]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/inode.c
93f735ca96cf6fa176b81ba09ccbb2babfde118b
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 struct btrfs_dio_data {
61 u64 reserve;
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct btrfs_inode *inode,
84 struct page *locked_page,
85 u64 start, u64 end, int *page_started,
86 unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
92
93 static void __endio_write_update_ordered(struct btrfs_inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97 /*
98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
99 *
100 * ilock_flags can have the following bit set:
101 *
102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
104 * return -EAGAIN
105 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
106 */
107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
108 {
109 if (ilock_flags & BTRFS_ILOCK_SHARED) {
110 if (ilock_flags & BTRFS_ILOCK_TRY) {
111 if (!inode_trylock_shared(inode))
112 return -EAGAIN;
113 else
114 return 0;
115 }
116 inode_lock_shared(inode);
117 } else {
118 if (ilock_flags & BTRFS_ILOCK_TRY) {
119 if (!inode_trylock(inode))
120 return -EAGAIN;
121 else
122 return 0;
123 }
124 inode_lock(inode);
125 }
126 if (ilock_flags & BTRFS_ILOCK_MMAP)
127 down_write(&BTRFS_I(inode)->i_mmap_lock);
128 return 0;
129 }
130
131 /*
132 * btrfs_inode_unlock - unock inode i_rwsem
133 *
134 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
135 * to decide whether the lock acquired is shared or exclusive.
136 */
137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
138 {
139 if (ilock_flags & BTRFS_ILOCK_MMAP)
140 up_write(&BTRFS_I(inode)->i_mmap_lock);
141 if (ilock_flags & BTRFS_ILOCK_SHARED)
142 inode_unlock_shared(inode);
143 else
144 inode_unlock(inode);
145 }
146
147 /*
148 * Cleanup all submitted ordered extents in specified range to handle errors
149 * from the btrfs_run_delalloc_range() callback.
150 *
151 * NOTE: caller must ensure that when an error happens, it can not call
152 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
153 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
154 * to be released, which we want to happen only when finishing the ordered
155 * extent (btrfs_finish_ordered_io()).
156 */
157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
158 struct page *locked_page,
159 u64 offset, u64 bytes)
160 {
161 unsigned long index = offset >> PAGE_SHIFT;
162 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
163 u64 page_start = page_offset(locked_page);
164 u64 page_end = page_start + PAGE_SIZE - 1;
165
166 struct page *page;
167
168 while (index <= end_index) {
169 page = find_get_page(inode->vfs_inode.i_mapping, index);
170 index++;
171 if (!page)
172 continue;
173 ClearPagePrivate2(page);
174 put_page(page);
175 }
176
177 /*
178 * In case this page belongs to the delalloc range being instantiated
179 * then skip it, since the first page of a range is going to be
180 * properly cleaned up by the caller of run_delalloc_range
181 */
182 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
183 offset += PAGE_SIZE;
184 bytes -= PAGE_SIZE;
185 }
186
187 return __endio_write_update_ordered(inode, offset, bytes, false);
188 }
189
190 static int btrfs_dirty_inode(struct inode *inode);
191
192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
193 struct inode *inode, struct inode *dir,
194 const struct qstr *qstr)
195 {
196 int err;
197
198 err = btrfs_init_acl(trans, inode, dir);
199 if (!err)
200 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
201 return err;
202 }
203
204 /*
205 * this does all the hard work for inserting an inline extent into
206 * the btree. The caller should have done a btrfs_drop_extents so that
207 * no overlapping inline items exist in the btree
208 */
209 static int insert_inline_extent(struct btrfs_trans_handle *trans,
210 struct btrfs_path *path, bool extent_inserted,
211 struct btrfs_root *root, struct inode *inode,
212 u64 start, size_t size, size_t compressed_size,
213 int compress_type,
214 struct page **compressed_pages)
215 {
216 struct extent_buffer *leaf;
217 struct page *page = NULL;
218 char *kaddr;
219 unsigned long ptr;
220 struct btrfs_file_extent_item *ei;
221 int ret;
222 size_t cur_size = size;
223 unsigned long offset;
224
225 ASSERT((compressed_size > 0 && compressed_pages) ||
226 (compressed_size == 0 && !compressed_pages));
227
228 if (compressed_size && compressed_pages)
229 cur_size = compressed_size;
230
231 if (!extent_inserted) {
232 struct btrfs_key key;
233 size_t datasize;
234
235 key.objectid = btrfs_ino(BTRFS_I(inode));
236 key.offset = start;
237 key.type = BTRFS_EXTENT_DATA_KEY;
238
239 datasize = btrfs_file_extent_calc_inline_size(cur_size);
240 ret = btrfs_insert_empty_item(trans, root, path, &key,
241 datasize);
242 if (ret)
243 goto fail;
244 }
245 leaf = path->nodes[0];
246 ei = btrfs_item_ptr(leaf, path->slots[0],
247 struct btrfs_file_extent_item);
248 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
249 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
250 btrfs_set_file_extent_encryption(leaf, ei, 0);
251 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
252 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
253 ptr = btrfs_file_extent_inline_start(ei);
254
255 if (compress_type != BTRFS_COMPRESS_NONE) {
256 struct page *cpage;
257 int i = 0;
258 while (compressed_size > 0) {
259 cpage = compressed_pages[i];
260 cur_size = min_t(unsigned long, compressed_size,
261 PAGE_SIZE);
262
263 kaddr = kmap_atomic(cpage);
264 write_extent_buffer(leaf, kaddr, ptr, cur_size);
265 kunmap_atomic(kaddr);
266
267 i++;
268 ptr += cur_size;
269 compressed_size -= cur_size;
270 }
271 btrfs_set_file_extent_compression(leaf, ei,
272 compress_type);
273 } else {
274 page = find_get_page(inode->i_mapping,
275 start >> PAGE_SHIFT);
276 btrfs_set_file_extent_compression(leaf, ei, 0);
277 kaddr = kmap_atomic(page);
278 offset = offset_in_page(start);
279 write_extent_buffer(leaf, kaddr + offset, ptr, size);
280 kunmap_atomic(kaddr);
281 put_page(page);
282 }
283 btrfs_mark_buffer_dirty(leaf);
284 btrfs_release_path(path);
285
286 /*
287 * We align size to sectorsize for inline extents just for simplicity
288 * sake.
289 */
290 size = ALIGN(size, root->fs_info->sectorsize);
291 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
292 if (ret)
293 goto fail;
294
295 /*
296 * we're an inline extent, so nobody can
297 * extend the file past i_size without locking
298 * a page we already have locked.
299 *
300 * We must do any isize and inode updates
301 * before we unlock the pages. Otherwise we
302 * could end up racing with unlink.
303 */
304 BTRFS_I(inode)->disk_i_size = inode->i_size;
305 fail:
306 return ret;
307 }
308
309
310 /*
311 * conditionally insert an inline extent into the file. This
312 * does the checks required to make sure the data is small enough
313 * to fit as an inline extent.
314 */
315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
316 u64 end, size_t compressed_size,
317 int compress_type,
318 struct page **compressed_pages)
319 {
320 struct btrfs_drop_extents_args drop_args = { 0 };
321 struct btrfs_root *root = inode->root;
322 struct btrfs_fs_info *fs_info = root->fs_info;
323 struct btrfs_trans_handle *trans;
324 u64 isize = i_size_read(&inode->vfs_inode);
325 u64 actual_end = min(end + 1, isize);
326 u64 inline_len = actual_end - start;
327 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
328 u64 data_len = inline_len;
329 int ret;
330 struct btrfs_path *path;
331
332 if (compressed_size)
333 data_len = compressed_size;
334
335 if (start > 0 ||
336 actual_end > fs_info->sectorsize ||
337 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
338 (!compressed_size &&
339 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
340 end + 1 < isize ||
341 data_len > fs_info->max_inline) {
342 return 1;
343 }
344
345 path = btrfs_alloc_path();
346 if (!path)
347 return -ENOMEM;
348
349 trans = btrfs_join_transaction(root);
350 if (IS_ERR(trans)) {
351 btrfs_free_path(path);
352 return PTR_ERR(trans);
353 }
354 trans->block_rsv = &inode->block_rsv;
355
356 drop_args.path = path;
357 drop_args.start = start;
358 drop_args.end = aligned_end;
359 drop_args.drop_cache = true;
360 drop_args.replace_extent = true;
361
362 if (compressed_size && compressed_pages)
363 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
364 compressed_size);
365 else
366 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
367 inline_len);
368
369 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out;
373 }
374
375 if (isize > actual_end)
376 inline_len = min_t(u64, isize, actual_end);
377 ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
378 root, &inode->vfs_inode, start,
379 inline_len, compressed_size,
380 compress_type, compressed_pages);
381 if (ret && ret != -ENOSPC) {
382 btrfs_abort_transaction(trans, ret);
383 goto out;
384 } else if (ret == -ENOSPC) {
385 ret = 1;
386 goto out;
387 }
388
389 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
390 ret = btrfs_update_inode(trans, root, inode);
391 if (ret && ret != -ENOSPC) {
392 btrfs_abort_transaction(trans, ret);
393 goto out;
394 } else if (ret == -ENOSPC) {
395 ret = 1;
396 goto out;
397 }
398
399 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
400 out:
401 /*
402 * Don't forget to free the reserved space, as for inlined extent
403 * it won't count as data extent, free them directly here.
404 * And at reserve time, it's always aligned to page size, so
405 * just free one page here.
406 */
407 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
408 btrfs_free_path(path);
409 btrfs_end_transaction(trans);
410 return ret;
411 }
412
413 struct async_extent {
414 u64 start;
415 u64 ram_size;
416 u64 compressed_size;
417 struct page **pages;
418 unsigned long nr_pages;
419 int compress_type;
420 struct list_head list;
421 };
422
423 struct async_chunk {
424 struct inode *inode;
425 struct page *locked_page;
426 u64 start;
427 u64 end;
428 unsigned int write_flags;
429 struct list_head extents;
430 struct cgroup_subsys_state *blkcg_css;
431 struct btrfs_work work;
432 atomic_t *pending;
433 };
434
435 struct async_cow {
436 /* Number of chunks in flight; must be first in the structure */
437 atomic_t num_chunks;
438 struct async_chunk chunks[];
439 };
440
441 static noinline int add_async_extent(struct async_chunk *cow,
442 u64 start, u64 ram_size,
443 u64 compressed_size,
444 struct page **pages,
445 unsigned long nr_pages,
446 int compress_type)
447 {
448 struct async_extent *async_extent;
449
450 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
451 BUG_ON(!async_extent); /* -ENOMEM */
452 async_extent->start = start;
453 async_extent->ram_size = ram_size;
454 async_extent->compressed_size = compressed_size;
455 async_extent->pages = pages;
456 async_extent->nr_pages = nr_pages;
457 async_extent->compress_type = compress_type;
458 list_add_tail(&async_extent->list, &cow->extents);
459 return 0;
460 }
461
462 /*
463 * Check if the inode has flags compatible with compression
464 */
465 static inline bool inode_can_compress(struct btrfs_inode *inode)
466 {
467 if (inode->flags & BTRFS_INODE_NODATACOW ||
468 inode->flags & BTRFS_INODE_NODATASUM)
469 return false;
470 return true;
471 }
472
473 /*
474 * Check if the inode needs to be submitted to compression, based on mount
475 * options, defragmentation, properties or heuristics.
476 */
477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
478 u64 end)
479 {
480 struct btrfs_fs_info *fs_info = inode->root->fs_info;
481
482 if (!inode_can_compress(inode)) {
483 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
484 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
485 btrfs_ino(inode));
486 return 0;
487 }
488 /* force compress */
489 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
490 return 1;
491 /* defrag ioctl */
492 if (inode->defrag_compress)
493 return 1;
494 /* bad compression ratios */
495 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
496 return 0;
497 if (btrfs_test_opt(fs_info, COMPRESS) ||
498 inode->flags & BTRFS_INODE_COMPRESS ||
499 inode->prop_compress)
500 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
501 return 0;
502 }
503
504 static inline void inode_should_defrag(struct btrfs_inode *inode,
505 u64 start, u64 end, u64 num_bytes, u64 small_write)
506 {
507 /* If this is a small write inside eof, kick off a defrag */
508 if (num_bytes < small_write &&
509 (start > 0 || end + 1 < inode->disk_i_size))
510 btrfs_add_inode_defrag(NULL, inode);
511 }
512
513 /*
514 * we create compressed extents in two phases. The first
515 * phase compresses a range of pages that have already been
516 * locked (both pages and state bits are locked).
517 *
518 * This is done inside an ordered work queue, and the compression
519 * is spread across many cpus. The actual IO submission is step
520 * two, and the ordered work queue takes care of making sure that
521 * happens in the same order things were put onto the queue by
522 * writepages and friends.
523 *
524 * If this code finds it can't get good compression, it puts an
525 * entry onto the work queue to write the uncompressed bytes. This
526 * makes sure that both compressed inodes and uncompressed inodes
527 * are written in the same order that the flusher thread sent them
528 * down.
529 */
530 static noinline int compress_file_range(struct async_chunk *async_chunk)
531 {
532 struct inode *inode = async_chunk->inode;
533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 u64 blocksize = fs_info->sectorsize;
535 u64 start = async_chunk->start;
536 u64 end = async_chunk->end;
537 u64 actual_end;
538 u64 i_size;
539 int ret = 0;
540 struct page **pages = NULL;
541 unsigned long nr_pages;
542 unsigned long total_compressed = 0;
543 unsigned long total_in = 0;
544 int i;
545 int will_compress;
546 int compress_type = fs_info->compress_type;
547 int compressed_extents = 0;
548 int redirty = 0;
549
550 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
551 SZ_16K);
552
553 /*
554 * We need to save i_size before now because it could change in between
555 * us evaluating the size and assigning it. This is because we lock and
556 * unlock the page in truncate and fallocate, and then modify the i_size
557 * later on.
558 *
559 * The barriers are to emulate READ_ONCE, remove that once i_size_read
560 * does that for us.
561 */
562 barrier();
563 i_size = i_size_read(inode);
564 barrier();
565 actual_end = min_t(u64, i_size, end + 1);
566 again:
567 will_compress = 0;
568 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
569 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
570 nr_pages = min_t(unsigned long, nr_pages,
571 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
572
573 /*
574 * we don't want to send crud past the end of i_size through
575 * compression, that's just a waste of CPU time. So, if the
576 * end of the file is before the start of our current
577 * requested range of bytes, we bail out to the uncompressed
578 * cleanup code that can deal with all of this.
579 *
580 * It isn't really the fastest way to fix things, but this is a
581 * very uncommon corner.
582 */
583 if (actual_end <= start)
584 goto cleanup_and_bail_uncompressed;
585
586 total_compressed = actual_end - start;
587
588 /*
589 * skip compression for a small file range(<=blocksize) that
590 * isn't an inline extent, since it doesn't save disk space at all.
591 */
592 if (total_compressed <= blocksize &&
593 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
594 goto cleanup_and_bail_uncompressed;
595
596 total_compressed = min_t(unsigned long, total_compressed,
597 BTRFS_MAX_UNCOMPRESSED);
598 total_in = 0;
599 ret = 0;
600
601 /*
602 * we do compression for mount -o compress and when the
603 * inode has not been flagged as nocompress. This flag can
604 * change at any time if we discover bad compression ratios.
605 */
606 if (inode_need_compress(BTRFS_I(inode), start, end)) {
607 WARN_ON(pages);
608 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
609 if (!pages) {
610 /* just bail out to the uncompressed code */
611 nr_pages = 0;
612 goto cont;
613 }
614
615 if (BTRFS_I(inode)->defrag_compress)
616 compress_type = BTRFS_I(inode)->defrag_compress;
617 else if (BTRFS_I(inode)->prop_compress)
618 compress_type = BTRFS_I(inode)->prop_compress;
619
620 /*
621 * we need to call clear_page_dirty_for_io on each
622 * page in the range. Otherwise applications with the file
623 * mmap'd can wander in and change the page contents while
624 * we are compressing them.
625 *
626 * If the compression fails for any reason, we set the pages
627 * dirty again later on.
628 *
629 * Note that the remaining part is redirtied, the start pointer
630 * has moved, the end is the original one.
631 */
632 if (!redirty) {
633 extent_range_clear_dirty_for_io(inode, start, end);
634 redirty = 1;
635 }
636
637 /* Compression level is applied here and only here */
638 ret = btrfs_compress_pages(
639 compress_type | (fs_info->compress_level << 4),
640 inode->i_mapping, start,
641 pages,
642 &nr_pages,
643 &total_in,
644 &total_compressed);
645
646 if (!ret) {
647 unsigned long offset = offset_in_page(total_compressed);
648 struct page *page = pages[nr_pages - 1];
649 char *kaddr;
650
651 /* zero the tail end of the last page, we might be
652 * sending it down to disk
653 */
654 if (offset) {
655 kaddr = kmap_atomic(page);
656 memset(kaddr + offset, 0,
657 PAGE_SIZE - offset);
658 kunmap_atomic(kaddr);
659 }
660 will_compress = 1;
661 }
662 }
663 cont:
664 if (start == 0) {
665 /* lets try to make an inline extent */
666 if (ret || total_in < actual_end) {
667 /* we didn't compress the entire range, try
668 * to make an uncompressed inline extent.
669 */
670 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
671 0, BTRFS_COMPRESS_NONE,
672 NULL);
673 } else {
674 /* try making a compressed inline extent */
675 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
676 total_compressed,
677 compress_type, pages);
678 }
679 if (ret <= 0) {
680 unsigned long clear_flags = EXTENT_DELALLOC |
681 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
682 EXTENT_DO_ACCOUNTING;
683 unsigned long page_error_op;
684
685 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
686
687 /*
688 * inline extent creation worked or returned error,
689 * we don't need to create any more async work items.
690 * Unlock and free up our temp pages.
691 *
692 * We use DO_ACCOUNTING here because we need the
693 * delalloc_release_metadata to be done _after_ we drop
694 * our outstanding extent for clearing delalloc for this
695 * range.
696 */
697 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
698 NULL,
699 clear_flags,
700 PAGE_UNLOCK |
701 PAGE_START_WRITEBACK |
702 page_error_op |
703 PAGE_END_WRITEBACK);
704
705 /*
706 * Ensure we only free the compressed pages if we have
707 * them allocated, as we can still reach here with
708 * inode_need_compress() == false.
709 */
710 if (pages) {
711 for (i = 0; i < nr_pages; i++) {
712 WARN_ON(pages[i]->mapping);
713 put_page(pages[i]);
714 }
715 kfree(pages);
716 }
717 return 0;
718 }
719 }
720
721 if (will_compress) {
722 /*
723 * we aren't doing an inline extent round the compressed size
724 * up to a block size boundary so the allocator does sane
725 * things
726 */
727 total_compressed = ALIGN(total_compressed, blocksize);
728
729 /*
730 * one last check to make sure the compression is really a
731 * win, compare the page count read with the blocks on disk,
732 * compression must free at least one sector size
733 */
734 total_in = ALIGN(total_in, PAGE_SIZE);
735 if (total_compressed + blocksize <= total_in) {
736 compressed_extents++;
737
738 /*
739 * The async work queues will take care of doing actual
740 * allocation on disk for these compressed pages, and
741 * will submit them to the elevator.
742 */
743 add_async_extent(async_chunk, start, total_in,
744 total_compressed, pages, nr_pages,
745 compress_type);
746
747 if (start + total_in < end) {
748 start += total_in;
749 pages = NULL;
750 cond_resched();
751 goto again;
752 }
753 return compressed_extents;
754 }
755 }
756 if (pages) {
757 /*
758 * the compression code ran but failed to make things smaller,
759 * free any pages it allocated and our page pointer array
760 */
761 for (i = 0; i < nr_pages; i++) {
762 WARN_ON(pages[i]->mapping);
763 put_page(pages[i]);
764 }
765 kfree(pages);
766 pages = NULL;
767 total_compressed = 0;
768 nr_pages = 0;
769
770 /* flag the file so we don't compress in the future */
771 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
772 !(BTRFS_I(inode)->prop_compress)) {
773 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
774 }
775 }
776 cleanup_and_bail_uncompressed:
777 /*
778 * No compression, but we still need to write the pages in the file
779 * we've been given so far. redirty the locked page if it corresponds
780 * to our extent and set things up for the async work queue to run
781 * cow_file_range to do the normal delalloc dance.
782 */
783 if (async_chunk->locked_page &&
784 (page_offset(async_chunk->locked_page) >= start &&
785 page_offset(async_chunk->locked_page)) <= end) {
786 __set_page_dirty_nobuffers(async_chunk->locked_page);
787 /* unlocked later on in the async handlers */
788 }
789
790 if (redirty)
791 extent_range_redirty_for_io(inode, start, end);
792 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
793 BTRFS_COMPRESS_NONE);
794 compressed_extents++;
795
796 return compressed_extents;
797 }
798
799 static void free_async_extent_pages(struct async_extent *async_extent)
800 {
801 int i;
802
803 if (!async_extent->pages)
804 return;
805
806 for (i = 0; i < async_extent->nr_pages; i++) {
807 WARN_ON(async_extent->pages[i]->mapping);
808 put_page(async_extent->pages[i]);
809 }
810 kfree(async_extent->pages);
811 async_extent->nr_pages = 0;
812 async_extent->pages = NULL;
813 }
814
815 /*
816 * phase two of compressed writeback. This is the ordered portion
817 * of the code, which only gets called in the order the work was
818 * queued. We walk all the async extents created by compress_file_range
819 * and send them down to the disk.
820 */
821 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
822 {
823 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
824 struct btrfs_fs_info *fs_info = inode->root->fs_info;
825 struct async_extent *async_extent;
826 u64 alloc_hint = 0;
827 struct btrfs_key ins;
828 struct extent_map *em;
829 struct btrfs_root *root = inode->root;
830 struct extent_io_tree *io_tree = &inode->io_tree;
831 int ret = 0;
832
833 again:
834 while (!list_empty(&async_chunk->extents)) {
835 async_extent = list_entry(async_chunk->extents.next,
836 struct async_extent, list);
837 list_del(&async_extent->list);
838
839 retry:
840 lock_extent(io_tree, async_extent->start,
841 async_extent->start + async_extent->ram_size - 1);
842 /* did the compression code fall back to uncompressed IO? */
843 if (!async_extent->pages) {
844 int page_started = 0;
845 unsigned long nr_written = 0;
846
847 /* allocate blocks */
848 ret = cow_file_range(inode, async_chunk->locked_page,
849 async_extent->start,
850 async_extent->start +
851 async_extent->ram_size - 1,
852 &page_started, &nr_written, 0);
853
854 /* JDM XXX */
855
856 /*
857 * if page_started, cow_file_range inserted an
858 * inline extent and took care of all the unlocking
859 * and IO for us. Otherwise, we need to submit
860 * all those pages down to the drive.
861 */
862 if (!page_started && !ret)
863 extent_write_locked_range(&inode->vfs_inode,
864 async_extent->start,
865 async_extent->start +
866 async_extent->ram_size - 1,
867 WB_SYNC_ALL);
868 else if (ret && async_chunk->locked_page)
869 unlock_page(async_chunk->locked_page);
870 kfree(async_extent);
871 cond_resched();
872 continue;
873 }
874
875 ret = btrfs_reserve_extent(root, async_extent->ram_size,
876 async_extent->compressed_size,
877 async_extent->compressed_size,
878 0, alloc_hint, &ins, 1, 1);
879 if (ret) {
880 free_async_extent_pages(async_extent);
881
882 if (ret == -ENOSPC) {
883 unlock_extent(io_tree, async_extent->start,
884 async_extent->start +
885 async_extent->ram_size - 1);
886
887 /*
888 * we need to redirty the pages if we decide to
889 * fallback to uncompressed IO, otherwise we
890 * will not submit these pages down to lower
891 * layers.
892 */
893 extent_range_redirty_for_io(&inode->vfs_inode,
894 async_extent->start,
895 async_extent->start +
896 async_extent->ram_size - 1);
897
898 goto retry;
899 }
900 goto out_free;
901 }
902 /*
903 * here we're doing allocation and writeback of the
904 * compressed pages
905 */
906 em = create_io_em(inode, async_extent->start,
907 async_extent->ram_size, /* len */
908 async_extent->start, /* orig_start */
909 ins.objectid, /* block_start */
910 ins.offset, /* block_len */
911 ins.offset, /* orig_block_len */
912 async_extent->ram_size, /* ram_bytes */
913 async_extent->compress_type,
914 BTRFS_ORDERED_COMPRESSED);
915 if (IS_ERR(em))
916 /* ret value is not necessary due to void function */
917 goto out_free_reserve;
918 free_extent_map(em);
919
920 ret = btrfs_add_ordered_extent_compress(inode,
921 async_extent->start,
922 ins.objectid,
923 async_extent->ram_size,
924 ins.offset,
925 async_extent->compress_type);
926 if (ret) {
927 btrfs_drop_extent_cache(inode, async_extent->start,
928 async_extent->start +
929 async_extent->ram_size - 1, 0);
930 goto out_free_reserve;
931 }
932 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
933
934 /*
935 * clear dirty, set writeback and unlock the pages.
936 */
937 extent_clear_unlock_delalloc(inode, async_extent->start,
938 async_extent->start +
939 async_extent->ram_size - 1,
940 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
941 PAGE_UNLOCK | PAGE_START_WRITEBACK);
942 if (btrfs_submit_compressed_write(inode, async_extent->start,
943 async_extent->ram_size,
944 ins.objectid,
945 ins.offset, async_extent->pages,
946 async_extent->nr_pages,
947 async_chunk->write_flags,
948 async_chunk->blkcg_css)) {
949 struct page *p = async_extent->pages[0];
950 const u64 start = async_extent->start;
951 const u64 end = start + async_extent->ram_size - 1;
952
953 p->mapping = inode->vfs_inode.i_mapping;
954 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
955
956 p->mapping = NULL;
957 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
958 PAGE_END_WRITEBACK |
959 PAGE_SET_ERROR);
960 free_async_extent_pages(async_extent);
961 }
962 alloc_hint = ins.objectid + ins.offset;
963 kfree(async_extent);
964 cond_resched();
965 }
966 return;
967 out_free_reserve:
968 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
969 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
970 out_free:
971 extent_clear_unlock_delalloc(inode, async_extent->start,
972 async_extent->start +
973 async_extent->ram_size - 1,
974 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
975 EXTENT_DELALLOC_NEW |
976 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
977 PAGE_UNLOCK | PAGE_START_WRITEBACK |
978 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
979 free_async_extent_pages(async_extent);
980 kfree(async_extent);
981 goto again;
982 }
983
984 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
985 u64 num_bytes)
986 {
987 struct extent_map_tree *em_tree = &inode->extent_tree;
988 struct extent_map *em;
989 u64 alloc_hint = 0;
990
991 read_lock(&em_tree->lock);
992 em = search_extent_mapping(em_tree, start, num_bytes);
993 if (em) {
994 /*
995 * if block start isn't an actual block number then find the
996 * first block in this inode and use that as a hint. If that
997 * block is also bogus then just don't worry about it.
998 */
999 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1000 free_extent_map(em);
1001 em = search_extent_mapping(em_tree, 0, 0);
1002 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1003 alloc_hint = em->block_start;
1004 if (em)
1005 free_extent_map(em);
1006 } else {
1007 alloc_hint = em->block_start;
1008 free_extent_map(em);
1009 }
1010 }
1011 read_unlock(&em_tree->lock);
1012
1013 return alloc_hint;
1014 }
1015
1016 /*
1017 * when extent_io.c finds a delayed allocation range in the file,
1018 * the call backs end up in this code. The basic idea is to
1019 * allocate extents on disk for the range, and create ordered data structs
1020 * in ram to track those extents.
1021 *
1022 * locked_page is the page that writepage had locked already. We use
1023 * it to make sure we don't do extra locks or unlocks.
1024 *
1025 * *page_started is set to one if we unlock locked_page and do everything
1026 * required to start IO on it. It may be clean and already done with
1027 * IO when we return.
1028 */
1029 static noinline int cow_file_range(struct btrfs_inode *inode,
1030 struct page *locked_page,
1031 u64 start, u64 end, int *page_started,
1032 unsigned long *nr_written, int unlock)
1033 {
1034 struct btrfs_root *root = inode->root;
1035 struct btrfs_fs_info *fs_info = root->fs_info;
1036 u64 alloc_hint = 0;
1037 u64 num_bytes;
1038 unsigned long ram_size;
1039 u64 cur_alloc_size = 0;
1040 u64 min_alloc_size;
1041 u64 blocksize = fs_info->sectorsize;
1042 struct btrfs_key ins;
1043 struct extent_map *em;
1044 unsigned clear_bits;
1045 unsigned long page_ops;
1046 bool extent_reserved = false;
1047 int ret = 0;
1048
1049 if (btrfs_is_free_space_inode(inode)) {
1050 WARN_ON_ONCE(1);
1051 ret = -EINVAL;
1052 goto out_unlock;
1053 }
1054
1055 num_bytes = ALIGN(end - start + 1, blocksize);
1056 num_bytes = max(blocksize, num_bytes);
1057 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1058
1059 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1060
1061 if (start == 0) {
1062 /* lets try to make an inline extent */
1063 ret = cow_file_range_inline(inode, start, end, 0,
1064 BTRFS_COMPRESS_NONE, NULL);
1065 if (ret == 0) {
1066 /*
1067 * We use DO_ACCOUNTING here because we need the
1068 * delalloc_release_metadata to be run _after_ we drop
1069 * our outstanding extent for clearing delalloc for this
1070 * range.
1071 */
1072 extent_clear_unlock_delalloc(inode, start, end, NULL,
1073 EXTENT_LOCKED | EXTENT_DELALLOC |
1074 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1075 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1076 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1077 *nr_written = *nr_written +
1078 (end - start + PAGE_SIZE) / PAGE_SIZE;
1079 *page_started = 1;
1080 goto out;
1081 } else if (ret < 0) {
1082 goto out_unlock;
1083 }
1084 }
1085
1086 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1087 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1088
1089 /*
1090 * Relocation relies on the relocated extents to have exactly the same
1091 * size as the original extents. Normally writeback for relocation data
1092 * extents follows a NOCOW path because relocation preallocates the
1093 * extents. However, due to an operation such as scrub turning a block
1094 * group to RO mode, it may fallback to COW mode, so we must make sure
1095 * an extent allocated during COW has exactly the requested size and can
1096 * not be split into smaller extents, otherwise relocation breaks and
1097 * fails during the stage where it updates the bytenr of file extent
1098 * items.
1099 */
1100 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1101 min_alloc_size = num_bytes;
1102 else
1103 min_alloc_size = fs_info->sectorsize;
1104
1105 while (num_bytes > 0) {
1106 cur_alloc_size = num_bytes;
1107 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1108 min_alloc_size, 0, alloc_hint,
1109 &ins, 1, 1);
1110 if (ret < 0)
1111 goto out_unlock;
1112 cur_alloc_size = ins.offset;
1113 extent_reserved = true;
1114
1115 ram_size = ins.offset;
1116 em = create_io_em(inode, start, ins.offset, /* len */
1117 start, /* orig_start */
1118 ins.objectid, /* block_start */
1119 ins.offset, /* block_len */
1120 ins.offset, /* orig_block_len */
1121 ram_size, /* ram_bytes */
1122 BTRFS_COMPRESS_NONE, /* compress_type */
1123 BTRFS_ORDERED_REGULAR /* type */);
1124 if (IS_ERR(em)) {
1125 ret = PTR_ERR(em);
1126 goto out_reserve;
1127 }
1128 free_extent_map(em);
1129
1130 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1131 ram_size, cur_alloc_size,
1132 BTRFS_ORDERED_REGULAR);
1133 if (ret)
1134 goto out_drop_extent_cache;
1135
1136 if (root->root_key.objectid ==
1137 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1138 ret = btrfs_reloc_clone_csums(inode, start,
1139 cur_alloc_size);
1140 /*
1141 * Only drop cache here, and process as normal.
1142 *
1143 * We must not allow extent_clear_unlock_delalloc()
1144 * at out_unlock label to free meta of this ordered
1145 * extent, as its meta should be freed by
1146 * btrfs_finish_ordered_io().
1147 *
1148 * So we must continue until @start is increased to
1149 * skip current ordered extent.
1150 */
1151 if (ret)
1152 btrfs_drop_extent_cache(inode, start,
1153 start + ram_size - 1, 0);
1154 }
1155
1156 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1157
1158 /* we're not doing compressed IO, don't unlock the first
1159 * page (which the caller expects to stay locked), don't
1160 * clear any dirty bits and don't set any writeback bits
1161 *
1162 * Do set the Private2 bit so we know this page was properly
1163 * setup for writepage
1164 */
1165 page_ops = unlock ? PAGE_UNLOCK : 0;
1166 page_ops |= PAGE_SET_PRIVATE2;
1167
1168 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1169 locked_page,
1170 EXTENT_LOCKED | EXTENT_DELALLOC,
1171 page_ops);
1172 if (num_bytes < cur_alloc_size)
1173 num_bytes = 0;
1174 else
1175 num_bytes -= cur_alloc_size;
1176 alloc_hint = ins.objectid + ins.offset;
1177 start += cur_alloc_size;
1178 extent_reserved = false;
1179
1180 /*
1181 * btrfs_reloc_clone_csums() error, since start is increased
1182 * extent_clear_unlock_delalloc() at out_unlock label won't
1183 * free metadata of current ordered extent, we're OK to exit.
1184 */
1185 if (ret)
1186 goto out_unlock;
1187 }
1188 out:
1189 return ret;
1190
1191 out_drop_extent_cache:
1192 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1193 out_reserve:
1194 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1195 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1196 out_unlock:
1197 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1198 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1199 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1200 /*
1201 * If we reserved an extent for our delalloc range (or a subrange) and
1202 * failed to create the respective ordered extent, then it means that
1203 * when we reserved the extent we decremented the extent's size from
1204 * the data space_info's bytes_may_use counter and incremented the
1205 * space_info's bytes_reserved counter by the same amount. We must make
1206 * sure extent_clear_unlock_delalloc() does not try to decrement again
1207 * the data space_info's bytes_may_use counter, therefore we do not pass
1208 * it the flag EXTENT_CLEAR_DATA_RESV.
1209 */
1210 if (extent_reserved) {
1211 extent_clear_unlock_delalloc(inode, start,
1212 start + cur_alloc_size - 1,
1213 locked_page,
1214 clear_bits,
1215 page_ops);
1216 start += cur_alloc_size;
1217 if (start >= end)
1218 goto out;
1219 }
1220 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1221 clear_bits | EXTENT_CLEAR_DATA_RESV,
1222 page_ops);
1223 goto out;
1224 }
1225
1226 /*
1227 * work queue call back to started compression on a file and pages
1228 */
1229 static noinline void async_cow_start(struct btrfs_work *work)
1230 {
1231 struct async_chunk *async_chunk;
1232 int compressed_extents;
1233
1234 async_chunk = container_of(work, struct async_chunk, work);
1235
1236 compressed_extents = compress_file_range(async_chunk);
1237 if (compressed_extents == 0) {
1238 btrfs_add_delayed_iput(async_chunk->inode);
1239 async_chunk->inode = NULL;
1240 }
1241 }
1242
1243 /*
1244 * work queue call back to submit previously compressed pages
1245 */
1246 static noinline void async_cow_submit(struct btrfs_work *work)
1247 {
1248 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1249 work);
1250 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1251 unsigned long nr_pages;
1252
1253 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1254 PAGE_SHIFT;
1255
1256 /* atomic_sub_return implies a barrier */
1257 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1258 5 * SZ_1M)
1259 cond_wake_up_nomb(&fs_info->async_submit_wait);
1260
1261 /*
1262 * ->inode could be NULL if async_chunk_start has failed to compress,
1263 * in which case we don't have anything to submit, yet we need to
1264 * always adjust ->async_delalloc_pages as its paired with the init
1265 * happening in cow_file_range_async
1266 */
1267 if (async_chunk->inode)
1268 submit_compressed_extents(async_chunk);
1269 }
1270
1271 static noinline void async_cow_free(struct btrfs_work *work)
1272 {
1273 struct async_chunk *async_chunk;
1274
1275 async_chunk = container_of(work, struct async_chunk, work);
1276 if (async_chunk->inode)
1277 btrfs_add_delayed_iput(async_chunk->inode);
1278 if (async_chunk->blkcg_css)
1279 css_put(async_chunk->blkcg_css);
1280 /*
1281 * Since the pointer to 'pending' is at the beginning of the array of
1282 * async_chunk's, freeing it ensures the whole array has been freed.
1283 */
1284 if (atomic_dec_and_test(async_chunk->pending))
1285 kvfree(async_chunk->pending);
1286 }
1287
1288 static int cow_file_range_async(struct btrfs_inode *inode,
1289 struct writeback_control *wbc,
1290 struct page *locked_page,
1291 u64 start, u64 end, int *page_started,
1292 unsigned long *nr_written)
1293 {
1294 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1295 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1296 struct async_cow *ctx;
1297 struct async_chunk *async_chunk;
1298 unsigned long nr_pages;
1299 u64 cur_end;
1300 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1301 int i;
1302 bool should_compress;
1303 unsigned nofs_flag;
1304 const unsigned int write_flags = wbc_to_write_flags(wbc);
1305
1306 unlock_extent(&inode->io_tree, start, end);
1307
1308 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1309 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1310 num_chunks = 1;
1311 should_compress = false;
1312 } else {
1313 should_compress = true;
1314 }
1315
1316 nofs_flag = memalloc_nofs_save();
1317 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1318 memalloc_nofs_restore(nofs_flag);
1319
1320 if (!ctx) {
1321 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1322 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1323 EXTENT_DO_ACCOUNTING;
1324 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1325 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1326
1327 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1328 clear_bits, page_ops);
1329 return -ENOMEM;
1330 }
1331
1332 async_chunk = ctx->chunks;
1333 atomic_set(&ctx->num_chunks, num_chunks);
1334
1335 for (i = 0; i < num_chunks; i++) {
1336 if (should_compress)
1337 cur_end = min(end, start + SZ_512K - 1);
1338 else
1339 cur_end = end;
1340
1341 /*
1342 * igrab is called higher up in the call chain, take only the
1343 * lightweight reference for the callback lifetime
1344 */
1345 ihold(&inode->vfs_inode);
1346 async_chunk[i].pending = &ctx->num_chunks;
1347 async_chunk[i].inode = &inode->vfs_inode;
1348 async_chunk[i].start = start;
1349 async_chunk[i].end = cur_end;
1350 async_chunk[i].write_flags = write_flags;
1351 INIT_LIST_HEAD(&async_chunk[i].extents);
1352
1353 /*
1354 * The locked_page comes all the way from writepage and its
1355 * the original page we were actually given. As we spread
1356 * this large delalloc region across multiple async_chunk
1357 * structs, only the first struct needs a pointer to locked_page
1358 *
1359 * This way we don't need racey decisions about who is supposed
1360 * to unlock it.
1361 */
1362 if (locked_page) {
1363 /*
1364 * Depending on the compressibility, the pages might or
1365 * might not go through async. We want all of them to
1366 * be accounted against wbc once. Let's do it here
1367 * before the paths diverge. wbc accounting is used
1368 * only for foreign writeback detection and doesn't
1369 * need full accuracy. Just account the whole thing
1370 * against the first page.
