397 if (cow_start == (u64)-1)
1398 cow_start = cur_offset;
1399 cur_offset = extent_end;
1400 if (cur_offset > end)
1401 break;
1402 path->slots[0]++;
1403 goto next_slot;
1404 }
1405
1406 btrfs_release_path(path);
1407 if (cow_start != (u64)-1) {
1408 ret = cow_file_range(inode, locked_page,
1409 cow_start, found_key.offset - 1,
1410 page_started, nr_written, 1);
1411 if (ret) {
1412 if (!nolock && nocow)
1413 btrfs_end_write_no_snapshoting(root);
1414 goto error;
1415 }
1416 cow_start = (u64)-1;
1417 }
1418
1419 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 struct extent_map *em;
1421 struct extent_map_tree *em_tree;
1422 em_tree = &BTRFS_I(inode)->extent_tree;
1423 em = alloc_extent_map();
1424 BUG_ON(!em); /* -ENOMEM */
1425 em->start = cur_offset;
1426 em->orig_start = found_key.offset - extent_offset;
1427 em->len = num_bytes;
1428 em->block_len = num_bytes;
1429 em->block_start = disk_bytenr;
1430 em->orig_block_len = disk_num_bytes;
1431 em->ram_bytes = ram_bytes;
1432 em->bdev = root->fs_info->fs_devices->latest_bdev;
1433 em->mod_start = em->start;
1434 em->mod_len = em->len;
1435 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1436 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1437 em->generation = -1;
1438 while (1) {
1439 write_lock(&em_tree->lock);
1440 ret = add_extent_mapping(em_tree, em, 1);
1441 write_unlock(&em_tree->lock);
1442 if (ret != -EEXIST) {
1443 free_extent_map(em);
1444 break;
1445 }
1446 btrfs_drop_extent_cache(inode, em->start,
1447 em->start + em->len - 1, 0);
1448 }
1449 type = BTRFS_ORDERED_PREALLOC;
1450 } else {
1451 type = BTRFS_ORDERED_NOCOW;
1452 }
1453
1454 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1455 num_bytes, num_bytes, type);
1456 BUG_ON(ret); /* -ENOMEM */
1457
1458 if (root->root_key.objectid ==
1459 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1460 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1461 num_bytes);
1462 if (ret) {
1463 if (!nolock && nocow)
1464 btrfs_end_write_no_snapshoting(root);
1465 goto error;
1466 }
1467 }
1468
1469 extent_clear_unlock_delalloc(inode, cur_offset,
1470 cur_offset + num_bytes - 1,
1471 locked_page, EXTENT_LOCKED |
1472 EXTENT_DELALLOC, PAGE_UNLOCK |
1473 PAGE_SET_PRIVATE2);
1474 if (!nolock && nocow)
1475 btrfs_end_write_no_snapshoting(root);
1476 cur_offset = extent_end;
1477 if (cur_offset > end)
1478 break;
1479 }
1480 btrfs_release_path(path);
1481
1482 if (cur_offset <= end && cow_start == (u64)-1) {
1483 cow_start = cur_offset;
1484 cur_offset = end;
1485 }
1486
1487 if (cow_start != (u64)-1) {
1488 ret = cow_file_range(inode, locked_page, cow_start, end,
1489 page_started, nr_written, 1);
1490 if (ret)
1491 goto error;
1492 }
1493
1494 error:
1495 err = btrfs_end_transaction(trans, root);
1496 if (!ret)
1497 ret = err;
1498
1499 if (ret && cur_offset < end)
1500 extent_clear_unlock_delalloc(inode, cur_offset, end,
1501 locked_page, EXTENT_LOCKED |
1502 EXTENT_DELALLOC | EXTENT_DEFRAG |
1503 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1504 PAGE_CLEAR_DIRTY |
1505 PAGE_SET_WRITEBACK |
1506 PAGE_END_WRITEBACK);
1507 btrfs_free_path(path);
1508 return ret;
1509 }
1510
1511 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1512 {
1513
1514 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1515 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1516 return 0;
1517
1518 /*
1519 * @defrag_bytes is a hint value, no spinlock held here,
1520 * if is not zero, it means the file is defragging.
1521 * Force cow if given extent needs to be defragged.
1522 */
1523 if (BTRFS_I(inode)->defrag_bytes &&
1524 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1525 EXTENT_DEFRAG, 0, NULL))
1526 return 1;
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * extent_io.c call back to do delayed allocation processing
1533 */
1534 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1535 u64 start, u64 end, int *page_started,
1536 unsigned long *nr_written)
1537 {
1538 int ret;
1539 int force_cow = need_force_cow(inode, start, end);
1540
1541 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1542 ret = run_delalloc_nocow(inode, locked_page, start, end,
1543 page_started, 1, nr_written);
1544 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1545 ret = run_delalloc_nocow(inode, locked_page, start, end,
1546 page_started, 0, nr_written);
1547 } else if (!inode_need_compress(inode)) {
1548 ret = cow_file_range(inode, locked_page, start, end,
1549 page_started, nr_written, 1);
1550 } else {
1551 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 &BTRFS_I(inode)->runtime_flags);
1553 ret = cow_file_range_async(inode, locked_page, start, end,
1554 page_started, nr_written);
1555 }
1556 return ret;
1557 }
1558
1559 static void btrfs_split_extent_hook(struct inode *inode,
1560 struct extent_state *orig, u64 split)
1561 {
1562 u64 size;
1563
1564 /* not delalloc, ignore it */
1565 if (!(orig->state & EXTENT_DELALLOC))
1566 return;
1567
1568 size = orig->end - orig->start + 1;
1569 if (size > BTRFS_MAX_EXTENT_SIZE) {
1570 u64 num_extents;
1571 u64 new_size;
1572
1573 /*
1574 * See the explanation in btrfs_merge_extent_hook, the same
1575 * applies here, just in reverse.
1576 */
1577 new_size = orig->end - split + 1;
1578 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1579 BTRFS_MAX_EXTENT_SIZE);
1580 new_size = split - orig->start;
1581 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1582 BTRFS_MAX_EXTENT_SIZE);
1583 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1585 return;
1586 }
1587
1588 spin_lock(&BTRFS_I(inode)->lock);
1589 BTRFS_I(inode)->outstanding_extents++;
1590 spin_unlock(&BTRFS_I(inode)->lock);
1591 }
1592
1593 /*
1594 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1595 * extents so we can keep track of new extents that are just merged onto old
1596 * extents, such as when we are doing sequential writes, so we can properly
1597 * account for the metadata space we'll need.
1598 */
1599 static void btrfs_merge_extent_hook(struct inode *inode,
1600 struct extent_state *new,
1601 struct extent_state *other)
1602 {
1603 u64 new_size, old_size;
1604 u64 num_extents;
1605
1606 /* not delalloc, ignore it */
1607 if (!(other->state & EXTENT_DELALLOC))
1608 return;
1609
1610 if (new->start > other->start)
1611 new_size = new->end - other->start + 1;
1612 else
1613 new_size = other->end - new->start + 1;
1614
1615 /* we're not bigger than the max, unreserve the space and go */
1616 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1617 spin_lock(&BTRFS_I(inode)->lock);
1618 BTRFS_I(inode)->outstanding_extents--;
1619 spin_unlock(&BTRFS_I(inode)->lock);
1620 return;
1621 }
1622
1623 /*
1624 * We have to add up either side to figure out how many extents were
1625 * accounted for before we merged into one big extent. If the number of
1626 * extents we accounted for is <= the amount we need for the new range
1627 * then we can return, otherwise drop. Think of it like this
1628 *
1629 * [ 4k][MAX_SIZE]
1630 *
1631 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1632 * need 2 outstanding extents, on one side we have 1 and the other side
1633 * we have 1 so they are == and we can return. But in this case
1634 *
1635 * [MAX_SIZE+4k][MAX_SIZE+4k]
1636 *
1637 * Each range on their own accounts for 2 extents, but merged together
1638 * they are only 3 extents worth of accounting, so we need to drop in
1639 * this case.
1640 */
1641 old_size = other->end - other->start + 1;
1642 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 BTRFS_MAX_EXTENT_SIZE);
1644 old_size = new->end - new->start + 1;
1645 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1646 BTRFS_MAX_EXTENT_SIZE);
1647
1648 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1649 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1650 return;
1651
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 BTRFS_I(inode)->outstanding_extents--;
1654 spin_unlock(&BTRFS_I(inode)->lock);
1655 }
1656
1657 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1658 struct inode *inode)
1659 {
1660 spin_lock(&root->delalloc_lock);
1661 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1662 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1663 &root->delalloc_inodes);
1664 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1665 &BTRFS_I(inode)->runtime_flags);
1666 root->nr_delalloc_inodes++;
1667 if (root->nr_delalloc_inodes == 1) {
1668 spin_lock(&root->fs_info->delalloc_root_lock);
1669 BUG_ON(!list_empty(&root->delalloc_root));
1670 list_add_tail(&root->delalloc_root,
1671 &root->fs_info->delalloc_roots);
1672 spin_unlock(&root->fs_info->delalloc_root_lock);
1673 }
1674 }
1675 spin_unlock(&root->delalloc_lock);
1676 }
1677
1678 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1679 struct inode *inode)
1680 {
1681 spin_lock(&root->delalloc_lock);
1682 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1683 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1684 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes--;
1687 if (!root->nr_delalloc_inodes) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(list_empty(&root->delalloc_root));
1690 list_del_init(&root->delalloc_root);
1691 spin_unlock(&root->fs_info->delalloc_root_lock);
1692 }
1693 }
1694 spin_unlock(&root->delalloc_lock);
1695 }
1696
1697 /*
1698 * extent_io.c set_bit_hook, used to track delayed allocation
1699 * bytes in this file, and to maintain the list of inodes that
1700 * have pending delalloc work to be done.
1701 */
1702 static void btrfs_set_bit_hook(struct inode *inode,
1703 struct extent_state *state, unsigned *bits)
1704 {
1705
1706 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1707 WARN_ON(1);
1708 /*
1709 * set_bit and clear bit hooks normally require _irqsave/restore
1710 * but in this case, we are only testing for the DELALLOC
1711 * bit, which is only set or cleared with irqs on
1712 */
1713 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1714 struct btrfs_root *root = BTRFS_I(inode)->root;
1715 u64 len = state->end + 1 - state->start;
1716 bool do_list = !btrfs_is_free_space_inode(inode);
1717
1718 if (*bits & EXTENT_FIRST_DELALLOC) {
1719 *bits &= ~EXTENT_FIRST_DELALLOC;
1720 } else {
1721 spin_lock(&BTRFS_I(inode)->lock);
1722 BTRFS_I(inode)->outstanding_extents++;
1723 spin_unlock(&BTRFS_I(inode)->lock);
1724 }
1725
1726 /* For sanity tests */
1727 if (btrfs_test_is_dummy_root(root))
1728 return;
1729
1730 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1731 root->fs_info->delalloc_batch);
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 BTRFS_I(inode)->delalloc_bytes += len;
1734 if (*bits & EXTENT_DEFRAG)
1735 BTRFS_I(inode)->defrag_bytes += len;
1736 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 &BTRFS_I(inode)->runtime_flags))
1738 btrfs_add_delalloc_inodes(root, inode);
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
1741 }
1742
1743 /*
1744 * extent_io.c clear_bit_hook, see set_bit_hook for why
1745 */
1746 static void btrfs_clear_bit_hook(struct inode *inode,
1747 struct extent_state *state,
1748 unsigned *bits)
1749 {
1750 u64 len = state->end + 1 - state->start;
1751 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1752 BTRFS_MAX_EXTENT_SIZE);
1753
1754 spin_lock(&BTRFS_I(inode)->lock);
1755 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1756 BTRFS_I(inode)->defrag_bytes -= len;
1757 spin_unlock(&BTRFS_I(inode)->lock);
1758
1759 /*
1760 * set_bit and clear bit hooks normally require _irqsave/restore
1761 * but in this case, we are only testing for the DELALLOC
1762 * bit, which is only set or cleared with irqs on
1763 */
1764 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1765 struct btrfs_root *root = BTRFS_I(inode)->root;
1766 bool do_list = !btrfs_is_free_space_inode(inode);
1767
1768 if (*bits & EXTENT_FIRST_DELALLOC) {
1769 *bits &= ~EXTENT_FIRST_DELALLOC;
1770 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1771 spin_lock(&BTRFS_I(inode)->lock);
1772 BTRFS_I(inode)->outstanding_extents -= num_extents;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774 }
1775
1776 /*
1777 * We don't reserve metadata space for space cache inodes so we
1778 * don't need to call dellalloc_release_metadata if there is an
1779 * error.
1780 */
1781 if (*bits & EXTENT_DO_ACCOUNTING &&
1782 root != root->fs_info->tree_root)
1783 btrfs_delalloc_release_metadata(inode, len);
1784
1785 /* For sanity tests. */
1786 if (btrfs_test_is_dummy_root(root))
1787 return;
1788
1789 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1790 && do_list && !(state->state & EXTENT_NORESERVE))
1791 btrfs_free_reserved_data_space_noquota(inode,
1792 state->start, len);
1793
1794 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1795 root->fs_info->delalloc_batch);
1796 spin_lock(&BTRFS_I(inode)->lock);
1797 BTRFS_I(inode)->delalloc_bytes -= len;
1798 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1799 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1800 &BTRFS_I(inode)->runtime_flags))
1801 btrfs_del_delalloc_inode(root, inode);
1802 spin_unlock(&BTRFS_I(inode)->lock);
1803 }
1804 }
1805
1806 /*
1807 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1808 * we don't create bios that span stripes or chunks
1809 */
1810 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1811 size_t size, struct bio *bio,
1812 unsigned long bio_flags)
1813 {
1814 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1815 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1816 u64 length = 0;
1817 u64 map_length;
1818 int ret;
1819
1820 if (bio_flags & EXTENT_BIO_COMPRESSED)
1821 return 0;
1822
1823 length = bio->bi_iter.bi_size;
1824 map_length = length;
1825 ret = btrfs_map_block(root->fs_info, rw, logical,
1826 &map_length, NULL, 0);
1827 /* Will always return 0 with map_multi == NULL */
1828 BUG_ON(ret < 0);
1829 if (map_length < length + size)
1830 return 1;
1831 return 0;
1832 }
1833
1834 /*
1835 * in order to insert checksums into the metadata in large chunks,
1836 * we wait until bio submission time. All the pages in the bio are
1837 * checksummed and sums are attached onto the ordered extent record.
1838 *
1839 * At IO completion time the cums attached on the ordered extent record
1840 * are inserted into the btree
1841 */
1842 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1843 struct bio *bio, int mirror_num,
1844 unsigned long bio_flags,
1845 u64 bio_offset)
1846 {
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
1848 int ret = 0;
1849
1850 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1851 BUG_ON(ret); /* -ENOMEM */
1852 return 0;
1853 }
1854
1855 /*
1856 * in order to insert checksums into the metadata in large chunks,
1857 * we wait until bio submission time. All the pages in the bio are
1858 * checksummed and sums are attached onto the ordered extent record.
1859 *
1860 * At IO completion time the cums attached on the ordered extent record
1861 * are inserted into the btree
1862 */
1863 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1864 int mirror_num, unsigned long bio_flags,
1865 u64 bio_offset)
1866 {
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1868 int ret;
1869
1870 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1871 if (ret) {
1872 bio->bi_error = ret;
1873 bio_endio(bio);
1874 }
1875 return ret;
1876 }
1877
1878 /*
1879 * extent_io.c submission hook. This does the right thing for csum calculation
1880 * on write, or reading the csums from the tree before a read
1881 */
1882 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1883 int mirror_num, unsigned long bio_flags,
1884 u64 bio_offset)
1885 {
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
1887 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1888 int ret = 0;
1889 int skip_sum;
1890 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1891
1892 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1893
1894 if (btrfs_is_free_space_inode(inode))
1895 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1896
1897 if (!(rw & REQ_WRITE)) {
1898 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1899 if (ret)
1900 goto out;
1901
1902 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1903 ret = btrfs_submit_compressed_read(inode, bio,
1904 mirror_num,
1905 bio_flags);
1906 goto out;
1907 } else if (!skip_sum) {
1908 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1909 if (ret)
1910 goto out;
1911 }
1912 goto mapit;
1913 } else if (async && !skip_sum) {
1914 /* csum items have already been cloned */
1915 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1916 goto mapit;
1917 /* we're doing a write, do the async checksumming */
1918 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1919 inode, rw, bio, mirror_num,
1920 bio_flags, bio_offset,
1921 __btrfs_submit_bio_start,
1922 __btrfs_submit_bio_done);
1923 goto out;
1924 } else if (!skip_sum) {
1925 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1926 if (ret)
1927 goto out;
1928 }
1929
1930 mapit:
1931 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1932
1933 out:
1934 if (ret < 0) {
1935 bio->bi_error = ret;
1936 bio_endio(bio);
1937 }
1938 return ret;
1939 }
1940
1941 /*
1942 * given a list of ordered sums record them in the inode. This happens
1943 * at IO completion time based on sums calculated at bio submission time.
1944 */
1945 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1946 struct inode *inode, u64 file_offset,
1947 struct list_head *list)
1948 {
1949 struct btrfs_ordered_sum *sum;
1950
1951 list_for_each_entry(sum, list, list) {
1952 trans->adding_csums = 1;
1953 btrfs_csum_file_blocks(trans,
1954 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1955 trans->adding_csums = 0;
1956 }
1957 return 0;
1958 }
1959
1960 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1961 struct extent_state **cached_state)
1962 {
1963 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1964 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1965 cached_state, GFP_NOFS);
1966 }
1967
1968 /* see btrfs_writepage_start_hook for details on why this is required */
1969 struct btrfs_writepage_fixup {
1970 struct page *page;
1971 struct btrfs_work work;
1972 };
1973
1974 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1975 {
1976 struct btrfs_writepage_fixup *fixup;
1977 struct btrfs_ordered_extent *ordered;
1978 struct extent_state *cached_state = NULL;
1979 struct page *page;
1980 struct inode *inode;
1981 u64 page_start;
1982 u64 page_end;
1983 int ret;
1984
1985 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1986 page = fixup->page;
1987 again:
1988 lock_page(page);
1989 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1990 ClearPageChecked(page);
1991 goto out_page;
1992 }
1993
1994 inode = page->mapping->host;
1995 page_start = page_offset(page);
1996 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1997
1998 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
1999 &cached_state);
2000
2001 /* already ordered? We're done */
2002 if (PagePrivate2(page))
2003 goto out;
2004
2005 ordered = btrfs_lookup_ordered_range(inode, page_start,
2006 PAGE_CACHE_SIZE);
2007 if (ordered) {
2008 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2009 page_end, &cached_state, GFP_NOFS);
2010 unlock_page(page);
2011 btrfs_start_ordered_extent(inode, ordered, 1);
2012 btrfs_put_ordered_extent(ordered);
2013 goto again;
2014 }
2015
2016 ret = btrfs_delalloc_reserve_space(inode, page_start,
2017 PAGE_CACHE_SIZE);
2018 if (ret) {
2019 mapping_set_error(page->mapping, ret);
2020 end_extent_writepage(page, ret, page_start, page_end);
2021 ClearPageChecked(page);
2022 goto out;
2023 }
2024
2025 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2026 ClearPageChecked(page);
2027 set_page_dirty(page);
2028 out:
2029 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2030 &cached_state, GFP_NOFS);
2031 out_page:
2032 unlock_page(page);
2033 page_cache_release(page);
2034 kfree(fixup);
2035 }
2036
2037 /*
2038 * There are a few paths in the higher layers of the kernel that directly
2039 * set the page dirty bit without asking the filesystem if it is a
2040 * good idea. This causes problems because we want to make sure COW
2041 * properly happens and the data=ordered rules are followed.
2042 *
2043 * In our case any range that doesn't have the ORDERED bit set
2044 * hasn't been properly setup for IO. We kick off an async process
2045 * to fix it up. The async helper will wait for ordered extents, set
2046 * the delalloc bit and make it safe to write the page.
2047 */
2048 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2049 {
2050 struct inode *inode = page->mapping->host;
2051 struct btrfs_writepage_fixup *fixup;
2052 struct btrfs_root *root = BTRFS_I(inode)->root;
2053
2054 /* this page is properly in the ordered list */
2055 if (TestClearPagePrivate2(page))
2056 return 0;
2057
2058 if (PageChecked(page))
2059 return -EAGAIN;
2060
2061 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2062 if (!fixup)
2063 return -EAGAIN;
2064
2065 SetPageChecked(page);
2066 page_cache_get(page);
2067 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2068 btrfs_writepage_fixup_worker, NULL, NULL);
2069 fixup->page = page;
2070 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2071 return -EBUSY;
2072 }
2073
2074 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2075 struct inode *inode, u64 file_pos,
2076 u64 disk_bytenr, u64 disk_num_bytes,
2077 u64 num_bytes, u64 ram_bytes,
2078 u8 compression, u8 encryption,
2079 u16 other_encoding, int extent_type)
2080 {
2081 struct btrfs_root *root = BTRFS_I(inode)->root;
2082 struct btrfs_file_extent_item *fi;
2083 struct btrfs_path *path;
2084 struct extent_buffer *leaf;
2085 struct btrfs_key ins;
2086 int extent_inserted = 0;
2087 int ret;
2088
2089 path = btrfs_alloc_path();
2090 if (!path)
2091 return -ENOMEM;
2092
2093 /*
2094 * we may be replacing one extent in the tree with another.
2095 * The new extent is pinned in the extent map, and we don't want
2096 * to drop it from the cache until it is completely in the btree.
2097 *
2098 * So, tell btrfs_drop_extents to leave this extent in the cache.
2099 * the caller is expected to unpin it and allow it to be merged
2100 * with the others.
2101 */
2102 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2103 file_pos + num_bytes, NULL, 0,
2104 1, sizeof(*fi), &extent_inserted);
2105 if (ret)
2106 goto out;
2107
2108 if (!extent_inserted) {
2109 ins.objectid = btrfs_ino(inode);
2110 ins.offset = file_pos;
2111 ins.type = BTRFS_EXTENT_DATA_KEY;
2112
2113 path->leave_spinning = 1;
2114 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2115 sizeof(*fi));
2116 if (ret)
2117 goto out;
2118 }
2119 leaf = path->nodes[0];
2120 fi = btrfs_item_ptr(leaf, path->slots[0],
2121 struct btrfs_file_extent_item);
2122 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2123 btrfs_set_file_extent_type(leaf, fi, extent_type);
2124 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2125 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2126 btrfs_set_file_extent_offset(leaf, fi, 0);
2127 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2128 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2129 btrfs_set_file_extent_compression(leaf, fi, compression);
2130 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2131 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2132
2133 btrfs_mark_buffer_dirty(leaf);
2134 btrfs_release_path(path);
2135
2136 inode_add_bytes(inode, num_bytes);
2137
2138 ins.objectid = disk_bytenr;
2139 ins.offset = disk_num_bytes;
2140 ins.type = BTRFS_EXTENT_ITEM_KEY;
2141 ret = btrfs_alloc_reserved_file_extent(trans, root,
2142 root->root_key.objectid,
2143 btrfs_ino(inode), file_pos,
2144 ram_bytes, &ins);
2145 /*
2146 * Release the reserved range from inode dirty range map, as it is
2147 * already moved into delayed_ref_head
2148 */
2149 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2150 out:
2151 btrfs_free_path(path);
2152
2153 return ret;
2154 }
2155
2156 /* snapshot-aware defrag */
2157 struct sa_defrag_extent_backref {
2158 struct rb_node node;
2159 struct old_sa_defrag_extent *old;
2160 u64 root_id;
2161 u64 inum;
2162 u64 file_pos;
2163 u64 extent_offset;
2164 u64 num_bytes;
2165 u64 generation;
2166 };
2167
2168 struct old_sa_defrag_extent {
2169 struct list_head list;
2170 struct new_sa_defrag_extent *new;
2171
2172 u64 extent_offset;
2173 u64 bytenr;
2174 u64 offset;
2175 u64 len;
2176 int count;
2177 };
2178
2179 struct new_sa_defrag_extent {
2180 struct rb_root root;
2181 struct list_head head;
2182 struct btrfs_path *path;
2183 struct inode *inode;
2184 u64 file_pos;
2185 u64 len;
2186 u64 bytenr;
2187 u64 disk_len;
2188 u8 compress_type;
2189 };
2190
2191 static int backref_comp(struct sa_defrag_extent_backref *b1,
2192 struct sa_defrag_extent_backref *b2)
2193 {
2194 if (b1->root_id < b2->root_id)
2195 return -1;
2196 else if (b1->root_id > b2->root_id)
2197 return 1;
2198
2199 if (b1->inum < b2->inum)
2200 return -1;
2201 else if (b1->inum > b2->inum)
2202 return 1;
2203
2204 if (b1->file_pos < b2->file_pos)
2205 return -1;
2206 else if (b1->file_pos > b2->file_pos)
2207 return 1;
2208
2209 /*
2210 * [------------------------------] ===> (a range of space)
2211 * |<--->| |<---->| =============> (fs/file tree A)
2212 * |<---------------------------->| ===> (fs/file tree B)
2213 *
2214 * A range of space can refer to two file extents in one tree while
2215 * refer to only one file extent in another tree.
2216 *
2217 * So we may process a disk offset more than one time(two extents in A)
2218 * and locate at the same extent(one extent in B), then insert two same
2219 * backrefs(both refer to the extent in B).
2220 */
2221 return 0;
2222 }
2223
2224 static void backref_insert(struct rb_root *root,
2225 struct sa_defrag_extent_backref *backref)
2226 {
2227 struct rb_node **p = &root->rb_node;
2228 struct rb_node *parent = NULL;
2229 struct sa_defrag_extent_backref *entry;
2230 int ret;
2231
2232 while (*p) {
2233 parent = *p;
2234 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2235
2236 ret = backref_comp(backref, entry);
2237 if (ret < 0)
2238 p = &(*p)->rb_left;
2239 else
2240 p = &(*p)->rb_right;
2241 }
2242
2243 rb_link_node(&backref->node, parent, p);
2244 rb_insert_color(&backref->node, root);
2245 }
2246
2247 /*
2248 * Note the backref might has changed, and in this case we just return 0.
2249 */
2250 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2251 void *ctx)
2252 {
2253 struct btrfs_file_extent_item *extent;
2254 struct btrfs_fs_info *fs_info;
2255 struct old_sa_defrag_extent *old = ctx;
2256 struct new_sa_defrag_extent *new = old->new;
2257 struct btrfs_path *path = new->path;
2258 struct btrfs_key key;
2259 struct btrfs_root *root;
2260 struct sa_defrag_extent_backref *backref;
2261 struct extent_buffer *leaf;
2262 struct inode *inode = new->inode;
2263 int slot;
2264 int ret;
2265 u64 extent_offset;
2266 u64 num_bytes;
2267
2268 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2269 inum == btrfs_ino(inode))
2270 return 0;
2271
2272 key.objectid = root_id;
2273 key.type = BTRFS_ROOT_ITEM_KEY;
2274 key.offset = (u64)-1;
2275
2276 fs_info = BTRFS_I(inode)->root->fs_info;
2277 root = btrfs_read_fs_root_no_name(fs_info, &key);
2278 if (IS_ERR(root)) {
2279 if (PTR_ERR(root) == -ENOENT)
2280 return 0;
2281 WARN_ON(1);
2282 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2283 inum, offset, root_id);
2284 return PTR_ERR(root);
2285 }
2286
2287 key.objectid = inum;
2288 key.type = BTRFS_EXTENT_DATA_KEY;
2289 if (offset > (u64)-1 << 32)
2290 key.offset = 0;
2291 else
2292 key.offset = offset;
2293
2294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2295 if (WARN_ON(ret < 0))
2296 return ret;
2297 ret = 0;
2298
2299 while (1) {
2300 cond_resched();
2301
2302 leaf = path->nodes[0];
2303 slot = path->slots[0];
2304
2305 if (slot >= btrfs_header_nritems(leaf)) {
2306 ret = btrfs_next_leaf(root, path);
2307 if (ret < 0) {
2308 goto out;
2309 } else if (ret > 0) {
2310 ret = 0;
2311 goto out;
2312 }
2313 continue;
2314 }
2315
2316 path->slots[0]++;
2317
2318 btrfs_item_key_to_cpu(leaf, &key, slot);
2319
2320 if (key.objectid > inum)
2321 goto out;
2322
2323 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2324 continue;
2325
2326 extent = btrfs_item_ptr(leaf, slot,
2327 struct btrfs_file_extent_item);
2328
2329 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2330 continue;
2331
2332 /*
2333 * 'offset' refers to the exact key.offset,
2334 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2335 * (key.offset - extent_offset).
2336 */
2337 if (key.offset != offset)
2338 continue;
2339
2340 extent_offset = btrfs_file_extent_offset(leaf, extent);
2341 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2342
2343 if (extent_offset >= old->extent_offset + old->offset +
2344 old->len || extent_offset + num_bytes <=
2345 old->extent_offset + old->offset)
2346 continue;
2347 break;
2348 }
2349
2350 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2351 if (!backref) {
2352 ret = -ENOENT;
2353 goto out;
2354 }
2355
2356 backref->root_id = root_id;
2357 backref->inum = inum;
2358 backref->file_pos = offset;
2359 backref->num_bytes = num_bytes;
2360 backref->extent_offset = extent_offset;
2361 backref->generation = btrfs_file_extent_generation(leaf, extent);
2362 backref->old = old;
2363 backref_insert(&new->root, backref);
2364 old->count++;
2365 out:
2366 btrfs_release_path(path);
2367 WARN_ON(ret);
2368 return ret;
2369 }
2370
2371 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2372 struct new_sa_defrag_extent *new)
2373 {
2374 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2375 struct old_sa_defrag_extent *old, *tmp;
2376 int ret;
2377
2378 new->path = path;
2379
2380 list_for_each_entry_safe(old, tmp, &new->head, list) {
2381 ret = iterate_inodes_from_logical(old->bytenr +
2382 old->extent_offset, fs_info,
2383 path, record_one_backref,
2384 old);
2385 if (ret < 0 && ret != -ENOENT)
2386 return false;
2387
2388 /* no backref to be processed for this extent */
2389 if (!old->count) {
2390 list_del(&old->list);
2391 kfree(old);
2392 }
2393 }
2394
2395 if (list_empty(&new->head))
2396 return false;
2397
2398 return true;
2399 }
2400
2401 static int relink_is_mergable(struct extent_buffer *leaf,
2402 struct btrfs_file_extent_item *fi,
2403 struct new_sa_defrag_extent *new)
2404 {
2405 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2406 return 0;
2407
2408 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2409 return 0;
2410
2411 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2412 return 0;
2413
2414 if (btrfs_file_extent_encryption(leaf, fi) ||
2415 btrfs_file_extent_other_encoding(leaf, fi))
2416 return 0;
2417
2418 return 1;
2419 }
2420
2421 /*
2422 * Note the backref might has changed, and in this case we just return 0.
