]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/inode.c
Merge tag 'objtool_urgent_for_v5.9_rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/buffer_head.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 struct btrfs_dio_data {
61 u64 reserve;
62 u64 unsubmitted_oe_range_start;
63 u64 unsubmitted_oe_range_end;
64 int overwrite;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 struct page *locked_page,
86 u64 start, u64 end, int *page_started,
87 unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 u64 len, u64 orig_start, u64 block_start,
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
93
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98 /*
99 * Cleanup all submitted ordered extents in specified range to handle errors
100 * from the btrfs_run_delalloc_range() callback.
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
106 * extent (btrfs_finish_ordered_io()).
107 */
108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 struct page *locked_page,
110 u64 offset, u64 bytes)
111 {
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
117 struct page *page;
118
119 while (index <= end_index) {
120 page = find_get_page(inode->vfs_inode.i_mapping, index);
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
138 return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140
141 static int btrfs_dirty_inode(struct inode *inode);
142
143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
144 void btrfs_test_inode_set_ops(struct inode *inode)
145 {
146 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 }
148 #endif
149
150 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
151 struct inode *inode, struct inode *dir,
152 const struct qstr *qstr)
153 {
154 int err;
155
156 err = btrfs_init_acl(trans, inode, dir);
157 if (!err)
158 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 return err;
160 }
161
162 /*
163 * this does all the hard work for inserting an inline extent into
164 * the btree. The caller should have done a btrfs_drop_extents so that
165 * no overlapping inline items exist in the btree
166 */
167 static int insert_inline_extent(struct btrfs_trans_handle *trans,
168 struct btrfs_path *path, int extent_inserted,
169 struct btrfs_root *root, struct inode *inode,
170 u64 start, size_t size, size_t compressed_size,
171 int compress_type,
172 struct page **compressed_pages)
173 {
174 struct extent_buffer *leaf;
175 struct page *page = NULL;
176 char *kaddr;
177 unsigned long ptr;
178 struct btrfs_file_extent_item *ei;
179 int ret;
180 size_t cur_size = size;
181 unsigned long offset;
182
183 ASSERT((compressed_size > 0 && compressed_pages) ||
184 (compressed_size == 0 && !compressed_pages));
185
186 if (compressed_size && compressed_pages)
187 cur_size = compressed_size;
188
189 inode_add_bytes(inode, size);
190
191 if (!extent_inserted) {
192 struct btrfs_key key;
193 size_t datasize;
194
195 key.objectid = btrfs_ino(BTRFS_I(inode));
196 key.offset = start;
197 key.type = BTRFS_EXTENT_DATA_KEY;
198
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
202 datasize);
203 if (ret)
204 goto fail;
205 }
206 leaf = path->nodes[0];
207 ei = btrfs_item_ptr(leaf, path->slots[0],
208 struct btrfs_file_extent_item);
209 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
210 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
211 btrfs_set_file_extent_encryption(leaf, ei, 0);
212 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
213 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
214 ptr = btrfs_file_extent_inline_start(ei);
215
216 if (compress_type != BTRFS_COMPRESS_NONE) {
217 struct page *cpage;
218 int i = 0;
219 while (compressed_size > 0) {
220 cpage = compressed_pages[i];
221 cur_size = min_t(unsigned long, compressed_size,
222 PAGE_SIZE);
223
224 kaddr = kmap_atomic(cpage);
225 write_extent_buffer(leaf, kaddr, ptr, cur_size);
226 kunmap_atomic(kaddr);
227
228 i++;
229 ptr += cur_size;
230 compressed_size -= cur_size;
231 }
232 btrfs_set_file_extent_compression(leaf, ei,
233 compress_type);
234 } else {
235 page = find_get_page(inode->i_mapping,
236 start >> PAGE_SHIFT);
237 btrfs_set_file_extent_compression(leaf, ei, 0);
238 kaddr = kmap_atomic(page);
239 offset = offset_in_page(start);
240 write_extent_buffer(leaf, kaddr + offset, ptr, size);
241 kunmap_atomic(kaddr);
242 put_page(page);
243 }
244 btrfs_mark_buffer_dirty(leaf);
245 btrfs_release_path(path);
246
247 /*
248 * We align size to sectorsize for inline extents just for simplicity
249 * sake.
250 */
251 size = ALIGN(size, root->fs_info->sectorsize);
252 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
253 if (ret)
254 goto fail;
255
256 /*
257 * we're an inline extent, so nobody can
258 * extend the file past i_size without locking
259 * a page we already have locked.
260 *
261 * We must do any isize and inode updates
262 * before we unlock the pages. Otherwise we
263 * could end up racing with unlink.
264 */
265 BTRFS_I(inode)->disk_i_size = inode->i_size;
266 ret = btrfs_update_inode(trans, root, inode);
267
268 fail:
269 return ret;
270 }
271
272
273 /*
274 * conditionally insert an inline extent into the file. This
275 * does the checks required to make sure the data is small enough
276 * to fit as an inline extent.
277 */
278 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
279 u64 end, size_t compressed_size,
280 int compress_type,
281 struct page **compressed_pages)
282 {
283 struct btrfs_root *root = inode->root;
284 struct btrfs_fs_info *fs_info = root->fs_info;
285 struct btrfs_trans_handle *trans;
286 u64 isize = i_size_read(&inode->vfs_inode);
287 u64 actual_end = min(end + 1, isize);
288 u64 inline_len = actual_end - start;
289 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
290 u64 data_len = inline_len;
291 int ret;
292 struct btrfs_path *path;
293 int extent_inserted = 0;
294 u32 extent_item_size;
295
296 if (compressed_size)
297 data_len = compressed_size;
298
299 if (start > 0 ||
300 actual_end > fs_info->sectorsize ||
301 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
302 (!compressed_size &&
303 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
304 end + 1 < isize ||
305 data_len > fs_info->max_inline) {
306 return 1;
307 }
308
309 path = btrfs_alloc_path();
310 if (!path)
311 return -ENOMEM;
312
313 trans = btrfs_join_transaction(root);
314 if (IS_ERR(trans)) {
315 btrfs_free_path(path);
316 return PTR_ERR(trans);
317 }
318 trans->block_rsv = &inode->block_rsv;
319
320 if (compressed_size && compressed_pages)
321 extent_item_size = btrfs_file_extent_calc_inline_size(
322 compressed_size);
323 else
324 extent_item_size = btrfs_file_extent_calc_inline_size(
325 inline_len);
326
327 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
328 NULL, 1, 1, extent_item_size,
329 &extent_inserted);
330 if (ret) {
331 btrfs_abort_transaction(trans, ret);
332 goto out;
333 }
334
335 if (isize > actual_end)
336 inline_len = min_t(u64, isize, actual_end);
337 ret = insert_inline_extent(trans, path, extent_inserted,
338 root, &inode->vfs_inode, start,
339 inline_len, compressed_size,
340 compress_type, compressed_pages);
341 if (ret && ret != -ENOSPC) {
342 btrfs_abort_transaction(trans, ret);
343 goto out;
344 } else if (ret == -ENOSPC) {
345 ret = 1;
346 goto out;
347 }
348
349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
350 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
351 out:
352 /*
353 * Don't forget to free the reserved space, as for inlined extent
354 * it won't count as data extent, free them directly here.
355 * And at reserve time, it's always aligned to page size, so
356 * just free one page here.
357 */
358 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
359 btrfs_free_path(path);
360 btrfs_end_transaction(trans);
361 return ret;
362 }
363
364 struct async_extent {
365 u64 start;
366 u64 ram_size;
367 u64 compressed_size;
368 struct page **pages;
369 unsigned long nr_pages;
370 int compress_type;
371 struct list_head list;
372 };
373
374 struct async_chunk {
375 struct inode *inode;
376 struct page *locked_page;
377 u64 start;
378 u64 end;
379 unsigned int write_flags;
380 struct list_head extents;
381 struct cgroup_subsys_state *blkcg_css;
382 struct btrfs_work work;
383 atomic_t *pending;
384 };
385
386 struct async_cow {
387 /* Number of chunks in flight; must be first in the structure */
388 atomic_t num_chunks;
389 struct async_chunk chunks[];
390 };
391
392 static noinline int add_async_extent(struct async_chunk *cow,
393 u64 start, u64 ram_size,
394 u64 compressed_size,
395 struct page **pages,
396 unsigned long nr_pages,
397 int compress_type)
398 {
399 struct async_extent *async_extent;
400
401 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
402 BUG_ON(!async_extent); /* -ENOMEM */
403 async_extent->start = start;
404 async_extent->ram_size = ram_size;
405 async_extent->compressed_size = compressed_size;
406 async_extent->pages = pages;
407 async_extent->nr_pages = nr_pages;
408 async_extent->compress_type = compress_type;
409 list_add_tail(&async_extent->list, &cow->extents);
410 return 0;
411 }
412
413 /*
414 * Check if the inode has flags compatible with compression
415 */
416 static inline bool inode_can_compress(struct btrfs_inode *inode)
417 {
418 if (inode->flags & BTRFS_INODE_NODATACOW ||
419 inode->flags & BTRFS_INODE_NODATASUM)
420 return false;
421 return true;
422 }
423
424 /*
425 * Check if the inode needs to be submitted to compression, based on mount
426 * options, defragmentation, properties or heuristics.
427 */
428 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
429 u64 end)
430 {
431 struct btrfs_fs_info *fs_info = inode->root->fs_info;
432
433 if (!inode_can_compress(inode)) {
434 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
435 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
436 btrfs_ino(inode));
437 return 0;
438 }
439 /* force compress */
440 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
441 return 1;
442 /* defrag ioctl */
443 if (inode->defrag_compress)
444 return 1;
445 /* bad compression ratios */
446 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
447 return 0;
448 if (btrfs_test_opt(fs_info, COMPRESS) ||
449 inode->flags & BTRFS_INODE_COMPRESS ||
450 inode->prop_compress)
451 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
452 return 0;
453 }
454
455 static inline void inode_should_defrag(struct btrfs_inode *inode,
456 u64 start, u64 end, u64 num_bytes, u64 small_write)
457 {
458 /* If this is a small write inside eof, kick off a defrag */
459 if (num_bytes < small_write &&
460 (start > 0 || end + 1 < inode->disk_i_size))
461 btrfs_add_inode_defrag(NULL, inode);
462 }
463
464 /*
465 * we create compressed extents in two phases. The first
466 * phase compresses a range of pages that have already been
467 * locked (both pages and state bits are locked).
468 *
469 * This is done inside an ordered work queue, and the compression
470 * is spread across many cpus. The actual IO submission is step
471 * two, and the ordered work queue takes care of making sure that
472 * happens in the same order things were put onto the queue by
473 * writepages and friends.
474 *
475 * If this code finds it can't get good compression, it puts an
476 * entry onto the work queue to write the uncompressed bytes. This
477 * makes sure that both compressed inodes and uncompressed inodes
478 * are written in the same order that the flusher thread sent them
479 * down.
480 */
481 static noinline int compress_file_range(struct async_chunk *async_chunk)
482 {
483 struct inode *inode = async_chunk->inode;
484 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
485 u64 blocksize = fs_info->sectorsize;
486 u64 start = async_chunk->start;
487 u64 end = async_chunk->end;
488 u64 actual_end;
489 u64 i_size;
490 int ret = 0;
491 struct page **pages = NULL;
492 unsigned long nr_pages;
493 unsigned long total_compressed = 0;
494 unsigned long total_in = 0;
495 int i;
496 int will_compress;
497 int compress_type = fs_info->compress_type;
498 int compressed_extents = 0;
499 int redirty = 0;
500
501 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
502 SZ_16K);
503
504 /*
505 * We need to save i_size before now because it could change in between
506 * us evaluating the size and assigning it. This is because we lock and
507 * unlock the page in truncate and fallocate, and then modify the i_size
508 * later on.
509 *
510 * The barriers are to emulate READ_ONCE, remove that once i_size_read
511 * does that for us.
512 */
513 barrier();
514 i_size = i_size_read(inode);
515 barrier();
516 actual_end = min_t(u64, i_size, end + 1);
517 again:
518 will_compress = 0;
519 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
520 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
521 nr_pages = min_t(unsigned long, nr_pages,
522 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
523
524 /*
525 * we don't want to send crud past the end of i_size through
526 * compression, that's just a waste of CPU time. So, if the
527 * end of the file is before the start of our current
528 * requested range of bytes, we bail out to the uncompressed
529 * cleanup code that can deal with all of this.
530 *
531 * It isn't really the fastest way to fix things, but this is a
532 * very uncommon corner.
533 */
534 if (actual_end <= start)
535 goto cleanup_and_bail_uncompressed;
536
537 total_compressed = actual_end - start;
538
539 /*
540 * skip compression for a small file range(<=blocksize) that
541 * isn't an inline extent, since it doesn't save disk space at all.
542 */
543 if (total_compressed <= blocksize &&
544 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
545 goto cleanup_and_bail_uncompressed;
546
547 total_compressed = min_t(unsigned long, total_compressed,
548 BTRFS_MAX_UNCOMPRESSED);
549 total_in = 0;
550 ret = 0;
551
552 /*
553 * we do compression for mount -o compress and when the
554 * inode has not been flagged as nocompress. This flag can
555 * change at any time if we discover bad compression ratios.
556 */
557 if (inode_need_compress(BTRFS_I(inode), start, end)) {
558 WARN_ON(pages);
559 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560 if (!pages) {
561 /* just bail out to the uncompressed code */
562 nr_pages = 0;
563 goto cont;
564 }
565
566 if (BTRFS_I(inode)->defrag_compress)
567 compress_type = BTRFS_I(inode)->defrag_compress;
568 else if (BTRFS_I(inode)->prop_compress)
569 compress_type = BTRFS_I(inode)->prop_compress;
570
571 /*
572 * we need to call clear_page_dirty_for_io on each
573 * page in the range. Otherwise applications with the file
574 * mmap'd can wander in and change the page contents while
575 * we are compressing them.
576 *
577 * If the compression fails for any reason, we set the pages
578 * dirty again later on.
579 *
580 * Note that the remaining part is redirtied, the start pointer
581 * has moved, the end is the original one.
582 */
583 if (!redirty) {
584 extent_range_clear_dirty_for_io(inode, start, end);
585 redirty = 1;
586 }
587
588 /* Compression level is applied here and only here */
589 ret = btrfs_compress_pages(
590 compress_type | (fs_info->compress_level << 4),
591 inode->i_mapping, start,
592 pages,
593 &nr_pages,
594 &total_in,
595 &total_compressed);
596
597 if (!ret) {
598 unsigned long offset = offset_in_page(total_compressed);
599 struct page *page = pages[nr_pages - 1];
600 char *kaddr;
601
602 /* zero the tail end of the last page, we might be
603 * sending it down to disk
604 */
605 if (offset) {
606 kaddr = kmap_atomic(page);
607 memset(kaddr + offset, 0,
608 PAGE_SIZE - offset);
609 kunmap_atomic(kaddr);
610 }
611 will_compress = 1;
612 }
613 }
614 cont:
615 if (start == 0) {
616 /* lets try to make an inline extent */
617 if (ret || total_in < actual_end) {
618 /* we didn't compress the entire range, try
619 * to make an uncompressed inline extent.
620 */
621 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
622 0, BTRFS_COMPRESS_NONE,
623 NULL);
624 } else {
625 /* try making a compressed inline extent */
626 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
627 total_compressed,
628 compress_type, pages);
629 }
630 if (ret <= 0) {
631 unsigned long clear_flags = EXTENT_DELALLOC |
632 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
633 EXTENT_DO_ACCOUNTING;
634 unsigned long page_error_op;
635
636 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
637
638 /*
639 * inline extent creation worked or returned error,
640 * we don't need to create any more async work items.
641 * Unlock and free up our temp pages.
642 *
643 * We use DO_ACCOUNTING here because we need the
644 * delalloc_release_metadata to be done _after_ we drop
645 * our outstanding extent for clearing delalloc for this
646 * range.
647 */
648 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
649 NULL,
650 clear_flags,
651 PAGE_UNLOCK |
652 PAGE_CLEAR_DIRTY |
653 PAGE_SET_WRITEBACK |
654 page_error_op |
655 PAGE_END_WRITEBACK);
656
657 /*
658 * Ensure we only free the compressed pages if we have
659 * them allocated, as we can still reach here with
660 * inode_need_compress() == false.
661 */
662 if (pages) {
663 for (i = 0; i < nr_pages; i++) {
664 WARN_ON(pages[i]->mapping);
665 put_page(pages[i]);
666 }
667 kfree(pages);
668 }
669 return 0;
670 }
671 }
672
673 if (will_compress) {
674 /*
675 * we aren't doing an inline extent round the compressed size
676 * up to a block size boundary so the allocator does sane
677 * things
678 */
679 total_compressed = ALIGN(total_compressed, blocksize);
680
681 /*
682 * one last check to make sure the compression is really a
683 * win, compare the page count read with the blocks on disk,
684 * compression must free at least one sector size
685 */
686 total_in = ALIGN(total_in, PAGE_SIZE);
687 if (total_compressed + blocksize <= total_in) {
688 compressed_extents++;
689
690 /*
691 * The async work queues will take care of doing actual
692 * allocation on disk for these compressed pages, and
693 * will submit them to the elevator.
694 */
695 add_async_extent(async_chunk, start, total_in,
696 total_compressed, pages, nr_pages,
697 compress_type);
698
699 if (start + total_in < end) {
700 start += total_in;
701 pages = NULL;
702 cond_resched();
703 goto again;
704 }
705 return compressed_extents;
706 }
707 }
708 if (pages) {
709 /*
710 * the compression code ran but failed to make things smaller,
711 * free any pages it allocated and our page pointer array
712 */
713 for (i = 0; i < nr_pages; i++) {
714 WARN_ON(pages[i]->mapping);
715 put_page(pages[i]);
716 }
717 kfree(pages);
718 pages = NULL;
719 total_compressed = 0;
720 nr_pages = 0;
721
722 /* flag the file so we don't compress in the future */
723 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
724 !(BTRFS_I(inode)->prop_compress)) {
725 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
726 }
727 }
728 cleanup_and_bail_uncompressed:
729 /*
730 * No compression, but we still need to write the pages in the file
731 * we've been given so far. redirty the locked page if it corresponds
732 * to our extent and set things up for the async work queue to run
733 * cow_file_range to do the normal delalloc dance.
734 */
735 if (async_chunk->locked_page &&
736 (page_offset(async_chunk->locked_page) >= start &&
737 page_offset(async_chunk->locked_page)) <= end) {
738 __set_page_dirty_nobuffers(async_chunk->locked_page);
739 /* unlocked later on in the async handlers */
740 }
741
742 if (redirty)
743 extent_range_redirty_for_io(inode, start, end);
744 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
745 BTRFS_COMPRESS_NONE);
746 compressed_extents++;
747
748 return compressed_extents;
749 }
750
751 static void free_async_extent_pages(struct async_extent *async_extent)
752 {
753 int i;
754
755 if (!async_extent->pages)
756 return;
757
758 for (i = 0; i < async_extent->nr_pages; i++) {
759 WARN_ON(async_extent->pages[i]->mapping);
760 put_page(async_extent->pages[i]);
761 }
762 kfree(async_extent->pages);
763 async_extent->nr_pages = 0;
764 async_extent->pages = NULL;
765 }
766
767 /*
768 * phase two of compressed writeback. This is the ordered portion
769 * of the code, which only gets called in the order the work was
770 * queued. We walk all the async extents created by compress_file_range
771 * and send them down to the disk.
772 */
773 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
774 {
775 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
776 struct btrfs_fs_info *fs_info = inode->root->fs_info;
777 struct async_extent *async_extent;
778 u64 alloc_hint = 0;
779 struct btrfs_key ins;
780 struct extent_map *em;
781 struct btrfs_root *root = inode->root;
782 struct extent_io_tree *io_tree = &inode->io_tree;
783 int ret = 0;
784
785 again:
786 while (!list_empty(&async_chunk->extents)) {
787 async_extent = list_entry(async_chunk->extents.next,
788 struct async_extent, list);
789 list_del(&async_extent->list);
790
791 retry:
792 lock_extent(io_tree, async_extent->start,
793 async_extent->start + async_extent->ram_size - 1);
794 /* did the compression code fall back to uncompressed IO? */
795 if (!async_extent->pages) {
796 int page_started = 0;
797 unsigned long nr_written = 0;
798
799 /* allocate blocks */
800 ret = cow_file_range(inode, async_chunk->locked_page,
801 async_extent->start,
802 async_extent->start +
803 async_extent->ram_size - 1,
804 &page_started, &nr_written, 0);
805
806 /* JDM XXX */
807
808 /*
809 * if page_started, cow_file_range inserted an
810 * inline extent and took care of all the unlocking
811 * and IO for us. Otherwise, we need to submit
812 * all those pages down to the drive.
813 */
814 if (!page_started && !ret)
815 extent_write_locked_range(&inode->vfs_inode,
816 async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1,
819 WB_SYNC_ALL);
820 else if (ret && async_chunk->locked_page)
821 unlock_page(async_chunk->locked_page);
822 kfree(async_extent);
823 cond_resched();
824 continue;
825 }
826
827 ret = btrfs_reserve_extent(root, async_extent->ram_size,
828 async_extent->compressed_size,
829 async_extent->compressed_size,
830 0, alloc_hint, &ins, 1, 1);
831 if (ret) {
832 free_async_extent_pages(async_extent);
833
834 if (ret == -ENOSPC) {
835 unlock_extent(io_tree, async_extent->start,
836 async_extent->start +
837 async_extent->ram_size - 1);
838
839 /*
840 * we need to redirty the pages if we decide to
841 * fallback to uncompressed IO, otherwise we
842 * will not submit these pages down to lower
843 * layers.
844 */
845 extent_range_redirty_for_io(&inode->vfs_inode,
846 async_extent->start,
847 async_extent->start +
848 async_extent->ram_size - 1);
849
850 goto retry;
851 }
852 goto out_free;
853 }
854 /*
855 * here we're doing allocation and writeback of the
856 * compressed pages
857 */
858 em = create_io_em(inode, async_extent->start,
859 async_extent->ram_size, /* len */
860 async_extent->start, /* orig_start */
861 ins.objectid, /* block_start */
862 ins.offset, /* block_len */
863 ins.offset, /* orig_block_len */
864 async_extent->ram_size, /* ram_bytes */
865 async_extent->compress_type,
866 BTRFS_ORDERED_COMPRESSED);
867 if (IS_ERR(em))
868 /* ret value is not necessary due to void function */
869 goto out_free_reserve;
870 free_extent_map(em);
871
872 ret = btrfs_add_ordered_extent_compress(inode,
873 async_extent->start,
874 ins.objectid,
875 async_extent->ram_size,
876 ins.offset,
877 BTRFS_ORDERED_COMPRESSED,
878 async_extent->compress_type);
879 if (ret) {
880 btrfs_drop_extent_cache(inode, async_extent->start,
881 async_extent->start +
882 async_extent->ram_size - 1, 0);
883 goto out_free_reserve;
884 }
885 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
886
887 /*
888 * clear dirty, set writeback and unlock the pages.
889 */
890 extent_clear_unlock_delalloc(inode, async_extent->start,
891 async_extent->start +
892 async_extent->ram_size - 1,
893 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
894 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
895 PAGE_SET_WRITEBACK);
896 if (btrfs_submit_compressed_write(inode, async_extent->start,
897 async_extent->ram_size,
898 ins.objectid,
899 ins.offset, async_extent->pages,
900 async_extent->nr_pages,
901 async_chunk->write_flags,
902 async_chunk->blkcg_css)) {
903 struct page *p = async_extent->pages[0];
904 const u64 start = async_extent->start;
905 const u64 end = start + async_extent->ram_size - 1;
906
907 p->mapping = inode->vfs_inode.i_mapping;
908 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
909
910 p->mapping = NULL;
911 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
912 PAGE_END_WRITEBACK |
913 PAGE_SET_ERROR);
914 free_async_extent_pages(async_extent);
915 }
916 alloc_hint = ins.objectid + ins.offset;
917 kfree(async_extent);
918 cond_resched();
919 }
920 return;
921 out_free_reserve:
922 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
923 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
924 out_free:
925 extent_clear_unlock_delalloc(inode, async_extent->start,
926 async_extent->start +
927 async_extent->ram_size - 1,
928 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
929 EXTENT_DELALLOC_NEW |
930 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
931 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
932 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
933 PAGE_SET_ERROR);
934 free_async_extent_pages(async_extent);
935 kfree(async_extent);
936 goto again;
937 }
938
939 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
940 u64 num_bytes)
941 {
942 struct extent_map_tree *em_tree = &inode->extent_tree;
943 struct extent_map *em;
944 u64 alloc_hint = 0;
945
946 read_lock(&em_tree->lock);
947 em = search_extent_mapping(em_tree, start, num_bytes);
948 if (em) {
949 /*
950 * if block start isn't an actual block number then find the
951 * first block in this inode and use that as a hint. If that
952 * block is also bogus then just don't worry about it.
953 */
954 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
955 free_extent_map(em);
956 em = search_extent_mapping(em_tree, 0, 0);
957 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
958 alloc_hint = em->block_start;
959 if (em)
960 free_extent_map(em);
961 } else {
962 alloc_hint = em->block_start;
963 free_extent_map(em);
964 }
965 }
966 read_unlock(&em_tree->lock);
967
968 return alloc_hint;
969 }
970
971 /*
972 * when extent_io.c finds a delayed allocation range in the file,
973 * the call backs end up in this code. The basic idea is to
974 * allocate extents on disk for the range, and create ordered data structs
975 * in ram to track those extents.
976 *
977 * locked_page is the page that writepage had locked already. We use
978 * it to make sure we don't do extra locks or unlocks.
979 *
980 * *page_started is set to one if we unlock locked_page and do everything
981 * required to start IO on it. It may be clean and already done with
982 * IO when we return.
983 */
984 static noinline int cow_file_range(struct btrfs_inode *inode,
985 struct page *locked_page,
986 u64 start, u64 end, int *page_started,
987 unsigned long *nr_written, int unlock)
988 {
989 struct btrfs_root *root = inode->root;
990 struct btrfs_fs_info *fs_info = root->fs_info;
991 u64 alloc_hint = 0;
992 u64 num_bytes;
993 unsigned long ram_size;
994 u64 cur_alloc_size = 0;
995 u64 min_alloc_size;
996 u64 blocksize = fs_info->sectorsize;
997 struct btrfs_key ins;
998 struct extent_map *em;
999 unsigned clear_bits;
1000 unsigned long page_ops;
1001 bool extent_reserved = false;
1002 int ret = 0;
1003
1004 if (btrfs_is_free_space_inode(inode)) {
1005 WARN_ON_ONCE(1);
1006 ret = -EINVAL;
1007 goto out_unlock;
1008 }
1009
1010 num_bytes = ALIGN(end - start + 1, blocksize);
1011 num_bytes = max(blocksize, num_bytes);
1012 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1013
1014 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1015
1016 if (start == 0) {
1017 /* lets try to make an inline extent */
1018 ret = cow_file_range_inline(inode, start, end, 0,
1019 BTRFS_COMPRESS_NONE, NULL);
1020 if (ret == 0) {
1021 /*
1022 * We use DO_ACCOUNTING here because we need the
1023 * delalloc_release_metadata to be run _after_ we drop
1024 * our outstanding extent for clearing delalloc for this
1025 * range.
1026 */
1027 extent_clear_unlock_delalloc(inode, start, end, NULL,
1028 EXTENT_LOCKED | EXTENT_DELALLOC |
1029 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1030 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1031 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1032 PAGE_END_WRITEBACK);
1033 *nr_written = *nr_written +
1034 (end - start + PAGE_SIZE) / PAGE_SIZE;
1035 *page_started = 1;
1036 goto out;
1037 } else if (ret < 0) {
1038 goto out_unlock;
1039 }
1040 }
1041
1042 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1043 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1044
1045 /*
1046 * Relocation relies on the relocated extents to have exactly the same
1047 * size as the original extents. Normally writeback for relocation data
1048 * extents follows a NOCOW path because relocation preallocates the
1049 * extents. However, due to an operation such as scrub turning a block
1050 * group to RO mode, it may fallback to COW mode, so we must make sure
1051 * an extent allocated during COW has exactly the requested size and can
1052 * not be split into smaller extents, otherwise relocation breaks and
1053 * fails during the stage where it updates the bytenr of file extent
1054 * items.
1055 */
1056 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1057 min_alloc_size = num_bytes;
1058 else
1059 min_alloc_size = fs_info->sectorsize;
1060
1061 while (num_bytes > 0) {
1062 cur_alloc_size = num_bytes;
1063 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1064 min_alloc_size, 0, alloc_hint,
1065 &ins, 1, 1);
1066 if (ret < 0)
1067 goto out_unlock;
1068 cur_alloc_size = ins.offset;
1069 extent_reserved = true;
1070
1071 ram_size = ins.offset;
1072 em = create_io_em(inode, start, ins.offset, /* len */
1073 start, /* orig_start */
1074 ins.objectid, /* block_start */
1075 ins.offset, /* block_len */
1076 ins.offset, /* orig_block_len */
1077 ram_size, /* ram_bytes */
1078 BTRFS_COMPRESS_NONE, /* compress_type */
1079 BTRFS_ORDERED_REGULAR /* type */);
1080 if (IS_ERR(em)) {
1081 ret = PTR_ERR(em);
1082 goto out_reserve;
1083 }
1084 free_extent_map(em);
1085
1086 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1087 ram_size, cur_alloc_size, 0);
1088 if (ret)
1089 goto out_drop_extent_cache;
1090
1091 if (root->root_key.objectid ==
1092 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1093 ret = btrfs_reloc_clone_csums(inode, start,
1094 cur_alloc_size);
1095 /*
1096 * Only drop cache here, and process as normal.
1097 *
1098 * We must not allow extent_clear_unlock_delalloc()
1099 * at out_unlock label to free meta of this ordered
1100 * extent, as its meta should be freed by
1101 * btrfs_finish_ordered_io().
1102 *
1103 * So we must continue until @start is increased to
1104 * skip current ordered extent.
1105 */
1106 if (ret)
1107 btrfs_drop_extent_cache(inode, start,
1108 start + ram_size - 1, 0);
1109 }
1110
1111 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1112
1113 /* we're not doing compressed IO, don't unlock the first
1114 * page (which the caller expects to stay locked), don't
1115 * clear any dirty bits and don't set any writeback bits
1116 *
1117 * Do set the Private2 bit so we know this page was properly
1118 * setup for writepage
1119 */
1120 page_ops = unlock ? PAGE_UNLOCK : 0;
1121 page_ops |= PAGE_SET_PRIVATE2;
1122
1123 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1124 locked_page,
1125 EXTENT_LOCKED | EXTENT_DELALLOC,
1126 page_ops);
1127 if (num_bytes < cur_alloc_size)
1128 num_bytes = 0;
1129 else
1130 num_bytes -= cur_alloc_size;
1131 alloc_hint = ins.objectid + ins.offset;
1132 start += cur_alloc_size;
1133 extent_reserved = false;
1134
1135 /*
1136 * btrfs_reloc_clone_csums() error, since start is increased
1137 * extent_clear_unlock_delalloc() at out_unlock label won't
1138 * free metadata of current ordered extent, we're OK to exit.
1139 */
1140 if (ret)
1141 goto out_unlock;
1142 }
1143 out:
1144 return ret;
1145
1146 out_drop_extent_cache:
1147 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1148 out_reserve:
1149 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1150 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1151 out_unlock:
1152 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1153 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1154 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1155 PAGE_END_WRITEBACK;
1156 /*
1157 * If we reserved an extent for our delalloc range (or a subrange) and
1158 * failed to create the respective ordered extent, then it means that
1159 * when we reserved the extent we decremented the extent's size from
1160 * the data space_info's bytes_may_use counter and incremented the
1161 * space_info's bytes_reserved counter by the same amount. We must make
1162 * sure extent_clear_unlock_delalloc() does not try to decrement again
1163 * the data space_info's bytes_may_use counter, therefore we do not pass
1164 * it the flag EXTENT_CLEAR_DATA_RESV.
1165 */
1166 if (extent_reserved) {
1167 extent_clear_unlock_delalloc(inode, start,
1168 start + cur_alloc_size - 1,
1169 locked_page,
1170 clear_bits,
1171 page_ops);
1172 start += cur_alloc_size;
1173 if (start >= end)
1174 goto out;
1175 }
1176 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1177 clear_bits | EXTENT_CLEAR_DATA_RESV,
1178 page_ops);
1179 goto out;
1180 }
1181
1182 /*
1183 * work queue call back to started compression on a file and pages
1184 */
1185 static noinline void async_cow_start(struct btrfs_work *work)
1186 {
1187 struct async_chunk *async_chunk;
1188 int compressed_extents;
1189
1190 async_chunk = container_of(work, struct async_chunk, work);
1191
1192 compressed_extents = compress_file_range(async_chunk);
1193 if (compressed_extents == 0) {
1194 btrfs_add_delayed_iput(async_chunk->inode);
1195 async_chunk->inode = NULL;
1196 }
1197 }
1198
1199 /*
1200 * work queue call back to submit previously compressed pages
1201 */
1202 static noinline void async_cow_submit(struct btrfs_work *work)
1203 {
1204 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1205 work);
1206 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1207 unsigned long nr_pages;
1208
1209 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1210 PAGE_SHIFT;
1211
1212 /* atomic_sub_return implies a barrier */
1213 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1214 5 * SZ_1M)
1215 cond_wake_up_nomb(&fs_info->async_submit_wait);
1216
1217 /*
1218 * ->inode could be NULL if async_chunk_start has failed to compress,
1219 * in which case we don't have anything to submit, yet we need to
1220 * always adjust ->async_delalloc_pages as its paired with the init
1221 * happening in cow_file_range_async
1222 */
1223 if (async_chunk->inode)
1224 submit_compressed_extents(async_chunk);
1225 }
1226
1227 static noinline void async_cow_free(struct btrfs_work *work)
1228 {
1229 struct async_chunk *async_chunk;
1230
1231 async_chunk = container_of(work, struct async_chunk, work);
1232 if (async_chunk->inode)
1233 btrfs_add_delayed_iput(async_chunk->inode);
1234 if (async_chunk->blkcg_css)
1235 css_put(async_chunk->blkcg_css);
1236 /*
1237 * Since the pointer to 'pending' is at the beginning of the array of
1238 * async_chunk's, freeing it ensures the whole array has been freed.
1239 */
1240 if (atomic_dec_and_test(async_chunk->pending))
1241 kvfree(async_chunk->pending);
1242 }
1243
1244 static int cow_file_range_async(struct btrfs_inode *inode,
1245 struct writeback_control *wbc,
1246 struct page *locked_page,
1247 u64 start, u64 end, int *page_started,
1248 unsigned long *nr_written)
1249 {
1250 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1251 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1252 struct async_cow *ctx;
1253 struct async_chunk *async_chunk;
1254 unsigned long nr_pages;
1255 u64 cur_end;
1256 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1257 int i;
1258 bool should_compress;
1259 unsigned nofs_flag;
1260 const unsigned int write_flags = wbc_to_write_flags(wbc);
1261
1262 unlock_extent(&inode->io_tree, start, end);
1263
1264 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1265 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1266 num_chunks = 1;
1267 should_compress = false;
1268 } else {
1269 should_compress = true;
1270 }
1271
1272 nofs_flag = memalloc_nofs_save();
1273 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1274 memalloc_nofs_restore(nofs_flag);
1275
1276 if (!ctx) {
1277 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1278 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1279 EXTENT_DO_ACCOUNTING;
1280 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1281 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1282 PAGE_SET_ERROR;
1283
1284 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1285 clear_bits, page_ops);
1286 return -ENOMEM;
1287 }
1288
1289 async_chunk = ctx->chunks;
1290 atomic_set(&ctx->num_chunks, num_chunks);
1291
1292 for (i = 0; i < num_chunks; i++) {
1293 if (should_compress)
1294 cur_end = min(end, start + SZ_512K - 1);
1295 else
1296 cur_end = end;
1297
1298 /*
1299 * igrab is called higher up in the call chain, take only the
1300 * lightweight reference for the callback lifetime
1301 */
1302 ihold(&inode->vfs_inode);
1303 async_chunk[i].pending = &ctx->num_chunks;
1304 async_chunk[i].inode = &inode->vfs_inode;
1305 async_chunk[i].start = start;
1306 async_chunk[i].end = cur_end;
1307 async_chunk[i].write_flags = write_flags;
1308 INIT_LIST_HEAD(&async_chunk[i].extents);
1309
1310 /*
1311 * The locked_page comes all the way from writepage and its
1312 * the original page we were actually given. As we spread
1313 * this large delalloc region across multiple async_chunk
1314 * structs, only the first struct needs a pointer to locked_page
1315 *
1316 * This way we don't need racey decisions about who is supposed
1317 * to unlock it.
1318 */
1319 if (locked_page) {
1320 /*
1321 * Depending on the compressibility, the pages might or
1322 * might not go through async. We want all of them to
1323 * be accounted against wbc once. Let's do it here
1324 * before the paths diverge. wbc accounting is used
1325 * only for foreign writeback detection and doesn't
1326 * need full accuracy. Just account the whole thing
1327 * against the first page.
1328 */
1329 wbc_account_cgroup_owner(wbc, locked_page,
1330 cur_end - start);
1331 async_chunk[i].locked_page = locked_page;
1332 locked_page = NULL;
1333 } else {
1334 async_chunk[i].locked_page = NULL;
1335 }
1336
1337 if (blkcg_css != blkcg_root_css) {
1338 css_get(blkcg_css);
1339 async_chunk[i].blkcg_css = blkcg_css;
1340 } else {
1341 async_chunk[i].blkcg_css = NULL;
1342 }
1343
1344 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1345 async_cow_submit, async_cow_free);
1346
1347 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1348 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1349
1350 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1351
1352 *nr_written += nr_pages;
1353 start = cur_end + 1;
1354 }
1355 *page_started = 1;
1356 return 0;
1357 }
1358
1359 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1360 u64 bytenr, u64 num_bytes)
1361 {
1362 int ret;
1363 struct btrfs_ordered_sum *sums;
1364 LIST_HEAD(list);
1365
1366 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1367 bytenr + num_bytes - 1, &list, 0);
1368 if (ret == 0 && list_empty(&list))
1369 return 0;
1370
1371 while (!list_empty(&list)) {
1372 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1373 list_del(&sums->list);
1374 kfree(sums);
1375 }
1376 if (ret < 0)
1377 return ret;
1378 return 1;
1379 }
1380
1381 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1382 const u64 start, const u64 end,
1383 int *page_started, unsigned long *nr_written)
1384 {
1385 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1386 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1387 BTRFS_DATA_RELOC_TREE_OBJECTID);
1388 const u64 range_bytes = end + 1 - start;
1389 struct extent_io_tree *io_tree = &inode->io_tree;
1390 u64 range_start = start;
1391 u64 count;
1392
1393 /*
1394 * If EXTENT_NORESERVE is set it means that when the buffered write was
1395 * made we had not enough available data space and therefore we did not
1396 * reserve data space for it, since we though we could do NOCOW for the
1397 * respective file range (either there is prealloc extent or the inode
1398 * has the NOCOW bit set).
