]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/inode.c
Merge tag 'for-5.4/io_uring-2019-09-24' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52
53 struct btrfs_iget_args {
54 struct btrfs_key *location;
55 struct btrfs_root *root;
56 };
57
58 struct btrfs_dio_data {
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
62 int overwrite;
63 };
64
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 static const struct extent_io_ops btrfs_extent_io_ops;
73
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct inode *inode,
84 struct page *locked_page,
85 u64 start, u64 end, int *page_started,
86 unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
92
93 static void __endio_write_update_ordered(struct inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97 /*
98 * Cleanup all submitted ordered extents in specified range to handle errors
99 * from the btrfs_run_delalloc_range() callback.
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
105 * extent (btrfs_finish_ordered_io()).
106 */
107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
108 struct page *locked_page,
109 u64 offset, u64 bytes)
110 {
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
116 struct page *page;
117
118 while (index <= end_index) {
119 page = find_get_page(inode->i_mapping, index);
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
137 return __endio_write_update_ordered(inode, offset, bytes, false);
138 }
139
140 static int btrfs_dirty_inode(struct inode *inode);
141
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143 void btrfs_test_inode_set_ops(struct inode *inode)
144 {
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 }
147 #endif
148
149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
152 {
153 int err;
154
155 err = btrfs_init_acl(trans, inode, dir);
156 if (!err)
157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
158 return err;
159 }
160
161 /*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
166 static int insert_inline_extent(struct btrfs_trans_handle *trans,
167 struct btrfs_path *path, int extent_inserted,
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
170 int compress_type,
171 struct page **compressed_pages)
172 {
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
178 int ret;
179 size_t cur_size = size;
180 unsigned long offset;
181
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
185 if (compressed_size && compressed_pages)
186 cur_size = compressed_size;
187
188 inode_add_bytes(inode, size);
189
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
193
194 key.objectid = btrfs_ino(BTRFS_I(inode));
195 key.offset = start;
196 key.type = BTRFS_EXTENT_DATA_KEY;
197
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
202 if (ret)
203 goto fail;
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
215 if (compress_type != BTRFS_COMPRESS_NONE) {
216 struct page *cpage;
217 int i = 0;
218 while (compressed_size > 0) {
219 cpage = compressed_pages[i];
220 cur_size = min_t(unsigned long, compressed_size,
221 PAGE_SIZE);
222
223 kaddr = kmap_atomic(cpage);
224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
225 kunmap_atomic(kaddr);
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
232 compress_type);
233 } else {
234 page = find_get_page(inode->i_mapping,
235 start >> PAGE_SHIFT);
236 btrfs_set_file_extent_compression(leaf, ei, 0);
237 kaddr = kmap_atomic(page);
238 offset = offset_in_page(start);
239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
240 kunmap_atomic(kaddr);
241 put_page(page);
242 }
243 btrfs_mark_buffer_dirty(leaf);
244 btrfs_release_path(path);
245
246 /*
247 * we're an inline extent, so nobody can
248 * extend the file past i_size without locking
249 * a page we already have locked.
250 *
251 * We must do any isize and inode updates
252 * before we unlock the pages. Otherwise we
253 * could end up racing with unlink.
254 */
255 BTRFS_I(inode)->disk_i_size = inode->i_size;
256 ret = btrfs_update_inode(trans, root, inode);
257
258 fail:
259 return ret;
260 }
261
262
263 /*
264 * conditionally insert an inline extent into the file. This
265 * does the checks required to make sure the data is small enough
266 * to fit as an inline extent.
267 */
268 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
272 {
273 struct btrfs_root *root = BTRFS_I(inode)->root;
274 struct btrfs_fs_info *fs_info = root->fs_info;
275 struct btrfs_trans_handle *trans;
276 u64 isize = i_size_read(inode);
277 u64 actual_end = min(end + 1, isize);
278 u64 inline_len = actual_end - start;
279 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
280 u64 data_len = inline_len;
281 int ret;
282 struct btrfs_path *path;
283 int extent_inserted = 0;
284 u32 extent_item_size;
285
286 if (compressed_size)
287 data_len = compressed_size;
288
289 if (start > 0 ||
290 actual_end > fs_info->sectorsize ||
291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
292 (!compressed_size &&
293 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
294 end + 1 < isize ||
295 data_len > fs_info->max_inline) {
296 return 1;
297 }
298
299 path = btrfs_alloc_path();
300 if (!path)
301 return -ENOMEM;
302
303 trans = btrfs_join_transaction(root);
304 if (IS_ERR(trans)) {
305 btrfs_free_path(path);
306 return PTR_ERR(trans);
307 }
308 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
309
310 if (compressed_size && compressed_pages)
311 extent_item_size = btrfs_file_extent_calc_inline_size(
312 compressed_size);
313 else
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 inline_len);
316
317 ret = __btrfs_drop_extents(trans, root, inode, path,
318 start, aligned_end, NULL,
319 1, 1, extent_item_size, &extent_inserted);
320 if (ret) {
321 btrfs_abort_transaction(trans, ret);
322 goto out;
323 }
324
325 if (isize > actual_end)
326 inline_len = min_t(u64, isize, actual_end);
327 ret = insert_inline_extent(trans, path, extent_inserted,
328 root, inode, start,
329 inline_len, compressed_size,
330 compress_type, compressed_pages);
331 if (ret && ret != -ENOSPC) {
332 btrfs_abort_transaction(trans, ret);
333 goto out;
334 } else if (ret == -ENOSPC) {
335 ret = 1;
336 goto out;
337 }
338
339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 btrfs_free_path(path);
350 btrfs_end_transaction(trans);
351 return ret;
352 }
353
354 struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
360 int compress_type;
361 struct list_head list;
362 };
363
364 struct async_chunk {
365 struct inode *inode;
366 struct page *locked_page;
367 u64 start;
368 u64 end;
369 unsigned int write_flags;
370 struct list_head extents;
371 struct btrfs_work work;
372 atomic_t *pending;
373 };
374
375 struct async_cow {
376 /* Number of chunks in flight; must be first in the structure */
377 atomic_t num_chunks;
378 struct async_chunk chunks[];
379 };
380
381 static noinline int add_async_extent(struct async_chunk *cow,
382 u64 start, u64 ram_size,
383 u64 compressed_size,
384 struct page **pages,
385 unsigned long nr_pages,
386 int compress_type)
387 {
388 struct async_extent *async_extent;
389
390 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 BUG_ON(!async_extent); /* -ENOMEM */
392 async_extent->start = start;
393 async_extent->ram_size = ram_size;
394 async_extent->compressed_size = compressed_size;
395 async_extent->pages = pages;
396 async_extent->nr_pages = nr_pages;
397 async_extent->compress_type = compress_type;
398 list_add_tail(&async_extent->list, &cow->extents);
399 return 0;
400 }
401
402 /*
403 * Check if the inode has flags compatible with compression
404 */
405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 return false;
410 return true;
411 }
412
413 /*
414 * Check if the inode needs to be submitted to compression, based on mount
415 * options, defragmentation, properties or heuristics.
416 */
417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420
421 if (!inode_can_compress(inode)) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 btrfs_ino(BTRFS_I(inode)));
425 return 0;
426 }
427 /* force compress */
428 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 return 1;
430 /* defrag ioctl */
431 if (BTRFS_I(inode)->defrag_compress)
432 return 1;
433 /* bad compression ratios */
434 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 return 0;
436 if (btrfs_test_opt(fs_info, COMPRESS) ||
437 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 BTRFS_I(inode)->prop_compress)
439 return btrfs_compress_heuristic(inode, start, end);
440 return 0;
441 }
442
443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 /* If this is a small write inside eof, kick off a defrag */
447 if (num_bytes < small_write &&
448 (start > 0 || end + 1 < inode->disk_i_size))
449 btrfs_add_inode_defrag(NULL, inode);
450 }
451
452 /*
453 * we create compressed extents in two phases. The first
454 * phase compresses a range of pages that have already been
455 * locked (both pages and state bits are locked).
456 *
457 * This is done inside an ordered work queue, and the compression
458 * is spread across many cpus. The actual IO submission is step
459 * two, and the ordered work queue takes care of making sure that
460 * happens in the same order things were put onto the queue by
461 * writepages and friends.
462 *
463 * If this code finds it can't get good compression, it puts an
464 * entry onto the work queue to write the uncompressed bytes. This
465 * makes sure that both compressed inodes and uncompressed inodes
466 * are written in the same order that the flusher thread sent them
467 * down.
468 */
469 static noinline int compress_file_range(struct async_chunk *async_chunk)
470 {
471 struct inode *inode = async_chunk->inode;
472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
473 u64 blocksize = fs_info->sectorsize;
474 u64 start = async_chunk->start;
475 u64 end = async_chunk->end;
476 u64 actual_end;
477 int ret = 0;
478 struct page **pages = NULL;
479 unsigned long nr_pages;
480 unsigned long total_compressed = 0;
481 unsigned long total_in = 0;
482 int i;
483 int will_compress;
484 int compress_type = fs_info->compress_type;
485 int compressed_extents = 0;
486 int redirty = 0;
487
488 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
489 SZ_16K);
490
491 actual_end = min_t(u64, i_size_read(inode), end + 1);
492 again:
493 will_compress = 0;
494 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
495 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
496 nr_pages = min_t(unsigned long, nr_pages,
497 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
498
499 /*
500 * we don't want to send crud past the end of i_size through
501 * compression, that's just a waste of CPU time. So, if the
502 * end of the file is before the start of our current
503 * requested range of bytes, we bail out to the uncompressed
504 * cleanup code that can deal with all of this.
505 *
506 * It isn't really the fastest way to fix things, but this is a
507 * very uncommon corner.
508 */
509 if (actual_end <= start)
510 goto cleanup_and_bail_uncompressed;
511
512 total_compressed = actual_end - start;
513
514 /*
515 * skip compression for a small file range(<=blocksize) that
516 * isn't an inline extent, since it doesn't save disk space at all.
517 */
518 if (total_compressed <= blocksize &&
519 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
520 goto cleanup_and_bail_uncompressed;
521
522 total_compressed = min_t(unsigned long, total_compressed,
523 BTRFS_MAX_UNCOMPRESSED);
524 total_in = 0;
525 ret = 0;
526
527 /*
528 * we do compression for mount -o compress and when the
529 * inode has not been flagged as nocompress. This flag can
530 * change at any time if we discover bad compression ratios.
531 */
532 if (inode_need_compress(inode, start, end)) {
533 WARN_ON(pages);
534 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
535 if (!pages) {
536 /* just bail out to the uncompressed code */
537 nr_pages = 0;
538 goto cont;
539 }
540
541 if (BTRFS_I(inode)->defrag_compress)
542 compress_type = BTRFS_I(inode)->defrag_compress;
543 else if (BTRFS_I(inode)->prop_compress)
544 compress_type = BTRFS_I(inode)->prop_compress;
545
546 /*
547 * we need to call clear_page_dirty_for_io on each
548 * page in the range. Otherwise applications with the file
549 * mmap'd can wander in and change the page contents while
550 * we are compressing them.
551 *
552 * If the compression fails for any reason, we set the pages
553 * dirty again later on.
554 *
555 * Note that the remaining part is redirtied, the start pointer
556 * has moved, the end is the original one.
557 */
558 if (!redirty) {
559 extent_range_clear_dirty_for_io(inode, start, end);
560 redirty = 1;
561 }
562
563 /* Compression level is applied here and only here */
564 ret = btrfs_compress_pages(
565 compress_type | (fs_info->compress_level << 4),
566 inode->i_mapping, start,
567 pages,
568 &nr_pages,
569 &total_in,
570 &total_compressed);
571
572 if (!ret) {
573 unsigned long offset = offset_in_page(total_compressed);
574 struct page *page = pages[nr_pages - 1];
575 char *kaddr;
576
577 /* zero the tail end of the last page, we might be
578 * sending it down to disk
579 */
580 if (offset) {
581 kaddr = kmap_atomic(page);
582 memset(kaddr + offset, 0,
583 PAGE_SIZE - offset);
584 kunmap_atomic(kaddr);
585 }
586 will_compress = 1;
587 }
588 }
589 cont:
590 if (start == 0) {
591 /* lets try to make an inline extent */
592 if (ret || total_in < actual_end) {
593 /* we didn't compress the entire range, try
594 * to make an uncompressed inline extent.
595 */
596 ret = cow_file_range_inline(inode, start, end, 0,
597 BTRFS_COMPRESS_NONE, NULL);
598 } else {
599 /* try making a compressed inline extent */
600 ret = cow_file_range_inline(inode, start, end,
601 total_compressed,
602 compress_type, pages);
603 }
604 if (ret <= 0) {
605 unsigned long clear_flags = EXTENT_DELALLOC |
606 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
607 EXTENT_DO_ACCOUNTING;
608 unsigned long page_error_op;
609
610 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
611
612 /*
613 * inline extent creation worked or returned error,
614 * we don't need to create any more async work items.
615 * Unlock and free up our temp pages.
616 *
617 * We use DO_ACCOUNTING here because we need the
618 * delalloc_release_metadata to be done _after_ we drop
619 * our outstanding extent for clearing delalloc for this
620 * range.
621 */
622 extent_clear_unlock_delalloc(inode, start, end, NULL,
623 clear_flags,
624 PAGE_UNLOCK |
625 PAGE_CLEAR_DIRTY |
626 PAGE_SET_WRITEBACK |
627 page_error_op |
628 PAGE_END_WRITEBACK);
629
630 for (i = 0; i < nr_pages; i++) {
631 WARN_ON(pages[i]->mapping);
632 put_page(pages[i]);
633 }
634 kfree(pages);
635
636 return 0;
637 }
638 }
639
640 if (will_compress) {
641 /*
642 * we aren't doing an inline extent round the compressed size
643 * up to a block size boundary so the allocator does sane
644 * things
645 */
646 total_compressed = ALIGN(total_compressed, blocksize);
647
648 /*
649 * one last check to make sure the compression is really a
650 * win, compare the page count read with the blocks on disk,
651 * compression must free at least one sector size
652 */
653 total_in = ALIGN(total_in, PAGE_SIZE);
654 if (total_compressed + blocksize <= total_in) {
655 compressed_extents++;
656
657 /*
658 * The async work queues will take care of doing actual
659 * allocation on disk for these compressed pages, and
660 * will submit them to the elevator.
661 */
662 add_async_extent(async_chunk, start, total_in,
663 total_compressed, pages, nr_pages,
664 compress_type);
665
666 if (start + total_in < end) {
667 start += total_in;
668 pages = NULL;
669 cond_resched();
670 goto again;
671 }
672 return compressed_extents;
673 }
674 }
675 if (pages) {
676 /*
677 * the compression code ran but failed to make things smaller,
678 * free any pages it allocated and our page pointer array
679 */
680 for (i = 0; i < nr_pages; i++) {
681 WARN_ON(pages[i]->mapping);
682 put_page(pages[i]);
683 }
684 kfree(pages);
685 pages = NULL;
686 total_compressed = 0;
687 nr_pages = 0;
688
689 /* flag the file so we don't compress in the future */
690 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
691 !(BTRFS_I(inode)->prop_compress)) {
692 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
693 }
694 }
695 cleanup_and_bail_uncompressed:
696 /*
697 * No compression, but we still need to write the pages in the file
698 * we've been given so far. redirty the locked page if it corresponds
699 * to our extent and set things up for the async work queue to run
700 * cow_file_range to do the normal delalloc dance.
701 */
702 if (page_offset(async_chunk->locked_page) >= start &&
703 page_offset(async_chunk->locked_page) <= end)
704 __set_page_dirty_nobuffers(async_chunk->locked_page);
705 /* unlocked later on in the async handlers */
706
707 if (redirty)
708 extent_range_redirty_for_io(inode, start, end);
709 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
710 BTRFS_COMPRESS_NONE);
711 compressed_extents++;
712
713 return compressed_extents;
714 }
715
716 static void free_async_extent_pages(struct async_extent *async_extent)
717 {
718 int i;
719
720 if (!async_extent->pages)
721 return;
722
723 for (i = 0; i < async_extent->nr_pages; i++) {
724 WARN_ON(async_extent->pages[i]->mapping);
725 put_page(async_extent->pages[i]);
726 }
727 kfree(async_extent->pages);
728 async_extent->nr_pages = 0;
729 async_extent->pages = NULL;
730 }
731
732 /*
733 * phase two of compressed writeback. This is the ordered portion
734 * of the code, which only gets called in the order the work was
735 * queued. We walk all the async extents created by compress_file_range
736 * and send them down to the disk.
737 */
738 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
739 {
740 struct inode *inode = async_chunk->inode;
741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
742 struct async_extent *async_extent;
743 u64 alloc_hint = 0;
744 struct btrfs_key ins;
745 struct extent_map *em;
746 struct btrfs_root *root = BTRFS_I(inode)->root;
747 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
748 int ret = 0;
749
750 again:
751 while (!list_empty(&async_chunk->extents)) {
752 async_extent = list_entry(async_chunk->extents.next,
753 struct async_extent, list);
754 list_del(&async_extent->list);
755
756 retry:
757 lock_extent(io_tree, async_extent->start,
758 async_extent->start + async_extent->ram_size - 1);
759 /* did the compression code fall back to uncompressed IO? */
760 if (!async_extent->pages) {
761 int page_started = 0;
762 unsigned long nr_written = 0;
763
764 /* allocate blocks */
765 ret = cow_file_range(inode, async_chunk->locked_page,
766 async_extent->start,
767 async_extent->start +
768 async_extent->ram_size - 1,
769 &page_started, &nr_written, 0);
770
771 /* JDM XXX */
772
773 /*
774 * if page_started, cow_file_range inserted an
775 * inline extent and took care of all the unlocking
776 * and IO for us. Otherwise, we need to submit
777 * all those pages down to the drive.
778 */
779 if (!page_started && !ret)
780 extent_write_locked_range(inode,
781 async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1,
784 WB_SYNC_ALL);
785 else if (ret)
786 unlock_page(async_chunk->locked_page);
787 kfree(async_extent);
788 cond_resched();
789 continue;
790 }
791
792 ret = btrfs_reserve_extent(root, async_extent->ram_size,
793 async_extent->compressed_size,
794 async_extent->compressed_size,
795 0, alloc_hint, &ins, 1, 1);
796 if (ret) {
797 free_async_extent_pages(async_extent);
798
799 if (ret == -ENOSPC) {
800 unlock_extent(io_tree, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1);
803
804 /*
805 * we need to redirty the pages if we decide to
806 * fallback to uncompressed IO, otherwise we
807 * will not submit these pages down to lower
808 * layers.
809 */
810 extent_range_redirty_for_io(inode,
811 async_extent->start,
812 async_extent->start +
813 async_extent->ram_size - 1);
814
815 goto retry;
816 }
817 goto out_free;
818 }
819 /*
820 * here we're doing allocation and writeback of the
821 * compressed pages
822 */
823 em = create_io_em(inode, async_extent->start,
824 async_extent->ram_size, /* len */
825 async_extent->start, /* orig_start */
826 ins.objectid, /* block_start */
827 ins.offset, /* block_len */
828 ins.offset, /* orig_block_len */
829 async_extent->ram_size, /* ram_bytes */
830 async_extent->compress_type,
831 BTRFS_ORDERED_COMPRESSED);
832 if (IS_ERR(em))
833 /* ret value is not necessary due to void function */
834 goto out_free_reserve;
835 free_extent_map(em);
836
837 ret = btrfs_add_ordered_extent_compress(inode,
838 async_extent->start,
839 ins.objectid,
840 async_extent->ram_size,
841 ins.offset,
842 BTRFS_ORDERED_COMPRESSED,
843 async_extent->compress_type);
844 if (ret) {
845 btrfs_drop_extent_cache(BTRFS_I(inode),
846 async_extent->start,
847 async_extent->start +
848 async_extent->ram_size - 1, 0);
849 goto out_free_reserve;
850 }
851 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
852
853 /*
854 * clear dirty, set writeback and unlock the pages.
855 */
856 extent_clear_unlock_delalloc(inode, async_extent->start,
857 async_extent->start +
858 async_extent->ram_size - 1,
859 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
860 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
861 PAGE_SET_WRITEBACK);
862 if (btrfs_submit_compressed_write(inode,
863 async_extent->start,
864 async_extent->ram_size,
865 ins.objectid,
866 ins.offset, async_extent->pages,
867 async_extent->nr_pages,
868 async_chunk->write_flags)) {
869 struct page *p = async_extent->pages[0];
870 const u64 start = async_extent->start;
871 const u64 end = start + async_extent->ram_size - 1;
872
873 p->mapping = inode->i_mapping;
874 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
875
876 p->mapping = NULL;
877 extent_clear_unlock_delalloc(inode, start, end,
878 NULL, 0,
879 PAGE_END_WRITEBACK |
880 PAGE_SET_ERROR);
881 free_async_extent_pages(async_extent);
882 }
883 alloc_hint = ins.objectid + ins.offset;
884 kfree(async_extent);
885 cond_resched();
886 }
887 return;
888 out_free_reserve:
889 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
890 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
891 out_free:
892 extent_clear_unlock_delalloc(inode, async_extent->start,
893 async_extent->start +
894 async_extent->ram_size - 1,
895 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
896 EXTENT_DELALLOC_NEW |
897 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
898 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
899 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
900 PAGE_SET_ERROR);
901 free_async_extent_pages(async_extent);
902 kfree(async_extent);
903 goto again;
904 }
905
906 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
907 u64 num_bytes)
908 {
909 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
910 struct extent_map *em;
911 u64 alloc_hint = 0;
912
913 read_lock(&em_tree->lock);
914 em = search_extent_mapping(em_tree, start, num_bytes);
915 if (em) {
916 /*
917 * if block start isn't an actual block number then find the
918 * first block in this inode and use that as a hint. If that
919 * block is also bogus then just don't worry about it.
920 */
921 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
922 free_extent_map(em);
923 em = search_extent_mapping(em_tree, 0, 0);
924 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
925 alloc_hint = em->block_start;
926 if (em)
927 free_extent_map(em);
928 } else {
929 alloc_hint = em->block_start;
930 free_extent_map(em);
931 }
932 }
933 read_unlock(&em_tree->lock);
934
935 return alloc_hint;
936 }
937
938 /*
939 * when extent_io.c finds a delayed allocation range in the file,
940 * the call backs end up in this code. The basic idea is to
941 * allocate extents on disk for the range, and create ordered data structs
942 * in ram to track those extents.
943 *
944 * locked_page is the page that writepage had locked already. We use
945 * it to make sure we don't do extra locks or unlocks.
946 *
947 * *page_started is set to one if we unlock locked_page and do everything
948 * required to start IO on it. It may be clean and already done with
949 * IO when we return.
950 */
951 static noinline int cow_file_range(struct inode *inode,
952 struct page *locked_page,
953 u64 start, u64 end, int *page_started,
954 unsigned long *nr_written, int unlock)
955 {
956 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
957 struct btrfs_root *root = BTRFS_I(inode)->root;
958 u64 alloc_hint = 0;
959 u64 num_bytes;
960 unsigned long ram_size;
961 u64 cur_alloc_size = 0;
962 u64 blocksize = fs_info->sectorsize;
963 struct btrfs_key ins;
964 struct extent_map *em;
965 unsigned clear_bits;
966 unsigned long page_ops;
967 bool extent_reserved = false;
968 int ret = 0;
969
970 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
971 WARN_ON_ONCE(1);
972 ret = -EINVAL;
973 goto out_unlock;
974 }
975
976 num_bytes = ALIGN(end - start + 1, blocksize);
977 num_bytes = max(blocksize, num_bytes);
978 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
979
980 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
981
982 if (start == 0) {
983 /* lets try to make an inline extent */
984 ret = cow_file_range_inline(inode, start, end, 0,
985 BTRFS_COMPRESS_NONE, NULL);
986 if (ret == 0) {
987 /*
988 * We use DO_ACCOUNTING here because we need the
989 * delalloc_release_metadata to be run _after_ we drop
990 * our outstanding extent for clearing delalloc for this
991 * range.
992 */
993 extent_clear_unlock_delalloc(inode, start, end, NULL,
994 EXTENT_LOCKED | EXTENT_DELALLOC |
995 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
996 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
997 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
998 PAGE_END_WRITEBACK);
999 *nr_written = *nr_written +
1000 (end - start + PAGE_SIZE) / PAGE_SIZE;
1001 *page_started = 1;
1002 goto out;
1003 } else if (ret < 0) {
1004 goto out_unlock;
1005 }
1006 }
1007
1008 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1009 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1010 start + num_bytes - 1, 0);
1011
1012 while (num_bytes > 0) {
1013 cur_alloc_size = num_bytes;
1014 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1015 fs_info->sectorsize, 0, alloc_hint,
1016 &ins, 1, 1);
1017 if (ret < 0)
1018 goto out_unlock;
1019 cur_alloc_size = ins.offset;
1020 extent_reserved = true;
1021
1022 ram_size = ins.offset;
1023 em = create_io_em(inode, start, ins.offset, /* len */
1024 start, /* orig_start */
1025 ins.objectid, /* block_start */
1026 ins.offset, /* block_len */
1027 ins.offset, /* orig_block_len */
1028 ram_size, /* ram_bytes */
1029 BTRFS_COMPRESS_NONE, /* compress_type */
1030 BTRFS_ORDERED_REGULAR /* type */);
1031 if (IS_ERR(em)) {
1032 ret = PTR_ERR(em);
1033 goto out_reserve;
1034 }
1035 free_extent_map(em);
1036
1037 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1038 ram_size, cur_alloc_size, 0);
1039 if (ret)
1040 goto out_drop_extent_cache;
1041
1042 if (root->root_key.objectid ==
1043 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1044 ret = btrfs_reloc_clone_csums(inode, start,
1045 cur_alloc_size);
1046 /*
1047 * Only drop cache here, and process as normal.
1048 *
1049 * We must not allow extent_clear_unlock_delalloc()
1050 * at out_unlock label to free meta of this ordered
1051 * extent, as its meta should be freed by
1052 * btrfs_finish_ordered_io().
1053 *
1054 * So we must continue until @start is increased to
1055 * skip current ordered extent.
1056 */
1057 if (ret)
1058 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1059 start + ram_size - 1, 0);
1060 }
1061
1062 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1063
1064 /* we're not doing compressed IO, don't unlock the first
1065 * page (which the caller expects to stay locked), don't
1066 * clear any dirty bits and don't set any writeback bits
1067 *
1068 * Do set the Private2 bit so we know this page was properly
1069 * setup for writepage
1070 */
1071 page_ops = unlock ? PAGE_UNLOCK : 0;
1072 page_ops |= PAGE_SET_PRIVATE2;
1073
1074 extent_clear_unlock_delalloc(inode, start,
1075 start + ram_size - 1,
1076 locked_page,
1077 EXTENT_LOCKED | EXTENT_DELALLOC,
1078 page_ops);
1079 if (num_bytes < cur_alloc_size)
1080 num_bytes = 0;
1081 else
1082 num_bytes -= cur_alloc_size;
1083 alloc_hint = ins.objectid + ins.offset;
1084 start += cur_alloc_size;
1085 extent_reserved = false;
1086
1087 /*
1088 * btrfs_reloc_clone_csums() error, since start is increased
1089 * extent_clear_unlock_delalloc() at out_unlock label won't
1090 * free metadata of current ordered extent, we're OK to exit.
1091 */
1092 if (ret)
1093 goto out_unlock;
1094 }
1095 out:
1096 return ret;
1097
1098 out_drop_extent_cache:
1099 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1100 out_reserve:
1101 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1102 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1103 out_unlock:
1104 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1105 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1106 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1107 PAGE_END_WRITEBACK;
1108 /*
1109 * If we reserved an extent for our delalloc range (or a subrange) and
1110 * failed to create the respective ordered extent, then it means that
1111 * when we reserved the extent we decremented the extent's size from
1112 * the data space_info's bytes_may_use counter and incremented the
1113 * space_info's bytes_reserved counter by the same amount. We must make
1114 * sure extent_clear_unlock_delalloc() does not try to decrement again
1115 * the data space_info's bytes_may_use counter, therefore we do not pass
1116 * it the flag EXTENT_CLEAR_DATA_RESV.
1117 */
1118 if (extent_reserved) {
1119 extent_clear_unlock_delalloc(inode, start,
1120 start + cur_alloc_size,
1121 locked_page,
1122 clear_bits,
1123 page_ops);
1124 start += cur_alloc_size;
1125 if (start >= end)
1126 goto out;
1127 }
1128 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1129 clear_bits | EXTENT_CLEAR_DATA_RESV,
1130 page_ops);
1131 goto out;
1132 }
1133
1134 /*
1135 * work queue call back to started compression on a file and pages
1136 */
1137 static noinline void async_cow_start(struct btrfs_work *work)
1138 {
1139 struct async_chunk *async_chunk;
1140 int compressed_extents;
1141
1142 async_chunk = container_of(work, struct async_chunk, work);
1143
1144 compressed_extents = compress_file_range(async_chunk);
1145 if (compressed_extents == 0) {
1146 btrfs_add_delayed_iput(async_chunk->inode);
1147 async_chunk->inode = NULL;
1148 }
1149 }
1150
1151 /*
1152 * work queue call back to submit previously compressed pages
1153 */
1154 static noinline void async_cow_submit(struct btrfs_work *work)
1155 {
1156 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1157 work);
1158 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1159 unsigned long nr_pages;
1160
1161 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1162 PAGE_SHIFT;
1163
1164 /* atomic_sub_return implies a barrier */
1165 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1166 5 * SZ_1M)
1167 cond_wake_up_nomb(&fs_info->async_submit_wait);
1168
1169 /*
1170 * ->inode could be NULL if async_chunk_start has failed to compress,
1171 * in which case we don't have anything to submit, yet we need to
1172 * always adjust ->async_delalloc_pages as its paired with the init
1173 * happening in cow_file_range_async
1174 */
1175 if (async_chunk->inode)
1176 submit_compressed_extents(async_chunk);
1177 }
1178
1179 static noinline void async_cow_free(struct btrfs_work *work)
1180 {
1181 struct async_chunk *async_chunk;
1182
1183 async_chunk = container_of(work, struct async_chunk, work);
1184 if (async_chunk->inode)
1185 btrfs_add_delayed_iput(async_chunk->inode);
1186 /*
1187 * Since the pointer to 'pending' is at the beginning of the array of
1188 * async_chunk's, freeing it ensures the whole array has been freed.
1189 */
1190 if (atomic_dec_and_test(async_chunk->pending))
1191 kvfree(async_chunk->pending);
1192 }
1193
1194 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1195 u64 start, u64 end, int *page_started,
1196 unsigned long *nr_written,
1197 unsigned int write_flags)
1198 {
1199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1200 struct async_cow *ctx;
1201 struct async_chunk *async_chunk;
1202 unsigned long nr_pages;
1203 u64 cur_end;
1204 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1205 int i;
1206 bool should_compress;
1207 unsigned nofs_flag;
1208
1209 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1210
1211 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1212 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1213 num_chunks = 1;
1214 should_compress = false;
1215 } else {
1216 should_compress = true;
1217 }
1218
1219 nofs_flag = memalloc_nofs_save();
1220 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1221 memalloc_nofs_restore(nofs_flag);
1222
1223 if (!ctx) {
1224 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1225 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1226 EXTENT_DO_ACCOUNTING;
1227 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1228 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1229 PAGE_SET_ERROR;
1230
1231 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1232 clear_bits, page_ops);
1233 return -ENOMEM;
1234 }
1235
1236 async_chunk = ctx->chunks;
1237 atomic_set(&ctx->num_chunks, num_chunks);
1238
1239 for (i = 0; i < num_chunks; i++) {
1240 if (should_compress)
1241 cur_end = min(end, start + SZ_512K - 1);
1242 else
1243 cur_end = end;
1244
1245 /*
1246 * igrab is called higher up in the call chain, take only the
1247 * lightweight reference for the callback lifetime
1248 */
1249 ihold(inode);
1250 async_chunk[i].pending = &ctx->num_chunks;
1251 async_chunk[i].inode = inode;
1252 async_chunk[i].start = start;
1253 async_chunk[i].end = cur_end;
1254 async_chunk[i].locked_page = locked_page;
1255 async_chunk[i].write_flags = write_flags;
1256 INIT_LIST_HEAD(&async_chunk[i].extents);
1257
1258 btrfs_init_work(&async_chunk[i].work,
1259 btrfs_delalloc_helper,
1260 async_cow_start, async_cow_submit,
1261 async_cow_free);
1262
1263 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1264 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1265
1266 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1267
1268 *nr_written += nr_pages;
1269 start = cur_end + 1;
1270 }
1271 *page_started = 1;
1272 return 0;
1273 }
1274
1275 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1276 u64 bytenr, u64 num_bytes)
1277 {
1278 int ret;
1279 struct btrfs_ordered_sum *sums;
1280 LIST_HEAD(list);
1281
1282 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1283 bytenr + num_bytes - 1, &list, 0);
1284 if (ret == 0 && list_empty(&list))
1285 return 0;
1286
1287 while (!list_empty(&list)) {
1288 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1289 list_del(&sums->list);
1290 kfree(sums);
1291 }
1292 if (ret < 0)
1293 return ret;
1294 return 1;
1295 }
1296
1297 /*
1298 * when nowcow writeback call back. This checks for snapshots or COW copies
1299 * of the extents that exist in the file, and COWs the file as required.
1300 *
1301 * If no cow copies or snapshots exist, we write directly to the existing
1302 * blocks on disk
1303 */
1304 static noinline int run_delalloc_nocow(struct inode *inode,
1305 struct page *locked_page,
1306 const u64 start, const u64 end,
1307 int *page_started, int force,
1308 unsigned long *nr_written)
1309 {
1310 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1311 struct btrfs_root *root = BTRFS_I(inode)->root;
1312 struct btrfs_path *path;
1313 u64 cow_start = (u64)-1;
1314 u64 cur_offset = start;
1315 int ret;
1316 bool check_prev = true;
1317 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1318 u64 ino = btrfs_ino(BTRFS_I(inode));
1319 bool nocow = false;
1320 u64 disk_bytenr = 0;
1321
1322 path = btrfs_alloc_path();
1323 if (!path) {
1324 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1325 EXTENT_LOCKED | EXTENT_DELALLOC |
1326 EXTENT_DO_ACCOUNTING |
1327 EXTENT_DEFRAG, PAGE_UNLOCK |
1328 PAGE_CLEAR_DIRTY |
1329 PAGE_SET_WRITEBACK |
1330 PAGE_END_WRITEBACK);
1331 return -ENOMEM;
1332 }
1333
1334 while (1) {
1335 struct btrfs_key found_key;
1336 struct btrfs_file_extent_item *fi;
1337 struct extent_buffer *leaf;
1338 u64 extent_end;
1339 u64 extent_offset;
1340 u64 num_bytes = 0;
1341 u64 disk_num_bytes;
1342 u64 ram_bytes;
1343 int extent_type;
1344
1345 nocow = false;
1346
1347 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1348 cur_offset, 0);
1349 if (ret < 0)
1350 goto error;
1351
1352 /*
1353 * If there is no extent for our range when doing the initial
1354 * search, then go back to the previous slot as it will be the
1355 * one containing the search offset
1356 */
1357 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1358 leaf = path->nodes[0];
1359 btrfs_item_key_to_cpu(leaf, &found_key,
1360 path->slots[0] - 1);
1361 if (found_key.objectid == ino &&
1362 found_key.type == BTRFS_EXTENT_DATA_KEY)
1363 path->slots[0]--;
1364 }
1365 check_prev = false;
1366 next_slot:
1367 /* Go to next leaf if we have exhausted the current one */
1368 leaf = path->nodes[0];
1369 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1370 ret = btrfs_next_leaf(root, path);
1371 if (ret < 0) {
1372 if (cow_start != (u64)-1)
1373 cur_offset = cow_start;
1374 goto error;
1375 }
1376 if (ret > 0)
1377 break;
1378 leaf = path->nodes[0];
1379 }
1380
1381 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1382
1383 /* Didn't find anything for our INO */
1384 if (found_key.objectid > ino)
1385 break;
1386 /*
1387 * Keep searching until we find an EXTENT_ITEM or there are no
1388 * more extents for this inode
1389 */
1390 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1391 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1392 path->slots[0]++;
1393 goto next_slot;
1394 }
1395
1396 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1397 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1398 found_key.offset > end)
1399 break;
1400
1401 /*
1402 * If the found extent starts after requested offset, then
1403 * adjust extent_end to be right before this extent begins
1404 */
1405 if (found_key.offset > cur_offset) {
1406 extent_end = found_key.offset;
1407 extent_type = 0;
1408 goto out_check;
1409 }
1410
1411 /*
1412 * Found extent which begins before our range and potentially
1413 * intersect it
1414 */
1415 fi = btrfs_item_ptr(leaf, path->slots[0],
1416 struct btrfs_file_extent_item);
1417 extent_type = btrfs_file_extent_type(leaf, fi);
1418
1419 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1420 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1421 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1422 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1423 extent_offset = btrfs_file_extent_offset(leaf, fi);
1424 extent_end = found_key.offset +
1425 btrfs_file_extent_num_bytes(leaf, fi);
1426 disk_num_bytes =
1427 btrfs_file_extent_disk_num_bytes(leaf, fi);
1428 /*
1429 * If extent we got ends before our range starts, skip
1430 * to next extent
1431 */
1432 if (extent_end <= start) {
1433 path->slots[0]++;
1434 goto next_slot;
1435 }
1436 /* Skip holes */
1437 if (disk_bytenr == 0)
1438 goto out_check;
1439 /* Skip compressed/encrypted/encoded extents */
1440 if (btrfs_file_extent_compression(leaf, fi) ||
1441 btrfs_file_extent_encryption(leaf, fi) ||
1442 btrfs_file_extent_other_encoding(leaf, fi))
1443 goto out_check;
1444 /*
1445 * If extent is created before the last volume's snapshot
1446 * this implies the extent is shared, hence we can't do
1447 * nocow. This is the same check as in
1448 * btrfs_cross_ref_exist but without calling
1449 * btrfs_search_slot.
1450 */
1451 if (!freespace_inode &&
1452 btrfs_file_extent_generation(leaf, fi) <=
1453 btrfs_root_last_snapshot(&root->root_item))
1454 goto out_check;
1455 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1456 goto out_check;
1457 /* If extent is RO, we must COW it */
1458 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1459 goto out_check;
1460 ret = btrfs_cross_ref_exist(root, ino,
1461 found_key.offset -
1462 extent_offset, disk_bytenr);
1463 if (ret) {
1464 /*
1465 * ret could be -EIO if the above fails to read
1466 * metadata.
1467 */
1468 if (ret < 0) {
1469 if (cow_start != (u64)-1)
1470 cur_offset = cow_start;
1471 goto error;
1472 }
1473
1474 WARN_ON_ONCE(freespace_inode);
1475 goto out_check;
1476 }
1477 disk_bytenr += extent_offset;
1478 disk_bytenr += cur_offset - found_key.offset;
1479 num_bytes = min(end + 1, extent_end) - cur_offset;
1480 /*
1481 * If there are pending snapshots for this root, we
1482 * fall into common COW way
1483 */
1484 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1485 goto out_check;
1486 /*
1487 * force cow if csum exists in the range.
1488 * this ensure that csum for a given extent are
1489 * either valid or do not exist.
1490 */
1491 ret = csum_exist_in_range(fs_info, disk_bytenr,
1492 num_bytes);
1493 if (ret) {
1494 /*
1495 * ret could be -EIO if the above fails to read
1496 * metadata.
