]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/inode.c
Btrfs: do not bug_on if we try to cow a free space cache inode
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61
62 struct btrfs_iget_args {
63 u64 ino;
64 struct btrfs_root *root;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_dir_ro_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct address_space_operations btrfs_symlink_aops;
74 static const struct file_operations btrfs_dir_file_operations;
75 static struct extent_io_ops btrfs_extent_io_ops;
76
77 static struct kmem_cache *btrfs_inode_cachep;
78 static struct kmem_cache *btrfs_delalloc_work_cachep;
79 struct kmem_cache *btrfs_trans_handle_cachep;
80 struct kmem_cache *btrfs_transaction_cachep;
81 struct kmem_cache *btrfs_path_cachep;
82 struct kmem_cache *btrfs_free_space_cachep;
83
84 #define S_SHIFT 12
85 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
86 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
87 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
88 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
89 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
90 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
91 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
92 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
93 };
94
95 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
96 static int btrfs_truncate(struct inode *inode);
97 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
98 static noinline int cow_file_range(struct inode *inode,
99 struct page *locked_page,
100 u64 start, u64 end, int *page_started,
101 unsigned long *nr_written, int unlock);
102 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
103 u64 len, u64 orig_start,
104 u64 block_start, u64 block_len,
105 u64 orig_block_len, u64 ram_bytes,
106 int type);
107
108 static int btrfs_dirty_inode(struct inode *inode);
109
110 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
111 struct inode *inode, struct inode *dir,
112 const struct qstr *qstr)
113 {
114 int err;
115
116 err = btrfs_init_acl(trans, inode, dir);
117 if (!err)
118 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
119 return err;
120 }
121
122 /*
123 * this does all the hard work for inserting an inline extent into
124 * the btree. The caller should have done a btrfs_drop_extents so that
125 * no overlapping inline items exist in the btree
126 */
127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
128 struct btrfs_root *root, struct inode *inode,
129 u64 start, size_t size, size_t compressed_size,
130 int compress_type,
131 struct page **compressed_pages)
132 {
133 struct btrfs_key key;
134 struct btrfs_path *path;
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 size_t datasize;
144 unsigned long offset;
145
146 if (compressed_size && compressed_pages)
147 cur_size = compressed_size;
148
149 path = btrfs_alloc_path();
150 if (!path)
151 return -ENOMEM;
152
153 path->leave_spinning = 1;
154
155 key.objectid = btrfs_ino(inode);
156 key.offset = start;
157 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159
160 inode_add_bytes(inode, size);
161 ret = btrfs_insert_empty_item(trans, root, path, &key,
162 datasize);
163 if (ret) {
164 err = ret;
165 goto fail;
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
177 if (compress_type != BTRFS_COMPRESS_NONE) {
178 struct page *cpage;
179 int i = 0;
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
183 PAGE_CACHE_SIZE);
184
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
194 compress_type);
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_free_path(path);
207
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
219
220 return ret;
221 fail:
222 btrfs_free_path(path);
223 return err;
224 }
225
226
227 /*
228 * conditionally insert an inline extent into the file. This
229 * does the checks required to make sure the data is small enough
230 * to fit as an inline extent.
231 */
232 static noinline int cow_file_range_inline(struct btrfs_root *root,
233 struct inode *inode, u64 start,
234 u64 end, size_t compressed_size,
235 int compress_type,
236 struct page **compressed_pages)
237 {
238 struct btrfs_trans_handle *trans;
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
242 u64 aligned_end = ALIGN(end, root->sectorsize);
243 u64 data_len = inline_len;
244 int ret;
245
246 if (compressed_size)
247 data_len = compressed_size;
248
249 if (start > 0 ||
250 actual_end >= PAGE_CACHE_SIZE ||
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 (!compressed_size &&
253 (actual_end & (root->sectorsize - 1)) == 0) ||
254 end + 1 < isize ||
255 data_len > root->fs_info->max_inline) {
256 return 1;
257 }
258
259 trans = btrfs_join_transaction(root);
260 if (IS_ERR(trans))
261 return PTR_ERR(trans);
262 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
263
264 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
265 if (ret) {
266 btrfs_abort_transaction(trans, root, ret);
267 goto out;
268 }
269
270 if (isize > actual_end)
271 inline_len = min_t(u64, isize, actual_end);
272 ret = insert_inline_extent(trans, root, inode, start,
273 inline_len, compressed_size,
274 compress_type, compressed_pages);
275 if (ret && ret != -ENOSPC) {
276 btrfs_abort_transaction(trans, root, ret);
277 goto out;
278 } else if (ret == -ENOSPC) {
279 ret = 1;
280 goto out;
281 }
282
283 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
284 btrfs_delalloc_release_metadata(inode, end + 1 - start);
285 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
286 out:
287 btrfs_end_transaction(trans, root);
288 return ret;
289 }
290
291 struct async_extent {
292 u64 start;
293 u64 ram_size;
294 u64 compressed_size;
295 struct page **pages;
296 unsigned long nr_pages;
297 int compress_type;
298 struct list_head list;
299 };
300
301 struct async_cow {
302 struct inode *inode;
303 struct btrfs_root *root;
304 struct page *locked_page;
305 u64 start;
306 u64 end;
307 struct list_head extents;
308 struct btrfs_work work;
309 };
310
311 static noinline int add_async_extent(struct async_cow *cow,
312 u64 start, u64 ram_size,
313 u64 compressed_size,
314 struct page **pages,
315 unsigned long nr_pages,
316 int compress_type)
317 {
318 struct async_extent *async_extent;
319
320 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
321 BUG_ON(!async_extent); /* -ENOMEM */
322 async_extent->start = start;
323 async_extent->ram_size = ram_size;
324 async_extent->compressed_size = compressed_size;
325 async_extent->pages = pages;
326 async_extent->nr_pages = nr_pages;
327 async_extent->compress_type = compress_type;
328 list_add_tail(&async_extent->list, &cow->extents);
329 return 0;
330 }
331
332 /*
333 * we create compressed extents in two phases. The first
334 * phase compresses a range of pages that have already been
335 * locked (both pages and state bits are locked).
336 *
337 * This is done inside an ordered work queue, and the compression
338 * is spread across many cpus. The actual IO submission is step
339 * two, and the ordered work queue takes care of making sure that
340 * happens in the same order things were put onto the queue by
341 * writepages and friends.
342 *
343 * If this code finds it can't get good compression, it puts an
344 * entry onto the work queue to write the uncompressed bytes. This
345 * makes sure that both compressed inodes and uncompressed inodes
346 * are written in the same order that the flusher thread sent them
347 * down.
348 */
349 static noinline int compress_file_range(struct inode *inode,
350 struct page *locked_page,
351 u64 start, u64 end,
352 struct async_cow *async_cow,
353 int *num_added)
354 {
355 struct btrfs_root *root = BTRFS_I(inode)->root;
356 u64 num_bytes;
357 u64 blocksize = root->sectorsize;
358 u64 actual_end;
359 u64 isize = i_size_read(inode);
360 int ret = 0;
361 struct page **pages = NULL;
362 unsigned long nr_pages;
363 unsigned long nr_pages_ret = 0;
364 unsigned long total_compressed = 0;
365 unsigned long total_in = 0;
366 unsigned long max_compressed = 128 * 1024;
367 unsigned long max_uncompressed = 128 * 1024;
368 int i;
369 int will_compress;
370 int compress_type = root->fs_info->compress_type;
371 int redirty = 0;
372
373 /* if this is a small write inside eof, kick off a defrag */
374 if ((end - start + 1) < 16 * 1024 &&
375 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
376 btrfs_add_inode_defrag(NULL, inode);
377
378 actual_end = min_t(u64, isize, end + 1);
379 again:
380 will_compress = 0;
381 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
382 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
383
384 /*
385 * we don't want to send crud past the end of i_size through
386 * compression, that's just a waste of CPU time. So, if the
387 * end of the file is before the start of our current
388 * requested range of bytes, we bail out to the uncompressed
389 * cleanup code that can deal with all of this.
390 *
391 * It isn't really the fastest way to fix things, but this is a
392 * very uncommon corner.
393 */
394 if (actual_end <= start)
395 goto cleanup_and_bail_uncompressed;
396
397 total_compressed = actual_end - start;
398
399 /* we want to make sure that amount of ram required to uncompress
400 * an extent is reasonable, so we limit the total size in ram
401 * of a compressed extent to 128k. This is a crucial number
402 * because it also controls how easily we can spread reads across
403 * cpus for decompression.
404 *
405 * We also want to make sure the amount of IO required to do
406 * a random read is reasonably small, so we limit the size of
407 * a compressed extent to 128k.
408 */
409 total_compressed = min(total_compressed, max_uncompressed);
410 num_bytes = ALIGN(end - start + 1, blocksize);
411 num_bytes = max(blocksize, num_bytes);
412 total_in = 0;
413 ret = 0;
414
415 /*
416 * we do compression for mount -o compress and when the
417 * inode has not been flagged as nocompress. This flag can
418 * change at any time if we discover bad compression ratios.
419 */
420 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
421 (btrfs_test_opt(root, COMPRESS) ||
422 (BTRFS_I(inode)->force_compress) ||
423 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
424 WARN_ON(pages);
425 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
426 if (!pages) {
427 /* just bail out to the uncompressed code */
428 goto cont;
429 }
430
431 if (BTRFS_I(inode)->force_compress)
432 compress_type = BTRFS_I(inode)->force_compress;
433
434 /*
435 * we need to call clear_page_dirty_for_io on each
436 * page in the range. Otherwise applications with the file
437 * mmap'd can wander in and change the page contents while
438 * we are compressing them.
439 *
440 * If the compression fails for any reason, we set the pages
441 * dirty again later on.
442 */
443 extent_range_clear_dirty_for_io(inode, start, end);
444 redirty = 1;
445 ret = btrfs_compress_pages(compress_type,
446 inode->i_mapping, start,
447 total_compressed, pages,
448 nr_pages, &nr_pages_ret,
449 &total_in,
450 &total_compressed,
451 max_compressed);
452
453 if (!ret) {
454 unsigned long offset = total_compressed &
455 (PAGE_CACHE_SIZE - 1);
456 struct page *page = pages[nr_pages_ret - 1];
457 char *kaddr;
458
459 /* zero the tail end of the last page, we might be
460 * sending it down to disk
461 */
462 if (offset) {
463 kaddr = kmap_atomic(page);
464 memset(kaddr + offset, 0,
465 PAGE_CACHE_SIZE - offset);
466 kunmap_atomic(kaddr);
467 }
468 will_compress = 1;
469 }
470 }
471 cont:
472 if (start == 0) {
473 /* lets try to make an inline extent */
474 if (ret || total_in < (actual_end - start)) {
475 /* we didn't compress the entire range, try
476 * to make an uncompressed inline extent.
477 */
478 ret = cow_file_range_inline(root, inode, start, end,
479 0, 0, NULL);
480 } else {
481 /* try making a compressed inline extent */
482 ret = cow_file_range_inline(root, inode, start, end,
483 total_compressed,
484 compress_type, pages);
485 }
486 if (ret <= 0) {
487 unsigned long clear_flags = EXTENT_DELALLOC |
488 EXTENT_DEFRAG;
489 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
490
491 /*
492 * inline extent creation worked or returned error,
493 * we don't need to create any more async work items.
494 * Unlock and free up our temp pages.
495 */
496 extent_clear_unlock_delalloc(inode, start, end, NULL,
497 clear_flags, PAGE_UNLOCK |
498 PAGE_CLEAR_DIRTY |
499 PAGE_SET_WRITEBACK |
500 PAGE_END_WRITEBACK);
501 goto free_pages_out;
502 }
503 }
504
505 if (will_compress) {
506 /*
507 * we aren't doing an inline extent round the compressed size
508 * up to a block size boundary so the allocator does sane
509 * things
510 */
511 total_compressed = ALIGN(total_compressed, blocksize);
512
513 /*
514 * one last check to make sure the compression is really a
515 * win, compare the page count read with the blocks on disk
516 */
517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
518 if (total_compressed >= total_in) {
519 will_compress = 0;
520 } else {
521 num_bytes = total_in;
522 }
523 }
524 if (!will_compress && pages) {
525 /*
526 * the compression code ran but failed to make things smaller,
527 * free any pages it allocated and our page pointer array
528 */
529 for (i = 0; i < nr_pages_ret; i++) {
530 WARN_ON(pages[i]->mapping);
531 page_cache_release(pages[i]);
532 }
533 kfree(pages);
534 pages = NULL;
535 total_compressed = 0;
536 nr_pages_ret = 0;
537
538 /* flag the file so we don't compress in the future */
539 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 !(BTRFS_I(inode)->force_compress)) {
541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
542 }
543 }
544 if (will_compress) {
545 *num_added += 1;
546
547 /* the async work queues will take care of doing actual
548 * allocation on disk for these compressed pages,
549 * and will submit them to the elevator.
550 */
551 add_async_extent(async_cow, start, num_bytes,
552 total_compressed, pages, nr_pages_ret,
553 compress_type);
554
555 if (start + num_bytes < end) {
556 start += num_bytes;
557 pages = NULL;
558 cond_resched();
559 goto again;
560 }
561 } else {
562 cleanup_and_bail_uncompressed:
563 /*
564 * No compression, but we still need to write the pages in
565 * the file we've been given so far. redirty the locked
566 * page if it corresponds to our extent and set things up
567 * for the async work queue to run cow_file_range to do
568 * the normal delalloc dance
569 */
570 if (page_offset(locked_page) >= start &&
571 page_offset(locked_page) <= end) {
572 __set_page_dirty_nobuffers(locked_page);
573 /* unlocked later on in the async handlers */
574 }
575 if (redirty)
576 extent_range_redirty_for_io(inode, start, end);
577 add_async_extent(async_cow, start, end - start + 1,
578 0, NULL, 0, BTRFS_COMPRESS_NONE);
579 *num_added += 1;
580 }
581
582 out:
583 return ret;
584
585 free_pages_out:
586 for (i = 0; i < nr_pages_ret; i++) {
587 WARN_ON(pages[i]->mapping);
588 page_cache_release(pages[i]);
589 }
590 kfree(pages);
591
592 goto out;
593 }
594
595 /*
596 * phase two of compressed writeback. This is the ordered portion
597 * of the code, which only gets called in the order the work was
598 * queued. We walk all the async extents created by compress_file_range
599 * and send them down to the disk.
600 */
601 static noinline int submit_compressed_extents(struct inode *inode,
602 struct async_cow *async_cow)
603 {
604 struct async_extent *async_extent;
605 u64 alloc_hint = 0;
606 struct btrfs_key ins;
607 struct extent_map *em;
608 struct btrfs_root *root = BTRFS_I(inode)->root;
609 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
610 struct extent_io_tree *io_tree;
611 int ret = 0;
612
613 if (list_empty(&async_cow->extents))
614 return 0;
615
616 again:
617 while (!list_empty(&async_cow->extents)) {
618 async_extent = list_entry(async_cow->extents.next,
619 struct async_extent, list);
620 list_del(&async_extent->list);
621
622 io_tree = &BTRFS_I(inode)->io_tree;
623
624 retry:
625 /* did the compression code fall back to uncompressed IO? */
626 if (!async_extent->pages) {
627 int page_started = 0;
628 unsigned long nr_written = 0;
629
630 lock_extent(io_tree, async_extent->start,
631 async_extent->start +
632 async_extent->ram_size - 1);
633
634 /* allocate blocks */
635 ret = cow_file_range(inode, async_cow->locked_page,
636 async_extent->start,
637 async_extent->start +
638 async_extent->ram_size - 1,
639 &page_started, &nr_written, 0);
640
641 /* JDM XXX */
642
643 /*
644 * if page_started, cow_file_range inserted an
645 * inline extent and took care of all the unlocking
646 * and IO for us. Otherwise, we need to submit
647 * all those pages down to the drive.
648 */
649 if (!page_started && !ret)
650 extent_write_locked_range(io_tree,
651 inode, async_extent->start,
652 async_extent->start +
653 async_extent->ram_size - 1,
654 btrfs_get_extent,
655 WB_SYNC_ALL);
656 else if (ret)
657 unlock_page(async_cow->locked_page);
658 kfree(async_extent);
659 cond_resched();
660 continue;
661 }
662
663 lock_extent(io_tree, async_extent->start,
664 async_extent->start + async_extent->ram_size - 1);
665
666 ret = btrfs_reserve_extent(root,
667 async_extent->compressed_size,
668 async_extent->compressed_size,
669 0, alloc_hint, &ins, 1);
670 if (ret) {
671 int i;
672
673 for (i = 0; i < async_extent->nr_pages; i++) {
674 WARN_ON(async_extent->pages[i]->mapping);
675 page_cache_release(async_extent->pages[i]);
676 }
677 kfree(async_extent->pages);
678 async_extent->nr_pages = 0;
679 async_extent->pages = NULL;
680
681 if (ret == -ENOSPC) {
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
684 async_extent->ram_size - 1);
685 goto retry;
686 }
687 goto out_free;
688 }
689
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
698 em = alloc_extent_map();
699 if (!em) {
700 ret = -ENOMEM;
701 goto out_free_reserve;
702 }
703 em->start = async_extent->start;
704 em->len = async_extent->ram_size;
705 em->orig_start = em->start;
706 em->mod_start = em->start;
707 em->mod_len = em->len;
708
709 em->block_start = ins.objectid;
710 em->block_len = ins.offset;
711 em->orig_block_len = ins.offset;
712 em->ram_bytes = async_extent->ram_size;
713 em->bdev = root->fs_info->fs_devices->latest_bdev;
714 em->compress_type = async_extent->compress_type;
715 set_bit(EXTENT_FLAG_PINNED, &em->flags);
716 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
717 em->generation = -1;
718
719 while (1) {
720 write_lock(&em_tree->lock);
721 ret = add_extent_mapping(em_tree, em, 1);
722 write_unlock(&em_tree->lock);
723 if (ret != -EEXIST) {
724 free_extent_map(em);
725 break;
726 }
727 btrfs_drop_extent_cache(inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1, 0);
730 }
731
732 if (ret)
733 goto out_free_reserve;
734
735 ret = btrfs_add_ordered_extent_compress(inode,
736 async_extent->start,
737 ins.objectid,
738 async_extent->ram_size,
739 ins.offset,
740 BTRFS_ORDERED_COMPRESSED,
741 async_extent->compress_type);
742 if (ret)
743 goto out_free_reserve;
744
745 /*
746 * clear dirty, set writeback and unlock the pages.
747 */
748 extent_clear_unlock_delalloc(inode, async_extent->start,
749 async_extent->start +
750 async_extent->ram_size - 1,
751 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
752 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
753 PAGE_SET_WRITEBACK);
754 ret = btrfs_submit_compressed_write(inode,
755 async_extent->start,
756 async_extent->ram_size,
757 ins.objectid,
758 ins.offset, async_extent->pages,
759 async_extent->nr_pages);
760 alloc_hint = ins.objectid + ins.offset;
761 kfree(async_extent);
762 if (ret)
763 goto out;
764 cond_resched();
765 }
766 ret = 0;
767 out:
768 return ret;
769 out_free_reserve:
770 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
771 out_free:
772 extent_clear_unlock_delalloc(inode, async_extent->start,
773 async_extent->start +
774 async_extent->ram_size - 1,
775 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
776 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
777 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
778 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
779 kfree(async_extent);
780 goto again;
781 }
782
783 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
784 u64 num_bytes)
785 {
786 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787 struct extent_map *em;
788 u64 alloc_hint = 0;
789
790 read_lock(&em_tree->lock);
791 em = search_extent_mapping(em_tree, start, num_bytes);
792 if (em) {
793 /*
794 * if block start isn't an actual block number then find the
795 * first block in this inode and use that as a hint. If that
796 * block is also bogus then just don't worry about it.
797 */
798 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
799 free_extent_map(em);
800 em = search_extent_mapping(em_tree, 0, 0);
801 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
802 alloc_hint = em->block_start;
803 if (em)
804 free_extent_map(em);
805 } else {
806 alloc_hint = em->block_start;
807 free_extent_map(em);
808 }
809 }
810 read_unlock(&em_tree->lock);
811
812 return alloc_hint;
813 }
814
815 /*
816 * when extent_io.c finds a delayed allocation range in the file,
817 * the call backs end up in this code. The basic idea is to
818 * allocate extents on disk for the range, and create ordered data structs
819 * in ram to track those extents.
820 *
821 * locked_page is the page that writepage had locked already. We use
822 * it to make sure we don't do extra locks or unlocks.
823 *
824 * *page_started is set to one if we unlock locked_page and do everything
825 * required to start IO on it. It may be clean and already done with
826 * IO when we return.
827 */
828 static noinline int cow_file_range(struct inode *inode,
829 struct page *locked_page,
830 u64 start, u64 end, int *page_started,
831 unsigned long *nr_written,
832 int unlock)
833 {
834 struct btrfs_root *root = BTRFS_I(inode)->root;
835 u64 alloc_hint = 0;
836 u64 num_bytes;
837 unsigned long ram_size;
838 u64 disk_num_bytes;
839 u64 cur_alloc_size;
840 u64 blocksize = root->sectorsize;
841 struct btrfs_key ins;
842 struct extent_map *em;
843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844 int ret = 0;
845
846 if (btrfs_is_free_space_inode(inode)) {
847 WARN_ON_ONCE(1);
848 return -EINVAL;
849 }
850
851 num_bytes = ALIGN(end - start + 1, blocksize);
852 num_bytes = max(blocksize, num_bytes);
853 disk_num_bytes = num_bytes;
854
855 /* if this is a small write inside eof, kick off defrag */
856 if (num_bytes < 64 * 1024 &&
857 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
858 btrfs_add_inode_defrag(NULL, inode);
859
860 if (start == 0) {
861 /* lets try to make an inline extent */
862 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
863 NULL);
864 if (ret == 0) {
865 extent_clear_unlock_delalloc(inode, start, end, NULL,
866 EXTENT_LOCKED | EXTENT_DELALLOC |
867 EXTENT_DEFRAG, PAGE_UNLOCK |
868 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
869 PAGE_END_WRITEBACK);
870
871 *nr_written = *nr_written +
872 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
873 *page_started = 1;
874 goto out;
875 } else if (ret < 0) {
876 goto out_unlock;
877 }
878 }
879
880 BUG_ON(disk_num_bytes >
881 btrfs_super_total_bytes(root->fs_info->super_copy));
882
883 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
884 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
885
886 while (disk_num_bytes > 0) {
887 unsigned long op;
888
889 cur_alloc_size = disk_num_bytes;
890 ret = btrfs_reserve_extent(root, cur_alloc_size,
891 root->sectorsize, 0, alloc_hint,
892 &ins, 1);
893 if (ret < 0)
894 goto out_unlock;
895
896 em = alloc_extent_map();
897 if (!em) {
898 ret = -ENOMEM;
899 goto out_reserve;
900 }
901 em->start = start;
902 em->orig_start = em->start;
903 ram_size = ins.offset;
904 em->len = ins.offset;
905 em->mod_start = em->start;
906 em->mod_len = em->len;
907
908 em->block_start = ins.objectid;
909 em->block_len = ins.offset;
910 em->orig_block_len = ins.offset;
911 em->ram_bytes = ram_size;
912 em->bdev = root->fs_info->fs_devices->latest_bdev;
913 set_bit(EXTENT_FLAG_PINNED, &em->flags);
914 em->generation = -1;
915
916 while (1) {
917 write_lock(&em_tree->lock);
918 ret = add_extent_mapping(em_tree, em, 1);
919 write_unlock(&em_tree->lock);
920 if (ret != -EEXIST) {
921 free_extent_map(em);
922 break;
923 }
924 btrfs_drop_extent_cache(inode, start,
925 start + ram_size - 1, 0);
926 }
927 if (ret)
928 goto out_reserve;
929
930 cur_alloc_size = ins.offset;
931 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
932 ram_size, cur_alloc_size, 0);
933 if (ret)
934 goto out_reserve;
935
936 if (root->root_key.objectid ==
937 BTRFS_DATA_RELOC_TREE_OBJECTID) {
938 ret = btrfs_reloc_clone_csums(inode, start,
939 cur_alloc_size);
940 if (ret)
941 goto out_reserve;
942 }
943
944 if (disk_num_bytes < cur_alloc_size)
945 break;
946
947 /* we're not doing compressed IO, don't unlock the first
948 * page (which the caller expects to stay locked), don't
949 * clear any dirty bits and don't set any writeback bits
950 *
951 * Do set the Private2 bit so we know this page was properly
952 * setup for writepage
953 */
954 op = unlock ? PAGE_UNLOCK : 0;
955 op |= PAGE_SET_PRIVATE2;
956
957 extent_clear_unlock_delalloc(inode, start,
958 start + ram_size - 1, locked_page,
959 EXTENT_LOCKED | EXTENT_DELALLOC,
960 op);
961 disk_num_bytes -= cur_alloc_size;
962 num_bytes -= cur_alloc_size;
963 alloc_hint = ins.objectid + ins.offset;
964 start += cur_alloc_size;
965 }
966 out:
967 return ret;
968
969 out_reserve:
970 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
971 out_unlock:
972 extent_clear_unlock_delalloc(inode, start, end, locked_page,
973 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
974 EXTENT_DELALLOC | EXTENT_DEFRAG,
975 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
976 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
977 goto out;
978 }
979
980 /*
981 * work queue call back to started compression on a file and pages
982 */
983 static noinline void async_cow_start(struct btrfs_work *work)
984 {
985 struct async_cow *async_cow;
986 int num_added = 0;
987 async_cow = container_of(work, struct async_cow, work);
988
989 compress_file_range(async_cow->inode, async_cow->locked_page,
990 async_cow->start, async_cow->end, async_cow,
991 &num_added);
992 if (num_added == 0) {
993 btrfs_add_delayed_iput(async_cow->inode);
994 async_cow->inode = NULL;
995 }
996 }
997
998 /*
999 * work queue call back to submit previously compressed pages
1000 */
1001 static noinline void async_cow_submit(struct btrfs_work *work)
1002 {
1003 struct async_cow *async_cow;
1004 struct btrfs_root *root;
1005 unsigned long nr_pages;
1006
1007 async_cow = container_of(work, struct async_cow, work);
1008
1009 root = async_cow->root;
1010 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1011 PAGE_CACHE_SHIFT;
1012
1013 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1014 5 * 1024 * 1024 &&
1015 waitqueue_active(&root->fs_info->async_submit_wait))
1016 wake_up(&root->fs_info->async_submit_wait);
1017
1018 if (async_cow->inode)
1019 submit_compressed_extents(async_cow->inode, async_cow);
1020 }
1021
1022 static noinline void async_cow_free(struct btrfs_work *work)
1023 {
1024 struct async_cow *async_cow;
1025 async_cow = container_of(work, struct async_cow, work);
1026 if (async_cow->inode)
1027 btrfs_add_delayed_iput(async_cow->inode);
1028 kfree(async_cow);
1029 }
1030
1031 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1032 u64 start, u64 end, int *page_started,
1033 unsigned long *nr_written)
1034 {
1035 struct async_cow *async_cow;
1036 struct btrfs_root *root = BTRFS_I(inode)->root;
1037 unsigned long nr_pages;
1038 u64 cur_end;
1039 int limit = 10 * 1024 * 1024;
1040
1041 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1042 1, 0, NULL, GFP_NOFS);
1043 while (start < end) {
1044 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1045 BUG_ON(!async_cow); /* -ENOMEM */
1046 async_cow->inode = igrab(inode);
1047 async_cow->root = root;
1048 async_cow->locked_page = locked_page;
1049 async_cow->start = start;
1050
1051 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1052 cur_end = end;
1053 else
1054 cur_end = min(end, start + 512 * 1024 - 1);
1055
1056 async_cow->end = cur_end;
1057 INIT_LIST_HEAD(&async_cow->extents);
1058
1059 async_cow->work.func = async_cow_start;
1060 async_cow->work.ordered_func = async_cow_submit;
1061 async_cow->work.ordered_free = async_cow_free;
1062 async_cow->work.flags = 0;
1063
1064 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1065 PAGE_CACHE_SHIFT;
1066 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1067
1068 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1069 &async_cow->work);
1070
1071 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1072 wait_event(root->fs_info->async_submit_wait,
1073 (atomic_read(&root->fs_info->async_delalloc_pages) <
1074 limit));
1075 }
1076
1077 while (atomic_read(&root->fs_info->async_submit_draining) &&
1078 atomic_read(&root->fs_info->async_delalloc_pages)) {
1079 wait_event(root->fs_info->async_submit_wait,
1080 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1081 0));
1082 }
1083
1084 *nr_written += nr_pages;
1085 start = cur_end + 1;
1086 }
1087 *page_started = 1;
1088 return 0;
1089 }
1090
1091 static noinline int csum_exist_in_range(struct btrfs_root *root,
1092 u64 bytenr, u64 num_bytes)
1093 {
1094 int ret;
1095 struct btrfs_ordered_sum *sums;
1096 LIST_HEAD(list);
1097
1098 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1099 bytenr + num_bytes - 1, &list, 0);
1100 if (ret == 0 && list_empty(&list))
1101 return 0;
1102
1103 while (!list_empty(&list)) {
1104 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1105 list_del(&sums->list);
1106 kfree(sums);
1107 }
1108 return 1;
1109 }
1110
1111 /*
1112 * when nowcow writeback call back. This checks for snapshots or COW copies
1113 * of the extents that exist in the file, and COWs the file as required.
1114 *
1115 * If no cow copies or snapshots exist, we write directly to the existing
1116 * blocks on disk
1117 */
1118 static noinline int run_delalloc_nocow(struct inode *inode,
1119 struct page *locked_page,
1120 u64 start, u64 end, int *page_started, int force,
1121 unsigned long *nr_written)
1122 {
1123 struct btrfs_root *root = BTRFS_I(inode)->root;
1124 struct btrfs_trans_handle *trans;
1125 struct extent_buffer *leaf;
1126 struct btrfs_path *path;
1127 struct btrfs_file_extent_item *fi;
1128 struct btrfs_key found_key;
1129 u64 cow_start;
1130 u64 cur_offset;
1131 u64 extent_end;
1132 u64 extent_offset;
1133 u64 disk_bytenr;
1134 u64 num_bytes;
1135 u64 disk_num_bytes;
1136 u64 ram_bytes;
1137 int extent_type;
1138 int ret, err;
1139 int type;
1140 int nocow;
1141 int check_prev = 1;
1142 bool nolock;
1143 u64 ino = btrfs_ino(inode);
1144
1145 path = btrfs_alloc_path();
1146 if (!path) {
1147 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1148 EXTENT_LOCKED | EXTENT_DELALLOC |
1149 EXTENT_DO_ACCOUNTING |
1150 EXTENT_DEFRAG, PAGE_UNLOCK |
1151 PAGE_CLEAR_DIRTY |
1152 PAGE_SET_WRITEBACK |
1153 PAGE_END_WRITEBACK);
1154 return -ENOMEM;
1155 }
1156
1157 nolock = btrfs_is_free_space_inode(inode);
1158
1159 if (nolock)
1160 trans = btrfs_join_transaction_nolock(root);
1161 else
1162 trans = btrfs_join_transaction(root);
1163
1164 if (IS_ERR(trans)) {
1165 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166 EXTENT_LOCKED | EXTENT_DELALLOC |
1167 EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, PAGE_UNLOCK |
1169 PAGE_CLEAR_DIRTY |
1170 PAGE_SET_WRITEBACK |
1171 PAGE_END_WRITEBACK);
1172 btrfs_free_path(path);
1173 return PTR_ERR(trans);
1174 }
1175
1176 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1177
1178 cow_start = (u64)-1;
1179 cur_offset = start;
1180 while (1) {
1181 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1182 cur_offset, 0);
1183 if (ret < 0) {
1184 btrfs_abort_transaction(trans, root, ret);
1185 goto error;
1186 }
1187 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1188 leaf = path->nodes[0];
1189 btrfs_item_key_to_cpu(leaf, &found_key,
1190 path->slots[0] - 1);
1191 if (found_key.objectid == ino &&
1192 found_key.type == BTRFS_EXTENT_DATA_KEY)
1193 path->slots[0]--;
1194 }
1195 check_prev = 0;
1196 next_slot:
1197 leaf = path->nodes[0];
1198 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1199 ret = btrfs_next_leaf(root, path);
1200 if (ret < 0) {
1201 btrfs_abort_transaction(trans, root, ret);
1202 goto error;
1203 }
1204 if (ret > 0)
1205 break;
1206 leaf = path->nodes[0];
1207 }
1208
1209 nocow = 0;
1210 disk_bytenr = 0;
1211 num_bytes = 0;
1212 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1213
1214 if (found_key.objectid > ino ||
1215 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1216 found_key.offset > end)
1217 break;
1218
1219 if (found_key.offset > cur_offset) {
1220 extent_end = found_key.offset;
1221 extent_type = 0;
1222 goto out_check;
1223 }
1224
1225 fi = btrfs_item_ptr(leaf, path->slots[0],
1226 struct btrfs_file_extent_item);
1227 extent_type = btrfs_file_extent_type(leaf, fi);
1228
1229 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1230 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1231 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1232 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1233 extent_offset = btrfs_file_extent_offset(leaf, fi);
1234 extent_end = found_key.offset +
1235 btrfs_file_extent_num_bytes(leaf, fi);
1236 disk_num_bytes =
1237 btrfs_file_extent_disk_num_bytes(leaf, fi);
1238 if (extent_end <= start) {
1239 path->slots[0]++;
1240 goto next_slot;
1241 }
1242 if (disk_bytenr == 0)
1243 goto out_check;
1244 if (btrfs_file_extent_compression(leaf, fi) ||
1245 btrfs_file_extent_encryption(leaf, fi) ||
1246 btrfs_file_extent_other_encoding(leaf, fi))
1247 goto out_check;
1248 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1249 goto out_check;
1250 if (btrfs_extent_readonly(root, disk_bytenr))
1251 goto out_check;
1252 if (btrfs_cross_ref_exist(trans, root, ino,
1253 found_key.offset -
1254 extent_offset, disk_bytenr))
1255 goto out_check;
1256 disk_bytenr += extent_offset;
1257 disk_bytenr += cur_offset - found_key.offset;
1258 num_bytes = min(end + 1, extent_end) - cur_offset;
1259 /*
1260 * force cow if csum exists in the range.