1399 *
1400 * However when we need to fallback to COW mode (because for example the
1401 * block group for the corresponding extent was turned to RO mode by a
1402 * scrub or relocation) we need to do the following:
1403 *
1404 * 1) We increment the bytes_may_use counter of the data space info.
1405 * If COW succeeds, it allocates a new data extent and after doing
1406 * that it decrements the space info's bytes_may_use counter and
1407 * increments its bytes_reserved counter by the same amount (we do
1408 * this at btrfs_add_reserved_bytes()). So we need to increment the
1409 * bytes_may_use counter to compensate (when space is reserved at
1410 * buffered write time, the bytes_may_use counter is incremented);
1411 *
1412 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1413 * that if the COW path fails for any reason, it decrements (through
1414 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1415 * data space info, which we incremented in the step above.
1416 *
1417 * If we need to fallback to cow and the inode corresponds to a free
1418 * space cache inode or an inode of the data relocation tree, we must
1419 * also increment bytes_may_use of the data space_info for the same
1420 * reason. Space caches and relocated data extents always get a prealloc
1421 * extent for them, however scrub or balance may have set the block
1422 * group that contains that extent to RO mode and therefore force COW
1423 * when starting writeback.
1424 */
1425 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1426 EXTENT_NORESERVE, 0);
1427 if (count > 0 || is_space_ino || is_reloc_ino) {
1428 u64 bytes = count;
1429 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1430 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1431
1432 if (is_space_ino || is_reloc_ino)
1433 bytes = range_bytes;
1434
1435 spin_lock(&sinfo->lock);
1436 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1437 spin_unlock(&sinfo->lock);
1438
1439 if (count > 0)
1440 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1441 0, 0, NULL);
1442 }
1443
1444 return cow_file_range(inode, locked_page, start, end, page_started,
1445 nr_written, 1);
1446 }
1447
1448 /*
1449 * when nowcow writeback call back. This checks for snapshots or COW copies
1450 * of the extents that exist in the file, and COWs the file as required.
1451 *
1452 * If no cow copies or snapshots exist, we write directly to the existing
1453 * blocks on disk
1454 */
1455 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1456 struct page *locked_page,
1457 const u64 start, const u64 end,
1458 int *page_started, int force,
1459 unsigned long *nr_written)
1460 {
1461 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1462 struct btrfs_root *root = inode->root;
1463 struct btrfs_path *path;
1464 u64 cow_start = (u64)-1;
1465 u64 cur_offset = start;
1466 int ret;
1467 bool check_prev = true;
1468 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1469 u64 ino = btrfs_ino(inode);
1470 bool nocow = false;
1471 u64 disk_bytenr = 0;
1472
1473 path = btrfs_alloc_path();
1474 if (!path) {
1475 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1476 EXTENT_LOCKED | EXTENT_DELALLOC |
1477 EXTENT_DO_ACCOUNTING |
1478 EXTENT_DEFRAG, PAGE_UNLOCK |
1479 PAGE_CLEAR_DIRTY |
1480 PAGE_SET_WRITEBACK |
1481 PAGE_END_WRITEBACK);
1482 return -ENOMEM;
1483 }
1484
1485 while (1) {
1486 struct btrfs_key found_key;
1487 struct btrfs_file_extent_item *fi;
1488 struct extent_buffer *leaf;
1489 u64 extent_end;
1490 u64 extent_offset;
1491 u64 num_bytes = 0;
1492 u64 disk_num_bytes;
1493 u64 ram_bytes;
1494 int extent_type;
1495
1496 nocow = false;
1497
1498 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1499 cur_offset, 0);
1500 if (ret < 0)
1501 goto error;
1502
1503 /*
1504 * If there is no extent for our range when doing the initial
1505 * search, then go back to the previous slot as it will be the
1506 * one containing the search offset
1507 */
1508 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1509 leaf = path->nodes[0];
1510 btrfs_item_key_to_cpu(leaf, &found_key,
1511 path->slots[0] - 1);
1512 if (found_key.objectid == ino &&
1513 found_key.type == BTRFS_EXTENT_DATA_KEY)
1514 path->slots[0]--;
1515 }
1516 check_prev = false;
1517 next_slot:
1518 /* Go to next leaf if we have exhausted the current one */
1519 leaf = path->nodes[0];
1520 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1521 ret = btrfs_next_leaf(root, path);
1522 if (ret < 0) {
1523 if (cow_start != (u64)-1)
1524 cur_offset = cow_start;
1525 goto error;
1526 }
1527 if (ret > 0)
1528 break;
1529 leaf = path->nodes[0];
1530 }
1531
1532 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1533
1534 /* Didn't find anything for our INO */
1535 if (found_key.objectid > ino)
1536 break;
1537 /*
1538 * Keep searching until we find an EXTENT_ITEM or there are no
1539 * more extents for this inode
1540 */
1541 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1542 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1543 path->slots[0]++;
1544 goto next_slot;
1545 }
1546
1547 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1548 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1549 found_key.offset > end)
1550 break;
1551
1552 /*
1553 * If the found extent starts after requested offset, then
1554 * adjust extent_end to be right before this extent begins
1555 */
1556 if (found_key.offset > cur_offset) {
1557 extent_end = found_key.offset;
1558 extent_type = 0;
1559 goto out_check;
1560 }
1561
1562 /*
1563 * Found extent which begins before our range and potentially
1564 * intersect it
1565 */
1566 fi = btrfs_item_ptr(leaf, path->slots[0],
1567 struct btrfs_file_extent_item);
1568 extent_type = btrfs_file_extent_type(leaf, fi);
1569
1570 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1571 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1572 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1573 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1574 extent_offset = btrfs_file_extent_offset(leaf, fi);
1575 extent_end = found_key.offset +
1576 btrfs_file_extent_num_bytes(leaf, fi);
1577 disk_num_bytes =
1578 btrfs_file_extent_disk_num_bytes(leaf, fi);
1579 /*
1580 * If the extent we got ends before our current offset,
1581 * skip to the next extent.
1582 */
1583 if (extent_end <= cur_offset) {
1584 path->slots[0]++;
1585 goto next_slot;
1586 }
1587 /* Skip holes */
1588 if (disk_bytenr == 0)
1589 goto out_check;
1590 /* Skip compressed/encrypted/encoded extents */
1591 if (btrfs_file_extent_compression(leaf, fi) ||
1592 btrfs_file_extent_encryption(leaf, fi) ||
1593 btrfs_file_extent_other_encoding(leaf, fi))
1594 goto out_check;
1595 /*
1596 * If extent is created before the last volume's snapshot
1597 * this implies the extent is shared, hence we can't do
1598 * nocow. This is the same check as in
1599 * btrfs_cross_ref_exist but without calling
1600 * btrfs_search_slot.
1601 */
1602 if (!freespace_inode &&
1603 btrfs_file_extent_generation(leaf, fi) <=
1604 btrfs_root_last_snapshot(&root->root_item))
1605 goto out_check;
1606 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1607 goto out_check;
1608 /* If extent is RO, we must COW it */
1609 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1610 goto out_check;
1611 ret = btrfs_cross_ref_exist(root, ino,
1612 found_key.offset -
1613 extent_offset, disk_bytenr, false);
1614 if (ret) {
1615 /*
1616 * ret could be -EIO if the above fails to read
1617 * metadata.
1618 */
1619 if (ret < 0) {
1620 if (cow_start != (u64)-1)
1621 cur_offset = cow_start;
1622 goto error;
1623 }
1624
1625 WARN_ON_ONCE(freespace_inode);
1626 goto out_check;
1627 }
1628 disk_bytenr += extent_offset;
1629 disk_bytenr += cur_offset - found_key.offset;
1630 num_bytes = min(end + 1, extent_end) - cur_offset;
1631 /*
1632 * If there are pending snapshots for this root, we
1633 * fall into common COW way
1634 */
1635 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1636 goto out_check;
1637 /*
1638 * force cow if csum exists in the range.
1639 * this ensure that csum for a given extent are
1640 * either valid or do not exist.
1641 */
1642 ret = csum_exist_in_range(fs_info, disk_bytenr,
1643 num_bytes);
1644 if (ret) {
1645 /*
1646 * ret could be -EIO if the above fails to read
1647 * metadata.
1648 */
1649 if (ret < 0) {
1650 if (cow_start != (u64)-1)
1651 cur_offset = cow_start;
1652 goto error;
1653 }
1654 WARN_ON_ONCE(freespace_inode);
1655 goto out_check;
1656 }
1657 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1658 goto out_check;
1659 nocow = true;
1660 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1661 extent_end = found_key.offset + ram_bytes;
1662 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1663 /* Skip extents outside of our requested range */
1664 if (extent_end <= start) {
1665 path->slots[0]++;
1666 goto next_slot;
1667 }
1668 } else {
1669 /* If this triggers then we have a memory corruption */
1670 BUG();
1671 }
1672 out_check:
1673 /*
1674 * If nocow is false then record the beginning of the range
1675 * that needs to be COWed
1676 */
1677 if (!nocow) {
1678 if (cow_start == (u64)-1)
1679 cow_start = cur_offset;
1680 cur_offset = extent_end;
1681 if (cur_offset > end)
1682 break;
1683 path->slots[0]++;
1684 goto next_slot;
1685 }
1686
1687 btrfs_release_path(path);
1688
1689 /*
1690 * COW range from cow_start to found_key.offset - 1. As the key
1691 * will contain the beginning of the first extent that can be
1692 * NOCOW, following one which needs to be COW'ed
1693 */
1694 if (cow_start != (u64)-1) {
1695 ret = fallback_to_cow(inode, locked_page,
1696 cow_start, found_key.offset - 1,
1697 page_started, nr_written);
1698 if (ret)
1699 goto error;
1700 cow_start = (u64)-1;
1701 }
1702
1703 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1704 u64 orig_start = found_key.offset - extent_offset;
1705 struct extent_map *em;
1706
1707 em = create_io_em(inode, cur_offset, num_bytes,
1708 orig_start,
1709 disk_bytenr, /* block_start */
1710 num_bytes, /* block_len */
1711 disk_num_bytes, /* orig_block_len */
1712 ram_bytes, BTRFS_COMPRESS_NONE,
1713 BTRFS_ORDERED_PREALLOC);
1714 if (IS_ERR(em)) {
1715 ret = PTR_ERR(em);
1716 goto error;
1717 }
1718 free_extent_map(em);
1719 ret = btrfs_add_ordered_extent(inode, cur_offset,
1720 disk_bytenr, num_bytes,
1721 num_bytes,
1722 BTRFS_ORDERED_PREALLOC);
1723 if (ret) {
1724 btrfs_drop_extent_cache(inode, cur_offset,
1725 cur_offset + num_bytes - 1,
1726 0);
1727 goto error;
1728 }
1729 } else {
1730 ret = btrfs_add_ordered_extent(inode, cur_offset,
1731 disk_bytenr, num_bytes,
1732 num_bytes,
1733 BTRFS_ORDERED_NOCOW);
1734 if (ret)
1735 goto error;
1736 }
1737
1738 if (nocow)
1739 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1740 nocow = false;
1741
1742 if (root->root_key.objectid ==
1743 BTRFS_DATA_RELOC_TREE_OBJECTID)
1744 /*
1745 * Error handled later, as we must prevent
1746 * extent_clear_unlock_delalloc() in error handler
1747 * from freeing metadata of created ordered extent.
1748 */
1749 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1750 num_bytes);
1751
1752 extent_clear_unlock_delalloc(inode, cur_offset,
1753 cur_offset + num_bytes - 1,
1754 locked_page, EXTENT_LOCKED |
1755 EXTENT_DELALLOC |
1756 EXTENT_CLEAR_DATA_RESV,
1757 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1758
1759 cur_offset = extent_end;
1760
1761 /*
1762 * btrfs_reloc_clone_csums() error, now we're OK to call error
1763 * handler, as metadata for created ordered extent will only
1764 * be freed by btrfs_finish_ordered_io().
1765 */
1766 if (ret)
1767 goto error;
1768 if (cur_offset > end)
1769 break;
1770 }
1771 btrfs_release_path(path);
1772
1773 if (cur_offset <= end && cow_start == (u64)-1)
1774 cow_start = cur_offset;
1775
1776 if (cow_start != (u64)-1) {
1777 cur_offset = end;
1778 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1779 page_started, nr_written);
1780 if (ret)
1781 goto error;
1782 }
1783
1784 error:
1785 if (nocow)
1786 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1787
1788 if (ret && cur_offset < end)
1789 extent_clear_unlock_delalloc(inode, cur_offset, end,
1790 locked_page, EXTENT_LOCKED |
1791 EXTENT_DELALLOC | EXTENT_DEFRAG |
1792 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1793 PAGE_CLEAR_DIRTY |
1794 PAGE_SET_WRITEBACK |
1795 PAGE_END_WRITEBACK);
1796 btrfs_free_path(path);
1797 return ret;
1798 }
1799
1800 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1801 {
1802
1803 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1804 !(inode->flags & BTRFS_INODE_PREALLOC))
1805 return 0;
1806
1807 /*
1808 * @defrag_bytes is a hint value, no spinlock held here,
1809 * if is not zero, it means the file is defragging.
1810 * Force cow if given extent needs to be defragged.
1811 */
1812 if (inode->defrag_bytes &&
1813 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1814 return 1;
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * Function to process delayed allocation (create CoW) for ranges which are
1821 * being touched for the first time.
1822 */
1823 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1824 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1825 struct writeback_control *wbc)
1826 {
1827 int ret;
1828 int force_cow = need_force_cow(inode, start, end);
1829
1830 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1831 ret = run_delalloc_nocow(inode, locked_page, start, end,
1832 page_started, 1, nr_written);
1833 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1834 ret = run_delalloc_nocow(inode, locked_page, start, end,
1835 page_started, 0, nr_written);
1836 } else if (!inode_can_compress(inode) ||
1837 !inode_need_compress(inode, start, end)) {
1838 ret = cow_file_range(inode, locked_page, start, end,
1839 page_started, nr_written, 1);
1840 } else {
1841 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1842 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1843 page_started, nr_written);
1844 }
1845 if (ret)
1846 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1847 end - start + 1);
1848 return ret;
1849 }
1850
1851 void btrfs_split_delalloc_extent(struct inode *inode,
1852 struct extent_state *orig, u64 split)
1853 {
1854 u64 size;
1855
1856 /* not delalloc, ignore it */
1857 if (!(orig->state & EXTENT_DELALLOC))
1858 return;
1859
1860 size = orig->end - orig->start + 1;
1861 if (size > BTRFS_MAX_EXTENT_SIZE) {
1862 u32 num_extents;
1863 u64 new_size;
1864
1865 /*
1866 * See the explanation in btrfs_merge_delalloc_extent, the same
1867 * applies here, just in reverse.
1868 */
1869 new_size = orig->end - split + 1;
1870 num_extents = count_max_extents(new_size);
1871 new_size = split - orig->start;
1872 num_extents += count_max_extents(new_size);
1873 if (count_max_extents(size) >= num_extents)
1874 return;
1875 }
1876
1877 spin_lock(&BTRFS_I(inode)->lock);
1878 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1879 spin_unlock(&BTRFS_I(inode)->lock);
1880 }
1881
1882 /*
1883 * Handle merged delayed allocation extents so we can keep track of new extents
1884 * that are just merged onto old extents, such as when we are doing sequential
1885 * writes, so we can properly account for the metadata space we'll need.
1886 */
1887 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1888 struct extent_state *other)
1889 {
1890 u64 new_size, old_size;
1891 u32 num_extents;
1892
1893 /* not delalloc, ignore it */
1894 if (!(other->state & EXTENT_DELALLOC))
1895 return;
1896
1897 if (new->start > other->start)
1898 new_size = new->end - other->start + 1;
1899 else
1900 new_size = other->end - new->start + 1;
1901
1902 /* we're not bigger than the max, unreserve the space and go */
1903 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1904 spin_lock(&BTRFS_I(inode)->lock);
1905 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1906 spin_unlock(&BTRFS_I(inode)->lock);
1907 return;
1908 }
1909
1910 /*
1911 * We have to add up either side to figure out how many extents were
1912 * accounted for before we merged into one big extent. If the number of
1913 * extents we accounted for is <= the amount we need for the new range
1914 * then we can return, otherwise drop. Think of it like this
1915 *
1916 * [ 4k][MAX_SIZE]
1917 *
1918 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1919 * need 2 outstanding extents, on one side we have 1 and the other side
1920 * we have 1 so they are == and we can return. But in this case
1921 *
1922 * [MAX_SIZE+4k][MAX_SIZE+4k]
1923 *
1924 * Each range on their own accounts for 2 extents, but merged together
1925 * they are only 3 extents worth of accounting, so we need to drop in
1926 * this case.
1927 */
1928 old_size = other->end - other->start + 1;
1929 num_extents = count_max_extents(old_size);
1930 old_size = new->end - new->start + 1;
1931 num_extents += count_max_extents(old_size);
1932 if (count_max_extents(new_size) >= num_extents)
1933 return;
1934
1935 spin_lock(&BTRFS_I(inode)->lock);
1936 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1937 spin_unlock(&BTRFS_I(inode)->lock);
1938 }
1939
1940 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1941 struct inode *inode)
1942 {
1943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1944
1945 spin_lock(&root->delalloc_lock);
1946 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1947 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1948 &root->delalloc_inodes);
1949 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1950 &BTRFS_I(inode)->runtime_flags);
1951 root->nr_delalloc_inodes++;
1952 if (root->nr_delalloc_inodes == 1) {
1953 spin_lock(&fs_info->delalloc_root_lock);
1954 BUG_ON(!list_empty(&root->delalloc_root));
1955 list_add_tail(&root->delalloc_root,
1956 &fs_info->delalloc_roots);
1957 spin_unlock(&fs_info->delalloc_root_lock);
1958 }
1959 }
1960 spin_unlock(&root->delalloc_lock);
1961 }
1962
1963
1964 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1965 struct btrfs_inode *inode)
1966 {
1967 struct btrfs_fs_info *fs_info = root->fs_info;
1968
1969 if (!list_empty(&inode->delalloc_inodes)) {
1970 list_del_init(&inode->delalloc_inodes);
1971 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1972 &inode->runtime_flags);
1973 root->nr_delalloc_inodes--;
1974 if (!root->nr_delalloc_inodes) {
1975 ASSERT(list_empty(&root->delalloc_inodes));
1976 spin_lock(&fs_info->delalloc_root_lock);
1977 BUG_ON(list_empty(&root->delalloc_root));
1978 list_del_init(&root->delalloc_root);
1979 spin_unlock(&fs_info->delalloc_root_lock);
1980 }
1981 }
1982 }
1983
1984 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1985 struct btrfs_inode *inode)
1986 {
1987 spin_lock(&root->delalloc_lock);
1988 __btrfs_del_delalloc_inode(root, inode);
1989 spin_unlock(&root->delalloc_lock);
1990 }
1991
1992 /*
1993 * Properly track delayed allocation bytes in the inode and to maintain the
1994 * list of inodes that have pending delalloc work to be done.
1995 */
1996 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1997 unsigned *bits)
1998 {
1999 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2000
2001 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2002 WARN_ON(1);
2003 /*
2004 * set_bit and clear bit hooks normally require _irqsave/restore
2005 * but in this case, we are only testing for the DELALLOC
2006 * bit, which is only set or cleared with irqs on
2007 */
2008 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2009 struct btrfs_root *root = BTRFS_I(inode)->root;
2010 u64 len = state->end + 1 - state->start;
2011 u32 num_extents = count_max_extents(len);
2012 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2013
2014 spin_lock(&BTRFS_I(inode)->lock);
2015 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2016 spin_unlock(&BTRFS_I(inode)->lock);
2017
2018 /* For sanity tests */
2019 if (btrfs_is_testing(fs_info))
2020 return;
2021
2022 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2023 fs_info->delalloc_batch);
2024 spin_lock(&BTRFS_I(inode)->lock);
2025 BTRFS_I(inode)->delalloc_bytes += len;
2026 if (*bits & EXTENT_DEFRAG)
2027 BTRFS_I(inode)->defrag_bytes += len;
2028 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2029 &BTRFS_I(inode)->runtime_flags))
2030 btrfs_add_delalloc_inodes(root, inode);
2031 spin_unlock(&BTRFS_I(inode)->lock);
2032 }
2033
2034 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2035 (*bits & EXTENT_DELALLOC_NEW)) {
2036 spin_lock(&BTRFS_I(inode)->lock);
2037 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2038 state->start;
2039 spin_unlock(&BTRFS_I(inode)->lock);
2040 }
2041 }
2042
2043 /*
2044 * Once a range is no longer delalloc this function ensures that proper
2045 * accounting happens.
2046 */
2047 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2048 struct extent_state *state, unsigned *bits)
2049 {
2050 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2051 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2052 u64 len = state->end + 1 - state->start;
2053 u32 num_extents = count_max_extents(len);
2054
2055 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2056 spin_lock(&inode->lock);
2057 inode->defrag_bytes -= len;
2058 spin_unlock(&inode->lock);
2059 }
2060
2061 /*
2062 * set_bit and clear bit hooks normally require _irqsave/restore
2063 * but in this case, we are only testing for the DELALLOC
2064 * bit, which is only set or cleared with irqs on
2065 */
2066 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2067 struct btrfs_root *root = inode->root;
2068 bool do_list = !btrfs_is_free_space_inode(inode);
2069
2070 spin_lock(&inode->lock);
2071 btrfs_mod_outstanding_extents(inode, -num_extents);
2072 spin_unlock(&inode->lock);
2073
2074 /*
2075 * We don't reserve metadata space for space cache inodes so we
2076 * don't need to call delalloc_release_metadata if there is an
2077 * error.
2078 */
2079 if (*bits & EXTENT_CLEAR_META_RESV &&
2080 root != fs_info->tree_root)
2081 btrfs_delalloc_release_metadata(inode, len, false);
2082
2083 /* For sanity tests. */
2084 if (btrfs_is_testing(fs_info))
2085 return;
2086
2087 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2088 do_list && !(state->state & EXTENT_NORESERVE) &&
2089 (*bits & EXTENT_CLEAR_DATA_RESV))
2090 btrfs_free_reserved_data_space_noquota(fs_info, len);
2091
2092 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2093 fs_info->delalloc_batch);
2094 spin_lock(&inode->lock);
2095 inode->delalloc_bytes -= len;
2096 if (do_list && inode->delalloc_bytes == 0 &&
2097 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2098 &inode->runtime_flags))
2099 btrfs_del_delalloc_inode(root, inode);
2100 spin_unlock(&inode->lock);
2101 }
2102
2103 if ((state->state & EXTENT_DELALLOC_NEW) &&
2104 (*bits & EXTENT_DELALLOC_NEW)) {
2105 spin_lock(&inode->lock);
2106 ASSERT(inode->new_delalloc_bytes >= len);
2107 inode->new_delalloc_bytes -= len;
2108 spin_unlock(&inode->lock);
2109 }
2110 }
2111
2112 /*
2113 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2114 * in a chunk's stripe. This function ensures that bios do not span a
2115 * stripe/chunk
2116 *
2117 * @page - The page we are about to add to the bio
2118 * @size - size we want to add to the bio
2119 * @bio - bio we want to ensure is smaller than a stripe
2120 * @bio_flags - flags of the bio
2121 *
2122 * return 1 if page cannot be added to the bio
2123 * return 0 if page can be added to the bio
2124 * return error otherwise
2125 */
2126 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2127 unsigned long bio_flags)
2128 {
2129 struct inode *inode = page->mapping->host;
2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2131 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2132 u64 length = 0;
2133 u64 map_length;
2134 int ret;
2135 struct btrfs_io_geometry geom;
2136
2137 if (bio_flags & EXTENT_BIO_COMPRESSED)
2138 return 0;
2139
2140 length = bio->bi_iter.bi_size;
2141 map_length = length;
2142 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2143 &geom);
2144 if (ret < 0)
2145 return ret;
2146
2147 if (geom.len < length + size)
2148 return 1;
2149 return 0;
2150 }
2151
2152 /*
2153 * in order to insert checksums into the metadata in large chunks,
2154 * we wait until bio submission time. All the pages in the bio are
2155 * checksummed and sums are attached onto the ordered extent record.
2156 *
2157 * At IO completion time the cums attached on the ordered extent record
2158 * are inserted into the btree
2159 */
2160 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2161 u64 bio_offset)
2162 {
2163 struct inode *inode = private_data;
2164
2165 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2166 }
2167
2168 /*
2169 * extent_io.c submission hook. This does the right thing for csum calculation
2170 * on write, or reading the csums from the tree before a read.
2171 *
2172 * Rules about async/sync submit,
2173 * a) read: sync submit
2174 *
2175 * b) write without checksum: sync submit
2176 *
2177 * c) write with checksum:
2178 * c-1) if bio is issued by fsync: sync submit
2179 * (sync_writers != 0)
2180 *
2181 * c-2) if root is reloc root: sync submit
2182 * (only in case of buffered IO)
2183 *
2184 * c-3) otherwise: async submit
2185 */
2186 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2187 int mirror_num,
2188 unsigned long bio_flags)
2189
2190 {
2191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 struct btrfs_root *root = BTRFS_I(inode)->root;
2193 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2194 blk_status_t ret = 0;
2195 int skip_sum;
2196 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2197
2198 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2199
2200 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2201 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2202
2203 if (bio_op(bio) != REQ_OP_WRITE) {
2204 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2205 if (ret)
2206 goto out;
2207
2208 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2209 ret = btrfs_submit_compressed_read(inode, bio,
2210 mirror_num,
2211 bio_flags);
2212 goto out;
2213 } else if (!skip_sum) {
2214 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2215 if (ret)
2216 goto out;
2217 }
2218 goto mapit;
2219 } else if (async && !skip_sum) {
2220 /* csum items have already been cloned */
2221 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2222 goto mapit;
2223 /* we're doing a write, do the async checksumming */
2224 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2225 0, inode, btrfs_submit_bio_start);
2226 goto out;
2227 } else if (!skip_sum) {
2228 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2229 if (ret)
2230 goto out;
2231 }
2232
2233 mapit:
2234 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2235
2236 out:
2237 if (ret) {
2238 bio->bi_status = ret;
2239 bio_endio(bio);
2240 }
2241 return ret;
2242 }
2243
2244 /*
2245 * given a list of ordered sums record them in the inode. This happens
2246 * at IO completion time based on sums calculated at bio submission time.
2247 */
2248 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2249 struct inode *inode, struct list_head *list)
2250 {
2251 struct btrfs_ordered_sum *sum;
2252 int ret;
2253
2254 list_for_each_entry(sum, list, list) {
2255 trans->adding_csums = true;
2256 ret = btrfs_csum_file_blocks(trans,
2257 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2258 trans->adding_csums = false;
2259 if (ret)
2260 return ret;
2261 }
2262 return 0;
2263 }
2264
2265 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2266 unsigned int extra_bits,
2267 struct extent_state **cached_state)
2268 {
2269 WARN_ON(PAGE_ALIGNED(end));
2270 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2271 cached_state);
2272 }
2273
2274 /* see btrfs_writepage_start_hook for details on why this is required */
2275 struct btrfs_writepage_fixup {
2276 struct page *page;
2277 struct inode *inode;
2278 struct btrfs_work work;
2279 };
2280
2281 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2282 {
2283 struct btrfs_writepage_fixup *fixup;
2284 struct btrfs_ordered_extent *ordered;
2285 struct extent_state *cached_state = NULL;
2286 struct extent_changeset *data_reserved = NULL;
2287 struct page *page;
2288 struct btrfs_inode *inode;
2289 u64 page_start;
2290 u64 page_end;
2291 int ret = 0;
2292 bool free_delalloc_space = true;
2293
2294 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2295 page = fixup->page;
2296 inode = BTRFS_I(fixup->inode);
2297 page_start = page_offset(page);
2298 page_end = page_offset(page) + PAGE_SIZE - 1;
2299
2300 /*
2301 * This is similar to page_mkwrite, we need to reserve the space before
2302 * we take the page lock.
2303 */
2304 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2305 PAGE_SIZE);
2306 again:
2307 lock_page(page);
2308
2309 /*
2310 * Before we queued this fixup, we took a reference on the page.
2311 * page->mapping may go NULL, but it shouldn't be moved to a different
2312 * address space.
2313 */
2314 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2315 /*
2316 * Unfortunately this is a little tricky, either
2317 *
2318 * 1) We got here and our page had already been dealt with and
2319 * we reserved our space, thus ret == 0, so we need to just
2320 * drop our space reservation and bail. This can happen the
2321 * first time we come into the fixup worker, or could happen
2322 * while waiting for the ordered extent.
2323 * 2) Our page was already dealt with, but we happened to get an
2324 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2325 * this case we obviously don't have anything to release, but
2326 * because the page was already dealt with we don't want to
2327 * mark the page with an error, so make sure we're resetting
2328 * ret to 0. This is why we have this check _before_ the ret
2329 * check, because we do not want to have a surprise ENOSPC
2330 * when the page was already properly dealt with.
2331 */
2332 if (!ret) {
2333 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2334 btrfs_delalloc_release_space(inode, data_reserved,
2335 page_start, PAGE_SIZE,
2336 true);
2337 }
2338 ret = 0;
2339 goto out_page;
2340 }
2341
2342 /*
2343 * We can't mess with the page state unless it is locked, so now that
2344 * it is locked bail if we failed to make our space reservation.
2345 */
2346 if (ret)
2347 goto out_page;
2348
2349 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2350
2351 /* already ordered? We're done */
2352 if (PagePrivate2(page))
2353 goto out_reserved;
2354
2355 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2356 if (ordered) {
2357 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2358 &cached_state);
2359 unlock_page(page);
2360 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
2361 btrfs_put_ordered_extent(ordered);
2362 goto again;
2363 }
2364
2365 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2366 &cached_state);
2367 if (ret)
2368 goto out_reserved;
2369
2370 /*
2371 * Everything went as planned, we're now the owner of a dirty page with
2372 * delayed allocation bits set and space reserved for our COW
2373 * destination.
2374 *
2375 * The page was dirty when we started, nothing should have cleaned it.
2376 */
2377 BUG_ON(!PageDirty(page));
2378 free_delalloc_space = false;
2379 out_reserved:
2380 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2381 if (free_delalloc_space)
2382 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2383 PAGE_SIZE, true);
2384 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2385 &cached_state);
2386 out_page:
2387 if (ret) {
2388 /*
2389 * We hit ENOSPC or other errors. Update the mapping and page
2390 * to reflect the errors and clean the page.
2391 */
2392 mapping_set_error(page->mapping, ret);
2393 end_extent_writepage(page, ret, page_start, page_end);
2394 clear_page_dirty_for_io(page);
2395 SetPageError(page);
2396 }
2397 ClearPageChecked(page);
2398 unlock_page(page);
2399 put_page(page);
2400 kfree(fixup);
2401 extent_changeset_free(data_reserved);
2402 /*
2403 * As a precaution, do a delayed iput in case it would be the last iput
2404 * that could need flushing space. Recursing back to fixup worker would
2405 * deadlock.
2406 */
2407 btrfs_add_delayed_iput(&inode->vfs_inode);
2408 }
2409
2410 /*
2411 * There are a few paths in the higher layers of the kernel that directly
2412 * set the page dirty bit without asking the filesystem if it is a
2413 * good idea. This causes problems because we want to make sure COW
2414 * properly happens and the data=ordered rules are followed.
2415 *
2416 * In our case any range that doesn't have the ORDERED bit set
2417 * hasn't been properly setup for IO. We kick off an async process
2418 * to fix it up. The async helper will wait for ordered extents, set
2419 * the delalloc bit and make it safe to write the page.
2420 */
2421 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2422 {
2423 struct inode *inode = page->mapping->host;
2424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2425 struct btrfs_writepage_fixup *fixup;
2426
2427 /* this page is properly in the ordered list */
2428 if (TestClearPagePrivate2(page))
2429 return 0;
2430
2431 /*
2432 * PageChecked is set below when we create a fixup worker for this page,
2433 * don't try to create another one if we're already PageChecked()
2434 *
2435 * The extent_io writepage code will redirty the page if we send back
2436 * EAGAIN.
2437 */
2438 if (PageChecked(page))
2439 return -EAGAIN;
2440
2441 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2442 if (!fixup)
2443 return -EAGAIN;
2444
2445 /*
2446 * We are already holding a reference to this inode from
2447 * write_cache_pages. We need to hold it because the space reservation
2448 * takes place outside of the page lock, and we can't trust
2449 * page->mapping outside of the page lock.
2450 */
2451 ihold(inode);
2452 SetPageChecked(page);
2453 get_page(page);
2454 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2455 fixup->page = page;
2456 fixup->inode = inode;
2457 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2458
2459 return -EAGAIN;
2460 }
2461
2462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2463 struct btrfs_inode *inode, u64 file_pos,
2464 struct btrfs_file_extent_item *stack_fi,
2465 u64 qgroup_reserved)
2466 {
2467 struct btrfs_root *root = inode->root;
2468 struct btrfs_path *path;
2469 struct extent_buffer *leaf;
2470 struct btrfs_key ins;
2471 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2472 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2473 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2474 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2475 int extent_inserted = 0;
2476 int ret;
2477
2478 path = btrfs_alloc_path();
2479 if (!path)
2480 return -ENOMEM;
2481
2482 /*
2483 * we may be replacing one extent in the tree with another.
2484 * The new extent is pinned in the extent map, and we don't want
2485 * to drop it from the cache until it is completely in the btree.
2486 *
2487 * So, tell btrfs_drop_extents to leave this extent in the cache.
2488 * the caller is expected to unpin it and allow it to be merged
2489 * with the others.
2490 */
2491 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2492 file_pos + num_bytes, NULL, 0,
2493 1, sizeof(*stack_fi), &extent_inserted);
2494 if (ret)
2495 goto out;
2496
2497 if (!extent_inserted) {
2498 ins.objectid = btrfs_ino(inode);
2499 ins.offset = file_pos;
2500 ins.type = BTRFS_EXTENT_DATA_KEY;
2501
2502 path->leave_spinning = 1;
2503 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2504 sizeof(*stack_fi));
2505 if (ret)
2506 goto out;
2507 }
2508 leaf = path->nodes[0];
2509 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2510 write_extent_buffer(leaf, stack_fi,
2511 btrfs_item_ptr_offset(leaf, path->slots[0]),
2512 sizeof(struct btrfs_file_extent_item));
2513
2514 btrfs_mark_buffer_dirty(leaf);
2515 btrfs_release_path(path);
2516
2517 inode_add_bytes(&inode->vfs_inode, num_bytes);
2518
2519 ins.objectid = disk_bytenr;
2520 ins.offset = disk_num_bytes;
2521 ins.type = BTRFS_EXTENT_ITEM_KEY;
2522
2523 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2524 if (ret)
2525 goto out;
2526
2527 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2528 file_pos, qgroup_reserved, &ins);
2529 out:
2530 btrfs_free_path(path);
2531
2532 return ret;
2533 }
2534
2535 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2536 u64 start, u64 len)
2537 {
2538 struct btrfs_block_group *cache;
2539
2540 cache = btrfs_lookup_block_group(fs_info, start);
2541 ASSERT(cache);
2542
2543 spin_lock(&cache->lock);
2544 cache->delalloc_bytes -= len;
2545 spin_unlock(&cache->lock);
2546
2547 btrfs_put_block_group(cache);
2548 }
2549
2550 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2551 struct inode *inode,
2552 struct btrfs_ordered_extent *oe)
2553 {
2554 struct btrfs_file_extent_item stack_fi;
2555 u64 logical_len;
2556
2557 memset(&stack_fi, 0, sizeof(stack_fi));
2558 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2559 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2560 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2561 oe->disk_num_bytes);
2562 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2563 logical_len = oe->truncated_len;
2564 else
2565 logical_len = oe->num_bytes;
2566 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2567 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2568 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2569 /* Encryption and other encoding is reserved and all 0 */
2570
2571 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
2572 &stack_fi, oe->qgroup_rsv);
2573 }
2574
2575 /*
2576 * As ordered data IO finishes, this gets called so we can finish
2577 * an ordered extent if the range of bytes in the file it covers are
2578 * fully written.