2423 */
2424 static noinline int relink_extent_backref(struct btrfs_path *path,
2425 struct sa_defrag_extent_backref *prev,
2426 struct sa_defrag_extent_backref *backref)
2427 {
2428 struct btrfs_file_extent_item *extent;
2429 struct btrfs_file_extent_item *item;
2430 struct btrfs_ordered_extent *ordered;
2431 struct btrfs_trans_handle *trans;
2432 struct btrfs_fs_info *fs_info;
2433 struct btrfs_root *root;
2434 struct btrfs_key key;
2435 struct extent_buffer *leaf;
2436 struct old_sa_defrag_extent *old = backref->old;
2437 struct new_sa_defrag_extent *new = old->new;
2438 struct inode *src_inode = new->inode;
2439 struct inode *inode;
2440 struct extent_state *cached = NULL;
2441 int ret = 0;
2442 u64 start;
2443 u64 len;
2444 u64 lock_start;
2445 u64 lock_end;
2446 bool merge = false;
2447 int index;
2448
2449 if (prev && prev->root_id == backref->root_id &&
2450 prev->inum == backref->inum &&
2451 prev->file_pos + prev->num_bytes == backref->file_pos)
2452 merge = true;
2453
2454 /* step 1: get root */
2455 key.objectid = backref->root_id;
2456 key.type = BTRFS_ROOT_ITEM_KEY;
2457 key.offset = (u64)-1;
2458
2459 fs_info = BTRFS_I(src_inode)->root->fs_info;
2460 index = srcu_read_lock(&fs_info->subvol_srcu);
2461
2462 root = btrfs_read_fs_root_no_name(fs_info, &key);
2463 if (IS_ERR(root)) {
2464 srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 if (PTR_ERR(root) == -ENOENT)
2466 return 0;
2467 return PTR_ERR(root);
2468 }
2469
2470 if (btrfs_root_readonly(root)) {
2471 srcu_read_unlock(&fs_info->subvol_srcu, index);
2472 return 0;
2473 }
2474
2475 /* step 2: get inode */
2476 key.objectid = backref->inum;
2477 key.type = BTRFS_INODE_ITEM_KEY;
2478 key.offset = 0;
2479
2480 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2481 if (IS_ERR(inode)) {
2482 srcu_read_unlock(&fs_info->subvol_srcu, index);
2483 return 0;
2484 }
2485
2486 srcu_read_unlock(&fs_info->subvol_srcu, index);
2487
2488 /* step 3: relink backref */
2489 lock_start = backref->file_pos;
2490 lock_end = backref->file_pos + backref->num_bytes - 1;
2491 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2492 &cached);
2493
2494 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2495 if (ordered) {
2496 btrfs_put_ordered_extent(ordered);
2497 goto out_unlock;
2498 }
2499
2500 trans = btrfs_join_transaction(root);
2501 if (IS_ERR(trans)) {
2502 ret = PTR_ERR(trans);
2503 goto out_unlock;
2504 }
2505
2506 key.objectid = backref->inum;
2507 key.type = BTRFS_EXTENT_DATA_KEY;
2508 key.offset = backref->file_pos;
2509
2510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2511 if (ret < 0) {
2512 goto out_free_path;
2513 } else if (ret > 0) {
2514 ret = 0;
2515 goto out_free_path;
2516 }
2517
2518 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2519 struct btrfs_file_extent_item);
2520
2521 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2522 backref->generation)
2523 goto out_free_path;
2524
2525 btrfs_release_path(path);
2526
2527 start = backref->file_pos;
2528 if (backref->extent_offset < old->extent_offset + old->offset)
2529 start += old->extent_offset + old->offset -
2530 backref->extent_offset;
2531
2532 len = min(backref->extent_offset + backref->num_bytes,
2533 old->extent_offset + old->offset + old->len);
2534 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2535
2536 ret = btrfs_drop_extents(trans, root, inode, start,
2537 start + len, 1);
2538 if (ret)
2539 goto out_free_path;
2540 again:
2541 key.objectid = btrfs_ino(inode);
2542 key.type = BTRFS_EXTENT_DATA_KEY;
2543 key.offset = start;
2544
2545 path->leave_spinning = 1;
2546 if (merge) {
2547 struct btrfs_file_extent_item *fi;
2548 u64 extent_len;
2549 struct btrfs_key found_key;
2550
2551 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2552 if (ret < 0)
2553 goto out_free_path;
2554
2555 path->slots[0]--;
2556 leaf = path->nodes[0];
2557 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2558
2559 fi = btrfs_item_ptr(leaf, path->slots[0],
2560 struct btrfs_file_extent_item);
2561 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2562
2563 if (extent_len + found_key.offset == start &&
2564 relink_is_mergable(leaf, fi, new)) {
2565 btrfs_set_file_extent_num_bytes(leaf, fi,
2566 extent_len + len);
2567 btrfs_mark_buffer_dirty(leaf);
2568 inode_add_bytes(inode, len);
2569
2570 ret = 1;
2571 goto out_free_path;
2572 } else {
2573 merge = false;
2574 btrfs_release_path(path);
2575 goto again;
2576 }
2577 }
2578
2579 ret = btrfs_insert_empty_item(trans, root, path, &key,
2580 sizeof(*extent));
2581 if (ret) {
2582 btrfs_abort_transaction(trans, root, ret);
2583 goto out_free_path;
2584 }
2585
2586 leaf = path->nodes[0];
2587 item = btrfs_item_ptr(leaf, path->slots[0],
2588 struct btrfs_file_extent_item);
2589 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2590 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2591 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2592 btrfs_set_file_extent_num_bytes(leaf, item, len);
2593 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2594 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2595 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2596 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2597 btrfs_set_file_extent_encryption(leaf, item, 0);
2598 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2599
2600 btrfs_mark_buffer_dirty(leaf);
2601 inode_add_bytes(inode, len);
2602 btrfs_release_path(path);
2603
2604 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2605 new->disk_len, 0,
2606 backref->root_id, backref->inum,
2607 new->file_pos); /* start - extent_offset */
2608 if (ret) {
2609 btrfs_abort_transaction(trans, root, ret);
2610 goto out_free_path;
2611 }
2612
2613 ret = 1;
2614 out_free_path:
2615 btrfs_release_path(path);
2616 path->leave_spinning = 0;
2617 btrfs_end_transaction(trans, root);
2618 out_unlock:
2619 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2620 &cached, GFP_NOFS);
2621 iput(inode);
2622 return ret;
2623 }
2624
2625 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2626 {
2627 struct old_sa_defrag_extent *old, *tmp;
2628
2629 if (!new)
2630 return;
2631
2632 list_for_each_entry_safe(old, tmp, &new->head, list) {
2633 kfree(old);
2634 }
2635 kfree(new);
2636 }
2637
2638 static void relink_file_extents(struct new_sa_defrag_extent *new)
2639 {
2640 struct btrfs_path *path;
2641 struct sa_defrag_extent_backref *backref;
2642 struct sa_defrag_extent_backref *prev = NULL;
2643 struct inode *inode;
2644 struct btrfs_root *root;
2645 struct rb_node *node;
2646 int ret;
2647
2648 inode = new->inode;
2649 root = BTRFS_I(inode)->root;
2650
2651 path = btrfs_alloc_path();
2652 if (!path)
2653 return;
2654
2655 if (!record_extent_backrefs(path, new)) {
2656 btrfs_free_path(path);
2657 goto out;
2658 }
2659 btrfs_release_path(path);
2660
2661 while (1) {
2662 node = rb_first(&new->root);
2663 if (!node)
2664 break;
2665 rb_erase(node, &new->root);
2666
2667 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2668
2669 ret = relink_extent_backref(path, prev, backref);
2670 WARN_ON(ret < 0);
2671
2672 kfree(prev);
2673
2674 if (ret == 1)
2675 prev = backref;
2676 else
2677 prev = NULL;
2678 cond_resched();
2679 }
2680 kfree(prev);
2681
2682 btrfs_free_path(path);
2683 out:
2684 free_sa_defrag_extent(new);
2685
2686 atomic_dec(&root->fs_info->defrag_running);
2687 wake_up(&root->fs_info->transaction_wait);
2688 }
2689
2690 static struct new_sa_defrag_extent *
2691 record_old_file_extents(struct inode *inode,
2692 struct btrfs_ordered_extent *ordered)
2693 {
2694 struct btrfs_root *root = BTRFS_I(inode)->root;
2695 struct btrfs_path *path;
2696 struct btrfs_key key;
2697 struct old_sa_defrag_extent *old;
2698 struct new_sa_defrag_extent *new;
2699 int ret;
2700
2701 new = kmalloc(sizeof(*new), GFP_NOFS);
2702 if (!new)
2703 return NULL;
2704
2705 new->inode = inode;
2706 new->file_pos = ordered->file_offset;
2707 new->len = ordered->len;
2708 new->bytenr = ordered->start;
2709 new->disk_len = ordered->disk_len;
2710 new->compress_type = ordered->compress_type;
2711 new->root = RB_ROOT;
2712 INIT_LIST_HEAD(&new->head);
2713
2714 path = btrfs_alloc_path();
2715 if (!path)
2716 goto out_kfree;
2717
2718 key.objectid = btrfs_ino(inode);
2719 key.type = BTRFS_EXTENT_DATA_KEY;
2720 key.offset = new->file_pos;
2721
2722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2723 if (ret < 0)
2724 goto out_free_path;
2725 if (ret > 0 && path->slots[0] > 0)
2726 path->slots[0]--;
2727
2728 /* find out all the old extents for the file range */
2729 while (1) {
2730 struct btrfs_file_extent_item *extent;
2731 struct extent_buffer *l;
2732 int slot;
2733 u64 num_bytes;
2734 u64 offset;
2735 u64 end;
2736 u64 disk_bytenr;
2737 u64 extent_offset;
2738
2739 l = path->nodes[0];
2740 slot = path->slots[0];
2741
2742 if (slot >= btrfs_header_nritems(l)) {
2743 ret = btrfs_next_leaf(root, path);
2744 if (ret < 0)
2745 goto out_free_path;
2746 else if (ret > 0)
2747 break;
2748 continue;
2749 }
2750
2751 btrfs_item_key_to_cpu(l, &key, slot);
2752
2753 if (key.objectid != btrfs_ino(inode))
2754 break;
2755 if (key.type != BTRFS_EXTENT_DATA_KEY)
2756 break;
2757 if (key.offset >= new->file_pos + new->len)
2758 break;
2759
2760 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2761
2762 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2763 if (key.offset + num_bytes < new->file_pos)
2764 goto next;
2765
2766 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2767 if (!disk_bytenr)
2768 goto next;
2769
2770 extent_offset = btrfs_file_extent_offset(l, extent);
2771
2772 old = kmalloc(sizeof(*old), GFP_NOFS);
2773 if (!old)
2774 goto out_free_path;
2775
2776 offset = max(new->file_pos, key.offset);
2777 end = min(new->file_pos + new->len, key.offset + num_bytes);
2778
2779 old->bytenr = disk_bytenr;
2780 old->extent_offset = extent_offset;
2781 old->offset = offset - key.offset;
2782 old->len = end - offset;
2783 old->new = new;
2784 old->count = 0;
2785 list_add_tail(&old->list, &new->head);
2786 next:
2787 path->slots[0]++;
2788 cond_resched();
2789 }
2790
2791 btrfs_free_path(path);
2792 atomic_inc(&root->fs_info->defrag_running);
2793
2794 return new;
2795
2796 out_free_path:
2797 btrfs_free_path(path);
2798 out_kfree:
2799 free_sa_defrag_extent(new);
2800 return NULL;
2801 }
2802
2803 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2804 u64 start, u64 len)
2805 {
2806 struct btrfs_block_group_cache *cache;
2807
2808 cache = btrfs_lookup_block_group(root->fs_info, start);
2809 ASSERT(cache);
2810
2811 spin_lock(&cache->lock);
2812 cache->delalloc_bytes -= len;
2813 spin_unlock(&cache->lock);
2814
2815 btrfs_put_block_group(cache);
2816 }
2817
2818 /* as ordered data IO finishes, this gets called so we can finish
2819 * an ordered extent if the range of bytes in the file it covers are
2820 * fully written.
2821 */
2822 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2823 {
2824 struct inode *inode = ordered_extent->inode;
2825 struct btrfs_root *root = BTRFS_I(inode)->root;
2826 struct btrfs_trans_handle *trans = NULL;
2827 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2828 struct extent_state *cached_state = NULL;
2829 struct new_sa_defrag_extent *new = NULL;
2830 int compress_type = 0;
2831 int ret = 0;
2832 u64 logical_len = ordered_extent->len;
2833 bool nolock;
2834 bool truncated = false;
2835
2836 nolock = btrfs_is_free_space_inode(inode);
2837
2838 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2839 ret = -EIO;
2840 goto out;
2841 }
2842
2843 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2844 ordered_extent->file_offset +
2845 ordered_extent->len - 1);
2846
2847 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2848 truncated = true;
2849 logical_len = ordered_extent->truncated_len;
2850 /* Truncated the entire extent, don't bother adding */
2851 if (!logical_len)
2852 goto out;
2853 }
2854
2855 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2856 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2857
2858 /*
2859 * For mwrite(mmap + memset to write) case, we still reserve
2860 * space for NOCOW range.
2861 * As NOCOW won't cause a new delayed ref, just free the space
2862 */
2863 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2864 ordered_extent->len);
2865 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2866 if (nolock)
2867 trans = btrfs_join_transaction_nolock(root);
2868 else
2869 trans = btrfs_join_transaction(root);
2870 if (IS_ERR(trans)) {
2871 ret = PTR_ERR(trans);
2872 trans = NULL;
2873 goto out;
2874 }
2875 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2876 ret = btrfs_update_inode_fallback(trans, root, inode);
2877 if (ret) /* -ENOMEM or corruption */
2878 btrfs_abort_transaction(trans, root, ret);
2879 goto out;
2880 }
2881
2882 lock_extent_bits(io_tree, ordered_extent->file_offset,
2883 ordered_extent->file_offset + ordered_extent->len - 1,
2884 &cached_state);
2885
2886 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2887 ordered_extent->file_offset + ordered_extent->len - 1,
2888 EXTENT_DEFRAG, 1, cached_state);
2889 if (ret) {
2890 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2891 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2892 /* the inode is shared */
2893 new = record_old_file_extents(inode, ordered_extent);
2894
2895 clear_extent_bit(io_tree, ordered_extent->file_offset,
2896 ordered_extent->file_offset + ordered_extent->len - 1,
2897 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2898 }
2899
2900 if (nolock)
2901 trans = btrfs_join_transaction_nolock(root);
2902 else
2903 trans = btrfs_join_transaction(root);
2904 if (IS_ERR(trans)) {
2905 ret = PTR_ERR(trans);
2906 trans = NULL;
2907 goto out_unlock;
2908 }
2909
2910 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2911
2912 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2913 compress_type = ordered_extent->compress_type;
2914 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2915 BUG_ON(compress_type);
2916 ret = btrfs_mark_extent_written(trans, inode,
2917 ordered_extent->file_offset,
2918 ordered_extent->file_offset +
2919 logical_len);
2920 } else {
2921 BUG_ON(root == root->fs_info->tree_root);
2922 ret = insert_reserved_file_extent(trans, inode,
2923 ordered_extent->file_offset,
2924 ordered_extent->start,
2925 ordered_extent->disk_len,
2926 logical_len, logical_len,
2927 compress_type, 0, 0,
2928 BTRFS_FILE_EXTENT_REG);
2929 if (!ret)
2930 btrfs_release_delalloc_bytes(root,
2931 ordered_extent->start,
2932 ordered_extent->disk_len);
2933 }
2934 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2935 ordered_extent->file_offset, ordered_extent->len,
2936 trans->transid);
2937 if (ret < 0) {
2938 btrfs_abort_transaction(trans, root, ret);
2939 goto out_unlock;
2940 }
2941
2942 add_pending_csums(trans, inode, ordered_extent->file_offset,
2943 &ordered_extent->list);
2944
2945 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2946 ret = btrfs_update_inode_fallback(trans, root, inode);
2947 if (ret) { /* -ENOMEM or corruption */
2948 btrfs_abort_transaction(trans, root, ret);
2949 goto out_unlock;
2950 }
2951 ret = 0;
2952 out_unlock:
2953 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2954 ordered_extent->file_offset +
2955 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2956 out:
2957 if (root != root->fs_info->tree_root)
2958 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2959 if (trans)
2960 btrfs_end_transaction(trans, root);
2961
2962 if (ret || truncated) {
2963 u64 start, end;
2964
2965 if (truncated)
2966 start = ordered_extent->file_offset + logical_len;
2967 else
2968 start = ordered_extent->file_offset;
2969 end = ordered_extent->file_offset + ordered_extent->len - 1;
2970 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2971
2972 /* Drop the cache for the part of the extent we didn't write. */
2973 btrfs_drop_extent_cache(inode, start, end, 0);
2974
2975 /*
2976 * If the ordered extent had an IOERR or something else went
2977 * wrong we need to return the space for this ordered extent
2978 * back to the allocator. We only free the extent in the
2979 * truncated case if we didn't write out the extent at all.
2980 */
2981 if ((ret || !logical_len) &&
2982 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2983 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2984 btrfs_free_reserved_extent(root, ordered_extent->start,
2985 ordered_extent->disk_len, 1);
2986 }
2987
2988
2989 /*
2990 * This needs to be done to make sure anybody waiting knows we are done
2991 * updating everything for this ordered extent.
2992 */
2993 btrfs_remove_ordered_extent(inode, ordered_extent);
2994
2995 /* for snapshot-aware defrag */
2996 if (new) {
2997 if (ret) {
2998 free_sa_defrag_extent(new);
2999 atomic_dec(&root->fs_info->defrag_running);
3000 } else {
3001 relink_file_extents(new);
3002 }
3003 }
3004
3005 /* once for us */
3006 btrfs_put_ordered_extent(ordered_extent);
3007 /* once for the tree */
3008 btrfs_put_ordered_extent(ordered_extent);
3009
3010 return ret;
3011 }
3012
3013 static void finish_ordered_fn(struct btrfs_work *work)
3014 {
3015 struct btrfs_ordered_extent *ordered_extent;
3016 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3017 btrfs_finish_ordered_io(ordered_extent);
3018 }
3019
3020 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3021 struct extent_state *state, int uptodate)
3022 {
3023 struct inode *inode = page->mapping->host;
3024 struct btrfs_root *root = BTRFS_I(inode)->root;
3025 struct btrfs_ordered_extent *ordered_extent = NULL;
3026 struct btrfs_workqueue *wq;
3027 btrfs_work_func_t func;
3028
3029 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3030
3031 ClearPagePrivate2(page);
3032 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3033 end - start + 1, uptodate))
3034 return 0;
3035
3036 if (btrfs_is_free_space_inode(inode)) {
3037 wq = root->fs_info->endio_freespace_worker;
3038 func = btrfs_freespace_write_helper;
3039 } else {
3040 wq = root->fs_info->endio_write_workers;
3041 func = btrfs_endio_write_helper;
3042 }
3043
3044 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3045 NULL);
3046 btrfs_queue_work(wq, &ordered_extent->work);
3047
3048 return 0;
3049 }
3050
3051 static int __readpage_endio_check(struct inode *inode,
3052 struct btrfs_io_bio *io_bio,
3053 int icsum, struct page *page,
3054 int pgoff, u64 start, size_t len)
3055 {
3056 char *kaddr;
3057 u32 csum_expected;
3058 u32 csum = ~(u32)0;
3059
3060 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3061
3062 kaddr = kmap_atomic(page);
3063 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3064 btrfs_csum_final(csum, (char *)&csum);
3065 if (csum != csum_expected)
3066 goto zeroit;
3067
3068 kunmap_atomic(kaddr);
3069 return 0;
3070 zeroit:
3071 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3072 "csum failed ino %llu off %llu csum %u expected csum %u",
3073 btrfs_ino(inode), start, csum, csum_expected);
3074 memset(kaddr + pgoff, 1, len);
3075 flush_dcache_page(page);
3076 kunmap_atomic(kaddr);
3077 if (csum_expected == 0)
3078 return 0;
3079 return -EIO;
3080 }
3081
3082 /*
3083 * when reads are done, we need to check csums to verify the data is correct
3084 * if there's a match, we allow the bio to finish. If not, the code in
3085 * extent_io.c will try to find good copies for us.
3086 */
3087 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3088 u64 phy_offset, struct page *page,
3089 u64 start, u64 end, int mirror)
3090 {
3091 size_t offset = start - page_offset(page);
3092 struct inode *inode = page->mapping->host;
3093 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3094 struct btrfs_root *root = BTRFS_I(inode)->root;
3095
3096 if (PageChecked(page)) {
3097 ClearPageChecked(page);
3098 return 0;
3099 }
3100
3101 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3102 return 0;
3103
3104 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3105 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3106 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3107 GFP_NOFS);
3108 return 0;
3109 }
3110
3111 phy_offset >>= inode->i_sb->s_blocksize_bits;
3112 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3113 start, (size_t)(end - start + 1));
3114 }
3115
3116 void btrfs_add_delayed_iput(struct inode *inode)
3117 {
3118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3119 struct btrfs_inode *binode = BTRFS_I(inode);
3120
3121 if (atomic_add_unless(&inode->i_count, -1, 1))
3122 return;
3123
3124 spin_lock(&fs_info->delayed_iput_lock);
3125 if (binode->delayed_iput_count == 0) {
3126 ASSERT(list_empty(&binode->delayed_iput));
3127 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3128 } else {
3129 binode->delayed_iput_count++;
3130 }
3131 spin_unlock(&fs_info->delayed_iput_lock);
3132 }
3133
3134 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3135 {
3136 struct btrfs_fs_info *fs_info = root->fs_info;
3137
3138 spin_lock(&fs_info->delayed_iput_lock);
3139 while (!list_empty(&fs_info->delayed_iputs)) {
3140 struct btrfs_inode *inode;
3141
3142 inode = list_first_entry(&fs_info->delayed_iputs,
3143 struct btrfs_inode, delayed_iput);
3144 if (inode->delayed_iput_count) {
3145 inode->delayed_iput_count--;
3146 list_move_tail(&inode->delayed_iput,
3147 &fs_info->delayed_iputs);
3148 } else {
3149 list_del_init(&inode->delayed_iput);
3150 }
3151 spin_unlock(&fs_info->delayed_iput_lock);
3152 iput(&inode->vfs_inode);
3153 spin_lock(&fs_info->delayed_iput_lock);
3154 }
3155 spin_unlock(&fs_info->delayed_iput_lock);
3156 }
3157
3158 /*
3159 * This is called in transaction commit time. If there are no orphan
3160 * files in the subvolume, it removes orphan item and frees block_rsv
3161 * structure.
3162 */
3163 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3164 struct btrfs_root *root)
3165 {
3166 struct btrfs_block_rsv *block_rsv;
3167 int ret;
3168
3169 if (atomic_read(&root->orphan_inodes) ||
3170 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3171 return;
3172
3173 spin_lock(&root->orphan_lock);
3174 if (atomic_read(&root->orphan_inodes)) {
3175 spin_unlock(&root->orphan_lock);
3176 return;
3177 }
3178
3179 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3180 spin_unlock(&root->orphan_lock);
3181 return;
3182 }
3183
3184 block_rsv = root->orphan_block_rsv;
3185 root->orphan_block_rsv = NULL;
3186 spin_unlock(&root->orphan_lock);
3187
3188 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3189 btrfs_root_refs(&root->root_item) > 0) {
3190 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3191 root->root_key.objectid);
3192 if (ret)
3193 btrfs_abort_transaction(trans, root, ret);
3194 else
3195 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3196 &root->state);
3197 }
3198
3199 if (block_rsv) {
3200 WARN_ON(block_rsv->size > 0);
3201 btrfs_free_block_rsv(root, block_rsv);
3202 }
3203 }
3204
3205 /*
3206 * This creates an orphan entry for the given inode in case something goes
3207 * wrong in the middle of an unlink/truncate.
3208 *
3209 * NOTE: caller of this function should reserve 5 units of metadata for
3210 * this function.
3211 */
3212 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3213 {
3214 struct btrfs_root *root = BTRFS_I(inode)->root;
3215 struct btrfs_block_rsv *block_rsv = NULL;
3216 int reserve = 0;
3217 int insert = 0;
3218 int ret;
3219
3220 if (!root->orphan_block_rsv) {
3221 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3222 if (!block_rsv)
3223 return -ENOMEM;
3224 }
3225
3226 spin_lock(&root->orphan_lock);
3227 if (!root->orphan_block_rsv) {
3228 root->orphan_block_rsv = block_rsv;
3229 } else if (block_rsv) {
3230 btrfs_free_block_rsv(root, block_rsv);
3231 block_rsv = NULL;
3232 }
3233
3234 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3235 &BTRFS_I(inode)->runtime_flags)) {
3236 #if 0
3237 /*
3238 * For proper ENOSPC handling, we should do orphan
3239 * cleanup when mounting. But this introduces backward
3240 * compatibility issue.
3241 */
3242 if (!xchg(&root->orphan_item_inserted, 1))
3243 insert = 2;
3244 else
3245 insert = 1;
3246 #endif
3247 insert = 1;
3248 atomic_inc(&root->orphan_inodes);
3249 }
3250
3251 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3252 &BTRFS_I(inode)->runtime_flags))
3253 reserve = 1;
3254 spin_unlock(&root->orphan_lock);
3255
3256 /* grab metadata reservation from transaction handle */
3257 if (reserve) {
3258 ret = btrfs_orphan_reserve_metadata(trans, inode);
3259 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3260 }
3261
3262 /* insert an orphan item to track this unlinked/truncated file */
3263 if (insert >= 1) {
3264 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3265 if (ret) {
3266 atomic_dec(&root->orphan_inodes);
3267 if (reserve) {
3268 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3269 &BTRFS_I(inode)->runtime_flags);
3270 btrfs_orphan_release_metadata(inode);
3271 }
3272 if (ret != -EEXIST) {
3273 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3274 &BTRFS_I(inode)->runtime_flags);
3275 btrfs_abort_transaction(trans, root, ret);
3276 return ret;
3277 }
3278 }
3279 ret = 0;
3280 }
3281
3282 /* insert an orphan item to track subvolume contains orphan files */
3283 if (insert >= 2) {
3284 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3285 root->root_key.objectid);
3286 if (ret && ret != -EEXIST) {
3287 btrfs_abort_transaction(trans, root, ret);
3288 return ret;
3289 }
3290 }
3291 return 0;
3292 }
3293
3294 /*
3295 * We have done the truncate/delete so we can go ahead and remove the orphan
3296 * item for this particular inode.
3297 */
3298 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3299 struct inode *inode)
3300 {
3301 struct btrfs_root *root = BTRFS_I(inode)->root;
3302 int delete_item = 0;
3303 int release_rsv = 0;
3304 int ret = 0;
3305
3306 spin_lock(&root->orphan_lock);
3307 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3308 &BTRFS_I(inode)->runtime_flags))
3309 delete_item = 1;
3310
3311 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3312 &BTRFS_I(inode)->runtime_flags))
3313 release_rsv = 1;
3314 spin_unlock(&root->orphan_lock);
3315
3316 if (delete_item) {
3317 atomic_dec(&root->orphan_inodes);
3318 if (trans)
3319 ret = btrfs_del_orphan_item(trans, root,
3320 btrfs_ino(inode));
3321 }
3322
3323 if (release_rsv)
3324 btrfs_orphan_release_metadata(inode);
3325
3326 return ret;
3327 }
3328
3329 /*
3330 * this cleans up any orphans that may be left on the list from the last use
3331 * of this root.
3332 */
3333 int btrfs_orphan_cleanup(struct btrfs_root *root)
3334 {
3335 struct btrfs_path *path;
3336 struct extent_buffer *leaf;
3337 struct btrfs_key key, found_key;
3338 struct btrfs_trans_handle *trans;
3339 struct inode *inode;
3340 u64 last_objectid = 0;
3341 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3342
3343 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3344 return 0;
3345
3346 path = btrfs_alloc_path();
3347 if (!path) {
3348 ret = -ENOMEM;
3349 goto out;
3350 }
3351 path->reada = READA_BACK;
3352
3353 key.objectid = BTRFS_ORPHAN_OBJECTID;
3354 key.type = BTRFS_ORPHAN_ITEM_KEY;
3355 key.offset = (u64)-1;
3356
3357 while (1) {
3358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3359 if (ret < 0)
3360 goto out;
3361
3362 /*
3363 * if ret == 0 means we found what we were searching for, which
3364 * is weird, but possible, so only screw with path if we didn't
3365 * find the key and see if we have stuff that matches
3366 */
3367 if (ret > 0) {
3368 ret = 0;
3369 if (path->slots[0] == 0)
3370 break;
3371 path->slots[0]--;
3372 }
3373
3374 /* pull out the item */
3375 leaf = path->nodes[0];
3376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3377
3378 /* make sure the item matches what we want */
3379 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3380 break;
3381 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3382 break;
3383
3384 /* release the path since we're done with it */
3385 btrfs_release_path(path);
3386
3387 /*
3388 * this is where we are basically btrfs_lookup, without the
3389 * crossing root thing. we store the inode number in the
3390 * offset of the orphan item.
3391 */
3392
3393 if (found_key.offset == last_objectid) {
3394 btrfs_err(root->fs_info,
3395 "Error removing orphan entry, stopping orphan cleanup");
3396 ret = -EINVAL;
3397 goto out;
3398 }
3399
3400 last_objectid = found_key.offset;
3401
3402 found_key.objectid = found_key.offset;
3403 found_key.type = BTRFS_INODE_ITEM_KEY;
3404 found_key.offset = 0;
3405 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3406 ret = PTR_ERR_OR_ZERO(inode);
3407 if (ret && ret != -ESTALE)
3408 goto out;
3409
3410 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3411 struct btrfs_root *dead_root;
3412 struct btrfs_fs_info *fs_info = root->fs_info;
3413 int is_dead_root = 0;
3414
3415 /*
3416 * this is an orphan in the tree root. Currently these
3417 * could come from 2 sources:
3418 * a) a snapshot deletion in progress
3419 * b) a free space cache inode
3420 * We need to distinguish those two, as the snapshot
3421 * orphan must not get deleted.
3422 * find_dead_roots already ran before us, so if this
3423 * is a snapshot deletion, we should find the root
3424 * in the dead_roots list
3425 */
3426 spin_lock(&fs_info->trans_lock);
3427 list_for_each_entry(dead_root, &fs_info->dead_roots,
3428 root_list) {
3429 if (dead_root->root_key.objectid ==
3430 found_key.objectid) {
3431 is_dead_root = 1;
3432 break;
3433 }
3434 }
3435 spin_unlock(&fs_info->trans_lock);
3436 if (is_dead_root) {
3437 /* prevent this orphan from being found again */
3438 key.offset = found_key.objectid - 1;
3439 continue;
3440 }
3441 }
3442 /*
3443 * Inode is already gone but the orphan item is still there,
3444 * kill the orphan item.
3445 */
3446 if (ret == -ESTALE) {
3447 trans = btrfs_start_transaction(root, 1);
3448 if (IS_ERR(trans)) {
3449 ret = PTR_ERR(trans);
3450 goto out;
3451 }
3452 btrfs_debug(root->fs_info, "auto deleting %Lu",
3453 found_key.objectid);
3454 ret = btrfs_del_orphan_item(trans, root,
3455 found_key.objectid);
3456 btrfs_end_transaction(trans, root);
3457 if (ret)
3458 goto out;
3459 continue;
3460 }
3461
3462 /*
3463 * add this inode to the orphan list so btrfs_orphan_del does
3464 * the proper thing when we hit it
3465 */
3466 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3467 &BTRFS_I(inode)->runtime_flags);
3468 atomic_inc(&root->orphan_inodes);
3469
3470 /* if we have links, this was a truncate, lets do that */
3471 if (inode->i_nlink) {
3472 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3473 iput(inode);
3474 continue;
3475 }
3476 nr_truncate++;
3477
3478 /* 1 for the orphan item deletion. */
3479 trans = btrfs_start_transaction(root, 1);
3480 if (IS_ERR(trans)) {
3481 iput(inode);
3482 ret = PTR_ERR(trans);
3483 goto out;
3484 }
3485 ret = btrfs_orphan_add(trans, inode);
3486 btrfs_end_transaction(trans, root);
3487 if (ret) {
3488 iput(inode);
3489 goto out;
3490 }
3491
3492 ret = btrfs_truncate(inode);
3493 if (ret)
3494 btrfs_orphan_del(NULL, inode);
3495 } else {
3496 nr_unlink++;
3497 }
3498
3499 /* this will do delete_inode and everything for us */
3500 iput(inode);
3501 if (ret)
3502 goto out;
3503 }
3504 /* release the path since we're done with it */
3505 btrfs_release_path(path);
3506
3507 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3508
3509 if (root->orphan_block_rsv)
3510 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3511 (u64)-1);
3512
3513 if (root->orphan_block_rsv ||
3514 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3515 trans = btrfs_join_transaction(root);
3516 if (!IS_ERR(trans))
3517 btrfs_end_transaction(trans, root);
3518 }
3519
3520 if (nr_unlink)
3521 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3522 if (nr_truncate)
3523 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3524
3525 out:
3526 if (ret)
3527 btrfs_err(root->fs_info,
3528 "could not do orphan cleanup %d", ret);
3529 btrfs_free_path(path);
3530 return ret;
3531 }
3532
3533 /*
3534 * very simple check to peek ahead in the leaf looking for xattrs. If we
3535 * don't find any xattrs, we know there can't be any acls.
3536 *
3537 * slot is the slot the inode is in, objectid is the objectid of the inode
3538 */
3539 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3540 int slot, u64 objectid,
3541 int *first_xattr_slot)
3542 {
3543 u32 nritems = btrfs_header_nritems(leaf);
3544 struct btrfs_key found_key;
3545 static u64 xattr_access = 0;
3546 static u64 xattr_default = 0;
3547 int scanned = 0;
3548
3549 if (!xattr_access) {
3550 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3551 strlen(POSIX_ACL_XATTR_ACCESS));
3552 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3553 strlen(POSIX_ACL_XATTR_DEFAULT));
3554 }
3555
3556 slot++;
3557 *first_xattr_slot = -1;
3558 while (slot < nritems) {
3559 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3560
3561 /* we found a different objectid, there must not be acls */
3562 if (found_key.objectid != objectid)
3563 return 0;
3564
3565 /* we found an xattr, assume we've got an acl */
3566 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3567 if (*first_xattr_slot == -1)
3568 *first_xattr_slot = slot;
3569 if (found_key.offset == xattr_access ||
3570 found_key.offset == xattr_default)
3571 return 1;
3572 }
3573
3574 /*
3575 * we found a key greater than an xattr key, there can't
3576 * be any acls later on
3577 */
3578 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3579 return 0;
3580
3581 slot++;
3582 scanned++;
3583
3584 /*
3585 * it goes inode, inode backrefs, xattrs, extents,
3586 * so if there are a ton of hard links to an inode there can
3587 * be a lot of backrefs. Don't waste time searching too hard,
3588 * this is just an optimization
3589 */
3590 if (scanned >= 8)
3591 break;
3592 }
3593 /* we hit the end of the leaf before we found an xattr or
3594 * something larger than an xattr. We have to assume the inode
3595 * has acls
3596 */
3597 if (*first_xattr_slot == -1)
3598 *first_xattr_slot = slot;
3599 return 1;
3600 }
3601
3602 /*
3603 * read an inode from the btree into the in-memory inode
3604 */
3605 static void btrfs_read_locked_inode(struct inode *inode)
3606 {
3607 struct btrfs_path *path;
3608 struct extent_buffer *leaf;
3609 struct btrfs_inode_item *inode_item;
3610 struct btrfs_root *root = BTRFS_I(inode)->root;
3611 struct btrfs_key location;
3612 unsigned long ptr;
3613 int maybe_acls;
3614 u32 rdev;
3615 int ret;
3616 bool filled = false;
3617 int first_xattr_slot;
3618
3619 ret = btrfs_fill_inode(inode, &rdev);
3620 if (!ret)
3621 filled = true;
3622
3623 path = btrfs_alloc_path();
3624 if (!path)
3625 goto make_bad;
3626
3627 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3628
3629 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3630 if (ret)
3631 goto make_bad;
3632
3633 leaf = path->nodes[0];
3634
3635 if (filled)
3636 goto cache_index;
3637
3638 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3639 struct btrfs_inode_item);
3640 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3641 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3642 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3643 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3644 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3645
3646 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3647 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3648
3649 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3650 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3651
3652 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3653 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3654
3655 BTRFS_I(inode)->i_otime.tv_sec =
3656 btrfs_timespec_sec(leaf, &inode_item->otime);
3657 BTRFS_I(inode)->i_otime.tv_nsec =
3658 btrfs_timespec_nsec(leaf, &inode_item->otime);
3659
3660 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3661 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3662 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3663
3664 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3665 inode->i_generation = BTRFS_I(inode)->generation;
3666 inode->i_rdev = 0;
3667 rdev = btrfs_inode_rdev(leaf, inode_item);
3668
3669 BTRFS_I(inode)->index_cnt = (u64)-1;
3670 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3671
3672 cache_index:
3673 /*
3674 * If we were modified in the current generation and evicted from memory
3675 * and then re-read we need to do a full sync since we don't have any
3676 * idea about which extents were modified before we were evicted from
3677 * cache.