1497 */
1498 if (ret < 0) {
1499 if (cow_start != (u64)-1)
1500 cur_offset = cow_start;
1501 goto error;
1502 }
1503 WARN_ON_ONCE(freespace_inode);
1504 goto out_check;
1505 }
1506 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1507 goto out_check;
1508 nocow = true;
1509 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1510 extent_end = found_key.offset + ram_bytes;
1511 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1512 /* Skip extents outside of our requested range */
1513 if (extent_end <= start) {
1514 path->slots[0]++;
1515 goto next_slot;
1516 }
1517 } else {
1518 /* If this triggers then we have a memory corruption */
1519 BUG();
1520 }
1521 out_check:
1522 /*
1523 * If nocow is false then record the beginning of the range
1524 * that needs to be COWed
1525 */
1526 if (!nocow) {
1527 if (cow_start == (u64)-1)
1528 cow_start = cur_offset;
1529 cur_offset = extent_end;
1530 if (cur_offset > end)
1531 break;
1532 path->slots[0]++;
1533 goto next_slot;
1534 }
1535
1536 btrfs_release_path(path);
1537
1538 /*
1539 * COW range from cow_start to found_key.offset - 1. As the key
1540 * will contain the beginning of the first extent that can be
1541 * NOCOW, following one which needs to be COW'ed
1542 */
1543 if (cow_start != (u64)-1) {
1544 ret = cow_file_range(inode, locked_page,
1545 cow_start, found_key.offset - 1,
1546 page_started, nr_written, 1);
1547 if (ret) {
1548 if (nocow)
1549 btrfs_dec_nocow_writers(fs_info,
1550 disk_bytenr);
1551 goto error;
1552 }
1553 cow_start = (u64)-1;
1554 }
1555
1556 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1557 u64 orig_start = found_key.offset - extent_offset;
1558 struct extent_map *em;
1559
1560 em = create_io_em(inode, cur_offset, num_bytes,
1561 orig_start,
1562 disk_bytenr, /* block_start */
1563 num_bytes, /* block_len */
1564 disk_num_bytes, /* orig_block_len */
1565 ram_bytes, BTRFS_COMPRESS_NONE,
1566 BTRFS_ORDERED_PREALLOC);
1567 if (IS_ERR(em)) {
1568 if (nocow)
1569 btrfs_dec_nocow_writers(fs_info,
1570 disk_bytenr);
1571 ret = PTR_ERR(em);
1572 goto error;
1573 }
1574 free_extent_map(em);
1575 ret = btrfs_add_ordered_extent(inode, cur_offset,
1576 disk_bytenr, num_bytes,
1577 num_bytes,
1578 BTRFS_ORDERED_PREALLOC);
1579 if (ret) {
1580 btrfs_drop_extent_cache(BTRFS_I(inode),
1581 cur_offset,
1582 cur_offset + num_bytes - 1,
1583 0);
1584 goto error;
1585 }
1586 } else {
1587 ret = btrfs_add_ordered_extent(inode, cur_offset,
1588 disk_bytenr, num_bytes,
1589 num_bytes,
1590 BTRFS_ORDERED_NOCOW);
1591 if (ret)
1592 goto error;
1593 }
1594
1595 if (nocow)
1596 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1597 nocow = false;
1598
1599 if (root->root_key.objectid ==
1600 BTRFS_DATA_RELOC_TREE_OBJECTID)
1601 /*
1602 * Error handled later, as we must prevent
1603 * extent_clear_unlock_delalloc() in error handler
1604 * from freeing metadata of created ordered extent.
1605 */
1606 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1607 num_bytes);
1608
1609 extent_clear_unlock_delalloc(inode, cur_offset,
1610 cur_offset + num_bytes - 1,
1611 locked_page, EXTENT_LOCKED |
1612 EXTENT_DELALLOC |
1613 EXTENT_CLEAR_DATA_RESV,
1614 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1615
1616 cur_offset = extent_end;
1617
1618 /*
1619 * btrfs_reloc_clone_csums() error, now we're OK to call error
1620 * handler, as metadata for created ordered extent will only
1621 * be freed by btrfs_finish_ordered_io().
1622 */
1623 if (ret)
1624 goto error;
1625 if (cur_offset > end)
1626 break;
1627 }
1628 btrfs_release_path(path);
1629
1630 if (cur_offset <= end && cow_start == (u64)-1)
1631 cow_start = cur_offset;
1632
1633 if (cow_start != (u64)-1) {
1634 cur_offset = end;
1635 ret = cow_file_range(inode, locked_page, cow_start, end,
1636 page_started, nr_written, 1);
1637 if (ret)
1638 goto error;
1639 }
1640
1641 error:
1642 if (nocow)
1643 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1644
1645 if (ret && cur_offset < end)
1646 extent_clear_unlock_delalloc(inode, cur_offset, end,
1647 locked_page, EXTENT_LOCKED |
1648 EXTENT_DELALLOC | EXTENT_DEFRAG |
1649 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1650 PAGE_CLEAR_DIRTY |
1651 PAGE_SET_WRITEBACK |
1652 PAGE_END_WRITEBACK);
1653 btrfs_free_path(path);
1654 return ret;
1655 }
1656
1657 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1658 {
1659
1660 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1661 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1662 return 0;
1663
1664 /*
1665 * @defrag_bytes is a hint value, no spinlock held here,
1666 * if is not zero, it means the file is defragging.
1667 * Force cow if given extent needs to be defragged.
1668 */
1669 if (BTRFS_I(inode)->defrag_bytes &&
1670 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1671 EXTENT_DEFRAG, 0, NULL))
1672 return 1;
1673
1674 return 0;
1675 }
1676
1677 /*
1678 * Function to process delayed allocation (create CoW) for ranges which are
1679 * being touched for the first time.
1680 */
1681 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1682 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1683 struct writeback_control *wbc)
1684 {
1685 int ret;
1686 int force_cow = need_force_cow(inode, start, end);
1687 unsigned int write_flags = wbc_to_write_flags(wbc);
1688
1689 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1690 ret = run_delalloc_nocow(inode, locked_page, start, end,
1691 page_started, 1, nr_written);
1692 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1693 ret = run_delalloc_nocow(inode, locked_page, start, end,
1694 page_started, 0, nr_written);
1695 } else if (!inode_can_compress(inode) ||
1696 !inode_need_compress(inode, start, end)) {
1697 ret = cow_file_range(inode, locked_page, start, end,
1698 page_started, nr_written, 1);
1699 } else {
1700 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1701 &BTRFS_I(inode)->runtime_flags);
1702 ret = cow_file_range_async(inode, locked_page, start, end,
1703 page_started, nr_written,
1704 write_flags);
1705 }
1706 if (ret)
1707 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1708 end - start + 1);
1709 return ret;
1710 }
1711
1712 void btrfs_split_delalloc_extent(struct inode *inode,
1713 struct extent_state *orig, u64 split)
1714 {
1715 u64 size;
1716
1717 /* not delalloc, ignore it */
1718 if (!(orig->state & EXTENT_DELALLOC))
1719 return;
1720
1721 size = orig->end - orig->start + 1;
1722 if (size > BTRFS_MAX_EXTENT_SIZE) {
1723 u32 num_extents;
1724 u64 new_size;
1725
1726 /*
1727 * See the explanation in btrfs_merge_delalloc_extent, the same
1728 * applies here, just in reverse.
1729 */
1730 new_size = orig->end - split + 1;
1731 num_extents = count_max_extents(new_size);
1732 new_size = split - orig->start;
1733 num_extents += count_max_extents(new_size);
1734 if (count_max_extents(size) >= num_extents)
1735 return;
1736 }
1737
1738 spin_lock(&BTRFS_I(inode)->lock);
1739 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1740 spin_unlock(&BTRFS_I(inode)->lock);
1741 }
1742
1743 /*
1744 * Handle merged delayed allocation extents so we can keep track of new extents
1745 * that are just merged onto old extents, such as when we are doing sequential
1746 * writes, so we can properly account for the metadata space we'll need.
1747 */
1748 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1749 struct extent_state *other)
1750 {
1751 u64 new_size, old_size;
1752 u32 num_extents;
1753
1754 /* not delalloc, ignore it */
1755 if (!(other->state & EXTENT_DELALLOC))
1756 return;
1757
1758 if (new->start > other->start)
1759 new_size = new->end - other->start + 1;
1760 else
1761 new_size = other->end - new->start + 1;
1762
1763 /* we're not bigger than the max, unreserve the space and go */
1764 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1765 spin_lock(&BTRFS_I(inode)->lock);
1766 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1767 spin_unlock(&BTRFS_I(inode)->lock);
1768 return;
1769 }
1770
1771 /*
1772 * We have to add up either side to figure out how many extents were
1773 * accounted for before we merged into one big extent. If the number of
1774 * extents we accounted for is <= the amount we need for the new range
1775 * then we can return, otherwise drop. Think of it like this
1776 *
1777 * [ 4k][MAX_SIZE]
1778 *
1779 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1780 * need 2 outstanding extents, on one side we have 1 and the other side
1781 * we have 1 so they are == and we can return. But in this case
1782 *
1783 * [MAX_SIZE+4k][MAX_SIZE+4k]
1784 *
1785 * Each range on their own accounts for 2 extents, but merged together
1786 * they are only 3 extents worth of accounting, so we need to drop in
1787 * this case.
1788 */
1789 old_size = other->end - other->start + 1;
1790 num_extents = count_max_extents(old_size);
1791 old_size = new->end - new->start + 1;
1792 num_extents += count_max_extents(old_size);
1793 if (count_max_extents(new_size) >= num_extents)
1794 return;
1795
1796 spin_lock(&BTRFS_I(inode)->lock);
1797 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1798 spin_unlock(&BTRFS_I(inode)->lock);
1799 }
1800
1801 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1802 struct inode *inode)
1803 {
1804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1805
1806 spin_lock(&root->delalloc_lock);
1807 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1808 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1809 &root->delalloc_inodes);
1810 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1811 &BTRFS_I(inode)->runtime_flags);
1812 root->nr_delalloc_inodes++;
1813 if (root->nr_delalloc_inodes == 1) {
1814 spin_lock(&fs_info->delalloc_root_lock);
1815 BUG_ON(!list_empty(&root->delalloc_root));
1816 list_add_tail(&root->delalloc_root,
1817 &fs_info->delalloc_roots);
1818 spin_unlock(&fs_info->delalloc_root_lock);
1819 }
1820 }
1821 spin_unlock(&root->delalloc_lock);
1822 }
1823
1824
1825 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1826 struct btrfs_inode *inode)
1827 {
1828 struct btrfs_fs_info *fs_info = root->fs_info;
1829
1830 if (!list_empty(&inode->delalloc_inodes)) {
1831 list_del_init(&inode->delalloc_inodes);
1832 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1833 &inode->runtime_flags);
1834 root->nr_delalloc_inodes--;
1835 if (!root->nr_delalloc_inodes) {
1836 ASSERT(list_empty(&root->delalloc_inodes));
1837 spin_lock(&fs_info->delalloc_root_lock);
1838 BUG_ON(list_empty(&root->delalloc_root));
1839 list_del_init(&root->delalloc_root);
1840 spin_unlock(&fs_info->delalloc_root_lock);
1841 }
1842 }
1843 }
1844
1845 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1846 struct btrfs_inode *inode)
1847 {
1848 spin_lock(&root->delalloc_lock);
1849 __btrfs_del_delalloc_inode(root, inode);
1850 spin_unlock(&root->delalloc_lock);
1851 }
1852
1853 /*
1854 * Properly track delayed allocation bytes in the inode and to maintain the
1855 * list of inodes that have pending delalloc work to be done.
1856 */
1857 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1858 unsigned *bits)
1859 {
1860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1861
1862 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1863 WARN_ON(1);
1864 /*
1865 * set_bit and clear bit hooks normally require _irqsave/restore
1866 * but in this case, we are only testing for the DELALLOC
1867 * bit, which is only set or cleared with irqs on
1868 */
1869 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1870 struct btrfs_root *root = BTRFS_I(inode)->root;
1871 u64 len = state->end + 1 - state->start;
1872 u32 num_extents = count_max_extents(len);
1873 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1874
1875 spin_lock(&BTRFS_I(inode)->lock);
1876 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1877 spin_unlock(&BTRFS_I(inode)->lock);
1878
1879 /* For sanity tests */
1880 if (btrfs_is_testing(fs_info))
1881 return;
1882
1883 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1884 fs_info->delalloc_batch);
1885 spin_lock(&BTRFS_I(inode)->lock);
1886 BTRFS_I(inode)->delalloc_bytes += len;
1887 if (*bits & EXTENT_DEFRAG)
1888 BTRFS_I(inode)->defrag_bytes += len;
1889 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1890 &BTRFS_I(inode)->runtime_flags))
1891 btrfs_add_delalloc_inodes(root, inode);
1892 spin_unlock(&BTRFS_I(inode)->lock);
1893 }
1894
1895 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1896 (*bits & EXTENT_DELALLOC_NEW)) {
1897 spin_lock(&BTRFS_I(inode)->lock);
1898 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1899 state->start;
1900 spin_unlock(&BTRFS_I(inode)->lock);
1901 }
1902 }
1903
1904 /*
1905 * Once a range is no longer delalloc this function ensures that proper
1906 * accounting happens.
1907 */
1908 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1909 struct extent_state *state, unsigned *bits)
1910 {
1911 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1912 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1913 u64 len = state->end + 1 - state->start;
1914 u32 num_extents = count_max_extents(len);
1915
1916 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1917 spin_lock(&inode->lock);
1918 inode->defrag_bytes -= len;
1919 spin_unlock(&inode->lock);
1920 }
1921
1922 /*
1923 * set_bit and clear bit hooks normally require _irqsave/restore
1924 * but in this case, we are only testing for the DELALLOC
1925 * bit, which is only set or cleared with irqs on
1926 */
1927 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1928 struct btrfs_root *root = inode->root;
1929 bool do_list = !btrfs_is_free_space_inode(inode);
1930
1931 spin_lock(&inode->lock);
1932 btrfs_mod_outstanding_extents(inode, -num_extents);
1933 spin_unlock(&inode->lock);
1934
1935 /*
1936 * We don't reserve metadata space for space cache inodes so we
1937 * don't need to call delalloc_release_metadata if there is an
1938 * error.
1939 */
1940 if (*bits & EXTENT_CLEAR_META_RESV &&
1941 root != fs_info->tree_root)
1942 btrfs_delalloc_release_metadata(inode, len, false);
1943
1944 /* For sanity tests. */
1945 if (btrfs_is_testing(fs_info))
1946 return;
1947
1948 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1949 do_list && !(state->state & EXTENT_NORESERVE) &&
1950 (*bits & EXTENT_CLEAR_DATA_RESV))
1951 btrfs_free_reserved_data_space_noquota(
1952 &inode->vfs_inode,
1953 state->start, len);
1954
1955 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1956 fs_info->delalloc_batch);
1957 spin_lock(&inode->lock);
1958 inode->delalloc_bytes -= len;
1959 if (do_list && inode->delalloc_bytes == 0 &&
1960 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1961 &inode->runtime_flags))
1962 btrfs_del_delalloc_inode(root, inode);
1963 spin_unlock(&inode->lock);
1964 }
1965
1966 if ((state->state & EXTENT_DELALLOC_NEW) &&
1967 (*bits & EXTENT_DELALLOC_NEW)) {
1968 spin_lock(&inode->lock);
1969 ASSERT(inode->new_delalloc_bytes >= len);
1970 inode->new_delalloc_bytes -= len;
1971 spin_unlock(&inode->lock);
1972 }
1973 }
1974
1975 /*
1976 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1977 * in a chunk's stripe. This function ensures that bios do not span a
1978 * stripe/chunk
1979 *
1980 * @page - The page we are about to add to the bio
1981 * @size - size we want to add to the bio
1982 * @bio - bio we want to ensure is smaller than a stripe
1983 * @bio_flags - flags of the bio
1984 *
1985 * return 1 if page cannot be added to the bio
1986 * return 0 if page can be added to the bio
1987 * return error otherwise
1988 */
1989 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1990 unsigned long bio_flags)
1991 {
1992 struct inode *inode = page->mapping->host;
1993 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1994 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1995 u64 length = 0;
1996 u64 map_length;
1997 int ret;
1998 struct btrfs_io_geometry geom;
1999
2000 if (bio_flags & EXTENT_BIO_COMPRESSED)
2001 return 0;
2002
2003 length = bio->bi_iter.bi_size;
2004 map_length = length;
2005 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2006 &geom);
2007 if (ret < 0)
2008 return ret;
2009
2010 if (geom.len < length + size)
2011 return 1;
2012 return 0;
2013 }
2014
2015 /*
2016 * in order to insert checksums into the metadata in large chunks,
2017 * we wait until bio submission time. All the pages in the bio are
2018 * checksummed and sums are attached onto the ordered extent record.
2019 *
2020 * At IO completion time the cums attached on the ordered extent record
2021 * are inserted into the btree
2022 */
2023 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2024 u64 bio_offset)
2025 {
2026 struct inode *inode = private_data;
2027 blk_status_t ret = 0;
2028
2029 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2030 BUG_ON(ret); /* -ENOMEM */
2031 return 0;
2032 }
2033
2034 /*
2035 * extent_io.c submission hook. This does the right thing for csum calculation
2036 * on write, or reading the csums from the tree before a read.
2037 *
2038 * Rules about async/sync submit,
2039 * a) read: sync submit
2040 *
2041 * b) write without checksum: sync submit
2042 *
2043 * c) write with checksum:
2044 * c-1) if bio is issued by fsync: sync submit
2045 * (sync_writers != 0)
2046 *
2047 * c-2) if root is reloc root: sync submit
2048 * (only in case of buffered IO)
2049 *
2050 * c-3) otherwise: async submit
2051 */
2052 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2053 int mirror_num,
2054 unsigned long bio_flags)
2055
2056 {
2057 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2058 struct btrfs_root *root = BTRFS_I(inode)->root;
2059 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2060 blk_status_t ret = 0;
2061 int skip_sum;
2062 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2063
2064 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2065
2066 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2067 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2068
2069 if (bio_op(bio) != REQ_OP_WRITE) {
2070 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2071 if (ret)
2072 goto out;
2073
2074 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2075 ret = btrfs_submit_compressed_read(inode, bio,
2076 mirror_num,
2077 bio_flags);
2078 goto out;
2079 } else if (!skip_sum) {
2080 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2081 if (ret)
2082 goto out;
2083 }
2084 goto mapit;
2085 } else if (async && !skip_sum) {
2086 /* csum items have already been cloned */
2087 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2088 goto mapit;
2089 /* we're doing a write, do the async checksumming */
2090 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2091 0, inode, btrfs_submit_bio_start);
2092 goto out;
2093 } else if (!skip_sum) {
2094 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2095 if (ret)
2096 goto out;
2097 }
2098
2099 mapit:
2100 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2101
2102 out:
2103 if (ret) {
2104 bio->bi_status = ret;
2105 bio_endio(bio);
2106 }
2107 return ret;
2108 }
2109
2110 /*
2111 * given a list of ordered sums record them in the inode. This happens
2112 * at IO completion time based on sums calculated at bio submission time.
2113 */
2114 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2115 struct inode *inode, struct list_head *list)
2116 {
2117 struct btrfs_ordered_sum *sum;
2118 int ret;
2119
2120 list_for_each_entry(sum, list, list) {
2121 trans->adding_csums = true;
2122 ret = btrfs_csum_file_blocks(trans,
2123 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2124 trans->adding_csums = false;
2125 if (ret)
2126 return ret;
2127 }
2128 return 0;
2129 }
2130
2131 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2132 unsigned int extra_bits,
2133 struct extent_state **cached_state)
2134 {
2135 WARN_ON(PAGE_ALIGNED(end));
2136 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2137 extra_bits, cached_state);
2138 }
2139
2140 /* see btrfs_writepage_start_hook for details on why this is required */
2141 struct btrfs_writepage_fixup {
2142 struct page *page;
2143 struct btrfs_work work;
2144 };
2145
2146 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2147 {
2148 struct btrfs_writepage_fixup *fixup;
2149 struct btrfs_ordered_extent *ordered;
2150 struct extent_state *cached_state = NULL;
2151 struct extent_changeset *data_reserved = NULL;
2152 struct page *page;
2153 struct inode *inode;
2154 u64 page_start;
2155 u64 page_end;
2156 int ret;
2157
2158 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2159 page = fixup->page;
2160 again:
2161 lock_page(page);
2162 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2163 ClearPageChecked(page);
2164 goto out_page;
2165 }
2166
2167 inode = page->mapping->host;
2168 page_start = page_offset(page);
2169 page_end = page_offset(page) + PAGE_SIZE - 1;
2170
2171 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2172 &cached_state);
2173
2174 /* already ordered? We're done */
2175 if (PagePrivate2(page))
2176 goto out;
2177
2178 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2179 PAGE_SIZE);
2180 if (ordered) {
2181 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2182 page_end, &cached_state);
2183 unlock_page(page);
2184 btrfs_start_ordered_extent(inode, ordered, 1);
2185 btrfs_put_ordered_extent(ordered);
2186 goto again;
2187 }
2188
2189 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2190 PAGE_SIZE);
2191 if (ret) {
2192 mapping_set_error(page->mapping, ret);
2193 end_extent_writepage(page, ret, page_start, page_end);
2194 ClearPageChecked(page);
2195 goto out;
2196 }
2197
2198 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2199 &cached_state);
2200 if (ret) {
2201 mapping_set_error(page->mapping, ret);
2202 end_extent_writepage(page, ret, page_start, page_end);
2203 ClearPageChecked(page);
2204 goto out;
2205 }
2206
2207 ClearPageChecked(page);
2208 set_page_dirty(page);
2209 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2210 out:
2211 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2212 &cached_state);
2213 out_page:
2214 unlock_page(page);
2215 put_page(page);
2216 kfree(fixup);
2217 extent_changeset_free(data_reserved);
2218 }
2219
2220 /*
2221 * There are a few paths in the higher layers of the kernel that directly
2222 * set the page dirty bit without asking the filesystem if it is a
2223 * good idea. This causes problems because we want to make sure COW
2224 * properly happens and the data=ordered rules are followed.
2225 *
2226 * In our case any range that doesn't have the ORDERED bit set
2227 * hasn't been properly setup for IO. We kick off an async process
2228 * to fix it up. The async helper will wait for ordered extents, set
2229 * the delalloc bit and make it safe to write the page.
2230 */
2231 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2232 {
2233 struct inode *inode = page->mapping->host;
2234 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2235 struct btrfs_writepage_fixup *fixup;
2236
2237 /* this page is properly in the ordered list */
2238 if (TestClearPagePrivate2(page))
2239 return 0;
2240
2241 if (PageChecked(page))
2242 return -EAGAIN;
2243
2244 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2245 if (!fixup)
2246 return -EAGAIN;
2247
2248 SetPageChecked(page);
2249 get_page(page);
2250 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2251 btrfs_writepage_fixup_worker, NULL, NULL);
2252 fixup->page = page;
2253 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2254 return -EBUSY;
2255 }
2256
2257 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2258 struct inode *inode, u64 file_pos,
2259 u64 disk_bytenr, u64 disk_num_bytes,
2260 u64 num_bytes, u64 ram_bytes,
2261 u8 compression, u8 encryption,
2262 u16 other_encoding, int extent_type)
2263 {
2264 struct btrfs_root *root = BTRFS_I(inode)->root;
2265 struct btrfs_file_extent_item *fi;
2266 struct btrfs_path *path;
2267 struct extent_buffer *leaf;
2268 struct btrfs_key ins;
2269 u64 qg_released;
2270 int extent_inserted = 0;
2271 int ret;
2272
2273 path = btrfs_alloc_path();
2274 if (!path)
2275 return -ENOMEM;
2276
2277 /*
2278 * we may be replacing one extent in the tree with another.
2279 * The new extent is pinned in the extent map, and we don't want
2280 * to drop it from the cache until it is completely in the btree.
2281 *
2282 * So, tell btrfs_drop_extents to leave this extent in the cache.
2283 * the caller is expected to unpin it and allow it to be merged
2284 * with the others.
2285 */
2286 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2287 file_pos + num_bytes, NULL, 0,
2288 1, sizeof(*fi), &extent_inserted);
2289 if (ret)
2290 goto out;
2291
2292 if (!extent_inserted) {
2293 ins.objectid = btrfs_ino(BTRFS_I(inode));
2294 ins.offset = file_pos;
2295 ins.type = BTRFS_EXTENT_DATA_KEY;
2296
2297 path->leave_spinning = 1;
2298 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2299 sizeof(*fi));
2300 if (ret)
2301 goto out;
2302 }
2303 leaf = path->nodes[0];
2304 fi = btrfs_item_ptr(leaf, path->slots[0],
2305 struct btrfs_file_extent_item);
2306 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2307 btrfs_set_file_extent_type(leaf, fi, extent_type);
2308 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2309 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2310 btrfs_set_file_extent_offset(leaf, fi, 0);
2311 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2312 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2313 btrfs_set_file_extent_compression(leaf, fi, compression);
2314 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2315 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2316
2317 btrfs_mark_buffer_dirty(leaf);
2318 btrfs_release_path(path);
2319
2320 inode_add_bytes(inode, num_bytes);
2321
2322 ins.objectid = disk_bytenr;
2323 ins.offset = disk_num_bytes;
2324 ins.type = BTRFS_EXTENT_ITEM_KEY;
2325
2326 /*
2327 * Release the reserved range from inode dirty range map, as it is
2328 * already moved into delayed_ref_head
2329 */
2330 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2331 if (ret < 0)
2332 goto out;
2333 qg_released = ret;
2334 ret = btrfs_alloc_reserved_file_extent(trans, root,
2335 btrfs_ino(BTRFS_I(inode)),
2336 file_pos, qg_released, &ins);
2337 out:
2338 btrfs_free_path(path);
2339
2340 return ret;
2341 }
2342
2343 /* snapshot-aware defrag */
2344 struct sa_defrag_extent_backref {
2345 struct rb_node node;
2346 struct old_sa_defrag_extent *old;
2347 u64 root_id;
2348 u64 inum;
2349 u64 file_pos;
2350 u64 extent_offset;
2351 u64 num_bytes;
2352 u64 generation;
2353 };
2354
2355 struct old_sa_defrag_extent {
2356 struct list_head list;
2357 struct new_sa_defrag_extent *new;
2358
2359 u64 extent_offset;
2360 u64 bytenr;
2361 u64 offset;
2362 u64 len;
2363 int count;
2364 };
2365
2366 struct new_sa_defrag_extent {
2367 struct rb_root root;
2368 struct list_head head;
2369 struct btrfs_path *path;
2370 struct inode *inode;
2371 u64 file_pos;
2372 u64 len;
2373 u64 bytenr;
2374 u64 disk_len;
2375 u8 compress_type;
2376 };
2377
2378 static int backref_comp(struct sa_defrag_extent_backref *b1,
2379 struct sa_defrag_extent_backref *b2)
2380 {
2381 if (b1->root_id < b2->root_id)
2382 return -1;
2383 else if (b1->root_id > b2->root_id)
2384 return 1;
2385
2386 if (b1->inum < b2->inum)
2387 return -1;
2388 else if (b1->inum > b2->inum)
2389 return 1;
2390
2391 if (b1->file_pos < b2->file_pos)
2392 return -1;
2393 else if (b1->file_pos > b2->file_pos)
2394 return 1;
2395
2396 /*
2397 * [------------------------------] ===> (a range of space)
2398 * |<--->| |<---->| =============> (fs/file tree A)
2399 * |<---------------------------->| ===> (fs/file tree B)
2400 *
2401 * A range of space can refer to two file extents in one tree while
2402 * refer to only one file extent in another tree.
2403 *
2404 * So we may process a disk offset more than one time(two extents in A)
2405 * and locate at the same extent(one extent in B), then insert two same
2406 * backrefs(both refer to the extent in B).
2407 */
2408 return 0;
2409 }
2410
2411 static void backref_insert(struct rb_root *root,
2412 struct sa_defrag_extent_backref *backref)
2413 {
2414 struct rb_node **p = &root->rb_node;
2415 struct rb_node *parent = NULL;
2416 struct sa_defrag_extent_backref *entry;
2417 int ret;
2418
2419 while (*p) {
2420 parent = *p;
2421 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2422
2423 ret = backref_comp(backref, entry);
2424 if (ret < 0)
2425 p = &(*p)->rb_left;
2426 else
2427 p = &(*p)->rb_right;
2428 }
2429
2430 rb_link_node(&backref->node, parent, p);
2431 rb_insert_color(&backref->node, root);
2432 }
2433
2434 /*
2435 * Note the backref might has changed, and in this case we just return 0.
2436 */
2437 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2438 void *ctx)
2439 {
2440 struct btrfs_file_extent_item *extent;
2441 struct old_sa_defrag_extent *old = ctx;
2442 struct new_sa_defrag_extent *new = old->new;
2443 struct btrfs_path *path = new->path;
2444 struct btrfs_key key;
2445 struct btrfs_root *root;
2446 struct sa_defrag_extent_backref *backref;
2447 struct extent_buffer *leaf;
2448 struct inode *inode = new->inode;
2449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2450 int slot;
2451 int ret;
2452 u64 extent_offset;
2453 u64 num_bytes;
2454
2455 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2456 inum == btrfs_ino(BTRFS_I(inode)))
2457 return 0;
2458
2459 key.objectid = root_id;
2460 key.type = BTRFS_ROOT_ITEM_KEY;
2461 key.offset = (u64)-1;
2462
2463 root = btrfs_read_fs_root_no_name(fs_info, &key);
2464 if (IS_ERR(root)) {
2465 if (PTR_ERR(root) == -ENOENT)
2466 return 0;
2467 WARN_ON(1);
2468 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2469 inum, offset, root_id);
2470 return PTR_ERR(root);
2471 }
2472
2473 key.objectid = inum;
2474 key.type = BTRFS_EXTENT_DATA_KEY;
2475 if (offset > (u64)-1 << 32)
2476 key.offset = 0;
2477 else
2478 key.offset = offset;
2479
2480 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2481 if (WARN_ON(ret < 0))
2482 return ret;
2483 ret = 0;
2484
2485 while (1) {
2486 cond_resched();
2487
2488 leaf = path->nodes[0];
2489 slot = path->slots[0];
2490
2491 if (slot >= btrfs_header_nritems(leaf)) {
2492 ret = btrfs_next_leaf(root, path);
2493 if (ret < 0) {
2494 goto out;
2495 } else if (ret > 0) {
2496 ret = 0;
2497 goto out;
2498 }
2499 continue;
2500 }
2501
2502 path->slots[0]++;
2503
2504 btrfs_item_key_to_cpu(leaf, &key, slot);
2505
2506 if (key.objectid > inum)
2507 goto out;
2508
2509 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2510 continue;
2511
2512 extent = btrfs_item_ptr(leaf, slot,
2513 struct btrfs_file_extent_item);
2514
2515 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2516 continue;
2517
2518 /*
2519 * 'offset' refers to the exact key.offset,
2520 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2521 * (key.offset - extent_offset).
2522 */
2523 if (key.offset != offset)
2524 continue;
2525
2526 extent_offset = btrfs_file_extent_offset(leaf, extent);
2527 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2528
2529 if (extent_offset >= old->extent_offset + old->offset +
2530 old->len || extent_offset + num_bytes <=
2531 old->extent_offset + old->offset)
2532 continue;
2533 break;
2534 }
2535
2536 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2537 if (!backref) {
2538 ret = -ENOENT;
2539 goto out;
2540 }
2541
2542 backref->root_id = root_id;
2543 backref->inum = inum;
2544 backref->file_pos = offset;
2545 backref->num_bytes = num_bytes;
2546 backref->extent_offset = extent_offset;
2547 backref->generation = btrfs_file_extent_generation(leaf, extent);
2548 backref->old = old;
2549 backref_insert(&new->root, backref);
2550 old->count++;
2551 out:
2552 btrfs_release_path(path);
2553 WARN_ON(ret);
2554 return ret;
2555 }
2556
2557 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2558 struct new_sa_defrag_extent *new)
2559 {
2560 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2561 struct old_sa_defrag_extent *old, *tmp;
2562 int ret;
2563
2564 new->path = path;
2565
2566 list_for_each_entry_safe(old, tmp, &new->head, list) {
2567 ret = iterate_inodes_from_logical(old->bytenr +
2568 old->extent_offset, fs_info,
2569 path, record_one_backref,
2570 old, false);
2571 if (ret < 0 && ret != -ENOENT)
2572 return false;
2573
2574 /* no backref to be processed for this extent */
2575 if (!old->count) {
2576 list_del(&old->list);
2577 kfree(old);
2578 }
2579 }
2580
2581 if (list_empty(&new->head))
2582 return false;
2583
2584 return true;
2585 }
2586
2587 static int relink_is_mergable(struct extent_buffer *leaf,
2588 struct btrfs_file_extent_item *fi,
2589 struct new_sa_defrag_extent *new)
2590 {
2591 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2592 return 0;
2593
2594 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2595 return 0;
2596
2597 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2598 return 0;
2599
2600 if (btrfs_file_extent_encryption(leaf, fi) ||
2601 btrfs_file_extent_other_encoding(leaf, fi))
2602 return 0;
2603
2604 return 1;
2605 }
2606
2607 /*
2608 * Note the backref might has changed, and in this case we just return 0.
2609 */
2610 static noinline int relink_extent_backref(struct btrfs_path *path,
2611 struct sa_defrag_extent_backref *prev,
2612 struct sa_defrag_extent_backref *backref)
2613 {
2614 struct btrfs_file_extent_item *extent;
2615 struct btrfs_file_extent_item *item;
2616 struct btrfs_ordered_extent *ordered;
2617 struct btrfs_trans_handle *trans;
2618 struct btrfs_ref ref = { 0 };
2619 struct btrfs_root *root;
2620 struct btrfs_key key;
2621 struct extent_buffer *leaf;
2622 struct old_sa_defrag_extent *old = backref->old;
2623 struct new_sa_defrag_extent *new = old->new;
2624 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2625 struct inode *inode;
2626 struct extent_state *cached = NULL;
2627 int ret = 0;
2628 u64 start;
2629 u64 len;
2630 u64 lock_start;
2631 u64 lock_end;
2632 bool merge = false;
2633 int index;
2634
2635 if (prev && prev->root_id == backref->root_id &&
2636 prev->inum == backref->inum &&
2637 prev->file_pos + prev->num_bytes == backref->file_pos)
2638 merge = true;
2639
2640 /* step 1: get root */
2641 key.objectid = backref->root_id;
2642 key.type = BTRFS_ROOT_ITEM_KEY;
2643 key.offset = (u64)-1;
2644
2645 index = srcu_read_lock(&fs_info->subvol_srcu);
2646
2647 root = btrfs_read_fs_root_no_name(fs_info, &key);
2648 if (IS_ERR(root)) {
2649 srcu_read_unlock(&fs_info->subvol_srcu, index);
2650 if (PTR_ERR(root) == -ENOENT)
2651 return 0;
2652 return PTR_ERR(root);
2653 }
2654
2655 if (btrfs_root_readonly(root)) {
2656 srcu_read_unlock(&fs_info->subvol_srcu, index);
2657 return 0;
2658 }
2659
2660 /* step 2: get inode */
2661 key.objectid = backref->inum;
2662 key.type = BTRFS_INODE_ITEM_KEY;
2663 key.offset = 0;
2664
2665 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2666 if (IS_ERR(inode)) {
2667 srcu_read_unlock(&fs_info->subvol_srcu, index);
2668 return 0;
2669 }
2670
2671 srcu_read_unlock(&fs_info->subvol_srcu, index);
2672
2673 /* step 3: relink backref */
2674 lock_start = backref->file_pos;
2675 lock_end = backref->file_pos + backref->num_bytes - 1;
2676 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2677 &cached);
2678
2679 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2680 if (ordered) {
2681 btrfs_put_ordered_extent(ordered);
2682 goto out_unlock;
2683 }
2684
2685 trans = btrfs_join_transaction(root);
2686 if (IS_ERR(trans)) {
2687 ret = PTR_ERR(trans);
2688 goto out_unlock;
2689 }
2690
2691 key.objectid = backref->inum;
2692 key.type = BTRFS_EXTENT_DATA_KEY;
2693 key.offset = backref->file_pos;
2694
2695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696 if (ret < 0) {
2697 goto out_free_path;
2698 } else if (ret > 0) {
2699 ret = 0;
2700 goto out_free_path;
2701 }
2702
2703 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2704 struct btrfs_file_extent_item);
2705
2706 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2707 backref->generation)
2708 goto out_free_path;
2709
2710 btrfs_release_path(path);
2711
2712 start = backref->file_pos;
2713 if (backref->extent_offset < old->extent_offset + old->offset)
2714 start += old->extent_offset + old->offset -
2715 backref->extent_offset;
2716
2717 len = min(backref->extent_offset + backref->num_bytes,
2718 old->extent_offset + old->offset + old->len);
2719 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2720
2721 ret = btrfs_drop_extents(trans, root, inode, start,
2722 start + len, 1);
2723 if (ret)
2724 goto out_free_path;
2725 again:
2726 key.objectid = btrfs_ino(BTRFS_I(inode));
2727 key.type = BTRFS_EXTENT_DATA_KEY;
2728 key.offset = start;
2729
2730 path->leave_spinning = 1;
2731 if (merge) {
2732 struct btrfs_file_extent_item *fi;
2733 u64 extent_len;
2734 struct btrfs_key found_key;
2735
2736 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2737 if (ret < 0)
2738 goto out_free_path;
2739
2740 path->slots[0]--;
2741 leaf = path->nodes[0];
2742 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2743
2744 fi = btrfs_item_ptr(leaf, path->slots[0],
2745 struct btrfs_file_extent_item);
2746 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2747
2748 if (extent_len + found_key.offset == start &&
2749 relink_is_mergable(leaf, fi, new)) {
2750 btrfs_set_file_extent_num_bytes(leaf, fi,
2751 extent_len + len);
2752 btrfs_mark_buffer_dirty(leaf);
2753 inode_add_bytes(inode, len);
2754
2755 ret = 1;
2756 goto out_free_path;
2757 } else {
2758 merge = false;
2759 btrfs_release_path(path);
2760 goto again;
2761 }
2762 }
2763
2764 ret = btrfs_insert_empty_item(trans, root, path, &key,
2765 sizeof(*extent));
2766 if (ret) {
2767 btrfs_abort_transaction(trans, ret);
2768 goto out_free_path;
2769 }
2770
2771 leaf = path->nodes[0];
2772 item = btrfs_item_ptr(leaf, path->slots[0],
2773 struct btrfs_file_extent_item);
2774 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2775 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2776 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2777 btrfs_set_file_extent_num_bytes(leaf, item, len);
2778 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2779 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2780 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2781 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2782 btrfs_set_file_extent_encryption(leaf, item, 0);
2783 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2784
2785 btrfs_mark_buffer_dirty(leaf);
2786 inode_add_bytes(inode, len);
2787 btrfs_release_path(path);
2788
2789 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2790 new->disk_len, 0);
2791 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2792 new->file_pos); /* start - extent_offset */
2793 ret = btrfs_inc_extent_ref(trans, &ref);
2794 if (ret) {
2795 btrfs_abort_transaction(trans, ret);
2796 goto out_free_path;
2797 }
2798
2799 ret = 1;
2800 out_free_path:
2801 btrfs_release_path(path);
2802 path->leave_spinning = 0;
2803 btrfs_end_transaction(trans);
2804 out_unlock:
2805 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2806 &cached);
2807 iput(inode);
2808 return ret;
2809 }
2810
2811 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2812 {
2813 struct old_sa_defrag_extent *old, *tmp;
2814
2815 if (!new)
2816 return;
2817
2818 list_for_each_entry_safe(old, tmp, &new->head, list) {
2819 kfree(old);
2820 }
2821 kfree(new);
2822 }
2823
2824 static void relink_file_extents(struct new_sa_defrag_extent *new)
2825 {
2826 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2827 struct btrfs_path *path;
2828 struct sa_defrag_extent_backref *backref;
2829 struct sa_defrag_extent_backref *prev = NULL;
2830 struct rb_node *node;
2831 int ret;
2832
2833 path = btrfs_alloc_path();
2834 if (!path)
2835 return;
2836
2837 if (!record_extent_backrefs(path, new)) {
2838 btrfs_free_path(path);
2839 goto out;
2840 }
2841 btrfs_release_path(path);
2842
2843 while (1) {
2844 node = rb_first(&new->root);
2845 if (!node)
2846 break;
2847 rb_erase(node, &new->root);
2848
2849 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2850
2851 ret = relink_extent_backref(path, prev, backref);
2852 WARN_ON(ret < 0);
2853
2854 kfree(prev);
2855
2856 if (ret == 1)
2857 prev = backref;
2858 else
2859 prev = NULL;
2860 cond_resched();
2861 }
2862 kfree(prev);
2863
2864 btrfs_free_path(path);
2865 out:
2866 free_sa_defrag_extent(new);
2867
2868 atomic_dec(&fs_info->defrag_running);
2869 wake_up(&fs_info->transaction_wait);
2870 }
2871
2872 static struct new_sa_defrag_extent *
2873 record_old_file_extents(struct inode *inode,
2874 struct btrfs_ordered_extent *ordered)
2875 {
2876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2877 struct btrfs_root *root = BTRFS_I(inode)->root;
2878 struct btrfs_path *path;
2879 struct btrfs_key key;
2880 struct old_sa_defrag_extent *old;
2881 struct new_sa_defrag_extent *new;
2882 int ret;
2883
2884 new = kmalloc(sizeof(*new), GFP_NOFS);
2885 if (!new)
2886 return NULL;
2887
2888 new->inode = inode;
2889 new->file_pos = ordered->file_offset;
2890 new->len = ordered->len;
2891 new->bytenr = ordered->start;
2892 new->disk_len = ordered->disk_len;
2893 new->compress_type = ordered->compress_type;
2894 new->root = RB_ROOT;
2895 INIT_LIST_HEAD(&new->head);
2896
2897 path = btrfs_alloc_path();
2898 if (!path)
2899 goto out_kfree;
2900
2901 key.objectid = btrfs_ino(BTRFS_I(inode));
2902 key.type = BTRFS_EXTENT_DATA_KEY;
2903 key.offset = new->file_pos;
2904
2905 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2906 if (ret < 0)
2907 goto out_free_path;
2908 if (ret > 0 && path->slots[0] > 0)
2909 path->slots[0]--;
2910
2911 /* find out all the old extents for the file range */
2912 while (1) {
2913 struct btrfs_file_extent_item *extent;
2914 struct extent_buffer *l;
2915 int slot;
2916 u64 num_bytes;
2917 u64 offset;
2918 u64 end;
2919 u64 disk_bytenr;
2920 u64 extent_offset;
2921
2922 l = path->nodes[0];
2923 slot = path->slots[0];
2924
2925 if (slot >= btrfs_header_nritems(l)) {
2926 ret = btrfs_next_leaf(root, path);
2927 if (ret < 0)
2928 goto out_free_path;
2929 else if (ret > 0)
2930 break;
2931 continue;
2932 }
2933
2934 btrfs_item_key_to_cpu(l, &key, slot);
2935
2936 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2937 break;
2938 if (key.type != BTRFS_EXTENT_DATA_KEY)
2939 break;
2940 if (key.offset >= new->file_pos + new->len)
2941 break;
2942
2943 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2944
2945 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2946 if (key.offset + num_bytes < new->file_pos)
2947 goto next;
2948
2949 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2950 if (!disk_bytenr)
2951 goto next;
2952
2953 extent_offset = btrfs_file_extent_offset(l, extent);
2954
2955 old = kmalloc(sizeof(*old), GFP_NOFS);
2956 if (!old)
2957 goto out_free_path;
2958
2959 offset = max(new->file_pos, key.offset);
2960 end = min(new->file_pos + new->len, key.offset + num_bytes);
2961
2962 old->bytenr = disk_bytenr;
2963 old->extent_offset = extent_offset;
2964 old->offset = offset - key.offset;
2965 old->len = end - offset;
2966 old->new = new;
2967 old->count = 0;
2968 list_add_tail(&old->list, &new->head);
2969 next:
2970 path->slots[0]++;
2971 cond_resched();
2972 }
2973
2974 btrfs_free_path(path);
2975 atomic_inc(&fs_info->defrag_running);
2976
2977 return new;
2978
2979 out_free_path:
2980 btrfs_free_path(path);
2981 out_kfree:
2982 free_sa_defrag_extent(new);
2983 return NULL;
2984 }
2985
2986 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2987 u64 start, u64 len)
2988 {
2989 struct btrfs_block_group_cache *cache;
2990
2991 cache = btrfs_lookup_block_group(fs_info, start);
2992 ASSERT(cache);
2993
2994 spin_lock(&cache->lock);
2995 cache->delalloc_bytes -= len;
2996 spin_unlock(&cache->lock);
2997
2998 btrfs_put_block_group(cache);
2999 }
3000
3001 /* as ordered data IO finishes, this gets called so we can finish
3002 * an ordered extent if the range of bytes in the file it covers are
3003 * fully written.