2579 */
2580 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2581 {
2582 struct inode *inode = ordered_extent->inode;
2583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2584 struct btrfs_root *root = BTRFS_I(inode)->root;
2585 struct btrfs_trans_handle *trans = NULL;
2586 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2587 struct extent_state *cached_state = NULL;
2588 u64 start, end;
2589 int compress_type = 0;
2590 int ret = 0;
2591 u64 logical_len = ordered_extent->num_bytes;
2592 bool freespace_inode;
2593 bool truncated = false;
2594 bool range_locked = false;
2595 bool clear_new_delalloc_bytes = false;
2596 bool clear_reserved_extent = true;
2597 unsigned int clear_bits;
2598
2599 start = ordered_extent->file_offset;
2600 end = start + ordered_extent->num_bytes - 1;
2601
2602 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2603 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2604 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2605 clear_new_delalloc_bytes = true;
2606
2607 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2608
2609 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2610 ret = -EIO;
2611 goto out;
2612 }
2613
2614 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2615
2616 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2617 truncated = true;
2618 logical_len = ordered_extent->truncated_len;
2619 /* Truncated the entire extent, don't bother adding */
2620 if (!logical_len)
2621 goto out;
2622 }
2623
2624 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2625 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2626
2627 btrfs_inode_safe_disk_i_size_write(inode, 0);
2628 if (freespace_inode)
2629 trans = btrfs_join_transaction_spacecache(root);
2630 else
2631 trans = btrfs_join_transaction(root);
2632 if (IS_ERR(trans)) {
2633 ret = PTR_ERR(trans);
2634 trans = NULL;
2635 goto out;
2636 }
2637 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2638 ret = btrfs_update_inode_fallback(trans, root, inode);
2639 if (ret) /* -ENOMEM or corruption */
2640 btrfs_abort_transaction(trans, ret);
2641 goto out;
2642 }
2643
2644 range_locked = true;
2645 lock_extent_bits(io_tree, start, end, &cached_state);
2646
2647 if (freespace_inode)
2648 trans = btrfs_join_transaction_spacecache(root);
2649 else
2650 trans = btrfs_join_transaction(root);
2651 if (IS_ERR(trans)) {
2652 ret = PTR_ERR(trans);
2653 trans = NULL;
2654 goto out;
2655 }
2656
2657 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2658
2659 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2660 compress_type = ordered_extent->compress_type;
2661 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2662 BUG_ON(compress_type);
2663 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2664 ordered_extent->file_offset,
2665 ordered_extent->file_offset +
2666 logical_len);
2667 } else {
2668 BUG_ON(root == fs_info->tree_root);
2669 ret = insert_ordered_extent_file_extent(trans, inode,
2670 ordered_extent);
2671 if (!ret) {
2672 clear_reserved_extent = false;
2673 btrfs_release_delalloc_bytes(fs_info,
2674 ordered_extent->disk_bytenr,
2675 ordered_extent->disk_num_bytes);
2676 }
2677 }
2678 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2679 ordered_extent->file_offset,
2680 ordered_extent->num_bytes, trans->transid);
2681 if (ret < 0) {
2682 btrfs_abort_transaction(trans, ret);
2683 goto out;
2684 }
2685
2686 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2687 if (ret) {
2688 btrfs_abort_transaction(trans, ret);
2689 goto out;
2690 }
2691
2692 btrfs_inode_safe_disk_i_size_write(inode, 0);
2693 ret = btrfs_update_inode_fallback(trans, root, inode);
2694 if (ret) { /* -ENOMEM or corruption */
2695 btrfs_abort_transaction(trans, ret);
2696 goto out;
2697 }
2698 ret = 0;
2699 out:
2700 clear_bits = EXTENT_DEFRAG;
2701 if (range_locked)
2702 clear_bits |= EXTENT_LOCKED;
2703 if (clear_new_delalloc_bytes)
2704 clear_bits |= EXTENT_DELALLOC_NEW;
2705 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2706 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2707 &cached_state);
2708
2709 if (trans)
2710 btrfs_end_transaction(trans);
2711
2712 if (ret || truncated) {
2713 u64 unwritten_start = start;
2714
2715 if (truncated)
2716 unwritten_start += logical_len;
2717 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2718
2719 /* Drop the cache for the part of the extent we didn't write. */
2720 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2721
2722 /*
2723 * If the ordered extent had an IOERR or something else went
2724 * wrong we need to return the space for this ordered extent
2725 * back to the allocator. We only free the extent in the
2726 * truncated case if we didn't write out the extent at all.
2727 *
2728 * If we made it past insert_reserved_file_extent before we
2729 * errored out then we don't need to do this as the accounting
2730 * has already been done.
2731 */
2732 if ((ret || !logical_len) &&
2733 clear_reserved_extent &&
2734 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2735 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2736 /*
2737 * Discard the range before returning it back to the
2738 * free space pool
2739 */
2740 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2741 btrfs_discard_extent(fs_info,
2742 ordered_extent->disk_bytenr,
2743 ordered_extent->disk_num_bytes,
2744 NULL);
2745 btrfs_free_reserved_extent(fs_info,
2746 ordered_extent->disk_bytenr,
2747 ordered_extent->disk_num_bytes, 1);
2748 }
2749 }
2750
2751 /*
2752 * This needs to be done to make sure anybody waiting knows we are done
2753 * updating everything for this ordered extent.
2754 */
2755 btrfs_remove_ordered_extent(inode, ordered_extent);
2756
2757 /* once for us */
2758 btrfs_put_ordered_extent(ordered_extent);
2759 /* once for the tree */
2760 btrfs_put_ordered_extent(ordered_extent);
2761
2762 return ret;
2763 }
2764
2765 static void finish_ordered_fn(struct btrfs_work *work)
2766 {
2767 struct btrfs_ordered_extent *ordered_extent;
2768 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2769 btrfs_finish_ordered_io(ordered_extent);
2770 }
2771
2772 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2773 u64 end, int uptodate)
2774 {
2775 struct inode *inode = page->mapping->host;
2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2777 struct btrfs_ordered_extent *ordered_extent = NULL;
2778 struct btrfs_workqueue *wq;
2779
2780 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2781
2782 ClearPagePrivate2(page);
2783 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2784 end - start + 1, uptodate))
2785 return;
2786
2787 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2788 wq = fs_info->endio_freespace_worker;
2789 else
2790 wq = fs_info->endio_write_workers;
2791
2792 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2793 btrfs_queue_work(wq, &ordered_extent->work);
2794 }
2795
2796 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2797 int icsum, struct page *page, int pgoff, u64 start,
2798 size_t len)
2799 {
2800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2801 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2802 char *kaddr;
2803 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2804 u8 *csum_expected;
2805 u8 csum[BTRFS_CSUM_SIZE];
2806
2807 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2808
2809 kaddr = kmap_atomic(page);
2810 shash->tfm = fs_info->csum_shash;
2811
2812 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2813
2814 if (memcmp(csum, csum_expected, csum_size))
2815 goto zeroit;
2816
2817 kunmap_atomic(kaddr);
2818 return 0;
2819 zeroit:
2820 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2821 io_bio->mirror_num);
2822 if (io_bio->device)
2823 btrfs_dev_stat_inc_and_print(io_bio->device,
2824 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2825 memset(kaddr + pgoff, 1, len);
2826 flush_dcache_page(page);
2827 kunmap_atomic(kaddr);
2828 return -EIO;
2829 }
2830
2831 /*
2832 * when reads are done, we need to check csums to verify the data is correct
2833 * if there's a match, we allow the bio to finish. If not, the code in
2834 * extent_io.c will try to find good copies for us.
2835 */
2836 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2837 u64 phy_offset, struct page *page,
2838 u64 start, u64 end, int mirror)
2839 {
2840 size_t offset = start - page_offset(page);
2841 struct inode *inode = page->mapping->host;
2842 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2843 struct btrfs_root *root = BTRFS_I(inode)->root;
2844
2845 if (PageChecked(page)) {
2846 ClearPageChecked(page);
2847 return 0;
2848 }
2849
2850 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2851 return 0;
2852
2853 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2854 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2855 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2856 return 0;
2857 }
2858
2859 phy_offset >>= inode->i_sb->s_blocksize_bits;
2860 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2861 (size_t)(end - start + 1));
2862 }
2863
2864 /*
2865 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2866 *
2867 * @inode: The inode we want to perform iput on
2868 *
2869 * This function uses the generic vfs_inode::i_count to track whether we should
2870 * just decrement it (in case it's > 1) or if this is the last iput then link
2871 * the inode to the delayed iput machinery. Delayed iputs are processed at
2872 * transaction commit time/superblock commit/cleaner kthread.
2873 */
2874 void btrfs_add_delayed_iput(struct inode *inode)
2875 {
2876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2877 struct btrfs_inode *binode = BTRFS_I(inode);
2878
2879 if (atomic_add_unless(&inode->i_count, -1, 1))
2880 return;
2881
2882 atomic_inc(&fs_info->nr_delayed_iputs);
2883 spin_lock(&fs_info->delayed_iput_lock);
2884 ASSERT(list_empty(&binode->delayed_iput));
2885 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2886 spin_unlock(&fs_info->delayed_iput_lock);
2887 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2888 wake_up_process(fs_info->cleaner_kthread);
2889 }
2890
2891 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2892 struct btrfs_inode *inode)
2893 {
2894 list_del_init(&inode->delayed_iput);
2895 spin_unlock(&fs_info->delayed_iput_lock);
2896 iput(&inode->vfs_inode);
2897 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2898 wake_up(&fs_info->delayed_iputs_wait);
2899 spin_lock(&fs_info->delayed_iput_lock);
2900 }
2901
2902 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2903 struct btrfs_inode *inode)
2904 {
2905 if (!list_empty(&inode->delayed_iput)) {
2906 spin_lock(&fs_info->delayed_iput_lock);
2907 if (!list_empty(&inode->delayed_iput))
2908 run_delayed_iput_locked(fs_info, inode);
2909 spin_unlock(&fs_info->delayed_iput_lock);
2910 }
2911 }
2912
2913 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2914 {
2915
2916 spin_lock(&fs_info->delayed_iput_lock);
2917 while (!list_empty(&fs_info->delayed_iputs)) {
2918 struct btrfs_inode *inode;
2919
2920 inode = list_first_entry(&fs_info->delayed_iputs,
2921 struct btrfs_inode, delayed_iput);
2922 run_delayed_iput_locked(fs_info, inode);
2923 }
2924 spin_unlock(&fs_info->delayed_iput_lock);
2925 }
2926
2927 /**
2928 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2929 * @fs_info - the fs_info for this fs
2930 * @return - EINTR if we were killed, 0 if nothing's pending
2931 *
2932 * This will wait on any delayed iputs that are currently running with KILLABLE
2933 * set. Once they are all done running we will return, unless we are killed in
2934 * which case we return EINTR. This helps in user operations like fallocate etc
2935 * that might get blocked on the iputs.
2936 */
2937 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2938 {
2939 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2940 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2941 if (ret)
2942 return -EINTR;
2943 return 0;
2944 }
2945
2946 /*
2947 * This creates an orphan entry for the given inode in case something goes wrong
2948 * in the middle of an unlink.
2949 */
2950 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2951 struct btrfs_inode *inode)
2952 {
2953 int ret;
2954
2955 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2956 if (ret && ret != -EEXIST) {
2957 btrfs_abort_transaction(trans, ret);
2958 return ret;
2959 }
2960
2961 return 0;
2962 }
2963
2964 /*
2965 * We have done the delete so we can go ahead and remove the orphan item for
2966 * this particular inode.
2967 */
2968 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2969 struct btrfs_inode *inode)
2970 {
2971 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2972 }
2973
2974 /*
2975 * this cleans up any orphans that may be left on the list from the last use
2976 * of this root.
2977 */
2978 int btrfs_orphan_cleanup(struct btrfs_root *root)
2979 {
2980 struct btrfs_fs_info *fs_info = root->fs_info;
2981 struct btrfs_path *path;
2982 struct extent_buffer *leaf;
2983 struct btrfs_key key, found_key;
2984 struct btrfs_trans_handle *trans;
2985 struct inode *inode;
2986 u64 last_objectid = 0;
2987 int ret = 0, nr_unlink = 0;
2988
2989 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2990 return 0;
2991
2992 path = btrfs_alloc_path();
2993 if (!path) {
2994 ret = -ENOMEM;
2995 goto out;
2996 }
2997 path->reada = READA_BACK;
2998
2999 key.objectid = BTRFS_ORPHAN_OBJECTID;
3000 key.type = BTRFS_ORPHAN_ITEM_KEY;
3001 key.offset = (u64)-1;
3002
3003 while (1) {
3004 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3005 if (ret < 0)
3006 goto out;
3007
3008 /*
3009 * if ret == 0 means we found what we were searching for, which
3010 * is weird, but possible, so only screw with path if we didn't
3011 * find the key and see if we have stuff that matches
3012 */
3013 if (ret > 0) {
3014 ret = 0;
3015 if (path->slots[0] == 0)
3016 break;
3017 path->slots[0]--;
3018 }
3019
3020 /* pull out the item */
3021 leaf = path->nodes[0];
3022 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3023
3024 /* make sure the item matches what we want */
3025 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3026 break;
3027 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3028 break;
3029
3030 /* release the path since we're done with it */
3031 btrfs_release_path(path);
3032
3033 /*
3034 * this is where we are basically btrfs_lookup, without the
3035 * crossing root thing. we store the inode number in the
3036 * offset of the orphan item.
3037 */
3038
3039 if (found_key.offset == last_objectid) {
3040 btrfs_err(fs_info,
3041 "Error removing orphan entry, stopping orphan cleanup");
3042 ret = -EINVAL;
3043 goto out;
3044 }
3045
3046 last_objectid = found_key.offset;
3047
3048 found_key.objectid = found_key.offset;
3049 found_key.type = BTRFS_INODE_ITEM_KEY;
3050 found_key.offset = 0;
3051 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3052 ret = PTR_ERR_OR_ZERO(inode);
3053 if (ret && ret != -ENOENT)
3054 goto out;
3055
3056 if (ret == -ENOENT && root == fs_info->tree_root) {
3057 struct btrfs_root *dead_root;
3058 struct btrfs_fs_info *fs_info = root->fs_info;
3059 int is_dead_root = 0;
3060
3061 /*
3062 * this is an orphan in the tree root. Currently these
3063 * could come from 2 sources:
3064 * a) a snapshot deletion in progress
3065 * b) a free space cache inode
3066 * We need to distinguish those two, as the snapshot
3067 * orphan must not get deleted.
3068 * find_dead_roots already ran before us, so if this
3069 * is a snapshot deletion, we should find the root
3070 * in the fs_roots radix tree.
3071 */
3072
3073 spin_lock(&fs_info->fs_roots_radix_lock);
3074 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3075 (unsigned long)found_key.objectid);
3076 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3077 is_dead_root = 1;
3078 spin_unlock(&fs_info->fs_roots_radix_lock);
3079
3080 if (is_dead_root) {
3081 /* prevent this orphan from being found again */
3082 key.offset = found_key.objectid - 1;
3083 continue;
3084 }
3085
3086 }
3087
3088 /*
3089 * If we have an inode with links, there are a couple of
3090 * possibilities. Old kernels (before v3.12) used to create an
3091 * orphan item for truncate indicating that there were possibly
3092 * extent items past i_size that needed to be deleted. In v3.12,
3093 * truncate was changed to update i_size in sync with the extent
3094 * items, but the (useless) orphan item was still created. Since
3095 * v4.18, we don't create the orphan item for truncate at all.
3096 *
3097 * So, this item could mean that we need to do a truncate, but
3098 * only if this filesystem was last used on a pre-v3.12 kernel
3099 * and was not cleanly unmounted. The odds of that are quite
3100 * slim, and it's a pain to do the truncate now, so just delete
3101 * the orphan item.
3102 *
3103 * It's also possible that this orphan item was supposed to be
3104 * deleted but wasn't. The inode number may have been reused,
3105 * but either way, we can delete the orphan item.
3106 */
3107 if (ret == -ENOENT || inode->i_nlink) {
3108 if (!ret)
3109 iput(inode);
3110 trans = btrfs_start_transaction(root, 1);
3111 if (IS_ERR(trans)) {
3112 ret = PTR_ERR(trans);
3113 goto out;
3114 }
3115 btrfs_debug(fs_info, "auto deleting %Lu",
3116 found_key.objectid);
3117 ret = btrfs_del_orphan_item(trans, root,
3118 found_key.objectid);
3119 btrfs_end_transaction(trans);
3120 if (ret)
3121 goto out;
3122 continue;
3123 }
3124
3125 nr_unlink++;
3126
3127 /* this will do delete_inode and everything for us */
3128 iput(inode);
3129 }
3130 /* release the path since we're done with it */
3131 btrfs_release_path(path);
3132
3133 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3134
3135 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3136 trans = btrfs_join_transaction(root);
3137 if (!IS_ERR(trans))
3138 btrfs_end_transaction(trans);
3139 }
3140
3141 if (nr_unlink)
3142 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3143
3144 out:
3145 if (ret)
3146 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3147 btrfs_free_path(path);
3148 return ret;
3149 }
3150
3151 /*
3152 * very simple check to peek ahead in the leaf looking for xattrs. If we
3153 * don't find any xattrs, we know there can't be any acls.
3154 *
3155 * slot is the slot the inode is in, objectid is the objectid of the inode
3156 */
3157 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3158 int slot, u64 objectid,
3159 int *first_xattr_slot)
3160 {
3161 u32 nritems = btrfs_header_nritems(leaf);
3162 struct btrfs_key found_key;
3163 static u64 xattr_access = 0;
3164 static u64 xattr_default = 0;
3165 int scanned = 0;
3166
3167 if (!xattr_access) {
3168 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3169 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3170 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3171 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3172 }
3173
3174 slot++;
3175 *first_xattr_slot = -1;
3176 while (slot < nritems) {
3177 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3178
3179 /* we found a different objectid, there must not be acls */
3180 if (found_key.objectid != objectid)
3181 return 0;
3182
3183 /* we found an xattr, assume we've got an acl */
3184 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3185 if (*first_xattr_slot == -1)
3186 *first_xattr_slot = slot;
3187 if (found_key.offset == xattr_access ||
3188 found_key.offset == xattr_default)
3189 return 1;
3190 }
3191
3192 /*
3193 * we found a key greater than an xattr key, there can't
3194 * be any acls later on
3195 */
3196 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3197 return 0;
3198
3199 slot++;
3200 scanned++;
3201
3202 /*
3203 * it goes inode, inode backrefs, xattrs, extents,
3204 * so if there are a ton of hard links to an inode there can
3205 * be a lot of backrefs. Don't waste time searching too hard,
3206 * this is just an optimization
3207 */
3208 if (scanned >= 8)
3209 break;
3210 }
3211 /* we hit the end of the leaf before we found an xattr or
3212 * something larger than an xattr. We have to assume the inode
3213 * has acls
3214 */
3215 if (*first_xattr_slot == -1)
3216 *first_xattr_slot = slot;
3217 return 1;
3218 }
3219
3220 /*
3221 * read an inode from the btree into the in-memory inode
3222 */
3223 static int btrfs_read_locked_inode(struct inode *inode,
3224 struct btrfs_path *in_path)
3225 {
3226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3227 struct btrfs_path *path = in_path;
3228 struct extent_buffer *leaf;
3229 struct btrfs_inode_item *inode_item;
3230 struct btrfs_root *root = BTRFS_I(inode)->root;
3231 struct btrfs_key location;
3232 unsigned long ptr;
3233 int maybe_acls;
3234 u32 rdev;
3235 int ret;
3236 bool filled = false;
3237 int first_xattr_slot;
3238
3239 ret = btrfs_fill_inode(inode, &rdev);
3240 if (!ret)
3241 filled = true;
3242
3243 if (!path) {
3244 path = btrfs_alloc_path();
3245 if (!path)
3246 return -ENOMEM;
3247 }
3248
3249 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3250
3251 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3252 if (ret) {
3253 if (path != in_path)
3254 btrfs_free_path(path);
3255 return ret;
3256 }
3257
3258 leaf = path->nodes[0];
3259
3260 if (filled)
3261 goto cache_index;
3262
3263 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3264 struct btrfs_inode_item);
3265 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3266 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3267 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3268 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3269 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3270 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3271 round_up(i_size_read(inode), fs_info->sectorsize));
3272
3273 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3274 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3275
3276 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3277 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3278
3279 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3280 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3281
3282 BTRFS_I(inode)->i_otime.tv_sec =
3283 btrfs_timespec_sec(leaf, &inode_item->otime);
3284 BTRFS_I(inode)->i_otime.tv_nsec =
3285 btrfs_timespec_nsec(leaf, &inode_item->otime);
3286
3287 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3288 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3289 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3290
3291 inode_set_iversion_queried(inode,
3292 btrfs_inode_sequence(leaf, inode_item));
3293 inode->i_generation = BTRFS_I(inode)->generation;
3294 inode->i_rdev = 0;
3295 rdev = btrfs_inode_rdev(leaf, inode_item);
3296
3297 BTRFS_I(inode)->index_cnt = (u64)-1;
3298 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3299
3300 cache_index:
3301 /*
3302 * If we were modified in the current generation and evicted from memory
3303 * and then re-read we need to do a full sync since we don't have any
3304 * idea about which extents were modified before we were evicted from
3305 * cache.
3306 *
3307 * This is required for both inode re-read from disk and delayed inode
3308 * in delayed_nodes_tree.
3309 */
3310 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3311 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3312 &BTRFS_I(inode)->runtime_flags);
3313
3314 /*
3315 * We don't persist the id of the transaction where an unlink operation
3316 * against the inode was last made. So here we assume the inode might
3317 * have been evicted, and therefore the exact value of last_unlink_trans
3318 * lost, and set it to last_trans to avoid metadata inconsistencies
3319 * between the inode and its parent if the inode is fsync'ed and the log
3320 * replayed. For example, in the scenario:
3321 *
3322 * touch mydir/foo
3323 * ln mydir/foo mydir/bar
3324 * sync
3325 * unlink mydir/bar
3326 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3327 * xfs_io -c fsync mydir/foo
3328 * <power failure>
3329 * mount fs, triggers fsync log replay
3330 *
3331 * We must make sure that when we fsync our inode foo we also log its
3332 * parent inode, otherwise after log replay the parent still has the
3333 * dentry with the "bar" name but our inode foo has a link count of 1
3334 * and doesn't have an inode ref with the name "bar" anymore.
3335 *
3336 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3337 * but it guarantees correctness at the expense of occasional full
3338 * transaction commits on fsync if our inode is a directory, or if our
3339 * inode is not a directory, logging its parent unnecessarily.
3340 */
3341 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3342
3343 /*
3344 * Same logic as for last_unlink_trans. We don't persist the generation
3345 * of the last transaction where this inode was used for a reflink
3346 * operation, so after eviction and reloading the inode we must be
3347 * pessimistic and assume the last transaction that modified the inode.
3348 */
3349 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3350
3351 path->slots[0]++;
3352 if (inode->i_nlink != 1 ||
3353 path->slots[0] >= btrfs_header_nritems(leaf))
3354 goto cache_acl;
3355
3356 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3357 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3358 goto cache_acl;
3359
3360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3361 if (location.type == BTRFS_INODE_REF_KEY) {
3362 struct btrfs_inode_ref *ref;
3363
3364 ref = (struct btrfs_inode_ref *)ptr;
3365 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3366 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3367 struct btrfs_inode_extref *extref;
3368
3369 extref = (struct btrfs_inode_extref *)ptr;
3370 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3371 extref);
3372 }
3373 cache_acl:
3374 /*
3375 * try to precache a NULL acl entry for files that don't have
3376 * any xattrs or acls
3377 */
3378 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3379 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3380 if (first_xattr_slot != -1) {
3381 path->slots[0] = first_xattr_slot;
3382 ret = btrfs_load_inode_props(inode, path);
3383 if (ret)
3384 btrfs_err(fs_info,
3385 "error loading props for ino %llu (root %llu): %d",
3386 btrfs_ino(BTRFS_I(inode)),
3387 root->root_key.objectid, ret);
3388 }
3389 if (path != in_path)
3390 btrfs_free_path(path);
3391
3392 if (!maybe_acls)
3393 cache_no_acl(inode);
3394
3395 switch (inode->i_mode & S_IFMT) {
3396 case S_IFREG:
3397 inode->i_mapping->a_ops = &btrfs_aops;
3398 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3399 inode->i_fop = &btrfs_file_operations;
3400 inode->i_op = &btrfs_file_inode_operations;
3401 break;
3402 case S_IFDIR:
3403 inode->i_fop = &btrfs_dir_file_operations;
3404 inode->i_op = &btrfs_dir_inode_operations;
3405 break;
3406 case S_IFLNK:
3407 inode->i_op = &btrfs_symlink_inode_operations;
3408 inode_nohighmem(inode);
3409 inode->i_mapping->a_ops = &btrfs_aops;
3410 break;
3411 default:
3412 inode->i_op = &btrfs_special_inode_operations;
3413 init_special_inode(inode, inode->i_mode, rdev);
3414 break;
3415 }
3416
3417 btrfs_sync_inode_flags_to_i_flags(inode);
3418 return 0;
3419 }
3420
3421 /*
3422 * given a leaf and an inode, copy the inode fields into the leaf
3423 */
3424 static void fill_inode_item(struct btrfs_trans_handle *trans,
3425 struct extent_buffer *leaf,
3426 struct btrfs_inode_item *item,
3427 struct inode *inode)
3428 {
3429 struct btrfs_map_token token;
3430
3431 btrfs_init_map_token(&token, leaf);
3432
3433 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3434 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3435 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3436 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3437 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3438
3439 btrfs_set_token_timespec_sec(&token, &item->atime,
3440 inode->i_atime.tv_sec);
3441 btrfs_set_token_timespec_nsec(&token, &item->atime,
3442 inode->i_atime.tv_nsec);
3443
3444 btrfs_set_token_timespec_sec(&token, &item->mtime,
3445 inode->i_mtime.tv_sec);
3446 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3447 inode->i_mtime.tv_nsec);
3448
3449 btrfs_set_token_timespec_sec(&token, &item->ctime,
3450 inode->i_ctime.tv_sec);
3451 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3452 inode->i_ctime.tv_nsec);
3453
3454 btrfs_set_token_timespec_sec(&token, &item->otime,
3455 BTRFS_I(inode)->i_otime.tv_sec);
3456 btrfs_set_token_timespec_nsec(&token, &item->otime,
3457 BTRFS_I(inode)->i_otime.tv_nsec);
3458
3459 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3460 btrfs_set_token_inode_generation(&token, item,
3461 BTRFS_I(inode)->generation);
3462 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3463 btrfs_set_token_inode_transid(&token, item, trans->transid);
3464 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3465 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3466 btrfs_set_token_inode_block_group(&token, item, 0);
3467 }
3468
3469 /*
3470 * copy everything in the in-memory inode into the btree.
3471 */
3472 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3473 struct btrfs_root *root, struct inode *inode)
3474 {
3475 struct btrfs_inode_item *inode_item;
3476 struct btrfs_path *path;
3477 struct extent_buffer *leaf;
3478 int ret;
3479
3480 path = btrfs_alloc_path();
3481 if (!path)
3482 return -ENOMEM;
3483
3484 path->leave_spinning = 1;
3485 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3486 1);
3487 if (ret) {
3488 if (ret > 0)
3489 ret = -ENOENT;
3490 goto failed;
3491 }
3492
3493 leaf = path->nodes[0];
3494 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3495 struct btrfs_inode_item);
3496
3497 fill_inode_item(trans, leaf, inode_item, inode);
3498 btrfs_mark_buffer_dirty(leaf);
3499 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3500 ret = 0;
3501 failed:
3502 btrfs_free_path(path);
3503 return ret;
3504 }
3505
3506 /*
3507 * copy everything in the in-memory inode into the btree.
3508 */
3509 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, struct inode *inode)
3511 {
3512 struct btrfs_fs_info *fs_info = root->fs_info;
3513 int ret;
3514
3515 /*
3516 * If the inode is a free space inode, we can deadlock during commit
3517 * if we put it into the delayed code.
3518 *
3519 * The data relocation inode should also be directly updated
3520 * without delay
3521 */
3522 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3523 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3524 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3525 btrfs_update_root_times(trans, root);
3526
3527 ret = btrfs_delayed_update_inode(trans, root, inode);
3528 if (!ret)
3529 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3530 return ret;
3531 }
3532
3533 return btrfs_update_inode_item(trans, root, inode);
3534 }
3535
3536 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root,
3538 struct inode *inode)
3539 {
3540 int ret;
3541
3542 ret = btrfs_update_inode(trans, root, inode);
3543 if (ret == -ENOSPC)
3544 return btrfs_update_inode_item(trans, root, inode);
3545 return ret;
3546 }
3547
3548 /*
3549 * unlink helper that gets used here in inode.c and in the tree logging
3550 * recovery code. It remove a link in a directory with a given name, and
3551 * also drops the back refs in the inode to the directory
3552 */
3553 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *root,
3555 struct btrfs_inode *dir,
3556 struct btrfs_inode *inode,
3557 const char *name, int name_len)
3558 {
3559 struct btrfs_fs_info *fs_info = root->fs_info;
3560 struct btrfs_path *path;
3561 int ret = 0;
3562 struct btrfs_dir_item *di;
3563 u64 index;
3564 u64 ino = btrfs_ino(inode);
3565 u64 dir_ino = btrfs_ino(dir);
3566
3567 path = btrfs_alloc_path();
3568 if (!path) {
3569 ret = -ENOMEM;
3570 goto out;
3571 }
3572
3573 path->leave_spinning = 1;
3574 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3575 name, name_len, -1);
3576 if (IS_ERR_OR_NULL(di)) {
3577 ret = di ? PTR_ERR(di) : -ENOENT;
3578 goto err;
3579 }
3580 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3581 if (ret)
3582 goto err;
3583 btrfs_release_path(path);
3584
3585 /*
3586 * If we don't have dir index, we have to get it by looking up
3587 * the inode ref, since we get the inode ref, remove it directly,
3588 * it is unnecessary to do delayed deletion.
3589 *
3590 * But if we have dir index, needn't search inode ref to get it.
3591 * Since the inode ref is close to the inode item, it is better
3592 * that we delay to delete it, and just do this deletion when
3593 * we update the inode item.
3594 */
3595 if (inode->dir_index) {
3596 ret = btrfs_delayed_delete_inode_ref(inode);
3597 if (!ret) {
3598 index = inode->dir_index;
3599 goto skip_backref;
3600 }
3601 }
3602
3603 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3604 dir_ino, &index);
3605 if (ret) {
3606 btrfs_info(fs_info,
3607 "failed to delete reference to %.*s, inode %llu parent %llu",
3608 name_len, name, ino, dir_ino);
3609 btrfs_abort_transaction(trans, ret);
3610 goto err;
3611 }
3612 skip_backref:
3613 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3614 if (ret) {
3615 btrfs_abort_transaction(trans, ret);
3616 goto err;
3617 }
3618
3619 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3620 dir_ino);
3621 if (ret != 0 && ret != -ENOENT) {
3622 btrfs_abort_transaction(trans, ret);
3623 goto err;
3624 }
3625
3626 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3627 index);
3628 if (ret == -ENOENT)
3629 ret = 0;
3630 else if (ret)
3631 btrfs_abort_transaction(trans, ret);
3632
3633 /*
3634 * If we have a pending delayed iput we could end up with the final iput
3635 * being run in btrfs-cleaner context. If we have enough of these built
3636 * up we can end up burning a lot of time in btrfs-cleaner without any
3637 * way to throttle the unlinks. Since we're currently holding a ref on
3638 * the inode we can run the delayed iput here without any issues as the
3639 * final iput won't be done until after we drop the ref we're currently
3640 * holding.
3641 */
3642 btrfs_run_delayed_iput(fs_info, inode);
3643 err:
3644 btrfs_free_path(path);
3645 if (ret)
3646 goto out;
3647
3648 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3649 inode_inc_iversion(&inode->vfs_inode);
3650 inode_inc_iversion(&dir->vfs_inode);
3651 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3652 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3653 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3654 out:
3655 return ret;
3656 }
3657
3658 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3659 struct btrfs_root *root,
3660 struct btrfs_inode *dir, struct btrfs_inode *inode,
3661 const char *name, int name_len)
3662 {
3663 int ret;
3664 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3665 if (!ret) {
3666 drop_nlink(&inode->vfs_inode);
3667 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3668 }
3669 return ret;
3670 }
3671
3672 /*
3673 * helper to start transaction for unlink and rmdir.
3674 *
3675 * unlink and rmdir are special in btrfs, they do not always free space, so
3676 * if we cannot make our reservations the normal way try and see if there is
3677 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3678 * allow the unlink to occur.
3679 */
3680 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3681 {
3682 struct btrfs_root *root = BTRFS_I(dir)->root;
3683
3684 /*
3685 * 1 for the possible orphan item
3686 * 1 for the dir item
3687 * 1 for the dir index
3688 * 1 for the inode ref
3689 * 1 for the inode
3690 */
3691 return btrfs_start_transaction_fallback_global_rsv(root, 5);
3692 }
3693
3694 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3695 {
3696 struct btrfs_root *root = BTRFS_I(dir)->root;
3697 struct btrfs_trans_handle *trans;
3698 struct inode *inode = d_inode(dentry);
3699 int ret;
3700
3701 trans = __unlink_start_trans(dir);
3702 if (IS_ERR(trans))
3703 return PTR_ERR(trans);
3704
3705 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3706 0);
3707
3708 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3709 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3710 dentry->d_name.len);
3711 if (ret)
3712 goto out;
3713
3714 if (inode->i_nlink == 0) {
3715 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3716 if (ret)
3717 goto out;
3718 }
3719
3720 out:
3721 btrfs_end_transaction(trans);
3722 btrfs_btree_balance_dirty(root->fs_info);
3723 return ret;
3724 }
3725
3726 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3727 struct inode *dir, struct dentry *dentry)
3728 {
3729 struct btrfs_root *root = BTRFS_I(dir)->root;
3730 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3731 struct btrfs_path *path;
3732 struct extent_buffer *leaf;
3733 struct btrfs_dir_item *di;
3734 struct btrfs_key key;
3735 const char *name = dentry->d_name.name;
3736 int name_len = dentry->d_name.len;
3737 u64 index;
3738 int ret;
3739 u64 objectid;
3740 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3741
3742 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3743 objectid = inode->root->root_key.objectid;
3744 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3745 objectid = inode->location.objectid;
3746 } else {
3747 WARN_ON(1);
3748 return -EINVAL;
3749 }
3750
3751 path = btrfs_alloc_path();
3752 if (!path)
3753 return -ENOMEM;
3754
3755 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3756 name, name_len, -1);
3757 if (IS_ERR_OR_NULL(di)) {
3758 ret = di ? PTR_ERR(di) : -ENOENT;
3759 goto out;
3760 }
3761
3762 leaf = path->nodes[0];
3763 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3764 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3765 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3766 if (ret) {
3767 btrfs_abort_transaction(trans, ret);
3768 goto out;
3769 }
3770 btrfs_release_path(path);
3771
3772 /*
3773 * This is a placeholder inode for a subvolume we didn't have a
3774 * reference to at the time of the snapshot creation. In the meantime
3775 * we could have renamed the real subvol link into our snapshot, so
3776 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3777 * Instead simply lookup the dir_index_item for this entry so we can
3778 * remove it. Otherwise we know we have a ref to the root and we can
3779 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3780 */
3781 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3782 di = btrfs_search_dir_index_item(root, path, dir_ino,
3783 name, name_len);
3784 if (IS_ERR_OR_NULL(di)) {
3785 if (!di)
3786 ret = -ENOENT;
3787 else
3788 ret = PTR_ERR(di);
3789 btrfs_abort_transaction(trans, ret);
3790 goto out;
3791 }
3792
3793 leaf = path->nodes[0];
3794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3795 index = key.offset;
3796 btrfs_release_path(path);
3797 } else {
3798 ret = btrfs_del_root_ref(trans, objectid,
3799 root->root_key.objectid, dir_ino,
3800 &index, name, name_len);
3801 if (ret) {
3802 btrfs_abort_transaction(trans, ret);
3803 goto out;
3804 }
3805 }
3806
3807 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3808 if (ret) {
3809 btrfs_abort_transaction(trans, ret);
3810 goto out;
3811 }
3812
3813 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3814 inode_inc_iversion(dir);
3815 dir->i_mtime = dir->i_ctime = current_time(dir);
3816 ret = btrfs_update_inode_fallback(trans, root, dir);
3817 if (ret)
3818 btrfs_abort_transaction(trans, ret);
3819 out:
3820 btrfs_free_path(path);
3821 return ret;
3822 }
3823
3824 /*
3825 * Helper to check if the subvolume references other subvolumes or if it's
3826 * default.
3827 */
3828 static noinline int may_destroy_subvol(struct btrfs_root *root)
3829 {
3830 struct btrfs_fs_info *fs_info = root->fs_info;
3831 struct btrfs_path *path;
3832 struct btrfs_dir_item *di;
3833 struct btrfs_key key;
3834 u64 dir_id;
3835 int ret;
3836
3837 path = btrfs_alloc_path();
3838 if (!path)
3839 return -ENOMEM;
3840
3841 /* Make sure this root isn't set as the default subvol */
3842 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3843 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3844 dir_id, "default", 7, 0);
3845 if (di && !IS_ERR(di)) {
3846 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3847 if (key.objectid == root->root_key.objectid) {
3848 ret = -EPERM;
3849 btrfs_err(fs_info,
3850 "deleting default subvolume %llu is not allowed",
3851 key.objectid);
3852 goto out;
3853 }
3854 btrfs_release_path(path);
3855 }
3856
3857 key.objectid = root->root_key.objectid;
3858 key.type = BTRFS_ROOT_REF_KEY;
3859 key.offset = (u64)-1;
3860
3861 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3862 if (ret < 0)
3863 goto out;
3864 BUG_ON(ret == 0);
3865
3866 ret = 0;
3867 if (path->slots[0] > 0) {
3868 path->slots[0]--;
3869 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3870 if (key.objectid == root->root_key.objectid &&
3871 key.type == BTRFS_ROOT_REF_KEY)
3872 ret = -ENOTEMPTY;
3873 }
3874 out:
3875 btrfs_free_path(path);
3876 return ret;
3877 }
3878
3879 /* Delete all dentries for inodes belonging to the root */
3880 static void btrfs_prune_dentries(struct btrfs_root *root)
3881 {
3882 struct btrfs_fs_info *fs_info = root->fs_info;
3883 struct rb_node *node;
3884 struct rb_node *prev;
3885 struct btrfs_inode *entry;
3886 struct inode *inode;
3887 u64 objectid = 0;
3888
3889 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3890 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3891
3892 spin_lock(&root->inode_lock);
3893 again:
3894 node = root->inode_tree.rb_node;
3895 prev = NULL;
3896 while (node) {
3897 prev = node;
3898 entry = rb_entry(node, struct btrfs_inode, rb_node);
3899
3900 if (objectid < btrfs_ino(entry))
3901 node = node->rb_left;
3902 else if (objectid > btrfs_ino(entry))
3903 node = node->rb_right;
3904 else
3905 break;
3906 }
3907 if (!node) {
3908 while (prev) {
3909 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3910 if (objectid <= btrfs_ino(entry)) {
3911 node = prev;
3912 break;
3913 }
3914 prev = rb_next(prev);
3915 }
3916 }
3917 while (node) {
3918 entry = rb_entry(node, struct btrfs_inode, rb_node);
3919 objectid = btrfs_ino(entry) + 1;
3920 inode = igrab(&entry->vfs_inode);
3921 if (inode) {
3922 spin_unlock(&root->inode_lock);
3923 if (atomic_read(&inode->i_count) > 1)
3924 d_prune_aliases(inode);
3925 /*
3926 * btrfs_drop_inode will have it removed from the inode
3927 * cache when its usage count hits zero.
3928 */
3929 iput(inode);
3930 cond_resched();
3931 spin_lock(&root->inode_lock);
3932 goto again;
3933 }
3934
3935 if (cond_resched_lock(&root->inode_lock))
3936 goto again;
3937
3938 node = rb_next(node);
3939 }
3940 spin_unlock(&root->inode_lock);
3941 }
3942
3943 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3944 {
3945 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3946 struct btrfs_root *root = BTRFS_I(dir)->root;
3947 struct inode *inode = d_inode(dentry);
3948 struct btrfs_root *dest = BTRFS_I(inode)->root;
3949 struct btrfs_trans_handle *trans;
3950 struct btrfs_block_rsv block_rsv;
3951 u64 root_flags;
3952 int ret;
3953 int err;
3954
3955 /*
3956 * Don't allow to delete a subvolume with send in progress. This is
3957 * inside the inode lock so the error handling that has to drop the bit
3958 * again is not run concurrently.