3678 *
3679 * This is required for both inode re-read from disk and delayed inode
3680 * in delayed_nodes_tree.
3681 */
3682 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3683 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3684 &BTRFS_I(inode)->runtime_flags);
3685
3686 /*
3687 * We don't persist the id of the transaction where an unlink operation
3688 * against the inode was last made. So here we assume the inode might
3689 * have been evicted, and therefore the exact value of last_unlink_trans
3690 * lost, and set it to last_trans to avoid metadata inconsistencies
3691 * between the inode and its parent if the inode is fsync'ed and the log
3692 * replayed. For example, in the scenario:
3693 *
3694 * touch mydir/foo
3695 * ln mydir/foo mydir/bar
3696 * sync
3697 * unlink mydir/bar
3698 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3699 * xfs_io -c fsync mydir/foo
3700 * <power failure>
3701 * mount fs, triggers fsync log replay
3702 *
3703 * We must make sure that when we fsync our inode foo we also log its
3704 * parent inode, otherwise after log replay the parent still has the
3705 * dentry with the "bar" name but our inode foo has a link count of 1
3706 * and doesn't have an inode ref with the name "bar" anymore.
3707 *
3708 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3709 * but it guarantees correctness at the expense of ocassional full
3710 * transaction commits on fsync if our inode is a directory, or if our
3711 * inode is not a directory, logging its parent unnecessarily.
3712 */
3713 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3714
3715 path->slots[0]++;
3716 if (inode->i_nlink != 1 ||
3717 path->slots[0] >= btrfs_header_nritems(leaf))
3718 goto cache_acl;
3719
3720 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3721 if (location.objectid != btrfs_ino(inode))
3722 goto cache_acl;
3723
3724 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3725 if (location.type == BTRFS_INODE_REF_KEY) {
3726 struct btrfs_inode_ref *ref;
3727
3728 ref = (struct btrfs_inode_ref *)ptr;
3729 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3730 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3731 struct btrfs_inode_extref *extref;
3732
3733 extref = (struct btrfs_inode_extref *)ptr;
3734 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3735 extref);
3736 }
3737 cache_acl:
3738 /*
3739 * try to precache a NULL acl entry for files that don't have
3740 * any xattrs or acls
3741 */
3742 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3743 btrfs_ino(inode), &first_xattr_slot);
3744 if (first_xattr_slot != -1) {
3745 path->slots[0] = first_xattr_slot;
3746 ret = btrfs_load_inode_props(inode, path);
3747 if (ret)
3748 btrfs_err(root->fs_info,
3749 "error loading props for ino %llu (root %llu): %d",
3750 btrfs_ino(inode),
3751 root->root_key.objectid, ret);
3752 }
3753 btrfs_free_path(path);
3754
3755 if (!maybe_acls)
3756 cache_no_acl(inode);
3757
3758 switch (inode->i_mode & S_IFMT) {
3759 case S_IFREG:
3760 inode->i_mapping->a_ops = &btrfs_aops;
3761 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3762 inode->i_fop = &btrfs_file_operations;
3763 inode->i_op = &btrfs_file_inode_operations;
3764 break;
3765 case S_IFDIR:
3766 inode->i_fop = &btrfs_dir_file_operations;
3767 if (root == root->fs_info->tree_root)
3768 inode->i_op = &btrfs_dir_ro_inode_operations;
3769 else
3770 inode->i_op = &btrfs_dir_inode_operations;
3771 break;
3772 case S_IFLNK:
3773 inode->i_op = &btrfs_symlink_inode_operations;
3774 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3775 break;
3776 default:
3777 inode->i_op = &btrfs_special_inode_operations;
3778 init_special_inode(inode, inode->i_mode, rdev);
3779 break;
3780 }
3781
3782 btrfs_update_iflags(inode);
3783 return;
3784
3785 make_bad:
3786 btrfs_free_path(path);
3787 make_bad_inode(inode);
3788 }
3789
3790 /*
3791 * given a leaf and an inode, copy the inode fields into the leaf
3792 */
3793 static void fill_inode_item(struct btrfs_trans_handle *trans,
3794 struct extent_buffer *leaf,
3795 struct btrfs_inode_item *item,
3796 struct inode *inode)
3797 {
3798 struct btrfs_map_token token;
3799
3800 btrfs_init_map_token(&token);
3801
3802 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3803 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3804 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3805 &token);
3806 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3807 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3808
3809 btrfs_set_token_timespec_sec(leaf, &item->atime,
3810 inode->i_atime.tv_sec, &token);
3811 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3812 inode->i_atime.tv_nsec, &token);
3813
3814 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3815 inode->i_mtime.tv_sec, &token);
3816 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3817 inode->i_mtime.tv_nsec, &token);
3818
3819 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3820 inode->i_ctime.tv_sec, &token);
3821 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3822 inode->i_ctime.tv_nsec, &token);
3823
3824 btrfs_set_token_timespec_sec(leaf, &item->otime,
3825 BTRFS_I(inode)->i_otime.tv_sec, &token);
3826 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3827 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3828
3829 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3830 &token);
3831 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3832 &token);
3833 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3834 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3835 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3836 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3837 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3838 }
3839
3840 /*
3841 * copy everything in the in-memory inode into the btree.
3842 */
3843 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3844 struct btrfs_root *root, struct inode *inode)
3845 {
3846 struct btrfs_inode_item *inode_item;
3847 struct btrfs_path *path;
3848 struct extent_buffer *leaf;
3849 int ret;
3850
3851 path = btrfs_alloc_path();
3852 if (!path)
3853 return -ENOMEM;
3854
3855 path->leave_spinning = 1;
3856 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3857 1);
3858 if (ret) {
3859 if (ret > 0)
3860 ret = -ENOENT;
3861 goto failed;
3862 }
3863
3864 leaf = path->nodes[0];
3865 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3866 struct btrfs_inode_item);
3867
3868 fill_inode_item(trans, leaf, inode_item, inode);
3869 btrfs_mark_buffer_dirty(leaf);
3870 btrfs_set_inode_last_trans(trans, inode);
3871 ret = 0;
3872 failed:
3873 btrfs_free_path(path);
3874 return ret;
3875 }
3876
3877 /*
3878 * copy everything in the in-memory inode into the btree.
3879 */
3880 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3881 struct btrfs_root *root, struct inode *inode)
3882 {
3883 int ret;
3884
3885 /*
3886 * If the inode is a free space inode, we can deadlock during commit
3887 * if we put it into the delayed code.
3888 *
3889 * The data relocation inode should also be directly updated
3890 * without delay
3891 */
3892 if (!btrfs_is_free_space_inode(inode)
3893 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3894 && !root->fs_info->log_root_recovering) {
3895 btrfs_update_root_times(trans, root);
3896
3897 ret = btrfs_delayed_update_inode(trans, root, inode);
3898 if (!ret)
3899 btrfs_set_inode_last_trans(trans, inode);
3900 return ret;
3901 }
3902
3903 return btrfs_update_inode_item(trans, root, inode);
3904 }
3905
3906 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3907 struct btrfs_root *root,
3908 struct inode *inode)
3909 {
3910 int ret;
3911
3912 ret = btrfs_update_inode(trans, root, inode);
3913 if (ret == -ENOSPC)
3914 return btrfs_update_inode_item(trans, root, inode);
3915 return ret;
3916 }
3917
3918 /*
3919 * unlink helper that gets used here in inode.c and in the tree logging
3920 * recovery code. It remove a link in a directory with a given name, and
3921 * also drops the back refs in the inode to the directory
3922 */
3923 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3924 struct btrfs_root *root,
3925 struct inode *dir, struct inode *inode,
3926 const char *name, int name_len)
3927 {
3928 struct btrfs_path *path;
3929 int ret = 0;
3930 struct extent_buffer *leaf;
3931 struct btrfs_dir_item *di;
3932 struct btrfs_key key;
3933 u64 index;
3934 u64 ino = btrfs_ino(inode);
3935 u64 dir_ino = btrfs_ino(dir);
3936
3937 path = btrfs_alloc_path();
3938 if (!path) {
3939 ret = -ENOMEM;
3940 goto out;
3941 }
3942
3943 path->leave_spinning = 1;
3944 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3945 name, name_len, -1);
3946 if (IS_ERR(di)) {
3947 ret = PTR_ERR(di);
3948 goto err;
3949 }
3950 if (!di) {
3951 ret = -ENOENT;
3952 goto err;
3953 }
3954 leaf = path->nodes[0];
3955 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3956 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3957 if (ret)
3958 goto err;
3959 btrfs_release_path(path);
3960
3961 /*
3962 * If we don't have dir index, we have to get it by looking up
3963 * the inode ref, since we get the inode ref, remove it directly,
3964 * it is unnecessary to do delayed deletion.
3965 *
3966 * But if we have dir index, needn't search inode ref to get it.
3967 * Since the inode ref is close to the inode item, it is better
3968 * that we delay to delete it, and just do this deletion when
3969 * we update the inode item.
3970 */
3971 if (BTRFS_I(inode)->dir_index) {
3972 ret = btrfs_delayed_delete_inode_ref(inode);
3973 if (!ret) {
3974 index = BTRFS_I(inode)->dir_index;
3975 goto skip_backref;
3976 }
3977 }
3978
3979 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3980 dir_ino, &index);
3981 if (ret) {
3982 btrfs_info(root->fs_info,
3983 "failed to delete reference to %.*s, inode %llu parent %llu",
3984 name_len, name, ino, dir_ino);
3985 btrfs_abort_transaction(trans, root, ret);
3986 goto err;
3987 }
3988 skip_backref:
3989 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3990 if (ret) {
3991 btrfs_abort_transaction(trans, root, ret);
3992 goto err;
3993 }
3994
3995 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3996 inode, dir_ino);
3997 if (ret != 0 && ret != -ENOENT) {
3998 btrfs_abort_transaction(trans, root, ret);
3999 goto err;
4000 }
4001
4002 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4003 dir, index);
4004 if (ret == -ENOENT)
4005 ret = 0;
4006 else if (ret)
4007 btrfs_abort_transaction(trans, root, ret);
4008 err:
4009 btrfs_free_path(path);
4010 if (ret)
4011 goto out;
4012
4013 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4014 inode_inc_iversion(inode);
4015 inode_inc_iversion(dir);
4016 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4017 ret = btrfs_update_inode(trans, root, dir);
4018 out:
4019 return ret;
4020 }
4021
4022 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4023 struct btrfs_root *root,
4024 struct inode *dir, struct inode *inode,
4025 const char *name, int name_len)
4026 {
4027 int ret;
4028 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4029 if (!ret) {
4030 drop_nlink(inode);
4031 ret = btrfs_update_inode(trans, root, inode);
4032 }
4033 return ret;
4034 }
4035
4036 /*
4037 * helper to start transaction for unlink and rmdir.
4038 *
4039 * unlink and rmdir are special in btrfs, they do not always free space, so
4040 * if we cannot make our reservations the normal way try and see if there is
4041 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4042 * allow the unlink to occur.
4043 */
4044 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4045 {
4046 struct btrfs_root *root = BTRFS_I(dir)->root;
4047
4048 /*
4049 * 1 for the possible orphan item
4050 * 1 for the dir item
4051 * 1 for the dir index
4052 * 1 for the inode ref
4053 * 1 for the inode
4054 */
4055 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4056 }
4057
4058 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4059 {
4060 struct btrfs_root *root = BTRFS_I(dir)->root;
4061 struct btrfs_trans_handle *trans;
4062 struct inode *inode = d_inode(dentry);
4063 int ret;
4064
4065 trans = __unlink_start_trans(dir);
4066 if (IS_ERR(trans))
4067 return PTR_ERR(trans);
4068
4069 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4070
4071 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4072 dentry->d_name.name, dentry->d_name.len);
4073 if (ret)
4074 goto out;
4075
4076 if (inode->i_nlink == 0) {
4077 ret = btrfs_orphan_add(trans, inode);
4078 if (ret)
4079 goto out;
4080 }
4081
4082 out:
4083 btrfs_end_transaction(trans, root);
4084 btrfs_btree_balance_dirty(root);
4085 return ret;
4086 }
4087
4088 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4089 struct btrfs_root *root,
4090 struct inode *dir, u64 objectid,
4091 const char *name, int name_len)
4092 {
4093 struct btrfs_path *path;
4094 struct extent_buffer *leaf;
4095 struct btrfs_dir_item *di;
4096 struct btrfs_key key;
4097 u64 index;
4098 int ret;
4099 u64 dir_ino = btrfs_ino(dir);
4100
4101 path = btrfs_alloc_path();
4102 if (!path)
4103 return -ENOMEM;
4104
4105 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4106 name, name_len, -1);
4107 if (IS_ERR_OR_NULL(di)) {
4108 if (!di)
4109 ret = -ENOENT;
4110 else
4111 ret = PTR_ERR(di);
4112 goto out;
4113 }
4114
4115 leaf = path->nodes[0];
4116 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4117 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4118 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4119 if (ret) {
4120 btrfs_abort_transaction(trans, root, ret);
4121 goto out;
4122 }
4123 btrfs_release_path(path);
4124
4125 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4126 objectid, root->root_key.objectid,
4127 dir_ino, &index, name, name_len);
4128 if (ret < 0) {
4129 if (ret != -ENOENT) {
4130 btrfs_abort_transaction(trans, root, ret);
4131 goto out;
4132 }
4133 di = btrfs_search_dir_index_item(root, path, dir_ino,
4134 name, name_len);
4135 if (IS_ERR_OR_NULL(di)) {
4136 if (!di)
4137 ret = -ENOENT;
4138 else
4139 ret = PTR_ERR(di);
4140 btrfs_abort_transaction(trans, root, ret);
4141 goto out;
4142 }
4143
4144 leaf = path->nodes[0];
4145 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4146 btrfs_release_path(path);
4147 index = key.offset;
4148 }
4149 btrfs_release_path(path);
4150
4151 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4152 if (ret) {
4153 btrfs_abort_transaction(trans, root, ret);
4154 goto out;
4155 }
4156
4157 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4158 inode_inc_iversion(dir);
4159 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4160 ret = btrfs_update_inode_fallback(trans, root, dir);
4161 if (ret)
4162 btrfs_abort_transaction(trans, root, ret);
4163 out:
4164 btrfs_free_path(path);
4165 return ret;
4166 }
4167
4168 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4169 {
4170 struct inode *inode = d_inode(dentry);
4171 int err = 0;
4172 struct btrfs_root *root = BTRFS_I(dir)->root;
4173 struct btrfs_trans_handle *trans;
4174
4175 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4176 return -ENOTEMPTY;
4177 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4178 return -EPERM;
4179
4180 trans = __unlink_start_trans(dir);
4181 if (IS_ERR(trans))
4182 return PTR_ERR(trans);
4183
4184 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4185 err = btrfs_unlink_subvol(trans, root, dir,
4186 BTRFS_I(inode)->location.objectid,
4187 dentry->d_name.name,
4188 dentry->d_name.len);
4189 goto out;
4190 }
4191
4192 err = btrfs_orphan_add(trans, inode);
4193 if (err)
4194 goto out;
4195
4196 /* now the directory is empty */
4197 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4198 dentry->d_name.name, dentry->d_name.len);
4199 if (!err)
4200 btrfs_i_size_write(inode, 0);
4201 out:
4202 btrfs_end_transaction(trans, root);
4203 btrfs_btree_balance_dirty(root);
4204
4205 return err;
4206 }
4207
4208 static int truncate_space_check(struct btrfs_trans_handle *trans,
4209 struct btrfs_root *root,
4210 u64 bytes_deleted)
4211 {
4212 int ret;
4213
4214 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4215 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4216 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4217 if (!ret)
4218 trans->bytes_reserved += bytes_deleted;
4219 return ret;
4220
4221 }
4222
4223 static int truncate_inline_extent(struct inode *inode,
4224 struct btrfs_path *path,
4225 struct btrfs_key *found_key,
4226 const u64 item_end,
4227 const u64 new_size)
4228 {
4229 struct extent_buffer *leaf = path->nodes[0];
4230 int slot = path->slots[0];
4231 struct btrfs_file_extent_item *fi;
4232 u32 size = (u32)(new_size - found_key->offset);
4233 struct btrfs_root *root = BTRFS_I(inode)->root;
4234
4235 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4236
4237 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4238 loff_t offset = new_size;
4239 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4240
4241 /*
4242 * Zero out the remaining of the last page of our inline extent,
4243 * instead of directly truncating our inline extent here - that
4244 * would be much more complex (decompressing all the data, then
4245 * compressing the truncated data, which might be bigger than
4246 * the size of the inline extent, resize the extent, etc).
4247 * We release the path because to get the page we might need to
4248 * read the extent item from disk (data not in the page cache).
4249 */
4250 btrfs_release_path(path);
4251 return btrfs_truncate_block(inode, offset, page_end - offset,
4252 0);
4253 }
4254
4255 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4256 size = btrfs_file_extent_calc_inline_size(size);
4257 btrfs_truncate_item(root, path, size, 1);
4258
4259 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4260 inode_sub_bytes(inode, item_end + 1 - new_size);
4261
4262 return 0;
4263 }
4264
4265 /*
4266 * this can truncate away extent items, csum items and directory items.
4267 * It starts at a high offset and removes keys until it can't find
4268 * any higher than new_size
4269 *
4270 * csum items that cross the new i_size are truncated to the new size
4271 * as well.
4272 *
4273 * min_type is the minimum key type to truncate down to. If set to 0, this
4274 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4275 */
4276 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4277 struct btrfs_root *root,
4278 struct inode *inode,
4279 u64 new_size, u32 min_type)
4280 {
4281 struct btrfs_path *path;
4282 struct extent_buffer *leaf;
4283 struct btrfs_file_extent_item *fi;
4284 struct btrfs_key key;
4285 struct btrfs_key found_key;
4286 u64 extent_start = 0;
4287 u64 extent_num_bytes = 0;
4288 u64 extent_offset = 0;
4289 u64 item_end = 0;
4290 u64 last_size = new_size;
4291 u32 found_type = (u8)-1;
4292 int found_extent;
4293 int del_item;
4294 int pending_del_nr = 0;
4295 int pending_del_slot = 0;
4296 int extent_type = -1;
4297 int ret;
4298 int err = 0;
4299 u64 ino = btrfs_ino(inode);
4300 u64 bytes_deleted = 0;
4301 bool be_nice = 0;
4302 bool should_throttle = 0;
4303 bool should_end = 0;
4304
4305 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4306
4307 /*
4308 * for non-free space inodes and ref cows, we want to back off from
4309 * time to time
4310 */
4311 if (!btrfs_is_free_space_inode(inode) &&
4312 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4313 be_nice = 1;
4314
4315 path = btrfs_alloc_path();
4316 if (!path)
4317 return -ENOMEM;
4318 path->reada = READA_BACK;
4319
4320 /*
4321 * We want to drop from the next block forward in case this new size is
4322 * not block aligned since we will be keeping the last block of the
4323 * extent just the way it is.
4324 */
4325 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4326 root == root->fs_info->tree_root)
4327 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4328 root->sectorsize), (u64)-1, 0);
4329
4330 /*
4331 * This function is also used to drop the items in the log tree before
4332 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4333 * it is used to drop the loged items. So we shouldn't kill the delayed
4334 * items.
4335 */
4336 if (min_type == 0 && root == BTRFS_I(inode)->root)
4337 btrfs_kill_delayed_inode_items(inode);
4338
4339 key.objectid = ino;
4340 key.offset = (u64)-1;
4341 key.type = (u8)-1;
4342
4343 search_again:
4344 /*
4345 * with a 16K leaf size and 128MB extents, you can actually queue
4346 * up a huge file in a single leaf. Most of the time that
4347 * bytes_deleted is > 0, it will be huge by the time we get here
4348 */
4349 if (be_nice && bytes_deleted > SZ_32M) {
4350 if (btrfs_should_end_transaction(trans, root)) {
4351 err = -EAGAIN;
4352 goto error;
4353 }
4354 }
4355
4356
4357 path->leave_spinning = 1;
4358 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4359 if (ret < 0) {
4360 err = ret;
4361 goto out;
4362 }
4363
4364 if (ret > 0) {
4365 /* there are no items in the tree for us to truncate, we're
4366 * done
4367 */
4368 if (path->slots[0] == 0)
4369 goto out;
4370 path->slots[0]--;
4371 }
4372
4373 while (1) {
4374 fi = NULL;
4375 leaf = path->nodes[0];
4376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4377 found_type = found_key.type;
4378
4379 if (found_key.objectid != ino)
4380 break;
4381
4382 if (found_type < min_type)
4383 break;
4384
4385 item_end = found_key.offset;
4386 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4387 fi = btrfs_item_ptr(leaf, path->slots[0],
4388 struct btrfs_file_extent_item);
4389 extent_type = btrfs_file_extent_type(leaf, fi);
4390 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4391 item_end +=
4392 btrfs_file_extent_num_bytes(leaf, fi);
4393 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4394 item_end += btrfs_file_extent_inline_len(leaf,
4395 path->slots[0], fi);
4396 }
4397 item_end--;
4398 }
4399 if (found_type > min_type) {
4400 del_item = 1;
4401 } else {
4402 if (item_end < new_size)
4403 break;
4404 if (found_key.offset >= new_size)
4405 del_item = 1;
4406 else
4407 del_item = 0;
4408 }
4409 found_extent = 0;
4410 /* FIXME, shrink the extent if the ref count is only 1 */
4411 if (found_type != BTRFS_EXTENT_DATA_KEY)
4412 goto delete;
4413
4414 if (del_item)
4415 last_size = found_key.offset;
4416 else
4417 last_size = new_size;
4418
4419 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4420 u64 num_dec;
4421 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4422 if (!del_item) {
4423 u64 orig_num_bytes =
4424 btrfs_file_extent_num_bytes(leaf, fi);
4425 extent_num_bytes = ALIGN(new_size -
4426 found_key.offset,
4427 root->sectorsize);
4428 btrfs_set_file_extent_num_bytes(leaf, fi,
4429 extent_num_bytes);
4430 num_dec = (orig_num_bytes -
4431 extent_num_bytes);
4432 if (test_bit(BTRFS_ROOT_REF_COWS,
4433 &root->state) &&
4434 extent_start != 0)
4435 inode_sub_bytes(inode, num_dec);
4436 btrfs_mark_buffer_dirty(leaf);
4437 } else {
4438 extent_num_bytes =
4439 btrfs_file_extent_disk_num_bytes(leaf,
4440 fi);
4441 extent_offset = found_key.offset -
4442 btrfs_file_extent_offset(leaf, fi);
4443
4444 /* FIXME blocksize != 4096 */
4445 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4446 if (extent_start != 0) {
4447 found_extent = 1;
4448 if (test_bit(BTRFS_ROOT_REF_COWS,
4449 &root->state))
4450 inode_sub_bytes(inode, num_dec);
4451 }
4452 }
4453 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4454 /*
4455 * we can't truncate inline items that have had
4456 * special encodings
4457 */
4458 if (!del_item &&
4459 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4460 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4461
4462 /*
4463 * Need to release path in order to truncate a
4464 * compressed extent. So delete any accumulated
4465 * extent items so far.
4466 */
4467 if (btrfs_file_extent_compression(leaf, fi) !=
4468 BTRFS_COMPRESS_NONE && pending_del_nr) {
4469 err = btrfs_del_items(trans, root, path,
4470 pending_del_slot,
4471 pending_del_nr);
4472 if (err) {
4473 btrfs_abort_transaction(trans,
4474 root,
4475 err);
4476 goto error;
4477 }
4478 pending_del_nr = 0;
4479 }
4480
4481 err = truncate_inline_extent(inode, path,
4482 &found_key,
4483 item_end,
4484 new_size);
4485 if (err) {
4486 btrfs_abort_transaction(trans,
4487 root, err);
4488 goto error;
4489 }
4490 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4491 &root->state)) {
4492 inode_sub_bytes(inode, item_end + 1 - new_size);
4493 }
4494 }
4495 delete:
4496 if (del_item) {
4497 if (!pending_del_nr) {
4498 /* no pending yet, add ourselves */
4499 pending_del_slot = path->slots[0];
4500 pending_del_nr = 1;
4501 } else if (pending_del_nr &&
4502 path->slots[0] + 1 == pending_del_slot) {
4503 /* hop on the pending chunk */
4504 pending_del_nr++;
4505 pending_del_slot = path->slots[0];
4506 } else {
4507 BUG();
4508 }
4509 } else {
4510 break;
4511 }
4512 should_throttle = 0;
4513
4514 if (found_extent &&
4515 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4516 root == root->fs_info->tree_root)) {
4517 btrfs_set_path_blocking(path);
4518 bytes_deleted += extent_num_bytes;
4519 ret = btrfs_free_extent(trans, root, extent_start,
4520 extent_num_bytes, 0,
4521 btrfs_header_owner(leaf),
4522 ino, extent_offset);
4523 BUG_ON(ret);
4524 if (btrfs_should_throttle_delayed_refs(trans, root))
4525 btrfs_async_run_delayed_refs(root,
4526 trans->delayed_ref_updates * 2, 0);
4527 if (be_nice) {
4528 if (truncate_space_check(trans, root,
4529 extent_num_bytes)) {
4530 should_end = 1;
4531 }
4532 if (btrfs_should_throttle_delayed_refs(trans,
4533 root)) {
4534 should_throttle = 1;
4535 }
4536 }
4537 }
4538
4539 if (found_type == BTRFS_INODE_ITEM_KEY)
4540 break;
4541
4542 if (path->slots[0] == 0 ||
4543 path->slots[0] != pending_del_slot ||
4544 should_throttle || should_end) {
4545 if (pending_del_nr) {
4546 ret = btrfs_del_items(trans, root, path,
4547 pending_del_slot,
4548 pending_del_nr);
4549 if (ret) {
4550 btrfs_abort_transaction(trans,
4551 root, ret);
4552 goto error;
4553 }
4554 pending_del_nr = 0;
4555 }
4556 btrfs_release_path(path);
4557 if (should_throttle) {
4558 unsigned long updates = trans->delayed_ref_updates;
4559 if (updates) {
4560 trans->delayed_ref_updates = 0;
4561 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4562 if (ret && !err)
4563 err = ret;
4564 }
4565 }
4566 /*
4567 * if we failed to refill our space rsv, bail out
4568 * and let the transaction restart
4569 */
4570 if (should_end) {
4571 err = -EAGAIN;
4572 goto error;
4573 }
4574 goto search_again;
4575 } else {
4576 path->slots[0]--;
4577 }
4578 }
4579 out:
4580 if (pending_del_nr) {
4581 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4582 pending_del_nr);
4583 if (ret)
4584 btrfs_abort_transaction(trans, root, ret);
4585 }
4586 error:
4587 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4588 btrfs_ordered_update_i_size(inode, last_size, NULL);
4589
4590 btrfs_free_path(path);
4591
4592 if (be_nice && bytes_deleted > SZ_32M) {
4593 unsigned long updates = trans->delayed_ref_updates;
4594 if (updates) {
4595 trans->delayed_ref_updates = 0;
4596 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4597 if (ret && !err)
4598 err = ret;
4599 }
4600 }
4601 return err;
4602 }
4603
4604 /*
4605 * btrfs_truncate_block - read, zero a chunk and write a block
4606 * @inode - inode that we're zeroing
4607 * @from - the offset to start zeroing
4608 * @len - the length to zero, 0 to zero the entire range respective to the
4609 * offset
4610 * @front - zero up to the offset instead of from the offset on
4611 *
4612 * This will find the block for the "from" offset and cow the block and zero the
4613 * part we want to zero. This is used with truncate and hole punching.
4614 */
4615 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4616 int front)
4617 {
4618 struct address_space *mapping = inode->i_mapping;
4619 struct btrfs_root *root = BTRFS_I(inode)->root;
4620 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4621 struct btrfs_ordered_extent *ordered;
4622 struct extent_state *cached_state = NULL;
4623 char *kaddr;
4624 u32 blocksize = root->sectorsize;
4625 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4626 unsigned offset = from & (blocksize - 1);
4627 struct page *page;
4628 gfp_t mask = btrfs_alloc_write_mask(mapping);
4629 int ret = 0;
4630 u64 block_start;
4631 u64 block_end;
4632
4633 if ((offset & (blocksize - 1)) == 0 &&
4634 (!len || ((len & (blocksize - 1)) == 0)))
4635 goto out;
4636
4637 ret = btrfs_delalloc_reserve_space(inode,
4638 round_down(from, blocksize), blocksize);
4639 if (ret)
4640 goto out;
4641
4642 again:
4643 page = find_or_create_page(mapping, index, mask);
4644 if (!page) {
4645 btrfs_delalloc_release_space(inode,
4646 round_down(from, blocksize),
4647 blocksize);
4648 ret = -ENOMEM;
4649 goto out;
4650 }
4651
4652 block_start = round_down(from, blocksize);
4653 block_end = block_start + blocksize - 1;
4654
4655 if (!PageUptodate(page)) {
4656 ret = btrfs_readpage(NULL, page);
4657 lock_page(page);
4658 if (page->mapping != mapping) {
4659 unlock_page(page);
4660 page_cache_release(page);
4661 goto again;
4662 }
4663 if (!PageUptodate(page)) {
4664 ret = -EIO;
4665 goto out_unlock;
4666 }
4667 }
4668 wait_on_page_writeback(page);
4669
4670 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4671 set_page_extent_mapped(page);
4672
4673 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4674 if (ordered) {
4675 unlock_extent_cached(io_tree, block_start, block_end,
4676 &cached_state, GFP_NOFS);
4677 unlock_page(page);
4678 page_cache_release(page);
4679 btrfs_start_ordered_extent(inode, ordered, 1);
4680 btrfs_put_ordered_extent(ordered);
4681 goto again;
4682 }
4683
4684 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4685 EXTENT_DIRTY | EXTENT_DELALLOC |
4686 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4687 0, 0, &cached_state, GFP_NOFS);
4688
4689 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4690 &cached_state);
4691 if (ret) {
4692 unlock_extent_cached(io_tree, block_start, block_end,
4693 &cached_state, GFP_NOFS);
4694 goto out_unlock;
4695 }
4696
4697 if (offset != blocksize) {
4698 if (!len)
4699 len = blocksize - offset;
4700 kaddr = kmap(page);
4701 if (front)
4702 memset(kaddr + (block_start - page_offset(page)),
4703 0, offset);
4704 else
4705 memset(kaddr + (block_start - page_offset(page)) + offset,
4706 0, len);
4707 flush_dcache_page(page);
4708 kunmap(page);
4709 }
4710 ClearPageChecked(page);
4711 set_page_dirty(page);
4712 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4713 GFP_NOFS);
4714
4715 out_unlock:
4716 if (ret)
4717 btrfs_delalloc_release_space(inode, block_start,
4718 blocksize);
4719 unlock_page(page);
4720 page_cache_release(page);
4721 out:
4722 return ret;
4723 }
4724
4725 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4726 u64 offset, u64 len)
4727 {
4728 struct btrfs_trans_handle *trans;
4729 int ret;
4730
4731 /*
4732 * Still need to make sure the inode looks like it's been updated so
4733 * that any holes get logged if we fsync.
4734 */
4735 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4736 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4737 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4738 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4739 return 0;
4740 }
4741
4742 /*
4743 * 1 - for the one we're dropping
4744 * 1 - for the one we're adding
4745 * 1 - for updating the inode.
4746 */
4747 trans = btrfs_start_transaction(root, 3);
4748 if (IS_ERR(trans))
4749 return PTR_ERR(trans);
4750
4751 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4752 if (ret) {
4753 btrfs_abort_transaction(trans, root, ret);
4754 btrfs_end_transaction(trans, root);
4755 return ret;
4756 }
4757
4758 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4759 0, 0, len, 0, len, 0, 0, 0);
4760 if (ret)
4761 btrfs_abort_transaction(trans, root, ret);
4762 else
4763 btrfs_update_inode(trans, root, inode);
4764 btrfs_end_transaction(trans, root);
4765 return ret;
4766 }
4767
4768 /*
4769 * This function puts in dummy file extents for the area we're creating a hole
4770 * for. So if we are truncating this file to a larger size we need to insert
4771 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4772 * the range between oldsize and size
4773 */
4774 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4775 {
4776 struct btrfs_root *root = BTRFS_I(inode)->root;
4777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4778 struct extent_map *em = NULL;
4779 struct extent_state *cached_state = NULL;
4780 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4781 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4782 u64 block_end = ALIGN(size, root->sectorsize);
4783 u64 last_byte;
4784 u64 cur_offset;
4785 u64 hole_size;
4786 int err = 0;
4787
4788 /*
4789 * If our size started in the middle of a block we need to zero out the
4790 * rest of the block before we expand the i_size, otherwise we could
4791 * expose stale data.