1371 */
1372 wbc_account_cgroup_owner(wbc, locked_page,
1373 cur_end - start);
1374 async_chunk[i].locked_page = locked_page;
1375 locked_page = NULL;
1376 } else {
1377 async_chunk[i].locked_page = NULL;
1378 }
1379
1380 if (blkcg_css != blkcg_root_css) {
1381 css_get(blkcg_css);
1382 async_chunk[i].blkcg_css = blkcg_css;
1383 } else {
1384 async_chunk[i].blkcg_css = NULL;
1385 }
1386
1387 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1388 async_cow_submit, async_cow_free);
1389
1390 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1391 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1392
1393 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1394
1395 *nr_written += nr_pages;
1396 start = cur_end + 1;
1397 }
1398 *page_started = 1;
1399 return 0;
1400 }
1401
1402 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1403 struct page *locked_page, u64 start,
1404 u64 end, int *page_started,
1405 unsigned long *nr_written)
1406 {
1407 int ret;
1408
1409 ret = cow_file_range(inode, locked_page, start, end, page_started,
1410 nr_written, 0);
1411 if (ret)
1412 return ret;
1413
1414 if (*page_started)
1415 return 0;
1416
1417 __set_page_dirty_nobuffers(locked_page);
1418 account_page_redirty(locked_page);
1419 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1420 *page_started = 1;
1421
1422 return 0;
1423 }
1424
1425 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1426 u64 bytenr, u64 num_bytes)
1427 {
1428 int ret;
1429 struct btrfs_ordered_sum *sums;
1430 LIST_HEAD(list);
1431
1432 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1433 bytenr + num_bytes - 1, &list, 0);
1434 if (ret == 0 && list_empty(&list))
1435 return 0;
1436
1437 while (!list_empty(&list)) {
1438 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1439 list_del(&sums->list);
1440 kfree(sums);
1441 }
1442 if (ret < 0)
1443 return ret;
1444 return 1;
1445 }
1446
1447 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1448 const u64 start, const u64 end,
1449 int *page_started, unsigned long *nr_written)
1450 {
1451 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1452 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1453 BTRFS_DATA_RELOC_TREE_OBJECTID);
1454 const u64 range_bytes = end + 1 - start;
1455 struct extent_io_tree *io_tree = &inode->io_tree;
1456 u64 range_start = start;
1457 u64 count;
1458
1459 /*
1460 * If EXTENT_NORESERVE is set it means that when the buffered write was
1461 * made we had not enough available data space and therefore we did not
1462 * reserve data space for it, since we though we could do NOCOW for the
1463 * respective file range (either there is prealloc extent or the inode
1464 * has the NOCOW bit set).
1465 *
1466 * However when we need to fallback to COW mode (because for example the
1467 * block group for the corresponding extent was turned to RO mode by a
1468 * scrub or relocation) we need to do the following:
1469 *
1470 * 1) We increment the bytes_may_use counter of the data space info.
1471 * If COW succeeds, it allocates a new data extent and after doing
1472 * that it decrements the space info's bytes_may_use counter and
1473 * increments its bytes_reserved counter by the same amount (we do
1474 * this at btrfs_add_reserved_bytes()). So we need to increment the
1475 * bytes_may_use counter to compensate (when space is reserved at
1476 * buffered write time, the bytes_may_use counter is incremented);
1477 *
1478 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1479 * that if the COW path fails for any reason, it decrements (through
1480 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1481 * data space info, which we incremented in the step above.
1482 *
1483 * If we need to fallback to cow and the inode corresponds to a free
1484 * space cache inode or an inode of the data relocation tree, we must
1485 * also increment bytes_may_use of the data space_info for the same
1486 * reason. Space caches and relocated data extents always get a prealloc
1487 * extent for them, however scrub or balance may have set the block
1488 * group that contains that extent to RO mode and therefore force COW
1489 * when starting writeback.
1490 */
1491 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1492 EXTENT_NORESERVE, 0);
1493 if (count > 0 || is_space_ino || is_reloc_ino) {
1494 u64 bytes = count;
1495 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1496 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1497
1498 if (is_space_ino || is_reloc_ino)
1499 bytes = range_bytes;
1500
1501 spin_lock(&sinfo->lock);
1502 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1503 spin_unlock(&sinfo->lock);
1504
1505 if (count > 0)
1506 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1507 0, 0, NULL);
1508 }
1509
1510 return cow_file_range(inode, locked_page, start, end, page_started,
1511 nr_written, 1);
1512 }
1513
1514 /*
1515 * when nowcow writeback call back. This checks for snapshots or COW copies
1516 * of the extents that exist in the file, and COWs the file as required.
1517 *
1518 * If no cow copies or snapshots exist, we write directly to the existing
1519 * blocks on disk
1520 */
1521 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1522 struct page *locked_page,
1523 const u64 start, const u64 end,
1524 int *page_started,
1525 unsigned long *nr_written)
1526 {
1527 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528 struct btrfs_root *root = inode->root;
1529 struct btrfs_path *path;
1530 u64 cow_start = (u64)-1;
1531 u64 cur_offset = start;
1532 int ret;
1533 bool check_prev = true;
1534 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1535 u64 ino = btrfs_ino(inode);
1536 bool nocow = false;
1537 u64 disk_bytenr = 0;
1538 const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1539
1540 path = btrfs_alloc_path();
1541 if (!path) {
1542 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1543 EXTENT_LOCKED | EXTENT_DELALLOC |
1544 EXTENT_DO_ACCOUNTING |
1545 EXTENT_DEFRAG, PAGE_UNLOCK |
1546 PAGE_START_WRITEBACK |
1547 PAGE_END_WRITEBACK);
1548 return -ENOMEM;
1549 }
1550
1551 while (1) {
1552 struct btrfs_key found_key;
1553 struct btrfs_file_extent_item *fi;
1554 struct extent_buffer *leaf;
1555 u64 extent_end;
1556 u64 extent_offset;
1557 u64 num_bytes = 0;
1558 u64 disk_num_bytes;
1559 u64 ram_bytes;
1560 int extent_type;
1561
1562 nocow = false;
1563
1564 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1565 cur_offset, 0);
1566 if (ret < 0)
1567 goto error;
1568
1569 /*
1570 * If there is no extent for our range when doing the initial
1571 * search, then go back to the previous slot as it will be the
1572 * one containing the search offset
1573 */
1574 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1575 leaf = path->nodes[0];
1576 btrfs_item_key_to_cpu(leaf, &found_key,
1577 path->slots[0] - 1);
1578 if (found_key.objectid == ino &&
1579 found_key.type == BTRFS_EXTENT_DATA_KEY)
1580 path->slots[0]--;
1581 }
1582 check_prev = false;
1583 next_slot:
1584 /* Go to next leaf if we have exhausted the current one */
1585 leaf = path->nodes[0];
1586 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1587 ret = btrfs_next_leaf(root, path);
1588 if (ret < 0) {
1589 if (cow_start != (u64)-1)
1590 cur_offset = cow_start;
1591 goto error;
1592 }
1593 if (ret > 0)
1594 break;
1595 leaf = path->nodes[0];
1596 }
1597
1598 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1599
1600 /* Didn't find anything for our INO */
1601 if (found_key.objectid > ino)
1602 break;
1603 /*
1604 * Keep searching until we find an EXTENT_ITEM or there are no
1605 * more extents for this inode
1606 */
1607 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1608 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1609 path->slots[0]++;
1610 goto next_slot;
1611 }
1612
1613 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1614 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1615 found_key.offset > end)
1616 break;
1617
1618 /*
1619 * If the found extent starts after requested offset, then
1620 * adjust extent_end to be right before this extent begins
1621 */
1622 if (found_key.offset > cur_offset) {
1623 extent_end = found_key.offset;
1624 extent_type = 0;
1625 goto out_check;
1626 }
1627
1628 /*
1629 * Found extent which begins before our range and potentially
1630 * intersect it
1631 */
1632 fi = btrfs_item_ptr(leaf, path->slots[0],
1633 struct btrfs_file_extent_item);
1634 extent_type = btrfs_file_extent_type(leaf, fi);
1635
1636 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1637 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1638 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1639 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1640 extent_offset = btrfs_file_extent_offset(leaf, fi);
1641 extent_end = found_key.offset +
1642 btrfs_file_extent_num_bytes(leaf, fi);
1643 disk_num_bytes =
1644 btrfs_file_extent_disk_num_bytes(leaf, fi);
1645 /*
1646 * If the extent we got ends before our current offset,
1647 * skip to the next extent.
1648 */
1649 if (extent_end <= cur_offset) {
1650 path->slots[0]++;
1651 goto next_slot;
1652 }
1653 /* Skip holes */
1654 if (disk_bytenr == 0)
1655 goto out_check;
1656 /* Skip compressed/encrypted/encoded extents */
1657 if (btrfs_file_extent_compression(leaf, fi) ||
1658 btrfs_file_extent_encryption(leaf, fi) ||
1659 btrfs_file_extent_other_encoding(leaf, fi))
1660 goto out_check;
1661 /*
1662 * If extent is created before the last volume's snapshot
1663 * this implies the extent is shared, hence we can't do
1664 * nocow. This is the same check as in
1665 * btrfs_cross_ref_exist but without calling
1666 * btrfs_search_slot.
1667 */
1668 if (!freespace_inode &&
1669 btrfs_file_extent_generation(leaf, fi) <=
1670 btrfs_root_last_snapshot(&root->root_item))
1671 goto out_check;
1672 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1673 goto out_check;
1674
1675 /*
1676 * The following checks can be expensive, as they need to
1677 * take other locks and do btree or rbtree searches, so
1678 * release the path to avoid blocking other tasks for too
1679 * long.
1680 */
1681 btrfs_release_path(path);
1682
1683 ret = btrfs_cross_ref_exist(root, ino,
1684 found_key.offset -
1685 extent_offset, disk_bytenr, false);
1686 if (ret) {
1687 /*
1688 * ret could be -EIO if the above fails to read
1689 * metadata.
1690 */
1691 if (ret < 0) {
1692 if (cow_start != (u64)-1)
1693 cur_offset = cow_start;
1694 goto error;
1695 }
1696
1697 WARN_ON_ONCE(freespace_inode);
1698 goto out_check;
1699 }
1700 disk_bytenr += extent_offset;
1701 disk_bytenr += cur_offset - found_key.offset;
1702 num_bytes = min(end + 1, extent_end) - cur_offset;
1703 /*
1704 * If there are pending snapshots for this root, we
1705 * fall into common COW way
1706 */
1707 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1708 goto out_check;
1709 /*
1710 * force cow if csum exists in the range.
1711 * this ensure that csum for a given extent are
1712 * either valid or do not exist.
1713 */
1714 ret = csum_exist_in_range(fs_info, disk_bytenr,
1715 num_bytes);
1716 if (ret) {
1717 /*
1718 * ret could be -EIO if the above fails to read
1719 * metadata.
1720 */
1721 if (ret < 0) {
1722 if (cow_start != (u64)-1)
1723 cur_offset = cow_start;
1724 goto error;
1725 }
1726 WARN_ON_ONCE(freespace_inode);
1727 goto out_check;
1728 }
1729 /* If the extent's block group is RO, we must COW */
1730 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1731 goto out_check;
1732 nocow = true;
1733 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1734 extent_end = found_key.offset + ram_bytes;
1735 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1736 /* Skip extents outside of our requested range */
1737 if (extent_end <= start) {
1738 path->slots[0]++;
1739 goto next_slot;
1740 }
1741 } else {
1742 /* If this triggers then we have a memory corruption */
1743 BUG();
1744 }
1745 out_check:
1746 /*
1747 * If nocow is false then record the beginning of the range
1748 * that needs to be COWed
1749 */
1750 if (!nocow) {
1751 if (cow_start == (u64)-1)
1752 cow_start = cur_offset;
1753 cur_offset = extent_end;
1754 if (cur_offset > end)
1755 break;
1756 if (!path->nodes[0])
1757 continue;
1758 path->slots[0]++;
1759 goto next_slot;
1760 }
1761
1762 /*
1763 * COW range from cow_start to found_key.offset - 1. As the key
1764 * will contain the beginning of the first extent that can be
1765 * NOCOW, following one which needs to be COW'ed
1766 */
1767 if (cow_start != (u64)-1) {
1768 ret = fallback_to_cow(inode, locked_page,
1769 cow_start, found_key.offset - 1,
1770 page_started, nr_written);
1771 if (ret)
1772 goto error;
1773 cow_start = (u64)-1;
1774 }
1775
1776 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1777 u64 orig_start = found_key.offset - extent_offset;
1778 struct extent_map *em;
1779
1780 em = create_io_em(inode, cur_offset, num_bytes,
1781 orig_start,
1782 disk_bytenr, /* block_start */
1783 num_bytes, /* block_len */
1784 disk_num_bytes, /* orig_block_len */
1785 ram_bytes, BTRFS_COMPRESS_NONE,
1786 BTRFS_ORDERED_PREALLOC);
1787 if (IS_ERR(em)) {
1788 ret = PTR_ERR(em);
1789 goto error;
1790 }
1791 free_extent_map(em);
1792 ret = btrfs_add_ordered_extent(inode, cur_offset,
1793 disk_bytenr, num_bytes,
1794 num_bytes,
1795 BTRFS_ORDERED_PREALLOC);
1796 if (ret) {
1797 btrfs_drop_extent_cache(inode, cur_offset,
1798 cur_offset + num_bytes - 1,
1799 0);
1800 goto error;
1801 }
1802 } else {
1803 ret = btrfs_add_ordered_extent(inode, cur_offset,
1804 disk_bytenr, num_bytes,
1805 num_bytes,
1806 BTRFS_ORDERED_NOCOW);
1807 if (ret)
1808 goto error;
1809 }
1810
1811 if (nocow)
1812 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1813 nocow = false;
1814
1815 if (root->root_key.objectid ==
1816 BTRFS_DATA_RELOC_TREE_OBJECTID)
1817 /*
1818 * Error handled later, as we must prevent
1819 * extent_clear_unlock_delalloc() in error handler
1820 * from freeing metadata of created ordered extent.
1821 */
1822 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1823 num_bytes);
1824
1825 extent_clear_unlock_delalloc(inode, cur_offset,
1826 cur_offset + num_bytes - 1,
1827 locked_page, EXTENT_LOCKED |
1828 EXTENT_DELALLOC |
1829 EXTENT_CLEAR_DATA_RESV,
1830 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1831
1832 cur_offset = extent_end;
1833
1834 /*
1835 * btrfs_reloc_clone_csums() error, now we're OK to call error
1836 * handler, as metadata for created ordered extent will only
1837 * be freed by btrfs_finish_ordered_io().
1838 */
1839 if (ret)
1840 goto error;
1841 if (cur_offset > end)
1842 break;
1843 }
1844 btrfs_release_path(path);
1845
1846 if (cur_offset <= end && cow_start == (u64)-1)
1847 cow_start = cur_offset;
1848
1849 if (cow_start != (u64)-1) {
1850 cur_offset = end;
1851 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1852 page_started, nr_written);
1853 if (ret)
1854 goto error;
1855 }
1856
1857 error:
1858 if (nocow)
1859 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1860
1861 if (ret && cur_offset < end)
1862 extent_clear_unlock_delalloc(inode, cur_offset, end,
1863 locked_page, EXTENT_LOCKED |
1864 EXTENT_DELALLOC | EXTENT_DEFRAG |
1865 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1866 PAGE_START_WRITEBACK |
1867 PAGE_END_WRITEBACK);
1868 btrfs_free_path(path);
1869 return ret;
1870 }
1871
1872 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1873 {
1874 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1875 if (inode->defrag_bytes &&
1876 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1877 0, NULL))
1878 return false;
1879 return true;
1880 }
1881 return false;
1882 }
1883
1884 /*
1885 * Function to process delayed allocation (create CoW) for ranges which are
1886 * being touched for the first time.
1887 */
1888 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1889 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1890 struct writeback_control *wbc)
1891 {
1892 int ret;
1893 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1894
1895 if (should_nocow(inode, start, end)) {
1896 ASSERT(!zoned);
1897 ret = run_delalloc_nocow(inode, locked_page, start, end,
1898 page_started, nr_written);
1899 } else if (!inode_can_compress(inode) ||
1900 !inode_need_compress(inode, start, end)) {
1901 if (zoned)
1902 ret = run_delalloc_zoned(inode, locked_page, start, end,
1903 page_started, nr_written);
1904 else
1905 ret = cow_file_range(inode, locked_page, start, end,
1906 page_started, nr_written, 1);
1907 } else {
1908 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1909 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1910 page_started, nr_written);
1911 }
1912 if (ret)
1913 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1914 end - start + 1);
1915 return ret;
1916 }
1917
1918 void btrfs_split_delalloc_extent(struct inode *inode,
1919 struct extent_state *orig, u64 split)
1920 {
1921 u64 size;
1922
1923 /* not delalloc, ignore it */
1924 if (!(orig->state & EXTENT_DELALLOC))
1925 return;
1926
1927 size = orig->end - orig->start + 1;
1928 if (size > BTRFS_MAX_EXTENT_SIZE) {
1929 u32 num_extents;
1930 u64 new_size;
1931
1932 /*
1933 * See the explanation in btrfs_merge_delalloc_extent, the same
1934 * applies here, just in reverse.
1935 */
1936 new_size = orig->end - split + 1;
1937 num_extents = count_max_extents(new_size);
1938 new_size = split - orig->start;
1939 num_extents += count_max_extents(new_size);
1940 if (count_max_extents(size) >= num_extents)
1941 return;
1942 }
1943
1944 spin_lock(&BTRFS_I(inode)->lock);
1945 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1946 spin_unlock(&BTRFS_I(inode)->lock);
1947 }
1948
1949 /*
1950 * Handle merged delayed allocation extents so we can keep track of new extents
1951 * that are just merged onto old extents, such as when we are doing sequential
1952 * writes, so we can properly account for the metadata space we'll need.
1953 */
1954 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1955 struct extent_state *other)
1956 {
1957 u64 new_size, old_size;
1958 u32 num_extents;
1959
1960 /* not delalloc, ignore it */
1961 if (!(other->state & EXTENT_DELALLOC))
1962 return;
1963
1964 if (new->start > other->start)
1965 new_size = new->end - other->start + 1;
1966 else
1967 new_size = other->end - new->start + 1;
1968
1969 /* we're not bigger than the max, unreserve the space and go */
1970 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1971 spin_lock(&BTRFS_I(inode)->lock);
1972 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1973 spin_unlock(&BTRFS_I(inode)->lock);
1974 return;
1975 }
1976
1977 /*
1978 * We have to add up either side to figure out how many extents were
1979 * accounted for before we merged into one big extent. If the number of
1980 * extents we accounted for is <= the amount we need for the new range
1981 * then we can return, otherwise drop. Think of it like this
1982 *
1983 * [ 4k][MAX_SIZE]
1984 *
1985 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1986 * need 2 outstanding extents, on one side we have 1 and the other side
1987 * we have 1 so they are == and we can return. But in this case
1988 *
1989 * [MAX_SIZE+4k][MAX_SIZE+4k]
1990 *
1991 * Each range on their own accounts for 2 extents, but merged together
1992 * they are only 3 extents worth of accounting, so we need to drop in
1993 * this case.
1994 */
1995 old_size = other->end - other->start + 1;
1996 num_extents = count_max_extents(old_size);
1997 old_size = new->end - new->start + 1;
1998 num_extents += count_max_extents(old_size);
1999 if (count_max_extents(new_size) >= num_extents)
2000 return;
2001
2002 spin_lock(&BTRFS_I(inode)->lock);
2003 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2004 spin_unlock(&BTRFS_I(inode)->lock);
2005 }
2006
2007 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2008 struct inode *inode)
2009 {
2010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2011
2012 spin_lock(&root->delalloc_lock);
2013 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2014 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2015 &root->delalloc_inodes);
2016 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2017 &BTRFS_I(inode)->runtime_flags);
2018 root->nr_delalloc_inodes++;
2019 if (root->nr_delalloc_inodes == 1) {
2020 spin_lock(&fs_info->delalloc_root_lock);
2021 BUG_ON(!list_empty(&root->delalloc_root));
2022 list_add_tail(&root->delalloc_root,
2023 &fs_info->delalloc_roots);
2024 spin_unlock(&fs_info->delalloc_root_lock);
2025 }
2026 }
2027 spin_unlock(&root->delalloc_lock);
2028 }
2029
2030
2031 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2032 struct btrfs_inode *inode)
2033 {
2034 struct btrfs_fs_info *fs_info = root->fs_info;
2035
2036 if (!list_empty(&inode->delalloc_inodes)) {
2037 list_del_init(&inode->delalloc_inodes);
2038 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2039 &inode->runtime_flags);
2040 root->nr_delalloc_inodes--;
2041 if (!root->nr_delalloc_inodes) {
2042 ASSERT(list_empty(&root->delalloc_inodes));
2043 spin_lock(&fs_info->delalloc_root_lock);
2044 BUG_ON(list_empty(&root->delalloc_root));
2045 list_del_init(&root->delalloc_root);
2046 spin_unlock(&fs_info->delalloc_root_lock);
2047 }
2048 }
2049 }
2050
2051 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2052 struct btrfs_inode *inode)
2053 {
2054 spin_lock(&root->delalloc_lock);
2055 __btrfs_del_delalloc_inode(root, inode);
2056 spin_unlock(&root->delalloc_lock);
2057 }
2058
2059 /*
2060 * Properly track delayed allocation bytes in the inode and to maintain the
2061 * list of inodes that have pending delalloc work to be done.
2062 */
2063 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2064 unsigned *bits)
2065 {
2066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2067
2068 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2069 WARN_ON(1);
2070 /*
2071 * set_bit and clear bit hooks normally require _irqsave/restore
2072 * but in this case, we are only testing for the DELALLOC
2073 * bit, which is only set or cleared with irqs on
2074 */
2075 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2076 struct btrfs_root *root = BTRFS_I(inode)->root;
2077 u64 len = state->end + 1 - state->start;
2078 u32 num_extents = count_max_extents(len);
2079 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2080
2081 spin_lock(&BTRFS_I(inode)->lock);
2082 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2083 spin_unlock(&BTRFS_I(inode)->lock);
2084
2085 /* For sanity tests */
2086 if (btrfs_is_testing(fs_info))
2087 return;
2088
2089 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2090 fs_info->delalloc_batch);
2091 spin_lock(&BTRFS_I(inode)->lock);
2092 BTRFS_I(inode)->delalloc_bytes += len;
2093 if (*bits & EXTENT_DEFRAG)
2094 BTRFS_I(inode)->defrag_bytes += len;
2095 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2096 &BTRFS_I(inode)->runtime_flags))
2097 btrfs_add_delalloc_inodes(root, inode);
2098 spin_unlock(&BTRFS_I(inode)->lock);
2099 }
2100
2101 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2102 (*bits & EXTENT_DELALLOC_NEW)) {
2103 spin_lock(&BTRFS_I(inode)->lock);
2104 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2105 state->start;
2106 spin_unlock(&BTRFS_I(inode)->lock);
2107 }
2108 }
2109
2110 /*
2111 * Once a range is no longer delalloc this function ensures that proper
2112 * accounting happens.
2113 */
2114 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2115 struct extent_state *state, unsigned *bits)
2116 {
2117 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2118 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2119 u64 len = state->end + 1 - state->start;
2120 u32 num_extents = count_max_extents(len);
2121
2122 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2123 spin_lock(&inode->lock);
2124 inode->defrag_bytes -= len;
2125 spin_unlock(&inode->lock);
2126 }
2127
2128 /*
2129 * set_bit and clear bit hooks normally require _irqsave/restore
2130 * but in this case, we are only testing for the DELALLOC
2131 * bit, which is only set or cleared with irqs on
2132 */
2133 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2134 struct btrfs_root *root = inode->root;
2135 bool do_list = !btrfs_is_free_space_inode(inode);
2136
2137 spin_lock(&inode->lock);
2138 btrfs_mod_outstanding_extents(inode, -num_extents);
2139 spin_unlock(&inode->lock);
2140
2141 /*
2142 * We don't reserve metadata space for space cache inodes so we
2143 * don't need to call delalloc_release_metadata if there is an
2144 * error.
2145 */
2146 if (*bits & EXTENT_CLEAR_META_RESV &&
2147 root != fs_info->tree_root)
2148 btrfs_delalloc_release_metadata(inode, len, false);
2149
2150 /* For sanity tests. */
2151 if (btrfs_is_testing(fs_info))
2152 return;
2153
2154 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2155 do_list && !(state->state & EXTENT_NORESERVE) &&
2156 (*bits & EXTENT_CLEAR_DATA_RESV))
2157 btrfs_free_reserved_data_space_noquota(fs_info, len);
2158
2159 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2160 fs_info->delalloc_batch);
2161 spin_lock(&inode->lock);
2162 inode->delalloc_bytes -= len;
2163 if (do_list && inode->delalloc_bytes == 0 &&
2164 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2165 &inode->runtime_flags))
2166 btrfs_del_delalloc_inode(root, inode);
2167 spin_unlock(&inode->lock);
2168 }
2169
2170 if ((state->state & EXTENT_DELALLOC_NEW) &&
2171 (*bits & EXTENT_DELALLOC_NEW)) {
2172 spin_lock(&inode->lock);
2173 ASSERT(inode->new_delalloc_bytes >= len);
2174 inode->new_delalloc_bytes -= len;
2175 if (*bits & EXTENT_ADD_INODE_BYTES)
2176 inode_add_bytes(&inode->vfs_inode, len);
2177 spin_unlock(&inode->lock);
2178 }
2179 }
2180
2181 /*
2182 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2183 * in a chunk's stripe. This function ensures that bios do not span a
2184 * stripe/chunk
2185 *
2186 * @page - The page we are about to add to the bio
2187 * @size - size we want to add to the bio
2188 * @bio - bio we want to ensure is smaller than a stripe
2189 * @bio_flags - flags of the bio
2190 *
2191 * return 1 if page cannot be added to the bio
2192 * return 0 if page can be added to the bio
2193 * return error otherwise
2194 */
2195 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2196 unsigned long bio_flags)
2197 {
2198 struct inode *inode = page->mapping->host;
2199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2200 u64 logical = bio->bi_iter.bi_sector << 9;
2201 struct extent_map *em;
2202 u64 length = 0;
2203 u64 map_length;
2204 int ret = 0;
2205 struct btrfs_io_geometry geom;
2206
2207 if (bio_flags & EXTENT_BIO_COMPRESSED)
2208 return 0;
2209
2210 length = bio->bi_iter.bi_size;
2211 map_length = length;
2212 em = btrfs_get_chunk_map(fs_info, logical, map_length);
2213 if (IS_ERR(em))
2214 return PTR_ERR(em);
2215 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical,
2216 map_length, &geom);
2217 if (ret < 0)
2218 goto out;
2219
2220 if (geom.len < length + size)
2221 ret = 1;
2222 out:
2223 free_extent_map(em);
2224 return ret;
2225 }
2226
2227 /*
2228 * in order to insert checksums into the metadata in large chunks,
2229 * we wait until bio submission time. All the pages in the bio are
2230 * checksummed and sums are attached onto the ordered extent record.
2231 *
2232 * At IO completion time the cums attached on the ordered extent record
2233 * are inserted into the btree
2234 */
2235 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2236 u64 dio_file_offset)
2237 {
2238 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2239 }
2240
2241 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio,
2242 unsigned int size)
2243 {
2244 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2245 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2246 struct btrfs_ordered_extent *ordered;
2247 u64 len = bio->bi_iter.bi_size + size;
2248 bool ret = true;
2249
2250 ASSERT(btrfs_is_zoned(fs_info));
2251 ASSERT(fs_info->max_zone_append_size > 0);
2252 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND);
2253
2254 /* Ordered extent not yet created, so we're good */
2255 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
2256 if (!ordered)
2257 return ret;
2258
2259 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len >
2260 ordered->disk_bytenr + ordered->disk_num_bytes)
2261 ret = false;
2262
2263 btrfs_put_ordered_extent(ordered);
2264
2265 return ret;
2266 }
2267
2268 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2269 struct bio *bio, loff_t file_offset)
2270 {
2271 struct btrfs_ordered_extent *ordered;
2272 struct extent_map *em = NULL, *em_new = NULL;
2273 struct extent_map_tree *em_tree = &inode->extent_tree;
2274 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2275 u64 len = bio->bi_iter.bi_size;
2276 u64 end = start + len;
2277 u64 ordered_end;
2278 u64 pre, post;
2279 int ret = 0;
2280
2281 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2282 if (WARN_ON_ONCE(!ordered))
2283 return BLK_STS_IOERR;
2284
2285 /* No need to split */
2286 if (ordered->disk_num_bytes == len)
2287 goto out;
2288
2289 /* We cannot split once end_bio'd ordered extent */
2290 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2291 ret = -EINVAL;
2292 goto out;
2293 }
2294
2295 /* We cannot split a compressed ordered extent */
2296 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2297 ret = -EINVAL;
2298 goto out;
2299 }
2300
2301 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2302 /* bio must be in one ordered extent */
2303 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2304 ret = -EINVAL;
2305 goto out;
2306 }
2307
2308 /* Checksum list should be empty */
2309 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2310 ret = -EINVAL;
2311 goto out;
2312 }
2313
2314 pre = start - ordered->disk_bytenr;
2315 post = ordered_end - end;
2316
2317 ret = btrfs_split_ordered_extent(ordered, pre, post);
2318 if (ret)
2319 goto out;
2320
2321 read_lock(&em_tree->lock);
2322 em = lookup_extent_mapping(em_tree, ordered->file_offset, len);
2323 if (!em) {
2324 read_unlock(&em_tree->lock);
2325 ret = -EIO;
2326 goto out;
2327 }
2328 read_unlock(&em_tree->lock);
2329
2330 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2331 /*
2332 * We cannot reuse em_new here but have to create a new one, as
2333 * unpin_extent_cache() expects the start of the extent map to be the
2334 * logical offset of the file, which does not hold true anymore after
2335 * splitting.
2336 */
2337 em_new = create_io_em(inode, em->start + pre, len,
2338 em->start + pre, em->block_start + pre, len,
2339 len, len, BTRFS_COMPRESS_NONE,
2340 BTRFS_ORDERED_REGULAR);
2341 if (IS_ERR(em_new)) {
2342 ret = PTR_ERR(em_new);
2343 goto out;
2344 }
2345 free_extent_map(em_new);
2346
2347 out:
2348 free_extent_map(em);
2349 btrfs_put_ordered_extent(ordered);
2350
2351 return errno_to_blk_status(ret);
2352 }
2353
2354 /*
2355 * extent_io.c submission hook. This does the right thing for csum calculation
2356 * on write, or reading the csums from the tree before a read.
2357 *
2358 * Rules about async/sync submit,
2359 * a) read: sync submit
2360 *
2361 * b) write without checksum: sync submit
2362 *
2363 * c) write with checksum:
2364 * c-1) if bio is issued by fsync: sync submit
2365 * (sync_writers != 0)
2366 *
2367 * c-2) if root is reloc root: sync submit
2368 * (only in case of buffered IO)
2369 *
2370 * c-3) otherwise: async submit
2371 */
2372 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2373 int mirror_num, unsigned long bio_flags)
2374
2375 {
2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377 struct btrfs_root *root = BTRFS_I(inode)->root;
2378 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2379 blk_status_t ret = 0;
2380 int skip_sum;
2381 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2382
2383 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2384 !fs_info->csum_root;
2385
2386 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2387 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2388
2389 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2390 struct page *page = bio_first_bvec_all(bio)->bv_page;
2391 loff_t file_offset = page_offset(page);
2392
2393 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2394 if (ret)
2395 goto out;
2396 }
2397
2398 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2399 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2400 if (ret)
2401 goto out;
2402
2403 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2404 ret = btrfs_submit_compressed_read(inode, bio,
2405 mirror_num,
2406 bio_flags);
2407 goto out;
2408 } else {
2409 /*
2410 * Lookup bio sums does extra checks around whether we
2411 * need to csum or not, which is why we ignore skip_sum
2412 * here.
2413 */
2414 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2415 if (ret)
2416 goto out;
2417 }
2418 goto mapit;
2419 } else if (async && !skip_sum) {
2420 /* csum items have already been cloned */
2421 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2422 goto mapit;
2423 /* we're doing a write, do the async checksumming */
2424 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2425 0, btrfs_submit_bio_start);
2426 goto out;
2427 } else if (!skip_sum) {
2428 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2429 if (ret)
2430 goto out;
2431 }
2432
2433 mapit:
2434 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2435
2436 out:
2437 if (ret) {
2438 bio->bi_status = ret;
2439 bio_endio(bio);
2440 }
2441 return ret;
2442 }
2443
2444 /*
2445 * given a list of ordered sums record them in the inode. This happens
2446 * at IO completion time based on sums calculated at bio submission time.
2447 */
2448 static int add_pending_csums(struct btrfs_trans_handle *trans,
2449 struct list_head *list)
2450 {
2451 struct btrfs_ordered_sum *sum;
2452 int ret;
2453
2454 list_for_each_entry(sum, list, list) {
2455 trans->adding_csums = true;
2456 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2457 trans->adding_csums = false;
2458 if (ret)
2459 return ret;
2460 }
2461 return 0;
2462 }
2463
2464 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2465 const u64 start,
2466 const u64 len,
2467 struct extent_state **cached_state)
2468 {
2469 u64 search_start = start;
2470 const u64 end = start + len - 1;
2471
2472 while (search_start < end) {
2473 const u64 search_len = end - search_start + 1;
2474 struct extent_map *em;
2475 u64 em_len;
2476 int ret = 0;
2477
2478 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2479 if (IS_ERR(em))
2480 return PTR_ERR(em);
2481
2482 if (em->block_start != EXTENT_MAP_HOLE)
2483 goto next;
2484
2485 em_len = em->len;
2486 if (em->start < search_start)
2487 em_len -= search_start - em->start;
2488 if (em_len > search_len)
2489 em_len = search_len;
2490
2491 ret = set_extent_bit(&inode->io_tree, search_start,
2492 search_start + em_len - 1,
2493 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2494 GFP_NOFS, NULL);
2495 next:
2496 search_start = extent_map_end(em);
2497 free_extent_map(em);
2498 if (ret)
2499 return ret;
2500 }
2501 return 0;
2502 }
2503
2504 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2505 unsigned int extra_bits,
2506 struct extent_state **cached_state)
2507 {
2508 WARN_ON(PAGE_ALIGNED(end));
2509
2510 if (start >= i_size_read(&inode->vfs_inode) &&
2511 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2512 /*
2513 * There can't be any extents following eof in this case so just
2514 * set the delalloc new bit for the range directly.
2515 */
2516 extra_bits |= EXTENT_DELALLOC_NEW;
2517 } else {
2518 int ret;
2519
2520 ret = btrfs_find_new_delalloc_bytes(inode, start,
2521 end + 1 - start,
2522 cached_state);
2523 if (ret)
2524 return ret;
2525 }
2526
2527 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2528 cached_state);
2529 }
2530
2531 /* see btrfs_writepage_start_hook for details on why this is required */
2532 struct btrfs_writepage_fixup {
2533 struct page *page;
2534 struct inode *inode;
2535 struct btrfs_work work;
2536 };
2537
2538 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2539 {
2540 struct btrfs_writepage_fixup *fixup;
2541 struct btrfs_ordered_extent *ordered;
2542 struct extent_state *cached_state = NULL;
2543 struct extent_changeset *data_reserved = NULL;
2544 struct page *page;
2545 struct btrfs_inode *inode;
2546 u64 page_start;
2547 u64 page_end;
2548 int ret = 0;
2549 bool free_delalloc_space = true;
2550
2551 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2552 page = fixup->page;
2553 inode = BTRFS_I(fixup->inode);
2554 page_start = page_offset(page);
2555 page_end = page_offset(page) + PAGE_SIZE - 1;
2556
2557 /*
2558 * This is similar to page_mkwrite, we need to reserve the space before
2559 * we take the page lock.
2560 */
2561 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2562 PAGE_SIZE);
2563 again:
2564 lock_page(page);
2565
2566 /*
2567 * Before we queued this fixup, we took a reference on the page.
2568 * page->mapping may go NULL, but it shouldn't be moved to a different
2569 * address space.
2570 */
2571 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2572 /*
2573 * Unfortunately this is a little tricky, either
2574 *
2575 * 1) We got here and our page had already been dealt with and
2576 * we reserved our space, thus ret == 0, so we need to just
2577 * drop our space reservation and bail. This can happen the
2578 * first time we come into the fixup worker, or could happen
2579 * while waiting for the ordered extent.
2580 * 2) Our page was already dealt with, but we happened to get an
2581 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2582 * this case we obviously don't have anything to release, but
2583 * because the page was already dealt with we don't want to
2584 * mark the page with an error, so make sure we're resetting
2585 * ret to 0. This is why we have this check _before_ the ret
2586 * check, because we do not want to have a surprise ENOSPC
2587 * when the page was already properly dealt with.
2588 */
2589 if (!ret) {
2590 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2591 btrfs_delalloc_release_space(inode, data_reserved,
2592 page_start, PAGE_SIZE,
2593 true);
2594 }
2595 ret = 0;
2596 goto out_page;
2597 }
2598
2599 /*
2600 * We can't mess with the page state unless it is locked, so now that
2601 * it is locked bail if we failed to make our space reservation.
2602 */
2603 if (ret)
2604 goto out_page;
2605
2606 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2607
2608 /* already ordered? We're done */
2609 if (PagePrivate2(page))
2610 goto out_reserved;
2611
2612 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2613 if (ordered) {
2614 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2615 &cached_state);
2616 unlock_page(page);
2617 btrfs_start_ordered_extent(ordered, 1);
2618 btrfs_put_ordered_extent(ordered);
2619 goto again;
2620 }
2621
2622 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2623 &cached_state);
2624 if (ret)
2625 goto out_reserved;
2626
2627 /*
2628 * Everything went as planned, we're now the owner of a dirty page with
2629 * delayed allocation bits set and space reserved for our COW
2630 * destination.
2631 *
2632 * The page was dirty when we started, nothing should have cleaned it.
2633 */
2634 BUG_ON(!PageDirty(page));
2635 free_delalloc_space = false;
2636 out_reserved:
2637 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2638 if (free_delalloc_space)
2639 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2640 PAGE_SIZE, true);
2641 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2642 &cached_state);
2643 out_page:
2644 if (ret) {
2645 /*
2646 * We hit ENOSPC or other errors. Update the mapping and page
2647 * to reflect the errors and clean the page.
2648 */
2649 mapping_set_error(page->mapping, ret);
2650 end_extent_writepage(page, ret, page_start, page_end);
2651 clear_page_dirty_for_io(page);
2652 SetPageError(page);
2653 }
2654 ClearPageChecked(page);
2655 unlock_page(page);
2656 put_page(page);
2657 kfree(fixup);
2658 extent_changeset_free(data_reserved);
2659 /*
2660 * As a precaution, do a delayed iput in case it would be the last iput
2661 * that could need flushing space. Recursing back to fixup worker would
2662 * deadlock.
2663 */
2664 btrfs_add_delayed_iput(&inode->vfs_inode);
2665 }
2666
2667 /*
2668 * There are a few paths in the higher layers of the kernel that directly
2669 * set the page dirty bit without asking the filesystem if it is a
2670 * good idea. This causes problems because we want to make sure COW
2671 * properly happens and the data=ordered rules are followed.
2672 *
2673 * In our case any range that doesn't have the ORDERED bit set
2674 * hasn't been properly setup for IO. We kick off an async process
2675 * to fix it up. The async helper will wait for ordered extents, set
2676 * the delalloc bit and make it safe to write the page.
2677 */
2678 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2679 {
2680 struct inode *inode = page->mapping->host;
2681 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2682 struct btrfs_writepage_fixup *fixup;
2683
2684 /* this page is properly in the ordered list */
2685 if (TestClearPagePrivate2(page))
2686 return 0;
2687
2688 /*
2689 * PageChecked is set below when we create a fixup worker for this page,
2690 * don't try to create another one if we're already PageChecked()
2691 *
2692 * The extent_io writepage code will redirty the page if we send back
2693 * EAGAIN.
2694 */
2695 if (PageChecked(page))
2696 return -EAGAIN;
2697
2698 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2699 if (!fixup)
2700 return -EAGAIN;
2701
2702 /*
2703 * We are already holding a reference to this inode from
2704 * write_cache_pages. We need to hold it because the space reservation
2705 * takes place outside of the page lock, and we can't trust
2706 * page->mapping outside of the page lock.
2707 */
2708 ihold(inode);
2709 SetPageChecked(page);
2710 get_page(page);
2711 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2712 fixup->page = page;
2713 fixup->inode = inode;
2714 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2715
2716 return -EAGAIN;
2717 }
2718
2719 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2720 struct btrfs_inode *inode, u64 file_pos,
2721 struct btrfs_file_extent_item *stack_fi,
2722 const bool update_inode_bytes,
2723 u64 qgroup_reserved)
2724 {
2725 struct btrfs_root *root = inode->root;
2726 const u64 sectorsize = root->fs_info->sectorsize;
2727 struct btrfs_path *path;
2728 struct extent_buffer *leaf;
2729 struct btrfs_key ins;
2730 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2731 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2732 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2733 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2734 struct btrfs_drop_extents_args drop_args = { 0 };
2735 int ret;
2736
2737 path = btrfs_alloc_path();
2738 if (!path)
2739 return -ENOMEM;
2740
2741 /*
2742 * we may be replacing one extent in the tree with another.