3959 */
3960 spin_lock(&dest->root_item_lock);
3961 if (dest->send_in_progress) {
3962 spin_unlock(&dest->root_item_lock);
3963 btrfs_warn(fs_info,
3964 "attempt to delete subvolume %llu during send",
3965 dest->root_key.objectid);
3966 return -EPERM;
3967 }
3968 root_flags = btrfs_root_flags(&dest->root_item);
3969 btrfs_set_root_flags(&dest->root_item,
3970 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3971 spin_unlock(&dest->root_item_lock);
3972
3973 down_write(&fs_info->subvol_sem);
3974
3975 err = may_destroy_subvol(dest);
3976 if (err)
3977 goto out_up_write;
3978
3979 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3980 /*
3981 * One for dir inode,
3982 * two for dir entries,
3983 * two for root ref/backref.
3984 */
3985 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3986 if (err)
3987 goto out_up_write;
3988
3989 trans = btrfs_start_transaction(root, 0);
3990 if (IS_ERR(trans)) {
3991 err = PTR_ERR(trans);
3992 goto out_release;
3993 }
3994 trans->block_rsv = &block_rsv;
3995 trans->bytes_reserved = block_rsv.size;
3996
3997 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3998
3999 ret = btrfs_unlink_subvol(trans, dir, dentry);
4000 if (ret) {
4001 err = ret;
4002 btrfs_abort_transaction(trans, ret);
4003 goto out_end_trans;
4004 }
4005
4006 btrfs_record_root_in_trans(trans, dest);
4007
4008 memset(&dest->root_item.drop_progress, 0,
4009 sizeof(dest->root_item.drop_progress));
4010 dest->root_item.drop_level = 0;
4011 btrfs_set_root_refs(&dest->root_item, 0);
4012
4013 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4014 ret = btrfs_insert_orphan_item(trans,
4015 fs_info->tree_root,
4016 dest->root_key.objectid);
4017 if (ret) {
4018 btrfs_abort_transaction(trans, ret);
4019 err = ret;
4020 goto out_end_trans;
4021 }
4022 }
4023
4024 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4025 BTRFS_UUID_KEY_SUBVOL,
4026 dest->root_key.objectid);
4027 if (ret && ret != -ENOENT) {
4028 btrfs_abort_transaction(trans, ret);
4029 err = ret;
4030 goto out_end_trans;
4031 }
4032 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4033 ret = btrfs_uuid_tree_remove(trans,
4034 dest->root_item.received_uuid,
4035 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4036 dest->root_key.objectid);
4037 if (ret && ret != -ENOENT) {
4038 btrfs_abort_transaction(trans, ret);
4039 err = ret;
4040 goto out_end_trans;
4041 }
4042 }
4043
4044 free_anon_bdev(dest->anon_dev);
4045 dest->anon_dev = 0;
4046 out_end_trans:
4047 trans->block_rsv = NULL;
4048 trans->bytes_reserved = 0;
4049 ret = btrfs_end_transaction(trans);
4050 if (ret && !err)
4051 err = ret;
4052 inode->i_flags |= S_DEAD;
4053 out_release:
4054 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4055 out_up_write:
4056 up_write(&fs_info->subvol_sem);
4057 if (err) {
4058 spin_lock(&dest->root_item_lock);
4059 root_flags = btrfs_root_flags(&dest->root_item);
4060 btrfs_set_root_flags(&dest->root_item,
4061 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4062 spin_unlock(&dest->root_item_lock);
4063 } else {
4064 d_invalidate(dentry);
4065 btrfs_prune_dentries(dest);
4066 ASSERT(dest->send_in_progress == 0);
4067
4068 /* the last ref */
4069 if (dest->ino_cache_inode) {
4070 iput(dest->ino_cache_inode);
4071 dest->ino_cache_inode = NULL;
4072 }
4073 }
4074
4075 return err;
4076 }
4077
4078 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4079 {
4080 struct inode *inode = d_inode(dentry);
4081 int err = 0;
4082 struct btrfs_root *root = BTRFS_I(dir)->root;
4083 struct btrfs_trans_handle *trans;
4084 u64 last_unlink_trans;
4085
4086 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4087 return -ENOTEMPTY;
4088 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4089 return btrfs_delete_subvolume(dir, dentry);
4090
4091 trans = __unlink_start_trans(dir);
4092 if (IS_ERR(trans))
4093 return PTR_ERR(trans);
4094
4095 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4096 err = btrfs_unlink_subvol(trans, dir, dentry);
4097 goto out;
4098 }
4099
4100 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4101 if (err)
4102 goto out;
4103
4104 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4105
4106 /* now the directory is empty */
4107 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4108 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4109 dentry->d_name.len);
4110 if (!err) {
4111 btrfs_i_size_write(BTRFS_I(inode), 0);
4112 /*
4113 * Propagate the last_unlink_trans value of the deleted dir to
4114 * its parent directory. This is to prevent an unrecoverable
4115 * log tree in the case we do something like this:
4116 * 1) create dir foo
4117 * 2) create snapshot under dir foo
4118 * 3) delete the snapshot
4119 * 4) rmdir foo
4120 * 5) mkdir foo
4121 * 6) fsync foo or some file inside foo
4122 */
4123 if (last_unlink_trans >= trans->transid)
4124 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4125 }
4126 out:
4127 btrfs_end_transaction(trans);
4128 btrfs_btree_balance_dirty(root->fs_info);
4129
4130 return err;
4131 }
4132
4133 /*
4134 * Return this if we need to call truncate_block for the last bit of the
4135 * truncate.
4136 */
4137 #define NEED_TRUNCATE_BLOCK 1
4138
4139 /*
4140 * this can truncate away extent items, csum items and directory items.
4141 * It starts at a high offset and removes keys until it can't find
4142 * any higher than new_size
4143 *
4144 * csum items that cross the new i_size are truncated to the new size
4145 * as well.
4146 *
4147 * min_type is the minimum key type to truncate down to. If set to 0, this
4148 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4149 */
4150 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root,
4152 struct inode *inode,
4153 u64 new_size, u32 min_type)
4154 {
4155 struct btrfs_fs_info *fs_info = root->fs_info;
4156 struct btrfs_path *path;
4157 struct extent_buffer *leaf;
4158 struct btrfs_file_extent_item *fi;
4159 struct btrfs_key key;
4160 struct btrfs_key found_key;
4161 u64 extent_start = 0;
4162 u64 extent_num_bytes = 0;
4163 u64 extent_offset = 0;
4164 u64 item_end = 0;
4165 u64 last_size = new_size;
4166 u32 found_type = (u8)-1;
4167 int found_extent;
4168 int del_item;
4169 int pending_del_nr = 0;
4170 int pending_del_slot = 0;
4171 int extent_type = -1;
4172 int ret;
4173 u64 ino = btrfs_ino(BTRFS_I(inode));
4174 u64 bytes_deleted = 0;
4175 bool be_nice = false;
4176 bool should_throttle = false;
4177 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4178 struct extent_state *cached_state = NULL;
4179
4180 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4181
4182 /*
4183 * For non-free space inodes and non-shareable roots, we want to back
4184 * off from time to time. This means all inodes in subvolume roots,
4185 * reloc roots, and data reloc roots.
4186 */
4187 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4188 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4189 be_nice = true;
4190
4191 path = btrfs_alloc_path();
4192 if (!path)
4193 return -ENOMEM;
4194 path->reada = READA_BACK;
4195
4196 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4197 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4198 &cached_state);
4199
4200 /*
4201 * We want to drop from the next block forward in case this
4202 * new size is not block aligned since we will be keeping the
4203 * last block of the extent just the way it is.
4204 */
4205 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4206 fs_info->sectorsize),
4207 (u64)-1, 0);
4208 }
4209
4210 /*
4211 * This function is also used to drop the items in the log tree before
4212 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4213 * it is used to drop the logged items. So we shouldn't kill the delayed
4214 * items.
4215 */
4216 if (min_type == 0 && root == BTRFS_I(inode)->root)
4217 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4218
4219 key.objectid = ino;
4220 key.offset = (u64)-1;
4221 key.type = (u8)-1;
4222
4223 search_again:
4224 /*
4225 * with a 16K leaf size and 128MB extents, you can actually queue
4226 * up a huge file in a single leaf. Most of the time that
4227 * bytes_deleted is > 0, it will be huge by the time we get here
4228 */
4229 if (be_nice && bytes_deleted > SZ_32M &&
4230 btrfs_should_end_transaction(trans)) {
4231 ret = -EAGAIN;
4232 goto out;
4233 }
4234
4235 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4236 if (ret < 0)
4237 goto out;
4238
4239 if (ret > 0) {
4240 ret = 0;
4241 /* there are no items in the tree for us to truncate, we're
4242 * done
4243 */
4244 if (path->slots[0] == 0)
4245 goto out;
4246 path->slots[0]--;
4247 }
4248
4249 while (1) {
4250 u64 clear_start = 0, clear_len = 0;
4251
4252 fi = NULL;
4253 leaf = path->nodes[0];
4254 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4255 found_type = found_key.type;
4256
4257 if (found_key.objectid != ino)
4258 break;
4259
4260 if (found_type < min_type)
4261 break;
4262
4263 item_end = found_key.offset;
4264 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4265 fi = btrfs_item_ptr(leaf, path->slots[0],
4266 struct btrfs_file_extent_item);
4267 extent_type = btrfs_file_extent_type(leaf, fi);
4268 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4269 item_end +=
4270 btrfs_file_extent_num_bytes(leaf, fi);
4271
4272 trace_btrfs_truncate_show_fi_regular(
4273 BTRFS_I(inode), leaf, fi,
4274 found_key.offset);
4275 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4276 item_end += btrfs_file_extent_ram_bytes(leaf,
4277 fi);
4278
4279 trace_btrfs_truncate_show_fi_inline(
4280 BTRFS_I(inode), leaf, fi, path->slots[0],
4281 found_key.offset);
4282 }
4283 item_end--;
4284 }
4285 if (found_type > min_type) {
4286 del_item = 1;
4287 } else {
4288 if (item_end < new_size)
4289 break;
4290 if (found_key.offset >= new_size)
4291 del_item = 1;
4292 else
4293 del_item = 0;
4294 }
4295 found_extent = 0;
4296 /* FIXME, shrink the extent if the ref count is only 1 */
4297 if (found_type != BTRFS_EXTENT_DATA_KEY)
4298 goto delete;
4299
4300 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4301 u64 num_dec;
4302
4303 clear_start = found_key.offset;
4304 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4305 if (!del_item) {
4306 u64 orig_num_bytes =
4307 btrfs_file_extent_num_bytes(leaf, fi);
4308 extent_num_bytes = ALIGN(new_size -
4309 found_key.offset,
4310 fs_info->sectorsize);
4311 clear_start = ALIGN(new_size, fs_info->sectorsize);
4312 btrfs_set_file_extent_num_bytes(leaf, fi,
4313 extent_num_bytes);
4314 num_dec = (orig_num_bytes -
4315 extent_num_bytes);
4316 if (test_bit(BTRFS_ROOT_SHAREABLE,
4317 &root->state) &&
4318 extent_start != 0)
4319 inode_sub_bytes(inode, num_dec);
4320 btrfs_mark_buffer_dirty(leaf);
4321 } else {
4322 extent_num_bytes =
4323 btrfs_file_extent_disk_num_bytes(leaf,
4324 fi);
4325 extent_offset = found_key.offset -
4326 btrfs_file_extent_offset(leaf, fi);
4327
4328 /* FIXME blocksize != 4096 */
4329 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4330 if (extent_start != 0) {
4331 found_extent = 1;
4332 if (test_bit(BTRFS_ROOT_SHAREABLE,
4333 &root->state))
4334 inode_sub_bytes(inode, num_dec);
4335 }
4336 }
4337 clear_len = num_dec;
4338 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4339 /*
4340 * we can't truncate inline items that have had
4341 * special encodings
4342 */
4343 if (!del_item &&
4344 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4345 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4346 btrfs_file_extent_compression(leaf, fi) == 0) {
4347 u32 size = (u32)(new_size - found_key.offset);
4348
4349 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4350 size = btrfs_file_extent_calc_inline_size(size);
4351 btrfs_truncate_item(path, size, 1);
4352 } else if (!del_item) {
4353 /*
4354 * We have to bail so the last_size is set to
4355 * just before this extent.
4356 */
4357 ret = NEED_TRUNCATE_BLOCK;
4358 break;
4359 } else {
4360 /*
4361 * Inline extents are special, we just treat
4362 * them as a full sector worth in the file
4363 * extent tree just for simplicity sake.
4364 */
4365 clear_len = fs_info->sectorsize;
4366 }
4367
4368 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4369 inode_sub_bytes(inode, item_end + 1 - new_size);
4370 }
4371 delete:
4372 /*
4373 * We use btrfs_truncate_inode_items() to clean up log trees for
4374 * multiple fsyncs, and in this case we don't want to clear the
4375 * file extent range because it's just the log.
4376 */
4377 if (root == BTRFS_I(inode)->root) {
4378 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4379 clear_start, clear_len);
4380 if (ret) {
4381 btrfs_abort_transaction(trans, ret);
4382 break;
4383 }
4384 }
4385
4386 if (del_item)
4387 last_size = found_key.offset;
4388 else
4389 last_size = new_size;
4390 if (del_item) {
4391 if (!pending_del_nr) {
4392 /* no pending yet, add ourselves */
4393 pending_del_slot = path->slots[0];
4394 pending_del_nr = 1;
4395 } else if (pending_del_nr &&
4396 path->slots[0] + 1 == pending_del_slot) {
4397 /* hop on the pending chunk */
4398 pending_del_nr++;
4399 pending_del_slot = path->slots[0];
4400 } else {
4401 BUG();
4402 }
4403 } else {
4404 break;
4405 }
4406 should_throttle = false;
4407
4408 if (found_extent &&
4409 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4410 struct btrfs_ref ref = { 0 };
4411
4412 bytes_deleted += extent_num_bytes;
4413
4414 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4415 extent_start, extent_num_bytes, 0);
4416 ref.real_root = root->root_key.objectid;
4417 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4418 ino, extent_offset);
4419 ret = btrfs_free_extent(trans, &ref);
4420 if (ret) {
4421 btrfs_abort_transaction(trans, ret);
4422 break;
4423 }
4424 if (be_nice) {
4425 if (btrfs_should_throttle_delayed_refs(trans))
4426 should_throttle = true;
4427 }
4428 }
4429
4430 if (found_type == BTRFS_INODE_ITEM_KEY)
4431 break;
4432
4433 if (path->slots[0] == 0 ||
4434 path->slots[0] != pending_del_slot ||
4435 should_throttle) {
4436 if (pending_del_nr) {
4437 ret = btrfs_del_items(trans, root, path,
4438 pending_del_slot,
4439 pending_del_nr);
4440 if (ret) {
4441 btrfs_abort_transaction(trans, ret);
4442 break;
4443 }
4444 pending_del_nr = 0;
4445 }
4446 btrfs_release_path(path);
4447
4448 /*
4449 * We can generate a lot of delayed refs, so we need to
4450 * throttle every once and a while and make sure we're
4451 * adding enough space to keep up with the work we are
4452 * generating. Since we hold a transaction here we
4453 * can't flush, and we don't want to FLUSH_LIMIT because
4454 * we could have generated too many delayed refs to
4455 * actually allocate, so just bail if we're short and
4456 * let the normal reservation dance happen higher up.
4457 */
4458 if (should_throttle) {
4459 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4460 BTRFS_RESERVE_NO_FLUSH);
4461 if (ret) {
4462 ret = -EAGAIN;
4463 break;
4464 }
4465 }
4466 goto search_again;
4467 } else {
4468 path->slots[0]--;
4469 }
4470 }
4471 out:
4472 if (ret >= 0 && pending_del_nr) {
4473 int err;
4474
4475 err = btrfs_del_items(trans, root, path, pending_del_slot,
4476 pending_del_nr);
4477 if (err) {
4478 btrfs_abort_transaction(trans, err);
4479 ret = err;
4480 }
4481 }
4482 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4483 ASSERT(last_size >= new_size);
4484 if (!ret && last_size > new_size)
4485 last_size = new_size;
4486 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4487 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4488 (u64)-1, &cached_state);
4489 }
4490
4491 btrfs_free_path(path);
4492 return ret;
4493 }
4494
4495 /*
4496 * btrfs_truncate_block - read, zero a chunk and write a block
4497 * @inode - inode that we're zeroing
4498 * @from - the offset to start zeroing
4499 * @len - the length to zero, 0 to zero the entire range respective to the
4500 * offset
4501 * @front - zero up to the offset instead of from the offset on
4502 *
4503 * This will find the block for the "from" offset and cow the block and zero the
4504 * part we want to zero. This is used with truncate and hole punching.
4505 */
4506 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4507 int front)
4508 {
4509 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4510 struct address_space *mapping = inode->i_mapping;
4511 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4512 struct btrfs_ordered_extent *ordered;
4513 struct extent_state *cached_state = NULL;
4514 struct extent_changeset *data_reserved = NULL;
4515 char *kaddr;
4516 bool only_release_metadata = false;
4517 u32 blocksize = fs_info->sectorsize;
4518 pgoff_t index = from >> PAGE_SHIFT;
4519 unsigned offset = from & (blocksize - 1);
4520 struct page *page;
4521 gfp_t mask = btrfs_alloc_write_mask(mapping);
4522 size_t write_bytes = blocksize;
4523 int ret = 0;
4524 u64 block_start;
4525 u64 block_end;
4526
4527 if (IS_ALIGNED(offset, blocksize) &&
4528 (!len || IS_ALIGNED(len, blocksize)))
4529 goto out;
4530
4531 block_start = round_down(from, blocksize);
4532 block_end = block_start + blocksize - 1;
4533
4534 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4535 block_start, blocksize);
4536 if (ret < 0) {
4537 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4538 &write_bytes) > 0) {
4539 /* For nocow case, no need to reserve data space */
4540 only_release_metadata = true;
4541 } else {
4542 goto out;
4543 }
4544 }
4545 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4546 if (ret < 0) {
4547 if (!only_release_metadata)
4548 btrfs_free_reserved_data_space(BTRFS_I(inode),
4549 data_reserved, block_start, blocksize);
4550 goto out;
4551 }
4552 again:
4553 page = find_or_create_page(mapping, index, mask);
4554 if (!page) {
4555 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4556 block_start, blocksize, true);
4557 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4558 ret = -ENOMEM;
4559 goto out;
4560 }
4561
4562 if (!PageUptodate(page)) {
4563 ret = btrfs_readpage(NULL, page);
4564 lock_page(page);
4565 if (page->mapping != mapping) {
4566 unlock_page(page);
4567 put_page(page);
4568 goto again;
4569 }
4570 if (!PageUptodate(page)) {
4571 ret = -EIO;
4572 goto out_unlock;
4573 }
4574 }
4575 wait_on_page_writeback(page);
4576
4577 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4578 set_page_extent_mapped(page);
4579
4580 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4581 if (ordered) {
4582 unlock_extent_cached(io_tree, block_start, block_end,
4583 &cached_state);
4584 unlock_page(page);
4585 put_page(page);
4586 btrfs_start_ordered_extent(inode, ordered, 1);
4587 btrfs_put_ordered_extent(ordered);
4588 goto again;
4589 }
4590
4591 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4592 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4593 0, 0, &cached_state);
4594
4595 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4596 &cached_state);
4597 if (ret) {
4598 unlock_extent_cached(io_tree, block_start, block_end,
4599 &cached_state);
4600 goto out_unlock;
4601 }
4602
4603 if (offset != blocksize) {
4604 if (!len)
4605 len = blocksize - offset;
4606 kaddr = kmap(page);
4607 if (front)
4608 memset(kaddr + (block_start - page_offset(page)),
4609 0, offset);
4610 else
4611 memset(kaddr + (block_start - page_offset(page)) + offset,
4612 0, len);
4613 flush_dcache_page(page);
4614 kunmap(page);
4615 }
4616 ClearPageChecked(page);
4617 set_page_dirty(page);
4618 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4619
4620 if (only_release_metadata)
4621 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4622 block_end, EXTENT_NORESERVE, NULL, NULL,
4623 GFP_NOFS);
4624
4625 out_unlock:
4626 if (ret) {
4627 if (only_release_metadata)
4628 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4629 blocksize, true);
4630 else
4631 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4632 block_start, blocksize, true);
4633 }
4634 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4635 unlock_page(page);
4636 put_page(page);
4637 out:
4638 if (only_release_metadata)
4639 btrfs_check_nocow_unlock(BTRFS_I(inode));
4640 extent_changeset_free(data_reserved);
4641 return ret;
4642 }
4643
4644 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4645 u64 offset, u64 len)
4646 {
4647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4648 struct btrfs_trans_handle *trans;
4649 int ret;
4650
4651 /*
4652 * Still need to make sure the inode looks like it's been updated so
4653 * that any holes get logged if we fsync.
4654 */
4655 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4656 BTRFS_I(inode)->last_trans = fs_info->generation;
4657 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4658 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4659 return 0;
4660 }
4661
4662 /*
4663 * 1 - for the one we're dropping
4664 * 1 - for the one we're adding
4665 * 1 - for updating the inode.
4666 */
4667 trans = btrfs_start_transaction(root, 3);
4668 if (IS_ERR(trans))
4669 return PTR_ERR(trans);
4670
4671 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4672 if (ret) {
4673 btrfs_abort_transaction(trans, ret);
4674 btrfs_end_transaction(trans);
4675 return ret;
4676 }
4677
4678 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4679 offset, 0, 0, len, 0, len, 0, 0, 0);
4680 if (ret)
4681 btrfs_abort_transaction(trans, ret);
4682 else
4683 btrfs_update_inode(trans, root, inode);
4684 btrfs_end_transaction(trans);
4685 return ret;
4686 }
4687
4688 /*
4689 * This function puts in dummy file extents for the area we're creating a hole
4690 * for. So if we are truncating this file to a larger size we need to insert
4691 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4692 * the range between oldsize and size
4693 */
4694 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4695 {
4696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4697 struct btrfs_root *root = BTRFS_I(inode)->root;
4698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4699 struct extent_map *em = NULL;
4700 struct extent_state *cached_state = NULL;
4701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4702 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4703 u64 block_end = ALIGN(size, fs_info->sectorsize);
4704 u64 last_byte;
4705 u64 cur_offset;
4706 u64 hole_size;
4707 int err = 0;
4708
4709 /*
4710 * If our size started in the middle of a block we need to zero out the
4711 * rest of the block before we expand the i_size, otherwise we could
4712 * expose stale data.
4713 */
4714 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4715 if (err)
4716 return err;
4717
4718 if (size <= hole_start)
4719 return 0;
4720
4721 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4722 block_end - 1, &cached_state);
4723 cur_offset = hole_start;
4724 while (1) {
4725 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4726 block_end - cur_offset);
4727 if (IS_ERR(em)) {
4728 err = PTR_ERR(em);
4729 em = NULL;
4730 break;
4731 }
4732 last_byte = min(extent_map_end(em), block_end);
4733 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4734 hole_size = last_byte - cur_offset;
4735
4736 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4737 struct extent_map *hole_em;
4738
4739 err = maybe_insert_hole(root, inode, cur_offset,
4740 hole_size);
4741 if (err)
4742 break;
4743
4744 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4745 cur_offset, hole_size);
4746 if (err)
4747 break;
4748
4749 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4750 cur_offset + hole_size - 1, 0);
4751 hole_em = alloc_extent_map();
4752 if (!hole_em) {
4753 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4754 &BTRFS_I(inode)->runtime_flags);
4755 goto next;
4756 }
4757 hole_em->start = cur_offset;
4758 hole_em->len = hole_size;
4759 hole_em->orig_start = cur_offset;
4760
4761 hole_em->block_start = EXTENT_MAP_HOLE;
4762 hole_em->block_len = 0;
4763 hole_em->orig_block_len = 0;
4764 hole_em->ram_bytes = hole_size;
4765 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4766 hole_em->generation = fs_info->generation;
4767
4768 while (1) {
4769 write_lock(&em_tree->lock);
4770 err = add_extent_mapping(em_tree, hole_em, 1);
4771 write_unlock(&em_tree->lock);
4772 if (err != -EEXIST)
4773 break;
4774 btrfs_drop_extent_cache(BTRFS_I(inode),
4775 cur_offset,
4776 cur_offset +
4777 hole_size - 1, 0);
4778 }
4779 free_extent_map(hole_em);
4780 } else {
4781 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4782 cur_offset, hole_size);
4783 if (err)
4784 break;
4785 }
4786 next:
4787 free_extent_map(em);
4788 em = NULL;
4789 cur_offset = last_byte;
4790 if (cur_offset >= block_end)
4791 break;
4792 }
4793 free_extent_map(em);
4794 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4795 return err;
4796 }
4797
4798 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4799 {
4800 struct btrfs_root *root = BTRFS_I(inode)->root;
4801 struct btrfs_trans_handle *trans;
4802 loff_t oldsize = i_size_read(inode);
4803 loff_t newsize = attr->ia_size;
4804 int mask = attr->ia_valid;
4805 int ret;
4806
4807 /*
4808 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4809 * special case where we need to update the times despite not having
4810 * these flags set. For all other operations the VFS set these flags
4811 * explicitly if it wants a timestamp update.
4812 */
4813 if (newsize != oldsize) {
4814 inode_inc_iversion(inode);
4815 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4816 inode->i_ctime = inode->i_mtime =
4817 current_time(inode);
4818 }
4819
4820 if (newsize > oldsize) {
4821 /*
4822 * Don't do an expanding truncate while snapshotting is ongoing.
4823 * This is to ensure the snapshot captures a fully consistent
4824 * state of this file - if the snapshot captures this expanding
4825 * truncation, it must capture all writes that happened before
4826 * this truncation.
4827 */
4828 btrfs_drew_write_lock(&root->snapshot_lock);
4829 ret = btrfs_cont_expand(inode, oldsize, newsize);
4830 if (ret) {
4831 btrfs_drew_write_unlock(&root->snapshot_lock);
4832 return ret;
4833 }
4834
4835 trans = btrfs_start_transaction(root, 1);
4836 if (IS_ERR(trans)) {
4837 btrfs_drew_write_unlock(&root->snapshot_lock);
4838 return PTR_ERR(trans);
4839 }
4840
4841 i_size_write(inode, newsize);
4842 btrfs_inode_safe_disk_i_size_write(inode, 0);
4843 pagecache_isize_extended(inode, oldsize, newsize);
4844 ret = btrfs_update_inode(trans, root, inode);
4845 btrfs_drew_write_unlock(&root->snapshot_lock);
4846 btrfs_end_transaction(trans);
4847 } else {
4848
4849 /*
4850 * We're truncating a file that used to have good data down to
4851 * zero. Make sure it gets into the ordered flush list so that
4852 * any new writes get down to disk quickly.
4853 */
4854 if (newsize == 0)
4855 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4856 &BTRFS_I(inode)->runtime_flags);
4857
4858 truncate_setsize(inode, newsize);
4859
4860 /* Disable nonlocked read DIO to avoid the endless truncate */
4861 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4862 inode_dio_wait(inode);
4863 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4864
4865 ret = btrfs_truncate(inode, newsize == oldsize);
4866 if (ret && inode->i_nlink) {
4867 int err;
4868
4869 /*
4870 * Truncate failed, so fix up the in-memory size. We
4871 * adjusted disk_i_size down as we removed extents, so
4872 * wait for disk_i_size to be stable and then update the
4873 * in-memory size to match.
4874 */
4875 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4876 if (err)
4877 return err;
4878 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4879 }
4880 }
4881
4882 return ret;
4883 }
4884
4885 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4886 {
4887 struct inode *inode = d_inode(dentry);
4888 struct btrfs_root *root = BTRFS_I(inode)->root;
4889 int err;
4890
4891 if (btrfs_root_readonly(root))
4892 return -EROFS;
4893
4894 err = setattr_prepare(dentry, attr);
4895 if (err)
4896 return err;
4897
4898 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4899 err = btrfs_setsize(inode, attr);
4900 if (err)
4901 return err;
4902 }
4903
4904 if (attr->ia_valid) {
4905 setattr_copy(inode, attr);
4906 inode_inc_iversion(inode);
4907 err = btrfs_dirty_inode(inode);
4908
4909 if (!err && attr->ia_valid & ATTR_MODE)
4910 err = posix_acl_chmod(inode, inode->i_mode);
4911 }
4912
4913 return err;
4914 }
4915
4916 /*
4917 * While truncating the inode pages during eviction, we get the VFS calling
4918 * btrfs_invalidatepage() against each page of the inode. This is slow because
4919 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4920 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4921 * extent_state structures over and over, wasting lots of time.
4922 *
4923 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4924 * those expensive operations on a per page basis and do only the ordered io
4925 * finishing, while we release here the extent_map and extent_state structures,
4926 * without the excessive merging and splitting.
4927 */
4928 static void evict_inode_truncate_pages(struct inode *inode)
4929 {
4930 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4931 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4932 struct rb_node *node;
4933
4934 ASSERT(inode->i_state & I_FREEING);
4935 truncate_inode_pages_final(&inode->i_data);
4936
4937 write_lock(&map_tree->lock);
4938 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4939 struct extent_map *em;
4940
4941 node = rb_first_cached(&map_tree->map);
4942 em = rb_entry(node, struct extent_map, rb_node);
4943 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4944 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4945 remove_extent_mapping(map_tree, em);
4946 free_extent_map(em);
4947 if (need_resched()) {
4948 write_unlock(&map_tree->lock);
4949 cond_resched();
4950 write_lock(&map_tree->lock);
4951 }
4952 }
4953 write_unlock(&map_tree->lock);
4954
4955 /*
4956 * Keep looping until we have no more ranges in the io tree.
4957 * We can have ongoing bios started by readahead that have
4958 * their endio callback (extent_io.c:end_bio_extent_readpage)
4959 * still in progress (unlocked the pages in the bio but did not yet
4960 * unlocked the ranges in the io tree). Therefore this means some
4961 * ranges can still be locked and eviction started because before
4962 * submitting those bios, which are executed by a separate task (work
4963 * queue kthread), inode references (inode->i_count) were not taken
4964 * (which would be dropped in the end io callback of each bio).
4965 * Therefore here we effectively end up waiting for those bios and
4966 * anyone else holding locked ranges without having bumped the inode's
4967 * reference count - if we don't do it, when they access the inode's
4968 * io_tree to unlock a range it may be too late, leading to an
4969 * use-after-free issue.
4970 */
4971 spin_lock(&io_tree->lock);
4972 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4973 struct extent_state *state;
4974 struct extent_state *cached_state = NULL;
4975 u64 start;
4976 u64 end;
4977 unsigned state_flags;
4978
4979 node = rb_first(&io_tree->state);
4980 state = rb_entry(node, struct extent_state, rb_node);
4981 start = state->start;
4982 end = state->end;
4983 state_flags = state->state;
4984 spin_unlock(&io_tree->lock);
4985
4986 lock_extent_bits(io_tree, start, end, &cached_state);
4987
4988 /*
4989 * If still has DELALLOC flag, the extent didn't reach disk,
4990 * and its reserved space won't be freed by delayed_ref.
4991 * So we need to free its reserved space here.
4992 * (Refer to comment in btrfs_invalidatepage, case 2)
4993 *
4994 * Note, end is the bytenr of last byte, so we need + 1 here.
4995 */
4996 if (state_flags & EXTENT_DELALLOC)
4997 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4998 end - start + 1);
4999
5000 clear_extent_bit(io_tree, start, end,
5001 EXTENT_LOCKED | EXTENT_DELALLOC |
5002 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5003 &cached_state);
5004
5005 cond_resched();
5006 spin_lock(&io_tree->lock);
5007 }
5008 spin_unlock(&io_tree->lock);
5009 }
5010
5011 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5012 struct btrfs_block_rsv *rsv)
5013 {
5014 struct btrfs_fs_info *fs_info = root->fs_info;
5015 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5016 struct btrfs_trans_handle *trans;
5017 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5018 int ret;
5019
5020 /*
5021 * Eviction should be taking place at some place safe because of our
5022 * delayed iputs. However the normal flushing code will run delayed
5023 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5024 *
5025 * We reserve the delayed_refs_extra here again because we can't use
5026 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5027 * above. We reserve our extra bit here because we generate a ton of
5028 * delayed refs activity by truncating.
5029 *
5030 * If we cannot make our reservation we'll attempt to steal from the
5031 * global reserve, because we really want to be able to free up space.
5032 */
5033 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5034 BTRFS_RESERVE_FLUSH_EVICT);
5035 if (ret) {
5036 /*
5037 * Try to steal from the global reserve if there is space for
5038 * it.
5039 */
5040 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5041 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5042 btrfs_warn(fs_info,
5043 "could not allocate space for delete; will truncate on mount");
5044 return ERR_PTR(-ENOSPC);
5045 }
5046 delayed_refs_extra = 0;
5047 }
5048
5049 trans = btrfs_join_transaction(root);
5050 if (IS_ERR(trans))
5051 return trans;
5052
5053 if (delayed_refs_extra) {
5054 trans->block_rsv = &fs_info->trans_block_rsv;
5055 trans->bytes_reserved = delayed_refs_extra;
5056 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5057 delayed_refs_extra, 1);
5058 }
5059 return trans;
5060 }
5061
5062 void btrfs_evict_inode(struct inode *inode)
5063 {
5064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5065 struct btrfs_trans_handle *trans;
5066 struct btrfs_root *root = BTRFS_I(inode)->root;
5067 struct btrfs_block_rsv *rsv;
5068 int ret;
5069
5070 trace_btrfs_inode_evict(inode);
5071
5072 if (!root) {
5073 clear_inode(inode);
5074 return;
5075 }
5076
5077 evict_inode_truncate_pages(inode);
5078
5079 if (inode->i_nlink &&
5080 ((btrfs_root_refs(&root->root_item) != 0 &&
5081 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5082 btrfs_is_free_space_inode(BTRFS_I(inode))))
5083 goto no_delete;
5084
5085 if (is_bad_inode(inode))
5086 goto no_delete;
5087
5088 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5089
5090 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5091 goto no_delete;
5092
5093 if (inode->i_nlink > 0) {
5094 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5095 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5096 goto no_delete;
5097 }
5098
5099 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5100 if (ret)
5101 goto no_delete;
5102
5103 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5104 if (!rsv)
5105 goto no_delete;
5106 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5107 rsv->failfast = 1;
5108
5109 btrfs_i_size_write(BTRFS_I(inode), 0);
5110
5111 while (1) {
5112 trans = evict_refill_and_join(root, rsv);
5113 if (IS_ERR(trans))
5114 goto free_rsv;
5115
5116 trans->block_rsv = rsv;
5117
5118 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5119 trans->block_rsv = &fs_info->trans_block_rsv;
5120 btrfs_end_transaction(trans);
5121 btrfs_btree_balance_dirty(fs_info);
5122 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5123 goto free_rsv;
5124 else if (!ret)
5125 break;
5126 }
5127
5128 /*
5129 * Errors here aren't a big deal, it just means we leave orphan items in
5130 * the tree. They will be cleaned up on the next mount. If the inode
5131 * number gets reused, cleanup deletes the orphan item without doing
5132 * anything, and unlink reuses the existing orphan item.
5133 *
5134 * If it turns out that we are dropping too many of these, we might want
5135 * to add a mechanism for retrying these after a commit.
5136 */
5137 trans = evict_refill_and_join(root, rsv);
5138 if (!IS_ERR(trans)) {
5139 trans->block_rsv = rsv;
5140 btrfs_orphan_del(trans, BTRFS_I(inode));
5141 trans->block_rsv = &fs_info->trans_block_rsv;
5142 btrfs_end_transaction(trans);
5143 }
5144
5145 if (!(root == fs_info->tree_root ||
5146 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5147 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5148
5149 free_rsv:
5150 btrfs_free_block_rsv(fs_info, rsv);
5151 no_delete:
5152 /*
5153 * If we didn't successfully delete, the orphan item will still be in
5154 * the tree and we'll retry on the next mount. Again, we might also want
5155 * to retry these periodically in the future.
5156 */
5157 btrfs_remove_delayed_node(BTRFS_I(inode));
5158 clear_inode(inode);
5159 }
5160
5161 /*
5162 * Return the key found in the dir entry in the location pointer, fill @type
5163 * with BTRFS_FT_*, and return 0.
5164 *
5165 * If no dir entries were found, returns -ENOENT.
5166 * If found a corrupted location in dir entry, returns -EUCLEAN.
5167 */
5168 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5169 struct btrfs_key *location, u8 *type)
5170 {
5171 const char *name = dentry->d_name.name;
5172 int namelen = dentry->d_name.len;
5173 struct btrfs_dir_item *di;
5174 struct btrfs_path *path;
5175 struct btrfs_root *root = BTRFS_I(dir)->root;
5176 int ret = 0;
5177
5178 path = btrfs_alloc_path();
5179 if (!path)
5180 return -ENOMEM;
5181
5182 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5183 name, namelen, 0);
5184 if (IS_ERR_OR_NULL(di)) {
5185 ret = di ? PTR_ERR(di) : -ENOENT;
5186 goto out;
5187 }
5188
5189 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5190 if (location->type != BTRFS_INODE_ITEM_KEY &&
5191 location->type != BTRFS_ROOT_ITEM_KEY) {
5192 ret = -EUCLEAN;
5193 btrfs_warn(root->fs_info,
5194 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5195 __func__, name, btrfs_ino(BTRFS_I(dir)),
5196 location->objectid, location->type, location->offset);
5197 }
5198 if (!ret)
5199 *type = btrfs_dir_type(path->nodes[0], di);
5200 out:
5201 btrfs_free_path(path);
5202 return ret;
5203 }
5204
5205 /*
5206 * when we hit a tree root in a directory, the btrfs part of the inode
5207 * needs to be changed to reflect the root directory of the tree root. This
5208 * is kind of like crossing a mount point.