4792 */
4793 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4794 if (err)
4795 return err;
4796
4797 if (size <= hole_start)
4798 return 0;
4799
4800 while (1) {
4801 struct btrfs_ordered_extent *ordered;
4802
4803 lock_extent_bits(io_tree, hole_start, block_end - 1,
4804 &cached_state);
4805 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4806 block_end - hole_start);
4807 if (!ordered)
4808 break;
4809 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4810 &cached_state, GFP_NOFS);
4811 btrfs_start_ordered_extent(inode, ordered, 1);
4812 btrfs_put_ordered_extent(ordered);
4813 }
4814
4815 cur_offset = hole_start;
4816 while (1) {
4817 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4818 block_end - cur_offset, 0);
4819 if (IS_ERR(em)) {
4820 err = PTR_ERR(em);
4821 em = NULL;
4822 break;
4823 }
4824 last_byte = min(extent_map_end(em), block_end);
4825 last_byte = ALIGN(last_byte , root->sectorsize);
4826 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4827 struct extent_map *hole_em;
4828 hole_size = last_byte - cur_offset;
4829
4830 err = maybe_insert_hole(root, inode, cur_offset,
4831 hole_size);
4832 if (err)
4833 break;
4834 btrfs_drop_extent_cache(inode, cur_offset,
4835 cur_offset + hole_size - 1, 0);
4836 hole_em = alloc_extent_map();
4837 if (!hole_em) {
4838 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4839 &BTRFS_I(inode)->runtime_flags);
4840 goto next;
4841 }
4842 hole_em->start = cur_offset;
4843 hole_em->len = hole_size;
4844 hole_em->orig_start = cur_offset;
4845
4846 hole_em->block_start = EXTENT_MAP_HOLE;
4847 hole_em->block_len = 0;
4848 hole_em->orig_block_len = 0;
4849 hole_em->ram_bytes = hole_size;
4850 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4851 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4852 hole_em->generation = root->fs_info->generation;
4853
4854 while (1) {
4855 write_lock(&em_tree->lock);
4856 err = add_extent_mapping(em_tree, hole_em, 1);
4857 write_unlock(&em_tree->lock);
4858 if (err != -EEXIST)
4859 break;
4860 btrfs_drop_extent_cache(inode, cur_offset,
4861 cur_offset +
4862 hole_size - 1, 0);
4863 }
4864 free_extent_map(hole_em);
4865 }
4866 next:
4867 free_extent_map(em);
4868 em = NULL;
4869 cur_offset = last_byte;
4870 if (cur_offset >= block_end)
4871 break;
4872 }
4873 free_extent_map(em);
4874 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4875 GFP_NOFS);
4876 return err;
4877 }
4878
4879 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4880 {
4881 struct btrfs_root *root = BTRFS_I(inode)->root;
4882 struct btrfs_trans_handle *trans;
4883 loff_t oldsize = i_size_read(inode);
4884 loff_t newsize = attr->ia_size;
4885 int mask = attr->ia_valid;
4886 int ret;
4887
4888 /*
4889 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4890 * special case where we need to update the times despite not having
4891 * these flags set. For all other operations the VFS set these flags
4892 * explicitly if it wants a timestamp update.
4893 */
4894 if (newsize != oldsize) {
4895 inode_inc_iversion(inode);
4896 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4897 inode->i_ctime = inode->i_mtime =
4898 current_fs_time(inode->i_sb);
4899 }
4900
4901 if (newsize > oldsize) {
4902 truncate_pagecache(inode, newsize);
4903 /*
4904 * Don't do an expanding truncate while snapshoting is ongoing.
4905 * This is to ensure the snapshot captures a fully consistent
4906 * state of this file - if the snapshot captures this expanding
4907 * truncation, it must capture all writes that happened before
4908 * this truncation.
4909 */
4910 btrfs_wait_for_snapshot_creation(root);
4911 ret = btrfs_cont_expand(inode, oldsize, newsize);
4912 if (ret) {
4913 btrfs_end_write_no_snapshoting(root);
4914 return ret;
4915 }
4916
4917 trans = btrfs_start_transaction(root, 1);
4918 if (IS_ERR(trans)) {
4919 btrfs_end_write_no_snapshoting(root);
4920 return PTR_ERR(trans);
4921 }
4922
4923 i_size_write(inode, newsize);
4924 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4925 ret = btrfs_update_inode(trans, root, inode);
4926 btrfs_end_write_no_snapshoting(root);
4927 btrfs_end_transaction(trans, root);
4928 } else {
4929
4930 /*
4931 * We're truncating a file that used to have good data down to
4932 * zero. Make sure it gets into the ordered flush list so that
4933 * any new writes get down to disk quickly.
4934 */
4935 if (newsize == 0)
4936 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4937 &BTRFS_I(inode)->runtime_flags);
4938
4939 /*
4940 * 1 for the orphan item we're going to add
4941 * 1 for the orphan item deletion.
4942 */
4943 trans = btrfs_start_transaction(root, 2);
4944 if (IS_ERR(trans))
4945 return PTR_ERR(trans);
4946
4947 /*
4948 * We need to do this in case we fail at _any_ point during the
4949 * actual truncate. Once we do the truncate_setsize we could
4950 * invalidate pages which forces any outstanding ordered io to
4951 * be instantly completed which will give us extents that need
4952 * to be truncated. If we fail to get an orphan inode down we
4953 * could have left over extents that were never meant to live,
4954 * so we need to garuntee from this point on that everything
4955 * will be consistent.
4956 */
4957 ret = btrfs_orphan_add(trans, inode);
4958 btrfs_end_transaction(trans, root);
4959 if (ret)
4960 return ret;
4961
4962 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4963 truncate_setsize(inode, newsize);
4964
4965 /* Disable nonlocked read DIO to avoid the end less truncate */
4966 btrfs_inode_block_unlocked_dio(inode);
4967 inode_dio_wait(inode);
4968 btrfs_inode_resume_unlocked_dio(inode);
4969
4970 ret = btrfs_truncate(inode);
4971 if (ret && inode->i_nlink) {
4972 int err;
4973
4974 /*
4975 * failed to truncate, disk_i_size is only adjusted down
4976 * as we remove extents, so it should represent the true
4977 * size of the inode, so reset the in memory size and
4978 * delete our orphan entry.
4979 */
4980 trans = btrfs_join_transaction(root);
4981 if (IS_ERR(trans)) {
4982 btrfs_orphan_del(NULL, inode);
4983 return ret;
4984 }
4985 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4986 err = btrfs_orphan_del(trans, inode);
4987 if (err)
4988 btrfs_abort_transaction(trans, root, err);
4989 btrfs_end_transaction(trans, root);
4990 }
4991 }
4992
4993 return ret;
4994 }
4995
4996 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4997 {
4998 struct inode *inode = d_inode(dentry);
4999 struct btrfs_root *root = BTRFS_I(inode)->root;
5000 int err;
5001
5002 if (btrfs_root_readonly(root))
5003 return -EROFS;
5004
5005 err = inode_change_ok(inode, attr);
5006 if (err)
5007 return err;
5008
5009 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5010 err = btrfs_setsize(inode, attr);
5011 if (err)
5012 return err;
5013 }
5014
5015 if (attr->ia_valid) {
5016 setattr_copy(inode, attr);
5017 inode_inc_iversion(inode);
5018 err = btrfs_dirty_inode(inode);
5019
5020 if (!err && attr->ia_valid & ATTR_MODE)
5021 err = posix_acl_chmod(inode, inode->i_mode);
5022 }
5023
5024 return err;
5025 }
5026
5027 /*
5028 * While truncating the inode pages during eviction, we get the VFS calling
5029 * btrfs_invalidatepage() against each page of the inode. This is slow because
5030 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5031 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5032 * extent_state structures over and over, wasting lots of time.
5033 *
5034 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5035 * those expensive operations on a per page basis and do only the ordered io
5036 * finishing, while we release here the extent_map and extent_state structures,
5037 * without the excessive merging and splitting.
5038 */
5039 static void evict_inode_truncate_pages(struct inode *inode)
5040 {
5041 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5042 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5043 struct rb_node *node;
5044
5045 ASSERT(inode->i_state & I_FREEING);
5046 truncate_inode_pages_final(&inode->i_data);
5047
5048 write_lock(&map_tree->lock);
5049 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5050 struct extent_map *em;
5051
5052 node = rb_first(&map_tree->map);
5053 em = rb_entry(node, struct extent_map, rb_node);
5054 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5055 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5056 remove_extent_mapping(map_tree, em);
5057 free_extent_map(em);
5058 if (need_resched()) {
5059 write_unlock(&map_tree->lock);
5060 cond_resched();
5061 write_lock(&map_tree->lock);
5062 }
5063 }
5064 write_unlock(&map_tree->lock);
5065
5066 /*
5067 * Keep looping until we have no more ranges in the io tree.
5068 * We can have ongoing bios started by readpages (called from readahead)
5069 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5070 * still in progress (unlocked the pages in the bio but did not yet
5071 * unlocked the ranges in the io tree). Therefore this means some
5072 * ranges can still be locked and eviction started because before
5073 * submitting those bios, which are executed by a separate task (work
5074 * queue kthread), inode references (inode->i_count) were not taken
5075 * (which would be dropped in the end io callback of each bio).
5076 * Therefore here we effectively end up waiting for those bios and
5077 * anyone else holding locked ranges without having bumped the inode's
5078 * reference count - if we don't do it, when they access the inode's
5079 * io_tree to unlock a range it may be too late, leading to an
5080 * use-after-free issue.
5081 */
5082 spin_lock(&io_tree->lock);
5083 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5084 struct extent_state *state;
5085 struct extent_state *cached_state = NULL;
5086 u64 start;
5087 u64 end;
5088
5089 node = rb_first(&io_tree->state);
5090 state = rb_entry(node, struct extent_state, rb_node);
5091 start = state->start;
5092 end = state->end;
5093 spin_unlock(&io_tree->lock);
5094
5095 lock_extent_bits(io_tree, start, end, &cached_state);
5096
5097 /*
5098 * If still has DELALLOC flag, the extent didn't reach disk,
5099 * and its reserved space won't be freed by delayed_ref.
5100 * So we need to free its reserved space here.
5101 * (Refer to comment in btrfs_invalidatepage, case 2)
5102 *
5103 * Note, end is the bytenr of last byte, so we need + 1 here.
5104 */
5105 if (state->state & EXTENT_DELALLOC)
5106 btrfs_qgroup_free_data(inode, start, end - start + 1);
5107
5108 clear_extent_bit(io_tree, start, end,
5109 EXTENT_LOCKED | EXTENT_DIRTY |
5110 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5111 EXTENT_DEFRAG, 1, 1,
5112 &cached_state, GFP_NOFS);
5113
5114 cond_resched();
5115 spin_lock(&io_tree->lock);
5116 }
5117 spin_unlock(&io_tree->lock);
5118 }
5119
5120 void btrfs_evict_inode(struct inode *inode)
5121 {
5122 struct btrfs_trans_handle *trans;
5123 struct btrfs_root *root = BTRFS_I(inode)->root;
5124 struct btrfs_block_rsv *rsv, *global_rsv;
5125 int steal_from_global = 0;
5126 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5127 int ret;
5128
5129 trace_btrfs_inode_evict(inode);
5130
5131 evict_inode_truncate_pages(inode);
5132
5133 if (inode->i_nlink &&
5134 ((btrfs_root_refs(&root->root_item) != 0 &&
5135 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5136 btrfs_is_free_space_inode(inode)))
5137 goto no_delete;
5138
5139 if (is_bad_inode(inode)) {
5140 btrfs_orphan_del(NULL, inode);
5141 goto no_delete;
5142 }
5143 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5144 if (!special_file(inode->i_mode))
5145 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5146
5147 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5148
5149 if (root->fs_info->log_root_recovering) {
5150 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5151 &BTRFS_I(inode)->runtime_flags));
5152 goto no_delete;
5153 }
5154
5155 if (inode->i_nlink > 0) {
5156 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5157 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5158 goto no_delete;
5159 }
5160
5161 ret = btrfs_commit_inode_delayed_inode(inode);
5162 if (ret) {
5163 btrfs_orphan_del(NULL, inode);
5164 goto no_delete;
5165 }
5166
5167 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5168 if (!rsv) {
5169 btrfs_orphan_del(NULL, inode);
5170 goto no_delete;
5171 }
5172 rsv->size = min_size;
5173 rsv->failfast = 1;
5174 global_rsv = &root->fs_info->global_block_rsv;
5175
5176 btrfs_i_size_write(inode, 0);
5177
5178 /*
5179 * This is a bit simpler than btrfs_truncate since we've already
5180 * reserved our space for our orphan item in the unlink, so we just
5181 * need to reserve some slack space in case we add bytes and update
5182 * inode item when doing the truncate.
5183 */
5184 while (1) {
5185 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5186 BTRFS_RESERVE_FLUSH_LIMIT);
5187
5188 /*
5189 * Try and steal from the global reserve since we will
5190 * likely not use this space anyway, we want to try as
5191 * hard as possible to get this to work.
5192 */
5193 if (ret)
5194 steal_from_global++;
5195 else
5196 steal_from_global = 0;
5197 ret = 0;
5198
5199 /*
5200 * steal_from_global == 0: we reserved stuff, hooray!
5201 * steal_from_global == 1: we didn't reserve stuff, boo!
5202 * steal_from_global == 2: we've committed, still not a lot of
5203 * room but maybe we'll have room in the global reserve this
5204 * time.
5205 * steal_from_global == 3: abandon all hope!
5206 */
5207 if (steal_from_global > 2) {
5208 btrfs_warn(root->fs_info,
5209 "Could not get space for a delete, will truncate on mount %d",
5210 ret);
5211 btrfs_orphan_del(NULL, inode);
5212 btrfs_free_block_rsv(root, rsv);
5213 goto no_delete;
5214 }
5215
5216 trans = btrfs_join_transaction(root);
5217 if (IS_ERR(trans)) {
5218 btrfs_orphan_del(NULL, inode);
5219 btrfs_free_block_rsv(root, rsv);
5220 goto no_delete;
5221 }
5222
5223 /*
5224 * We can't just steal from the global reserve, we need tomake
5225 * sure there is room to do it, if not we need to commit and try
5226 * again.
5227 */
5228 if (steal_from_global) {
5229 if (!btrfs_check_space_for_delayed_refs(trans, root))
5230 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5231 min_size);
5232 else
5233 ret = -ENOSPC;
5234 }
5235
5236 /*
5237 * Couldn't steal from the global reserve, we have too much
5238 * pending stuff built up, commit the transaction and try it
5239 * again.
5240 */
5241 if (ret) {
5242 ret = btrfs_commit_transaction(trans, root);
5243 if (ret) {
5244 btrfs_orphan_del(NULL, inode);
5245 btrfs_free_block_rsv(root, rsv);
5246 goto no_delete;
5247 }
5248 continue;
5249 } else {
5250 steal_from_global = 0;
5251 }
5252
5253 trans->block_rsv = rsv;
5254
5255 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5256 if (ret != -ENOSPC && ret != -EAGAIN)
5257 break;
5258
5259 trans->block_rsv = &root->fs_info->trans_block_rsv;
5260 btrfs_end_transaction(trans, root);
5261 trans = NULL;
5262 btrfs_btree_balance_dirty(root);
5263 }
5264
5265 btrfs_free_block_rsv(root, rsv);
5266
5267 /*
5268 * Errors here aren't a big deal, it just means we leave orphan items
5269 * in the tree. They will be cleaned up on the next mount.
5270 */
5271 if (ret == 0) {
5272 trans->block_rsv = root->orphan_block_rsv;
5273 btrfs_orphan_del(trans, inode);
5274 } else {
5275 btrfs_orphan_del(NULL, inode);
5276 }
5277
5278 trans->block_rsv = &root->fs_info->trans_block_rsv;
5279 if (!(root == root->fs_info->tree_root ||
5280 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5281 btrfs_return_ino(root, btrfs_ino(inode));
5282
5283 btrfs_end_transaction(trans, root);
5284 btrfs_btree_balance_dirty(root);
5285 no_delete:
5286 btrfs_remove_delayed_node(inode);
5287 clear_inode(inode);
5288 }
5289
5290 /*
5291 * this returns the key found in the dir entry in the location pointer.
5292 * If no dir entries were found, location->objectid is 0.
5293 */
5294 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5295 struct btrfs_key *location)
5296 {
5297 const char *name = dentry->d_name.name;
5298 int namelen = dentry->d_name.len;
5299 struct btrfs_dir_item *di;
5300 struct btrfs_path *path;
5301 struct btrfs_root *root = BTRFS_I(dir)->root;
5302 int ret = 0;
5303
5304 path = btrfs_alloc_path();
5305 if (!path)
5306 return -ENOMEM;
5307
5308 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5309 namelen, 0);
5310 if (IS_ERR(di))
5311 ret = PTR_ERR(di);
5312
5313 if (IS_ERR_OR_NULL(di))
5314 goto out_err;
5315
5316 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5317 out:
5318 btrfs_free_path(path);
5319 return ret;
5320 out_err:
5321 location->objectid = 0;
5322 goto out;
5323 }
5324
5325 /*
5326 * when we hit a tree root in a directory, the btrfs part of the inode
5327 * needs to be changed to reflect the root directory of the tree root. This
5328 * is kind of like crossing a mount point.
5329 */
5330 static int fixup_tree_root_location(struct btrfs_root *root,
5331 struct inode *dir,
5332 struct dentry *dentry,
5333 struct btrfs_key *location,
5334 struct btrfs_root **sub_root)
5335 {
5336 struct btrfs_path *path;
5337 struct btrfs_root *new_root;
5338 struct btrfs_root_ref *ref;
5339 struct extent_buffer *leaf;
5340 struct btrfs_key key;
5341 int ret;
5342 int err = 0;
5343
5344 path = btrfs_alloc_path();
5345 if (!path) {
5346 err = -ENOMEM;
5347 goto out;
5348 }
5349
5350 err = -ENOENT;
5351 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5352 key.type = BTRFS_ROOT_REF_KEY;
5353 key.offset = location->objectid;
5354
5355 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5356 0, 0);
5357 if (ret) {
5358 if (ret < 0)
5359 err = ret;
5360 goto out;
5361 }
5362
5363 leaf = path->nodes[0];
5364 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5365 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5366 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5367 goto out;
5368
5369 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5370 (unsigned long)(ref + 1),
5371 dentry->d_name.len);
5372 if (ret)
5373 goto out;
5374
5375 btrfs_release_path(path);
5376
5377 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5378 if (IS_ERR(new_root)) {
5379 err = PTR_ERR(new_root);
5380 goto out;
5381 }
5382
5383 *sub_root = new_root;
5384 location->objectid = btrfs_root_dirid(&new_root->root_item);
5385 location->type = BTRFS_INODE_ITEM_KEY;
5386 location->offset = 0;
5387 err = 0;
5388 out:
5389 btrfs_free_path(path);
5390 return err;
5391 }
5392
5393 static void inode_tree_add(struct inode *inode)
5394 {
5395 struct btrfs_root *root = BTRFS_I(inode)->root;
5396 struct btrfs_inode *entry;
5397 struct rb_node **p;
5398 struct rb_node *parent;
5399 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5400 u64 ino = btrfs_ino(inode);
5401
5402 if (inode_unhashed(inode))
5403 return;
5404 parent = NULL;
5405 spin_lock(&root->inode_lock);
5406 p = &root->inode_tree.rb_node;
5407 while (*p) {
5408 parent = *p;
5409 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5410
5411 if (ino < btrfs_ino(&entry->vfs_inode))
5412 p = &parent->rb_left;
5413 else if (ino > btrfs_ino(&entry->vfs_inode))
5414 p = &parent->rb_right;
5415 else {
5416 WARN_ON(!(entry->vfs_inode.i_state &
5417 (I_WILL_FREE | I_FREEING)));
5418 rb_replace_node(parent, new, &root->inode_tree);
5419 RB_CLEAR_NODE(parent);
5420 spin_unlock(&root->inode_lock);
5421 return;
5422 }
5423 }
5424 rb_link_node(new, parent, p);
5425 rb_insert_color(new, &root->inode_tree);
5426 spin_unlock(&root->inode_lock);
5427 }
5428
5429 static void inode_tree_del(struct inode *inode)
5430 {
5431 struct btrfs_root *root = BTRFS_I(inode)->root;
5432 int empty = 0;
5433
5434 spin_lock(&root->inode_lock);
5435 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5436 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5437 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5438 empty = RB_EMPTY_ROOT(&root->inode_tree);
5439 }
5440 spin_unlock(&root->inode_lock);
5441
5442 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5443 synchronize_srcu(&root->fs_info->subvol_srcu);
5444 spin_lock(&root->inode_lock);
5445 empty = RB_EMPTY_ROOT(&root->inode_tree);
5446 spin_unlock(&root->inode_lock);
5447 if (empty)
5448 btrfs_add_dead_root(root);
5449 }
5450 }
5451
5452 void btrfs_invalidate_inodes(struct btrfs_root *root)
5453 {
5454 struct rb_node *node;
5455 struct rb_node *prev;
5456 struct btrfs_inode *entry;
5457 struct inode *inode;
5458 u64 objectid = 0;
5459
5460 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5461 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5462
5463 spin_lock(&root->inode_lock);
5464 again:
5465 node = root->inode_tree.rb_node;
5466 prev = NULL;
5467 while (node) {
5468 prev = node;
5469 entry = rb_entry(node, struct btrfs_inode, rb_node);
5470
5471 if (objectid < btrfs_ino(&entry->vfs_inode))
5472 node = node->rb_left;
5473 else if (objectid > btrfs_ino(&entry->vfs_inode))
5474 node = node->rb_right;
5475 else
5476 break;
5477 }
5478 if (!node) {
5479 while (prev) {
5480 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5481 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5482 node = prev;
5483 break;
5484 }
5485 prev = rb_next(prev);
5486 }
5487 }
5488 while (node) {
5489 entry = rb_entry(node, struct btrfs_inode, rb_node);
5490 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5491 inode = igrab(&entry->vfs_inode);
5492 if (inode) {
5493 spin_unlock(&root->inode_lock);
5494 if (atomic_read(&inode->i_count) > 1)
5495 d_prune_aliases(inode);
5496 /*
5497 * btrfs_drop_inode will have it removed from
5498 * the inode cache when its usage count
5499 * hits zero.
5500 */
5501 iput(inode);
5502 cond_resched();
5503 spin_lock(&root->inode_lock);
5504 goto again;
5505 }
5506
5507 if (cond_resched_lock(&root->inode_lock))
5508 goto again;
5509
5510 node = rb_next(node);
5511 }
5512 spin_unlock(&root->inode_lock);
5513 }
5514
5515 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5516 {
5517 struct btrfs_iget_args *args = p;
5518 inode->i_ino = args->location->objectid;
5519 memcpy(&BTRFS_I(inode)->location, args->location,
5520 sizeof(*args->location));
5521 BTRFS_I(inode)->root = args->root;
5522 return 0;
5523 }
5524
5525 static int btrfs_find_actor(struct inode *inode, void *opaque)
5526 {
5527 struct btrfs_iget_args *args = opaque;
5528 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5529 args->root == BTRFS_I(inode)->root;
5530 }
5531
5532 static struct inode *btrfs_iget_locked(struct super_block *s,
5533 struct btrfs_key *location,
5534 struct btrfs_root *root)
5535 {
5536 struct inode *inode;
5537 struct btrfs_iget_args args;
5538 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5539
5540 args.location = location;
5541 args.root = root;
5542
5543 inode = iget5_locked(s, hashval, btrfs_find_actor,
5544 btrfs_init_locked_inode,
5545 (void *)&args);
5546 return inode;
5547 }
5548
5549 /* Get an inode object given its location and corresponding root.
5550 * Returns in *is_new if the inode was read from disk
5551 */
5552 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5553 struct btrfs_root *root, int *new)
5554 {
5555 struct inode *inode;
5556
5557 inode = btrfs_iget_locked(s, location, root);
5558 if (!inode)
5559 return ERR_PTR(-ENOMEM);
5560
5561 if (inode->i_state & I_NEW) {
5562 btrfs_read_locked_inode(inode);
5563 if (!is_bad_inode(inode)) {
5564 inode_tree_add(inode);
5565 unlock_new_inode(inode);
5566 if (new)
5567 *new = 1;
5568 } else {
5569 unlock_new_inode(inode);
5570 iput(inode);
5571 inode = ERR_PTR(-ESTALE);
5572 }
5573 }
5574
5575 return inode;
5576 }
5577
5578 static struct inode *new_simple_dir(struct super_block *s,
5579 struct btrfs_key *key,
5580 struct btrfs_root *root)
5581 {
5582 struct inode *inode = new_inode(s);
5583
5584 if (!inode)
5585 return ERR_PTR(-ENOMEM);
5586
5587 BTRFS_I(inode)->root = root;
5588 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5589 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5590
5591 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5592 inode->i_op = &btrfs_dir_ro_inode_operations;
5593 inode->i_fop = &simple_dir_operations;
5594 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5595 inode->i_mtime = CURRENT_TIME;
5596 inode->i_atime = inode->i_mtime;
5597 inode->i_ctime = inode->i_mtime;
5598 BTRFS_I(inode)->i_otime = inode->i_mtime;
5599
5600 return inode;
5601 }
5602
5603 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5604 {
5605 struct inode *inode;
5606 struct btrfs_root *root = BTRFS_I(dir)->root;
5607 struct btrfs_root *sub_root = root;
5608 struct btrfs_key location;
5609 int index;
5610 int ret = 0;
5611
5612 if (dentry->d_name.len > BTRFS_NAME_LEN)
5613 return ERR_PTR(-ENAMETOOLONG);
5614
5615 ret = btrfs_inode_by_name(dir, dentry, &location);
5616 if (ret < 0)
5617 return ERR_PTR(ret);
5618
5619 if (location.objectid == 0)
5620 return ERR_PTR(-ENOENT);
5621
5622 if (location.type == BTRFS_INODE_ITEM_KEY) {
5623 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5624 return inode;
5625 }
5626
5627 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5628
5629 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5630 ret = fixup_tree_root_location(root, dir, dentry,
5631 &location, &sub_root);
5632 if (ret < 0) {
5633 if (ret != -ENOENT)
5634 inode = ERR_PTR(ret);
5635 else
5636 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5637 } else {
5638 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5639 }
5640 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5641
5642 if (!IS_ERR(inode) && root != sub_root) {
5643 down_read(&root->fs_info->cleanup_work_sem);
5644 if (!(inode->i_sb->s_flags & MS_RDONLY))
5645 ret = btrfs_orphan_cleanup(sub_root);
5646 up_read(&root->fs_info->cleanup_work_sem);
5647 if (ret) {
5648 iput(inode);
5649 inode = ERR_PTR(ret);
5650 }
5651 }
5652
5653 return inode;
5654 }
5655
5656 static int btrfs_dentry_delete(const struct dentry *dentry)
5657 {
5658 struct btrfs_root *root;
5659 struct inode *inode = d_inode(dentry);
5660
5661 if (!inode && !IS_ROOT(dentry))
5662 inode = d_inode(dentry->d_parent);
5663
5664 if (inode) {
5665 root = BTRFS_I(inode)->root;
5666 if (btrfs_root_refs(&root->root_item) == 0)
5667 return 1;
5668
5669 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5670 return 1;
5671 }
5672 return 0;
5673 }
5674
5675 static void btrfs_dentry_release(struct dentry *dentry)
5676 {
5677 kfree(dentry->d_fsdata);
5678 }
5679
5680 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5681 unsigned int flags)
5682 {
5683 struct inode *inode;
5684
5685 inode = btrfs_lookup_dentry(dir, dentry);
5686 if (IS_ERR(inode)) {
5687 if (PTR_ERR(inode) == -ENOENT)
5688 inode = NULL;
5689 else
5690 return ERR_CAST(inode);
5691 }
5692
5693 return d_splice_alias(inode, dentry);
5694 }
5695
5696 unsigned char btrfs_filetype_table[] = {
5697 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5698 };
5699
5700 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5701 {
5702 struct inode *inode = file_inode(file);
5703 struct btrfs_root *root = BTRFS_I(inode)->root;
5704 struct btrfs_item *item;
5705 struct btrfs_dir_item *di;
5706 struct btrfs_key key;
5707 struct btrfs_key found_key;
5708 struct btrfs_path *path;
5709 struct list_head ins_list;
5710 struct list_head del_list;
5711 int ret;
5712 struct extent_buffer *leaf;
5713 int slot;
5714 unsigned char d_type;
5715 int over = 0;
5716 u32 di_cur;
5717 u32 di_total;
5718 u32 di_len;
5719 int key_type = BTRFS_DIR_INDEX_KEY;
5720 char tmp_name[32];
5721 char *name_ptr;
5722 int name_len;
5723 int is_curr = 0; /* ctx->pos points to the current index? */
5724
5725 /* FIXME, use a real flag for deciding about the key type */
5726 if (root->fs_info->tree_root == root)
5727 key_type = BTRFS_DIR_ITEM_KEY;
5728
5729 if (!dir_emit_dots(file, ctx))
5730 return 0;
5731
5732 path = btrfs_alloc_path();
5733 if (!path)
5734 return -ENOMEM;
5735
5736 path->reada = READA_FORWARD;
5737
5738 if (key_type == BTRFS_DIR_INDEX_KEY) {
5739 INIT_LIST_HEAD(&ins_list);
5740 INIT_LIST_HEAD(&del_list);
5741 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5742 }
5743
5744 key.type = key_type;
5745 key.offset = ctx->pos;
5746 key.objectid = btrfs_ino(inode);
5747
5748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5749 if (ret < 0)
5750 goto err;
5751
5752 while (1) {
5753 leaf = path->nodes[0];
5754 slot = path->slots[0];
5755 if (slot >= btrfs_header_nritems(leaf)) {
5756 ret = btrfs_next_leaf(root, path);
5757 if (ret < 0)
5758 goto err;
5759 else if (ret > 0)
5760 break;
5761 continue;
5762 }
5763
5764 item = btrfs_item_nr(slot);
5765 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5766
5767 if (found_key.objectid != key.objectid)
5768 break;
5769 if (found_key.type != key_type)
5770 break;
5771 if (found_key.offset < ctx->pos)
5772 goto next;
5773 if (key_type == BTRFS_DIR_INDEX_KEY &&
5774 btrfs_should_delete_dir_index(&del_list,
5775 found_key.offset))
5776 goto next;
5777
5778 ctx->pos = found_key.offset;
5779 is_curr = 1;
5780
5781 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5782 di_cur = 0;
5783 di_total = btrfs_item_size(leaf, item);
5784
5785 while (di_cur < di_total) {
5786 struct btrfs_key location;
5787
5788 if (verify_dir_item(root, leaf, di))
5789 break;
5790
5791 name_len = btrfs_dir_name_len(leaf, di);
5792 if (name_len <= sizeof(tmp_name)) {
5793 name_ptr = tmp_name;
5794 } else {
5795 name_ptr = kmalloc(name_len, GFP_NOFS);
5796 if (!name_ptr) {
5797 ret = -ENOMEM;
5798 goto err;
5799 }
5800 }
5801 read_extent_buffer(leaf, name_ptr,
5802 (unsigned long)(di + 1), name_len);
5803
5804 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5805 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5806
5807
5808 /* is this a reference to our own snapshot? If so
5809 * skip it.
5810 *
5811 * In contrast to old kernels, we insert the snapshot's
5812 * dir item and dir index after it has been created, so
5813 * we won't find a reference to our own snapshot. We
5814 * still keep the following code for backward
5815 * compatibility.
5816 */
5817 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5818 location.objectid == root->root_key.objectid) {
5819 over = 0;
5820 goto skip;
5821 }
5822 over = !dir_emit(ctx, name_ptr, name_len,
5823 location.objectid, d_type);
5824
5825 skip:
5826 if (name_ptr != tmp_name)
5827 kfree(name_ptr);
5828
5829 if (over)
5830 goto nopos;
5831 di_len = btrfs_dir_name_len(leaf, di) +
5832 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5833 di_cur += di_len;
5834 di = (struct btrfs_dir_item *)((char *)di + di_len);
5835 }
5836 next:
5837 path->slots[0]++;
5838 }
5839
5840 if (key_type == BTRFS_DIR_INDEX_KEY) {
5841 if (is_curr)
5842 ctx->pos++;
5843 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5844 if (ret)
5845 goto nopos;
5846 }
5847
5848 /* Reached end of directory/root. Bump pos past the last item. */
5849 ctx->pos++;
5850
5851 /*
5852 * Stop new entries from being returned after we return the last
5853 * entry.
5854 *
5855 * New directory entries are assigned a strictly increasing
5856 * offset. This means that new entries created during readdir
5857 * are *guaranteed* to be seen in the future by that readdir.
5858 * This has broken buggy programs which operate on names as
5859 * they're returned by readdir. Until we re-use freed offsets
5860 * we have this hack to stop new entries from being returned
5861 * under the assumption that they'll never reach this huge
5862 * offset.
5863 *
5864 * This is being careful not to overflow 32bit loff_t unless the
5865 * last entry requires it because doing so has broken 32bit apps
5866 * in the past.