1261 * this ensure that csum for a given extent are
1262 * either valid or do not exist.
1263 */
1264 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1265 goto out_check;
1266 nocow = 1;
1267 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1268 extent_end = found_key.offset +
1269 btrfs_file_extent_inline_len(leaf, fi);
1270 extent_end = ALIGN(extent_end, root->sectorsize);
1271 } else {
1272 BUG_ON(1);
1273 }
1274 out_check:
1275 if (extent_end <= start) {
1276 path->slots[0]++;
1277 goto next_slot;
1278 }
1279 if (!nocow) {
1280 if (cow_start == (u64)-1)
1281 cow_start = cur_offset;
1282 cur_offset = extent_end;
1283 if (cur_offset > end)
1284 break;
1285 path->slots[0]++;
1286 goto next_slot;
1287 }
1288
1289 btrfs_release_path(path);
1290 if (cow_start != (u64)-1) {
1291 ret = cow_file_range(inode, locked_page,
1292 cow_start, found_key.offset - 1,
1293 page_started, nr_written, 1);
1294 if (ret) {
1295 btrfs_abort_transaction(trans, root, ret);
1296 goto error;
1297 }
1298 cow_start = (u64)-1;
1299 }
1300
1301 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1302 struct extent_map *em;
1303 struct extent_map_tree *em_tree;
1304 em_tree = &BTRFS_I(inode)->extent_tree;
1305 em = alloc_extent_map();
1306 BUG_ON(!em); /* -ENOMEM */
1307 em->start = cur_offset;
1308 em->orig_start = found_key.offset - extent_offset;
1309 em->len = num_bytes;
1310 em->block_len = num_bytes;
1311 em->block_start = disk_bytenr;
1312 em->orig_block_len = disk_num_bytes;
1313 em->ram_bytes = ram_bytes;
1314 em->bdev = root->fs_info->fs_devices->latest_bdev;
1315 em->mod_start = em->start;
1316 em->mod_len = em->len;
1317 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1318 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1319 em->generation = -1;
1320 while (1) {
1321 write_lock(&em_tree->lock);
1322 ret = add_extent_mapping(em_tree, em, 1);
1323 write_unlock(&em_tree->lock);
1324 if (ret != -EEXIST) {
1325 free_extent_map(em);
1326 break;
1327 }
1328 btrfs_drop_extent_cache(inode, em->start,
1329 em->start + em->len - 1, 0);
1330 }
1331 type = BTRFS_ORDERED_PREALLOC;
1332 } else {
1333 type = BTRFS_ORDERED_NOCOW;
1334 }
1335
1336 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1337 num_bytes, num_bytes, type);
1338 BUG_ON(ret); /* -ENOMEM */
1339
1340 if (root->root_key.objectid ==
1341 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1342 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1343 num_bytes);
1344 if (ret) {
1345 btrfs_abort_transaction(trans, root, ret);
1346 goto error;
1347 }
1348 }
1349
1350 extent_clear_unlock_delalloc(inode, cur_offset,
1351 cur_offset + num_bytes - 1,
1352 locked_page, EXTENT_LOCKED |
1353 EXTENT_DELALLOC, PAGE_UNLOCK |
1354 PAGE_SET_PRIVATE2);
1355 cur_offset = extent_end;
1356 if (cur_offset > end)
1357 break;
1358 }
1359 btrfs_release_path(path);
1360
1361 if (cur_offset <= end && cow_start == (u64)-1) {
1362 cow_start = cur_offset;
1363 cur_offset = end;
1364 }
1365
1366 if (cow_start != (u64)-1) {
1367 ret = cow_file_range(inode, locked_page, cow_start, end,
1368 page_started, nr_written, 1);
1369 if (ret) {
1370 btrfs_abort_transaction(trans, root, ret);
1371 goto error;
1372 }
1373 }
1374
1375 error:
1376 err = btrfs_end_transaction(trans, root);
1377 if (!ret)
1378 ret = err;
1379
1380 if (ret && cur_offset < end)
1381 extent_clear_unlock_delalloc(inode, cur_offset, end,
1382 locked_page, EXTENT_LOCKED |
1383 EXTENT_DELALLOC | EXTENT_DEFRAG |
1384 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1385 PAGE_CLEAR_DIRTY |
1386 PAGE_SET_WRITEBACK |
1387 PAGE_END_WRITEBACK);
1388 btrfs_free_path(path);
1389 return ret;
1390 }
1391
1392 /*
1393 * extent_io.c call back to do delayed allocation processing
1394 */
1395 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1396 u64 start, u64 end, int *page_started,
1397 unsigned long *nr_written)
1398 {
1399 int ret;
1400 struct btrfs_root *root = BTRFS_I(inode)->root;
1401
1402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1403 ret = run_delalloc_nocow(inode, locked_page, start, end,
1404 page_started, 1, nr_written);
1405 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1406 ret = run_delalloc_nocow(inode, locked_page, start, end,
1407 page_started, 0, nr_written);
1408 } else if (!btrfs_test_opt(root, COMPRESS) &&
1409 !(BTRFS_I(inode)->force_compress) &&
1410 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1411 ret = cow_file_range(inode, locked_page, start, end,
1412 page_started, nr_written, 1);
1413 } else {
1414 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1415 &BTRFS_I(inode)->runtime_flags);
1416 ret = cow_file_range_async(inode, locked_page, start, end,
1417 page_started, nr_written);
1418 }
1419 return ret;
1420 }
1421
1422 static void btrfs_split_extent_hook(struct inode *inode,
1423 struct extent_state *orig, u64 split)
1424 {
1425 /* not delalloc, ignore it */
1426 if (!(orig->state & EXTENT_DELALLOC))
1427 return;
1428
1429 spin_lock(&BTRFS_I(inode)->lock);
1430 BTRFS_I(inode)->outstanding_extents++;
1431 spin_unlock(&BTRFS_I(inode)->lock);
1432 }
1433
1434 /*
1435 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1436 * extents so we can keep track of new extents that are just merged onto old
1437 * extents, such as when we are doing sequential writes, so we can properly
1438 * account for the metadata space we'll need.
1439 */
1440 static void btrfs_merge_extent_hook(struct inode *inode,
1441 struct extent_state *new,
1442 struct extent_state *other)
1443 {
1444 /* not delalloc, ignore it */
1445 if (!(other->state & EXTENT_DELALLOC))
1446 return;
1447
1448 spin_lock(&BTRFS_I(inode)->lock);
1449 BTRFS_I(inode)->outstanding_extents--;
1450 spin_unlock(&BTRFS_I(inode)->lock);
1451 }
1452
1453 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1454 struct inode *inode)
1455 {
1456 spin_lock(&root->delalloc_lock);
1457 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1458 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1459 &root->delalloc_inodes);
1460 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1461 &BTRFS_I(inode)->runtime_flags);
1462 root->nr_delalloc_inodes++;
1463 if (root->nr_delalloc_inodes == 1) {
1464 spin_lock(&root->fs_info->delalloc_root_lock);
1465 BUG_ON(!list_empty(&root->delalloc_root));
1466 list_add_tail(&root->delalloc_root,
1467 &root->fs_info->delalloc_roots);
1468 spin_unlock(&root->fs_info->delalloc_root_lock);
1469 }
1470 }
1471 spin_unlock(&root->delalloc_lock);
1472 }
1473
1474 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1475 struct inode *inode)
1476 {
1477 spin_lock(&root->delalloc_lock);
1478 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1479 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1480 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1481 &BTRFS_I(inode)->runtime_flags);
1482 root->nr_delalloc_inodes--;
1483 if (!root->nr_delalloc_inodes) {
1484 spin_lock(&root->fs_info->delalloc_root_lock);
1485 BUG_ON(list_empty(&root->delalloc_root));
1486 list_del_init(&root->delalloc_root);
1487 spin_unlock(&root->fs_info->delalloc_root_lock);
1488 }
1489 }
1490 spin_unlock(&root->delalloc_lock);
1491 }
1492
1493 /*
1494 * extent_io.c set_bit_hook, used to track delayed allocation
1495 * bytes in this file, and to maintain the list of inodes that
1496 * have pending delalloc work to be done.
1497 */
1498 static void btrfs_set_bit_hook(struct inode *inode,
1499 struct extent_state *state, unsigned long *bits)
1500 {
1501
1502 /*
1503 * set_bit and clear bit hooks normally require _irqsave/restore
1504 * but in this case, we are only testing for the DELALLOC
1505 * bit, which is only set or cleared with irqs on
1506 */
1507 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1508 struct btrfs_root *root = BTRFS_I(inode)->root;
1509 u64 len = state->end + 1 - state->start;
1510 bool do_list = !btrfs_is_free_space_inode(inode);
1511
1512 if (*bits & EXTENT_FIRST_DELALLOC) {
1513 *bits &= ~EXTENT_FIRST_DELALLOC;
1514 } else {
1515 spin_lock(&BTRFS_I(inode)->lock);
1516 BTRFS_I(inode)->outstanding_extents++;
1517 spin_unlock(&BTRFS_I(inode)->lock);
1518 }
1519
1520 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1521 root->fs_info->delalloc_batch);
1522 spin_lock(&BTRFS_I(inode)->lock);
1523 BTRFS_I(inode)->delalloc_bytes += len;
1524 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1525 &BTRFS_I(inode)->runtime_flags))
1526 btrfs_add_delalloc_inodes(root, inode);
1527 spin_unlock(&BTRFS_I(inode)->lock);
1528 }
1529 }
1530
1531 /*
1532 * extent_io.c clear_bit_hook, see set_bit_hook for why
1533 */
1534 static void btrfs_clear_bit_hook(struct inode *inode,
1535 struct extent_state *state,
1536 unsigned long *bits)
1537 {
1538 /*
1539 * set_bit and clear bit hooks normally require _irqsave/restore
1540 * but in this case, we are only testing for the DELALLOC
1541 * bit, which is only set or cleared with irqs on
1542 */
1543 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1544 struct btrfs_root *root = BTRFS_I(inode)->root;
1545 u64 len = state->end + 1 - state->start;
1546 bool do_list = !btrfs_is_free_space_inode(inode);
1547
1548 if (*bits & EXTENT_FIRST_DELALLOC) {
1549 *bits &= ~EXTENT_FIRST_DELALLOC;
1550 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1551 spin_lock(&BTRFS_I(inode)->lock);
1552 BTRFS_I(inode)->outstanding_extents--;
1553 spin_unlock(&BTRFS_I(inode)->lock);
1554 }
1555
1556 /*
1557 * We don't reserve metadata space for space cache inodes so we
1558 * don't need to call dellalloc_release_metadata if there is an
1559 * error.
1560 */
1561 if (*bits & EXTENT_DO_ACCOUNTING &&
1562 root != root->fs_info->tree_root)
1563 btrfs_delalloc_release_metadata(inode, len);
1564
1565 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1566 && do_list && !(state->state & EXTENT_NORESERVE))
1567 btrfs_free_reserved_data_space(inode, len);
1568
1569 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1570 root->fs_info->delalloc_batch);
1571 spin_lock(&BTRFS_I(inode)->lock);
1572 BTRFS_I(inode)->delalloc_bytes -= len;
1573 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1574 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1575 &BTRFS_I(inode)->runtime_flags))
1576 btrfs_del_delalloc_inode(root, inode);
1577 spin_unlock(&BTRFS_I(inode)->lock);
1578 }
1579 }
1580
1581 /*
1582 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1583 * we don't create bios that span stripes or chunks
1584 */
1585 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1586 size_t size, struct bio *bio,
1587 unsigned long bio_flags)
1588 {
1589 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1590 u64 logical = (u64)bio->bi_sector << 9;
1591 u64 length = 0;
1592 u64 map_length;
1593 int ret;
1594
1595 if (bio_flags & EXTENT_BIO_COMPRESSED)
1596 return 0;
1597
1598 length = bio->bi_size;
1599 map_length = length;
1600 ret = btrfs_map_block(root->fs_info, rw, logical,
1601 &map_length, NULL, 0);
1602 /* Will always return 0 with map_multi == NULL */
1603 BUG_ON(ret < 0);
1604 if (map_length < length + size)
1605 return 1;
1606 return 0;
1607 }
1608
1609 /*
1610 * in order to insert checksums into the metadata in large chunks,
1611 * we wait until bio submission time. All the pages in the bio are
1612 * checksummed and sums are attached onto the ordered extent record.
1613 *
1614 * At IO completion time the cums attached on the ordered extent record
1615 * are inserted into the btree
1616 */
1617 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1618 struct bio *bio, int mirror_num,
1619 unsigned long bio_flags,
1620 u64 bio_offset)
1621 {
1622 struct btrfs_root *root = BTRFS_I(inode)->root;
1623 int ret = 0;
1624
1625 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1626 BUG_ON(ret); /* -ENOMEM */
1627 return 0;
1628 }
1629
1630 /*
1631 * in order to insert checksums into the metadata in large chunks,
1632 * we wait until bio submission time. All the pages in the bio are
1633 * checksummed and sums are attached onto the ordered extent record.
1634 *
1635 * At IO completion time the cums attached on the ordered extent record
1636 * are inserted into the btree
1637 */
1638 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1639 int mirror_num, unsigned long bio_flags,
1640 u64 bio_offset)
1641 {
1642 struct btrfs_root *root = BTRFS_I(inode)->root;
1643 int ret;
1644
1645 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1646 if (ret)
1647 bio_endio(bio, ret);
1648 return ret;
1649 }
1650
1651 /*
1652 * extent_io.c submission hook. This does the right thing for csum calculation
1653 * on write, or reading the csums from the tree before a read
1654 */
1655 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1656 int mirror_num, unsigned long bio_flags,
1657 u64 bio_offset)
1658 {
1659 struct btrfs_root *root = BTRFS_I(inode)->root;
1660 int ret = 0;
1661 int skip_sum;
1662 int metadata = 0;
1663 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1664
1665 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1666
1667 if (btrfs_is_free_space_inode(inode))
1668 metadata = 2;
1669
1670 if (!(rw & REQ_WRITE)) {
1671 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1672 if (ret)
1673 goto out;
1674
1675 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1676 ret = btrfs_submit_compressed_read(inode, bio,
1677 mirror_num,
1678 bio_flags);
1679 goto out;
1680 } else if (!skip_sum) {
1681 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1682 if (ret)
1683 goto out;
1684 }
1685 goto mapit;
1686 } else if (async && !skip_sum) {
1687 /* csum items have already been cloned */
1688 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1689 goto mapit;
1690 /* we're doing a write, do the async checksumming */
1691 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1692 inode, rw, bio, mirror_num,
1693 bio_flags, bio_offset,
1694 __btrfs_submit_bio_start,
1695 __btrfs_submit_bio_done);
1696 goto out;
1697 } else if (!skip_sum) {
1698 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1699 if (ret)
1700 goto out;
1701 }
1702
1703 mapit:
1704 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1705
1706 out:
1707 if (ret < 0)
1708 bio_endio(bio, ret);
1709 return ret;
1710 }
1711
1712 /*
1713 * given a list of ordered sums record them in the inode. This happens
1714 * at IO completion time based on sums calculated at bio submission time.
1715 */
1716 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1717 struct inode *inode, u64 file_offset,
1718 struct list_head *list)
1719 {
1720 struct btrfs_ordered_sum *sum;
1721
1722 list_for_each_entry(sum, list, list) {
1723 trans->adding_csums = 1;
1724 btrfs_csum_file_blocks(trans,
1725 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1726 trans->adding_csums = 0;
1727 }
1728 return 0;
1729 }
1730
1731 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1732 struct extent_state **cached_state)
1733 {
1734 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1735 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1736 cached_state, GFP_NOFS);
1737 }
1738
1739 /* see btrfs_writepage_start_hook for details on why this is required */
1740 struct btrfs_writepage_fixup {
1741 struct page *page;
1742 struct btrfs_work work;
1743 };
1744
1745 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1746 {
1747 struct btrfs_writepage_fixup *fixup;
1748 struct btrfs_ordered_extent *ordered;
1749 struct extent_state *cached_state = NULL;
1750 struct page *page;
1751 struct inode *inode;
1752 u64 page_start;
1753 u64 page_end;
1754 int ret;
1755
1756 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1757 page = fixup->page;
1758 again:
1759 lock_page(page);
1760 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1761 ClearPageChecked(page);
1762 goto out_page;
1763 }
1764
1765 inode = page->mapping->host;
1766 page_start = page_offset(page);
1767 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1768
1769 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1770 &cached_state);
1771
1772 /* already ordered? We're done */
1773 if (PagePrivate2(page))
1774 goto out;
1775
1776 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1777 if (ordered) {
1778 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1779 page_end, &cached_state, GFP_NOFS);
1780 unlock_page(page);
1781 btrfs_start_ordered_extent(inode, ordered, 1);
1782 btrfs_put_ordered_extent(ordered);
1783 goto again;
1784 }
1785
1786 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1787 if (ret) {
1788 mapping_set_error(page->mapping, ret);
1789 end_extent_writepage(page, ret, page_start, page_end);
1790 ClearPageChecked(page);
1791 goto out;
1792 }
1793
1794 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1795 ClearPageChecked(page);
1796 set_page_dirty(page);
1797 out:
1798 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1799 &cached_state, GFP_NOFS);
1800 out_page:
1801 unlock_page(page);
1802 page_cache_release(page);
1803 kfree(fixup);
1804 }
1805
1806 /*
1807 * There are a few paths in the higher layers of the kernel that directly
1808 * set the page dirty bit without asking the filesystem if it is a
1809 * good idea. This causes problems because we want to make sure COW
1810 * properly happens and the data=ordered rules are followed.
1811 *
1812 * In our case any range that doesn't have the ORDERED bit set
1813 * hasn't been properly setup for IO. We kick off an async process
1814 * to fix it up. The async helper will wait for ordered extents, set
1815 * the delalloc bit and make it safe to write the page.
1816 */
1817 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1818 {
1819 struct inode *inode = page->mapping->host;
1820 struct btrfs_writepage_fixup *fixup;
1821 struct btrfs_root *root = BTRFS_I(inode)->root;
1822
1823 /* this page is properly in the ordered list */
1824 if (TestClearPagePrivate2(page))
1825 return 0;
1826
1827 if (PageChecked(page))
1828 return -EAGAIN;
1829
1830 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1831 if (!fixup)
1832 return -EAGAIN;
1833
1834 SetPageChecked(page);
1835 page_cache_get(page);
1836 fixup->work.func = btrfs_writepage_fixup_worker;
1837 fixup->page = page;
1838 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1839 return -EBUSY;
1840 }
1841
1842 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1843 struct inode *inode, u64 file_pos,
1844 u64 disk_bytenr, u64 disk_num_bytes,
1845 u64 num_bytes, u64 ram_bytes,
1846 u8 compression, u8 encryption,
1847 u16 other_encoding, int extent_type)
1848 {
1849 struct btrfs_root *root = BTRFS_I(inode)->root;
1850 struct btrfs_file_extent_item *fi;
1851 struct btrfs_path *path;
1852 struct extent_buffer *leaf;
1853 struct btrfs_key ins;
1854 int ret;
1855
1856 path = btrfs_alloc_path();
1857 if (!path)
1858 return -ENOMEM;
1859
1860 path->leave_spinning = 1;
1861
1862 /*
1863 * we may be replacing one extent in the tree with another.
1864 * The new extent is pinned in the extent map, and we don't want
1865 * to drop it from the cache until it is completely in the btree.
1866 *
1867 * So, tell btrfs_drop_extents to leave this extent in the cache.
1868 * the caller is expected to unpin it and allow it to be merged
1869 * with the others.
1870 */
1871 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1872 file_pos + num_bytes, 0);
1873 if (ret)
1874 goto out;
1875
1876 ins.objectid = btrfs_ino(inode);
1877 ins.offset = file_pos;
1878 ins.type = BTRFS_EXTENT_DATA_KEY;
1879 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1880 if (ret)
1881 goto out;
1882 leaf = path->nodes[0];
1883 fi = btrfs_item_ptr(leaf, path->slots[0],
1884 struct btrfs_file_extent_item);
1885 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1886 btrfs_set_file_extent_type(leaf, fi, extent_type);
1887 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1888 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1889 btrfs_set_file_extent_offset(leaf, fi, 0);
1890 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1891 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1892 btrfs_set_file_extent_compression(leaf, fi, compression);
1893 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1894 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1895
1896 btrfs_mark_buffer_dirty(leaf);
1897 btrfs_release_path(path);
1898
1899 inode_add_bytes(inode, num_bytes);
1900
1901 ins.objectid = disk_bytenr;
1902 ins.offset = disk_num_bytes;
1903 ins.type = BTRFS_EXTENT_ITEM_KEY;
1904 ret = btrfs_alloc_reserved_file_extent(trans, root,
1905 root->root_key.objectid,
1906 btrfs_ino(inode), file_pos, &ins);
1907 out:
1908 btrfs_free_path(path);
1909
1910 return ret;
1911 }
1912
1913 /* snapshot-aware defrag */
1914 struct sa_defrag_extent_backref {
1915 struct rb_node node;
1916 struct old_sa_defrag_extent *old;
1917 u64 root_id;
1918 u64 inum;
1919 u64 file_pos;
1920 u64 extent_offset;
1921 u64 num_bytes;
1922 u64 generation;
1923 };
1924
1925 struct old_sa_defrag_extent {
1926 struct list_head list;
1927 struct new_sa_defrag_extent *new;
1928
1929 u64 extent_offset;
1930 u64 bytenr;
1931 u64 offset;
1932 u64 len;
1933 int count;
1934 };
1935
1936 struct new_sa_defrag_extent {
1937 struct rb_root root;
1938 struct list_head head;
1939 struct btrfs_path *path;
1940 struct inode *inode;
1941 u64 file_pos;
1942 u64 len;
1943 u64 bytenr;
1944 u64 disk_len;
1945 u8 compress_type;
1946 };
1947
1948 static int backref_comp(struct sa_defrag_extent_backref *b1,
1949 struct sa_defrag_extent_backref *b2)
1950 {
1951 if (b1->root_id < b2->root_id)
1952 return -1;
1953 else if (b1->root_id > b2->root_id)
1954 return 1;
1955
1956 if (b1->inum < b2->inum)
1957 return -1;
1958 else if (b1->inum > b2->inum)
1959 return 1;
1960
1961 if (b1->file_pos < b2->file_pos)
1962 return -1;
1963 else if (b1->file_pos > b2->file_pos)
1964 return 1;
1965
1966 /*
1967 * [------------------------------] ===> (a range of space)
1968 * |<--->| |<---->| =============> (fs/file tree A)
1969 * |<---------------------------->| ===> (fs/file tree B)
1970 *
1971 * A range of space can refer to two file extents in one tree while
1972 * refer to only one file extent in another tree.
1973 *
1974 * So we may process a disk offset more than one time(two extents in A)
1975 * and locate at the same extent(one extent in B), then insert two same
1976 * backrefs(both refer to the extent in B).
1977 */
1978 return 0;
1979 }
1980
1981 static void backref_insert(struct rb_root *root,
1982 struct sa_defrag_extent_backref *backref)
1983 {
1984 struct rb_node **p = &root->rb_node;
1985 struct rb_node *parent = NULL;
1986 struct sa_defrag_extent_backref *entry;
1987 int ret;
1988
1989 while (*p) {
1990 parent = *p;
1991 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1992
1993 ret = backref_comp(backref, entry);
1994 if (ret < 0)
1995 p = &(*p)->rb_left;
1996 else
1997 p = &(*p)->rb_right;
1998 }
1999
2000 rb_link_node(&backref->node, parent, p);
2001 rb_insert_color(&backref->node, root);
2002 }
2003
2004 /*
2005 * Note the backref might has changed, and in this case we just return 0.
2006 */
2007 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2008 void *ctx)
2009 {
2010 struct btrfs_file_extent_item *extent;
2011 struct btrfs_fs_info *fs_info;
2012 struct old_sa_defrag_extent *old = ctx;
2013 struct new_sa_defrag_extent *new = old->new;
2014 struct btrfs_path *path = new->path;
2015 struct btrfs_key key;
2016 struct btrfs_root *root;
2017 struct sa_defrag_extent_backref *backref;
2018 struct extent_buffer *leaf;
2019 struct inode *inode = new->inode;
2020 int slot;
2021 int ret;
2022 u64 extent_offset;
2023 u64 num_bytes;
2024
2025 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2026 inum == btrfs_ino(inode))
2027 return 0;
2028
2029 key.objectid = root_id;
2030 key.type = BTRFS_ROOT_ITEM_KEY;
2031 key.offset = (u64)-1;
2032
2033 fs_info = BTRFS_I(inode)->root->fs_info;
2034 root = btrfs_read_fs_root_no_name(fs_info, &key);
2035 if (IS_ERR(root)) {
2036 if (PTR_ERR(root) == -ENOENT)
2037 return 0;
2038 WARN_ON(1);
2039 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2040 inum, offset, root_id);
2041 return PTR_ERR(root);
2042 }
2043
2044 key.objectid = inum;
2045 key.type = BTRFS_EXTENT_DATA_KEY;
2046 if (offset > (u64)-1 << 32)
2047 key.offset = 0;
2048 else
2049 key.offset = offset;
2050
2051 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2052 if (ret < 0) {
2053 WARN_ON(1);
2054 return ret;
2055 }
2056 ret = 0;
2057
2058 while (1) {
2059 cond_resched();
2060
2061 leaf = path->nodes[0];
2062 slot = path->slots[0];
2063
2064 if (slot >= btrfs_header_nritems(leaf)) {
2065 ret = btrfs_next_leaf(root, path);
2066 if (ret < 0) {
2067 goto out;
2068 } else if (ret > 0) {
2069 ret = 0;
2070 goto out;
2071 }
2072 continue;
2073 }
2074
2075 path->slots[0]++;
2076
2077 btrfs_item_key_to_cpu(leaf, &key, slot);
2078
2079 if (key.objectid > inum)
2080 goto out;
2081
2082 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2083 continue;
2084
2085 extent = btrfs_item_ptr(leaf, slot,
2086 struct btrfs_file_extent_item);
2087
2088 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2089 continue;
2090
2091 /*
2092 * 'offset' refers to the exact key.offset,
2093 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2094 * (key.offset - extent_offset).
2095 */
2096 if (key.offset != offset)
2097 continue;
2098
2099 extent_offset = btrfs_file_extent_offset(leaf, extent);
2100 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2101
2102 if (extent_offset >= old->extent_offset + old->offset +
2103 old->len || extent_offset + num_bytes <=
2104 old->extent_offset + old->offset)
2105 continue;
2106 break;
2107 }
2108
2109 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2110 if (!backref) {
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114
2115 backref->root_id = root_id;
2116 backref->inum = inum;
2117 backref->file_pos = offset;
2118 backref->num_bytes = num_bytes;
2119 backref->extent_offset = extent_offset;
2120 backref->generation = btrfs_file_extent_generation(leaf, extent);
2121 backref->old = old;
2122 backref_insert(&new->root, backref);
2123 old->count++;
2124 out:
2125 btrfs_release_path(path);
2126 WARN_ON(ret);
2127 return ret;
2128 }
2129
2130 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2131 struct new_sa_defrag_extent *new)
2132 {
2133 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2134 struct old_sa_defrag_extent *old, *tmp;
2135 int ret;
2136
2137 new->path = path;
2138
2139 list_for_each_entry_safe(old, tmp, &new->head, list) {
2140 ret = iterate_inodes_from_logical(old->bytenr +
2141 old->extent_offset, fs_info,
2142 path, record_one_backref,
2143 old);
2144 BUG_ON(ret < 0 && ret != -ENOENT);
2145
2146 /* no backref to be processed for this extent */
2147 if (!old->count) {
2148 list_del(&old->list);
2149 kfree(old);
2150 }
2151 }
2152
2153 if (list_empty(&new->head))
2154 return false;
2155
2156 return true;
2157 }
2158
2159 static int relink_is_mergable(struct extent_buffer *leaf,
2160 struct btrfs_file_extent_item *fi,
2161 struct new_sa_defrag_extent *new)
2162 {
2163 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2164 return 0;
2165
2166 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2167 return 0;
2168
2169 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2170 return 0;
2171
2172 if (btrfs_file_extent_encryption(leaf, fi) ||
2173 btrfs_file_extent_other_encoding(leaf, fi))
2174 return 0;
2175
2176 return 1;
2177 }
2178
2179 /*
2180 * Note the backref might has changed, and in this case we just return 0.