5209 */
5210 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5211 struct inode *dir,
5212 struct dentry *dentry,
5213 struct btrfs_key *location,
5214 struct btrfs_root **sub_root)
5215 {
5216 struct btrfs_path *path;
5217 struct btrfs_root *new_root;
5218 struct btrfs_root_ref *ref;
5219 struct extent_buffer *leaf;
5220 struct btrfs_key key;
5221 int ret;
5222 int err = 0;
5223
5224 path = btrfs_alloc_path();
5225 if (!path) {
5226 err = -ENOMEM;
5227 goto out;
5228 }
5229
5230 err = -ENOENT;
5231 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5232 key.type = BTRFS_ROOT_REF_KEY;
5233 key.offset = location->objectid;
5234
5235 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5236 if (ret) {
5237 if (ret < 0)
5238 err = ret;
5239 goto out;
5240 }
5241
5242 leaf = path->nodes[0];
5243 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5244 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5245 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5246 goto out;
5247
5248 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5249 (unsigned long)(ref + 1),
5250 dentry->d_name.len);
5251 if (ret)
5252 goto out;
5253
5254 btrfs_release_path(path);
5255
5256 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5257 if (IS_ERR(new_root)) {
5258 err = PTR_ERR(new_root);
5259 goto out;
5260 }
5261
5262 *sub_root = new_root;
5263 location->objectid = btrfs_root_dirid(&new_root->root_item);
5264 location->type = BTRFS_INODE_ITEM_KEY;
5265 location->offset = 0;
5266 err = 0;
5267 out:
5268 btrfs_free_path(path);
5269 return err;
5270 }
5271
5272 static void inode_tree_add(struct inode *inode)
5273 {
5274 struct btrfs_root *root = BTRFS_I(inode)->root;
5275 struct btrfs_inode *entry;
5276 struct rb_node **p;
5277 struct rb_node *parent;
5278 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5279 u64 ino = btrfs_ino(BTRFS_I(inode));
5280
5281 if (inode_unhashed(inode))
5282 return;
5283 parent = NULL;
5284 spin_lock(&root->inode_lock);
5285 p = &root->inode_tree.rb_node;
5286 while (*p) {
5287 parent = *p;
5288 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5289
5290 if (ino < btrfs_ino(entry))
5291 p = &parent->rb_left;
5292 else if (ino > btrfs_ino(entry))
5293 p = &parent->rb_right;
5294 else {
5295 WARN_ON(!(entry->vfs_inode.i_state &
5296 (I_WILL_FREE | I_FREEING)));
5297 rb_replace_node(parent, new, &root->inode_tree);
5298 RB_CLEAR_NODE(parent);
5299 spin_unlock(&root->inode_lock);
5300 return;
5301 }
5302 }
5303 rb_link_node(new, parent, p);
5304 rb_insert_color(new, &root->inode_tree);
5305 spin_unlock(&root->inode_lock);
5306 }
5307
5308 static void inode_tree_del(struct inode *inode)
5309 {
5310 struct btrfs_root *root = BTRFS_I(inode)->root;
5311 int empty = 0;
5312
5313 spin_lock(&root->inode_lock);
5314 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5315 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5316 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5317 empty = RB_EMPTY_ROOT(&root->inode_tree);
5318 }
5319 spin_unlock(&root->inode_lock);
5320
5321 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5322 spin_lock(&root->inode_lock);
5323 empty = RB_EMPTY_ROOT(&root->inode_tree);
5324 spin_unlock(&root->inode_lock);
5325 if (empty)
5326 btrfs_add_dead_root(root);
5327 }
5328 }
5329
5330
5331 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5332 {
5333 struct btrfs_iget_args *args = p;
5334
5335 inode->i_ino = args->ino;
5336 BTRFS_I(inode)->location.objectid = args->ino;
5337 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5338 BTRFS_I(inode)->location.offset = 0;
5339 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5340 BUG_ON(args->root && !BTRFS_I(inode)->root);
5341 return 0;
5342 }
5343
5344 static int btrfs_find_actor(struct inode *inode, void *opaque)
5345 {
5346 struct btrfs_iget_args *args = opaque;
5347
5348 return args->ino == BTRFS_I(inode)->location.objectid &&
5349 args->root == BTRFS_I(inode)->root;
5350 }
5351
5352 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5353 struct btrfs_root *root)
5354 {
5355 struct inode *inode;
5356 struct btrfs_iget_args args;
5357 unsigned long hashval = btrfs_inode_hash(ino, root);
5358
5359 args.ino = ino;
5360 args.root = root;
5361
5362 inode = iget5_locked(s, hashval, btrfs_find_actor,
5363 btrfs_init_locked_inode,
5364 (void *)&args);
5365 return inode;
5366 }
5367
5368 /*
5369 * Get an inode object given its inode number and corresponding root.
5370 * Path can be preallocated to prevent recursing back to iget through
5371 * allocator. NULL is also valid but may require an additional allocation
5372 * later.
5373 */
5374 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5375 struct btrfs_root *root, struct btrfs_path *path)
5376 {
5377 struct inode *inode;
5378
5379 inode = btrfs_iget_locked(s, ino, root);
5380 if (!inode)
5381 return ERR_PTR(-ENOMEM);
5382
5383 if (inode->i_state & I_NEW) {
5384 int ret;
5385
5386 ret = btrfs_read_locked_inode(inode, path);
5387 if (!ret) {
5388 inode_tree_add(inode);
5389 unlock_new_inode(inode);
5390 } else {
5391 iget_failed(inode);
5392 /*
5393 * ret > 0 can come from btrfs_search_slot called by
5394 * btrfs_read_locked_inode, this means the inode item
5395 * was not found.
5396 */
5397 if (ret > 0)
5398 ret = -ENOENT;
5399 inode = ERR_PTR(ret);
5400 }
5401 }
5402
5403 return inode;
5404 }
5405
5406 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5407 {
5408 return btrfs_iget_path(s, ino, root, NULL);
5409 }
5410
5411 static struct inode *new_simple_dir(struct super_block *s,
5412 struct btrfs_key *key,
5413 struct btrfs_root *root)
5414 {
5415 struct inode *inode = new_inode(s);
5416
5417 if (!inode)
5418 return ERR_PTR(-ENOMEM);
5419
5420 BTRFS_I(inode)->root = btrfs_grab_root(root);
5421 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5422 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5423
5424 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5425 /*
5426 * We only need lookup, the rest is read-only and there's no inode
5427 * associated with the dentry
5428 */
5429 inode->i_op = &simple_dir_inode_operations;
5430 inode->i_opflags &= ~IOP_XATTR;
5431 inode->i_fop = &simple_dir_operations;
5432 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5433 inode->i_mtime = current_time(inode);
5434 inode->i_atime = inode->i_mtime;
5435 inode->i_ctime = inode->i_mtime;
5436 BTRFS_I(inode)->i_otime = inode->i_mtime;
5437
5438 return inode;
5439 }
5440
5441 static inline u8 btrfs_inode_type(struct inode *inode)
5442 {
5443 /*
5444 * Compile-time asserts that generic FT_* types still match
5445 * BTRFS_FT_* types
5446 */
5447 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5448 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5449 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5450 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5451 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5452 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5453 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5454 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5455
5456 return fs_umode_to_ftype(inode->i_mode);
5457 }
5458
5459 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5460 {
5461 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5462 struct inode *inode;
5463 struct btrfs_root *root = BTRFS_I(dir)->root;
5464 struct btrfs_root *sub_root = root;
5465 struct btrfs_key location;
5466 u8 di_type = 0;
5467 int ret = 0;
5468
5469 if (dentry->d_name.len > BTRFS_NAME_LEN)
5470 return ERR_PTR(-ENAMETOOLONG);
5471
5472 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5473 if (ret < 0)
5474 return ERR_PTR(ret);
5475
5476 if (location.type == BTRFS_INODE_ITEM_KEY) {
5477 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5478 if (IS_ERR(inode))
5479 return inode;
5480
5481 /* Do extra check against inode mode with di_type */
5482 if (btrfs_inode_type(inode) != di_type) {
5483 btrfs_crit(fs_info,
5484 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5485 inode->i_mode, btrfs_inode_type(inode),
5486 di_type);
5487 iput(inode);
5488 return ERR_PTR(-EUCLEAN);
5489 }
5490 return inode;
5491 }
5492
5493 ret = fixup_tree_root_location(fs_info, dir, dentry,
5494 &location, &sub_root);
5495 if (ret < 0) {
5496 if (ret != -ENOENT)
5497 inode = ERR_PTR(ret);
5498 else
5499 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5500 } else {
5501 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5502 }
5503 if (root != sub_root)
5504 btrfs_put_root(sub_root);
5505
5506 if (!IS_ERR(inode) && root != sub_root) {
5507 down_read(&fs_info->cleanup_work_sem);
5508 if (!sb_rdonly(inode->i_sb))
5509 ret = btrfs_orphan_cleanup(sub_root);
5510 up_read(&fs_info->cleanup_work_sem);
5511 if (ret) {
5512 iput(inode);
5513 inode = ERR_PTR(ret);
5514 }
5515 }
5516
5517 return inode;
5518 }
5519
5520 static int btrfs_dentry_delete(const struct dentry *dentry)
5521 {
5522 struct btrfs_root *root;
5523 struct inode *inode = d_inode(dentry);
5524
5525 if (!inode && !IS_ROOT(dentry))
5526 inode = d_inode(dentry->d_parent);
5527
5528 if (inode) {
5529 root = BTRFS_I(inode)->root;
5530 if (btrfs_root_refs(&root->root_item) == 0)
5531 return 1;
5532
5533 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5534 return 1;
5535 }
5536 return 0;
5537 }
5538
5539 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5540 unsigned int flags)
5541 {
5542 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5543
5544 if (inode == ERR_PTR(-ENOENT))
5545 inode = NULL;
5546 return d_splice_alias(inode, dentry);
5547 }
5548
5549 /*
5550 * All this infrastructure exists because dir_emit can fault, and we are holding
5551 * the tree lock when doing readdir. For now just allocate a buffer and copy
5552 * our information into that, and then dir_emit from the buffer. This is
5553 * similar to what NFS does, only we don't keep the buffer around in pagecache
5554 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5555 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5556 * tree lock.
5557 */
5558 static int btrfs_opendir(struct inode *inode, struct file *file)
5559 {
5560 struct btrfs_file_private *private;
5561
5562 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5563 if (!private)
5564 return -ENOMEM;
5565 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5566 if (!private->filldir_buf) {
5567 kfree(private);
5568 return -ENOMEM;
5569 }
5570 file->private_data = private;
5571 return 0;
5572 }
5573
5574 struct dir_entry {
5575 u64 ino;
5576 u64 offset;
5577 unsigned type;
5578 int name_len;
5579 };
5580
5581 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5582 {
5583 while (entries--) {
5584 struct dir_entry *entry = addr;
5585 char *name = (char *)(entry + 1);
5586
5587 ctx->pos = get_unaligned(&entry->offset);
5588 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5589 get_unaligned(&entry->ino),
5590 get_unaligned(&entry->type)))
5591 return 1;
5592 addr += sizeof(struct dir_entry) +
5593 get_unaligned(&entry->name_len);
5594 ctx->pos++;
5595 }
5596 return 0;
5597 }
5598
5599 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5600 {
5601 struct inode *inode = file_inode(file);
5602 struct btrfs_root *root = BTRFS_I(inode)->root;
5603 struct btrfs_file_private *private = file->private_data;
5604 struct btrfs_dir_item *di;
5605 struct btrfs_key key;
5606 struct btrfs_key found_key;
5607 struct btrfs_path *path;
5608 void *addr;
5609 struct list_head ins_list;
5610 struct list_head del_list;
5611 int ret;
5612 struct extent_buffer *leaf;
5613 int slot;
5614 char *name_ptr;
5615 int name_len;
5616 int entries = 0;
5617 int total_len = 0;
5618 bool put = false;
5619 struct btrfs_key location;
5620
5621 if (!dir_emit_dots(file, ctx))
5622 return 0;
5623
5624 path = btrfs_alloc_path();
5625 if (!path)
5626 return -ENOMEM;
5627
5628 addr = private->filldir_buf;
5629 path->reada = READA_FORWARD;
5630
5631 INIT_LIST_HEAD(&ins_list);
5632 INIT_LIST_HEAD(&del_list);
5633 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5634
5635 again:
5636 key.type = BTRFS_DIR_INDEX_KEY;
5637 key.offset = ctx->pos;
5638 key.objectid = btrfs_ino(BTRFS_I(inode));
5639
5640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5641 if (ret < 0)
5642 goto err;
5643
5644 while (1) {
5645 struct dir_entry *entry;
5646
5647 leaf = path->nodes[0];
5648 slot = path->slots[0];
5649 if (slot >= btrfs_header_nritems(leaf)) {
5650 ret = btrfs_next_leaf(root, path);
5651 if (ret < 0)
5652 goto err;
5653 else if (ret > 0)
5654 break;
5655 continue;
5656 }
5657
5658 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5659
5660 if (found_key.objectid != key.objectid)
5661 break;
5662 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5663 break;
5664 if (found_key.offset < ctx->pos)
5665 goto next;
5666 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5667 goto next;
5668 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5669 name_len = btrfs_dir_name_len(leaf, di);
5670 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5671 PAGE_SIZE) {
5672 btrfs_release_path(path);
5673 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5674 if (ret)
5675 goto nopos;
5676 addr = private->filldir_buf;
5677 entries = 0;
5678 total_len = 0;
5679 goto again;
5680 }
5681
5682 entry = addr;
5683 put_unaligned(name_len, &entry->name_len);
5684 name_ptr = (char *)(entry + 1);
5685 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5686 name_len);
5687 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5688 &entry->type);
5689 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5690 put_unaligned(location.objectid, &entry->ino);
5691 put_unaligned(found_key.offset, &entry->offset);
5692 entries++;
5693 addr += sizeof(struct dir_entry) + name_len;
5694 total_len += sizeof(struct dir_entry) + name_len;
5695 next:
5696 path->slots[0]++;
5697 }
5698 btrfs_release_path(path);
5699
5700 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5701 if (ret)
5702 goto nopos;
5703
5704 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5705 if (ret)
5706 goto nopos;
5707
5708 /*
5709 * Stop new entries from being returned after we return the last
5710 * entry.
5711 *
5712 * New directory entries are assigned a strictly increasing
5713 * offset. This means that new entries created during readdir
5714 * are *guaranteed* to be seen in the future by that readdir.
5715 * This has broken buggy programs which operate on names as
5716 * they're returned by readdir. Until we re-use freed offsets
5717 * we have this hack to stop new entries from being returned
5718 * under the assumption that they'll never reach this huge
5719 * offset.
5720 *
5721 * This is being careful not to overflow 32bit loff_t unless the
5722 * last entry requires it because doing so has broken 32bit apps
5723 * in the past.
5724 */
5725 if (ctx->pos >= INT_MAX)
5726 ctx->pos = LLONG_MAX;
5727 else
5728 ctx->pos = INT_MAX;
5729 nopos:
5730 ret = 0;
5731 err:
5732 if (put)
5733 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5734 btrfs_free_path(path);
5735 return ret;
5736 }
5737
5738 /*
5739 * This is somewhat expensive, updating the tree every time the
5740 * inode changes. But, it is most likely to find the inode in cache.
5741 * FIXME, needs more benchmarking...there are no reasons other than performance
5742 * to keep or drop this code.
5743 */
5744 static int btrfs_dirty_inode(struct inode *inode)
5745 {
5746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5747 struct btrfs_root *root = BTRFS_I(inode)->root;
5748 struct btrfs_trans_handle *trans;
5749 int ret;
5750
5751 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5752 return 0;
5753
5754 trans = btrfs_join_transaction(root);
5755 if (IS_ERR(trans))
5756 return PTR_ERR(trans);
5757
5758 ret = btrfs_update_inode(trans, root, inode);
5759 if (ret && ret == -ENOSPC) {
5760 /* whoops, lets try again with the full transaction */
5761 btrfs_end_transaction(trans);
5762 trans = btrfs_start_transaction(root, 1);
5763 if (IS_ERR(trans))
5764 return PTR_ERR(trans);
5765
5766 ret = btrfs_update_inode(trans, root, inode);
5767 }
5768 btrfs_end_transaction(trans);
5769 if (BTRFS_I(inode)->delayed_node)
5770 btrfs_balance_delayed_items(fs_info);
5771
5772 return ret;
5773 }
5774
5775 /*
5776 * This is a copy of file_update_time. We need this so we can return error on
5777 * ENOSPC for updating the inode in the case of file write and mmap writes.
5778 */
5779 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5780 int flags)
5781 {
5782 struct btrfs_root *root = BTRFS_I(inode)->root;
5783 bool dirty = flags & ~S_VERSION;
5784
5785 if (btrfs_root_readonly(root))
5786 return -EROFS;
5787
5788 if (flags & S_VERSION)
5789 dirty |= inode_maybe_inc_iversion(inode, dirty);
5790 if (flags & S_CTIME)
5791 inode->i_ctime = *now;
5792 if (flags & S_MTIME)
5793 inode->i_mtime = *now;
5794 if (flags & S_ATIME)
5795 inode->i_atime = *now;
5796 return dirty ? btrfs_dirty_inode(inode) : 0;
5797 }
5798
5799 /*
5800 * find the highest existing sequence number in a directory
5801 * and then set the in-memory index_cnt variable to reflect
5802 * free sequence numbers
5803 */
5804 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5805 {
5806 struct btrfs_root *root = inode->root;
5807 struct btrfs_key key, found_key;
5808 struct btrfs_path *path;
5809 struct extent_buffer *leaf;
5810 int ret;
5811
5812 key.objectid = btrfs_ino(inode);
5813 key.type = BTRFS_DIR_INDEX_KEY;
5814 key.offset = (u64)-1;
5815
5816 path = btrfs_alloc_path();
5817 if (!path)
5818 return -ENOMEM;
5819
5820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5821 if (ret < 0)
5822 goto out;
5823 /* FIXME: we should be able to handle this */
5824 if (ret == 0)
5825 goto out;
5826 ret = 0;
5827
5828 /*
5829 * MAGIC NUMBER EXPLANATION:
5830 * since we search a directory based on f_pos we have to start at 2
5831 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5832 * else has to start at 2
5833 */
5834 if (path->slots[0] == 0) {
5835 inode->index_cnt = 2;
5836 goto out;
5837 }
5838
5839 path->slots[0]--;
5840
5841 leaf = path->nodes[0];
5842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5843
5844 if (found_key.objectid != btrfs_ino(inode) ||
5845 found_key.type != BTRFS_DIR_INDEX_KEY) {
5846 inode->index_cnt = 2;
5847 goto out;
5848 }
5849
5850 inode->index_cnt = found_key.offset + 1;
5851 out:
5852 btrfs_free_path(path);
5853 return ret;
5854 }
5855
5856 /*
5857 * helper to find a free sequence number in a given directory. This current
5858 * code is very simple, later versions will do smarter things in the btree
5859 */
5860 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5861 {
5862 int ret = 0;
5863
5864 if (dir->index_cnt == (u64)-1) {
5865 ret = btrfs_inode_delayed_dir_index_count(dir);
5866 if (ret) {
5867 ret = btrfs_set_inode_index_count(dir);
5868 if (ret)
5869 return ret;
5870 }
5871 }
5872
5873 *index = dir->index_cnt;
5874 dir->index_cnt++;
5875
5876 return ret;
5877 }
5878
5879 static int btrfs_insert_inode_locked(struct inode *inode)
5880 {
5881 struct btrfs_iget_args args;
5882
5883 args.ino = BTRFS_I(inode)->location.objectid;
5884 args.root = BTRFS_I(inode)->root;
5885
5886 return insert_inode_locked4(inode,
5887 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5888 btrfs_find_actor, &args);
5889 }
5890
5891 /*
5892 * Inherit flags from the parent inode.
5893 *
5894 * Currently only the compression flags and the cow flags are inherited.
5895 */
5896 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5897 {
5898 unsigned int flags;
5899
5900 if (!dir)
5901 return;
5902
5903 flags = BTRFS_I(dir)->flags;
5904
5905 if (flags & BTRFS_INODE_NOCOMPRESS) {
5906 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5907 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5908 } else if (flags & BTRFS_INODE_COMPRESS) {
5909 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5910 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5911 }
5912
5913 if (flags & BTRFS_INODE_NODATACOW) {
5914 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5915 if (S_ISREG(inode->i_mode))
5916 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5917 }
5918
5919 btrfs_sync_inode_flags_to_i_flags(inode);
5920 }
5921
5922 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5923 struct btrfs_root *root,
5924 struct inode *dir,
5925 const char *name, int name_len,
5926 u64 ref_objectid, u64 objectid,
5927 umode_t mode, u64 *index)
5928 {
5929 struct btrfs_fs_info *fs_info = root->fs_info;
5930 struct inode *inode;
5931 struct btrfs_inode_item *inode_item;
5932 struct btrfs_key *location;
5933 struct btrfs_path *path;
5934 struct btrfs_inode_ref *ref;
5935 struct btrfs_key key[2];
5936 u32 sizes[2];
5937 int nitems = name ? 2 : 1;
5938 unsigned long ptr;
5939 unsigned int nofs_flag;
5940 int ret;
5941
5942 path = btrfs_alloc_path();
5943 if (!path)
5944 return ERR_PTR(-ENOMEM);
5945
5946 nofs_flag = memalloc_nofs_save();
5947 inode = new_inode(fs_info->sb);
5948 memalloc_nofs_restore(nofs_flag);
5949 if (!inode) {
5950 btrfs_free_path(path);
5951 return ERR_PTR(-ENOMEM);
5952 }
5953
5954 /*
5955 * O_TMPFILE, set link count to 0, so that after this point,
5956 * we fill in an inode item with the correct link count.
5957 */
5958 if (!name)
5959 set_nlink(inode, 0);
5960
5961 /*
5962 * we have to initialize this early, so we can reclaim the inode
5963 * number if we fail afterwards in this function.
5964 */
5965 inode->i_ino = objectid;
5966
5967 if (dir && name) {
5968 trace_btrfs_inode_request(dir);
5969
5970 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5971 if (ret) {
5972 btrfs_free_path(path);
5973 iput(inode);
5974 return ERR_PTR(ret);
5975 }
5976 } else if (dir) {
5977 *index = 0;
5978 }
5979 /*
5980 * index_cnt is ignored for everything but a dir,
5981 * btrfs_set_inode_index_count has an explanation for the magic
5982 * number
5983 */
5984 BTRFS_I(inode)->index_cnt = 2;
5985 BTRFS_I(inode)->dir_index = *index;
5986 BTRFS_I(inode)->root = btrfs_grab_root(root);
5987 BTRFS_I(inode)->generation = trans->transid;
5988 inode->i_generation = BTRFS_I(inode)->generation;
5989
5990 /*
5991 * We could have gotten an inode number from somebody who was fsynced
5992 * and then removed in this same transaction, so let's just set full
5993 * sync since it will be a full sync anyway and this will blow away the
5994 * old info in the log.
5995 */
5996 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5997
5998 key[0].objectid = objectid;
5999 key[0].type = BTRFS_INODE_ITEM_KEY;
6000 key[0].offset = 0;
6001
6002 sizes[0] = sizeof(struct btrfs_inode_item);
6003
6004 if (name) {
6005 /*
6006 * Start new inodes with an inode_ref. This is slightly more
6007 * efficient for small numbers of hard links since they will
6008 * be packed into one item. Extended refs will kick in if we
6009 * add more hard links than can fit in the ref item.
6010 */
6011 key[1].objectid = objectid;
6012 key[1].type = BTRFS_INODE_REF_KEY;
6013 key[1].offset = ref_objectid;
6014
6015 sizes[1] = name_len + sizeof(*ref);
6016 }
6017
6018 location = &BTRFS_I(inode)->location;
6019 location->objectid = objectid;
6020 location->offset = 0;
6021 location->type = BTRFS_INODE_ITEM_KEY;
6022
6023 ret = btrfs_insert_inode_locked(inode);
6024 if (ret < 0) {
6025 iput(inode);
6026 goto fail;
6027 }
6028
6029 path->leave_spinning = 1;
6030 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6031 if (ret != 0)
6032 goto fail_unlock;
6033
6034 inode_init_owner(inode, dir, mode);
6035 inode_set_bytes(inode, 0);
6036
6037 inode->i_mtime = current_time(inode);
6038 inode->i_atime = inode->i_mtime;
6039 inode->i_ctime = inode->i_mtime;
6040 BTRFS_I(inode)->i_otime = inode->i_mtime;
6041
6042 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6043 struct btrfs_inode_item);
6044 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6045 sizeof(*inode_item));
6046 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6047
6048 if (name) {
6049 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6050 struct btrfs_inode_ref);
6051 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6052 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6053 ptr = (unsigned long)(ref + 1);
6054 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6055 }
6056
6057 btrfs_mark_buffer_dirty(path->nodes[0]);
6058 btrfs_free_path(path);
6059
6060 btrfs_inherit_iflags(inode, dir);
6061
6062 if (S_ISREG(mode)) {
6063 if (btrfs_test_opt(fs_info, NODATASUM))
6064 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6065 if (btrfs_test_opt(fs_info, NODATACOW))
6066 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6067 BTRFS_INODE_NODATASUM;
6068 }
6069
6070 inode_tree_add(inode);
6071
6072 trace_btrfs_inode_new(inode);
6073 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6074
6075 btrfs_update_root_times(trans, root);
6076
6077 ret = btrfs_inode_inherit_props(trans, inode, dir);
6078 if (ret)
6079 btrfs_err(fs_info,
6080 "error inheriting props for ino %llu (root %llu): %d",
6081 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6082
6083 return inode;
6084
6085 fail_unlock:
6086 discard_new_inode(inode);
6087 fail:
6088 if (dir && name)
6089 BTRFS_I(dir)->index_cnt--;
6090 btrfs_free_path(path);
6091 return ERR_PTR(ret);
6092 }
6093
6094 /*
6095 * utility function to add 'inode' into 'parent_inode' with
6096 * a give name and a given sequence number.
6097 * if 'add_backref' is true, also insert a backref from the
6098 * inode to the parent directory.
6099 */
6100 int btrfs_add_link(struct btrfs_trans_handle *trans,
6101 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6102 const char *name, int name_len, int add_backref, u64 index)
6103 {
6104 int ret = 0;
6105 struct btrfs_key key;
6106 struct btrfs_root *root = parent_inode->root;
6107 u64 ino = btrfs_ino(inode);
6108 u64 parent_ino = btrfs_ino(parent_inode);
6109
6110 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6111 memcpy(&key, &inode->root->root_key, sizeof(key));
6112 } else {
6113 key.objectid = ino;
6114 key.type = BTRFS_INODE_ITEM_KEY;
6115 key.offset = 0;
6116 }
6117
6118 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6119 ret = btrfs_add_root_ref(trans, key.objectid,
6120 root->root_key.objectid, parent_ino,
6121 index, name, name_len);
6122 } else if (add_backref) {
6123 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6124 parent_ino, index);
6125 }
6126
6127 /* Nothing to clean up yet */
6128 if (ret)
6129 return ret;
6130
6131 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6132 btrfs_inode_type(&inode->vfs_inode), index);
6133 if (ret == -EEXIST || ret == -EOVERFLOW)
6134 goto fail_dir_item;
6135 else if (ret) {
6136 btrfs_abort_transaction(trans, ret);
6137 return ret;
6138 }
6139
6140 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6141 name_len * 2);
6142 inode_inc_iversion(&parent_inode->vfs_inode);
6143 /*
6144 * If we are replaying a log tree, we do not want to update the mtime
6145 * and ctime of the parent directory with the current time, since the
6146 * log replay procedure is responsible for setting them to their correct
6147 * values (the ones it had when the fsync was done).
6148 */
6149 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6150 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6151
6152 parent_inode->vfs_inode.i_mtime = now;
6153 parent_inode->vfs_inode.i_ctime = now;
6154 }
6155 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6156 if (ret)
6157 btrfs_abort_transaction(trans, ret);
6158 return ret;
6159
6160 fail_dir_item:
6161 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6162 u64 local_index;
6163 int err;
6164 err = btrfs_del_root_ref(trans, key.objectid,
6165 root->root_key.objectid, parent_ino,
6166 &local_index, name, name_len);
6167 if (err)
6168 btrfs_abort_transaction(trans, err);
6169 } else if (add_backref) {
6170 u64 local_index;
6171 int err;
6172
6173 err = btrfs_del_inode_ref(trans, root, name, name_len,
6174 ino, parent_ino, &local_index);
6175 if (err)
6176 btrfs_abort_transaction(trans, err);
6177 }
6178
6179 /* Return the original error code */
6180 return ret;
6181 }
6182
6183 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6184 struct btrfs_inode *dir, struct dentry *dentry,
6185 struct btrfs_inode *inode, int backref, u64 index)
6186 {
6187 int err = btrfs_add_link(trans, dir, inode,
6188 dentry->d_name.name, dentry->d_name.len,
6189 backref, index);
6190 if (err > 0)
6191 err = -EEXIST;
6192 return err;
6193 }
6194
6195 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6196 umode_t mode, dev_t rdev)
6197 {
6198 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6199 struct btrfs_trans_handle *trans;
6200 struct btrfs_root *root = BTRFS_I(dir)->root;
6201 struct inode *inode = NULL;
6202 int err;
6203 u64 objectid;
6204 u64 index = 0;
6205
6206 /*
6207 * 2 for inode item and ref
6208 * 2 for dir items
6209 * 1 for xattr if selinux is on
6210 */
6211 trans = btrfs_start_transaction(root, 5);
6212 if (IS_ERR(trans))
6213 return PTR_ERR(trans);
6214
6215 err = btrfs_find_free_ino(root, &objectid);
6216 if (err)
6217 goto out_unlock;
6218
6219 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6220 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6221 mode, &index);
6222 if (IS_ERR(inode)) {
6223 err = PTR_ERR(inode);
6224 inode = NULL;
6225 goto out_unlock;
6226 }
6227
6228 /*
6229 * If the active LSM wants to access the inode during
6230 * d_instantiate it needs these. Smack checks to see
6231 * if the filesystem supports xattrs by looking at the
6232 * ops vector.
6233 */
6234 inode->i_op = &btrfs_special_inode_operations;
6235 init_special_inode(inode, inode->i_mode, rdev);
6236
6237 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6238 if (err)
6239 goto out_unlock;
6240
6241 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6242 0, index);
6243 if (err)
6244 goto out_unlock;
6245
6246 btrfs_update_inode(trans, root, inode);
6247 d_instantiate_new(dentry, inode);
6248
6249 out_unlock:
6250 btrfs_end_transaction(trans);
6251 btrfs_btree_balance_dirty(fs_info);
6252 if (err && inode) {
6253 inode_dec_link_count(inode);
6254 discard_new_inode(inode);
6255 }
6256 return err;
6257 }
6258
6259 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6260 umode_t mode, bool excl)
6261 {
6262 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6263 struct btrfs_trans_handle *trans;
6264 struct btrfs_root *root = BTRFS_I(dir)->root;
6265 struct inode *inode = NULL;
6266 int err;
6267 u64 objectid;
6268 u64 index = 0;
6269
6270 /*
6271 * 2 for inode item and ref
6272 * 2 for dir items
6273 * 1 for xattr if selinux is on
6274 */
6275 trans = btrfs_start_transaction(root, 5);
6276 if (IS_ERR(trans))
6277 return PTR_ERR(trans);
6278
6279 err = btrfs_find_free_ino(root, &objectid);
6280 if (err)
6281 goto out_unlock;
6282
6283 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6284 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6285 mode, &index);
6286 if (IS_ERR(inode)) {
6287 err = PTR_ERR(inode);
6288 inode = NULL;
6289 goto out_unlock;
6290 }
6291 /*
6292 * If the active LSM wants to access the inode during
6293 * d_instantiate it needs these. Smack checks to see
6294 * if the filesystem supports xattrs by looking at the
6295 * ops vector.
6296 */
6297 inode->i_fop = &btrfs_file_operations;
6298 inode->i_op = &btrfs_file_inode_operations;
6299 inode->i_mapping->a_ops = &btrfs_aops;
6300
6301 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6302 if (err)
6303 goto out_unlock;
6304
6305 err = btrfs_update_inode(trans, root, inode);
6306 if (err)
6307 goto out_unlock;
6308
6309 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6310 0, index);
6311 if (err)
6312 goto out_unlock;
6313
6314 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6315 d_instantiate_new(dentry, inode);
6316
6317 out_unlock:
6318 btrfs_end_transaction(trans);
6319 if (err && inode) {
6320 inode_dec_link_count(inode);
6321 discard_new_inode(inode);
6322 }
6323 btrfs_btree_balance_dirty(fs_info);
6324 return err;
6325 }
6326
6327 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6328 struct dentry *dentry)
6329 {
6330 struct btrfs_trans_handle *trans = NULL;
6331 struct btrfs_root *root = BTRFS_I(dir)->root;
6332 struct inode *inode = d_inode(old_dentry);
6333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6334 u64 index;
6335 int err;
6336 int drop_inode = 0;
6337
6338 /* do not allow sys_link's with other subvols of the same device */
6339 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6340 return -EXDEV;
6341
6342 if (inode->i_nlink >= BTRFS_LINK_MAX)
6343 return -EMLINK;
6344
6345 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6346 if (err)
6347 goto fail;
6348
6349 /*
6350 * 2 items for inode and inode ref
6351 * 2 items for dir items
6352 * 1 item for parent inode
6353 * 1 item for orphan item deletion if O_TMPFILE
6354 */
6355 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6356 if (IS_ERR(trans)) {
6357 err = PTR_ERR(trans);
6358 trans = NULL;
6359 goto fail;
6360 }
6361
6362 /* There are several dir indexes for this inode, clear the cache. */
6363 BTRFS_I(inode)->dir_index = 0ULL;
6364 inc_nlink(inode);
6365 inode_inc_iversion(inode);
6366 inode->i_ctime = current_time(inode);
6367 ihold(inode);
6368 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6369
6370 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6371 1, index);
6372
6373 if (err) {
6374 drop_inode = 1;
6375 } else {
6376 struct dentry *parent = dentry->d_parent;
6377 int ret;
6378
6379 err = btrfs_update_inode(trans, root, inode);
6380 if (err)
6381 goto fail;
6382 if (inode->i_nlink == 1) {
6383 /*
6384 * If new hard link count is 1, it's a file created
6385 * with open(2) O_TMPFILE flag.
6386 */
6387 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6388 if (err)
6389 goto fail;
6390 }
6391 d_instantiate(dentry, inode);
6392 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6393 true, NULL);
6394 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6395 err = btrfs_commit_transaction(trans);
6396 trans = NULL;
6397 }
6398 }
6399
6400 fail:
6401 if (trans)
6402 btrfs_end_transaction(trans);
6403 if (drop_inode) {
6404 inode_dec_link_count(inode);
6405 iput(inode);
6406 }
6407 btrfs_btree_balance_dirty(fs_info);
6408 return err;
6409 }
6410
6411 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6412 {
6413 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6414 struct inode *inode = NULL;
6415 struct btrfs_trans_handle *trans;
6416 struct btrfs_root *root = BTRFS_I(dir)->root;
6417 int err = 0;
6418 u64 objectid = 0;
6419 u64 index = 0;
6420
6421 /*
6422 * 2 items for inode and ref
6423 * 2 items for dir items
6424 * 1 for xattr if selinux is on
6425 */
6426 trans = btrfs_start_transaction(root, 5);
6427 if (IS_ERR(trans))
6428 return PTR_ERR(trans);
6429
6430 err = btrfs_find_free_ino(root, &objectid);
6431 if (err)
6432 goto out_fail;
6433
6434 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6435 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6436 S_IFDIR | mode, &index);
6437 if (IS_ERR(inode)) {
6438 err = PTR_ERR(inode);
6439 inode = NULL;
6440 goto out_fail;
6441 }
6442
6443 /* these must be set before we unlock the inode */
6444 inode->i_op = &btrfs_dir_inode_operations;
6445 inode->i_fop = &btrfs_dir_file_operations;
6446
6447 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6448 if (err)
6449 goto out_fail;
6450
6451 btrfs_i_size_write(BTRFS_I(inode), 0);
6452 err = btrfs_update_inode(trans, root, inode);
6453 if (err)
6454 goto out_fail;
6455
6456 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6457 dentry->d_name.name,
6458 dentry->d_name.len, 0, index);
6459 if (err)
6460 goto out_fail;
6461
6462 d_instantiate_new(dentry, inode);
6463
6464 out_fail:
6465 btrfs_end_transaction(trans);
6466 if (err && inode) {
6467 inode_dec_link_count(inode);
6468 discard_new_inode(inode);
6469 }
6470 btrfs_btree_balance_dirty(fs_info);
6471 return err;
6472 }
6473
6474 static noinline int uncompress_inline(struct btrfs_path *path,
6475 struct page *page,
6476 size_t pg_offset, u64 extent_offset,
6477 struct btrfs_file_extent_item *item)
6478 {
6479 int ret;
6480 struct extent_buffer *leaf = path->nodes[0];
6481 char *tmp;
6482 size_t max_size;
6483 unsigned long inline_size;
6484 unsigned long ptr;
6485 int compress_type;
6486
6487 WARN_ON(pg_offset != 0);
6488 compress_type = btrfs_file_extent_compression(leaf, item);
6489 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6490 inline_size = btrfs_file_extent_inline_item_len(leaf,
6491 btrfs_item_nr(path->slots[0]));
6492 tmp = kmalloc(inline_size, GFP_NOFS);
6493 if (!tmp)
6494 return -ENOMEM;
6495 ptr = btrfs_file_extent_inline_start(item);
6496
6497 read_extent_buffer(leaf, tmp, ptr, inline_size);
6498
6499 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6500 ret = btrfs_decompress(compress_type, tmp, page,
6501 extent_offset, inline_size, max_size);
6502
6503 /*
6504 * decompression code contains a memset to fill in any space between the end
6505 * of the uncompressed data and the end of max_size in case the decompressed
6506 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6507 * the end of an inline extent and the beginning of the next block, so we
6508 * cover that region here.
6509 */
6510
6511 if (max_size + pg_offset < PAGE_SIZE) {
6512 char *map = kmap(page);
6513 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6514 kunmap(page);
6515 }
6516 kfree(tmp);
6517 return ret;
6518 }
6519
6520 /**
6521 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6522 * @inode: file to search in
6523 * @page: page to read extent data into if the extent is inline
6524 * @pg_offset: offset into @page to copy to
6525 * @start: file offset
6526 * @len: length of range starting at @start
6527 *
6528 * This returns the first &struct extent_map which overlaps with the given
6529 * range, reading it from the B-tree and caching it if necessary. Note that
6530 * there may be more extents which overlap the given range after the returned
6531 * extent_map.
6532 *
6533 * If @page is not NULL and the extent is inline, this also reads the extent
6534 * data directly into the page and marks the extent up to date in the io_tree.
6535 *
6536 * Return: ERR_PTR on error, non-NULL extent_map on success.