2743 * The new extent is pinned in the extent map, and we don't want
2744 * to drop it from the cache until it is completely in the btree.
2745 *
2746 * So, tell btrfs_drop_extents to leave this extent in the cache.
2747 * the caller is expected to unpin it and allow it to be merged
2748 * with the others.
2749 */
2750 drop_args.path = path;
2751 drop_args.start = file_pos;
2752 drop_args.end = file_pos + num_bytes;
2753 drop_args.replace_extent = true;
2754 drop_args.extent_item_size = sizeof(*stack_fi);
2755 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2756 if (ret)
2757 goto out;
2758
2759 if (!drop_args.extent_inserted) {
2760 ins.objectid = btrfs_ino(inode);
2761 ins.offset = file_pos;
2762 ins.type = BTRFS_EXTENT_DATA_KEY;
2763
2764 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2765 sizeof(*stack_fi));
2766 if (ret)
2767 goto out;
2768 }
2769 leaf = path->nodes[0];
2770 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2771 write_extent_buffer(leaf, stack_fi,
2772 btrfs_item_ptr_offset(leaf, path->slots[0]),
2773 sizeof(struct btrfs_file_extent_item));
2774
2775 btrfs_mark_buffer_dirty(leaf);
2776 btrfs_release_path(path);
2777
2778 /*
2779 * If we dropped an inline extent here, we know the range where it is
2780 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2781 * number of bytes only for that range contaning the inline extent.
2782 * The remaining of the range will be processed when clearning the
2783 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2784 */
2785 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2786 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2787
2788 inline_size = drop_args.bytes_found - inline_size;
2789 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2790 drop_args.bytes_found -= inline_size;
2791 num_bytes -= sectorsize;
2792 }
2793
2794 if (update_inode_bytes)
2795 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2796
2797 ins.objectid = disk_bytenr;
2798 ins.offset = disk_num_bytes;
2799 ins.type = BTRFS_EXTENT_ITEM_KEY;
2800
2801 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2802 if (ret)
2803 goto out;
2804
2805 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2806 file_pos, qgroup_reserved, &ins);
2807 out:
2808 btrfs_free_path(path);
2809
2810 return ret;
2811 }
2812
2813 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2814 u64 start, u64 len)
2815 {
2816 struct btrfs_block_group *cache;
2817
2818 cache = btrfs_lookup_block_group(fs_info, start);
2819 ASSERT(cache);
2820
2821 spin_lock(&cache->lock);
2822 cache->delalloc_bytes -= len;
2823 spin_unlock(&cache->lock);
2824
2825 btrfs_put_block_group(cache);
2826 }
2827
2828 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2829 struct btrfs_ordered_extent *oe)
2830 {
2831 struct btrfs_file_extent_item stack_fi;
2832 u64 logical_len;
2833 bool update_inode_bytes;
2834
2835 memset(&stack_fi, 0, sizeof(stack_fi));
2836 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2837 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2838 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2839 oe->disk_num_bytes);
2840 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2841 logical_len = oe->truncated_len;
2842 else
2843 logical_len = oe->num_bytes;
2844 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2845 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2846 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2847 /* Encryption and other encoding is reserved and all 0 */
2848
2849 /*
2850 * For delalloc, when completing an ordered extent we update the inode's
2851 * bytes when clearing the range in the inode's io tree, so pass false
2852 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2853 * except if the ordered extent was truncated.
2854 */
2855 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2856 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2857
2858 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2859 oe->file_offset, &stack_fi,
2860 update_inode_bytes, oe->qgroup_rsv);
2861 }
2862
2863 /*
2864 * As ordered data IO finishes, this gets called so we can finish
2865 * an ordered extent if the range of bytes in the file it covers are
2866 * fully written.
2867 */
2868 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2869 {
2870 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2871 struct btrfs_root *root = inode->root;
2872 struct btrfs_fs_info *fs_info = root->fs_info;
2873 struct btrfs_trans_handle *trans = NULL;
2874 struct extent_io_tree *io_tree = &inode->io_tree;
2875 struct extent_state *cached_state = NULL;
2876 u64 start, end;
2877 int compress_type = 0;
2878 int ret = 0;
2879 u64 logical_len = ordered_extent->num_bytes;
2880 bool freespace_inode;
2881 bool truncated = false;
2882 bool clear_reserved_extent = true;
2883 unsigned int clear_bits = EXTENT_DEFRAG;
2884
2885 start = ordered_extent->file_offset;
2886 end = start + ordered_extent->num_bytes - 1;
2887
2888 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2889 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2890 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2891 clear_bits |= EXTENT_DELALLOC_NEW;
2892
2893 freespace_inode = btrfs_is_free_space_inode(inode);
2894
2895 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2896 ret = -EIO;
2897 goto out;
2898 }
2899
2900 if (ordered_extent->disk)
2901 btrfs_rewrite_logical_zoned(ordered_extent);
2902
2903 btrfs_free_io_failure_record(inode, start, end);
2904
2905 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2906 truncated = true;
2907 logical_len = ordered_extent->truncated_len;
2908 /* Truncated the entire extent, don't bother adding */
2909 if (!logical_len)
2910 goto out;
2911 }
2912
2913 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2914 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2915
2916 btrfs_inode_safe_disk_i_size_write(inode, 0);
2917 if (freespace_inode)
2918 trans = btrfs_join_transaction_spacecache(root);
2919 else
2920 trans = btrfs_join_transaction(root);
2921 if (IS_ERR(trans)) {
2922 ret = PTR_ERR(trans);
2923 trans = NULL;
2924 goto out;
2925 }
2926 trans->block_rsv = &inode->block_rsv;
2927 ret = btrfs_update_inode_fallback(trans, root, inode);
2928 if (ret) /* -ENOMEM or corruption */
2929 btrfs_abort_transaction(trans, ret);
2930 goto out;
2931 }
2932
2933 clear_bits |= EXTENT_LOCKED;
2934 lock_extent_bits(io_tree, start, end, &cached_state);
2935
2936 if (freespace_inode)
2937 trans = btrfs_join_transaction_spacecache(root);
2938 else
2939 trans = btrfs_join_transaction(root);
2940 if (IS_ERR(trans)) {
2941 ret = PTR_ERR(trans);
2942 trans = NULL;
2943 goto out;
2944 }
2945
2946 trans->block_rsv = &inode->block_rsv;
2947
2948 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2949 compress_type = ordered_extent->compress_type;
2950 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2951 BUG_ON(compress_type);
2952 ret = btrfs_mark_extent_written(trans, inode,
2953 ordered_extent->file_offset,
2954 ordered_extent->file_offset +
2955 logical_len);
2956 } else {
2957 BUG_ON(root == fs_info->tree_root);
2958 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2959 if (!ret) {
2960 clear_reserved_extent = false;
2961 btrfs_release_delalloc_bytes(fs_info,
2962 ordered_extent->disk_bytenr,
2963 ordered_extent->disk_num_bytes);
2964 }
2965 }
2966 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
2967 ordered_extent->num_bytes, trans->transid);
2968 if (ret < 0) {
2969 btrfs_abort_transaction(trans, ret);
2970 goto out;
2971 }
2972
2973 ret = add_pending_csums(trans, &ordered_extent->list);
2974 if (ret) {
2975 btrfs_abort_transaction(trans, ret);
2976 goto out;
2977 }
2978
2979 /*
2980 * If this is a new delalloc range, clear its new delalloc flag to
2981 * update the inode's number of bytes. This needs to be done first
2982 * before updating the inode item.
2983 */
2984 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
2985 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
2986 clear_extent_bit(&inode->io_tree, start, end,
2987 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
2988 0, 0, &cached_state);
2989
2990 btrfs_inode_safe_disk_i_size_write(inode, 0);
2991 ret = btrfs_update_inode_fallback(trans, root, inode);
2992 if (ret) { /* -ENOMEM or corruption */
2993 btrfs_abort_transaction(trans, ret);
2994 goto out;
2995 }
2996 ret = 0;
2997 out:
2998 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
2999 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3000 &cached_state);
3001
3002 if (trans)
3003 btrfs_end_transaction(trans);
3004
3005 if (ret || truncated) {
3006 u64 unwritten_start = start;
3007
3008 if (truncated)
3009 unwritten_start += logical_len;
3010 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3011
3012 /* Drop the cache for the part of the extent we didn't write. */
3013 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3014
3015 /*
3016 * If the ordered extent had an IOERR or something else went
3017 * wrong we need to return the space for this ordered extent
3018 * back to the allocator. We only free the extent in the
3019 * truncated case if we didn't write out the extent at all.
3020 *
3021 * If we made it past insert_reserved_file_extent before we
3022 * errored out then we don't need to do this as the accounting
3023 * has already been done.
3024 */
3025 if ((ret || !logical_len) &&
3026 clear_reserved_extent &&
3027 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3028 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3029 /*
3030 * Discard the range before returning it back to the
3031 * free space pool
3032 */
3033 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3034 btrfs_discard_extent(fs_info,
3035 ordered_extent->disk_bytenr,
3036 ordered_extent->disk_num_bytes,
3037 NULL);
3038 btrfs_free_reserved_extent(fs_info,
3039 ordered_extent->disk_bytenr,
3040 ordered_extent->disk_num_bytes, 1);
3041 }
3042 }
3043
3044 /*
3045 * This needs to be done to make sure anybody waiting knows we are done
3046 * updating everything for this ordered extent.
3047 */
3048 btrfs_remove_ordered_extent(inode, ordered_extent);
3049
3050 /* once for us */
3051 btrfs_put_ordered_extent(ordered_extent);
3052 /* once for the tree */
3053 btrfs_put_ordered_extent(ordered_extent);
3054
3055 return ret;
3056 }
3057
3058 static void finish_ordered_fn(struct btrfs_work *work)
3059 {
3060 struct btrfs_ordered_extent *ordered_extent;
3061 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3062 btrfs_finish_ordered_io(ordered_extent);
3063 }
3064
3065 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3066 u64 end, int uptodate)
3067 {
3068 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3069 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3070 struct btrfs_ordered_extent *ordered_extent = NULL;
3071 struct btrfs_workqueue *wq;
3072
3073 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3074
3075 ClearPagePrivate2(page);
3076 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3077 end - start + 1, uptodate))
3078 return;
3079
3080 if (btrfs_is_free_space_inode(inode))
3081 wq = fs_info->endio_freespace_worker;
3082 else
3083 wq = fs_info->endio_write_workers;
3084
3085 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3086 btrfs_queue_work(wq, &ordered_extent->work);
3087 }
3088
3089 /*
3090 * check_data_csum - verify checksum of one sector of uncompressed data
3091 * @inode: inode
3092 * @io_bio: btrfs_io_bio which contains the csum
3093 * @bio_offset: offset to the beginning of the bio (in bytes)
3094 * @page: page where is the data to be verified
3095 * @pgoff: offset inside the page
3096 * @start: logical offset in the file
3097 *
3098 * The length of such check is always one sector size.
3099 */
3100 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3101 u32 bio_offset, struct page *page, u32 pgoff,
3102 u64 start)
3103 {
3104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3105 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3106 char *kaddr;
3107 u32 len = fs_info->sectorsize;
3108 const u32 csum_size = fs_info->csum_size;
3109 unsigned int offset_sectors;
3110 u8 *csum_expected;
3111 u8 csum[BTRFS_CSUM_SIZE];
3112
3113 ASSERT(pgoff + len <= PAGE_SIZE);
3114
3115 offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3116 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3117
3118 kaddr = kmap_atomic(page);
3119 shash->tfm = fs_info->csum_shash;
3120
3121 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3122
3123 if (memcmp(csum, csum_expected, csum_size))
3124 goto zeroit;
3125
3126 kunmap_atomic(kaddr);
3127 return 0;
3128 zeroit:
3129 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3130 io_bio->mirror_num);
3131 if (io_bio->device)
3132 btrfs_dev_stat_inc_and_print(io_bio->device,
3133 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3134 memset(kaddr + pgoff, 1, len);
3135 flush_dcache_page(page);
3136 kunmap_atomic(kaddr);
3137 return -EIO;
3138 }
3139
3140 /*
3141 * When reads are done, we need to check csums to verify the data is correct.
3142 * if there's a match, we allow the bio to finish. If not, the code in
3143 * extent_io.c will try to find good copies for us.
3144 *
3145 * @bio_offset: offset to the beginning of the bio (in bytes)
3146 * @start: file offset of the range start
3147 * @end: file offset of the range end (inclusive)
3148 */
3149 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3150 struct page *page, u64 start, u64 end)
3151 {
3152 struct inode *inode = page->mapping->host;
3153 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3154 struct btrfs_root *root = BTRFS_I(inode)->root;
3155 const u32 sectorsize = root->fs_info->sectorsize;
3156 u32 pg_off;
3157
3158 if (PageChecked(page)) {
3159 ClearPageChecked(page);
3160 return 0;
3161 }
3162
3163 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3164 return 0;
3165
3166 if (!root->fs_info->csum_root)
3167 return 0;
3168
3169 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3170 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3171 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3172 return 0;
3173 }
3174
3175 ASSERT(page_offset(page) <= start &&
3176 end <= page_offset(page) + PAGE_SIZE - 1);
3177 for (pg_off = offset_in_page(start);
3178 pg_off < offset_in_page(end);
3179 pg_off += sectorsize, bio_offset += sectorsize) {
3180 int ret;
3181
3182 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3183 page_offset(page) + pg_off);
3184 if (ret < 0)
3185 return -EIO;
3186 }
3187 return 0;
3188 }
3189
3190 /*
3191 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3192 *
3193 * @inode: The inode we want to perform iput on
3194 *
3195 * This function uses the generic vfs_inode::i_count to track whether we should
3196 * just decrement it (in case it's > 1) or if this is the last iput then link
3197 * the inode to the delayed iput machinery. Delayed iputs are processed at
3198 * transaction commit time/superblock commit/cleaner kthread.
3199 */
3200 void btrfs_add_delayed_iput(struct inode *inode)
3201 {
3202 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3203 struct btrfs_inode *binode = BTRFS_I(inode);
3204
3205 if (atomic_add_unless(&inode->i_count, -1, 1))
3206 return;
3207
3208 atomic_inc(&fs_info->nr_delayed_iputs);
3209 spin_lock(&fs_info->delayed_iput_lock);
3210 ASSERT(list_empty(&binode->delayed_iput));
3211 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3212 spin_unlock(&fs_info->delayed_iput_lock);
3213 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3214 wake_up_process(fs_info->cleaner_kthread);
3215 }
3216
3217 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3218 struct btrfs_inode *inode)
3219 {
3220 list_del_init(&inode->delayed_iput);
3221 spin_unlock(&fs_info->delayed_iput_lock);
3222 iput(&inode->vfs_inode);
3223 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3224 wake_up(&fs_info->delayed_iputs_wait);
3225 spin_lock(&fs_info->delayed_iput_lock);
3226 }
3227
3228 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3229 struct btrfs_inode *inode)
3230 {
3231 if (!list_empty(&inode->delayed_iput)) {
3232 spin_lock(&fs_info->delayed_iput_lock);
3233 if (!list_empty(&inode->delayed_iput))
3234 run_delayed_iput_locked(fs_info, inode);
3235 spin_unlock(&fs_info->delayed_iput_lock);
3236 }
3237 }
3238
3239 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3240 {
3241
3242 spin_lock(&fs_info->delayed_iput_lock);
3243 while (!list_empty(&fs_info->delayed_iputs)) {
3244 struct btrfs_inode *inode;
3245
3246 inode = list_first_entry(&fs_info->delayed_iputs,
3247 struct btrfs_inode, delayed_iput);
3248 run_delayed_iput_locked(fs_info, inode);
3249 }
3250 spin_unlock(&fs_info->delayed_iput_lock);
3251 }
3252
3253 /**
3254 * Wait for flushing all delayed iputs
3255 *
3256 * @fs_info: the filesystem
3257 *
3258 * This will wait on any delayed iputs that are currently running with KILLABLE
3259 * set. Once they are all done running we will return, unless we are killed in
3260 * which case we return EINTR. This helps in user operations like fallocate etc
3261 * that might get blocked on the iputs.
3262 *
3263 * Return EINTR if we were killed, 0 if nothing's pending
3264 */
3265 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3266 {
3267 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3268 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3269 if (ret)
3270 return -EINTR;
3271 return 0;
3272 }
3273
3274 /*
3275 * This creates an orphan entry for the given inode in case something goes wrong
3276 * in the middle of an unlink.
3277 */
3278 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3279 struct btrfs_inode *inode)
3280 {
3281 int ret;
3282
3283 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3284 if (ret && ret != -EEXIST) {
3285 btrfs_abort_transaction(trans, ret);
3286 return ret;
3287 }
3288
3289 return 0;
3290 }
3291
3292 /*
3293 * We have done the delete so we can go ahead and remove the orphan item for
3294 * this particular inode.
3295 */
3296 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3297 struct btrfs_inode *inode)
3298 {
3299 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3300 }
3301
3302 /*
3303 * this cleans up any orphans that may be left on the list from the last use
3304 * of this root.
3305 */
3306 int btrfs_orphan_cleanup(struct btrfs_root *root)
3307 {
3308 struct btrfs_fs_info *fs_info = root->fs_info;
3309 struct btrfs_path *path;
3310 struct extent_buffer *leaf;
3311 struct btrfs_key key, found_key;
3312 struct btrfs_trans_handle *trans;
3313 struct inode *inode;
3314 u64 last_objectid = 0;
3315 int ret = 0, nr_unlink = 0;
3316
3317 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3318 return 0;
3319
3320 path = btrfs_alloc_path();
3321 if (!path) {
3322 ret = -ENOMEM;
3323 goto out;
3324 }
3325 path->reada = READA_BACK;
3326
3327 key.objectid = BTRFS_ORPHAN_OBJECTID;
3328 key.type = BTRFS_ORPHAN_ITEM_KEY;
3329 key.offset = (u64)-1;
3330
3331 while (1) {
3332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3333 if (ret < 0)
3334 goto out;
3335
3336 /*
3337 * if ret == 0 means we found what we were searching for, which
3338 * is weird, but possible, so only screw with path if we didn't
3339 * find the key and see if we have stuff that matches
3340 */
3341 if (ret > 0) {
3342 ret = 0;
3343 if (path->slots[0] == 0)
3344 break;
3345 path->slots[0]--;
3346 }
3347
3348 /* pull out the item */
3349 leaf = path->nodes[0];
3350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3351
3352 /* make sure the item matches what we want */
3353 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3354 break;
3355 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3356 break;
3357
3358 /* release the path since we're done with it */
3359 btrfs_release_path(path);
3360
3361 /*
3362 * this is where we are basically btrfs_lookup, without the
3363 * crossing root thing. we store the inode number in the
3364 * offset of the orphan item.
3365 */
3366
3367 if (found_key.offset == last_objectid) {
3368 btrfs_err(fs_info,
3369 "Error removing orphan entry, stopping orphan cleanup");
3370 ret = -EINVAL;
3371 goto out;
3372 }
3373
3374 last_objectid = found_key.offset;
3375
3376 found_key.objectid = found_key.offset;
3377 found_key.type = BTRFS_INODE_ITEM_KEY;
3378 found_key.offset = 0;
3379 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3380 ret = PTR_ERR_OR_ZERO(inode);
3381 if (ret && ret != -ENOENT)
3382 goto out;
3383
3384 if (ret == -ENOENT && root == fs_info->tree_root) {
3385 struct btrfs_root *dead_root;
3386 int is_dead_root = 0;
3387
3388 /*
3389 * this is an orphan in the tree root. Currently these
3390 * could come from 2 sources:
3391 * a) a snapshot deletion in progress
3392 * b) a free space cache inode
3393 * We need to distinguish those two, as the snapshot
3394 * orphan must not get deleted.
3395 * find_dead_roots already ran before us, so if this
3396 * is a snapshot deletion, we should find the root
3397 * in the fs_roots radix tree.
3398 */
3399
3400 spin_lock(&fs_info->fs_roots_radix_lock);
3401 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3402 (unsigned long)found_key.objectid);
3403 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3404 is_dead_root = 1;
3405 spin_unlock(&fs_info->fs_roots_radix_lock);
3406
3407 if (is_dead_root) {
3408 /* prevent this orphan from being found again */
3409 key.offset = found_key.objectid - 1;
3410 continue;
3411 }
3412
3413 }
3414
3415 /*
3416 * If we have an inode with links, there are a couple of
3417 * possibilities. Old kernels (before v3.12) used to create an
3418 * orphan item for truncate indicating that there were possibly
3419 * extent items past i_size that needed to be deleted. In v3.12,
3420 * truncate was changed to update i_size in sync with the extent
3421 * items, but the (useless) orphan item was still created. Since
3422 * v4.18, we don't create the orphan item for truncate at all.
3423 *
3424 * So, this item could mean that we need to do a truncate, but
3425 * only if this filesystem was last used on a pre-v3.12 kernel
3426 * and was not cleanly unmounted. The odds of that are quite
3427 * slim, and it's a pain to do the truncate now, so just delete
3428 * the orphan item.
3429 *
3430 * It's also possible that this orphan item was supposed to be
3431 * deleted but wasn't. The inode number may have been reused,
3432 * but either way, we can delete the orphan item.
3433 */
3434 if (ret == -ENOENT || inode->i_nlink) {
3435 if (!ret)
3436 iput(inode);
3437 trans = btrfs_start_transaction(root, 1);
3438 if (IS_ERR(trans)) {
3439 ret = PTR_ERR(trans);
3440 goto out;
3441 }
3442 btrfs_debug(fs_info, "auto deleting %Lu",
3443 found_key.objectid);
3444 ret = btrfs_del_orphan_item(trans, root,
3445 found_key.objectid);
3446 btrfs_end_transaction(trans);
3447 if (ret)
3448 goto out;
3449 continue;
3450 }
3451
3452 nr_unlink++;
3453
3454 /* this will do delete_inode and everything for us */
3455 iput(inode);
3456 }
3457 /* release the path since we're done with it */
3458 btrfs_release_path(path);
3459
3460 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3461
3462 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3463 trans = btrfs_join_transaction(root);
3464 if (!IS_ERR(trans))
3465 btrfs_end_transaction(trans);
3466 }
3467
3468 if (nr_unlink)
3469 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3470
3471 out:
3472 if (ret)
3473 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3474 btrfs_free_path(path);
3475 return ret;
3476 }
3477
3478 /*
3479 * very simple check to peek ahead in the leaf looking for xattrs. If we
3480 * don't find any xattrs, we know there can't be any acls.
3481 *
3482 * slot is the slot the inode is in, objectid is the objectid of the inode
3483 */
3484 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3485 int slot, u64 objectid,
3486 int *first_xattr_slot)
3487 {
3488 u32 nritems = btrfs_header_nritems(leaf);
3489 struct btrfs_key found_key;
3490 static u64 xattr_access = 0;
3491 static u64 xattr_default = 0;
3492 int scanned = 0;
3493
3494 if (!xattr_access) {
3495 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3496 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3497 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3498 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3499 }
3500
3501 slot++;
3502 *first_xattr_slot = -1;
3503 while (slot < nritems) {
3504 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3505
3506 /* we found a different objectid, there must not be acls */
3507 if (found_key.objectid != objectid)
3508 return 0;
3509
3510 /* we found an xattr, assume we've got an acl */
3511 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3512 if (*first_xattr_slot == -1)
3513 *first_xattr_slot = slot;
3514 if (found_key.offset == xattr_access ||
3515 found_key.offset == xattr_default)
3516 return 1;
3517 }
3518
3519 /*
3520 * we found a key greater than an xattr key, there can't
3521 * be any acls later on
3522 */
3523 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3524 return 0;
3525
3526 slot++;
3527 scanned++;
3528
3529 /*
3530 * it goes inode, inode backrefs, xattrs, extents,
3531 * so if there are a ton of hard links to an inode there can
3532 * be a lot of backrefs. Don't waste time searching too hard,
3533 * this is just an optimization
3534 */
3535 if (scanned >= 8)
3536 break;
3537 }
3538 /* we hit the end of the leaf before we found an xattr or
3539 * something larger than an xattr. We have to assume the inode
3540 * has acls
3541 */
3542 if (*first_xattr_slot == -1)
3543 *first_xattr_slot = slot;
3544 return 1;
3545 }
3546
3547 /*
3548 * read an inode from the btree into the in-memory inode
3549 */
3550 static int btrfs_read_locked_inode(struct inode *inode,
3551 struct btrfs_path *in_path)
3552 {
3553 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3554 struct btrfs_path *path = in_path;
3555 struct extent_buffer *leaf;
3556 struct btrfs_inode_item *inode_item;
3557 struct btrfs_root *root = BTRFS_I(inode)->root;
3558 struct btrfs_key location;
3559 unsigned long ptr;
3560 int maybe_acls;
3561 u32 rdev;
3562 int ret;
3563 bool filled = false;
3564 int first_xattr_slot;
3565
3566 ret = btrfs_fill_inode(inode, &rdev);
3567 if (!ret)
3568 filled = true;
3569
3570 if (!path) {
3571 path = btrfs_alloc_path();
3572 if (!path)
3573 return -ENOMEM;
3574 }
3575
3576 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3577
3578 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3579 if (ret) {
3580 if (path != in_path)
3581 btrfs_free_path(path);
3582 return ret;
3583 }
3584
3585 leaf = path->nodes[0];
3586
3587 if (filled)
3588 goto cache_index;
3589
3590 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3591 struct btrfs_inode_item);
3592 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3593 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3594 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3595 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3596 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3597 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3598 round_up(i_size_read(inode), fs_info->sectorsize));
3599
3600 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3601 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3602
3603 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3604 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3605
3606 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3607 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3608
3609 BTRFS_I(inode)->i_otime.tv_sec =
3610 btrfs_timespec_sec(leaf, &inode_item->otime);
3611 BTRFS_I(inode)->i_otime.tv_nsec =
3612 btrfs_timespec_nsec(leaf, &inode_item->otime);
3613
3614 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3615 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3616 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3617
3618 inode_set_iversion_queried(inode,
3619 btrfs_inode_sequence(leaf, inode_item));
3620 inode->i_generation = BTRFS_I(inode)->generation;
3621 inode->i_rdev = 0;
3622 rdev = btrfs_inode_rdev(leaf, inode_item);
3623
3624 BTRFS_I(inode)->index_cnt = (u64)-1;
3625 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3626
3627 cache_index:
3628 /*
3629 * If we were modified in the current generation and evicted from memory
3630 * and then re-read we need to do a full sync since we don't have any
3631 * idea about which extents were modified before we were evicted from
3632 * cache.
3633 *
3634 * This is required for both inode re-read from disk and delayed inode
3635 * in delayed_nodes_tree.
3636 */
3637 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3638 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3639 &BTRFS_I(inode)->runtime_flags);
3640
3641 /*
3642 * We don't persist the id of the transaction where an unlink operation
3643 * against the inode was last made. So here we assume the inode might
3644 * have been evicted, and therefore the exact value of last_unlink_trans
3645 * lost, and set it to last_trans to avoid metadata inconsistencies
3646 * between the inode and its parent if the inode is fsync'ed and the log
3647 * replayed. For example, in the scenario:
3648 *
3649 * touch mydir/foo
3650 * ln mydir/foo mydir/bar
3651 * sync
3652 * unlink mydir/bar
3653 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3654 * xfs_io -c fsync mydir/foo
3655 * <power failure>
3656 * mount fs, triggers fsync log replay
3657 *
3658 * We must make sure that when we fsync our inode foo we also log its
3659 * parent inode, otherwise after log replay the parent still has the
3660 * dentry with the "bar" name but our inode foo has a link count of 1
3661 * and doesn't have an inode ref with the name "bar" anymore.
3662 *
3663 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3664 * but it guarantees correctness at the expense of occasional full
3665 * transaction commits on fsync if our inode is a directory, or if our
3666 * inode is not a directory, logging its parent unnecessarily.
3667 */
3668 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3669
3670 /*
3671 * Same logic as for last_unlink_trans. We don't persist the generation
3672 * of the last transaction where this inode was used for a reflink
3673 * operation, so after eviction and reloading the inode we must be
3674 * pessimistic and assume the last transaction that modified the inode.
3675 */
3676 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3677
3678 path->slots[0]++;
3679 if (inode->i_nlink != 1 ||
3680 path->slots[0] >= btrfs_header_nritems(leaf))
3681 goto cache_acl;
3682
3683 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3684 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3685 goto cache_acl;
3686
3687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3688 if (location.type == BTRFS_INODE_REF_KEY) {
3689 struct btrfs_inode_ref *ref;
3690
3691 ref = (struct btrfs_inode_ref *)ptr;
3692 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3693 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3694 struct btrfs_inode_extref *extref;
3695
3696 extref = (struct btrfs_inode_extref *)ptr;
3697 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3698 extref);
3699 }
3700 cache_acl:
3701 /*
3702 * try to precache a NULL acl entry for files that don't have
3703 * any xattrs or acls
3704 */
3705 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3706 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3707 if (first_xattr_slot != -1) {
3708 path->slots[0] = first_xattr_slot;
3709 ret = btrfs_load_inode_props(inode, path);
3710 if (ret)
3711 btrfs_err(fs_info,
3712 "error loading props for ino %llu (root %llu): %d",
3713 btrfs_ino(BTRFS_I(inode)),
3714 root->root_key.objectid, ret);
3715 }
3716 if (path != in_path)
3717 btrfs_free_path(path);
3718
3719 if (!maybe_acls)
3720 cache_no_acl(inode);
3721
3722 switch (inode->i_mode & S_IFMT) {
3723 case S_IFREG:
3724 inode->i_mapping->a_ops = &btrfs_aops;
3725 inode->i_fop = &btrfs_file_operations;
3726 inode->i_op = &btrfs_file_inode_operations;
3727 break;
3728 case S_IFDIR:
3729 inode->i_fop = &btrfs_dir_file_operations;
3730 inode->i_op = &btrfs_dir_inode_operations;
3731 break;
3732 case S_IFLNK:
3733 inode->i_op = &btrfs_symlink_inode_operations;
3734 inode_nohighmem(inode);
3735 inode->i_mapping->a_ops = &btrfs_aops;
3736 break;
3737 default:
3738 inode->i_op = &btrfs_special_inode_operations;
3739 init_special_inode(inode, inode->i_mode, rdev);
3740 break;
3741 }
3742
3743 btrfs_sync_inode_flags_to_i_flags(inode);
3744 return 0;
3745 }
3746
3747 /*
3748 * given a leaf and an inode, copy the inode fields into the leaf
3749 */
3750 static void fill_inode_item(struct btrfs_trans_handle *trans,
3751 struct extent_buffer *leaf,
3752 struct btrfs_inode_item *item,
3753 struct inode *inode)
3754 {
3755 struct btrfs_map_token token;
3756
3757 btrfs_init_map_token(&token, leaf);
3758
3759 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3760 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3761 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3762 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3763 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3764
3765 btrfs_set_token_timespec_sec(&token, &item->atime,
3766 inode->i_atime.tv_sec);
3767 btrfs_set_token_timespec_nsec(&token, &item->atime,
3768 inode->i_atime.tv_nsec);
3769
3770 btrfs_set_token_timespec_sec(&token, &item->mtime,
3771 inode->i_mtime.tv_sec);
3772 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3773 inode->i_mtime.tv_nsec);
3774
3775 btrfs_set_token_timespec_sec(&token, &item->ctime,
3776 inode->i_ctime.tv_sec);
3777 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3778 inode->i_ctime.tv_nsec);
3779
3780 btrfs_set_token_timespec_sec(&token, &item->otime,
3781 BTRFS_I(inode)->i_otime.tv_sec);
3782 btrfs_set_token_timespec_nsec(&token, &item->otime,
3783 BTRFS_I(inode)->i_otime.tv_nsec);
3784
3785 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3786 btrfs_set_token_inode_generation(&token, item,
3787 BTRFS_I(inode)->generation);
3788 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3789 btrfs_set_token_inode_transid(&token, item, trans->transid);
3790 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3791 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3792 btrfs_set_token_inode_block_group(&token, item, 0);
3793 }
3794
3795 /*
3796 * copy everything in the in-memory inode into the btree.
3797 */
3798 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3799 struct btrfs_root *root,
3800 struct btrfs_inode *inode)
3801 {
3802 struct btrfs_inode_item *inode_item;
3803 struct btrfs_path *path;
3804 struct extent_buffer *leaf;
3805 int ret;
3806
3807 path = btrfs_alloc_path();
3808 if (!path)
3809 return -ENOMEM;
3810
3811 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3812 if (ret) {
3813 if (ret > 0)
3814 ret = -ENOENT;
3815 goto failed;
3816 }
3817
3818 leaf = path->nodes[0];
3819 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3820 struct btrfs_inode_item);
3821
3822 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3823 btrfs_mark_buffer_dirty(leaf);
3824 btrfs_set_inode_last_trans(trans, inode);
3825 ret = 0;
3826 failed:
3827 btrfs_free_path(path);
3828 return ret;
3829 }
3830
3831 /*
3832 * copy everything in the in-memory inode into the btree.
3833 */
3834 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3835 struct btrfs_root *root,
3836 struct btrfs_inode *inode)
3837 {
3838 struct btrfs_fs_info *fs_info = root->fs_info;
3839 int ret;
3840
3841 /*
3842 * If the inode is a free space inode, we can deadlock during commit
3843 * if we put it into the delayed code.
3844 *
3845 * The data relocation inode should also be directly updated
3846 * without delay
3847 */
3848 if (!btrfs_is_free_space_inode(inode)
3849 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3850 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3851 btrfs_update_root_times(trans, root);
3852
3853 ret = btrfs_delayed_update_inode(trans, root, inode);
3854 if (!ret)
3855 btrfs_set_inode_last_trans(trans, inode);
3856 return ret;
3857 }
3858
3859 return btrfs_update_inode_item(trans, root, inode);
3860 }
3861
3862 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3863 struct btrfs_root *root, struct btrfs_inode *inode)
3864 {
3865 int ret;
3866
3867 ret = btrfs_update_inode(trans, root, inode);
3868 if (ret == -ENOSPC)
3869 return btrfs_update_inode_item(trans, root, inode);
3870 return ret;
3871 }
3872
3873 /*
3874 * unlink helper that gets used here in inode.c and in the tree logging
3875 * recovery code. It remove a link in a directory with a given name, and
3876 * also drops the back refs in the inode to the directory
3877 */
3878 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3879 struct btrfs_root *root,
3880 struct btrfs_inode *dir,
3881 struct btrfs_inode *inode,
3882 const char *name, int name_len)
3883 {
3884 struct btrfs_fs_info *fs_info = root->fs_info;
3885 struct btrfs_path *path;
3886 int ret = 0;
3887 struct btrfs_dir_item *di;
3888 u64 index;
3889 u64 ino = btrfs_ino(inode);
3890 u64 dir_ino = btrfs_ino(dir);
3891
3892 path = btrfs_alloc_path();
3893 if (!path) {
3894 ret = -ENOMEM;
3895 goto out;
3896 }
3897
3898 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3899 name, name_len, -1);
3900 if (IS_ERR_OR_NULL(di)) {
3901 ret = di ? PTR_ERR(di) : -ENOENT;
3902 goto err;
3903 }
3904 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3905 if (ret)
3906 goto err;
3907 btrfs_release_path(path);
3908
3909 /*
3910 * If we don't have dir index, we have to get it by looking up
3911 * the inode ref, since we get the inode ref, remove it directly,
3912 * it is unnecessary to do delayed deletion.
3913 *
3914 * But if we have dir index, needn't search inode ref to get it.
3915 * Since the inode ref is close to the inode item, it is better
3916 * that we delay to delete it, and just do this deletion when
3917 * we update the inode item.
3918 */
3919 if (inode->dir_index) {
3920 ret = btrfs_delayed_delete_inode_ref(inode);
3921 if (!ret) {
3922 index = inode->dir_index;
3923 goto skip_backref;
3924 }
3925 }
3926
3927 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3928 dir_ino, &index);
3929 if (ret) {
3930 btrfs_info(fs_info,
3931 "failed to delete reference to %.*s, inode %llu parent %llu",
3932 name_len, name, ino, dir_ino);
3933 btrfs_abort_transaction(trans, ret);
3934 goto err;
3935 }
3936 skip_backref:
3937 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3938 if (ret) {
3939 btrfs_abort_transaction(trans, ret);
3940 goto err;
3941 }
3942
3943 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3944 dir_ino);
3945 if (ret != 0 && ret != -ENOENT) {
3946 btrfs_abort_transaction(trans, ret);
3947 goto err;
3948 }
3949
3950 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3951 index);
3952 if (ret == -ENOENT)
3953 ret = 0;
3954 else if (ret)
3955 btrfs_abort_transaction(trans, ret);
3956
3957 /*
3958 * If we have a pending delayed iput we could end up with the final iput
3959 * being run in btrfs-cleaner context. If we have enough of these built
3960 * up we can end up burning a lot of time in btrfs-cleaner without any
3961 * way to throttle the unlinks. Since we're currently holding a ref on
3962 * the inode we can run the delayed iput here without any issues as the
3963 * final iput won't be done until after we drop the ref we're currently
3964 * holding.
3965 */
3966 btrfs_run_delayed_iput(fs_info, inode);
3967 err:
3968 btrfs_free_path(path);
3969 if (ret)
3970 goto out;
3971
3972 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3973 inode_inc_iversion(&inode->vfs_inode);
3974 inode_inc_iversion(&dir->vfs_inode);
3975 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3976 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3977 ret = btrfs_update_inode(trans, root, dir);
3978 out:
3979 return ret;
3980 }
3981
3982 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3983 struct btrfs_root *root,
3984 struct btrfs_inode *dir, struct btrfs_inode *inode,
3985 const char *name, int name_len)
3986 {
3987 int ret;
3988 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3989 if (!ret) {
3990 drop_nlink(&inode->vfs_inode);
3991 ret = btrfs_update_inode(trans, root, inode);
3992 }
3993 return ret;
3994 }
3995
3996 /*
3997 * helper to start transaction for unlink and rmdir.
3998 *
3999 * unlink and rmdir are special in btrfs, they do not always free space, so
4000 * if we cannot make our reservations the normal way try and see if there is
4001 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4002 * allow the unlink to occur.