3004 */
3005 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3006 {
3007 struct inode *inode = ordered_extent->inode;
3008 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3009 struct btrfs_root *root = BTRFS_I(inode)->root;
3010 struct btrfs_trans_handle *trans = NULL;
3011 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3012 struct extent_state *cached_state = NULL;
3013 struct new_sa_defrag_extent *new = NULL;
3014 int compress_type = 0;
3015 int ret = 0;
3016 u64 logical_len = ordered_extent->len;
3017 bool nolock;
3018 bool truncated = false;
3019 bool range_locked = false;
3020 bool clear_new_delalloc_bytes = false;
3021 bool clear_reserved_extent = true;
3022
3023 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3024 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3025 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3026 clear_new_delalloc_bytes = true;
3027
3028 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3029
3030 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3031 ret = -EIO;
3032 goto out;
3033 }
3034
3035 btrfs_free_io_failure_record(BTRFS_I(inode),
3036 ordered_extent->file_offset,
3037 ordered_extent->file_offset +
3038 ordered_extent->len - 1);
3039
3040 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3041 truncated = true;
3042 logical_len = ordered_extent->truncated_len;
3043 /* Truncated the entire extent, don't bother adding */
3044 if (!logical_len)
3045 goto out;
3046 }
3047
3048 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3049 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3050
3051 /*
3052 * For mwrite(mmap + memset to write) case, we still reserve
3053 * space for NOCOW range.
3054 * As NOCOW won't cause a new delayed ref, just free the space
3055 */
3056 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3057 ordered_extent->len);
3058 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3059 if (nolock)
3060 trans = btrfs_join_transaction_nolock(root);
3061 else
3062 trans = btrfs_join_transaction(root);
3063 if (IS_ERR(trans)) {
3064 ret = PTR_ERR(trans);
3065 trans = NULL;
3066 goto out;
3067 }
3068 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3069 ret = btrfs_update_inode_fallback(trans, root, inode);
3070 if (ret) /* -ENOMEM or corruption */
3071 btrfs_abort_transaction(trans, ret);
3072 goto out;
3073 }
3074
3075 range_locked = true;
3076 lock_extent_bits(io_tree, ordered_extent->file_offset,
3077 ordered_extent->file_offset + ordered_extent->len - 1,
3078 &cached_state);
3079
3080 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3081 ordered_extent->file_offset + ordered_extent->len - 1,
3082 EXTENT_DEFRAG, 0, cached_state);
3083 if (ret) {
3084 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3085 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3086 /* the inode is shared */
3087 new = record_old_file_extents(inode, ordered_extent);
3088
3089 clear_extent_bit(io_tree, ordered_extent->file_offset,
3090 ordered_extent->file_offset + ordered_extent->len - 1,
3091 EXTENT_DEFRAG, 0, 0, &cached_state);
3092 }
3093
3094 if (nolock)
3095 trans = btrfs_join_transaction_nolock(root);
3096 else
3097 trans = btrfs_join_transaction(root);
3098 if (IS_ERR(trans)) {
3099 ret = PTR_ERR(trans);
3100 trans = NULL;
3101 goto out;
3102 }
3103
3104 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3105
3106 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3107 compress_type = ordered_extent->compress_type;
3108 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3109 BUG_ON(compress_type);
3110 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3111 ordered_extent->len);
3112 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3113 ordered_extent->file_offset,
3114 ordered_extent->file_offset +
3115 logical_len);
3116 } else {
3117 BUG_ON(root == fs_info->tree_root);
3118 ret = insert_reserved_file_extent(trans, inode,
3119 ordered_extent->file_offset,
3120 ordered_extent->start,
3121 ordered_extent->disk_len,
3122 logical_len, logical_len,
3123 compress_type, 0, 0,
3124 BTRFS_FILE_EXTENT_REG);
3125 if (!ret) {
3126 clear_reserved_extent = false;
3127 btrfs_release_delalloc_bytes(fs_info,
3128 ordered_extent->start,
3129 ordered_extent->disk_len);
3130 }
3131 }
3132 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3133 ordered_extent->file_offset, ordered_extent->len,
3134 trans->transid);
3135 if (ret < 0) {
3136 btrfs_abort_transaction(trans, ret);
3137 goto out;
3138 }
3139
3140 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3141 if (ret) {
3142 btrfs_abort_transaction(trans, ret);
3143 goto out;
3144 }
3145
3146 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3147 ret = btrfs_update_inode_fallback(trans, root, inode);
3148 if (ret) { /* -ENOMEM or corruption */
3149 btrfs_abort_transaction(trans, ret);
3150 goto out;
3151 }
3152 ret = 0;
3153 out:
3154 if (range_locked || clear_new_delalloc_bytes) {
3155 unsigned int clear_bits = 0;
3156
3157 if (range_locked)
3158 clear_bits |= EXTENT_LOCKED;
3159 if (clear_new_delalloc_bytes)
3160 clear_bits |= EXTENT_DELALLOC_NEW;
3161 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3162 ordered_extent->file_offset,
3163 ordered_extent->file_offset +
3164 ordered_extent->len - 1,
3165 clear_bits,
3166 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3167 0, &cached_state);
3168 }
3169
3170 if (trans)
3171 btrfs_end_transaction(trans);
3172
3173 if (ret || truncated) {
3174 u64 start, end;
3175
3176 if (truncated)
3177 start = ordered_extent->file_offset + logical_len;
3178 else
3179 start = ordered_extent->file_offset;
3180 end = ordered_extent->file_offset + ordered_extent->len - 1;
3181 clear_extent_uptodate(io_tree, start, end, NULL);
3182
3183 /* Drop the cache for the part of the extent we didn't write. */
3184 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3185
3186 /*
3187 * If the ordered extent had an IOERR or something else went
3188 * wrong we need to return the space for this ordered extent
3189 * back to the allocator. We only free the extent in the
3190 * truncated case if we didn't write out the extent at all.
3191 *
3192 * If we made it past insert_reserved_file_extent before we
3193 * errored out then we don't need to do this as the accounting
3194 * has already been done.
3195 */
3196 if ((ret || !logical_len) &&
3197 clear_reserved_extent &&
3198 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3199 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3200 btrfs_free_reserved_extent(fs_info,
3201 ordered_extent->start,
3202 ordered_extent->disk_len, 1);
3203 }
3204
3205
3206 /*
3207 * This needs to be done to make sure anybody waiting knows we are done
3208 * updating everything for this ordered extent.
3209 */
3210 btrfs_remove_ordered_extent(inode, ordered_extent);
3211
3212 /* for snapshot-aware defrag */
3213 if (new) {
3214 if (ret) {
3215 free_sa_defrag_extent(new);
3216 atomic_dec(&fs_info->defrag_running);
3217 } else {
3218 relink_file_extents(new);
3219 }
3220 }
3221
3222 /* once for us */
3223 btrfs_put_ordered_extent(ordered_extent);
3224 /* once for the tree */
3225 btrfs_put_ordered_extent(ordered_extent);
3226
3227 return ret;
3228 }
3229
3230 static void finish_ordered_fn(struct btrfs_work *work)
3231 {
3232 struct btrfs_ordered_extent *ordered_extent;
3233 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3234 btrfs_finish_ordered_io(ordered_extent);
3235 }
3236
3237 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3238 u64 end, int uptodate)
3239 {
3240 struct inode *inode = page->mapping->host;
3241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3242 struct btrfs_ordered_extent *ordered_extent = NULL;
3243 struct btrfs_workqueue *wq;
3244 btrfs_work_func_t func;
3245
3246 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3247
3248 ClearPagePrivate2(page);
3249 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3250 end - start + 1, uptodate))
3251 return;
3252
3253 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3254 wq = fs_info->endio_freespace_worker;
3255 func = btrfs_freespace_write_helper;
3256 } else {
3257 wq = fs_info->endio_write_workers;
3258 func = btrfs_endio_write_helper;
3259 }
3260
3261 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3262 NULL);
3263 btrfs_queue_work(wq, &ordered_extent->work);
3264 }
3265
3266 static int __readpage_endio_check(struct inode *inode,
3267 struct btrfs_io_bio *io_bio,
3268 int icsum, struct page *page,
3269 int pgoff, u64 start, size_t len)
3270 {
3271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3272 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3273 char *kaddr;
3274 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3275 u8 *csum_expected;
3276 u8 csum[BTRFS_CSUM_SIZE];
3277
3278 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3279
3280 kaddr = kmap_atomic(page);
3281 shash->tfm = fs_info->csum_shash;
3282
3283 crypto_shash_init(shash);
3284 crypto_shash_update(shash, kaddr + pgoff, len);
3285 crypto_shash_final(shash, csum);
3286
3287 if (memcmp(csum, csum_expected, csum_size))
3288 goto zeroit;
3289
3290 kunmap_atomic(kaddr);
3291 return 0;
3292 zeroit:
3293 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3294 io_bio->mirror_num);
3295 memset(kaddr + pgoff, 1, len);
3296 flush_dcache_page(page);
3297 kunmap_atomic(kaddr);
3298 return -EIO;
3299 }
3300
3301 /*
3302 * when reads are done, we need to check csums to verify the data is correct
3303 * if there's a match, we allow the bio to finish. If not, the code in
3304 * extent_io.c will try to find good copies for us.
3305 */
3306 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3307 u64 phy_offset, struct page *page,
3308 u64 start, u64 end, int mirror)
3309 {
3310 size_t offset = start - page_offset(page);
3311 struct inode *inode = page->mapping->host;
3312 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3313 struct btrfs_root *root = BTRFS_I(inode)->root;
3314
3315 if (PageChecked(page)) {
3316 ClearPageChecked(page);
3317 return 0;
3318 }
3319
3320 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3321 return 0;
3322
3323 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3324 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3325 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3326 return 0;
3327 }
3328
3329 phy_offset >>= inode->i_sb->s_blocksize_bits;
3330 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3331 start, (size_t)(end - start + 1));
3332 }
3333
3334 /*
3335 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3336 *
3337 * @inode: The inode we want to perform iput on
3338 *
3339 * This function uses the generic vfs_inode::i_count to track whether we should
3340 * just decrement it (in case it's > 1) or if this is the last iput then link
3341 * the inode to the delayed iput machinery. Delayed iputs are processed at
3342 * transaction commit time/superblock commit/cleaner kthread.
3343 */
3344 void btrfs_add_delayed_iput(struct inode *inode)
3345 {
3346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3347 struct btrfs_inode *binode = BTRFS_I(inode);
3348
3349 if (atomic_add_unless(&inode->i_count, -1, 1))
3350 return;
3351
3352 atomic_inc(&fs_info->nr_delayed_iputs);
3353 spin_lock(&fs_info->delayed_iput_lock);
3354 ASSERT(list_empty(&binode->delayed_iput));
3355 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3356 spin_unlock(&fs_info->delayed_iput_lock);
3357 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3358 wake_up_process(fs_info->cleaner_kthread);
3359 }
3360
3361 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3362 struct btrfs_inode *inode)
3363 {
3364 list_del_init(&inode->delayed_iput);
3365 spin_unlock(&fs_info->delayed_iput_lock);
3366 iput(&inode->vfs_inode);
3367 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3368 wake_up(&fs_info->delayed_iputs_wait);
3369 spin_lock(&fs_info->delayed_iput_lock);
3370 }
3371
3372 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3373 struct btrfs_inode *inode)
3374 {
3375 if (!list_empty(&inode->delayed_iput)) {
3376 spin_lock(&fs_info->delayed_iput_lock);
3377 if (!list_empty(&inode->delayed_iput))
3378 run_delayed_iput_locked(fs_info, inode);
3379 spin_unlock(&fs_info->delayed_iput_lock);
3380 }
3381 }
3382
3383 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3384 {
3385
3386 spin_lock(&fs_info->delayed_iput_lock);
3387 while (!list_empty(&fs_info->delayed_iputs)) {
3388 struct btrfs_inode *inode;
3389
3390 inode = list_first_entry(&fs_info->delayed_iputs,
3391 struct btrfs_inode, delayed_iput);
3392 run_delayed_iput_locked(fs_info, inode);
3393 }
3394 spin_unlock(&fs_info->delayed_iput_lock);
3395 }
3396
3397 /**
3398 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3399 * @fs_info - the fs_info for this fs
3400 * @return - EINTR if we were killed, 0 if nothing's pending
3401 *
3402 * This will wait on any delayed iputs that are currently running with KILLABLE
3403 * set. Once they are all done running we will return, unless we are killed in
3404 * which case we return EINTR. This helps in user operations like fallocate etc
3405 * that might get blocked on the iputs.
3406 */
3407 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3408 {
3409 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3410 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3411 if (ret)
3412 return -EINTR;
3413 return 0;
3414 }
3415
3416 /*
3417 * This creates an orphan entry for the given inode in case something goes wrong
3418 * in the middle of an unlink.
3419 */
3420 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3421 struct btrfs_inode *inode)
3422 {
3423 int ret;
3424
3425 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3426 if (ret && ret != -EEXIST) {
3427 btrfs_abort_transaction(trans, ret);
3428 return ret;
3429 }
3430
3431 return 0;
3432 }
3433
3434 /*
3435 * We have done the delete so we can go ahead and remove the orphan item for
3436 * this particular inode.
3437 */
3438 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3439 struct btrfs_inode *inode)
3440 {
3441 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3442 }
3443
3444 /*
3445 * this cleans up any orphans that may be left on the list from the last use
3446 * of this root.
3447 */
3448 int btrfs_orphan_cleanup(struct btrfs_root *root)
3449 {
3450 struct btrfs_fs_info *fs_info = root->fs_info;
3451 struct btrfs_path *path;
3452 struct extent_buffer *leaf;
3453 struct btrfs_key key, found_key;
3454 struct btrfs_trans_handle *trans;
3455 struct inode *inode;
3456 u64 last_objectid = 0;
3457 int ret = 0, nr_unlink = 0;
3458
3459 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3460 return 0;
3461
3462 path = btrfs_alloc_path();
3463 if (!path) {
3464 ret = -ENOMEM;
3465 goto out;
3466 }
3467 path->reada = READA_BACK;
3468
3469 key.objectid = BTRFS_ORPHAN_OBJECTID;
3470 key.type = BTRFS_ORPHAN_ITEM_KEY;
3471 key.offset = (u64)-1;
3472
3473 while (1) {
3474 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3475 if (ret < 0)
3476 goto out;
3477
3478 /*
3479 * if ret == 0 means we found what we were searching for, which
3480 * is weird, but possible, so only screw with path if we didn't
3481 * find the key and see if we have stuff that matches
3482 */
3483 if (ret > 0) {
3484 ret = 0;
3485 if (path->slots[0] == 0)
3486 break;
3487 path->slots[0]--;
3488 }
3489
3490 /* pull out the item */
3491 leaf = path->nodes[0];
3492 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3493
3494 /* make sure the item matches what we want */
3495 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3496 break;
3497 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3498 break;
3499
3500 /* release the path since we're done with it */
3501 btrfs_release_path(path);
3502
3503 /*
3504 * this is where we are basically btrfs_lookup, without the
3505 * crossing root thing. we store the inode number in the
3506 * offset of the orphan item.
3507 */
3508
3509 if (found_key.offset == last_objectid) {
3510 btrfs_err(fs_info,
3511 "Error removing orphan entry, stopping orphan cleanup");
3512 ret = -EINVAL;
3513 goto out;
3514 }
3515
3516 last_objectid = found_key.offset;
3517
3518 found_key.objectid = found_key.offset;
3519 found_key.type = BTRFS_INODE_ITEM_KEY;
3520 found_key.offset = 0;
3521 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3522 ret = PTR_ERR_OR_ZERO(inode);
3523 if (ret && ret != -ENOENT)
3524 goto out;
3525
3526 if (ret == -ENOENT && root == fs_info->tree_root) {
3527 struct btrfs_root *dead_root;
3528 struct btrfs_fs_info *fs_info = root->fs_info;
3529 int is_dead_root = 0;
3530
3531 /*
3532 * this is an orphan in the tree root. Currently these
3533 * could come from 2 sources:
3534 * a) a snapshot deletion in progress
3535 * b) a free space cache inode
3536 * We need to distinguish those two, as the snapshot
3537 * orphan must not get deleted.
3538 * find_dead_roots already ran before us, so if this
3539 * is a snapshot deletion, we should find the root
3540 * in the dead_roots list
3541 */
3542 spin_lock(&fs_info->trans_lock);
3543 list_for_each_entry(dead_root, &fs_info->dead_roots,
3544 root_list) {
3545 if (dead_root->root_key.objectid ==
3546 found_key.objectid) {
3547 is_dead_root = 1;
3548 break;
3549 }
3550 }
3551 spin_unlock(&fs_info->trans_lock);
3552 if (is_dead_root) {
3553 /* prevent this orphan from being found again */
3554 key.offset = found_key.objectid - 1;
3555 continue;
3556 }
3557
3558 }
3559
3560 /*
3561 * If we have an inode with links, there are a couple of
3562 * possibilities. Old kernels (before v3.12) used to create an
3563 * orphan item for truncate indicating that there were possibly
3564 * extent items past i_size that needed to be deleted. In v3.12,
3565 * truncate was changed to update i_size in sync with the extent
3566 * items, but the (useless) orphan item was still created. Since
3567 * v4.18, we don't create the orphan item for truncate at all.
3568 *
3569 * So, this item could mean that we need to do a truncate, but
3570 * only if this filesystem was last used on a pre-v3.12 kernel
3571 * and was not cleanly unmounted. The odds of that are quite
3572 * slim, and it's a pain to do the truncate now, so just delete
3573 * the orphan item.
3574 *
3575 * It's also possible that this orphan item was supposed to be
3576 * deleted but wasn't. The inode number may have been reused,
3577 * but either way, we can delete the orphan item.
3578 */
3579 if (ret == -ENOENT || inode->i_nlink) {
3580 if (!ret)
3581 iput(inode);
3582 trans = btrfs_start_transaction(root, 1);
3583 if (IS_ERR(trans)) {
3584 ret = PTR_ERR(trans);
3585 goto out;
3586 }
3587 btrfs_debug(fs_info, "auto deleting %Lu",
3588 found_key.objectid);
3589 ret = btrfs_del_orphan_item(trans, root,
3590 found_key.objectid);
3591 btrfs_end_transaction(trans);
3592 if (ret)
3593 goto out;
3594 continue;
3595 }
3596
3597 nr_unlink++;
3598
3599 /* this will do delete_inode and everything for us */
3600 iput(inode);
3601 }
3602 /* release the path since we're done with it */
3603 btrfs_release_path(path);
3604
3605 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3606
3607 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3608 trans = btrfs_join_transaction(root);
3609 if (!IS_ERR(trans))
3610 btrfs_end_transaction(trans);
3611 }
3612
3613 if (nr_unlink)
3614 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3615
3616 out:
3617 if (ret)
3618 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3619 btrfs_free_path(path);
3620 return ret;
3621 }
3622
3623 /*
3624 * very simple check to peek ahead in the leaf looking for xattrs. If we
3625 * don't find any xattrs, we know there can't be any acls.
3626 *
3627 * slot is the slot the inode is in, objectid is the objectid of the inode
3628 */
3629 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3630 int slot, u64 objectid,
3631 int *first_xattr_slot)
3632 {
3633 u32 nritems = btrfs_header_nritems(leaf);
3634 struct btrfs_key found_key;
3635 static u64 xattr_access = 0;
3636 static u64 xattr_default = 0;
3637 int scanned = 0;
3638
3639 if (!xattr_access) {
3640 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3641 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3642 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3643 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3644 }
3645
3646 slot++;
3647 *first_xattr_slot = -1;
3648 while (slot < nritems) {
3649 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3650
3651 /* we found a different objectid, there must not be acls */
3652 if (found_key.objectid != objectid)
3653 return 0;
3654
3655 /* we found an xattr, assume we've got an acl */
3656 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3657 if (*first_xattr_slot == -1)
3658 *first_xattr_slot = slot;
3659 if (found_key.offset == xattr_access ||
3660 found_key.offset == xattr_default)
3661 return 1;
3662 }
3663
3664 /*
3665 * we found a key greater than an xattr key, there can't
3666 * be any acls later on
3667 */
3668 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3669 return 0;
3670
3671 slot++;
3672 scanned++;
3673
3674 /*
3675 * it goes inode, inode backrefs, xattrs, extents,
3676 * so if there are a ton of hard links to an inode there can
3677 * be a lot of backrefs. Don't waste time searching too hard,
3678 * this is just an optimization
3679 */
3680 if (scanned >= 8)
3681 break;
3682 }
3683 /* we hit the end of the leaf before we found an xattr or
3684 * something larger than an xattr. We have to assume the inode
3685 * has acls
3686 */
3687 if (*first_xattr_slot == -1)
3688 *first_xattr_slot = slot;
3689 return 1;
3690 }
3691
3692 /*
3693 * read an inode from the btree into the in-memory inode
3694 */
3695 static int btrfs_read_locked_inode(struct inode *inode,
3696 struct btrfs_path *in_path)
3697 {
3698 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3699 struct btrfs_path *path = in_path;
3700 struct extent_buffer *leaf;
3701 struct btrfs_inode_item *inode_item;
3702 struct btrfs_root *root = BTRFS_I(inode)->root;
3703 struct btrfs_key location;
3704 unsigned long ptr;
3705 int maybe_acls;
3706 u32 rdev;
3707 int ret;
3708 bool filled = false;
3709 int first_xattr_slot;
3710
3711 ret = btrfs_fill_inode(inode, &rdev);
3712 if (!ret)
3713 filled = true;
3714
3715 if (!path) {
3716 path = btrfs_alloc_path();
3717 if (!path)
3718 return -ENOMEM;
3719 }
3720
3721 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3722
3723 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3724 if (ret) {
3725 if (path != in_path)
3726 btrfs_free_path(path);
3727 return ret;
3728 }
3729
3730 leaf = path->nodes[0];
3731
3732 if (filled)
3733 goto cache_index;
3734
3735 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3736 struct btrfs_inode_item);
3737 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3738 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3739 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3740 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3741 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3742
3743 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3744 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3745
3746 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3747 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3748
3749 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3750 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3751
3752 BTRFS_I(inode)->i_otime.tv_sec =
3753 btrfs_timespec_sec(leaf, &inode_item->otime);
3754 BTRFS_I(inode)->i_otime.tv_nsec =
3755 btrfs_timespec_nsec(leaf, &inode_item->otime);
3756
3757 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3758 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3759 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3760
3761 inode_set_iversion_queried(inode,
3762 btrfs_inode_sequence(leaf, inode_item));
3763 inode->i_generation = BTRFS_I(inode)->generation;
3764 inode->i_rdev = 0;
3765 rdev = btrfs_inode_rdev(leaf, inode_item);
3766
3767 BTRFS_I(inode)->index_cnt = (u64)-1;
3768 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3769
3770 cache_index:
3771 /*
3772 * If we were modified in the current generation and evicted from memory
3773 * and then re-read we need to do a full sync since we don't have any
3774 * idea about which extents were modified before we were evicted from
3775 * cache.
3776 *
3777 * This is required for both inode re-read from disk and delayed inode
3778 * in delayed_nodes_tree.
3779 */
3780 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3781 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3782 &BTRFS_I(inode)->runtime_flags);
3783
3784 /*
3785 * We don't persist the id of the transaction where an unlink operation
3786 * against the inode was last made. So here we assume the inode might
3787 * have been evicted, and therefore the exact value of last_unlink_trans
3788 * lost, and set it to last_trans to avoid metadata inconsistencies
3789 * between the inode and its parent if the inode is fsync'ed and the log
3790 * replayed. For example, in the scenario:
3791 *
3792 * touch mydir/foo
3793 * ln mydir/foo mydir/bar
3794 * sync
3795 * unlink mydir/bar
3796 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3797 * xfs_io -c fsync mydir/foo
3798 * <power failure>
3799 * mount fs, triggers fsync log replay
3800 *
3801 * We must make sure that when we fsync our inode foo we also log its
3802 * parent inode, otherwise after log replay the parent still has the
3803 * dentry with the "bar" name but our inode foo has a link count of 1
3804 * and doesn't have an inode ref with the name "bar" anymore.
3805 *
3806 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3807 * but it guarantees correctness at the expense of occasional full
3808 * transaction commits on fsync if our inode is a directory, or if our
3809 * inode is not a directory, logging its parent unnecessarily.
3810 */
3811 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3812
3813 path->slots[0]++;
3814 if (inode->i_nlink != 1 ||
3815 path->slots[0] >= btrfs_header_nritems(leaf))
3816 goto cache_acl;
3817
3818 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3819 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3820 goto cache_acl;
3821
3822 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3823 if (location.type == BTRFS_INODE_REF_KEY) {
3824 struct btrfs_inode_ref *ref;
3825
3826 ref = (struct btrfs_inode_ref *)ptr;
3827 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3828 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3829 struct btrfs_inode_extref *extref;
3830
3831 extref = (struct btrfs_inode_extref *)ptr;
3832 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3833 extref);
3834 }
3835 cache_acl:
3836 /*
3837 * try to precache a NULL acl entry for files that don't have
3838 * any xattrs or acls
3839 */
3840 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3841 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3842 if (first_xattr_slot != -1) {
3843 path->slots[0] = first_xattr_slot;
3844 ret = btrfs_load_inode_props(inode, path);
3845 if (ret)
3846 btrfs_err(fs_info,
3847 "error loading props for ino %llu (root %llu): %d",
3848 btrfs_ino(BTRFS_I(inode)),
3849 root->root_key.objectid, ret);
3850 }
3851 if (path != in_path)
3852 btrfs_free_path(path);
3853
3854 if (!maybe_acls)
3855 cache_no_acl(inode);
3856
3857 switch (inode->i_mode & S_IFMT) {
3858 case S_IFREG:
3859 inode->i_mapping->a_ops = &btrfs_aops;
3860 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3861 inode->i_fop = &btrfs_file_operations;
3862 inode->i_op = &btrfs_file_inode_operations;
3863 break;
3864 case S_IFDIR:
3865 inode->i_fop = &btrfs_dir_file_operations;
3866 inode->i_op = &btrfs_dir_inode_operations;
3867 break;
3868 case S_IFLNK:
3869 inode->i_op = &btrfs_symlink_inode_operations;
3870 inode_nohighmem(inode);
3871 inode->i_mapping->a_ops = &btrfs_aops;
3872 break;
3873 default:
3874 inode->i_op = &btrfs_special_inode_operations;
3875 init_special_inode(inode, inode->i_mode, rdev);
3876 break;
3877 }
3878
3879 btrfs_sync_inode_flags_to_i_flags(inode);
3880 return 0;
3881 }
3882
3883 /*
3884 * given a leaf and an inode, copy the inode fields into the leaf
3885 */
3886 static void fill_inode_item(struct btrfs_trans_handle *trans,
3887 struct extent_buffer *leaf,
3888 struct btrfs_inode_item *item,
3889 struct inode *inode)
3890 {
3891 struct btrfs_map_token token;
3892
3893 btrfs_init_map_token(&token, leaf);
3894
3895 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3896 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3897 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3898 &token);
3899 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3900 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3901
3902 btrfs_set_token_timespec_sec(leaf, &item->atime,
3903 inode->i_atime.tv_sec, &token);
3904 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3905 inode->i_atime.tv_nsec, &token);
3906
3907 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3908 inode->i_mtime.tv_sec, &token);
3909 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3910 inode->i_mtime.tv_nsec, &token);
3911
3912 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3913 inode->i_ctime.tv_sec, &token);
3914 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3915 inode->i_ctime.tv_nsec, &token);
3916
3917 btrfs_set_token_timespec_sec(leaf, &item->otime,
3918 BTRFS_I(inode)->i_otime.tv_sec, &token);
3919 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3920 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3921
3922 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3923 &token);
3924 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3925 &token);
3926 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3927 &token);
3928 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3929 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3930 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3931 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3932 }
3933
3934 /*
3935 * copy everything in the in-memory inode into the btree.
3936 */
3937 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root, struct inode *inode)
3939 {
3940 struct btrfs_inode_item *inode_item;
3941 struct btrfs_path *path;
3942 struct extent_buffer *leaf;
3943 int ret;
3944
3945 path = btrfs_alloc_path();
3946 if (!path)
3947 return -ENOMEM;
3948
3949 path->leave_spinning = 1;
3950 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3951 1);
3952 if (ret) {
3953 if (ret > 0)
3954 ret = -ENOENT;
3955 goto failed;
3956 }
3957
3958 leaf = path->nodes[0];
3959 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3960 struct btrfs_inode_item);
3961
3962 fill_inode_item(trans, leaf, inode_item, inode);
3963 btrfs_mark_buffer_dirty(leaf);
3964 btrfs_set_inode_last_trans(trans, inode);
3965 ret = 0;
3966 failed:
3967 btrfs_free_path(path);
3968 return ret;
3969 }
3970
3971 /*
3972 * copy everything in the in-memory inode into the btree.
3973 */
3974 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3975 struct btrfs_root *root, struct inode *inode)
3976 {
3977 struct btrfs_fs_info *fs_info = root->fs_info;
3978 int ret;
3979
3980 /*
3981 * If the inode is a free space inode, we can deadlock during commit
3982 * if we put it into the delayed code.
3983 *
3984 * The data relocation inode should also be directly updated
3985 * without delay
3986 */
3987 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3988 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3989 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3990 btrfs_update_root_times(trans, root);
3991
3992 ret = btrfs_delayed_update_inode(trans, root, inode);
3993 if (!ret)
3994 btrfs_set_inode_last_trans(trans, inode);
3995 return ret;
3996 }
3997
3998 return btrfs_update_inode_item(trans, root, inode);
3999 }
4000
4001 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4002 struct btrfs_root *root,
4003 struct inode *inode)
4004 {
4005 int ret;
4006
4007 ret = btrfs_update_inode(trans, root, inode);
4008 if (ret == -ENOSPC)
4009 return btrfs_update_inode_item(trans, root, inode);
4010 return ret;
4011 }
4012
4013 /*
4014 * unlink helper that gets used here in inode.c and in the tree logging
4015 * recovery code. It remove a link in a directory with a given name, and
4016 * also drops the back refs in the inode to the directory
4017 */
4018 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4019 struct btrfs_root *root,
4020 struct btrfs_inode *dir,
4021 struct btrfs_inode *inode,
4022 const char *name, int name_len)
4023 {
4024 struct btrfs_fs_info *fs_info = root->fs_info;
4025 struct btrfs_path *path;
4026 int ret = 0;
4027 struct btrfs_dir_item *di;
4028 u64 index;
4029 u64 ino = btrfs_ino(inode);
4030 u64 dir_ino = btrfs_ino(dir);
4031
4032 path = btrfs_alloc_path();
4033 if (!path) {
4034 ret = -ENOMEM;
4035 goto out;
4036 }
4037
4038 path->leave_spinning = 1;
4039 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4040 name, name_len, -1);
4041 if (IS_ERR_OR_NULL(di)) {
4042 ret = di ? PTR_ERR(di) : -ENOENT;
4043 goto err;
4044 }
4045 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4046 if (ret)
4047 goto err;
4048 btrfs_release_path(path);
4049
4050 /*
4051 * If we don't have dir index, we have to get it by looking up
4052 * the inode ref, since we get the inode ref, remove it directly,
4053 * it is unnecessary to do delayed deletion.
4054 *
4055 * But if we have dir index, needn't search inode ref to get it.
4056 * Since the inode ref is close to the inode item, it is better
4057 * that we delay to delete it, and just do this deletion when
4058 * we update the inode item.
4059 */
4060 if (inode->dir_index) {
4061 ret = btrfs_delayed_delete_inode_ref(inode);
4062 if (!ret) {
4063 index = inode->dir_index;
4064 goto skip_backref;
4065 }
4066 }
4067
4068 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4069 dir_ino, &index);
4070 if (ret) {
4071 btrfs_info(fs_info,
4072 "failed to delete reference to %.*s, inode %llu parent %llu",
4073 name_len, name, ino, dir_ino);
4074 btrfs_abort_transaction(trans, ret);
4075 goto err;
4076 }
4077 skip_backref:
4078 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4079 if (ret) {
4080 btrfs_abort_transaction(trans, ret);
4081 goto err;
4082 }
4083
4084 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4085 dir_ino);
4086 if (ret != 0 && ret != -ENOENT) {
4087 btrfs_abort_transaction(trans, ret);
4088 goto err;
4089 }
4090
4091 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4092 index);
4093 if (ret == -ENOENT)
4094 ret = 0;
4095 else if (ret)
4096 btrfs_abort_transaction(trans, ret);
4097
4098 /*
4099 * If we have a pending delayed iput we could end up with the final iput
4100 * being run in btrfs-cleaner context. If we have enough of these built
4101 * up we can end up burning a lot of time in btrfs-cleaner without any
4102 * way to throttle the unlinks. Since we're currently holding a ref on
4103 * the inode we can run the delayed iput here without any issues as the
4104 * final iput won't be done until after we drop the ref we're currently
4105 * holding.
4106 */
4107 btrfs_run_delayed_iput(fs_info, inode);
4108 err:
4109 btrfs_free_path(path);
4110 if (ret)
4111 goto out;
4112
4113 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4114 inode_inc_iversion(&inode->vfs_inode);
4115 inode_inc_iversion(&dir->vfs_inode);
4116 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4117 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4118 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4119 out:
4120 return ret;
4121 }
4122
4123 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4124 struct btrfs_root *root,
4125 struct btrfs_inode *dir, struct btrfs_inode *inode,
4126 const char *name, int name_len)
4127 {
4128 int ret;
4129 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4130 if (!ret) {
4131 drop_nlink(&inode->vfs_inode);
4132 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4133 }
4134 return ret;
4135 }
4136
4137 /*
4138 * helper to start transaction for unlink and rmdir.
4139 *
4140 * unlink and rmdir are special in btrfs, they do not always free space, so
4141 * if we cannot make our reservations the normal way try and see if there is
4142 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4143 * allow the unlink to occur.
4144 */
4145 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4146 {
4147 struct btrfs_root *root = BTRFS_I(dir)->root;
4148
4149 /*
4150 * 1 for the possible orphan item
4151 * 1 for the dir item
4152 * 1 for the dir index
4153 * 1 for the inode ref
4154 * 1 for the inode
4155 */
4156 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4157 }
4158
4159 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4160 {
4161 struct btrfs_root *root = BTRFS_I(dir)->root;
4162 struct btrfs_trans_handle *trans;
4163 struct inode *inode = d_inode(dentry);
4164 int ret;
4165
4166 trans = __unlink_start_trans(dir);
4167 if (IS_ERR(trans))
4168 return PTR_ERR(trans);
4169
4170 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4171 0);
4172
4173 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4174 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4175 dentry->d_name.len);
4176 if (ret)
4177 goto out;
4178
4179 if (inode->i_nlink == 0) {
4180 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4181 if (ret)
4182 goto out;
4183 }
4184
4185 out:
4186 btrfs_end_transaction(trans);
4187 btrfs_btree_balance_dirty(root->fs_info);
4188 return ret;
4189 }
4190
4191 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4192 struct inode *dir, u64 objectid,
4193 const char *name, int name_len)
4194 {
4195 struct btrfs_root *root = BTRFS_I(dir)->root;
4196 struct btrfs_path *path;
4197 struct extent_buffer *leaf;
4198 struct btrfs_dir_item *di;
4199 struct btrfs_key key;
4200 u64 index;
4201 int ret;
4202 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4203
4204 path = btrfs_alloc_path();
4205 if (!path)
4206 return -ENOMEM;
4207
4208 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4209 name, name_len, -1);
4210 if (IS_ERR_OR_NULL(di)) {
4211 ret = di ? PTR_ERR(di) : -ENOENT;
4212 goto out;
4213 }
4214
4215 leaf = path->nodes[0];
4216 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4217 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4218 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4219 if (ret) {
4220 btrfs_abort_transaction(trans, ret);
4221 goto out;
4222 }
4223 btrfs_release_path(path);
4224
4225 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4226 dir_ino, &index, name, name_len);
4227 if (ret < 0) {
4228 if (ret != -ENOENT) {
4229 btrfs_abort_transaction(trans, ret);
4230 goto out;
4231 }
4232 di = btrfs_search_dir_index_item(root, path, dir_ino,
4233 name, name_len);
4234 if (IS_ERR_OR_NULL(di)) {
4235 if (!di)
4236 ret = -ENOENT;
4237 else
4238 ret = PTR_ERR(di);
4239 btrfs_abort_transaction(trans, ret);
4240 goto out;
4241 }
4242
4243 leaf = path->nodes[0];
4244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4245 index = key.offset;
4246 }
4247 btrfs_release_path(path);
4248
4249 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4250 if (ret) {
4251 btrfs_abort_transaction(trans, ret);
4252 goto out;
4253 }
4254
4255 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4256 inode_inc_iversion(dir);
4257 dir->i_mtime = dir->i_ctime = current_time(dir);
4258 ret = btrfs_update_inode_fallback(trans, root, dir);
4259 if (ret)
4260 btrfs_abort_transaction(trans, ret);
4261 out:
4262 btrfs_free_path(path);
4263 return ret;
4264 }
4265
4266 /*
4267 * Helper to check if the subvolume references other subvolumes or if it's
4268 * default.