2181 */
2182 static noinline int relink_extent_backref(struct btrfs_path *path,
2183 struct sa_defrag_extent_backref *prev,
2184 struct sa_defrag_extent_backref *backref)
2185 {
2186 struct btrfs_file_extent_item *extent;
2187 struct btrfs_file_extent_item *item;
2188 struct btrfs_ordered_extent *ordered;
2189 struct btrfs_trans_handle *trans;
2190 struct btrfs_fs_info *fs_info;
2191 struct btrfs_root *root;
2192 struct btrfs_key key;
2193 struct extent_buffer *leaf;
2194 struct old_sa_defrag_extent *old = backref->old;
2195 struct new_sa_defrag_extent *new = old->new;
2196 struct inode *src_inode = new->inode;
2197 struct inode *inode;
2198 struct extent_state *cached = NULL;
2199 int ret = 0;
2200 u64 start;
2201 u64 len;
2202 u64 lock_start;
2203 u64 lock_end;
2204 bool merge = false;
2205 int index;
2206
2207 if (prev && prev->root_id == backref->root_id &&
2208 prev->inum == backref->inum &&
2209 prev->file_pos + prev->num_bytes == backref->file_pos)
2210 merge = true;
2211
2212 /* step 1: get root */
2213 key.objectid = backref->root_id;
2214 key.type = BTRFS_ROOT_ITEM_KEY;
2215 key.offset = (u64)-1;
2216
2217 fs_info = BTRFS_I(src_inode)->root->fs_info;
2218 index = srcu_read_lock(&fs_info->subvol_srcu);
2219
2220 root = btrfs_read_fs_root_no_name(fs_info, &key);
2221 if (IS_ERR(root)) {
2222 srcu_read_unlock(&fs_info->subvol_srcu, index);
2223 if (PTR_ERR(root) == -ENOENT)
2224 return 0;
2225 return PTR_ERR(root);
2226 }
2227
2228 /* step 2: get inode */
2229 key.objectid = backref->inum;
2230 key.type = BTRFS_INODE_ITEM_KEY;
2231 key.offset = 0;
2232
2233 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2234 if (IS_ERR(inode)) {
2235 srcu_read_unlock(&fs_info->subvol_srcu, index);
2236 return 0;
2237 }
2238
2239 srcu_read_unlock(&fs_info->subvol_srcu, index);
2240
2241 /* step 3: relink backref */
2242 lock_start = backref->file_pos;
2243 lock_end = backref->file_pos + backref->num_bytes - 1;
2244 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2245 0, &cached);
2246
2247 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2248 if (ordered) {
2249 btrfs_put_ordered_extent(ordered);
2250 goto out_unlock;
2251 }
2252
2253 trans = btrfs_join_transaction(root);
2254 if (IS_ERR(trans)) {
2255 ret = PTR_ERR(trans);
2256 goto out_unlock;
2257 }
2258
2259 key.objectid = backref->inum;
2260 key.type = BTRFS_EXTENT_DATA_KEY;
2261 key.offset = backref->file_pos;
2262
2263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2264 if (ret < 0) {
2265 goto out_free_path;
2266 } else if (ret > 0) {
2267 ret = 0;
2268 goto out_free_path;
2269 }
2270
2271 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2272 struct btrfs_file_extent_item);
2273
2274 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2275 backref->generation)
2276 goto out_free_path;
2277
2278 btrfs_release_path(path);
2279
2280 start = backref->file_pos;
2281 if (backref->extent_offset < old->extent_offset + old->offset)
2282 start += old->extent_offset + old->offset -
2283 backref->extent_offset;
2284
2285 len = min(backref->extent_offset + backref->num_bytes,
2286 old->extent_offset + old->offset + old->len);
2287 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2288
2289 ret = btrfs_drop_extents(trans, root, inode, start,
2290 start + len, 1);
2291 if (ret)
2292 goto out_free_path;
2293 again:
2294 key.objectid = btrfs_ino(inode);
2295 key.type = BTRFS_EXTENT_DATA_KEY;
2296 key.offset = start;
2297
2298 path->leave_spinning = 1;
2299 if (merge) {
2300 struct btrfs_file_extent_item *fi;
2301 u64 extent_len;
2302 struct btrfs_key found_key;
2303
2304 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2305 if (ret < 0)
2306 goto out_free_path;
2307
2308 path->slots[0]--;
2309 leaf = path->nodes[0];
2310 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2311
2312 fi = btrfs_item_ptr(leaf, path->slots[0],
2313 struct btrfs_file_extent_item);
2314 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2315
2316 if (extent_len + found_key.offset == start &&
2317 relink_is_mergable(leaf, fi, new)) {
2318 btrfs_set_file_extent_num_bytes(leaf, fi,
2319 extent_len + len);
2320 btrfs_mark_buffer_dirty(leaf);
2321 inode_add_bytes(inode, len);
2322
2323 ret = 1;
2324 goto out_free_path;
2325 } else {
2326 merge = false;
2327 btrfs_release_path(path);
2328 goto again;
2329 }
2330 }
2331
2332 ret = btrfs_insert_empty_item(trans, root, path, &key,
2333 sizeof(*extent));
2334 if (ret) {
2335 btrfs_abort_transaction(trans, root, ret);
2336 goto out_free_path;
2337 }
2338
2339 leaf = path->nodes[0];
2340 item = btrfs_item_ptr(leaf, path->slots[0],
2341 struct btrfs_file_extent_item);
2342 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2343 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2344 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2345 btrfs_set_file_extent_num_bytes(leaf, item, len);
2346 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2347 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2348 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2349 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2350 btrfs_set_file_extent_encryption(leaf, item, 0);
2351 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2352
2353 btrfs_mark_buffer_dirty(leaf);
2354 inode_add_bytes(inode, len);
2355 btrfs_release_path(path);
2356
2357 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2358 new->disk_len, 0,
2359 backref->root_id, backref->inum,
2360 new->file_pos, 0); /* start - extent_offset */
2361 if (ret) {
2362 btrfs_abort_transaction(trans, root, ret);
2363 goto out_free_path;
2364 }
2365
2366 ret = 1;
2367 out_free_path:
2368 btrfs_release_path(path);
2369 path->leave_spinning = 0;
2370 btrfs_end_transaction(trans, root);
2371 out_unlock:
2372 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2373 &cached, GFP_NOFS);
2374 iput(inode);
2375 return ret;
2376 }
2377
2378 static void relink_file_extents(struct new_sa_defrag_extent *new)
2379 {
2380 struct btrfs_path *path;
2381 struct old_sa_defrag_extent *old, *tmp;
2382 struct sa_defrag_extent_backref *backref;
2383 struct sa_defrag_extent_backref *prev = NULL;
2384 struct inode *inode;
2385 struct btrfs_root *root;
2386 struct rb_node *node;
2387 int ret;
2388
2389 inode = new->inode;
2390 root = BTRFS_I(inode)->root;
2391
2392 path = btrfs_alloc_path();
2393 if (!path)
2394 return;
2395
2396 if (!record_extent_backrefs(path, new)) {
2397 btrfs_free_path(path);
2398 goto out;
2399 }
2400 btrfs_release_path(path);
2401
2402 while (1) {
2403 node = rb_first(&new->root);
2404 if (!node)
2405 break;
2406 rb_erase(node, &new->root);
2407
2408 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2409
2410 ret = relink_extent_backref(path, prev, backref);
2411 WARN_ON(ret < 0);
2412
2413 kfree(prev);
2414
2415 if (ret == 1)
2416 prev = backref;
2417 else
2418 prev = NULL;
2419 cond_resched();
2420 }
2421 kfree(prev);
2422
2423 btrfs_free_path(path);
2424
2425 list_for_each_entry_safe(old, tmp, &new->head, list) {
2426 list_del(&old->list);
2427 kfree(old);
2428 }
2429 out:
2430 atomic_dec(&root->fs_info->defrag_running);
2431 wake_up(&root->fs_info->transaction_wait);
2432
2433 kfree(new);
2434 }
2435
2436 static struct new_sa_defrag_extent *
2437 record_old_file_extents(struct inode *inode,
2438 struct btrfs_ordered_extent *ordered)
2439 {
2440 struct btrfs_root *root = BTRFS_I(inode)->root;
2441 struct btrfs_path *path;
2442 struct btrfs_key key;
2443 struct old_sa_defrag_extent *old, *tmp;
2444 struct new_sa_defrag_extent *new;
2445 int ret;
2446
2447 new = kmalloc(sizeof(*new), GFP_NOFS);
2448 if (!new)
2449 return NULL;
2450
2451 new->inode = inode;
2452 new->file_pos = ordered->file_offset;
2453 new->len = ordered->len;
2454 new->bytenr = ordered->start;
2455 new->disk_len = ordered->disk_len;
2456 new->compress_type = ordered->compress_type;
2457 new->root = RB_ROOT;
2458 INIT_LIST_HEAD(&new->head);
2459
2460 path = btrfs_alloc_path();
2461 if (!path)
2462 goto out_kfree;
2463
2464 key.objectid = btrfs_ino(inode);
2465 key.type = BTRFS_EXTENT_DATA_KEY;
2466 key.offset = new->file_pos;
2467
2468 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2469 if (ret < 0)
2470 goto out_free_path;
2471 if (ret > 0 && path->slots[0] > 0)
2472 path->slots[0]--;
2473
2474 /* find out all the old extents for the file range */
2475 while (1) {
2476 struct btrfs_file_extent_item *extent;
2477 struct extent_buffer *l;
2478 int slot;
2479 u64 num_bytes;
2480 u64 offset;
2481 u64 end;
2482 u64 disk_bytenr;
2483 u64 extent_offset;
2484
2485 l = path->nodes[0];
2486 slot = path->slots[0];
2487
2488 if (slot >= btrfs_header_nritems(l)) {
2489 ret = btrfs_next_leaf(root, path);
2490 if (ret < 0)
2491 goto out_free_list;
2492 else if (ret > 0)
2493 break;
2494 continue;
2495 }
2496
2497 btrfs_item_key_to_cpu(l, &key, slot);
2498
2499 if (key.objectid != btrfs_ino(inode))
2500 break;
2501 if (key.type != BTRFS_EXTENT_DATA_KEY)
2502 break;
2503 if (key.offset >= new->file_pos + new->len)
2504 break;
2505
2506 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2507
2508 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2509 if (key.offset + num_bytes < new->file_pos)
2510 goto next;
2511
2512 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2513 if (!disk_bytenr)
2514 goto next;
2515
2516 extent_offset = btrfs_file_extent_offset(l, extent);
2517
2518 old = kmalloc(sizeof(*old), GFP_NOFS);
2519 if (!old)
2520 goto out_free_list;
2521
2522 offset = max(new->file_pos, key.offset);
2523 end = min(new->file_pos + new->len, key.offset + num_bytes);
2524
2525 old->bytenr = disk_bytenr;
2526 old->extent_offset = extent_offset;
2527 old->offset = offset - key.offset;
2528 old->len = end - offset;
2529 old->new = new;
2530 old->count = 0;
2531 list_add_tail(&old->list, &new->head);
2532 next:
2533 path->slots[0]++;
2534 cond_resched();
2535 }
2536
2537 btrfs_free_path(path);
2538 atomic_inc(&root->fs_info->defrag_running);
2539
2540 return new;
2541
2542 out_free_list:
2543 list_for_each_entry_safe(old, tmp, &new->head, list) {
2544 list_del(&old->list);
2545 kfree(old);
2546 }
2547 out_free_path:
2548 btrfs_free_path(path);
2549 out_kfree:
2550 kfree(new);
2551 return NULL;
2552 }
2553
2554 /*
2555 * helper function for btrfs_finish_ordered_io, this
2556 * just reads in some of the csum leaves to prime them into ram
2557 * before we start the transaction. It limits the amount of btree
2558 * reads required while inside the transaction.
2559 */
2560 /* as ordered data IO finishes, this gets called so we can finish
2561 * an ordered extent if the range of bytes in the file it covers are
2562 * fully written.
2563 */
2564 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2565 {
2566 struct inode *inode = ordered_extent->inode;
2567 struct btrfs_root *root = BTRFS_I(inode)->root;
2568 struct btrfs_trans_handle *trans = NULL;
2569 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2570 struct extent_state *cached_state = NULL;
2571 struct new_sa_defrag_extent *new = NULL;
2572 int compress_type = 0;
2573 int ret = 0;
2574 u64 logical_len = ordered_extent->len;
2575 bool nolock;
2576 bool truncated = false;
2577
2578 nolock = btrfs_is_free_space_inode(inode);
2579
2580 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2581 ret = -EIO;
2582 goto out;
2583 }
2584
2585 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2586 truncated = true;
2587 logical_len = ordered_extent->truncated_len;
2588 /* Truncated the entire extent, don't bother adding */
2589 if (!logical_len)
2590 goto out;
2591 }
2592
2593 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2594 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2595 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2596 if (nolock)
2597 trans = btrfs_join_transaction_nolock(root);
2598 else
2599 trans = btrfs_join_transaction(root);
2600 if (IS_ERR(trans)) {
2601 ret = PTR_ERR(trans);
2602 trans = NULL;
2603 goto out;
2604 }
2605 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2606 ret = btrfs_update_inode_fallback(trans, root, inode);
2607 if (ret) /* -ENOMEM or corruption */
2608 btrfs_abort_transaction(trans, root, ret);
2609 goto out;
2610 }
2611
2612 lock_extent_bits(io_tree, ordered_extent->file_offset,
2613 ordered_extent->file_offset + ordered_extent->len - 1,
2614 0, &cached_state);
2615
2616 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2617 ordered_extent->file_offset + ordered_extent->len - 1,
2618 EXTENT_DEFRAG, 1, cached_state);
2619 if (ret) {
2620 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2621 if (last_snapshot >= BTRFS_I(inode)->generation)
2622 /* the inode is shared */
2623 new = record_old_file_extents(inode, ordered_extent);
2624
2625 clear_extent_bit(io_tree, ordered_extent->file_offset,
2626 ordered_extent->file_offset + ordered_extent->len - 1,
2627 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2628 }
2629
2630 if (nolock)
2631 trans = btrfs_join_transaction_nolock(root);
2632 else
2633 trans = btrfs_join_transaction(root);
2634 if (IS_ERR(trans)) {
2635 ret = PTR_ERR(trans);
2636 trans = NULL;
2637 goto out_unlock;
2638 }
2639 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2640
2641 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2642 compress_type = ordered_extent->compress_type;
2643 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2644 BUG_ON(compress_type);
2645 ret = btrfs_mark_extent_written(trans, inode,
2646 ordered_extent->file_offset,
2647 ordered_extent->file_offset +
2648 logical_len);
2649 } else {
2650 BUG_ON(root == root->fs_info->tree_root);
2651 ret = insert_reserved_file_extent(trans, inode,
2652 ordered_extent->file_offset,
2653 ordered_extent->start,
2654 ordered_extent->disk_len,
2655 logical_len, logical_len,
2656 compress_type, 0, 0,
2657 BTRFS_FILE_EXTENT_REG);
2658 }
2659 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2660 ordered_extent->file_offset, ordered_extent->len,
2661 trans->transid);
2662 if (ret < 0) {
2663 btrfs_abort_transaction(trans, root, ret);
2664 goto out_unlock;
2665 }
2666
2667 add_pending_csums(trans, inode, ordered_extent->file_offset,
2668 &ordered_extent->list);
2669
2670 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2671 ret = btrfs_update_inode_fallback(trans, root, inode);
2672 if (ret) { /* -ENOMEM or corruption */
2673 btrfs_abort_transaction(trans, root, ret);
2674 goto out_unlock;
2675 }
2676 ret = 0;
2677 out_unlock:
2678 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2679 ordered_extent->file_offset +
2680 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2681 out:
2682 if (root != root->fs_info->tree_root)
2683 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2684 if (trans)
2685 btrfs_end_transaction(trans, root);
2686
2687 if (ret || truncated) {
2688 u64 start, end;
2689
2690 if (truncated)
2691 start = ordered_extent->file_offset + logical_len;
2692 else
2693 start = ordered_extent->file_offset;
2694 end = ordered_extent->file_offset + ordered_extent->len - 1;
2695 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2696
2697 /* Drop the cache for the part of the extent we didn't write. */
2698 btrfs_drop_extent_cache(inode, start, end, 0);
2699
2700 /*
2701 * If the ordered extent had an IOERR or something else went
2702 * wrong we need to return the space for this ordered extent
2703 * back to the allocator. We only free the extent in the
2704 * truncated case if we didn't write out the extent at all.
2705 */
2706 if ((ret || !logical_len) &&
2707 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2708 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2709 btrfs_free_reserved_extent(root, ordered_extent->start,
2710 ordered_extent->disk_len);
2711 }
2712
2713
2714 /*
2715 * This needs to be done to make sure anybody waiting knows we are done
2716 * updating everything for this ordered extent.
2717 */
2718 btrfs_remove_ordered_extent(inode, ordered_extent);
2719
2720 /* for snapshot-aware defrag */
2721 if (new)
2722 relink_file_extents(new);
2723
2724 /* once for us */
2725 btrfs_put_ordered_extent(ordered_extent);
2726 /* once for the tree */
2727 btrfs_put_ordered_extent(ordered_extent);
2728
2729 return ret;
2730 }
2731
2732 static void finish_ordered_fn(struct btrfs_work *work)
2733 {
2734 struct btrfs_ordered_extent *ordered_extent;
2735 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2736 btrfs_finish_ordered_io(ordered_extent);
2737 }
2738
2739 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2740 struct extent_state *state, int uptodate)
2741 {
2742 struct inode *inode = page->mapping->host;
2743 struct btrfs_root *root = BTRFS_I(inode)->root;
2744 struct btrfs_ordered_extent *ordered_extent = NULL;
2745 struct btrfs_workers *workers;
2746
2747 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2748
2749 ClearPagePrivate2(page);
2750 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2751 end - start + 1, uptodate))
2752 return 0;
2753
2754 ordered_extent->work.func = finish_ordered_fn;
2755 ordered_extent->work.flags = 0;
2756
2757 if (btrfs_is_free_space_inode(inode))
2758 workers = &root->fs_info->endio_freespace_worker;
2759 else
2760 workers = &root->fs_info->endio_write_workers;
2761 btrfs_queue_worker(workers, &ordered_extent->work);
2762
2763 return 0;
2764 }
2765
2766 /*
2767 * when reads are done, we need to check csums to verify the data is correct
2768 * if there's a match, we allow the bio to finish. If not, the code in
2769 * extent_io.c will try to find good copies for us.
2770 */
2771 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2772 u64 phy_offset, struct page *page,
2773 u64 start, u64 end, int mirror)
2774 {
2775 size_t offset = start - page_offset(page);
2776 struct inode *inode = page->mapping->host;
2777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2778 char *kaddr;
2779 struct btrfs_root *root = BTRFS_I(inode)->root;
2780 u32 csum_expected;
2781 u32 csum = ~(u32)0;
2782 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2783 DEFAULT_RATELIMIT_BURST);
2784
2785 if (PageChecked(page)) {
2786 ClearPageChecked(page);
2787 goto good;
2788 }
2789
2790 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2791 goto good;
2792
2793 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2794 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2795 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2796 GFP_NOFS);
2797 return 0;
2798 }
2799
2800 phy_offset >>= inode->i_sb->s_blocksize_bits;
2801 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2802
2803 kaddr = kmap_atomic(page);
2804 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
2805 btrfs_csum_final(csum, (char *)&csum);
2806 if (csum != csum_expected)
2807 goto zeroit;
2808
2809 kunmap_atomic(kaddr);
2810 good:
2811 return 0;
2812
2813 zeroit:
2814 if (__ratelimit(&_rs))
2815 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2816 btrfs_ino(page->mapping->host), start, csum, csum_expected);
2817 memset(kaddr + offset, 1, end - start + 1);
2818 flush_dcache_page(page);
2819 kunmap_atomic(kaddr);
2820 if (csum_expected == 0)
2821 return 0;
2822 return -EIO;
2823 }
2824
2825 struct delayed_iput {
2826 struct list_head list;
2827 struct inode *inode;
2828 };
2829
2830 /* JDM: If this is fs-wide, why can't we add a pointer to
2831 * btrfs_inode instead and avoid the allocation? */
2832 void btrfs_add_delayed_iput(struct inode *inode)
2833 {
2834 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2835 struct delayed_iput *delayed;
2836
2837 if (atomic_add_unless(&inode->i_count, -1, 1))
2838 return;
2839
2840 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2841 delayed->inode = inode;
2842
2843 spin_lock(&fs_info->delayed_iput_lock);
2844 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2845 spin_unlock(&fs_info->delayed_iput_lock);
2846 }
2847
2848 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2849 {
2850 LIST_HEAD(list);
2851 struct btrfs_fs_info *fs_info = root->fs_info;
2852 struct delayed_iput *delayed;
2853 int empty;
2854
2855 spin_lock(&fs_info->delayed_iput_lock);
2856 empty = list_empty(&fs_info->delayed_iputs);
2857 spin_unlock(&fs_info->delayed_iput_lock);
2858 if (empty)
2859 return;
2860
2861 spin_lock(&fs_info->delayed_iput_lock);
2862 list_splice_init(&fs_info->delayed_iputs, &list);
2863 spin_unlock(&fs_info->delayed_iput_lock);
2864
2865 while (!list_empty(&list)) {
2866 delayed = list_entry(list.next, struct delayed_iput, list);
2867 list_del(&delayed->list);
2868 iput(delayed->inode);
2869 kfree(delayed);
2870 }
2871 }
2872
2873 /*
2874 * This is called in transaction commit time. If there are no orphan
2875 * files in the subvolume, it removes orphan item and frees block_rsv
2876 * structure.
2877 */
2878 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2879 struct btrfs_root *root)
2880 {
2881 struct btrfs_block_rsv *block_rsv;
2882 int ret;
2883
2884 if (atomic_read(&root->orphan_inodes) ||
2885 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2886 return;
2887
2888 spin_lock(&root->orphan_lock);
2889 if (atomic_read(&root->orphan_inodes)) {
2890 spin_unlock(&root->orphan_lock);
2891 return;
2892 }
2893
2894 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2895 spin_unlock(&root->orphan_lock);
2896 return;
2897 }
2898
2899 block_rsv = root->orphan_block_rsv;
2900 root->orphan_block_rsv = NULL;
2901 spin_unlock(&root->orphan_lock);
2902
2903 if (root->orphan_item_inserted &&
2904 btrfs_root_refs(&root->root_item) > 0) {
2905 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2906 root->root_key.objectid);
2907 if (ret)
2908 btrfs_abort_transaction(trans, root, ret);
2909 else
2910 root->orphan_item_inserted = 0;
2911 }
2912
2913 if (block_rsv) {
2914 WARN_ON(block_rsv->size > 0);
2915 btrfs_free_block_rsv(root, block_rsv);
2916 }
2917 }
2918
2919 /*
2920 * This creates an orphan entry for the given inode in case something goes
2921 * wrong in the middle of an unlink/truncate.
2922 *
2923 * NOTE: caller of this function should reserve 5 units of metadata for
2924 * this function.
2925 */
2926 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2927 {
2928 struct btrfs_root *root = BTRFS_I(inode)->root;
2929 struct btrfs_block_rsv *block_rsv = NULL;
2930 int reserve = 0;
2931 int insert = 0;
2932 int ret;
2933
2934 if (!root->orphan_block_rsv) {
2935 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2936 if (!block_rsv)
2937 return -ENOMEM;
2938 }
2939
2940 spin_lock(&root->orphan_lock);
2941 if (!root->orphan_block_rsv) {
2942 root->orphan_block_rsv = block_rsv;
2943 } else if (block_rsv) {
2944 btrfs_free_block_rsv(root, block_rsv);
2945 block_rsv = NULL;
2946 }
2947
2948 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2949 &BTRFS_I(inode)->runtime_flags)) {
2950 #if 0
2951 /*
2952 * For proper ENOSPC handling, we should do orphan
2953 * cleanup when mounting. But this introduces backward
2954 * compatibility issue.
2955 */
2956 if (!xchg(&root->orphan_item_inserted, 1))
2957 insert = 2;
2958 else
2959 insert = 1;
2960 #endif
2961 insert = 1;
2962 atomic_inc(&root->orphan_inodes);
2963 }
2964
2965 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2966 &BTRFS_I(inode)->runtime_flags))
2967 reserve = 1;
2968 spin_unlock(&root->orphan_lock);
2969
2970 /* grab metadata reservation from transaction handle */
2971 if (reserve) {
2972 ret = btrfs_orphan_reserve_metadata(trans, inode);
2973 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2974 }
2975
2976 /* insert an orphan item to track this unlinked/truncated file */
2977 if (insert >= 1) {
2978 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2979 if (ret) {
2980 atomic_dec(&root->orphan_inodes);
2981 if (reserve) {
2982 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2983 &BTRFS_I(inode)->runtime_flags);
2984 btrfs_orphan_release_metadata(inode);
2985 }
2986 if (ret != -EEXIST) {
2987 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2988 &BTRFS_I(inode)->runtime_flags);
2989 btrfs_abort_transaction(trans, root, ret);
2990 return ret;
2991 }
2992 }
2993 ret = 0;
2994 }
2995
2996 /* insert an orphan item to track subvolume contains orphan files */
2997 if (insert >= 2) {
2998 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2999 root->root_key.objectid);
3000 if (ret && ret != -EEXIST) {
3001 btrfs_abort_transaction(trans, root, ret);
3002 return ret;
3003 }
3004 }
3005 return 0;
3006 }
3007
3008 /*
3009 * We have done the truncate/delete so we can go ahead and remove the orphan
3010 * item for this particular inode.
3011 */
3012 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3013 struct inode *inode)
3014 {
3015 struct btrfs_root *root = BTRFS_I(inode)->root;
3016 int delete_item = 0;
3017 int release_rsv = 0;
3018 int ret = 0;
3019
3020 spin_lock(&root->orphan_lock);
3021 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3022 &BTRFS_I(inode)->runtime_flags))
3023 delete_item = 1;
3024
3025 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3026 &BTRFS_I(inode)->runtime_flags))
3027 release_rsv = 1;
3028 spin_unlock(&root->orphan_lock);
3029
3030 if (delete_item) {
3031 atomic_dec(&root->orphan_inodes);
3032 if (trans)
3033 ret = btrfs_del_orphan_item(trans, root,
3034 btrfs_ino(inode));
3035 }
3036
3037 if (release_rsv)
3038 btrfs_orphan_release_metadata(inode);
3039
3040 return ret;
3041 }
3042
3043 /*
3044 * this cleans up any orphans that may be left on the list from the last use
3045 * of this root.
3046 */
3047 int btrfs_orphan_cleanup(struct btrfs_root *root)
3048 {
3049 struct btrfs_path *path;
3050 struct extent_buffer *leaf;
3051 struct btrfs_key key, found_key;
3052 struct btrfs_trans_handle *trans;
3053 struct inode *inode;
3054 u64 last_objectid = 0;
3055 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3056
3057 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3058 return 0;
3059
3060 path = btrfs_alloc_path();
3061 if (!path) {
3062 ret = -ENOMEM;
3063 goto out;
3064 }
3065 path->reada = -1;
3066
3067 key.objectid = BTRFS_ORPHAN_OBJECTID;
3068 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3069 key.offset = (u64)-1;
3070
3071 while (1) {
3072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3073 if (ret < 0)
3074 goto out;
3075
3076 /*
3077 * if ret == 0 means we found what we were searching for, which
3078 * is weird, but possible, so only screw with path if we didn't
3079 * find the key and see if we have stuff that matches
3080 */
3081 if (ret > 0) {
3082 ret = 0;
3083 if (path->slots[0] == 0)
3084 break;
3085 path->slots[0]--;
3086 }
3087
3088 /* pull out the item */
3089 leaf = path->nodes[0];
3090 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3091
3092 /* make sure the item matches what we want */
3093 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3094 break;
3095 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3096 break;
3097
3098 /* release the path since we're done with it */
3099 btrfs_release_path(path);
3100
3101 /*
3102 * this is where we are basically btrfs_lookup, without the
3103 * crossing root thing. we store the inode number in the
3104 * offset of the orphan item.
3105 */
3106
3107 if (found_key.offset == last_objectid) {
3108 btrfs_err(root->fs_info,
3109 "Error removing orphan entry, stopping orphan cleanup");
3110 ret = -EINVAL;
3111 goto out;
3112 }
3113
3114 last_objectid = found_key.offset;
3115
3116 found_key.objectid = found_key.offset;
3117 found_key.type = BTRFS_INODE_ITEM_KEY;
3118 found_key.offset = 0;
3119 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3120 ret = PTR_ERR_OR_ZERO(inode);
3121 if (ret && ret != -ESTALE)
3122 goto out;
3123
3124 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3125 struct btrfs_root *dead_root;
3126 struct btrfs_fs_info *fs_info = root->fs_info;
3127 int is_dead_root = 0;
3128
3129 /*
3130 * this is an orphan in the tree root. Currently these
3131 * could come from 2 sources:
3132 * a) a snapshot deletion in progress
3133 * b) a free space cache inode
3134 * We need to distinguish those two, as the snapshot
3135 * orphan must not get deleted.
3136 * find_dead_roots already ran before us, so if this
3137 * is a snapshot deletion, we should find the root
3138 * in the dead_roots list
3139 */
3140 spin_lock(&fs_info->trans_lock);
3141 list_for_each_entry(dead_root, &fs_info->dead_roots,
3142 root_list) {
3143 if (dead_root->root_key.objectid ==
3144 found_key.objectid) {
3145 is_dead_root = 1;
3146 break;
3147 }
3148 }
3149 spin_unlock(&fs_info->trans_lock);
3150 if (is_dead_root) {
3151 /* prevent this orphan from being found again */
3152 key.offset = found_key.objectid - 1;
3153 continue;
3154 }
3155 }
3156 /*
3157 * Inode is already gone but the orphan item is still there,
3158 * kill the orphan item.
3159 */
3160 if (ret == -ESTALE) {
3161 trans = btrfs_start_transaction(root, 1);
3162 if (IS_ERR(trans)) {
3163 ret = PTR_ERR(trans);
3164 goto out;
3165 }
3166 btrfs_debug(root->fs_info, "auto deleting %Lu",
3167 found_key.objectid);
3168 ret = btrfs_del_orphan_item(trans, root,
3169 found_key.objectid);
3170 btrfs_end_transaction(trans, root);
3171 if (ret)
3172 goto out;
3173 continue;
3174 }
3175
3176 /*
3177 * add this inode to the orphan list so btrfs_orphan_del does
3178 * the proper thing when we hit it
3179 */
3180 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3181 &BTRFS_I(inode)->runtime_flags);
3182 atomic_inc(&root->orphan_inodes);
3183
3184 /* if we have links, this was a truncate, lets do that */
3185 if (inode->i_nlink) {
3186 if (!S_ISREG(inode->i_mode)) {
3187 WARN_ON(1);
3188 iput(inode);
3189 continue;
3190 }
3191 nr_truncate++;
3192
3193 /* 1 for the orphan item deletion. */
3194 trans = btrfs_start_transaction(root, 1);
3195 if (IS_ERR(trans)) {
3196 iput(inode);
3197 ret = PTR_ERR(trans);
3198 goto out;
3199 }
3200 ret = btrfs_orphan_add(trans, inode);
3201 btrfs_end_transaction(trans, root);
3202 if (ret) {
3203 iput(inode);
3204 goto out;
3205 }
3206
3207 ret = btrfs_truncate(inode);
3208 if (ret)
3209 btrfs_orphan_del(NULL, inode);
3210 } else {
3211 nr_unlink++;
3212 }
3213
3214 /* this will do delete_inode and everything for us */
3215 iput(inode);
3216 if (ret)
3217 goto out;
3218 }
3219 /* release the path since we're done with it */
3220 btrfs_release_path(path);
3221
3222 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3223
3224 if (root->orphan_block_rsv)
3225 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3226 (u64)-1);
3227
3228 if (root->orphan_block_rsv || root->orphan_item_inserted) {
3229 trans = btrfs_join_transaction(root);
3230 if (!IS_ERR(trans))
3231 btrfs_end_transaction(trans, root);
3232 }
3233
3234 if (nr_unlink)
3235 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3236 if (nr_truncate)
3237 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3238
3239 out:
3240 if (ret)
3241 btrfs_crit(root->fs_info,
3242 "could not do orphan cleanup %d", ret);
3243 btrfs_free_path(path);
3244 return ret;
3245 }
3246
3247 /*
3248 * very simple check to peek ahead in the leaf looking for xattrs. If we
3249 * don't find any xattrs, we know there can't be any acls.
3250 *
3251 * slot is the slot the inode is in, objectid is the objectid of the inode
3252 */
3253 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3254 int slot, u64 objectid)
3255 {
3256 u32 nritems = btrfs_header_nritems(leaf);
3257 struct btrfs_key found_key;
3258 static u64 xattr_access = 0;
3259 static u64 xattr_default = 0;
3260 int scanned = 0;
3261
3262 if (!xattr_access) {
3263 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3264 strlen(POSIX_ACL_XATTR_ACCESS));
3265 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3266 strlen(POSIX_ACL_XATTR_DEFAULT));
3267 }
3268
3269 slot++;
3270 while (slot < nritems) {
3271 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3272
3273 /* we found a different objectid, there must not be acls */
3274 if (found_key.objectid != objectid)
3275 return 0;
3276
3277 /* we found an xattr, assume we've got an acl */
3278 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3279 if (found_key.offset == xattr_access ||
3280 found_key.offset == xattr_default)
3281 return 1;
3282 }
3283
3284 /*
3285 * we found a key greater than an xattr key, there can't
3286 * be any acls later on
3287 */
3288 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3289 return 0;
3290
3291 slot++;
3292 scanned++;
3293
3294 /*
3295 * it goes inode, inode backrefs, xattrs, extents,
3296 * so if there are a ton of hard links to an inode there can
3297 * be a lot of backrefs. Don't waste time searching too hard,
3298 * this is just an optimization
3299 */
3300 if (scanned >= 8)
3301 break;
3302 }
3303 /* we hit the end of the leaf before we found an xattr or
3304 * something larger than an xattr. We have to assume the inode
3305 * has acls
3306 */
3307 return 1;
3308 }
3309
3310 /*
3311 * read an inode from the btree into the in-memory inode
3312 */
3313 static void btrfs_read_locked_inode(struct inode *inode)
3314 {
3315 struct btrfs_path *path;
3316 struct extent_buffer *leaf;
3317 struct btrfs_inode_item *inode_item;
3318 struct btrfs_timespec *tspec;
3319 struct btrfs_root *root = BTRFS_I(inode)->root;
3320 struct btrfs_key location;
3321 int maybe_acls;
3322 u32 rdev;
3323 int ret;
3324 bool filled = false;
3325
3326 ret = btrfs_fill_inode(inode, &rdev);
3327 if (!ret)
3328 filled = true;
3329
3330 path = btrfs_alloc_path();
3331 if (!path)
3332 goto make_bad;
3333
3334 path->leave_spinning = 1;
3335 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3336
3337 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3338 if (ret)
3339 goto make_bad;
3340
3341 leaf = path->nodes[0];
3342
3343 if (filled)
3344 goto cache_acl;
3345
3346 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3347 struct btrfs_inode_item);
3348 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3349 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3350 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3351 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3352 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3353
3354 tspec = btrfs_inode_atime(inode_item);
3355 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3356 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3357
3358 tspec = btrfs_inode_mtime(inode_item);
3359 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3360 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3361
3362 tspec = btrfs_inode_ctime(inode_item);
3363 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3364 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3365
3366 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3367 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3368 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3369
3370 /*
3371 * If we were modified in the current generation and evicted from memory
3372 * and then re-read we need to do a full sync since we don't have any
3373 * idea about which extents were modified before we were evicted from
3374 * cache.