6537 */
6538 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6539 struct page *page, size_t pg_offset,
6540 u64 start, u64 len)
6541 {
6542 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6543 int ret;
6544 int err = 0;
6545 u64 extent_start = 0;
6546 u64 extent_end = 0;
6547 u64 objectid = btrfs_ino(inode);
6548 int extent_type = -1;
6549 struct btrfs_path *path = NULL;
6550 struct btrfs_root *root = inode->root;
6551 struct btrfs_file_extent_item *item;
6552 struct extent_buffer *leaf;
6553 struct btrfs_key found_key;
6554 struct extent_map *em = NULL;
6555 struct extent_map_tree *em_tree = &inode->extent_tree;
6556 struct extent_io_tree *io_tree = &inode->io_tree;
6557
6558 read_lock(&em_tree->lock);
6559 em = lookup_extent_mapping(em_tree, start, len);
6560 read_unlock(&em_tree->lock);
6561
6562 if (em) {
6563 if (em->start > start || em->start + em->len <= start)
6564 free_extent_map(em);
6565 else if (em->block_start == EXTENT_MAP_INLINE && page)
6566 free_extent_map(em);
6567 else
6568 goto out;
6569 }
6570 em = alloc_extent_map();
6571 if (!em) {
6572 err = -ENOMEM;
6573 goto out;
6574 }
6575 em->start = EXTENT_MAP_HOLE;
6576 em->orig_start = EXTENT_MAP_HOLE;
6577 em->len = (u64)-1;
6578 em->block_len = (u64)-1;
6579
6580 path = btrfs_alloc_path();
6581 if (!path) {
6582 err = -ENOMEM;
6583 goto out;
6584 }
6585
6586 /* Chances are we'll be called again, so go ahead and do readahead */
6587 path->reada = READA_FORWARD;
6588
6589 /*
6590 * Unless we're going to uncompress the inline extent, no sleep would
6591 * happen.
6592 */
6593 path->leave_spinning = 1;
6594
6595 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6596 if (ret < 0) {
6597 err = ret;
6598 goto out;
6599 } else if (ret > 0) {
6600 if (path->slots[0] == 0)
6601 goto not_found;
6602 path->slots[0]--;
6603 }
6604
6605 leaf = path->nodes[0];
6606 item = btrfs_item_ptr(leaf, path->slots[0],
6607 struct btrfs_file_extent_item);
6608 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6609 if (found_key.objectid != objectid ||
6610 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6611 /*
6612 * If we backup past the first extent we want to move forward
6613 * and see if there is an extent in front of us, otherwise we'll
6614 * say there is a hole for our whole search range which can
6615 * cause problems.
6616 */
6617 extent_end = start;
6618 goto next;
6619 }
6620
6621 extent_type = btrfs_file_extent_type(leaf, item);
6622 extent_start = found_key.offset;
6623 extent_end = btrfs_file_extent_end(path);
6624 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6625 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6626 /* Only regular file could have regular/prealloc extent */
6627 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6628 err = -EUCLEAN;
6629 btrfs_crit(fs_info,
6630 "regular/prealloc extent found for non-regular inode %llu",
6631 btrfs_ino(inode));
6632 goto out;
6633 }
6634 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6635 extent_start);
6636 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6637 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6638 path->slots[0],
6639 extent_start);
6640 }
6641 next:
6642 if (start >= extent_end) {
6643 path->slots[0]++;
6644 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6645 ret = btrfs_next_leaf(root, path);
6646 if (ret < 0) {
6647 err = ret;
6648 goto out;
6649 } else if (ret > 0) {
6650 goto not_found;
6651 }
6652 leaf = path->nodes[0];
6653 }
6654 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6655 if (found_key.objectid != objectid ||
6656 found_key.type != BTRFS_EXTENT_DATA_KEY)
6657 goto not_found;
6658 if (start + len <= found_key.offset)
6659 goto not_found;
6660 if (start > found_key.offset)
6661 goto next;
6662
6663 /* New extent overlaps with existing one */
6664 em->start = start;
6665 em->orig_start = start;
6666 em->len = found_key.offset - start;
6667 em->block_start = EXTENT_MAP_HOLE;
6668 goto insert;
6669 }
6670
6671 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6672
6673 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6674 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6675 goto insert;
6676 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6677 unsigned long ptr;
6678 char *map;
6679 size_t size;
6680 size_t extent_offset;
6681 size_t copy_size;
6682
6683 if (!page)
6684 goto out;
6685
6686 size = btrfs_file_extent_ram_bytes(leaf, item);
6687 extent_offset = page_offset(page) + pg_offset - extent_start;
6688 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6689 size - extent_offset);
6690 em->start = extent_start + extent_offset;
6691 em->len = ALIGN(copy_size, fs_info->sectorsize);
6692 em->orig_block_len = em->len;
6693 em->orig_start = em->start;
6694 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6695
6696 btrfs_set_path_blocking(path);
6697 if (!PageUptodate(page)) {
6698 if (btrfs_file_extent_compression(leaf, item) !=
6699 BTRFS_COMPRESS_NONE) {
6700 ret = uncompress_inline(path, page, pg_offset,
6701 extent_offset, item);
6702 if (ret) {
6703 err = ret;
6704 goto out;
6705 }
6706 } else {
6707 map = kmap(page);
6708 read_extent_buffer(leaf, map + pg_offset, ptr,
6709 copy_size);
6710 if (pg_offset + copy_size < PAGE_SIZE) {
6711 memset(map + pg_offset + copy_size, 0,
6712 PAGE_SIZE - pg_offset -
6713 copy_size);
6714 }
6715 kunmap(page);
6716 }
6717 flush_dcache_page(page);
6718 }
6719 set_extent_uptodate(io_tree, em->start,
6720 extent_map_end(em) - 1, NULL, GFP_NOFS);
6721 goto insert;
6722 }
6723 not_found:
6724 em->start = start;
6725 em->orig_start = start;
6726 em->len = len;
6727 em->block_start = EXTENT_MAP_HOLE;
6728 insert:
6729 btrfs_release_path(path);
6730 if (em->start > start || extent_map_end(em) <= start) {
6731 btrfs_err(fs_info,
6732 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6733 em->start, em->len, start, len);
6734 err = -EIO;
6735 goto out;
6736 }
6737
6738 err = 0;
6739 write_lock(&em_tree->lock);
6740 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6741 write_unlock(&em_tree->lock);
6742 out:
6743 btrfs_free_path(path);
6744
6745 trace_btrfs_get_extent(root, inode, em);
6746
6747 if (err) {
6748 free_extent_map(em);
6749 return ERR_PTR(err);
6750 }
6751 BUG_ON(!em); /* Error is always set */
6752 return em;
6753 }
6754
6755 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6756 u64 start, u64 len)
6757 {
6758 struct extent_map *em;
6759 struct extent_map *hole_em = NULL;
6760 u64 delalloc_start = start;
6761 u64 end;
6762 u64 delalloc_len;
6763 u64 delalloc_end;
6764 int err = 0;
6765
6766 em = btrfs_get_extent(inode, NULL, 0, start, len);
6767 if (IS_ERR(em))
6768 return em;
6769 /*
6770 * If our em maps to:
6771 * - a hole or
6772 * - a pre-alloc extent,
6773 * there might actually be delalloc bytes behind it.
6774 */
6775 if (em->block_start != EXTENT_MAP_HOLE &&
6776 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6777 return em;
6778 else
6779 hole_em = em;
6780
6781 /* check to see if we've wrapped (len == -1 or similar) */
6782 end = start + len;
6783 if (end < start)
6784 end = (u64)-1;
6785 else
6786 end -= 1;
6787
6788 em = NULL;
6789
6790 /* ok, we didn't find anything, lets look for delalloc */
6791 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6792 end, len, EXTENT_DELALLOC, 1);
6793 delalloc_end = delalloc_start + delalloc_len;
6794 if (delalloc_end < delalloc_start)
6795 delalloc_end = (u64)-1;
6796
6797 /*
6798 * We didn't find anything useful, return the original results from
6799 * get_extent()
6800 */
6801 if (delalloc_start > end || delalloc_end <= start) {
6802 em = hole_em;
6803 hole_em = NULL;
6804 goto out;
6805 }
6806
6807 /*
6808 * Adjust the delalloc_start to make sure it doesn't go backwards from
6809 * the start they passed in
6810 */
6811 delalloc_start = max(start, delalloc_start);
6812 delalloc_len = delalloc_end - delalloc_start;
6813
6814 if (delalloc_len > 0) {
6815 u64 hole_start;
6816 u64 hole_len;
6817 const u64 hole_end = extent_map_end(hole_em);
6818
6819 em = alloc_extent_map();
6820 if (!em) {
6821 err = -ENOMEM;
6822 goto out;
6823 }
6824
6825 ASSERT(hole_em);
6826 /*
6827 * When btrfs_get_extent can't find anything it returns one
6828 * huge hole
6829 *
6830 * Make sure what it found really fits our range, and adjust to
6831 * make sure it is based on the start from the caller
6832 */
6833 if (hole_end <= start || hole_em->start > end) {
6834 free_extent_map(hole_em);
6835 hole_em = NULL;
6836 } else {
6837 hole_start = max(hole_em->start, start);
6838 hole_len = hole_end - hole_start;
6839 }
6840
6841 if (hole_em && delalloc_start > hole_start) {
6842 /*
6843 * Our hole starts before our delalloc, so we have to
6844 * return just the parts of the hole that go until the
6845 * delalloc starts
6846 */
6847 em->len = min(hole_len, delalloc_start - hole_start);
6848 em->start = hole_start;
6849 em->orig_start = hole_start;
6850 /*
6851 * Don't adjust block start at all, it is fixed at
6852 * EXTENT_MAP_HOLE
6853 */
6854 em->block_start = hole_em->block_start;
6855 em->block_len = hole_len;
6856 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6857 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6858 } else {
6859 /*
6860 * Hole is out of passed range or it starts after
6861 * delalloc range
6862 */
6863 em->start = delalloc_start;
6864 em->len = delalloc_len;
6865 em->orig_start = delalloc_start;
6866 em->block_start = EXTENT_MAP_DELALLOC;
6867 em->block_len = delalloc_len;
6868 }
6869 } else {
6870 return hole_em;
6871 }
6872 out:
6873
6874 free_extent_map(hole_em);
6875 if (err) {
6876 free_extent_map(em);
6877 return ERR_PTR(err);
6878 }
6879 return em;
6880 }
6881
6882 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6883 const u64 start,
6884 const u64 len,
6885 const u64 orig_start,
6886 const u64 block_start,
6887 const u64 block_len,
6888 const u64 orig_block_len,
6889 const u64 ram_bytes,
6890 const int type)
6891 {
6892 struct extent_map *em = NULL;
6893 int ret;
6894
6895 if (type != BTRFS_ORDERED_NOCOW) {
6896 em = create_io_em(inode, start, len, orig_start, block_start,
6897 block_len, orig_block_len, ram_bytes,
6898 BTRFS_COMPRESS_NONE, /* compress_type */
6899 type);
6900 if (IS_ERR(em))
6901 goto out;
6902 }
6903 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6904 block_len, type);
6905 if (ret) {
6906 if (em) {
6907 free_extent_map(em);
6908 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6909 }
6910 em = ERR_PTR(ret);
6911 }
6912 out:
6913
6914 return em;
6915 }
6916
6917 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6918 u64 start, u64 len)
6919 {
6920 struct btrfs_root *root = inode->root;
6921 struct btrfs_fs_info *fs_info = root->fs_info;
6922 struct extent_map *em;
6923 struct btrfs_key ins;
6924 u64 alloc_hint;
6925 int ret;
6926
6927 alloc_hint = get_extent_allocation_hint(inode, start, len);
6928 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6929 0, alloc_hint, &ins, 1, 1);
6930 if (ret)
6931 return ERR_PTR(ret);
6932
6933 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6934 ins.objectid, ins.offset, ins.offset,
6935 ins.offset, BTRFS_ORDERED_REGULAR);
6936 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6937 if (IS_ERR(em))
6938 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6939 1);
6940
6941 return em;
6942 }
6943
6944 /*
6945 * Check if we can do nocow write into the range [@offset, @offset + @len)
6946 *
6947 * @offset: File offset
6948 * @len: The length to write, will be updated to the nocow writeable
6949 * range
6950 * @orig_start: (optional) Return the original file offset of the file extent
6951 * @orig_len: (optional) Return the original on-disk length of the file extent
6952 * @ram_bytes: (optional) Return the ram_bytes of the file extent
6953 * @strict: if true, omit optimizations that might force us into unnecessary
6954 * cow. e.g., don't trust generation number.
6955 *
6956 * This function will flush ordered extents in the range to ensure proper
6957 * nocow checks for (nowait == false) case.
6958 *
6959 * Return:
6960 * >0 and update @len if we can do nocow write
6961 * 0 if we can't do nocow write
6962 * <0 if error happened
6963 *
6964 * NOTE: This only checks the file extents, caller is responsible to wait for
6965 * any ordered extents.
6966 */
6967 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6968 u64 *orig_start, u64 *orig_block_len,
6969 u64 *ram_bytes, bool strict)
6970 {
6971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6972 struct btrfs_path *path;
6973 int ret;
6974 struct extent_buffer *leaf;
6975 struct btrfs_root *root = BTRFS_I(inode)->root;
6976 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6977 struct btrfs_file_extent_item *fi;
6978 struct btrfs_key key;
6979 u64 disk_bytenr;
6980 u64 backref_offset;
6981 u64 extent_end;
6982 u64 num_bytes;
6983 int slot;
6984 int found_type;
6985 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6986
6987 path = btrfs_alloc_path();
6988 if (!path)
6989 return -ENOMEM;
6990
6991 ret = btrfs_lookup_file_extent(NULL, root, path,
6992 btrfs_ino(BTRFS_I(inode)), offset, 0);
6993 if (ret < 0)
6994 goto out;
6995
6996 slot = path->slots[0];
6997 if (ret == 1) {
6998 if (slot == 0) {
6999 /* can't find the item, must cow */
7000 ret = 0;
7001 goto out;
7002 }
7003 slot--;
7004 }
7005 ret = 0;
7006 leaf = path->nodes[0];
7007 btrfs_item_key_to_cpu(leaf, &key, slot);
7008 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7009 key.type != BTRFS_EXTENT_DATA_KEY) {
7010 /* not our file or wrong item type, must cow */
7011 goto out;
7012 }
7013
7014 if (key.offset > offset) {
7015 /* Wrong offset, must cow */
7016 goto out;
7017 }
7018
7019 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7020 found_type = btrfs_file_extent_type(leaf, fi);
7021 if (found_type != BTRFS_FILE_EXTENT_REG &&
7022 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7023 /* not a regular extent, must cow */
7024 goto out;
7025 }
7026
7027 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7028 goto out;
7029
7030 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7031 if (extent_end <= offset)
7032 goto out;
7033
7034 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7035 if (disk_bytenr == 0)
7036 goto out;
7037
7038 if (btrfs_file_extent_compression(leaf, fi) ||
7039 btrfs_file_extent_encryption(leaf, fi) ||
7040 btrfs_file_extent_other_encoding(leaf, fi))
7041 goto out;
7042
7043 /*
7044 * Do the same check as in btrfs_cross_ref_exist but without the
7045 * unnecessary search.
7046 */
7047 if (!strict &&
7048 (btrfs_file_extent_generation(leaf, fi) <=
7049 btrfs_root_last_snapshot(&root->root_item)))
7050 goto out;
7051
7052 backref_offset = btrfs_file_extent_offset(leaf, fi);
7053
7054 if (orig_start) {
7055 *orig_start = key.offset - backref_offset;
7056 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7057 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7058 }
7059
7060 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7061 goto out;
7062
7063 num_bytes = min(offset + *len, extent_end) - offset;
7064 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7065 u64 range_end;
7066
7067 range_end = round_up(offset + num_bytes,
7068 root->fs_info->sectorsize) - 1;
7069 ret = test_range_bit(io_tree, offset, range_end,
7070 EXTENT_DELALLOC, 0, NULL);
7071 if (ret) {
7072 ret = -EAGAIN;
7073 goto out;
7074 }
7075 }
7076
7077 btrfs_release_path(path);
7078
7079 /*
7080 * look for other files referencing this extent, if we
7081 * find any we must cow
7082 */
7083
7084 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7085 key.offset - backref_offset, disk_bytenr,
7086 strict);
7087 if (ret) {
7088 ret = 0;
7089 goto out;
7090 }
7091
7092 /*
7093 * adjust disk_bytenr and num_bytes to cover just the bytes
7094 * in this extent we are about to write. If there
7095 * are any csums in that range we have to cow in order
7096 * to keep the csums correct
7097 */
7098 disk_bytenr += backref_offset;
7099 disk_bytenr += offset - key.offset;
7100 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7101 goto out;
7102 /*
7103 * all of the above have passed, it is safe to overwrite this extent
7104 * without cow
7105 */
7106 *len = num_bytes;
7107 ret = 1;
7108 out:
7109 btrfs_free_path(path);
7110 return ret;
7111 }
7112
7113 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7114 struct extent_state **cached_state, int writing)
7115 {
7116 struct btrfs_ordered_extent *ordered;
7117 int ret = 0;
7118
7119 while (1) {
7120 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7121 cached_state);
7122 /*
7123 * We're concerned with the entire range that we're going to be
7124 * doing DIO to, so we need to make sure there's no ordered
7125 * extents in this range.
7126 */
7127 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7128 lockend - lockstart + 1);
7129
7130 /*
7131 * We need to make sure there are no buffered pages in this
7132 * range either, we could have raced between the invalidate in
7133 * generic_file_direct_write and locking the extent. The
7134 * invalidate needs to happen so that reads after a write do not
7135 * get stale data.
7136 */
7137 if (!ordered &&
7138 (!writing || !filemap_range_has_page(inode->i_mapping,
7139 lockstart, lockend)))
7140 break;
7141
7142 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7143 cached_state);
7144
7145 if (ordered) {
7146 /*
7147 * If we are doing a DIO read and the ordered extent we
7148 * found is for a buffered write, we can not wait for it
7149 * to complete and retry, because if we do so we can
7150 * deadlock with concurrent buffered writes on page
7151 * locks. This happens only if our DIO read covers more
7152 * than one extent map, if at this point has already
7153 * created an ordered extent for a previous extent map
7154 * and locked its range in the inode's io tree, and a
7155 * concurrent write against that previous extent map's
7156 * range and this range started (we unlock the ranges
7157 * in the io tree only when the bios complete and
7158 * buffered writes always lock pages before attempting
7159 * to lock range in the io tree).
7160 */
7161 if (writing ||
7162 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7163 btrfs_start_ordered_extent(inode, ordered, 1);
7164 else
7165 ret = -ENOTBLK;
7166 btrfs_put_ordered_extent(ordered);
7167 } else {
7168 /*
7169 * We could trigger writeback for this range (and wait
7170 * for it to complete) and then invalidate the pages for
7171 * this range (through invalidate_inode_pages2_range()),
7172 * but that can lead us to a deadlock with a concurrent
7173 * call to readahead (a buffered read or a defrag call
7174 * triggered a readahead) on a page lock due to an
7175 * ordered dio extent we created before but did not have
7176 * yet a corresponding bio submitted (whence it can not
7177 * complete), which makes readahead wait for that
7178 * ordered extent to complete while holding a lock on
7179 * that page.
7180 */
7181 ret = -ENOTBLK;
7182 }
7183
7184 if (ret)
7185 break;
7186
7187 cond_resched();
7188 }
7189
7190 return ret;
7191 }
7192
7193 /* The callers of this must take lock_extent() */
7194 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7195 u64 len, u64 orig_start, u64 block_start,
7196 u64 block_len, u64 orig_block_len,
7197 u64 ram_bytes, int compress_type,
7198 int type)
7199 {
7200 struct extent_map_tree *em_tree;
7201 struct extent_map *em;
7202 int ret;
7203
7204 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7205 type == BTRFS_ORDERED_COMPRESSED ||
7206 type == BTRFS_ORDERED_NOCOW ||
7207 type == BTRFS_ORDERED_REGULAR);
7208
7209 em_tree = &inode->extent_tree;
7210 em = alloc_extent_map();
7211 if (!em)
7212 return ERR_PTR(-ENOMEM);
7213
7214 em->start = start;
7215 em->orig_start = orig_start;
7216 em->len = len;
7217 em->block_len = block_len;
7218 em->block_start = block_start;
7219 em->orig_block_len = orig_block_len;
7220 em->ram_bytes = ram_bytes;
7221 em->generation = -1;
7222 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7223 if (type == BTRFS_ORDERED_PREALLOC) {
7224 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7225 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7226 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7227 em->compress_type = compress_type;
7228 }
7229
7230 do {
7231 btrfs_drop_extent_cache(inode, em->start,
7232 em->start + em->len - 1, 0);
7233 write_lock(&em_tree->lock);
7234 ret = add_extent_mapping(em_tree, em, 1);
7235 write_unlock(&em_tree->lock);
7236 /*
7237 * The caller has taken lock_extent(), who could race with us
7238 * to add em?
7239 */
7240 } while (ret == -EEXIST);
7241
7242 if (ret) {
7243 free_extent_map(em);
7244 return ERR_PTR(ret);
7245 }
7246
7247 /* em got 2 refs now, callers needs to do free_extent_map once. */
7248 return em;
7249 }
7250
7251
7252 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7253 struct buffer_head *bh_result,
7254 struct inode *inode,
7255 u64 start, u64 len)
7256 {
7257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7258
7259 if (em->block_start == EXTENT_MAP_HOLE ||
7260 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7261 return -ENOENT;
7262
7263 len = min(len, em->len - (start - em->start));
7264
7265 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7266 inode->i_blkbits;
7267 bh_result->b_size = len;
7268 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7269 set_buffer_mapped(bh_result);
7270
7271 return 0;
7272 }
7273
7274 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7275 struct buffer_head *bh_result,
7276 struct inode *inode,
7277 struct btrfs_dio_data *dio_data,
7278 u64 start, u64 len)
7279 {
7280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7281 struct extent_map *em = *map;
7282 int ret = 0;
7283
7284 /*
7285 * We don't allocate a new extent in the following cases
7286 *
7287 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7288 * existing extent.
7289 * 2) The extent is marked as PREALLOC. We're good to go here and can
7290 * just use the extent.
7291 *
7292 */
7293 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7294 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7295 em->block_start != EXTENT_MAP_HOLE)) {
7296 int type;
7297 u64 block_start, orig_start, orig_block_len, ram_bytes;
7298
7299 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7300 type = BTRFS_ORDERED_PREALLOC;
7301 else
7302 type = BTRFS_ORDERED_NOCOW;
7303 len = min(len, em->len - (start - em->start));
7304 block_start = em->block_start + (start - em->start);
7305
7306 if (can_nocow_extent(inode, start, &len, &orig_start,
7307 &orig_block_len, &ram_bytes, false) == 1 &&
7308 btrfs_inc_nocow_writers(fs_info, block_start)) {
7309 struct extent_map *em2;
7310
7311 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7312 orig_start, block_start,
7313 len, orig_block_len,
7314 ram_bytes, type);
7315 btrfs_dec_nocow_writers(fs_info, block_start);
7316 if (type == BTRFS_ORDERED_PREALLOC) {
7317 free_extent_map(em);
7318 *map = em = em2;
7319 }
7320
7321 if (em2 && IS_ERR(em2)) {
7322 ret = PTR_ERR(em2);
7323 goto out;
7324 }
7325 /*
7326 * For inode marked NODATACOW or extent marked PREALLOC,
7327 * use the existing or preallocated extent, so does not
7328 * need to adjust btrfs_space_info's bytes_may_use.
7329 */
7330 btrfs_free_reserved_data_space_noquota(fs_info, len);
7331 goto skip_cow;
7332 }
7333 }
7334
7335 /* this will cow the extent */
7336 len = bh_result->b_size;
7337 free_extent_map(em);
7338 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7339 if (IS_ERR(em)) {
7340 ret = PTR_ERR(em);
7341 goto out;
7342 }
7343
7344 len = min(len, em->len - (start - em->start));
7345
7346 skip_cow:
7347 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7348 inode->i_blkbits;
7349 bh_result->b_size = len;
7350 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7351 set_buffer_mapped(bh_result);
7352
7353 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7354 set_buffer_new(bh_result);
7355
7356 /*
7357 * Need to update the i_size under the extent lock so buffered
7358 * readers will get the updated i_size when we unlock.
7359 */
7360 if (!dio_data->overwrite && start + len > i_size_read(inode))
7361 i_size_write(inode, start + len);
7362
7363 WARN_ON(dio_data->reserve < len);
7364 dio_data->reserve -= len;
7365 dio_data->unsubmitted_oe_range_end = start + len;
7366 current->journal_info = dio_data;
7367 out:
7368 return ret;
7369 }
7370
7371 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7372 struct buffer_head *bh_result, int create)
7373 {
7374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7375 struct extent_map *em;
7376 struct extent_state *cached_state = NULL;
7377 struct btrfs_dio_data *dio_data = NULL;
7378 u64 start = iblock << inode->i_blkbits;
7379 u64 lockstart, lockend;
7380 u64 len = bh_result->b_size;
7381 int ret = 0;
7382
7383 if (!create)
7384 len = min_t(u64, len, fs_info->sectorsize);
7385
7386 lockstart = start;
7387 lockend = start + len - 1;
7388
7389 if (current->journal_info) {
7390 /*
7391 * Need to pull our outstanding extents and set journal_info to NULL so
7392 * that anything that needs to check if there's a transaction doesn't get
7393 * confused.
7394 */
7395 dio_data = current->journal_info;
7396 current->journal_info = NULL;
7397 }
7398
7399 /*
7400 * If this errors out it's because we couldn't invalidate pagecache for
7401 * this range and we need to fallback to buffered.
7402 */
7403 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7404 create)) {
7405 ret = -ENOTBLK;
7406 goto err;
7407 }
7408
7409 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7410 if (IS_ERR(em)) {
7411 ret = PTR_ERR(em);
7412 goto unlock_err;
7413 }
7414
7415 /*
7416 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7417 * io. INLINE is special, and we could probably kludge it in here, but
7418 * it's still buffered so for safety lets just fall back to the generic
7419 * buffered path.
7420 *
7421 * For COMPRESSED we _have_ to read the entire extent in so we can
7422 * decompress it, so there will be buffering required no matter what we
7423 * do, so go ahead and fallback to buffered.
7424 *
7425 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7426 * to buffered IO. Don't blame me, this is the price we pay for using
7427 * the generic code.
7428 */
7429 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7430 em->block_start == EXTENT_MAP_INLINE) {
7431 free_extent_map(em);
7432 ret = -ENOTBLK;
7433 goto unlock_err;
7434 }
7435
7436 if (create) {
7437 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7438 dio_data, start, len);
7439 if (ret < 0)
7440 goto unlock_err;
7441
7442 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7443 lockend, &cached_state);
7444 } else {
7445 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7446 start, len);
7447 /* Can be negative only if we read from a hole */
7448 if (ret < 0) {
7449 ret = 0;
7450 free_extent_map(em);
7451 goto unlock_err;
7452 }
7453 /*
7454 * We need to unlock only the end area that we aren't using.
7455 * The rest is going to be unlocked by the endio routine.
7456 */
7457 lockstart = start + bh_result->b_size;
7458 if (lockstart < lockend) {
7459 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7460 lockstart, lockend, &cached_state);
7461 } else {
7462 free_extent_state(cached_state);
7463 }
7464 }
7465
7466 free_extent_map(em);
7467
7468 return 0;
7469
7470 unlock_err:
7471 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7472 &cached_state);
7473 err:
7474 if (dio_data)
7475 current->journal_info = dio_data;
7476 return ret;
7477 }
7478
7479 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7480 {
7481 /*
7482 * This implies a barrier so that stores to dio_bio->bi_status before
7483 * this and loads of dio_bio->bi_status after this are fully ordered.
7484 */
7485 if (!refcount_dec_and_test(&dip->refs))
7486 return;
7487
7488 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7489 __endio_write_update_ordered(BTRFS_I(dip->inode),
7490 dip->logical_offset,
7491 dip->bytes,
7492 !dip->dio_bio->bi_status);
7493 } else {
7494 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7495 dip->logical_offset,
7496 dip->logical_offset + dip->bytes - 1);
7497 }
7498
7499 dio_end_io(dip->dio_bio);
7500 kfree(dip);
7501 }
7502
7503 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7504 int mirror_num,
7505 unsigned long bio_flags)
7506 {
7507 struct btrfs_dio_private *dip = bio->bi_private;
7508 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7509 blk_status_t ret;
7510
7511 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7512
7513 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7514 if (ret)
7515 return ret;
7516
7517 refcount_inc(&dip->refs);
7518 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7519 if (ret)
7520 refcount_dec(&dip->refs);
7521 return ret;
7522 }
7523
7524 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7525 struct btrfs_io_bio *io_bio,
7526 const bool uptodate)
7527 {
7528 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7529 const u32 sectorsize = fs_info->sectorsize;
7530 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7531 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7532 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7533 struct bio_vec bvec;
7534 struct bvec_iter iter;
7535 u64 start = io_bio->logical;
7536 int icsum = 0;
7537 blk_status_t err = BLK_STS_OK;
7538
7539 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7540 unsigned int i, nr_sectors, pgoff;
7541
7542 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7543 pgoff = bvec.bv_offset;
7544 for (i = 0; i < nr_sectors; i++) {
7545 ASSERT(pgoff < PAGE_SIZE);
7546 if (uptodate &&
7547 (!csum || !check_data_csum(inode, io_bio, icsum,
7548 bvec.bv_page, pgoff,
7549 start, sectorsize))) {
7550 clean_io_failure(fs_info, failure_tree, io_tree,
7551 start, bvec.bv_page,
7552 btrfs_ino(BTRFS_I(inode)),
7553 pgoff);
7554 } else {
7555 blk_status_t status;
7556
7557 status = btrfs_submit_read_repair(inode,
7558 &io_bio->bio,
7559 start - io_bio->logical,
7560 bvec.bv_page, pgoff,
7561 start,
7562 start + sectorsize - 1,
7563 io_bio->mirror_num,
7564 submit_dio_repair_bio);
7565 if (status)
7566 err = status;
7567 }
7568 start += sectorsize;
7569 icsum++;
7570 pgoff += sectorsize;
7571 }
7572 }
7573 return err;
7574 }
7575
7576 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7577 const u64 offset, const u64 bytes,
7578 const bool uptodate)
7579 {
7580 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7581 struct btrfs_ordered_extent *ordered = NULL;
7582 struct btrfs_workqueue *wq;
7583 u64 ordered_offset = offset;
7584 u64 ordered_bytes = bytes;
7585 u64 last_offset;
7586
7587 if (btrfs_is_free_space_inode(inode))
7588 wq = fs_info->endio_freespace_worker;
7589 else
7590 wq = fs_info->endio_write_workers;
7591
7592 while (ordered_offset < offset + bytes) {
7593 last_offset = ordered_offset;
7594 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7595 &ordered_offset,
7596 ordered_bytes,
7597 uptodate)) {
7598 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7599 NULL);
7600 btrfs_queue_work(wq, &ordered->work);
7601 }
7602 /*
7603 * If btrfs_dec_test_ordered_pending does not find any ordered
7604 * extent in the range, we can exit.
7605 */
7606 if (ordered_offset == last_offset)
7607 return;
7608 /*
7609 * Our bio might span multiple ordered extents. In this case
7610 * we keep going until we have accounted the whole dio.
7611 */
7612 if (ordered_offset < offset + bytes) {
7613 ordered_bytes = offset + bytes - ordered_offset;
7614 ordered = NULL;
7615 }
7616 }
7617 }
7618
7619 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7620 struct bio *bio, u64 offset)
7621 {
7622 struct inode *inode = private_data;
7623
7624 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7625 }
7626
7627 static void btrfs_end_dio_bio(struct bio *bio)
7628 {
7629 struct btrfs_dio_private *dip = bio->bi_private;
7630 blk_status_t err = bio->bi_status;
7631
7632 if (err)
7633 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7634 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7635 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7636 bio->bi_opf,
7637 (unsigned long long)bio->bi_iter.bi_sector,
7638 bio->bi_iter.bi_size, err);
7639
7640 if (bio_op(bio) == REQ_OP_READ) {
7641 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7642 !err);
7643 }
7644
7645 if (err)
7646 dip->dio_bio->bi_status = err;
7647
7648 bio_put(bio);
7649 btrfs_dio_private_put(dip);
7650 }
7651
7652 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7653 struct inode *inode, u64 file_offset, int async_submit)
7654 {
7655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7656 struct btrfs_dio_private *dip = bio->bi_private;
7657 bool write = bio_op(bio) == REQ_OP_WRITE;
7658 blk_status_t ret;
7659
7660 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7661 if (async_submit)
7662 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7663
7664 if (!write) {
7665 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7666 if (ret)
7667 goto err;
7668 }
7669
7670 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7671 goto map;
7672
7673 if (write && async_submit) {
7674 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7675 file_offset, inode,
7676 btrfs_submit_bio_start_direct_io);
7677 goto err;
7678 } else if (write) {
7679 /*
7680 * If we aren't doing async submit, calculate the csum of the
7681 * bio now.
7682 */
7683 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7684 if (ret)
7685 goto err;
7686 } else {
7687 u64 csum_offset;
7688
7689 csum_offset = file_offset - dip->logical_offset;
7690 csum_offset >>= inode->i_sb->s_blocksize_bits;
7691 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7692 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7693 }
7694 map:
7695 ret = btrfs_map_bio(fs_info, bio, 0);
7696 err:
7697 return ret;
7698 }
7699
7700 /*
7701 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7702 * or ordered extents whether or not we submit any bios.
7703 */
7704 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7705 struct inode *inode,
7706 loff_t file_offset)
7707 {
7708 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7709 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7710 size_t dip_size;
7711 struct btrfs_dio_private *dip;
7712
7713 dip_size = sizeof(*dip);
7714 if (!write && csum) {
7715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7716 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7717 size_t nblocks;
7718
7719 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7720 dip_size += csum_size * nblocks;
7721 }
7722
7723 dip = kzalloc(dip_size, GFP_NOFS);
7724 if (!dip)
7725 return NULL;
7726
7727 dip->inode = inode;
7728 dip->logical_offset = file_offset;
7729 dip->bytes = dio_bio->bi_iter.bi_size;
7730 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7731 dip->dio_bio = dio_bio;
7732 refcount_set(&dip->refs, 1);
7733
7734 if (write) {
7735 struct btrfs_dio_data *dio_data = current->journal_info;
7736
7737 /*
7738 * Setting range start and end to the same value means that
7739 * no cleanup will happen in btrfs_direct_IO
7740 */
7741 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7742 dip->bytes;
7743 dio_data->unsubmitted_oe_range_start =
7744 dio_data->unsubmitted_oe_range_end;
7745 }
7746 return dip;
7747 }
7748
7749 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7750 loff_t file_offset)
7751 {
7752 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7753 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7755 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7756 BTRFS_BLOCK_GROUP_RAID56_MASK);
7757 struct btrfs_dio_private *dip;
7758 struct bio *bio;
7759 u64 start_sector;
7760 int async_submit = 0;
7761 u64 submit_len;
7762 int clone_offset = 0;
7763 int clone_len;
7764 int ret;
7765 blk_status_t status;
7766 struct btrfs_io_geometry geom;
7767
7768 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7769 if (!dip) {
7770 if (!write) {
7771 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7772 file_offset + dio_bio->bi_iter.bi_size - 1);
7773 }
7774 dio_bio->bi_status = BLK_STS_RESOURCE;
7775 dio_end_io(dio_bio);
7776 return;
7777 }
7778
7779 if (!write && csum) {
7780 /*
7781 * Load the csums up front to reduce csum tree searches and
7782 * contention when submitting bios.
7783 */
7784 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7785 dip->csums);
7786 if (status != BLK_STS_OK)
7787 goto out_err;
7788 }
7789
7790 start_sector = dio_bio->bi_iter.bi_sector;
7791 submit_len = dio_bio->bi_iter.bi_size;
7792
7793 do {
7794 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7795 start_sector << 9, submit_len,
7796 &geom);
7797 if (ret) {
7798 status = errno_to_blk_status(ret);
7799 goto out_err;
7800 }
7801 ASSERT(geom.len <= INT_MAX);
7802
7803 clone_len = min_t(int, submit_len, geom.len);
7804
7805 /*
7806 * This will never fail as it's passing GPF_NOFS and
7807 * the allocation is backed by btrfs_bioset.
7808 */
7809 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7810 bio->bi_private = dip;
7811 bio->bi_end_io = btrfs_end_dio_bio;
7812 btrfs_io_bio(bio)->logical = file_offset;
7813
7814 ASSERT(submit_len >= clone_len);
7815 submit_len -= clone_len;
7816
7817 /*
7818 * Increase the count before we submit the bio so we know
7819 * the end IO handler won't happen before we increase the
7820 * count. Otherwise, the dip might get freed before we're
7821 * done setting it up.
7822 *
7823 * We transfer the initial reference to the last bio, so we
7824 * don't need to increment the reference count for the last one.
7825 */
7826 if (submit_len > 0) {
7827 refcount_inc(&dip->refs);
7828 /*
7829 * If we are submitting more than one bio, submit them
7830 * all asynchronously. The exception is RAID 5 or 6, as
7831 * asynchronous checksums make it difficult to collect
7832 * full stripe writes.
7833 */
7834 if (!raid56)
7835 async_submit = 1;
7836 }
7837
7838 status = btrfs_submit_dio_bio(bio, inode, file_offset,
7839 async_submit);
7840 if (status) {
7841 bio_put(bio);
7842 if (submit_len > 0)
7843 refcount_dec(&dip->refs);
7844 goto out_err;
7845 }
7846
7847 clone_offset += clone_len;
7848 start_sector += clone_len >> 9;
7849 file_offset += clone_len;
7850 } while (submit_len > 0);
7851 return;
7852
7853 out_err:
7854 dip->dio_bio->bi_status = status;
7855 btrfs_dio_private_put(dip);
7856 }
7857
7858 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7859 const struct iov_iter *iter, loff_t offset)
7860 {
7861 int seg;
7862 int i;
7863 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7864 ssize_t retval = -EINVAL;
7865
7866 if (offset & blocksize_mask)
7867 goto out;
7868
7869 if (iov_iter_alignment(iter) & blocksize_mask)
7870 goto out;
7871
7872 /* If this is a write we don't need to check anymore */
7873 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7874 return 0;
7875 /*
7876 * Check to make sure we don't have duplicate iov_base's in this
7877 * iovec, if so return EINVAL, otherwise we'll get csum errors
7878 * when reading back.