4269 */
4270 static noinline int may_destroy_subvol(struct btrfs_root *root)
4271 {
4272 struct btrfs_fs_info *fs_info = root->fs_info;
4273 struct btrfs_path *path;
4274 struct btrfs_dir_item *di;
4275 struct btrfs_key key;
4276 u64 dir_id;
4277 int ret;
4278
4279 path = btrfs_alloc_path();
4280 if (!path)
4281 return -ENOMEM;
4282
4283 /* Make sure this root isn't set as the default subvol */
4284 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4285 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4286 dir_id, "default", 7, 0);
4287 if (di && !IS_ERR(di)) {
4288 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4289 if (key.objectid == root->root_key.objectid) {
4290 ret = -EPERM;
4291 btrfs_err(fs_info,
4292 "deleting default subvolume %llu is not allowed",
4293 key.objectid);
4294 goto out;
4295 }
4296 btrfs_release_path(path);
4297 }
4298
4299 key.objectid = root->root_key.objectid;
4300 key.type = BTRFS_ROOT_REF_KEY;
4301 key.offset = (u64)-1;
4302
4303 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4304 if (ret < 0)
4305 goto out;
4306 BUG_ON(ret == 0);
4307
4308 ret = 0;
4309 if (path->slots[0] > 0) {
4310 path->slots[0]--;
4311 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4312 if (key.objectid == root->root_key.objectid &&
4313 key.type == BTRFS_ROOT_REF_KEY)
4314 ret = -ENOTEMPTY;
4315 }
4316 out:
4317 btrfs_free_path(path);
4318 return ret;
4319 }
4320
4321 /* Delete all dentries for inodes belonging to the root */
4322 static void btrfs_prune_dentries(struct btrfs_root *root)
4323 {
4324 struct btrfs_fs_info *fs_info = root->fs_info;
4325 struct rb_node *node;
4326 struct rb_node *prev;
4327 struct btrfs_inode *entry;
4328 struct inode *inode;
4329 u64 objectid = 0;
4330
4331 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4332 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4333
4334 spin_lock(&root->inode_lock);
4335 again:
4336 node = root->inode_tree.rb_node;
4337 prev = NULL;
4338 while (node) {
4339 prev = node;
4340 entry = rb_entry(node, struct btrfs_inode, rb_node);
4341
4342 if (objectid < btrfs_ino(entry))
4343 node = node->rb_left;
4344 else if (objectid > btrfs_ino(entry))
4345 node = node->rb_right;
4346 else
4347 break;
4348 }
4349 if (!node) {
4350 while (prev) {
4351 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4352 if (objectid <= btrfs_ino(entry)) {
4353 node = prev;
4354 break;
4355 }
4356 prev = rb_next(prev);
4357 }
4358 }
4359 while (node) {
4360 entry = rb_entry(node, struct btrfs_inode, rb_node);
4361 objectid = btrfs_ino(entry) + 1;
4362 inode = igrab(&entry->vfs_inode);
4363 if (inode) {
4364 spin_unlock(&root->inode_lock);
4365 if (atomic_read(&inode->i_count) > 1)
4366 d_prune_aliases(inode);
4367 /*
4368 * btrfs_drop_inode will have it removed from the inode
4369 * cache when its usage count hits zero.
4370 */
4371 iput(inode);
4372 cond_resched();
4373 spin_lock(&root->inode_lock);
4374 goto again;
4375 }
4376
4377 if (cond_resched_lock(&root->inode_lock))
4378 goto again;
4379
4380 node = rb_next(node);
4381 }
4382 spin_unlock(&root->inode_lock);
4383 }
4384
4385 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4386 {
4387 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4388 struct btrfs_root *root = BTRFS_I(dir)->root;
4389 struct inode *inode = d_inode(dentry);
4390 struct btrfs_root *dest = BTRFS_I(inode)->root;
4391 struct btrfs_trans_handle *trans;
4392 struct btrfs_block_rsv block_rsv;
4393 u64 root_flags;
4394 int ret;
4395 int err;
4396
4397 /*
4398 * Don't allow to delete a subvolume with send in progress. This is
4399 * inside the inode lock so the error handling that has to drop the bit
4400 * again is not run concurrently.
4401 */
4402 spin_lock(&dest->root_item_lock);
4403 if (dest->send_in_progress) {
4404 spin_unlock(&dest->root_item_lock);
4405 btrfs_warn(fs_info,
4406 "attempt to delete subvolume %llu during send",
4407 dest->root_key.objectid);
4408 return -EPERM;
4409 }
4410 root_flags = btrfs_root_flags(&dest->root_item);
4411 btrfs_set_root_flags(&dest->root_item,
4412 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4413 spin_unlock(&dest->root_item_lock);
4414
4415 down_write(&fs_info->subvol_sem);
4416
4417 err = may_destroy_subvol(dest);
4418 if (err)
4419 goto out_up_write;
4420
4421 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4422 /*
4423 * One for dir inode,
4424 * two for dir entries,
4425 * two for root ref/backref.
4426 */
4427 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4428 if (err)
4429 goto out_up_write;
4430
4431 trans = btrfs_start_transaction(root, 0);
4432 if (IS_ERR(trans)) {
4433 err = PTR_ERR(trans);
4434 goto out_release;
4435 }
4436 trans->block_rsv = &block_rsv;
4437 trans->bytes_reserved = block_rsv.size;
4438
4439 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4440
4441 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4442 dentry->d_name.name, dentry->d_name.len);
4443 if (ret) {
4444 err = ret;
4445 btrfs_abort_transaction(trans, ret);
4446 goto out_end_trans;
4447 }
4448
4449 btrfs_record_root_in_trans(trans, dest);
4450
4451 memset(&dest->root_item.drop_progress, 0,
4452 sizeof(dest->root_item.drop_progress));
4453 dest->root_item.drop_level = 0;
4454 btrfs_set_root_refs(&dest->root_item, 0);
4455
4456 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4457 ret = btrfs_insert_orphan_item(trans,
4458 fs_info->tree_root,
4459 dest->root_key.objectid);
4460 if (ret) {
4461 btrfs_abort_transaction(trans, ret);
4462 err = ret;
4463 goto out_end_trans;
4464 }
4465 }
4466
4467 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4468 BTRFS_UUID_KEY_SUBVOL,
4469 dest->root_key.objectid);
4470 if (ret && ret != -ENOENT) {
4471 btrfs_abort_transaction(trans, ret);
4472 err = ret;
4473 goto out_end_trans;
4474 }
4475 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4476 ret = btrfs_uuid_tree_remove(trans,
4477 dest->root_item.received_uuid,
4478 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4479 dest->root_key.objectid);
4480 if (ret && ret != -ENOENT) {
4481 btrfs_abort_transaction(trans, ret);
4482 err = ret;
4483 goto out_end_trans;
4484 }
4485 }
4486
4487 out_end_trans:
4488 trans->block_rsv = NULL;
4489 trans->bytes_reserved = 0;
4490 ret = btrfs_end_transaction(trans);
4491 if (ret && !err)
4492 err = ret;
4493 inode->i_flags |= S_DEAD;
4494 out_release:
4495 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4496 out_up_write:
4497 up_write(&fs_info->subvol_sem);
4498 if (err) {
4499 spin_lock(&dest->root_item_lock);
4500 root_flags = btrfs_root_flags(&dest->root_item);
4501 btrfs_set_root_flags(&dest->root_item,
4502 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4503 spin_unlock(&dest->root_item_lock);
4504 } else {
4505 d_invalidate(dentry);
4506 btrfs_prune_dentries(dest);
4507 ASSERT(dest->send_in_progress == 0);
4508
4509 /* the last ref */
4510 if (dest->ino_cache_inode) {
4511 iput(dest->ino_cache_inode);
4512 dest->ino_cache_inode = NULL;
4513 }
4514 }
4515
4516 return err;
4517 }
4518
4519 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4520 {
4521 struct inode *inode = d_inode(dentry);
4522 int err = 0;
4523 struct btrfs_root *root = BTRFS_I(dir)->root;
4524 struct btrfs_trans_handle *trans;
4525 u64 last_unlink_trans;
4526
4527 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4528 return -ENOTEMPTY;
4529 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4530 return btrfs_delete_subvolume(dir, dentry);
4531
4532 trans = __unlink_start_trans(dir);
4533 if (IS_ERR(trans))
4534 return PTR_ERR(trans);
4535
4536 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4537 err = btrfs_unlink_subvol(trans, dir,
4538 BTRFS_I(inode)->location.objectid,
4539 dentry->d_name.name,
4540 dentry->d_name.len);
4541 goto out;
4542 }
4543
4544 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4545 if (err)
4546 goto out;
4547
4548 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4549
4550 /* now the directory is empty */
4551 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4552 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4553 dentry->d_name.len);
4554 if (!err) {
4555 btrfs_i_size_write(BTRFS_I(inode), 0);
4556 /*
4557 * Propagate the last_unlink_trans value of the deleted dir to
4558 * its parent directory. This is to prevent an unrecoverable
4559 * log tree in the case we do something like this:
4560 * 1) create dir foo
4561 * 2) create snapshot under dir foo
4562 * 3) delete the snapshot
4563 * 4) rmdir foo
4564 * 5) mkdir foo
4565 * 6) fsync foo or some file inside foo
4566 */
4567 if (last_unlink_trans >= trans->transid)
4568 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4569 }
4570 out:
4571 btrfs_end_transaction(trans);
4572 btrfs_btree_balance_dirty(root->fs_info);
4573
4574 return err;
4575 }
4576
4577 /*
4578 * Return this if we need to call truncate_block for the last bit of the
4579 * truncate.
4580 */
4581 #define NEED_TRUNCATE_BLOCK 1
4582
4583 /*
4584 * this can truncate away extent items, csum items and directory items.
4585 * It starts at a high offset and removes keys until it can't find
4586 * any higher than new_size
4587 *
4588 * csum items that cross the new i_size are truncated to the new size
4589 * as well.
4590 *
4591 * min_type is the minimum key type to truncate down to. If set to 0, this
4592 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4593 */
4594 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4595 struct btrfs_root *root,
4596 struct inode *inode,
4597 u64 new_size, u32 min_type)
4598 {
4599 struct btrfs_fs_info *fs_info = root->fs_info;
4600 struct btrfs_path *path;
4601 struct extent_buffer *leaf;
4602 struct btrfs_file_extent_item *fi;
4603 struct btrfs_key key;
4604 struct btrfs_key found_key;
4605 u64 extent_start = 0;
4606 u64 extent_num_bytes = 0;
4607 u64 extent_offset = 0;
4608 u64 item_end = 0;
4609 u64 last_size = new_size;
4610 u32 found_type = (u8)-1;
4611 int found_extent;
4612 int del_item;
4613 int pending_del_nr = 0;
4614 int pending_del_slot = 0;
4615 int extent_type = -1;
4616 int ret;
4617 u64 ino = btrfs_ino(BTRFS_I(inode));
4618 u64 bytes_deleted = 0;
4619 bool be_nice = false;
4620 bool should_throttle = false;
4621
4622 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4623
4624 /*
4625 * for non-free space inodes and ref cows, we want to back off from
4626 * time to time
4627 */
4628 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4629 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4630 be_nice = true;
4631
4632 path = btrfs_alloc_path();
4633 if (!path)
4634 return -ENOMEM;
4635 path->reada = READA_BACK;
4636
4637 /*
4638 * We want to drop from the next block forward in case this new size is
4639 * not block aligned since we will be keeping the last block of the
4640 * extent just the way it is.
4641 */
4642 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4643 root == fs_info->tree_root)
4644 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4645 fs_info->sectorsize),
4646 (u64)-1, 0);
4647
4648 /*
4649 * This function is also used to drop the items in the log tree before
4650 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4651 * it is used to drop the logged items. So we shouldn't kill the delayed
4652 * items.
4653 */
4654 if (min_type == 0 && root == BTRFS_I(inode)->root)
4655 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4656
4657 key.objectid = ino;
4658 key.offset = (u64)-1;
4659 key.type = (u8)-1;
4660
4661 search_again:
4662 /*
4663 * with a 16K leaf size and 128MB extents, you can actually queue
4664 * up a huge file in a single leaf. Most of the time that
4665 * bytes_deleted is > 0, it will be huge by the time we get here
4666 */
4667 if (be_nice && bytes_deleted > SZ_32M &&
4668 btrfs_should_end_transaction(trans)) {
4669 ret = -EAGAIN;
4670 goto out;
4671 }
4672
4673 path->leave_spinning = 1;
4674 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4675 if (ret < 0)
4676 goto out;
4677
4678 if (ret > 0) {
4679 ret = 0;
4680 /* there are no items in the tree for us to truncate, we're
4681 * done
4682 */
4683 if (path->slots[0] == 0)
4684 goto out;
4685 path->slots[0]--;
4686 }
4687
4688 while (1) {
4689 fi = NULL;
4690 leaf = path->nodes[0];
4691 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4692 found_type = found_key.type;
4693
4694 if (found_key.objectid != ino)
4695 break;
4696
4697 if (found_type < min_type)
4698 break;
4699
4700 item_end = found_key.offset;
4701 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4702 fi = btrfs_item_ptr(leaf, path->slots[0],
4703 struct btrfs_file_extent_item);
4704 extent_type = btrfs_file_extent_type(leaf, fi);
4705 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4706 item_end +=
4707 btrfs_file_extent_num_bytes(leaf, fi);
4708
4709 trace_btrfs_truncate_show_fi_regular(
4710 BTRFS_I(inode), leaf, fi,
4711 found_key.offset);
4712 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4713 item_end += btrfs_file_extent_ram_bytes(leaf,
4714 fi);
4715
4716 trace_btrfs_truncate_show_fi_inline(
4717 BTRFS_I(inode), leaf, fi, path->slots[0],
4718 found_key.offset);
4719 }
4720 item_end--;
4721 }
4722 if (found_type > min_type) {
4723 del_item = 1;
4724 } else {
4725 if (item_end < new_size)
4726 break;
4727 if (found_key.offset >= new_size)
4728 del_item = 1;
4729 else
4730 del_item = 0;
4731 }
4732 found_extent = 0;
4733 /* FIXME, shrink the extent if the ref count is only 1 */
4734 if (found_type != BTRFS_EXTENT_DATA_KEY)
4735 goto delete;
4736
4737 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4738 u64 num_dec;
4739 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4740 if (!del_item) {
4741 u64 orig_num_bytes =
4742 btrfs_file_extent_num_bytes(leaf, fi);
4743 extent_num_bytes = ALIGN(new_size -
4744 found_key.offset,
4745 fs_info->sectorsize);
4746 btrfs_set_file_extent_num_bytes(leaf, fi,
4747 extent_num_bytes);
4748 num_dec = (orig_num_bytes -
4749 extent_num_bytes);
4750 if (test_bit(BTRFS_ROOT_REF_COWS,
4751 &root->state) &&
4752 extent_start != 0)
4753 inode_sub_bytes(inode, num_dec);
4754 btrfs_mark_buffer_dirty(leaf);
4755 } else {
4756 extent_num_bytes =
4757 btrfs_file_extent_disk_num_bytes(leaf,
4758 fi);
4759 extent_offset = found_key.offset -
4760 btrfs_file_extent_offset(leaf, fi);
4761
4762 /* FIXME blocksize != 4096 */
4763 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4764 if (extent_start != 0) {
4765 found_extent = 1;
4766 if (test_bit(BTRFS_ROOT_REF_COWS,
4767 &root->state))
4768 inode_sub_bytes(inode, num_dec);
4769 }
4770 }
4771 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4772 /*
4773 * we can't truncate inline items that have had
4774 * special encodings
4775 */
4776 if (!del_item &&
4777 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4778 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4779 btrfs_file_extent_compression(leaf, fi) == 0) {
4780 u32 size = (u32)(new_size - found_key.offset);
4781
4782 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4783 size = btrfs_file_extent_calc_inline_size(size);
4784 btrfs_truncate_item(path, size, 1);
4785 } else if (!del_item) {
4786 /*
4787 * We have to bail so the last_size is set to
4788 * just before this extent.
4789 */
4790 ret = NEED_TRUNCATE_BLOCK;
4791 break;
4792 }
4793
4794 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4795 inode_sub_bytes(inode, item_end + 1 - new_size);
4796 }
4797 delete:
4798 if (del_item)
4799 last_size = found_key.offset;
4800 else
4801 last_size = new_size;
4802 if (del_item) {
4803 if (!pending_del_nr) {
4804 /* no pending yet, add ourselves */
4805 pending_del_slot = path->slots[0];
4806 pending_del_nr = 1;
4807 } else if (pending_del_nr &&
4808 path->slots[0] + 1 == pending_del_slot) {
4809 /* hop on the pending chunk */
4810 pending_del_nr++;
4811 pending_del_slot = path->slots[0];
4812 } else {
4813 BUG();
4814 }
4815 } else {
4816 break;
4817 }
4818 should_throttle = false;
4819
4820 if (found_extent &&
4821 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4822 root == fs_info->tree_root)) {
4823 struct btrfs_ref ref = { 0 };
4824
4825 btrfs_set_path_blocking(path);
4826 bytes_deleted += extent_num_bytes;
4827
4828 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4829 extent_start, extent_num_bytes, 0);
4830 ref.real_root = root->root_key.objectid;
4831 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4832 ino, extent_offset);
4833 ret = btrfs_free_extent(trans, &ref);
4834 if (ret) {
4835 btrfs_abort_transaction(trans, ret);
4836 break;
4837 }
4838 if (be_nice) {
4839 if (btrfs_should_throttle_delayed_refs(trans))
4840 should_throttle = true;
4841 }
4842 }
4843
4844 if (found_type == BTRFS_INODE_ITEM_KEY)
4845 break;
4846
4847 if (path->slots[0] == 0 ||
4848 path->slots[0] != pending_del_slot ||
4849 should_throttle) {
4850 if (pending_del_nr) {
4851 ret = btrfs_del_items(trans, root, path,
4852 pending_del_slot,
4853 pending_del_nr);
4854 if (ret) {
4855 btrfs_abort_transaction(trans, ret);
4856 break;
4857 }
4858 pending_del_nr = 0;
4859 }
4860 btrfs_release_path(path);
4861
4862 /*
4863 * We can generate a lot of delayed refs, so we need to
4864 * throttle every once and a while and make sure we're
4865 * adding enough space to keep up with the work we are
4866 * generating. Since we hold a transaction here we
4867 * can't flush, and we don't want to FLUSH_LIMIT because
4868 * we could have generated too many delayed refs to
4869 * actually allocate, so just bail if we're short and
4870 * let the normal reservation dance happen higher up.
4871 */
4872 if (should_throttle) {
4873 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4874 BTRFS_RESERVE_NO_FLUSH);
4875 if (ret) {
4876 ret = -EAGAIN;
4877 break;
4878 }
4879 }
4880 goto search_again;
4881 } else {
4882 path->slots[0]--;
4883 }
4884 }
4885 out:
4886 if (ret >= 0 && pending_del_nr) {
4887 int err;
4888
4889 err = btrfs_del_items(trans, root, path, pending_del_slot,
4890 pending_del_nr);
4891 if (err) {
4892 btrfs_abort_transaction(trans, err);
4893 ret = err;
4894 }
4895 }
4896 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4897 ASSERT(last_size >= new_size);
4898 if (!ret && last_size > new_size)
4899 last_size = new_size;
4900 btrfs_ordered_update_i_size(inode, last_size, NULL);
4901 }
4902
4903 btrfs_free_path(path);
4904 return ret;
4905 }
4906
4907 /*
4908 * btrfs_truncate_block - read, zero a chunk and write a block
4909 * @inode - inode that we're zeroing
4910 * @from - the offset to start zeroing
4911 * @len - the length to zero, 0 to zero the entire range respective to the
4912 * offset
4913 * @front - zero up to the offset instead of from the offset on
4914 *
4915 * This will find the block for the "from" offset and cow the block and zero the
4916 * part we want to zero. This is used with truncate and hole punching.
4917 */
4918 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4919 int front)
4920 {
4921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4922 struct address_space *mapping = inode->i_mapping;
4923 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4924 struct btrfs_ordered_extent *ordered;
4925 struct extent_state *cached_state = NULL;
4926 struct extent_changeset *data_reserved = NULL;
4927 char *kaddr;
4928 u32 blocksize = fs_info->sectorsize;
4929 pgoff_t index = from >> PAGE_SHIFT;
4930 unsigned offset = from & (blocksize - 1);
4931 struct page *page;
4932 gfp_t mask = btrfs_alloc_write_mask(mapping);
4933 int ret = 0;
4934 u64 block_start;
4935 u64 block_end;
4936
4937 if (IS_ALIGNED(offset, blocksize) &&
4938 (!len || IS_ALIGNED(len, blocksize)))
4939 goto out;
4940
4941 block_start = round_down(from, blocksize);
4942 block_end = block_start + blocksize - 1;
4943
4944 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4945 block_start, blocksize);
4946 if (ret)
4947 goto out;
4948
4949 again:
4950 page = find_or_create_page(mapping, index, mask);
4951 if (!page) {
4952 btrfs_delalloc_release_space(inode, data_reserved,
4953 block_start, blocksize, true);
4954 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4955 ret = -ENOMEM;
4956 goto out;
4957 }
4958
4959 if (!PageUptodate(page)) {
4960 ret = btrfs_readpage(NULL, page);
4961 lock_page(page);
4962 if (page->mapping != mapping) {
4963 unlock_page(page);
4964 put_page(page);
4965 goto again;
4966 }
4967 if (!PageUptodate(page)) {
4968 ret = -EIO;
4969 goto out_unlock;
4970 }
4971 }
4972 wait_on_page_writeback(page);
4973
4974 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4975 set_page_extent_mapped(page);
4976
4977 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4978 if (ordered) {
4979 unlock_extent_cached(io_tree, block_start, block_end,
4980 &cached_state);
4981 unlock_page(page);
4982 put_page(page);
4983 btrfs_start_ordered_extent(inode, ordered, 1);
4984 btrfs_put_ordered_extent(ordered);
4985 goto again;
4986 }
4987
4988 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4989 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4990 0, 0, &cached_state);
4991
4992 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4993 &cached_state);
4994 if (ret) {
4995 unlock_extent_cached(io_tree, block_start, block_end,
4996 &cached_state);
4997 goto out_unlock;
4998 }
4999
5000 if (offset != blocksize) {
5001 if (!len)
5002 len = blocksize - offset;
5003 kaddr = kmap(page);
5004 if (front)
5005 memset(kaddr + (block_start - page_offset(page)),
5006 0, offset);
5007 else
5008 memset(kaddr + (block_start - page_offset(page)) + offset,
5009 0, len);
5010 flush_dcache_page(page);
5011 kunmap(page);
5012 }
5013 ClearPageChecked(page);
5014 set_page_dirty(page);
5015 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5016
5017 out_unlock:
5018 if (ret)
5019 btrfs_delalloc_release_space(inode, data_reserved, block_start,
5020 blocksize, true);
5021 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
5022 unlock_page(page);
5023 put_page(page);
5024 out:
5025 extent_changeset_free(data_reserved);
5026 return ret;
5027 }
5028
5029 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5030 u64 offset, u64 len)
5031 {
5032 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5033 struct btrfs_trans_handle *trans;
5034 int ret;
5035
5036 /*
5037 * Still need to make sure the inode looks like it's been updated so
5038 * that any holes get logged if we fsync.
5039 */
5040 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5041 BTRFS_I(inode)->last_trans = fs_info->generation;
5042 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5043 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5044 return 0;
5045 }
5046
5047 /*
5048 * 1 - for the one we're dropping
5049 * 1 - for the one we're adding
5050 * 1 - for updating the inode.
5051 */
5052 trans = btrfs_start_transaction(root, 3);
5053 if (IS_ERR(trans))
5054 return PTR_ERR(trans);
5055
5056 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5057 if (ret) {
5058 btrfs_abort_transaction(trans, ret);
5059 btrfs_end_transaction(trans);
5060 return ret;
5061 }
5062
5063 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5064 offset, 0, 0, len, 0, len, 0, 0, 0);
5065 if (ret)
5066 btrfs_abort_transaction(trans, ret);
5067 else
5068 btrfs_update_inode(trans, root, inode);
5069 btrfs_end_transaction(trans);
5070 return ret;
5071 }
5072
5073 /*
5074 * This function puts in dummy file extents for the area we're creating a hole
5075 * for. So if we are truncating this file to a larger size we need to insert
5076 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5077 * the range between oldsize and size
5078 */
5079 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5080 {
5081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5082 struct btrfs_root *root = BTRFS_I(inode)->root;
5083 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5084 struct extent_map *em = NULL;
5085 struct extent_state *cached_state = NULL;
5086 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5087 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5088 u64 block_end = ALIGN(size, fs_info->sectorsize);
5089 u64 last_byte;
5090 u64 cur_offset;
5091 u64 hole_size;
5092 int err = 0;
5093
5094 /*
5095 * If our size started in the middle of a block we need to zero out the
5096 * rest of the block before we expand the i_size, otherwise we could
5097 * expose stale data.
5098 */
5099 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5100 if (err)
5101 return err;
5102
5103 if (size <= hole_start)
5104 return 0;
5105
5106 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5107 block_end - 1, &cached_state);
5108 cur_offset = hole_start;
5109 while (1) {
5110 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5111 block_end - cur_offset, 0);
5112 if (IS_ERR(em)) {
5113 err = PTR_ERR(em);
5114 em = NULL;
5115 break;
5116 }
5117 last_byte = min(extent_map_end(em), block_end);
5118 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5119 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5120 struct extent_map *hole_em;
5121 hole_size = last_byte - cur_offset;
5122
5123 err = maybe_insert_hole(root, inode, cur_offset,
5124 hole_size);
5125 if (err)
5126 break;
5127 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5128 cur_offset + hole_size - 1, 0);
5129 hole_em = alloc_extent_map();
5130 if (!hole_em) {
5131 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5132 &BTRFS_I(inode)->runtime_flags);
5133 goto next;
5134 }
5135 hole_em->start = cur_offset;
5136 hole_em->len = hole_size;
5137 hole_em->orig_start = cur_offset;
5138
5139 hole_em->block_start = EXTENT_MAP_HOLE;
5140 hole_em->block_len = 0;
5141 hole_em->orig_block_len = 0;
5142 hole_em->ram_bytes = hole_size;
5143 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5144 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5145 hole_em->generation = fs_info->generation;
5146
5147 while (1) {
5148 write_lock(&em_tree->lock);
5149 err = add_extent_mapping(em_tree, hole_em, 1);
5150 write_unlock(&em_tree->lock);
5151 if (err != -EEXIST)
5152 break;
5153 btrfs_drop_extent_cache(BTRFS_I(inode),
5154 cur_offset,
5155 cur_offset +
5156 hole_size - 1, 0);
5157 }
5158 free_extent_map(hole_em);
5159 }
5160 next:
5161 free_extent_map(em);
5162 em = NULL;
5163 cur_offset = last_byte;
5164 if (cur_offset >= block_end)
5165 break;
5166 }
5167 free_extent_map(em);
5168 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5169 return err;
5170 }
5171
5172 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5173 {
5174 struct btrfs_root *root = BTRFS_I(inode)->root;
5175 struct btrfs_trans_handle *trans;
5176 loff_t oldsize = i_size_read(inode);
5177 loff_t newsize = attr->ia_size;
5178 int mask = attr->ia_valid;
5179 int ret;
5180
5181 /*
5182 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5183 * special case where we need to update the times despite not having
5184 * these flags set. For all other operations the VFS set these flags
5185 * explicitly if it wants a timestamp update.
5186 */
5187 if (newsize != oldsize) {
5188 inode_inc_iversion(inode);
5189 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5190 inode->i_ctime = inode->i_mtime =
5191 current_time(inode);
5192 }
5193
5194 if (newsize > oldsize) {
5195 /*
5196 * Don't do an expanding truncate while snapshotting is ongoing.
5197 * This is to ensure the snapshot captures a fully consistent
5198 * state of this file - if the snapshot captures this expanding
5199 * truncation, it must capture all writes that happened before
5200 * this truncation.
5201 */
5202 btrfs_wait_for_snapshot_creation(root);
5203 ret = btrfs_cont_expand(inode, oldsize, newsize);
5204 if (ret) {
5205 btrfs_end_write_no_snapshotting(root);
5206 return ret;
5207 }
5208
5209 trans = btrfs_start_transaction(root, 1);
5210 if (IS_ERR(trans)) {
5211 btrfs_end_write_no_snapshotting(root);
5212 return PTR_ERR(trans);
5213 }
5214
5215 i_size_write(inode, newsize);
5216 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5217 pagecache_isize_extended(inode, oldsize, newsize);
5218 ret = btrfs_update_inode(trans, root, inode);
5219 btrfs_end_write_no_snapshotting(root);
5220 btrfs_end_transaction(trans);
5221 } else {
5222
5223 /*
5224 * We're truncating a file that used to have good data down to
5225 * zero. Make sure it gets into the ordered flush list so that
5226 * any new writes get down to disk quickly.
5227 */
5228 if (newsize == 0)
5229 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5230 &BTRFS_I(inode)->runtime_flags);
5231
5232 truncate_setsize(inode, newsize);
5233
5234 /* Disable nonlocked read DIO to avoid the endless truncate */
5235 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5236 inode_dio_wait(inode);
5237 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5238
5239 ret = btrfs_truncate(inode, newsize == oldsize);
5240 if (ret && inode->i_nlink) {
5241 int err;
5242
5243 /*
5244 * Truncate failed, so fix up the in-memory size. We
5245 * adjusted disk_i_size down as we removed extents, so
5246 * wait for disk_i_size to be stable and then update the
5247 * in-memory size to match.
5248 */
5249 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5250 if (err)
5251 return err;
5252 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5253 }
5254 }
5255
5256 return ret;
5257 }
5258
5259 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5260 {
5261 struct inode *inode = d_inode(dentry);
5262 struct btrfs_root *root = BTRFS_I(inode)->root;
5263 int err;
5264
5265 if (btrfs_root_readonly(root))
5266 return -EROFS;
5267
5268 err = setattr_prepare(dentry, attr);
5269 if (err)
5270 return err;
5271
5272 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5273 err = btrfs_setsize(inode, attr);
5274 if (err)
5275 return err;
5276 }
5277
5278 if (attr->ia_valid) {
5279 setattr_copy(inode, attr);
5280 inode_inc_iversion(inode);
5281 err = btrfs_dirty_inode(inode);
5282
5283 if (!err && attr->ia_valid & ATTR_MODE)
5284 err = posix_acl_chmod(inode, inode->i_mode);
5285 }
5286
5287 return err;
5288 }
5289
5290 /*
5291 * While truncating the inode pages during eviction, we get the VFS calling
5292 * btrfs_invalidatepage() against each page of the inode. This is slow because
5293 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5294 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5295 * extent_state structures over and over, wasting lots of time.
5296 *
5297 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5298 * those expensive operations on a per page basis and do only the ordered io
5299 * finishing, while we release here the extent_map and extent_state structures,
5300 * without the excessive merging and splitting.
5301 */
5302 static void evict_inode_truncate_pages(struct inode *inode)
5303 {
5304 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5305 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5306 struct rb_node *node;
5307
5308 ASSERT(inode->i_state & I_FREEING);
5309 truncate_inode_pages_final(&inode->i_data);
5310
5311 write_lock(&map_tree->lock);
5312 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5313 struct extent_map *em;
5314
5315 node = rb_first_cached(&map_tree->map);
5316 em = rb_entry(node, struct extent_map, rb_node);
5317 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5318 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5319 remove_extent_mapping(map_tree, em);
5320 free_extent_map(em);
5321 if (need_resched()) {
5322 write_unlock(&map_tree->lock);
5323 cond_resched();
5324 write_lock(&map_tree->lock);
5325 }
5326 }
5327 write_unlock(&map_tree->lock);
5328
5329 /*
5330 * Keep looping until we have no more ranges in the io tree.
5331 * We can have ongoing bios started by readpages (called from readahead)
5332 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5333 * still in progress (unlocked the pages in the bio but did not yet
5334 * unlocked the ranges in the io tree). Therefore this means some
5335 * ranges can still be locked and eviction started because before
5336 * submitting those bios, which are executed by a separate task (work
5337 * queue kthread), inode references (inode->i_count) were not taken
5338 * (which would be dropped in the end io callback of each bio).
5339 * Therefore here we effectively end up waiting for those bios and
5340 * anyone else holding locked ranges without having bumped the inode's
5341 * reference count - if we don't do it, when they access the inode's
5342 * io_tree to unlock a range it may be too late, leading to an
5343 * use-after-free issue.
5344 */
5345 spin_lock(&io_tree->lock);
5346 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5347 struct extent_state *state;
5348 struct extent_state *cached_state = NULL;
5349 u64 start;
5350 u64 end;
5351 unsigned state_flags;
5352
5353 node = rb_first(&io_tree->state);
5354 state = rb_entry(node, struct extent_state, rb_node);
5355 start = state->start;
5356 end = state->end;
5357 state_flags = state->state;
5358 spin_unlock(&io_tree->lock);
5359
5360 lock_extent_bits(io_tree, start, end, &cached_state);
5361
5362 /*
5363 * If still has DELALLOC flag, the extent didn't reach disk,
5364 * and its reserved space won't be freed by delayed_ref.
5365 * So we need to free its reserved space here.
5366 * (Refer to comment in btrfs_invalidatepage, case 2)
5367 *
5368 * Note, end is the bytenr of last byte, so we need + 1 here.
5369 */
5370 if (state_flags & EXTENT_DELALLOC)
5371 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5372
5373 clear_extent_bit(io_tree, start, end,
5374 EXTENT_LOCKED | EXTENT_DELALLOC |
5375 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5376 &cached_state);
5377
5378 cond_resched();
5379 spin_lock(&io_tree->lock);
5380 }
5381 spin_unlock(&io_tree->lock);
5382 }
5383
5384 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5385 struct btrfs_block_rsv *rsv)
5386 {
5387 struct btrfs_fs_info *fs_info = root->fs_info;
5388 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5389 struct btrfs_trans_handle *trans;
5390 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5391 int ret;
5392
5393 /*
5394 * Eviction should be taking place at some place safe because of our
5395 * delayed iputs. However the normal flushing code will run delayed
5396 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5397 *
5398 * We reserve the delayed_refs_extra here again because we can't use
5399 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5400 * above. We reserve our extra bit here because we generate a ton of
5401 * delayed refs activity by truncating.
5402 *
5403 * If we cannot make our reservation we'll attempt to steal from the
5404 * global reserve, because we really want to be able to free up space.
5405 */
5406 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5407 BTRFS_RESERVE_FLUSH_EVICT);
5408 if (ret) {
5409 /*
5410 * Try to steal from the global reserve if there is space for
5411 * it.
5412 */
5413 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5414 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5415 btrfs_warn(fs_info,
5416 "could not allocate space for delete; will truncate on mount");
5417 return ERR_PTR(-ENOSPC);
5418 }
5419 delayed_refs_extra = 0;
5420 }
5421
5422 trans = btrfs_join_transaction(root);
5423 if (IS_ERR(trans))
5424 return trans;
5425
5426 if (delayed_refs_extra) {
5427 trans->block_rsv = &fs_info->trans_block_rsv;
5428 trans->bytes_reserved = delayed_refs_extra;
5429 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5430 delayed_refs_extra, 1);
5431 }
5432 return trans;
5433 }
5434
5435 void btrfs_evict_inode(struct inode *inode)
5436 {
5437 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5438 struct btrfs_trans_handle *trans;
5439 struct btrfs_root *root = BTRFS_I(inode)->root;
5440 struct btrfs_block_rsv *rsv;
5441 int ret;
5442
5443 trace_btrfs_inode_evict(inode);
5444
5445 if (!root) {
5446 clear_inode(inode);
5447 return;
5448 }
5449
5450 evict_inode_truncate_pages(inode);
5451
5452 if (inode->i_nlink &&
5453 ((btrfs_root_refs(&root->root_item) != 0 &&
5454 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5455 btrfs_is_free_space_inode(BTRFS_I(inode))))
5456 goto no_delete;
5457
5458 if (is_bad_inode(inode))
5459 goto no_delete;
5460
5461 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5462
5463 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5464 goto no_delete;
5465
5466 if (inode->i_nlink > 0) {
5467 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5468 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5469 goto no_delete;
5470 }
5471
5472 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5473 if (ret)
5474 goto no_delete;
5475
5476 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5477 if (!rsv)
5478 goto no_delete;
5479 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5480 rsv->failfast = 1;
5481
5482 btrfs_i_size_write(BTRFS_I(inode), 0);
5483
5484 while (1) {
5485 trans = evict_refill_and_join(root, rsv);
5486 if (IS_ERR(trans))
5487 goto free_rsv;
5488
5489 trans->block_rsv = rsv;
5490
5491 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5492 trans->block_rsv = &fs_info->trans_block_rsv;
5493 btrfs_end_transaction(trans);
5494 btrfs_btree_balance_dirty(fs_info);
5495 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5496 goto free_rsv;
5497 else if (!ret)
5498 break;
5499 }
5500
5501 /*
5502 * Errors here aren't a big deal, it just means we leave orphan items in
5503 * the tree. They will be cleaned up on the next mount. If the inode
5504 * number gets reused, cleanup deletes the orphan item without doing
5505 * anything, and unlink reuses the existing orphan item.
5506 *
5507 * If it turns out that we are dropping too many of these, we might want
5508 * to add a mechanism for retrying these after a commit.
5509 */
5510 trans = evict_refill_and_join(root, rsv);
5511 if (!IS_ERR(trans)) {
5512 trans->block_rsv = rsv;
5513 btrfs_orphan_del(trans, BTRFS_I(inode));
5514 trans->block_rsv = &fs_info->trans_block_rsv;
5515 btrfs_end_transaction(trans);
5516 }
5517
5518 if (!(root == fs_info->tree_root ||
5519 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5520 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5521
5522 free_rsv:
5523 btrfs_free_block_rsv(fs_info, rsv);
5524 no_delete:
5525 /*
5526 * If we didn't successfully delete, the orphan item will still be in
5527 * the tree and we'll retry on the next mount. Again, we might also want
5528 * to retry these periodically in the future.
5529 */
5530 btrfs_remove_delayed_node(BTRFS_I(inode));
5531 clear_inode(inode);
5532 }
5533
5534 /*
5535 * Return the key found in the dir entry in the location pointer, fill @type
5536 * with BTRFS_FT_*, and return 0.
5537 *
5538 * If no dir entries were found, returns -ENOENT.
5539 * If found a corrupted location in dir entry, returns -EUCLEAN.
5540 */
5541 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5542 struct btrfs_key *location, u8 *type)
5543 {
5544 const char *name = dentry->d_name.name;
5545 int namelen = dentry->d_name.len;
5546 struct btrfs_dir_item *di;
5547 struct btrfs_path *path;
5548 struct btrfs_root *root = BTRFS_I(dir)->root;
5549 int ret = 0;
5550
5551 path = btrfs_alloc_path();
5552 if (!path)
5553 return -ENOMEM;
5554
5555 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5556 name, namelen, 0);
5557 if (IS_ERR_OR_NULL(di)) {
5558 ret = di ? PTR_ERR(di) : -ENOENT;
5559 goto out;
5560 }
5561
5562 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5563 if (location->type != BTRFS_INODE_ITEM_KEY &&
5564 location->type != BTRFS_ROOT_ITEM_KEY) {
5565 ret = -EUCLEAN;
5566 btrfs_warn(root->fs_info,
5567 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5568 __func__, name, btrfs_ino(BTRFS_I(dir)),
5569 location->objectid, location->type, location->offset);
5570 }
5571 if (!ret)
5572 *type = btrfs_dir_type(path->nodes[0], di);
5573 out:
5574 btrfs_free_path(path);
5575 return ret;
5576 }
5577
5578 /*
5579 * when we hit a tree root in a directory, the btrfs part of the inode
5580 * needs to be changed to reflect the root directory of the tree root. This
5581 * is kind of like crossing a mount point.