4003 */
4004 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4005 {
4006 struct btrfs_root *root = BTRFS_I(dir)->root;
4007
4008 /*
4009 * 1 for the possible orphan item
4010 * 1 for the dir item
4011 * 1 for the dir index
4012 * 1 for the inode ref
4013 * 1 for the inode
4014 */
4015 return btrfs_start_transaction_fallback_global_rsv(root, 5);
4016 }
4017
4018 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4019 {
4020 struct btrfs_root *root = BTRFS_I(dir)->root;
4021 struct btrfs_trans_handle *trans;
4022 struct inode *inode = d_inode(dentry);
4023 int ret;
4024
4025 trans = __unlink_start_trans(dir);
4026 if (IS_ERR(trans))
4027 return PTR_ERR(trans);
4028
4029 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4030 0);
4031
4032 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4033 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4034 dentry->d_name.len);
4035 if (ret)
4036 goto out;
4037
4038 if (inode->i_nlink == 0) {
4039 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4040 if (ret)
4041 goto out;
4042 }
4043
4044 out:
4045 btrfs_end_transaction(trans);
4046 btrfs_btree_balance_dirty(root->fs_info);
4047 return ret;
4048 }
4049
4050 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4051 struct inode *dir, struct dentry *dentry)
4052 {
4053 struct btrfs_root *root = BTRFS_I(dir)->root;
4054 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4055 struct btrfs_path *path;
4056 struct extent_buffer *leaf;
4057 struct btrfs_dir_item *di;
4058 struct btrfs_key key;
4059 const char *name = dentry->d_name.name;
4060 int name_len = dentry->d_name.len;
4061 u64 index;
4062 int ret;
4063 u64 objectid;
4064 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4065
4066 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4067 objectid = inode->root->root_key.objectid;
4068 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4069 objectid = inode->location.objectid;
4070 } else {
4071 WARN_ON(1);
4072 return -EINVAL;
4073 }
4074
4075 path = btrfs_alloc_path();
4076 if (!path)
4077 return -ENOMEM;
4078
4079 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4080 name, name_len, -1);
4081 if (IS_ERR_OR_NULL(di)) {
4082 ret = di ? PTR_ERR(di) : -ENOENT;
4083 goto out;
4084 }
4085
4086 leaf = path->nodes[0];
4087 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4088 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4089 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4090 if (ret) {
4091 btrfs_abort_transaction(trans, ret);
4092 goto out;
4093 }
4094 btrfs_release_path(path);
4095
4096 /*
4097 * This is a placeholder inode for a subvolume we didn't have a
4098 * reference to at the time of the snapshot creation. In the meantime
4099 * we could have renamed the real subvol link into our snapshot, so
4100 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4101 * Instead simply lookup the dir_index_item for this entry so we can
4102 * remove it. Otherwise we know we have a ref to the root and we can
4103 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4104 */
4105 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4106 di = btrfs_search_dir_index_item(root, path, dir_ino,
4107 name, name_len);
4108 if (IS_ERR_OR_NULL(di)) {
4109 if (!di)
4110 ret = -ENOENT;
4111 else
4112 ret = PTR_ERR(di);
4113 btrfs_abort_transaction(trans, ret);
4114 goto out;
4115 }
4116
4117 leaf = path->nodes[0];
4118 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4119 index = key.offset;
4120 btrfs_release_path(path);
4121 } else {
4122 ret = btrfs_del_root_ref(trans, objectid,
4123 root->root_key.objectid, dir_ino,
4124 &index, name, name_len);
4125 if (ret) {
4126 btrfs_abort_transaction(trans, ret);
4127 goto out;
4128 }
4129 }
4130
4131 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4132 if (ret) {
4133 btrfs_abort_transaction(trans, ret);
4134 goto out;
4135 }
4136
4137 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4138 inode_inc_iversion(dir);
4139 dir->i_mtime = dir->i_ctime = current_time(dir);
4140 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4141 if (ret)
4142 btrfs_abort_transaction(trans, ret);
4143 out:
4144 btrfs_free_path(path);
4145 return ret;
4146 }
4147
4148 /*
4149 * Helper to check if the subvolume references other subvolumes or if it's
4150 * default.
4151 */
4152 static noinline int may_destroy_subvol(struct btrfs_root *root)
4153 {
4154 struct btrfs_fs_info *fs_info = root->fs_info;
4155 struct btrfs_path *path;
4156 struct btrfs_dir_item *di;
4157 struct btrfs_key key;
4158 u64 dir_id;
4159 int ret;
4160
4161 path = btrfs_alloc_path();
4162 if (!path)
4163 return -ENOMEM;
4164
4165 /* Make sure this root isn't set as the default subvol */
4166 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4167 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4168 dir_id, "default", 7, 0);
4169 if (di && !IS_ERR(di)) {
4170 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4171 if (key.objectid == root->root_key.objectid) {
4172 ret = -EPERM;
4173 btrfs_err(fs_info,
4174 "deleting default subvolume %llu is not allowed",
4175 key.objectid);
4176 goto out;
4177 }
4178 btrfs_release_path(path);
4179 }
4180
4181 key.objectid = root->root_key.objectid;
4182 key.type = BTRFS_ROOT_REF_KEY;
4183 key.offset = (u64)-1;
4184
4185 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4186 if (ret < 0)
4187 goto out;
4188 BUG_ON(ret == 0);
4189
4190 ret = 0;
4191 if (path->slots[0] > 0) {
4192 path->slots[0]--;
4193 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4194 if (key.objectid == root->root_key.objectid &&
4195 key.type == BTRFS_ROOT_REF_KEY)
4196 ret = -ENOTEMPTY;
4197 }
4198 out:
4199 btrfs_free_path(path);
4200 return ret;
4201 }
4202
4203 /* Delete all dentries for inodes belonging to the root */
4204 static void btrfs_prune_dentries(struct btrfs_root *root)
4205 {
4206 struct btrfs_fs_info *fs_info = root->fs_info;
4207 struct rb_node *node;
4208 struct rb_node *prev;
4209 struct btrfs_inode *entry;
4210 struct inode *inode;
4211 u64 objectid = 0;
4212
4213 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4214 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4215
4216 spin_lock(&root->inode_lock);
4217 again:
4218 node = root->inode_tree.rb_node;
4219 prev = NULL;
4220 while (node) {
4221 prev = node;
4222 entry = rb_entry(node, struct btrfs_inode, rb_node);
4223
4224 if (objectid < btrfs_ino(entry))
4225 node = node->rb_left;
4226 else if (objectid > btrfs_ino(entry))
4227 node = node->rb_right;
4228 else
4229 break;
4230 }
4231 if (!node) {
4232 while (prev) {
4233 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4234 if (objectid <= btrfs_ino(entry)) {
4235 node = prev;
4236 break;
4237 }
4238 prev = rb_next(prev);
4239 }
4240 }
4241 while (node) {
4242 entry = rb_entry(node, struct btrfs_inode, rb_node);
4243 objectid = btrfs_ino(entry) + 1;
4244 inode = igrab(&entry->vfs_inode);
4245 if (inode) {
4246 spin_unlock(&root->inode_lock);
4247 if (atomic_read(&inode->i_count) > 1)
4248 d_prune_aliases(inode);
4249 /*
4250 * btrfs_drop_inode will have it removed from the inode
4251 * cache when its usage count hits zero.
4252 */
4253 iput(inode);
4254 cond_resched();
4255 spin_lock(&root->inode_lock);
4256 goto again;
4257 }
4258
4259 if (cond_resched_lock(&root->inode_lock))
4260 goto again;
4261
4262 node = rb_next(node);
4263 }
4264 spin_unlock(&root->inode_lock);
4265 }
4266
4267 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4268 {
4269 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4270 struct btrfs_root *root = BTRFS_I(dir)->root;
4271 struct inode *inode = d_inode(dentry);
4272 struct btrfs_root *dest = BTRFS_I(inode)->root;
4273 struct btrfs_trans_handle *trans;
4274 struct btrfs_block_rsv block_rsv;
4275 u64 root_flags;
4276 int ret;
4277
4278 /*
4279 * Don't allow to delete a subvolume with send in progress. This is
4280 * inside the inode lock so the error handling that has to drop the bit
4281 * again is not run concurrently.
4282 */
4283 spin_lock(&dest->root_item_lock);
4284 if (dest->send_in_progress) {
4285 spin_unlock(&dest->root_item_lock);
4286 btrfs_warn(fs_info,
4287 "attempt to delete subvolume %llu during send",
4288 dest->root_key.objectid);
4289 return -EPERM;
4290 }
4291 root_flags = btrfs_root_flags(&dest->root_item);
4292 btrfs_set_root_flags(&dest->root_item,
4293 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4294 spin_unlock(&dest->root_item_lock);
4295
4296 down_write(&fs_info->subvol_sem);
4297
4298 ret = may_destroy_subvol(dest);
4299 if (ret)
4300 goto out_up_write;
4301
4302 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4303 /*
4304 * One for dir inode,
4305 * two for dir entries,
4306 * two for root ref/backref.
4307 */
4308 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4309 if (ret)
4310 goto out_up_write;
4311
4312 trans = btrfs_start_transaction(root, 0);
4313 if (IS_ERR(trans)) {
4314 ret = PTR_ERR(trans);
4315 goto out_release;
4316 }
4317 trans->block_rsv = &block_rsv;
4318 trans->bytes_reserved = block_rsv.size;
4319
4320 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4321
4322 ret = btrfs_unlink_subvol(trans, dir, dentry);
4323 if (ret) {
4324 btrfs_abort_transaction(trans, ret);
4325 goto out_end_trans;
4326 }
4327
4328 btrfs_record_root_in_trans(trans, dest);
4329
4330 memset(&dest->root_item.drop_progress, 0,
4331 sizeof(dest->root_item.drop_progress));
4332 btrfs_set_root_drop_level(&dest->root_item, 0);
4333 btrfs_set_root_refs(&dest->root_item, 0);
4334
4335 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4336 ret = btrfs_insert_orphan_item(trans,
4337 fs_info->tree_root,
4338 dest->root_key.objectid);
4339 if (ret) {
4340 btrfs_abort_transaction(trans, ret);
4341 goto out_end_trans;
4342 }
4343 }
4344
4345 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4346 BTRFS_UUID_KEY_SUBVOL,
4347 dest->root_key.objectid);
4348 if (ret && ret != -ENOENT) {
4349 btrfs_abort_transaction(trans, ret);
4350 goto out_end_trans;
4351 }
4352 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4353 ret = btrfs_uuid_tree_remove(trans,
4354 dest->root_item.received_uuid,
4355 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4356 dest->root_key.objectid);
4357 if (ret && ret != -ENOENT) {
4358 btrfs_abort_transaction(trans, ret);
4359 goto out_end_trans;
4360 }
4361 }
4362
4363 free_anon_bdev(dest->anon_dev);
4364 dest->anon_dev = 0;
4365 out_end_trans:
4366 trans->block_rsv = NULL;
4367 trans->bytes_reserved = 0;
4368 ret = btrfs_end_transaction(trans);
4369 inode->i_flags |= S_DEAD;
4370 out_release:
4371 btrfs_subvolume_release_metadata(root, &block_rsv);
4372 out_up_write:
4373 up_write(&fs_info->subvol_sem);
4374 if (ret) {
4375 spin_lock(&dest->root_item_lock);
4376 root_flags = btrfs_root_flags(&dest->root_item);
4377 btrfs_set_root_flags(&dest->root_item,
4378 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4379 spin_unlock(&dest->root_item_lock);
4380 } else {
4381 d_invalidate(dentry);
4382 btrfs_prune_dentries(dest);
4383 ASSERT(dest->send_in_progress == 0);
4384 }
4385
4386 return ret;
4387 }
4388
4389 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4390 {
4391 struct inode *inode = d_inode(dentry);
4392 int err = 0;
4393 struct btrfs_root *root = BTRFS_I(dir)->root;
4394 struct btrfs_trans_handle *trans;
4395 u64 last_unlink_trans;
4396
4397 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4398 return -ENOTEMPTY;
4399 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4400 return btrfs_delete_subvolume(dir, dentry);
4401
4402 trans = __unlink_start_trans(dir);
4403 if (IS_ERR(trans))
4404 return PTR_ERR(trans);
4405
4406 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4407 err = btrfs_unlink_subvol(trans, dir, dentry);
4408 goto out;
4409 }
4410
4411 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4412 if (err)
4413 goto out;
4414
4415 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4416
4417 /* now the directory is empty */
4418 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4419 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4420 dentry->d_name.len);
4421 if (!err) {
4422 btrfs_i_size_write(BTRFS_I(inode), 0);
4423 /*
4424 * Propagate the last_unlink_trans value of the deleted dir to
4425 * its parent directory. This is to prevent an unrecoverable
4426 * log tree in the case we do something like this:
4427 * 1) create dir foo
4428 * 2) create snapshot under dir foo
4429 * 3) delete the snapshot
4430 * 4) rmdir foo
4431 * 5) mkdir foo
4432 * 6) fsync foo or some file inside foo
4433 */
4434 if (last_unlink_trans >= trans->transid)
4435 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4436 }
4437 out:
4438 btrfs_end_transaction(trans);
4439 btrfs_btree_balance_dirty(root->fs_info);
4440
4441 return err;
4442 }
4443
4444 /*
4445 * Return this if we need to call truncate_block for the last bit of the
4446 * truncate.
4447 */
4448 #define NEED_TRUNCATE_BLOCK 1
4449
4450 /*
4451 * this can truncate away extent items, csum items and directory items.
4452 * It starts at a high offset and removes keys until it can't find
4453 * any higher than new_size
4454 *
4455 * csum items that cross the new i_size are truncated to the new size
4456 * as well.
4457 *
4458 * min_type is the minimum key type to truncate down to. If set to 0, this
4459 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4460 */
4461 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4462 struct btrfs_root *root,
4463 struct btrfs_inode *inode,
4464 u64 new_size, u32 min_type)
4465 {
4466 struct btrfs_fs_info *fs_info = root->fs_info;
4467 struct btrfs_path *path;
4468 struct extent_buffer *leaf;
4469 struct btrfs_file_extent_item *fi;
4470 struct btrfs_key key;
4471 struct btrfs_key found_key;
4472 u64 extent_start = 0;
4473 u64 extent_num_bytes = 0;
4474 u64 extent_offset = 0;
4475 u64 item_end = 0;
4476 u64 last_size = new_size;
4477 u32 found_type = (u8)-1;
4478 int found_extent;
4479 int del_item;
4480 int pending_del_nr = 0;
4481 int pending_del_slot = 0;
4482 int extent_type = -1;
4483 int ret;
4484 u64 ino = btrfs_ino(inode);
4485 u64 bytes_deleted = 0;
4486 bool be_nice = false;
4487 bool should_throttle = false;
4488 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4489 struct extent_state *cached_state = NULL;
4490
4491 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4492
4493 /*
4494 * For non-free space inodes and non-shareable roots, we want to back
4495 * off from time to time. This means all inodes in subvolume roots,
4496 * reloc roots, and data reloc roots.
4497 */
4498 if (!btrfs_is_free_space_inode(inode) &&
4499 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4500 be_nice = true;
4501
4502 path = btrfs_alloc_path();
4503 if (!path)
4504 return -ENOMEM;
4505 path->reada = READA_BACK;
4506
4507 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4508 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4509 &cached_state);
4510
4511 /*
4512 * We want to drop from the next block forward in case this
4513 * new size is not block aligned since we will be keeping the
4514 * last block of the extent just the way it is.
4515 */
4516 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4517 fs_info->sectorsize),
4518 (u64)-1, 0);
4519 }
4520
4521 /*
4522 * This function is also used to drop the items in the log tree before
4523 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4524 * it is used to drop the logged items. So we shouldn't kill the delayed
4525 * items.
4526 */
4527 if (min_type == 0 && root == inode->root)
4528 btrfs_kill_delayed_inode_items(inode);
4529
4530 key.objectid = ino;
4531 key.offset = (u64)-1;
4532 key.type = (u8)-1;
4533
4534 search_again:
4535 /*
4536 * with a 16K leaf size and 128MB extents, you can actually queue
4537 * up a huge file in a single leaf. Most of the time that
4538 * bytes_deleted is > 0, it will be huge by the time we get here
4539 */
4540 if (be_nice && bytes_deleted > SZ_32M &&
4541 btrfs_should_end_transaction(trans)) {
4542 ret = -EAGAIN;
4543 goto out;
4544 }
4545
4546 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4547 if (ret < 0)
4548 goto out;
4549
4550 if (ret > 0) {
4551 ret = 0;
4552 /* there are no items in the tree for us to truncate, we're
4553 * done
4554 */
4555 if (path->slots[0] == 0)
4556 goto out;
4557 path->slots[0]--;
4558 }
4559
4560 while (1) {
4561 u64 clear_start = 0, clear_len = 0;
4562
4563 fi = NULL;
4564 leaf = path->nodes[0];
4565 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4566 found_type = found_key.type;
4567
4568 if (found_key.objectid != ino)
4569 break;
4570
4571 if (found_type < min_type)
4572 break;
4573
4574 item_end = found_key.offset;
4575 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4576 fi = btrfs_item_ptr(leaf, path->slots[0],
4577 struct btrfs_file_extent_item);
4578 extent_type = btrfs_file_extent_type(leaf, fi);
4579 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4580 item_end +=
4581 btrfs_file_extent_num_bytes(leaf, fi);
4582
4583 trace_btrfs_truncate_show_fi_regular(
4584 inode, leaf, fi, found_key.offset);
4585 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4586 item_end += btrfs_file_extent_ram_bytes(leaf,
4587 fi);
4588
4589 trace_btrfs_truncate_show_fi_inline(
4590 inode, leaf, fi, path->slots[0],
4591 found_key.offset);
4592 }
4593 item_end--;
4594 }
4595 if (found_type > min_type) {
4596 del_item = 1;
4597 } else {
4598 if (item_end < new_size)
4599 break;
4600 if (found_key.offset >= new_size)
4601 del_item = 1;
4602 else
4603 del_item = 0;
4604 }
4605 found_extent = 0;
4606 /* FIXME, shrink the extent if the ref count is only 1 */
4607 if (found_type != BTRFS_EXTENT_DATA_KEY)
4608 goto delete;
4609
4610 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4611 u64 num_dec;
4612
4613 clear_start = found_key.offset;
4614 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4615 if (!del_item) {
4616 u64 orig_num_bytes =
4617 btrfs_file_extent_num_bytes(leaf, fi);
4618 extent_num_bytes = ALIGN(new_size -
4619 found_key.offset,
4620 fs_info->sectorsize);
4621 clear_start = ALIGN(new_size, fs_info->sectorsize);
4622 btrfs_set_file_extent_num_bytes(leaf, fi,
4623 extent_num_bytes);
4624 num_dec = (orig_num_bytes -
4625 extent_num_bytes);
4626 if (test_bit(BTRFS_ROOT_SHAREABLE,
4627 &root->state) &&
4628 extent_start != 0)
4629 inode_sub_bytes(&inode->vfs_inode,
4630 num_dec);
4631 btrfs_mark_buffer_dirty(leaf);
4632 } else {
4633 extent_num_bytes =
4634 btrfs_file_extent_disk_num_bytes(leaf,
4635 fi);
4636 extent_offset = found_key.offset -
4637 btrfs_file_extent_offset(leaf, fi);
4638
4639 /* FIXME blocksize != 4096 */
4640 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4641 if (extent_start != 0) {
4642 found_extent = 1;
4643 if (test_bit(BTRFS_ROOT_SHAREABLE,
4644 &root->state))
4645 inode_sub_bytes(&inode->vfs_inode,
4646 num_dec);
4647 }
4648 }
4649 clear_len = num_dec;
4650 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4651 /*
4652 * we can't truncate inline items that have had
4653 * special encodings
4654 */
4655 if (!del_item &&
4656 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4657 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4658 btrfs_file_extent_compression(leaf, fi) == 0) {
4659 u32 size = (u32)(new_size - found_key.offset);
4660
4661 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4662 size = btrfs_file_extent_calc_inline_size(size);
4663 btrfs_truncate_item(path, size, 1);
4664 } else if (!del_item) {
4665 /*
4666 * We have to bail so the last_size is set to
4667 * just before this extent.
4668 */
4669 ret = NEED_TRUNCATE_BLOCK;
4670 break;
4671 } else {
4672 /*
4673 * Inline extents are special, we just treat
4674 * them as a full sector worth in the file
4675 * extent tree just for simplicity sake.
4676 */
4677 clear_len = fs_info->sectorsize;
4678 }
4679
4680 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4681 inode_sub_bytes(&inode->vfs_inode,
4682 item_end + 1 - new_size);
4683 }
4684 delete:
4685 /*
4686 * We use btrfs_truncate_inode_items() to clean up log trees for
4687 * multiple fsyncs, and in this case we don't want to clear the
4688 * file extent range because it's just the log.
4689 */
4690 if (root == inode->root) {
4691 ret = btrfs_inode_clear_file_extent_range(inode,
4692 clear_start, clear_len);
4693 if (ret) {
4694 btrfs_abort_transaction(trans, ret);
4695 break;
4696 }
4697 }
4698
4699 if (del_item)
4700 last_size = found_key.offset;
4701 else
4702 last_size = new_size;
4703 if (del_item) {
4704 if (!pending_del_nr) {
4705 /* no pending yet, add ourselves */
4706 pending_del_slot = path->slots[0];
4707 pending_del_nr = 1;
4708 } else if (pending_del_nr &&
4709 path->slots[0] + 1 == pending_del_slot) {
4710 /* hop on the pending chunk */
4711 pending_del_nr++;
4712 pending_del_slot = path->slots[0];
4713 } else {
4714 BUG();
4715 }
4716 } else {
4717 break;
4718 }
4719 should_throttle = false;
4720
4721 if (found_extent &&
4722 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4723 struct btrfs_ref ref = { 0 };
4724
4725 bytes_deleted += extent_num_bytes;
4726
4727 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4728 extent_start, extent_num_bytes, 0);
4729 ref.real_root = root->root_key.objectid;
4730 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4731 ino, extent_offset);
4732 ret = btrfs_free_extent(trans, &ref);
4733 if (ret) {
4734 btrfs_abort_transaction(trans, ret);
4735 break;
4736 }
4737 if (be_nice) {
4738 if (btrfs_should_throttle_delayed_refs(trans))
4739 should_throttle = true;
4740 }
4741 }
4742
4743 if (found_type == BTRFS_INODE_ITEM_KEY)
4744 break;
4745
4746 if (path->slots[0] == 0 ||
4747 path->slots[0] != pending_del_slot ||
4748 should_throttle) {
4749 if (pending_del_nr) {
4750 ret = btrfs_del_items(trans, root, path,
4751 pending_del_slot,
4752 pending_del_nr);
4753 if (ret) {
4754 btrfs_abort_transaction(trans, ret);
4755 break;
4756 }
4757 pending_del_nr = 0;
4758 }
4759 btrfs_release_path(path);
4760
4761 /*
4762 * We can generate a lot of delayed refs, so we need to
4763 * throttle every once and a while and make sure we're
4764 * adding enough space to keep up with the work we are
4765 * generating. Since we hold a transaction here we
4766 * can't flush, and we don't want to FLUSH_LIMIT because
4767 * we could have generated too many delayed refs to
4768 * actually allocate, so just bail if we're short and
4769 * let the normal reservation dance happen higher up.
4770 */
4771 if (should_throttle) {
4772 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4773 BTRFS_RESERVE_NO_FLUSH);
4774 if (ret) {
4775 ret = -EAGAIN;
4776 break;
4777 }
4778 }
4779 goto search_again;
4780 } else {
4781 path->slots[0]--;
4782 }
4783 }
4784 out:
4785 if (ret >= 0 && pending_del_nr) {
4786 int err;
4787
4788 err = btrfs_del_items(trans, root, path, pending_del_slot,
4789 pending_del_nr);
4790 if (err) {
4791 btrfs_abort_transaction(trans, err);
4792 ret = err;
4793 }
4794 }
4795 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4796 ASSERT(last_size >= new_size);
4797 if (!ret && last_size > new_size)
4798 last_size = new_size;
4799 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4800 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4801 &cached_state);
4802 }
4803
4804 btrfs_free_path(path);
4805 return ret;
4806 }
4807
4808 /*
4809 * btrfs_truncate_block - read, zero a chunk and write a block
4810 * @inode - inode that we're zeroing
4811 * @from - the offset to start zeroing
4812 * @len - the length to zero, 0 to zero the entire range respective to the
4813 * offset
4814 * @front - zero up to the offset instead of from the offset on
4815 *
4816 * This will find the block for the "from" offset and cow the block and zero the
4817 * part we want to zero. This is used with truncate and hole punching.
4818 */
4819 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4820 int front)
4821 {
4822 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4823 struct address_space *mapping = inode->vfs_inode.i_mapping;
4824 struct extent_io_tree *io_tree = &inode->io_tree;
4825 struct btrfs_ordered_extent *ordered;
4826 struct extent_state *cached_state = NULL;
4827 struct extent_changeset *data_reserved = NULL;
4828 char *kaddr;
4829 bool only_release_metadata = false;
4830 u32 blocksize = fs_info->sectorsize;
4831 pgoff_t index = from >> PAGE_SHIFT;
4832 unsigned offset = from & (blocksize - 1);
4833 struct page *page;
4834 gfp_t mask = btrfs_alloc_write_mask(mapping);
4835 size_t write_bytes = blocksize;
4836 int ret = 0;
4837 u64 block_start;
4838 u64 block_end;
4839
4840 if (IS_ALIGNED(offset, blocksize) &&
4841 (!len || IS_ALIGNED(len, blocksize)))
4842 goto out;
4843
4844 block_start = round_down(from, blocksize);
4845 block_end = block_start + blocksize - 1;
4846
4847 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4848 blocksize);
4849 if (ret < 0) {
4850 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4851 /* For nocow case, no need to reserve data space */
4852 only_release_metadata = true;
4853 } else {
4854 goto out;
4855 }
4856 }
4857 ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4858 if (ret < 0) {
4859 if (!only_release_metadata)
4860 btrfs_free_reserved_data_space(inode, data_reserved,
4861 block_start, blocksize);
4862 goto out;
4863 }
4864 again:
4865 page = find_or_create_page(mapping, index, mask);
4866 if (!page) {
4867 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4868 blocksize, true);
4869 btrfs_delalloc_release_extents(inode, blocksize);
4870 ret = -ENOMEM;
4871 goto out;
4872 }
4873 ret = set_page_extent_mapped(page);
4874 if (ret < 0)
4875 goto out_unlock;
4876
4877 if (!PageUptodate(page)) {
4878 ret = btrfs_readpage(NULL, page);
4879 lock_page(page);
4880 if (page->mapping != mapping) {
4881 unlock_page(page);
4882 put_page(page);
4883 goto again;
4884 }
4885 if (!PageUptodate(page)) {
4886 ret = -EIO;
4887 goto out_unlock;
4888 }
4889 }
4890 wait_on_page_writeback(page);
4891
4892 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4893
4894 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4895 if (ordered) {
4896 unlock_extent_cached(io_tree, block_start, block_end,
4897 &cached_state);
4898 unlock_page(page);
4899 put_page(page);
4900 btrfs_start_ordered_extent(ordered, 1);
4901 btrfs_put_ordered_extent(ordered);
4902 goto again;
4903 }
4904
4905 clear_extent_bit(&inode->io_tree, block_start, block_end,
4906 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4907 0, 0, &cached_state);
4908
4909 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4910 &cached_state);
4911 if (ret) {
4912 unlock_extent_cached(io_tree, block_start, block_end,
4913 &cached_state);
4914 goto out_unlock;
4915 }
4916
4917 if (offset != blocksize) {
4918 if (!len)
4919 len = blocksize - offset;
4920 kaddr = kmap(page);
4921 if (front)
4922 memset(kaddr + (block_start - page_offset(page)),
4923 0, offset);
4924 else
4925 memset(kaddr + (block_start - page_offset(page)) + offset,
4926 0, len);
4927 flush_dcache_page(page);
4928 kunmap(page);
4929 }
4930 ClearPageChecked(page);
4931 set_page_dirty(page);
4932 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4933
4934 if (only_release_metadata)
4935 set_extent_bit(&inode->io_tree, block_start, block_end,
4936 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4937
4938 out_unlock:
4939 if (ret) {
4940 if (only_release_metadata)
4941 btrfs_delalloc_release_metadata(inode, blocksize, true);
4942 else
4943 btrfs_delalloc_release_space(inode, data_reserved,
4944 block_start, blocksize, true);
4945 }
4946 btrfs_delalloc_release_extents(inode, blocksize);
4947 unlock_page(page);
4948 put_page(page);
4949 out:
4950 if (only_release_metadata)
4951 btrfs_check_nocow_unlock(inode);
4952 extent_changeset_free(data_reserved);
4953 return ret;
4954 }
4955
4956 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4957 u64 offset, u64 len)
4958 {
4959 struct btrfs_fs_info *fs_info = root->fs_info;
4960 struct btrfs_trans_handle *trans;
4961 struct btrfs_drop_extents_args drop_args = { 0 };
4962 int ret;
4963
4964 /*
4965 * Still need to make sure the inode looks like it's been updated so
4966 * that any holes get logged if we fsync.
4967 */
4968 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4969 inode->last_trans = fs_info->generation;
4970 inode->last_sub_trans = root->log_transid;
4971 inode->last_log_commit = root->last_log_commit;
4972 return 0;
4973 }
4974
4975 /*
4976 * 1 - for the one we're dropping
4977 * 1 - for the one we're adding
4978 * 1 - for updating the inode.
4979 */
4980 trans = btrfs_start_transaction(root, 3);
4981 if (IS_ERR(trans))
4982 return PTR_ERR(trans);
4983
4984 drop_args.start = offset;
4985 drop_args.end = offset + len;
4986 drop_args.drop_cache = true;
4987
4988 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4989 if (ret) {
4990 btrfs_abort_transaction(trans, ret);
4991 btrfs_end_transaction(trans);
4992 return ret;
4993 }
4994
4995 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4996 offset, 0, 0, len, 0, len, 0, 0, 0);
4997 if (ret) {
4998 btrfs_abort_transaction(trans, ret);
4999 } else {
5000 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5001 btrfs_update_inode(trans, root, inode);
5002 }
5003 btrfs_end_transaction(trans);
5004 return ret;
5005 }
5006
5007 /*
5008 * This function puts in dummy file extents for the area we're creating a hole
5009 * for. So if we are truncating this file to a larger size we need to insert
5010 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5011 * the range between oldsize and size
5012 */
5013 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5014 {
5015 struct btrfs_root *root = inode->root;
5016 struct btrfs_fs_info *fs_info = root->fs_info;
5017 struct extent_io_tree *io_tree = &inode->io_tree;
5018 struct extent_map *em = NULL;
5019 struct extent_state *cached_state = NULL;
5020 struct extent_map_tree *em_tree = &inode->extent_tree;
5021 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5022 u64 block_end = ALIGN(size, fs_info->sectorsize);
5023 u64 last_byte;
5024 u64 cur_offset;
5025 u64 hole_size;
5026 int err = 0;
5027
5028 /*
5029 * If our size started in the middle of a block we need to zero out the
5030 * rest of the block before we expand the i_size, otherwise we could
5031 * expose stale data.
5032 */
5033 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5034 if (err)
5035 return err;
5036
5037 if (size <= hole_start)
5038 return 0;
5039
5040 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5041 &cached_state);
5042 cur_offset = hole_start;
5043 while (1) {
5044 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5045 block_end - cur_offset);
5046 if (IS_ERR(em)) {
5047 err = PTR_ERR(em);
5048 em = NULL;
5049 break;
5050 }
5051 last_byte = min(extent_map_end(em), block_end);
5052 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5053 hole_size = last_byte - cur_offset;
5054
5055 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5056 struct extent_map *hole_em;
5057
5058 err = maybe_insert_hole(root, inode, cur_offset,
5059 hole_size);
5060 if (err)
5061 break;
5062
5063 err = btrfs_inode_set_file_extent_range(inode,
5064 cur_offset, hole_size);
5065 if (err)
5066 break;
5067
5068 btrfs_drop_extent_cache(inode, cur_offset,
5069 cur_offset + hole_size - 1, 0);
5070 hole_em = alloc_extent_map();
5071 if (!hole_em) {
5072 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5073 &inode->runtime_flags);
5074 goto next;
5075 }
5076 hole_em->start = cur_offset;
5077 hole_em->len = hole_size;
5078 hole_em->orig_start = cur_offset;
5079
5080 hole_em->block_start = EXTENT_MAP_HOLE;
5081 hole_em->block_len = 0;
5082 hole_em->orig_block_len = 0;
5083 hole_em->ram_bytes = hole_size;
5084 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5085 hole_em->generation = fs_info->generation;
5086
5087 while (1) {
5088 write_lock(&em_tree->lock);
5089 err = add_extent_mapping(em_tree, hole_em, 1);
5090 write_unlock(&em_tree->lock);
5091 if (err != -EEXIST)
5092 break;
5093 btrfs_drop_extent_cache(inode, cur_offset,
5094 cur_offset +
5095 hole_size - 1, 0);
5096 }
5097 free_extent_map(hole_em);
5098 } else {
5099 err = btrfs_inode_set_file_extent_range(inode,
5100 cur_offset, hole_size);
5101 if (err)
5102 break;
5103 }
5104 next:
5105 free_extent_map(em);
5106 em = NULL;
5107 cur_offset = last_byte;
5108 if (cur_offset >= block_end)
5109 break;
5110 }
5111 free_extent_map(em);
5112 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5113 return err;
5114 }
5115
5116 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5117 {
5118 struct btrfs_root *root = BTRFS_I(inode)->root;
5119 struct btrfs_trans_handle *trans;
5120 loff_t oldsize = i_size_read(inode);
5121 loff_t newsize = attr->ia_size;
5122 int mask = attr->ia_valid;
5123 int ret;
5124
5125 /*
5126 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5127 * special case where we need to update the times despite not having
5128 * these flags set. For all other operations the VFS set these flags
5129 * explicitly if it wants a timestamp update.
5130 */
5131 if (newsize != oldsize) {
5132 inode_inc_iversion(inode);
5133 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5134 inode->i_ctime = inode->i_mtime =
5135 current_time(inode);
5136 }
5137
5138 if (newsize > oldsize) {
5139 /*
5140 * Don't do an expanding truncate while snapshotting is ongoing.
5141 * This is to ensure the snapshot captures a fully consistent
5142 * state of this file - if the snapshot captures this expanding
5143 * truncation, it must capture all writes that happened before
5144 * this truncation.
5145 */
5146 btrfs_drew_write_lock(&root->snapshot_lock);
5147 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5148 if (ret) {
5149 btrfs_drew_write_unlock(&root->snapshot_lock);
5150 return ret;
5151 }
5152
5153 trans = btrfs_start_transaction(root, 1);
5154 if (IS_ERR(trans)) {
5155 btrfs_drew_write_unlock(&root->snapshot_lock);
5156 return PTR_ERR(trans);
5157 }
5158
5159 i_size_write(inode, newsize);
5160 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5161 pagecache_isize_extended(inode, oldsize, newsize);
5162 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5163 btrfs_drew_write_unlock(&root->snapshot_lock);
5164 btrfs_end_transaction(trans);
5165 } else {
5166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5167
5168 if (btrfs_is_zoned(fs_info)) {
5169 ret = btrfs_wait_ordered_range(inode,
5170 ALIGN(newsize, fs_info->sectorsize),
5171 (u64)-1);
5172 if (ret)
5173 return ret;
5174 }
5175
5176 /*
5177 * We're truncating a file that used to have good data down to
5178 * zero. Make sure any new writes to the file get on disk
5179 * on close.
5180 */
5181 if (newsize == 0)
5182 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5183 &BTRFS_I(inode)->runtime_flags);
5184
5185 truncate_setsize(inode, newsize);
5186
5187 inode_dio_wait(inode);
5188
5189 ret = btrfs_truncate(inode, newsize == oldsize);
5190 if (ret && inode->i_nlink) {
5191 int err;
5192
5193 /*
5194 * Truncate failed, so fix up the in-memory size. We
5195 * adjusted disk_i_size down as we removed extents, so
5196 * wait for disk_i_size to be stable and then update the
5197 * in-memory size to match.
5198 */
5199 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5200 if (err)
5201 return err;
5202 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5203 }
5204 }
5205
5206 return ret;
5207 }
5208
5209 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5210 struct iattr *attr)
5211 {
5212 struct inode *inode = d_inode(dentry);
5213 struct btrfs_root *root = BTRFS_I(inode)->root;
5214 int err;
5215
5216 if (btrfs_root_readonly(root))
5217 return -EROFS;
5218
5219 err = setattr_prepare(&init_user_ns, dentry, attr);
5220 if (err)
5221 return err;
5222
5223 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5224 err = btrfs_setsize(inode, attr);
5225 if (err)
5226 return err;
5227 }
5228
5229 if (attr->ia_valid) {
5230 setattr_copy(&init_user_ns, inode, attr);
5231 inode_inc_iversion(inode);
5232 err = btrfs_dirty_inode(inode);
5233
5234 if (!err && attr->ia_valid & ATTR_MODE)
5235 err = posix_acl_chmod(&init_user_ns, inode,
5236 inode->i_mode);
5237 }
5238
5239 return err;
5240 }
5241
5242 /*
5243 * While truncating the inode pages during eviction, we get the VFS calling
5244 * btrfs_invalidatepage() against each page of the inode. This is slow because
5245 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5246 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5247 * extent_state structures over and over, wasting lots of time.
5248 *
5249 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5250 * those expensive operations on a per page basis and do only the ordered io
5251 * finishing, while we release here the extent_map and extent_state structures,
5252 * without the excessive merging and splitting.
5253 */
5254 static void evict_inode_truncate_pages(struct inode *inode)
5255 {
5256 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5257 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5258 struct rb_node *node;
5259
5260 ASSERT(inode->i_state & I_FREEING);
5261 truncate_inode_pages_final(&inode->i_data);
5262
5263 write_lock(&map_tree->lock);
5264 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5265 struct extent_map *em;
5266
5267 node = rb_first_cached(&map_tree->map);
5268 em = rb_entry(node, struct extent_map, rb_node);
5269 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5270 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5271 remove_extent_mapping(map_tree, em);
5272 free_extent_map(em);
5273 if (need_resched()) {
5274 write_unlock(&map_tree->lock);
5275 cond_resched();
5276 write_lock(&map_tree->lock);
5277 }
5278 }
5279 write_unlock(&map_tree->lock);
5280
5281 /*
5282 * Keep looping until we have no more ranges in the io tree.
5283 * We can have ongoing bios started by readahead that have
5284 * their endio callback (extent_io.c:end_bio_extent_readpage)
5285 * still in progress (unlocked the pages in the bio but did not yet
5286 * unlocked the ranges in the io tree). Therefore this means some
5287 * ranges can still be locked and eviction started because before
5288 * submitting those bios, which are executed by a separate task (work
5289 * queue kthread), inode references (inode->i_count) were not taken
5290 * (which would be dropped in the end io callback of each bio).
5291 * Therefore here we effectively end up waiting for those bios and
5292 * anyone else holding locked ranges without having bumped the inode's
5293 * reference count - if we don't do it, when they access the inode's
5294 * io_tree to unlock a range it may be too late, leading to an
5295 * use-after-free issue.
5296 */
5297 spin_lock(&io_tree->lock);
5298 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5299 struct extent_state *state;
5300 struct extent_state *cached_state = NULL;
5301 u64 start;
5302 u64 end;
5303 unsigned state_flags;
5304
5305 node = rb_first(&io_tree->state);
5306 state = rb_entry(node, struct extent_state, rb_node);
5307 start = state->start;
5308 end = state->end;
5309 state_flags = state->state;
5310 spin_unlock(&io_tree->lock);
5311
5312 lock_extent_bits(io_tree, start, end, &cached_state);
5313
5314 /*
5315 * If still has DELALLOC flag, the extent didn't reach disk,
5316 * and its reserved space won't be freed by delayed_ref.
5317 * So we need to free its reserved space here.
5318 * (Refer to comment in btrfs_invalidatepage, case 2)
5319 *
5320 * Note, end is the bytenr of last byte, so we need + 1 here.
5321 */
5322 if (state_flags & EXTENT_DELALLOC)
5323 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5324 end - start + 1);
5325
5326 clear_extent_bit(io_tree, start, end,
5327 EXTENT_LOCKED | EXTENT_DELALLOC |
5328 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5329 &cached_state);
5330
5331 cond_resched();
5332 spin_lock(&io_tree->lock);
5333 }
5334 spin_unlock(&io_tree->lock);
5335 }
5336
5337 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5338 struct btrfs_block_rsv *rsv)
5339 {
5340 struct btrfs_fs_info *fs_info = root->fs_info;
5341 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5342 struct btrfs_trans_handle *trans;
5343 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5344 int ret;
5345
5346 /*
5347 * Eviction should be taking place at some place safe because of our
5348 * delayed iputs. However the normal flushing code will run delayed
5349 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5350 *
5351 * We reserve the delayed_refs_extra here again because we can't use
5352 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5353 * above. We reserve our extra bit here because we generate a ton of
5354 * delayed refs activity by truncating.
5355 *
5356 * If we cannot make our reservation we'll attempt to steal from the
5357 * global reserve, because we really want to be able to free up space.
5358 */
5359 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5360 BTRFS_RESERVE_FLUSH_EVICT);
5361 if (ret) {
5362 /*
5363 * Try to steal from the global reserve if there is space for
5364 * it.
