]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
Btrfs: kill max_extent mount option
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56 };
57
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 struct inode *inode, struct inode *dir)
93 {
94 int err;
95
96 err = btrfs_init_acl(trans, inode, dir);
97 if (!err)
98 err = btrfs_xattr_security_init(trans, inode, dir);
99 return err;
100 }
101
102 /*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111 {
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
131 path = btrfs_alloc_path();
132 if (!path)
133 return -ENOMEM;
134
135 path->leave_spinning = 1;
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
164 while (compressed_size > 0) {
165 cpage = compressed_pages[i];
166 cur_size = min_t(unsigned long, compressed_size,
167 PAGE_CACHE_SIZE);
168
169 kaddr = kmap_atomic(cpage, KM_USER0);
170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 kunmap_atomic(kaddr, KM_USER0);
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
192 /*
193 * we're an inline extent, so nobody can
194 * extend the file past i_size without locking
195 * a page we already have locked.
196 *
197 * We must do any isize and inode updates
198 * before we unlock the pages. Otherwise we
199 * could end up racing with unlink.
200 */
201 BTRFS_I(inode)->disk_i_size = inode->i_size;
202 btrfs_update_inode(trans, root, inode);
203
204 return 0;
205 fail:
206 btrfs_free_path(path);
207 return err;
208 }
209
210
211 /*
212 * conditionally insert an inline extent into the file. This
213 * does the checks required to make sure the data is small enough
214 * to fit as an inline extent.
215 */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217 struct btrfs_root *root,
218 struct inode *inode, u64 start, u64 end,
219 size_t compressed_size,
220 struct page **compressed_pages)
221 {
222 u64 isize = i_size_read(inode);
223 u64 actual_end = min(end + 1, isize);
224 u64 inline_len = actual_end - start;
225 u64 aligned_end = (end + root->sectorsize - 1) &
226 ~((u64)root->sectorsize - 1);
227 u64 hint_byte;
228 u64 data_len = inline_len;
229 int ret;
230
231 if (compressed_size)
232 data_len = compressed_size;
233
234 if (start > 0 ||
235 actual_end >= PAGE_CACHE_SIZE ||
236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 (!compressed_size &&
238 (actual_end & (root->sectorsize - 1)) == 0) ||
239 end + 1 < isize ||
240 data_len > root->fs_info->max_inline) {
241 return 1;
242 }
243
244 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245 &hint_byte, 1);
246 BUG_ON(ret);
247
248 if (isize > actual_end)
249 inline_len = min_t(u64, isize, actual_end);
250 ret = insert_inline_extent(trans, root, inode, start,
251 inline_len, compressed_size,
252 compressed_pages);
253 BUG_ON(ret);
254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255 return 0;
256 }
257
258 struct async_extent {
259 u64 start;
260 u64 ram_size;
261 u64 compressed_size;
262 struct page **pages;
263 unsigned long nr_pages;
264 struct list_head list;
265 };
266
267 struct async_cow {
268 struct inode *inode;
269 struct btrfs_root *root;
270 struct page *locked_page;
271 u64 start;
272 u64 end;
273 struct list_head extents;
274 struct btrfs_work work;
275 };
276
277 static noinline int add_async_extent(struct async_cow *cow,
278 u64 start, u64 ram_size,
279 u64 compressed_size,
280 struct page **pages,
281 unsigned long nr_pages)
282 {
283 struct async_extent *async_extent;
284
285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 async_extent->start = start;
287 async_extent->ram_size = ram_size;
288 async_extent->compressed_size = compressed_size;
289 async_extent->pages = pages;
290 async_extent->nr_pages = nr_pages;
291 list_add_tail(&async_extent->list, &cow->extents);
292 return 0;
293 }
294
295 /*
296 * we create compressed extents in two phases. The first
297 * phase compresses a range of pages that have already been
298 * locked (both pages and state bits are locked).
299 *
300 * This is done inside an ordered work queue, and the compression
301 * is spread across many cpus. The actual IO submission is step
302 * two, and the ordered work queue takes care of making sure that
303 * happens in the same order things were put onto the queue by
304 * writepages and friends.
305 *
306 * If this code finds it can't get good compression, it puts an
307 * entry onto the work queue to write the uncompressed bytes. This
308 * makes sure that both compressed inodes and uncompressed inodes
309 * are written in the same order that pdflush sent them down.