7879 */
7880 for (seg = 0; seg < iter->nr_segs; seg++) {
7881 for (i = seg + 1; i < iter->nr_segs; i++) {
7882 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7883 goto out;
7884 }
7885 }
7886 retval = 0;
7887 out:
7888 return retval;
7889 }
7890
7891 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
7892 {
7893 struct file *file = iocb->ki_filp;
7894 struct inode *inode = file->f_mapping->host;
7895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7896 struct btrfs_dio_data dio_data = { 0 };
7897 struct extent_changeset *data_reserved = NULL;
7898 loff_t offset = iocb->ki_pos;
7899 size_t count = 0;
7900 int flags = 0;
7901 bool wakeup = true;
7902 bool relock = false;
7903 ssize_t ret;
7904
7905 if (check_direct_IO(fs_info, iter, offset))
7906 return 0;
7907
7908 inode_dio_begin(inode);
7909
7910 /*
7911 * The generic stuff only does filemap_write_and_wait_range, which
7912 * isn't enough if we've written compressed pages to this area, so
7913 * we need to flush the dirty pages again to make absolutely sure
7914 * that any outstanding dirty pages are on disk.
7915 */
7916 count = iov_iter_count(iter);
7917 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7918 &BTRFS_I(inode)->runtime_flags))
7919 filemap_fdatawrite_range(inode->i_mapping, offset,
7920 offset + count - 1);
7921
7922 if (iov_iter_rw(iter) == WRITE) {
7923 /*
7924 * If the write DIO is beyond the EOF, we need update
7925 * the isize, but it is protected by i_mutex. So we can
7926 * not unlock the i_mutex at this case.
7927 */
7928 if (offset + count <= inode->i_size) {
7929 dio_data.overwrite = 1;
7930 inode_unlock(inode);
7931 relock = true;
7932 }
7933 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
7934 offset, count);
7935 if (ret)
7936 goto out;
7937
7938 /*
7939 * We need to know how many extents we reserved so that we can
7940 * do the accounting properly if we go over the number we
7941 * originally calculated. Abuse current->journal_info for this.
7942 */
7943 dio_data.reserve = round_up(count,
7944 fs_info->sectorsize);
7945 dio_data.unsubmitted_oe_range_start = (u64)offset;
7946 dio_data.unsubmitted_oe_range_end = (u64)offset;
7947 current->journal_info = &dio_data;
7948 down_read(&BTRFS_I(inode)->dio_sem);
7949 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7950 &BTRFS_I(inode)->runtime_flags)) {
7951 inode_dio_end(inode);
7952 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7953 wakeup = false;
7954 }
7955
7956 ret = __blockdev_direct_IO(iocb, inode,
7957 fs_info->fs_devices->latest_bdev,
7958 iter, btrfs_get_blocks_direct, NULL,
7959 btrfs_submit_direct, flags);
7960 if (iov_iter_rw(iter) == WRITE) {
7961 up_read(&BTRFS_I(inode)->dio_sem);
7962 current->journal_info = NULL;
7963 if (ret < 0 && ret != -EIOCBQUEUED) {
7964 if (dio_data.reserve)
7965 btrfs_delalloc_release_space(BTRFS_I(inode),
7966 data_reserved, offset, dio_data.reserve,
7967 true);
7968 /*
7969 * On error we might have left some ordered extents
7970 * without submitting corresponding bios for them, so
7971 * cleanup them up to avoid other tasks getting them
7972 * and waiting for them to complete forever.
7973 */
7974 if (dio_data.unsubmitted_oe_range_start <
7975 dio_data.unsubmitted_oe_range_end)
7976 __endio_write_update_ordered(BTRFS_I(inode),
7977 dio_data.unsubmitted_oe_range_start,
7978 dio_data.unsubmitted_oe_range_end -
7979 dio_data.unsubmitted_oe_range_start,
7980 false);
7981 } else if (ret >= 0 && (size_t)ret < count)
7982 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
7983 offset, count - (size_t)ret, true);
7984 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
7985 }
7986 out:
7987 if (wakeup)
7988 inode_dio_end(inode);
7989 if (relock)
7990 inode_lock(inode);
7991
7992 extent_changeset_free(data_reserved);
7993 return ret;
7994 }
7995
7996 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7997 u64 start, u64 len)
7998 {
7999 int ret;
8000
8001 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8002 if (ret)
8003 return ret;
8004
8005 return extent_fiemap(inode, fieinfo, start, len);
8006 }
8007
8008 int btrfs_readpage(struct file *file, struct page *page)
8009 {
8010 return extent_read_full_page(page, btrfs_get_extent, 0);
8011 }
8012
8013 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8014 {
8015 struct inode *inode = page->mapping->host;
8016 int ret;
8017
8018 if (current->flags & PF_MEMALLOC) {
8019 redirty_page_for_writepage(wbc, page);
8020 unlock_page(page);
8021 return 0;
8022 }
8023
8024 /*
8025 * If we are under memory pressure we will call this directly from the
8026 * VM, we need to make sure we have the inode referenced for the ordered
8027 * extent. If not just return like we didn't do anything.
8028 */
8029 if (!igrab(inode)) {
8030 redirty_page_for_writepage(wbc, page);
8031 return AOP_WRITEPAGE_ACTIVATE;
8032 }
8033 ret = extent_write_full_page(page, wbc);
8034 btrfs_add_delayed_iput(inode);
8035 return ret;
8036 }
8037
8038 static int btrfs_writepages(struct address_space *mapping,
8039 struct writeback_control *wbc)
8040 {
8041 return extent_writepages(mapping, wbc);
8042 }
8043
8044 static void btrfs_readahead(struct readahead_control *rac)
8045 {
8046 extent_readahead(rac);
8047 }
8048
8049 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8050 {
8051 int ret = try_release_extent_mapping(page, gfp_flags);
8052 if (ret == 1)
8053 detach_page_private(page);
8054 return ret;
8055 }
8056
8057 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8058 {
8059 if (PageWriteback(page) || PageDirty(page))
8060 return 0;
8061 return __btrfs_releasepage(page, gfp_flags);
8062 }
8063
8064 #ifdef CONFIG_MIGRATION
8065 static int btrfs_migratepage(struct address_space *mapping,
8066 struct page *newpage, struct page *page,
8067 enum migrate_mode mode)
8068 {
8069 int ret;
8070
8071 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8072 if (ret != MIGRATEPAGE_SUCCESS)
8073 return ret;
8074
8075 if (page_has_private(page))
8076 attach_page_private(newpage, detach_page_private(page));
8077
8078 if (PagePrivate2(page)) {
8079 ClearPagePrivate2(page);
8080 SetPagePrivate2(newpage);
8081 }
8082
8083 if (mode != MIGRATE_SYNC_NO_COPY)
8084 migrate_page_copy(newpage, page);
8085 else
8086 migrate_page_states(newpage, page);
8087 return MIGRATEPAGE_SUCCESS;
8088 }
8089 #endif
8090
8091 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8092 unsigned int length)
8093 {
8094 struct inode *inode = page->mapping->host;
8095 struct extent_io_tree *tree;
8096 struct btrfs_ordered_extent *ordered;
8097 struct extent_state *cached_state = NULL;
8098 u64 page_start = page_offset(page);
8099 u64 page_end = page_start + PAGE_SIZE - 1;
8100 u64 start;
8101 u64 end;
8102 int inode_evicting = inode->i_state & I_FREEING;
8103
8104 /*
8105 * we have the page locked, so new writeback can't start,
8106 * and the dirty bit won't be cleared while we are here.
8107 *
8108 * Wait for IO on this page so that we can safely clear
8109 * the PagePrivate2 bit and do ordered accounting
8110 */
8111 wait_on_page_writeback(page);
8112
8113 tree = &BTRFS_I(inode)->io_tree;
8114 if (offset) {
8115 btrfs_releasepage(page, GFP_NOFS);
8116 return;
8117 }
8118
8119 if (!inode_evicting)
8120 lock_extent_bits(tree, page_start, page_end, &cached_state);
8121 again:
8122 start = page_start;
8123 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8124 page_end - start + 1);
8125 if (ordered) {
8126 end = min(page_end,
8127 ordered->file_offset + ordered->num_bytes - 1);
8128 /*
8129 * IO on this page will never be started, so we need
8130 * to account for any ordered extents now
8131 */
8132 if (!inode_evicting)
8133 clear_extent_bit(tree, start, end,
8134 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8135 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8136 EXTENT_DEFRAG, 1, 0, &cached_state);
8137 /*
8138 * whoever cleared the private bit is responsible
8139 * for the finish_ordered_io
8140 */
8141 if (TestClearPagePrivate2(page)) {
8142 struct btrfs_ordered_inode_tree *tree;
8143 u64 new_len;
8144
8145 tree = &BTRFS_I(inode)->ordered_tree;
8146
8147 spin_lock_irq(&tree->lock);
8148 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8149 new_len = start - ordered->file_offset;
8150 if (new_len < ordered->truncated_len)
8151 ordered->truncated_len = new_len;
8152 spin_unlock_irq(&tree->lock);
8153
8154 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8155 start,
8156 end - start + 1, 1))
8157 btrfs_finish_ordered_io(ordered);
8158 }
8159 btrfs_put_ordered_extent(ordered);
8160 if (!inode_evicting) {
8161 cached_state = NULL;
8162 lock_extent_bits(tree, start, end,
8163 &cached_state);
8164 }
8165
8166 start = end + 1;
8167 if (start < page_end)
8168 goto again;
8169 }
8170
8171 /*
8172 * Qgroup reserved space handler
8173 * Page here will be either
8174 * 1) Already written to disk or ordered extent already submitted
8175 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8176 * Qgroup will be handled by its qgroup_record then.
8177 * btrfs_qgroup_free_data() call will do nothing here.
8178 *
8179 * 2) Not written to disk yet
8180 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8181 * bit of its io_tree, and free the qgroup reserved data space.
8182 * Since the IO will never happen for this page.
8183 */
8184 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
8185 if (!inode_evicting) {
8186 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8187 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8188 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8189 &cached_state);
8190
8191 __btrfs_releasepage(page, GFP_NOFS);
8192 }
8193
8194 ClearPageChecked(page);
8195 detach_page_private(page);
8196 }
8197
8198 /*
8199 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8200 * called from a page fault handler when a page is first dirtied. Hence we must
8201 * be careful to check for EOF conditions here. We set the page up correctly
8202 * for a written page which means we get ENOSPC checking when writing into
8203 * holes and correct delalloc and unwritten extent mapping on filesystems that
8204 * support these features.
8205 *
8206 * We are not allowed to take the i_mutex here so we have to play games to
8207 * protect against truncate races as the page could now be beyond EOF. Because
8208 * truncate_setsize() writes the inode size before removing pages, once we have
8209 * the page lock we can determine safely if the page is beyond EOF. If it is not
8210 * beyond EOF, then the page is guaranteed safe against truncation until we
8211 * unlock the page.
8212 */
8213 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8214 {
8215 struct page *page = vmf->page;
8216 struct inode *inode = file_inode(vmf->vma->vm_file);
8217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8218 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8219 struct btrfs_ordered_extent *ordered;
8220 struct extent_state *cached_state = NULL;
8221 struct extent_changeset *data_reserved = NULL;
8222 char *kaddr;
8223 unsigned long zero_start;
8224 loff_t size;
8225 vm_fault_t ret;
8226 int ret2;
8227 int reserved = 0;
8228 u64 reserved_space;
8229 u64 page_start;
8230 u64 page_end;
8231 u64 end;
8232
8233 reserved_space = PAGE_SIZE;
8234
8235 sb_start_pagefault(inode->i_sb);
8236 page_start = page_offset(page);
8237 page_end = page_start + PAGE_SIZE - 1;
8238 end = page_end;
8239
8240 /*
8241 * Reserving delalloc space after obtaining the page lock can lead to
8242 * deadlock. For example, if a dirty page is locked by this function
8243 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8244 * dirty page write out, then the btrfs_writepage() function could
8245 * end up waiting indefinitely to get a lock on the page currently
8246 * being processed by btrfs_page_mkwrite() function.
8247 */
8248 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8249 page_start, reserved_space);
8250 if (!ret2) {
8251 ret2 = file_update_time(vmf->vma->vm_file);
8252 reserved = 1;
8253 }
8254 if (ret2) {
8255 ret = vmf_error(ret2);
8256 if (reserved)
8257 goto out;
8258 goto out_noreserve;
8259 }
8260
8261 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8262 again:
8263 lock_page(page);
8264 size = i_size_read(inode);
8265
8266 if ((page->mapping != inode->i_mapping) ||
8267 (page_start >= size)) {
8268 /* page got truncated out from underneath us */
8269 goto out_unlock;
8270 }
8271 wait_on_page_writeback(page);
8272
8273 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8274 set_page_extent_mapped(page);
8275
8276 /*
8277 * we can't set the delalloc bits if there are pending ordered
8278 * extents. Drop our locks and wait for them to finish
8279 */
8280 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8281 PAGE_SIZE);
8282 if (ordered) {
8283 unlock_extent_cached(io_tree, page_start, page_end,
8284 &cached_state);
8285 unlock_page(page);
8286 btrfs_start_ordered_extent(inode, ordered, 1);
8287 btrfs_put_ordered_extent(ordered);
8288 goto again;
8289 }
8290
8291 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8292 reserved_space = round_up(size - page_start,
8293 fs_info->sectorsize);
8294 if (reserved_space < PAGE_SIZE) {
8295 end = page_start + reserved_space - 1;
8296 btrfs_delalloc_release_space(BTRFS_I(inode),
8297 data_reserved, page_start,
8298 PAGE_SIZE - reserved_space, true);
8299 }
8300 }
8301
8302 /*
8303 * page_mkwrite gets called when the page is firstly dirtied after it's
8304 * faulted in, but write(2) could also dirty a page and set delalloc
8305 * bits, thus in this case for space account reason, we still need to
8306 * clear any delalloc bits within this page range since we have to
8307 * reserve data&meta space before lock_page() (see above comments).
8308 */
8309 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8310 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8311 EXTENT_DEFRAG, 0, 0, &cached_state);
8312
8313 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8314 &cached_state);
8315 if (ret2) {
8316 unlock_extent_cached(io_tree, page_start, page_end,
8317 &cached_state);
8318 ret = VM_FAULT_SIGBUS;
8319 goto out_unlock;
8320 }
8321
8322 /* page is wholly or partially inside EOF */
8323 if (page_start + PAGE_SIZE > size)
8324 zero_start = offset_in_page(size);
8325 else
8326 zero_start = PAGE_SIZE;
8327
8328 if (zero_start != PAGE_SIZE) {
8329 kaddr = kmap(page);
8330 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8331 flush_dcache_page(page);
8332 kunmap(page);
8333 }
8334 ClearPageChecked(page);
8335 set_page_dirty(page);
8336 SetPageUptodate(page);
8337
8338 BTRFS_I(inode)->last_trans = fs_info->generation;
8339 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8340 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8341
8342 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8343
8344 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8345 sb_end_pagefault(inode->i_sb);
8346 extent_changeset_free(data_reserved);
8347 return VM_FAULT_LOCKED;
8348
8349 out_unlock:
8350 unlock_page(page);
8351 out:
8352 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8353 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8354 reserved_space, (ret != 0));
8355 out_noreserve:
8356 sb_end_pagefault(inode->i_sb);
8357 extent_changeset_free(data_reserved);
8358 return ret;
8359 }
8360
8361 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8362 {
8363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8364 struct btrfs_root *root = BTRFS_I(inode)->root;
8365 struct btrfs_block_rsv *rsv;
8366 int ret;
8367 struct btrfs_trans_handle *trans;
8368 u64 mask = fs_info->sectorsize - 1;
8369 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8370
8371 if (!skip_writeback) {
8372 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8373 (u64)-1);
8374 if (ret)
8375 return ret;
8376 }
8377
8378 /*
8379 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8380 * things going on here:
8381 *
8382 * 1) We need to reserve space to update our inode.
8383 *
8384 * 2) We need to have something to cache all the space that is going to
8385 * be free'd up by the truncate operation, but also have some slack
8386 * space reserved in case it uses space during the truncate (thank you
8387 * very much snapshotting).
8388 *
8389 * And we need these to be separate. The fact is we can use a lot of
8390 * space doing the truncate, and we have no earthly idea how much space
8391 * we will use, so we need the truncate reservation to be separate so it
8392 * doesn't end up using space reserved for updating the inode. We also
8393 * need to be able to stop the transaction and start a new one, which
8394 * means we need to be able to update the inode several times, and we
8395 * have no idea of knowing how many times that will be, so we can't just
8396 * reserve 1 item for the entirety of the operation, so that has to be
8397 * done separately as well.
8398 *
8399 * So that leaves us with
8400 *
8401 * 1) rsv - for the truncate reservation, which we will steal from the
8402 * transaction reservation.
8403 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8404 * updating the inode.
8405 */
8406 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8407 if (!rsv)
8408 return -ENOMEM;
8409 rsv->size = min_size;
8410 rsv->failfast = 1;
8411
8412 /*
8413 * 1 for the truncate slack space
8414 * 1 for updating the inode.
8415 */
8416 trans = btrfs_start_transaction(root, 2);
8417 if (IS_ERR(trans)) {
8418 ret = PTR_ERR(trans);
8419 goto out;
8420 }
8421
8422 /* Migrate the slack space for the truncate to our reserve */
8423 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8424 min_size, false);
8425 BUG_ON(ret);
8426
8427 /*
8428 * So if we truncate and then write and fsync we normally would just
8429 * write the extents that changed, which is a problem if we need to
8430 * first truncate that entire inode. So set this flag so we write out
8431 * all of the extents in the inode to the sync log so we're completely
8432 * safe.
8433 */
8434 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8435 trans->block_rsv = rsv;
8436
8437 while (1) {
8438 ret = btrfs_truncate_inode_items(trans, root, inode,
8439 inode->i_size,
8440 BTRFS_EXTENT_DATA_KEY);
8441 trans->block_rsv = &fs_info->trans_block_rsv;
8442 if (ret != -ENOSPC && ret != -EAGAIN)
8443 break;
8444
8445 ret = btrfs_update_inode(trans, root, inode);
8446 if (ret)
8447 break;
8448
8449 btrfs_end_transaction(trans);
8450 btrfs_btree_balance_dirty(fs_info);
8451
8452 trans = btrfs_start_transaction(root, 2);
8453 if (IS_ERR(trans)) {
8454 ret = PTR_ERR(trans);
8455 trans = NULL;
8456 break;
8457 }
8458
8459 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8460 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8461 rsv, min_size, false);
8462 BUG_ON(ret); /* shouldn't happen */
8463 trans->block_rsv = rsv;
8464 }
8465
8466 /*
8467 * We can't call btrfs_truncate_block inside a trans handle as we could
8468 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8469 * we've truncated everything except the last little bit, and can do
8470 * btrfs_truncate_block and then update the disk_i_size.
8471 */
8472 if (ret == NEED_TRUNCATE_BLOCK) {
8473 btrfs_end_transaction(trans);
8474 btrfs_btree_balance_dirty(fs_info);
8475
8476 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8477 if (ret)
8478 goto out;
8479 trans = btrfs_start_transaction(root, 1);
8480 if (IS_ERR(trans)) {
8481 ret = PTR_ERR(trans);
8482 goto out;
8483 }
8484 btrfs_inode_safe_disk_i_size_write(inode, 0);
8485 }
8486
8487 if (trans) {
8488 int ret2;
8489
8490 trans->block_rsv = &fs_info->trans_block_rsv;
8491 ret2 = btrfs_update_inode(trans, root, inode);
8492 if (ret2 && !ret)
8493 ret = ret2;
8494
8495 ret2 = btrfs_end_transaction(trans);
8496 if (ret2 && !ret)
8497 ret = ret2;
8498 btrfs_btree_balance_dirty(fs_info);
8499 }
8500 out:
8501 btrfs_free_block_rsv(fs_info, rsv);
8502
8503 return ret;
8504 }
8505
8506 /*
8507 * create a new subvolume directory/inode (helper for the ioctl).
8508 */
8509 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8510 struct btrfs_root *new_root,
8511 struct btrfs_root *parent_root,
8512 u64 new_dirid)
8513 {
8514 struct inode *inode;
8515 int err;
8516 u64 index = 0;
8517
8518 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8519 new_dirid, new_dirid,
8520 S_IFDIR | (~current_umask() & S_IRWXUGO),
8521 &index);
8522 if (IS_ERR(inode))
8523 return PTR_ERR(inode);
8524 inode->i_op = &btrfs_dir_inode_operations;
8525 inode->i_fop = &btrfs_dir_file_operations;
8526
8527 set_nlink(inode, 1);
8528 btrfs_i_size_write(BTRFS_I(inode), 0);
8529 unlock_new_inode(inode);
8530
8531 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8532 if (err)
8533 btrfs_err(new_root->fs_info,
8534 "error inheriting subvolume %llu properties: %d",
8535 new_root->root_key.objectid, err);
8536
8537 err = btrfs_update_inode(trans, new_root, inode);
8538
8539 iput(inode);
8540 return err;
8541 }
8542
8543 struct inode *btrfs_alloc_inode(struct super_block *sb)
8544 {
8545 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8546 struct btrfs_inode *ei;
8547 struct inode *inode;
8548
8549 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8550 if (!ei)
8551 return NULL;
8552
8553 ei->root = NULL;
8554 ei->generation = 0;
8555 ei->last_trans = 0;
8556 ei->last_sub_trans = 0;
8557 ei->logged_trans = 0;
8558 ei->delalloc_bytes = 0;
8559 ei->new_delalloc_bytes = 0;
8560 ei->defrag_bytes = 0;
8561 ei->disk_i_size = 0;
8562 ei->flags = 0;
8563 ei->csum_bytes = 0;
8564 ei->index_cnt = (u64)-1;
8565 ei->dir_index = 0;
8566 ei->last_unlink_trans = 0;
8567 ei->last_reflink_trans = 0;
8568 ei->last_log_commit = 0;
8569
8570 spin_lock_init(&ei->lock);
8571 ei->outstanding_extents = 0;
8572 if (sb->s_magic != BTRFS_TEST_MAGIC)
8573 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8574 BTRFS_BLOCK_RSV_DELALLOC);
8575 ei->runtime_flags = 0;
8576 ei->prop_compress = BTRFS_COMPRESS_NONE;
8577 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8578
8579 ei->delayed_node = NULL;
8580
8581 ei->i_otime.tv_sec = 0;
8582 ei->i_otime.tv_nsec = 0;
8583
8584 inode = &ei->vfs_inode;
8585 extent_map_tree_init(&ei->extent_tree);
8586 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8587 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8588 IO_TREE_INODE_IO_FAILURE, inode);
8589 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8590 IO_TREE_INODE_FILE_EXTENT, inode);
8591 ei->io_tree.track_uptodate = true;
8592 ei->io_failure_tree.track_uptodate = true;
8593 atomic_set(&ei->sync_writers, 0);
8594 mutex_init(&ei->log_mutex);
8595 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8596 INIT_LIST_HEAD(&ei->delalloc_inodes);
8597 INIT_LIST_HEAD(&ei->delayed_iput);
8598 RB_CLEAR_NODE(&ei->rb_node);
8599 init_rwsem(&ei->dio_sem);
8600
8601 return inode;
8602 }
8603
8604 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8605 void btrfs_test_destroy_inode(struct inode *inode)
8606 {
8607 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8608 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8609 }
8610 #endif
8611
8612 void btrfs_free_inode(struct inode *inode)
8613 {
8614 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8615 }
8616
8617 void btrfs_destroy_inode(struct inode *inode)
8618 {
8619 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8620 struct btrfs_ordered_extent *ordered;
8621 struct btrfs_root *root = BTRFS_I(inode)->root;
8622
8623 WARN_ON(!hlist_empty(&inode->i_dentry));
8624 WARN_ON(inode->i_data.nrpages);
8625 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8626 WARN_ON(BTRFS_I(inode)->block_rsv.size);
8627 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8628 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8629 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
8630 WARN_ON(BTRFS_I(inode)->csum_bytes);
8631 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8632
8633 /*
8634 * This can happen where we create an inode, but somebody else also
8635 * created the same inode and we need to destroy the one we already
8636 * created.
8637 */
8638 if (!root)
8639 return;
8640
8641 while (1) {
8642 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8643 if (!ordered)
8644 break;
8645 else {
8646 btrfs_err(fs_info,
8647 "found ordered extent %llu %llu on inode cleanup",
8648 ordered->file_offset, ordered->num_bytes);
8649 btrfs_remove_ordered_extent(inode, ordered);
8650 btrfs_put_ordered_extent(ordered);
8651 btrfs_put_ordered_extent(ordered);
8652 }
8653 }
8654 btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
8655 inode_tree_del(inode);
8656 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8657 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
8658 btrfs_put_root(BTRFS_I(inode)->root);
8659 }
8660
8661 int btrfs_drop_inode(struct inode *inode)
8662 {
8663 struct btrfs_root *root = BTRFS_I(inode)->root;
8664
8665 if (root == NULL)
8666 return 1;
8667
8668 /* the snap/subvol tree is on deleting */
8669 if (btrfs_root_refs(&root->root_item) == 0)
8670 return 1;
8671 else
8672 return generic_drop_inode(inode);
8673 }
8674
8675 static void init_once(void *foo)
8676 {
8677 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8678
8679 inode_init_once(&ei->vfs_inode);
8680 }
8681
8682 void __cold btrfs_destroy_cachep(void)
8683 {
8684 /*
8685 * Make sure all delayed rcu free inodes are flushed before we
8686 * destroy cache.
8687 */
8688 rcu_barrier();
8689 kmem_cache_destroy(btrfs_inode_cachep);
8690 kmem_cache_destroy(btrfs_trans_handle_cachep);
8691 kmem_cache_destroy(btrfs_path_cachep);
8692 kmem_cache_destroy(btrfs_free_space_cachep);
8693 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8694 }
8695
8696 int __init btrfs_init_cachep(void)
8697 {
8698 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8699 sizeof(struct btrfs_inode), 0,
8700 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8701 init_once);
8702 if (!btrfs_inode_cachep)
8703 goto fail;
8704
8705 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8706 sizeof(struct btrfs_trans_handle), 0,
8707 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8708 if (!btrfs_trans_handle_cachep)
8709 goto fail;
8710
8711 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8712 sizeof(struct btrfs_path), 0,
8713 SLAB_MEM_SPREAD, NULL);
8714 if (!btrfs_path_cachep)
8715 goto fail;
8716
8717 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8718 sizeof(struct btrfs_free_space), 0,
8719 SLAB_MEM_SPREAD, NULL);
8720 if (!btrfs_free_space_cachep)
8721 goto fail;
8722
8723 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8724 PAGE_SIZE, PAGE_SIZE,
8725 SLAB_RED_ZONE, NULL);
8726 if (!btrfs_free_space_bitmap_cachep)
8727 goto fail;
8728
8729 return 0;
8730 fail:
8731 btrfs_destroy_cachep();
8732 return -ENOMEM;
8733 }
8734
8735 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8736 u32 request_mask, unsigned int flags)
8737 {
8738 u64 delalloc_bytes;
8739 struct inode *inode = d_inode(path->dentry);
8740 u32 blocksize = inode->i_sb->s_blocksize;
8741 u32 bi_flags = BTRFS_I(inode)->flags;
8742
8743 stat->result_mask |= STATX_BTIME;
8744 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8745 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8746 if (bi_flags & BTRFS_INODE_APPEND)
8747 stat->attributes |= STATX_ATTR_APPEND;
8748 if (bi_flags & BTRFS_INODE_COMPRESS)
8749 stat->attributes |= STATX_ATTR_COMPRESSED;
8750 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8751 stat->attributes |= STATX_ATTR_IMMUTABLE;
8752 if (bi_flags & BTRFS_INODE_NODUMP)
8753 stat->attributes |= STATX_ATTR_NODUMP;
8754
8755 stat->attributes_mask |= (STATX_ATTR_APPEND |
8756 STATX_ATTR_COMPRESSED |
8757 STATX_ATTR_IMMUTABLE |
8758 STATX_ATTR_NODUMP);
8759
8760 generic_fillattr(inode, stat);
8761 stat->dev = BTRFS_I(inode)->root->anon_dev;
8762
8763 spin_lock(&BTRFS_I(inode)->lock);
8764 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8765 spin_unlock(&BTRFS_I(inode)->lock);
8766 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8767 ALIGN(delalloc_bytes, blocksize)) >> 9;
8768 return 0;
8769 }
8770
8771 static int btrfs_rename_exchange(struct inode *old_dir,
8772 struct dentry *old_dentry,
8773 struct inode *new_dir,
8774 struct dentry *new_dentry)
8775 {
8776 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8777 struct btrfs_trans_handle *trans;
8778 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8779 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8780 struct inode *new_inode = new_dentry->d_inode;
8781 struct inode *old_inode = old_dentry->d_inode;
8782 struct timespec64 ctime = current_time(old_inode);
8783 struct dentry *parent;
8784 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8785 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8786 u64 old_idx = 0;
8787 u64 new_idx = 0;
8788 int ret;
8789 bool root_log_pinned = false;
8790 bool dest_log_pinned = false;
8791 struct btrfs_log_ctx ctx_root;
8792 struct btrfs_log_ctx ctx_dest;
8793 bool sync_log_root = false;
8794 bool sync_log_dest = false;
8795 bool commit_transaction = false;
8796
8797 /* we only allow rename subvolume link between subvolumes */
8798 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8799 return -EXDEV;
8800
8801 btrfs_init_log_ctx(&ctx_root, old_inode);
8802 btrfs_init_log_ctx(&ctx_dest, new_inode);
8803
8804 /* close the race window with snapshot create/destroy ioctl */
8805 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8806 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8807 down_read(&fs_info->subvol_sem);
8808
8809 /*
8810 * We want to reserve the absolute worst case amount of items. So if
8811 * both inodes are subvols and we need to unlink them then that would
8812 * require 4 item modifications, but if they are both normal inodes it
8813 * would require 5 item modifications, so we'll assume their normal
8814 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8815 * should cover the worst case number of items we'll modify.
8816 */
8817 trans = btrfs_start_transaction(root, 12);
8818 if (IS_ERR(trans)) {
8819 ret = PTR_ERR(trans);
8820 goto out_notrans;
8821 }
8822
8823 if (dest != root)
8824 btrfs_record_root_in_trans(trans, dest);
8825
8826 /*
8827 * We need to find a free sequence number both in the source and
8828 * in the destination directory for the exchange.
8829 */
8830 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8831 if (ret)
8832 goto out_fail;
8833 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8834 if (ret)
8835 goto out_fail;
8836
8837 BTRFS_I(old_inode)->dir_index = 0ULL;
8838 BTRFS_I(new_inode)->dir_index = 0ULL;
8839
8840 /* Reference for the source. */
8841 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842 /* force full log commit if subvolume involved. */
8843 btrfs_set_log_full_commit(trans);
8844 } else {
8845 btrfs_pin_log_trans(root);
8846 root_log_pinned = true;
8847 ret = btrfs_insert_inode_ref(trans, dest,
8848 new_dentry->d_name.name,
8849 new_dentry->d_name.len,
8850 old_ino,
8851 btrfs_ino(BTRFS_I(new_dir)),
8852 old_idx);
8853 if (ret)
8854 goto out_fail;
8855 }
8856
8857 /* And now for the dest. */
8858 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8859 /* force full log commit if subvolume involved. */
8860 btrfs_set_log_full_commit(trans);
8861 } else {
8862 btrfs_pin_log_trans(dest);
8863 dest_log_pinned = true;
8864 ret = btrfs_insert_inode_ref(trans, root,
8865 old_dentry->d_name.name,
8866 old_dentry->d_name.len,
8867 new_ino,
8868 btrfs_ino(BTRFS_I(old_dir)),
8869 new_idx);
8870 if (ret)
8871 goto out_fail;
8872 }
8873
8874 /* Update inode version and ctime/mtime. */
8875 inode_inc_iversion(old_dir);
8876 inode_inc_iversion(new_dir);
8877 inode_inc_iversion(old_inode);
8878 inode_inc_iversion(new_inode);
8879 old_dir->i_ctime = old_dir->i_mtime = ctime;
8880 new_dir->i_ctime = new_dir->i_mtime = ctime;
8881 old_inode->i_ctime = ctime;
8882 new_inode->i_ctime = ctime;
8883
8884 if (old_dentry->d_parent != new_dentry->d_parent) {
8885 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8886 BTRFS_I(old_inode), 1);
8887 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8888 BTRFS_I(new_inode), 1);
8889 }
8890
8891 /* src is a subvolume */
8892 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8893 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8894 } else { /* src is an inode */
8895 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8896 BTRFS_I(old_dentry->d_inode),
8897 old_dentry->d_name.name,
8898 old_dentry->d_name.len);
8899 if (!ret)
8900 ret = btrfs_update_inode(trans, root, old_inode);
8901 }
8902 if (ret) {
8903 btrfs_abort_transaction(trans, ret);
8904 goto out_fail;
8905 }
8906
8907 /* dest is a subvolume */
8908 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8909 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8910 } else { /* dest is an inode */
8911 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8912 BTRFS_I(new_dentry->d_inode),
8913 new_dentry->d_name.name,
8914 new_dentry->d_name.len);
8915 if (!ret)
8916 ret = btrfs_update_inode(trans, dest, new_inode);
8917 }
8918 if (ret) {
8919 btrfs_abort_transaction(trans, ret);
8920 goto out_fail;
8921 }
8922
8923 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8924 new_dentry->d_name.name,
8925 new_dentry->d_name.len, 0, old_idx);
8926 if (ret) {
8927 btrfs_abort_transaction(trans, ret);
8928 goto out_fail;
8929 }
8930
8931 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8932 old_dentry->d_name.name,
8933 old_dentry->d_name.len, 0, new_idx);
8934 if (ret) {
8935 btrfs_abort_transaction(trans, ret);
8936 goto out_fail;
8937 }
8938
8939 if (old_inode->i_nlink == 1)
8940 BTRFS_I(old_inode)->dir_index = old_idx;
8941 if (new_inode->i_nlink == 1)
8942 BTRFS_I(new_inode)->dir_index = new_idx;
8943
8944 if (root_log_pinned) {
8945 parent = new_dentry->d_parent;
8946 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8947 BTRFS_I(old_dir), parent,
8948 false, &ctx_root);
8949 if (ret == BTRFS_NEED_LOG_SYNC)
8950 sync_log_root = true;
8951 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8952 commit_transaction = true;
8953 ret = 0;
8954 btrfs_end_log_trans(root);
8955 root_log_pinned = false;
8956 }
8957 if (dest_log_pinned) {
8958 if (!commit_transaction) {
8959 parent = old_dentry->d_parent;
8960 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8961 BTRFS_I(new_dir), parent,
8962 false, &ctx_dest);
8963 if (ret == BTRFS_NEED_LOG_SYNC)
8964 sync_log_dest = true;
8965 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8966 commit_transaction = true;
8967 ret = 0;
8968 }
8969 btrfs_end_log_trans(dest);
8970 dest_log_pinned = false;
8971 }
8972 out_fail:
8973 /*
8974 * If we have pinned a log and an error happened, we unpin tasks
8975 * trying to sync the log and force them to fallback to a transaction
8976 * commit if the log currently contains any of the inodes involved in
8977 * this rename operation (to ensure we do not persist a log with an
8978 * inconsistent state for any of these inodes or leading to any
8979 * inconsistencies when replayed). If the transaction was aborted, the
8980 * abortion reason is propagated to userspace when attempting to commit
8981 * the transaction. If the log does not contain any of these inodes, we
8982 * allow the tasks to sync it.
8983 */
8984 if (ret && (root_log_pinned || dest_log_pinned)) {
8985 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8986 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8987 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
8988 (new_inode &&
8989 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
8990 btrfs_set_log_full_commit(trans);
8991
8992 if (root_log_pinned) {
8993 btrfs_end_log_trans(root);
8994 root_log_pinned = false;
8995 }
8996 if (dest_log_pinned) {
8997 btrfs_end_log_trans(dest);
8998 dest_log_pinned = false;
8999 }
9000 }
9001 if (!ret && sync_log_root && !commit_transaction) {
9002 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9003 &ctx_root);
9004 if (ret)
9005 commit_transaction = true;
9006 }
9007 if (!ret && sync_log_dest && !commit_transaction) {
9008 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9009 &ctx_dest);
9010 if (ret)
9011 commit_transaction = true;
9012 }
9013 if (commit_transaction) {
9014 /*
9015 * We may have set commit_transaction when logging the new name
9016 * in the destination root, in which case we left the source
9017 * root context in the list of log contextes. So make sure we
9018 * remove it to avoid invalid memory accesses, since the context
9019 * was allocated in our stack frame.
9020 */
9021 if (sync_log_root) {
9022 mutex_lock(&root->log_mutex);
9023 list_del_init(&ctx_root.list);
9024 mutex_unlock(&root->log_mutex);
9025 }
9026 ret = btrfs_commit_transaction(trans);
9027 } else {
9028 int ret2;
9029
9030 ret2 = btrfs_end_transaction(trans);
9031 ret = ret ? ret : ret2;
9032 }
9033 out_notrans:
9034 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9035 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9036 up_read(&fs_info->subvol_sem);
9037
9038 ASSERT(list_empty(&ctx_root.list));
9039 ASSERT(list_empty(&ctx_dest.list));
9040
9041 return ret;
9042 }
9043
9044 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9045 struct btrfs_root *root,
9046 struct inode *dir,
9047 struct dentry *dentry)
9048 {
9049 int ret;
9050 struct inode *inode;
9051 u64 objectid;
9052 u64 index;
9053
9054 ret = btrfs_find_free_ino(root, &objectid);
9055 if (ret)
9056 return ret;
9057
9058 inode = btrfs_new_inode(trans, root, dir,
9059 dentry->d_name.name,
9060 dentry->d_name.len,
9061 btrfs_ino(BTRFS_I(dir)),
9062 objectid,
9063 S_IFCHR | WHITEOUT_MODE,
9064 &index);
9065
9066 if (IS_ERR(inode)) {
9067 ret = PTR_ERR(inode);
9068 return ret;
9069 }
9070
9071 inode->i_op = &btrfs_special_inode_operations;
9072 init_special_inode(inode, inode->i_mode,
9073 WHITEOUT_DEV);
9074
9075 ret = btrfs_init_inode_security(trans, inode, dir,
9076 &dentry->d_name);
9077 if (ret)
9078 goto out;
9079
9080 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9081 BTRFS_I(inode), 0, index);
9082 if (ret)
9083 goto out;
9084
9085 ret = btrfs_update_inode(trans, root, inode);
9086 out:
9087 unlock_new_inode(inode);
9088 if (ret)
9089 inode_dec_link_count(inode);
9090 iput(inode);
9091
9092 return ret;
9093 }
9094
9095 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9096 struct inode *new_dir, struct dentry *new_dentry,
9097 unsigned int flags)
9098 {
9099 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9100 struct btrfs_trans_handle *trans;
9101 unsigned int trans_num_items;
9102 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9103 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9104 struct inode *new_inode = d_inode(new_dentry);
9105 struct inode *old_inode = d_inode(old_dentry);
9106 u64 index = 0;
9107 int ret;
9108 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9109 bool log_pinned = false;
9110 struct btrfs_log_ctx ctx;
9111 bool sync_log = false;
9112 bool commit_transaction = false;
9113
9114 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9115 return -EPERM;
9116
9117 /* we only allow rename subvolume link between subvolumes */
9118 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9119 return -EXDEV;
9120
9121 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9122 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9123 return -ENOTEMPTY;
9124
9125 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9126 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9127 return -ENOTEMPTY;
9128
9129
9130 /* check for collisions, even if the name isn't there */
9131 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9132 new_dentry->d_name.name,
9133 new_dentry->d_name.len);
9134
9135 if (ret) {
9136 if (ret == -EEXIST) {
9137 /* we shouldn't get
9138 * eexist without a new_inode */
9139 if (WARN_ON(!new_inode)) {
9140 return ret;
9141 }
9142 } else {
9143 /* maybe -EOVERFLOW */
9144 return ret;
9145 }
9146 }
9147 ret = 0;
9148
9149 /*
9150 * we're using rename to replace one file with another. Start IO on it
9151 * now so we don't add too much work to the end of the transaction
9152 */
9153 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9154 filemap_flush(old_inode->i_mapping);
9155
9156 /* close the racy window with snapshot create/destroy ioctl */
9157 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9158 down_read(&fs_info->subvol_sem);
9159 /*
9160 * We want to reserve the absolute worst case amount of items. So if
9161 * both inodes are subvols and we need to unlink them then that would
9162 * require 4 item modifications, but if they are both normal inodes it
9163 * would require 5 item modifications, so we'll assume they are normal
9164 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9165 * should cover the worst case number of items we'll modify.