5582 */
5583 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5584 struct inode *dir,
5585 struct dentry *dentry,
5586 struct btrfs_key *location,
5587 struct btrfs_root **sub_root)
5588 {
5589 struct btrfs_path *path;
5590 struct btrfs_root *new_root;
5591 struct btrfs_root_ref *ref;
5592 struct extent_buffer *leaf;
5593 struct btrfs_key key;
5594 int ret;
5595 int err = 0;
5596
5597 path = btrfs_alloc_path();
5598 if (!path) {
5599 err = -ENOMEM;
5600 goto out;
5601 }
5602
5603 err = -ENOENT;
5604 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5605 key.type = BTRFS_ROOT_REF_KEY;
5606 key.offset = location->objectid;
5607
5608 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5609 if (ret) {
5610 if (ret < 0)
5611 err = ret;
5612 goto out;
5613 }
5614
5615 leaf = path->nodes[0];
5616 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5617 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5618 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5619 goto out;
5620
5621 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5622 (unsigned long)(ref + 1),
5623 dentry->d_name.len);
5624 if (ret)
5625 goto out;
5626
5627 btrfs_release_path(path);
5628
5629 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5630 if (IS_ERR(new_root)) {
5631 err = PTR_ERR(new_root);
5632 goto out;
5633 }
5634
5635 *sub_root = new_root;
5636 location->objectid = btrfs_root_dirid(&new_root->root_item);
5637 location->type = BTRFS_INODE_ITEM_KEY;
5638 location->offset = 0;
5639 err = 0;
5640 out:
5641 btrfs_free_path(path);
5642 return err;
5643 }
5644
5645 static void inode_tree_add(struct inode *inode)
5646 {
5647 struct btrfs_root *root = BTRFS_I(inode)->root;
5648 struct btrfs_inode *entry;
5649 struct rb_node **p;
5650 struct rb_node *parent;
5651 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5652 u64 ino = btrfs_ino(BTRFS_I(inode));
5653
5654 if (inode_unhashed(inode))
5655 return;
5656 parent = NULL;
5657 spin_lock(&root->inode_lock);
5658 p = &root->inode_tree.rb_node;
5659 while (*p) {
5660 parent = *p;
5661 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5662
5663 if (ino < btrfs_ino(entry))
5664 p = &parent->rb_left;
5665 else if (ino > btrfs_ino(entry))
5666 p = &parent->rb_right;
5667 else {
5668 WARN_ON(!(entry->vfs_inode.i_state &
5669 (I_WILL_FREE | I_FREEING)));
5670 rb_replace_node(parent, new, &root->inode_tree);
5671 RB_CLEAR_NODE(parent);
5672 spin_unlock(&root->inode_lock);
5673 return;
5674 }
5675 }
5676 rb_link_node(new, parent, p);
5677 rb_insert_color(new, &root->inode_tree);
5678 spin_unlock(&root->inode_lock);
5679 }
5680
5681 static void inode_tree_del(struct inode *inode)
5682 {
5683 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5684 struct btrfs_root *root = BTRFS_I(inode)->root;
5685 int empty = 0;
5686
5687 spin_lock(&root->inode_lock);
5688 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5689 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5690 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5691 empty = RB_EMPTY_ROOT(&root->inode_tree);
5692 }
5693 spin_unlock(&root->inode_lock);
5694
5695 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5696 synchronize_srcu(&fs_info->subvol_srcu);
5697 spin_lock(&root->inode_lock);
5698 empty = RB_EMPTY_ROOT(&root->inode_tree);
5699 spin_unlock(&root->inode_lock);
5700 if (empty)
5701 btrfs_add_dead_root(root);
5702 }
5703 }
5704
5705
5706 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5707 {
5708 struct btrfs_iget_args *args = p;
5709 inode->i_ino = args->location->objectid;
5710 memcpy(&BTRFS_I(inode)->location, args->location,
5711 sizeof(*args->location));
5712 BTRFS_I(inode)->root = args->root;
5713 return 0;
5714 }
5715
5716 static int btrfs_find_actor(struct inode *inode, void *opaque)
5717 {
5718 struct btrfs_iget_args *args = opaque;
5719 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5720 args->root == BTRFS_I(inode)->root;
5721 }
5722
5723 static struct inode *btrfs_iget_locked(struct super_block *s,
5724 struct btrfs_key *location,
5725 struct btrfs_root *root)
5726 {
5727 struct inode *inode;
5728 struct btrfs_iget_args args;
5729 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5730
5731 args.location = location;
5732 args.root = root;
5733
5734 inode = iget5_locked(s, hashval, btrfs_find_actor,
5735 btrfs_init_locked_inode,
5736 (void *)&args);
5737 return inode;
5738 }
5739
5740 /* Get an inode object given its location and corresponding root.
5741 * Returns in *is_new if the inode was read from disk
5742 */
5743 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5744 struct btrfs_root *root, int *new,
5745 struct btrfs_path *path)
5746 {
5747 struct inode *inode;
5748
5749 inode = btrfs_iget_locked(s, location, root);
5750 if (!inode)
5751 return ERR_PTR(-ENOMEM);
5752
5753 if (inode->i_state & I_NEW) {
5754 int ret;
5755
5756 ret = btrfs_read_locked_inode(inode, path);
5757 if (!ret) {
5758 inode_tree_add(inode);
5759 unlock_new_inode(inode);
5760 if (new)
5761 *new = 1;
5762 } else {
5763 iget_failed(inode);
5764 /*
5765 * ret > 0 can come from btrfs_search_slot called by
5766 * btrfs_read_locked_inode, this means the inode item
5767 * was not found.
5768 */
5769 if (ret > 0)
5770 ret = -ENOENT;
5771 inode = ERR_PTR(ret);
5772 }
5773 }
5774
5775 return inode;
5776 }
5777
5778 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5779 struct btrfs_root *root, int *new)
5780 {
5781 return btrfs_iget_path(s, location, root, new, NULL);
5782 }
5783
5784 static struct inode *new_simple_dir(struct super_block *s,
5785 struct btrfs_key *key,
5786 struct btrfs_root *root)
5787 {
5788 struct inode *inode = new_inode(s);
5789
5790 if (!inode)
5791 return ERR_PTR(-ENOMEM);
5792
5793 BTRFS_I(inode)->root = root;
5794 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5795 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5796
5797 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5798 inode->i_op = &btrfs_dir_ro_inode_operations;
5799 inode->i_opflags &= ~IOP_XATTR;
5800 inode->i_fop = &simple_dir_operations;
5801 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5802 inode->i_mtime = current_time(inode);
5803 inode->i_atime = inode->i_mtime;
5804 inode->i_ctime = inode->i_mtime;
5805 BTRFS_I(inode)->i_otime = inode->i_mtime;
5806
5807 return inode;
5808 }
5809
5810 static inline u8 btrfs_inode_type(struct inode *inode)
5811 {
5812 /*
5813 * Compile-time asserts that generic FT_* types still match
5814 * BTRFS_FT_* types
5815 */
5816 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5817 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5818 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5819 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5820 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5821 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5822 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5823 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5824
5825 return fs_umode_to_ftype(inode->i_mode);
5826 }
5827
5828 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5829 {
5830 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5831 struct inode *inode;
5832 struct btrfs_root *root = BTRFS_I(dir)->root;
5833 struct btrfs_root *sub_root = root;
5834 struct btrfs_key location;
5835 u8 di_type = 0;
5836 int index;
5837 int ret = 0;
5838
5839 if (dentry->d_name.len > BTRFS_NAME_LEN)
5840 return ERR_PTR(-ENAMETOOLONG);
5841
5842 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5843 if (ret < 0)
5844 return ERR_PTR(ret);
5845
5846 if (location.type == BTRFS_INODE_ITEM_KEY) {
5847 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5848 if (IS_ERR(inode))
5849 return inode;
5850
5851 /* Do extra check against inode mode with di_type */
5852 if (btrfs_inode_type(inode) != di_type) {
5853 btrfs_crit(fs_info,
5854 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5855 inode->i_mode, btrfs_inode_type(inode),
5856 di_type);
5857 iput(inode);
5858 return ERR_PTR(-EUCLEAN);
5859 }
5860 return inode;
5861 }
5862
5863 index = srcu_read_lock(&fs_info->subvol_srcu);
5864 ret = fixup_tree_root_location(fs_info, dir, dentry,
5865 &location, &sub_root);
5866 if (ret < 0) {
5867 if (ret != -ENOENT)
5868 inode = ERR_PTR(ret);
5869 else
5870 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5871 } else {
5872 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5873 }
5874 srcu_read_unlock(&fs_info->subvol_srcu, index);
5875
5876 if (!IS_ERR(inode) && root != sub_root) {
5877 down_read(&fs_info->cleanup_work_sem);
5878 if (!sb_rdonly(inode->i_sb))
5879 ret = btrfs_orphan_cleanup(sub_root);
5880 up_read(&fs_info->cleanup_work_sem);
5881 if (ret) {
5882 iput(inode);
5883 inode = ERR_PTR(ret);
5884 }
5885 }
5886
5887 return inode;
5888 }
5889
5890 static int btrfs_dentry_delete(const struct dentry *dentry)
5891 {
5892 struct btrfs_root *root;
5893 struct inode *inode = d_inode(dentry);
5894
5895 if (!inode && !IS_ROOT(dentry))
5896 inode = d_inode(dentry->d_parent);
5897
5898 if (inode) {
5899 root = BTRFS_I(inode)->root;
5900 if (btrfs_root_refs(&root->root_item) == 0)
5901 return 1;
5902
5903 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5904 return 1;
5905 }
5906 return 0;
5907 }
5908
5909 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5910 unsigned int flags)
5911 {
5912 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5913
5914 if (inode == ERR_PTR(-ENOENT))
5915 inode = NULL;
5916 return d_splice_alias(inode, dentry);
5917 }
5918
5919 /*
5920 * All this infrastructure exists because dir_emit can fault, and we are holding
5921 * the tree lock when doing readdir. For now just allocate a buffer and copy
5922 * our information into that, and then dir_emit from the buffer. This is
5923 * similar to what NFS does, only we don't keep the buffer around in pagecache
5924 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5925 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5926 * tree lock.
5927 */
5928 static int btrfs_opendir(struct inode *inode, struct file *file)
5929 {
5930 struct btrfs_file_private *private;
5931
5932 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5933 if (!private)
5934 return -ENOMEM;
5935 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5936 if (!private->filldir_buf) {
5937 kfree(private);
5938 return -ENOMEM;
5939 }
5940 file->private_data = private;
5941 return 0;
5942 }
5943
5944 struct dir_entry {
5945 u64 ino;
5946 u64 offset;
5947 unsigned type;
5948 int name_len;
5949 };
5950
5951 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5952 {
5953 while (entries--) {
5954 struct dir_entry *entry = addr;
5955 char *name = (char *)(entry + 1);
5956
5957 ctx->pos = get_unaligned(&entry->offset);
5958 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5959 get_unaligned(&entry->ino),
5960 get_unaligned(&entry->type)))
5961 return 1;
5962 addr += sizeof(struct dir_entry) +
5963 get_unaligned(&entry->name_len);
5964 ctx->pos++;
5965 }
5966 return 0;
5967 }
5968
5969 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5970 {
5971 struct inode *inode = file_inode(file);
5972 struct btrfs_root *root = BTRFS_I(inode)->root;
5973 struct btrfs_file_private *private = file->private_data;
5974 struct btrfs_dir_item *di;
5975 struct btrfs_key key;
5976 struct btrfs_key found_key;
5977 struct btrfs_path *path;
5978 void *addr;
5979 struct list_head ins_list;
5980 struct list_head del_list;
5981 int ret;
5982 struct extent_buffer *leaf;
5983 int slot;
5984 char *name_ptr;
5985 int name_len;
5986 int entries = 0;
5987 int total_len = 0;
5988 bool put = false;
5989 struct btrfs_key location;
5990
5991 if (!dir_emit_dots(file, ctx))
5992 return 0;
5993
5994 path = btrfs_alloc_path();
5995 if (!path)
5996 return -ENOMEM;
5997
5998 addr = private->filldir_buf;
5999 path->reada = READA_FORWARD;
6000
6001 INIT_LIST_HEAD(&ins_list);
6002 INIT_LIST_HEAD(&del_list);
6003 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6004
6005 again:
6006 key.type = BTRFS_DIR_INDEX_KEY;
6007 key.offset = ctx->pos;
6008 key.objectid = btrfs_ino(BTRFS_I(inode));
6009
6010 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6011 if (ret < 0)
6012 goto err;
6013
6014 while (1) {
6015 struct dir_entry *entry;
6016
6017 leaf = path->nodes[0];
6018 slot = path->slots[0];
6019 if (slot >= btrfs_header_nritems(leaf)) {
6020 ret = btrfs_next_leaf(root, path);
6021 if (ret < 0)
6022 goto err;
6023 else if (ret > 0)
6024 break;
6025 continue;
6026 }
6027
6028 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6029
6030 if (found_key.objectid != key.objectid)
6031 break;
6032 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6033 break;
6034 if (found_key.offset < ctx->pos)
6035 goto next;
6036 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6037 goto next;
6038 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6039 name_len = btrfs_dir_name_len(leaf, di);
6040 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6041 PAGE_SIZE) {
6042 btrfs_release_path(path);
6043 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6044 if (ret)
6045 goto nopos;
6046 addr = private->filldir_buf;
6047 entries = 0;
6048 total_len = 0;
6049 goto again;
6050 }
6051
6052 entry = addr;
6053 put_unaligned(name_len, &entry->name_len);
6054 name_ptr = (char *)(entry + 1);
6055 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6056 name_len);
6057 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6058 &entry->type);
6059 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6060 put_unaligned(location.objectid, &entry->ino);
6061 put_unaligned(found_key.offset, &entry->offset);
6062 entries++;
6063 addr += sizeof(struct dir_entry) + name_len;
6064 total_len += sizeof(struct dir_entry) + name_len;
6065 next:
6066 path->slots[0]++;
6067 }
6068 btrfs_release_path(path);
6069
6070 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6071 if (ret)
6072 goto nopos;
6073
6074 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6075 if (ret)
6076 goto nopos;
6077
6078 /*
6079 * Stop new entries from being returned after we return the last
6080 * entry.
6081 *
6082 * New directory entries are assigned a strictly increasing
6083 * offset. This means that new entries created during readdir
6084 * are *guaranteed* to be seen in the future by that readdir.
6085 * This has broken buggy programs which operate on names as
6086 * they're returned by readdir. Until we re-use freed offsets
6087 * we have this hack to stop new entries from being returned
6088 * under the assumption that they'll never reach this huge
6089 * offset.
6090 *
6091 * This is being careful not to overflow 32bit loff_t unless the
6092 * last entry requires it because doing so has broken 32bit apps
6093 * in the past.
6094 */
6095 if (ctx->pos >= INT_MAX)
6096 ctx->pos = LLONG_MAX;
6097 else
6098 ctx->pos = INT_MAX;
6099 nopos:
6100 ret = 0;
6101 err:
6102 if (put)
6103 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6104 btrfs_free_path(path);
6105 return ret;
6106 }
6107
6108 /*
6109 * This is somewhat expensive, updating the tree every time the
6110 * inode changes. But, it is most likely to find the inode in cache.
6111 * FIXME, needs more benchmarking...there are no reasons other than performance
6112 * to keep or drop this code.
6113 */
6114 static int btrfs_dirty_inode(struct inode *inode)
6115 {
6116 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6117 struct btrfs_root *root = BTRFS_I(inode)->root;
6118 struct btrfs_trans_handle *trans;
6119 int ret;
6120
6121 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6122 return 0;
6123
6124 trans = btrfs_join_transaction(root);
6125 if (IS_ERR(trans))
6126 return PTR_ERR(trans);
6127
6128 ret = btrfs_update_inode(trans, root, inode);
6129 if (ret && ret == -ENOSPC) {
6130 /* whoops, lets try again with the full transaction */
6131 btrfs_end_transaction(trans);
6132 trans = btrfs_start_transaction(root, 1);
6133 if (IS_ERR(trans))
6134 return PTR_ERR(trans);
6135
6136 ret = btrfs_update_inode(trans, root, inode);
6137 }
6138 btrfs_end_transaction(trans);
6139 if (BTRFS_I(inode)->delayed_node)
6140 btrfs_balance_delayed_items(fs_info);
6141
6142 return ret;
6143 }
6144
6145 /*
6146 * This is a copy of file_update_time. We need this so we can return error on
6147 * ENOSPC for updating the inode in the case of file write and mmap writes.
6148 */
6149 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6150 int flags)
6151 {
6152 struct btrfs_root *root = BTRFS_I(inode)->root;
6153 bool dirty = flags & ~S_VERSION;
6154
6155 if (btrfs_root_readonly(root))
6156 return -EROFS;
6157
6158 if (flags & S_VERSION)
6159 dirty |= inode_maybe_inc_iversion(inode, dirty);
6160 if (flags & S_CTIME)
6161 inode->i_ctime = *now;
6162 if (flags & S_MTIME)
6163 inode->i_mtime = *now;
6164 if (flags & S_ATIME)
6165 inode->i_atime = *now;
6166 return dirty ? btrfs_dirty_inode(inode) : 0;
6167 }
6168
6169 /*
6170 * find the highest existing sequence number in a directory
6171 * and then set the in-memory index_cnt variable to reflect
6172 * free sequence numbers
6173 */
6174 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6175 {
6176 struct btrfs_root *root = inode->root;
6177 struct btrfs_key key, found_key;
6178 struct btrfs_path *path;
6179 struct extent_buffer *leaf;
6180 int ret;
6181
6182 key.objectid = btrfs_ino(inode);
6183 key.type = BTRFS_DIR_INDEX_KEY;
6184 key.offset = (u64)-1;
6185
6186 path = btrfs_alloc_path();
6187 if (!path)
6188 return -ENOMEM;
6189
6190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6191 if (ret < 0)
6192 goto out;
6193 /* FIXME: we should be able to handle this */
6194 if (ret == 0)
6195 goto out;
6196 ret = 0;
6197
6198 /*
6199 * MAGIC NUMBER EXPLANATION:
6200 * since we search a directory based on f_pos we have to start at 2
6201 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6202 * else has to start at 2
6203 */
6204 if (path->slots[0] == 0) {
6205 inode->index_cnt = 2;
6206 goto out;
6207 }
6208
6209 path->slots[0]--;
6210
6211 leaf = path->nodes[0];
6212 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6213
6214 if (found_key.objectid != btrfs_ino(inode) ||
6215 found_key.type != BTRFS_DIR_INDEX_KEY) {
6216 inode->index_cnt = 2;
6217 goto out;
6218 }
6219
6220 inode->index_cnt = found_key.offset + 1;
6221 out:
6222 btrfs_free_path(path);
6223 return ret;
6224 }
6225
6226 /*
6227 * helper to find a free sequence number in a given directory. This current
6228 * code is very simple, later versions will do smarter things in the btree
6229 */
6230 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6231 {
6232 int ret = 0;
6233
6234 if (dir->index_cnt == (u64)-1) {
6235 ret = btrfs_inode_delayed_dir_index_count(dir);
6236 if (ret) {
6237 ret = btrfs_set_inode_index_count(dir);
6238 if (ret)
6239 return ret;
6240 }
6241 }
6242
6243 *index = dir->index_cnt;
6244 dir->index_cnt++;
6245
6246 return ret;
6247 }
6248
6249 static int btrfs_insert_inode_locked(struct inode *inode)
6250 {
6251 struct btrfs_iget_args args;
6252 args.location = &BTRFS_I(inode)->location;
6253 args.root = BTRFS_I(inode)->root;
6254
6255 return insert_inode_locked4(inode,
6256 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6257 btrfs_find_actor, &args);
6258 }
6259
6260 /*
6261 * Inherit flags from the parent inode.
6262 *
6263 * Currently only the compression flags and the cow flags are inherited.
6264 */
6265 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6266 {
6267 unsigned int flags;
6268
6269 if (!dir)
6270 return;
6271
6272 flags = BTRFS_I(dir)->flags;
6273
6274 if (flags & BTRFS_INODE_NOCOMPRESS) {
6275 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6276 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6277 } else if (flags & BTRFS_INODE_COMPRESS) {
6278 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6279 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6280 }
6281
6282 if (flags & BTRFS_INODE_NODATACOW) {
6283 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6284 if (S_ISREG(inode->i_mode))
6285 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6286 }
6287
6288 btrfs_sync_inode_flags_to_i_flags(inode);
6289 }
6290
6291 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6292 struct btrfs_root *root,
6293 struct inode *dir,
6294 const char *name, int name_len,
6295 u64 ref_objectid, u64 objectid,
6296 umode_t mode, u64 *index)
6297 {
6298 struct btrfs_fs_info *fs_info = root->fs_info;
6299 struct inode *inode;
6300 struct btrfs_inode_item *inode_item;
6301 struct btrfs_key *location;
6302 struct btrfs_path *path;
6303 struct btrfs_inode_ref *ref;
6304 struct btrfs_key key[2];
6305 u32 sizes[2];
6306 int nitems = name ? 2 : 1;
6307 unsigned long ptr;
6308 int ret;
6309
6310 path = btrfs_alloc_path();
6311 if (!path)
6312 return ERR_PTR(-ENOMEM);
6313
6314 inode = new_inode(fs_info->sb);
6315 if (!inode) {
6316 btrfs_free_path(path);
6317 return ERR_PTR(-ENOMEM);
6318 }
6319
6320 /*
6321 * O_TMPFILE, set link count to 0, so that after this point,
6322 * we fill in an inode item with the correct link count.
6323 */
6324 if (!name)
6325 set_nlink(inode, 0);
6326
6327 /*
6328 * we have to initialize this early, so we can reclaim the inode
6329 * number if we fail afterwards in this function.
6330 */
6331 inode->i_ino = objectid;
6332
6333 if (dir && name) {
6334 trace_btrfs_inode_request(dir);
6335
6336 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6337 if (ret) {
6338 btrfs_free_path(path);
6339 iput(inode);
6340 return ERR_PTR(ret);
6341 }
6342 } else if (dir) {
6343 *index = 0;
6344 }
6345 /*
6346 * index_cnt is ignored for everything but a dir,
6347 * btrfs_set_inode_index_count has an explanation for the magic
6348 * number
6349 */
6350 BTRFS_I(inode)->index_cnt = 2;
6351 BTRFS_I(inode)->dir_index = *index;
6352 BTRFS_I(inode)->root = root;
6353 BTRFS_I(inode)->generation = trans->transid;
6354 inode->i_generation = BTRFS_I(inode)->generation;
6355
6356 /*
6357 * We could have gotten an inode number from somebody who was fsynced
6358 * and then removed in this same transaction, so let's just set full
6359 * sync since it will be a full sync anyway and this will blow away the
6360 * old info in the log.
6361 */
6362 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6363
6364 key[0].objectid = objectid;
6365 key[0].type = BTRFS_INODE_ITEM_KEY;
6366 key[0].offset = 0;
6367
6368 sizes[0] = sizeof(struct btrfs_inode_item);
6369
6370 if (name) {
6371 /*
6372 * Start new inodes with an inode_ref. This is slightly more
6373 * efficient for small numbers of hard links since they will
6374 * be packed into one item. Extended refs will kick in if we
6375 * add more hard links than can fit in the ref item.
6376 */
6377 key[1].objectid = objectid;
6378 key[1].type = BTRFS_INODE_REF_KEY;
6379 key[1].offset = ref_objectid;
6380
6381 sizes[1] = name_len + sizeof(*ref);
6382 }
6383
6384 location = &BTRFS_I(inode)->location;
6385 location->objectid = objectid;
6386 location->offset = 0;
6387 location->type = BTRFS_INODE_ITEM_KEY;
6388
6389 ret = btrfs_insert_inode_locked(inode);
6390 if (ret < 0) {
6391 iput(inode);
6392 goto fail;
6393 }
6394
6395 path->leave_spinning = 1;
6396 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6397 if (ret != 0)
6398 goto fail_unlock;
6399
6400 inode_init_owner(inode, dir, mode);
6401 inode_set_bytes(inode, 0);
6402
6403 inode->i_mtime = current_time(inode);
6404 inode->i_atime = inode->i_mtime;
6405 inode->i_ctime = inode->i_mtime;
6406 BTRFS_I(inode)->i_otime = inode->i_mtime;
6407
6408 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6409 struct btrfs_inode_item);
6410 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6411 sizeof(*inode_item));
6412 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6413
6414 if (name) {
6415 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6416 struct btrfs_inode_ref);
6417 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6418 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6419 ptr = (unsigned long)(ref + 1);
6420 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6421 }
6422
6423 btrfs_mark_buffer_dirty(path->nodes[0]);
6424 btrfs_free_path(path);
6425
6426 btrfs_inherit_iflags(inode, dir);
6427
6428 if (S_ISREG(mode)) {
6429 if (btrfs_test_opt(fs_info, NODATASUM))
6430 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6431 if (btrfs_test_opt(fs_info, NODATACOW))
6432 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6433 BTRFS_INODE_NODATASUM;
6434 }
6435
6436 inode_tree_add(inode);
6437
6438 trace_btrfs_inode_new(inode);
6439 btrfs_set_inode_last_trans(trans, inode);
6440
6441 btrfs_update_root_times(trans, root);
6442
6443 ret = btrfs_inode_inherit_props(trans, inode, dir);
6444 if (ret)
6445 btrfs_err(fs_info,
6446 "error inheriting props for ino %llu (root %llu): %d",
6447 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6448
6449 return inode;
6450
6451 fail_unlock:
6452 discard_new_inode(inode);
6453 fail:
6454 if (dir && name)
6455 BTRFS_I(dir)->index_cnt--;
6456 btrfs_free_path(path);
6457 return ERR_PTR(ret);
6458 }
6459
6460 /*
6461 * utility function to add 'inode' into 'parent_inode' with
6462 * a give name and a given sequence number.
6463 * if 'add_backref' is true, also insert a backref from the
6464 * inode to the parent directory.
6465 */
6466 int btrfs_add_link(struct btrfs_trans_handle *trans,
6467 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6468 const char *name, int name_len, int add_backref, u64 index)
6469 {
6470 int ret = 0;
6471 struct btrfs_key key;
6472 struct btrfs_root *root = parent_inode->root;
6473 u64 ino = btrfs_ino(inode);
6474 u64 parent_ino = btrfs_ino(parent_inode);
6475
6476 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6477 memcpy(&key, &inode->root->root_key, sizeof(key));
6478 } else {
6479 key.objectid = ino;
6480 key.type = BTRFS_INODE_ITEM_KEY;
6481 key.offset = 0;
6482 }
6483
6484 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6485 ret = btrfs_add_root_ref(trans, key.objectid,
6486 root->root_key.objectid, parent_ino,
6487 index, name, name_len);
6488 } else if (add_backref) {
6489 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6490 parent_ino, index);
6491 }
6492
6493 /* Nothing to clean up yet */
6494 if (ret)
6495 return ret;
6496
6497 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6498 btrfs_inode_type(&inode->vfs_inode), index);
6499 if (ret == -EEXIST || ret == -EOVERFLOW)
6500 goto fail_dir_item;
6501 else if (ret) {
6502 btrfs_abort_transaction(trans, ret);
6503 return ret;
6504 }
6505
6506 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6507 name_len * 2);
6508 inode_inc_iversion(&parent_inode->vfs_inode);
6509 /*
6510 * If we are replaying a log tree, we do not want to update the mtime
6511 * and ctime of the parent directory with the current time, since the
6512 * log replay procedure is responsible for setting them to their correct
6513 * values (the ones it had when the fsync was done).
6514 */
6515 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6516 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6517
6518 parent_inode->vfs_inode.i_mtime = now;
6519 parent_inode->vfs_inode.i_ctime = now;
6520 }
6521 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6522 if (ret)
6523 btrfs_abort_transaction(trans, ret);
6524 return ret;
6525
6526 fail_dir_item:
6527 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6528 u64 local_index;
6529 int err;
6530 err = btrfs_del_root_ref(trans, key.objectid,
6531 root->root_key.objectid, parent_ino,
6532 &local_index, name, name_len);
6533 if (err)
6534 btrfs_abort_transaction(trans, err);
6535 } else if (add_backref) {
6536 u64 local_index;
6537 int err;
6538
6539 err = btrfs_del_inode_ref(trans, root, name, name_len,
6540 ino, parent_ino, &local_index);
6541 if (err)
6542 btrfs_abort_transaction(trans, err);
6543 }
6544
6545 /* Return the original error code */
6546 return ret;
6547 }
6548
6549 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6550 struct btrfs_inode *dir, struct dentry *dentry,
6551 struct btrfs_inode *inode, int backref, u64 index)
6552 {
6553 int err = btrfs_add_link(trans, dir, inode,
6554 dentry->d_name.name, dentry->d_name.len,
6555 backref, index);
6556 if (err > 0)
6557 err = -EEXIST;
6558 return err;
6559 }
6560
6561 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6562 umode_t mode, dev_t rdev)
6563 {
6564 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6565 struct btrfs_trans_handle *trans;
6566 struct btrfs_root *root = BTRFS_I(dir)->root;
6567 struct inode *inode = NULL;
6568 int err;
6569 u64 objectid;
6570 u64 index = 0;
6571
6572 /*
6573 * 2 for inode item and ref
6574 * 2 for dir items
6575 * 1 for xattr if selinux is on
6576 */
6577 trans = btrfs_start_transaction(root, 5);
6578 if (IS_ERR(trans))
6579 return PTR_ERR(trans);
6580
6581 err = btrfs_find_free_ino(root, &objectid);
6582 if (err)
6583 goto out_unlock;
6584
6585 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6586 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6587 mode, &index);
6588 if (IS_ERR(inode)) {
6589 err = PTR_ERR(inode);
6590 inode = NULL;
6591 goto out_unlock;
6592 }
6593
6594 /*
6595 * If the active LSM wants to access the inode during
6596 * d_instantiate it needs these. Smack checks to see
6597 * if the filesystem supports xattrs by looking at the
6598 * ops vector.
6599 */
6600 inode->i_op = &btrfs_special_inode_operations;
6601 init_special_inode(inode, inode->i_mode, rdev);
6602
6603 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6604 if (err)
6605 goto out_unlock;
6606
6607 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6608 0, index);
6609 if (err)
6610 goto out_unlock;
6611
6612 btrfs_update_inode(trans, root, inode);
6613 d_instantiate_new(dentry, inode);
6614
6615 out_unlock:
6616 btrfs_end_transaction(trans);
6617 btrfs_btree_balance_dirty(fs_info);
6618 if (err && inode) {
6619 inode_dec_link_count(inode);
6620 discard_new_inode(inode);
6621 }
6622 return err;
6623 }
6624
6625 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6626 umode_t mode, bool excl)
6627 {
6628 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6629 struct btrfs_trans_handle *trans;
6630 struct btrfs_root *root = BTRFS_I(dir)->root;
6631 struct inode *inode = NULL;
6632 int err;
6633 u64 objectid;
6634 u64 index = 0;
6635
6636 /*
6637 * 2 for inode item and ref
6638 * 2 for dir items
6639 * 1 for xattr if selinux is on
6640 */
6641 trans = btrfs_start_transaction(root, 5);
6642 if (IS_ERR(trans))
6643 return PTR_ERR(trans);
6644
6645 err = btrfs_find_free_ino(root, &objectid);
6646 if (err)
6647 goto out_unlock;
6648
6649 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6650 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6651 mode, &index);
6652 if (IS_ERR(inode)) {
6653 err = PTR_ERR(inode);
6654 inode = NULL;
6655 goto out_unlock;
6656 }
6657 /*
6658 * If the active LSM wants to access the inode during
6659 * d_instantiate it needs these. Smack checks to see
6660 * if the filesystem supports xattrs by looking at the
6661 * ops vector.
6662 */
6663 inode->i_fop = &btrfs_file_operations;
6664 inode->i_op = &btrfs_file_inode_operations;
6665 inode->i_mapping->a_ops = &btrfs_aops;
6666
6667 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6668 if (err)
6669 goto out_unlock;
6670
6671 err = btrfs_update_inode(trans, root, inode);
6672 if (err)
6673 goto out_unlock;
6674
6675 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6676 0, index);
6677 if (err)
6678 goto out_unlock;
6679
6680 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6681 d_instantiate_new(dentry, inode);
6682
6683 out_unlock:
6684 btrfs_end_transaction(trans);
6685 if (err && inode) {
6686 inode_dec_link_count(inode);
6687 discard_new_inode(inode);
6688 }
6689 btrfs_btree_balance_dirty(fs_info);
6690 return err;
6691 }
6692
6693 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6694 struct dentry *dentry)
6695 {
6696 struct btrfs_trans_handle *trans = NULL;
6697 struct btrfs_root *root = BTRFS_I(dir)->root;
6698 struct inode *inode = d_inode(old_dentry);
6699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6700 u64 index;
6701 int err;
6702 int drop_inode = 0;
6703
6704 /* do not allow sys_link's with other subvols of the same device */
6705 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6706 return -EXDEV;
6707
6708 if (inode->i_nlink >= BTRFS_LINK_MAX)
6709 return -EMLINK;
6710
6711 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6712 if (err)
6713 goto fail;
6714
6715 /*
6716 * 2 items for inode and inode ref
6717 * 2 items for dir items
6718 * 1 item for parent inode
6719 * 1 item for orphan item deletion if O_TMPFILE
6720 */
6721 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6722 if (IS_ERR(trans)) {
6723 err = PTR_ERR(trans);
6724 trans = NULL;
6725 goto fail;
6726 }
6727
6728 /* There are several dir indexes for this inode, clear the cache. */
6729 BTRFS_I(inode)->dir_index = 0ULL;
6730 inc_nlink(inode);
6731 inode_inc_iversion(inode);
6732 inode->i_ctime = current_time(inode);
6733 ihold(inode);
6734 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6735
6736 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6737 1, index);
6738
6739 if (err) {
6740 drop_inode = 1;
6741 } else {
6742 struct dentry *parent = dentry->d_parent;
6743 int ret;
6744
6745 err = btrfs_update_inode(trans, root, inode);
6746 if (err)
6747 goto fail;
6748 if (inode->i_nlink == 1) {
6749 /*
6750 * If new hard link count is 1, it's a file created
6751 * with open(2) O_TMPFILE flag.
6752 */
6753 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6754 if (err)
6755 goto fail;
6756 }
6757 d_instantiate(dentry, inode);
6758 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6759 true, NULL);
6760 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6761 err = btrfs_commit_transaction(trans);
6762 trans = NULL;
6763 }
6764 }
6765
6766 fail:
6767 if (trans)
6768 btrfs_end_transaction(trans);
6769 if (drop_inode) {
6770 inode_dec_link_count(inode);
6771 iput(inode);
6772 }
6773 btrfs_btree_balance_dirty(fs_info);
6774 return err;
6775 }
6776
6777 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6778 {
6779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6780 struct inode *inode = NULL;
6781 struct btrfs_trans_handle *trans;
6782 struct btrfs_root *root = BTRFS_I(dir)->root;
6783 int err = 0;
6784 u64 objectid = 0;
6785 u64 index = 0;
6786
6787 /*
6788 * 2 items for inode and ref
6789 * 2 items for dir items
6790 * 1 for xattr if selinux is on
6791 */
6792 trans = btrfs_start_transaction(root, 5);
6793 if (IS_ERR(trans))
6794 return PTR_ERR(trans);
6795
6796 err = btrfs_find_free_ino(root, &objectid);
6797 if (err)
6798 goto out_fail;
6799
6800 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6801 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6802 S_IFDIR | mode, &index);
6803 if (IS_ERR(inode)) {
6804 err = PTR_ERR(inode);
6805 inode = NULL;
6806 goto out_fail;
6807 }
6808
6809 /* these must be set before we unlock the inode */
6810 inode->i_op = &btrfs_dir_inode_operations;
6811 inode->i_fop = &btrfs_dir_file_operations;
6812
6813 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6814 if (err)
6815 goto out_fail;
6816
6817 btrfs_i_size_write(BTRFS_I(inode), 0);
6818 err = btrfs_update_inode(trans, root, inode);
6819 if (err)
6820 goto out_fail;
6821
6822 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6823 dentry->d_name.name,
6824 dentry->d_name.len, 0, index);
6825 if (err)
6826 goto out_fail;
6827
6828 d_instantiate_new(dentry, inode);
6829
6830 out_fail:
6831 btrfs_end_transaction(trans);
6832 if (err && inode) {
6833 inode_dec_link_count(inode);
6834 discard_new_inode(inode);
6835 }
6836 btrfs_btree_balance_dirty(fs_info);
6837 return err;
6838 }
6839
6840 static noinline int uncompress_inline(struct btrfs_path *path,
6841 struct page *page,
6842 size_t pg_offset, u64 extent_offset,
6843 struct btrfs_file_extent_item *item)
6844 {
6845 int ret;
6846 struct extent_buffer *leaf = path->nodes[0];
6847 char *tmp;
6848 size_t max_size;
6849 unsigned long inline_size;
6850 unsigned long ptr;
6851 int compress_type;
6852
6853 WARN_ON(pg_offset != 0);
6854 compress_type = btrfs_file_extent_compression(leaf, item);
6855 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6856 inline_size = btrfs_file_extent_inline_item_len(leaf,
6857 btrfs_item_nr(path->slots[0]));
6858 tmp = kmalloc(inline_size, GFP_NOFS);
6859 if (!tmp)
6860 return -ENOMEM;
6861 ptr = btrfs_file_extent_inline_start(item);
6862
6863 read_extent_buffer(leaf, tmp, ptr, inline_size);
6864
6865 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6866 ret = btrfs_decompress(compress_type, tmp, page,
6867 extent_offset, inline_size, max_size);
6868
6869 /*
6870 * decompression code contains a memset to fill in any space between the end
6871 * of the uncompressed data and the end of max_size in case the decompressed
6872 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6873 * the end of an inline extent and the beginning of the next block, so we
6874 * cover that region here.
6875 */
6876
6877 if (max_size + pg_offset < PAGE_SIZE) {
6878 char *map = kmap(page);
6879 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6880 kunmap(page);
6881 }
6882 kfree(tmp);
6883 return ret;
6884 }
6885
6886 /*
6887 * a bit scary, this does extent mapping from logical file offset to the disk.
6888 * the ugly parts come from merging extents from the disk with the in-ram
6889 * representation. This gets more complex because of the data=ordered code,
6890 * where the in-ram extents might be locked pending data=ordered completion.
6891 *
6892 * This also copies inline extents directly into the page.
6893 */
6894 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6895 struct page *page,
6896 size_t pg_offset, u64 start, u64 len,
6897 int create)
6898 {
6899 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6900 int ret;
6901 int err = 0;
6902 u64 extent_start = 0;
6903 u64 extent_end = 0;
6904 u64 objectid = btrfs_ino(inode);
6905 int extent_type = -1;
6906 struct btrfs_path *path = NULL;
6907 struct btrfs_root *root = inode->root;
6908 struct btrfs_file_extent_item *item;
6909 struct extent_buffer *leaf;
6910 struct btrfs_key found_key;
6911 struct extent_map *em = NULL;
6912 struct extent_map_tree *em_tree = &inode->extent_tree;
6913 struct extent_io_tree *io_tree = &inode->io_tree;
6914 const bool new_inline = !page || create;
6915
6916 read_lock(&em_tree->lock);
6917 em = lookup_extent_mapping(em_tree, start, len);
6918 if (em)
6919 em->bdev = fs_info->fs_devices->latest_bdev;
6920 read_unlock(&em_tree->lock);
6921
6922 if (em) {
6923 if (em->start > start || em->start + em->len <= start)
6924 free_extent_map(em);
6925 else if (em->block_start == EXTENT_MAP_INLINE && page)
6926 free_extent_map(em);
6927 else
6928 goto out;
6929 }
6930 em = alloc_extent_map();
6931 if (!em) {
6932 err = -ENOMEM;
6933 goto out;
6934 }
6935 em->bdev = fs_info->fs_devices->latest_bdev;
6936 em->start = EXTENT_MAP_HOLE;
6937 em->orig_start = EXTENT_MAP_HOLE;
6938 em->len = (u64)-1;
6939 em->block_len = (u64)-1;
6940
6941 path = btrfs_alloc_path();
6942 if (!path) {
6943 err = -ENOMEM;
6944 goto out;
6945 }
6946
6947 /* Chances are we'll be called again, so go ahead and do readahead */
6948 path->reada = READA_FORWARD;
6949
6950 /*
6951 * Unless we're going to uncompress the inline extent, no sleep would
6952 * happen.
6953 */
6954 path->leave_spinning = 1;
6955
6956 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6957 if (ret < 0) {
6958 err = ret;
6959 goto out;
6960 } else if (ret > 0) {
6961 if (path->slots[0] == 0)
6962 goto not_found;
6963 path->slots[0]--;
6964 }
6965
6966 leaf = path->nodes[0];
6967 item = btrfs_item_ptr(leaf, path->slots[0],
6968 struct btrfs_file_extent_item);
6969 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6970 if (found_key.objectid != objectid ||
6971 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6972 /*
6973 * If we backup past the first extent we want to move forward
6974 * and see if there is an extent in front of us, otherwise we'll
6975 * say there is a hole for our whole search range which can
6976 * cause problems.