3375 */
3376 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3377 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3378 &BTRFS_I(inode)->runtime_flags);
3379
3380 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3381 inode->i_generation = BTRFS_I(inode)->generation;
3382 inode->i_rdev = 0;
3383 rdev = btrfs_inode_rdev(leaf, inode_item);
3384
3385 BTRFS_I(inode)->index_cnt = (u64)-1;
3386 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3387 cache_acl:
3388 /*
3389 * try to precache a NULL acl entry for files that don't have
3390 * any xattrs or acls
3391 */
3392 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3393 btrfs_ino(inode));
3394 if (!maybe_acls)
3395 cache_no_acl(inode);
3396
3397 btrfs_free_path(path);
3398
3399 switch (inode->i_mode & S_IFMT) {
3400 case S_IFREG:
3401 inode->i_mapping->a_ops = &btrfs_aops;
3402 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3403 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3404 inode->i_fop = &btrfs_file_operations;
3405 inode->i_op = &btrfs_file_inode_operations;
3406 break;
3407 case S_IFDIR:
3408 inode->i_fop = &btrfs_dir_file_operations;
3409 if (root == root->fs_info->tree_root)
3410 inode->i_op = &btrfs_dir_ro_inode_operations;
3411 else
3412 inode->i_op = &btrfs_dir_inode_operations;
3413 break;
3414 case S_IFLNK:
3415 inode->i_op = &btrfs_symlink_inode_operations;
3416 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3418 break;
3419 default:
3420 inode->i_op = &btrfs_special_inode_operations;
3421 init_special_inode(inode, inode->i_mode, rdev);
3422 break;
3423 }
3424
3425 btrfs_update_iflags(inode);
3426 return;
3427
3428 make_bad:
3429 btrfs_free_path(path);
3430 make_bad_inode(inode);
3431 }
3432
3433 /*
3434 * given a leaf and an inode, copy the inode fields into the leaf
3435 */
3436 static void fill_inode_item(struct btrfs_trans_handle *trans,
3437 struct extent_buffer *leaf,
3438 struct btrfs_inode_item *item,
3439 struct inode *inode)
3440 {
3441 struct btrfs_map_token token;
3442
3443 btrfs_init_map_token(&token);
3444
3445 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3446 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3447 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3448 &token);
3449 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3450 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3451
3452 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3453 inode->i_atime.tv_sec, &token);
3454 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3455 inode->i_atime.tv_nsec, &token);
3456
3457 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3458 inode->i_mtime.tv_sec, &token);
3459 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3460 inode->i_mtime.tv_nsec, &token);
3461
3462 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3463 inode->i_ctime.tv_sec, &token);
3464 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3465 inode->i_ctime.tv_nsec, &token);
3466
3467 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3468 &token);
3469 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3470 &token);
3471 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3472 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3473 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3474 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3475 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3476 }
3477
3478 /*
3479 * copy everything in the in-memory inode into the btree.
3480 */
3481 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3482 struct btrfs_root *root, struct inode *inode)
3483 {
3484 struct btrfs_inode_item *inode_item;
3485 struct btrfs_path *path;
3486 struct extent_buffer *leaf;
3487 int ret;
3488
3489 path = btrfs_alloc_path();
3490 if (!path)
3491 return -ENOMEM;
3492
3493 path->leave_spinning = 1;
3494 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3495 1);
3496 if (ret) {
3497 if (ret > 0)
3498 ret = -ENOENT;
3499 goto failed;
3500 }
3501
3502 btrfs_unlock_up_safe(path, 1);
3503 leaf = path->nodes[0];
3504 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3505 struct btrfs_inode_item);
3506
3507 fill_inode_item(trans, leaf, inode_item, inode);
3508 btrfs_mark_buffer_dirty(leaf);
3509 btrfs_set_inode_last_trans(trans, inode);
3510 ret = 0;
3511 failed:
3512 btrfs_free_path(path);
3513 return ret;
3514 }
3515
3516 /*
3517 * copy everything in the in-memory inode into the btree.
3518 */
3519 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3520 struct btrfs_root *root, struct inode *inode)
3521 {
3522 int ret;
3523
3524 /*
3525 * If the inode is a free space inode, we can deadlock during commit
3526 * if we put it into the delayed code.
3527 *
3528 * The data relocation inode should also be directly updated
3529 * without delay
3530 */
3531 if (!btrfs_is_free_space_inode(inode)
3532 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3533 btrfs_update_root_times(trans, root);
3534
3535 ret = btrfs_delayed_update_inode(trans, root, inode);
3536 if (!ret)
3537 btrfs_set_inode_last_trans(trans, inode);
3538 return ret;
3539 }
3540
3541 return btrfs_update_inode_item(trans, root, inode);
3542 }
3543
3544 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3545 struct btrfs_root *root,
3546 struct inode *inode)
3547 {
3548 int ret;
3549
3550 ret = btrfs_update_inode(trans, root, inode);
3551 if (ret == -ENOSPC)
3552 return btrfs_update_inode_item(trans, root, inode);
3553 return ret;
3554 }
3555
3556 /*
3557 * unlink helper that gets used here in inode.c and in the tree logging
3558 * recovery code. It remove a link in a directory with a given name, and
3559 * also drops the back refs in the inode to the directory
3560 */
3561 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *root,
3563 struct inode *dir, struct inode *inode,
3564 const char *name, int name_len)
3565 {
3566 struct btrfs_path *path;
3567 int ret = 0;
3568 struct extent_buffer *leaf;
3569 struct btrfs_dir_item *di;
3570 struct btrfs_key key;
3571 u64 index;
3572 u64 ino = btrfs_ino(inode);
3573 u64 dir_ino = btrfs_ino(dir);
3574
3575 path = btrfs_alloc_path();
3576 if (!path) {
3577 ret = -ENOMEM;
3578 goto out;
3579 }
3580
3581 path->leave_spinning = 1;
3582 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3583 name, name_len, -1);
3584 if (IS_ERR(di)) {
3585 ret = PTR_ERR(di);
3586 goto err;
3587 }
3588 if (!di) {
3589 ret = -ENOENT;
3590 goto err;
3591 }
3592 leaf = path->nodes[0];
3593 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3594 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3595 if (ret)
3596 goto err;
3597 btrfs_release_path(path);
3598
3599 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3600 dir_ino, &index);
3601 if (ret) {
3602 btrfs_info(root->fs_info,
3603 "failed to delete reference to %.*s, inode %llu parent %llu",
3604 name_len, name, ino, dir_ino);
3605 btrfs_abort_transaction(trans, root, ret);
3606 goto err;
3607 }
3608
3609 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3610 if (ret) {
3611 btrfs_abort_transaction(trans, root, ret);
3612 goto err;
3613 }
3614
3615 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3616 inode, dir_ino);
3617 if (ret != 0 && ret != -ENOENT) {
3618 btrfs_abort_transaction(trans, root, ret);
3619 goto err;
3620 }
3621
3622 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3623 dir, index);
3624 if (ret == -ENOENT)
3625 ret = 0;
3626 else if (ret)
3627 btrfs_abort_transaction(trans, root, ret);
3628 err:
3629 btrfs_free_path(path);
3630 if (ret)
3631 goto out;
3632
3633 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3634 inode_inc_iversion(inode);
3635 inode_inc_iversion(dir);
3636 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3637 ret = btrfs_update_inode(trans, root, dir);
3638 out:
3639 return ret;
3640 }
3641
3642 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3643 struct btrfs_root *root,
3644 struct inode *dir, struct inode *inode,
3645 const char *name, int name_len)
3646 {
3647 int ret;
3648 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3649 if (!ret) {
3650 drop_nlink(inode);
3651 ret = btrfs_update_inode(trans, root, inode);
3652 }
3653 return ret;
3654 }
3655
3656 /*
3657 * helper to start transaction for unlink and rmdir.
3658 *
3659 * unlink and rmdir are special in btrfs, they do not always free space, so
3660 * if we cannot make our reservations the normal way try and see if there is
3661 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3662 * allow the unlink to occur.
3663 */
3664 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3665 {
3666 struct btrfs_trans_handle *trans;
3667 struct btrfs_root *root = BTRFS_I(dir)->root;
3668 int ret;
3669
3670 /*
3671 * 1 for the possible orphan item
3672 * 1 for the dir item
3673 * 1 for the dir index
3674 * 1 for the inode ref
3675 * 1 for the inode
3676 */
3677 trans = btrfs_start_transaction(root, 5);
3678 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3679 return trans;
3680
3681 if (PTR_ERR(trans) == -ENOSPC) {
3682 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3683
3684 trans = btrfs_start_transaction(root, 0);
3685 if (IS_ERR(trans))
3686 return trans;
3687 ret = btrfs_cond_migrate_bytes(root->fs_info,
3688 &root->fs_info->trans_block_rsv,
3689 num_bytes, 5);
3690 if (ret) {
3691 btrfs_end_transaction(trans, root);
3692 return ERR_PTR(ret);
3693 }
3694 trans->block_rsv = &root->fs_info->trans_block_rsv;
3695 trans->bytes_reserved = num_bytes;
3696 }
3697 return trans;
3698 }
3699
3700 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3701 {
3702 struct btrfs_root *root = BTRFS_I(dir)->root;
3703 struct btrfs_trans_handle *trans;
3704 struct inode *inode = dentry->d_inode;
3705 int ret;
3706
3707 trans = __unlink_start_trans(dir);
3708 if (IS_ERR(trans))
3709 return PTR_ERR(trans);
3710
3711 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3712
3713 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3714 dentry->d_name.name, dentry->d_name.len);
3715 if (ret)
3716 goto out;
3717
3718 if (inode->i_nlink == 0) {
3719 ret = btrfs_orphan_add(trans, inode);
3720 if (ret)
3721 goto out;
3722 }
3723
3724 out:
3725 btrfs_end_transaction(trans, root);
3726 btrfs_btree_balance_dirty(root);
3727 return ret;
3728 }
3729
3730 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3731 struct btrfs_root *root,
3732 struct inode *dir, u64 objectid,
3733 const char *name, int name_len)
3734 {
3735 struct btrfs_path *path;
3736 struct extent_buffer *leaf;
3737 struct btrfs_dir_item *di;
3738 struct btrfs_key key;
3739 u64 index;
3740 int ret;
3741 u64 dir_ino = btrfs_ino(dir);
3742
3743 path = btrfs_alloc_path();
3744 if (!path)
3745 return -ENOMEM;
3746
3747 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3748 name, name_len, -1);
3749 if (IS_ERR_OR_NULL(di)) {
3750 if (!di)
3751 ret = -ENOENT;
3752 else
3753 ret = PTR_ERR(di);
3754 goto out;
3755 }
3756
3757 leaf = path->nodes[0];
3758 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3759 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3760 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3761 if (ret) {
3762 btrfs_abort_transaction(trans, root, ret);
3763 goto out;
3764 }
3765 btrfs_release_path(path);
3766
3767 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3768 objectid, root->root_key.objectid,
3769 dir_ino, &index, name, name_len);
3770 if (ret < 0) {
3771 if (ret != -ENOENT) {
3772 btrfs_abort_transaction(trans, root, ret);
3773 goto out;
3774 }
3775 di = btrfs_search_dir_index_item(root, path, dir_ino,
3776 name, name_len);
3777 if (IS_ERR_OR_NULL(di)) {
3778 if (!di)
3779 ret = -ENOENT;
3780 else
3781 ret = PTR_ERR(di);
3782 btrfs_abort_transaction(trans, root, ret);
3783 goto out;
3784 }
3785
3786 leaf = path->nodes[0];
3787 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3788 btrfs_release_path(path);
3789 index = key.offset;
3790 }
3791 btrfs_release_path(path);
3792
3793 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3794 if (ret) {
3795 btrfs_abort_transaction(trans, root, ret);
3796 goto out;
3797 }
3798
3799 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3800 inode_inc_iversion(dir);
3801 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3802 ret = btrfs_update_inode_fallback(trans, root, dir);
3803 if (ret)
3804 btrfs_abort_transaction(trans, root, ret);
3805 out:
3806 btrfs_free_path(path);
3807 return ret;
3808 }
3809
3810 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3811 {
3812 struct inode *inode = dentry->d_inode;
3813 int err = 0;
3814 struct btrfs_root *root = BTRFS_I(dir)->root;
3815 struct btrfs_trans_handle *trans;
3816
3817 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3818 return -ENOTEMPTY;
3819 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3820 return -EPERM;
3821
3822 trans = __unlink_start_trans(dir);
3823 if (IS_ERR(trans))
3824 return PTR_ERR(trans);
3825
3826 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3827 err = btrfs_unlink_subvol(trans, root, dir,
3828 BTRFS_I(inode)->location.objectid,
3829 dentry->d_name.name,
3830 dentry->d_name.len);
3831 goto out;
3832 }
3833
3834 err = btrfs_orphan_add(trans, inode);
3835 if (err)
3836 goto out;
3837
3838 /* now the directory is empty */
3839 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3840 dentry->d_name.name, dentry->d_name.len);
3841 if (!err)
3842 btrfs_i_size_write(inode, 0);
3843 out:
3844 btrfs_end_transaction(trans, root);
3845 btrfs_btree_balance_dirty(root);
3846
3847 return err;
3848 }
3849
3850 /*
3851 * this can truncate away extent items, csum items and directory items.
3852 * It starts at a high offset and removes keys until it can't find
3853 * any higher than new_size
3854 *
3855 * csum items that cross the new i_size are truncated to the new size
3856 * as well.
3857 *
3858 * min_type is the minimum key type to truncate down to. If set to 0, this
3859 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3860 */
3861 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3862 struct btrfs_root *root,
3863 struct inode *inode,
3864 u64 new_size, u32 min_type)
3865 {
3866 struct btrfs_path *path;
3867 struct extent_buffer *leaf;
3868 struct btrfs_file_extent_item *fi;
3869 struct btrfs_key key;
3870 struct btrfs_key found_key;
3871 u64 extent_start = 0;
3872 u64 extent_num_bytes = 0;
3873 u64 extent_offset = 0;
3874 u64 item_end = 0;
3875 u64 last_size = (u64)-1;
3876 u32 found_type = (u8)-1;
3877 int found_extent;
3878 int del_item;
3879 int pending_del_nr = 0;
3880 int pending_del_slot = 0;
3881 int extent_type = -1;
3882 int ret;
3883 int err = 0;
3884 u64 ino = btrfs_ino(inode);
3885
3886 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3887
3888 path = btrfs_alloc_path();
3889 if (!path)
3890 return -ENOMEM;
3891 path->reada = -1;
3892
3893 /*
3894 * We want to drop from the next block forward in case this new size is
3895 * not block aligned since we will be keeping the last block of the
3896 * extent just the way it is.
3897 */
3898 if (root->ref_cows || root == root->fs_info->tree_root)
3899 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3900 root->sectorsize), (u64)-1, 0);
3901
3902 /*
3903 * This function is also used to drop the items in the log tree before
3904 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3905 * it is used to drop the loged items. So we shouldn't kill the delayed
3906 * items.
3907 */
3908 if (min_type == 0 && root == BTRFS_I(inode)->root)
3909 btrfs_kill_delayed_inode_items(inode);
3910
3911 key.objectid = ino;
3912 key.offset = (u64)-1;
3913 key.type = (u8)-1;
3914
3915 search_again:
3916 path->leave_spinning = 1;
3917 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3918 if (ret < 0) {
3919 err = ret;
3920 goto out;
3921 }
3922
3923 if (ret > 0) {
3924 /* there are no items in the tree for us to truncate, we're
3925 * done
3926 */
3927 if (path->slots[0] == 0)
3928 goto out;
3929 path->slots[0]--;
3930 }
3931
3932 while (1) {
3933 fi = NULL;
3934 leaf = path->nodes[0];
3935 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3936 found_type = btrfs_key_type(&found_key);
3937
3938 if (found_key.objectid != ino)
3939 break;
3940
3941 if (found_type < min_type)
3942 break;
3943
3944 item_end = found_key.offset;
3945 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3946 fi = btrfs_item_ptr(leaf, path->slots[0],
3947 struct btrfs_file_extent_item);
3948 extent_type = btrfs_file_extent_type(leaf, fi);
3949 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3950 item_end +=
3951 btrfs_file_extent_num_bytes(leaf, fi);
3952 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3953 item_end += btrfs_file_extent_inline_len(leaf,
3954 fi);
3955 }
3956 item_end--;
3957 }
3958 if (found_type > min_type) {
3959 del_item = 1;
3960 } else {
3961 if (item_end < new_size)
3962 break;
3963 if (found_key.offset >= new_size)
3964 del_item = 1;
3965 else
3966 del_item = 0;
3967 }
3968 found_extent = 0;
3969 /* FIXME, shrink the extent if the ref count is only 1 */
3970 if (found_type != BTRFS_EXTENT_DATA_KEY)
3971 goto delete;
3972
3973 if (del_item)
3974 last_size = found_key.offset;
3975 else
3976 last_size = new_size;
3977
3978 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3979 u64 num_dec;
3980 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3981 if (!del_item) {
3982 u64 orig_num_bytes =
3983 btrfs_file_extent_num_bytes(leaf, fi);
3984 extent_num_bytes = ALIGN(new_size -
3985 found_key.offset,
3986 root->sectorsize);
3987 btrfs_set_file_extent_num_bytes(leaf, fi,
3988 extent_num_bytes);
3989 num_dec = (orig_num_bytes -
3990 extent_num_bytes);
3991 if (root->ref_cows && extent_start != 0)
3992 inode_sub_bytes(inode, num_dec);
3993 btrfs_mark_buffer_dirty(leaf);
3994 } else {
3995 extent_num_bytes =
3996 btrfs_file_extent_disk_num_bytes(leaf,
3997 fi);
3998 extent_offset = found_key.offset -
3999 btrfs_file_extent_offset(leaf, fi);
4000
4001 /* FIXME blocksize != 4096 */
4002 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4003 if (extent_start != 0) {
4004 found_extent = 1;
4005 if (root->ref_cows)
4006 inode_sub_bytes(inode, num_dec);
4007 }
4008 }
4009 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4010 /*
4011 * we can't truncate inline items that have had
4012 * special encodings
4013 */
4014 if (!del_item &&
4015 btrfs_file_extent_compression(leaf, fi) == 0 &&
4016 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4017 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4018 u32 size = new_size - found_key.offset;
4019
4020 if (root->ref_cows) {
4021 inode_sub_bytes(inode, item_end + 1 -
4022 new_size);
4023 }
4024 size =
4025 btrfs_file_extent_calc_inline_size(size);
4026 btrfs_truncate_item(root, path, size, 1);
4027 } else if (root->ref_cows) {
4028 inode_sub_bytes(inode, item_end + 1 -
4029 found_key.offset);
4030 }
4031 }
4032 delete:
4033 if (del_item) {
4034 if (!pending_del_nr) {
4035 /* no pending yet, add ourselves */
4036 pending_del_slot = path->slots[0];
4037 pending_del_nr = 1;
4038 } else if (pending_del_nr &&
4039 path->slots[0] + 1 == pending_del_slot) {
4040 /* hop on the pending chunk */
4041 pending_del_nr++;
4042 pending_del_slot = path->slots[0];
4043 } else {
4044 BUG();
4045 }
4046 } else {
4047 break;
4048 }
4049 if (found_extent && (root->ref_cows ||
4050 root == root->fs_info->tree_root)) {
4051 btrfs_set_path_blocking(path);
4052 ret = btrfs_free_extent(trans, root, extent_start,
4053 extent_num_bytes, 0,
4054 btrfs_header_owner(leaf),
4055 ino, extent_offset, 0);
4056 BUG_ON(ret);
4057 }
4058
4059 if (found_type == BTRFS_INODE_ITEM_KEY)
4060 break;
4061
4062 if (path->slots[0] == 0 ||
4063 path->slots[0] != pending_del_slot) {
4064 if (pending_del_nr) {
4065 ret = btrfs_del_items(trans, root, path,
4066 pending_del_slot,
4067 pending_del_nr);
4068 if (ret) {
4069 btrfs_abort_transaction(trans,
4070 root, ret);
4071 goto error;
4072 }
4073 pending_del_nr = 0;
4074 }
4075 btrfs_release_path(path);
4076 goto search_again;
4077 } else {
4078 path->slots[0]--;
4079 }
4080 }
4081 out:
4082 if (pending_del_nr) {
4083 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4084 pending_del_nr);
4085 if (ret)
4086 btrfs_abort_transaction(trans, root, ret);
4087 }
4088 error:
4089 if (last_size != (u64)-1)
4090 btrfs_ordered_update_i_size(inode, last_size, NULL);
4091 btrfs_free_path(path);
4092 return err;
4093 }
4094
4095 /*
4096 * btrfs_truncate_page - read, zero a chunk and write a page
4097 * @inode - inode that we're zeroing
4098 * @from - the offset to start zeroing
4099 * @len - the length to zero, 0 to zero the entire range respective to the
4100 * offset
4101 * @front - zero up to the offset instead of from the offset on
4102 *
4103 * This will find the page for the "from" offset and cow the page and zero the
4104 * part we want to zero. This is used with truncate and hole punching.
4105 */
4106 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4107 int front)
4108 {
4109 struct address_space *mapping = inode->i_mapping;
4110 struct btrfs_root *root = BTRFS_I(inode)->root;
4111 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4112 struct btrfs_ordered_extent *ordered;
4113 struct extent_state *cached_state = NULL;
4114 char *kaddr;
4115 u32 blocksize = root->sectorsize;
4116 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4117 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4118 struct page *page;
4119 gfp_t mask = btrfs_alloc_write_mask(mapping);
4120 int ret = 0;
4121 u64 page_start;
4122 u64 page_end;
4123
4124 if ((offset & (blocksize - 1)) == 0 &&
4125 (!len || ((len & (blocksize - 1)) == 0)))
4126 goto out;
4127 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4128 if (ret)
4129 goto out;
4130
4131 again:
4132 page = find_or_create_page(mapping, index, mask);
4133 if (!page) {
4134 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4135 ret = -ENOMEM;
4136 goto out;
4137 }
4138
4139 page_start = page_offset(page);
4140 page_end = page_start + PAGE_CACHE_SIZE - 1;
4141
4142 if (!PageUptodate(page)) {
4143 ret = btrfs_readpage(NULL, page);
4144 lock_page(page);
4145 if (page->mapping != mapping) {
4146 unlock_page(page);
4147 page_cache_release(page);
4148 goto again;
4149 }
4150 if (!PageUptodate(page)) {
4151 ret = -EIO;
4152 goto out_unlock;
4153 }
4154 }
4155 wait_on_page_writeback(page);
4156
4157 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4158 set_page_extent_mapped(page);
4159
4160 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4161 if (ordered) {
4162 unlock_extent_cached(io_tree, page_start, page_end,
4163 &cached_state, GFP_NOFS);
4164 unlock_page(page);
4165 page_cache_release(page);
4166 btrfs_start_ordered_extent(inode, ordered, 1);
4167 btrfs_put_ordered_extent(ordered);
4168 goto again;
4169 }
4170
4171 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4172 EXTENT_DIRTY | EXTENT_DELALLOC |
4173 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4174 0, 0, &cached_state, GFP_NOFS);
4175
4176 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4177 &cached_state);
4178 if (ret) {
4179 unlock_extent_cached(io_tree, page_start, page_end,
4180 &cached_state, GFP_NOFS);
4181 goto out_unlock;
4182 }
4183
4184 if (offset != PAGE_CACHE_SIZE) {
4185 if (!len)
4186 len = PAGE_CACHE_SIZE - offset;
4187 kaddr = kmap(page);
4188 if (front)
4189 memset(kaddr, 0, offset);
4190 else
4191 memset(kaddr + offset, 0, len);
4192 flush_dcache_page(page);
4193 kunmap(page);
4194 }
4195 ClearPageChecked(page);
4196 set_page_dirty(page);
4197 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4198 GFP_NOFS);
4199
4200 out_unlock:
4201 if (ret)
4202 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4203 unlock_page(page);
4204 page_cache_release(page);
4205 out:
4206 return ret;
4207 }
4208
4209 /*
4210 * This function puts in dummy file extents for the area we're creating a hole
4211 * for. So if we are truncating this file to a larger size we need to insert
4212 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4213 * the range between oldsize and size
4214 */
4215 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4216 {
4217 struct btrfs_trans_handle *trans;
4218 struct btrfs_root *root = BTRFS_I(inode)->root;
4219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4220 struct extent_map *em = NULL;
4221 struct extent_state *cached_state = NULL;
4222 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4223 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4224 u64 block_end = ALIGN(size, root->sectorsize);
4225 u64 last_byte;
4226 u64 cur_offset;
4227 u64 hole_size;
4228 int err = 0;
4229
4230 /*
4231 * If our size started in the middle of a page we need to zero out the
4232 * rest of the page before we expand the i_size, otherwise we could
4233 * expose stale data.
4234 */
4235 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4236 if (err)
4237 return err;
4238
4239 if (size <= hole_start)
4240 return 0;
4241
4242 while (1) {
4243 struct btrfs_ordered_extent *ordered;
4244
4245 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4246 &cached_state);
4247 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4248 block_end - hole_start);
4249 if (!ordered)
4250 break;
4251 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4252 &cached_state, GFP_NOFS);
4253 btrfs_start_ordered_extent(inode, ordered, 1);
4254 btrfs_put_ordered_extent(ordered);
4255 }
4256
4257 cur_offset = hole_start;
4258 while (1) {
4259 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4260 block_end - cur_offset, 0);
4261 if (IS_ERR(em)) {
4262 err = PTR_ERR(em);
4263 em = NULL;
4264 break;
4265 }
4266 last_byte = min(extent_map_end(em), block_end);
4267 last_byte = ALIGN(last_byte , root->sectorsize);
4268 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4269 struct extent_map *hole_em;
4270 hole_size = last_byte - cur_offset;
4271
4272 trans = btrfs_start_transaction(root, 3);
4273 if (IS_ERR(trans)) {
4274 err = PTR_ERR(trans);
4275 break;
4276 }
4277
4278 err = btrfs_drop_extents(trans, root, inode,
4279 cur_offset,
4280 cur_offset + hole_size, 1);
4281 if (err) {
4282 btrfs_abort_transaction(trans, root, err);
4283 btrfs_end_transaction(trans, root);
4284 break;
4285 }
4286
4287 err = btrfs_insert_file_extent(trans, root,
4288 btrfs_ino(inode), cur_offset, 0,
4289 0, hole_size, 0, hole_size,
4290 0, 0, 0);
4291 if (err) {
4292 btrfs_abort_transaction(trans, root, err);
4293 btrfs_end_transaction(trans, root);
4294 break;
4295 }
4296
4297 btrfs_drop_extent_cache(inode, cur_offset,
4298 cur_offset + hole_size - 1, 0);
4299 hole_em = alloc_extent_map();
4300 if (!hole_em) {
4301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4302 &BTRFS_I(inode)->runtime_flags);
4303 goto next;
4304 }
4305 hole_em->start = cur_offset;
4306 hole_em->len = hole_size;
4307 hole_em->orig_start = cur_offset;
4308
4309 hole_em->block_start = EXTENT_MAP_HOLE;
4310 hole_em->block_len = 0;
4311 hole_em->orig_block_len = 0;
4312 hole_em->ram_bytes = hole_size;
4313 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4314 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4315 hole_em->generation = trans->transid;
4316
4317 while (1) {
4318 write_lock(&em_tree->lock);
4319 err = add_extent_mapping(em_tree, hole_em, 1);
4320 write_unlock(&em_tree->lock);
4321 if (err != -EEXIST)
4322 break;
4323 btrfs_drop_extent_cache(inode, cur_offset,
4324 cur_offset +
4325 hole_size - 1, 0);
4326 }
4327 free_extent_map(hole_em);
4328 next:
4329 btrfs_update_inode(trans, root, inode);
4330 btrfs_end_transaction(trans, root);
4331 }
4332 free_extent_map(em);
4333 em = NULL;
4334 cur_offset = last_byte;
4335 if (cur_offset >= block_end)
4336 break;
4337 }
4338
4339 free_extent_map(em);
4340 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4341 GFP_NOFS);
4342 return err;
4343 }
4344
4345 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4346 {
4347 struct btrfs_root *root = BTRFS_I(inode)->root;
4348 struct btrfs_trans_handle *trans;
4349 loff_t oldsize = i_size_read(inode);
4350 loff_t newsize = attr->ia_size;
4351 int mask = attr->ia_valid;
4352 int ret;
4353
4354 /*
4355 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4356 * special case where we need to update the times despite not having
4357 * these flags set. For all other operations the VFS set these flags
4358 * explicitly if it wants a timestamp update.
4359 */
4360 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4361 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4362
4363 if (newsize > oldsize) {
4364 truncate_pagecache(inode, newsize);
4365 ret = btrfs_cont_expand(inode, oldsize, newsize);
4366 if (ret)
4367 return ret;
4368
4369 trans = btrfs_start_transaction(root, 1);
4370 if (IS_ERR(trans))
4371 return PTR_ERR(trans);
4372
4373 i_size_write(inode, newsize);
4374 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4375 ret = btrfs_update_inode(trans, root, inode);
4376 btrfs_end_transaction(trans, root);
4377 } else {
4378
4379 /*
4380 * We're truncating a file that used to have good data down to
4381 * zero. Make sure it gets into the ordered flush list so that
4382 * any new writes get down to disk quickly.
4383 */
4384 if (newsize == 0)
4385 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4386 &BTRFS_I(inode)->runtime_flags);
4387
4388 /*
4389 * 1 for the orphan item we're going to add
4390 * 1 for the orphan item deletion.
4391 */
4392 trans = btrfs_start_transaction(root, 2);
4393 if (IS_ERR(trans))
4394 return PTR_ERR(trans);
4395
4396 /*
4397 * We need to do this in case we fail at _any_ point during the
4398 * actual truncate. Once we do the truncate_setsize we could
4399 * invalidate pages which forces any outstanding ordered io to
4400 * be instantly completed which will give us extents that need
4401 * to be truncated. If we fail to get an orphan inode down we
4402 * could have left over extents that were never meant to live,
4403 * so we need to garuntee from this point on that everything
4404 * will be consistent.
4405 */
4406 ret = btrfs_orphan_add(trans, inode);
4407 btrfs_end_transaction(trans, root);
4408 if (ret)
4409 return ret;
4410
4411 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4412 truncate_setsize(inode, newsize);
4413
4414 /* Disable nonlocked read DIO to avoid the end less truncate */
4415 btrfs_inode_block_unlocked_dio(inode);
4416 inode_dio_wait(inode);
4417 btrfs_inode_resume_unlocked_dio(inode);
4418
4419 ret = btrfs_truncate(inode);
4420 if (ret && inode->i_nlink) {
4421 int err;
4422
4423 /*
4424 * failed to truncate, disk_i_size is only adjusted down
4425 * as we remove extents, so it should represent the true
4426 * size of the inode, so reset the in memory size and
4427 * delete our orphan entry.
4428 */
4429 trans = btrfs_join_transaction(root);
4430 if (IS_ERR(trans)) {
4431 btrfs_orphan_del(NULL, inode);
4432 return ret;
4433 }
4434 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4435 err = btrfs_orphan_del(trans, inode);
4436 if (err)
4437 btrfs_abort_transaction(trans, root, err);
4438 btrfs_end_transaction(trans, root);
4439 }
4440 }
4441
4442 return ret;
4443 }
4444
4445 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4446 {
4447 struct inode *inode = dentry->d_inode;
4448 struct btrfs_root *root = BTRFS_I(inode)->root;
4449 int err;
4450
4451 if (btrfs_root_readonly(root))
4452 return -EROFS;
4453
4454 err = inode_change_ok(inode, attr);
4455 if (err)
4456 return err;
4457
4458 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4459 err = btrfs_setsize(inode, attr);
4460 if (err)
4461 return err;
4462 }
4463
4464 if (attr->ia_valid) {
4465 setattr_copy(inode, attr);
4466 inode_inc_iversion(inode);
4467 err = btrfs_dirty_inode(inode);
4468
4469 if (!err && attr->ia_valid & ATTR_MODE)
4470 err = btrfs_acl_chmod(inode);
4471 }
4472
4473 return err;
4474 }
4475
4476 void btrfs_evict_inode(struct inode *inode)
4477 {
4478 struct btrfs_trans_handle *trans;
4479 struct btrfs_root *root = BTRFS_I(inode)->root;
4480 struct btrfs_block_rsv *rsv, *global_rsv;
4481 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4482 int ret;
4483
4484 trace_btrfs_inode_evict(inode);
4485
4486 truncate_inode_pages(&inode->i_data, 0);
4487 if (inode->i_nlink &&
4488 ((btrfs_root_refs(&root->root_item) != 0 &&
4489 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4490 btrfs_is_free_space_inode(inode)))
4491 goto no_delete;
4492
4493 if (is_bad_inode(inode)) {
4494 btrfs_orphan_del(NULL, inode);
4495 goto no_delete;
4496 }
4497 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4498 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4499
4500 if (root->fs_info->log_root_recovering) {
4501 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4502 &BTRFS_I(inode)->runtime_flags));
4503 goto no_delete;
4504 }
4505
4506 if (inode->i_nlink > 0) {
4507 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4508 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4509 goto no_delete;
4510 }
4511
4512 ret = btrfs_commit_inode_delayed_inode(inode);
4513 if (ret) {
4514 btrfs_orphan_del(NULL, inode);
4515 goto no_delete;
4516 }
4517
4518 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4519 if (!rsv) {
4520 btrfs_orphan_del(NULL, inode);
4521 goto no_delete;
4522 }
4523 rsv->size = min_size;
4524 rsv->failfast = 1;
4525 global_rsv = &root->fs_info->global_block_rsv;
4526
4527 btrfs_i_size_write(inode, 0);
4528
4529 /*
4530 * This is a bit simpler than btrfs_truncate since we've already
4531 * reserved our space for our orphan item in the unlink, so we just
4532 * need to reserve some slack space in case we add bytes and update
4533 * inode item when doing the truncate.