310 */
311 static noinline int compress_file_range(struct inode *inode,
312 struct page *locked_page,
313 u64 start, u64 end,
314 struct async_cow *async_cow,
315 int *num_added)
316 {
317 struct btrfs_root *root = BTRFS_I(inode)->root;
318 struct btrfs_trans_handle *trans;
319 u64 num_bytes;
320 u64 orig_start;
321 u64 disk_num_bytes;
322 u64 blocksize = root->sectorsize;
323 u64 actual_end;
324 u64 isize = i_size_read(inode);
325 int ret = 0;
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
332 unsigned long max_uncompressed = 128 * 1024;
333 int i;
334 int will_compress;
335
336 orig_start = start;
337
338 actual_end = min_t(u64, isize, end + 1);
339 again:
340 will_compress = 0;
341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343
344 /*
345 * we don't want to send crud past the end of i_size through
346 * compression, that's just a waste of CPU time. So, if the
347 * end of the file is before the start of our current
348 * requested range of bytes, we bail out to the uncompressed
349 * cleanup code that can deal with all of this.
350 *
351 * It isn't really the fastest way to fix things, but this is a
352 * very uncommon corner.
353 */
354 if (actual_end <= start)
355 goto cleanup_and_bail_uncompressed;
356
357 total_compressed = actual_end - start;
358
359 /* we want to make sure that amount of ram required to uncompress
360 * an extent is reasonable, so we limit the total size in ram
361 * of a compressed extent to 128k. This is a crucial number
362 * because it also controls how easily we can spread reads across
363 * cpus for decompression.
364 *
365 * We also want to make sure the amount of IO required to do
366 * a random read is reasonably small, so we limit the size of
367 * a compressed extent to 128k.
368 */
369 total_compressed = min(total_compressed, max_uncompressed);
370 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371 num_bytes = max(blocksize, num_bytes);
372 disk_num_bytes = num_bytes;
373 total_in = 0;
374 ret = 0;
375
376 /*
377 * we do compression for mount -o compress and when the
378 * inode has not been flagged as nocompress. This flag can
379 * change at any time if we discover bad compression ratios.
380 */
381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382 (btrfs_test_opt(root, COMPRESS) ||
383 (BTRFS_I(inode)->force_compress))) {
384 WARN_ON(pages);
385 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
386
387 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
388 total_compressed, pages,
389 nr_pages, &nr_pages_ret,
390 &total_in,
391 &total_compressed,
392 max_compressed);
393
394 if (!ret) {
395 unsigned long offset = total_compressed &
396 (PAGE_CACHE_SIZE - 1);
397 struct page *page = pages[nr_pages_ret - 1];
398 char *kaddr;
399
400 /* zero the tail end of the last page, we might be
401 * sending it down to disk
402 */
403 if (offset) {
404 kaddr = kmap_atomic(page, KM_USER0);
405 memset(kaddr + offset, 0,
406 PAGE_CACHE_SIZE - offset);
407 kunmap_atomic(kaddr, KM_USER0);
408 }
409 will_compress = 1;
410 }
411 }
412 if (start == 0) {
413 trans = btrfs_join_transaction(root, 1);
414 BUG_ON(!trans);
415 btrfs_set_trans_block_group(trans, inode);
416
417 /* lets try to make an inline extent */
418 if (ret || total_in < (actual_end - start)) {
419 /* we didn't compress the entire range, try
420 * to make an uncompressed inline extent.
421 */
422 ret = cow_file_range_inline(trans, root, inode,
423 start, end, 0, NULL);
424 } else {
425 /* try making a compressed inline extent */
426 ret = cow_file_range_inline(trans, root, inode,
427 start, end,
428 total_compressed, pages);
429 }
430 if (ret == 0) {
431 /*
432 * inline extent creation worked, we don't need
433 * to create any more async work items. Unlock
434 * and free up our temp pages.