6977 */
6978 extent_end = start;
6979 goto next;
6980 }
6981
6982 extent_type = btrfs_file_extent_type(leaf, item);
6983 extent_start = found_key.offset;
6984 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6985 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6986 /* Only regular file could have regular/prealloc extent */
6987 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6988 ret = -EUCLEAN;
6989 btrfs_crit(fs_info,
6990 "regular/prealloc extent found for non-regular inode %llu",
6991 btrfs_ino(inode));
6992 goto out;
6993 }
6994 extent_end = extent_start +
6995 btrfs_file_extent_num_bytes(leaf, item);
6996
6997 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6998 extent_start);
6999 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7000 size_t size;
7001
7002 size = btrfs_file_extent_ram_bytes(leaf, item);
7003 extent_end = ALIGN(extent_start + size,
7004 fs_info->sectorsize);
7005
7006 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7007 path->slots[0],
7008 extent_start);
7009 }
7010 next:
7011 if (start >= extent_end) {
7012 path->slots[0]++;
7013 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7014 ret = btrfs_next_leaf(root, path);
7015 if (ret < 0) {
7016 err = ret;
7017 goto out;
7018 } else if (ret > 0) {
7019 goto not_found;
7020 }
7021 leaf = path->nodes[0];
7022 }
7023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7024 if (found_key.objectid != objectid ||
7025 found_key.type != BTRFS_EXTENT_DATA_KEY)
7026 goto not_found;
7027 if (start + len <= found_key.offset)
7028 goto not_found;
7029 if (start > found_key.offset)
7030 goto next;
7031
7032 /* New extent overlaps with existing one */
7033 em->start = start;
7034 em->orig_start = start;
7035 em->len = found_key.offset - start;
7036 em->block_start = EXTENT_MAP_HOLE;
7037 goto insert;
7038 }
7039
7040 btrfs_extent_item_to_extent_map(inode, path, item,
7041 new_inline, em);
7042
7043 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7044 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7045 goto insert;
7046 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7047 unsigned long ptr;
7048 char *map;
7049 size_t size;
7050 size_t extent_offset;
7051 size_t copy_size;
7052
7053 if (new_inline)
7054 goto out;
7055
7056 size = btrfs_file_extent_ram_bytes(leaf, item);
7057 extent_offset = page_offset(page) + pg_offset - extent_start;
7058 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7059 size - extent_offset);
7060 em->start = extent_start + extent_offset;
7061 em->len = ALIGN(copy_size, fs_info->sectorsize);
7062 em->orig_block_len = em->len;
7063 em->orig_start = em->start;
7064 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7065
7066 btrfs_set_path_blocking(path);
7067 if (!PageUptodate(page)) {
7068 if (btrfs_file_extent_compression(leaf, item) !=
7069 BTRFS_COMPRESS_NONE) {
7070 ret = uncompress_inline(path, page, pg_offset,
7071 extent_offset, item);
7072 if (ret) {
7073 err = ret;
7074 goto out;
7075 }
7076 } else {
7077 map = kmap(page);
7078 read_extent_buffer(leaf, map + pg_offset, ptr,
7079 copy_size);
7080 if (pg_offset + copy_size < PAGE_SIZE) {
7081 memset(map + pg_offset + copy_size, 0,
7082 PAGE_SIZE - pg_offset -
7083 copy_size);
7084 }
7085 kunmap(page);
7086 }
7087 flush_dcache_page(page);
7088 }
7089 set_extent_uptodate(io_tree, em->start,
7090 extent_map_end(em) - 1, NULL, GFP_NOFS);
7091 goto insert;
7092 }
7093 not_found:
7094 em->start = start;
7095 em->orig_start = start;
7096 em->len = len;
7097 em->block_start = EXTENT_MAP_HOLE;
7098 insert:
7099 btrfs_release_path(path);
7100 if (em->start > start || extent_map_end(em) <= start) {
7101 btrfs_err(fs_info,
7102 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7103 em->start, em->len, start, len);
7104 err = -EIO;
7105 goto out;
7106 }
7107
7108 err = 0;
7109 write_lock(&em_tree->lock);
7110 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7111 write_unlock(&em_tree->lock);
7112 out:
7113 btrfs_free_path(path);
7114
7115 trace_btrfs_get_extent(root, inode, em);
7116
7117 if (err) {
7118 free_extent_map(em);
7119 return ERR_PTR(err);
7120 }
7121 BUG_ON(!em); /* Error is always set */
7122 return em;
7123 }
7124
7125 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7126 u64 start, u64 len)
7127 {
7128 struct extent_map *em;
7129 struct extent_map *hole_em = NULL;
7130 u64 delalloc_start = start;
7131 u64 end;
7132 u64 delalloc_len;
7133 u64 delalloc_end;
7134 int err = 0;
7135
7136 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7137 if (IS_ERR(em))
7138 return em;
7139 /*
7140 * If our em maps to:
7141 * - a hole or
7142 * - a pre-alloc extent,
7143 * there might actually be delalloc bytes behind it.
7144 */
7145 if (em->block_start != EXTENT_MAP_HOLE &&
7146 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7147 return em;
7148 else
7149 hole_em = em;
7150
7151 /* check to see if we've wrapped (len == -1 or similar) */
7152 end = start + len;
7153 if (end < start)
7154 end = (u64)-1;
7155 else
7156 end -= 1;
7157
7158 em = NULL;
7159
7160 /* ok, we didn't find anything, lets look for delalloc */
7161 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7162 end, len, EXTENT_DELALLOC, 1);
7163 delalloc_end = delalloc_start + delalloc_len;
7164 if (delalloc_end < delalloc_start)
7165 delalloc_end = (u64)-1;
7166
7167 /*
7168 * We didn't find anything useful, return the original results from
7169 * get_extent()
7170 */
7171 if (delalloc_start > end || delalloc_end <= start) {
7172 em = hole_em;
7173 hole_em = NULL;
7174 goto out;
7175 }
7176
7177 /*
7178 * Adjust the delalloc_start to make sure it doesn't go backwards from
7179 * the start they passed in
7180 */
7181 delalloc_start = max(start, delalloc_start);
7182 delalloc_len = delalloc_end - delalloc_start;
7183
7184 if (delalloc_len > 0) {
7185 u64 hole_start;
7186 u64 hole_len;
7187 const u64 hole_end = extent_map_end(hole_em);
7188
7189 em = alloc_extent_map();
7190 if (!em) {
7191 err = -ENOMEM;
7192 goto out;
7193 }
7194 em->bdev = NULL;
7195
7196 ASSERT(hole_em);
7197 /*
7198 * When btrfs_get_extent can't find anything it returns one
7199 * huge hole
7200 *
7201 * Make sure what it found really fits our range, and adjust to
7202 * make sure it is based on the start from the caller
7203 */
7204 if (hole_end <= start || hole_em->start > end) {
7205 free_extent_map(hole_em);
7206 hole_em = NULL;
7207 } else {
7208 hole_start = max(hole_em->start, start);
7209 hole_len = hole_end - hole_start;
7210 }
7211
7212 if (hole_em && delalloc_start > hole_start) {
7213 /*
7214 * Our hole starts before our delalloc, so we have to
7215 * return just the parts of the hole that go until the
7216 * delalloc starts
7217 */
7218 em->len = min(hole_len, delalloc_start - hole_start);
7219 em->start = hole_start;
7220 em->orig_start = hole_start;
7221 /*
7222 * Don't adjust block start at all, it is fixed at
7223 * EXTENT_MAP_HOLE
7224 */
7225 em->block_start = hole_em->block_start;
7226 em->block_len = hole_len;
7227 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7228 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7229 } else {
7230 /*
7231 * Hole is out of passed range or it starts after
7232 * delalloc range
7233 */
7234 em->start = delalloc_start;
7235 em->len = delalloc_len;
7236 em->orig_start = delalloc_start;
7237 em->block_start = EXTENT_MAP_DELALLOC;
7238 em->block_len = delalloc_len;
7239 }
7240 } else {
7241 return hole_em;
7242 }
7243 out:
7244
7245 free_extent_map(hole_em);
7246 if (err) {
7247 free_extent_map(em);
7248 return ERR_PTR(err);
7249 }
7250 return em;
7251 }
7252
7253 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7254 const u64 start,
7255 const u64 len,
7256 const u64 orig_start,
7257 const u64 block_start,
7258 const u64 block_len,
7259 const u64 orig_block_len,
7260 const u64 ram_bytes,
7261 const int type)
7262 {
7263 struct extent_map *em = NULL;
7264 int ret;
7265
7266 if (type != BTRFS_ORDERED_NOCOW) {
7267 em = create_io_em(inode, start, len, orig_start,
7268 block_start, block_len, orig_block_len,
7269 ram_bytes,
7270 BTRFS_COMPRESS_NONE, /* compress_type */
7271 type);
7272 if (IS_ERR(em))
7273 goto out;
7274 }
7275 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7276 len, block_len, type);
7277 if (ret) {
7278 if (em) {
7279 free_extent_map(em);
7280 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7281 start + len - 1, 0);
7282 }
7283 em = ERR_PTR(ret);
7284 }
7285 out:
7286
7287 return em;
7288 }
7289
7290 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7291 u64 start, u64 len)
7292 {
7293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7294 struct btrfs_root *root = BTRFS_I(inode)->root;
7295 struct extent_map *em;
7296 struct btrfs_key ins;
7297 u64 alloc_hint;
7298 int ret;
7299
7300 alloc_hint = get_extent_allocation_hint(inode, start, len);
7301 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7302 0, alloc_hint, &ins, 1, 1);
7303 if (ret)
7304 return ERR_PTR(ret);
7305
7306 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7307 ins.objectid, ins.offset, ins.offset,
7308 ins.offset, BTRFS_ORDERED_REGULAR);
7309 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7310 if (IS_ERR(em))
7311 btrfs_free_reserved_extent(fs_info, ins.objectid,
7312 ins.offset, 1);
7313
7314 return em;
7315 }
7316
7317 /*
7318 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7319 * block must be cow'd
7320 */
7321 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7322 u64 *orig_start, u64 *orig_block_len,
7323 u64 *ram_bytes)
7324 {
7325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7326 struct btrfs_path *path;
7327 int ret;
7328 struct extent_buffer *leaf;
7329 struct btrfs_root *root = BTRFS_I(inode)->root;
7330 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7331 struct btrfs_file_extent_item *fi;
7332 struct btrfs_key key;
7333 u64 disk_bytenr;
7334 u64 backref_offset;
7335 u64 extent_end;
7336 u64 num_bytes;
7337 int slot;
7338 int found_type;
7339 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7340
7341 path = btrfs_alloc_path();
7342 if (!path)
7343 return -ENOMEM;
7344
7345 ret = btrfs_lookup_file_extent(NULL, root, path,
7346 btrfs_ino(BTRFS_I(inode)), offset, 0);
7347 if (ret < 0)
7348 goto out;
7349
7350 slot = path->slots[0];
7351 if (ret == 1) {
7352 if (slot == 0) {
7353 /* can't find the item, must cow */
7354 ret = 0;
7355 goto out;
7356 }
7357 slot--;
7358 }
7359 ret = 0;
7360 leaf = path->nodes[0];
7361 btrfs_item_key_to_cpu(leaf, &key, slot);
7362 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7363 key.type != BTRFS_EXTENT_DATA_KEY) {
7364 /* not our file or wrong item type, must cow */
7365 goto out;
7366 }
7367
7368 if (key.offset > offset) {
7369 /* Wrong offset, must cow */
7370 goto out;
7371 }
7372
7373 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7374 found_type = btrfs_file_extent_type(leaf, fi);
7375 if (found_type != BTRFS_FILE_EXTENT_REG &&
7376 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7377 /* not a regular extent, must cow */
7378 goto out;
7379 }
7380
7381 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7382 goto out;
7383
7384 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7385 if (extent_end <= offset)
7386 goto out;
7387
7388 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7389 if (disk_bytenr == 0)
7390 goto out;
7391
7392 if (btrfs_file_extent_compression(leaf, fi) ||
7393 btrfs_file_extent_encryption(leaf, fi) ||
7394 btrfs_file_extent_other_encoding(leaf, fi))
7395 goto out;
7396
7397 /*
7398 * Do the same check as in btrfs_cross_ref_exist but without the
7399 * unnecessary search.
7400 */
7401 if (btrfs_file_extent_generation(leaf, fi) <=
7402 btrfs_root_last_snapshot(&root->root_item))
7403 goto out;
7404
7405 backref_offset = btrfs_file_extent_offset(leaf, fi);
7406
7407 if (orig_start) {
7408 *orig_start = key.offset - backref_offset;
7409 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7410 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7411 }
7412
7413 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7414 goto out;
7415
7416 num_bytes = min(offset + *len, extent_end) - offset;
7417 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7418 u64 range_end;
7419
7420 range_end = round_up(offset + num_bytes,
7421 root->fs_info->sectorsize) - 1;
7422 ret = test_range_bit(io_tree, offset, range_end,
7423 EXTENT_DELALLOC, 0, NULL);
7424 if (ret) {
7425 ret = -EAGAIN;
7426 goto out;
7427 }
7428 }
7429
7430 btrfs_release_path(path);
7431
7432 /*
7433 * look for other files referencing this extent, if we
7434 * find any we must cow
7435 */
7436
7437 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7438 key.offset - backref_offset, disk_bytenr);
7439 if (ret) {
7440 ret = 0;
7441 goto out;
7442 }
7443
7444 /*
7445 * adjust disk_bytenr and num_bytes to cover just the bytes
7446 * in this extent we are about to write. If there
7447 * are any csums in that range we have to cow in order
7448 * to keep the csums correct
7449 */
7450 disk_bytenr += backref_offset;
7451 disk_bytenr += offset - key.offset;
7452 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7453 goto out;
7454 /*
7455 * all of the above have passed, it is safe to overwrite this extent
7456 * without cow
7457 */
7458 *len = num_bytes;
7459 ret = 1;
7460 out:
7461 btrfs_free_path(path);
7462 return ret;
7463 }
7464
7465 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7466 struct extent_state **cached_state, int writing)
7467 {
7468 struct btrfs_ordered_extent *ordered;
7469 int ret = 0;
7470
7471 while (1) {
7472 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7473 cached_state);
7474 /*
7475 * We're concerned with the entire range that we're going to be
7476 * doing DIO to, so we need to make sure there's no ordered
7477 * extents in this range.
7478 */
7479 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7480 lockend - lockstart + 1);
7481
7482 /*
7483 * We need to make sure there are no buffered pages in this
7484 * range either, we could have raced between the invalidate in
7485 * generic_file_direct_write and locking the extent. The
7486 * invalidate needs to happen so that reads after a write do not
7487 * get stale data.
7488 */
7489 if (!ordered &&
7490 (!writing || !filemap_range_has_page(inode->i_mapping,
7491 lockstart, lockend)))
7492 break;
7493
7494 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7495 cached_state);
7496
7497 if (ordered) {
7498 /*
7499 * If we are doing a DIO read and the ordered extent we
7500 * found is for a buffered write, we can not wait for it
7501 * to complete and retry, because if we do so we can
7502 * deadlock with concurrent buffered writes on page
7503 * locks. This happens only if our DIO read covers more
7504 * than one extent map, if at this point has already
7505 * created an ordered extent for a previous extent map
7506 * and locked its range in the inode's io tree, and a
7507 * concurrent write against that previous extent map's
7508 * range and this range started (we unlock the ranges
7509 * in the io tree only when the bios complete and
7510 * buffered writes always lock pages before attempting
7511 * to lock range in the io tree).
7512 */
7513 if (writing ||
7514 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7515 btrfs_start_ordered_extent(inode, ordered, 1);
7516 else
7517 ret = -ENOTBLK;
7518 btrfs_put_ordered_extent(ordered);
7519 } else {
7520 /*
7521 * We could trigger writeback for this range (and wait
7522 * for it to complete) and then invalidate the pages for
7523 * this range (through invalidate_inode_pages2_range()),
7524 * but that can lead us to a deadlock with a concurrent
7525 * call to readpages() (a buffered read or a defrag call
7526 * triggered a readahead) on a page lock due to an
7527 * ordered dio extent we created before but did not have
7528 * yet a corresponding bio submitted (whence it can not
7529 * complete), which makes readpages() wait for that
7530 * ordered extent to complete while holding a lock on
7531 * that page.
7532 */
7533 ret = -ENOTBLK;
7534 }
7535
7536 if (ret)
7537 break;
7538
7539 cond_resched();
7540 }
7541
7542 return ret;
7543 }
7544
7545 /* The callers of this must take lock_extent() */
7546 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7547 u64 orig_start, u64 block_start,
7548 u64 block_len, u64 orig_block_len,
7549 u64 ram_bytes, int compress_type,
7550 int type)
7551 {
7552 struct extent_map_tree *em_tree;
7553 struct extent_map *em;
7554 struct btrfs_root *root = BTRFS_I(inode)->root;
7555 int ret;
7556
7557 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7558 type == BTRFS_ORDERED_COMPRESSED ||
7559 type == BTRFS_ORDERED_NOCOW ||
7560 type == BTRFS_ORDERED_REGULAR);
7561
7562 em_tree = &BTRFS_I(inode)->extent_tree;
7563 em = alloc_extent_map();
7564 if (!em)
7565 return ERR_PTR(-ENOMEM);
7566
7567 em->start = start;
7568 em->orig_start = orig_start;
7569 em->len = len;
7570 em->block_len = block_len;
7571 em->block_start = block_start;
7572 em->bdev = root->fs_info->fs_devices->latest_bdev;
7573 em->orig_block_len = orig_block_len;
7574 em->ram_bytes = ram_bytes;
7575 em->generation = -1;
7576 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7577 if (type == BTRFS_ORDERED_PREALLOC) {
7578 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7579 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7580 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7581 em->compress_type = compress_type;
7582 }
7583
7584 do {
7585 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7586 em->start + em->len - 1, 0);
7587 write_lock(&em_tree->lock);
7588 ret = add_extent_mapping(em_tree, em, 1);
7589 write_unlock(&em_tree->lock);
7590 /*
7591 * The caller has taken lock_extent(), who could race with us
7592 * to add em?
7593 */
7594 } while (ret == -EEXIST);
7595
7596 if (ret) {
7597 free_extent_map(em);
7598 return ERR_PTR(ret);
7599 }
7600
7601 /* em got 2 refs now, callers needs to do free_extent_map once. */
7602 return em;
7603 }
7604
7605
7606 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7607 struct buffer_head *bh_result,
7608 struct inode *inode,
7609 u64 start, u64 len)
7610 {
7611 if (em->block_start == EXTENT_MAP_HOLE ||
7612 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7613 return -ENOENT;
7614
7615 len = min(len, em->len - (start - em->start));
7616
7617 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7618 inode->i_blkbits;
7619 bh_result->b_size = len;
7620 bh_result->b_bdev = em->bdev;
7621 set_buffer_mapped(bh_result);
7622
7623 return 0;
7624 }
7625
7626 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7627 struct buffer_head *bh_result,
7628 struct inode *inode,
7629 struct btrfs_dio_data *dio_data,
7630 u64 start, u64 len)
7631 {
7632 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7633 struct extent_map *em = *map;
7634 int ret = 0;
7635
7636 /*
7637 * We don't allocate a new extent in the following cases
7638 *
7639 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7640 * existing extent.
7641 * 2) The extent is marked as PREALLOC. We're good to go here and can
7642 * just use the extent.
7643 *
7644 */
7645 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7646 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7647 em->block_start != EXTENT_MAP_HOLE)) {
7648 int type;
7649 u64 block_start, orig_start, orig_block_len, ram_bytes;
7650
7651 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7652 type = BTRFS_ORDERED_PREALLOC;
7653 else
7654 type = BTRFS_ORDERED_NOCOW;
7655 len = min(len, em->len - (start - em->start));
7656 block_start = em->block_start + (start - em->start);
7657
7658 if (can_nocow_extent(inode, start, &len, &orig_start,
7659 &orig_block_len, &ram_bytes) == 1 &&
7660 btrfs_inc_nocow_writers(fs_info, block_start)) {
7661 struct extent_map *em2;
7662
7663 em2 = btrfs_create_dio_extent(inode, start, len,
7664 orig_start, block_start,
7665 len, orig_block_len,
7666 ram_bytes, type);
7667 btrfs_dec_nocow_writers(fs_info, block_start);
7668 if (type == BTRFS_ORDERED_PREALLOC) {
7669 free_extent_map(em);
7670 *map = em = em2;
7671 }
7672
7673 if (em2 && IS_ERR(em2)) {
7674 ret = PTR_ERR(em2);
7675 goto out;
7676 }
7677 /*
7678 * For inode marked NODATACOW or extent marked PREALLOC,
7679 * use the existing or preallocated extent, so does not
7680 * need to adjust btrfs_space_info's bytes_may_use.
7681 */
7682 btrfs_free_reserved_data_space_noquota(inode, start,
7683 len);
7684 goto skip_cow;
7685 }
7686 }
7687
7688 /* this will cow the extent */
7689 len = bh_result->b_size;
7690 free_extent_map(em);
7691 *map = em = btrfs_new_extent_direct(inode, start, len);
7692 if (IS_ERR(em)) {
7693 ret = PTR_ERR(em);
7694 goto out;
7695 }
7696
7697 len = min(len, em->len - (start - em->start));
7698
7699 skip_cow:
7700 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7701 inode->i_blkbits;
7702 bh_result->b_size = len;
7703 bh_result->b_bdev = em->bdev;
7704 set_buffer_mapped(bh_result);
7705
7706 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7707 set_buffer_new(bh_result);
7708
7709 /*
7710 * Need to update the i_size under the extent lock so buffered
7711 * readers will get the updated i_size when we unlock.
7712 */
7713 if (!dio_data->overwrite && start + len > i_size_read(inode))
7714 i_size_write(inode, start + len);
7715
7716 WARN_ON(dio_data->reserve < len);
7717 dio_data->reserve -= len;
7718 dio_data->unsubmitted_oe_range_end = start + len;
7719 current->journal_info = dio_data;
7720 out:
7721 return ret;
7722 }
7723
7724 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7725 struct buffer_head *bh_result, int create)
7726 {
7727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7728 struct extent_map *em;
7729 struct extent_state *cached_state = NULL;
7730 struct btrfs_dio_data *dio_data = NULL;
7731 u64 start = iblock << inode->i_blkbits;
7732 u64 lockstart, lockend;
7733 u64 len = bh_result->b_size;
7734 int ret = 0;
7735
7736 if (!create)
7737 len = min_t(u64, len, fs_info->sectorsize);
7738
7739 lockstart = start;
7740 lockend = start + len - 1;
7741
7742 if (current->journal_info) {
7743 /*
7744 * Need to pull our outstanding extents and set journal_info to NULL so
7745 * that anything that needs to check if there's a transaction doesn't get
7746 * confused.
7747 */
7748 dio_data = current->journal_info;
7749 current->journal_info = NULL;
7750 }
7751
7752 /*
7753 * If this errors out it's because we couldn't invalidate pagecache for
7754 * this range and we need to fallback to buffered.
7755 */
7756 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7757 create)) {
7758 ret = -ENOTBLK;
7759 goto err;
7760 }
7761
7762 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7763 if (IS_ERR(em)) {
7764 ret = PTR_ERR(em);
7765 goto unlock_err;
7766 }
7767
7768 /*
7769 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7770 * io. INLINE is special, and we could probably kludge it in here, but
7771 * it's still buffered so for safety lets just fall back to the generic
7772 * buffered path.
7773 *
7774 * For COMPRESSED we _have_ to read the entire extent in so we can
7775 * decompress it, so there will be buffering required no matter what we
7776 * do, so go ahead and fallback to buffered.
7777 *
7778 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7779 * to buffered IO. Don't blame me, this is the price we pay for using
7780 * the generic code.
7781 */
7782 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7783 em->block_start == EXTENT_MAP_INLINE) {
7784 free_extent_map(em);
7785 ret = -ENOTBLK;
7786 goto unlock_err;
7787 }
7788
7789 if (create) {
7790 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7791 dio_data, start, len);
7792 if (ret < 0)
7793 goto unlock_err;
7794
7795 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7796 lockend, &cached_state);
7797 } else {
7798 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7799 start, len);
7800 /* Can be negative only if we read from a hole */
7801 if (ret < 0) {
7802 ret = 0;
7803 free_extent_map(em);
7804 goto unlock_err;
7805 }
7806 /*
7807 * We need to unlock only the end area that we aren't using.
7808 * The rest is going to be unlocked by the endio routine.
7809 */
7810 lockstart = start + bh_result->b_size;
7811 if (lockstart < lockend) {
7812 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7813 lockstart, lockend, &cached_state);
7814 } else {
7815 free_extent_state(cached_state);
7816 }
7817 }
7818
7819 free_extent_map(em);
7820
7821 return 0;
7822
7823 unlock_err:
7824 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7825 &cached_state);
7826 err:
7827 if (dio_data)
7828 current->journal_info = dio_data;
7829 return ret;
7830 }
7831
7832 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7833 struct bio *bio,
7834 int mirror_num)
7835 {
7836 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7837 blk_status_t ret;
7838
7839 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7840
7841 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7842 if (ret)
7843 return ret;
7844
7845 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7846
7847 return ret;
7848 }
7849
7850 static int btrfs_check_dio_repairable(struct inode *inode,
7851 struct bio *failed_bio,
7852 struct io_failure_record *failrec,
7853 int failed_mirror)
7854 {
7855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7856 int num_copies;
7857
7858 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7859 if (num_copies == 1) {
7860 /*
7861 * we only have a single copy of the data, so don't bother with
7862 * all the retry and error correction code that follows. no
7863 * matter what the error is, it is very likely to persist.
7864 */
7865 btrfs_debug(fs_info,
7866 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7867 num_copies, failrec->this_mirror, failed_mirror);
7868 return 0;
7869 }
7870
7871 failrec->failed_mirror = failed_mirror;
7872 failrec->this_mirror++;
7873 if (failrec->this_mirror == failed_mirror)
7874 failrec->this_mirror++;
7875
7876 if (failrec->this_mirror > num_copies) {
7877 btrfs_debug(fs_info,
7878 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7879 num_copies, failrec->this_mirror, failed_mirror);
7880 return 0;
7881 }
7882
7883 return 1;
7884 }
7885
7886 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7887 struct page *page, unsigned int pgoff,
7888 u64 start, u64 end, int failed_mirror,
7889 bio_end_io_t *repair_endio, void *repair_arg)
7890 {
7891 struct io_failure_record *failrec;
7892 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7893 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7894 struct bio *bio;
7895 int isector;
7896 unsigned int read_mode = 0;
7897 int segs;
7898 int ret;
7899 blk_status_t status;
7900 struct bio_vec bvec;
7901
7902 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7903
7904 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7905 if (ret)
7906 return errno_to_blk_status(ret);
7907
7908 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7909 failed_mirror);
7910 if (!ret) {
7911 free_io_failure(failure_tree, io_tree, failrec);
7912 return BLK_STS_IOERR;
7913 }
7914
7915 segs = bio_segments(failed_bio);
7916 bio_get_first_bvec(failed_bio, &bvec);
7917 if (segs > 1 ||
7918 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7919 read_mode |= REQ_FAILFAST_DEV;
7920
7921 isector = start - btrfs_io_bio(failed_bio)->logical;
7922 isector >>= inode->i_sb->s_blocksize_bits;
7923 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7924 pgoff, isector, repair_endio, repair_arg);
7925 bio->bi_opf = REQ_OP_READ | read_mode;
7926
7927 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7928 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7929 read_mode, failrec->this_mirror, failrec->in_validation);
7930
7931 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7932 if (status) {
7933 free_io_failure(failure_tree, io_tree, failrec);
7934 bio_put(bio);
7935 }
7936
7937 return status;
7938 }
7939
7940 struct btrfs_retry_complete {
7941 struct completion done;
7942 struct inode *inode;
7943 u64 start;
7944 int uptodate;
7945 };
7946
7947 static void btrfs_retry_endio_nocsum(struct bio *bio)
7948 {
7949 struct btrfs_retry_complete *done = bio->bi_private;
7950 struct inode *inode = done->inode;
7951 struct bio_vec *bvec;
7952 struct extent_io_tree *io_tree, *failure_tree;
7953 struct bvec_iter_all iter_all;
7954
7955 if (bio->bi_status)
7956 goto end;
7957
7958 ASSERT(bio->bi_vcnt == 1);
7959 io_tree = &BTRFS_I(inode)->io_tree;
7960 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7961 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7962
7963 done->uptodate = 1;
7964 ASSERT(!bio_flagged(bio, BIO_CLONED));
7965 bio_for_each_segment_all(bvec, bio, iter_all)
7966 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7967 io_tree, done->start, bvec->bv_page,
7968 btrfs_ino(BTRFS_I(inode)), 0);
7969 end:
7970 complete(&done->done);
7971 bio_put(bio);
7972 }
7973
7974 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7975 struct btrfs_io_bio *io_bio)
7976 {
7977 struct btrfs_fs_info *fs_info;
7978 struct bio_vec bvec;
7979 struct bvec_iter iter;
7980 struct btrfs_retry_complete done;
7981 u64 start;
7982 unsigned int pgoff;
7983 u32 sectorsize;
7984 int nr_sectors;
7985 blk_status_t ret;
7986 blk_status_t err = BLK_STS_OK;
7987
7988 fs_info = BTRFS_I(inode)->root->fs_info;
7989 sectorsize = fs_info->sectorsize;
7990
7991 start = io_bio->logical;
7992 done.inode = inode;
7993 io_bio->bio.bi_iter = io_bio->iter;
7994
7995 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7996 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7997 pgoff = bvec.bv_offset;
7998
7999 next_block_or_try_again:
8000 done.uptodate = 0;
8001 done.start = start;
8002 init_completion(&done.done);
8003
8004 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8005 pgoff, start, start + sectorsize - 1,
8006 io_bio->mirror_num,
8007 btrfs_retry_endio_nocsum, &done);
8008 if (ret) {
8009 err = ret;
8010 goto next;
8011 }
8012
8013 wait_for_completion_io(&done.done);
8014
8015 if (!done.uptodate) {
8016 /* We might have another mirror, so try again */
8017 goto next_block_or_try_again;
8018 }
8019
8020 next:
8021 start += sectorsize;
8022
8023 nr_sectors--;
8024 if (nr_sectors) {
8025 pgoff += sectorsize;
8026 ASSERT(pgoff < PAGE_SIZE);
8027 goto next_block_or_try_again;
8028 }
8029 }
8030
8031 return err;
8032 }
8033
8034 static void btrfs_retry_endio(struct bio *bio)
8035 {
8036 struct btrfs_retry_complete *done = bio->bi_private;
8037 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8038 struct extent_io_tree *io_tree, *failure_tree;
8039 struct inode *inode = done->inode;
8040 struct bio_vec *bvec;
8041 int uptodate;
8042 int ret;
8043 int i = 0;
8044 struct bvec_iter_all iter_all;
8045
8046 if (bio->bi_status)
8047 goto end;
8048
8049 uptodate = 1;
8050
8051 ASSERT(bio->bi_vcnt == 1);
8052 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8053
8054 io_tree = &BTRFS_I(inode)->io_tree;
8055 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8056
8057 ASSERT(!bio_flagged(bio, BIO_CLONED));
8058 bio_for_each_segment_all(bvec, bio, iter_all) {
8059 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8060 bvec->bv_offset, done->start,
8061 bvec->bv_len);
8062 if (!ret)
8063 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8064 failure_tree, io_tree, done->start,
8065 bvec->bv_page,
8066 btrfs_ino(BTRFS_I(inode)),
8067 bvec->bv_offset);
8068 else
8069 uptodate = 0;
8070 i++;
8071 }
8072
8073 done->uptodate = uptodate;
8074 end:
8075 complete(&done->done);
8076 bio_put(bio);
8077 }
8078
8079 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8080 struct btrfs_io_bio *io_bio, blk_status_t err)
8081 {
8082 struct btrfs_fs_info *fs_info;
8083 struct bio_vec bvec;
8084 struct bvec_iter iter;
8085 struct btrfs_retry_complete done;
8086 u64 start;
8087 u64 offset = 0;
8088 u32 sectorsize;
8089 int nr_sectors;
8090 unsigned int pgoff;
8091 int csum_pos;
8092 bool uptodate = (err == 0);
8093 int ret;
8094 blk_status_t status;
8095
8096 fs_info = BTRFS_I(inode)->root->fs_info;
8097 sectorsize = fs_info->sectorsize;
8098
8099 err = BLK_STS_OK;
8100 start = io_bio->logical;
8101 done.inode = inode;
8102 io_bio->bio.bi_iter = io_bio->iter;
8103
8104 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8105 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8106
8107 pgoff = bvec.bv_offset;
8108 next_block:
8109 if (uptodate) {
8110 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8111 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8112 bvec.bv_page, pgoff, start, sectorsize);
8113 if (likely(!ret))
8114 goto next;
8115 }
8116 try_again:
8117 done.uptodate = 0;
8118 done.start = start;
8119 init_completion(&done.done);
8120
8121 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8122 pgoff, start, start + sectorsize - 1,
8123 io_bio->mirror_num, btrfs_retry_endio,
8124 &done);
8125 if (status) {
8126 err = status;
8127 goto next;
8128 }
8129
8130 wait_for_completion_io(&done.done);
8131
8132 if (!done.uptodate) {
8133 /* We might have another mirror, so try again */
8134 goto try_again;
8135 }
8136 next:
8137 offset += sectorsize;
8138 start += sectorsize;
8139
8140 ASSERT(nr_sectors);
8141
8142 nr_sectors--;
8143 if (nr_sectors) {
8144 pgoff += sectorsize;
8145 ASSERT(pgoff < PAGE_SIZE);
8146 goto next_block;
8147 }
8148 }
8149
8150 return err;
8151 }
8152
8153 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8154 struct btrfs_io_bio *io_bio, blk_status_t err)
8155 {
8156 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8157
8158 if (skip_csum) {
8159 if (unlikely(err))
8160 return __btrfs_correct_data_nocsum(inode, io_bio);
8161 else
8162 return BLK_STS_OK;
8163 } else {
8164 return __btrfs_subio_endio_read(inode, io_bio, err);
8165 }
8166 }
8167
8168 static void btrfs_endio_direct_read(struct bio *bio)
8169 {
8170 struct btrfs_dio_private *dip = bio->bi_private;
8171 struct inode *inode = dip->inode;
8172 struct bio *dio_bio;
8173 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8174 blk_status_t err = bio->bi_status;
8175
8176 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8177 err = btrfs_subio_endio_read(inode, io_bio, err);
8178
8179 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8180 dip->logical_offset + dip->bytes - 1);
8181 dio_bio = dip->dio_bio;
8182
8183 kfree(dip);
8184
8185 dio_bio->bi_status = err;
8186 dio_end_io(dio_bio);
8187 btrfs_io_bio_free_csum(io_bio);
8188 bio_put(bio);
8189 }
8190
8191 static void __endio_write_update_ordered(struct inode *inode,
8192 const u64 offset, const u64 bytes,
8193 const bool uptodate)
8194 {
8195 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8196 struct btrfs_ordered_extent *ordered = NULL;
8197 struct btrfs_workqueue *wq;
8198 btrfs_work_func_t func;
8199 u64 ordered_offset = offset;
8200 u64 ordered_bytes = bytes;
8201 u64 last_offset;
8202
8203 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8204 wq = fs_info->endio_freespace_worker;
8205 func = btrfs_freespace_write_helper;
8206 } else {
8207 wq = fs_info->endio_write_workers;
8208 func = btrfs_endio_write_helper;
8209 }
8210
8211 while (ordered_offset < offset + bytes) {
8212 last_offset = ordered_offset;
8213 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8214 &ordered_offset,
8215 ordered_bytes,
8216 uptodate)) {
8217 btrfs_init_work(&ordered->work, func,
8218 finish_ordered_fn,
8219 NULL, NULL);
8220 btrfs_queue_work(wq, &ordered->work);
8221 }
8222 /*
8223 * If btrfs_dec_test_ordered_pending does not find any ordered
8224 * extent in the range, we can exit.
8225 */
8226 if (ordered_offset == last_offset)
8227 return;
8228 /*
8229 * Our bio might span multiple ordered extents. In this case
8230 * we keep going until we have accounted the whole dio.
8231 */
8232 if (ordered_offset < offset + bytes) {
8233 ordered_bytes = offset + bytes - ordered_offset;
8234 ordered = NULL;
8235 }
8236 }
8237 }
8238
8239 static void btrfs_endio_direct_write(struct bio *bio)
8240 {
8241 struct btrfs_dio_private *dip = bio->bi_private;
8242 struct bio *dio_bio = dip->dio_bio;
8243
8244 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8245 dip->bytes, !bio->bi_status);
8246
8247 kfree(dip);
8248
8249 dio_bio->bi_status = bio->bi_status;
8250 dio_end_io(dio_bio);
8251 bio_put(bio);
8252 }
8253
8254 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8255 struct bio *bio, u64 offset)
8256 {
8257 struct inode *inode = private_data;
8258 blk_status_t ret;
8259 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8260 BUG_ON(ret); /* -ENOMEM */
8261 return 0;
8262 }
8263
8264 static void btrfs_end_dio_bio(struct bio *bio)
8265 {
8266 struct btrfs_dio_private *dip = bio->bi_private;
8267 blk_status_t err = bio->bi_status;
8268
8269 if (err)
8270 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8271 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8272 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8273 bio->bi_opf,
8274 (unsigned long long)bio->bi_iter.bi_sector,
8275 bio->bi_iter.bi_size, err);
8276
8277 if (dip->subio_endio)
8278 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8279
8280 if (err) {
8281 /*
8282 * We want to perceive the errors flag being set before
8283 * decrementing the reference count. We don't need a barrier
8284 * since atomic operations with a return value are fully
8285 * ordered as per atomic_t.txt
8286 */
8287 dip->errors = 1;
8288 }
8289
8290 /* if there are more bios still pending for this dio, just exit */
8291 if (!atomic_dec_and_test(&dip->pending_bios))
8292 goto out;
8293
8294 if (dip->errors) {
8295 bio_io_error(dip->orig_bio);
8296 } else {
8297 dip->dio_bio->bi_status = BLK_STS_OK;
8298 bio_endio(dip->orig_bio);
8299 }
8300 out:
8301 bio_put(bio);
8302 }
8303
8304 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8305 struct btrfs_dio_private *dip,
8306 struct bio *bio,
8307 u64 file_offset)
8308 {
8309 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8310 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8311 blk_status_t ret;
8312
8313 /*
8314 * We load all the csum data we need when we submit
8315 * the first bio to reduce the csum tree search and
8316 * contention.
8317 */
8318 if (dip->logical_offset == file_offset) {
8319 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8320 file_offset);
8321 if (ret)
8322 return ret;
8323 }
8324
8325 if (bio == dip->orig_bio)
8326 return 0;
8327
8328 file_offset -= dip->logical_offset;
8329 file_offset >>= inode->i_sb->s_blocksize_bits;
8330 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8331
8332 return 0;
8333 }
8334
8335 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8336 struct inode *inode, u64 file_offset, int async_submit)
8337 {
8338 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8339 struct btrfs_dio_private *dip = bio->bi_private;
8340 bool write = bio_op(bio) == REQ_OP_WRITE;
8341 blk_status_t ret;
8342
8343 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8344 if (async_submit)
8345 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8346
8347 if (!write) {
8348 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8349 if (ret)
8350 goto err;
8351 }
8352
8353 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8354 goto map;
8355
8356 if (write && async_submit) {
8357 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8358 file_offset, inode,
8359 btrfs_submit_bio_start_direct_io);
8360 goto err;
8361 } else if (write) {
8362 /*
8363 * If we aren't doing async submit, calculate the csum of the
8364 * bio now.
8365 */
8366 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8367 if (ret)
8368 goto err;
8369 } else {
8370 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8371 file_offset);
8372 if (ret)
8373 goto err;
8374 }
8375 map:
8376 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8377 err:
8378 return ret;
8379 }
8380
8381 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8382 {
8383 struct inode *inode = dip->inode;
8384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8385 struct bio *bio;
8386 struct bio *orig_bio = dip->orig_bio;
8387 u64 start_sector = orig_bio->bi_iter.bi_sector;
8388 u64 file_offset = dip->logical_offset;
8389 int async_submit = 0;
8390 u64 submit_len;
8391 int clone_offset = 0;
8392 int clone_len;
8393 int ret;
8394 blk_status_t status;
8395 struct btrfs_io_geometry geom;
8396
8397 submit_len = orig_bio->bi_iter.bi_size;
8398 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8399 start_sector << 9, submit_len, &geom);
8400 if (ret)
8401 return -EIO;
8402
8403 if (geom.len >= submit_len) {
8404 bio = orig_bio;
8405 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8406 goto submit;
8407 }
8408
8409 /* async crcs make it difficult to collect full stripe writes. */
8410 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8411 async_submit = 0;
8412 else
8413 async_submit = 1;
8414
8415 /* bio split */
8416 ASSERT(geom.len <= INT_MAX);
8417 atomic_inc(&dip->pending_bios);
8418 do {
8419 clone_len = min_t(int, submit_len, geom.len);
8420
8421 /*
8422 * This will never fail as it's passing GPF_NOFS and
8423 * the allocation is backed by btrfs_bioset.
8424 */
8425 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8426 clone_len);
8427 bio->bi_private = dip;
8428 bio->bi_end_io = btrfs_end_dio_bio;
8429 btrfs_io_bio(bio)->logical = file_offset;
8430
8431 ASSERT(submit_len >= clone_len);
8432 submit_len -= clone_len;
8433 if (submit_len == 0)
8434 break;
8435
8436 /*
8437 * Increase the count before we submit the bio so we know
8438 * the end IO handler won't happen before we increase the
8439 * count. Otherwise, the dip might get freed before we're
8440 * done setting it up.