4534 */
4535 while (1) {
4536 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4537 BTRFS_RESERVE_FLUSH_LIMIT);
4538
4539 /*
4540 * Try and steal from the global reserve since we will
4541 * likely not use this space anyway, we want to try as
4542 * hard as possible to get this to work.
4543 */
4544 if (ret)
4545 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4546
4547 if (ret) {
4548 btrfs_warn(root->fs_info,
4549 "Could not get space for a delete, will truncate on mount %d",
4550 ret);
4551 btrfs_orphan_del(NULL, inode);
4552 btrfs_free_block_rsv(root, rsv);
4553 goto no_delete;
4554 }
4555
4556 trans = btrfs_join_transaction(root);
4557 if (IS_ERR(trans)) {
4558 btrfs_orphan_del(NULL, inode);
4559 btrfs_free_block_rsv(root, rsv);
4560 goto no_delete;
4561 }
4562
4563 trans->block_rsv = rsv;
4564
4565 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4566 if (ret != -ENOSPC)
4567 break;
4568
4569 trans->block_rsv = &root->fs_info->trans_block_rsv;
4570 btrfs_end_transaction(trans, root);
4571 trans = NULL;
4572 btrfs_btree_balance_dirty(root);
4573 }
4574
4575 btrfs_free_block_rsv(root, rsv);
4576
4577 /*
4578 * Errors here aren't a big deal, it just means we leave orphan items
4579 * in the tree. They will be cleaned up on the next mount.
4580 */
4581 if (ret == 0) {
4582 trans->block_rsv = root->orphan_block_rsv;
4583 btrfs_orphan_del(trans, inode);
4584 } else {
4585 btrfs_orphan_del(NULL, inode);
4586 }
4587
4588 trans->block_rsv = &root->fs_info->trans_block_rsv;
4589 if (!(root == root->fs_info->tree_root ||
4590 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4591 btrfs_return_ino(root, btrfs_ino(inode));
4592
4593 btrfs_end_transaction(trans, root);
4594 btrfs_btree_balance_dirty(root);
4595 no_delete:
4596 btrfs_remove_delayed_node(inode);
4597 clear_inode(inode);
4598 return;
4599 }
4600
4601 /*
4602 * this returns the key found in the dir entry in the location pointer.
4603 * If no dir entries were found, location->objectid is 0.
4604 */
4605 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4606 struct btrfs_key *location)
4607 {
4608 const char *name = dentry->d_name.name;
4609 int namelen = dentry->d_name.len;
4610 struct btrfs_dir_item *di;
4611 struct btrfs_path *path;
4612 struct btrfs_root *root = BTRFS_I(dir)->root;
4613 int ret = 0;
4614
4615 path = btrfs_alloc_path();
4616 if (!path)
4617 return -ENOMEM;
4618
4619 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4620 namelen, 0);
4621 if (IS_ERR(di))
4622 ret = PTR_ERR(di);
4623
4624 if (IS_ERR_OR_NULL(di))
4625 goto out_err;
4626
4627 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4628 out:
4629 btrfs_free_path(path);
4630 return ret;
4631 out_err:
4632 location->objectid = 0;
4633 goto out;
4634 }
4635
4636 /*
4637 * when we hit a tree root in a directory, the btrfs part of the inode
4638 * needs to be changed to reflect the root directory of the tree root. This
4639 * is kind of like crossing a mount point.
4640 */
4641 static int fixup_tree_root_location(struct btrfs_root *root,
4642 struct inode *dir,
4643 struct dentry *dentry,
4644 struct btrfs_key *location,
4645 struct btrfs_root **sub_root)
4646 {
4647 struct btrfs_path *path;
4648 struct btrfs_root *new_root;
4649 struct btrfs_root_ref *ref;
4650 struct extent_buffer *leaf;
4651 int ret;
4652 int err = 0;
4653
4654 path = btrfs_alloc_path();
4655 if (!path) {
4656 err = -ENOMEM;
4657 goto out;
4658 }
4659
4660 err = -ENOENT;
4661 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4662 BTRFS_I(dir)->root->root_key.objectid,
4663 location->objectid);
4664 if (ret) {
4665 if (ret < 0)
4666 err = ret;
4667 goto out;
4668 }
4669
4670 leaf = path->nodes[0];
4671 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4672 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4673 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4674 goto out;
4675
4676 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4677 (unsigned long)(ref + 1),
4678 dentry->d_name.len);
4679 if (ret)
4680 goto out;
4681
4682 btrfs_release_path(path);
4683
4684 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4685 if (IS_ERR(new_root)) {
4686 err = PTR_ERR(new_root);
4687 goto out;
4688 }
4689
4690 *sub_root = new_root;
4691 location->objectid = btrfs_root_dirid(&new_root->root_item);
4692 location->type = BTRFS_INODE_ITEM_KEY;
4693 location->offset = 0;
4694 err = 0;
4695 out:
4696 btrfs_free_path(path);
4697 return err;
4698 }
4699
4700 static void inode_tree_add(struct inode *inode)
4701 {
4702 struct btrfs_root *root = BTRFS_I(inode)->root;
4703 struct btrfs_inode *entry;
4704 struct rb_node **p;
4705 struct rb_node *parent;
4706 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4707 u64 ino = btrfs_ino(inode);
4708
4709 if (inode_unhashed(inode))
4710 return;
4711 parent = NULL;
4712 spin_lock(&root->inode_lock);
4713 p = &root->inode_tree.rb_node;
4714 while (*p) {
4715 parent = *p;
4716 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4717
4718 if (ino < btrfs_ino(&entry->vfs_inode))
4719 p = &parent->rb_left;
4720 else if (ino > btrfs_ino(&entry->vfs_inode))
4721 p = &parent->rb_right;
4722 else {
4723 WARN_ON(!(entry->vfs_inode.i_state &
4724 (I_WILL_FREE | I_FREEING)));
4725 rb_replace_node(parent, new, &root->inode_tree);
4726 RB_CLEAR_NODE(parent);
4727 spin_unlock(&root->inode_lock);
4728 return;
4729 }
4730 }
4731 rb_link_node(new, parent, p);
4732 rb_insert_color(new, &root->inode_tree);
4733 spin_unlock(&root->inode_lock);
4734 }
4735
4736 static void inode_tree_del(struct inode *inode)
4737 {
4738 struct btrfs_root *root = BTRFS_I(inode)->root;
4739 int empty = 0;
4740
4741 spin_lock(&root->inode_lock);
4742 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4743 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4744 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4745 empty = RB_EMPTY_ROOT(&root->inode_tree);
4746 }
4747 spin_unlock(&root->inode_lock);
4748
4749 if (empty && btrfs_root_refs(&root->root_item) == 0) {
4750 synchronize_srcu(&root->fs_info->subvol_srcu);
4751 spin_lock(&root->inode_lock);
4752 empty = RB_EMPTY_ROOT(&root->inode_tree);
4753 spin_unlock(&root->inode_lock);
4754 if (empty)
4755 btrfs_add_dead_root(root);
4756 }
4757 }
4758
4759 void btrfs_invalidate_inodes(struct btrfs_root *root)
4760 {
4761 struct rb_node *node;
4762 struct rb_node *prev;
4763 struct btrfs_inode *entry;
4764 struct inode *inode;
4765 u64 objectid = 0;
4766
4767 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4768
4769 spin_lock(&root->inode_lock);
4770 again:
4771 node = root->inode_tree.rb_node;
4772 prev = NULL;
4773 while (node) {
4774 prev = node;
4775 entry = rb_entry(node, struct btrfs_inode, rb_node);
4776
4777 if (objectid < btrfs_ino(&entry->vfs_inode))
4778 node = node->rb_left;
4779 else if (objectid > btrfs_ino(&entry->vfs_inode))
4780 node = node->rb_right;
4781 else
4782 break;
4783 }
4784 if (!node) {
4785 while (prev) {
4786 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4787 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4788 node = prev;
4789 break;
4790 }
4791 prev = rb_next(prev);
4792 }
4793 }
4794 while (node) {
4795 entry = rb_entry(node, struct btrfs_inode, rb_node);
4796 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4797 inode = igrab(&entry->vfs_inode);
4798 if (inode) {
4799 spin_unlock(&root->inode_lock);
4800 if (atomic_read(&inode->i_count) > 1)
4801 d_prune_aliases(inode);
4802 /*
4803 * btrfs_drop_inode will have it removed from
4804 * the inode cache when its usage count
4805 * hits zero.
4806 */
4807 iput(inode);
4808 cond_resched();
4809 spin_lock(&root->inode_lock);
4810 goto again;
4811 }
4812
4813 if (cond_resched_lock(&root->inode_lock))
4814 goto again;
4815
4816 node = rb_next(node);
4817 }
4818 spin_unlock(&root->inode_lock);
4819 }
4820
4821 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4822 {
4823 struct btrfs_iget_args *args = p;
4824 inode->i_ino = args->ino;
4825 BTRFS_I(inode)->root = args->root;
4826 return 0;
4827 }
4828
4829 static int btrfs_find_actor(struct inode *inode, void *opaque)
4830 {
4831 struct btrfs_iget_args *args = opaque;
4832 return args->ino == btrfs_ino(inode) &&
4833 args->root == BTRFS_I(inode)->root;
4834 }
4835
4836 static struct inode *btrfs_iget_locked(struct super_block *s,
4837 u64 objectid,
4838 struct btrfs_root *root)
4839 {
4840 struct inode *inode;
4841 struct btrfs_iget_args args;
4842 unsigned long hashval = btrfs_inode_hash(objectid, root);
4843
4844 args.ino = objectid;
4845 args.root = root;
4846
4847 inode = iget5_locked(s, hashval, btrfs_find_actor,
4848 btrfs_init_locked_inode,
4849 (void *)&args);
4850 return inode;
4851 }
4852
4853 /* Get an inode object given its location and corresponding root.
4854 * Returns in *is_new if the inode was read from disk
4855 */
4856 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4857 struct btrfs_root *root, int *new)
4858 {
4859 struct inode *inode;
4860
4861 inode = btrfs_iget_locked(s, location->objectid, root);
4862 if (!inode)
4863 return ERR_PTR(-ENOMEM);
4864
4865 if (inode->i_state & I_NEW) {
4866 BTRFS_I(inode)->root = root;
4867 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4868 btrfs_read_locked_inode(inode);
4869 if (!is_bad_inode(inode)) {
4870 inode_tree_add(inode);
4871 unlock_new_inode(inode);
4872 if (new)
4873 *new = 1;
4874 } else {
4875 unlock_new_inode(inode);
4876 iput(inode);
4877 inode = ERR_PTR(-ESTALE);
4878 }
4879 }
4880
4881 return inode;
4882 }
4883
4884 static struct inode *new_simple_dir(struct super_block *s,
4885 struct btrfs_key *key,
4886 struct btrfs_root *root)
4887 {
4888 struct inode *inode = new_inode(s);
4889
4890 if (!inode)
4891 return ERR_PTR(-ENOMEM);
4892
4893 BTRFS_I(inode)->root = root;
4894 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4895 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4896
4897 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4898 inode->i_op = &btrfs_dir_ro_inode_operations;
4899 inode->i_fop = &simple_dir_operations;
4900 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4901 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4902
4903 return inode;
4904 }
4905
4906 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4907 {
4908 struct inode *inode;
4909 struct btrfs_root *root = BTRFS_I(dir)->root;
4910 struct btrfs_root *sub_root = root;
4911 struct btrfs_key location;
4912 int index;
4913 int ret = 0;
4914
4915 if (dentry->d_name.len > BTRFS_NAME_LEN)
4916 return ERR_PTR(-ENAMETOOLONG);
4917
4918 ret = btrfs_inode_by_name(dir, dentry, &location);
4919 if (ret < 0)
4920 return ERR_PTR(ret);
4921
4922 if (location.objectid == 0)
4923 return NULL;
4924
4925 if (location.type == BTRFS_INODE_ITEM_KEY) {
4926 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4927 return inode;
4928 }
4929
4930 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4931
4932 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4933 ret = fixup_tree_root_location(root, dir, dentry,
4934 &location, &sub_root);
4935 if (ret < 0) {
4936 if (ret != -ENOENT)
4937 inode = ERR_PTR(ret);
4938 else
4939 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4940 } else {
4941 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4942 }
4943 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4944
4945 if (!IS_ERR(inode) && root != sub_root) {
4946 down_read(&root->fs_info->cleanup_work_sem);
4947 if (!(inode->i_sb->s_flags & MS_RDONLY))
4948 ret = btrfs_orphan_cleanup(sub_root);
4949 up_read(&root->fs_info->cleanup_work_sem);
4950 if (ret) {
4951 iput(inode);
4952 inode = ERR_PTR(ret);
4953 }
4954 }
4955
4956 return inode;
4957 }
4958
4959 static int btrfs_dentry_delete(const struct dentry *dentry)
4960 {
4961 struct btrfs_root *root;
4962 struct inode *inode = dentry->d_inode;
4963
4964 if (!inode && !IS_ROOT(dentry))
4965 inode = dentry->d_parent->d_inode;
4966
4967 if (inode) {
4968 root = BTRFS_I(inode)->root;
4969 if (btrfs_root_refs(&root->root_item) == 0)
4970 return 1;
4971
4972 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4973 return 1;
4974 }
4975 return 0;
4976 }
4977
4978 static void btrfs_dentry_release(struct dentry *dentry)
4979 {
4980 if (dentry->d_fsdata)
4981 kfree(dentry->d_fsdata);
4982 }
4983
4984 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4985 unsigned int flags)
4986 {
4987 struct dentry *ret;
4988
4989 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4990 return ret;
4991 }
4992
4993 unsigned char btrfs_filetype_table[] = {
4994 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4995 };
4996
4997 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
4998 {
4999 struct inode *inode = file_inode(file);
5000 struct btrfs_root *root = BTRFS_I(inode)->root;
5001 struct btrfs_item *item;
5002 struct btrfs_dir_item *di;
5003 struct btrfs_key key;
5004 struct btrfs_key found_key;
5005 struct btrfs_path *path;
5006 struct list_head ins_list;
5007 struct list_head del_list;
5008 int ret;
5009 struct extent_buffer *leaf;
5010 int slot;
5011 unsigned char d_type;
5012 int over = 0;
5013 u32 di_cur;
5014 u32 di_total;
5015 u32 di_len;
5016 int key_type = BTRFS_DIR_INDEX_KEY;
5017 char tmp_name[32];
5018 char *name_ptr;
5019 int name_len;
5020 int is_curr = 0; /* ctx->pos points to the current index? */
5021
5022 /* FIXME, use a real flag for deciding about the key type */
5023 if (root->fs_info->tree_root == root)
5024 key_type = BTRFS_DIR_ITEM_KEY;
5025
5026 if (!dir_emit_dots(file, ctx))
5027 return 0;
5028
5029 path = btrfs_alloc_path();
5030 if (!path)
5031 return -ENOMEM;
5032
5033 path->reada = 1;
5034
5035 if (key_type == BTRFS_DIR_INDEX_KEY) {
5036 INIT_LIST_HEAD(&ins_list);
5037 INIT_LIST_HEAD(&del_list);
5038 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5039 }
5040
5041 btrfs_set_key_type(&key, key_type);
5042 key.offset = ctx->pos;
5043 key.objectid = btrfs_ino(inode);
5044
5045 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5046 if (ret < 0)
5047 goto err;
5048
5049 while (1) {
5050 leaf = path->nodes[0];
5051 slot = path->slots[0];
5052 if (slot >= btrfs_header_nritems(leaf)) {
5053 ret = btrfs_next_leaf(root, path);
5054 if (ret < 0)
5055 goto err;
5056 else if (ret > 0)
5057 break;
5058 continue;
5059 }
5060
5061 item = btrfs_item_nr(slot);
5062 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5063
5064 if (found_key.objectid != key.objectid)
5065 break;
5066 if (btrfs_key_type(&found_key) != key_type)
5067 break;
5068 if (found_key.offset < ctx->pos)
5069 goto next;
5070 if (key_type == BTRFS_DIR_INDEX_KEY &&
5071 btrfs_should_delete_dir_index(&del_list,
5072 found_key.offset))
5073 goto next;
5074
5075 ctx->pos = found_key.offset;
5076 is_curr = 1;
5077
5078 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5079 di_cur = 0;
5080 di_total = btrfs_item_size(leaf, item);
5081
5082 while (di_cur < di_total) {
5083 struct btrfs_key location;
5084
5085 if (verify_dir_item(root, leaf, di))
5086 break;
5087
5088 name_len = btrfs_dir_name_len(leaf, di);
5089 if (name_len <= sizeof(tmp_name)) {
5090 name_ptr = tmp_name;
5091 } else {
5092 name_ptr = kmalloc(name_len, GFP_NOFS);
5093 if (!name_ptr) {
5094 ret = -ENOMEM;
5095 goto err;
5096 }
5097 }
5098 read_extent_buffer(leaf, name_ptr,
5099 (unsigned long)(di + 1), name_len);
5100
5101 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5102 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5103
5104
5105 /* is this a reference to our own snapshot? If so
5106 * skip it.
5107 *
5108 * In contrast to old kernels, we insert the snapshot's
5109 * dir item and dir index after it has been created, so
5110 * we won't find a reference to our own snapshot. We
5111 * still keep the following code for backward
5112 * compatibility.
5113 */
5114 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5115 location.objectid == root->root_key.objectid) {
5116 over = 0;
5117 goto skip;
5118 }
5119 over = !dir_emit(ctx, name_ptr, name_len,
5120 location.objectid, d_type);
5121
5122 skip:
5123 if (name_ptr != tmp_name)
5124 kfree(name_ptr);
5125
5126 if (over)
5127 goto nopos;
5128 di_len = btrfs_dir_name_len(leaf, di) +
5129 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5130 di_cur += di_len;
5131 di = (struct btrfs_dir_item *)((char *)di + di_len);
5132 }
5133 next:
5134 path->slots[0]++;
5135 }
5136
5137 if (key_type == BTRFS_DIR_INDEX_KEY) {
5138 if (is_curr)
5139 ctx->pos++;
5140 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5141 if (ret)
5142 goto nopos;
5143 }
5144
5145 /* Reached end of directory/root. Bump pos past the last item. */
5146 ctx->pos++;
5147
5148 /*
5149 * Stop new entries from being returned after we return the last
5150 * entry.
5151 *
5152 * New directory entries are assigned a strictly increasing
5153 * offset. This means that new entries created during readdir
5154 * are *guaranteed* to be seen in the future by that readdir.
5155 * This has broken buggy programs which operate on names as
5156 * they're returned by readdir. Until we re-use freed offsets
5157 * we have this hack to stop new entries from being returned
5158 * under the assumption that they'll never reach this huge
5159 * offset.
5160 *
5161 * This is being careful not to overflow 32bit loff_t unless the
5162 * last entry requires it because doing so has broken 32bit apps
5163 * in the past.
5164 */
5165 if (key_type == BTRFS_DIR_INDEX_KEY) {
5166 if (ctx->pos >= INT_MAX)
5167 ctx->pos = LLONG_MAX;
5168 else
5169 ctx->pos = INT_MAX;
5170 }
5171 nopos:
5172 ret = 0;
5173 err:
5174 if (key_type == BTRFS_DIR_INDEX_KEY)
5175 btrfs_put_delayed_items(&ins_list, &del_list);
5176 btrfs_free_path(path);
5177 return ret;
5178 }
5179
5180 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5181 {
5182 struct btrfs_root *root = BTRFS_I(inode)->root;
5183 struct btrfs_trans_handle *trans;
5184 int ret = 0;
5185 bool nolock = false;
5186
5187 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5188 return 0;
5189
5190 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5191 nolock = true;
5192
5193 if (wbc->sync_mode == WB_SYNC_ALL) {
5194 if (nolock)
5195 trans = btrfs_join_transaction_nolock(root);
5196 else
5197 trans = btrfs_join_transaction(root);
5198 if (IS_ERR(trans))
5199 return PTR_ERR(trans);
5200 ret = btrfs_commit_transaction(trans, root);
5201 }
5202 return ret;
5203 }
5204
5205 /*
5206 * This is somewhat expensive, updating the tree every time the
5207 * inode changes. But, it is most likely to find the inode in cache.
5208 * FIXME, needs more benchmarking...there are no reasons other than performance
5209 * to keep or drop this code.
5210 */
5211 static int btrfs_dirty_inode(struct inode *inode)
5212 {
5213 struct btrfs_root *root = BTRFS_I(inode)->root;
5214 struct btrfs_trans_handle *trans;
5215 int ret;
5216
5217 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5218 return 0;
5219
5220 trans = btrfs_join_transaction(root);
5221 if (IS_ERR(trans))
5222 return PTR_ERR(trans);
5223
5224 ret = btrfs_update_inode(trans, root, inode);
5225 if (ret && ret == -ENOSPC) {
5226 /* whoops, lets try again with the full transaction */
5227 btrfs_end_transaction(trans, root);
5228 trans = btrfs_start_transaction(root, 1);
5229 if (IS_ERR(trans))
5230 return PTR_ERR(trans);
5231
5232 ret = btrfs_update_inode(trans, root, inode);
5233 }
5234 btrfs_end_transaction(trans, root);
5235 if (BTRFS_I(inode)->delayed_node)
5236 btrfs_balance_delayed_items(root);
5237
5238 return ret;
5239 }
5240
5241 /*
5242 * This is a copy of file_update_time. We need this so we can return error on
5243 * ENOSPC for updating the inode in the case of file write and mmap writes.
5244 */
5245 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5246 int flags)
5247 {
5248 struct btrfs_root *root = BTRFS_I(inode)->root;
5249
5250 if (btrfs_root_readonly(root))
5251 return -EROFS;
5252
5253 if (flags & S_VERSION)
5254 inode_inc_iversion(inode);
5255 if (flags & S_CTIME)
5256 inode->i_ctime = *now;
5257 if (flags & S_MTIME)
5258 inode->i_mtime = *now;
5259 if (flags & S_ATIME)
5260 inode->i_atime = *now;
5261 return btrfs_dirty_inode(inode);
5262 }
5263
5264 /*
5265 * find the highest existing sequence number in a directory
5266 * and then set the in-memory index_cnt variable to reflect
5267 * free sequence numbers
5268 */
5269 static int btrfs_set_inode_index_count(struct inode *inode)
5270 {
5271 struct btrfs_root *root = BTRFS_I(inode)->root;
5272 struct btrfs_key key, found_key;
5273 struct btrfs_path *path;
5274 struct extent_buffer *leaf;
5275 int ret;
5276
5277 key.objectid = btrfs_ino(inode);
5278 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5279 key.offset = (u64)-1;
5280
5281 path = btrfs_alloc_path();
5282 if (!path)
5283 return -ENOMEM;
5284
5285 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5286 if (ret < 0)
5287 goto out;
5288 /* FIXME: we should be able to handle this */
5289 if (ret == 0)
5290 goto out;
5291 ret = 0;
5292
5293 /*
5294 * MAGIC NUMBER EXPLANATION:
5295 * since we search a directory based on f_pos we have to start at 2
5296 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5297 * else has to start at 2
5298 */
5299 if (path->slots[0] == 0) {
5300 BTRFS_I(inode)->index_cnt = 2;
5301 goto out;
5302 }
5303
5304 path->slots[0]--;
5305
5306 leaf = path->nodes[0];
5307 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5308
5309 if (found_key.objectid != btrfs_ino(inode) ||
5310 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5311 BTRFS_I(inode)->index_cnt = 2;
5312 goto out;
5313 }
5314
5315 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5316 out:
5317 btrfs_free_path(path);
5318 return ret;
5319 }
5320
5321 /*
5322 * helper to find a free sequence number in a given directory. This current
5323 * code is very simple, later versions will do smarter things in the btree
5324 */
5325 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5326 {
5327 int ret = 0;
5328
5329 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5330 ret = btrfs_inode_delayed_dir_index_count(dir);
5331 if (ret) {
5332 ret = btrfs_set_inode_index_count(dir);
5333 if (ret)
5334 return ret;
5335 }
5336 }
5337
5338 *index = BTRFS_I(dir)->index_cnt;
5339 BTRFS_I(dir)->index_cnt++;
5340
5341 return ret;
5342 }
5343
5344 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5345 struct btrfs_root *root,
5346 struct inode *dir,
5347 const char *name, int name_len,
5348 u64 ref_objectid, u64 objectid,
5349 umode_t mode, u64 *index)
5350 {
5351 struct inode *inode;
5352 struct btrfs_inode_item *inode_item;
5353 struct btrfs_key *location;
5354 struct btrfs_path *path;
5355 struct btrfs_inode_ref *ref;
5356 struct btrfs_key key[2];
5357 u32 sizes[2];
5358 unsigned long ptr;
5359 int ret;
5360 int owner;
5361
5362 path = btrfs_alloc_path();
5363 if (!path)
5364 return ERR_PTR(-ENOMEM);
5365
5366 inode = new_inode(root->fs_info->sb);
5367 if (!inode) {
5368 btrfs_free_path(path);
5369 return ERR_PTR(-ENOMEM);
5370 }
5371
5372 /*
5373 * we have to initialize this early, so we can reclaim the inode
5374 * number if we fail afterwards in this function.
5375 */
5376 inode->i_ino = objectid;
5377
5378 if (dir) {
5379 trace_btrfs_inode_request(dir);
5380
5381 ret = btrfs_set_inode_index(dir, index);
5382 if (ret) {
5383 btrfs_free_path(path);
5384 iput(inode);
5385 return ERR_PTR(ret);
5386 }
5387 }
5388 /*
5389 * index_cnt is ignored for everything but a dir,
5390 * btrfs_get_inode_index_count has an explanation for the magic
5391 * number
5392 */
5393 BTRFS_I(inode)->index_cnt = 2;
5394 BTRFS_I(inode)->root = root;
5395 BTRFS_I(inode)->generation = trans->transid;
5396 inode->i_generation = BTRFS_I(inode)->generation;
5397
5398 /*
5399 * We could have gotten an inode number from somebody who was fsynced
5400 * and then removed in this same transaction, so let's just set full
5401 * sync since it will be a full sync anyway and this will blow away the
5402 * old info in the log.
5403 */
5404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5405
5406 if (S_ISDIR(mode))
5407 owner = 0;
5408 else
5409 owner = 1;
5410
5411 key[0].objectid = objectid;
5412 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5413 key[0].offset = 0;
5414
5415 /*
5416 * Start new inodes with an inode_ref. This is slightly more
5417 * efficient for small numbers of hard links since they will
5418 * be packed into one item. Extended refs will kick in if we
5419 * add more hard links than can fit in the ref item.
5420 */
5421 key[1].objectid = objectid;
5422 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5423 key[1].offset = ref_objectid;
5424
5425 sizes[0] = sizeof(struct btrfs_inode_item);
5426 sizes[1] = name_len + sizeof(*ref);
5427
5428 path->leave_spinning = 1;
5429 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5430 if (ret != 0)
5431 goto fail;
5432
5433 inode_init_owner(inode, dir, mode);
5434 inode_set_bytes(inode, 0);
5435 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5436 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5437 struct btrfs_inode_item);
5438 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5439 sizeof(*inode_item));
5440 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5441
5442 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5443 struct btrfs_inode_ref);
5444 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5445 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5446 ptr = (unsigned long)(ref + 1);
5447 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5448
5449 btrfs_mark_buffer_dirty(path->nodes[0]);
5450 btrfs_free_path(path);
5451
5452 location = &BTRFS_I(inode)->location;
5453 location->objectid = objectid;
5454 location->offset = 0;
5455 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5456
5457 btrfs_inherit_iflags(inode, dir);
5458
5459 if (S_ISREG(mode)) {
5460 if (btrfs_test_opt(root, NODATASUM))
5461 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5462 if (btrfs_test_opt(root, NODATACOW))
5463 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5464 BTRFS_INODE_NODATASUM;
5465 }
5466
5467 btrfs_insert_inode_hash(inode);
5468 inode_tree_add(inode);
5469
5470 trace_btrfs_inode_new(inode);
5471 btrfs_set_inode_last_trans(trans, inode);
5472
5473 btrfs_update_root_times(trans, root);
5474
5475 return inode;
5476 fail:
5477 if (dir)
5478 BTRFS_I(dir)->index_cnt--;
5479 btrfs_free_path(path);
5480 iput(inode);
5481 return ERR_PTR(ret);
5482 }
5483
5484 static inline u8 btrfs_inode_type(struct inode *inode)
5485 {
5486 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5487 }
5488
5489 /*
5490 * utility function to add 'inode' into 'parent_inode' with
5491 * a give name and a given sequence number.
5492 * if 'add_backref' is true, also insert a backref from the
5493 * inode to the parent directory.
5494 */
5495 int btrfs_add_link(struct btrfs_trans_handle *trans,
5496 struct inode *parent_inode, struct inode *inode,
5497 const char *name, int name_len, int add_backref, u64 index)
5498 {
5499 int ret = 0;
5500 struct btrfs_key key;
5501 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5502 u64 ino = btrfs_ino(inode);
5503 u64 parent_ino = btrfs_ino(parent_inode);
5504
5505 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5506 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5507 } else {
5508 key.objectid = ino;
5509 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5510 key.offset = 0;
5511 }
5512
5513 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5514 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5515 key.objectid, root->root_key.objectid,
5516 parent_ino, index, name, name_len);
5517 } else if (add_backref) {
5518 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5519 parent_ino, index);
5520 }
5521
5522 /* Nothing to clean up yet */
5523 if (ret)
5524 return ret;
5525
5526 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5527 parent_inode, &key,
5528 btrfs_inode_type(inode), index);
5529 if (ret == -EEXIST || ret == -EOVERFLOW)
5530 goto fail_dir_item;
5531 else if (ret) {
5532 btrfs_abort_transaction(trans, root, ret);
5533 return ret;
5534 }
5535
5536 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5537 name_len * 2);
5538 inode_inc_iversion(parent_inode);
5539 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5540 ret = btrfs_update_inode(trans, root, parent_inode);
5541 if (ret)
5542 btrfs_abort_transaction(trans, root, ret);
5543 return ret;
5544
5545 fail_dir_item:
5546 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5547 u64 local_index;
5548 int err;
5549 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5550 key.objectid, root->root_key.objectid,
5551 parent_ino, &local_index, name, name_len);
5552
5553 } else if (add_backref) {
5554 u64 local_index;
5555 int err;
5556
5557 err = btrfs_del_inode_ref(trans, root, name, name_len,
5558 ino, parent_ino, &local_index);
5559 }
5560 return ret;
5561 }
5562
5563 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5564 struct inode *dir, struct dentry *dentry,
5565 struct inode *inode, int backref, u64 index)
5566 {
5567 int err = btrfs_add_link(trans, dir, inode,
5568 dentry->d_name.name, dentry->d_name.len,
5569 backref, index);
5570 if (err > 0)
5571 err = -EEXIST;
5572 return err;
5573 }
5574
5575 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5576 umode_t mode, dev_t rdev)
5577 {
5578 struct btrfs_trans_handle *trans;
5579 struct btrfs_root *root = BTRFS_I(dir)->root;
5580 struct inode *inode = NULL;
5581 int err;
5582 int drop_inode = 0;
5583 u64 objectid;
5584 u64 index = 0;
5585
5586 if (!new_valid_dev(rdev))
5587 return -EINVAL;
5588
5589 /*
5590 * 2 for inode item and ref
5591 * 2 for dir items
5592 * 1 for xattr if selinux is on
5593 */
5594 trans = btrfs_start_transaction(root, 5);
5595 if (IS_ERR(trans))
5596 return PTR_ERR(trans);
5597
5598 err = btrfs_find_free_ino(root, &objectid);
5599 if (err)
5600 goto out_unlock;
5601
5602 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5603 dentry->d_name.len, btrfs_ino(dir), objectid,
5604 mode, &index);
5605 if (IS_ERR(inode)) {
5606 err = PTR_ERR(inode);
5607 goto out_unlock;
5608 }
5609
5610 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5611 if (err) {
5612 drop_inode = 1;
5613 goto out_unlock;
5614 }
5615
5616 /*
5617 * If the active LSM wants to access the inode during
5618 * d_instantiate it needs these. Smack checks to see
5619 * if the filesystem supports xattrs by looking at the
5620 * ops vector.