5365 */
5366 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5367 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5368 btrfs_warn(fs_info,
5369 "could not allocate space for delete; will truncate on mount");
5370 return ERR_PTR(-ENOSPC);
5371 }
5372 delayed_refs_extra = 0;
5373 }
5374
5375 trans = btrfs_join_transaction(root);
5376 if (IS_ERR(trans))
5377 return trans;
5378
5379 if (delayed_refs_extra) {
5380 trans->block_rsv = &fs_info->trans_block_rsv;
5381 trans->bytes_reserved = delayed_refs_extra;
5382 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5383 delayed_refs_extra, 1);
5384 }
5385 return trans;
5386 }
5387
5388 void btrfs_evict_inode(struct inode *inode)
5389 {
5390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5391 struct btrfs_trans_handle *trans;
5392 struct btrfs_root *root = BTRFS_I(inode)->root;
5393 struct btrfs_block_rsv *rsv;
5394 int ret;
5395
5396 trace_btrfs_inode_evict(inode);
5397
5398 if (!root) {
5399 clear_inode(inode);
5400 return;
5401 }
5402
5403 evict_inode_truncate_pages(inode);
5404
5405 if (inode->i_nlink &&
5406 ((btrfs_root_refs(&root->root_item) != 0 &&
5407 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5408 btrfs_is_free_space_inode(BTRFS_I(inode))))
5409 goto no_delete;
5410
5411 if (is_bad_inode(inode))
5412 goto no_delete;
5413
5414 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5415
5416 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5417 goto no_delete;
5418
5419 if (inode->i_nlink > 0) {
5420 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5421 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5422 goto no_delete;
5423 }
5424
5425 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5426 if (ret)
5427 goto no_delete;
5428
5429 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5430 if (!rsv)
5431 goto no_delete;
5432 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5433 rsv->failfast = 1;
5434
5435 btrfs_i_size_write(BTRFS_I(inode), 0);
5436
5437 while (1) {
5438 trans = evict_refill_and_join(root, rsv);
5439 if (IS_ERR(trans))
5440 goto free_rsv;
5441
5442 trans->block_rsv = rsv;
5443
5444 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5445 0, 0);
5446 trans->block_rsv = &fs_info->trans_block_rsv;
5447 btrfs_end_transaction(trans);
5448 btrfs_btree_balance_dirty(fs_info);
5449 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5450 goto free_rsv;
5451 else if (!ret)
5452 break;
5453 }
5454
5455 /*
5456 * Errors here aren't a big deal, it just means we leave orphan items in
5457 * the tree. They will be cleaned up on the next mount. If the inode
5458 * number gets reused, cleanup deletes the orphan item without doing
5459 * anything, and unlink reuses the existing orphan item.
5460 *
5461 * If it turns out that we are dropping too many of these, we might want
5462 * to add a mechanism for retrying these after a commit.
5463 */
5464 trans = evict_refill_and_join(root, rsv);
5465 if (!IS_ERR(trans)) {
5466 trans->block_rsv = rsv;
5467 btrfs_orphan_del(trans, BTRFS_I(inode));
5468 trans->block_rsv = &fs_info->trans_block_rsv;
5469 btrfs_end_transaction(trans);
5470 }
5471
5472 free_rsv:
5473 btrfs_free_block_rsv(fs_info, rsv);
5474 no_delete:
5475 /*
5476 * If we didn't successfully delete, the orphan item will still be in
5477 * the tree and we'll retry on the next mount. Again, we might also want
5478 * to retry these periodically in the future.
5479 */
5480 btrfs_remove_delayed_node(BTRFS_I(inode));
5481 clear_inode(inode);
5482 }
5483
5484 /*
5485 * Return the key found in the dir entry in the location pointer, fill @type
5486 * with BTRFS_FT_*, and return 0.
5487 *
5488 * If no dir entries were found, returns -ENOENT.
5489 * If found a corrupted location in dir entry, returns -EUCLEAN.
5490 */
5491 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5492 struct btrfs_key *location, u8 *type)
5493 {
5494 const char *name = dentry->d_name.name;
5495 int namelen = dentry->d_name.len;
5496 struct btrfs_dir_item *di;
5497 struct btrfs_path *path;
5498 struct btrfs_root *root = BTRFS_I(dir)->root;
5499 int ret = 0;
5500
5501 path = btrfs_alloc_path();
5502 if (!path)
5503 return -ENOMEM;
5504
5505 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5506 name, namelen, 0);
5507 if (IS_ERR_OR_NULL(di)) {
5508 ret = di ? PTR_ERR(di) : -ENOENT;
5509 goto out;
5510 }
5511
5512 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5513 if (location->type != BTRFS_INODE_ITEM_KEY &&
5514 location->type != BTRFS_ROOT_ITEM_KEY) {
5515 ret = -EUCLEAN;
5516 btrfs_warn(root->fs_info,
5517 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5518 __func__, name, btrfs_ino(BTRFS_I(dir)),
5519 location->objectid, location->type, location->offset);
5520 }
5521 if (!ret)
5522 *type = btrfs_dir_type(path->nodes[0], di);
5523 out:
5524 btrfs_free_path(path);
5525 return ret;
5526 }
5527
5528 /*
5529 * when we hit a tree root in a directory, the btrfs part of the inode
5530 * needs to be changed to reflect the root directory of the tree root. This
5531 * is kind of like crossing a mount point.
5532 */
5533 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5534 struct inode *dir,
5535 struct dentry *dentry,
5536 struct btrfs_key *location,
5537 struct btrfs_root **sub_root)
5538 {
5539 struct btrfs_path *path;
5540 struct btrfs_root *new_root;
5541 struct btrfs_root_ref *ref;
5542 struct extent_buffer *leaf;
5543 struct btrfs_key key;
5544 int ret;
5545 int err = 0;
5546
5547 path = btrfs_alloc_path();
5548 if (!path) {
5549 err = -ENOMEM;
5550 goto out;
5551 }
5552
5553 err = -ENOENT;
5554 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5555 key.type = BTRFS_ROOT_REF_KEY;
5556 key.offset = location->objectid;
5557
5558 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5559 if (ret) {
5560 if (ret < 0)
5561 err = ret;
5562 goto out;
5563 }
5564
5565 leaf = path->nodes[0];
5566 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5567 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5568 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5569 goto out;
5570
5571 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5572 (unsigned long)(ref + 1),
5573 dentry->d_name.len);
5574 if (ret)
5575 goto out;
5576
5577 btrfs_release_path(path);
5578
5579 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5580 if (IS_ERR(new_root)) {
5581 err = PTR_ERR(new_root);
5582 goto out;
5583 }
5584
5585 *sub_root = new_root;
5586 location->objectid = btrfs_root_dirid(&new_root->root_item);
5587 location->type = BTRFS_INODE_ITEM_KEY;
5588 location->offset = 0;
5589 err = 0;
5590 out:
5591 btrfs_free_path(path);
5592 return err;
5593 }
5594
5595 static void inode_tree_add(struct inode *inode)
5596 {
5597 struct btrfs_root *root = BTRFS_I(inode)->root;
5598 struct btrfs_inode *entry;
5599 struct rb_node **p;
5600 struct rb_node *parent;
5601 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5602 u64 ino = btrfs_ino(BTRFS_I(inode));
5603
5604 if (inode_unhashed(inode))
5605 return;
5606 parent = NULL;
5607 spin_lock(&root->inode_lock);
5608 p = &root->inode_tree.rb_node;
5609 while (*p) {
5610 parent = *p;
5611 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5612
5613 if (ino < btrfs_ino(entry))
5614 p = &parent->rb_left;
5615 else if (ino > btrfs_ino(entry))
5616 p = &parent->rb_right;
5617 else {
5618 WARN_ON(!(entry->vfs_inode.i_state &
5619 (I_WILL_FREE | I_FREEING)));
5620 rb_replace_node(parent, new, &root->inode_tree);
5621 RB_CLEAR_NODE(parent);
5622 spin_unlock(&root->inode_lock);
5623 return;
5624 }
5625 }
5626 rb_link_node(new, parent, p);
5627 rb_insert_color(new, &root->inode_tree);
5628 spin_unlock(&root->inode_lock);
5629 }
5630
5631 static void inode_tree_del(struct btrfs_inode *inode)
5632 {
5633 struct btrfs_root *root = inode->root;
5634 int empty = 0;
5635
5636 spin_lock(&root->inode_lock);
5637 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5638 rb_erase(&inode->rb_node, &root->inode_tree);
5639 RB_CLEAR_NODE(&inode->rb_node);
5640 empty = RB_EMPTY_ROOT(&root->inode_tree);
5641 }
5642 spin_unlock(&root->inode_lock);
5643
5644 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5645 spin_lock(&root->inode_lock);
5646 empty = RB_EMPTY_ROOT(&root->inode_tree);
5647 spin_unlock(&root->inode_lock);
5648 if (empty)
5649 btrfs_add_dead_root(root);
5650 }
5651 }
5652
5653
5654 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5655 {
5656 struct btrfs_iget_args *args = p;
5657
5658 inode->i_ino = args->ino;
5659 BTRFS_I(inode)->location.objectid = args->ino;
5660 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5661 BTRFS_I(inode)->location.offset = 0;
5662 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5663 BUG_ON(args->root && !BTRFS_I(inode)->root);
5664 return 0;
5665 }
5666
5667 static int btrfs_find_actor(struct inode *inode, void *opaque)
5668 {
5669 struct btrfs_iget_args *args = opaque;
5670
5671 return args->ino == BTRFS_I(inode)->location.objectid &&
5672 args->root == BTRFS_I(inode)->root;
5673 }
5674
5675 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5676 struct btrfs_root *root)
5677 {
5678 struct inode *inode;
5679 struct btrfs_iget_args args;
5680 unsigned long hashval = btrfs_inode_hash(ino, root);
5681
5682 args.ino = ino;
5683 args.root = root;
5684
5685 inode = iget5_locked(s, hashval, btrfs_find_actor,
5686 btrfs_init_locked_inode,
5687 (void *)&args);
5688 return inode;
5689 }
5690
5691 /*
5692 * Get an inode object given its inode number and corresponding root.
5693 * Path can be preallocated to prevent recursing back to iget through
5694 * allocator. NULL is also valid but may require an additional allocation
5695 * later.
5696 */
5697 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5698 struct btrfs_root *root, struct btrfs_path *path)
5699 {
5700 struct inode *inode;
5701
5702 inode = btrfs_iget_locked(s, ino, root);
5703 if (!inode)
5704 return ERR_PTR(-ENOMEM);
5705
5706 if (inode->i_state & I_NEW) {
5707 int ret;
5708
5709 ret = btrfs_read_locked_inode(inode, path);
5710 if (!ret) {
5711 inode_tree_add(inode);
5712 unlock_new_inode(inode);
5713 } else {
5714 iget_failed(inode);
5715 /*
5716 * ret > 0 can come from btrfs_search_slot called by
5717 * btrfs_read_locked_inode, this means the inode item
5718 * was not found.
5719 */
5720 if (ret > 0)
5721 ret = -ENOENT;
5722 inode = ERR_PTR(ret);
5723 }
5724 }
5725
5726 return inode;
5727 }
5728
5729 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5730 {
5731 return btrfs_iget_path(s, ino, root, NULL);
5732 }
5733
5734 static struct inode *new_simple_dir(struct super_block *s,
5735 struct btrfs_key *key,
5736 struct btrfs_root *root)
5737 {
5738 struct inode *inode = new_inode(s);
5739
5740 if (!inode)
5741 return ERR_PTR(-ENOMEM);
5742
5743 BTRFS_I(inode)->root = btrfs_grab_root(root);
5744 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5745 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5746
5747 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5748 /*
5749 * We only need lookup, the rest is read-only and there's no inode
5750 * associated with the dentry
5751 */
5752 inode->i_op = &simple_dir_inode_operations;
5753 inode->i_opflags &= ~IOP_XATTR;
5754 inode->i_fop = &simple_dir_operations;
5755 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5756 inode->i_mtime = current_time(inode);
5757 inode->i_atime = inode->i_mtime;
5758 inode->i_ctime = inode->i_mtime;
5759 BTRFS_I(inode)->i_otime = inode->i_mtime;
5760
5761 return inode;
5762 }
5763
5764 static inline u8 btrfs_inode_type(struct inode *inode)
5765 {
5766 /*
5767 * Compile-time asserts that generic FT_* types still match
5768 * BTRFS_FT_* types
5769 */
5770 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5771 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5772 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5773 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5774 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5775 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5776 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5777 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5778
5779 return fs_umode_to_ftype(inode->i_mode);
5780 }
5781
5782 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5783 {
5784 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5785 struct inode *inode;
5786 struct btrfs_root *root = BTRFS_I(dir)->root;
5787 struct btrfs_root *sub_root = root;
5788 struct btrfs_key location;
5789 u8 di_type = 0;
5790 int ret = 0;
5791
5792 if (dentry->d_name.len > BTRFS_NAME_LEN)
5793 return ERR_PTR(-ENAMETOOLONG);
5794
5795 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5796 if (ret < 0)
5797 return ERR_PTR(ret);
5798
5799 if (location.type == BTRFS_INODE_ITEM_KEY) {
5800 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5801 if (IS_ERR(inode))
5802 return inode;
5803
5804 /* Do extra check against inode mode with di_type */
5805 if (btrfs_inode_type(inode) != di_type) {
5806 btrfs_crit(fs_info,
5807 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5808 inode->i_mode, btrfs_inode_type(inode),
5809 di_type);
5810 iput(inode);
5811 return ERR_PTR(-EUCLEAN);
5812 }
5813 return inode;
5814 }
5815
5816 ret = fixup_tree_root_location(fs_info, dir, dentry,
5817 &location, &sub_root);
5818 if (ret < 0) {
5819 if (ret != -ENOENT)
5820 inode = ERR_PTR(ret);
5821 else
5822 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5823 } else {
5824 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5825 }
5826 if (root != sub_root)
5827 btrfs_put_root(sub_root);
5828
5829 if (!IS_ERR(inode) && root != sub_root) {
5830 down_read(&fs_info->cleanup_work_sem);
5831 if (!sb_rdonly(inode->i_sb))
5832 ret = btrfs_orphan_cleanup(sub_root);
5833 up_read(&fs_info->cleanup_work_sem);
5834 if (ret) {
5835 iput(inode);
5836 inode = ERR_PTR(ret);
5837 }
5838 }
5839
5840 return inode;
5841 }
5842
5843 static int btrfs_dentry_delete(const struct dentry *dentry)
5844 {
5845 struct btrfs_root *root;
5846 struct inode *inode = d_inode(dentry);
5847
5848 if (!inode && !IS_ROOT(dentry))
5849 inode = d_inode(dentry->d_parent);
5850
5851 if (inode) {
5852 root = BTRFS_I(inode)->root;
5853 if (btrfs_root_refs(&root->root_item) == 0)
5854 return 1;
5855
5856 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5857 return 1;
5858 }
5859 return 0;
5860 }
5861
5862 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5863 unsigned int flags)
5864 {
5865 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5866
5867 if (inode == ERR_PTR(-ENOENT))
5868 inode = NULL;
5869 return d_splice_alias(inode, dentry);
5870 }
5871
5872 /*
5873 * All this infrastructure exists because dir_emit can fault, and we are holding
5874 * the tree lock when doing readdir. For now just allocate a buffer and copy
5875 * our information into that, and then dir_emit from the buffer. This is
5876 * similar to what NFS does, only we don't keep the buffer around in pagecache
5877 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5878 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5879 * tree lock.
5880 */
5881 static int btrfs_opendir(struct inode *inode, struct file *file)
5882 {
5883 struct btrfs_file_private *private;
5884
5885 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5886 if (!private)
5887 return -ENOMEM;
5888 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5889 if (!private->filldir_buf) {
5890 kfree(private);
5891 return -ENOMEM;
5892 }
5893 file->private_data = private;
5894 return 0;
5895 }
5896
5897 struct dir_entry {
5898 u64 ino;
5899 u64 offset;
5900 unsigned type;
5901 int name_len;
5902 };
5903
5904 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5905 {
5906 while (entries--) {
5907 struct dir_entry *entry = addr;
5908 char *name = (char *)(entry + 1);
5909
5910 ctx->pos = get_unaligned(&entry->offset);
5911 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5912 get_unaligned(&entry->ino),
5913 get_unaligned(&entry->type)))
5914 return 1;
5915 addr += sizeof(struct dir_entry) +
5916 get_unaligned(&entry->name_len);
5917 ctx->pos++;
5918 }
5919 return 0;
5920 }
5921
5922 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5923 {
5924 struct inode *inode = file_inode(file);
5925 struct btrfs_root *root = BTRFS_I(inode)->root;
5926 struct btrfs_file_private *private = file->private_data;
5927 struct btrfs_dir_item *di;
5928 struct btrfs_key key;
5929 struct btrfs_key found_key;
5930 struct btrfs_path *path;
5931 void *addr;
5932 struct list_head ins_list;
5933 struct list_head del_list;
5934 int ret;
5935 struct extent_buffer *leaf;
5936 int slot;
5937 char *name_ptr;
5938 int name_len;
5939 int entries = 0;
5940 int total_len = 0;
5941 bool put = false;
5942 struct btrfs_key location;
5943
5944 if (!dir_emit_dots(file, ctx))
5945 return 0;
5946
5947 path = btrfs_alloc_path();
5948 if (!path)
5949 return -ENOMEM;
5950
5951 addr = private->filldir_buf;
5952 path->reada = READA_FORWARD;
5953
5954 INIT_LIST_HEAD(&ins_list);
5955 INIT_LIST_HEAD(&del_list);
5956 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5957
5958 again:
5959 key.type = BTRFS_DIR_INDEX_KEY;
5960 key.offset = ctx->pos;
5961 key.objectid = btrfs_ino(BTRFS_I(inode));
5962
5963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5964 if (ret < 0)
5965 goto err;
5966
5967 while (1) {
5968 struct dir_entry *entry;
5969
5970 leaf = path->nodes[0];
5971 slot = path->slots[0];
5972 if (slot >= btrfs_header_nritems(leaf)) {
5973 ret = btrfs_next_leaf(root, path);
5974 if (ret < 0)
5975 goto err;
5976 else if (ret > 0)
5977 break;
5978 continue;
5979 }
5980
5981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5982
5983 if (found_key.objectid != key.objectid)
5984 break;
5985 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5986 break;
5987 if (found_key.offset < ctx->pos)
5988 goto next;
5989 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5990 goto next;
5991 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5992 name_len = btrfs_dir_name_len(leaf, di);
5993 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5994 PAGE_SIZE) {
5995 btrfs_release_path(path);
5996 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5997 if (ret)
5998 goto nopos;
5999 addr = private->filldir_buf;
6000 entries = 0;
6001 total_len = 0;
6002 goto again;
6003 }
6004
6005 entry = addr;
6006 put_unaligned(name_len, &entry->name_len);
6007 name_ptr = (char *)(entry + 1);
6008 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6009 name_len);
6010 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6011 &entry->type);
6012 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6013 put_unaligned(location.objectid, &entry->ino);
6014 put_unaligned(found_key.offset, &entry->offset);
6015 entries++;
6016 addr += sizeof(struct dir_entry) + name_len;
6017 total_len += sizeof(struct dir_entry) + name_len;
6018 next:
6019 path->slots[0]++;
6020 }
6021 btrfs_release_path(path);
6022
6023 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6024 if (ret)
6025 goto nopos;
6026
6027 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6028 if (ret)
6029 goto nopos;
6030
6031 /*
6032 * Stop new entries from being returned after we return the last
6033 * entry.
6034 *
6035 * New directory entries are assigned a strictly increasing
6036 * offset. This means that new entries created during readdir
6037 * are *guaranteed* to be seen in the future by that readdir.
6038 * This has broken buggy programs which operate on names as
6039 * they're returned by readdir. Until we re-use freed offsets
6040 * we have this hack to stop new entries from being returned
6041 * under the assumption that they'll never reach this huge
6042 * offset.
6043 *
6044 * This is being careful not to overflow 32bit loff_t unless the
6045 * last entry requires it because doing so has broken 32bit apps
6046 * in the past.
6047 */
6048 if (ctx->pos >= INT_MAX)
6049 ctx->pos = LLONG_MAX;
6050 else
6051 ctx->pos = INT_MAX;
6052 nopos:
6053 ret = 0;
6054 err:
6055 if (put)
6056 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6057 btrfs_free_path(path);
6058 return ret;
6059 }
6060
6061 /*
6062 * This is somewhat expensive, updating the tree every time the
6063 * inode changes. But, it is most likely to find the inode in cache.
6064 * FIXME, needs more benchmarking...there are no reasons other than performance
6065 * to keep or drop this code.
6066 */
6067 static int btrfs_dirty_inode(struct inode *inode)
6068 {
6069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6070 struct btrfs_root *root = BTRFS_I(inode)->root;
6071 struct btrfs_trans_handle *trans;
6072 int ret;
6073
6074 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6075 return 0;
6076
6077 trans = btrfs_join_transaction(root);
6078 if (IS_ERR(trans))
6079 return PTR_ERR(trans);
6080
6081 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6082 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6083 /* whoops, lets try again with the full transaction */
6084 btrfs_end_transaction(trans);
6085 trans = btrfs_start_transaction(root, 1);
6086 if (IS_ERR(trans))
6087 return PTR_ERR(trans);
6088
6089 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6090 }
6091 btrfs_end_transaction(trans);
6092 if (BTRFS_I(inode)->delayed_node)
6093 btrfs_balance_delayed_items(fs_info);
6094
6095 return ret;
6096 }
6097
6098 /*
6099 * This is a copy of file_update_time. We need this so we can return error on
6100 * ENOSPC for updating the inode in the case of file write and mmap writes.
6101 */
6102 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6103 int flags)
6104 {
6105 struct btrfs_root *root = BTRFS_I(inode)->root;
6106 bool dirty = flags & ~S_VERSION;
6107
6108 if (btrfs_root_readonly(root))
6109 return -EROFS;
6110
6111 if (flags & S_VERSION)
6112 dirty |= inode_maybe_inc_iversion(inode, dirty);
6113 if (flags & S_CTIME)
6114 inode->i_ctime = *now;
6115 if (flags & S_MTIME)
6116 inode->i_mtime = *now;
6117 if (flags & S_ATIME)
6118 inode->i_atime = *now;
6119 return dirty ? btrfs_dirty_inode(inode) : 0;
6120 }
6121
6122 /*
6123 * find the highest existing sequence number in a directory
6124 * and then set the in-memory index_cnt variable to reflect
6125 * free sequence numbers
6126 */
6127 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6128 {
6129 struct btrfs_root *root = inode->root;
6130 struct btrfs_key key, found_key;
6131 struct btrfs_path *path;
6132 struct extent_buffer *leaf;
6133 int ret;
6134
6135 key.objectid = btrfs_ino(inode);
6136 key.type = BTRFS_DIR_INDEX_KEY;
6137 key.offset = (u64)-1;
6138
6139 path = btrfs_alloc_path();
6140 if (!path)
6141 return -ENOMEM;
6142
6143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6144 if (ret < 0)
6145 goto out;
6146 /* FIXME: we should be able to handle this */
6147 if (ret == 0)
6148 goto out;
6149 ret = 0;
6150
6151 /*
6152 * MAGIC NUMBER EXPLANATION:
6153 * since we search a directory based on f_pos we have to start at 2
6154 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6155 * else has to start at 2
6156 */
6157 if (path->slots[0] == 0) {
6158 inode->index_cnt = 2;
6159 goto out;
6160 }
6161
6162 path->slots[0]--;
6163
6164 leaf = path->nodes[0];
6165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6166
6167 if (found_key.objectid != btrfs_ino(inode) ||
6168 found_key.type != BTRFS_DIR_INDEX_KEY) {
6169 inode->index_cnt = 2;
6170 goto out;
6171 }
6172
6173 inode->index_cnt = found_key.offset + 1;
6174 out:
6175 btrfs_free_path(path);
6176 return ret;
6177 }
6178
6179 /*
6180 * helper to find a free sequence number in a given directory. This current
6181 * code is very simple, later versions will do smarter things in the btree
6182 */
6183 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6184 {
6185 int ret = 0;
6186
6187 if (dir->index_cnt == (u64)-1) {
6188 ret = btrfs_inode_delayed_dir_index_count(dir);
6189 if (ret) {
6190 ret = btrfs_set_inode_index_count(dir);
6191 if (ret)
6192 return ret;
6193 }
6194 }
6195
6196 *index = dir->index_cnt;
6197 dir->index_cnt++;
6198
6199 return ret;
6200 }
6201
6202 static int btrfs_insert_inode_locked(struct inode *inode)
6203 {
6204 struct btrfs_iget_args args;
6205
6206 args.ino = BTRFS_I(inode)->location.objectid;
6207 args.root = BTRFS_I(inode)->root;
6208
6209 return insert_inode_locked4(inode,
6210 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6211 btrfs_find_actor, &args);
6212 }
6213
6214 /*
6215 * Inherit flags from the parent inode.
6216 *
6217 * Currently only the compression flags and the cow flags are inherited.
6218 */
6219 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6220 {
6221 unsigned int flags;
6222
6223 if (!dir)
6224 return;
6225
6226 flags = BTRFS_I(dir)->flags;
6227
6228 if (flags & BTRFS_INODE_NOCOMPRESS) {
6229 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6230 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6231 } else if (flags & BTRFS_INODE_COMPRESS) {
6232 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6233 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6234 }
6235
6236 if (flags & BTRFS_INODE_NODATACOW) {
6237 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6238 if (S_ISREG(inode->i_mode))
6239 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6240 }
6241
6242 btrfs_sync_inode_flags_to_i_flags(inode);
6243 }
6244
6245 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6246 struct btrfs_root *root,
6247 struct inode *dir,
6248 const char *name, int name_len,
6249 u64 ref_objectid, u64 objectid,
6250 umode_t mode, u64 *index)
6251 {
6252 struct btrfs_fs_info *fs_info = root->fs_info;
6253 struct inode *inode;
6254 struct btrfs_inode_item *inode_item;
6255 struct btrfs_key *location;
6256 struct btrfs_path *path;
6257 struct btrfs_inode_ref *ref;
6258 struct btrfs_key key[2];
6259 u32 sizes[2];
6260 int nitems = name ? 2 : 1;
6261 unsigned long ptr;
6262 unsigned int nofs_flag;
6263 int ret;
6264
6265 path = btrfs_alloc_path();
6266 if (!path)
6267 return ERR_PTR(-ENOMEM);
6268
6269 nofs_flag = memalloc_nofs_save();
6270 inode = new_inode(fs_info->sb);
6271 memalloc_nofs_restore(nofs_flag);
6272 if (!inode) {
6273 btrfs_free_path(path);
6274 return ERR_PTR(-ENOMEM);
6275 }
6276
6277 /*
6278 * O_TMPFILE, set link count to 0, so that after this point,
6279 * we fill in an inode item with the correct link count.
6280 */
6281 if (!name)
6282 set_nlink(inode, 0);
6283
6284 /*
6285 * we have to initialize this early, so we can reclaim the inode
6286 * number if we fail afterwards in this function.
6287 */
6288 inode->i_ino = objectid;
6289
6290 if (dir && name) {
6291 trace_btrfs_inode_request(dir);
6292
6293 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6294 if (ret) {
6295 btrfs_free_path(path);
6296 iput(inode);
6297 return ERR_PTR(ret);
6298 }
6299 } else if (dir) {
6300 *index = 0;
6301 }
6302 /*
6303 * index_cnt is ignored for everything but a dir,
6304 * btrfs_set_inode_index_count has an explanation for the magic
6305 * number
6306 */
6307 BTRFS_I(inode)->index_cnt = 2;
6308 BTRFS_I(inode)->dir_index = *index;
6309 BTRFS_I(inode)->root = btrfs_grab_root(root);
6310 BTRFS_I(inode)->generation = trans->transid;
6311 inode->i_generation = BTRFS_I(inode)->generation;
6312
6313 /*
6314 * We could have gotten an inode number from somebody who was fsynced
6315 * and then removed in this same transaction, so let's just set full
6316 * sync since it will be a full sync anyway and this will blow away the
6317 * old info in the log.
6318 */
6319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6320
6321 key[0].objectid = objectid;
6322 key[0].type = BTRFS_INODE_ITEM_KEY;
6323 key[0].offset = 0;
6324
6325 sizes[0] = sizeof(struct btrfs_inode_item);
6326
6327 if (name) {
6328 /*
6329 * Start new inodes with an inode_ref. This is slightly more
6330 * efficient for small numbers of hard links since they will
6331 * be packed into one item. Extended refs will kick in if we
6332 * add more hard links than can fit in the ref item.
6333 */
6334 key[1].objectid = objectid;
6335 key[1].type = BTRFS_INODE_REF_KEY;
6336 key[1].offset = ref_objectid;
6337
6338 sizes[1] = name_len + sizeof(*ref);
6339 }
6340
6341 location = &BTRFS_I(inode)->location;
6342 location->objectid = objectid;
6343 location->offset = 0;
6344 location->type = BTRFS_INODE_ITEM_KEY;
6345
6346 ret = btrfs_insert_inode_locked(inode);
6347 if (ret < 0) {
6348 iput(inode);
6349 goto fail;
6350 }
6351
6352 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6353 if (ret != 0)
6354 goto fail_unlock;
6355
6356 inode_init_owner(&init_user_ns, inode, dir, mode);
6357 inode_set_bytes(inode, 0);
6358
6359 inode->i_mtime = current_time(inode);
6360 inode->i_atime = inode->i_mtime;
6361 inode->i_ctime = inode->i_mtime;
6362 BTRFS_I(inode)->i_otime = inode->i_mtime;
6363
6364 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6365 struct btrfs_inode_item);
6366 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6367 sizeof(*inode_item));
6368 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6369
6370 if (name) {
6371 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6372 struct btrfs_inode_ref);
6373 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6374 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6375 ptr = (unsigned long)(ref + 1);
6376 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6377 }
6378
6379 btrfs_mark_buffer_dirty(path->nodes[0]);
6380 btrfs_free_path(path);
6381
6382 btrfs_inherit_iflags(inode, dir);
6383
6384 if (S_ISREG(mode)) {
6385 if (btrfs_test_opt(fs_info, NODATASUM))
6386 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6387 if (btrfs_test_opt(fs_info, NODATACOW))
6388 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6389 BTRFS_INODE_NODATASUM;
6390 }
6391
6392 inode_tree_add(inode);
6393
6394 trace_btrfs_inode_new(inode);
6395 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6396
6397 btrfs_update_root_times(trans, root);
6398
6399 ret = btrfs_inode_inherit_props(trans, inode, dir);
6400 if (ret)
6401 btrfs_err(fs_info,
6402 "error inheriting props for ino %llu (root %llu): %d",
6403 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6404
6405 return inode;
6406
6407 fail_unlock:
6408 discard_new_inode(inode);
6409 fail:
6410 if (dir && name)
6411 BTRFS_I(dir)->index_cnt--;
6412 btrfs_free_path(path);
6413 return ERR_PTR(ret);
6414 }
6415
6416 /*
6417 * utility function to add 'inode' into 'parent_inode' with
6418 * a give name and a given sequence number.
6419 * if 'add_backref' is true, also insert a backref from the
6420 * inode to the parent directory.
6421 */
6422 int btrfs_add_link(struct btrfs_trans_handle *trans,
6423 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6424 const char *name, int name_len, int add_backref, u64 index)
6425 {
6426 int ret = 0;
6427 struct btrfs_key key;
6428 struct btrfs_root *root = parent_inode->root;
6429 u64 ino = btrfs_ino(inode);
6430 u64 parent_ino = btrfs_ino(parent_inode);
6431
6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6433 memcpy(&key, &inode->root->root_key, sizeof(key));
6434 } else {
6435 key.objectid = ino;
6436 key.type = BTRFS_INODE_ITEM_KEY;
6437 key.offset = 0;
6438 }
6439
6440 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6441 ret = btrfs_add_root_ref(trans, key.objectid,
6442 root->root_key.objectid, parent_ino,
6443 index, name, name_len);
6444 } else if (add_backref) {
6445 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6446 parent_ino, index);
6447 }
6448
6449 /* Nothing to clean up yet */
6450 if (ret)
6451 return ret;
6452
6453 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6454 btrfs_inode_type(&inode->vfs_inode), index);
6455 if (ret == -EEXIST || ret == -EOVERFLOW)
6456 goto fail_dir_item;
6457 else if (ret) {
6458 btrfs_abort_transaction(trans, ret);
6459 return ret;
6460 }
6461
6462 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6463 name_len * 2);
6464 inode_inc_iversion(&parent_inode->vfs_inode);
6465 /*
6466 * If we are replaying a log tree, we do not want to update the mtime
6467 * and ctime of the parent directory with the current time, since the
6468 * log replay procedure is responsible for setting them to their correct
6469 * values (the ones it had when the fsync was done).
6470 */
6471 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6472 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6473
6474 parent_inode->vfs_inode.i_mtime = now;
6475 parent_inode->vfs_inode.i_ctime = now;
6476 }
6477 ret = btrfs_update_inode(trans, root, parent_inode);
6478 if (ret)
6479 btrfs_abort_transaction(trans, ret);
6480 return ret;
6481
6482 fail_dir_item:
6483 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6484 u64 local_index;
6485 int err;
6486 err = btrfs_del_root_ref(trans, key.objectid,
6487 root->root_key.objectid, parent_ino,
6488 &local_index, name, name_len);
6489 if (err)
6490 btrfs_abort_transaction(trans, err);
6491 } else if (add_backref) {
6492 u64 local_index;
6493 int err;
6494
6495 err = btrfs_del_inode_ref(trans, root, name, name_len,
6496 ino, parent_ino, &local_index);
6497 if (err)
6498 btrfs_abort_transaction(trans, err);
6499 }
6500
6501 /* Return the original error code */
6502 return ret;
6503 }
6504
6505 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6506 struct btrfs_inode *dir, struct dentry *dentry,
6507 struct btrfs_inode *inode, int backref, u64 index)
6508 {
6509 int err = btrfs_add_link(trans, dir, inode,
6510 dentry->d_name.name, dentry->d_name.len,
6511 backref, index);
6512 if (err > 0)
6513 err = -EEXIST;
6514 return err;
6515 }
6516
6517 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6518 struct dentry *dentry, umode_t mode, dev_t rdev)
6519 {
6520 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6521 struct btrfs_trans_handle *trans;
6522 struct btrfs_root *root = BTRFS_I(dir)->root;
6523 struct inode *inode = NULL;
6524 int err;
6525 u64 objectid;
6526 u64 index = 0;
6527
6528 /*
6529 * 2 for inode item and ref
6530 * 2 for dir items
6531 * 1 for xattr if selinux is on
6532 */
6533 trans = btrfs_start_transaction(root, 5);
6534 if (IS_ERR(trans))
6535 return PTR_ERR(trans);
6536
6537 err = btrfs_get_free_objectid(root, &objectid);
6538 if (err)
6539 goto out_unlock;
6540
6541 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6542 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6543 mode, &index);
6544 if (IS_ERR(inode)) {
6545 err = PTR_ERR(inode);
6546 inode = NULL;
6547 goto out_unlock;
6548 }
6549
6550 /*
6551 * If the active LSM wants to access the inode during
6552 * d_instantiate it needs these. Smack checks to see
6553 * if the filesystem supports xattrs by looking at the
6554 * ops vector.
6555 */
6556 inode->i_op = &btrfs_special_inode_operations;
6557 init_special_inode(inode, inode->i_mode, rdev);
6558
6559 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6560 if (err)
6561 goto out_unlock;
6562
6563 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6564 0, index);
6565 if (err)
6566 goto out_unlock;
6567
6568 btrfs_update_inode(trans, root, BTRFS_I(inode));
6569 d_instantiate_new(dentry, inode);
6570
6571 out_unlock:
6572 btrfs_end_transaction(trans);
6573 btrfs_btree_balance_dirty(fs_info);
6574 if (err && inode) {
6575 inode_dec_link_count(inode);
6576 discard_new_inode(inode);
6577 }
6578 return err;
6579 }
6580
6581 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6582 struct dentry *dentry, umode_t mode, bool excl)
6583 {
6584 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6585 struct btrfs_trans_handle *trans;
6586 struct btrfs_root *root = BTRFS_I(dir)->root;
6587 struct inode *inode = NULL;
6588 int err;
6589 u64 objectid;
6590 u64 index = 0;
6591
6592 /*
6593 * 2 for inode item and ref
6594 * 2 for dir items
6595 * 1 for xattr if selinux is on
6596 */
6597 trans = btrfs_start_transaction(root, 5);
6598 if (IS_ERR(trans))
6599 return PTR_ERR(trans);
6600
6601 err = btrfs_get_free_objectid(root, &objectid);
6602 if (err)
6603 goto out_unlock;
6604
6605 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6606 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6607 mode, &index);
6608 if (IS_ERR(inode)) {
6609 err = PTR_ERR(inode);
6610 inode = NULL;
6611 goto out_unlock;
6612 }
6613 /*
6614 * If the active LSM wants to access the inode during
6615 * d_instantiate it needs these. Smack checks to see
6616 * if the filesystem supports xattrs by looking at the
6617 * ops vector.
6618 */
6619 inode->i_fop = &btrfs_file_operations;
6620 inode->i_op = &btrfs_file_inode_operations;
6621 inode->i_mapping->a_ops = &btrfs_aops;
6622
6623 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6624 if (err)
6625 goto out_unlock;
6626
6627 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6628 if (err)
6629 goto out_unlock;
6630
6631 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6632 0, index);
6633 if (err)
6634 goto out_unlock;
6635
6636 d_instantiate_new(dentry, inode);
6637
6638 out_unlock:
6639 btrfs_end_transaction(trans);
6640 if (err && inode) {
6641 inode_dec_link_count(inode);
6642 discard_new_inode(inode);
6643 }
6644 btrfs_btree_balance_dirty(fs_info);
6645 return err;
6646 }
6647
6648 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6649 struct dentry *dentry)
6650 {
6651 struct btrfs_trans_handle *trans = NULL;
6652 struct btrfs_root *root = BTRFS_I(dir)->root;
6653 struct inode *inode = d_inode(old_dentry);
6654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6655 u64 index;
6656 int err;
6657 int drop_inode = 0;
6658
6659 /* do not allow sys_link's with other subvols of the same device */
6660 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6661 return -EXDEV;
6662
6663 if (inode->i_nlink >= BTRFS_LINK_MAX)
6664 return -EMLINK;
6665
6666 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6667 if (err)
6668 goto fail;
6669
6670 /*
6671 * 2 items for inode and inode ref
6672 * 2 items for dir items
6673 * 1 item for parent inode
6674 * 1 item for orphan item deletion if O_TMPFILE
6675 */
6676 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6677 if (IS_ERR(trans)) {
6678 err = PTR_ERR(trans);
6679 trans = NULL;
6680 goto fail;
6681 }
6682
6683 /* There are several dir indexes for this inode, clear the cache. */
6684 BTRFS_I(inode)->dir_index = 0ULL;
6685 inc_nlink(inode);
6686 inode_inc_iversion(inode);
6687 inode->i_ctime = current_time(inode);
6688 ihold(inode);
6689 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6690
6691 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6692 1, index);
6693
6694 if (err) {
6695 drop_inode = 1;
6696 } else {
6697 struct dentry *parent = dentry->d_parent;
6698
6699 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6700 if (err)
6701 goto fail;
6702 if (inode->i_nlink == 1) {
6703 /*
6704 * If new hard link count is 1, it's a file created
6705 * with open(2) O_TMPFILE flag.