8441 */
8442 atomic_inc(&dip->pending_bios);
8443
8444 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8445 async_submit);
8446 if (status) {
8447 bio_put(bio);
8448 atomic_dec(&dip->pending_bios);
8449 goto out_err;
8450 }
8451
8452 clone_offset += clone_len;
8453 start_sector += clone_len >> 9;
8454 file_offset += clone_len;
8455
8456 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8457 start_sector << 9, submit_len, &geom);
8458 if (ret)
8459 goto out_err;
8460 } while (submit_len > 0);
8461
8462 submit:
8463 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8464 if (!status)
8465 return 0;
8466
8467 bio_put(bio);
8468 out_err:
8469 dip->errors = 1;
8470 /*
8471 * Before atomic variable goto zero, we must make sure dip->errors is
8472 * perceived to be set. This ordering is ensured by the fact that an
8473 * atomic operations with a return value are fully ordered as per
8474 * atomic_t.txt
8475 */
8476 if (atomic_dec_and_test(&dip->pending_bios))
8477 bio_io_error(dip->orig_bio);
8478
8479 /* bio_end_io() will handle error, so we needn't return it */
8480 return 0;
8481 }
8482
8483 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8484 loff_t file_offset)
8485 {
8486 struct btrfs_dio_private *dip = NULL;
8487 struct bio *bio = NULL;
8488 struct btrfs_io_bio *io_bio;
8489 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8490 int ret = 0;
8491
8492 bio = btrfs_bio_clone(dio_bio);
8493
8494 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8495 if (!dip) {
8496 ret = -ENOMEM;
8497 goto free_ordered;
8498 }
8499
8500 dip->private = dio_bio->bi_private;
8501 dip->inode = inode;
8502 dip->logical_offset = file_offset;
8503 dip->bytes = dio_bio->bi_iter.bi_size;
8504 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8505 bio->bi_private = dip;
8506 dip->orig_bio = bio;
8507 dip->dio_bio = dio_bio;
8508 atomic_set(&dip->pending_bios, 0);
8509 io_bio = btrfs_io_bio(bio);
8510 io_bio->logical = file_offset;
8511
8512 if (write) {
8513 bio->bi_end_io = btrfs_endio_direct_write;
8514 } else {
8515 bio->bi_end_io = btrfs_endio_direct_read;
8516 dip->subio_endio = btrfs_subio_endio_read;
8517 }
8518
8519 /*
8520 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8521 * even if we fail to submit a bio, because in such case we do the
8522 * corresponding error handling below and it must not be done a second
8523 * time by btrfs_direct_IO().
8524 */
8525 if (write) {
8526 struct btrfs_dio_data *dio_data = current->journal_info;
8527
8528 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8529 dip->bytes;
8530 dio_data->unsubmitted_oe_range_start =
8531 dio_data->unsubmitted_oe_range_end;
8532 }
8533
8534 ret = btrfs_submit_direct_hook(dip);
8535 if (!ret)
8536 return;
8537
8538 btrfs_io_bio_free_csum(io_bio);
8539
8540 free_ordered:
8541 /*
8542 * If we arrived here it means either we failed to submit the dip
8543 * or we either failed to clone the dio_bio or failed to allocate the
8544 * dip. If we cloned the dio_bio and allocated the dip, we can just
8545 * call bio_endio against our io_bio so that we get proper resource
8546 * cleanup if we fail to submit the dip, otherwise, we must do the
8547 * same as btrfs_endio_direct_[write|read] because we can't call these
8548 * callbacks - they require an allocated dip and a clone of dio_bio.
8549 */
8550 if (bio && dip) {
8551 bio_io_error(bio);
8552 /*
8553 * The end io callbacks free our dip, do the final put on bio
8554 * and all the cleanup and final put for dio_bio (through
8555 * dio_end_io()).
8556 */
8557 dip = NULL;
8558 bio = NULL;
8559 } else {
8560 if (write)
8561 __endio_write_update_ordered(inode,
8562 file_offset,
8563 dio_bio->bi_iter.bi_size,
8564 false);
8565 else
8566 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8567 file_offset + dio_bio->bi_iter.bi_size - 1);
8568
8569 dio_bio->bi_status = BLK_STS_IOERR;
8570 /*
8571 * Releases and cleans up our dio_bio, no need to bio_put()
8572 * nor bio_endio()/bio_io_error() against dio_bio.
8573 */
8574 dio_end_io(dio_bio);
8575 }
8576 if (bio)
8577 bio_put(bio);
8578 kfree(dip);
8579 }
8580
8581 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8582 const struct iov_iter *iter, loff_t offset)
8583 {
8584 int seg;
8585 int i;
8586 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8587 ssize_t retval = -EINVAL;
8588
8589 if (offset & blocksize_mask)
8590 goto out;
8591
8592 if (iov_iter_alignment(iter) & blocksize_mask)
8593 goto out;
8594
8595 /* If this is a write we don't need to check anymore */
8596 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8597 return 0;
8598 /*
8599 * Check to make sure we don't have duplicate iov_base's in this
8600 * iovec, if so return EINVAL, otherwise we'll get csum errors
8601 * when reading back.
8602 */
8603 for (seg = 0; seg < iter->nr_segs; seg++) {
8604 for (i = seg + 1; i < iter->nr_segs; i++) {
8605 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8606 goto out;
8607 }
8608 }
8609 retval = 0;
8610 out:
8611 return retval;
8612 }
8613
8614 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8615 {
8616 struct file *file = iocb->ki_filp;
8617 struct inode *inode = file->f_mapping->host;
8618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8619 struct btrfs_dio_data dio_data = { 0 };
8620 struct extent_changeset *data_reserved = NULL;
8621 loff_t offset = iocb->ki_pos;
8622 size_t count = 0;
8623 int flags = 0;
8624 bool wakeup = true;
8625 bool relock = false;
8626 ssize_t ret;
8627
8628 if (check_direct_IO(fs_info, iter, offset))
8629 return 0;
8630
8631 inode_dio_begin(inode);
8632
8633 /*
8634 * The generic stuff only does filemap_write_and_wait_range, which
8635 * isn't enough if we've written compressed pages to this area, so
8636 * we need to flush the dirty pages again to make absolutely sure
8637 * that any outstanding dirty pages are on disk.
8638 */
8639 count = iov_iter_count(iter);
8640 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8641 &BTRFS_I(inode)->runtime_flags))
8642 filemap_fdatawrite_range(inode->i_mapping, offset,
8643 offset + count - 1);
8644
8645 if (iov_iter_rw(iter) == WRITE) {
8646 /*
8647 * If the write DIO is beyond the EOF, we need update
8648 * the isize, but it is protected by i_mutex. So we can
8649 * not unlock the i_mutex at this case.
8650 */
8651 if (offset + count <= inode->i_size) {
8652 dio_data.overwrite = 1;
8653 inode_unlock(inode);
8654 relock = true;
8655 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8656 ret = -EAGAIN;
8657 goto out;
8658 }
8659 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8660 offset, count);
8661 if (ret)
8662 goto out;
8663
8664 /*
8665 * We need to know how many extents we reserved so that we can
8666 * do the accounting properly if we go over the number we
8667 * originally calculated. Abuse current->journal_info for this.
8668 */
8669 dio_data.reserve = round_up(count,
8670 fs_info->sectorsize);
8671 dio_data.unsubmitted_oe_range_start = (u64)offset;
8672 dio_data.unsubmitted_oe_range_end = (u64)offset;
8673 current->journal_info = &dio_data;
8674 down_read(&BTRFS_I(inode)->dio_sem);
8675 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8676 &BTRFS_I(inode)->runtime_flags)) {
8677 inode_dio_end(inode);
8678 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8679 wakeup = false;
8680 }
8681
8682 ret = __blockdev_direct_IO(iocb, inode,
8683 fs_info->fs_devices->latest_bdev,
8684 iter, btrfs_get_blocks_direct, NULL,
8685 btrfs_submit_direct, flags);
8686 if (iov_iter_rw(iter) == WRITE) {
8687 up_read(&BTRFS_I(inode)->dio_sem);
8688 current->journal_info = NULL;
8689 if (ret < 0 && ret != -EIOCBQUEUED) {
8690 if (dio_data.reserve)
8691 btrfs_delalloc_release_space(inode, data_reserved,
8692 offset, dio_data.reserve, true);
8693 /*
8694 * On error we might have left some ordered extents
8695 * without submitting corresponding bios for them, so
8696 * cleanup them up to avoid other tasks getting them
8697 * and waiting for them to complete forever.
8698 */
8699 if (dio_data.unsubmitted_oe_range_start <
8700 dio_data.unsubmitted_oe_range_end)
8701 __endio_write_update_ordered(inode,
8702 dio_data.unsubmitted_oe_range_start,
8703 dio_data.unsubmitted_oe_range_end -
8704 dio_data.unsubmitted_oe_range_start,
8705 false);
8706 } else if (ret >= 0 && (size_t)ret < count)
8707 btrfs_delalloc_release_space(inode, data_reserved,
8708 offset, count - (size_t)ret, true);
8709 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8710 }
8711 out:
8712 if (wakeup)
8713 inode_dio_end(inode);
8714 if (relock)
8715 inode_lock(inode);
8716
8717 extent_changeset_free(data_reserved);
8718 return ret;
8719 }
8720
8721 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8722
8723 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8724 __u64 start, __u64 len)
8725 {
8726 int ret;
8727
8728 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8729 if (ret)
8730 return ret;
8731
8732 return extent_fiemap(inode, fieinfo, start, len);
8733 }
8734
8735 int btrfs_readpage(struct file *file, struct page *page)
8736 {
8737 struct extent_io_tree *tree;
8738 tree = &BTRFS_I(page->mapping->host)->io_tree;
8739 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8740 }
8741
8742 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8743 {
8744 struct inode *inode = page->mapping->host;
8745 int ret;
8746
8747 if (current->flags & PF_MEMALLOC) {
8748 redirty_page_for_writepage(wbc, page);
8749 unlock_page(page);
8750 return 0;
8751 }
8752
8753 /*
8754 * If we are under memory pressure we will call this directly from the
8755 * VM, we need to make sure we have the inode referenced for the ordered
8756 * extent. If not just return like we didn't do anything.
8757 */
8758 if (!igrab(inode)) {
8759 redirty_page_for_writepage(wbc, page);
8760 return AOP_WRITEPAGE_ACTIVATE;
8761 }
8762 ret = extent_write_full_page(page, wbc);
8763 btrfs_add_delayed_iput(inode);
8764 return ret;
8765 }
8766
8767 static int btrfs_writepages(struct address_space *mapping,
8768 struct writeback_control *wbc)
8769 {
8770 return extent_writepages(mapping, wbc);
8771 }
8772
8773 static int
8774 btrfs_readpages(struct file *file, struct address_space *mapping,
8775 struct list_head *pages, unsigned nr_pages)
8776 {
8777 return extent_readpages(mapping, pages, nr_pages);
8778 }
8779
8780 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8781 {
8782 int ret = try_release_extent_mapping(page, gfp_flags);
8783 if (ret == 1) {
8784 ClearPagePrivate(page);
8785 set_page_private(page, 0);
8786 put_page(page);
8787 }
8788 return ret;
8789 }
8790
8791 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8792 {
8793 if (PageWriteback(page) || PageDirty(page))
8794 return 0;
8795 return __btrfs_releasepage(page, gfp_flags);
8796 }
8797
8798 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8799 unsigned int length)
8800 {
8801 struct inode *inode = page->mapping->host;
8802 struct extent_io_tree *tree;
8803 struct btrfs_ordered_extent *ordered;
8804 struct extent_state *cached_state = NULL;
8805 u64 page_start = page_offset(page);
8806 u64 page_end = page_start + PAGE_SIZE - 1;
8807 u64 start;
8808 u64 end;
8809 int inode_evicting = inode->i_state & I_FREEING;
8810
8811 /*
8812 * we have the page locked, so new writeback can't start,
8813 * and the dirty bit won't be cleared while we are here.
8814 *
8815 * Wait for IO on this page so that we can safely clear
8816 * the PagePrivate2 bit and do ordered accounting
8817 */
8818 wait_on_page_writeback(page);
8819
8820 tree = &BTRFS_I(inode)->io_tree;
8821 if (offset) {
8822 btrfs_releasepage(page, GFP_NOFS);
8823 return;
8824 }
8825
8826 if (!inode_evicting)
8827 lock_extent_bits(tree, page_start, page_end, &cached_state);
8828 again:
8829 start = page_start;
8830 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8831 page_end - start + 1);
8832 if (ordered) {
8833 end = min(page_end, ordered->file_offset + ordered->len - 1);
8834 /*
8835 * IO on this page will never be started, so we need
8836 * to account for any ordered extents now
8837 */
8838 if (!inode_evicting)
8839 clear_extent_bit(tree, start, end,
8840 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8841 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8842 EXTENT_DEFRAG, 1, 0, &cached_state);
8843 /*
8844 * whoever cleared the private bit is responsible
8845 * for the finish_ordered_io
8846 */
8847 if (TestClearPagePrivate2(page)) {
8848 struct btrfs_ordered_inode_tree *tree;
8849 u64 new_len;
8850
8851 tree = &BTRFS_I(inode)->ordered_tree;
8852
8853 spin_lock_irq(&tree->lock);
8854 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8855 new_len = start - ordered->file_offset;
8856 if (new_len < ordered->truncated_len)
8857 ordered->truncated_len = new_len;
8858 spin_unlock_irq(&tree->lock);
8859
8860 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8861 start,
8862 end - start + 1, 1))
8863 btrfs_finish_ordered_io(ordered);
8864 }
8865 btrfs_put_ordered_extent(ordered);
8866 if (!inode_evicting) {
8867 cached_state = NULL;
8868 lock_extent_bits(tree, start, end,
8869 &cached_state);
8870 }
8871
8872 start = end + 1;
8873 if (start < page_end)
8874 goto again;
8875 }
8876
8877 /*
8878 * Qgroup reserved space handler
8879 * Page here will be either
8880 * 1) Already written to disk
8881 * In this case, its reserved space is released from data rsv map
8882 * and will be freed by delayed_ref handler finally.
8883 * So even we call qgroup_free_data(), it won't decrease reserved
8884 * space.
8885 * 2) Not written to disk
8886 * This means the reserved space should be freed here. However,
8887 * if a truncate invalidates the page (by clearing PageDirty)
8888 * and the page is accounted for while allocating extent
8889 * in btrfs_check_data_free_space() we let delayed_ref to
8890 * free the entire extent.
8891 */
8892 if (PageDirty(page))
8893 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8894 if (!inode_evicting) {
8895 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8896 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8897 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8898 &cached_state);
8899
8900 __btrfs_releasepage(page, GFP_NOFS);
8901 }
8902
8903 ClearPageChecked(page);
8904 if (PagePrivate(page)) {
8905 ClearPagePrivate(page);
8906 set_page_private(page, 0);
8907 put_page(page);
8908 }
8909 }
8910
8911 /*
8912 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8913 * called from a page fault handler when a page is first dirtied. Hence we must
8914 * be careful to check for EOF conditions here. We set the page up correctly
8915 * for a written page which means we get ENOSPC checking when writing into
8916 * holes and correct delalloc and unwritten extent mapping on filesystems that
8917 * support these features.
8918 *
8919 * We are not allowed to take the i_mutex here so we have to play games to
8920 * protect against truncate races as the page could now be beyond EOF. Because
8921 * truncate_setsize() writes the inode size before removing pages, once we have
8922 * the page lock we can determine safely if the page is beyond EOF. If it is not
8923 * beyond EOF, then the page is guaranteed safe against truncation until we
8924 * unlock the page.
8925 */
8926 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8927 {
8928 struct page *page = vmf->page;
8929 struct inode *inode = file_inode(vmf->vma->vm_file);
8930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8931 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8932 struct btrfs_ordered_extent *ordered;
8933 struct extent_state *cached_state = NULL;
8934 struct extent_changeset *data_reserved = NULL;
8935 char *kaddr;
8936 unsigned long zero_start;
8937 loff_t size;
8938 vm_fault_t ret;
8939 int ret2;
8940 int reserved = 0;
8941 u64 reserved_space;
8942 u64 page_start;
8943 u64 page_end;
8944 u64 end;
8945
8946 reserved_space = PAGE_SIZE;
8947
8948 sb_start_pagefault(inode->i_sb);
8949 page_start = page_offset(page);
8950 page_end = page_start + PAGE_SIZE - 1;
8951 end = page_end;
8952
8953 /*
8954 * Reserving delalloc space after obtaining the page lock can lead to
8955 * deadlock. For example, if a dirty page is locked by this function
8956 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8957 * dirty page write out, then the btrfs_writepage() function could
8958 * end up waiting indefinitely to get a lock on the page currently
8959 * being processed by btrfs_page_mkwrite() function.
8960 */
8961 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8962 reserved_space);
8963 if (!ret2) {
8964 ret2 = file_update_time(vmf->vma->vm_file);
8965 reserved = 1;
8966 }
8967 if (ret2) {
8968 ret = vmf_error(ret2);
8969 if (reserved)
8970 goto out;
8971 goto out_noreserve;
8972 }
8973
8974 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8975 again:
8976 lock_page(page);
8977 size = i_size_read(inode);
8978
8979 if ((page->mapping != inode->i_mapping) ||
8980 (page_start >= size)) {
8981 /* page got truncated out from underneath us */
8982 goto out_unlock;
8983 }
8984 wait_on_page_writeback(page);
8985
8986 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8987 set_page_extent_mapped(page);
8988
8989 /*
8990 * we can't set the delalloc bits if there are pending ordered
8991 * extents. Drop our locks and wait for them to finish
8992 */
8993 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8994 PAGE_SIZE);
8995 if (ordered) {
8996 unlock_extent_cached(io_tree, page_start, page_end,
8997 &cached_state);
8998 unlock_page(page);
8999 btrfs_start_ordered_extent(inode, ordered, 1);
9000 btrfs_put_ordered_extent(ordered);
9001 goto again;
9002 }
9003
9004 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9005 reserved_space = round_up(size - page_start,
9006 fs_info->sectorsize);
9007 if (reserved_space < PAGE_SIZE) {
9008 end = page_start + reserved_space - 1;
9009 btrfs_delalloc_release_space(inode, data_reserved,
9010 page_start, PAGE_SIZE - reserved_space,
9011 true);
9012 }
9013 }
9014
9015 /*
9016 * page_mkwrite gets called when the page is firstly dirtied after it's
9017 * faulted in, but write(2) could also dirty a page and set delalloc
9018 * bits, thus in this case for space account reason, we still need to
9019 * clear any delalloc bits within this page range since we have to
9020 * reserve data&meta space before lock_page() (see above comments).
9021 */
9022 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9023 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9024 EXTENT_DEFRAG, 0, 0, &cached_state);
9025
9026 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9027 &cached_state);
9028 if (ret2) {
9029 unlock_extent_cached(io_tree, page_start, page_end,
9030 &cached_state);
9031 ret = VM_FAULT_SIGBUS;
9032 goto out_unlock;
9033 }
9034 ret2 = 0;
9035
9036 /* page is wholly or partially inside EOF */
9037 if (page_start + PAGE_SIZE > size)
9038 zero_start = offset_in_page(size);
9039 else
9040 zero_start = PAGE_SIZE;
9041
9042 if (zero_start != PAGE_SIZE) {
9043 kaddr = kmap(page);
9044 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9045 flush_dcache_page(page);
9046 kunmap(page);
9047 }
9048 ClearPageChecked(page);
9049 set_page_dirty(page);
9050 SetPageUptodate(page);
9051
9052 BTRFS_I(inode)->last_trans = fs_info->generation;
9053 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9054 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9055
9056 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9057
9058 if (!ret2) {
9059 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9060 sb_end_pagefault(inode->i_sb);
9061 extent_changeset_free(data_reserved);
9062 return VM_FAULT_LOCKED;
9063 }
9064
9065 out_unlock:
9066 unlock_page(page);
9067 out:
9068 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9069 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9070 reserved_space, (ret != 0));
9071 out_noreserve:
9072 sb_end_pagefault(inode->i_sb);
9073 extent_changeset_free(data_reserved);
9074 return ret;
9075 }
9076
9077 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9078 {
9079 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9080 struct btrfs_root *root = BTRFS_I(inode)->root;
9081 struct btrfs_block_rsv *rsv;
9082 int ret;
9083 struct btrfs_trans_handle *trans;
9084 u64 mask = fs_info->sectorsize - 1;
9085 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9086
9087 if (!skip_writeback) {
9088 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9089 (u64)-1);
9090 if (ret)
9091 return ret;
9092 }
9093
9094 /*
9095 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9096 * things going on here:
9097 *
9098 * 1) We need to reserve space to update our inode.
9099 *
9100 * 2) We need to have something to cache all the space that is going to
9101 * be free'd up by the truncate operation, but also have some slack
9102 * space reserved in case it uses space during the truncate (thank you
9103 * very much snapshotting).
9104 *
9105 * And we need these to be separate. The fact is we can use a lot of
9106 * space doing the truncate, and we have no earthly idea how much space
9107 * we will use, so we need the truncate reservation to be separate so it
9108 * doesn't end up using space reserved for updating the inode. We also
9109 * need to be able to stop the transaction and start a new one, which
9110 * means we need to be able to update the inode several times, and we
9111 * have no idea of knowing how many times that will be, so we can't just
9112 * reserve 1 item for the entirety of the operation, so that has to be
9113 * done separately as well.
9114 *
9115 * So that leaves us with
9116 *
9117 * 1) rsv - for the truncate reservation, which we will steal from the
9118 * transaction reservation.
9119 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9120 * updating the inode.
9121 */
9122 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9123 if (!rsv)
9124 return -ENOMEM;
9125 rsv->size = min_size;
9126 rsv->failfast = 1;
9127
9128 /*
9129 * 1 for the truncate slack space
9130 * 1 for updating the inode.
9131 */
9132 trans = btrfs_start_transaction(root, 2);
9133 if (IS_ERR(trans)) {
9134 ret = PTR_ERR(trans);
9135 goto out;
9136 }
9137
9138 /* Migrate the slack space for the truncate to our reserve */
9139 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9140 min_size, false);
9141 BUG_ON(ret);
9142
9143 /*
9144 * So if we truncate and then write and fsync we normally would just
9145 * write the extents that changed, which is a problem if we need to
9146 * first truncate that entire inode. So set this flag so we write out
9147 * all of the extents in the inode to the sync log so we're completely
9148 * safe.
9149 */
9150 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9151 trans->block_rsv = rsv;
9152
9153 while (1) {
9154 ret = btrfs_truncate_inode_items(trans, root, inode,
9155 inode->i_size,
9156 BTRFS_EXTENT_DATA_KEY);
9157 trans->block_rsv = &fs_info->trans_block_rsv;
9158 if (ret != -ENOSPC && ret != -EAGAIN)
9159 break;
9160
9161 ret = btrfs_update_inode(trans, root, inode);
9162 if (ret)
9163 break;
9164
9165 btrfs_end_transaction(trans);
9166 btrfs_btree_balance_dirty(fs_info);
9167
9168 trans = btrfs_start_transaction(root, 2);
9169 if (IS_ERR(trans)) {
9170 ret = PTR_ERR(trans);
9171 trans = NULL;
9172 break;
9173 }
9174
9175 btrfs_block_rsv_release(fs_info, rsv, -1);
9176 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9177 rsv, min_size, false);
9178 BUG_ON(ret); /* shouldn't happen */
9179 trans->block_rsv = rsv;
9180 }
9181
9182 /*
9183 * We can't call btrfs_truncate_block inside a trans handle as we could
9184 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9185 * we've truncated everything except the last little bit, and can do
9186 * btrfs_truncate_block and then update the disk_i_size.
9187 */
9188 if (ret == NEED_TRUNCATE_BLOCK) {
9189 btrfs_end_transaction(trans);
9190 btrfs_btree_balance_dirty(fs_info);
9191
9192 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9193 if (ret)
9194 goto out;
9195 trans = btrfs_start_transaction(root, 1);
9196 if (IS_ERR(trans)) {
9197 ret = PTR_ERR(trans);
9198 goto out;
9199 }
9200 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9201 }
9202
9203 if (trans) {
9204 int ret2;
9205
9206 trans->block_rsv = &fs_info->trans_block_rsv;
9207 ret2 = btrfs_update_inode(trans, root, inode);
9208 if (ret2 && !ret)
9209 ret = ret2;
9210
9211 ret2 = btrfs_end_transaction(trans);
9212 if (ret2 && !ret)
9213 ret = ret2;
9214 btrfs_btree_balance_dirty(fs_info);
9215 }
9216 out:
9217 btrfs_free_block_rsv(fs_info, rsv);
9218
9219 return ret;
9220 }
9221
9222 /*
9223 * create a new subvolume directory/inode (helper for the ioctl).
9224 */
9225 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9226 struct btrfs_root *new_root,
9227 struct btrfs_root *parent_root,
9228 u64 new_dirid)
9229 {
9230 struct inode *inode;
9231 int err;
9232 u64 index = 0;
9233
9234 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9235 new_dirid, new_dirid,
9236 S_IFDIR | (~current_umask() & S_IRWXUGO),
9237 &index);
9238 if (IS_ERR(inode))
9239 return PTR_ERR(inode);
9240 inode->i_op = &btrfs_dir_inode_operations;
9241 inode->i_fop = &btrfs_dir_file_operations;
9242
9243 set_nlink(inode, 1);
9244 btrfs_i_size_write(BTRFS_I(inode), 0);
9245 unlock_new_inode(inode);
9246
9247 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9248 if (err)
9249 btrfs_err(new_root->fs_info,
9250 "error inheriting subvolume %llu properties: %d",
9251 new_root->root_key.objectid, err);
9252
9253 err = btrfs_update_inode(trans, new_root, inode);
9254
9255 iput(inode);
9256 return err;
9257 }
9258
9259 struct inode *btrfs_alloc_inode(struct super_block *sb)
9260 {
9261 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9262 struct btrfs_inode *ei;
9263 struct inode *inode;
9264
9265 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9266 if (!ei)
9267 return NULL;
9268
9269 ei->root = NULL;
9270 ei->generation = 0;
9271 ei->last_trans = 0;
9272 ei->last_sub_trans = 0;
9273 ei->logged_trans = 0;
9274 ei->delalloc_bytes = 0;
9275 ei->new_delalloc_bytes = 0;
9276 ei->defrag_bytes = 0;
9277 ei->disk_i_size = 0;
9278 ei->flags = 0;
9279 ei->csum_bytes = 0;
9280 ei->index_cnt = (u64)-1;
9281 ei->dir_index = 0;
9282 ei->last_unlink_trans = 0;
9283 ei->last_log_commit = 0;
9284
9285 spin_lock_init(&ei->lock);
9286 ei->outstanding_extents = 0;
9287 if (sb->s_magic != BTRFS_TEST_MAGIC)
9288 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9289 BTRFS_BLOCK_RSV_DELALLOC);
9290 ei->runtime_flags = 0;
9291 ei->prop_compress = BTRFS_COMPRESS_NONE;
9292 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9293
9294 ei->delayed_node = NULL;
9295
9296 ei->i_otime.tv_sec = 0;
9297 ei->i_otime.tv_nsec = 0;
9298
9299 inode = &ei->vfs_inode;
9300 extent_map_tree_init(&ei->extent_tree);
9301 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9302 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9303 IO_TREE_INODE_IO_FAILURE, inode);
9304 ei->io_tree.track_uptodate = true;
9305 ei->io_failure_tree.track_uptodate = true;
9306 atomic_set(&ei->sync_writers, 0);
9307 mutex_init(&ei->log_mutex);
9308 mutex_init(&ei->delalloc_mutex);
9309 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9310 INIT_LIST_HEAD(&ei->delalloc_inodes);
9311 INIT_LIST_HEAD(&ei->delayed_iput);
9312 RB_CLEAR_NODE(&ei->rb_node);
9313 init_rwsem(&ei->dio_sem);
9314
9315 return inode;
9316 }
9317
9318 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9319 void btrfs_test_destroy_inode(struct inode *inode)
9320 {
9321 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9322 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9323 }
9324 #endif
9325
9326 void btrfs_free_inode(struct inode *inode)
9327 {
9328 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9329 }
9330
9331 void btrfs_destroy_inode(struct inode *inode)
9332 {
9333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9334 struct btrfs_ordered_extent *ordered;
9335 struct btrfs_root *root = BTRFS_I(inode)->root;
9336
9337 WARN_ON(!hlist_empty(&inode->i_dentry));
9338 WARN_ON(inode->i_data.nrpages);
9339 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9340 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9341 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9342 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9343 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9344 WARN_ON(BTRFS_I(inode)->csum_bytes);
9345 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9346
9347 /*
9348 * This can happen where we create an inode, but somebody else also
9349 * created the same inode and we need to destroy the one we already
9350 * created.
9351 */
9352 if (!root)
9353 return;
9354
9355 while (1) {
9356 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9357 if (!ordered)
9358 break;
9359 else {
9360 btrfs_err(fs_info,
9361 "found ordered extent %llu %llu on inode cleanup",
9362 ordered->file_offset, ordered->len);
9363 btrfs_remove_ordered_extent(inode, ordered);
9364 btrfs_put_ordered_extent(ordered);
9365 btrfs_put_ordered_extent(ordered);
9366 }
9367 }
9368 btrfs_qgroup_check_reserved_leak(inode);
9369 inode_tree_del(inode);
9370 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9371 }
9372
9373 int btrfs_drop_inode(struct inode *inode)
9374 {
9375 struct btrfs_root *root = BTRFS_I(inode)->root;
9376
9377 if (root == NULL)
9378 return 1;
9379
9380 /* the snap/subvol tree is on deleting */
9381 if (btrfs_root_refs(&root->root_item) == 0)
9382 return 1;
9383 else
9384 return generic_drop_inode(inode);
9385 }
9386
9387 static void init_once(void *foo)
9388 {
9389 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9390
9391 inode_init_once(&ei->vfs_inode);
9392 }
9393
9394 void __cold btrfs_destroy_cachep(void)
9395 {
9396 /*
9397 * Make sure all delayed rcu free inodes are flushed before we
9398 * destroy cache.
9399 */
9400 rcu_barrier();
9401 kmem_cache_destroy(btrfs_inode_cachep);
9402 kmem_cache_destroy(btrfs_trans_handle_cachep);
9403 kmem_cache_destroy(btrfs_path_cachep);
9404 kmem_cache_destroy(btrfs_free_space_cachep);
9405 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9406 }
9407
9408 int __init btrfs_init_cachep(void)
9409 {
9410 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9411 sizeof(struct btrfs_inode), 0,
9412 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9413 init_once);
9414 if (!btrfs_inode_cachep)
9415 goto fail;
9416
9417 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9418 sizeof(struct btrfs_trans_handle), 0,
9419 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9420 if (!btrfs_trans_handle_cachep)
9421 goto fail;
9422
9423 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9424 sizeof(struct btrfs_path), 0,
9425 SLAB_MEM_SPREAD, NULL);
9426 if (!btrfs_path_cachep)
9427 goto fail;
9428
9429 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9430 sizeof(struct btrfs_free_space), 0,
9431 SLAB_MEM_SPREAD, NULL);
9432 if (!btrfs_free_space_cachep)
9433 goto fail;
9434
9435 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9436 PAGE_SIZE, PAGE_SIZE,
9437 SLAB_RED_ZONE, NULL);
9438 if (!btrfs_free_space_bitmap_cachep)
9439 goto fail;
9440
9441 return 0;
9442 fail:
9443 btrfs_destroy_cachep();
9444 return -ENOMEM;
9445 }
9446
9447 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9448 u32 request_mask, unsigned int flags)
9449 {
9450 u64 delalloc_bytes;
9451 struct inode *inode = d_inode(path->dentry);
9452 u32 blocksize = inode->i_sb->s_blocksize;
9453 u32 bi_flags = BTRFS_I(inode)->flags;
9454
9455 stat->result_mask |= STATX_BTIME;
9456 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9457 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9458 if (bi_flags & BTRFS_INODE_APPEND)
9459 stat->attributes |= STATX_ATTR_APPEND;
9460 if (bi_flags & BTRFS_INODE_COMPRESS)
9461 stat->attributes |= STATX_ATTR_COMPRESSED;
9462 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9463 stat->attributes |= STATX_ATTR_IMMUTABLE;
9464 if (bi_flags & BTRFS_INODE_NODUMP)
9465 stat->attributes |= STATX_ATTR_NODUMP;
9466
9467 stat->attributes_mask |= (STATX_ATTR_APPEND |
9468 STATX_ATTR_COMPRESSED |
9469 STATX_ATTR_IMMUTABLE |
9470 STATX_ATTR_NODUMP);
9471
9472 generic_fillattr(inode, stat);
9473 stat->dev = BTRFS_I(inode)->root->anon_dev;
9474
9475 spin_lock(&BTRFS_I(inode)->lock);
9476 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9477 spin_unlock(&BTRFS_I(inode)->lock);
9478 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9479 ALIGN(delalloc_bytes, blocksize)) >> 9;
9480 return 0;
9481 }
9482
9483 static int btrfs_rename_exchange(struct inode *old_dir,
9484 struct dentry *old_dentry,
9485 struct inode *new_dir,
9486 struct dentry *new_dentry)
9487 {
9488 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9489 struct btrfs_trans_handle *trans;
9490 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9491 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9492 struct inode *new_inode = new_dentry->d_inode;
9493 struct inode *old_inode = old_dentry->d_inode;
9494 struct timespec64 ctime = current_time(old_inode);
9495 struct dentry *parent;
9496 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9497 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9498 u64 old_idx = 0;
9499 u64 new_idx = 0;
9500 u64 root_objectid;
9501 int ret;
9502 bool root_log_pinned = false;
9503 bool dest_log_pinned = false;
9504 struct btrfs_log_ctx ctx_root;
9505 struct btrfs_log_ctx ctx_dest;
9506 bool sync_log_root = false;
9507 bool sync_log_dest = false;
9508 bool commit_transaction = false;
9509
9510 /* we only allow rename subvolume link between subvolumes */
9511 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9512 return -EXDEV;
9513
9514 btrfs_init_log_ctx(&ctx_root, old_inode);
9515 btrfs_init_log_ctx(&ctx_dest, new_inode);
9516
9517 /* close the race window with snapshot create/destroy ioctl */
9518 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9519 down_read(&fs_info->subvol_sem);
9520 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9521 down_read(&fs_info->subvol_sem);
9522
9523 /*
9524 * We want to reserve the absolute worst case amount of items. So if
9525 * both inodes are subvols and we need to unlink them then that would
9526 * require 4 item modifications, but if they are both normal inodes it
9527 * would require 5 item modifications, so we'll assume their normal
9528 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9529 * should cover the worst case number of items we'll modify.
9530 */
9531 trans = btrfs_start_transaction(root, 12);
9532 if (IS_ERR(trans)) {
9533 ret = PTR_ERR(trans);
9534 goto out_notrans;
9535 }
9536
9537 /*
9538 * We need to find a free sequence number both in the source and
9539 * in the destination directory for the exchange.
9540 */
9541 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9542 if (ret)
9543 goto out_fail;
9544 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9545 if (ret)
9546 goto out_fail;
9547
9548 BTRFS_I(old_inode)->dir_index = 0ULL;
9549 BTRFS_I(new_inode)->dir_index = 0ULL;
9550
9551 /* Reference for the source. */
9552 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9553 /* force full log commit if subvolume involved. */
9554 btrfs_set_log_full_commit(trans);
9555 } else {
9556 btrfs_pin_log_trans(root);
9557 root_log_pinned = true;
9558 ret = btrfs_insert_inode_ref(trans, dest,
9559 new_dentry->d_name.name,
9560 new_dentry->d_name.len,
9561 old_ino,
9562 btrfs_ino(BTRFS_I(new_dir)),
9563 old_idx);
9564 if (ret)
9565 goto out_fail;
9566 }
9567
9568 /* And now for the dest. */
9569 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9570 /* force full log commit if subvolume involved. */
9571 btrfs_set_log_full_commit(trans);
9572 } else {
9573 btrfs_pin_log_trans(dest);
9574 dest_log_pinned = true;
9575 ret = btrfs_insert_inode_ref(trans, root,
9576 old_dentry->d_name.name,
9577 old_dentry->d_name.len,
9578 new_ino,
9579 btrfs_ino(BTRFS_I(old_dir)),
9580 new_idx);
9581 if (ret)
9582 goto out_fail;
9583 }
9584
9585 /* Update inode version and ctime/mtime. */
9586 inode_inc_iversion(old_dir);
9587 inode_inc_iversion(new_dir);
9588 inode_inc_iversion(old_inode);
9589 inode_inc_iversion(new_inode);
9590 old_dir->i_ctime = old_dir->i_mtime = ctime;
9591 new_dir->i_ctime = new_dir->i_mtime = ctime;
9592 old_inode->i_ctime = ctime;
9593 new_inode->i_ctime = ctime;
9594
9595 if (old_dentry->d_parent != new_dentry->d_parent) {
9596 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9597 BTRFS_I(old_inode), 1);
9598 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9599 BTRFS_I(new_inode), 1);
9600 }
9601
9602 /* src is a subvolume */
9603 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9604 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9605 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9606 old_dentry->d_name.name,
9607 old_dentry->d_name.len);
9608 } else { /* src is an inode */
9609 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9610 BTRFS_I(old_dentry->d_inode),
9611 old_dentry->d_name.name,
9612 old_dentry->d_name.len);
9613 if (!ret)
9614 ret = btrfs_update_inode(trans, root, old_inode);
9615 }
9616 if (ret) {
9617 btrfs_abort_transaction(trans, ret);
9618 goto out_fail;
9619 }
9620
9621 /* dest is a subvolume */
9622 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9623 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9624 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9625 new_dentry->d_name.name,
9626 new_dentry->d_name.len);
9627 } else { /* dest is an inode */
9628 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9629 BTRFS_I(new_dentry->d_inode),
9630 new_dentry->d_name.name,
9631 new_dentry->d_name.len);
9632 if (!ret)
9633 ret = btrfs_update_inode(trans, dest, new_inode);
9634 }
9635 if (ret) {
9636 btrfs_abort_transaction(trans, ret);
9637 goto out_fail;
9638 }
9639
9640 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9641 new_dentry->d_name.name,
9642 new_dentry->d_name.len, 0, old_idx);
9643 if (ret) {
9644 btrfs_abort_transaction(trans, ret);
9645 goto out_fail;
9646 }
9647
9648 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9649 old_dentry->d_name.name,
9650 old_dentry->d_name.len, 0, new_idx);
9651 if (ret) {
9652 btrfs_abort_transaction(trans, ret);
9653 goto out_fail;
9654 }
9655
9656 if (old_inode->i_nlink == 1)
9657 BTRFS_I(old_inode)->dir_index = old_idx;
9658 if (new_inode->i_nlink == 1)
9659 BTRFS_I(new_inode)->dir_index = new_idx;
9660
9661 if (root_log_pinned) {
9662 parent = new_dentry->d_parent;
9663 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9664 BTRFS_I(old_dir), parent,
9665 false, &ctx_root);
9666 if (ret == BTRFS_NEED_LOG_SYNC)
9667 sync_log_root = true;
9668 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9669 commit_transaction = true;
9670 ret = 0;
9671 btrfs_end_log_trans(root);
9672 root_log_pinned = false;
9673 }
9674 if (dest_log_pinned) {
9675 if (!commit_transaction) {
9676 parent = old_dentry->d_parent;
9677 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9678 BTRFS_I(new_dir), parent,
9679 false, &ctx_dest);
9680 if (ret == BTRFS_NEED_LOG_SYNC)
9681 sync_log_dest = true;
9682 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9683 commit_transaction = true;
9684 ret = 0;
9685 }
9686 btrfs_end_log_trans(dest);
9687 dest_log_pinned = false;
9688 }
9689 out_fail:
9690 /*
9691 * If we have pinned a log and an error happened, we unpin tasks
9692 * trying to sync the log and force them to fallback to a transaction
9693 * commit if the log currently contains any of the inodes involved in
9694 * this rename operation (to ensure we do not persist a log with an
9695 * inconsistent state for any of these inodes or leading to any
9696 * inconsistencies when replayed). If the transaction was aborted, the
9697 * abortion reason is propagated to userspace when attempting to commit
9698 * the transaction. If the log does not contain any of these inodes, we
9699 * allow the tasks to sync it.