435 */
436 extent_clear_unlock_delalloc(inode,
437 &BTRFS_I(inode)->io_tree,
438 start, end, NULL,
439 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
440 EXTENT_CLEAR_DELALLOC |
441 EXTENT_CLEAR_ACCOUNTING |
442 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
443
444 btrfs_end_transaction(trans, root);
445 goto free_pages_out;
446 }
447 btrfs_end_transaction(trans, root);
448 }
449
450 if (will_compress) {
451 /*
452 * we aren't doing an inline extent round the compressed size
453 * up to a block size boundary so the allocator does sane
454 * things
455 */
456 total_compressed = (total_compressed + blocksize - 1) &
457 ~(blocksize - 1);
458
459 /*
460 * one last check to make sure the compression is really a
461 * win, compare the page count read with the blocks on disk
462 */
463 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
464 ~(PAGE_CACHE_SIZE - 1);
465 if (total_compressed >= total_in) {
466 will_compress = 0;
467 } else {
468 disk_num_bytes = total_compressed;
469 num_bytes = total_in;
470 }
471 }
472 if (!will_compress && pages) {
473 /*
474 * the compression code ran but failed to make things smaller,
475 * free any pages it allocated and our page pointer array
476 */
477 for (i = 0; i < nr_pages_ret; i++) {
478 WARN_ON(pages[i]->mapping);
479 page_cache_release(pages[i]);
480 }
481 kfree(pages);
482 pages = NULL;
483 total_compressed = 0;
484 nr_pages_ret = 0;
485
486 /* flag the file so we don't compress in the future */
487 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
488 !(BTRFS_I(inode)->force_compress)) {
489 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
490 }
491 }
492 if (will_compress) {
493 *num_added += 1;
494
495 /* the async work queues will take care of doing actual
496 * allocation on disk for these compressed pages,
497 * and will submit them to the elevator.
498 */
499 add_async_extent(async_cow, start, num_bytes,
500 total_compressed, pages, nr_pages_ret);
501
502 if (start + num_bytes < end && start + num_bytes < actual_end) {
503 start += num_bytes;
504 pages = NULL;
505 cond_resched();
506 goto again;
507 }
508 } else {
509 cleanup_and_bail_uncompressed:
510 /*
511 * No compression, but we still need to write the pages in
512 * the file we've been given so far. redirty the locked
513 * page if it corresponds to our extent and set things up
514 * for the async work queue to run cow_file_range to do
515 * the normal delalloc dance
516 */
517 if (page_offset(locked_page) >= start &&
518 page_offset(locked_page) <= end) {
519 __set_page_dirty_nobuffers(locked_page);
520 /* unlocked later on in the async handlers */
521 }
522 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
523 *num_added += 1;
524 }
525
526 out:
527 return 0;
528
529 free_pages_out:
530 for (i = 0; i < nr_pages_ret; i++) {
531 WARN_ON(pages[i]->mapping);
532 page_cache_release(pages[i]);
533 }
534 kfree(pages);
535
536 goto out;
537 }
538
539 /*
540 * phase two of compressed writeback. This is the ordered portion
541 * of the code, which only gets called in the order the work was
542 * queued. We walk all the async extents created by compress_file_range
543 * and send them down to the disk.
544 */
545 static noinline int submit_compressed_extents(struct inode *inode,
546 struct async_cow *async_cow)
547 {
548 struct async_extent *async_extent;
549 u64 alloc_hint = 0;
550 struct btrfs_trans_handle *trans;
551 struct btrfs_key ins;
552 struct extent_map *em;
553 struct btrfs_root *root = BTRFS_I(inode)->root;
554 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
555 struct extent_io_tree *io_tree;
556 int ret = 0;
557
558 if (list_empty(&async_cow->extents))
559 return 0;
560
561
562 while (!list_empty(&async_cow->extents)) {
563 async_extent = list_entry(async_cow->extents.next,
564 struct async_extent, list);
565 list_del(&async_extent->list);
566
567 io_tree = &BTRFS_I(inode)->io_tree;
568
569 retry:
570 /* did the compression code fall back to uncompressed IO? */
571 if (!async_extent->pages) {
572 int page_started = 0;
573 unsigned long nr_written = 0;
574
575 lock_extent(io_tree, async_extent->start,
576 async_extent->start +
577 async_extent->ram_size - 1, GFP_NOFS);
578
579 /* allocate blocks */
580 ret = cow_file_range(inode, async_cow->locked_page,
581 async_extent->start,
582 async_extent->start +
583 async_extent->ram_size - 1,
584 &page_started, &nr_written, 0);
585
586 /*
587 * if page_started, cow_file_range inserted an
588 * inline extent and took care of all the unlocking
589 * and IO for us. Otherwise, we need to submit
590 * all those pages down to the drive.