6706 */
6707 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6708 if (err)
6709 goto fail;
6710 }
6711 d_instantiate(dentry, inode);
6712 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6713 }
6714
6715 fail:
6716 if (trans)
6717 btrfs_end_transaction(trans);
6718 if (drop_inode) {
6719 inode_dec_link_count(inode);
6720 iput(inode);
6721 }
6722 btrfs_btree_balance_dirty(fs_info);
6723 return err;
6724 }
6725
6726 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6727 struct dentry *dentry, umode_t mode)
6728 {
6729 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6730 struct inode *inode = NULL;
6731 struct btrfs_trans_handle *trans;
6732 struct btrfs_root *root = BTRFS_I(dir)->root;
6733 int err = 0;
6734 u64 objectid = 0;
6735 u64 index = 0;
6736
6737 /*
6738 * 2 items for inode and ref
6739 * 2 items for dir items
6740 * 1 for xattr if selinux is on
6741 */
6742 trans = btrfs_start_transaction(root, 5);
6743 if (IS_ERR(trans))
6744 return PTR_ERR(trans);
6745
6746 err = btrfs_get_free_objectid(root, &objectid);
6747 if (err)
6748 goto out_fail;
6749
6750 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6751 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6752 S_IFDIR | mode, &index);
6753 if (IS_ERR(inode)) {
6754 err = PTR_ERR(inode);
6755 inode = NULL;
6756 goto out_fail;
6757 }
6758
6759 /* these must be set before we unlock the inode */
6760 inode->i_op = &btrfs_dir_inode_operations;
6761 inode->i_fop = &btrfs_dir_file_operations;
6762
6763 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6764 if (err)
6765 goto out_fail;
6766
6767 btrfs_i_size_write(BTRFS_I(inode), 0);
6768 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6769 if (err)
6770 goto out_fail;
6771
6772 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6773 dentry->d_name.name,
6774 dentry->d_name.len, 0, index);
6775 if (err)
6776 goto out_fail;
6777
6778 d_instantiate_new(dentry, inode);
6779
6780 out_fail:
6781 btrfs_end_transaction(trans);
6782 if (err && inode) {
6783 inode_dec_link_count(inode);
6784 discard_new_inode(inode);
6785 }
6786 btrfs_btree_balance_dirty(fs_info);
6787 return err;
6788 }
6789
6790 static noinline int uncompress_inline(struct btrfs_path *path,
6791 struct page *page,
6792 size_t pg_offset, u64 extent_offset,
6793 struct btrfs_file_extent_item *item)
6794 {
6795 int ret;
6796 struct extent_buffer *leaf = path->nodes[0];
6797 char *tmp;
6798 size_t max_size;
6799 unsigned long inline_size;
6800 unsigned long ptr;
6801 int compress_type;
6802
6803 WARN_ON(pg_offset != 0);
6804 compress_type = btrfs_file_extent_compression(leaf, item);
6805 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6806 inline_size = btrfs_file_extent_inline_item_len(leaf,
6807 btrfs_item_nr(path->slots[0]));
6808 tmp = kmalloc(inline_size, GFP_NOFS);
6809 if (!tmp)
6810 return -ENOMEM;
6811 ptr = btrfs_file_extent_inline_start(item);
6812
6813 read_extent_buffer(leaf, tmp, ptr, inline_size);
6814
6815 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6816 ret = btrfs_decompress(compress_type, tmp, page,
6817 extent_offset, inline_size, max_size);
6818
6819 /*
6820 * decompression code contains a memset to fill in any space between the end
6821 * of the uncompressed data and the end of max_size in case the decompressed
6822 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6823 * the end of an inline extent and the beginning of the next block, so we
6824 * cover that region here.
6825 */
6826
6827 if (max_size + pg_offset < PAGE_SIZE) {
6828 char *map = kmap(page);
6829 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6830 kunmap(page);
6831 }
6832 kfree(tmp);
6833 return ret;
6834 }
6835
6836 /**
6837 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6838 * @inode: file to search in
6839 * @page: page to read extent data into if the extent is inline
6840 * @pg_offset: offset into @page to copy to
6841 * @start: file offset
6842 * @len: length of range starting at @start
6843 *
6844 * This returns the first &struct extent_map which overlaps with the given
6845 * range, reading it from the B-tree and caching it if necessary. Note that
6846 * there may be more extents which overlap the given range after the returned
6847 * extent_map.
6848 *
6849 * If @page is not NULL and the extent is inline, this also reads the extent
6850 * data directly into the page and marks the extent up to date in the io_tree.
6851 *
6852 * Return: ERR_PTR on error, non-NULL extent_map on success.
6853 */
6854 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6855 struct page *page, size_t pg_offset,
6856 u64 start, u64 len)
6857 {
6858 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6859 int ret = 0;
6860 u64 extent_start = 0;
6861 u64 extent_end = 0;
6862 u64 objectid = btrfs_ino(inode);
6863 int extent_type = -1;
6864 struct btrfs_path *path = NULL;
6865 struct btrfs_root *root = inode->root;
6866 struct btrfs_file_extent_item *item;
6867 struct extent_buffer *leaf;
6868 struct btrfs_key found_key;
6869 struct extent_map *em = NULL;
6870 struct extent_map_tree *em_tree = &inode->extent_tree;
6871 struct extent_io_tree *io_tree = &inode->io_tree;
6872
6873 read_lock(&em_tree->lock);
6874 em = lookup_extent_mapping(em_tree, start, len);
6875 read_unlock(&em_tree->lock);
6876
6877 if (em) {
6878 if (em->start > start || em->start + em->len <= start)
6879 free_extent_map(em);
6880 else if (em->block_start == EXTENT_MAP_INLINE && page)
6881 free_extent_map(em);
6882 else
6883 goto out;
6884 }
6885 em = alloc_extent_map();
6886 if (!em) {
6887 ret = -ENOMEM;
6888 goto out;
6889 }
6890 em->start = EXTENT_MAP_HOLE;
6891 em->orig_start = EXTENT_MAP_HOLE;
6892 em->len = (u64)-1;
6893 em->block_len = (u64)-1;
6894
6895 path = btrfs_alloc_path();
6896 if (!path) {
6897 ret = -ENOMEM;
6898 goto out;
6899 }
6900
6901 /* Chances are we'll be called again, so go ahead and do readahead */
6902 path->reada = READA_FORWARD;
6903
6904 /*
6905 * The same explanation in load_free_space_cache applies here as well,
6906 * we only read when we're loading the free space cache, and at that
6907 * point the commit_root has everything we need.
6908 */
6909 if (btrfs_is_free_space_inode(inode)) {
6910 path->search_commit_root = 1;
6911 path->skip_locking = 1;
6912 }
6913
6914 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6915 if (ret < 0) {
6916 goto out;
6917 } else if (ret > 0) {
6918 if (path->slots[0] == 0)
6919 goto not_found;
6920 path->slots[0]--;
6921 ret = 0;
6922 }
6923
6924 leaf = path->nodes[0];
6925 item = btrfs_item_ptr(leaf, path->slots[0],
6926 struct btrfs_file_extent_item);
6927 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6928 if (found_key.objectid != objectid ||
6929 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6930 /*
6931 * If we backup past the first extent we want to move forward
6932 * and see if there is an extent in front of us, otherwise we'll
6933 * say there is a hole for our whole search range which can
6934 * cause problems.
6935 */
6936 extent_end = start;
6937 goto next;
6938 }
6939
6940 extent_type = btrfs_file_extent_type(leaf, item);
6941 extent_start = found_key.offset;
6942 extent_end = btrfs_file_extent_end(path);
6943 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6944 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6945 /* Only regular file could have regular/prealloc extent */
6946 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6947 ret = -EUCLEAN;
6948 btrfs_crit(fs_info,
6949 "regular/prealloc extent found for non-regular inode %llu",
6950 btrfs_ino(inode));
6951 goto out;
6952 }
6953 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6954 extent_start);
6955 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6956 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6957 path->slots[0],
6958 extent_start);
6959 }
6960 next:
6961 if (start >= extent_end) {
6962 path->slots[0]++;
6963 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6964 ret = btrfs_next_leaf(root, path);
6965 if (ret < 0)
6966 goto out;
6967 else if (ret > 0)
6968 goto not_found;
6969
6970 leaf = path->nodes[0];
6971 }
6972 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6973 if (found_key.objectid != objectid ||
6974 found_key.type != BTRFS_EXTENT_DATA_KEY)
6975 goto not_found;
6976 if (start + len <= found_key.offset)
6977 goto not_found;
6978 if (start > found_key.offset)
6979 goto next;
6980
6981 /* New extent overlaps with existing one */
6982 em->start = start;
6983 em->orig_start = start;
6984 em->len = found_key.offset - start;
6985 em->block_start = EXTENT_MAP_HOLE;
6986 goto insert;
6987 }
6988
6989 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6990
6991 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6992 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6993 goto insert;
6994 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6995 unsigned long ptr;
6996 char *map;
6997 size_t size;
6998 size_t extent_offset;
6999 size_t copy_size;
7000
7001 if (!page)
7002 goto out;
7003
7004 size = btrfs_file_extent_ram_bytes(leaf, item);
7005 extent_offset = page_offset(page) + pg_offset - extent_start;
7006 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7007 size - extent_offset);
7008 em->start = extent_start + extent_offset;
7009 em->len = ALIGN(copy_size, fs_info->sectorsize);
7010 em->orig_block_len = em->len;
7011 em->orig_start = em->start;
7012 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7013
7014 if (!PageUptodate(page)) {
7015 if (btrfs_file_extent_compression(leaf, item) !=
7016 BTRFS_COMPRESS_NONE) {
7017 ret = uncompress_inline(path, page, pg_offset,
7018 extent_offset, item);
7019 if (ret)
7020 goto out;
7021 } else {
7022 map = kmap(page);
7023 read_extent_buffer(leaf, map + pg_offset, ptr,
7024 copy_size);
7025 if (pg_offset + copy_size < PAGE_SIZE) {
7026 memset(map + pg_offset + copy_size, 0,
7027 PAGE_SIZE - pg_offset -
7028 copy_size);
7029 }
7030 kunmap(page);
7031 }
7032 flush_dcache_page(page);
7033 }
7034 set_extent_uptodate(io_tree, em->start,
7035 extent_map_end(em) - 1, NULL, GFP_NOFS);
7036 goto insert;
7037 }
7038 not_found:
7039 em->start = start;
7040 em->orig_start = start;
7041 em->len = len;
7042 em->block_start = EXTENT_MAP_HOLE;
7043 insert:
7044 ret = 0;
7045 btrfs_release_path(path);
7046 if (em->start > start || extent_map_end(em) <= start) {
7047 btrfs_err(fs_info,
7048 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7049 em->start, em->len, start, len);
7050 ret = -EIO;
7051 goto out;
7052 }
7053
7054 write_lock(&em_tree->lock);
7055 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7056 write_unlock(&em_tree->lock);
7057 out:
7058 btrfs_free_path(path);
7059
7060 trace_btrfs_get_extent(root, inode, em);
7061
7062 if (ret) {
7063 free_extent_map(em);
7064 return ERR_PTR(ret);
7065 }
7066 return em;
7067 }
7068
7069 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7070 u64 start, u64 len)
7071 {
7072 struct extent_map *em;
7073 struct extent_map *hole_em = NULL;
7074 u64 delalloc_start = start;
7075 u64 end;
7076 u64 delalloc_len;
7077 u64 delalloc_end;
7078 int err = 0;
7079
7080 em = btrfs_get_extent(inode, NULL, 0, start, len);
7081 if (IS_ERR(em))
7082 return em;
7083 /*
7084 * If our em maps to:
7085 * - a hole or
7086 * - a pre-alloc extent,
7087 * there might actually be delalloc bytes behind it.
7088 */
7089 if (em->block_start != EXTENT_MAP_HOLE &&
7090 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7091 return em;
7092 else
7093 hole_em = em;
7094
7095 /* check to see if we've wrapped (len == -1 or similar) */
7096 end = start + len;
7097 if (end < start)
7098 end = (u64)-1;
7099 else
7100 end -= 1;
7101
7102 em = NULL;
7103
7104 /* ok, we didn't find anything, lets look for delalloc */
7105 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7106 end, len, EXTENT_DELALLOC, 1);
7107 delalloc_end = delalloc_start + delalloc_len;
7108 if (delalloc_end < delalloc_start)
7109 delalloc_end = (u64)-1;
7110
7111 /*
7112 * We didn't find anything useful, return the original results from
7113 * get_extent()
7114 */
7115 if (delalloc_start > end || delalloc_end <= start) {
7116 em = hole_em;
7117 hole_em = NULL;
7118 goto out;
7119 }
7120
7121 /*
7122 * Adjust the delalloc_start to make sure it doesn't go backwards from
7123 * the start they passed in
7124 */
7125 delalloc_start = max(start, delalloc_start);
7126 delalloc_len = delalloc_end - delalloc_start;
7127
7128 if (delalloc_len > 0) {
7129 u64 hole_start;
7130 u64 hole_len;
7131 const u64 hole_end = extent_map_end(hole_em);
7132
7133 em = alloc_extent_map();
7134 if (!em) {
7135 err = -ENOMEM;
7136 goto out;
7137 }
7138
7139 ASSERT(hole_em);
7140 /*
7141 * When btrfs_get_extent can't find anything it returns one
7142 * huge hole
7143 *
7144 * Make sure what it found really fits our range, and adjust to
7145 * make sure it is based on the start from the caller
7146 */
7147 if (hole_end <= start || hole_em->start > end) {
7148 free_extent_map(hole_em);
7149 hole_em = NULL;
7150 } else {
7151 hole_start = max(hole_em->start, start);
7152 hole_len = hole_end - hole_start;
7153 }
7154
7155 if (hole_em && delalloc_start > hole_start) {
7156 /*
7157 * Our hole starts before our delalloc, so we have to
7158 * return just the parts of the hole that go until the
7159 * delalloc starts
7160 */
7161 em->len = min(hole_len, delalloc_start - hole_start);
7162 em->start = hole_start;
7163 em->orig_start = hole_start;
7164 /*
7165 * Don't adjust block start at all, it is fixed at
7166 * EXTENT_MAP_HOLE
7167 */
7168 em->block_start = hole_em->block_start;
7169 em->block_len = hole_len;
7170 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7171 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7172 } else {
7173 /*
7174 * Hole is out of passed range or it starts after
7175 * delalloc range
7176 */
7177 em->start = delalloc_start;
7178 em->len = delalloc_len;
7179 em->orig_start = delalloc_start;
7180 em->block_start = EXTENT_MAP_DELALLOC;
7181 em->block_len = delalloc_len;
7182 }
7183 } else {
7184 return hole_em;
7185 }
7186 out:
7187
7188 free_extent_map(hole_em);
7189 if (err) {
7190 free_extent_map(em);
7191 return ERR_PTR(err);
7192 }
7193 return em;
7194 }
7195
7196 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7197 const u64 start,
7198 const u64 len,
7199 const u64 orig_start,
7200 const u64 block_start,
7201 const u64 block_len,
7202 const u64 orig_block_len,
7203 const u64 ram_bytes,
7204 const int type)
7205 {
7206 struct extent_map *em = NULL;
7207 int ret;
7208
7209 if (type != BTRFS_ORDERED_NOCOW) {
7210 em = create_io_em(inode, start, len, orig_start, block_start,
7211 block_len, orig_block_len, ram_bytes,
7212 BTRFS_COMPRESS_NONE, /* compress_type */
7213 type);
7214 if (IS_ERR(em))
7215 goto out;
7216 }
7217 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7218 block_len, type);
7219 if (ret) {
7220 if (em) {
7221 free_extent_map(em);
7222 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7223 }
7224 em = ERR_PTR(ret);
7225 }
7226 out:
7227
7228 return em;
7229 }
7230
7231 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7232 u64 start, u64 len)
7233 {
7234 struct btrfs_root *root = inode->root;
7235 struct btrfs_fs_info *fs_info = root->fs_info;
7236 struct extent_map *em;
7237 struct btrfs_key ins;
7238 u64 alloc_hint;
7239 int ret;
7240
7241 alloc_hint = get_extent_allocation_hint(inode, start, len);
7242 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7243 0, alloc_hint, &ins, 1, 1);
7244 if (ret)
7245 return ERR_PTR(ret);
7246
7247 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7248 ins.objectid, ins.offset, ins.offset,
7249 ins.offset, BTRFS_ORDERED_REGULAR);
7250 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7251 if (IS_ERR(em))
7252 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7253 1);
7254
7255 return em;
7256 }
7257
7258 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7259 {
7260 struct btrfs_block_group *block_group;
7261 bool readonly = false;
7262
7263 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7264 if (!block_group || block_group->ro)
7265 readonly = true;
7266 if (block_group)
7267 btrfs_put_block_group(block_group);
7268 return readonly;
7269 }
7270
7271 /*
7272 * Check if we can do nocow write into the range [@offset, @offset + @len)
7273 *
7274 * @offset: File offset
7275 * @len: The length to write, will be updated to the nocow writeable
7276 * range
7277 * @orig_start: (optional) Return the original file offset of the file extent
7278 * @orig_len: (optional) Return the original on-disk length of the file extent
7279 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7280 * @strict: if true, omit optimizations that might force us into unnecessary
7281 * cow. e.g., don't trust generation number.
7282 *
7283 * Return:
7284 * >0 and update @len if we can do nocow write
7285 * 0 if we can't do nocow write
7286 * <0 if error happened
7287 *
7288 * NOTE: This only checks the file extents, caller is responsible to wait for
7289 * any ordered extents.
7290 */
7291 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7292 u64 *orig_start, u64 *orig_block_len,
7293 u64 *ram_bytes, bool strict)
7294 {
7295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7296 struct btrfs_path *path;
7297 int ret;
7298 struct extent_buffer *leaf;
7299 struct btrfs_root *root = BTRFS_I(inode)->root;
7300 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7301 struct btrfs_file_extent_item *fi;
7302 struct btrfs_key key;
7303 u64 disk_bytenr;
7304 u64 backref_offset;
7305 u64 extent_end;
7306 u64 num_bytes;
7307 int slot;
7308 int found_type;
7309 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7310
7311 path = btrfs_alloc_path();
7312 if (!path)
7313 return -ENOMEM;
7314
7315 ret = btrfs_lookup_file_extent(NULL, root, path,
7316 btrfs_ino(BTRFS_I(inode)), offset, 0);
7317 if (ret < 0)
7318 goto out;
7319
7320 slot = path->slots[0];
7321 if (ret == 1) {
7322 if (slot == 0) {
7323 /* can't find the item, must cow */
7324 ret = 0;
7325 goto out;
7326 }
7327 slot--;
7328 }
7329 ret = 0;
7330 leaf = path->nodes[0];
7331 btrfs_item_key_to_cpu(leaf, &key, slot);
7332 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7333 key.type != BTRFS_EXTENT_DATA_KEY) {
7334 /* not our file or wrong item type, must cow */
7335 goto out;
7336 }
7337
7338 if (key.offset > offset) {
7339 /* Wrong offset, must cow */
7340 goto out;
7341 }
7342
7343 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7344 found_type = btrfs_file_extent_type(leaf, fi);
7345 if (found_type != BTRFS_FILE_EXTENT_REG &&
7346 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7347 /* not a regular extent, must cow */
7348 goto out;
7349 }
7350
7351 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7352 goto out;
7353
7354 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7355 if (extent_end <= offset)
7356 goto out;
7357
7358 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7359 if (disk_bytenr == 0)
7360 goto out;
7361
7362 if (btrfs_file_extent_compression(leaf, fi) ||
7363 btrfs_file_extent_encryption(leaf, fi) ||
7364 btrfs_file_extent_other_encoding(leaf, fi))
7365 goto out;
7366
7367 /*
7368 * Do the same check as in btrfs_cross_ref_exist but without the
7369 * unnecessary search.
7370 */
7371 if (!strict &&
7372 (btrfs_file_extent_generation(leaf, fi) <=
7373 btrfs_root_last_snapshot(&root->root_item)))
7374 goto out;
7375
7376 backref_offset = btrfs_file_extent_offset(leaf, fi);
7377
7378 if (orig_start) {
7379 *orig_start = key.offset - backref_offset;
7380 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7381 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7382 }
7383
7384 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7385 goto out;
7386
7387 num_bytes = min(offset + *len, extent_end) - offset;
7388 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7389 u64 range_end;
7390
7391 range_end = round_up(offset + num_bytes,
7392 root->fs_info->sectorsize) - 1;
7393 ret = test_range_bit(io_tree, offset, range_end,
7394 EXTENT_DELALLOC, 0, NULL);
7395 if (ret) {
7396 ret = -EAGAIN;
7397 goto out;
7398 }
7399 }
7400
7401 btrfs_release_path(path);
7402
7403 /*
7404 * look for other files referencing this extent, if we
7405 * find any we must cow
7406 */
7407
7408 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7409 key.offset - backref_offset, disk_bytenr,
7410 strict);
7411 if (ret) {
7412 ret = 0;
7413 goto out;
7414 }
7415
7416 /*
7417 * adjust disk_bytenr and num_bytes to cover just the bytes
7418 * in this extent we are about to write. If there
7419 * are any csums in that range we have to cow in order
7420 * to keep the csums correct
7421 */
7422 disk_bytenr += backref_offset;
7423 disk_bytenr += offset - key.offset;
7424 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7425 goto out;
7426 /*
7427 * all of the above have passed, it is safe to overwrite this extent
7428 * without cow
7429 */
7430 *len = num_bytes;
7431 ret = 1;
7432 out:
7433 btrfs_free_path(path);
7434 return ret;
7435 }
7436
7437 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7438 struct extent_state **cached_state, bool writing)
7439 {
7440 struct btrfs_ordered_extent *ordered;
7441 int ret = 0;
7442
7443 while (1) {
7444 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7445 cached_state);
7446 /*
7447 * We're concerned with the entire range that we're going to be
7448 * doing DIO to, so we need to make sure there's no ordered
7449 * extents in this range.
7450 */
7451 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7452 lockend - lockstart + 1);
7453
7454 /*
7455 * We need to make sure there are no buffered pages in this
7456 * range either, we could have raced between the invalidate in
7457 * generic_file_direct_write and locking the extent. The
7458 * invalidate needs to happen so that reads after a write do not
7459 * get stale data.
7460 */
7461 if (!ordered &&
7462 (!writing || !filemap_range_has_page(inode->i_mapping,
7463 lockstart, lockend)))
7464 break;
7465
7466 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7467 cached_state);
7468
7469 if (ordered) {
7470 /*
7471 * If we are doing a DIO read and the ordered extent we
7472 * found is for a buffered write, we can not wait for it
7473 * to complete and retry, because if we do so we can
7474 * deadlock with concurrent buffered writes on page
7475 * locks. This happens only if our DIO read covers more
7476 * than one extent map, if at this point has already
7477 * created an ordered extent for a previous extent map
7478 * and locked its range in the inode's io tree, and a
7479 * concurrent write against that previous extent map's
7480 * range and this range started (we unlock the ranges
7481 * in the io tree only when the bios complete and
7482 * buffered writes always lock pages before attempting
7483 * to lock range in the io tree).
7484 */
7485 if (writing ||
7486 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7487 btrfs_start_ordered_extent(ordered, 1);
7488 else
7489 ret = -ENOTBLK;
7490 btrfs_put_ordered_extent(ordered);
7491 } else {
7492 /*
7493 * We could trigger writeback for this range (and wait
7494 * for it to complete) and then invalidate the pages for
7495 * this range (through invalidate_inode_pages2_range()),
7496 * but that can lead us to a deadlock with a concurrent
7497 * call to readahead (a buffered read or a defrag call
7498 * triggered a readahead) on a page lock due to an
7499 * ordered dio extent we created before but did not have
7500 * yet a corresponding bio submitted (whence it can not
7501 * complete), which makes readahead wait for that
7502 * ordered extent to complete while holding a lock on
7503 * that page.
7504 */
7505 ret = -ENOTBLK;
7506 }
7507
7508 if (ret)
7509 break;
7510
7511 cond_resched();
7512 }
7513
7514 return ret;
7515 }
7516
7517 /* The callers of this must take lock_extent() */
7518 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7519 u64 len, u64 orig_start, u64 block_start,
7520 u64 block_len, u64 orig_block_len,
7521 u64 ram_bytes, int compress_type,
7522 int type)
7523 {
7524 struct extent_map_tree *em_tree;
7525 struct extent_map *em;
7526 int ret;
7527
7528 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7529 type == BTRFS_ORDERED_COMPRESSED ||
7530 type == BTRFS_ORDERED_NOCOW ||
7531 type == BTRFS_ORDERED_REGULAR);
7532
7533 em_tree = &inode->extent_tree;
7534 em = alloc_extent_map();
7535 if (!em)
7536 return ERR_PTR(-ENOMEM);
7537
7538 em->start = start;
7539 em->orig_start = orig_start;
7540 em->len = len;
7541 em->block_len = block_len;
7542 em->block_start = block_start;
7543 em->orig_block_len = orig_block_len;
7544 em->ram_bytes = ram_bytes;
7545 em->generation = -1;
7546 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7547 if (type == BTRFS_ORDERED_PREALLOC) {
7548 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7549 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7550 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7551 em->compress_type = compress_type;
7552 }
7553
7554 do {
7555 btrfs_drop_extent_cache(inode, em->start,
7556 em->start + em->len - 1, 0);
7557 write_lock(&em_tree->lock);
7558 ret = add_extent_mapping(em_tree, em, 1);
7559 write_unlock(&em_tree->lock);
7560 /*
7561 * The caller has taken lock_extent(), who could race with us
7562 * to add em?
7563 */
7564 } while (ret == -EEXIST);
7565
7566 if (ret) {
7567 free_extent_map(em);
7568 return ERR_PTR(ret);
7569 }
7570
7571 /* em got 2 refs now, callers needs to do free_extent_map once. */
7572 return em;
7573 }
7574
7575
7576 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7577 struct inode *inode,
7578 struct btrfs_dio_data *dio_data,
7579 u64 start, u64 len)
7580 {
7581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7582 struct extent_map *em = *map;
7583 int ret = 0;
7584
7585 /*
7586 * We don't allocate a new extent in the following cases
7587 *
7588 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7589 * existing extent.
7590 * 2) The extent is marked as PREALLOC. We're good to go here and can
7591 * just use the extent.
7592 *
7593 */
7594 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7595 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7596 em->block_start != EXTENT_MAP_HOLE)) {
7597 int type;
7598 u64 block_start, orig_start, orig_block_len, ram_bytes;
7599
7600 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7601 type = BTRFS_ORDERED_PREALLOC;
7602 else
7603 type = BTRFS_ORDERED_NOCOW;
7604 len = min(len, em->len - (start - em->start));
7605 block_start = em->block_start + (start - em->start);
7606
7607 if (can_nocow_extent(inode, start, &len, &orig_start,
7608 &orig_block_len, &ram_bytes, false) == 1 &&
7609 btrfs_inc_nocow_writers(fs_info, block_start)) {
7610 struct extent_map *em2;
7611
7612 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7613 orig_start, block_start,
7614 len, orig_block_len,
7615 ram_bytes, type);
7616 btrfs_dec_nocow_writers(fs_info, block_start);
7617 if (type == BTRFS_ORDERED_PREALLOC) {
7618 free_extent_map(em);
7619 *map = em = em2;
7620 }
7621
7622 if (em2 && IS_ERR(em2)) {
7623 ret = PTR_ERR(em2);
7624 goto out;
7625 }
7626 /*
7627 * For inode marked NODATACOW or extent marked PREALLOC,
7628 * use the existing or preallocated extent, so does not
7629 * need to adjust btrfs_space_info's bytes_may_use.
7630 */
7631 btrfs_free_reserved_data_space_noquota(fs_info, len);
7632 goto skip_cow;
7633 }
7634 }
7635
7636 /* this will cow the extent */
7637 free_extent_map(em);
7638 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7639 if (IS_ERR(em)) {
7640 ret = PTR_ERR(em);
7641 goto out;
7642 }
7643
7644 len = min(len, em->len - (start - em->start));
7645
7646 skip_cow:
7647 /*
7648 * Need to update the i_size under the extent lock so buffered
7649 * readers will get the updated i_size when we unlock.
7650 */
7651 if (start + len > i_size_read(inode))
7652 i_size_write(inode, start + len);
7653
7654 dio_data->reserve -= len;
7655 out:
7656 return ret;
7657 }
7658
7659 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7660 loff_t length, unsigned int flags, struct iomap *iomap,
7661 struct iomap *srcmap)
7662 {
7663 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7664 struct extent_map *em;
7665 struct extent_state *cached_state = NULL;
7666 struct btrfs_dio_data *dio_data = NULL;
7667 u64 lockstart, lockend;
7668 const bool write = !!(flags & IOMAP_WRITE);
7669 int ret = 0;
7670 u64 len = length;
7671 bool unlock_extents = false;
7672
7673 if (!write)
7674 len = min_t(u64, len, fs_info->sectorsize);
7675
7676 lockstart = start;
7677 lockend = start + len - 1;
7678
7679 /*
7680 * The generic stuff only does filemap_write_and_wait_range, which
7681 * isn't enough if we've written compressed pages to this area, so we
7682 * need to flush the dirty pages again to make absolutely sure that any
7683 * outstanding dirty pages are on disk.
7684 */
7685 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7686 &BTRFS_I(inode)->runtime_flags)) {
7687 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7688 start + length - 1);
7689 if (ret)
7690 return ret;
7691 }
7692
7693 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7694 if (!dio_data)
7695 return -ENOMEM;
7696
7697 dio_data->length = length;
7698 if (write) {
7699 dio_data->reserve = round_up(length, fs_info->sectorsize);
7700 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7701 &dio_data->data_reserved,
7702 start, dio_data->reserve);
7703 if (ret) {
7704 extent_changeset_free(dio_data->data_reserved);
7705 kfree(dio_data);
7706 return ret;
7707 }
7708 }
7709 iomap->private = dio_data;
7710
7711
7712 /*
7713 * If this errors out it's because we couldn't invalidate pagecache for
7714 * this range and we need to fallback to buffered.
7715 */
7716 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7717 ret = -ENOTBLK;
7718 goto err;
7719 }
7720
7721 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7722 if (IS_ERR(em)) {
7723 ret = PTR_ERR(em);
7724 goto unlock_err;
7725 }
7726
7727 /*
7728 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7729 * io. INLINE is special, and we could probably kludge it in here, but
7730 * it's still buffered so for safety lets just fall back to the generic
7731 * buffered path.
7732 *
7733 * For COMPRESSED we _have_ to read the entire extent in so we can
7734 * decompress it, so there will be buffering required no matter what we
7735 * do, so go ahead and fallback to buffered.
7736 *
7737 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7738 * to buffered IO. Don't blame me, this is the price we pay for using
7739 * the generic code.
7740 */
7741 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7742 em->block_start == EXTENT_MAP_INLINE) {
7743 free_extent_map(em);
7744 ret = -ENOTBLK;
7745 goto unlock_err;
7746 }
7747
7748 len = min(len, em->len - (start - em->start));
7749 if (write) {
7750 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7751 start, len);
7752 if (ret < 0)
7753 goto unlock_err;
7754 unlock_extents = true;
7755 /* Recalc len in case the new em is smaller than requested */
7756 len = min(len, em->len - (start - em->start));
7757 } else {
7758 /*
7759 * We need to unlock only the end area that we aren't using.
7760 * The rest is going to be unlocked by the endio routine.
7761 */
7762 lockstart = start + len;
7763 if (lockstart < lockend)
7764 unlock_extents = true;
7765 }
7766
7767 if (unlock_extents)
7768 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7769 lockstart, lockend, &cached_state);
7770 else
7771 free_extent_state(cached_state);
7772
7773 /*
7774 * Translate extent map information to iomap.
7775 * We trim the extents (and move the addr) even though iomap code does
7776 * that, since we have locked only the parts we are performing I/O in.
7777 */
7778 if ((em->block_start == EXTENT_MAP_HOLE) ||
7779 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7780 iomap->addr = IOMAP_NULL_ADDR;
7781 iomap->type = IOMAP_HOLE;
7782 } else {
7783 iomap->addr = em->block_start + (start - em->start);
7784 iomap->type = IOMAP_MAPPED;
7785 }
7786 iomap->offset = start;
7787 iomap->bdev = fs_info->fs_devices->latest_bdev;
7788 iomap->length = len;
7789
7790 if (write && btrfs_use_zone_append(BTRFS_I(inode), em))
7791 iomap->flags |= IOMAP_F_ZONE_APPEND;
7792
7793 free_extent_map(em);
7794
7795 return 0;
7796
7797 unlock_err:
7798 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7799 &cached_state);
7800 err:
7801 if (dio_data) {
7802 btrfs_delalloc_release_space(BTRFS_I(inode),
7803 dio_data->data_reserved, start,
7804 dio_data->reserve, true);
7805 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7806 extent_changeset_free(dio_data->data_reserved);
7807 kfree(dio_data);
7808 }
7809 return ret;
7810 }
7811
7812 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7813 ssize_t written, unsigned int flags, struct iomap *iomap)
7814 {
7815 int ret = 0;
7816 struct btrfs_dio_data *dio_data = iomap->private;
7817 size_t submitted = dio_data->submitted;
7818 const bool write = !!(flags & IOMAP_WRITE);
7819
7820 if (!write && (iomap->type == IOMAP_HOLE)) {
7821 /* If reading from a hole, unlock and return */
7822 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7823 goto out;
7824 }
7825
7826 if (submitted < length) {
7827 pos += submitted;
7828 length -= submitted;
7829 if (write)
7830 __endio_write_update_ordered(BTRFS_I(inode), pos,
7831 length, false);
7832 else
7833 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7834 pos + length - 1);
7835 ret = -ENOTBLK;
7836 }
7837
7838 if (write) {
7839 if (dio_data->reserve)
7840 btrfs_delalloc_release_space(BTRFS_I(inode),
7841 dio_data->data_reserved, pos,
7842 dio_data->reserve, true);
7843 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7844 extent_changeset_free(dio_data->data_reserved);
7845 }
7846 out:
7847 kfree(dio_data);
7848 iomap->private = NULL;
7849
7850 return ret;
7851 }
7852
7853 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7854 {
7855 /*
7856 * This implies a barrier so that stores to dio_bio->bi_status before
7857 * this and loads of dio_bio->bi_status after this are fully ordered.
7858 */
7859 if (!refcount_dec_and_test(&dip->refs))
7860 return;
7861
7862 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7863 __endio_write_update_ordered(BTRFS_I(dip->inode),
7864 dip->logical_offset,
7865 dip->bytes,
7866 !dip->dio_bio->bi_status);
7867 } else {
7868 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7869 dip->logical_offset,
7870 dip->logical_offset + dip->bytes - 1);
7871 }
7872
7873 bio_endio(dip->dio_bio);
7874 kfree(dip);
7875 }
7876
7877 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7878 int mirror_num,
7879 unsigned long bio_flags)
7880 {
7881 struct btrfs_dio_private *dip = bio->bi_private;
7882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7883 blk_status_t ret;
7884
7885 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7886
7887 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7888 if (ret)
7889 return ret;
7890
7891 refcount_inc(&dip->refs);
7892 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7893 if (ret)
7894 refcount_dec(&dip->refs);
7895 return ret;
7896 }
7897
7898 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7899 struct btrfs_io_bio *io_bio,
7900 const bool uptodate)
7901 {
7902 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7903 const u32 sectorsize = fs_info->sectorsize;
7904 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7905 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7906 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7907 struct bio_vec bvec;
7908 struct bvec_iter iter;
7909 u64 start = io_bio->logical;
7910 u32 bio_offset = 0;
7911 blk_status_t err = BLK_STS_OK;
7912
7913 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7914 unsigned int i, nr_sectors, pgoff;
7915
7916 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7917 pgoff = bvec.bv_offset;
7918 for (i = 0; i < nr_sectors; i++) {
7919 ASSERT(pgoff < PAGE_SIZE);
7920 if (uptodate &&
7921 (!csum || !check_data_csum(inode, io_bio,
7922 bio_offset, bvec.bv_page,
7923 pgoff, start))) {
7924 clean_io_failure(fs_info, failure_tree, io_tree,
7925 start, bvec.bv_page,
7926 btrfs_ino(BTRFS_I(inode)),
7927 pgoff);
7928 } else {
7929 blk_status_t status;
7930
7931 ASSERT((start - io_bio->logical) < UINT_MAX);
7932 status = btrfs_submit_read_repair(inode,
7933 &io_bio->bio,
7934 start - io_bio->logical,
7935 bvec.bv_page, pgoff,
7936 start,
7937 start + sectorsize - 1,
7938 io_bio->mirror_num,
7939 submit_dio_repair_bio);
7940 if (status)
7941 err = status;
7942 }
7943 start += sectorsize;
7944 ASSERT(bio_offset + sectorsize > bio_offset);
7945 bio_offset += sectorsize;
7946 pgoff += sectorsize;
7947 }
7948 }
7949 return err;
7950 }
7951
7952 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7953 const u64 offset, const u64 bytes,
7954 const bool uptodate)
7955 {
7956 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7957 struct btrfs_ordered_extent *ordered = NULL;
7958 struct btrfs_workqueue *wq;
7959 u64 ordered_offset = offset;
7960 u64 ordered_bytes = bytes;
7961 u64 last_offset;
7962
7963 if (btrfs_is_free_space_inode(inode))
7964 wq = fs_info->endio_freespace_worker;
7965 else
7966 wq = fs_info->endio_write_workers;
7967
7968 while (ordered_offset < offset + bytes) {
7969 last_offset = ordered_offset;
7970 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7971 &ordered_offset,
7972 ordered_bytes,
7973 uptodate)) {
7974 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7975 NULL);
7976 btrfs_queue_work(wq, &ordered->work);
7977 }
7978
7979 /* No ordered extent found in the range, exit */
7980 if (ordered_offset == last_offset)
7981 return;
7982 /*
7983 * Our bio might span multiple ordered extents. In this case
7984 * we keep going until we have accounted the whole dio.
7985 */
7986 if (ordered_offset < offset + bytes) {
7987 ordered_bytes = offset + bytes - ordered_offset;
7988 ordered = NULL;
7989 }
7990 }
7991 }
7992
7993 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7994 struct bio *bio,
7995 u64 dio_file_offset)
7996 {
7997 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
7998 }
7999
8000 static void btrfs_end_dio_bio(struct bio *bio)
8001 {
8002 struct btrfs_dio_private *dip = bio->bi_private;
8003 blk_status_t err = bio->bi_status;
8004
8005 if (err)
8006 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8007 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8008 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8009 bio->bi_opf, bio->bi_iter.bi_sector,
8010 bio->bi_iter.bi_size, err);
8011
8012 if (bio_op(bio) == REQ_OP_READ) {
8013 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8014 !err);
8015 }
8016
8017 if (err)
8018 dip->dio_bio->bi_status = err;
8019
8020 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8021
8022 bio_put(bio);
8023 btrfs_dio_private_put(dip);
8024 }
8025
8026 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8027 struct inode *inode, u64 file_offset, int async_submit)
8028 {
8029 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8030 struct btrfs_dio_private *dip = bio->bi_private;
8031 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8032 blk_status_t ret;
8033
8034 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8035 if (async_submit)
8036 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8037
8038 if (!write) {
8039 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8040 if (ret)
8041 goto err;
8042 }
8043
8044 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8045 goto map;
8046
8047 if (write && async_submit) {
8048 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8049 btrfs_submit_bio_start_direct_io);
8050 goto err;
8051 } else if (write) {
8052 /*
8053 * If we aren't doing async submit, calculate the csum of the
8054 * bio now.
8055 */
8056 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8057 if (ret)
8058 goto err;
8059 } else {
8060 u64 csum_offset;
8061
8062 csum_offset = file_offset - dip->logical_offset;
8063 csum_offset >>= fs_info->sectorsize_bits;
8064 csum_offset *= fs_info->csum_size;
8065 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8066 }
8067 map:
8068 ret = btrfs_map_bio(fs_info, bio, 0);
8069 err:
8070 return ret;
8071 }
8072
8073 /*
8074 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8075 * or ordered extents whether or not we submit any bios.
8076 */
8077 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8078 struct inode *inode,
8079 loff_t file_offset)
8080 {
8081 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8082 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8083 size_t dip_size;
8084 struct btrfs_dio_private *dip;
8085
8086 dip_size = sizeof(*dip);
8087 if (!write && csum) {
8088 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089 size_t nblocks;
8090
8091 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8092 dip_size += fs_info->csum_size * nblocks;
8093 }
8094
8095 dip = kzalloc(dip_size, GFP_NOFS);
8096 if (!dip)
8097 return NULL;
8098
8099 dip->inode = inode;
8100 dip->logical_offset = file_offset;
8101 dip->bytes = dio_bio->bi_iter.bi_size;
8102 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8103 dip->dio_bio = dio_bio;
8104 refcount_set(&dip->refs, 1);
8105 return dip;
8106 }
8107
8108 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
8109 struct bio *dio_bio, loff_t file_offset)
8110 {
8111 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8113 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8114 BTRFS_BLOCK_GROUP_RAID56_MASK);
8115 struct btrfs_dio_private *dip;
8116 struct bio *bio;
8117 u64 start_sector;
8118 int async_submit = 0;
8119 u64 submit_len;
8120 int clone_offset = 0;
8121 int clone_len;
8122 u64 logical;
8123 int ret;
8124 blk_status_t status;
8125 struct btrfs_io_geometry geom;
8126 struct btrfs_dio_data *dio_data = iomap->private;
8127 struct extent_map *em = NULL;
8128
8129 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8130 if (!dip) {
8131 if (!write) {
8132 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8133 file_offset + dio_bio->bi_iter.bi_size - 1);
8134 }
8135 dio_bio->bi_status = BLK_STS_RESOURCE;
8136 bio_endio(dio_bio);
8137 return BLK_QC_T_NONE;
8138 }
8139
8140 if (!write) {
8141 /*
8142 * Load the csums up front to reduce csum tree searches and
8143 * contention when submitting bios.