5867 */
5868 if (key_type == BTRFS_DIR_INDEX_KEY) {
5869 if (ctx->pos >= INT_MAX)
5870 ctx->pos = LLONG_MAX;
5871 else
5872 ctx->pos = INT_MAX;
5873 }
5874 nopos:
5875 ret = 0;
5876 err:
5877 if (key_type == BTRFS_DIR_INDEX_KEY)
5878 btrfs_put_delayed_items(&ins_list, &del_list);
5879 btrfs_free_path(path);
5880 return ret;
5881 }
5882
5883 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5884 {
5885 struct btrfs_root *root = BTRFS_I(inode)->root;
5886 struct btrfs_trans_handle *trans;
5887 int ret = 0;
5888 bool nolock = false;
5889
5890 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5891 return 0;
5892
5893 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5894 nolock = true;
5895
5896 if (wbc->sync_mode == WB_SYNC_ALL) {
5897 if (nolock)
5898 trans = btrfs_join_transaction_nolock(root);
5899 else
5900 trans = btrfs_join_transaction(root);
5901 if (IS_ERR(trans))
5902 return PTR_ERR(trans);
5903 ret = btrfs_commit_transaction(trans, root);
5904 }
5905 return ret;
5906 }
5907
5908 /*
5909 * This is somewhat expensive, updating the tree every time the
5910 * inode changes. But, it is most likely to find the inode in cache.
5911 * FIXME, needs more benchmarking...there are no reasons other than performance
5912 * to keep or drop this code.
5913 */
5914 static int btrfs_dirty_inode(struct inode *inode)
5915 {
5916 struct btrfs_root *root = BTRFS_I(inode)->root;
5917 struct btrfs_trans_handle *trans;
5918 int ret;
5919
5920 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5921 return 0;
5922
5923 trans = btrfs_join_transaction(root);
5924 if (IS_ERR(trans))
5925 return PTR_ERR(trans);
5926
5927 ret = btrfs_update_inode(trans, root, inode);
5928 if (ret && ret == -ENOSPC) {
5929 /* whoops, lets try again with the full transaction */
5930 btrfs_end_transaction(trans, root);
5931 trans = btrfs_start_transaction(root, 1);
5932 if (IS_ERR(trans))
5933 return PTR_ERR(trans);
5934
5935 ret = btrfs_update_inode(trans, root, inode);
5936 }
5937 btrfs_end_transaction(trans, root);
5938 if (BTRFS_I(inode)->delayed_node)
5939 btrfs_balance_delayed_items(root);
5940
5941 return ret;
5942 }
5943
5944 /*
5945 * This is a copy of file_update_time. We need this so we can return error on
5946 * ENOSPC for updating the inode in the case of file write and mmap writes.
5947 */
5948 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5949 int flags)
5950 {
5951 struct btrfs_root *root = BTRFS_I(inode)->root;
5952
5953 if (btrfs_root_readonly(root))
5954 return -EROFS;
5955
5956 if (flags & S_VERSION)
5957 inode_inc_iversion(inode);
5958 if (flags & S_CTIME)
5959 inode->i_ctime = *now;
5960 if (flags & S_MTIME)
5961 inode->i_mtime = *now;
5962 if (flags & S_ATIME)
5963 inode->i_atime = *now;
5964 return btrfs_dirty_inode(inode);
5965 }
5966
5967 /*
5968 * find the highest existing sequence number in a directory
5969 * and then set the in-memory index_cnt variable to reflect
5970 * free sequence numbers
5971 */
5972 static int btrfs_set_inode_index_count(struct inode *inode)
5973 {
5974 struct btrfs_root *root = BTRFS_I(inode)->root;
5975 struct btrfs_key key, found_key;
5976 struct btrfs_path *path;
5977 struct extent_buffer *leaf;
5978 int ret;
5979
5980 key.objectid = btrfs_ino(inode);
5981 key.type = BTRFS_DIR_INDEX_KEY;
5982 key.offset = (u64)-1;
5983
5984 path = btrfs_alloc_path();
5985 if (!path)
5986 return -ENOMEM;
5987
5988 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5989 if (ret < 0)
5990 goto out;
5991 /* FIXME: we should be able to handle this */
5992 if (ret == 0)
5993 goto out;
5994 ret = 0;
5995
5996 /*
5997 * MAGIC NUMBER EXPLANATION:
5998 * since we search a directory based on f_pos we have to start at 2
5999 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6000 * else has to start at 2
6001 */
6002 if (path->slots[0] == 0) {
6003 BTRFS_I(inode)->index_cnt = 2;
6004 goto out;
6005 }
6006
6007 path->slots[0]--;
6008
6009 leaf = path->nodes[0];
6010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6011
6012 if (found_key.objectid != btrfs_ino(inode) ||
6013 found_key.type != BTRFS_DIR_INDEX_KEY) {
6014 BTRFS_I(inode)->index_cnt = 2;
6015 goto out;
6016 }
6017
6018 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6019 out:
6020 btrfs_free_path(path);
6021 return ret;
6022 }
6023
6024 /*
6025 * helper to find a free sequence number in a given directory. This current
6026 * code is very simple, later versions will do smarter things in the btree
6027 */
6028 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6029 {
6030 int ret = 0;
6031
6032 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6033 ret = btrfs_inode_delayed_dir_index_count(dir);
6034 if (ret) {
6035 ret = btrfs_set_inode_index_count(dir);
6036 if (ret)
6037 return ret;
6038 }
6039 }
6040
6041 *index = BTRFS_I(dir)->index_cnt;
6042 BTRFS_I(dir)->index_cnt++;
6043
6044 return ret;
6045 }
6046
6047 static int btrfs_insert_inode_locked(struct inode *inode)
6048 {
6049 struct btrfs_iget_args args;
6050 args.location = &BTRFS_I(inode)->location;
6051 args.root = BTRFS_I(inode)->root;
6052
6053 return insert_inode_locked4(inode,
6054 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6055 btrfs_find_actor, &args);
6056 }
6057
6058 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6059 struct btrfs_root *root,
6060 struct inode *dir,
6061 const char *name, int name_len,
6062 u64 ref_objectid, u64 objectid,
6063 umode_t mode, u64 *index)
6064 {
6065 struct inode *inode;
6066 struct btrfs_inode_item *inode_item;
6067 struct btrfs_key *location;
6068 struct btrfs_path *path;
6069 struct btrfs_inode_ref *ref;
6070 struct btrfs_key key[2];
6071 u32 sizes[2];
6072 int nitems = name ? 2 : 1;
6073 unsigned long ptr;
6074 int ret;
6075
6076 path = btrfs_alloc_path();
6077 if (!path)
6078 return ERR_PTR(-ENOMEM);
6079
6080 inode = new_inode(root->fs_info->sb);
6081 if (!inode) {
6082 btrfs_free_path(path);
6083 return ERR_PTR(-ENOMEM);
6084 }
6085
6086 /*
6087 * O_TMPFILE, set link count to 0, so that after this point,
6088 * we fill in an inode item with the correct link count.
6089 */
6090 if (!name)
6091 set_nlink(inode, 0);
6092
6093 /*
6094 * we have to initialize this early, so we can reclaim the inode
6095 * number if we fail afterwards in this function.
6096 */
6097 inode->i_ino = objectid;
6098
6099 if (dir && name) {
6100 trace_btrfs_inode_request(dir);
6101
6102 ret = btrfs_set_inode_index(dir, index);
6103 if (ret) {
6104 btrfs_free_path(path);
6105 iput(inode);
6106 return ERR_PTR(ret);
6107 }
6108 } else if (dir) {
6109 *index = 0;
6110 }
6111 /*
6112 * index_cnt is ignored for everything but a dir,
6113 * btrfs_get_inode_index_count has an explanation for the magic
6114 * number
6115 */
6116 BTRFS_I(inode)->index_cnt = 2;
6117 BTRFS_I(inode)->dir_index = *index;
6118 BTRFS_I(inode)->root = root;
6119 BTRFS_I(inode)->generation = trans->transid;
6120 inode->i_generation = BTRFS_I(inode)->generation;
6121
6122 /*
6123 * We could have gotten an inode number from somebody who was fsynced
6124 * and then removed in this same transaction, so let's just set full
6125 * sync since it will be a full sync anyway and this will blow away the
6126 * old info in the log.
6127 */
6128 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6129
6130 key[0].objectid = objectid;
6131 key[0].type = BTRFS_INODE_ITEM_KEY;
6132 key[0].offset = 0;
6133
6134 sizes[0] = sizeof(struct btrfs_inode_item);
6135
6136 if (name) {
6137 /*
6138 * Start new inodes with an inode_ref. This is slightly more
6139 * efficient for small numbers of hard links since they will
6140 * be packed into one item. Extended refs will kick in if we
6141 * add more hard links than can fit in the ref item.
6142 */
6143 key[1].objectid = objectid;
6144 key[1].type = BTRFS_INODE_REF_KEY;
6145 key[1].offset = ref_objectid;
6146
6147 sizes[1] = name_len + sizeof(*ref);
6148 }
6149
6150 location = &BTRFS_I(inode)->location;
6151 location->objectid = objectid;
6152 location->offset = 0;
6153 location->type = BTRFS_INODE_ITEM_KEY;
6154
6155 ret = btrfs_insert_inode_locked(inode);
6156 if (ret < 0)
6157 goto fail;
6158
6159 path->leave_spinning = 1;
6160 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6161 if (ret != 0)
6162 goto fail_unlock;
6163
6164 inode_init_owner(inode, dir, mode);
6165 inode_set_bytes(inode, 0);
6166
6167 inode->i_mtime = CURRENT_TIME;
6168 inode->i_atime = inode->i_mtime;
6169 inode->i_ctime = inode->i_mtime;
6170 BTRFS_I(inode)->i_otime = inode->i_mtime;
6171
6172 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6173 struct btrfs_inode_item);
6174 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6175 sizeof(*inode_item));
6176 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6177
6178 if (name) {
6179 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6180 struct btrfs_inode_ref);
6181 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6182 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6183 ptr = (unsigned long)(ref + 1);
6184 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6185 }
6186
6187 btrfs_mark_buffer_dirty(path->nodes[0]);
6188 btrfs_free_path(path);
6189
6190 btrfs_inherit_iflags(inode, dir);
6191
6192 if (S_ISREG(mode)) {
6193 if (btrfs_test_opt(root, NODATASUM))
6194 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6195 if (btrfs_test_opt(root, NODATACOW))
6196 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6197 BTRFS_INODE_NODATASUM;
6198 }
6199
6200 inode_tree_add(inode);
6201
6202 trace_btrfs_inode_new(inode);
6203 btrfs_set_inode_last_trans(trans, inode);
6204
6205 btrfs_update_root_times(trans, root);
6206
6207 ret = btrfs_inode_inherit_props(trans, inode, dir);
6208 if (ret)
6209 btrfs_err(root->fs_info,
6210 "error inheriting props for ino %llu (root %llu): %d",
6211 btrfs_ino(inode), root->root_key.objectid, ret);
6212
6213 return inode;
6214
6215 fail_unlock:
6216 unlock_new_inode(inode);
6217 fail:
6218 if (dir && name)
6219 BTRFS_I(dir)->index_cnt--;
6220 btrfs_free_path(path);
6221 iput(inode);
6222 return ERR_PTR(ret);
6223 }
6224
6225 static inline u8 btrfs_inode_type(struct inode *inode)
6226 {
6227 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6228 }
6229
6230 /*
6231 * utility function to add 'inode' into 'parent_inode' with
6232 * a give name and a given sequence number.
6233 * if 'add_backref' is true, also insert a backref from the
6234 * inode to the parent directory.
6235 */
6236 int btrfs_add_link(struct btrfs_trans_handle *trans,
6237 struct inode *parent_inode, struct inode *inode,
6238 const char *name, int name_len, int add_backref, u64 index)
6239 {
6240 int ret = 0;
6241 struct btrfs_key key;
6242 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6243 u64 ino = btrfs_ino(inode);
6244 u64 parent_ino = btrfs_ino(parent_inode);
6245
6246 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6247 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6248 } else {
6249 key.objectid = ino;
6250 key.type = BTRFS_INODE_ITEM_KEY;
6251 key.offset = 0;
6252 }
6253
6254 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6255 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6256 key.objectid, root->root_key.objectid,
6257 parent_ino, index, name, name_len);
6258 } else if (add_backref) {
6259 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6260 parent_ino, index);
6261 }
6262
6263 /* Nothing to clean up yet */
6264 if (ret)
6265 return ret;
6266
6267 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6268 parent_inode, &key,
6269 btrfs_inode_type(inode), index);
6270 if (ret == -EEXIST || ret == -EOVERFLOW)
6271 goto fail_dir_item;
6272 else if (ret) {
6273 btrfs_abort_transaction(trans, root, ret);
6274 return ret;
6275 }
6276
6277 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6278 name_len * 2);
6279 inode_inc_iversion(parent_inode);
6280 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6281 ret = btrfs_update_inode(trans, root, parent_inode);
6282 if (ret)
6283 btrfs_abort_transaction(trans, root, ret);
6284 return ret;
6285
6286 fail_dir_item:
6287 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6288 u64 local_index;
6289 int err;
6290 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6291 key.objectid, root->root_key.objectid,
6292 parent_ino, &local_index, name, name_len);
6293
6294 } else if (add_backref) {
6295 u64 local_index;
6296 int err;
6297
6298 err = btrfs_del_inode_ref(trans, root, name, name_len,
6299 ino, parent_ino, &local_index);
6300 }
6301 return ret;
6302 }
6303
6304 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6305 struct inode *dir, struct dentry *dentry,
6306 struct inode *inode, int backref, u64 index)
6307 {
6308 int err = btrfs_add_link(trans, dir, inode,
6309 dentry->d_name.name, dentry->d_name.len,
6310 backref, index);
6311 if (err > 0)
6312 err = -EEXIST;
6313 return err;
6314 }
6315
6316 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6317 umode_t mode, dev_t rdev)
6318 {
6319 struct btrfs_trans_handle *trans;
6320 struct btrfs_root *root = BTRFS_I(dir)->root;
6321 struct inode *inode = NULL;
6322 int err;
6323 int drop_inode = 0;
6324 u64 objectid;
6325 u64 index = 0;
6326
6327 /*
6328 * 2 for inode item and ref
6329 * 2 for dir items
6330 * 1 for xattr if selinux is on
6331 */
6332 trans = btrfs_start_transaction(root, 5);
6333 if (IS_ERR(trans))
6334 return PTR_ERR(trans);
6335
6336 err = btrfs_find_free_ino(root, &objectid);
6337 if (err)
6338 goto out_unlock;
6339
6340 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6341 dentry->d_name.len, btrfs_ino(dir), objectid,
6342 mode, &index);
6343 if (IS_ERR(inode)) {
6344 err = PTR_ERR(inode);
6345 goto out_unlock;
6346 }
6347
6348 /*
6349 * If the active LSM wants to access the inode during
6350 * d_instantiate it needs these. Smack checks to see
6351 * if the filesystem supports xattrs by looking at the
6352 * ops vector.
6353 */
6354 inode->i_op = &btrfs_special_inode_operations;
6355 init_special_inode(inode, inode->i_mode, rdev);
6356
6357 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6358 if (err)
6359 goto out_unlock_inode;
6360
6361 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6362 if (err) {
6363 goto out_unlock_inode;
6364 } else {
6365 btrfs_update_inode(trans, root, inode);
6366 unlock_new_inode(inode);
6367 d_instantiate(dentry, inode);
6368 }
6369
6370 out_unlock:
6371 btrfs_end_transaction(trans, root);
6372 btrfs_balance_delayed_items(root);
6373 btrfs_btree_balance_dirty(root);
6374 if (drop_inode) {
6375 inode_dec_link_count(inode);
6376 iput(inode);
6377 }
6378 return err;
6379
6380 out_unlock_inode:
6381 drop_inode = 1;
6382 unlock_new_inode(inode);
6383 goto out_unlock;
6384
6385 }
6386
6387 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6388 umode_t mode, bool excl)
6389 {
6390 struct btrfs_trans_handle *trans;
6391 struct btrfs_root *root = BTRFS_I(dir)->root;
6392 struct inode *inode = NULL;
6393 int drop_inode_on_err = 0;
6394 int err;
6395 u64 objectid;
6396 u64 index = 0;
6397
6398 /*
6399 * 2 for inode item and ref
6400 * 2 for dir items
6401 * 1 for xattr if selinux is on
6402 */
6403 trans = btrfs_start_transaction(root, 5);
6404 if (IS_ERR(trans))
6405 return PTR_ERR(trans);
6406
6407 err = btrfs_find_free_ino(root, &objectid);
6408 if (err)
6409 goto out_unlock;
6410
6411 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6412 dentry->d_name.len, btrfs_ino(dir), objectid,
6413 mode, &index);
6414 if (IS_ERR(inode)) {
6415 err = PTR_ERR(inode);
6416 goto out_unlock;
6417 }
6418 drop_inode_on_err = 1;
6419 /*
6420 * If the active LSM wants to access the inode during
6421 * d_instantiate it needs these. Smack checks to see
6422 * if the filesystem supports xattrs by looking at the
6423 * ops vector.
6424 */
6425 inode->i_fop = &btrfs_file_operations;
6426 inode->i_op = &btrfs_file_inode_operations;
6427 inode->i_mapping->a_ops = &btrfs_aops;
6428
6429 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6430 if (err)
6431 goto out_unlock_inode;
6432
6433 err = btrfs_update_inode(trans, root, inode);
6434 if (err)
6435 goto out_unlock_inode;
6436
6437 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6438 if (err)
6439 goto out_unlock_inode;
6440
6441 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6442 unlock_new_inode(inode);
6443 d_instantiate(dentry, inode);
6444
6445 out_unlock:
6446 btrfs_end_transaction(trans, root);
6447 if (err && drop_inode_on_err) {
6448 inode_dec_link_count(inode);
6449 iput(inode);
6450 }
6451 btrfs_balance_delayed_items(root);
6452 btrfs_btree_balance_dirty(root);
6453 return err;
6454
6455 out_unlock_inode:
6456 unlock_new_inode(inode);
6457 goto out_unlock;
6458
6459 }
6460
6461 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6462 struct dentry *dentry)
6463 {
6464 struct btrfs_trans_handle *trans = NULL;
6465 struct btrfs_root *root = BTRFS_I(dir)->root;
6466 struct inode *inode = d_inode(old_dentry);
6467 u64 index;
6468 int err;
6469 int drop_inode = 0;
6470
6471 /* do not allow sys_link's with other subvols of the same device */
6472 if (root->objectid != BTRFS_I(inode)->root->objectid)
6473 return -EXDEV;
6474
6475 if (inode->i_nlink >= BTRFS_LINK_MAX)
6476 return -EMLINK;
6477
6478 err = btrfs_set_inode_index(dir, &index);
6479 if (err)
6480 goto fail;
6481
6482 /*
6483 * 2 items for inode and inode ref
6484 * 2 items for dir items
6485 * 1 item for parent inode
6486 */
6487 trans = btrfs_start_transaction(root, 5);
6488 if (IS_ERR(trans)) {
6489 err = PTR_ERR(trans);
6490 trans = NULL;
6491 goto fail;
6492 }
6493
6494 /* There are several dir indexes for this inode, clear the cache. */
6495 BTRFS_I(inode)->dir_index = 0ULL;
6496 inc_nlink(inode);
6497 inode_inc_iversion(inode);
6498 inode->i_ctime = CURRENT_TIME;
6499 ihold(inode);
6500 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6501
6502 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6503
6504 if (err) {
6505 drop_inode = 1;
6506 } else {
6507 struct dentry *parent = dentry->d_parent;
6508 err = btrfs_update_inode(trans, root, inode);
6509 if (err)
6510 goto fail;
6511 if (inode->i_nlink == 1) {
6512 /*
6513 * If new hard link count is 1, it's a file created
6514 * with open(2) O_TMPFILE flag.
6515 */
6516 err = btrfs_orphan_del(trans, inode);
6517 if (err)
6518 goto fail;
6519 }
6520 d_instantiate(dentry, inode);
6521 btrfs_log_new_name(trans, inode, NULL, parent);
6522 }
6523
6524 btrfs_balance_delayed_items(root);
6525 fail:
6526 if (trans)
6527 btrfs_end_transaction(trans, root);
6528 if (drop_inode) {
6529 inode_dec_link_count(inode);
6530 iput(inode);
6531 }
6532 btrfs_btree_balance_dirty(root);
6533 return err;
6534 }
6535
6536 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6537 {
6538 struct inode *inode = NULL;
6539 struct btrfs_trans_handle *trans;
6540 struct btrfs_root *root = BTRFS_I(dir)->root;
6541 int err = 0;
6542 int drop_on_err = 0;
6543 u64 objectid = 0;
6544 u64 index = 0;
6545
6546 /*
6547 * 2 items for inode and ref
6548 * 2 items for dir items
6549 * 1 for xattr if selinux is on
6550 */
6551 trans = btrfs_start_transaction(root, 5);
6552 if (IS_ERR(trans))
6553 return PTR_ERR(trans);
6554
6555 err = btrfs_find_free_ino(root, &objectid);
6556 if (err)
6557 goto out_fail;
6558
6559 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6560 dentry->d_name.len, btrfs_ino(dir), objectid,
6561 S_IFDIR | mode, &index);
6562 if (IS_ERR(inode)) {
6563 err = PTR_ERR(inode);
6564 goto out_fail;
6565 }
6566
6567 drop_on_err = 1;
6568 /* these must be set before we unlock the inode */
6569 inode->i_op = &btrfs_dir_inode_operations;
6570 inode->i_fop = &btrfs_dir_file_operations;
6571
6572 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6573 if (err)
6574 goto out_fail_inode;
6575
6576 btrfs_i_size_write(inode, 0);
6577 err = btrfs_update_inode(trans, root, inode);
6578 if (err)
6579 goto out_fail_inode;
6580
6581 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6582 dentry->d_name.len, 0, index);
6583 if (err)
6584 goto out_fail_inode;
6585
6586 d_instantiate(dentry, inode);
6587 /*
6588 * mkdir is special. We're unlocking after we call d_instantiate
6589 * to avoid a race with nfsd calling d_instantiate.
6590 */
6591 unlock_new_inode(inode);
6592 drop_on_err = 0;
6593
6594 out_fail:
6595 btrfs_end_transaction(trans, root);
6596 if (drop_on_err) {
6597 inode_dec_link_count(inode);
6598 iput(inode);
6599 }
6600 btrfs_balance_delayed_items(root);
6601 btrfs_btree_balance_dirty(root);
6602 return err;
6603
6604 out_fail_inode:
6605 unlock_new_inode(inode);
6606 goto out_fail;
6607 }
6608
6609 /* Find next extent map of a given extent map, caller needs to ensure locks */
6610 static struct extent_map *next_extent_map(struct extent_map *em)
6611 {
6612 struct rb_node *next;
6613
6614 next = rb_next(&em->rb_node);
6615 if (!next)
6616 return NULL;
6617 return container_of(next, struct extent_map, rb_node);
6618 }
6619
6620 static struct extent_map *prev_extent_map(struct extent_map *em)
6621 {
6622 struct rb_node *prev;
6623
6624 prev = rb_prev(&em->rb_node);
6625 if (!prev)
6626 return NULL;
6627 return container_of(prev, struct extent_map, rb_node);
6628 }
6629
6630 /* helper for btfs_get_extent. Given an existing extent in the tree,
6631 * the existing extent is the nearest extent to map_start,
6632 * and an extent that you want to insert, deal with overlap and insert
6633 * the best fitted new extent into the tree.
6634 */
6635 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6636 struct extent_map *existing,
6637 struct extent_map *em,
6638 u64 map_start)
6639 {
6640 struct extent_map *prev;
6641 struct extent_map *next;
6642 u64 start;
6643 u64 end;
6644 u64 start_diff;
6645
6646 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6647
6648 if (existing->start > map_start) {
6649 next = existing;
6650 prev = prev_extent_map(next);
6651 } else {
6652 prev = existing;
6653 next = next_extent_map(prev);
6654 }
6655
6656 start = prev ? extent_map_end(prev) : em->start;
6657 start = max_t(u64, start, em->start);
6658 end = next ? next->start : extent_map_end(em);
6659 end = min_t(u64, end, extent_map_end(em));
6660 start_diff = start - em->start;
6661 em->start = start;
6662 em->len = end - start;
6663 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6664 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6665 em->block_start += start_diff;
6666 em->block_len -= start_diff;
6667 }
6668 return add_extent_mapping(em_tree, em, 0);
6669 }
6670
6671 static noinline int uncompress_inline(struct btrfs_path *path,
6672 struct page *page,
6673 size_t pg_offset, u64 extent_offset,
6674 struct btrfs_file_extent_item *item)
6675 {
6676 int ret;
6677 struct extent_buffer *leaf = path->nodes[0];
6678 char *tmp;
6679 size_t max_size;
6680 unsigned long inline_size;
6681 unsigned long ptr;
6682 int compress_type;
6683
6684 WARN_ON(pg_offset != 0);
6685 compress_type = btrfs_file_extent_compression(leaf, item);
6686 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6687 inline_size = btrfs_file_extent_inline_item_len(leaf,
6688 btrfs_item_nr(path->slots[0]));
6689 tmp = kmalloc(inline_size, GFP_NOFS);
6690 if (!tmp)
6691 return -ENOMEM;
6692 ptr = btrfs_file_extent_inline_start(item);
6693
6694 read_extent_buffer(leaf, tmp, ptr, inline_size);
6695
6696 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6697 ret = btrfs_decompress(compress_type, tmp, page,
6698 extent_offset, inline_size, max_size);
6699 kfree(tmp);
6700 return ret;
6701 }
6702
6703 /*
6704 * a bit scary, this does extent mapping from logical file offset to the disk.
6705 * the ugly parts come from merging extents from the disk with the in-ram
6706 * representation. This gets more complex because of the data=ordered code,
6707 * where the in-ram extents might be locked pending data=ordered completion.
6708 *
6709 * This also copies inline extents directly into the page.
6710 */
6711
6712 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6713 size_t pg_offset, u64 start, u64 len,
6714 int create)
6715 {
6716 int ret;
6717 int err = 0;
6718 u64 extent_start = 0;
6719 u64 extent_end = 0;
6720 u64 objectid = btrfs_ino(inode);
6721 u32 found_type;
6722 struct btrfs_path *path = NULL;
6723 struct btrfs_root *root = BTRFS_I(inode)->root;
6724 struct btrfs_file_extent_item *item;
6725 struct extent_buffer *leaf;
6726 struct btrfs_key found_key;
6727 struct extent_map *em = NULL;
6728 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6729 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6730 struct btrfs_trans_handle *trans = NULL;
6731 const bool new_inline = !page || create;
6732
6733 again:
6734 read_lock(&em_tree->lock);
6735 em = lookup_extent_mapping(em_tree, start, len);
6736 if (em)
6737 em->bdev = root->fs_info->fs_devices->latest_bdev;
6738 read_unlock(&em_tree->lock);
6739
6740 if (em) {
6741 if (em->start > start || em->start + em->len <= start)
6742 free_extent_map(em);
6743 else if (em->block_start == EXTENT_MAP_INLINE && page)
6744 free_extent_map(em);
6745 else
6746 goto out;
6747 }
6748 em = alloc_extent_map();
6749 if (!em) {
6750 err = -ENOMEM;
6751 goto out;
6752 }
6753 em->bdev = root->fs_info->fs_devices->latest_bdev;
6754 em->start = EXTENT_MAP_HOLE;
6755 em->orig_start = EXTENT_MAP_HOLE;
6756 em->len = (u64)-1;
6757 em->block_len = (u64)-1;
6758
6759 if (!path) {
6760 path = btrfs_alloc_path();
6761 if (!path) {
6762 err = -ENOMEM;
6763 goto out;
6764 }
6765 /*
6766 * Chances are we'll be called again, so go ahead and do
6767 * readahead
6768 */
6769 path->reada = READA_FORWARD;
6770 }
6771
6772 ret = btrfs_lookup_file_extent(trans, root, path,
6773 objectid, start, trans != NULL);
6774 if (ret < 0) {
6775 err = ret;
6776 goto out;
6777 }
6778
6779 if (ret != 0) {
6780 if (path->slots[0] == 0)
6781 goto not_found;
6782 path->slots[0]--;
6783 }
6784
6785 leaf = path->nodes[0];
6786 item = btrfs_item_ptr(leaf, path->slots[0],
6787 struct btrfs_file_extent_item);
6788 /* are we inside the extent that was found? */
6789 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6790 found_type = found_key.type;
6791 if (found_key.objectid != objectid ||
6792 found_type != BTRFS_EXTENT_DATA_KEY) {
6793 /*
6794 * If we backup past the first extent we want to move forward
6795 * and see if there is an extent in front of us, otherwise we'll
6796 * say there is a hole for our whole search range which can
6797 * cause problems.
6798 */
6799 extent_end = start;
6800 goto next;
6801 }
6802
6803 found_type = btrfs_file_extent_type(leaf, item);
6804 extent_start = found_key.offset;
6805 if (found_type == BTRFS_FILE_EXTENT_REG ||
6806 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6807 extent_end = extent_start +
6808 btrfs_file_extent_num_bytes(leaf, item);
6809 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6810 size_t size;
6811 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6812 extent_end = ALIGN(extent_start + size, root->sectorsize);
6813 }
6814 next:
6815 if (start >= extent_end) {
6816 path->slots[0]++;
6817 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6818 ret = btrfs_next_leaf(root, path);
6819 if (ret < 0) {
6820 err = ret;
6821 goto out;
6822 }
6823 if (ret > 0)
6824 goto not_found;
6825 leaf = path->nodes[0];
6826 }
6827 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6828 if (found_key.objectid != objectid ||
6829 found_key.type != BTRFS_EXTENT_DATA_KEY)
6830 goto not_found;
6831 if (start + len <= found_key.offset)
6832 goto not_found;
6833 if (start > found_key.offset)
6834 goto next;
6835 em->start = start;
6836 em->orig_start = start;
6837 em->len = found_key.offset - start;
6838 goto not_found_em;
6839 }
6840
6841 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6842
6843 if (found_type == BTRFS_FILE_EXTENT_REG ||
6844 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6845 goto insert;
6846 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6847 unsigned long ptr;
6848 char *map;
6849 size_t size;
6850 size_t extent_offset;
6851 size_t copy_size;
6852
6853 if (new_inline)
6854 goto out;
6855
6856 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6857 extent_offset = page_offset(page) + pg_offset - extent_start;
6858 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6859 size - extent_offset);
6860 em->start = extent_start + extent_offset;
6861 em->len = ALIGN(copy_size, root->sectorsize);
6862 em->orig_block_len = em->len;
6863 em->orig_start = em->start;
6864 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6865 if (create == 0 && !PageUptodate(page)) {
6866 if (btrfs_file_extent_compression(leaf, item) !=
6867 BTRFS_COMPRESS_NONE) {
6868 ret = uncompress_inline(path, page, pg_offset,
6869 extent_offset, item);
6870 if (ret) {
6871 err = ret;
6872 goto out;
6873 }
6874 } else {
6875 map = kmap(page);
6876 read_extent_buffer(leaf, map + pg_offset, ptr,
6877 copy_size);
6878 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6879 memset(map + pg_offset + copy_size, 0,
6880 PAGE_CACHE_SIZE - pg_offset -
6881 copy_size);
6882 }
6883 kunmap(page);
6884 }
6885 flush_dcache_page(page);
6886 } else if (create && PageUptodate(page)) {
6887 BUG();
6888 if (!trans) {
6889 kunmap(page);
6890 free_extent_map(em);
6891 em = NULL;
6892
6893 btrfs_release_path(path);
6894 trans = btrfs_join_transaction(root);
6895
6896 if (IS_ERR(trans))
6897 return ERR_CAST(trans);
6898 goto again;
6899 }
6900 map = kmap(page);
6901 write_extent_buffer(leaf, map + pg_offset, ptr,
6902 copy_size);
6903 kunmap(page);
6904 btrfs_mark_buffer_dirty(leaf);
6905 }
6906 set_extent_uptodate(io_tree, em->start,
6907 extent_map_end(em) - 1, NULL, GFP_NOFS);
6908 goto insert;
6909 }
6910 not_found:
6911 em->start = start;
6912 em->orig_start = start;
6913 em->len = len;
6914 not_found_em:
6915 em->block_start = EXTENT_MAP_HOLE;
6916 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6917 insert:
6918 btrfs_release_path(path);
6919 if (em->start > start || extent_map_end(em) <= start) {
6920 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6921 em->start, em->len, start, len);
6922 err = -EIO;
6923 goto out;
6924 }
6925
6926 err = 0;
6927 write_lock(&em_tree->lock);
6928 ret = add_extent_mapping(em_tree, em, 0);
6929 /* it is possible that someone inserted the extent into the tree
6930 * while we had the lock dropped. It is also possible that
6931 * an overlapping map exists in the tree
6932 */
6933 if (ret == -EEXIST) {
6934 struct extent_map *existing;
6935
6936 ret = 0;
6937
6938 existing = search_extent_mapping(em_tree, start, len);
6939 /*
6940 * existing will always be non-NULL, since there must be
6941 * extent causing the -EEXIST.
6942 */
6943 if (start >= extent_map_end(existing) ||
6944 start <= existing->start) {
6945 /*
6946 * The existing extent map is the one nearest to
6947 * the [start, start + len) range which overlaps
6948 */
6949 err = merge_extent_mapping(em_tree, existing,
6950 em, start);
6951 free_extent_map(existing);
6952 if (err) {
6953 free_extent_map(em);
6954 em = NULL;
6955 }
6956 } else {
6957 free_extent_map(em);
6958 em = existing;
6959 err = 0;
6960 }
6961 }
6962 write_unlock(&em_tree->lock);
6963 out:
6964
6965 trace_btrfs_get_extent(root, em);
6966
6967 btrfs_free_path(path);
6968 if (trans) {
6969 ret = btrfs_end_transaction(trans, root);
6970 if (!err)
6971 err = ret;
6972 }
6973 if (err) {
6974 free_extent_map(em);
6975 return ERR_PTR(err);
6976 }
6977 BUG_ON(!em); /* Error is always set */
6978 return em;
6979 }
6980
6981 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6982 size_t pg_offset, u64 start, u64 len,
6983 int create)
6984 {
6985 struct extent_map *em;
6986 struct extent_map *hole_em = NULL;
6987 u64 range_start = start;
6988 u64 end;
6989 u64 found;
6990 u64 found_end;
6991 int err = 0;
6992
6993 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6994 if (IS_ERR(em))
6995 return em;
6996 if (em) {
6997 /*
6998 * if our em maps to
6999 * - a hole or
7000 * - a pre-alloc extent,
7001 * there might actually be delalloc bytes behind it.