5621 */
5622
5623 inode->i_op = &btrfs_special_inode_operations;
5624 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5625 if (err)
5626 drop_inode = 1;
5627 else {
5628 init_special_inode(inode, inode->i_mode, rdev);
5629 btrfs_update_inode(trans, root, inode);
5630 d_instantiate(dentry, inode);
5631 }
5632 out_unlock:
5633 btrfs_end_transaction(trans, root);
5634 btrfs_btree_balance_dirty(root);
5635 if (drop_inode) {
5636 inode_dec_link_count(inode);
5637 iput(inode);
5638 }
5639 return err;
5640 }
5641
5642 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5643 umode_t mode, bool excl)
5644 {
5645 struct btrfs_trans_handle *trans;
5646 struct btrfs_root *root = BTRFS_I(dir)->root;
5647 struct inode *inode = NULL;
5648 int drop_inode_on_err = 0;
5649 int err;
5650 u64 objectid;
5651 u64 index = 0;
5652
5653 /*
5654 * 2 for inode item and ref
5655 * 2 for dir items
5656 * 1 for xattr if selinux is on
5657 */
5658 trans = btrfs_start_transaction(root, 5);
5659 if (IS_ERR(trans))
5660 return PTR_ERR(trans);
5661
5662 err = btrfs_find_free_ino(root, &objectid);
5663 if (err)
5664 goto out_unlock;
5665
5666 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5667 dentry->d_name.len, btrfs_ino(dir), objectid,
5668 mode, &index);
5669 if (IS_ERR(inode)) {
5670 err = PTR_ERR(inode);
5671 goto out_unlock;
5672 }
5673 drop_inode_on_err = 1;
5674
5675 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5676 if (err)
5677 goto out_unlock;
5678
5679 err = btrfs_update_inode(trans, root, inode);
5680 if (err)
5681 goto out_unlock;
5682
5683 /*
5684 * If the active LSM wants to access the inode during
5685 * d_instantiate it needs these. Smack checks to see
5686 * if the filesystem supports xattrs by looking at the
5687 * ops vector.
5688 */
5689 inode->i_fop = &btrfs_file_operations;
5690 inode->i_op = &btrfs_file_inode_operations;
5691
5692 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5693 if (err)
5694 goto out_unlock;
5695
5696 inode->i_mapping->a_ops = &btrfs_aops;
5697 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5698 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5699 d_instantiate(dentry, inode);
5700
5701 out_unlock:
5702 btrfs_end_transaction(trans, root);
5703 if (err && drop_inode_on_err) {
5704 inode_dec_link_count(inode);
5705 iput(inode);
5706 }
5707 btrfs_btree_balance_dirty(root);
5708 return err;
5709 }
5710
5711 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5712 struct dentry *dentry)
5713 {
5714 struct btrfs_trans_handle *trans;
5715 struct btrfs_root *root = BTRFS_I(dir)->root;
5716 struct inode *inode = old_dentry->d_inode;
5717 u64 index;
5718 int err;
5719 int drop_inode = 0;
5720
5721 /* do not allow sys_link's with other subvols of the same device */
5722 if (root->objectid != BTRFS_I(inode)->root->objectid)
5723 return -EXDEV;
5724
5725 if (inode->i_nlink >= BTRFS_LINK_MAX)
5726 return -EMLINK;
5727
5728 err = btrfs_set_inode_index(dir, &index);
5729 if (err)
5730 goto fail;
5731
5732 /*
5733 * 2 items for inode and inode ref
5734 * 2 items for dir items
5735 * 1 item for parent inode
5736 */
5737 trans = btrfs_start_transaction(root, 5);
5738 if (IS_ERR(trans)) {
5739 err = PTR_ERR(trans);
5740 goto fail;
5741 }
5742
5743 inc_nlink(inode);
5744 inode_inc_iversion(inode);
5745 inode->i_ctime = CURRENT_TIME;
5746 ihold(inode);
5747 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5748
5749 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5750
5751 if (err) {
5752 drop_inode = 1;
5753 } else {
5754 struct dentry *parent = dentry->d_parent;
5755 err = btrfs_update_inode(trans, root, inode);
5756 if (err)
5757 goto fail;
5758 d_instantiate(dentry, inode);
5759 btrfs_log_new_name(trans, inode, NULL, parent);
5760 }
5761
5762 btrfs_end_transaction(trans, root);
5763 fail:
5764 if (drop_inode) {
5765 inode_dec_link_count(inode);
5766 iput(inode);
5767 }
5768 btrfs_btree_balance_dirty(root);
5769 return err;
5770 }
5771
5772 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5773 {
5774 struct inode *inode = NULL;
5775 struct btrfs_trans_handle *trans;
5776 struct btrfs_root *root = BTRFS_I(dir)->root;
5777 int err = 0;
5778 int drop_on_err = 0;
5779 u64 objectid = 0;
5780 u64 index = 0;
5781
5782 /*
5783 * 2 items for inode and ref
5784 * 2 items for dir items
5785 * 1 for xattr if selinux is on
5786 */
5787 trans = btrfs_start_transaction(root, 5);
5788 if (IS_ERR(trans))
5789 return PTR_ERR(trans);
5790
5791 err = btrfs_find_free_ino(root, &objectid);
5792 if (err)
5793 goto out_fail;
5794
5795 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5796 dentry->d_name.len, btrfs_ino(dir), objectid,
5797 S_IFDIR | mode, &index);
5798 if (IS_ERR(inode)) {
5799 err = PTR_ERR(inode);
5800 goto out_fail;
5801 }
5802
5803 drop_on_err = 1;
5804
5805 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5806 if (err)
5807 goto out_fail;
5808
5809 inode->i_op = &btrfs_dir_inode_operations;
5810 inode->i_fop = &btrfs_dir_file_operations;
5811
5812 btrfs_i_size_write(inode, 0);
5813 err = btrfs_update_inode(trans, root, inode);
5814 if (err)
5815 goto out_fail;
5816
5817 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5818 dentry->d_name.len, 0, index);
5819 if (err)
5820 goto out_fail;
5821
5822 d_instantiate(dentry, inode);
5823 drop_on_err = 0;
5824
5825 out_fail:
5826 btrfs_end_transaction(trans, root);
5827 if (drop_on_err)
5828 iput(inode);
5829 btrfs_btree_balance_dirty(root);
5830 return err;
5831 }
5832
5833 /* helper for btfs_get_extent. Given an existing extent in the tree,
5834 * and an extent that you want to insert, deal with overlap and insert
5835 * the new extent into the tree.
5836 */
5837 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5838 struct extent_map *existing,
5839 struct extent_map *em,
5840 u64 map_start, u64 map_len)
5841 {
5842 u64 start_diff;
5843
5844 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5845 start_diff = map_start - em->start;
5846 em->start = map_start;
5847 em->len = map_len;
5848 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5849 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5850 em->block_start += start_diff;
5851 em->block_len -= start_diff;
5852 }
5853 return add_extent_mapping(em_tree, em, 0);
5854 }
5855
5856 static noinline int uncompress_inline(struct btrfs_path *path,
5857 struct inode *inode, struct page *page,
5858 size_t pg_offset, u64 extent_offset,
5859 struct btrfs_file_extent_item *item)
5860 {
5861 int ret;
5862 struct extent_buffer *leaf = path->nodes[0];
5863 char *tmp;
5864 size_t max_size;
5865 unsigned long inline_size;
5866 unsigned long ptr;
5867 int compress_type;
5868
5869 WARN_ON(pg_offset != 0);
5870 compress_type = btrfs_file_extent_compression(leaf, item);
5871 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5872 inline_size = btrfs_file_extent_inline_item_len(leaf,
5873 btrfs_item_nr(path->slots[0]));
5874 tmp = kmalloc(inline_size, GFP_NOFS);
5875 if (!tmp)
5876 return -ENOMEM;
5877 ptr = btrfs_file_extent_inline_start(item);
5878
5879 read_extent_buffer(leaf, tmp, ptr, inline_size);
5880
5881 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5882 ret = btrfs_decompress(compress_type, tmp, page,
5883 extent_offset, inline_size, max_size);
5884 if (ret) {
5885 char *kaddr = kmap_atomic(page);
5886 unsigned long copy_size = min_t(u64,
5887 PAGE_CACHE_SIZE - pg_offset,
5888 max_size - extent_offset);
5889 memset(kaddr + pg_offset, 0, copy_size);
5890 kunmap_atomic(kaddr);
5891 }
5892 kfree(tmp);
5893 return 0;
5894 }
5895
5896 /*
5897 * a bit scary, this does extent mapping from logical file offset to the disk.
5898 * the ugly parts come from merging extents from the disk with the in-ram
5899 * representation. This gets more complex because of the data=ordered code,
5900 * where the in-ram extents might be locked pending data=ordered completion.
5901 *
5902 * This also copies inline extents directly into the page.
5903 */
5904
5905 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5906 size_t pg_offset, u64 start, u64 len,
5907 int create)
5908 {
5909 int ret;
5910 int err = 0;
5911 u64 bytenr;
5912 u64 extent_start = 0;
5913 u64 extent_end = 0;
5914 u64 objectid = btrfs_ino(inode);
5915 u32 found_type;
5916 struct btrfs_path *path = NULL;
5917 struct btrfs_root *root = BTRFS_I(inode)->root;
5918 struct btrfs_file_extent_item *item;
5919 struct extent_buffer *leaf;
5920 struct btrfs_key found_key;
5921 struct extent_map *em = NULL;
5922 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5923 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5924 struct btrfs_trans_handle *trans = NULL;
5925 int compress_type;
5926
5927 again:
5928 read_lock(&em_tree->lock);
5929 em = lookup_extent_mapping(em_tree, start, len);
5930 if (em)
5931 em->bdev = root->fs_info->fs_devices->latest_bdev;
5932 read_unlock(&em_tree->lock);
5933
5934 if (em) {
5935 if (em->start > start || em->start + em->len <= start)
5936 free_extent_map(em);
5937 else if (em->block_start == EXTENT_MAP_INLINE && page)
5938 free_extent_map(em);
5939 else
5940 goto out;
5941 }
5942 em = alloc_extent_map();
5943 if (!em) {
5944 err = -ENOMEM;
5945 goto out;
5946 }
5947 em->bdev = root->fs_info->fs_devices->latest_bdev;
5948 em->start = EXTENT_MAP_HOLE;
5949 em->orig_start = EXTENT_MAP_HOLE;
5950 em->len = (u64)-1;
5951 em->block_len = (u64)-1;
5952
5953 if (!path) {
5954 path = btrfs_alloc_path();
5955 if (!path) {
5956 err = -ENOMEM;
5957 goto out;
5958 }
5959 /*
5960 * Chances are we'll be called again, so go ahead and do
5961 * readahead
5962 */
5963 path->reada = 1;
5964 }
5965
5966 ret = btrfs_lookup_file_extent(trans, root, path,
5967 objectid, start, trans != NULL);
5968 if (ret < 0) {
5969 err = ret;
5970 goto out;
5971 }
5972
5973 if (ret != 0) {
5974 if (path->slots[0] == 0)
5975 goto not_found;
5976 path->slots[0]--;
5977 }
5978
5979 leaf = path->nodes[0];
5980 item = btrfs_item_ptr(leaf, path->slots[0],
5981 struct btrfs_file_extent_item);
5982 /* are we inside the extent that was found? */
5983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5984 found_type = btrfs_key_type(&found_key);
5985 if (found_key.objectid != objectid ||
5986 found_type != BTRFS_EXTENT_DATA_KEY) {
5987 /*
5988 * If we backup past the first extent we want to move forward
5989 * and see if there is an extent in front of us, otherwise we'll
5990 * say there is a hole for our whole search range which can
5991 * cause problems.
5992 */
5993 extent_end = start;
5994 goto next;
5995 }
5996
5997 found_type = btrfs_file_extent_type(leaf, item);
5998 extent_start = found_key.offset;
5999 compress_type = btrfs_file_extent_compression(leaf, item);
6000 if (found_type == BTRFS_FILE_EXTENT_REG ||
6001 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6002 extent_end = extent_start +
6003 btrfs_file_extent_num_bytes(leaf, item);
6004 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6005 size_t size;
6006 size = btrfs_file_extent_inline_len(leaf, item);
6007 extent_end = ALIGN(extent_start + size, root->sectorsize);
6008 }
6009 next:
6010 if (start >= extent_end) {
6011 path->slots[0]++;
6012 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6013 ret = btrfs_next_leaf(root, path);
6014 if (ret < 0) {
6015 err = ret;
6016 goto out;
6017 }
6018 if (ret > 0)
6019 goto not_found;
6020 leaf = path->nodes[0];
6021 }
6022 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6023 if (found_key.objectid != objectid ||
6024 found_key.type != BTRFS_EXTENT_DATA_KEY)
6025 goto not_found;
6026 if (start + len <= found_key.offset)
6027 goto not_found;
6028 em->start = start;
6029 em->orig_start = start;
6030 em->len = found_key.offset - start;
6031 goto not_found_em;
6032 }
6033
6034 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6035 if (found_type == BTRFS_FILE_EXTENT_REG ||
6036 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6037 em->start = extent_start;
6038 em->len = extent_end - extent_start;
6039 em->orig_start = extent_start -
6040 btrfs_file_extent_offset(leaf, item);
6041 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6042 item);
6043 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6044 if (bytenr == 0) {
6045 em->block_start = EXTENT_MAP_HOLE;
6046 goto insert;
6047 }
6048 if (compress_type != BTRFS_COMPRESS_NONE) {
6049 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6050 em->compress_type = compress_type;
6051 em->block_start = bytenr;
6052 em->block_len = em->orig_block_len;
6053 } else {
6054 bytenr += btrfs_file_extent_offset(leaf, item);
6055 em->block_start = bytenr;
6056 em->block_len = em->len;
6057 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6058 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6059 }
6060 goto insert;
6061 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6062 unsigned long ptr;
6063 char *map;
6064 size_t size;
6065 size_t extent_offset;
6066 size_t copy_size;
6067
6068 em->block_start = EXTENT_MAP_INLINE;
6069 if (!page || create) {
6070 em->start = extent_start;
6071 em->len = extent_end - extent_start;
6072 goto out;
6073 }
6074
6075 size = btrfs_file_extent_inline_len(leaf, item);
6076 extent_offset = page_offset(page) + pg_offset - extent_start;
6077 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6078 size - extent_offset);
6079 em->start = extent_start + extent_offset;
6080 em->len = ALIGN(copy_size, root->sectorsize);
6081 em->orig_block_len = em->len;
6082 em->orig_start = em->start;
6083 if (compress_type) {
6084 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6085 em->compress_type = compress_type;
6086 }
6087 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6088 if (create == 0 && !PageUptodate(page)) {
6089 if (btrfs_file_extent_compression(leaf, item) !=
6090 BTRFS_COMPRESS_NONE) {
6091 ret = uncompress_inline(path, inode, page,
6092 pg_offset,
6093 extent_offset, item);
6094 BUG_ON(ret); /* -ENOMEM */
6095 } else {
6096 map = kmap(page);
6097 read_extent_buffer(leaf, map + pg_offset, ptr,
6098 copy_size);
6099 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6100 memset(map + pg_offset + copy_size, 0,
6101 PAGE_CACHE_SIZE - pg_offset -
6102 copy_size);
6103 }
6104 kunmap(page);
6105 }
6106 flush_dcache_page(page);
6107 } else if (create && PageUptodate(page)) {
6108 BUG();
6109 if (!trans) {
6110 kunmap(page);
6111 free_extent_map(em);
6112 em = NULL;
6113
6114 btrfs_release_path(path);
6115 trans = btrfs_join_transaction(root);
6116
6117 if (IS_ERR(trans))
6118 return ERR_CAST(trans);
6119 goto again;
6120 }
6121 map = kmap(page);
6122 write_extent_buffer(leaf, map + pg_offset, ptr,
6123 copy_size);
6124 kunmap(page);
6125 btrfs_mark_buffer_dirty(leaf);
6126 }
6127 set_extent_uptodate(io_tree, em->start,
6128 extent_map_end(em) - 1, NULL, GFP_NOFS);
6129 goto insert;
6130 } else {
6131 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6132 }
6133 not_found:
6134 em->start = start;
6135 em->orig_start = start;
6136 em->len = len;
6137 not_found_em:
6138 em->block_start = EXTENT_MAP_HOLE;
6139 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6140 insert:
6141 btrfs_release_path(path);
6142 if (em->start > start || extent_map_end(em) <= start) {
6143 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6144 em->start, em->len, start, len);
6145 err = -EIO;
6146 goto out;
6147 }
6148
6149 err = 0;
6150 write_lock(&em_tree->lock);
6151 ret = add_extent_mapping(em_tree, em, 0);
6152 /* it is possible that someone inserted the extent into the tree
6153 * while we had the lock dropped. It is also possible that
6154 * an overlapping map exists in the tree
6155 */
6156 if (ret == -EEXIST) {
6157 struct extent_map *existing;
6158
6159 ret = 0;
6160
6161 existing = lookup_extent_mapping(em_tree, start, len);
6162 if (existing && (existing->start > start ||
6163 existing->start + existing->len <= start)) {
6164 free_extent_map(existing);
6165 existing = NULL;
6166 }
6167 if (!existing) {
6168 existing = lookup_extent_mapping(em_tree, em->start,
6169 em->len);
6170 if (existing) {
6171 err = merge_extent_mapping(em_tree, existing,
6172 em, start,
6173 root->sectorsize);
6174 free_extent_map(existing);
6175 if (err) {
6176 free_extent_map(em);
6177 em = NULL;
6178 }
6179 } else {
6180 err = -EIO;
6181 free_extent_map(em);
6182 em = NULL;
6183 }
6184 } else {
6185 free_extent_map(em);
6186 em = existing;
6187 err = 0;
6188 }
6189 }
6190 write_unlock(&em_tree->lock);
6191 out:
6192
6193 if (em)
6194 trace_btrfs_get_extent(root, em);
6195
6196 if (path)
6197 btrfs_free_path(path);
6198 if (trans) {
6199 ret = btrfs_end_transaction(trans, root);
6200 if (!err)
6201 err = ret;
6202 }
6203 if (err) {
6204 free_extent_map(em);
6205 return ERR_PTR(err);
6206 }
6207 BUG_ON(!em); /* Error is always set */
6208 return em;
6209 }
6210
6211 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6212 size_t pg_offset, u64 start, u64 len,
6213 int create)
6214 {
6215 struct extent_map *em;
6216 struct extent_map *hole_em = NULL;
6217 u64 range_start = start;
6218 u64 end;
6219 u64 found;
6220 u64 found_end;
6221 int err = 0;
6222
6223 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6224 if (IS_ERR(em))
6225 return em;
6226 if (em) {
6227 /*
6228 * if our em maps to
6229 * - a hole or
6230 * - a pre-alloc extent,
6231 * there might actually be delalloc bytes behind it.
6232 */
6233 if (em->block_start != EXTENT_MAP_HOLE &&
6234 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6235 return em;
6236 else
6237 hole_em = em;
6238 }
6239
6240 /* check to see if we've wrapped (len == -1 or similar) */
6241 end = start + len;
6242 if (end < start)
6243 end = (u64)-1;
6244 else
6245 end -= 1;
6246
6247 em = NULL;
6248
6249 /* ok, we didn't find anything, lets look for delalloc */
6250 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6251 end, len, EXTENT_DELALLOC, 1);
6252 found_end = range_start + found;
6253 if (found_end < range_start)
6254 found_end = (u64)-1;
6255
6256 /*
6257 * we didn't find anything useful, return
6258 * the original results from get_extent()
6259 */
6260 if (range_start > end || found_end <= start) {
6261 em = hole_em;
6262 hole_em = NULL;
6263 goto out;
6264 }
6265
6266 /* adjust the range_start to make sure it doesn't
6267 * go backwards from the start they passed in
6268 */
6269 range_start = max(start,range_start);
6270 found = found_end - range_start;
6271
6272 if (found > 0) {
6273 u64 hole_start = start;
6274 u64 hole_len = len;
6275
6276 em = alloc_extent_map();
6277 if (!em) {
6278 err = -ENOMEM;
6279 goto out;
6280 }
6281 /*
6282 * when btrfs_get_extent can't find anything it
6283 * returns one huge hole
6284 *
6285 * make sure what it found really fits our range, and
6286 * adjust to make sure it is based on the start from
6287 * the caller
6288 */
6289 if (hole_em) {
6290 u64 calc_end = extent_map_end(hole_em);
6291
6292 if (calc_end <= start || (hole_em->start > end)) {
6293 free_extent_map(hole_em);
6294 hole_em = NULL;
6295 } else {
6296 hole_start = max(hole_em->start, start);
6297 hole_len = calc_end - hole_start;
6298 }
6299 }
6300 em->bdev = NULL;
6301 if (hole_em && range_start > hole_start) {
6302 /* our hole starts before our delalloc, so we
6303 * have to return just the parts of the hole
6304 * that go until the delalloc starts
6305 */
6306 em->len = min(hole_len,
6307 range_start - hole_start);
6308 em->start = hole_start;
6309 em->orig_start = hole_start;
6310 /*
6311 * don't adjust block start at all,
6312 * it is fixed at EXTENT_MAP_HOLE
6313 */
6314 em->block_start = hole_em->block_start;
6315 em->block_len = hole_len;
6316 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6317 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6318 } else {
6319 em->start = range_start;
6320 em->len = found;
6321 em->orig_start = range_start;
6322 em->block_start = EXTENT_MAP_DELALLOC;
6323 em->block_len = found;
6324 }
6325 } else if (hole_em) {
6326 return hole_em;
6327 }
6328 out:
6329
6330 free_extent_map(hole_em);
6331 if (err) {
6332 free_extent_map(em);
6333 return ERR_PTR(err);
6334 }
6335 return em;
6336 }
6337
6338 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6339 u64 start, u64 len)
6340 {
6341 struct btrfs_root *root = BTRFS_I(inode)->root;
6342 struct extent_map *em;
6343 struct btrfs_key ins;
6344 u64 alloc_hint;
6345 int ret;
6346
6347 alloc_hint = get_extent_allocation_hint(inode, start, len);
6348 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6349 alloc_hint, &ins, 1);
6350 if (ret)
6351 return ERR_PTR(ret);
6352
6353 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6354 ins.offset, ins.offset, ins.offset, 0);
6355 if (IS_ERR(em)) {
6356 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6357 return em;
6358 }
6359
6360 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6361 ins.offset, ins.offset, 0);
6362 if (ret) {
6363 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6364 free_extent_map(em);
6365 return ERR_PTR(ret);
6366 }
6367
6368 return em;
6369 }
6370
6371 /*
6372 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6373 * block must be cow'd
6374 */
6375 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6376 u64 *orig_start, u64 *orig_block_len,
6377 u64 *ram_bytes)
6378 {
6379 struct btrfs_trans_handle *trans;
6380 struct btrfs_path *path;
6381 int ret;
6382 struct extent_buffer *leaf;
6383 struct btrfs_root *root = BTRFS_I(inode)->root;
6384 struct btrfs_file_extent_item *fi;
6385 struct btrfs_key key;
6386 u64 disk_bytenr;
6387 u64 backref_offset;
6388 u64 extent_end;
6389 u64 num_bytes;
6390 int slot;
6391 int found_type;
6392 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6393 path = btrfs_alloc_path();
6394 if (!path)
6395 return -ENOMEM;
6396
6397 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6398 offset, 0);
6399 if (ret < 0)
6400 goto out;
6401
6402 slot = path->slots[0];
6403 if (ret == 1) {
6404 if (slot == 0) {
6405 /* can't find the item, must cow */
6406 ret = 0;
6407 goto out;
6408 }
6409 slot--;
6410 }
6411 ret = 0;
6412 leaf = path->nodes[0];
6413 btrfs_item_key_to_cpu(leaf, &key, slot);
6414 if (key.objectid != btrfs_ino(inode) ||
6415 key.type != BTRFS_EXTENT_DATA_KEY) {
6416 /* not our file or wrong item type, must cow */
6417 goto out;
6418 }
6419
6420 if (key.offset > offset) {
6421 /* Wrong offset, must cow */
6422 goto out;
6423 }
6424
6425 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6426 found_type = btrfs_file_extent_type(leaf, fi);
6427 if (found_type != BTRFS_FILE_EXTENT_REG &&
6428 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6429 /* not a regular extent, must cow */
6430 goto out;
6431 }
6432
6433 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6434 goto out;
6435
6436 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6437 if (disk_bytenr == 0)
6438 goto out;
6439
6440 if (btrfs_file_extent_compression(leaf, fi) ||
6441 btrfs_file_extent_encryption(leaf, fi) ||
6442 btrfs_file_extent_other_encoding(leaf, fi))
6443 goto out;
6444
6445 backref_offset = btrfs_file_extent_offset(leaf, fi);
6446
6447 if (orig_start) {
6448 *orig_start = key.offset - backref_offset;
6449 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6450 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6451 }
6452
6453 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6454
6455 if (btrfs_extent_readonly(root, disk_bytenr))
6456 goto out;
6457 btrfs_release_path(path);
6458
6459 /*
6460 * look for other files referencing this extent, if we
6461 * find any we must cow
6462 */
6463 trans = btrfs_join_transaction(root);
6464 if (IS_ERR(trans)) {
6465 ret = 0;
6466 goto out;
6467 }
6468
6469 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6470 key.offset - backref_offset, disk_bytenr);
6471 btrfs_end_transaction(trans, root);
6472 if (ret) {
6473 ret = 0;
6474 goto out;
6475 }
6476
6477 /*
6478 * adjust disk_bytenr and num_bytes to cover just the bytes
6479 * in this extent we are about to write. If there
6480 * are any csums in that range we have to cow in order
6481 * to keep the csums correct
6482 */
6483 disk_bytenr += backref_offset;
6484 disk_bytenr += offset - key.offset;
6485 num_bytes = min(offset + *len, extent_end) - offset;
6486 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6487 goto out;
6488 /*
6489 * all of the above have passed, it is safe to overwrite this extent
6490 * without cow
6491 */
6492 *len = num_bytes;
6493 ret = 1;
6494 out:
6495 btrfs_free_path(path);
6496 return ret;
6497 }
6498
6499 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6500 struct extent_state **cached_state, int writing)
6501 {
6502 struct btrfs_ordered_extent *ordered;
6503 int ret = 0;
6504
6505 while (1) {
6506 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6507 0, cached_state);
6508 /*
6509 * We're concerned with the entire range that we're going to be
6510 * doing DIO to, so we need to make sure theres no ordered
6511 * extents in this range.
6512 */
6513 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6514 lockend - lockstart + 1);
6515
6516 /*
6517 * We need to make sure there are no buffered pages in this
6518 * range either, we could have raced between the invalidate in
6519 * generic_file_direct_write and locking the extent. The
6520 * invalidate needs to happen so that reads after a write do not
6521 * get stale data.
6522 */
6523 if (!ordered && (!writing ||
6524 !test_range_bit(&BTRFS_I(inode)->io_tree,
6525 lockstart, lockend, EXTENT_UPTODATE, 0,
6526 *cached_state)))
6527 break;
6528
6529 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6530 cached_state, GFP_NOFS);
6531
6532 if (ordered) {
6533 btrfs_start_ordered_extent(inode, ordered, 1);
6534 btrfs_put_ordered_extent(ordered);
6535 } else {
6536 /* Screw you mmap */
6537 ret = filemap_write_and_wait_range(inode->i_mapping,
6538 lockstart,
6539 lockend);
6540 if (ret)
6541 break;
6542
6543 /*
6544 * If we found a page that couldn't be invalidated just
6545 * fall back to buffered.
6546 */
6547 ret = invalidate_inode_pages2_range(inode->i_mapping,
6548 lockstart >> PAGE_CACHE_SHIFT,
6549 lockend >> PAGE_CACHE_SHIFT);
6550 if (ret)
6551 break;
6552 }
6553
6554 cond_resched();
6555 }
6556
6557 return ret;
6558 }
6559
6560 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6561 u64 len, u64 orig_start,
6562 u64 block_start, u64 block_len,
6563 u64 orig_block_len, u64 ram_bytes,
6564 int type)
6565 {
6566 struct extent_map_tree *em_tree;
6567 struct extent_map *em;
6568 struct btrfs_root *root = BTRFS_I(inode)->root;
6569 int ret;
6570
6571 em_tree = &BTRFS_I(inode)->extent_tree;
6572 em = alloc_extent_map();
6573 if (!em)
6574 return ERR_PTR(-ENOMEM);
6575
6576 em->start = start;
6577 em->orig_start = orig_start;
6578 em->mod_start = start;
6579 em->mod_len = len;
6580 em->len = len;
6581 em->block_len = block_len;
6582 em->block_start = block_start;
6583 em->bdev = root->fs_info->fs_devices->latest_bdev;
6584 em->orig_block_len = orig_block_len;
6585 em->ram_bytes = ram_bytes;
6586 em->generation = -1;
6587 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6588 if (type == BTRFS_ORDERED_PREALLOC)
6589 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6590
6591 do {
6592 btrfs_drop_extent_cache(inode, em->start,
6593 em->start + em->len - 1, 0);
6594 write_lock(&em_tree->lock);
6595 ret = add_extent_mapping(em_tree, em, 1);
6596 write_unlock(&em_tree->lock);
6597 } while (ret == -EEXIST);
6598
6599 if (ret) {
6600 free_extent_map(em);
6601 return ERR_PTR(ret);
6602 }
6603
6604 return em;
6605 }
6606
6607
6608 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6609 struct buffer_head *bh_result, int create)
6610 {
6611 struct extent_map *em;
6612 struct btrfs_root *root = BTRFS_I(inode)->root;
6613 struct extent_state *cached_state = NULL;
6614 u64 start = iblock << inode->i_blkbits;
6615 u64 lockstart, lockend;
6616 u64 len = bh_result->b_size;
6617 int unlock_bits = EXTENT_LOCKED;
6618 int ret = 0;
6619
6620 if (create)
6621 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6622 else
6623 len = min_t(u64, len, root->sectorsize);
6624
6625 lockstart = start;
6626 lockend = start + len - 1;
6627
6628 /*
6629 * If this errors out it's because we couldn't invalidate pagecache for
6630 * this range and we need to fallback to buffered.
6631 */
6632 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6633 return -ENOTBLK;
6634
6635 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6636 if (IS_ERR(em)) {
6637 ret = PTR_ERR(em);
6638 goto unlock_err;
6639 }
6640
6641 /*
6642 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6643 * io. INLINE is special, and we could probably kludge it in here, but
6644 * it's still buffered so for safety lets just fall back to the generic
6645 * buffered path.
6646 *
6647 * For COMPRESSED we _have_ to read the entire extent in so we can
6648 * decompress it, so there will be buffering required no matter what we
6649 * do, so go ahead and fallback to buffered.
6650 *
6651 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6652 * to buffered IO. Don't blame me, this is the price we pay for using
6653 * the generic code.
6654 */
6655 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6656 em->block_start == EXTENT_MAP_INLINE) {
6657 free_extent_map(em);
6658 ret = -ENOTBLK;
6659 goto unlock_err;
6660 }
6661
6662 /* Just a good old fashioned hole, return */
6663 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6664 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6665 free_extent_map(em);
6666 goto unlock_err;
6667 }
6668
6669 /*
6670 * We don't allocate a new extent in the following cases
6671 *
6672 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6673 * existing extent.
6674 * 2) The extent is marked as PREALLOC. We're good to go here and can
6675 * just use the extent.