8144 *
8145 * If we have csums disabled this will do nothing.
8146 */
8147 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8148 if (status != BLK_STS_OK)
8149 goto out_err;
8150 }
8151
8152 start_sector = dio_bio->bi_iter.bi_sector;
8153 submit_len = dio_bio->bi_iter.bi_size;
8154
8155 do {
8156 logical = start_sector << 9;
8157 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8158 if (IS_ERR(em)) {
8159 status = errno_to_blk_status(PTR_ERR(em));
8160 em = NULL;
8161 goto out_err_em;
8162 }
8163 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8164 logical, submit_len, &geom);
8165 if (ret) {
8166 status = errno_to_blk_status(ret);
8167 goto out_err_em;
8168 }
8169 ASSERT(geom.len <= INT_MAX);
8170
8171 clone_len = min_t(int, submit_len, geom.len);
8172
8173 /*
8174 * This will never fail as it's passing GPF_NOFS and
8175 * the allocation is backed by btrfs_bioset.
8176 */
8177 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8178 bio->bi_private = dip;
8179 bio->bi_end_io = btrfs_end_dio_bio;
8180 btrfs_io_bio(bio)->logical = file_offset;
8181
8182 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8183 status = extract_ordered_extent(BTRFS_I(inode), bio,
8184 file_offset);
8185 if (status) {
8186 bio_put(bio);
8187 goto out_err;
8188 }
8189 }
8190
8191 ASSERT(submit_len >= clone_len);
8192 submit_len -= clone_len;
8193
8194 /*
8195 * Increase the count before we submit the bio so we know
8196 * the end IO handler won't happen before we increase the
8197 * count. Otherwise, the dip might get freed before we're
8198 * done setting it up.
8199 *
8200 * We transfer the initial reference to the last bio, so we
8201 * don't need to increment the reference count for the last one.
8202 */
8203 if (submit_len > 0) {
8204 refcount_inc(&dip->refs);
8205 /*
8206 * If we are submitting more than one bio, submit them
8207 * all asynchronously. The exception is RAID 5 or 6, as
8208 * asynchronous checksums make it difficult to collect
8209 * full stripe writes.
8210 */
8211 if (!raid56)
8212 async_submit = 1;
8213 }
8214
8215 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8216 async_submit);
8217 if (status) {
8218 bio_put(bio);
8219 if (submit_len > 0)
8220 refcount_dec(&dip->refs);
8221 goto out_err_em;
8222 }
8223
8224 dio_data->submitted += clone_len;
8225 clone_offset += clone_len;
8226 start_sector += clone_len >> 9;
8227 file_offset += clone_len;
8228
8229 free_extent_map(em);
8230 } while (submit_len > 0);
8231 return BLK_QC_T_NONE;
8232
8233 out_err_em:
8234 free_extent_map(em);
8235 out_err:
8236 dip->dio_bio->bi_status = status;
8237 btrfs_dio_private_put(dip);
8238
8239 return BLK_QC_T_NONE;
8240 }
8241
8242 const struct iomap_ops btrfs_dio_iomap_ops = {
8243 .iomap_begin = btrfs_dio_iomap_begin,
8244 .iomap_end = btrfs_dio_iomap_end,
8245 };
8246
8247 const struct iomap_dio_ops btrfs_dio_ops = {
8248 .submit_io = btrfs_submit_direct,
8249 };
8250
8251 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8252 u64 start, u64 len)
8253 {
8254 int ret;
8255
8256 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8257 if (ret)
8258 return ret;
8259
8260 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8261 }
8262
8263 int btrfs_readpage(struct file *file, struct page *page)
8264 {
8265 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8266 u64 start = page_offset(page);
8267 u64 end = start + PAGE_SIZE - 1;
8268 unsigned long bio_flags = 0;
8269 struct bio *bio = NULL;
8270 int ret;
8271
8272 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8273
8274 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8275 if (bio)
8276 ret = submit_one_bio(bio, 0, bio_flags);
8277 return ret;
8278 }
8279
8280 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8281 {
8282 struct inode *inode = page->mapping->host;
8283 int ret;
8284
8285 if (current->flags & PF_MEMALLOC) {
8286 redirty_page_for_writepage(wbc, page);
8287 unlock_page(page);
8288 return 0;
8289 }
8290
8291 /*
8292 * If we are under memory pressure we will call this directly from the
8293 * VM, we need to make sure we have the inode referenced for the ordered
8294 * extent. If not just return like we didn't do anything.
8295 */
8296 if (!igrab(inode)) {
8297 redirty_page_for_writepage(wbc, page);
8298 return AOP_WRITEPAGE_ACTIVATE;
8299 }
8300 ret = extent_write_full_page(page, wbc);
8301 btrfs_add_delayed_iput(inode);
8302 return ret;
8303 }
8304
8305 static int btrfs_writepages(struct address_space *mapping,
8306 struct writeback_control *wbc)
8307 {
8308 return extent_writepages(mapping, wbc);
8309 }
8310
8311 static void btrfs_readahead(struct readahead_control *rac)
8312 {
8313 extent_readahead(rac);
8314 }
8315
8316 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8317 {
8318 int ret = try_release_extent_mapping(page, gfp_flags);
8319 if (ret == 1)
8320 clear_page_extent_mapped(page);
8321 return ret;
8322 }
8323
8324 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8325 {
8326 if (PageWriteback(page) || PageDirty(page))
8327 return 0;
8328 return __btrfs_releasepage(page, gfp_flags);
8329 }
8330
8331 #ifdef CONFIG_MIGRATION
8332 static int btrfs_migratepage(struct address_space *mapping,
8333 struct page *newpage, struct page *page,
8334 enum migrate_mode mode)
8335 {
8336 int ret;
8337
8338 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8339 if (ret != MIGRATEPAGE_SUCCESS)
8340 return ret;
8341
8342 if (page_has_private(page))
8343 attach_page_private(newpage, detach_page_private(page));
8344
8345 if (PagePrivate2(page)) {
8346 ClearPagePrivate2(page);
8347 SetPagePrivate2(newpage);
8348 }
8349
8350 if (mode != MIGRATE_SYNC_NO_COPY)
8351 migrate_page_copy(newpage, page);
8352 else
8353 migrate_page_states(newpage, page);
8354 return MIGRATEPAGE_SUCCESS;
8355 }
8356 #endif
8357
8358 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8359 unsigned int length)
8360 {
8361 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8362 struct extent_io_tree *tree = &inode->io_tree;
8363 struct btrfs_ordered_extent *ordered;
8364 struct extent_state *cached_state = NULL;
8365 u64 page_start = page_offset(page);
8366 u64 page_end = page_start + PAGE_SIZE - 1;
8367 u64 start;
8368 u64 end;
8369 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8370 bool found_ordered = false;
8371 bool completed_ordered = false;
8372
8373 /*
8374 * we have the page locked, so new writeback can't start,
8375 * and the dirty bit won't be cleared while we are here.
8376 *
8377 * Wait for IO on this page so that we can safely clear
8378 * the PagePrivate2 bit and do ordered accounting
8379 */
8380 wait_on_page_writeback(page);
8381
8382 if (offset) {
8383 btrfs_releasepage(page, GFP_NOFS);
8384 return;
8385 }
8386
8387 if (!inode_evicting)
8388 lock_extent_bits(tree, page_start, page_end, &cached_state);
8389
8390 start = page_start;
8391 again:
8392 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8393 if (ordered) {
8394 found_ordered = true;
8395 end = min(page_end,
8396 ordered->file_offset + ordered->num_bytes - 1);
8397 /*
8398 * IO on this page will never be started, so we need to account
8399 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8400 * here, must leave that up for the ordered extent completion.
8401 */
8402 if (!inode_evicting)
8403 clear_extent_bit(tree, start, end,
8404 EXTENT_DELALLOC |
8405 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8406 EXTENT_DEFRAG, 1, 0, &cached_state);
8407 /*
8408 * whoever cleared the private bit is responsible
8409 * for the finish_ordered_io
8410 */
8411 if (TestClearPagePrivate2(page)) {
8412 struct btrfs_ordered_inode_tree *tree;
8413 u64 new_len;
8414
8415 tree = &inode->ordered_tree;
8416
8417 spin_lock_irq(&tree->lock);
8418 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8419 new_len = start - ordered->file_offset;
8420 if (new_len < ordered->truncated_len)
8421 ordered->truncated_len = new_len;
8422 spin_unlock_irq(&tree->lock);
8423
8424 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8425 start,
8426 end - start + 1, 1)) {
8427 btrfs_finish_ordered_io(ordered);
8428 completed_ordered = true;
8429 }
8430 }
8431 btrfs_put_ordered_extent(ordered);
8432 if (!inode_evicting) {
8433 cached_state = NULL;
8434 lock_extent_bits(tree, start, end,
8435 &cached_state);
8436 }
8437
8438 start = end + 1;
8439 if (start < page_end)
8440 goto again;
8441 }
8442
8443 /*
8444 * Qgroup reserved space handler
8445 * Page here will be either
8446 * 1) Already written to disk or ordered extent already submitted
8447 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8448 * Qgroup will be handled by its qgroup_record then.
8449 * btrfs_qgroup_free_data() call will do nothing here.
8450 *
8451 * 2) Not written to disk yet
8452 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8453 * bit of its io_tree, and free the qgroup reserved data space.
8454 * Since the IO will never happen for this page.
8455 */
8456 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8457 if (!inode_evicting) {
8458 bool delete = true;
8459
8460 /*
8461 * If there's an ordered extent for this range and we have not
8462 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8463 * in the range for the ordered extent completion. We must also
8464 * not delete the range, otherwise we would lose that bit (and
8465 * any other bits set in the range). Make sure EXTENT_UPTODATE
8466 * is cleared if we don't delete, otherwise it can lead to
8467 * corruptions if the i_size is extented later.
8468 */
8469 if (found_ordered && !completed_ordered)
8470 delete = false;
8471 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8472 EXTENT_DELALLOC | EXTENT_UPTODATE |
8473 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8474 delete, &cached_state);
8475
8476 __btrfs_releasepage(page, GFP_NOFS);
8477 }
8478
8479 ClearPageChecked(page);
8480 clear_page_extent_mapped(page);
8481 }
8482
8483 /*
8484 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8485 * called from a page fault handler when a page is first dirtied. Hence we must
8486 * be careful to check for EOF conditions here. We set the page up correctly
8487 * for a written page which means we get ENOSPC checking when writing into
8488 * holes and correct delalloc and unwritten extent mapping on filesystems that
8489 * support these features.
8490 *
8491 * We are not allowed to take the i_mutex here so we have to play games to
8492 * protect against truncate races as the page could now be beyond EOF. Because
8493 * truncate_setsize() writes the inode size before removing pages, once we have
8494 * the page lock we can determine safely if the page is beyond EOF. If it is not
8495 * beyond EOF, then the page is guaranteed safe against truncation until we
8496 * unlock the page.
8497 */
8498 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8499 {
8500 struct page *page = vmf->page;
8501 struct inode *inode = file_inode(vmf->vma->vm_file);
8502 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8503 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8504 struct btrfs_ordered_extent *ordered;
8505 struct extent_state *cached_state = NULL;
8506 struct extent_changeset *data_reserved = NULL;
8507 char *kaddr;
8508 unsigned long zero_start;
8509 loff_t size;
8510 vm_fault_t ret;
8511 int ret2;
8512 int reserved = 0;
8513 u64 reserved_space;
8514 u64 page_start;
8515 u64 page_end;
8516 u64 end;
8517
8518 reserved_space = PAGE_SIZE;
8519
8520 sb_start_pagefault(inode->i_sb);
8521 page_start = page_offset(page);
8522 page_end = page_start + PAGE_SIZE - 1;
8523 end = page_end;
8524
8525 /*
8526 * Reserving delalloc space after obtaining the page lock can lead to
8527 * deadlock. For example, if a dirty page is locked by this function
8528 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8529 * dirty page write out, then the btrfs_writepage() function could
8530 * end up waiting indefinitely to get a lock on the page currently
8531 * being processed by btrfs_page_mkwrite() function.
8532 */
8533 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8534 page_start, reserved_space);
8535 if (!ret2) {
8536 ret2 = file_update_time(vmf->vma->vm_file);
8537 reserved = 1;
8538 }
8539 if (ret2) {
8540 ret = vmf_error(ret2);
8541 if (reserved)
8542 goto out;
8543 goto out_noreserve;
8544 }
8545
8546 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8547 again:
8548 down_read(&BTRFS_I(inode)->i_mmap_lock);
8549 lock_page(page);
8550 size = i_size_read(inode);
8551
8552 if ((page->mapping != inode->i_mapping) ||
8553 (page_start >= size)) {
8554 /* page got truncated out from underneath us */
8555 goto out_unlock;
8556 }
8557 wait_on_page_writeback(page);
8558
8559 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8560 ret2 = set_page_extent_mapped(page);
8561 if (ret2 < 0) {
8562 ret = vmf_error(ret2);
8563 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8564 goto out_unlock;
8565 }
8566
8567 /*
8568 * we can't set the delalloc bits if there are pending ordered
8569 * extents. Drop our locks and wait for them to finish
8570 */
8571 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8572 PAGE_SIZE);
8573 if (ordered) {
8574 unlock_extent_cached(io_tree, page_start, page_end,
8575 &cached_state);
8576 unlock_page(page);
8577 up_read(&BTRFS_I(inode)->i_mmap_lock);
8578 btrfs_start_ordered_extent(ordered, 1);
8579 btrfs_put_ordered_extent(ordered);
8580 goto again;
8581 }
8582
8583 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8584 reserved_space = round_up(size - page_start,
8585 fs_info->sectorsize);
8586 if (reserved_space < PAGE_SIZE) {
8587 end = page_start + reserved_space - 1;
8588 btrfs_delalloc_release_space(BTRFS_I(inode),
8589 data_reserved, page_start,
8590 PAGE_SIZE - reserved_space, true);
8591 }
8592 }
8593
8594 /*
8595 * page_mkwrite gets called when the page is firstly dirtied after it's
8596 * faulted in, but write(2) could also dirty a page and set delalloc
8597 * bits, thus in this case for space account reason, we still need to
8598 * clear any delalloc bits within this page range since we have to
8599 * reserve data&meta space before lock_page() (see above comments).
8600 */
8601 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8602 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8603 EXTENT_DEFRAG, 0, 0, &cached_state);
8604
8605 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8606 &cached_state);
8607 if (ret2) {
8608 unlock_extent_cached(io_tree, page_start, page_end,
8609 &cached_state);
8610 ret = VM_FAULT_SIGBUS;
8611 goto out_unlock;
8612 }
8613
8614 /* page is wholly or partially inside EOF */
8615 if (page_start + PAGE_SIZE > size)
8616 zero_start = offset_in_page(size);
8617 else
8618 zero_start = PAGE_SIZE;
8619
8620 if (zero_start != PAGE_SIZE) {
8621 kaddr = kmap(page);
8622 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8623 flush_dcache_page(page);
8624 kunmap(page);
8625 }
8626 ClearPageChecked(page);
8627 set_page_dirty(page);
8628 SetPageUptodate(page);
8629
8630 BTRFS_I(inode)->last_trans = fs_info->generation;
8631 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8632 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8633
8634 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8635 up_read(&BTRFS_I(inode)->i_mmap_lock);
8636
8637 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8638 sb_end_pagefault(inode->i_sb);
8639 extent_changeset_free(data_reserved);
8640 return VM_FAULT_LOCKED;
8641
8642 out_unlock:
8643 unlock_page(page);
8644 up_read(&BTRFS_I(inode)->i_mmap_lock);
8645 out:
8646 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8647 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8648 reserved_space, (ret != 0));
8649 out_noreserve:
8650 sb_end_pagefault(inode->i_sb);
8651 extent_changeset_free(data_reserved);
8652 return ret;
8653 }
8654
8655 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8656 {
8657 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8658 struct btrfs_root *root = BTRFS_I(inode)->root;
8659 struct btrfs_block_rsv *rsv;
8660 int ret;
8661 struct btrfs_trans_handle *trans;
8662 u64 mask = fs_info->sectorsize - 1;
8663 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8664
8665 if (!skip_writeback) {
8666 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8667 (u64)-1);
8668 if (ret)
8669 return ret;
8670 }
8671
8672 /*
8673 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8674 * things going on here:
8675 *
8676 * 1) We need to reserve space to update our inode.
8677 *
8678 * 2) We need to have something to cache all the space that is going to
8679 * be free'd up by the truncate operation, but also have some slack
8680 * space reserved in case it uses space during the truncate (thank you
8681 * very much snapshotting).
8682 *
8683 * And we need these to be separate. The fact is we can use a lot of
8684 * space doing the truncate, and we have no earthly idea how much space
8685 * we will use, so we need the truncate reservation to be separate so it
8686 * doesn't end up using space reserved for updating the inode. We also
8687 * need to be able to stop the transaction and start a new one, which
8688 * means we need to be able to update the inode several times, and we
8689 * have no idea of knowing how many times that will be, so we can't just
8690 * reserve 1 item for the entirety of the operation, so that has to be
8691 * done separately as well.
8692 *
8693 * So that leaves us with
8694 *
8695 * 1) rsv - for the truncate reservation, which we will steal from the
8696 * transaction reservation.
8697 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8698 * updating the inode.
8699 */
8700 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8701 if (!rsv)
8702 return -ENOMEM;
8703 rsv->size = min_size;
8704 rsv->failfast = 1;
8705
8706 /*
8707 * 1 for the truncate slack space
8708 * 1 for updating the inode.
8709 */
8710 trans = btrfs_start_transaction(root, 2);
8711 if (IS_ERR(trans)) {
8712 ret = PTR_ERR(trans);
8713 goto out;
8714 }
8715
8716 /* Migrate the slack space for the truncate to our reserve */
8717 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8718 min_size, false);
8719 BUG_ON(ret);
8720
8721 /*
8722 * So if we truncate and then write and fsync we normally would just
8723 * write the extents that changed, which is a problem if we need to
8724 * first truncate that entire inode. So set this flag so we write out
8725 * all of the extents in the inode to the sync log so we're completely
8726 * safe.
8727 */
8728 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8729 trans->block_rsv = rsv;
8730
8731 while (1) {
8732 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8733 inode->i_size,
8734 BTRFS_EXTENT_DATA_KEY);
8735 trans->block_rsv = &fs_info->trans_block_rsv;
8736 if (ret != -ENOSPC && ret != -EAGAIN)
8737 break;
8738
8739 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8740 if (ret)
8741 break;
8742
8743 btrfs_end_transaction(trans);
8744 btrfs_btree_balance_dirty(fs_info);
8745
8746 trans = btrfs_start_transaction(root, 2);
8747 if (IS_ERR(trans)) {
8748 ret = PTR_ERR(trans);
8749 trans = NULL;
8750 break;
8751 }
8752
8753 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8754 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8755 rsv, min_size, false);
8756 BUG_ON(ret); /* shouldn't happen */
8757 trans->block_rsv = rsv;
8758 }
8759
8760 /*
8761 * We can't call btrfs_truncate_block inside a trans handle as we could
8762 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8763 * we've truncated everything except the last little bit, and can do
8764 * btrfs_truncate_block and then update the disk_i_size.
8765 */
8766 if (ret == NEED_TRUNCATE_BLOCK) {
8767 btrfs_end_transaction(trans);
8768 btrfs_btree_balance_dirty(fs_info);
8769
8770 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8771 if (ret)
8772 goto out;
8773 trans = btrfs_start_transaction(root, 1);
8774 if (IS_ERR(trans)) {
8775 ret = PTR_ERR(trans);
8776 goto out;
8777 }
8778 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8779 }
8780
8781 if (trans) {
8782 int ret2;
8783
8784 trans->block_rsv = &fs_info->trans_block_rsv;
8785 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8786 if (ret2 && !ret)
8787 ret = ret2;
8788
8789 ret2 = btrfs_end_transaction(trans);
8790 if (ret2 && !ret)
8791 ret = ret2;
8792 btrfs_btree_balance_dirty(fs_info);
8793 }
8794 out:
8795 btrfs_free_block_rsv(fs_info, rsv);
8796
8797 return ret;
8798 }
8799
8800 /*
8801 * create a new subvolume directory/inode (helper for the ioctl).
8802 */
8803 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8804 struct btrfs_root *new_root,
8805 struct btrfs_root *parent_root)
8806 {
8807 struct inode *inode;
8808 int err;
8809 u64 index = 0;
8810 u64 ino;
8811
8812 err = btrfs_get_free_objectid(new_root, &ino);
8813 if (err < 0)
8814 return err;
8815
8816 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino,
8817 S_IFDIR | (~current_umask() & S_IRWXUGO),
8818 &index);
8819 if (IS_ERR(inode))
8820 return PTR_ERR(inode);
8821 inode->i_op = &btrfs_dir_inode_operations;
8822 inode->i_fop = &btrfs_dir_file_operations;
8823
8824 set_nlink(inode, 1);
8825 btrfs_i_size_write(BTRFS_I(inode), 0);
8826 unlock_new_inode(inode);
8827
8828 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8829 if (err)
8830 btrfs_err(new_root->fs_info,
8831 "error inheriting subvolume %llu properties: %d",
8832 new_root->root_key.objectid, err);
8833
8834 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8835
8836 iput(inode);
8837 return err;
8838 }
8839
8840 struct inode *btrfs_alloc_inode(struct super_block *sb)
8841 {
8842 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8843 struct btrfs_inode *ei;
8844 struct inode *inode;
8845
8846 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8847 if (!ei)
8848 return NULL;
8849
8850 ei->root = NULL;
8851 ei->generation = 0;
8852 ei->last_trans = 0;
8853 ei->last_sub_trans = 0;
8854 ei->logged_trans = 0;
8855 ei->delalloc_bytes = 0;
8856 ei->new_delalloc_bytes = 0;
8857 ei->defrag_bytes = 0;
8858 ei->disk_i_size = 0;
8859 ei->flags = 0;
8860 ei->csum_bytes = 0;
8861 ei->index_cnt = (u64)-1;
8862 ei->dir_index = 0;
8863 ei->last_unlink_trans = 0;
8864 ei->last_reflink_trans = 0;
8865 ei->last_log_commit = 0;
8866
8867 spin_lock_init(&ei->lock);
8868 ei->outstanding_extents = 0;
8869 if (sb->s_magic != BTRFS_TEST_MAGIC)
8870 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8871 BTRFS_BLOCK_RSV_DELALLOC);
8872 ei->runtime_flags = 0;
8873 ei->prop_compress = BTRFS_COMPRESS_NONE;
8874 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8875
8876 ei->delayed_node = NULL;
8877
8878 ei->i_otime.tv_sec = 0;
8879 ei->i_otime.tv_nsec = 0;
8880
8881 inode = &ei->vfs_inode;
8882 extent_map_tree_init(&ei->extent_tree);
8883 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8884 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8885 IO_TREE_INODE_IO_FAILURE, inode);
8886 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8887 IO_TREE_INODE_FILE_EXTENT, inode);
8888 ei->io_tree.track_uptodate = true;
8889 ei->io_failure_tree.track_uptodate = true;
8890 atomic_set(&ei->sync_writers, 0);
8891 mutex_init(&ei->log_mutex);
8892 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8893 INIT_LIST_HEAD(&ei->delalloc_inodes);
8894 INIT_LIST_HEAD(&ei->delayed_iput);
8895 RB_CLEAR_NODE(&ei->rb_node);
8896 init_rwsem(&ei->i_mmap_lock);
8897
8898 return inode;
8899 }
8900
8901 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8902 void btrfs_test_destroy_inode(struct inode *inode)
8903 {
8904 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8905 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8906 }
8907 #endif
8908
8909 void btrfs_free_inode(struct inode *inode)
8910 {
8911 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8912 }
8913
8914 void btrfs_destroy_inode(struct inode *vfs_inode)
8915 {
8916 struct btrfs_ordered_extent *ordered;
8917 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8918 struct btrfs_root *root = inode->root;
8919
8920 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8921 WARN_ON(vfs_inode->i_data.nrpages);
8922 WARN_ON(inode->block_rsv.reserved);
8923 WARN_ON(inode->block_rsv.size);
8924 WARN_ON(inode->outstanding_extents);
8925 WARN_ON(inode->delalloc_bytes);
8926 WARN_ON(inode->new_delalloc_bytes);
8927 WARN_ON(inode->csum_bytes);
8928 WARN_ON(inode->defrag_bytes);
8929
8930 /*
8931 * This can happen where we create an inode, but somebody else also
8932 * created the same inode and we need to destroy the one we already
8933 * created.
8934 */
8935 if (!root)
8936 return;
8937
8938 while (1) {
8939 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8940 if (!ordered)
8941 break;
8942 else {
8943 btrfs_err(root->fs_info,
8944 "found ordered extent %llu %llu on inode cleanup",
8945 ordered->file_offset, ordered->num_bytes);
8946 btrfs_remove_ordered_extent(inode, ordered);
8947 btrfs_put_ordered_extent(ordered);
8948 btrfs_put_ordered_extent(ordered);
8949 }
8950 }
8951 btrfs_qgroup_check_reserved_leak(inode);
8952 inode_tree_del(inode);
8953 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8954 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8955 btrfs_put_root(inode->root);
8956 }
8957
8958 int btrfs_drop_inode(struct inode *inode)
8959 {
8960 struct btrfs_root *root = BTRFS_I(inode)->root;
8961
8962 if (root == NULL)
8963 return 1;
8964
8965 /* the snap/subvol tree is on deleting */
8966 if (btrfs_root_refs(&root->root_item) == 0)
8967 return 1;
8968 else
8969 return generic_drop_inode(inode);
8970 }
8971
8972 static void init_once(void *foo)
8973 {
8974 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8975
8976 inode_init_once(&ei->vfs_inode);
8977 }
8978
8979 void __cold btrfs_destroy_cachep(void)
8980 {
8981 /*
8982 * Make sure all delayed rcu free inodes are flushed before we
8983 * destroy cache.
8984 */
8985 rcu_barrier();
8986 kmem_cache_destroy(btrfs_inode_cachep);
8987 kmem_cache_destroy(btrfs_trans_handle_cachep);
8988 kmem_cache_destroy(btrfs_path_cachep);
8989 kmem_cache_destroy(btrfs_free_space_cachep);
8990 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8991 }
8992
8993 int __init btrfs_init_cachep(void)
8994 {
8995 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8996 sizeof(struct btrfs_inode), 0,
8997 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8998 init_once);
8999 if (!btrfs_inode_cachep)
9000 goto fail;
9001
9002 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9003 sizeof(struct btrfs_trans_handle), 0,
9004 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9005 if (!btrfs_trans_handle_cachep)
9006 goto fail;
9007
9008 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9009 sizeof(struct btrfs_path), 0,
9010 SLAB_MEM_SPREAD, NULL);
9011 if (!btrfs_path_cachep)
9012 goto fail;
9013
9014 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9015 sizeof(struct btrfs_free_space), 0,
9016 SLAB_MEM_SPREAD, NULL);
9017 if (!btrfs_free_space_cachep)
9018 goto fail;
9019
9020 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9021 PAGE_SIZE, PAGE_SIZE,
9022 SLAB_MEM_SPREAD, NULL);
9023 if (!btrfs_free_space_bitmap_cachep)
9024 goto fail;
9025
9026 return 0;
9027 fail:
9028 btrfs_destroy_cachep();
9029 return -ENOMEM;
9030 }
9031
9032 static int btrfs_getattr(struct user_namespace *mnt_userns,
9033 const struct path *path, struct kstat *stat,
9034 u32 request_mask, unsigned int flags)
9035 {
9036 u64 delalloc_bytes;
9037 u64 inode_bytes;
9038 struct inode *inode = d_inode(path->dentry);
9039 u32 blocksize = inode->i_sb->s_blocksize;
9040 u32 bi_flags = BTRFS_I(inode)->flags;
9041
9042 stat->result_mask |= STATX_BTIME;
9043 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9044 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9045 if (bi_flags & BTRFS_INODE_APPEND)
9046 stat->attributes |= STATX_ATTR_APPEND;
9047 if (bi_flags & BTRFS_INODE_COMPRESS)
9048 stat->attributes |= STATX_ATTR_COMPRESSED;
9049 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9050 stat->attributes |= STATX_ATTR_IMMUTABLE;
9051 if (bi_flags & BTRFS_INODE_NODUMP)
9052 stat->attributes |= STATX_ATTR_NODUMP;
9053
9054 stat->attributes_mask |= (STATX_ATTR_APPEND |
9055 STATX_ATTR_COMPRESSED |
9056 STATX_ATTR_IMMUTABLE |
9057 STATX_ATTR_NODUMP);
9058
9059 generic_fillattr(&init_user_ns, inode, stat);
9060 stat->dev = BTRFS_I(inode)->root->anon_dev;
9061
9062 spin_lock(&BTRFS_I(inode)->lock);
9063 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9064 inode_bytes = inode_get_bytes(inode);
9065 spin_unlock(&BTRFS_I(inode)->lock);
9066 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9067 ALIGN(delalloc_bytes, blocksize)) >> 9;
9068 return 0;
9069 }
9070
9071 static int btrfs_rename_exchange(struct inode *old_dir,
9072 struct dentry *old_dentry,
9073 struct inode *new_dir,
9074 struct dentry *new_dentry)
9075 {
9076 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9077 struct btrfs_trans_handle *trans;
9078 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9079 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9080 struct inode *new_inode = new_dentry->d_inode;
9081 struct inode *old_inode = old_dentry->d_inode;
9082 struct timespec64 ctime = current_time(old_inode);
9083 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9084 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9085 u64 old_idx = 0;
9086 u64 new_idx = 0;
9087 int ret;
9088 int ret2;
9089 bool root_log_pinned = false;
9090 bool dest_log_pinned = false;
9091
9092 /* we only allow rename subvolume link between subvolumes */
9093 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9094 return -EXDEV;
9095
9096 /* close the race window with snapshot create/destroy ioctl */
9097 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9098 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9099 down_read(&fs_info->subvol_sem);
9100
9101 /*
9102 * We want to reserve the absolute worst case amount of items. So if
9103 * both inodes are subvols and we need to unlink them then that would
9104 * require 4 item modifications, but if they are both normal inodes it
9105 * would require 5 item modifications, so we'll assume their normal
9106 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9107 * should cover the worst case number of items we'll modify.
9108 */
9109 trans = btrfs_start_transaction(root, 12);
9110 if (IS_ERR(trans)) {
9111 ret = PTR_ERR(trans);
9112 goto out_notrans;
9113 }
9114
9115 if (dest != root)
9116 btrfs_record_root_in_trans(trans, dest);
9117
9118 /*
9119 * We need to find a free sequence number both in the source and
9120 * in the destination directory for the exchange.
9121 */
9122 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9123 if (ret)
9124 goto out_fail;
9125 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9126 if (ret)
9127 goto out_fail;
9128
9129 BTRFS_I(old_inode)->dir_index = 0ULL;
9130 BTRFS_I(new_inode)->dir_index = 0ULL;
9131
9132 /* Reference for the source. */
9133 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9134 /* force full log commit if subvolume involved. */
9135 btrfs_set_log_full_commit(trans);
9136 } else {
9137 btrfs_pin_log_trans(root);
9138 root_log_pinned = true;
9139 ret = btrfs_insert_inode_ref(trans, dest,
9140 new_dentry->d_name.name,
9141 new_dentry->d_name.len,
9142 old_ino,
9143 btrfs_ino(BTRFS_I(new_dir)),
9144 old_idx);
9145 if (ret)
9146 goto out_fail;
9147 }
9148
9149 /* And now for the dest. */
9150 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9151 /* force full log commit if subvolume involved. */
9152 btrfs_set_log_full_commit(trans);
9153 } else {
9154 btrfs_pin_log_trans(dest);
9155 dest_log_pinned = true;
9156 ret = btrfs_insert_inode_ref(trans, root,
9157 old_dentry->d_name.name,
9158 old_dentry->d_name.len,
9159 new_ino,
9160 btrfs_ino(BTRFS_I(old_dir)),
9161 new_idx);
9162 if (ret)
9163 goto out_fail;
9164 }
9165
9166 /* Update inode version and ctime/mtime. */
9167 inode_inc_iversion(old_dir);
9168 inode_inc_iversion(new_dir);
9169 inode_inc_iversion(old_inode);
9170 inode_inc_iversion(new_inode);
9171 old_dir->i_ctime = old_dir->i_mtime = ctime;
9172 new_dir->i_ctime = new_dir->i_mtime = ctime;
9173 old_inode->i_ctime = ctime;
9174 new_inode->i_ctime = ctime;
9175
9176 if (old_dentry->d_parent != new_dentry->d_parent) {
9177 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9178 BTRFS_I(old_inode), 1);
9179 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9180 BTRFS_I(new_inode), 1);
9181 }
9182
9183 /* src is a subvolume */
9184 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9185 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9186 } else { /* src is an inode */
9187 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9188 BTRFS_I(old_dentry->d_inode),
9189 old_dentry->d_name.name,
9190 old_dentry->d_name.len);
9191 if (!ret)
9192 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9193 }
9194 if (ret) {
9195 btrfs_abort_transaction(trans, ret);
9196 goto out_fail;
9197 }
9198
9199 /* dest is a subvolume */
9200 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9201 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9202 } else { /* dest is an inode */
9203 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9204 BTRFS_I(new_dentry->d_inode),
9205 new_dentry->d_name.name,
9206 new_dentry->d_name.len);
9207 if (!ret)
9208 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9209 }
9210 if (ret) {
9211 btrfs_abort_transaction(trans, ret);
9212 goto out_fail;
9213 }
9214
9215 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9216 new_dentry->d_name.name,
9217 new_dentry->d_name.len, 0, old_idx);
9218 if (ret) {
9219 btrfs_abort_transaction(trans, ret);
9220 goto out_fail;
9221 }
9222
9223 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9224 old_dentry->d_name.name,
9225 old_dentry->d_name.len, 0, new_idx);
9226 if (ret) {
9227 btrfs_abort_transaction(trans, ret);
9228 goto out_fail;
9229 }
9230
9231 if (old_inode->i_nlink == 1)
9232 BTRFS_I(old_inode)->dir_index = old_idx;
9233 if (new_inode->i_nlink == 1)
9234 BTRFS_I(new_inode)->dir_index = new_idx;
9235
9236 if (root_log_pinned) {
9237 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9238 new_dentry->d_parent);
9239 btrfs_end_log_trans(root);
9240 root_log_pinned = false;
9241 }
9242 if (dest_log_pinned) {
9243 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9244 old_dentry->d_parent);
9245 btrfs_end_log_trans(dest);
9246 dest_log_pinned = false;
9247 }
9248 out_fail:
9249 /*
9250 * If we have pinned a log and an error happened, we unpin tasks
9251 * trying to sync the log and force them to fallback to a transaction
9252 * commit if the log currently contains any of the inodes involved in
9253 * this rename operation (to ensure we do not persist a log with an
9254 * inconsistent state for any of these inodes or leading to any
9255 * inconsistencies when replayed). If the transaction was aborted, the
9256 * abortion reason is propagated to userspace when attempting to commit
9257 * the transaction. If the log does not contain any of these inodes, we
9258 * allow the tasks to sync it.
9259 */
9260 if (ret && (root_log_pinned || dest_log_pinned)) {
9261 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9262 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9263 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9264 (new_inode &&
9265 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9266 btrfs_set_log_full_commit(trans);
9267
9268 if (root_log_pinned) {
9269 btrfs_end_log_trans(root);
9270 root_log_pinned = false;
9271 }
9272 if (dest_log_pinned) {
9273 btrfs_end_log_trans(dest);
9274 dest_log_pinned = false;
9275 }
9276 }
9277 ret2 = btrfs_end_transaction(trans);
9278 ret = ret ? ret : ret2;
9279 out_notrans:
9280 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9281 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9282 up_read(&fs_info->subvol_sem);
9283
9284 return ret;
9285 }
9286
9287 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9288 struct btrfs_root *root,
9289 struct inode *dir,
9290 struct dentry *dentry)
9291 {
9292 int ret;
9293 struct inode *inode;
9294 u64 objectid;
9295 u64 index;
9296
9297 ret = btrfs_get_free_objectid(root, &objectid);
9298 if (ret)
9299 return ret;
9300
9301 inode = btrfs_new_inode(trans, root, dir,
9302 dentry->d_name.name,
9303 dentry->d_name.len,
9304 btrfs_ino(BTRFS_I(dir)),
9305 objectid,
9306 S_IFCHR | WHITEOUT_MODE,
9307 &index);
9308
9309 if (IS_ERR(inode)) {
9310 ret = PTR_ERR(inode);
9311 return ret;
9312 }
9313
9314 inode->i_op = &btrfs_special_inode_operations;
9315 init_special_inode(inode, inode->i_mode,
9316 WHITEOUT_DEV);
9317
9318 ret = btrfs_init_inode_security(trans, inode, dir,
9319 &dentry->d_name);
9320 if (ret)
9321 goto out;
9322
9323 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9324 BTRFS_I(inode), 0, index);
9325 if (ret)
9326 goto out;
9327
9328 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9329 out:
9330 unlock_new_inode(inode);
9331 if (ret)
9332 inode_dec_link_count(inode);
9333 iput(inode);
9334
9335 return ret;
9336 }
9337
9338 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9339 struct inode *new_dir, struct dentry *new_dentry,
9340 unsigned int flags)
9341 {
9342 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9343 struct btrfs_trans_handle *trans;
9344 unsigned int trans_num_items;
9345 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9346 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9347 struct inode *new_inode = d_inode(new_dentry);
9348 struct inode *old_inode = d_inode(old_dentry);
9349 u64 index = 0;
9350 int ret;
9351 int ret2;
9352 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9353 bool log_pinned = false;
9354
9355 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9356 return -EPERM;
9357
9358 /* we only allow rename subvolume link between subvolumes */
9359 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9360 return -EXDEV;
9361
9362 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9363 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9364 return -ENOTEMPTY;
9365
9366 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9367 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9368 return -ENOTEMPTY;
9369
9370
9371 /* check for collisions, even if the name isn't there */
9372 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9373 new_dentry->d_name.name,
9374 new_dentry->d_name.len);
9375
9376 if (ret) {
9377 if (ret == -EEXIST) {
9378 /* we shouldn't get
9379 * eexist without a new_inode */
9380 if (WARN_ON(!new_inode)) {
9381 return ret;
9382 }
9383 } else {
9384 /* maybe -EOVERFLOW */
9385 return ret;
9386 }
9387 }
9388 ret = 0;
9389
9390 /*
9391 * we're using rename to replace one file with another. Start IO on it
9392 * now so we don't add too much work to the end of the transaction
9393 */
9394 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9395 filemap_flush(old_inode->i_mapping);
9396
9397 /* close the racy window with snapshot create/destroy ioctl */
9398 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9399 down_read(&fs_info->subvol_sem);
9400 /*
9401 * We want to reserve the absolute worst case amount of items. So if
9402 * both inodes are subvols and we need to unlink them then that would
9403 * require 4 item modifications, but if they are both normal inodes it
9404 * would require 5 item modifications, so we'll assume they are normal
9405 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9406 * should cover the worst case number of items we'll modify.
9407 * If our rename has the whiteout flag, we need more 5 units for the
9408 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9409 * when selinux is enabled).