7002 */
7003 if (em->block_start != EXTENT_MAP_HOLE &&
7004 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7005 return em;
7006 else
7007 hole_em = em;
7008 }
7009
7010 /* check to see if we've wrapped (len == -1 or similar) */
7011 end = start + len;
7012 if (end < start)
7013 end = (u64)-1;
7014 else
7015 end -= 1;
7016
7017 em = NULL;
7018
7019 /* ok, we didn't find anything, lets look for delalloc */
7020 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7021 end, len, EXTENT_DELALLOC, 1);
7022 found_end = range_start + found;
7023 if (found_end < range_start)
7024 found_end = (u64)-1;
7025
7026 /*
7027 * we didn't find anything useful, return
7028 * the original results from get_extent()
7029 */
7030 if (range_start > end || found_end <= start) {
7031 em = hole_em;
7032 hole_em = NULL;
7033 goto out;
7034 }
7035
7036 /* adjust the range_start to make sure it doesn't
7037 * go backwards from the start they passed in
7038 */
7039 range_start = max(start, range_start);
7040 found = found_end - range_start;
7041
7042 if (found > 0) {
7043 u64 hole_start = start;
7044 u64 hole_len = len;
7045
7046 em = alloc_extent_map();
7047 if (!em) {
7048 err = -ENOMEM;
7049 goto out;
7050 }
7051 /*
7052 * when btrfs_get_extent can't find anything it
7053 * returns one huge hole
7054 *
7055 * make sure what it found really fits our range, and
7056 * adjust to make sure it is based on the start from
7057 * the caller
7058 */
7059 if (hole_em) {
7060 u64 calc_end = extent_map_end(hole_em);
7061
7062 if (calc_end <= start || (hole_em->start > end)) {
7063 free_extent_map(hole_em);
7064 hole_em = NULL;
7065 } else {
7066 hole_start = max(hole_em->start, start);
7067 hole_len = calc_end - hole_start;
7068 }
7069 }
7070 em->bdev = NULL;
7071 if (hole_em && range_start > hole_start) {
7072 /* our hole starts before our delalloc, so we
7073 * have to return just the parts of the hole
7074 * that go until the delalloc starts
7075 */
7076 em->len = min(hole_len,
7077 range_start - hole_start);
7078 em->start = hole_start;
7079 em->orig_start = hole_start;
7080 /*
7081 * don't adjust block start at all,
7082 * it is fixed at EXTENT_MAP_HOLE
7083 */
7084 em->block_start = hole_em->block_start;
7085 em->block_len = hole_len;
7086 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7087 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7088 } else {
7089 em->start = range_start;
7090 em->len = found;
7091 em->orig_start = range_start;
7092 em->block_start = EXTENT_MAP_DELALLOC;
7093 em->block_len = found;
7094 }
7095 } else if (hole_em) {
7096 return hole_em;
7097 }
7098 out:
7099
7100 free_extent_map(hole_em);
7101 if (err) {
7102 free_extent_map(em);
7103 return ERR_PTR(err);
7104 }
7105 return em;
7106 }
7107
7108 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7109 u64 start, u64 len)
7110 {
7111 struct btrfs_root *root = BTRFS_I(inode)->root;
7112 struct extent_map *em;
7113 struct btrfs_key ins;
7114 u64 alloc_hint;
7115 int ret;
7116
7117 alloc_hint = get_extent_allocation_hint(inode, start, len);
7118 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7119 alloc_hint, &ins, 1, 1);
7120 if (ret)
7121 return ERR_PTR(ret);
7122
7123 /*
7124 * Create the ordered extent before the extent map. This is to avoid
7125 * races with the fast fsync path that would lead to it logging file
7126 * extent items that point to disk extents that were not yet written to.
7127 * The fast fsync path collects ordered extents into a local list and
7128 * then collects all the new extent maps, so we must create the ordered
7129 * extent first and make sure the fast fsync path collects any new
7130 * ordered extents after collecting new extent maps as well.
7131 * The fsync path simply can not rely on inode_dio_wait() because it
7132 * causes deadlock with AIO.
7133 */
7134 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7135 ins.offset, ins.offset, 0);
7136 if (ret) {
7137 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7138 return ERR_PTR(ret);
7139 }
7140
7141 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7142 ins.offset, ins.offset, ins.offset, 0);
7143 if (IS_ERR(em)) {
7144 struct btrfs_ordered_extent *oe;
7145
7146 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7147 oe = btrfs_lookup_ordered_extent(inode, start);
7148 ASSERT(oe);
7149 if (WARN_ON(!oe))
7150 return em;
7151 set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
7152 set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
7153 btrfs_remove_ordered_extent(inode, oe);
7154 /* Once for our lookup and once for the ordered extents tree. */
7155 btrfs_put_ordered_extent(oe);
7156 btrfs_put_ordered_extent(oe);
7157 }
7158 return em;
7159 }
7160
7161 /*
7162 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7163 * block must be cow'd
7164 */
7165 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7166 u64 *orig_start, u64 *orig_block_len,
7167 u64 *ram_bytes)
7168 {
7169 struct btrfs_trans_handle *trans;
7170 struct btrfs_path *path;
7171 int ret;
7172 struct extent_buffer *leaf;
7173 struct btrfs_root *root = BTRFS_I(inode)->root;
7174 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7175 struct btrfs_file_extent_item *fi;
7176 struct btrfs_key key;
7177 u64 disk_bytenr;
7178 u64 backref_offset;
7179 u64 extent_end;
7180 u64 num_bytes;
7181 int slot;
7182 int found_type;
7183 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7184
7185 path = btrfs_alloc_path();
7186 if (!path)
7187 return -ENOMEM;
7188
7189 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7190 offset, 0);
7191 if (ret < 0)
7192 goto out;
7193
7194 slot = path->slots[0];
7195 if (ret == 1) {
7196 if (slot == 0) {
7197 /* can't find the item, must cow */
7198 ret = 0;
7199 goto out;
7200 }
7201 slot--;
7202 }
7203 ret = 0;
7204 leaf = path->nodes[0];
7205 btrfs_item_key_to_cpu(leaf, &key, slot);
7206 if (key.objectid != btrfs_ino(inode) ||
7207 key.type != BTRFS_EXTENT_DATA_KEY) {
7208 /* not our file or wrong item type, must cow */
7209 goto out;
7210 }
7211
7212 if (key.offset > offset) {
7213 /* Wrong offset, must cow */
7214 goto out;
7215 }
7216
7217 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7218 found_type = btrfs_file_extent_type(leaf, fi);
7219 if (found_type != BTRFS_FILE_EXTENT_REG &&
7220 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7221 /* not a regular extent, must cow */
7222 goto out;
7223 }
7224
7225 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7226 goto out;
7227
7228 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7229 if (extent_end <= offset)
7230 goto out;
7231
7232 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7233 if (disk_bytenr == 0)
7234 goto out;
7235
7236 if (btrfs_file_extent_compression(leaf, fi) ||
7237 btrfs_file_extent_encryption(leaf, fi) ||
7238 btrfs_file_extent_other_encoding(leaf, fi))
7239 goto out;
7240
7241 backref_offset = btrfs_file_extent_offset(leaf, fi);
7242
7243 if (orig_start) {
7244 *orig_start = key.offset - backref_offset;
7245 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7246 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7247 }
7248
7249 if (btrfs_extent_readonly(root, disk_bytenr))
7250 goto out;
7251
7252 num_bytes = min(offset + *len, extent_end) - offset;
7253 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7254 u64 range_end;
7255
7256 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7257 ret = test_range_bit(io_tree, offset, range_end,
7258 EXTENT_DELALLOC, 0, NULL);
7259 if (ret) {
7260 ret = -EAGAIN;
7261 goto out;
7262 }
7263 }
7264
7265 btrfs_release_path(path);
7266
7267 /*
7268 * look for other files referencing this extent, if we
7269 * find any we must cow
7270 */
7271 trans = btrfs_join_transaction(root);
7272 if (IS_ERR(trans)) {
7273 ret = 0;
7274 goto out;
7275 }
7276
7277 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7278 key.offset - backref_offset, disk_bytenr);
7279 btrfs_end_transaction(trans, root);
7280 if (ret) {
7281 ret = 0;
7282 goto out;
7283 }
7284
7285 /*
7286 * adjust disk_bytenr and num_bytes to cover just the bytes
7287 * in this extent we are about to write. If there
7288 * are any csums in that range we have to cow in order
7289 * to keep the csums correct
7290 */
7291 disk_bytenr += backref_offset;
7292 disk_bytenr += offset - key.offset;
7293 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7294 goto out;
7295 /*
7296 * all of the above have passed, it is safe to overwrite this extent
7297 * without cow
7298 */
7299 *len = num_bytes;
7300 ret = 1;
7301 out:
7302 btrfs_free_path(path);
7303 return ret;
7304 }
7305
7306 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7307 {
7308 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7309 int found = false;
7310 void **pagep = NULL;
7311 struct page *page = NULL;
7312 int start_idx;
7313 int end_idx;
7314
7315 start_idx = start >> PAGE_CACHE_SHIFT;
7316
7317 /*
7318 * end is the last byte in the last page. end == start is legal
7319 */
7320 end_idx = end >> PAGE_CACHE_SHIFT;
7321
7322 rcu_read_lock();
7323
7324 /* Most of the code in this while loop is lifted from
7325 * find_get_page. It's been modified to begin searching from a
7326 * page and return just the first page found in that range. If the
7327 * found idx is less than or equal to the end idx then we know that
7328 * a page exists. If no pages are found or if those pages are
7329 * outside of the range then we're fine (yay!) */
7330 while (page == NULL &&
7331 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7332 page = radix_tree_deref_slot(pagep);
7333 if (unlikely(!page))
7334 break;
7335
7336 if (radix_tree_exception(page)) {
7337 if (radix_tree_deref_retry(page)) {
7338 page = NULL;
7339 continue;
7340 }
7341 /*
7342 * Otherwise, shmem/tmpfs must be storing a swap entry
7343 * here as an exceptional entry: so return it without
7344 * attempting to raise page count.
7345 */
7346 page = NULL;
7347 break; /* TODO: Is this relevant for this use case? */
7348 }
7349
7350 if (!page_cache_get_speculative(page)) {
7351 page = NULL;
7352 continue;
7353 }
7354
7355 /*
7356 * Has the page moved?
7357 * This is part of the lockless pagecache protocol. See
7358 * include/linux/pagemap.h for details.
7359 */
7360 if (unlikely(page != *pagep)) {
7361 page_cache_release(page);
7362 page = NULL;
7363 }
7364 }
7365
7366 if (page) {
7367 if (page->index <= end_idx)
7368 found = true;
7369 page_cache_release(page);
7370 }
7371
7372 rcu_read_unlock();
7373 return found;
7374 }
7375
7376 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7377 struct extent_state **cached_state, int writing)
7378 {
7379 struct btrfs_ordered_extent *ordered;
7380 int ret = 0;
7381
7382 while (1) {
7383 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7384 cached_state);
7385 /*
7386 * We're concerned with the entire range that we're going to be
7387 * doing DIO to, so we need to make sure theres no ordered
7388 * extents in this range.
7389 */
7390 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7391 lockend - lockstart + 1);
7392
7393 /*
7394 * We need to make sure there are no buffered pages in this
7395 * range either, we could have raced between the invalidate in
7396 * generic_file_direct_write and locking the extent. The
7397 * invalidate needs to happen so that reads after a write do not
7398 * get stale data.
7399 */
7400 if (!ordered &&
7401 (!writing ||
7402 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7403 break;
7404
7405 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7406 cached_state, GFP_NOFS);
7407
7408 if (ordered) {
7409 btrfs_start_ordered_extent(inode, ordered, 1);
7410 btrfs_put_ordered_extent(ordered);
7411 } else {
7412 /*
7413 * We could trigger writeback for this range (and wait
7414 * for it to complete) and then invalidate the pages for
7415 * this range (through invalidate_inode_pages2_range()),
7416 * but that can lead us to a deadlock with a concurrent
7417 * call to readpages() (a buffered read or a defrag call
7418 * triggered a readahead) on a page lock due to an
7419 * ordered dio extent we created before but did not have
7420 * yet a corresponding bio submitted (whence it can not
7421 * complete), which makes readpages() wait for that
7422 * ordered extent to complete while holding a lock on
7423 * that page.
7424 */
7425 ret = -ENOTBLK;
7426 break;
7427 }
7428
7429 cond_resched();
7430 }
7431
7432 return ret;
7433 }
7434
7435 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7436 u64 len, u64 orig_start,
7437 u64 block_start, u64 block_len,
7438 u64 orig_block_len, u64 ram_bytes,
7439 int type)
7440 {
7441 struct extent_map_tree *em_tree;
7442 struct extent_map *em;
7443 struct btrfs_root *root = BTRFS_I(inode)->root;
7444 int ret;
7445
7446 em_tree = &BTRFS_I(inode)->extent_tree;
7447 em = alloc_extent_map();
7448 if (!em)
7449 return ERR_PTR(-ENOMEM);
7450
7451 em->start = start;
7452 em->orig_start = orig_start;
7453 em->mod_start = start;
7454 em->mod_len = len;
7455 em->len = len;
7456 em->block_len = block_len;
7457 em->block_start = block_start;
7458 em->bdev = root->fs_info->fs_devices->latest_bdev;
7459 em->orig_block_len = orig_block_len;
7460 em->ram_bytes = ram_bytes;
7461 em->generation = -1;
7462 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7463 if (type == BTRFS_ORDERED_PREALLOC)
7464 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7465
7466 do {
7467 btrfs_drop_extent_cache(inode, em->start,
7468 em->start + em->len - 1, 0);
7469 write_lock(&em_tree->lock);
7470 ret = add_extent_mapping(em_tree, em, 1);
7471 write_unlock(&em_tree->lock);
7472 } while (ret == -EEXIST);
7473
7474 if (ret) {
7475 free_extent_map(em);
7476 return ERR_PTR(ret);
7477 }
7478
7479 return em;
7480 }
7481
7482 static void adjust_dio_outstanding_extents(struct inode *inode,
7483 struct btrfs_dio_data *dio_data,
7484 const u64 len)
7485 {
7486 unsigned num_extents;
7487
7488 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7489 BTRFS_MAX_EXTENT_SIZE);
7490 /*
7491 * If we have an outstanding_extents count still set then we're
7492 * within our reservation, otherwise we need to adjust our inode
7493 * counter appropriately.
7494 */
7495 if (dio_data->outstanding_extents) {
7496 dio_data->outstanding_extents -= num_extents;
7497 } else {
7498 spin_lock(&BTRFS_I(inode)->lock);
7499 BTRFS_I(inode)->outstanding_extents += num_extents;
7500 spin_unlock(&BTRFS_I(inode)->lock);
7501 }
7502 }
7503
7504 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7505 struct buffer_head *bh_result, int create)
7506 {
7507 struct extent_map *em;
7508 struct btrfs_root *root = BTRFS_I(inode)->root;
7509 struct extent_state *cached_state = NULL;
7510 struct btrfs_dio_data *dio_data = NULL;
7511 u64 start = iblock << inode->i_blkbits;
7512 u64 lockstart, lockend;
7513 u64 len = bh_result->b_size;
7514 int unlock_bits = EXTENT_LOCKED;
7515 int ret = 0;
7516
7517 if (create)
7518 unlock_bits |= EXTENT_DIRTY;
7519 else
7520 len = min_t(u64, len, root->sectorsize);
7521
7522 lockstart = start;
7523 lockend = start + len - 1;
7524
7525 if (current->journal_info) {
7526 /*
7527 * Need to pull our outstanding extents and set journal_info to NULL so
7528 * that anything that needs to check if there's a transction doesn't get
7529 * confused.
7530 */
7531 dio_data = current->journal_info;
7532 current->journal_info = NULL;
7533 }
7534
7535 /*
7536 * If this errors out it's because we couldn't invalidate pagecache for
7537 * this range and we need to fallback to buffered.
7538 */
7539 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7540 create)) {
7541 ret = -ENOTBLK;
7542 goto err;
7543 }
7544
7545 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7546 if (IS_ERR(em)) {
7547 ret = PTR_ERR(em);
7548 goto unlock_err;
7549 }
7550
7551 /*
7552 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7553 * io. INLINE is special, and we could probably kludge it in here, but
7554 * it's still buffered so for safety lets just fall back to the generic
7555 * buffered path.
7556 *
7557 * For COMPRESSED we _have_ to read the entire extent in so we can
7558 * decompress it, so there will be buffering required no matter what we
7559 * do, so go ahead and fallback to buffered.
7560 *
7561 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7562 * to buffered IO. Don't blame me, this is the price we pay for using
7563 * the generic code.
7564 */
7565 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7566 em->block_start == EXTENT_MAP_INLINE) {
7567 free_extent_map(em);
7568 ret = -ENOTBLK;
7569 goto unlock_err;
7570 }
7571
7572 /* Just a good old fashioned hole, return */
7573 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7574 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7575 free_extent_map(em);
7576 goto unlock_err;
7577 }
7578
7579 /*
7580 * We don't allocate a new extent in the following cases
7581 *
7582 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7583 * existing extent.
7584 * 2) The extent is marked as PREALLOC. We're good to go here and can
7585 * just use the extent.
7586 *
7587 */
7588 if (!create) {
7589 len = min(len, em->len - (start - em->start));
7590 lockstart = start + len;
7591 goto unlock;
7592 }
7593
7594 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7595 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7596 em->block_start != EXTENT_MAP_HOLE)) {
7597 int type;
7598 u64 block_start, orig_start, orig_block_len, ram_bytes;
7599
7600 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7601 type = BTRFS_ORDERED_PREALLOC;
7602 else
7603 type = BTRFS_ORDERED_NOCOW;
7604 len = min(len, em->len - (start - em->start));
7605 block_start = em->block_start + (start - em->start);
7606
7607 if (can_nocow_extent(inode, start, &len, &orig_start,
7608 &orig_block_len, &ram_bytes) == 1) {
7609 if (type == BTRFS_ORDERED_PREALLOC) {
7610 free_extent_map(em);
7611 em = create_pinned_em(inode, start, len,
7612 orig_start,
7613 block_start, len,
7614 orig_block_len,
7615 ram_bytes, type);
7616 if (IS_ERR(em)) {
7617 ret = PTR_ERR(em);
7618 goto unlock_err;
7619 }
7620 }
7621
7622 ret = btrfs_add_ordered_extent_dio(inode, start,
7623 block_start, len, len, type);
7624 if (ret) {
7625 free_extent_map(em);
7626 goto unlock_err;
7627 }
7628 goto unlock;
7629 }
7630 }
7631
7632 /*
7633 * this will cow the extent, reset the len in case we changed
7634 * it above
7635 */
7636 len = bh_result->b_size;
7637 free_extent_map(em);
7638 em = btrfs_new_extent_direct(inode, start, len);
7639 if (IS_ERR(em)) {
7640 ret = PTR_ERR(em);
7641 goto unlock_err;
7642 }
7643 len = min(len, em->len - (start - em->start));
7644 unlock:
7645 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7646 inode->i_blkbits;
7647 bh_result->b_size = len;
7648 bh_result->b_bdev = em->bdev;
7649 set_buffer_mapped(bh_result);
7650 if (create) {
7651 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7652 set_buffer_new(bh_result);
7653
7654 /*
7655 * Need to update the i_size under the extent lock so buffered
7656 * readers will get the updated i_size when we unlock.
7657 */
7658 if (start + len > i_size_read(inode))
7659 i_size_write(inode, start + len);
7660
7661 adjust_dio_outstanding_extents(inode, dio_data, len);
7662 btrfs_free_reserved_data_space(inode, start, len);
7663 WARN_ON(dio_data->reserve < len);
7664 dio_data->reserve -= len;
7665 dio_data->unsubmitted_oe_range_end = start + len;
7666 current->journal_info = dio_data;
7667 }
7668
7669 /*
7670 * In the case of write we need to clear and unlock the entire range,
7671 * in the case of read we need to unlock only the end area that we
7672 * aren't using if there is any left over space.
7673 */
7674 if (lockstart < lockend) {
7675 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7676 lockend, unlock_bits, 1, 0,
7677 &cached_state, GFP_NOFS);
7678 } else {
7679 free_extent_state(cached_state);
7680 }
7681
7682 free_extent_map(em);
7683
7684 return 0;
7685
7686 unlock_err:
7687 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7688 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7689 err:
7690 if (dio_data)
7691 current->journal_info = dio_data;
7692 /*
7693 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7694 * write less data then expected, so that we don't underflow our inode's
7695 * outstanding extents counter.
7696 */
7697 if (create && dio_data)
7698 adjust_dio_outstanding_extents(inode, dio_data, len);
7699
7700 return ret;
7701 }
7702
7703 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7704 int rw, int mirror_num)
7705 {
7706 struct btrfs_root *root = BTRFS_I(inode)->root;
7707 int ret;
7708
7709 BUG_ON(rw & REQ_WRITE);
7710
7711 bio_get(bio);
7712
7713 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7714 BTRFS_WQ_ENDIO_DIO_REPAIR);
7715 if (ret)
7716 goto err;
7717
7718 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7719 err:
7720 bio_put(bio);
7721 return ret;
7722 }
7723
7724 static int btrfs_check_dio_repairable(struct inode *inode,
7725 struct bio *failed_bio,
7726 struct io_failure_record *failrec,
7727 int failed_mirror)
7728 {
7729 int num_copies;
7730
7731 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7732 failrec->logical, failrec->len);
7733 if (num_copies == 1) {
7734 /*
7735 * we only have a single copy of the data, so don't bother with
7736 * all the retry and error correction code that follows. no
7737 * matter what the error is, it is very likely to persist.
7738 */
7739 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7740 num_copies, failrec->this_mirror, failed_mirror);
7741 return 0;
7742 }
7743
7744 failrec->failed_mirror = failed_mirror;
7745 failrec->this_mirror++;
7746 if (failrec->this_mirror == failed_mirror)
7747 failrec->this_mirror++;
7748
7749 if (failrec->this_mirror > num_copies) {
7750 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7751 num_copies, failrec->this_mirror, failed_mirror);
7752 return 0;
7753 }
7754
7755 return 1;
7756 }
7757
7758 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7759 struct page *page, unsigned int pgoff,
7760 u64 start, u64 end, int failed_mirror,
7761 bio_end_io_t *repair_endio, void *repair_arg)
7762 {
7763 struct io_failure_record *failrec;
7764 struct bio *bio;
7765 int isector;
7766 int read_mode;
7767 int ret;
7768
7769 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7770
7771 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7772 if (ret)
7773 return ret;
7774
7775 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7776 failed_mirror);
7777 if (!ret) {
7778 free_io_failure(inode, failrec);
7779 return -EIO;
7780 }
7781
7782 if ((failed_bio->bi_vcnt > 1)
7783 || (failed_bio->bi_io_vec->bv_len
7784 > BTRFS_I(inode)->root->sectorsize))
7785 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7786 else
7787 read_mode = READ_SYNC;
7788
7789 isector = start - btrfs_io_bio(failed_bio)->logical;
7790 isector >>= inode->i_sb->s_blocksize_bits;
7791 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7792 pgoff, isector, repair_endio, repair_arg);
7793 if (!bio) {
7794 free_io_failure(inode, failrec);
7795 return -EIO;
7796 }
7797
7798 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7799 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7800 read_mode, failrec->this_mirror, failrec->in_validation);
7801
7802 ret = submit_dio_repair_bio(inode, bio, read_mode,
7803 failrec->this_mirror);
7804 if (ret) {
7805 free_io_failure(inode, failrec);
7806 bio_put(bio);
7807 }
7808
7809 return ret;
7810 }
7811
7812 struct btrfs_retry_complete {
7813 struct completion done;
7814 struct inode *inode;
7815 u64 start;
7816 int uptodate;
7817 };
7818
7819 static void btrfs_retry_endio_nocsum(struct bio *bio)
7820 {
7821 struct btrfs_retry_complete *done = bio->bi_private;
7822 struct inode *inode;
7823 struct bio_vec *bvec;
7824 int i;
7825
7826 if (bio->bi_error)
7827 goto end;
7828
7829 ASSERT(bio->bi_vcnt == 1);
7830 inode = bio->bi_io_vec->bv_page->mapping->host;
7831 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7832
7833 done->uptodate = 1;
7834 bio_for_each_segment_all(bvec, bio, i)
7835 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7836 end:
7837 complete(&done->done);
7838 bio_put(bio);
7839 }
7840
7841 static int __btrfs_correct_data_nocsum(struct inode *inode,
7842 struct btrfs_io_bio *io_bio)
7843 {
7844 struct btrfs_fs_info *fs_info;
7845 struct bio_vec *bvec;
7846 struct btrfs_retry_complete done;
7847 u64 start;
7848 unsigned int pgoff;
7849 u32 sectorsize;
7850 int nr_sectors;
7851 int i;
7852 int ret;
7853
7854 fs_info = BTRFS_I(inode)->root->fs_info;
7855 sectorsize = BTRFS_I(inode)->root->sectorsize;
7856
7857 start = io_bio->logical;
7858 done.inode = inode;
7859
7860 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7861 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7862 pgoff = bvec->bv_offset;
7863
7864 next_block_or_try_again:
7865 done.uptodate = 0;
7866 done.start = start;
7867 init_completion(&done.done);
7868
7869 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7870 pgoff, start, start + sectorsize - 1,
7871 io_bio->mirror_num,
7872 btrfs_retry_endio_nocsum, &done);
7873 if (ret)
7874 return ret;
7875
7876 wait_for_completion(&done.done);
7877
7878 if (!done.uptodate) {
7879 /* We might have another mirror, so try again */
7880 goto next_block_or_try_again;
7881 }
7882
7883 start += sectorsize;
7884
7885 if (nr_sectors--) {
7886 pgoff += sectorsize;
7887 goto next_block_or_try_again;
7888 }
7889 }
7890
7891 return 0;
7892 }
7893
7894 static void btrfs_retry_endio(struct bio *bio)
7895 {
7896 struct btrfs_retry_complete *done = bio->bi_private;
7897 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7898 struct inode *inode;
7899 struct bio_vec *bvec;
7900 u64 start;
7901 int uptodate;
7902 int ret;
7903 int i;
7904
7905 if (bio->bi_error)
7906 goto end;
7907
7908 uptodate = 1;
7909
7910 start = done->start;
7911
7912 ASSERT(bio->bi_vcnt == 1);
7913 inode = bio->bi_io_vec->bv_page->mapping->host;
7914 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7915
7916 bio_for_each_segment_all(bvec, bio, i) {
7917 ret = __readpage_endio_check(done->inode, io_bio, i,
7918 bvec->bv_page, bvec->bv_offset,
7919 done->start, bvec->bv_len);
7920 if (!ret)
7921 clean_io_failure(done->inode, done->start,
7922 bvec->bv_page, bvec->bv_offset);
7923 else
7924 uptodate = 0;
7925 }
7926
7927 done->uptodate = uptodate;
7928 end:
7929 complete(&done->done);
7930 bio_put(bio);
7931 }
7932
7933 static int __btrfs_subio_endio_read(struct inode *inode,
7934 struct btrfs_io_bio *io_bio, int err)
7935 {
7936 struct btrfs_fs_info *fs_info;
7937 struct bio_vec *bvec;
7938 struct btrfs_retry_complete done;
7939 u64 start;
7940 u64 offset = 0;
7941 u32 sectorsize;
7942 int nr_sectors;
7943 unsigned int pgoff;
7944 int csum_pos;
7945 int i;
7946 int ret;
7947
7948 fs_info = BTRFS_I(inode)->root->fs_info;
7949 sectorsize = BTRFS_I(inode)->root->sectorsize;
7950
7951 err = 0;
7952 start = io_bio->logical;
7953 done.inode = inode;
7954
7955 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7956 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7957
7958 pgoff = bvec->bv_offset;
7959 next_block:
7960 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7961 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7962 bvec->bv_page, pgoff, start,
7963 sectorsize);
7964 if (likely(!ret))
7965 goto next;
7966 try_again:
7967 done.uptodate = 0;
7968 done.start = start;
7969 init_completion(&done.done);
7970
7971 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7972 pgoff, start, start + sectorsize - 1,
7973 io_bio->mirror_num,
7974 btrfs_retry_endio, &done);
7975 if (ret) {
7976 err = ret;
7977 goto next;
7978 }
7979
7980 wait_for_completion(&done.done);
7981
7982 if (!done.uptodate) {
7983 /* We might have another mirror, so try again */
7984 goto try_again;
7985 }
7986 next:
7987 offset += sectorsize;
7988 start += sectorsize;
7989
7990 ASSERT(nr_sectors);
7991
7992 if (--nr_sectors) {
7993 pgoff += sectorsize;
7994 goto next_block;
7995 }
7996 }
7997
7998 return err;
7999 }
8000
8001 static int btrfs_subio_endio_read(struct inode *inode,
8002 struct btrfs_io_bio *io_bio, int err)
8003 {
8004 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8005
8006 if (skip_csum) {
8007 if (unlikely(err))
8008 return __btrfs_correct_data_nocsum(inode, io_bio);
8009 else
8010 return 0;
8011 } else {
8012 return __btrfs_subio_endio_read(inode, io_bio, err);
8013 }
8014 }
8015
8016 static void btrfs_endio_direct_read(struct bio *bio)
8017 {
8018 struct btrfs_dio_private *dip = bio->bi_private;
8019 struct inode *inode = dip->inode;
8020 struct bio *dio_bio;
8021 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8022 int err = bio->bi_error;
8023
8024 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8025 err = btrfs_subio_endio_read(inode, io_bio, err);
8026
8027 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8028 dip->logical_offset + dip->bytes - 1);
8029 dio_bio = dip->dio_bio;
8030
8031 kfree(dip);
8032
8033 dio_end_io(dio_bio, bio->bi_error);
8034
8035 if (io_bio->end_io)
8036 io_bio->end_io(io_bio, err);
8037 bio_put(bio);
8038 }
8039
8040 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8041 const u64 offset,
8042 const u64 bytes,
8043 const int uptodate)
8044 {
8045 struct btrfs_root *root = BTRFS_I(inode)->root;
8046 struct btrfs_ordered_extent *ordered = NULL;
8047 u64 ordered_offset = offset;
8048 u64 ordered_bytes = bytes;
8049 int ret;
8050
8051 again:
8052 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8053 &ordered_offset,
8054 ordered_bytes,
8055 uptodate);
8056 if (!ret)
8057 goto out_test;
8058
8059 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8060 finish_ordered_fn, NULL, NULL);
8061 btrfs_queue_work(root->fs_info->endio_write_workers,
8062 &ordered->work);
8063 out_test:
8064 /*
8065 * our bio might span multiple ordered extents. If we haven't
8066 * completed the accounting for the whole dio, go back and try again
8067 */
8068 if (ordered_offset < offset + bytes) {
8069 ordered_bytes = offset + bytes - ordered_offset;
8070 ordered = NULL;
8071 goto again;
8072 }
8073 }
8074
8075 static void btrfs_endio_direct_write(struct bio *bio)
8076 {
8077 struct btrfs_dio_private *dip = bio->bi_private;
8078 struct bio *dio_bio = dip->dio_bio;
8079
8080 btrfs_endio_direct_write_update_ordered(dip->inode,
8081 dip->logical_offset,
8082 dip->bytes,
8083 !bio->bi_error);
8084
8085 kfree(dip);
8086
8087 dio_end_io(dio_bio, bio->bi_error);
8088 bio_put(bio);
8089 }
8090
8091 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8092 struct bio *bio, int mirror_num,
8093 unsigned long bio_flags, u64 offset)
8094 {
8095 int ret;
8096 struct btrfs_root *root = BTRFS_I(inode)->root;
8097 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8098 BUG_ON(ret); /* -ENOMEM */
8099 return 0;
8100 }
8101
8102 static void btrfs_end_dio_bio(struct bio *bio)
8103 {
8104 struct btrfs_dio_private *dip = bio->bi_private;
8105 int err = bio->bi_error;
8106
8107 if (err)
8108 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8109 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8110 btrfs_ino(dip->inode), bio->bi_rw,
8111 (unsigned long long)bio->bi_iter.bi_sector,
8112 bio->bi_iter.bi_size, err);
8113
8114 if (dip->subio_endio)
8115 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8116
8117 if (err) {
8118 dip->errors = 1;
8119
8120 /*
8121 * before atomic variable goto zero, we must make sure
8122 * dip->errors is perceived to be set.
8123 */
8124 smp_mb__before_atomic();
8125 }
8126
8127 /* if there are more bios still pending for this dio, just exit */
8128 if (!atomic_dec_and_test(&dip->pending_bios))
8129 goto out;
8130
8131 if (dip->errors) {
8132 bio_io_error(dip->orig_bio);
8133 } else {
8134 dip->dio_bio->bi_error = 0;
8135 bio_endio(dip->orig_bio);
8136 }
8137 out:
8138 bio_put(bio);
8139 }
8140
8141 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8142 u64 first_sector, gfp_t gfp_flags)
8143 {
8144 struct bio *bio;
8145 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8146 if (bio)
8147 bio_associate_current(bio);
8148 return bio;
8149 }
8150
8151 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8152 struct inode *inode,
8153 struct btrfs_dio_private *dip,
8154 struct bio *bio,
8155 u64 file_offset)
8156 {
8157 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8158 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8159 int ret;
8160
8161 /*
8162 * We load all the csum data we need when we submit
8163 * the first bio to reduce the csum tree search and
8164 * contention.