6676 *
6677 */
6678 if (!create) {
6679 len = min(len, em->len - (start - em->start));
6680 lockstart = start + len;
6681 goto unlock;
6682 }
6683
6684 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6685 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6686 em->block_start != EXTENT_MAP_HOLE)) {
6687 int type;
6688 int ret;
6689 u64 block_start, orig_start, orig_block_len, ram_bytes;
6690
6691 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6692 type = BTRFS_ORDERED_PREALLOC;
6693 else
6694 type = BTRFS_ORDERED_NOCOW;
6695 len = min(len, em->len - (start - em->start));
6696 block_start = em->block_start + (start - em->start);
6697
6698 if (can_nocow_extent(inode, start, &len, &orig_start,
6699 &orig_block_len, &ram_bytes) == 1) {
6700 if (type == BTRFS_ORDERED_PREALLOC) {
6701 free_extent_map(em);
6702 em = create_pinned_em(inode, start, len,
6703 orig_start,
6704 block_start, len,
6705 orig_block_len,
6706 ram_bytes, type);
6707 if (IS_ERR(em))
6708 goto unlock_err;
6709 }
6710
6711 ret = btrfs_add_ordered_extent_dio(inode, start,
6712 block_start, len, len, type);
6713 if (ret) {
6714 free_extent_map(em);
6715 goto unlock_err;
6716 }
6717 goto unlock;
6718 }
6719 }
6720
6721 /*
6722 * this will cow the extent, reset the len in case we changed
6723 * it above
6724 */
6725 len = bh_result->b_size;
6726 free_extent_map(em);
6727 em = btrfs_new_extent_direct(inode, start, len);
6728 if (IS_ERR(em)) {
6729 ret = PTR_ERR(em);
6730 goto unlock_err;
6731 }
6732 len = min(len, em->len - (start - em->start));
6733 unlock:
6734 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6735 inode->i_blkbits;
6736 bh_result->b_size = len;
6737 bh_result->b_bdev = em->bdev;
6738 set_buffer_mapped(bh_result);
6739 if (create) {
6740 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6741 set_buffer_new(bh_result);
6742
6743 /*
6744 * Need to update the i_size under the extent lock so buffered
6745 * readers will get the updated i_size when we unlock.
6746 */
6747 if (start + len > i_size_read(inode))
6748 i_size_write(inode, start + len);
6749
6750 spin_lock(&BTRFS_I(inode)->lock);
6751 BTRFS_I(inode)->outstanding_extents++;
6752 spin_unlock(&BTRFS_I(inode)->lock);
6753
6754 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6755 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6756 &cached_state, GFP_NOFS);
6757 BUG_ON(ret);
6758 }
6759
6760 /*
6761 * In the case of write we need to clear and unlock the entire range,
6762 * in the case of read we need to unlock only the end area that we
6763 * aren't using if there is any left over space.
6764 */
6765 if (lockstart < lockend) {
6766 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6767 lockend, unlock_bits, 1, 0,
6768 &cached_state, GFP_NOFS);
6769 } else {
6770 free_extent_state(cached_state);
6771 }
6772
6773 free_extent_map(em);
6774
6775 return 0;
6776
6777 unlock_err:
6778 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6779 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6780 return ret;
6781 }
6782
6783 static void btrfs_endio_direct_read(struct bio *bio, int err)
6784 {
6785 struct btrfs_dio_private *dip = bio->bi_private;
6786 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6787 struct bio_vec *bvec = bio->bi_io_vec;
6788 struct inode *inode = dip->inode;
6789 struct btrfs_root *root = BTRFS_I(inode)->root;
6790 struct bio *dio_bio;
6791 u32 *csums = (u32 *)dip->csum;
6792 int index = 0;
6793 u64 start;
6794
6795 start = dip->logical_offset;
6796 do {
6797 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6798 struct page *page = bvec->bv_page;
6799 char *kaddr;
6800 u32 csum = ~(u32)0;
6801 unsigned long flags;
6802
6803 local_irq_save(flags);
6804 kaddr = kmap_atomic(page);
6805 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6806 csum, bvec->bv_len);
6807 btrfs_csum_final(csum, (char *)&csum);
6808 kunmap_atomic(kaddr);
6809 local_irq_restore(flags);
6810
6811 flush_dcache_page(bvec->bv_page);
6812 if (csum != csums[index]) {
6813 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6814 btrfs_ino(inode), start, csum,
6815 csums[index]);
6816 err = -EIO;
6817 }
6818 }
6819
6820 start += bvec->bv_len;
6821 bvec++;
6822 index++;
6823 } while (bvec <= bvec_end);
6824
6825 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6826 dip->logical_offset + dip->bytes - 1);
6827 dio_bio = dip->dio_bio;
6828
6829 kfree(dip);
6830
6831 /* If we had a csum failure make sure to clear the uptodate flag */
6832 if (err)
6833 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6834 dio_end_io(dio_bio, err);
6835 bio_put(bio);
6836 }
6837
6838 static void btrfs_endio_direct_write(struct bio *bio, int err)
6839 {
6840 struct btrfs_dio_private *dip = bio->bi_private;
6841 struct inode *inode = dip->inode;
6842 struct btrfs_root *root = BTRFS_I(inode)->root;
6843 struct btrfs_ordered_extent *ordered = NULL;
6844 u64 ordered_offset = dip->logical_offset;
6845 u64 ordered_bytes = dip->bytes;
6846 struct bio *dio_bio;
6847 int ret;
6848
6849 if (err)
6850 goto out_done;
6851 again:
6852 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6853 &ordered_offset,
6854 ordered_bytes, !err);
6855 if (!ret)
6856 goto out_test;
6857
6858 ordered->work.func = finish_ordered_fn;
6859 ordered->work.flags = 0;
6860 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6861 &ordered->work);
6862 out_test:
6863 /*
6864 * our bio might span multiple ordered extents. If we haven't
6865 * completed the accounting for the whole dio, go back and try again
6866 */
6867 if (ordered_offset < dip->logical_offset + dip->bytes) {
6868 ordered_bytes = dip->logical_offset + dip->bytes -
6869 ordered_offset;
6870 ordered = NULL;
6871 goto again;
6872 }
6873 out_done:
6874 dio_bio = dip->dio_bio;
6875
6876 kfree(dip);
6877
6878 /* If we had an error make sure to clear the uptodate flag */
6879 if (err)
6880 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6881 dio_end_io(dio_bio, err);
6882 bio_put(bio);
6883 }
6884
6885 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6886 struct bio *bio, int mirror_num,
6887 unsigned long bio_flags, u64 offset)
6888 {
6889 int ret;
6890 struct btrfs_root *root = BTRFS_I(inode)->root;
6891 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6892 BUG_ON(ret); /* -ENOMEM */
6893 return 0;
6894 }
6895
6896 static void btrfs_end_dio_bio(struct bio *bio, int err)
6897 {
6898 struct btrfs_dio_private *dip = bio->bi_private;
6899
6900 if (err) {
6901 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6902 "sector %#Lx len %u err no %d\n",
6903 btrfs_ino(dip->inode), bio->bi_rw,
6904 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6905 dip->errors = 1;
6906
6907 /*
6908 * before atomic variable goto zero, we must make sure
6909 * dip->errors is perceived to be set.
6910 */
6911 smp_mb__before_atomic_dec();
6912 }
6913
6914 /* if there are more bios still pending for this dio, just exit */
6915 if (!atomic_dec_and_test(&dip->pending_bios))
6916 goto out;
6917
6918 if (dip->errors) {
6919 bio_io_error(dip->orig_bio);
6920 } else {
6921 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6922 bio_endio(dip->orig_bio, 0);
6923 }
6924 out:
6925 bio_put(bio);
6926 }
6927
6928 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6929 u64 first_sector, gfp_t gfp_flags)
6930 {
6931 int nr_vecs = bio_get_nr_vecs(bdev);
6932 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6933 }
6934
6935 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6936 int rw, u64 file_offset, int skip_sum,
6937 int async_submit)
6938 {
6939 struct btrfs_dio_private *dip = bio->bi_private;
6940 int write = rw & REQ_WRITE;
6941 struct btrfs_root *root = BTRFS_I(inode)->root;
6942 int ret;
6943
6944 if (async_submit)
6945 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6946
6947 bio_get(bio);
6948
6949 if (!write) {
6950 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6951 if (ret)
6952 goto err;
6953 }
6954
6955 if (skip_sum)
6956 goto map;
6957
6958 if (write && async_submit) {
6959 ret = btrfs_wq_submit_bio(root->fs_info,
6960 inode, rw, bio, 0, 0,
6961 file_offset,
6962 __btrfs_submit_bio_start_direct_io,
6963 __btrfs_submit_bio_done);
6964 goto err;
6965 } else if (write) {
6966 /*
6967 * If we aren't doing async submit, calculate the csum of the
6968 * bio now.
6969 */
6970 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6971 if (ret)
6972 goto err;
6973 } else if (!skip_sum) {
6974 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6975 file_offset);
6976 if (ret)
6977 goto err;
6978 }
6979
6980 map:
6981 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6982 err:
6983 bio_put(bio);
6984 return ret;
6985 }
6986
6987 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6988 int skip_sum)
6989 {
6990 struct inode *inode = dip->inode;
6991 struct btrfs_root *root = BTRFS_I(inode)->root;
6992 struct bio *bio;
6993 struct bio *orig_bio = dip->orig_bio;
6994 struct bio_vec *bvec = orig_bio->bi_io_vec;
6995 u64 start_sector = orig_bio->bi_sector;
6996 u64 file_offset = dip->logical_offset;
6997 u64 submit_len = 0;
6998 u64 map_length;
6999 int nr_pages = 0;
7000 int ret = 0;
7001 int async_submit = 0;
7002
7003 map_length = orig_bio->bi_size;
7004 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7005 &map_length, NULL, 0);
7006 if (ret) {
7007 bio_put(orig_bio);
7008 return -EIO;
7009 }
7010
7011 if (map_length >= orig_bio->bi_size) {
7012 bio = orig_bio;
7013 goto submit;
7014 }
7015
7016 /* async crcs make it difficult to collect full stripe writes. */
7017 if (btrfs_get_alloc_profile(root, 1) &
7018 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7019 async_submit = 0;
7020 else
7021 async_submit = 1;
7022
7023 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7024 if (!bio)
7025 return -ENOMEM;
7026 bio->bi_private = dip;
7027 bio->bi_end_io = btrfs_end_dio_bio;
7028 atomic_inc(&dip->pending_bios);
7029
7030 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7031 if (unlikely(map_length < submit_len + bvec->bv_len ||
7032 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7033 bvec->bv_offset) < bvec->bv_len)) {
7034 /*
7035 * inc the count before we submit the bio so
7036 * we know the end IO handler won't happen before
7037 * we inc the count. Otherwise, the dip might get freed
7038 * before we're done setting it up
7039 */
7040 atomic_inc(&dip->pending_bios);
7041 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7042 file_offset, skip_sum,
7043 async_submit);
7044 if (ret) {
7045 bio_put(bio);
7046 atomic_dec(&dip->pending_bios);
7047 goto out_err;
7048 }
7049
7050 start_sector += submit_len >> 9;
7051 file_offset += submit_len;
7052
7053 submit_len = 0;
7054 nr_pages = 0;
7055
7056 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7057 start_sector, GFP_NOFS);
7058 if (!bio)
7059 goto out_err;
7060 bio->bi_private = dip;
7061 bio->bi_end_io = btrfs_end_dio_bio;
7062
7063 map_length = orig_bio->bi_size;
7064 ret = btrfs_map_block(root->fs_info, rw,
7065 start_sector << 9,
7066 &map_length, NULL, 0);
7067 if (ret) {
7068 bio_put(bio);
7069 goto out_err;
7070 }
7071 } else {
7072 submit_len += bvec->bv_len;
7073 nr_pages ++;
7074 bvec++;
7075 }
7076 }
7077
7078 submit:
7079 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7080 async_submit);
7081 if (!ret)
7082 return 0;
7083
7084 bio_put(bio);
7085 out_err:
7086 dip->errors = 1;
7087 /*
7088 * before atomic variable goto zero, we must
7089 * make sure dip->errors is perceived to be set.
7090 */
7091 smp_mb__before_atomic_dec();
7092 if (atomic_dec_and_test(&dip->pending_bios))
7093 bio_io_error(dip->orig_bio);
7094
7095 /* bio_end_io() will handle error, so we needn't return it */
7096 return 0;
7097 }
7098
7099 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7100 struct inode *inode, loff_t file_offset)
7101 {
7102 struct btrfs_root *root = BTRFS_I(inode)->root;
7103 struct btrfs_dio_private *dip;
7104 struct bio *io_bio;
7105 int skip_sum;
7106 int sum_len;
7107 int write = rw & REQ_WRITE;
7108 int ret = 0;
7109 u16 csum_size;
7110
7111 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7112
7113 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7114 if (!io_bio) {
7115 ret = -ENOMEM;
7116 goto free_ordered;
7117 }
7118
7119 if (!skip_sum && !write) {
7120 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7121 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7122 sum_len *= csum_size;
7123 } else {
7124 sum_len = 0;
7125 }
7126
7127 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7128 if (!dip) {
7129 ret = -ENOMEM;
7130 goto free_io_bio;
7131 }
7132
7133 dip->private = dio_bio->bi_private;
7134 dip->inode = inode;
7135 dip->logical_offset = file_offset;
7136 dip->bytes = dio_bio->bi_size;
7137 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7138 io_bio->bi_private = dip;
7139 dip->errors = 0;
7140 dip->orig_bio = io_bio;
7141 dip->dio_bio = dio_bio;
7142 atomic_set(&dip->pending_bios, 0);
7143
7144 if (write)
7145 io_bio->bi_end_io = btrfs_endio_direct_write;
7146 else
7147 io_bio->bi_end_io = btrfs_endio_direct_read;
7148
7149 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7150 if (!ret)
7151 return;
7152
7153 free_io_bio:
7154 bio_put(io_bio);
7155
7156 free_ordered:
7157 /*
7158 * If this is a write, we need to clean up the reserved space and kill
7159 * the ordered extent.
7160 */
7161 if (write) {
7162 struct btrfs_ordered_extent *ordered;
7163 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7164 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7165 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7166 btrfs_free_reserved_extent(root, ordered->start,
7167 ordered->disk_len);
7168 btrfs_put_ordered_extent(ordered);
7169 btrfs_put_ordered_extent(ordered);
7170 }
7171 bio_endio(dio_bio, ret);
7172 }
7173
7174 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7175 const struct iovec *iov, loff_t offset,
7176 unsigned long nr_segs)
7177 {
7178 int seg;
7179 int i;
7180 size_t size;
7181 unsigned long addr;
7182 unsigned blocksize_mask = root->sectorsize - 1;
7183 ssize_t retval = -EINVAL;
7184 loff_t end = offset;
7185
7186 if (offset & blocksize_mask)
7187 goto out;
7188
7189 /* Check the memory alignment. Blocks cannot straddle pages */
7190 for (seg = 0; seg < nr_segs; seg++) {
7191 addr = (unsigned long)iov[seg].iov_base;
7192 size = iov[seg].iov_len;
7193 end += size;
7194 if ((addr & blocksize_mask) || (size & blocksize_mask))
7195 goto out;
7196
7197 /* If this is a write we don't need to check anymore */
7198 if (rw & WRITE)
7199 continue;
7200
7201 /*
7202 * Check to make sure we don't have duplicate iov_base's in this
7203 * iovec, if so return EINVAL, otherwise we'll get csum errors
7204 * when reading back.
7205 */
7206 for (i = seg + 1; i < nr_segs; i++) {
7207 if (iov[seg].iov_base == iov[i].iov_base)
7208 goto out;
7209 }
7210 }
7211 retval = 0;
7212 out:
7213 return retval;
7214 }
7215
7216 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7217 const struct iovec *iov, loff_t offset,
7218 unsigned long nr_segs)
7219 {
7220 struct file *file = iocb->ki_filp;
7221 struct inode *inode = file->f_mapping->host;
7222 size_t count = 0;
7223 int flags = 0;
7224 bool wakeup = true;
7225 bool relock = false;
7226 ssize_t ret;
7227
7228 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7229 offset, nr_segs))
7230 return 0;
7231
7232 atomic_inc(&inode->i_dio_count);
7233 smp_mb__after_atomic_inc();
7234
7235 /*
7236 * The generic stuff only does filemap_write_and_wait_range, which isn't
7237 * enough if we've written compressed pages to this area, so we need to
7238 * call btrfs_wait_ordered_range to make absolutely sure that any
7239 * outstanding dirty pages are on disk.
7240 */
7241 count = iov_length(iov, nr_segs);
7242 ret = btrfs_wait_ordered_range(inode, offset, count);
7243 if (ret)
7244 return ret;
7245
7246 if (rw & WRITE) {
7247 /*
7248 * If the write DIO is beyond the EOF, we need update
7249 * the isize, but it is protected by i_mutex. So we can
7250 * not unlock the i_mutex at this case.
7251 */
7252 if (offset + count <= inode->i_size) {
7253 mutex_unlock(&inode->i_mutex);
7254 relock = true;
7255 }
7256 ret = btrfs_delalloc_reserve_space(inode, count);
7257 if (ret)
7258 goto out;
7259 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7260 &BTRFS_I(inode)->runtime_flags))) {
7261 inode_dio_done(inode);
7262 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7263 wakeup = false;
7264 }
7265
7266 ret = __blockdev_direct_IO(rw, iocb, inode,
7267 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7268 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7269 btrfs_submit_direct, flags);
7270 if (rw & WRITE) {
7271 if (ret < 0 && ret != -EIOCBQUEUED)
7272 btrfs_delalloc_release_space(inode, count);
7273 else if (ret >= 0 && (size_t)ret < count)
7274 btrfs_delalloc_release_space(inode,
7275 count - (size_t)ret);
7276 else
7277 btrfs_delalloc_release_metadata(inode, 0);
7278 }
7279 out:
7280 if (wakeup)
7281 inode_dio_done(inode);
7282 if (relock)
7283 mutex_lock(&inode->i_mutex);
7284
7285 return ret;
7286 }
7287
7288 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7289
7290 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7291 __u64 start, __u64 len)
7292 {
7293 int ret;
7294
7295 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7296 if (ret)
7297 return ret;
7298
7299 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7300 }
7301
7302 int btrfs_readpage(struct file *file, struct page *page)
7303 {
7304 struct extent_io_tree *tree;
7305 tree = &BTRFS_I(page->mapping->host)->io_tree;
7306 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7307 }
7308
7309 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7310 {
7311 struct extent_io_tree *tree;
7312
7313
7314 if (current->flags & PF_MEMALLOC) {
7315 redirty_page_for_writepage(wbc, page);
7316 unlock_page(page);
7317 return 0;
7318 }
7319 tree = &BTRFS_I(page->mapping->host)->io_tree;
7320 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7321 }
7322
7323 static int btrfs_writepages(struct address_space *mapping,
7324 struct writeback_control *wbc)
7325 {
7326 struct extent_io_tree *tree;
7327
7328 tree = &BTRFS_I(mapping->host)->io_tree;
7329 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7330 }
7331
7332 static int
7333 btrfs_readpages(struct file *file, struct address_space *mapping,
7334 struct list_head *pages, unsigned nr_pages)
7335 {
7336 struct extent_io_tree *tree;
7337 tree = &BTRFS_I(mapping->host)->io_tree;
7338 return extent_readpages(tree, mapping, pages, nr_pages,
7339 btrfs_get_extent);
7340 }
7341 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7342 {
7343 struct extent_io_tree *tree;
7344 struct extent_map_tree *map;
7345 int ret;
7346
7347 tree = &BTRFS_I(page->mapping->host)->io_tree;
7348 map = &BTRFS_I(page->mapping->host)->extent_tree;
7349 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7350 if (ret == 1) {
7351 ClearPagePrivate(page);
7352 set_page_private(page, 0);
7353 page_cache_release(page);
7354 }
7355 return ret;
7356 }
7357
7358 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7359 {
7360 if (PageWriteback(page) || PageDirty(page))
7361 return 0;
7362 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7363 }
7364
7365 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7366 unsigned int length)
7367 {
7368 struct inode *inode = page->mapping->host;
7369 struct extent_io_tree *tree;
7370 struct btrfs_ordered_extent *ordered;
7371 struct extent_state *cached_state = NULL;
7372 u64 page_start = page_offset(page);
7373 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7374
7375 /*
7376 * we have the page locked, so new writeback can't start,
7377 * and the dirty bit won't be cleared while we are here.
7378 *
7379 * Wait for IO on this page so that we can safely clear
7380 * the PagePrivate2 bit and do ordered accounting
7381 */
7382 wait_on_page_writeback(page);
7383
7384 tree = &BTRFS_I(inode)->io_tree;
7385 if (offset) {
7386 btrfs_releasepage(page, GFP_NOFS);
7387 return;
7388 }
7389 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7390 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7391 if (ordered) {
7392 /*
7393 * IO on this page will never be started, so we need
7394 * to account for any ordered extents now
7395 */
7396 clear_extent_bit(tree, page_start, page_end,
7397 EXTENT_DIRTY | EXTENT_DELALLOC |
7398 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7399 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7400 /*
7401 * whoever cleared the private bit is responsible
7402 * for the finish_ordered_io
7403 */
7404 if (TestClearPagePrivate2(page)) {
7405 struct btrfs_ordered_inode_tree *tree;
7406 u64 new_len;
7407
7408 tree = &BTRFS_I(inode)->ordered_tree;
7409
7410 spin_lock_irq(&tree->lock);
7411 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7412 new_len = page_start - ordered->file_offset;
7413 if (new_len < ordered->truncated_len)
7414 ordered->truncated_len = new_len;
7415 spin_unlock_irq(&tree->lock);
7416
7417 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7418 page_start,
7419 PAGE_CACHE_SIZE, 1))
7420 btrfs_finish_ordered_io(ordered);
7421 }
7422 btrfs_put_ordered_extent(ordered);
7423 cached_state = NULL;
7424 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7425 }
7426 clear_extent_bit(tree, page_start, page_end,
7427 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7428 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7429 &cached_state, GFP_NOFS);
7430 __btrfs_releasepage(page, GFP_NOFS);
7431
7432 ClearPageChecked(page);
7433 if (PagePrivate(page)) {
7434 ClearPagePrivate(page);
7435 set_page_private(page, 0);
7436 page_cache_release(page);
7437 }
7438 }
7439
7440 /*
7441 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7442 * called from a page fault handler when a page is first dirtied. Hence we must
7443 * be careful to check for EOF conditions here. We set the page up correctly
7444 * for a written page which means we get ENOSPC checking when writing into
7445 * holes and correct delalloc and unwritten extent mapping on filesystems that
7446 * support these features.
7447 *
7448 * We are not allowed to take the i_mutex here so we have to play games to
7449 * protect against truncate races as the page could now be beyond EOF. Because
7450 * vmtruncate() writes the inode size before removing pages, once we have the
7451 * page lock we can determine safely if the page is beyond EOF. If it is not
7452 * beyond EOF, then the page is guaranteed safe against truncation until we
7453 * unlock the page.
7454 */
7455 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7456 {
7457 struct page *page = vmf->page;
7458 struct inode *inode = file_inode(vma->vm_file);
7459 struct btrfs_root *root = BTRFS_I(inode)->root;
7460 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7461 struct btrfs_ordered_extent *ordered;
7462 struct extent_state *cached_state = NULL;
7463 char *kaddr;
7464 unsigned long zero_start;
7465 loff_t size;
7466 int ret;
7467 int reserved = 0;
7468 u64 page_start;
7469 u64 page_end;
7470
7471 sb_start_pagefault(inode->i_sb);
7472 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7473 if (!ret) {
7474 ret = file_update_time(vma->vm_file);
7475 reserved = 1;
7476 }
7477 if (ret) {
7478 if (ret == -ENOMEM)
7479 ret = VM_FAULT_OOM;
7480 else /* -ENOSPC, -EIO, etc */
7481 ret = VM_FAULT_SIGBUS;
7482 if (reserved)
7483 goto out;
7484 goto out_noreserve;
7485 }
7486
7487 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7488 again:
7489 lock_page(page);
7490 size = i_size_read(inode);
7491 page_start = page_offset(page);
7492 page_end = page_start + PAGE_CACHE_SIZE - 1;
7493
7494 if ((page->mapping != inode->i_mapping) ||
7495 (page_start >= size)) {
7496 /* page got truncated out from underneath us */
7497 goto out_unlock;
7498 }
7499 wait_on_page_writeback(page);
7500
7501 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7502 set_page_extent_mapped(page);
7503
7504 /*
7505 * we can't set the delalloc bits if there are pending ordered
7506 * extents. Drop our locks and wait for them to finish
7507 */
7508 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7509 if (ordered) {
7510 unlock_extent_cached(io_tree, page_start, page_end,
7511 &cached_state, GFP_NOFS);
7512 unlock_page(page);
7513 btrfs_start_ordered_extent(inode, ordered, 1);
7514 btrfs_put_ordered_extent(ordered);
7515 goto again;
7516 }
7517
7518 /*
7519 * XXX - page_mkwrite gets called every time the page is dirtied, even
7520 * if it was already dirty, so for space accounting reasons we need to
7521 * clear any delalloc bits for the range we are fixing to save. There
7522 * is probably a better way to do this, but for now keep consistent with
7523 * prepare_pages in the normal write path.
7524 */
7525 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7526 EXTENT_DIRTY | EXTENT_DELALLOC |
7527 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7528 0, 0, &cached_state, GFP_NOFS);
7529
7530 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7531 &cached_state);
7532 if (ret) {
7533 unlock_extent_cached(io_tree, page_start, page_end,
7534 &cached_state, GFP_NOFS);
7535 ret = VM_FAULT_SIGBUS;
7536 goto out_unlock;
7537 }
7538 ret = 0;
7539
7540 /* page is wholly or partially inside EOF */
7541 if (page_start + PAGE_CACHE_SIZE > size)
7542 zero_start = size & ~PAGE_CACHE_MASK;
7543 else
7544 zero_start = PAGE_CACHE_SIZE;
7545
7546 if (zero_start != PAGE_CACHE_SIZE) {
7547 kaddr = kmap(page);
7548 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7549 flush_dcache_page(page);
7550 kunmap(page);
7551 }
7552 ClearPageChecked(page);
7553 set_page_dirty(page);
7554 SetPageUptodate(page);
7555
7556 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7557 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7558 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7559
7560 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7561
7562 out_unlock:
7563 if (!ret) {
7564 sb_end_pagefault(inode->i_sb);
7565 return VM_FAULT_LOCKED;
7566 }
7567 unlock_page(page);
7568 out:
7569 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7570 out_noreserve:
7571 sb_end_pagefault(inode->i_sb);
7572 return ret;
7573 }
7574
7575 static int btrfs_truncate(struct inode *inode)
7576 {
7577 struct btrfs_root *root = BTRFS_I(inode)->root;
7578 struct btrfs_block_rsv *rsv;
7579 int ret = 0;
7580 int err = 0;
7581 struct btrfs_trans_handle *trans;
7582 u64 mask = root->sectorsize - 1;
7583 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7584
7585 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7586 (u64)-1);
7587 if (ret)
7588 return ret;
7589
7590 /*
7591 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7592 * 3 things going on here
7593 *
7594 * 1) We need to reserve space for our orphan item and the space to
7595 * delete our orphan item. Lord knows we don't want to have a dangling
7596 * orphan item because we didn't reserve space to remove it.
7597 *
7598 * 2) We need to reserve space to update our inode.
7599 *
7600 * 3) We need to have something to cache all the space that is going to
7601 * be free'd up by the truncate operation, but also have some slack
7602 * space reserved in case it uses space during the truncate (thank you
7603 * very much snapshotting).
7604 *
7605 * And we need these to all be seperate. The fact is we can use alot of
7606 * space doing the truncate, and we have no earthly idea how much space
7607 * we will use, so we need the truncate reservation to be seperate so it
7608 * doesn't end up using space reserved for updating the inode or
7609 * removing the orphan item. We also need to be able to stop the
7610 * transaction and start a new one, which means we need to be able to
7611 * update the inode several times, and we have no idea of knowing how
7612 * many times that will be, so we can't just reserve 1 item for the
7613 * entirety of the opration, so that has to be done seperately as well.
7614 * Then there is the orphan item, which does indeed need to be held on
7615 * to for the whole operation, and we need nobody to touch this reserved
7616 * space except the orphan code.
7617 *
7618 * So that leaves us with
7619 *
7620 * 1) root->orphan_block_rsv - for the orphan deletion.
7621 * 2) rsv - for the truncate reservation, which we will steal from the
7622 * transaction reservation.
7623 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7624 * updating the inode.
7625 */
7626 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7627 if (!rsv)
7628 return -ENOMEM;
7629 rsv->size = min_size;
7630 rsv->failfast = 1;
7631
7632 /*
7633 * 1 for the truncate slack space
7634 * 1 for updating the inode.
7635 */
7636 trans = btrfs_start_transaction(root, 2);
7637 if (IS_ERR(trans)) {
7638 err = PTR_ERR(trans);
7639 goto out;
7640 }
7641
7642 /* Migrate the slack space for the truncate to our reserve */
7643 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7644 min_size);
7645 BUG_ON(ret);
7646
7647 /*
7648 * setattr is responsible for setting the ordered_data_close flag,
7649 * but that is only tested during the last file release. That
7650 * could happen well after the next commit, leaving a great big
7651 * window where new writes may get lost if someone chooses to write
7652 * to this file after truncating to zero
7653 *
7654 * The inode doesn't have any dirty data here, and so if we commit
7655 * this is a noop. If someone immediately starts writing to the inode
7656 * it is very likely we'll catch some of their writes in this
7657 * transaction, and the commit will find this file on the ordered
7658 * data list with good things to send down.
7659 *
7660 * This is a best effort solution, there is still a window where
7661 * using truncate to replace the contents of the file will
7662 * end up with a zero length file after a crash.
7663 */
7664 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7665 &BTRFS_I(inode)->runtime_flags))
7666 btrfs_add_ordered_operation(trans, root, inode);
7667
7668 /*
7669 * So if we truncate and then write and fsync we normally would just
7670 * write the extents that changed, which is a problem if we need to
7671 * first truncate that entire inode. So set this flag so we write out
7672 * all of the extents in the inode to the sync log so we're completely
7673 * safe.
7674 */
7675 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7676 trans->block_rsv = rsv;
7677
7678 while (1) {
7679 ret = btrfs_truncate_inode_items(trans, root, inode,
7680 inode->i_size,
7681 BTRFS_EXTENT_DATA_KEY);
7682 if (ret != -ENOSPC) {
7683 err = ret;
7684 break;
7685 }
7686
7687 trans->block_rsv = &root->fs_info->trans_block_rsv;
7688 ret = btrfs_update_inode(trans, root, inode);
7689 if (ret) {
7690 err = ret;
7691 break;
7692 }
7693
7694 btrfs_end_transaction(trans, root);
7695 btrfs_btree_balance_dirty(root);
7696
7697 trans = btrfs_start_transaction(root, 2);
7698 if (IS_ERR(trans)) {
7699 ret = err = PTR_ERR(trans);
7700 trans = NULL;
7701 break;
7702 }
7703
7704 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7705 rsv, min_size);
7706 BUG_ON(ret); /* shouldn't happen */
7707 trans->block_rsv = rsv;
7708 }
7709
7710 if (ret == 0 && inode->i_nlink > 0) {
7711 trans->block_rsv = root->orphan_block_rsv;
7712 ret = btrfs_orphan_del(trans, inode);
7713 if (ret)
7714 err = ret;
7715 }
7716
7717 if (trans) {
7718 trans->block_rsv = &root->fs_info->trans_block_rsv;
7719 ret = btrfs_update_inode(trans, root, inode);
7720 if (ret && !err)
7721 err = ret;
7722
7723 ret = btrfs_end_transaction(trans, root);
7724 btrfs_btree_balance_dirty(root);
7725 }
7726
7727 out:
7728 btrfs_free_block_rsv(root, rsv);
7729
7730 if (ret && !err)
7731 err = ret;
7732
7733 return err;
7734 }
7735
7736 /*
7737 * create a new subvolume directory/inode (helper for the ioctl).