9166 * If our rename has the whiteout flag, we need more 5 units for the
9167 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9168 * when selinux is enabled).
9169 */
9170 trans_num_items = 11;
9171 if (flags & RENAME_WHITEOUT)
9172 trans_num_items += 5;
9173 trans = btrfs_start_transaction(root, trans_num_items);
9174 if (IS_ERR(trans)) {
9175 ret = PTR_ERR(trans);
9176 goto out_notrans;
9177 }
9178
9179 if (dest != root)
9180 btrfs_record_root_in_trans(trans, dest);
9181
9182 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9183 if (ret)
9184 goto out_fail;
9185
9186 BTRFS_I(old_inode)->dir_index = 0ULL;
9187 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9188 /* force full log commit if subvolume involved. */
9189 btrfs_set_log_full_commit(trans);
9190 } else {
9191 btrfs_pin_log_trans(root);
9192 log_pinned = true;
9193 ret = btrfs_insert_inode_ref(trans, dest,
9194 new_dentry->d_name.name,
9195 new_dentry->d_name.len,
9196 old_ino,
9197 btrfs_ino(BTRFS_I(new_dir)), index);
9198 if (ret)
9199 goto out_fail;
9200 }
9201
9202 inode_inc_iversion(old_dir);
9203 inode_inc_iversion(new_dir);
9204 inode_inc_iversion(old_inode);
9205 old_dir->i_ctime = old_dir->i_mtime =
9206 new_dir->i_ctime = new_dir->i_mtime =
9207 old_inode->i_ctime = current_time(old_dir);
9208
9209 if (old_dentry->d_parent != new_dentry->d_parent)
9210 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9211 BTRFS_I(old_inode), 1);
9212
9213 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9214 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9215 } else {
9216 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9217 BTRFS_I(d_inode(old_dentry)),
9218 old_dentry->d_name.name,
9219 old_dentry->d_name.len);
9220 if (!ret)
9221 ret = btrfs_update_inode(trans, root, old_inode);
9222 }
9223 if (ret) {
9224 btrfs_abort_transaction(trans, ret);
9225 goto out_fail;
9226 }
9227
9228 if (new_inode) {
9229 inode_inc_iversion(new_inode);
9230 new_inode->i_ctime = current_time(new_inode);
9231 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9232 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9233 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9234 BUG_ON(new_inode->i_nlink == 0);
9235 } else {
9236 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9237 BTRFS_I(d_inode(new_dentry)),
9238 new_dentry->d_name.name,
9239 new_dentry->d_name.len);
9240 }
9241 if (!ret && new_inode->i_nlink == 0)
9242 ret = btrfs_orphan_add(trans,
9243 BTRFS_I(d_inode(new_dentry)));
9244 if (ret) {
9245 btrfs_abort_transaction(trans, ret);
9246 goto out_fail;
9247 }
9248 }
9249
9250 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9251 new_dentry->d_name.name,
9252 new_dentry->d_name.len, 0, index);
9253 if (ret) {
9254 btrfs_abort_transaction(trans, ret);
9255 goto out_fail;
9256 }
9257
9258 if (old_inode->i_nlink == 1)
9259 BTRFS_I(old_inode)->dir_index = index;
9260
9261 if (log_pinned) {
9262 struct dentry *parent = new_dentry->d_parent;
9263
9264 btrfs_init_log_ctx(&ctx, old_inode);
9265 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9266 BTRFS_I(old_dir), parent,
9267 false, &ctx);
9268 if (ret == BTRFS_NEED_LOG_SYNC)
9269 sync_log = true;
9270 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9271 commit_transaction = true;
9272 ret = 0;
9273 btrfs_end_log_trans(root);
9274 log_pinned = false;
9275 }
9276
9277 if (flags & RENAME_WHITEOUT) {
9278 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9279 old_dentry);
9280
9281 if (ret) {
9282 btrfs_abort_transaction(trans, ret);
9283 goto out_fail;
9284 }
9285 }
9286 out_fail:
9287 /*
9288 * If we have pinned the log and an error happened, we unpin tasks
9289 * trying to sync the log and force them to fallback to a transaction
9290 * commit if the log currently contains any of the inodes involved in
9291 * this rename operation (to ensure we do not persist a log with an
9292 * inconsistent state for any of these inodes or leading to any
9293 * inconsistencies when replayed). If the transaction was aborted, the
9294 * abortion reason is propagated to userspace when attempting to commit
9295 * the transaction. If the log does not contain any of these inodes, we
9296 * allow the tasks to sync it.
9297 */
9298 if (ret && log_pinned) {
9299 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9300 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9301 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9302 (new_inode &&
9303 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9304 btrfs_set_log_full_commit(trans);
9305
9306 btrfs_end_log_trans(root);
9307 log_pinned = false;
9308 }
9309 if (!ret && sync_log) {
9310 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9311 if (ret)
9312 commit_transaction = true;
9313 } else if (sync_log) {
9314 mutex_lock(&root->log_mutex);
9315 list_del(&ctx.list);
9316 mutex_unlock(&root->log_mutex);
9317 }
9318 if (commit_transaction) {
9319 ret = btrfs_commit_transaction(trans);
9320 } else {
9321 int ret2;
9322
9323 ret2 = btrfs_end_transaction(trans);
9324 ret = ret ? ret : ret2;
9325 }
9326 out_notrans:
9327 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9328 up_read(&fs_info->subvol_sem);
9329
9330 return ret;
9331 }
9332
9333 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9334 struct inode *new_dir, struct dentry *new_dentry,
9335 unsigned int flags)
9336 {
9337 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9338 return -EINVAL;
9339
9340 if (flags & RENAME_EXCHANGE)
9341 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9342 new_dentry);
9343
9344 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9345 }
9346
9347 struct btrfs_delalloc_work {
9348 struct inode *inode;
9349 struct completion completion;
9350 struct list_head list;
9351 struct btrfs_work work;
9352 };
9353
9354 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9355 {
9356 struct btrfs_delalloc_work *delalloc_work;
9357 struct inode *inode;
9358
9359 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9360 work);
9361 inode = delalloc_work->inode;
9362 filemap_flush(inode->i_mapping);
9363 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9364 &BTRFS_I(inode)->runtime_flags))
9365 filemap_flush(inode->i_mapping);
9366
9367 iput(inode);
9368 complete(&delalloc_work->completion);
9369 }
9370
9371 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9372 {
9373 struct btrfs_delalloc_work *work;
9374
9375 work = kmalloc(sizeof(*work), GFP_NOFS);
9376 if (!work)
9377 return NULL;
9378
9379 init_completion(&work->completion);
9380 INIT_LIST_HEAD(&work->list);
9381 work->inode = inode;
9382 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9383
9384 return work;
9385 }
9386
9387 /*
9388 * some fairly slow code that needs optimization. This walks the list
9389 * of all the inodes with pending delalloc and forces them to disk.
9390 */
9391 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9392 {
9393 struct btrfs_inode *binode;
9394 struct inode *inode;
9395 struct btrfs_delalloc_work *work, *next;
9396 struct list_head works;
9397 struct list_head splice;
9398 int ret = 0;
9399
9400 INIT_LIST_HEAD(&works);
9401 INIT_LIST_HEAD(&splice);
9402
9403 mutex_lock(&root->delalloc_mutex);
9404 spin_lock(&root->delalloc_lock);
9405 list_splice_init(&root->delalloc_inodes, &splice);
9406 while (!list_empty(&splice)) {
9407 binode = list_entry(splice.next, struct btrfs_inode,
9408 delalloc_inodes);
9409
9410 list_move_tail(&binode->delalloc_inodes,
9411 &root->delalloc_inodes);
9412 inode = igrab(&binode->vfs_inode);
9413 if (!inode) {
9414 cond_resched_lock(&root->delalloc_lock);
9415 continue;
9416 }
9417 spin_unlock(&root->delalloc_lock);
9418
9419 if (snapshot)
9420 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9421 &binode->runtime_flags);
9422 work = btrfs_alloc_delalloc_work(inode);
9423 if (!work) {
9424 iput(inode);
9425 ret = -ENOMEM;
9426 goto out;
9427 }
9428 list_add_tail(&work->list, &works);
9429 btrfs_queue_work(root->fs_info->flush_workers,
9430 &work->work);
9431 ret++;
9432 if (nr != -1 && ret >= nr)
9433 goto out;
9434 cond_resched();
9435 spin_lock(&root->delalloc_lock);
9436 }
9437 spin_unlock(&root->delalloc_lock);
9438
9439 out:
9440 list_for_each_entry_safe(work, next, &works, list) {
9441 list_del_init(&work->list);
9442 wait_for_completion(&work->completion);
9443 kfree(work);
9444 }
9445
9446 if (!list_empty(&splice)) {
9447 spin_lock(&root->delalloc_lock);
9448 list_splice_tail(&splice, &root->delalloc_inodes);
9449 spin_unlock(&root->delalloc_lock);
9450 }
9451 mutex_unlock(&root->delalloc_mutex);
9452 return ret;
9453 }
9454
9455 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9456 {
9457 struct btrfs_fs_info *fs_info = root->fs_info;
9458 int ret;
9459
9460 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9461 return -EROFS;
9462
9463 ret = start_delalloc_inodes(root, -1, true);
9464 if (ret > 0)
9465 ret = 0;
9466 return ret;
9467 }
9468
9469 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
9470 {
9471 struct btrfs_root *root;
9472 struct list_head splice;
9473 int ret;
9474
9475 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9476 return -EROFS;
9477
9478 INIT_LIST_HEAD(&splice);
9479
9480 mutex_lock(&fs_info->delalloc_root_mutex);
9481 spin_lock(&fs_info->delalloc_root_lock);
9482 list_splice_init(&fs_info->delalloc_roots, &splice);
9483 while (!list_empty(&splice) && nr) {
9484 root = list_first_entry(&splice, struct btrfs_root,
9485 delalloc_root);
9486 root = btrfs_grab_root(root);
9487 BUG_ON(!root);
9488 list_move_tail(&root->delalloc_root,
9489 &fs_info->delalloc_roots);
9490 spin_unlock(&fs_info->delalloc_root_lock);
9491
9492 ret = start_delalloc_inodes(root, nr, false);
9493 btrfs_put_root(root);
9494 if (ret < 0)
9495 goto out;
9496
9497 if (nr != -1) {
9498 nr -= ret;
9499 WARN_ON(nr < 0);
9500 }
9501 spin_lock(&fs_info->delalloc_root_lock);
9502 }
9503 spin_unlock(&fs_info->delalloc_root_lock);
9504
9505 ret = 0;
9506 out:
9507 if (!list_empty(&splice)) {
9508 spin_lock(&fs_info->delalloc_root_lock);
9509 list_splice_tail(&splice, &fs_info->delalloc_roots);
9510 spin_unlock(&fs_info->delalloc_root_lock);
9511 }
9512 mutex_unlock(&fs_info->delalloc_root_mutex);
9513 return ret;
9514 }
9515
9516 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9517 const char *symname)
9518 {
9519 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9520 struct btrfs_trans_handle *trans;
9521 struct btrfs_root *root = BTRFS_I(dir)->root;
9522 struct btrfs_path *path;
9523 struct btrfs_key key;
9524 struct inode *inode = NULL;
9525 int err;
9526 u64 objectid;
9527 u64 index = 0;
9528 int name_len;
9529 int datasize;
9530 unsigned long ptr;
9531 struct btrfs_file_extent_item *ei;
9532 struct extent_buffer *leaf;
9533
9534 name_len = strlen(symname);
9535 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9536 return -ENAMETOOLONG;
9537
9538 /*
9539 * 2 items for inode item and ref
9540 * 2 items for dir items
9541 * 1 item for updating parent inode item
9542 * 1 item for the inline extent item
9543 * 1 item for xattr if selinux is on
9544 */
9545 trans = btrfs_start_transaction(root, 7);
9546 if (IS_ERR(trans))
9547 return PTR_ERR(trans);
9548
9549 err = btrfs_find_free_ino(root, &objectid);
9550 if (err)
9551 goto out_unlock;
9552
9553 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9554 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9555 objectid, S_IFLNK|S_IRWXUGO, &index);
9556 if (IS_ERR(inode)) {
9557 err = PTR_ERR(inode);
9558 inode = NULL;
9559 goto out_unlock;
9560 }
9561
9562 /*
9563 * If the active LSM wants to access the inode during
9564 * d_instantiate it needs these. Smack checks to see
9565 * if the filesystem supports xattrs by looking at the
9566 * ops vector.
9567 */
9568 inode->i_fop = &btrfs_file_operations;
9569 inode->i_op = &btrfs_file_inode_operations;
9570 inode->i_mapping->a_ops = &btrfs_aops;
9571 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9572
9573 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9574 if (err)
9575 goto out_unlock;
9576
9577 path = btrfs_alloc_path();
9578 if (!path) {
9579 err = -ENOMEM;
9580 goto out_unlock;
9581 }
9582 key.objectid = btrfs_ino(BTRFS_I(inode));
9583 key.offset = 0;
9584 key.type = BTRFS_EXTENT_DATA_KEY;
9585 datasize = btrfs_file_extent_calc_inline_size(name_len);
9586 err = btrfs_insert_empty_item(trans, root, path, &key,
9587 datasize);
9588 if (err) {
9589 btrfs_free_path(path);
9590 goto out_unlock;
9591 }
9592 leaf = path->nodes[0];
9593 ei = btrfs_item_ptr(leaf, path->slots[0],
9594 struct btrfs_file_extent_item);
9595 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9596 btrfs_set_file_extent_type(leaf, ei,
9597 BTRFS_FILE_EXTENT_INLINE);
9598 btrfs_set_file_extent_encryption(leaf, ei, 0);
9599 btrfs_set_file_extent_compression(leaf, ei, 0);
9600 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9601 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9602
9603 ptr = btrfs_file_extent_inline_start(ei);
9604 write_extent_buffer(leaf, symname, ptr, name_len);
9605 btrfs_mark_buffer_dirty(leaf);
9606 btrfs_free_path(path);
9607
9608 inode->i_op = &btrfs_symlink_inode_operations;
9609 inode_nohighmem(inode);
9610 inode_set_bytes(inode, name_len);
9611 btrfs_i_size_write(BTRFS_I(inode), name_len);
9612 err = btrfs_update_inode(trans, root, inode);
9613 /*
9614 * Last step, add directory indexes for our symlink inode. This is the
9615 * last step to avoid extra cleanup of these indexes if an error happens
9616 * elsewhere above.
9617 */
9618 if (!err)
9619 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9620 BTRFS_I(inode), 0, index);
9621 if (err)
9622 goto out_unlock;
9623
9624 d_instantiate_new(dentry, inode);
9625
9626 out_unlock:
9627 btrfs_end_transaction(trans);
9628 if (err && inode) {
9629 inode_dec_link_count(inode);
9630 discard_new_inode(inode);
9631 }
9632 btrfs_btree_balance_dirty(fs_info);
9633 return err;
9634 }
9635
9636 static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9637 struct inode *inode, struct btrfs_key *ins,
9638 u64 file_offset)
9639 {
9640 struct btrfs_file_extent_item stack_fi;
9641 u64 start = ins->objectid;
9642 u64 len = ins->offset;
9643 int ret;
9644
9645 memset(&stack_fi, 0, sizeof(stack_fi));
9646
9647 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9648 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9649 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9650 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9651 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9652 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9653 /* Encryption and other encoding is reserved and all 0 */
9654
9655 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9656 if (ret < 0)
9657 return ret;
9658 return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9659 &stack_fi, ret);
9660 }
9661 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9662 u64 start, u64 num_bytes, u64 min_size,
9663 loff_t actual_len, u64 *alloc_hint,
9664 struct btrfs_trans_handle *trans)
9665 {
9666 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9668 struct extent_map *em;
9669 struct btrfs_root *root = BTRFS_I(inode)->root;
9670 struct btrfs_key ins;
9671 u64 cur_offset = start;
9672 u64 clear_offset = start;
9673 u64 i_size;
9674 u64 cur_bytes;
9675 u64 last_alloc = (u64)-1;
9676 int ret = 0;
9677 bool own_trans = true;
9678 u64 end = start + num_bytes - 1;
9679
9680 if (trans)
9681 own_trans = false;
9682 while (num_bytes > 0) {
9683 if (own_trans) {
9684 trans = btrfs_start_transaction(root, 3);
9685 if (IS_ERR(trans)) {
9686 ret = PTR_ERR(trans);
9687 break;
9688 }
9689 }
9690
9691 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9692 cur_bytes = max(cur_bytes, min_size);
9693 /*
9694 * If we are severely fragmented we could end up with really
9695 * small allocations, so if the allocator is returning small
9696 * chunks lets make its job easier by only searching for those
9697 * sized chunks.
9698 */
9699 cur_bytes = min(cur_bytes, last_alloc);
9700 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9701 min_size, 0, *alloc_hint, &ins, 1, 0);
9702 if (ret) {
9703 if (own_trans)
9704 btrfs_end_transaction(trans);
9705 break;
9706 }
9707
9708 /*
9709 * We've reserved this space, and thus converted it from
9710 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9711 * from here on out we will only need to clear our reservation
9712 * for the remaining unreserved area, so advance our
9713 * clear_offset by our extent size.
9714 */
9715 clear_offset += ins.offset;
9716 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9717
9718 last_alloc = ins.offset;
9719 ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9720 if (ret) {
9721 btrfs_free_reserved_extent(fs_info, ins.objectid,
9722 ins.offset, 0);
9723 btrfs_abort_transaction(trans, ret);
9724 if (own_trans)
9725 btrfs_end_transaction(trans);
9726 break;
9727 }
9728
9729 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9730 cur_offset + ins.offset -1, 0);
9731
9732 em = alloc_extent_map();
9733 if (!em) {
9734 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9735 &BTRFS_I(inode)->runtime_flags);
9736 goto next;
9737 }
9738
9739 em->start = cur_offset;
9740 em->orig_start = cur_offset;
9741 em->len = ins.offset;
9742 em->block_start = ins.objectid;
9743 em->block_len = ins.offset;
9744 em->orig_block_len = ins.offset;
9745 em->ram_bytes = ins.offset;
9746 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9747 em->generation = trans->transid;
9748
9749 while (1) {
9750 write_lock(&em_tree->lock);
9751 ret = add_extent_mapping(em_tree, em, 1);
9752 write_unlock(&em_tree->lock);
9753 if (ret != -EEXIST)
9754 break;
9755 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9756 cur_offset + ins.offset - 1,
9757 0);
9758 }
9759 free_extent_map(em);
9760 next:
9761 num_bytes -= ins.offset;
9762 cur_offset += ins.offset;
9763 *alloc_hint = ins.objectid + ins.offset;
9764
9765 inode_inc_iversion(inode);
9766 inode->i_ctime = current_time(inode);
9767 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9768 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9769 (actual_len > inode->i_size) &&
9770 (cur_offset > inode->i_size)) {
9771 if (cur_offset > actual_len)
9772 i_size = actual_len;
9773 else
9774 i_size = cur_offset;
9775 i_size_write(inode, i_size);
9776 btrfs_inode_safe_disk_i_size_write(inode, 0);
9777 }
9778
9779 ret = btrfs_update_inode(trans, root, inode);
9780
9781 if (ret) {
9782 btrfs_abort_transaction(trans, ret);
9783 if (own_trans)
9784 btrfs_end_transaction(trans);
9785 break;
9786 }
9787
9788 if (own_trans)
9789 btrfs_end_transaction(trans);
9790 }
9791 if (clear_offset < end)
9792 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9793 end - clear_offset + 1);
9794 return ret;
9795 }
9796
9797 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9798 u64 start, u64 num_bytes, u64 min_size,
9799 loff_t actual_len, u64 *alloc_hint)
9800 {
9801 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9802 min_size, actual_len, alloc_hint,
9803 NULL);
9804 }
9805
9806 int btrfs_prealloc_file_range_trans(struct inode *inode,
9807 struct btrfs_trans_handle *trans, int mode,
9808 u64 start, u64 num_bytes, u64 min_size,
9809 loff_t actual_len, u64 *alloc_hint)
9810 {
9811 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9812 min_size, actual_len, alloc_hint, trans);
9813 }
9814
9815 static int btrfs_set_page_dirty(struct page *page)
9816 {
9817 return __set_page_dirty_nobuffers(page);
9818 }
9819
9820 static int btrfs_permission(struct inode *inode, int mask)
9821 {
9822 struct btrfs_root *root = BTRFS_I(inode)->root;
9823 umode_t mode = inode->i_mode;
9824
9825 if (mask & MAY_WRITE &&
9826 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9827 if (btrfs_root_readonly(root))
9828 return -EROFS;
9829 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9830 return -EACCES;
9831 }
9832 return generic_permission(inode, mask);
9833 }
9834
9835 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9836 {
9837 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9838 struct btrfs_trans_handle *trans;
9839 struct btrfs_root *root = BTRFS_I(dir)->root;
9840 struct inode *inode = NULL;
9841 u64 objectid;
9842 u64 index;
9843 int ret = 0;
9844
9845 /*
9846 * 5 units required for adding orphan entry
9847 */
9848 trans = btrfs_start_transaction(root, 5);
9849 if (IS_ERR(trans))
9850 return PTR_ERR(trans);
9851
9852 ret = btrfs_find_free_ino(root, &objectid);
9853 if (ret)
9854 goto out;
9855
9856 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9857 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9858 if (IS_ERR(inode)) {
9859 ret = PTR_ERR(inode);
9860 inode = NULL;
9861 goto out;
9862 }
9863
9864 inode->i_fop = &btrfs_file_operations;
9865 inode->i_op = &btrfs_file_inode_operations;
9866
9867 inode->i_mapping->a_ops = &btrfs_aops;
9868 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9869
9870 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9871 if (ret)
9872 goto out;
9873
9874 ret = btrfs_update_inode(trans, root, inode);
9875 if (ret)
9876 goto out;
9877 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9878 if (ret)
9879 goto out;
9880
9881 /*
9882 * We set number of links to 0 in btrfs_new_inode(), and here we set
9883 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9884 * through:
9885 *
9886 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9887 */
9888 set_nlink(inode, 1);
9889 d_tmpfile(dentry, inode);
9890 unlock_new_inode(inode);
9891 mark_inode_dirty(inode);
9892 out:
9893 btrfs_end_transaction(trans);
9894 if (ret && inode)
9895 discard_new_inode(inode);
9896 btrfs_btree_balance_dirty(fs_info);
9897 return ret;
9898 }
9899
9900 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9901 {
9902 struct inode *inode = tree->private_data;
9903 unsigned long index = start >> PAGE_SHIFT;
9904 unsigned long end_index = end >> PAGE_SHIFT;
9905 struct page *page;
9906
9907 while (index <= end_index) {
9908 page = find_get_page(inode->i_mapping, index);
9909 ASSERT(page); /* Pages should be in the extent_io_tree */
9910 set_page_writeback(page);
9911 put_page(page);
9912 index++;
9913 }
9914 }
9915
9916 #ifdef CONFIG_SWAP
9917 /*
9918 * Add an entry indicating a block group or device which is pinned by a
9919 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9920 * negative errno on failure.
9921 */
9922 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9923 bool is_block_group)
9924 {
9925 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9926 struct btrfs_swapfile_pin *sp, *entry;
9927 struct rb_node **p;
9928 struct rb_node *parent = NULL;
9929
9930 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9931 if (!sp)
9932 return -ENOMEM;
9933 sp->ptr = ptr;
9934 sp->inode = inode;
9935 sp->is_block_group = is_block_group;
9936
9937 spin_lock(&fs_info->swapfile_pins_lock);
9938 p = &fs_info->swapfile_pins.rb_node;
9939 while (*p) {
9940 parent = *p;
9941 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9942 if (sp->ptr < entry->ptr ||
9943 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9944 p = &(*p)->rb_left;
9945 } else if (sp->ptr > entry->ptr ||
9946 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9947 p = &(*p)->rb_right;
9948 } else {
9949 spin_unlock(&fs_info->swapfile_pins_lock);
9950 kfree(sp);
9951 return 1;
9952 }
9953 }
9954 rb_link_node(&sp->node, parent, p);
9955 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9956 spin_unlock(&fs_info->swapfile_pins_lock);
9957 return 0;
9958 }
9959
9960 /* Free all of the entries pinned by this swapfile. */
9961 static void btrfs_free_swapfile_pins(struct inode *inode)
9962 {
9963 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9964 struct btrfs_swapfile_pin *sp;
9965 struct rb_node *node, *next;
9966
9967 spin_lock(&fs_info->swapfile_pins_lock);
9968 node = rb_first(&fs_info->swapfile_pins);
9969 while (node) {
9970 next = rb_next(node);
9971 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9972 if (sp->inode == inode) {
9973 rb_erase(&sp->node, &fs_info->swapfile_pins);
9974 if (sp->is_block_group)
9975 btrfs_put_block_group(sp->ptr);
9976 kfree(sp);
9977 }
9978 node = next;
9979 }
9980 spin_unlock(&fs_info->swapfile_pins_lock);
9981 }
9982
9983 struct btrfs_swap_info {
9984 u64 start;
9985 u64 block_start;
9986 u64 block_len;
9987 u64 lowest_ppage;
9988 u64 highest_ppage;
9989 unsigned long nr_pages;
9990 int nr_extents;
9991 };
9992
9993 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9994 struct btrfs_swap_info *bsi)
9995 {
9996 unsigned long nr_pages;
9997 u64 first_ppage, first_ppage_reported, next_ppage;
9998 int ret;
9999
10000 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10001 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10002 PAGE_SIZE) >> PAGE_SHIFT;
10003
10004 if (first_ppage >= next_ppage)
10005 return 0;
10006 nr_pages = next_ppage - first_ppage;
10007
10008 first_ppage_reported = first_ppage;
10009 if (bsi->start == 0)
10010 first_ppage_reported++;
10011 if (bsi->lowest_ppage > first_ppage_reported)
10012 bsi->lowest_ppage = first_ppage_reported;
10013 if (bsi->highest_ppage < (next_ppage - 1))
10014 bsi->highest_ppage = next_ppage - 1;
10015
10016 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10017 if (ret < 0)
10018 return ret;
10019 bsi->nr_extents += ret;
10020 bsi->nr_pages += nr_pages;
10021 return 0;
10022 }
10023
10024 static void btrfs_swap_deactivate(struct file *file)
10025 {
10026 struct inode *inode = file_inode(file);
10027
10028 btrfs_free_swapfile_pins(inode);
10029 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10030 }
10031
10032 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10033 sector_t *span)
10034 {
10035 struct inode *inode = file_inode(file);
10036 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10037 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10038 struct extent_state *cached_state = NULL;
10039 struct extent_map *em = NULL;
10040 struct btrfs_device *device = NULL;
10041 struct btrfs_swap_info bsi = {
10042 .lowest_ppage = (sector_t)-1ULL,
10043 };
10044 int ret = 0;
10045 u64 isize;
10046 u64 start;
10047
10048 /*
10049 * If the swap file was just created, make sure delalloc is done. If the
10050 * file changes again after this, the user is doing something stupid and
10051 * we don't really care.
10052 */
10053 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10054 if (ret)
10055 return ret;
10056
10057 /*
10058 * The inode is locked, so these flags won't change after we check them.
10059 */
10060 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10061 btrfs_warn(fs_info, "swapfile must not be compressed");
10062 return -EINVAL;
10063 }
10064 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10065 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10066 return -EINVAL;
10067 }
10068 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10069 btrfs_warn(fs_info, "swapfile must not be checksummed");
10070 return -EINVAL;
10071 }
10072
10073 /*
10074 * Balance or device remove/replace/resize can move stuff around from
10075 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10076 * concurrently while we are mapping the swap extents, and
10077 * fs_info->swapfile_pins prevents them from running while the swap file
10078 * is active and moving the extents. Note that this also prevents a
10079 * concurrent device add which isn't actually necessary, but it's not
10080 * really worth the trouble to allow it.
10081 */
10082 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10083 btrfs_warn(fs_info,
10084 "cannot activate swapfile while exclusive operation is running");
10085 return -EBUSY;
10086 }
10087 /*
10088 * Snapshots can create extents which require COW even if NODATACOW is
10089 * set. We use this counter to prevent snapshots. We must increment it
10090 * before walking the extents because we don't want a concurrent
10091 * snapshot to run after we've already checked the extents.
10092 */
10093 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10094
10095 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10096
10097 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10098 start = 0;
10099 while (start < isize) {
10100 u64 logical_block_start, physical_block_start;
10101 struct btrfs_block_group *bg;
10102 u64 len = isize - start;
10103
10104 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10105 if (IS_ERR(em)) {
10106 ret = PTR_ERR(em);
10107 goto out;
10108 }
10109
10110 if (em->block_start == EXTENT_MAP_HOLE) {
10111 btrfs_warn(fs_info, "swapfile must not have holes");
10112 ret = -EINVAL;
10113 goto out;
10114 }
10115 if (em->block_start == EXTENT_MAP_INLINE) {
10116 /*
10117 * It's unlikely we'll ever actually find ourselves
10118 * here, as a file small enough to fit inline won't be
10119 * big enough to store more than the swap header, but in
10120 * case something changes in the future, let's catch it
10121 * here rather than later.
10122 */
10123 btrfs_warn(fs_info, "swapfile must not be inline");
10124 ret = -EINVAL;
10125 goto out;
10126 }
10127 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10128 btrfs_warn(fs_info, "swapfile must not be compressed");
10129 ret = -EINVAL;
10130 goto out;
10131 }
10132
10133 logical_block_start = em->block_start + (start - em->start);
10134 len = min(len, em->len - (start - em->start));
10135 free_extent_map(em);
10136 em = NULL;
10137
10138 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10139 if (ret < 0) {
10140 goto out;
10141 } else if (ret) {
10142 ret = 0;
10143 } else {
10144 btrfs_warn(fs_info,
10145 "swapfile must not be copy-on-write");
10146 ret = -EINVAL;
10147 goto out;
10148 }
10149
10150 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10151 if (IS_ERR(em)) {
10152 ret = PTR_ERR(em);
10153 goto out;
10154 }
10155
10156 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10157 btrfs_warn(fs_info,
10158 "swapfile must have single data profile");
10159 ret = -EINVAL;
10160 goto out;
10161 }
10162
10163 if (device == NULL) {
10164 device = em->map_lookup->stripes[0].dev;
10165 ret = btrfs_add_swapfile_pin(inode, device, false);
10166 if (ret == 1)
10167 ret = 0;
10168 else if (ret)
10169 goto out;
10170 } else if (device != em->map_lookup->stripes[0].dev) {
10171 btrfs_warn(fs_info, "swapfile must be on one device");
10172 ret = -EINVAL;
10173 goto out;
10174 }
10175
10176 physical_block_start = (em->map_lookup->stripes[0].physical +
10177 (logical_block_start - em->start));
10178 len = min(len, em->len - (logical_block_start - em->start));
10179 free_extent_map(em);
10180 em = NULL;
10181
10182 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10183 if (!bg) {
10184 btrfs_warn(fs_info,
10185 "could not find block group containing swapfile");
10186 ret = -EINVAL;
10187 goto out;
10188 }
10189
10190 ret = btrfs_add_swapfile_pin(inode, bg, true);
10191 if (ret) {
10192 btrfs_put_block_group(bg);
10193 if (ret == 1)
10194 ret = 0;
10195 else
10196 goto out;
10197 }
10198
10199 if (bsi.block_len &&
10200 bsi.block_start + bsi.block_len == physical_block_start) {
10201 bsi.block_len += len;
10202 } else {
10203 if (bsi.block_len) {
10204 ret = btrfs_add_swap_extent(sis, &bsi);
10205 if (ret)
10206 goto out;
10207 }
10208 bsi.start = start;
10209 bsi.block_start = physical_block_start;
10210 bsi.block_len = len;
10211 }
10212
10213 start += len;
10214 }
10215
10216 if (bsi.block_len)
10217 ret = btrfs_add_swap_extent(sis, &bsi);
10218
10219 out:
10220 if (!IS_ERR_OR_NULL(em))
10221 free_extent_map(em);
10222
10223 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10224
10225 if (ret)
10226 btrfs_swap_deactivate(file);
10227
10228 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10229
10230 if (ret)
10231 return ret;
10232
10233 if (device)
10234 sis->bdev = device->bdev;
10235 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10236 sis->max = bsi.nr_pages;
10237 sis->pages = bsi.nr_pages - 1;
10238 sis->highest_bit = bsi.nr_pages - 1;
10239 return bsi.nr_extents;
10240 }
10241 #else
10242 static void btrfs_swap_deactivate(struct file *file)
10243 {
10244 }
10245
10246 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10247 sector_t *span)
10248 {
10249 return -EOPNOTSUPP;
10250 }
10251 #endif
10252
10253 static const struct inode_operations btrfs_dir_inode_operations = {
10254 .getattr = btrfs_getattr,
10255 .lookup = btrfs_lookup,
10256 .create = btrfs_create,
10257 .unlink = btrfs_unlink,
10258 .link = btrfs_link,
10259 .mkdir = btrfs_mkdir,
10260 .rmdir = btrfs_rmdir,
10261 .rename = btrfs_rename2,
10262 .symlink = btrfs_symlink,
10263 .setattr = btrfs_setattr,
10264 .mknod = btrfs_mknod,
10265 .listxattr = btrfs_listxattr,
10266 .permission = btrfs_permission,
10267 .get_acl = btrfs_get_acl,
10268 .set_acl = btrfs_set_acl,
10269 .update_time = btrfs_update_time,
10270 .tmpfile = btrfs_tmpfile,
10271 };
10272
10273 static const struct file_operations btrfs_dir_file_operations = {
10274 .llseek = generic_file_llseek,
10275 .read = generic_read_dir,
10276 .iterate_shared = btrfs_real_readdir,
10277 .open = btrfs_opendir,
10278 .unlocked_ioctl = btrfs_ioctl,
10279 #ifdef CONFIG_COMPAT
10280 .compat_ioctl = btrfs_compat_ioctl,
10281 #endif
10282 .release = btrfs_release_file,
10283 .fsync = btrfs_sync_file,
10284 };
10285
10286 static const struct extent_io_ops btrfs_extent_io_ops = {
10287 /* mandatory callbacks */
10288 .submit_bio_hook = btrfs_submit_bio_hook,
10289 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10290 };
10291
10292 /*
10293 * btrfs doesn't support the bmap operation because swapfiles
10294 * use bmap to make a mapping of extents in the file. They assume
10295 * these extents won't change over the life of the file and they
10296 * use the bmap result to do IO directly to the drive.
10297 *
10298 * the btrfs bmap call would return logical addresses that aren't
10299 * suitable for IO and they also will change frequently as COW
10300 * operations happen. So, swapfile + btrfs == corruption.
10301 *
10302 * For now we're avoiding this by dropping bmap.
10303 */
10304 static const struct address_space_operations btrfs_aops = {
10305 .readpage = btrfs_readpage,
10306 .writepage = btrfs_writepage,
10307 .writepages = btrfs_writepages,
10308 .readahead = btrfs_readahead,
10309 .direct_IO = btrfs_direct_IO,
10310 .invalidatepage = btrfs_invalidatepage,
10311 .releasepage = btrfs_releasepage,
10312 #ifdef CONFIG_MIGRATION
10313 .migratepage = btrfs_migratepage,
10314 #endif
10315 .set_page_dirty = btrfs_set_page_dirty,
10316 .error_remove_page = generic_error_remove_page,
10317 .swap_activate = btrfs_swap_activate,
10318 .swap_deactivate = btrfs_swap_deactivate,
10319 };
10320
10321 static const struct inode_operations btrfs_file_inode_operations = {
10322 .getattr = btrfs_getattr,
10323 .setattr = btrfs_setattr,
10324 .listxattr = btrfs_listxattr,
10325 .permission = btrfs_permission,
10326 .fiemap = btrfs_fiemap,
10327 .get_acl = btrfs_get_acl,
10328 .set_acl = btrfs_set_acl,
10329 .update_time = btrfs_update_time,
10330 };
10331 static const struct inode_operations btrfs_special_inode_operations = {
10332 .getattr = btrfs_getattr,
10333 .setattr = btrfs_setattr,
10334 .permission = btrfs_permission,
10335 .listxattr = btrfs_listxattr,
10336 .get_acl = btrfs_get_acl,
10337 .set_acl = btrfs_set_acl,
10338 .update_time = btrfs_update_time,
10339 };
10340 static const struct inode_operations btrfs_symlink_inode_operations = {
10341 .get_link = page_get_link,
10342 .getattr = btrfs_getattr,
10343 .setattr = btrfs_setattr,
10344 .permission = btrfs_permission,
10345 .listxattr = btrfs_listxattr,
10346 .update_time = btrfs_update_time,
10347 };
10348
10349 const struct dentry_operations btrfs_dentry_operations = {
10350 .d_delete = btrfs_dentry_delete,
10351 };