8165 */
8166 if (dip->logical_offset == file_offset) {
8167 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8168 file_offset);
8169 if (ret)
8170 return ret;
8171 }
8172
8173 if (bio == dip->orig_bio)
8174 return 0;
8175
8176 file_offset -= dip->logical_offset;
8177 file_offset >>= inode->i_sb->s_blocksize_bits;
8178 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8179
8180 return 0;
8181 }
8182
8183 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8184 int rw, u64 file_offset, int skip_sum,
8185 int async_submit)
8186 {
8187 struct btrfs_dio_private *dip = bio->bi_private;
8188 int write = rw & REQ_WRITE;
8189 struct btrfs_root *root = BTRFS_I(inode)->root;
8190 int ret;
8191
8192 if (async_submit)
8193 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8194
8195 bio_get(bio);
8196
8197 if (!write) {
8198 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8199 BTRFS_WQ_ENDIO_DATA);
8200 if (ret)
8201 goto err;
8202 }
8203
8204 if (skip_sum)
8205 goto map;
8206
8207 if (write && async_submit) {
8208 ret = btrfs_wq_submit_bio(root->fs_info,
8209 inode, rw, bio, 0, 0,
8210 file_offset,
8211 __btrfs_submit_bio_start_direct_io,
8212 __btrfs_submit_bio_done);
8213 goto err;
8214 } else if (write) {
8215 /*
8216 * If we aren't doing async submit, calculate the csum of the
8217 * bio now.
8218 */
8219 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8220 if (ret)
8221 goto err;
8222 } else {
8223 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8224 file_offset);
8225 if (ret)
8226 goto err;
8227 }
8228 map:
8229 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8230 err:
8231 bio_put(bio);
8232 return ret;
8233 }
8234
8235 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8236 int skip_sum)
8237 {
8238 struct inode *inode = dip->inode;
8239 struct btrfs_root *root = BTRFS_I(inode)->root;
8240 struct bio *bio;
8241 struct bio *orig_bio = dip->orig_bio;
8242 struct bio_vec *bvec = orig_bio->bi_io_vec;
8243 u64 start_sector = orig_bio->bi_iter.bi_sector;
8244 u64 file_offset = dip->logical_offset;
8245 u64 submit_len = 0;
8246 u64 map_length;
8247 int nr_pages = 0;
8248 int ret;
8249 int async_submit = 0;
8250
8251 map_length = orig_bio->bi_iter.bi_size;
8252 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8253 &map_length, NULL, 0);
8254 if (ret)
8255 return -EIO;
8256
8257 if (map_length >= orig_bio->bi_iter.bi_size) {
8258 bio = orig_bio;
8259 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8260 goto submit;
8261 }
8262
8263 /* async crcs make it difficult to collect full stripe writes. */
8264 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8265 async_submit = 0;
8266 else
8267 async_submit = 1;
8268
8269 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8270 if (!bio)
8271 return -ENOMEM;
8272
8273 bio->bi_private = dip;
8274 bio->bi_end_io = btrfs_end_dio_bio;
8275 btrfs_io_bio(bio)->logical = file_offset;
8276 atomic_inc(&dip->pending_bios);
8277
8278 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8279 if (map_length < submit_len + bvec->bv_len ||
8280 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8281 bvec->bv_offset) < bvec->bv_len) {
8282 /*
8283 * inc the count before we submit the bio so
8284 * we know the end IO handler won't happen before
8285 * we inc the count. Otherwise, the dip might get freed
8286 * before we're done setting it up
8287 */
8288 atomic_inc(&dip->pending_bios);
8289 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8290 file_offset, skip_sum,
8291 async_submit);
8292 if (ret) {
8293 bio_put(bio);
8294 atomic_dec(&dip->pending_bios);
8295 goto out_err;
8296 }
8297
8298 start_sector += submit_len >> 9;
8299 file_offset += submit_len;
8300
8301 submit_len = 0;
8302 nr_pages = 0;
8303
8304 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8305 start_sector, GFP_NOFS);
8306 if (!bio)
8307 goto out_err;
8308 bio->bi_private = dip;
8309 bio->bi_end_io = btrfs_end_dio_bio;
8310 btrfs_io_bio(bio)->logical = file_offset;
8311
8312 map_length = orig_bio->bi_iter.bi_size;
8313 ret = btrfs_map_block(root->fs_info, rw,
8314 start_sector << 9,
8315 &map_length, NULL, 0);
8316 if (ret) {
8317 bio_put(bio);
8318 goto out_err;
8319 }
8320 } else {
8321 submit_len += bvec->bv_len;
8322 nr_pages++;
8323 bvec++;
8324 }
8325 }
8326
8327 submit:
8328 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8329 async_submit);
8330 if (!ret)
8331 return 0;
8332
8333 bio_put(bio);
8334 out_err:
8335 dip->errors = 1;
8336 /*
8337 * before atomic variable goto zero, we must
8338 * make sure dip->errors is perceived to be set.
8339 */
8340 smp_mb__before_atomic();
8341 if (atomic_dec_and_test(&dip->pending_bios))
8342 bio_io_error(dip->orig_bio);
8343
8344 /* bio_end_io() will handle error, so we needn't return it */
8345 return 0;
8346 }
8347
8348 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8349 struct inode *inode, loff_t file_offset)
8350 {
8351 struct btrfs_dio_private *dip = NULL;
8352 struct bio *io_bio = NULL;
8353 struct btrfs_io_bio *btrfs_bio;
8354 int skip_sum;
8355 int write = rw & REQ_WRITE;
8356 int ret = 0;
8357
8358 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8359
8360 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8361 if (!io_bio) {
8362 ret = -ENOMEM;
8363 goto free_ordered;
8364 }
8365
8366 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8367 if (!dip) {
8368 ret = -ENOMEM;
8369 goto free_ordered;
8370 }
8371
8372 dip->private = dio_bio->bi_private;
8373 dip->inode = inode;
8374 dip->logical_offset = file_offset;
8375 dip->bytes = dio_bio->bi_iter.bi_size;
8376 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8377 io_bio->bi_private = dip;
8378 dip->orig_bio = io_bio;
8379 dip->dio_bio = dio_bio;
8380 atomic_set(&dip->pending_bios, 0);
8381 btrfs_bio = btrfs_io_bio(io_bio);
8382 btrfs_bio->logical = file_offset;
8383
8384 if (write) {
8385 io_bio->bi_end_io = btrfs_endio_direct_write;
8386 } else {
8387 io_bio->bi_end_io = btrfs_endio_direct_read;
8388 dip->subio_endio = btrfs_subio_endio_read;
8389 }
8390
8391 /*
8392 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8393 * even if we fail to submit a bio, because in such case we do the
8394 * corresponding error handling below and it must not be done a second
8395 * time by btrfs_direct_IO().
8396 */
8397 if (write) {
8398 struct btrfs_dio_data *dio_data = current->journal_info;
8399
8400 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8401 dip->bytes;
8402 dio_data->unsubmitted_oe_range_start =
8403 dio_data->unsubmitted_oe_range_end;
8404 }
8405
8406 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8407 if (!ret)
8408 return;
8409
8410 if (btrfs_bio->end_io)
8411 btrfs_bio->end_io(btrfs_bio, ret);
8412
8413 free_ordered:
8414 /*
8415 * If we arrived here it means either we failed to submit the dip
8416 * or we either failed to clone the dio_bio or failed to allocate the
8417 * dip. If we cloned the dio_bio and allocated the dip, we can just
8418 * call bio_endio against our io_bio so that we get proper resource
8419 * cleanup if we fail to submit the dip, otherwise, we must do the
8420 * same as btrfs_endio_direct_[write|read] because we can't call these
8421 * callbacks - they require an allocated dip and a clone of dio_bio.
8422 */
8423 if (io_bio && dip) {
8424 io_bio->bi_error = -EIO;
8425 bio_endio(io_bio);
8426 /*
8427 * The end io callbacks free our dip, do the final put on io_bio
8428 * and all the cleanup and final put for dio_bio (through
8429 * dio_end_io()).
8430 */
8431 dip = NULL;
8432 io_bio = NULL;
8433 } else {
8434 if (write)
8435 btrfs_endio_direct_write_update_ordered(inode,
8436 file_offset,
8437 dio_bio->bi_iter.bi_size,
8438 0);
8439 else
8440 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8441 file_offset + dio_bio->bi_iter.bi_size - 1);
8442
8443 dio_bio->bi_error = -EIO;
8444 /*
8445 * Releases and cleans up our dio_bio, no need to bio_put()
8446 * nor bio_endio()/bio_io_error() against dio_bio.
8447 */
8448 dio_end_io(dio_bio, ret);
8449 }
8450 if (io_bio)
8451 bio_put(io_bio);
8452 kfree(dip);
8453 }
8454
8455 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8456 const struct iov_iter *iter, loff_t offset)
8457 {
8458 int seg;
8459 int i;
8460 unsigned blocksize_mask = root->sectorsize - 1;
8461 ssize_t retval = -EINVAL;
8462
8463 if (offset & blocksize_mask)
8464 goto out;
8465
8466 if (iov_iter_alignment(iter) & blocksize_mask)
8467 goto out;
8468
8469 /* If this is a write we don't need to check anymore */
8470 if (iov_iter_rw(iter) == WRITE)
8471 return 0;
8472 /*
8473 * Check to make sure we don't have duplicate iov_base's in this
8474 * iovec, if so return EINVAL, otherwise we'll get csum errors
8475 * when reading back.
8476 */
8477 for (seg = 0; seg < iter->nr_segs; seg++) {
8478 for (i = seg + 1; i < iter->nr_segs; i++) {
8479 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8480 goto out;
8481 }
8482 }
8483 retval = 0;
8484 out:
8485 return retval;
8486 }
8487
8488 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8489 loff_t offset)
8490 {
8491 struct file *file = iocb->ki_filp;
8492 struct inode *inode = file->f_mapping->host;
8493 struct btrfs_root *root = BTRFS_I(inode)->root;
8494 struct btrfs_dio_data dio_data = { 0 };
8495 size_t count = 0;
8496 int flags = 0;
8497 bool wakeup = true;
8498 bool relock = false;
8499 ssize_t ret;
8500
8501 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8502 return 0;
8503
8504 inode_dio_begin(inode);
8505 smp_mb__after_atomic();
8506
8507 /*
8508 * The generic stuff only does filemap_write_and_wait_range, which
8509 * isn't enough if we've written compressed pages to this area, so
8510 * we need to flush the dirty pages again to make absolutely sure
8511 * that any outstanding dirty pages are on disk.
8512 */
8513 count = iov_iter_count(iter);
8514 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8515 &BTRFS_I(inode)->runtime_flags))
8516 filemap_fdatawrite_range(inode->i_mapping, offset,
8517 offset + count - 1);
8518
8519 if (iov_iter_rw(iter) == WRITE) {
8520 /*
8521 * If the write DIO is beyond the EOF, we need update
8522 * the isize, but it is protected by i_mutex. So we can
8523 * not unlock the i_mutex at this case.
8524 */
8525 if (offset + count <= inode->i_size) {
8526 mutex_unlock(&inode->i_mutex);
8527 relock = true;
8528 }
8529 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8530 if (ret)
8531 goto out;
8532 dio_data.outstanding_extents = div64_u64(count +
8533 BTRFS_MAX_EXTENT_SIZE - 1,
8534 BTRFS_MAX_EXTENT_SIZE);
8535
8536 /*
8537 * We need to know how many extents we reserved so that we can
8538 * do the accounting properly if we go over the number we
8539 * originally calculated. Abuse current->journal_info for this.
8540 */
8541 dio_data.reserve = round_up(count, root->sectorsize);
8542 dio_data.unsubmitted_oe_range_start = (u64)offset;
8543 dio_data.unsubmitted_oe_range_end = (u64)offset;
8544 current->journal_info = &dio_data;
8545 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8546 &BTRFS_I(inode)->runtime_flags)) {
8547 inode_dio_end(inode);
8548 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8549 wakeup = false;
8550 }
8551
8552 ret = __blockdev_direct_IO(iocb, inode,
8553 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8554 iter, offset, btrfs_get_blocks_direct, NULL,
8555 btrfs_submit_direct, flags);
8556 if (iov_iter_rw(iter) == WRITE) {
8557 current->journal_info = NULL;
8558 if (ret < 0 && ret != -EIOCBQUEUED) {
8559 if (dio_data.reserve)
8560 btrfs_delalloc_release_space(inode, offset,
8561 dio_data.reserve);
8562 /*
8563 * On error we might have left some ordered extents
8564 * without submitting corresponding bios for them, so
8565 * cleanup them up to avoid other tasks getting them
8566 * and waiting for them to complete forever.
8567 */
8568 if (dio_data.unsubmitted_oe_range_start <
8569 dio_data.unsubmitted_oe_range_end)
8570 btrfs_endio_direct_write_update_ordered(inode,
8571 dio_data.unsubmitted_oe_range_start,
8572 dio_data.unsubmitted_oe_range_end -
8573 dio_data.unsubmitted_oe_range_start,
8574 0);
8575 } else if (ret >= 0 && (size_t)ret < count)
8576 btrfs_delalloc_release_space(inode, offset,
8577 count - (size_t)ret);
8578 }
8579 out:
8580 if (wakeup)
8581 inode_dio_end(inode);
8582 if (relock)
8583 mutex_lock(&inode->i_mutex);
8584
8585 return ret;
8586 }
8587
8588 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8589
8590 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8591 __u64 start, __u64 len)
8592 {
8593 int ret;
8594
8595 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8596 if (ret)
8597 return ret;
8598
8599 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8600 }
8601
8602 int btrfs_readpage(struct file *file, struct page *page)
8603 {
8604 struct extent_io_tree *tree;
8605 tree = &BTRFS_I(page->mapping->host)->io_tree;
8606 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8607 }
8608
8609 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8610 {
8611 struct extent_io_tree *tree;
8612 struct inode *inode = page->mapping->host;
8613 int ret;
8614
8615 if (current->flags & PF_MEMALLOC) {
8616 redirty_page_for_writepage(wbc, page);
8617 unlock_page(page);
8618 return 0;
8619 }
8620
8621 /*
8622 * If we are under memory pressure we will call this directly from the
8623 * VM, we need to make sure we have the inode referenced for the ordered
8624 * extent. If not just return like we didn't do anything.
8625 */
8626 if (!igrab(inode)) {
8627 redirty_page_for_writepage(wbc, page);
8628 return AOP_WRITEPAGE_ACTIVATE;
8629 }
8630 tree = &BTRFS_I(page->mapping->host)->io_tree;
8631 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8632 btrfs_add_delayed_iput(inode);
8633 return ret;
8634 }
8635
8636 static int btrfs_writepages(struct address_space *mapping,
8637 struct writeback_control *wbc)
8638 {
8639 struct extent_io_tree *tree;
8640
8641 tree = &BTRFS_I(mapping->host)->io_tree;
8642 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8643 }
8644
8645 static int
8646 btrfs_readpages(struct file *file, struct address_space *mapping,
8647 struct list_head *pages, unsigned nr_pages)
8648 {
8649 struct extent_io_tree *tree;
8650 tree = &BTRFS_I(mapping->host)->io_tree;
8651 return extent_readpages(tree, mapping, pages, nr_pages,
8652 btrfs_get_extent);
8653 }
8654 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8655 {
8656 struct extent_io_tree *tree;
8657 struct extent_map_tree *map;
8658 int ret;
8659
8660 tree = &BTRFS_I(page->mapping->host)->io_tree;
8661 map = &BTRFS_I(page->mapping->host)->extent_tree;
8662 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8663 if (ret == 1) {
8664 ClearPagePrivate(page);
8665 set_page_private(page, 0);
8666 page_cache_release(page);
8667 }
8668 return ret;
8669 }
8670
8671 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8672 {
8673 if (PageWriteback(page) || PageDirty(page))
8674 return 0;
8675 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8676 }
8677
8678 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8679 unsigned int length)
8680 {
8681 struct inode *inode = page->mapping->host;
8682 struct extent_io_tree *tree;
8683 struct btrfs_ordered_extent *ordered;
8684 struct extent_state *cached_state = NULL;
8685 u64 page_start = page_offset(page);
8686 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8687 u64 start;
8688 u64 end;
8689 int inode_evicting = inode->i_state & I_FREEING;
8690
8691 /*
8692 * we have the page locked, so new writeback can't start,
8693 * and the dirty bit won't be cleared while we are here.
8694 *
8695 * Wait for IO on this page so that we can safely clear
8696 * the PagePrivate2 bit and do ordered accounting
8697 */
8698 wait_on_page_writeback(page);
8699
8700 tree = &BTRFS_I(inode)->io_tree;
8701 if (offset) {
8702 btrfs_releasepage(page, GFP_NOFS);
8703 return;
8704 }
8705
8706 if (!inode_evicting)
8707 lock_extent_bits(tree, page_start, page_end, &cached_state);
8708 again:
8709 start = page_start;
8710 ordered = btrfs_lookup_ordered_range(inode, start,
8711 page_end - start + 1);
8712 if (ordered) {
8713 end = min(page_end, ordered->file_offset + ordered->len - 1);
8714 /*
8715 * IO on this page will never be started, so we need
8716 * to account for any ordered extents now
8717 */
8718 if (!inode_evicting)
8719 clear_extent_bit(tree, start, end,
8720 EXTENT_DIRTY | EXTENT_DELALLOC |
8721 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8722 EXTENT_DEFRAG, 1, 0, &cached_state,
8723 GFP_NOFS);
8724 /*
8725 * whoever cleared the private bit is responsible
8726 * for the finish_ordered_io
8727 */
8728 if (TestClearPagePrivate2(page)) {
8729 struct btrfs_ordered_inode_tree *tree;
8730 u64 new_len;
8731
8732 tree = &BTRFS_I(inode)->ordered_tree;
8733
8734 spin_lock_irq(&tree->lock);
8735 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8736 new_len = start - ordered->file_offset;
8737 if (new_len < ordered->truncated_len)
8738 ordered->truncated_len = new_len;
8739 spin_unlock_irq(&tree->lock);
8740
8741 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8742 start,
8743 end - start + 1, 1))
8744 btrfs_finish_ordered_io(ordered);
8745 }
8746 btrfs_put_ordered_extent(ordered);
8747 if (!inode_evicting) {
8748 cached_state = NULL;
8749 lock_extent_bits(tree, start, end,
8750 &cached_state);
8751 }
8752
8753 start = end + 1;
8754 if (start < page_end)
8755 goto again;
8756 }
8757
8758 /*
8759 * Qgroup reserved space handler
8760 * Page here will be either
8761 * 1) Already written to disk
8762 * In this case, its reserved space is released from data rsv map
8763 * and will be freed by delayed_ref handler finally.
8764 * So even we call qgroup_free_data(), it won't decrease reserved
8765 * space.
8766 * 2) Not written to disk
8767 * This means the reserved space should be freed here.
8768 */
8769 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8770 if (!inode_evicting) {
8771 clear_extent_bit(tree, page_start, page_end,
8772 EXTENT_LOCKED | EXTENT_DIRTY |
8773 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8774 EXTENT_DEFRAG, 1, 1,
8775 &cached_state, GFP_NOFS);
8776
8777 __btrfs_releasepage(page, GFP_NOFS);
8778 }
8779
8780 ClearPageChecked(page);
8781 if (PagePrivate(page)) {
8782 ClearPagePrivate(page);
8783 set_page_private(page, 0);
8784 page_cache_release(page);
8785 }
8786 }
8787
8788 /*
8789 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8790 * called from a page fault handler when a page is first dirtied. Hence we must
8791 * be careful to check for EOF conditions here. We set the page up correctly
8792 * for a written page which means we get ENOSPC checking when writing into
8793 * holes and correct delalloc and unwritten extent mapping on filesystems that
8794 * support these features.
8795 *
8796 * We are not allowed to take the i_mutex here so we have to play games to
8797 * protect against truncate races as the page could now be beyond EOF. Because
8798 * vmtruncate() writes the inode size before removing pages, once we have the
8799 * page lock we can determine safely if the page is beyond EOF. If it is not
8800 * beyond EOF, then the page is guaranteed safe against truncation until we
8801 * unlock the page.
8802 */
8803 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8804 {
8805 struct page *page = vmf->page;
8806 struct inode *inode = file_inode(vma->vm_file);
8807 struct btrfs_root *root = BTRFS_I(inode)->root;
8808 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8809 struct btrfs_ordered_extent *ordered;
8810 struct extent_state *cached_state = NULL;
8811 char *kaddr;
8812 unsigned long zero_start;
8813 loff_t size;
8814 int ret;
8815 int reserved = 0;
8816 u64 reserved_space;
8817 u64 page_start;
8818 u64 page_end;
8819 u64 end;
8820
8821 reserved_space = PAGE_CACHE_SIZE;
8822
8823 sb_start_pagefault(inode->i_sb);
8824 page_start = page_offset(page);
8825 page_end = page_start + PAGE_CACHE_SIZE - 1;
8826 end = page_end;
8827
8828 /*
8829 * Reserving delalloc space after obtaining the page lock can lead to
8830 * deadlock. For example, if a dirty page is locked by this function
8831 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8832 * dirty page write out, then the btrfs_writepage() function could
8833 * end up waiting indefinitely to get a lock on the page currently
8834 * being processed by btrfs_page_mkwrite() function.
8835 */
8836 ret = btrfs_delalloc_reserve_space(inode, page_start,
8837 reserved_space);
8838 if (!ret) {
8839 ret = file_update_time(vma->vm_file);
8840 reserved = 1;
8841 }
8842 if (ret) {
8843 if (ret == -ENOMEM)
8844 ret = VM_FAULT_OOM;
8845 else /* -ENOSPC, -EIO, etc */
8846 ret = VM_FAULT_SIGBUS;
8847 if (reserved)
8848 goto out;
8849 goto out_noreserve;
8850 }
8851
8852 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8853 again:
8854 lock_page(page);
8855 size = i_size_read(inode);
8856
8857 if ((page->mapping != inode->i_mapping) ||
8858 (page_start >= size)) {
8859 /* page got truncated out from underneath us */
8860 goto out_unlock;
8861 }
8862 wait_on_page_writeback(page);
8863
8864 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8865 set_page_extent_mapped(page);
8866
8867 /*
8868 * we can't set the delalloc bits if there are pending ordered
8869 * extents. Drop our locks and wait for them to finish
8870 */
8871 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8872 if (ordered) {
8873 unlock_extent_cached(io_tree, page_start, page_end,
8874 &cached_state, GFP_NOFS);
8875 unlock_page(page);
8876 btrfs_start_ordered_extent(inode, ordered, 1);
8877 btrfs_put_ordered_extent(ordered);
8878 goto again;
8879 }
8880
8881 if (page->index == ((size - 1) >> PAGE_CACHE_SHIFT)) {
8882 reserved_space = round_up(size - page_start, root->sectorsize);
8883 if (reserved_space < PAGE_CACHE_SIZE) {
8884 end = page_start + reserved_space - 1;
8885 spin_lock(&BTRFS_I(inode)->lock);
8886 BTRFS_I(inode)->outstanding_extents++;
8887 spin_unlock(&BTRFS_I(inode)->lock);
8888 btrfs_delalloc_release_space(inode, page_start,
8889 PAGE_CACHE_SIZE - reserved_space);
8890 }
8891 }
8892
8893 /*
8894 * XXX - page_mkwrite gets called every time the page is dirtied, even
8895 * if it was already dirty, so for space accounting reasons we need to
8896 * clear any delalloc bits for the range we are fixing to save. There
8897 * is probably a better way to do this, but for now keep consistent with
8898 * prepare_pages in the normal write path.
8899 */
8900 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8901 EXTENT_DIRTY | EXTENT_DELALLOC |
8902 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8903 0, 0, &cached_state, GFP_NOFS);
8904
8905 ret = btrfs_set_extent_delalloc(inode, page_start, end,
8906 &cached_state);
8907 if (ret) {
8908 unlock_extent_cached(io_tree, page_start, page_end,
8909 &cached_state, GFP_NOFS);
8910 ret = VM_FAULT_SIGBUS;
8911 goto out_unlock;
8912 }
8913 ret = 0;
8914
8915 /* page is wholly or partially inside EOF */
8916 if (page_start + PAGE_CACHE_SIZE > size)
8917 zero_start = size & ~PAGE_CACHE_MASK;
8918 else
8919 zero_start = PAGE_CACHE_SIZE;
8920
8921 if (zero_start != PAGE_CACHE_SIZE) {
8922 kaddr = kmap(page);
8923 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8924 flush_dcache_page(page);
8925 kunmap(page);
8926 }
8927 ClearPageChecked(page);
8928 set_page_dirty(page);
8929 SetPageUptodate(page);
8930
8931 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8932 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8933 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8934
8935 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8936
8937 out_unlock:
8938 if (!ret) {
8939 sb_end_pagefault(inode->i_sb);
8940 return VM_FAULT_LOCKED;
8941 }
8942 unlock_page(page);
8943 out:
8944 btrfs_delalloc_release_space(inode, page_start, reserved_space);
8945 out_noreserve:
8946 sb_end_pagefault(inode->i_sb);
8947 return ret;
8948 }
8949
8950 static int btrfs_truncate(struct inode *inode)
8951 {
8952 struct btrfs_root *root = BTRFS_I(inode)->root;
8953 struct btrfs_block_rsv *rsv;
8954 int ret = 0;
8955 int err = 0;
8956 struct btrfs_trans_handle *trans;
8957 u64 mask = root->sectorsize - 1;
8958 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8959
8960 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8961 (u64)-1);
8962 if (ret)
8963 return ret;
8964
8965 /*
8966 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8967 * 3 things going on here
8968 *
8969 * 1) We need to reserve space for our orphan item and the space to
8970 * delete our orphan item. Lord knows we don't want to have a dangling
8971 * orphan item because we didn't reserve space to remove it.
8972 *
8973 * 2) We need to reserve space to update our inode.
8974 *
8975 * 3) We need to have something to cache all the space that is going to
8976 * be free'd up by the truncate operation, but also have some slack
8977 * space reserved in case it uses space during the truncate (thank you
8978 * very much snapshotting).
8979 *
8980 * And we need these to all be seperate. The fact is we can use alot of
8981 * space doing the truncate, and we have no earthly idea how much space
8982 * we will use, so we need the truncate reservation to be seperate so it
8983 * doesn't end up using space reserved for updating the inode or
8984 * removing the orphan item. We also need to be able to stop the
8985 * transaction and start a new one, which means we need to be able to
8986 * update the inode several times, and we have no idea of knowing how
8987 * many times that will be, so we can't just reserve 1 item for the
8988 * entirety of the opration, so that has to be done seperately as well.
8989 * Then there is the orphan item, which does indeed need to be held on
8990 * to for the whole operation, and we need nobody to touch this reserved
8991 * space except the orphan code.
8992 *
8993 * So that leaves us with
8994 *
8995 * 1) root->orphan_block_rsv - for the orphan deletion.
8996 * 2) rsv - for the truncate reservation, which we will steal from the
8997 * transaction reservation.
8998 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8999 * updating the inode.
9000 */
9001 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9002 if (!rsv)
9003 return -ENOMEM;
9004 rsv->size = min_size;
9005 rsv->failfast = 1;
9006
9007 /*
9008 * 1 for the truncate slack space
9009 * 1 for updating the inode.
9010 */
9011 trans = btrfs_start_transaction(root, 2);
9012 if (IS_ERR(trans)) {
9013 err = PTR_ERR(trans);
9014 goto out;
9015 }
9016
9017 /* Migrate the slack space for the truncate to our reserve */
9018 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9019 min_size);
9020 BUG_ON(ret);
9021
9022 /*
9023 * So if we truncate and then write and fsync we normally would just
9024 * write the extents that changed, which is a problem if we need to
9025 * first truncate that entire inode. So set this flag so we write out
9026 * all of the extents in the inode to the sync log so we're completely
9027 * safe.
9028 */
9029 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9030 trans->block_rsv = rsv;
9031
9032 while (1) {
9033 ret = btrfs_truncate_inode_items(trans, root, inode,
9034 inode->i_size,
9035 BTRFS_EXTENT_DATA_KEY);
9036 if (ret != -ENOSPC && ret != -EAGAIN) {
9037 err = ret;
9038 break;
9039 }
9040
9041 trans->block_rsv = &root->fs_info->trans_block_rsv;
9042 ret = btrfs_update_inode(trans, root, inode);
9043 if (ret) {
9044 err = ret;
9045 break;
9046 }
9047
9048 btrfs_end_transaction(trans, root);
9049 btrfs_btree_balance_dirty(root);
9050
9051 trans = btrfs_start_transaction(root, 2);
9052 if (IS_ERR(trans)) {
9053 ret = err = PTR_ERR(trans);
9054 trans = NULL;
9055 break;
9056 }
9057
9058 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9059 rsv, min_size);
9060 BUG_ON(ret); /* shouldn't happen */
9061 trans->block_rsv = rsv;
9062 }
9063
9064 if (ret == 0 && inode->i_nlink > 0) {
9065 trans->block_rsv = root->orphan_block_rsv;
9066 ret = btrfs_orphan_del(trans, inode);
9067 if (ret)
9068 err = ret;
9069 }
9070
9071 if (trans) {
9072 trans->block_rsv = &root->fs_info->trans_block_rsv;
9073 ret = btrfs_update_inode(trans, root, inode);
9074 if (ret && !err)
9075 err = ret;
9076
9077 ret = btrfs_end_transaction(trans, root);
9078 btrfs_btree_balance_dirty(root);
9079 }
9080
9081 out:
9082 btrfs_free_block_rsv(root, rsv);
9083
9084 if (ret && !err)
9085 err = ret;
9086
9087 return err;
9088 }
9089
9090 /*
9091 * create a new subvolume directory/inode (helper for the ioctl).
9092 */
9093 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9094 struct btrfs_root *new_root,
9095 struct btrfs_root *parent_root,
9096 u64 new_dirid)
9097 {
9098 struct inode *inode;
9099 int err;
9100 u64 index = 0;
9101
9102 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9103 new_dirid, new_dirid,
9104 S_IFDIR | (~current_umask() & S_IRWXUGO),
9105 &index);
9106 if (IS_ERR(inode))
9107 return PTR_ERR(inode);
9108 inode->i_op = &btrfs_dir_inode_operations;
9109 inode->i_fop = &btrfs_dir_file_operations;
9110
9111 set_nlink(inode, 1);
9112 btrfs_i_size_write(inode, 0);
9113 unlock_new_inode(inode);
9114
9115 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9116 if (err)
9117 btrfs_err(new_root->fs_info,
9118 "error inheriting subvolume %llu properties: %d",
9119 new_root->root_key.objectid, err);
9120
9121 err = btrfs_update_inode(trans, new_root, inode);
9122
9123 iput(inode);
9124 return err;
9125 }
9126
9127 struct inode *btrfs_alloc_inode(struct super_block *sb)
9128 {
9129 struct btrfs_inode *ei;
9130 struct inode *inode;
9131
9132 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9133 if (!ei)
9134 return NULL;
9135
9136 ei->root = NULL;
9137 ei->generation = 0;
9138 ei->last_trans = 0;
9139 ei->last_sub_trans = 0;
9140 ei->logged_trans = 0;
9141 ei->delalloc_bytes = 0;
9142 ei->defrag_bytes = 0;
9143 ei->disk_i_size = 0;
9144 ei->flags = 0;
9145 ei->csum_bytes = 0;
9146 ei->index_cnt = (u64)-1;
9147 ei->dir_index = 0;
9148 ei->last_unlink_trans = 0;
9149 ei->last_log_commit = 0;
9150 ei->delayed_iput_count = 0;
9151
9152 spin_lock_init(&ei->lock);
9153 ei->outstanding_extents = 0;
9154 ei->reserved_extents = 0;
9155
9156 ei->runtime_flags = 0;
9157 ei->force_compress = BTRFS_COMPRESS_NONE;
9158
9159 ei->delayed_node = NULL;
9160
9161 ei->i_otime.tv_sec = 0;
9162 ei->i_otime.tv_nsec = 0;
9163
9164 inode = &ei->vfs_inode;
9165 extent_map_tree_init(&ei->extent_tree);
9166 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9167 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9168 ei->io_tree.track_uptodate = 1;
9169 ei->io_failure_tree.track_uptodate = 1;
9170 atomic_set(&ei->sync_writers, 0);
9171 mutex_init(&ei->log_mutex);
9172 mutex_init(&ei->delalloc_mutex);
9173 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9174 INIT_LIST_HEAD(&ei->delalloc_inodes);
9175 INIT_LIST_HEAD(&ei->delayed_iput);
9176 RB_CLEAR_NODE(&ei->rb_node);
9177
9178 return inode;
9179 }
9180
9181 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9182 void btrfs_test_destroy_inode(struct inode *inode)
9183 {
9184 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9185 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9186 }
9187 #endif
9188
9189 static void btrfs_i_callback(struct rcu_head *head)
9190 {
9191 struct inode *inode = container_of(head, struct inode, i_rcu);
9192 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9193 }
9194
9195 void btrfs_destroy_inode(struct inode *inode)
9196 {
9197 struct btrfs_ordered_extent *ordered;
9198 struct btrfs_root *root = BTRFS_I(inode)->root;
9199
9200 WARN_ON(!hlist_empty(&inode->i_dentry));
9201 WARN_ON(inode->i_data.nrpages);
9202 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9203 WARN_ON(BTRFS_I(inode)->reserved_extents);
9204 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9205 WARN_ON(BTRFS_I(inode)->csum_bytes);
9206 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9207
9208 /*
9209 * This can happen where we create an inode, but somebody else also
9210 * created the same inode and we need to destroy the one we already
9211 * created.