7738 */
7739 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7740 struct btrfs_root *new_root, u64 new_dirid)
7741 {
7742 struct inode *inode;
7743 int err;
7744 u64 index = 0;
7745
7746 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7747 new_dirid, new_dirid,
7748 S_IFDIR | (~current_umask() & S_IRWXUGO),
7749 &index);
7750 if (IS_ERR(inode))
7751 return PTR_ERR(inode);
7752 inode->i_op = &btrfs_dir_inode_operations;
7753 inode->i_fop = &btrfs_dir_file_operations;
7754
7755 set_nlink(inode, 1);
7756 btrfs_i_size_write(inode, 0);
7757
7758 err = btrfs_update_inode(trans, new_root, inode);
7759
7760 iput(inode);
7761 return err;
7762 }
7763
7764 struct inode *btrfs_alloc_inode(struct super_block *sb)
7765 {
7766 struct btrfs_inode *ei;
7767 struct inode *inode;
7768
7769 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7770 if (!ei)
7771 return NULL;
7772
7773 ei->root = NULL;
7774 ei->generation = 0;
7775 ei->last_trans = 0;
7776 ei->last_sub_trans = 0;
7777 ei->logged_trans = 0;
7778 ei->delalloc_bytes = 0;
7779 ei->disk_i_size = 0;
7780 ei->flags = 0;
7781 ei->csum_bytes = 0;
7782 ei->index_cnt = (u64)-1;
7783 ei->last_unlink_trans = 0;
7784 ei->last_log_commit = 0;
7785
7786 spin_lock_init(&ei->lock);
7787 ei->outstanding_extents = 0;
7788 ei->reserved_extents = 0;
7789
7790 ei->runtime_flags = 0;
7791 ei->force_compress = BTRFS_COMPRESS_NONE;
7792
7793 ei->delayed_node = NULL;
7794
7795 inode = &ei->vfs_inode;
7796 extent_map_tree_init(&ei->extent_tree);
7797 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7798 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7799 ei->io_tree.track_uptodate = 1;
7800 ei->io_failure_tree.track_uptodate = 1;
7801 atomic_set(&ei->sync_writers, 0);
7802 mutex_init(&ei->log_mutex);
7803 mutex_init(&ei->delalloc_mutex);
7804 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7805 INIT_LIST_HEAD(&ei->delalloc_inodes);
7806 INIT_LIST_HEAD(&ei->ordered_operations);
7807 RB_CLEAR_NODE(&ei->rb_node);
7808
7809 return inode;
7810 }
7811
7812 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7813 void btrfs_test_destroy_inode(struct inode *inode)
7814 {
7815 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7816 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7817 }
7818 #endif
7819
7820 static void btrfs_i_callback(struct rcu_head *head)
7821 {
7822 struct inode *inode = container_of(head, struct inode, i_rcu);
7823 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7824 }
7825
7826 void btrfs_destroy_inode(struct inode *inode)
7827 {
7828 struct btrfs_ordered_extent *ordered;
7829 struct btrfs_root *root = BTRFS_I(inode)->root;
7830
7831 WARN_ON(!hlist_empty(&inode->i_dentry));
7832 WARN_ON(inode->i_data.nrpages);
7833 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7834 WARN_ON(BTRFS_I(inode)->reserved_extents);
7835 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7836 WARN_ON(BTRFS_I(inode)->csum_bytes);
7837
7838 /*
7839 * This can happen where we create an inode, but somebody else also
7840 * created the same inode and we need to destroy the one we already
7841 * created.
7842 */
7843 if (!root)
7844 goto free;
7845
7846 /*
7847 * Make sure we're properly removed from the ordered operation
7848 * lists.
7849 */
7850 smp_mb();
7851 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7852 spin_lock(&root->fs_info->ordered_root_lock);
7853 list_del_init(&BTRFS_I(inode)->ordered_operations);
7854 spin_unlock(&root->fs_info->ordered_root_lock);
7855 }
7856
7857 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7858 &BTRFS_I(inode)->runtime_flags)) {
7859 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7860 btrfs_ino(inode));
7861 atomic_dec(&root->orphan_inodes);
7862 }
7863
7864 while (1) {
7865 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7866 if (!ordered)
7867 break;
7868 else {
7869 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7870 ordered->file_offset, ordered->len);
7871 btrfs_remove_ordered_extent(inode, ordered);
7872 btrfs_put_ordered_extent(ordered);
7873 btrfs_put_ordered_extent(ordered);
7874 }
7875 }
7876 inode_tree_del(inode);
7877 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7878 free:
7879 call_rcu(&inode->i_rcu, btrfs_i_callback);
7880 }
7881
7882 int btrfs_drop_inode(struct inode *inode)
7883 {
7884 struct btrfs_root *root = BTRFS_I(inode)->root;
7885
7886 if (root == NULL)
7887 return 1;
7888
7889 /* the snap/subvol tree is on deleting */
7890 if (btrfs_root_refs(&root->root_item) == 0)
7891 return 1;
7892 else
7893 return generic_drop_inode(inode);
7894 }
7895
7896 static void init_once(void *foo)
7897 {
7898 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7899
7900 inode_init_once(&ei->vfs_inode);
7901 }
7902
7903 void btrfs_destroy_cachep(void)
7904 {
7905 /*
7906 * Make sure all delayed rcu free inodes are flushed before we
7907 * destroy cache.
7908 */
7909 rcu_barrier();
7910 if (btrfs_inode_cachep)
7911 kmem_cache_destroy(btrfs_inode_cachep);
7912 if (btrfs_trans_handle_cachep)
7913 kmem_cache_destroy(btrfs_trans_handle_cachep);
7914 if (btrfs_transaction_cachep)
7915 kmem_cache_destroy(btrfs_transaction_cachep);
7916 if (btrfs_path_cachep)
7917 kmem_cache_destroy(btrfs_path_cachep);
7918 if (btrfs_free_space_cachep)
7919 kmem_cache_destroy(btrfs_free_space_cachep);
7920 if (btrfs_delalloc_work_cachep)
7921 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7922 }
7923
7924 int btrfs_init_cachep(void)
7925 {
7926 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7927 sizeof(struct btrfs_inode), 0,
7928 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7929 if (!btrfs_inode_cachep)
7930 goto fail;
7931
7932 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7933 sizeof(struct btrfs_trans_handle), 0,
7934 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7935 if (!btrfs_trans_handle_cachep)
7936 goto fail;
7937
7938 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7939 sizeof(struct btrfs_transaction), 0,
7940 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7941 if (!btrfs_transaction_cachep)
7942 goto fail;
7943
7944 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7945 sizeof(struct btrfs_path), 0,
7946 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7947 if (!btrfs_path_cachep)
7948 goto fail;
7949
7950 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7951 sizeof(struct btrfs_free_space), 0,
7952 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7953 if (!btrfs_free_space_cachep)
7954 goto fail;
7955
7956 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7957 sizeof(struct btrfs_delalloc_work), 0,
7958 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7959 NULL);
7960 if (!btrfs_delalloc_work_cachep)
7961 goto fail;
7962
7963 return 0;
7964 fail:
7965 btrfs_destroy_cachep();
7966 return -ENOMEM;
7967 }
7968
7969 static int btrfs_getattr(struct vfsmount *mnt,
7970 struct dentry *dentry, struct kstat *stat)
7971 {
7972 u64 delalloc_bytes;
7973 struct inode *inode = dentry->d_inode;
7974 u32 blocksize = inode->i_sb->s_blocksize;
7975
7976 generic_fillattr(inode, stat);
7977 stat->dev = BTRFS_I(inode)->root->anon_dev;
7978 stat->blksize = PAGE_CACHE_SIZE;
7979
7980 spin_lock(&BTRFS_I(inode)->lock);
7981 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7982 spin_unlock(&BTRFS_I(inode)->lock);
7983 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7984 ALIGN(delalloc_bytes, blocksize)) >> 9;
7985 return 0;
7986 }
7987
7988 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7989 struct inode *new_dir, struct dentry *new_dentry)
7990 {
7991 struct btrfs_trans_handle *trans;
7992 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7993 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7994 struct inode *new_inode = new_dentry->d_inode;
7995 struct inode *old_inode = old_dentry->d_inode;
7996 struct timespec ctime = CURRENT_TIME;
7997 u64 index = 0;
7998 u64 root_objectid;
7999 int ret;
8000 u64 old_ino = btrfs_ino(old_inode);
8001
8002 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8003 return -EPERM;
8004
8005 /* we only allow rename subvolume link between subvolumes */
8006 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8007 return -EXDEV;
8008
8009 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8010 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8011 return -ENOTEMPTY;
8012
8013 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8014 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8015 return -ENOTEMPTY;
8016
8017
8018 /* check for collisions, even if the name isn't there */
8019 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8020 new_dentry->d_name.name,
8021 new_dentry->d_name.len);
8022
8023 if (ret) {
8024 if (ret == -EEXIST) {
8025 /* we shouldn't get
8026 * eexist without a new_inode */
8027 if (!new_inode) {
8028 WARN_ON(1);
8029 return ret;
8030 }
8031 } else {
8032 /* maybe -EOVERFLOW */
8033 return ret;
8034 }
8035 }
8036 ret = 0;
8037
8038 /*
8039 * we're using rename to replace one file with another.
8040 * and the replacement file is large. Start IO on it now so
8041 * we don't add too much work to the end of the transaction
8042 */
8043 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8044 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8045 filemap_flush(old_inode->i_mapping);
8046
8047 /* close the racy window with snapshot create/destroy ioctl */
8048 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8049 down_read(&root->fs_info->subvol_sem);
8050 /*
8051 * We want to reserve the absolute worst case amount of items. So if
8052 * both inodes are subvols and we need to unlink them then that would
8053 * require 4 item modifications, but if they are both normal inodes it
8054 * would require 5 item modifications, so we'll assume their normal
8055 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8056 * should cover the worst case number of items we'll modify.
8057 */
8058 trans = btrfs_start_transaction(root, 11);
8059 if (IS_ERR(trans)) {
8060 ret = PTR_ERR(trans);
8061 goto out_notrans;
8062 }
8063
8064 if (dest != root)
8065 btrfs_record_root_in_trans(trans, dest);
8066
8067 ret = btrfs_set_inode_index(new_dir, &index);
8068 if (ret)
8069 goto out_fail;
8070
8071 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8072 /* force full log commit if subvolume involved. */
8073 root->fs_info->last_trans_log_full_commit = trans->transid;
8074 } else {
8075 ret = btrfs_insert_inode_ref(trans, dest,
8076 new_dentry->d_name.name,
8077 new_dentry->d_name.len,
8078 old_ino,
8079 btrfs_ino(new_dir), index);
8080 if (ret)
8081 goto out_fail;
8082 /*
8083 * this is an ugly little race, but the rename is required
8084 * to make sure that if we crash, the inode is either at the
8085 * old name or the new one. pinning the log transaction lets
8086 * us make sure we don't allow a log commit to come in after
8087 * we unlink the name but before we add the new name back in.
8088 */
8089 btrfs_pin_log_trans(root);
8090 }
8091 /*
8092 * make sure the inode gets flushed if it is replacing
8093 * something.
8094 */
8095 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8096 btrfs_add_ordered_operation(trans, root, old_inode);
8097
8098 inode_inc_iversion(old_dir);
8099 inode_inc_iversion(new_dir);
8100 inode_inc_iversion(old_inode);
8101 old_dir->i_ctime = old_dir->i_mtime = ctime;
8102 new_dir->i_ctime = new_dir->i_mtime = ctime;
8103 old_inode->i_ctime = ctime;
8104
8105 if (old_dentry->d_parent != new_dentry->d_parent)
8106 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8107
8108 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8109 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8110 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8111 old_dentry->d_name.name,
8112 old_dentry->d_name.len);
8113 } else {
8114 ret = __btrfs_unlink_inode(trans, root, old_dir,
8115 old_dentry->d_inode,
8116 old_dentry->d_name.name,
8117 old_dentry->d_name.len);
8118 if (!ret)
8119 ret = btrfs_update_inode(trans, root, old_inode);
8120 }
8121 if (ret) {
8122 btrfs_abort_transaction(trans, root, ret);
8123 goto out_fail;
8124 }
8125
8126 if (new_inode) {
8127 inode_inc_iversion(new_inode);
8128 new_inode->i_ctime = CURRENT_TIME;
8129 if (unlikely(btrfs_ino(new_inode) ==
8130 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8131 root_objectid = BTRFS_I(new_inode)->location.objectid;
8132 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8133 root_objectid,
8134 new_dentry->d_name.name,
8135 new_dentry->d_name.len);
8136 BUG_ON(new_inode->i_nlink == 0);
8137 } else {
8138 ret = btrfs_unlink_inode(trans, dest, new_dir,
8139 new_dentry->d_inode,
8140 new_dentry->d_name.name,
8141 new_dentry->d_name.len);
8142 }
8143 if (!ret && new_inode->i_nlink == 0)
8144 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8145 if (ret) {
8146 btrfs_abort_transaction(trans, root, ret);
8147 goto out_fail;
8148 }
8149 }
8150
8151 ret = btrfs_add_link(trans, new_dir, old_inode,
8152 new_dentry->d_name.name,
8153 new_dentry->d_name.len, 0, index);
8154 if (ret) {
8155 btrfs_abort_transaction(trans, root, ret);
8156 goto out_fail;
8157 }
8158
8159 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8160 struct dentry *parent = new_dentry->d_parent;
8161 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8162 btrfs_end_log_trans(root);
8163 }
8164 out_fail:
8165 btrfs_end_transaction(trans, root);
8166 out_notrans:
8167 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8168 up_read(&root->fs_info->subvol_sem);
8169
8170 return ret;
8171 }
8172
8173 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8174 {
8175 struct btrfs_delalloc_work *delalloc_work;
8176
8177 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8178 work);
8179 if (delalloc_work->wait)
8180 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8181 else
8182 filemap_flush(delalloc_work->inode->i_mapping);
8183
8184 if (delalloc_work->delay_iput)
8185 btrfs_add_delayed_iput(delalloc_work->inode);
8186 else
8187 iput(delalloc_work->inode);
8188 complete(&delalloc_work->completion);
8189 }
8190
8191 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8192 int wait, int delay_iput)
8193 {
8194 struct btrfs_delalloc_work *work;
8195
8196 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8197 if (!work)
8198 return NULL;
8199
8200 init_completion(&work->completion);
8201 INIT_LIST_HEAD(&work->list);
8202 work->inode = inode;
8203 work->wait = wait;
8204 work->delay_iput = delay_iput;
8205 work->work.func = btrfs_run_delalloc_work;
8206
8207 return work;
8208 }
8209
8210 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8211 {
8212 wait_for_completion(&work->completion);
8213 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8214 }
8215
8216 /*
8217 * some fairly slow code that needs optimization. This walks the list
8218 * of all the inodes with pending delalloc and forces them to disk.
8219 */
8220 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8221 {
8222 struct btrfs_inode *binode;
8223 struct inode *inode;
8224 struct btrfs_delalloc_work *work, *next;
8225 struct list_head works;
8226 struct list_head splice;
8227 int ret = 0;
8228
8229 INIT_LIST_HEAD(&works);
8230 INIT_LIST_HEAD(&splice);
8231
8232 spin_lock(&root->delalloc_lock);
8233 list_splice_init(&root->delalloc_inodes, &splice);
8234 while (!list_empty(&splice)) {
8235 binode = list_entry(splice.next, struct btrfs_inode,
8236 delalloc_inodes);
8237
8238 list_move_tail(&binode->delalloc_inodes,
8239 &root->delalloc_inodes);
8240 inode = igrab(&binode->vfs_inode);
8241 if (!inode) {
8242 cond_resched_lock(&root->delalloc_lock);
8243 continue;
8244 }
8245 spin_unlock(&root->delalloc_lock);
8246
8247 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8248 if (unlikely(!work)) {
8249 if (delay_iput)
8250 btrfs_add_delayed_iput(inode);
8251 else
8252 iput(inode);
8253 ret = -ENOMEM;
8254 goto out;
8255 }
8256 list_add_tail(&work->list, &works);
8257 btrfs_queue_worker(&root->fs_info->flush_workers,
8258 &work->work);
8259
8260 cond_resched();
8261 spin_lock(&root->delalloc_lock);
8262 }
8263 spin_unlock(&root->delalloc_lock);
8264
8265 list_for_each_entry_safe(work, next, &works, list) {
8266 list_del_init(&work->list);
8267 btrfs_wait_and_free_delalloc_work(work);
8268 }
8269 return 0;
8270 out:
8271 list_for_each_entry_safe(work, next, &works, list) {
8272 list_del_init(&work->list);
8273 btrfs_wait_and_free_delalloc_work(work);
8274 }
8275
8276 if (!list_empty_careful(&splice)) {
8277 spin_lock(&root->delalloc_lock);
8278 list_splice_tail(&splice, &root->delalloc_inodes);
8279 spin_unlock(&root->delalloc_lock);
8280 }
8281 return ret;
8282 }
8283
8284 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8285 {
8286 int ret;
8287
8288 if (root->fs_info->sb->s_flags & MS_RDONLY)
8289 return -EROFS;
8290
8291 ret = __start_delalloc_inodes(root, delay_iput);
8292 /*
8293 * the filemap_flush will queue IO into the worker threads, but
8294 * we have to make sure the IO is actually started and that
8295 * ordered extents get created before we return
8296 */
8297 atomic_inc(&root->fs_info->async_submit_draining);
8298 while (atomic_read(&root->fs_info->nr_async_submits) ||
8299 atomic_read(&root->fs_info->async_delalloc_pages)) {
8300 wait_event(root->fs_info->async_submit_wait,
8301 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8302 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8303 }
8304 atomic_dec(&root->fs_info->async_submit_draining);
8305 return ret;
8306 }
8307
8308 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8309 int delay_iput)
8310 {
8311 struct btrfs_root *root;
8312 struct list_head splice;
8313 int ret;
8314
8315 if (fs_info->sb->s_flags & MS_RDONLY)
8316 return -EROFS;
8317
8318 INIT_LIST_HEAD(&splice);
8319
8320 spin_lock(&fs_info->delalloc_root_lock);
8321 list_splice_init(&fs_info->delalloc_roots, &splice);
8322 while (!list_empty(&splice)) {
8323 root = list_first_entry(&splice, struct btrfs_root,
8324 delalloc_root);
8325 root = btrfs_grab_fs_root(root);
8326 BUG_ON(!root);
8327 list_move_tail(&root->delalloc_root,
8328 &fs_info->delalloc_roots);
8329 spin_unlock(&fs_info->delalloc_root_lock);
8330
8331 ret = __start_delalloc_inodes(root, delay_iput);
8332 btrfs_put_fs_root(root);
8333 if (ret)
8334 goto out;
8335
8336 spin_lock(&fs_info->delalloc_root_lock);
8337 }
8338 spin_unlock(&fs_info->delalloc_root_lock);
8339
8340 atomic_inc(&fs_info->async_submit_draining);
8341 while (atomic_read(&fs_info->nr_async_submits) ||
8342 atomic_read(&fs_info->async_delalloc_pages)) {
8343 wait_event(fs_info->async_submit_wait,
8344 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8345 atomic_read(&fs_info->async_delalloc_pages) == 0));
8346 }
8347 atomic_dec(&fs_info->async_submit_draining);
8348 return 0;
8349 out:
8350 if (!list_empty_careful(&splice)) {
8351 spin_lock(&fs_info->delalloc_root_lock);
8352 list_splice_tail(&splice, &fs_info->delalloc_roots);
8353 spin_unlock(&fs_info->delalloc_root_lock);
8354 }
8355 return ret;
8356 }
8357
8358 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8359 const char *symname)
8360 {
8361 struct btrfs_trans_handle *trans;
8362 struct btrfs_root *root = BTRFS_I(dir)->root;
8363 struct btrfs_path *path;
8364 struct btrfs_key key;
8365 struct inode *inode = NULL;
8366 int err;
8367 int drop_inode = 0;
8368 u64 objectid;
8369 u64 index = 0 ;
8370 int name_len;
8371 int datasize;
8372 unsigned long ptr;
8373 struct btrfs_file_extent_item *ei;
8374 struct extent_buffer *leaf;
8375
8376 name_len = strlen(symname);
8377 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8378 return -ENAMETOOLONG;
8379
8380 /*
8381 * 2 items for inode item and ref
8382 * 2 items for dir items
8383 * 1 item for xattr if selinux is on
8384 */
8385 trans = btrfs_start_transaction(root, 5);
8386 if (IS_ERR(trans))
8387 return PTR_ERR(trans);
8388
8389 err = btrfs_find_free_ino(root, &objectid);
8390 if (err)
8391 goto out_unlock;
8392
8393 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8394 dentry->d_name.len, btrfs_ino(dir), objectid,
8395 S_IFLNK|S_IRWXUGO, &index);
8396 if (IS_ERR(inode)) {
8397 err = PTR_ERR(inode);
8398 goto out_unlock;
8399 }
8400
8401 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8402 if (err) {
8403 drop_inode = 1;
8404 goto out_unlock;
8405 }
8406
8407 /*
8408 * If the active LSM wants to access the inode during
8409 * d_instantiate it needs these. Smack checks to see
8410 * if the filesystem supports xattrs by looking at the
8411 * ops vector.
8412 */
8413 inode->i_fop = &btrfs_file_operations;
8414 inode->i_op = &btrfs_file_inode_operations;
8415
8416 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8417 if (err)
8418 drop_inode = 1;
8419 else {
8420 inode->i_mapping->a_ops = &btrfs_aops;
8421 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8422 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8423 }
8424 if (drop_inode)
8425 goto out_unlock;
8426
8427 path = btrfs_alloc_path();
8428 if (!path) {
8429 err = -ENOMEM;
8430 drop_inode = 1;
8431 goto out_unlock;
8432 }
8433 key.objectid = btrfs_ino(inode);
8434 key.offset = 0;
8435 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8436 datasize = btrfs_file_extent_calc_inline_size(name_len);
8437 err = btrfs_insert_empty_item(trans, root, path, &key,
8438 datasize);
8439 if (err) {
8440 drop_inode = 1;
8441 btrfs_free_path(path);
8442 goto out_unlock;
8443 }
8444 leaf = path->nodes[0];
8445 ei = btrfs_item_ptr(leaf, path->slots[0],
8446 struct btrfs_file_extent_item);
8447 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8448 btrfs_set_file_extent_type(leaf, ei,
8449 BTRFS_FILE_EXTENT_INLINE);
8450 btrfs_set_file_extent_encryption(leaf, ei, 0);
8451 btrfs_set_file_extent_compression(leaf, ei, 0);
8452 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8453 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8454
8455 ptr = btrfs_file_extent_inline_start(ei);
8456 write_extent_buffer(leaf, symname, ptr, name_len);
8457 btrfs_mark_buffer_dirty(leaf);
8458 btrfs_free_path(path);
8459
8460 inode->i_op = &btrfs_symlink_inode_operations;
8461 inode->i_mapping->a_ops = &btrfs_symlink_aops;
8462 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8463 inode_set_bytes(inode, name_len);
8464 btrfs_i_size_write(inode, name_len);
8465 err = btrfs_update_inode(trans, root, inode);
8466 if (err)
8467 drop_inode = 1;
8468
8469 out_unlock:
8470 if (!err)
8471 d_instantiate(dentry, inode);
8472 btrfs_end_transaction(trans, root);
8473 if (drop_inode) {
8474 inode_dec_link_count(inode);
8475 iput(inode);
8476 }
8477 btrfs_btree_balance_dirty(root);
8478 return err;
8479 }
8480
8481 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8482 u64 start, u64 num_bytes, u64 min_size,
8483 loff_t actual_len, u64 *alloc_hint,
8484 struct btrfs_trans_handle *trans)
8485 {
8486 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8487 struct extent_map *em;
8488 struct btrfs_root *root = BTRFS_I(inode)->root;
8489 struct btrfs_key ins;
8490 u64 cur_offset = start;
8491 u64 i_size;
8492 u64 cur_bytes;
8493 int ret = 0;
8494 bool own_trans = true;
8495
8496 if (trans)
8497 own_trans = false;
8498 while (num_bytes > 0) {
8499 if (own_trans) {
8500 trans = btrfs_start_transaction(root, 3);
8501 if (IS_ERR(trans)) {
8502 ret = PTR_ERR(trans);
8503 break;
8504 }
8505 }
8506
8507 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8508 cur_bytes = max(cur_bytes, min_size);
8509 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8510 *alloc_hint, &ins, 1);
8511 if (ret) {
8512 if (own_trans)
8513 btrfs_end_transaction(trans, root);
8514 break;
8515 }
8516
8517 ret = insert_reserved_file_extent(trans, inode,
8518 cur_offset, ins.objectid,
8519 ins.offset, ins.offset,
8520 ins.offset, 0, 0, 0,
8521 BTRFS_FILE_EXTENT_PREALLOC);
8522 if (ret) {
8523 btrfs_free_reserved_extent(root, ins.objectid,
8524 ins.offset);
8525 btrfs_abort_transaction(trans, root, ret);
8526 if (own_trans)
8527 btrfs_end_transaction(trans, root);
8528 break;
8529 }
8530 btrfs_drop_extent_cache(inode, cur_offset,
8531 cur_offset + ins.offset -1, 0);
8532
8533 em = alloc_extent_map();
8534 if (!em) {
8535 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8536 &BTRFS_I(inode)->runtime_flags);
8537 goto next;
8538 }
8539
8540 em->start = cur_offset;
8541 em->orig_start = cur_offset;
8542 em->len = ins.offset;
8543 em->block_start = ins.objectid;
8544 em->block_len = ins.offset;
8545 em->orig_block_len = ins.offset;
8546 em->ram_bytes = ins.offset;
8547 em->bdev = root->fs_info->fs_devices->latest_bdev;
8548 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8549 em->generation = trans->transid;
8550
8551 while (1) {
8552 write_lock(&em_tree->lock);
8553 ret = add_extent_mapping(em_tree, em, 1);
8554 write_unlock(&em_tree->lock);
8555 if (ret != -EEXIST)
8556 break;
8557 btrfs_drop_extent_cache(inode, cur_offset,
8558 cur_offset + ins.offset - 1,
8559 0);
8560 }
8561 free_extent_map(em);
8562 next:
8563 num_bytes -= ins.offset;
8564 cur_offset += ins.offset;
8565 *alloc_hint = ins.objectid + ins.offset;
8566
8567 inode_inc_iversion(inode);
8568 inode->i_ctime = CURRENT_TIME;
8569 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8570 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8571 (actual_len > inode->i_size) &&
8572 (cur_offset > inode->i_size)) {
8573 if (cur_offset > actual_len)
8574 i_size = actual_len;
8575 else
8576 i_size = cur_offset;
8577 i_size_write(inode, i_size);
8578 btrfs_ordered_update_i_size(inode, i_size, NULL);
8579 }
8580
8581 ret = btrfs_update_inode(trans, root, inode);
8582
8583 if (ret) {
8584 btrfs_abort_transaction(trans, root, ret);
8585 if (own_trans)
8586 btrfs_end_transaction(trans, root);
8587 break;
8588 }
8589
8590 if (own_trans)
8591 btrfs_end_transaction(trans, root);
8592 }
8593 return ret;
8594 }
8595
8596 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8597 u64 start, u64 num_bytes, u64 min_size,
8598 loff_t actual_len, u64 *alloc_hint)
8599 {
8600 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8601 min_size, actual_len, alloc_hint,
8602 NULL);
8603 }
8604
8605 int btrfs_prealloc_file_range_trans(struct inode *inode,
8606 struct btrfs_trans_handle *trans, int mode,
8607 u64 start, u64 num_bytes, u64 min_size,
8608 loff_t actual_len, u64 *alloc_hint)
8609 {
8610 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8611 min_size, actual_len, alloc_hint, trans);
8612 }
8613
8614 static int btrfs_set_page_dirty(struct page *page)
8615 {
8616 return __set_page_dirty_nobuffers(page);
8617 }
8618
8619 static int btrfs_permission(struct inode *inode, int mask)
8620 {
8621 struct btrfs_root *root = BTRFS_I(inode)->root;
8622 umode_t mode = inode->i_mode;
8623
8624 if (mask & MAY_WRITE &&
8625 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8626 if (btrfs_root_readonly(root))
8627 return -EROFS;
8628 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8629 return -EACCES;
8630 }
8631 return generic_permission(inode, mask);
8632 }
8633
8634 static const struct inode_operations btrfs_dir_inode_operations = {
8635 .getattr = btrfs_getattr,
8636 .lookup = btrfs_lookup,
8637 .create = btrfs_create,
8638 .unlink = btrfs_unlink,
8639 .link = btrfs_link,
8640 .mkdir = btrfs_mkdir,
8641 .rmdir = btrfs_rmdir,
8642 .rename = btrfs_rename,
8643 .symlink = btrfs_symlink,
8644 .setattr = btrfs_setattr,
8645 .mknod = btrfs_mknod,
8646 .setxattr = btrfs_setxattr,
8647 .getxattr = btrfs_getxattr,
8648 .listxattr = btrfs_listxattr,
8649 .removexattr = btrfs_removexattr,
8650 .permission = btrfs_permission,
8651 .get_acl = btrfs_get_acl,
8652 .update_time = btrfs_update_time,
8653 };
8654 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8655 .lookup = btrfs_lookup,
8656 .permission = btrfs_permission,
8657 .get_acl = btrfs_get_acl,
8658 .update_time = btrfs_update_time,
8659 };
8660
8661 static const struct file_operations btrfs_dir_file_operations = {
8662 .llseek = generic_file_llseek,
8663 .read = generic_read_dir,
8664 .iterate = btrfs_real_readdir,
8665 .unlocked_ioctl = btrfs_ioctl,
8666 #ifdef CONFIG_COMPAT
8667 .compat_ioctl = btrfs_ioctl,
8668 #endif
8669 .release = btrfs_release_file,
8670 .fsync = btrfs_sync_file,
8671 };
8672
8673 static struct extent_io_ops btrfs_extent_io_ops = {
8674 .fill_delalloc = run_delalloc_range,
8675 .submit_bio_hook = btrfs_submit_bio_hook,
8676 .merge_bio_hook = btrfs_merge_bio_hook,
8677 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8678 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8679 .writepage_start_hook = btrfs_writepage_start_hook,
8680 .set_bit_hook = btrfs_set_bit_hook,
8681 .clear_bit_hook = btrfs_clear_bit_hook,
8682 .merge_extent_hook = btrfs_merge_extent_hook,
8683 .split_extent_hook = btrfs_split_extent_hook,
8684 };
8685
8686 /*
8687 * btrfs doesn't support the bmap operation because swapfiles
8688 * use bmap to make a mapping of extents in the file. They assume
8689 * these extents won't change over the life of the file and they
8690 * use the bmap result to do IO directly to the drive.
8691 *
8692 * the btrfs bmap call would return logical addresses that aren't
8693 * suitable for IO and they also will change frequently as COW
8694 * operations happen. So, swapfile + btrfs == corruption.
8695 *
8696 * For now we're avoiding this by dropping bmap.
8697 */
8698 static const struct address_space_operations btrfs_aops = {
8699 .readpage = btrfs_readpage,
8700 .writepage = btrfs_writepage,
8701 .writepages = btrfs_writepages,
8702 .readpages = btrfs_readpages,
8703 .direct_IO = btrfs_direct_IO,
8704 .invalidatepage = btrfs_invalidatepage,
8705 .releasepage = btrfs_releasepage,
8706 .set_page_dirty = btrfs_set_page_dirty,
8707 .error_remove_page = generic_error_remove_page,
8708 };
8709
8710 static const struct address_space_operations btrfs_symlink_aops = {
8711 .readpage = btrfs_readpage,
8712 .writepage = btrfs_writepage,
8713 .invalidatepage = btrfs_invalidatepage,
8714 .releasepage = btrfs_releasepage,
8715 };
8716
8717 static const struct inode_operations btrfs_file_inode_operations = {
8718 .getattr = btrfs_getattr,
8719 .setattr = btrfs_setattr,
8720 .setxattr = btrfs_setxattr,
8721 .getxattr = btrfs_getxattr,
8722 .listxattr = btrfs_listxattr,
8723 .removexattr = btrfs_removexattr,
8724 .permission = btrfs_permission,
8725 .fiemap = btrfs_fiemap,
8726 .get_acl = btrfs_get_acl,
8727 .update_time = btrfs_update_time,
8728 };
8729 static const struct inode_operations btrfs_special_inode_operations = {
8730 .getattr = btrfs_getattr,
8731 .setattr = btrfs_setattr,
8732 .permission = btrfs_permission,
8733 .setxattr = btrfs_setxattr,
8734 .getxattr = btrfs_getxattr,
8735 .listxattr = btrfs_listxattr,
8736 .removexattr = btrfs_removexattr,
8737 .get_acl = btrfs_get_acl,
8738 .update_time = btrfs_update_time,
8739 };
8740 static const struct inode_operations btrfs_symlink_inode_operations = {
8741 .readlink = generic_readlink,
8742 .follow_link = page_follow_link_light,
8743 .put_link = page_put_link,
8744 .getattr = btrfs_getattr,
8745 .setattr = btrfs_setattr,
8746 .permission = btrfs_permission,
8747 .setxattr = btrfs_setxattr,
8748 .getxattr = btrfs_getxattr,
8749 .listxattr = btrfs_listxattr,
8750 .removexattr = btrfs_removexattr,
8751 .get_acl = btrfs_get_acl,
8752 .update_time = btrfs_update_time,
8753 };
8754
8755 const struct dentry_operations btrfs_dentry_operations = {
8756 .d_delete = btrfs_dentry_delete,
8757 .d_release = btrfs_dentry_release,
8758 };