9700 */
9701 if (ret && (root_log_pinned || dest_log_pinned)) {
9702 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9703 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9704 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9705 (new_inode &&
9706 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9707 btrfs_set_log_full_commit(trans);
9708
9709 if (root_log_pinned) {
9710 btrfs_end_log_trans(root);
9711 root_log_pinned = false;
9712 }
9713 if (dest_log_pinned) {
9714 btrfs_end_log_trans(dest);
9715 dest_log_pinned = false;
9716 }
9717 }
9718 if (!ret && sync_log_root && !commit_transaction) {
9719 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9720 &ctx_root);
9721 if (ret)
9722 commit_transaction = true;
9723 }
9724 if (!ret && sync_log_dest && !commit_transaction) {
9725 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9726 &ctx_dest);
9727 if (ret)
9728 commit_transaction = true;
9729 }
9730 if (commit_transaction) {
9731 ret = btrfs_commit_transaction(trans);
9732 } else {
9733 int ret2;
9734
9735 ret2 = btrfs_end_transaction(trans);
9736 ret = ret ? ret : ret2;
9737 }
9738 out_notrans:
9739 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9740 up_read(&fs_info->subvol_sem);
9741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9742 up_read(&fs_info->subvol_sem);
9743
9744 return ret;
9745 }
9746
9747 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9748 struct btrfs_root *root,
9749 struct inode *dir,
9750 struct dentry *dentry)
9751 {
9752 int ret;
9753 struct inode *inode;
9754 u64 objectid;
9755 u64 index;
9756
9757 ret = btrfs_find_free_ino(root, &objectid);
9758 if (ret)
9759 return ret;
9760
9761 inode = btrfs_new_inode(trans, root, dir,
9762 dentry->d_name.name,
9763 dentry->d_name.len,
9764 btrfs_ino(BTRFS_I(dir)),
9765 objectid,
9766 S_IFCHR | WHITEOUT_MODE,
9767 &index);
9768
9769 if (IS_ERR(inode)) {
9770 ret = PTR_ERR(inode);
9771 return ret;
9772 }
9773
9774 inode->i_op = &btrfs_special_inode_operations;
9775 init_special_inode(inode, inode->i_mode,
9776 WHITEOUT_DEV);
9777
9778 ret = btrfs_init_inode_security(trans, inode, dir,
9779 &dentry->d_name);
9780 if (ret)
9781 goto out;
9782
9783 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9784 BTRFS_I(inode), 0, index);
9785 if (ret)
9786 goto out;
9787
9788 ret = btrfs_update_inode(trans, root, inode);
9789 out:
9790 unlock_new_inode(inode);
9791 if (ret)
9792 inode_dec_link_count(inode);
9793 iput(inode);
9794
9795 return ret;
9796 }
9797
9798 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9799 struct inode *new_dir, struct dentry *new_dentry,
9800 unsigned int flags)
9801 {
9802 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9803 struct btrfs_trans_handle *trans;
9804 unsigned int trans_num_items;
9805 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9806 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9807 struct inode *new_inode = d_inode(new_dentry);
9808 struct inode *old_inode = d_inode(old_dentry);
9809 u64 index = 0;
9810 u64 root_objectid;
9811 int ret;
9812 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9813 bool log_pinned = false;
9814 struct btrfs_log_ctx ctx;
9815 bool sync_log = false;
9816 bool commit_transaction = false;
9817
9818 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9819 return -EPERM;
9820
9821 /* we only allow rename subvolume link between subvolumes */
9822 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9823 return -EXDEV;
9824
9825 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9826 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9827 return -ENOTEMPTY;
9828
9829 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9830 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9831 return -ENOTEMPTY;
9832
9833
9834 /* check for collisions, even if the name isn't there */
9835 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9836 new_dentry->d_name.name,
9837 new_dentry->d_name.len);
9838
9839 if (ret) {
9840 if (ret == -EEXIST) {
9841 /* we shouldn't get
9842 * eexist without a new_inode */
9843 if (WARN_ON(!new_inode)) {
9844 return ret;
9845 }
9846 } else {
9847 /* maybe -EOVERFLOW */
9848 return ret;
9849 }
9850 }
9851 ret = 0;
9852
9853 /*
9854 * we're using rename to replace one file with another. Start IO on it
9855 * now so we don't add too much work to the end of the transaction
9856 */
9857 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9858 filemap_flush(old_inode->i_mapping);
9859
9860 /* close the racy window with snapshot create/destroy ioctl */
9861 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9862 down_read(&fs_info->subvol_sem);
9863 /*
9864 * We want to reserve the absolute worst case amount of items. So if
9865 * both inodes are subvols and we need to unlink them then that would
9866 * require 4 item modifications, but if they are both normal inodes it
9867 * would require 5 item modifications, so we'll assume they are normal
9868 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9869 * should cover the worst case number of items we'll modify.
9870 * If our rename has the whiteout flag, we need more 5 units for the
9871 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9872 * when selinux is enabled).
9873 */
9874 trans_num_items = 11;
9875 if (flags & RENAME_WHITEOUT)
9876 trans_num_items += 5;
9877 trans = btrfs_start_transaction(root, trans_num_items);
9878 if (IS_ERR(trans)) {
9879 ret = PTR_ERR(trans);
9880 goto out_notrans;
9881 }
9882
9883 if (dest != root)
9884 btrfs_record_root_in_trans(trans, dest);
9885
9886 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9887 if (ret)
9888 goto out_fail;
9889
9890 BTRFS_I(old_inode)->dir_index = 0ULL;
9891 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9892 /* force full log commit if subvolume involved. */
9893 btrfs_set_log_full_commit(trans);
9894 } else {
9895 btrfs_pin_log_trans(root);
9896 log_pinned = true;
9897 ret = btrfs_insert_inode_ref(trans, dest,
9898 new_dentry->d_name.name,
9899 new_dentry->d_name.len,
9900 old_ino,
9901 btrfs_ino(BTRFS_I(new_dir)), index);
9902 if (ret)
9903 goto out_fail;
9904 }
9905
9906 inode_inc_iversion(old_dir);
9907 inode_inc_iversion(new_dir);
9908 inode_inc_iversion(old_inode);
9909 old_dir->i_ctime = old_dir->i_mtime =
9910 new_dir->i_ctime = new_dir->i_mtime =
9911 old_inode->i_ctime = current_time(old_dir);
9912
9913 if (old_dentry->d_parent != new_dentry->d_parent)
9914 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9915 BTRFS_I(old_inode), 1);
9916
9917 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9918 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9919 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9920 old_dentry->d_name.name,
9921 old_dentry->d_name.len);
9922 } else {
9923 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9924 BTRFS_I(d_inode(old_dentry)),
9925 old_dentry->d_name.name,
9926 old_dentry->d_name.len);
9927 if (!ret)
9928 ret = btrfs_update_inode(trans, root, old_inode);
9929 }
9930 if (ret) {
9931 btrfs_abort_transaction(trans, ret);
9932 goto out_fail;
9933 }
9934
9935 if (new_inode) {
9936 inode_inc_iversion(new_inode);
9937 new_inode->i_ctime = current_time(new_inode);
9938 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9939 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9940 root_objectid = BTRFS_I(new_inode)->location.objectid;
9941 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9942 new_dentry->d_name.name,
9943 new_dentry->d_name.len);
9944 BUG_ON(new_inode->i_nlink == 0);
9945 } else {
9946 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9947 BTRFS_I(d_inode(new_dentry)),
9948 new_dentry->d_name.name,
9949 new_dentry->d_name.len);
9950 }
9951 if (!ret && new_inode->i_nlink == 0)
9952 ret = btrfs_orphan_add(trans,
9953 BTRFS_I(d_inode(new_dentry)));
9954 if (ret) {
9955 btrfs_abort_transaction(trans, ret);
9956 goto out_fail;
9957 }
9958 }
9959
9960 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9961 new_dentry->d_name.name,
9962 new_dentry->d_name.len, 0, index);
9963 if (ret) {
9964 btrfs_abort_transaction(trans, ret);
9965 goto out_fail;
9966 }
9967
9968 if (old_inode->i_nlink == 1)
9969 BTRFS_I(old_inode)->dir_index = index;
9970
9971 if (log_pinned) {
9972 struct dentry *parent = new_dentry->d_parent;
9973
9974 btrfs_init_log_ctx(&ctx, old_inode);
9975 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9976 BTRFS_I(old_dir), parent,
9977 false, &ctx);
9978 if (ret == BTRFS_NEED_LOG_SYNC)
9979 sync_log = true;
9980 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9981 commit_transaction = true;
9982 ret = 0;
9983 btrfs_end_log_trans(root);
9984 log_pinned = false;
9985 }
9986
9987 if (flags & RENAME_WHITEOUT) {
9988 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9989 old_dentry);
9990
9991 if (ret) {
9992 btrfs_abort_transaction(trans, ret);
9993 goto out_fail;
9994 }
9995 }
9996 out_fail:
9997 /*
9998 * If we have pinned the log and an error happened, we unpin tasks
9999 * trying to sync the log and force them to fallback to a transaction
10000 * commit if the log currently contains any of the inodes involved in
10001 * this rename operation (to ensure we do not persist a log with an
10002 * inconsistent state for any of these inodes or leading to any
10003 * inconsistencies when replayed). If the transaction was aborted, the
10004 * abortion reason is propagated to userspace when attempting to commit
10005 * the transaction. If the log does not contain any of these inodes, we
10006 * allow the tasks to sync it.
10007 */
10008 if (ret && log_pinned) {
10009 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10010 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10011 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10012 (new_inode &&
10013 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10014 btrfs_set_log_full_commit(trans);
10015
10016 btrfs_end_log_trans(root);
10017 log_pinned = false;
10018 }
10019 if (!ret && sync_log) {
10020 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10021 if (ret)
10022 commit_transaction = true;
10023 }
10024 if (commit_transaction) {
10025 ret = btrfs_commit_transaction(trans);
10026 } else {
10027 int ret2;
10028
10029 ret2 = btrfs_end_transaction(trans);
10030 ret = ret ? ret : ret2;
10031 }
10032 out_notrans:
10033 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10034 up_read(&fs_info->subvol_sem);
10035
10036 return ret;
10037 }
10038
10039 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10040 struct inode *new_dir, struct dentry *new_dentry,
10041 unsigned int flags)
10042 {
10043 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10044 return -EINVAL;
10045
10046 if (flags & RENAME_EXCHANGE)
10047 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10048 new_dentry);
10049
10050 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10051 }
10052
10053 struct btrfs_delalloc_work {
10054 struct inode *inode;
10055 struct completion completion;
10056 struct list_head list;
10057 struct btrfs_work work;
10058 };
10059
10060 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10061 {
10062 struct btrfs_delalloc_work *delalloc_work;
10063 struct inode *inode;
10064
10065 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10066 work);
10067 inode = delalloc_work->inode;
10068 filemap_flush(inode->i_mapping);
10069 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10070 &BTRFS_I(inode)->runtime_flags))
10071 filemap_flush(inode->i_mapping);
10072
10073 iput(inode);
10074 complete(&delalloc_work->completion);
10075 }
10076
10077 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10078 {
10079 struct btrfs_delalloc_work *work;
10080
10081 work = kmalloc(sizeof(*work), GFP_NOFS);
10082 if (!work)
10083 return NULL;
10084
10085 init_completion(&work->completion);
10086 INIT_LIST_HEAD(&work->list);
10087 work->inode = inode;
10088 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10089 btrfs_run_delalloc_work, NULL, NULL);
10090
10091 return work;
10092 }
10093
10094 /*
10095 * some fairly slow code that needs optimization. This walks the list
10096 * of all the inodes with pending delalloc and forces them to disk.
10097 */
10098 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10099 {
10100 struct btrfs_inode *binode;
10101 struct inode *inode;
10102 struct btrfs_delalloc_work *work, *next;
10103 struct list_head works;
10104 struct list_head splice;
10105 int ret = 0;
10106
10107 INIT_LIST_HEAD(&works);
10108 INIT_LIST_HEAD(&splice);
10109
10110 mutex_lock(&root->delalloc_mutex);
10111 spin_lock(&root->delalloc_lock);
10112 list_splice_init(&root->delalloc_inodes, &splice);
10113 while (!list_empty(&splice)) {
10114 binode = list_entry(splice.next, struct btrfs_inode,
10115 delalloc_inodes);
10116
10117 list_move_tail(&binode->delalloc_inodes,
10118 &root->delalloc_inodes);
10119 inode = igrab(&binode->vfs_inode);
10120 if (!inode) {
10121 cond_resched_lock(&root->delalloc_lock);
10122 continue;
10123 }
10124 spin_unlock(&root->delalloc_lock);
10125
10126 if (snapshot)
10127 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10128 &binode->runtime_flags);
10129 work = btrfs_alloc_delalloc_work(inode);
10130 if (!work) {
10131 iput(inode);
10132 ret = -ENOMEM;
10133 goto out;
10134 }
10135 list_add_tail(&work->list, &works);
10136 btrfs_queue_work(root->fs_info->flush_workers,
10137 &work->work);
10138 ret++;
10139 if (nr != -1 && ret >= nr)
10140 goto out;
10141 cond_resched();
10142 spin_lock(&root->delalloc_lock);
10143 }
10144 spin_unlock(&root->delalloc_lock);
10145
10146 out:
10147 list_for_each_entry_safe(work, next, &works, list) {
10148 list_del_init(&work->list);
10149 wait_for_completion(&work->completion);
10150 kfree(work);
10151 }
10152
10153 if (!list_empty(&splice)) {
10154 spin_lock(&root->delalloc_lock);
10155 list_splice_tail(&splice, &root->delalloc_inodes);
10156 spin_unlock(&root->delalloc_lock);
10157 }
10158 mutex_unlock(&root->delalloc_mutex);
10159 return ret;
10160 }
10161
10162 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10163 {
10164 struct btrfs_fs_info *fs_info = root->fs_info;
10165 int ret;
10166
10167 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10168 return -EROFS;
10169
10170 ret = start_delalloc_inodes(root, -1, true);
10171 if (ret > 0)
10172 ret = 0;
10173 return ret;
10174 }
10175
10176 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10177 {
10178 struct btrfs_root *root;
10179 struct list_head splice;
10180 int ret;
10181
10182 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10183 return -EROFS;
10184
10185 INIT_LIST_HEAD(&splice);
10186
10187 mutex_lock(&fs_info->delalloc_root_mutex);
10188 spin_lock(&fs_info->delalloc_root_lock);
10189 list_splice_init(&fs_info->delalloc_roots, &splice);
10190 while (!list_empty(&splice) && nr) {
10191 root = list_first_entry(&splice, struct btrfs_root,
10192 delalloc_root);
10193 root = btrfs_grab_fs_root(root);
10194 BUG_ON(!root);
10195 list_move_tail(&root->delalloc_root,
10196 &fs_info->delalloc_roots);
10197 spin_unlock(&fs_info->delalloc_root_lock);
10198
10199 ret = start_delalloc_inodes(root, nr, false);
10200 btrfs_put_fs_root(root);
10201 if (ret < 0)
10202 goto out;
10203
10204 if (nr != -1) {
10205 nr -= ret;
10206 WARN_ON(nr < 0);
10207 }
10208 spin_lock(&fs_info->delalloc_root_lock);
10209 }
10210 spin_unlock(&fs_info->delalloc_root_lock);
10211
10212 ret = 0;
10213 out:
10214 if (!list_empty(&splice)) {
10215 spin_lock(&fs_info->delalloc_root_lock);
10216 list_splice_tail(&splice, &fs_info->delalloc_roots);
10217 spin_unlock(&fs_info->delalloc_root_lock);
10218 }
10219 mutex_unlock(&fs_info->delalloc_root_mutex);
10220 return ret;
10221 }
10222
10223 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10224 const char *symname)
10225 {
10226 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10227 struct btrfs_trans_handle *trans;
10228 struct btrfs_root *root = BTRFS_I(dir)->root;
10229 struct btrfs_path *path;
10230 struct btrfs_key key;
10231 struct inode *inode = NULL;
10232 int err;
10233 u64 objectid;
10234 u64 index = 0;
10235 int name_len;
10236 int datasize;
10237 unsigned long ptr;
10238 struct btrfs_file_extent_item *ei;
10239 struct extent_buffer *leaf;
10240
10241 name_len = strlen(symname);
10242 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10243 return -ENAMETOOLONG;
10244
10245 /*
10246 * 2 items for inode item and ref
10247 * 2 items for dir items
10248 * 1 item for updating parent inode item
10249 * 1 item for the inline extent item
10250 * 1 item for xattr if selinux is on
10251 */
10252 trans = btrfs_start_transaction(root, 7);
10253 if (IS_ERR(trans))
10254 return PTR_ERR(trans);
10255
10256 err = btrfs_find_free_ino(root, &objectid);
10257 if (err)
10258 goto out_unlock;
10259
10260 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10261 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10262 objectid, S_IFLNK|S_IRWXUGO, &index);
10263 if (IS_ERR(inode)) {
10264 err = PTR_ERR(inode);
10265 inode = NULL;
10266 goto out_unlock;
10267 }
10268
10269 /*
10270 * If the active LSM wants to access the inode during
10271 * d_instantiate it needs these. Smack checks to see
10272 * if the filesystem supports xattrs by looking at the
10273 * ops vector.
10274 */
10275 inode->i_fop = &btrfs_file_operations;
10276 inode->i_op = &btrfs_file_inode_operations;
10277 inode->i_mapping->a_ops = &btrfs_aops;
10278 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10279
10280 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10281 if (err)
10282 goto out_unlock;
10283
10284 path = btrfs_alloc_path();
10285 if (!path) {
10286 err = -ENOMEM;
10287 goto out_unlock;
10288 }
10289 key.objectid = btrfs_ino(BTRFS_I(inode));
10290 key.offset = 0;
10291 key.type = BTRFS_EXTENT_DATA_KEY;
10292 datasize = btrfs_file_extent_calc_inline_size(name_len);
10293 err = btrfs_insert_empty_item(trans, root, path, &key,
10294 datasize);
10295 if (err) {
10296 btrfs_free_path(path);
10297 goto out_unlock;
10298 }
10299 leaf = path->nodes[0];
10300 ei = btrfs_item_ptr(leaf, path->slots[0],
10301 struct btrfs_file_extent_item);
10302 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10303 btrfs_set_file_extent_type(leaf, ei,
10304 BTRFS_FILE_EXTENT_INLINE);
10305 btrfs_set_file_extent_encryption(leaf, ei, 0);
10306 btrfs_set_file_extent_compression(leaf, ei, 0);
10307 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10308 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10309
10310 ptr = btrfs_file_extent_inline_start(ei);
10311 write_extent_buffer(leaf, symname, ptr, name_len);
10312 btrfs_mark_buffer_dirty(leaf);
10313 btrfs_free_path(path);
10314
10315 inode->i_op = &btrfs_symlink_inode_operations;
10316 inode_nohighmem(inode);
10317 inode_set_bytes(inode, name_len);
10318 btrfs_i_size_write(BTRFS_I(inode), name_len);
10319 err = btrfs_update_inode(trans, root, inode);
10320 /*
10321 * Last step, add directory indexes for our symlink inode. This is the
10322 * last step to avoid extra cleanup of these indexes if an error happens
10323 * elsewhere above.
10324 */
10325 if (!err)
10326 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10327 BTRFS_I(inode), 0, index);
10328 if (err)
10329 goto out_unlock;
10330
10331 d_instantiate_new(dentry, inode);
10332
10333 out_unlock:
10334 btrfs_end_transaction(trans);
10335 if (err && inode) {
10336 inode_dec_link_count(inode);
10337 discard_new_inode(inode);
10338 }
10339 btrfs_btree_balance_dirty(fs_info);
10340 return err;
10341 }
10342
10343 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10344 u64 start, u64 num_bytes, u64 min_size,
10345 loff_t actual_len, u64 *alloc_hint,
10346 struct btrfs_trans_handle *trans)
10347 {
10348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10349 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10350 struct extent_map *em;
10351 struct btrfs_root *root = BTRFS_I(inode)->root;
10352 struct btrfs_key ins;
10353 u64 cur_offset = start;
10354 u64 i_size;
10355 u64 cur_bytes;
10356 u64 last_alloc = (u64)-1;
10357 int ret = 0;
10358 bool own_trans = true;
10359 u64 end = start + num_bytes - 1;
10360
10361 if (trans)
10362 own_trans = false;
10363 while (num_bytes > 0) {
10364 if (own_trans) {
10365 trans = btrfs_start_transaction(root, 3);
10366 if (IS_ERR(trans)) {
10367 ret = PTR_ERR(trans);
10368 break;
10369 }
10370 }
10371
10372 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10373 cur_bytes = max(cur_bytes, min_size);
10374 /*
10375 * If we are severely fragmented we could end up with really
10376 * small allocations, so if the allocator is returning small
10377 * chunks lets make its job easier by only searching for those
10378 * sized chunks.
10379 */
10380 cur_bytes = min(cur_bytes, last_alloc);
10381 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10382 min_size, 0, *alloc_hint, &ins, 1, 0);
10383 if (ret) {
10384 if (own_trans)
10385 btrfs_end_transaction(trans);
10386 break;
10387 }
10388 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10389
10390 last_alloc = ins.offset;
10391 ret = insert_reserved_file_extent(trans, inode,
10392 cur_offset, ins.objectid,
10393 ins.offset, ins.offset,
10394 ins.offset, 0, 0, 0,
10395 BTRFS_FILE_EXTENT_PREALLOC);
10396 if (ret) {
10397 btrfs_free_reserved_extent(fs_info, ins.objectid,
10398 ins.offset, 0);
10399 btrfs_abort_transaction(trans, ret);
10400 if (own_trans)
10401 btrfs_end_transaction(trans);
10402 break;
10403 }
10404
10405 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10406 cur_offset + ins.offset -1, 0);
10407
10408 em = alloc_extent_map();
10409 if (!em) {
10410 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10411 &BTRFS_I(inode)->runtime_flags);
10412 goto next;
10413 }
10414
10415 em->start = cur_offset;
10416 em->orig_start = cur_offset;
10417 em->len = ins.offset;
10418 em->block_start = ins.objectid;
10419 em->block_len = ins.offset;
10420 em->orig_block_len = ins.offset;
10421 em->ram_bytes = ins.offset;
10422 em->bdev = fs_info->fs_devices->latest_bdev;
10423 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10424 em->generation = trans->transid;
10425
10426 while (1) {
10427 write_lock(&em_tree->lock);
10428 ret = add_extent_mapping(em_tree, em, 1);
10429 write_unlock(&em_tree->lock);
10430 if (ret != -EEXIST)
10431 break;
10432 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10433 cur_offset + ins.offset - 1,
10434 0);
10435 }
10436 free_extent_map(em);
10437 next:
10438 num_bytes -= ins.offset;
10439 cur_offset += ins.offset;
10440 *alloc_hint = ins.objectid + ins.offset;
10441
10442 inode_inc_iversion(inode);
10443 inode->i_ctime = current_time(inode);
10444 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10445 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10446 (actual_len > inode->i_size) &&
10447 (cur_offset > inode->i_size)) {
10448 if (cur_offset > actual_len)
10449 i_size = actual_len;
10450 else
10451 i_size = cur_offset;
10452 i_size_write(inode, i_size);
10453 btrfs_ordered_update_i_size(inode, i_size, NULL);
10454 }
10455
10456 ret = btrfs_update_inode(trans, root, inode);
10457
10458 if (ret) {
10459 btrfs_abort_transaction(trans, ret);
10460 if (own_trans)
10461 btrfs_end_transaction(trans);
10462 break;
10463 }
10464
10465 if (own_trans)
10466 btrfs_end_transaction(trans);
10467 }
10468 if (cur_offset < end)
10469 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10470 end - cur_offset + 1);
10471 return ret;
10472 }
10473
10474 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10475 u64 start, u64 num_bytes, u64 min_size,
10476 loff_t actual_len, u64 *alloc_hint)
10477 {
10478 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10479 min_size, actual_len, alloc_hint,
10480 NULL);
10481 }
10482
10483 int btrfs_prealloc_file_range_trans(struct inode *inode,
10484 struct btrfs_trans_handle *trans, int mode,
10485 u64 start, u64 num_bytes, u64 min_size,
10486 loff_t actual_len, u64 *alloc_hint)
10487 {
10488 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10489 min_size, actual_len, alloc_hint, trans);
10490 }
10491
10492 static int btrfs_set_page_dirty(struct page *page)
10493 {
10494 return __set_page_dirty_nobuffers(page);
10495 }
10496
10497 static int btrfs_permission(struct inode *inode, int mask)
10498 {
10499 struct btrfs_root *root = BTRFS_I(inode)->root;
10500 umode_t mode = inode->i_mode;
10501
10502 if (mask & MAY_WRITE &&
10503 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10504 if (btrfs_root_readonly(root))
10505 return -EROFS;
10506 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10507 return -EACCES;
10508 }
10509 return generic_permission(inode, mask);
10510 }
10511
10512 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10513 {
10514 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10515 struct btrfs_trans_handle *trans;
10516 struct btrfs_root *root = BTRFS_I(dir)->root;
10517 struct inode *inode = NULL;
10518 u64 objectid;
10519 u64 index;
10520 int ret = 0;
10521
10522 /*
10523 * 5 units required for adding orphan entry
10524 */
10525 trans = btrfs_start_transaction(root, 5);
10526 if (IS_ERR(trans))
10527 return PTR_ERR(trans);
10528
10529 ret = btrfs_find_free_ino(root, &objectid);
10530 if (ret)
10531 goto out;
10532
10533 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10534 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10535 if (IS_ERR(inode)) {
10536 ret = PTR_ERR(inode);
10537 inode = NULL;
10538 goto out;
10539 }
10540
10541 inode->i_fop = &btrfs_file_operations;
10542 inode->i_op = &btrfs_file_inode_operations;
10543
10544 inode->i_mapping->a_ops = &btrfs_aops;
10545 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10546
10547 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10548 if (ret)
10549 goto out;
10550
10551 ret = btrfs_update_inode(trans, root, inode);
10552 if (ret)
10553 goto out;
10554 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10555 if (ret)
10556 goto out;
10557
10558 /*
10559 * We set number of links to 0 in btrfs_new_inode(), and here we set
10560 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10561 * through:
10562 *
10563 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10564 */
10565 set_nlink(inode, 1);
10566 d_tmpfile(dentry, inode);
10567 unlock_new_inode(inode);
10568 mark_inode_dirty(inode);
10569 out:
10570 btrfs_end_transaction(trans);
10571 if (ret && inode)
10572 discard_new_inode(inode);
10573 btrfs_btree_balance_dirty(fs_info);
10574 return ret;
10575 }
10576
10577 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10578 {
10579 struct inode *inode = tree->private_data;
10580 unsigned long index = start >> PAGE_SHIFT;
10581 unsigned long end_index = end >> PAGE_SHIFT;
10582 struct page *page;
10583
10584 while (index <= end_index) {
10585 page = find_get_page(inode->i_mapping, index);
10586 ASSERT(page); /* Pages should be in the extent_io_tree */
10587 set_page_writeback(page);
10588 put_page(page);
10589 index++;
10590 }
10591 }
10592
10593 #ifdef CONFIG_SWAP
10594 /*
10595 * Add an entry indicating a block group or device which is pinned by a
10596 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10597 * negative errno on failure.
10598 */
10599 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10600 bool is_block_group)
10601 {
10602 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10603 struct btrfs_swapfile_pin *sp, *entry;
10604 struct rb_node **p;
10605 struct rb_node *parent = NULL;
10606
10607 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10608 if (!sp)
10609 return -ENOMEM;
10610 sp->ptr = ptr;
10611 sp->inode = inode;
10612 sp->is_block_group = is_block_group;
10613
10614 spin_lock(&fs_info->swapfile_pins_lock);
10615 p = &fs_info->swapfile_pins.rb_node;
10616 while (*p) {
10617 parent = *p;
10618 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10619 if (sp->ptr < entry->ptr ||
10620 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10621 p = &(*p)->rb_left;
10622 } else if (sp->ptr > entry->ptr ||
10623 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10624 p = &(*p)->rb_right;
10625 } else {
10626 spin_unlock(&fs_info->swapfile_pins_lock);
10627 kfree(sp);
10628 return 1;
10629 }
10630 }
10631 rb_link_node(&sp->node, parent, p);
10632 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10633 spin_unlock(&fs_info->swapfile_pins_lock);
10634 return 0;
10635 }
10636
10637 /* Free all of the entries pinned by this swapfile. */
10638 static void btrfs_free_swapfile_pins(struct inode *inode)
10639 {
10640 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10641 struct btrfs_swapfile_pin *sp;
10642 struct rb_node *node, *next;
10643
10644 spin_lock(&fs_info->swapfile_pins_lock);
10645 node = rb_first(&fs_info->swapfile_pins);
10646 while (node) {
10647 next = rb_next(node);
10648 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10649 if (sp->inode == inode) {
10650 rb_erase(&sp->node, &fs_info->swapfile_pins);
10651 if (sp->is_block_group)
10652 btrfs_put_block_group(sp->ptr);
10653 kfree(sp);
10654 }
10655 node = next;
10656 }
10657 spin_unlock(&fs_info->swapfile_pins_lock);
10658 }
10659
10660 struct btrfs_swap_info {
10661 u64 start;
10662 u64 block_start;
10663 u64 block_len;
10664 u64 lowest_ppage;
10665 u64 highest_ppage;
10666 unsigned long nr_pages;
10667 int nr_extents;
10668 };
10669
10670 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10671 struct btrfs_swap_info *bsi)
10672 {
10673 unsigned long nr_pages;
10674 u64 first_ppage, first_ppage_reported, next_ppage;
10675 int ret;
10676
10677 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10678 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10679 PAGE_SIZE) >> PAGE_SHIFT;
10680
10681 if (first_ppage >= next_ppage)
10682 return 0;
10683 nr_pages = next_ppage - first_ppage;
10684
10685 first_ppage_reported = first_ppage;
10686 if (bsi->start == 0)
10687 first_ppage_reported++;
10688 if (bsi->lowest_ppage > first_ppage_reported)
10689 bsi->lowest_ppage = first_ppage_reported;
10690 if (bsi->highest_ppage < (next_ppage - 1))
10691 bsi->highest_ppage = next_ppage - 1;
10692
10693 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10694 if (ret < 0)
10695 return ret;
10696 bsi->nr_extents += ret;
10697 bsi->nr_pages += nr_pages;
10698 return 0;
10699 }
10700
10701 static void btrfs_swap_deactivate(struct file *file)
10702 {
10703 struct inode *inode = file_inode(file);
10704
10705 btrfs_free_swapfile_pins(inode);
10706 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10707 }
10708
10709 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10710 sector_t *span)
10711 {
10712 struct inode *inode = file_inode(file);
10713 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10714 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10715 struct extent_state *cached_state = NULL;
10716 struct extent_map *em = NULL;
10717 struct btrfs_device *device = NULL;
10718 struct btrfs_swap_info bsi = {
10719 .lowest_ppage = (sector_t)-1ULL,
10720 };
10721 int ret = 0;
10722 u64 isize;
10723 u64 start;
10724
10725 /*
10726 * If the swap file was just created, make sure delalloc is done. If the
10727 * file changes again after this, the user is doing something stupid and
10728 * we don't really care.
10729 */
10730 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10731 if (ret)
10732 return ret;
10733
10734 /*
10735 * The inode is locked, so these flags won't change after we check them.
10736 */
10737 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10738 btrfs_warn(fs_info, "swapfile must not be compressed");
10739 return -EINVAL;
10740 }
10741 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10742 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10743 return -EINVAL;
10744 }
10745 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10746 btrfs_warn(fs_info, "swapfile must not be checksummed");
10747 return -EINVAL;
10748 }
10749
10750 /*
10751 * Balance or device remove/replace/resize can move stuff around from
10752 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10753 * concurrently while we are mapping the swap extents, and
10754 * fs_info->swapfile_pins prevents them from running while the swap file
10755 * is active and moving the extents. Note that this also prevents a
10756 * concurrent device add which isn't actually necessary, but it's not
10757 * really worth the trouble to allow it.
10758 */
10759 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10760 btrfs_warn(fs_info,
10761 "cannot activate swapfile while exclusive operation is running");
10762 return -EBUSY;
10763 }
10764 /*
10765 * Snapshots can create extents which require COW even if NODATACOW is
10766 * set. We use this counter to prevent snapshots. We must increment it
10767 * before walking the extents because we don't want a concurrent
10768 * snapshot to run after we've already checked the extents.
10769 */
10770 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10771
10772 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10773
10774 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10775 start = 0;
10776 while (start < isize) {
10777 u64 logical_block_start, physical_block_start;
10778 struct btrfs_block_group_cache *bg;
10779 u64 len = isize - start;
10780
10781 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10782 if (IS_ERR(em)) {
10783 ret = PTR_ERR(em);
10784 goto out;
10785 }
10786
10787 if (em->block_start == EXTENT_MAP_HOLE) {
10788 btrfs_warn(fs_info, "swapfile must not have holes");
10789 ret = -EINVAL;
10790 goto out;
10791 }
10792 if (em->block_start == EXTENT_MAP_INLINE) {
10793 /*
10794 * It's unlikely we'll ever actually find ourselves
10795 * here, as a file small enough to fit inline won't be
10796 * big enough to store more than the swap header, but in
10797 * case something changes in the future, let's catch it
10798 * here rather than later.
10799 */
10800 btrfs_warn(fs_info, "swapfile must not be inline");
10801 ret = -EINVAL;
10802 goto out;
10803 }
10804 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10805 btrfs_warn(fs_info, "swapfile must not be compressed");
10806 ret = -EINVAL;
10807 goto out;
10808 }
10809
10810 logical_block_start = em->block_start + (start - em->start);
10811 len = min(len, em->len - (start - em->start));
10812 free_extent_map(em);
10813 em = NULL;
10814
10815 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10816 if (ret < 0) {
10817 goto out;
10818 } else if (ret) {
10819 ret = 0;
10820 } else {
10821 btrfs_warn(fs_info,
10822 "swapfile must not be copy-on-write");
10823 ret = -EINVAL;
10824 goto out;
10825 }
10826
10827 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10828 if (IS_ERR(em)) {
10829 ret = PTR_ERR(em);
10830 goto out;
10831 }
10832
10833 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10834 btrfs_warn(fs_info,
10835 "swapfile must have single data profile");
10836 ret = -EINVAL;
10837 goto out;
10838 }
10839
10840 if (device == NULL) {
10841 device = em->map_lookup->stripes[0].dev;
10842 ret = btrfs_add_swapfile_pin(inode, device, false);
10843 if (ret == 1)
10844 ret = 0;
10845 else if (ret)
10846 goto out;
10847 } else if (device != em->map_lookup->stripes[0].dev) {
10848 btrfs_warn(fs_info, "swapfile must be on one device");
10849 ret = -EINVAL;
10850 goto out;
10851 }
10852
10853 physical_block_start = (em->map_lookup->stripes[0].physical +
10854 (logical_block_start - em->start));
10855 len = min(len, em->len - (logical_block_start - em->start));
10856 free_extent_map(em);
10857 em = NULL;
10858
10859 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10860 if (!bg) {
10861 btrfs_warn(fs_info,
10862 "could not find block group containing swapfile");
10863 ret = -EINVAL;
10864 goto out;
10865 }
10866
10867 ret = btrfs_add_swapfile_pin(inode, bg, true);
10868 if (ret) {
10869 btrfs_put_block_group(bg);
10870 if (ret == 1)
10871 ret = 0;
10872 else
10873 goto out;
10874 }
10875
10876 if (bsi.block_len &&
10877 bsi.block_start + bsi.block_len == physical_block_start) {
10878 bsi.block_len += len;
10879 } else {
10880 if (bsi.block_len) {
10881 ret = btrfs_add_swap_extent(sis, &bsi);
10882 if (ret)
10883 goto out;
10884 }
10885 bsi.start = start;
10886 bsi.block_start = physical_block_start;
10887 bsi.block_len = len;
10888 }
10889
10890 start += len;
10891 }
10892
10893 if (bsi.block_len)
10894 ret = btrfs_add_swap_extent(sis, &bsi);
10895
10896 out:
10897 if (!IS_ERR_OR_NULL(em))
10898 free_extent_map(em);
10899
10900 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10901
10902 if (ret)
10903 btrfs_swap_deactivate(file);
10904
10905 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10906
10907 if (ret)
10908 return ret;
10909
10910 if (device)
10911 sis->bdev = device->bdev;
10912 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10913 sis->max = bsi.nr_pages;
10914 sis->pages = bsi.nr_pages - 1;
10915 sis->highest_bit = bsi.nr_pages - 1;
10916 return bsi.nr_extents;
10917 }
10918 #else
10919 static void btrfs_swap_deactivate(struct file *file)
10920 {
10921 }
10922
10923 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10924 sector_t *span)
10925 {
10926 return -EOPNOTSUPP;
10927 }
10928 #endif
10929
10930 static const struct inode_operations btrfs_dir_inode_operations = {
10931 .getattr = btrfs_getattr,
10932 .lookup = btrfs_lookup,
10933 .create = btrfs_create,
10934 .unlink = btrfs_unlink,
10935 .link = btrfs_link,
10936 .mkdir = btrfs_mkdir,
10937 .rmdir = btrfs_rmdir,
10938 .rename = btrfs_rename2,
10939 .symlink = btrfs_symlink,
10940 .setattr = btrfs_setattr,
10941 .mknod = btrfs_mknod,
10942 .listxattr = btrfs_listxattr,
10943 .permission = btrfs_permission,
10944 .get_acl = btrfs_get_acl,
10945 .set_acl = btrfs_set_acl,
10946 .update_time = btrfs_update_time,
10947 .tmpfile = btrfs_tmpfile,
10948 };
10949 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10950 .lookup = btrfs_lookup,
10951 .permission = btrfs_permission,
10952 .update_time = btrfs_update_time,
10953 };
10954
10955 static const struct file_operations btrfs_dir_file_operations = {
10956 .llseek = generic_file_llseek,
10957 .read = generic_read_dir,
10958 .iterate_shared = btrfs_real_readdir,
10959 .open = btrfs_opendir,
10960 .unlocked_ioctl = btrfs_ioctl,
10961 #ifdef CONFIG_COMPAT
10962 .compat_ioctl = btrfs_compat_ioctl,
10963 #endif
10964 .release = btrfs_release_file,
10965 .fsync = btrfs_sync_file,
10966 };
10967
10968 static const struct extent_io_ops btrfs_extent_io_ops = {
10969 /* mandatory callbacks */
10970 .submit_bio_hook = btrfs_submit_bio_hook,
10971 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10972 };
10973
10974 /*
10975 * btrfs doesn't support the bmap operation because swapfiles
10976 * use bmap to make a mapping of extents in the file. They assume
10977 * these extents won't change over the life of the file and they
10978 * use the bmap result to do IO directly to the drive.
10979 *
10980 * the btrfs bmap call would return logical addresses that aren't
10981 * suitable for IO and they also will change frequently as COW
10982 * operations happen. So, swapfile + btrfs == corruption.
10983 *
10984 * For now we're avoiding this by dropping bmap.
10985 */
10986 static const struct address_space_operations btrfs_aops = {
10987 .readpage = btrfs_readpage,
10988 .writepage = btrfs_writepage,
10989 .writepages = btrfs_writepages,
10990 .readpages = btrfs_readpages,
10991 .direct_IO = btrfs_direct_IO,
10992 .invalidatepage = btrfs_invalidatepage,
10993 .releasepage = btrfs_releasepage,
10994 .set_page_dirty = btrfs_set_page_dirty,
10995 .error_remove_page = generic_error_remove_page,
10996 .swap_activate = btrfs_swap_activate,
10997 .swap_deactivate = btrfs_swap_deactivate,
10998 };
10999
11000 static const struct inode_operations btrfs_file_inode_operations = {
11001 .getattr = btrfs_getattr,
11002 .setattr = btrfs_setattr,
11003 .listxattr = btrfs_listxattr,
11004 .permission = btrfs_permission,
11005 .fiemap = btrfs_fiemap,
11006 .get_acl = btrfs_get_acl,
11007 .set_acl = btrfs_set_acl,
11008 .update_time = btrfs_update_time,
11009 };
11010 static const struct inode_operations btrfs_special_inode_operations = {
11011 .getattr = btrfs_getattr,
11012 .setattr = btrfs_setattr,
11013 .permission = btrfs_permission,
11014 .listxattr = btrfs_listxattr,
11015 .get_acl = btrfs_get_acl,
11016 .set_acl = btrfs_set_acl,
11017 .update_time = btrfs_update_time,
11018 };
11019 static const struct inode_operations btrfs_symlink_inode_operations = {
11020 .get_link = page_get_link,
11021 .getattr = btrfs_getattr,
11022 .setattr = btrfs_setattr,
11023 .permission = btrfs_permission,
11024 .listxattr = btrfs_listxattr,
11025 .update_time = btrfs_update_time,
11026 };
11027
11028 const struct dentry_operations btrfs_dentry_operations = {
11029 .d_delete = btrfs_dentry_delete,
11030 };