9212 */
9213 if (!root)
9214 goto free;
9215
9216 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9217 &BTRFS_I(inode)->runtime_flags)) {
9218 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9219 btrfs_ino(inode));
9220 atomic_dec(&root->orphan_inodes);
9221 }
9222
9223 while (1) {
9224 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9225 if (!ordered)
9226 break;
9227 else {
9228 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9229 ordered->file_offset, ordered->len);
9230 btrfs_remove_ordered_extent(inode, ordered);
9231 btrfs_put_ordered_extent(ordered);
9232 btrfs_put_ordered_extent(ordered);
9233 }
9234 }
9235 btrfs_qgroup_check_reserved_leak(inode);
9236 inode_tree_del(inode);
9237 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9238 free:
9239 call_rcu(&inode->i_rcu, btrfs_i_callback);
9240 }
9241
9242 int btrfs_drop_inode(struct inode *inode)
9243 {
9244 struct btrfs_root *root = BTRFS_I(inode)->root;
9245
9246 if (root == NULL)
9247 return 1;
9248
9249 /* the snap/subvol tree is on deleting */
9250 if (btrfs_root_refs(&root->root_item) == 0)
9251 return 1;
9252 else
9253 return generic_drop_inode(inode);
9254 }
9255
9256 static void init_once(void *foo)
9257 {
9258 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9259
9260 inode_init_once(&ei->vfs_inode);
9261 }
9262
9263 void btrfs_destroy_cachep(void)
9264 {
9265 /*
9266 * Make sure all delayed rcu free inodes are flushed before we
9267 * destroy cache.
9268 */
9269 rcu_barrier();
9270 if (btrfs_inode_cachep)
9271 kmem_cache_destroy(btrfs_inode_cachep);
9272 if (btrfs_trans_handle_cachep)
9273 kmem_cache_destroy(btrfs_trans_handle_cachep);
9274 if (btrfs_transaction_cachep)
9275 kmem_cache_destroy(btrfs_transaction_cachep);
9276 if (btrfs_path_cachep)
9277 kmem_cache_destroy(btrfs_path_cachep);
9278 if (btrfs_free_space_cachep)
9279 kmem_cache_destroy(btrfs_free_space_cachep);
9280 }
9281
9282 int btrfs_init_cachep(void)
9283 {
9284 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9285 sizeof(struct btrfs_inode), 0,
9286 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9287 if (!btrfs_inode_cachep)
9288 goto fail;
9289
9290 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9291 sizeof(struct btrfs_trans_handle), 0,
9292 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9293 if (!btrfs_trans_handle_cachep)
9294 goto fail;
9295
9296 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9297 sizeof(struct btrfs_transaction), 0,
9298 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9299 if (!btrfs_transaction_cachep)
9300 goto fail;
9301
9302 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9303 sizeof(struct btrfs_path), 0,
9304 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9305 if (!btrfs_path_cachep)
9306 goto fail;
9307
9308 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9309 sizeof(struct btrfs_free_space), 0,
9310 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9311 if (!btrfs_free_space_cachep)
9312 goto fail;
9313
9314 return 0;
9315 fail:
9316 btrfs_destroy_cachep();
9317 return -ENOMEM;
9318 }
9319
9320 static int btrfs_getattr(struct vfsmount *mnt,
9321 struct dentry *dentry, struct kstat *stat)
9322 {
9323 u64 delalloc_bytes;
9324 struct inode *inode = d_inode(dentry);
9325 u32 blocksize = inode->i_sb->s_blocksize;
9326
9327 generic_fillattr(inode, stat);
9328 stat->dev = BTRFS_I(inode)->root->anon_dev;
9329 stat->blksize = PAGE_CACHE_SIZE;
9330
9331 spin_lock(&BTRFS_I(inode)->lock);
9332 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9333 spin_unlock(&BTRFS_I(inode)->lock);
9334 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9335 ALIGN(delalloc_bytes, blocksize)) >> 9;
9336 return 0;
9337 }
9338
9339 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9340 struct inode *new_dir, struct dentry *new_dentry)
9341 {
9342 struct btrfs_trans_handle *trans;
9343 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9344 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9345 struct inode *new_inode = d_inode(new_dentry);
9346 struct inode *old_inode = d_inode(old_dentry);
9347 struct timespec ctime = CURRENT_TIME;
9348 u64 index = 0;
9349 u64 root_objectid;
9350 int ret;
9351 u64 old_ino = btrfs_ino(old_inode);
9352
9353 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9354 return -EPERM;
9355
9356 /* we only allow rename subvolume link between subvolumes */
9357 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9358 return -EXDEV;
9359
9360 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9361 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9362 return -ENOTEMPTY;
9363
9364 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9365 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9366 return -ENOTEMPTY;
9367
9368
9369 /* check for collisions, even if the name isn't there */
9370 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9371 new_dentry->d_name.name,
9372 new_dentry->d_name.len);
9373
9374 if (ret) {
9375 if (ret == -EEXIST) {
9376 /* we shouldn't get
9377 * eexist without a new_inode */
9378 if (WARN_ON(!new_inode)) {
9379 return ret;
9380 }
9381 } else {
9382 /* maybe -EOVERFLOW */
9383 return ret;
9384 }
9385 }
9386 ret = 0;
9387
9388 /*
9389 * we're using rename to replace one file with another. Start IO on it
9390 * now so we don't add too much work to the end of the transaction
9391 */
9392 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9393 filemap_flush(old_inode->i_mapping);
9394
9395 /* close the racy window with snapshot create/destroy ioctl */
9396 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9397 down_read(&root->fs_info->subvol_sem);
9398 /*
9399 * We want to reserve the absolute worst case amount of items. So if
9400 * both inodes are subvols and we need to unlink them then that would
9401 * require 4 item modifications, but if they are both normal inodes it
9402 * would require 5 item modifications, so we'll assume their normal
9403 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9404 * should cover the worst case number of items we'll modify.
9405 */
9406 trans = btrfs_start_transaction(root, 11);
9407 if (IS_ERR(trans)) {
9408 ret = PTR_ERR(trans);
9409 goto out_notrans;
9410 }
9411
9412 if (dest != root)
9413 btrfs_record_root_in_trans(trans, dest);
9414
9415 ret = btrfs_set_inode_index(new_dir, &index);
9416 if (ret)
9417 goto out_fail;
9418
9419 BTRFS_I(old_inode)->dir_index = 0ULL;
9420 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9421 /* force full log commit if subvolume involved. */
9422 btrfs_set_log_full_commit(root->fs_info, trans);
9423 } else {
9424 ret = btrfs_insert_inode_ref(trans, dest,
9425 new_dentry->d_name.name,
9426 new_dentry->d_name.len,
9427 old_ino,
9428 btrfs_ino(new_dir), index);
9429 if (ret)
9430 goto out_fail;
9431 /*
9432 * this is an ugly little race, but the rename is required
9433 * to make sure that if we crash, the inode is either at the
9434 * old name or the new one. pinning the log transaction lets
9435 * us make sure we don't allow a log commit to come in after
9436 * we unlink the name but before we add the new name back in.
9437 */
9438 btrfs_pin_log_trans(root);
9439 }
9440
9441 inode_inc_iversion(old_dir);
9442 inode_inc_iversion(new_dir);
9443 inode_inc_iversion(old_inode);
9444 old_dir->i_ctime = old_dir->i_mtime = ctime;
9445 new_dir->i_ctime = new_dir->i_mtime = ctime;
9446 old_inode->i_ctime = ctime;
9447
9448 if (old_dentry->d_parent != new_dentry->d_parent)
9449 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9450
9451 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9452 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9453 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9454 old_dentry->d_name.name,
9455 old_dentry->d_name.len);
9456 } else {
9457 ret = __btrfs_unlink_inode(trans, root, old_dir,
9458 d_inode(old_dentry),
9459 old_dentry->d_name.name,
9460 old_dentry->d_name.len);
9461 if (!ret)
9462 ret = btrfs_update_inode(trans, root, old_inode);
9463 }
9464 if (ret) {
9465 btrfs_abort_transaction(trans, root, ret);
9466 goto out_fail;
9467 }
9468
9469 if (new_inode) {
9470 inode_inc_iversion(new_inode);
9471 new_inode->i_ctime = CURRENT_TIME;
9472 if (unlikely(btrfs_ino(new_inode) ==
9473 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9474 root_objectid = BTRFS_I(new_inode)->location.objectid;
9475 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9476 root_objectid,
9477 new_dentry->d_name.name,
9478 new_dentry->d_name.len);
9479 BUG_ON(new_inode->i_nlink == 0);
9480 } else {
9481 ret = btrfs_unlink_inode(trans, dest, new_dir,
9482 d_inode(new_dentry),
9483 new_dentry->d_name.name,
9484 new_dentry->d_name.len);
9485 }
9486 if (!ret && new_inode->i_nlink == 0)
9487 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9488 if (ret) {
9489 btrfs_abort_transaction(trans, root, ret);
9490 goto out_fail;
9491 }
9492 }
9493
9494 ret = btrfs_add_link(trans, new_dir, old_inode,
9495 new_dentry->d_name.name,
9496 new_dentry->d_name.len, 0, index);
9497 if (ret) {
9498 btrfs_abort_transaction(trans, root, ret);
9499 goto out_fail;
9500 }
9501
9502 if (old_inode->i_nlink == 1)
9503 BTRFS_I(old_inode)->dir_index = index;
9504
9505 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9506 struct dentry *parent = new_dentry->d_parent;
9507 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9508 btrfs_end_log_trans(root);
9509 }
9510 out_fail:
9511 btrfs_end_transaction(trans, root);
9512 out_notrans:
9513 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9514 up_read(&root->fs_info->subvol_sem);
9515
9516 return ret;
9517 }
9518
9519 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9520 struct inode *new_dir, struct dentry *new_dentry,
9521 unsigned int flags)
9522 {
9523 if (flags & ~RENAME_NOREPLACE)
9524 return -EINVAL;
9525
9526 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9527 }
9528
9529 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9530 {
9531 struct btrfs_delalloc_work *delalloc_work;
9532 struct inode *inode;
9533
9534 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9535 work);
9536 inode = delalloc_work->inode;
9537 filemap_flush(inode->i_mapping);
9538 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9539 &BTRFS_I(inode)->runtime_flags))
9540 filemap_flush(inode->i_mapping);
9541
9542 if (delalloc_work->delay_iput)
9543 btrfs_add_delayed_iput(inode);
9544 else
9545 iput(inode);
9546 complete(&delalloc_work->completion);
9547 }
9548
9549 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9550 int delay_iput)
9551 {
9552 struct btrfs_delalloc_work *work;
9553
9554 work = kmalloc(sizeof(*work), GFP_NOFS);
9555 if (!work)
9556 return NULL;
9557
9558 init_completion(&work->completion);
9559 INIT_LIST_HEAD(&work->list);
9560 work->inode = inode;
9561 work->delay_iput = delay_iput;
9562 WARN_ON_ONCE(!inode);
9563 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9564 btrfs_run_delalloc_work, NULL, NULL);
9565
9566 return work;
9567 }
9568
9569 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9570 {
9571 wait_for_completion(&work->completion);
9572 kfree(work);
9573 }
9574
9575 /*
9576 * some fairly slow code that needs optimization. This walks the list
9577 * of all the inodes with pending delalloc and forces them to disk.
9578 */
9579 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9580 int nr)
9581 {
9582 struct btrfs_inode *binode;
9583 struct inode *inode;
9584 struct btrfs_delalloc_work *work, *next;
9585 struct list_head works;
9586 struct list_head splice;
9587 int ret = 0;
9588
9589 INIT_LIST_HEAD(&works);
9590 INIT_LIST_HEAD(&splice);
9591
9592 mutex_lock(&root->delalloc_mutex);
9593 spin_lock(&root->delalloc_lock);
9594 list_splice_init(&root->delalloc_inodes, &splice);
9595 while (!list_empty(&splice)) {
9596 binode = list_entry(splice.next, struct btrfs_inode,
9597 delalloc_inodes);
9598
9599 list_move_tail(&binode->delalloc_inodes,
9600 &root->delalloc_inodes);
9601 inode = igrab(&binode->vfs_inode);
9602 if (!inode) {
9603 cond_resched_lock(&root->delalloc_lock);
9604 continue;
9605 }
9606 spin_unlock(&root->delalloc_lock);
9607
9608 work = btrfs_alloc_delalloc_work(inode, delay_iput);
9609 if (!work) {
9610 if (delay_iput)
9611 btrfs_add_delayed_iput(inode);
9612 else
9613 iput(inode);
9614 ret = -ENOMEM;
9615 goto out;
9616 }
9617 list_add_tail(&work->list, &works);
9618 btrfs_queue_work(root->fs_info->flush_workers,
9619 &work->work);
9620 ret++;
9621 if (nr != -1 && ret >= nr)
9622 goto out;
9623 cond_resched();
9624 spin_lock(&root->delalloc_lock);
9625 }
9626 spin_unlock(&root->delalloc_lock);
9627
9628 out:
9629 list_for_each_entry_safe(work, next, &works, list) {
9630 list_del_init(&work->list);
9631 btrfs_wait_and_free_delalloc_work(work);
9632 }
9633
9634 if (!list_empty_careful(&splice)) {
9635 spin_lock(&root->delalloc_lock);
9636 list_splice_tail(&splice, &root->delalloc_inodes);
9637 spin_unlock(&root->delalloc_lock);
9638 }
9639 mutex_unlock(&root->delalloc_mutex);
9640 return ret;
9641 }
9642
9643 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9644 {
9645 int ret;
9646
9647 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9648 return -EROFS;
9649
9650 ret = __start_delalloc_inodes(root, delay_iput, -1);
9651 if (ret > 0)
9652 ret = 0;
9653 /*
9654 * the filemap_flush will queue IO into the worker threads, but
9655 * we have to make sure the IO is actually started and that
9656 * ordered extents get created before we return
9657 */
9658 atomic_inc(&root->fs_info->async_submit_draining);
9659 while (atomic_read(&root->fs_info->nr_async_submits) ||
9660 atomic_read(&root->fs_info->async_delalloc_pages)) {
9661 wait_event(root->fs_info->async_submit_wait,
9662 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9663 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9664 }
9665 atomic_dec(&root->fs_info->async_submit_draining);
9666 return ret;
9667 }
9668
9669 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9670 int nr)
9671 {
9672 struct btrfs_root *root;
9673 struct list_head splice;
9674 int ret;
9675
9676 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9677 return -EROFS;
9678
9679 INIT_LIST_HEAD(&splice);
9680
9681 mutex_lock(&fs_info->delalloc_root_mutex);
9682 spin_lock(&fs_info->delalloc_root_lock);
9683 list_splice_init(&fs_info->delalloc_roots, &splice);
9684 while (!list_empty(&splice) && nr) {
9685 root = list_first_entry(&splice, struct btrfs_root,
9686 delalloc_root);
9687 root = btrfs_grab_fs_root(root);
9688 BUG_ON(!root);
9689 list_move_tail(&root->delalloc_root,
9690 &fs_info->delalloc_roots);
9691 spin_unlock(&fs_info->delalloc_root_lock);
9692
9693 ret = __start_delalloc_inodes(root, delay_iput, nr);
9694 btrfs_put_fs_root(root);
9695 if (ret < 0)
9696 goto out;
9697
9698 if (nr != -1) {
9699 nr -= ret;
9700 WARN_ON(nr < 0);
9701 }
9702 spin_lock(&fs_info->delalloc_root_lock);
9703 }
9704 spin_unlock(&fs_info->delalloc_root_lock);
9705
9706 ret = 0;
9707 atomic_inc(&fs_info->async_submit_draining);
9708 while (atomic_read(&fs_info->nr_async_submits) ||
9709 atomic_read(&fs_info->async_delalloc_pages)) {
9710 wait_event(fs_info->async_submit_wait,
9711 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9712 atomic_read(&fs_info->async_delalloc_pages) == 0));
9713 }
9714 atomic_dec(&fs_info->async_submit_draining);
9715 out:
9716 if (!list_empty_careful(&splice)) {
9717 spin_lock(&fs_info->delalloc_root_lock);
9718 list_splice_tail(&splice, &fs_info->delalloc_roots);
9719 spin_unlock(&fs_info->delalloc_root_lock);
9720 }
9721 mutex_unlock(&fs_info->delalloc_root_mutex);
9722 return ret;
9723 }
9724
9725 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9726 const char *symname)
9727 {
9728 struct btrfs_trans_handle *trans;
9729 struct btrfs_root *root = BTRFS_I(dir)->root;
9730 struct btrfs_path *path;
9731 struct btrfs_key key;
9732 struct inode *inode = NULL;
9733 int err;
9734 int drop_inode = 0;
9735 u64 objectid;
9736 u64 index = 0;
9737 int name_len;
9738 int datasize;
9739 unsigned long ptr;
9740 struct btrfs_file_extent_item *ei;
9741 struct extent_buffer *leaf;
9742
9743 name_len = strlen(symname);
9744 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9745 return -ENAMETOOLONG;
9746
9747 /*
9748 * 2 items for inode item and ref
9749 * 2 items for dir items
9750 * 1 item for updating parent inode item
9751 * 1 item for the inline extent item
9752 * 1 item for xattr if selinux is on
9753 */
9754 trans = btrfs_start_transaction(root, 7);
9755 if (IS_ERR(trans))
9756 return PTR_ERR(trans);
9757
9758 err = btrfs_find_free_ino(root, &objectid);
9759 if (err)
9760 goto out_unlock;
9761
9762 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9763 dentry->d_name.len, btrfs_ino(dir), objectid,
9764 S_IFLNK|S_IRWXUGO, &index);
9765 if (IS_ERR(inode)) {
9766 err = PTR_ERR(inode);
9767 goto out_unlock;
9768 }
9769
9770 /*
9771 * If the active LSM wants to access the inode during
9772 * d_instantiate it needs these. Smack checks to see
9773 * if the filesystem supports xattrs by looking at the
9774 * ops vector.
9775 */
9776 inode->i_fop = &btrfs_file_operations;
9777 inode->i_op = &btrfs_file_inode_operations;
9778 inode->i_mapping->a_ops = &btrfs_aops;
9779 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9780
9781 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9782 if (err)
9783 goto out_unlock_inode;
9784
9785 path = btrfs_alloc_path();
9786 if (!path) {
9787 err = -ENOMEM;
9788 goto out_unlock_inode;
9789 }
9790 key.objectid = btrfs_ino(inode);
9791 key.offset = 0;
9792 key.type = BTRFS_EXTENT_DATA_KEY;
9793 datasize = btrfs_file_extent_calc_inline_size(name_len);
9794 err = btrfs_insert_empty_item(trans, root, path, &key,
9795 datasize);
9796 if (err) {
9797 btrfs_free_path(path);
9798 goto out_unlock_inode;
9799 }
9800 leaf = path->nodes[0];
9801 ei = btrfs_item_ptr(leaf, path->slots[0],
9802 struct btrfs_file_extent_item);
9803 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9804 btrfs_set_file_extent_type(leaf, ei,
9805 BTRFS_FILE_EXTENT_INLINE);
9806 btrfs_set_file_extent_encryption(leaf, ei, 0);
9807 btrfs_set_file_extent_compression(leaf, ei, 0);
9808 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9809 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9810
9811 ptr = btrfs_file_extent_inline_start(ei);
9812 write_extent_buffer(leaf, symname, ptr, name_len);
9813 btrfs_mark_buffer_dirty(leaf);
9814 btrfs_free_path(path);
9815
9816 inode->i_op = &btrfs_symlink_inode_operations;
9817 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9818 inode_set_bytes(inode, name_len);
9819 btrfs_i_size_write(inode, name_len);
9820 err = btrfs_update_inode(trans, root, inode);
9821 /*
9822 * Last step, add directory indexes for our symlink inode. This is the
9823 * last step to avoid extra cleanup of these indexes if an error happens
9824 * elsewhere above.
9825 */
9826 if (!err)
9827 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9828 if (err) {
9829 drop_inode = 1;
9830 goto out_unlock_inode;
9831 }
9832
9833 unlock_new_inode(inode);
9834 d_instantiate(dentry, inode);
9835
9836 out_unlock:
9837 btrfs_end_transaction(trans, root);
9838 if (drop_inode) {
9839 inode_dec_link_count(inode);
9840 iput(inode);
9841 }
9842 btrfs_btree_balance_dirty(root);
9843 return err;
9844
9845 out_unlock_inode:
9846 drop_inode = 1;
9847 unlock_new_inode(inode);
9848 goto out_unlock;
9849 }
9850
9851 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9852 u64 start, u64 num_bytes, u64 min_size,
9853 loff_t actual_len, u64 *alloc_hint,
9854 struct btrfs_trans_handle *trans)
9855 {
9856 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9857 struct extent_map *em;
9858 struct btrfs_root *root = BTRFS_I(inode)->root;
9859 struct btrfs_key ins;
9860 u64 cur_offset = start;
9861 u64 i_size;
9862 u64 cur_bytes;
9863 u64 last_alloc = (u64)-1;
9864 int ret = 0;
9865 bool own_trans = true;
9866
9867 if (trans)
9868 own_trans = false;
9869 while (num_bytes > 0) {
9870 if (own_trans) {
9871 trans = btrfs_start_transaction(root, 3);
9872 if (IS_ERR(trans)) {
9873 ret = PTR_ERR(trans);
9874 break;
9875 }
9876 }
9877
9878 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9879 cur_bytes = max(cur_bytes, min_size);
9880 /*
9881 * If we are severely fragmented we could end up with really
9882 * small allocations, so if the allocator is returning small
9883 * chunks lets make its job easier by only searching for those
9884 * sized chunks.
9885 */
9886 cur_bytes = min(cur_bytes, last_alloc);
9887 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9888 *alloc_hint, &ins, 1, 0);
9889 if (ret) {
9890 if (own_trans)
9891 btrfs_end_transaction(trans, root);
9892 break;
9893 }
9894
9895 last_alloc = ins.offset;
9896 ret = insert_reserved_file_extent(trans, inode,
9897 cur_offset, ins.objectid,
9898 ins.offset, ins.offset,
9899 ins.offset, 0, 0, 0,
9900 BTRFS_FILE_EXTENT_PREALLOC);
9901 if (ret) {
9902 btrfs_free_reserved_extent(root, ins.objectid,
9903 ins.offset, 0);
9904 btrfs_abort_transaction(trans, root, ret);
9905 if (own_trans)
9906 btrfs_end_transaction(trans, root);
9907 break;
9908 }
9909
9910 btrfs_drop_extent_cache(inode, cur_offset,
9911 cur_offset + ins.offset -1, 0);
9912
9913 em = alloc_extent_map();
9914 if (!em) {
9915 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9916 &BTRFS_I(inode)->runtime_flags);
9917 goto next;
9918 }
9919
9920 em->start = cur_offset;
9921 em->orig_start = cur_offset;
9922 em->len = ins.offset;
9923 em->block_start = ins.objectid;
9924 em->block_len = ins.offset;
9925 em->orig_block_len = ins.offset;
9926 em->ram_bytes = ins.offset;
9927 em->bdev = root->fs_info->fs_devices->latest_bdev;
9928 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9929 em->generation = trans->transid;
9930
9931 while (1) {
9932 write_lock(&em_tree->lock);
9933 ret = add_extent_mapping(em_tree, em, 1);
9934 write_unlock(&em_tree->lock);
9935 if (ret != -EEXIST)
9936 break;
9937 btrfs_drop_extent_cache(inode, cur_offset,
9938 cur_offset + ins.offset - 1,
9939 0);
9940 }
9941 free_extent_map(em);
9942 next:
9943 num_bytes -= ins.offset;
9944 cur_offset += ins.offset;
9945 *alloc_hint = ins.objectid + ins.offset;
9946
9947 inode_inc_iversion(inode);
9948 inode->i_ctime = CURRENT_TIME;
9949 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9950 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9951 (actual_len > inode->i_size) &&
9952 (cur_offset > inode->i_size)) {
9953 if (cur_offset > actual_len)
9954 i_size = actual_len;
9955 else
9956 i_size = cur_offset;
9957 i_size_write(inode, i_size);
9958 btrfs_ordered_update_i_size(inode, i_size, NULL);
9959 }
9960
9961 ret = btrfs_update_inode(trans, root, inode);
9962
9963 if (ret) {
9964 btrfs_abort_transaction(trans, root, ret);
9965 if (own_trans)
9966 btrfs_end_transaction(trans, root);
9967 break;
9968 }
9969
9970 if (own_trans)
9971 btrfs_end_transaction(trans, root);
9972 }
9973 return ret;
9974 }
9975
9976 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9977 u64 start, u64 num_bytes, u64 min_size,
9978 loff_t actual_len, u64 *alloc_hint)
9979 {
9980 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9981 min_size, actual_len, alloc_hint,
9982 NULL);
9983 }
9984
9985 int btrfs_prealloc_file_range_trans(struct inode *inode,
9986 struct btrfs_trans_handle *trans, int mode,
9987 u64 start, u64 num_bytes, u64 min_size,
9988 loff_t actual_len, u64 *alloc_hint)
9989 {
9990 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9991 min_size, actual_len, alloc_hint, trans);
9992 }
9993
9994 static int btrfs_set_page_dirty(struct page *page)
9995 {
9996 return __set_page_dirty_nobuffers(page);
9997 }
9998
9999 static int btrfs_permission(struct inode *inode, int mask)
10000 {
10001 struct btrfs_root *root = BTRFS_I(inode)->root;
10002 umode_t mode = inode->i_mode;
10003
10004 if (mask & MAY_WRITE &&
10005 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10006 if (btrfs_root_readonly(root))
10007 return -EROFS;
10008 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10009 return -EACCES;
10010 }
10011 return generic_permission(inode, mask);
10012 }
10013
10014 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10015 {
10016 struct btrfs_trans_handle *trans;
10017 struct btrfs_root *root = BTRFS_I(dir)->root;
10018 struct inode *inode = NULL;
10019 u64 objectid;
10020 u64 index;
10021 int ret = 0;
10022
10023 /*
10024 * 5 units required for adding orphan entry
10025 */
10026 trans = btrfs_start_transaction(root, 5);
10027 if (IS_ERR(trans))
10028 return PTR_ERR(trans);
10029
10030 ret = btrfs_find_free_ino(root, &objectid);
10031 if (ret)
10032 goto out;
10033
10034 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10035 btrfs_ino(dir), objectid, mode, &index);
10036 if (IS_ERR(inode)) {
10037 ret = PTR_ERR(inode);
10038 inode = NULL;
10039 goto out;
10040 }
10041
10042 inode->i_fop = &btrfs_file_operations;
10043 inode->i_op = &btrfs_file_inode_operations;
10044
10045 inode->i_mapping->a_ops = &btrfs_aops;
10046 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10047
10048 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10049 if (ret)
10050 goto out_inode;
10051
10052 ret = btrfs_update_inode(trans, root, inode);
10053 if (ret)
10054 goto out_inode;
10055 ret = btrfs_orphan_add(trans, inode);
10056 if (ret)
10057 goto out_inode;
10058
10059 /*
10060 * We set number of links to 0 in btrfs_new_inode(), and here we set
10061 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10062 * through:
10063 *
10064 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10065 */
10066 set_nlink(inode, 1);
10067 unlock_new_inode(inode);
10068 d_tmpfile(dentry, inode);
10069 mark_inode_dirty(inode);
10070
10071 out:
10072 btrfs_end_transaction(trans, root);
10073 if (ret)
10074 iput(inode);
10075 btrfs_balance_delayed_items(root);
10076 btrfs_btree_balance_dirty(root);
10077 return ret;
10078
10079 out_inode:
10080 unlock_new_inode(inode);
10081 goto out;
10082
10083 }
10084
10085 /* Inspired by filemap_check_errors() */
10086 int btrfs_inode_check_errors(struct inode *inode)
10087 {
10088 int ret = 0;
10089
10090 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10091 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10092 ret = -ENOSPC;
10093 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10094 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10095 ret = -EIO;
10096
10097 return ret;
10098 }
10099
10100 static const struct inode_operations btrfs_dir_inode_operations = {
10101 .getattr = btrfs_getattr,
10102 .lookup = btrfs_lookup,
10103 .create = btrfs_create,
10104 .unlink = btrfs_unlink,
10105 .link = btrfs_link,
10106 .mkdir = btrfs_mkdir,
10107 .rmdir = btrfs_rmdir,
10108 .rename2 = btrfs_rename2,
10109 .symlink = btrfs_symlink,
10110 .setattr = btrfs_setattr,
10111 .mknod = btrfs_mknod,
10112 .setxattr = btrfs_setxattr,
10113 .getxattr = btrfs_getxattr,
10114 .listxattr = btrfs_listxattr,
10115 .removexattr = btrfs_removexattr,
10116 .permission = btrfs_permission,
10117 .get_acl = btrfs_get_acl,
10118 .set_acl = btrfs_set_acl,
10119 .update_time = btrfs_update_time,
10120 .tmpfile = btrfs_tmpfile,
10121 };
10122 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10123 .lookup = btrfs_lookup,
10124 .permission = btrfs_permission,
10125 .get_acl = btrfs_get_acl,
10126 .set_acl = btrfs_set_acl,
10127 .update_time = btrfs_update_time,
10128 };
10129
10130 static const struct file_operations btrfs_dir_file_operations = {
10131 .llseek = generic_file_llseek,
10132 .read = generic_read_dir,
10133 .iterate = btrfs_real_readdir,
10134 .unlocked_ioctl = btrfs_ioctl,
10135 #ifdef CONFIG_COMPAT
10136 .compat_ioctl = btrfs_ioctl,
10137 #endif
10138 .release = btrfs_release_file,
10139 .fsync = btrfs_sync_file,
10140 };
10141
10142 static const struct extent_io_ops btrfs_extent_io_ops = {
10143 .fill_delalloc = run_delalloc_range,
10144 .submit_bio_hook = btrfs_submit_bio_hook,
10145 .merge_bio_hook = btrfs_merge_bio_hook,
10146 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10147 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10148 .writepage_start_hook = btrfs_writepage_start_hook,
10149 .set_bit_hook = btrfs_set_bit_hook,
10150 .clear_bit_hook = btrfs_clear_bit_hook,
10151 .merge_extent_hook = btrfs_merge_extent_hook,
10152 .split_extent_hook = btrfs_split_extent_hook,
10153 };
10154
10155 /*
10156 * btrfs doesn't support the bmap operation because swapfiles
10157 * use bmap to make a mapping of extents in the file. They assume
10158 * these extents won't change over the life of the file and they
10159 * use the bmap result to do IO directly to the drive.
10160 *
10161 * the btrfs bmap call would return logical addresses that aren't
10162 * suitable for IO and they also will change frequently as COW
10163 * operations happen. So, swapfile + btrfs == corruption.
10164 *
10165 * For now we're avoiding this by dropping bmap.
10166 */
10167 static const struct address_space_operations btrfs_aops = {
10168 .readpage = btrfs_readpage,
10169 .writepage = btrfs_writepage,
10170 .writepages = btrfs_writepages,
10171 .readpages = btrfs_readpages,
10172 .direct_IO = btrfs_direct_IO,
10173 .invalidatepage = btrfs_invalidatepage,
10174 .releasepage = btrfs_releasepage,
10175 .set_page_dirty = btrfs_set_page_dirty,
10176 .error_remove_page = generic_error_remove_page,
10177 };
10178
10179 static const struct address_space_operations btrfs_symlink_aops = {
10180 .readpage = btrfs_readpage,
10181 .writepage = btrfs_writepage,
10182 .invalidatepage = btrfs_invalidatepage,
10183 .releasepage = btrfs_releasepage,
10184 };
10185
10186 static const struct inode_operations btrfs_file_inode_operations = {
10187 .getattr = btrfs_getattr,
10188 .setattr = btrfs_setattr,
10189 .setxattr = btrfs_setxattr,
10190 .getxattr = btrfs_getxattr,
10191 .listxattr = btrfs_listxattr,
10192 .removexattr = btrfs_removexattr,
10193 .permission = btrfs_permission,
10194 .fiemap = btrfs_fiemap,
10195 .get_acl = btrfs_get_acl,
10196 .set_acl = btrfs_set_acl,
10197 .update_time = btrfs_update_time,
10198 };
10199 static const struct inode_operations btrfs_special_inode_operations = {
10200 .getattr = btrfs_getattr,
10201 .setattr = btrfs_setattr,
10202 .permission = btrfs_permission,
10203 .setxattr = btrfs_setxattr,
10204 .getxattr = btrfs_getxattr,
10205 .listxattr = btrfs_listxattr,
10206 .removexattr = btrfs_removexattr,
10207 .get_acl = btrfs_get_acl,
10208 .set_acl = btrfs_set_acl,
10209 .update_time = btrfs_update_time,
10210 };
10211 static const struct inode_operations btrfs_symlink_inode_operations = {
10212 .readlink = generic_readlink,
10213 .follow_link = page_follow_link_light,
10214 .put_link = page_put_link,
10215 .getattr = btrfs_getattr,
10216 .setattr = btrfs_setattr,
10217 .permission = btrfs_permission,
10218 .setxattr = btrfs_setxattr,
10219 .getxattr = btrfs_getxattr,
10220 .listxattr = btrfs_listxattr,
10221 .removexattr = btrfs_removexattr,
10222 .update_time = btrfs_update_time,
10223 };
10224
10225 const struct dentry_operations btrfs_dentry_operations = {
10226 .d_delete = btrfs_dentry_delete,
10227 .d_release = btrfs_dentry_release,
10228 };