9410 */
9411 trans_num_items = 11;
9412 if (flags & RENAME_WHITEOUT)
9413 trans_num_items += 5;
9414 trans = btrfs_start_transaction(root, trans_num_items);
9415 if (IS_ERR(trans)) {
9416 ret = PTR_ERR(trans);
9417 goto out_notrans;
9418 }
9419
9420 if (dest != root)
9421 btrfs_record_root_in_trans(trans, dest);
9422
9423 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9424 if (ret)
9425 goto out_fail;
9426
9427 BTRFS_I(old_inode)->dir_index = 0ULL;
9428 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9429 /* force full log commit if subvolume involved. */
9430 btrfs_set_log_full_commit(trans);
9431 } else {
9432 btrfs_pin_log_trans(root);
9433 log_pinned = true;
9434 ret = btrfs_insert_inode_ref(trans, dest,
9435 new_dentry->d_name.name,
9436 new_dentry->d_name.len,
9437 old_ino,
9438 btrfs_ino(BTRFS_I(new_dir)), index);
9439 if (ret)
9440 goto out_fail;
9441 }
9442
9443 inode_inc_iversion(old_dir);
9444 inode_inc_iversion(new_dir);
9445 inode_inc_iversion(old_inode);
9446 old_dir->i_ctime = old_dir->i_mtime =
9447 new_dir->i_ctime = new_dir->i_mtime =
9448 old_inode->i_ctime = current_time(old_dir);
9449
9450 if (old_dentry->d_parent != new_dentry->d_parent)
9451 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9452 BTRFS_I(old_inode), 1);
9453
9454 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9455 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9456 } else {
9457 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9458 BTRFS_I(d_inode(old_dentry)),
9459 old_dentry->d_name.name,
9460 old_dentry->d_name.len);
9461 if (!ret)
9462 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9463 }
9464 if (ret) {
9465 btrfs_abort_transaction(trans, ret);
9466 goto out_fail;
9467 }
9468
9469 if (new_inode) {
9470 inode_inc_iversion(new_inode);
9471 new_inode->i_ctime = current_time(new_inode);
9472 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9473 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9474 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9475 BUG_ON(new_inode->i_nlink == 0);
9476 } else {
9477 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9478 BTRFS_I(d_inode(new_dentry)),
9479 new_dentry->d_name.name,
9480 new_dentry->d_name.len);
9481 }
9482 if (!ret && new_inode->i_nlink == 0)
9483 ret = btrfs_orphan_add(trans,
9484 BTRFS_I(d_inode(new_dentry)));
9485 if (ret) {
9486 btrfs_abort_transaction(trans, ret);
9487 goto out_fail;
9488 }
9489 }
9490
9491 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9492 new_dentry->d_name.name,
9493 new_dentry->d_name.len, 0, index);
9494 if (ret) {
9495 btrfs_abort_transaction(trans, ret);
9496 goto out_fail;
9497 }
9498
9499 if (old_inode->i_nlink == 1)
9500 BTRFS_I(old_inode)->dir_index = index;
9501
9502 if (log_pinned) {
9503 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9504 new_dentry->d_parent);
9505 btrfs_end_log_trans(root);
9506 log_pinned = false;
9507 }
9508
9509 if (flags & RENAME_WHITEOUT) {
9510 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9511 old_dentry);
9512
9513 if (ret) {
9514 btrfs_abort_transaction(trans, ret);
9515 goto out_fail;
9516 }
9517 }
9518 out_fail:
9519 /*
9520 * If we have pinned the log and an error happened, we unpin tasks
9521 * trying to sync the log and force them to fallback to a transaction
9522 * commit if the log currently contains any of the inodes involved in
9523 * this rename operation (to ensure we do not persist a log with an
9524 * inconsistent state for any of these inodes or leading to any
9525 * inconsistencies when replayed). If the transaction was aborted, the
9526 * abortion reason is propagated to userspace when attempting to commit
9527 * the transaction. If the log does not contain any of these inodes, we
9528 * allow the tasks to sync it.
9529 */
9530 if (ret && log_pinned) {
9531 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9532 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9533 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9534 (new_inode &&
9535 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9536 btrfs_set_log_full_commit(trans);
9537
9538 btrfs_end_log_trans(root);
9539 log_pinned = false;
9540 }
9541 ret2 = btrfs_end_transaction(trans);
9542 ret = ret ? ret : ret2;
9543 out_notrans:
9544 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9545 up_read(&fs_info->subvol_sem);
9546
9547 return ret;
9548 }
9549
9550 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9551 struct dentry *old_dentry, struct inode *new_dir,
9552 struct dentry *new_dentry, unsigned int flags)
9553 {
9554 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9555 return -EINVAL;
9556
9557 if (flags & RENAME_EXCHANGE)
9558 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9559 new_dentry);
9560
9561 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9562 }
9563
9564 struct btrfs_delalloc_work {
9565 struct inode *inode;
9566 struct completion completion;
9567 struct list_head list;
9568 struct btrfs_work work;
9569 };
9570
9571 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9572 {
9573 struct btrfs_delalloc_work *delalloc_work;
9574 struct inode *inode;
9575
9576 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9577 work);
9578 inode = delalloc_work->inode;
9579 filemap_flush(inode->i_mapping);
9580 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9581 &BTRFS_I(inode)->runtime_flags))
9582 filemap_flush(inode->i_mapping);
9583
9584 iput(inode);
9585 complete(&delalloc_work->completion);
9586 }
9587
9588 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9589 {
9590 struct btrfs_delalloc_work *work;
9591
9592 work = kmalloc(sizeof(*work), GFP_NOFS);
9593 if (!work)
9594 return NULL;
9595
9596 init_completion(&work->completion);
9597 INIT_LIST_HEAD(&work->list);
9598 work->inode = inode;
9599 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9600
9601 return work;
9602 }
9603
9604 /*
9605 * some fairly slow code that needs optimization. This walks the list
9606 * of all the inodes with pending delalloc and forces them to disk.
9607 */
9608 static int start_delalloc_inodes(struct btrfs_root *root,
9609 struct writeback_control *wbc, bool snapshot,
9610 bool in_reclaim_context)
9611 {
9612 struct btrfs_inode *binode;
9613 struct inode *inode;
9614 struct btrfs_delalloc_work *work, *next;
9615 struct list_head works;
9616 struct list_head splice;
9617 int ret = 0;
9618 bool full_flush = wbc->nr_to_write == LONG_MAX;
9619
9620 INIT_LIST_HEAD(&works);
9621 INIT_LIST_HEAD(&splice);
9622
9623 mutex_lock(&root->delalloc_mutex);
9624 spin_lock(&root->delalloc_lock);
9625 list_splice_init(&root->delalloc_inodes, &splice);
9626 while (!list_empty(&splice)) {
9627 binode = list_entry(splice.next, struct btrfs_inode,
9628 delalloc_inodes);
9629
9630 list_move_tail(&binode->delalloc_inodes,
9631 &root->delalloc_inodes);
9632
9633 if (in_reclaim_context &&
9634 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9635 continue;
9636
9637 inode = igrab(&binode->vfs_inode);
9638 if (!inode) {
9639 cond_resched_lock(&root->delalloc_lock);
9640 continue;
9641 }
9642 spin_unlock(&root->delalloc_lock);
9643
9644 if (snapshot)
9645 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9646 &binode->runtime_flags);
9647 if (full_flush) {
9648 work = btrfs_alloc_delalloc_work(inode);
9649 if (!work) {
9650 iput(inode);
9651 ret = -ENOMEM;
9652 goto out;
9653 }
9654 list_add_tail(&work->list, &works);
9655 btrfs_queue_work(root->fs_info->flush_workers,
9656 &work->work);
9657 } else {
9658 ret = sync_inode(inode, wbc);
9659 if (!ret &&
9660 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9661 &BTRFS_I(inode)->runtime_flags))
9662 ret = sync_inode(inode, wbc);
9663 btrfs_add_delayed_iput(inode);
9664 if (ret || wbc->nr_to_write <= 0)
9665 goto out;
9666 }
9667 cond_resched();
9668 spin_lock(&root->delalloc_lock);
9669 }
9670 spin_unlock(&root->delalloc_lock);
9671
9672 out:
9673 list_for_each_entry_safe(work, next, &works, list) {
9674 list_del_init(&work->list);
9675 wait_for_completion(&work->completion);
9676 kfree(work);
9677 }
9678
9679 if (!list_empty(&splice)) {
9680 spin_lock(&root->delalloc_lock);
9681 list_splice_tail(&splice, &root->delalloc_inodes);
9682 spin_unlock(&root->delalloc_lock);
9683 }
9684 mutex_unlock(&root->delalloc_mutex);
9685 return ret;
9686 }
9687
9688 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9689 {
9690 struct writeback_control wbc = {
9691 .nr_to_write = LONG_MAX,
9692 .sync_mode = WB_SYNC_NONE,
9693 .range_start = 0,
9694 .range_end = LLONG_MAX,
9695 };
9696 struct btrfs_fs_info *fs_info = root->fs_info;
9697
9698 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9699 return -EROFS;
9700
9701 return start_delalloc_inodes(root, &wbc, true, false);
9702 }
9703
9704 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9705 bool in_reclaim_context)
9706 {
9707 struct writeback_control wbc = {
9708 .nr_to_write = nr,
9709 .sync_mode = WB_SYNC_NONE,
9710 .range_start = 0,
9711 .range_end = LLONG_MAX,
9712 };
9713 struct btrfs_root *root;
9714 struct list_head splice;
9715 int ret;
9716
9717 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9718 return -EROFS;
9719
9720 INIT_LIST_HEAD(&splice);
9721
9722 mutex_lock(&fs_info->delalloc_root_mutex);
9723 spin_lock(&fs_info->delalloc_root_lock);
9724 list_splice_init(&fs_info->delalloc_roots, &splice);
9725 while (!list_empty(&splice)) {
9726 /*
9727 * Reset nr_to_write here so we know that we're doing a full
9728 * flush.
9729 */
9730 if (nr == LONG_MAX)
9731 wbc.nr_to_write = LONG_MAX;
9732
9733 root = list_first_entry(&splice, struct btrfs_root,
9734 delalloc_root);
9735 root = btrfs_grab_root(root);
9736 BUG_ON(!root);
9737 list_move_tail(&root->delalloc_root,
9738 &fs_info->delalloc_roots);
9739 spin_unlock(&fs_info->delalloc_root_lock);
9740
9741 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9742 btrfs_put_root(root);
9743 if (ret < 0 || wbc.nr_to_write <= 0)
9744 goto out;
9745 spin_lock(&fs_info->delalloc_root_lock);
9746 }
9747 spin_unlock(&fs_info->delalloc_root_lock);
9748
9749 ret = 0;
9750 out:
9751 if (!list_empty(&splice)) {
9752 spin_lock(&fs_info->delalloc_root_lock);
9753 list_splice_tail(&splice, &fs_info->delalloc_roots);
9754 spin_unlock(&fs_info->delalloc_root_lock);
9755 }
9756 mutex_unlock(&fs_info->delalloc_root_mutex);
9757 return ret;
9758 }
9759
9760 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9761 struct dentry *dentry, const char *symname)
9762 {
9763 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9764 struct btrfs_trans_handle *trans;
9765 struct btrfs_root *root = BTRFS_I(dir)->root;
9766 struct btrfs_path *path;
9767 struct btrfs_key key;
9768 struct inode *inode = NULL;
9769 int err;
9770 u64 objectid;
9771 u64 index = 0;
9772 int name_len;
9773 int datasize;
9774 unsigned long ptr;
9775 struct btrfs_file_extent_item *ei;
9776 struct extent_buffer *leaf;
9777
9778 name_len = strlen(symname);
9779 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9780 return -ENAMETOOLONG;
9781
9782 /*
9783 * 2 items for inode item and ref
9784 * 2 items for dir items
9785 * 1 item for updating parent inode item
9786 * 1 item for the inline extent item
9787 * 1 item for xattr if selinux is on
9788 */
9789 trans = btrfs_start_transaction(root, 7);
9790 if (IS_ERR(trans))
9791 return PTR_ERR(trans);
9792
9793 err = btrfs_get_free_objectid(root, &objectid);
9794 if (err)
9795 goto out_unlock;
9796
9797 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9798 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9799 objectid, S_IFLNK|S_IRWXUGO, &index);
9800 if (IS_ERR(inode)) {
9801 err = PTR_ERR(inode);
9802 inode = NULL;
9803 goto out_unlock;
9804 }
9805
9806 /*
9807 * If the active LSM wants to access the inode during
9808 * d_instantiate it needs these. Smack checks to see
9809 * if the filesystem supports xattrs by looking at the
9810 * ops vector.
9811 */
9812 inode->i_fop = &btrfs_file_operations;
9813 inode->i_op = &btrfs_file_inode_operations;
9814 inode->i_mapping->a_ops = &btrfs_aops;
9815
9816 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9817 if (err)
9818 goto out_unlock;
9819
9820 path = btrfs_alloc_path();
9821 if (!path) {
9822 err = -ENOMEM;
9823 goto out_unlock;
9824 }
9825 key.objectid = btrfs_ino(BTRFS_I(inode));
9826 key.offset = 0;
9827 key.type = BTRFS_EXTENT_DATA_KEY;
9828 datasize = btrfs_file_extent_calc_inline_size(name_len);
9829 err = btrfs_insert_empty_item(trans, root, path, &key,
9830 datasize);
9831 if (err) {
9832 btrfs_free_path(path);
9833 goto out_unlock;
9834 }
9835 leaf = path->nodes[0];
9836 ei = btrfs_item_ptr(leaf, path->slots[0],
9837 struct btrfs_file_extent_item);
9838 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9839 btrfs_set_file_extent_type(leaf, ei,
9840 BTRFS_FILE_EXTENT_INLINE);
9841 btrfs_set_file_extent_encryption(leaf, ei, 0);
9842 btrfs_set_file_extent_compression(leaf, ei, 0);
9843 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9844 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9845
9846 ptr = btrfs_file_extent_inline_start(ei);
9847 write_extent_buffer(leaf, symname, ptr, name_len);
9848 btrfs_mark_buffer_dirty(leaf);
9849 btrfs_free_path(path);
9850
9851 inode->i_op = &btrfs_symlink_inode_operations;
9852 inode_nohighmem(inode);
9853 inode_set_bytes(inode, name_len);
9854 btrfs_i_size_write(BTRFS_I(inode), name_len);
9855 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9856 /*
9857 * Last step, add directory indexes for our symlink inode. This is the
9858 * last step to avoid extra cleanup of these indexes if an error happens
9859 * elsewhere above.
9860 */
9861 if (!err)
9862 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9863 BTRFS_I(inode), 0, index);
9864 if (err)
9865 goto out_unlock;
9866
9867 d_instantiate_new(dentry, inode);
9868
9869 out_unlock:
9870 btrfs_end_transaction(trans);
9871 if (err && inode) {
9872 inode_dec_link_count(inode);
9873 discard_new_inode(inode);
9874 }
9875 btrfs_btree_balance_dirty(fs_info);
9876 return err;
9877 }
9878
9879 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9880 struct btrfs_trans_handle *trans_in,
9881 struct btrfs_inode *inode,
9882 struct btrfs_key *ins,
9883 u64 file_offset)
9884 {
9885 struct btrfs_file_extent_item stack_fi;
9886 struct btrfs_replace_extent_info extent_info;
9887 struct btrfs_trans_handle *trans = trans_in;
9888 struct btrfs_path *path;
9889 u64 start = ins->objectid;
9890 u64 len = ins->offset;
9891 int qgroup_released;
9892 int ret;
9893
9894 memset(&stack_fi, 0, sizeof(stack_fi));
9895
9896 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9897 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9898 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9899 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9900 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9901 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9902 /* Encryption and other encoding is reserved and all 0 */
9903
9904 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9905 if (qgroup_released < 0)
9906 return ERR_PTR(qgroup_released);
9907
9908 if (trans) {
9909 ret = insert_reserved_file_extent(trans, inode,
9910 file_offset, &stack_fi,
9911 true, qgroup_released);
9912 if (ret)
9913 goto free_qgroup;
9914 return trans;
9915 }
9916
9917 extent_info.disk_offset = start;
9918 extent_info.disk_len = len;
9919 extent_info.data_offset = 0;
9920 extent_info.data_len = len;
9921 extent_info.file_offset = file_offset;
9922 extent_info.extent_buf = (char *)&stack_fi;
9923 extent_info.is_new_extent = true;
9924 extent_info.qgroup_reserved = qgroup_released;
9925 extent_info.insertions = 0;
9926
9927 path = btrfs_alloc_path();
9928 if (!path) {
9929 ret = -ENOMEM;
9930 goto free_qgroup;
9931 }
9932
9933 ret = btrfs_replace_file_extents(inode, path, file_offset,
9934 file_offset + len - 1, &extent_info,
9935 &trans);
9936 btrfs_free_path(path);
9937 if (ret)
9938 goto free_qgroup;
9939 return trans;
9940
9941 free_qgroup:
9942 /*
9943 * We have released qgroup data range at the beginning of the function,
9944 * and normally qgroup_released bytes will be freed when committing
9945 * transaction.
9946 * But if we error out early, we have to free what we have released
9947 * or we leak qgroup data reservation.
9948 */
9949 btrfs_qgroup_free_refroot(inode->root->fs_info,
9950 inode->root->root_key.objectid, qgroup_released,
9951 BTRFS_QGROUP_RSV_DATA);
9952 return ERR_PTR(ret);
9953 }
9954
9955 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9956 u64 start, u64 num_bytes, u64 min_size,
9957 loff_t actual_len, u64 *alloc_hint,
9958 struct btrfs_trans_handle *trans)
9959 {
9960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9961 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9962 struct extent_map *em;
9963 struct btrfs_root *root = BTRFS_I(inode)->root;
9964 struct btrfs_key ins;
9965 u64 cur_offset = start;
9966 u64 clear_offset = start;
9967 u64 i_size;
9968 u64 cur_bytes;
9969 u64 last_alloc = (u64)-1;
9970 int ret = 0;
9971 bool own_trans = true;
9972 u64 end = start + num_bytes - 1;
9973
9974 if (trans)
9975 own_trans = false;
9976 while (num_bytes > 0) {
9977 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9978 cur_bytes = max(cur_bytes, min_size);
9979 /*
9980 * If we are severely fragmented we could end up with really
9981 * small allocations, so if the allocator is returning small
9982 * chunks lets make its job easier by only searching for those
9983 * sized chunks.
9984 */
9985 cur_bytes = min(cur_bytes, last_alloc);
9986 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9987 min_size, 0, *alloc_hint, &ins, 1, 0);
9988 if (ret)
9989 break;
9990
9991 /*
9992 * We've reserved this space, and thus converted it from
9993 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9994 * from here on out we will only need to clear our reservation
9995 * for the remaining unreserved area, so advance our
9996 * clear_offset by our extent size.
9997 */
9998 clear_offset += ins.offset;
9999
10000 last_alloc = ins.offset;
10001 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10002 &ins, cur_offset);
10003 /*
10004 * Now that we inserted the prealloc extent we can finally
10005 * decrement the number of reservations in the block group.
10006 * If we did it before, we could race with relocation and have
10007 * relocation miss the reserved extent, making it fail later.
10008 */
10009 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10010 if (IS_ERR(trans)) {
10011 ret = PTR_ERR(trans);
10012 btrfs_free_reserved_extent(fs_info, ins.objectid,
10013 ins.offset, 0);
10014 break;
10015 }
10016
10017 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10018 cur_offset + ins.offset -1, 0);
10019
10020 em = alloc_extent_map();
10021 if (!em) {
10022 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10023 &BTRFS_I(inode)->runtime_flags);
10024 goto next;
10025 }
10026
10027 em->start = cur_offset;
10028 em->orig_start = cur_offset;
10029 em->len = ins.offset;
10030 em->block_start = ins.objectid;
10031 em->block_len = ins.offset;
10032 em->orig_block_len = ins.offset;
10033 em->ram_bytes = ins.offset;
10034 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10035 em->generation = trans->transid;
10036
10037 while (1) {
10038 write_lock(&em_tree->lock);
10039 ret = add_extent_mapping(em_tree, em, 1);
10040 write_unlock(&em_tree->lock);
10041 if (ret != -EEXIST)
10042 break;
10043 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10044 cur_offset + ins.offset - 1,
10045 0);
10046 }
10047 free_extent_map(em);
10048 next:
10049 num_bytes -= ins.offset;
10050 cur_offset += ins.offset;
10051 *alloc_hint = ins.objectid + ins.offset;
10052
10053 inode_inc_iversion(inode);
10054 inode->i_ctime = current_time(inode);
10055 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10056 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10057 (actual_len > inode->i_size) &&
10058 (cur_offset > inode->i_size)) {
10059 if (cur_offset > actual_len)
10060 i_size = actual_len;
10061 else
10062 i_size = cur_offset;
10063 i_size_write(inode, i_size);
10064 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10065 }
10066
10067 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10068
10069 if (ret) {
10070 btrfs_abort_transaction(trans, ret);
10071 if (own_trans)
10072 btrfs_end_transaction(trans);
10073 break;
10074 }
10075
10076 if (own_trans) {
10077 btrfs_end_transaction(trans);
10078 trans = NULL;
10079 }
10080 }
10081 if (clear_offset < end)
10082 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10083 end - clear_offset + 1);
10084 return ret;
10085 }
10086
10087 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10088 u64 start, u64 num_bytes, u64 min_size,
10089 loff_t actual_len, u64 *alloc_hint)
10090 {
10091 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10092 min_size, actual_len, alloc_hint,
10093 NULL);
10094 }
10095
10096 int btrfs_prealloc_file_range_trans(struct inode *inode,
10097 struct btrfs_trans_handle *trans, int mode,
10098 u64 start, u64 num_bytes, u64 min_size,
10099 loff_t actual_len, u64 *alloc_hint)
10100 {
10101 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10102 min_size, actual_len, alloc_hint, trans);
10103 }
10104
10105 static int btrfs_set_page_dirty(struct page *page)
10106 {
10107 return __set_page_dirty_nobuffers(page);
10108 }
10109
10110 static int btrfs_permission(struct user_namespace *mnt_userns,
10111 struct inode *inode, int mask)
10112 {
10113 struct btrfs_root *root = BTRFS_I(inode)->root;
10114 umode_t mode = inode->i_mode;
10115
10116 if (mask & MAY_WRITE &&
10117 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10118 if (btrfs_root_readonly(root))
10119 return -EROFS;
10120 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10121 return -EACCES;
10122 }
10123 return generic_permission(&init_user_ns, inode, mask);
10124 }
10125
10126 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10127 struct dentry *dentry, umode_t mode)
10128 {
10129 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10130 struct btrfs_trans_handle *trans;
10131 struct btrfs_root *root = BTRFS_I(dir)->root;
10132 struct inode *inode = NULL;
10133 u64 objectid;
10134 u64 index;
10135 int ret = 0;
10136
10137 /*
10138 * 5 units required for adding orphan entry
10139 */
10140 trans = btrfs_start_transaction(root, 5);
10141 if (IS_ERR(trans))
10142 return PTR_ERR(trans);
10143
10144 ret = btrfs_get_free_objectid(root, &objectid);
10145 if (ret)
10146 goto out;
10147
10148 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10149 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10150 if (IS_ERR(inode)) {
10151 ret = PTR_ERR(inode);
10152 inode = NULL;
10153 goto out;
10154 }
10155
10156 inode->i_fop = &btrfs_file_operations;
10157 inode->i_op = &btrfs_file_inode_operations;
10158
10159 inode->i_mapping->a_ops = &btrfs_aops;
10160
10161 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10162 if (ret)
10163 goto out;
10164
10165 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10166 if (ret)
10167 goto out;
10168 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10169 if (ret)
10170 goto out;
10171
10172 /*
10173 * We set number of links to 0 in btrfs_new_inode(), and here we set
10174 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10175 * through:
10176 *
10177 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10178 */
10179 set_nlink(inode, 1);
10180 d_tmpfile(dentry, inode);
10181 unlock_new_inode(inode);
10182 mark_inode_dirty(inode);
10183 out:
10184 btrfs_end_transaction(trans);
10185 if (ret && inode)
10186 discard_new_inode(inode);
10187 btrfs_btree_balance_dirty(fs_info);
10188 return ret;
10189 }
10190
10191 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10192 {
10193 struct inode *inode = tree->private_data;
10194 unsigned long index = start >> PAGE_SHIFT;
10195 unsigned long end_index = end >> PAGE_SHIFT;
10196 struct page *page;
10197
10198 while (index <= end_index) {
10199 page = find_get_page(inode->i_mapping, index);
10200 ASSERT(page); /* Pages should be in the extent_io_tree */
10201 set_page_writeback(page);
10202 put_page(page);
10203 index++;
10204 }
10205 }
10206
10207 #ifdef CONFIG_SWAP
10208 /*
10209 * Add an entry indicating a block group or device which is pinned by a
10210 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10211 * negative errno on failure.
10212 */
10213 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10214 bool is_block_group)
10215 {
10216 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10217 struct btrfs_swapfile_pin *sp, *entry;
10218 struct rb_node **p;
10219 struct rb_node *parent = NULL;
10220
10221 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10222 if (!sp)
10223 return -ENOMEM;
10224 sp->ptr = ptr;
10225 sp->inode = inode;
10226 sp->is_block_group = is_block_group;
10227 sp->bg_extent_count = 1;
10228
10229 spin_lock(&fs_info->swapfile_pins_lock);
10230 p = &fs_info->swapfile_pins.rb_node;
10231 while (*p) {
10232 parent = *p;
10233 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10234 if (sp->ptr < entry->ptr ||
10235 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10236 p = &(*p)->rb_left;
10237 } else if (sp->ptr > entry->ptr ||
10238 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10239 p = &(*p)->rb_right;
10240 } else {
10241 if (is_block_group)
10242 entry->bg_extent_count++;
10243 spin_unlock(&fs_info->swapfile_pins_lock);
10244 kfree(sp);
10245 return 1;
10246 }
10247 }
10248 rb_link_node(&sp->node, parent, p);
10249 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10250 spin_unlock(&fs_info->swapfile_pins_lock);
10251 return 0;
10252 }
10253
10254 /* Free all of the entries pinned by this swapfile. */
10255 static void btrfs_free_swapfile_pins(struct inode *inode)
10256 {
10257 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10258 struct btrfs_swapfile_pin *sp;
10259 struct rb_node *node, *next;
10260
10261 spin_lock(&fs_info->swapfile_pins_lock);
10262 node = rb_first(&fs_info->swapfile_pins);
10263 while (node) {
10264 next = rb_next(node);
10265 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10266 if (sp->inode == inode) {
10267 rb_erase(&sp->node, &fs_info->swapfile_pins);
10268 if (sp->is_block_group) {
10269 btrfs_dec_block_group_swap_extents(sp->ptr,
10270 sp->bg_extent_count);
10271 btrfs_put_block_group(sp->ptr);
10272 }
10273 kfree(sp);
10274 }
10275 node = next;
10276 }
10277 spin_unlock(&fs_info->swapfile_pins_lock);
10278 }
10279
10280 struct btrfs_swap_info {
10281 u64 start;
10282 u64 block_start;
10283 u64 block_len;
10284 u64 lowest_ppage;
10285 u64 highest_ppage;
10286 unsigned long nr_pages;
10287 int nr_extents;
10288 };
10289
10290 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10291 struct btrfs_swap_info *bsi)
10292 {
10293 unsigned long nr_pages;
10294 u64 first_ppage, first_ppage_reported, next_ppage;
10295 int ret;
10296
10297 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10298 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10299 PAGE_SIZE) >> PAGE_SHIFT;
10300
10301 if (first_ppage >= next_ppage)
10302 return 0;
10303 nr_pages = next_ppage - first_ppage;
10304
10305 first_ppage_reported = first_ppage;
10306 if (bsi->start == 0)
10307 first_ppage_reported++;
10308 if (bsi->lowest_ppage > first_ppage_reported)
10309 bsi->lowest_ppage = first_ppage_reported;
10310 if (bsi->highest_ppage < (next_ppage - 1))
10311 bsi->highest_ppage = next_ppage - 1;
10312
10313 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10314 if (ret < 0)
10315 return ret;
10316 bsi->nr_extents += ret;
10317 bsi->nr_pages += nr_pages;
10318 return 0;
10319 }
10320
10321 static void btrfs_swap_deactivate(struct file *file)
10322 {
10323 struct inode *inode = file_inode(file);
10324
10325 btrfs_free_swapfile_pins(inode);
10326 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10327 }
10328
10329 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10330 sector_t *span)
10331 {
10332 struct inode *inode = file_inode(file);
10333 struct btrfs_root *root = BTRFS_I(inode)->root;
10334 struct btrfs_fs_info *fs_info = root->fs_info;
10335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10336 struct extent_state *cached_state = NULL;
10337 struct extent_map *em = NULL;
10338 struct btrfs_device *device = NULL;
10339 struct btrfs_swap_info bsi = {
10340 .lowest_ppage = (sector_t)-1ULL,
10341 };
10342 int ret = 0;
10343 u64 isize;
10344 u64 start;
10345
10346 /*
10347 * If the swap file was just created, make sure delalloc is done. If the
10348 * file changes again after this, the user is doing something stupid and
10349 * we don't really care.
10350 */
10351 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10352 if (ret)
10353 return ret;
10354
10355 /*
10356 * The inode is locked, so these flags won't change after we check them.
10357 */
10358 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10359 btrfs_warn(fs_info, "swapfile must not be compressed");
10360 return -EINVAL;
10361 }
10362 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10363 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10364 return -EINVAL;
10365 }
10366 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10367 btrfs_warn(fs_info, "swapfile must not be checksummed");
10368 return -EINVAL;
10369 }
10370
10371 /*
10372 * Balance or device remove/replace/resize can move stuff around from
10373 * under us. The exclop protection makes sure they aren't running/won't
10374 * run concurrently while we are mapping the swap extents, and
10375 * fs_info->swapfile_pins prevents them from running while the swap
10376 * file is active and moving the extents. Note that this also prevents
10377 * a concurrent device add which isn't actually necessary, but it's not
10378 * really worth the trouble to allow it.
10379 */
10380 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10381 btrfs_warn(fs_info,
10382 "cannot activate swapfile while exclusive operation is running");
10383 return -EBUSY;
10384 }
10385
10386 /*
10387 * Prevent snapshot creation while we are activating the swap file.
10388 * We do not want to race with snapshot creation. If snapshot creation
10389 * already started before we bumped nr_swapfiles from 0 to 1 and
10390 * completes before the first write into the swap file after it is
10391 * activated, than that write would fallback to COW.
10392 */
10393 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10394 btrfs_exclop_finish(fs_info);
10395 btrfs_warn(fs_info,
10396 "cannot activate swapfile because snapshot creation is in progress");
10397 return -EINVAL;
10398 }
10399 /*
10400 * Snapshots can create extents which require COW even if NODATACOW is
10401 * set. We use this counter to prevent snapshots. We must increment it
10402 * before walking the extents because we don't want a concurrent
10403 * snapshot to run after we've already checked the extents.
10404 */
10405 atomic_inc(&root->nr_swapfiles);
10406
10407 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10408
10409 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10410 start = 0;
10411 while (start < isize) {
10412 u64 logical_block_start, physical_block_start;
10413 struct btrfs_block_group *bg;
10414 u64 len = isize - start;
10415
10416 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10417 if (IS_ERR(em)) {
10418 ret = PTR_ERR(em);
10419 goto out;
10420 }
10421
10422 if (em->block_start == EXTENT_MAP_HOLE) {
10423 btrfs_warn(fs_info, "swapfile must not have holes");
10424 ret = -EINVAL;
10425 goto out;
10426 }
10427 if (em->block_start == EXTENT_MAP_INLINE) {
10428 /*
10429 * It's unlikely we'll ever actually find ourselves
10430 * here, as a file small enough to fit inline won't be
10431 * big enough to store more than the swap header, but in
10432 * case something changes in the future, let's catch it
10433 * here rather than later.
10434 */
10435 btrfs_warn(fs_info, "swapfile must not be inline");
10436 ret = -EINVAL;
10437 goto out;
10438 }
10439 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10440 btrfs_warn(fs_info, "swapfile must not be compressed");
10441 ret = -EINVAL;
10442 goto out;
10443 }
10444
10445 logical_block_start = em->block_start + (start - em->start);
10446 len = min(len, em->len - (start - em->start));
10447 free_extent_map(em);
10448 em = NULL;
10449
10450 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10451 if (ret < 0) {
10452 goto out;
10453 } else if (ret) {
10454 ret = 0;
10455 } else {
10456 btrfs_warn(fs_info,
10457 "swapfile must not be copy-on-write");
10458 ret = -EINVAL;
10459 goto out;
10460 }
10461
10462 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10463 if (IS_ERR(em)) {
10464 ret = PTR_ERR(em);
10465 goto out;
10466 }
10467
10468 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10469 btrfs_warn(fs_info,
10470 "swapfile must have single data profile");
10471 ret = -EINVAL;
10472 goto out;
10473 }
10474
10475 if (device == NULL) {
10476 device = em->map_lookup->stripes[0].dev;
10477 ret = btrfs_add_swapfile_pin(inode, device, false);
10478 if (ret == 1)
10479 ret = 0;
10480 else if (ret)
10481 goto out;
10482 } else if (device != em->map_lookup->stripes[0].dev) {
10483 btrfs_warn(fs_info, "swapfile must be on one device");
10484 ret = -EINVAL;
10485 goto out;
10486 }
10487
10488 physical_block_start = (em->map_lookup->stripes[0].physical +
10489 (logical_block_start - em->start));
10490 len = min(len, em->len - (logical_block_start - em->start));
10491 free_extent_map(em);
10492 em = NULL;
10493
10494 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10495 if (!bg) {
10496 btrfs_warn(fs_info,
10497 "could not find block group containing swapfile");
10498 ret = -EINVAL;
10499 goto out;
10500 }
10501
10502 if (!btrfs_inc_block_group_swap_extents(bg)) {
10503 btrfs_warn(fs_info,
10504 "block group for swapfile at %llu is read-only%s",
10505 bg->start,
10506 atomic_read(&fs_info->scrubs_running) ?
10507 " (scrub running)" : "");
10508 btrfs_put_block_group(bg);
10509 ret = -EINVAL;
10510 goto out;
10511 }
10512
10513 ret = btrfs_add_swapfile_pin(inode, bg, true);
10514 if (ret) {
10515 btrfs_put_block_group(bg);
10516 if (ret == 1)
10517 ret = 0;
10518 else
10519 goto out;
10520 }
10521
10522 if (bsi.block_len &&
10523 bsi.block_start + bsi.block_len == physical_block_start) {
10524 bsi.block_len += len;
10525 } else {
10526 if (bsi.block_len) {
10527 ret = btrfs_add_swap_extent(sis, &bsi);
10528 if (ret)
10529 goto out;
10530 }
10531 bsi.start = start;
10532 bsi.block_start = physical_block_start;
10533 bsi.block_len = len;
10534 }
10535
10536 start += len;
10537 }
10538
10539 if (bsi.block_len)
10540 ret = btrfs_add_swap_extent(sis, &bsi);
10541
10542 out:
10543 if (!IS_ERR_OR_NULL(em))
10544 free_extent_map(em);
10545
10546 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10547
10548 if (ret)
10549 btrfs_swap_deactivate(file);
10550
10551 btrfs_drew_write_unlock(&root->snapshot_lock);
10552
10553 btrfs_exclop_finish(fs_info);
10554
10555 if (ret)
10556 return ret;
10557
10558 if (device)
10559 sis->bdev = device->bdev;
10560 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10561 sis->max = bsi.nr_pages;
10562 sis->pages = bsi.nr_pages - 1;
10563 sis->highest_bit = bsi.nr_pages - 1;
10564 return bsi.nr_extents;
10565 }
10566 #else
10567 static void btrfs_swap_deactivate(struct file *file)
10568 {
10569 }
10570
10571 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10572 sector_t *span)
10573 {
10574 return -EOPNOTSUPP;
10575 }
10576 #endif
10577
10578 /*
10579 * Update the number of bytes used in the VFS' inode. When we replace extents in
10580 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10581 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10582 * always get a correct value.
10583 */
10584 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10585 const u64 add_bytes,
10586 const u64 del_bytes)
10587 {
10588 if (add_bytes == del_bytes)
10589 return;
10590
10591 spin_lock(&inode->lock);
10592 if (del_bytes > 0)
10593 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10594 if (add_bytes > 0)
10595 inode_add_bytes(&inode->vfs_inode, add_bytes);
10596 spin_unlock(&inode->lock);
10597 }
10598
10599 static const struct inode_operations btrfs_dir_inode_operations = {
10600 .getattr = btrfs_getattr,
10601 .lookup = btrfs_lookup,
10602 .create = btrfs_create,
10603 .unlink = btrfs_unlink,
10604 .link = btrfs_link,
10605 .mkdir = btrfs_mkdir,
10606 .rmdir = btrfs_rmdir,
10607 .rename = btrfs_rename2,
10608 .symlink = btrfs_symlink,
10609 .setattr = btrfs_setattr,
10610 .mknod = btrfs_mknod,
10611 .listxattr = btrfs_listxattr,
10612 .permission = btrfs_permission,
10613 .get_acl = btrfs_get_acl,
10614 .set_acl = btrfs_set_acl,
10615 .update_time = btrfs_update_time,
10616 .tmpfile = btrfs_tmpfile,
10617 };
10618
10619 static const struct file_operations btrfs_dir_file_operations = {
10620 .llseek = generic_file_llseek,
10621 .read = generic_read_dir,
10622 .iterate_shared = btrfs_real_readdir,
10623 .open = btrfs_opendir,
10624 .unlocked_ioctl = btrfs_ioctl,
10625 #ifdef CONFIG_COMPAT
10626 .compat_ioctl = btrfs_compat_ioctl,
10627 #endif
10628 .release = btrfs_release_file,
10629 .fsync = btrfs_sync_file,
10630 };
10631
10632 /*
10633 * btrfs doesn't support the bmap operation because swapfiles
10634 * use bmap to make a mapping of extents in the file. They assume
10635 * these extents won't change over the life of the file and they
10636 * use the bmap result to do IO directly to the drive.
10637 *
10638 * the btrfs bmap call would return logical addresses that aren't
10639 * suitable for IO and they also will change frequently as COW
10640 * operations happen. So, swapfile + btrfs == corruption.
10641 *
10642 * For now we're avoiding this by dropping bmap.
10643 */
10644 static const struct address_space_operations btrfs_aops = {
10645 .readpage = btrfs_readpage,
10646 .writepage = btrfs_writepage,
10647 .writepages = btrfs_writepages,
10648 .readahead = btrfs_readahead,
10649 .direct_IO = noop_direct_IO,
10650 .invalidatepage = btrfs_invalidatepage,
10651 .releasepage = btrfs_releasepage,
10652 #ifdef CONFIG_MIGRATION
10653 .migratepage = btrfs_migratepage,
10654 #endif
10655 .set_page_dirty = btrfs_set_page_dirty,
10656 .error_remove_page = generic_error_remove_page,
10657 .swap_activate = btrfs_swap_activate,
10658 .swap_deactivate = btrfs_swap_deactivate,
10659 };
10660
10661 static const struct inode_operations btrfs_file_inode_operations = {
10662 .getattr = btrfs_getattr,
10663 .setattr = btrfs_setattr,
10664 .listxattr = btrfs_listxattr,
10665 .permission = btrfs_permission,
10666 .fiemap = btrfs_fiemap,
10667 .get_acl = btrfs_get_acl,
10668 .set_acl = btrfs_set_acl,
10669 .update_time = btrfs_update_time,
10670 };
10671 static const struct inode_operations btrfs_special_inode_operations = {
10672 .getattr = btrfs_getattr,
10673 .setattr = btrfs_setattr,
10674 .permission = btrfs_permission,
10675 .listxattr = btrfs_listxattr,
10676 .get_acl = btrfs_get_acl,
10677 .set_acl = btrfs_set_acl,
10678 .update_time = btrfs_update_time,
10679 };
10680 static const struct inode_operations btrfs_symlink_inode_operations = {
10681 .get_link = page_get_link,
10682 .getattr = btrfs_getattr,
10683 .setattr = btrfs_setattr,
10684 .permission = btrfs_permission,
10685 .listxattr = btrfs_listxattr,
10686 .update_time = btrfs_update_time,
10687 };
10688
10689 const struct dentry_operations btrfs_dentry_operations = {
10690 .d_delete = btrfs_dentry_delete,
10691 };