591 */
592 if (!page_started && !ret)
593 extent_write_locked_range(io_tree,
594 inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1,
597 btrfs_get_extent,
598 WB_SYNC_ALL);
599 kfree(async_extent);
600 cond_resched();
601 continue;
602 }
603
604 lock_extent(io_tree, async_extent->start,
605 async_extent->start + async_extent->ram_size - 1,
606 GFP_NOFS);
607
608 trans = btrfs_join_transaction(root, 1);
609 ret = btrfs_reserve_extent(trans, root,
610 async_extent->compressed_size,
611 async_extent->compressed_size,
612 0, alloc_hint,
613 (u64)-1, &ins, 1);
614 btrfs_end_transaction(trans, root);
615
616 if (ret) {
617 int i;
618 for (i = 0; i < async_extent->nr_pages; i++) {
619 WARN_ON(async_extent->pages[i]->mapping);
620 page_cache_release(async_extent->pages[i]);
621 }
622 kfree(async_extent->pages);
623 async_extent->nr_pages = 0;
624 async_extent->pages = NULL;
625 unlock_extent(io_tree, async_extent->start,
626 async_extent->start +
627 async_extent->ram_size - 1, GFP_NOFS);
628 goto retry;
629 }
630
631 /*
632 * here we're doing allocation and writeback of the
633 * compressed pages
634 */
635 btrfs_drop_extent_cache(inode, async_extent->start,
636 async_extent->start +
637 async_extent->ram_size - 1, 0);
638
639 em = alloc_extent_map(GFP_NOFS);
640 em->start = async_extent->start;
641 em->len = async_extent->ram_size;
642 em->orig_start = em->start;
643
644 em->block_start = ins.objectid;
645 em->block_len = ins.offset;
646 em->bdev = root->fs_info->fs_devices->latest_bdev;
647 set_bit(EXTENT_FLAG_PINNED, &em->flags);
648 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
649
650 while (1) {
651 write_lock(&em_tree->lock);
652 ret = add_extent_mapping(em_tree, em);
653 write_unlock(&em_tree->lock);
654 if (ret != -EEXIST) {
655 free_extent_map(em);
656 break;
657 }
658 btrfs_drop_extent_cache(inode, async_extent->start,
659 async_extent->start +
660 async_extent->ram_size - 1, 0);
661 }
662
663 ret = btrfs_add_ordered_extent(inode, async_extent->start,
664 ins.objectid,
665 async_extent->ram_size,
666 ins.offset,
667 BTRFS_ORDERED_COMPRESSED);
668 BUG_ON(ret);
669
670 /*
671 * clear dirty, set writeback and unlock the pages.
672 */
673 extent_clear_unlock_delalloc(inode,
674 &BTRFS_I(inode)->io_tree,
675 async_extent->start,
676 async_extent->start +
677 async_extent->ram_size - 1,
678 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
679 EXTENT_CLEAR_UNLOCK |
680 EXTENT_CLEAR_DELALLOC |
681 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
682
683 ret = btrfs_submit_compressed_write(inode,
684 async_extent->start,
685 async_extent->ram_size,
686 ins.objectid,
687 ins.offset, async_extent->pages,
688 async_extent->nr_pages);
689
690 BUG_ON(ret);
691 alloc_hint = ins.objectid + ins.offset;
692 kfree(async_extent);
693 cond_resched();
694 }
695
696 return 0;
697 }
698
699 /*
700 * when extent_io.c finds a delayed allocation range in the file,
701 * the call backs end up in this code. The basic idea is to
702 * allocate extents on disk for the range, and create ordered data structs
703 * in ram to track those extents.
704 *
705 * locked_page is the page that writepage had locked already. We use
706 * it to make sure we don't do extra locks or unlocks.
707 *
708 * *page_started is set to one if we unlock locked_page and do everything
709 * required to start IO on it. It may be clean and already done with
710 * IO when we return.
711 */
712 static noinline int cow_file_range(struct inode *inode,
713 struct page *locked_page,
714 u64 start, u64 end, int *page_started,
715 unsigned long *nr_written,
716 int unlock)
717 {
718 struct btrfs_root *root = BTRFS_I(inode)->root;
719 struct btrfs_trans_handle *trans;
720 u64 alloc_hint = 0;
721 u64 num_bytes;
722 unsigned long ram_size;
723 u64 disk_num_bytes;
724 u64 cur_alloc_size;
725 u64 blocksize = root->sectorsize;
726 u64 actual_end;
727 u64 isize = i_size_read(inode);
728 struct btrfs_key ins;
729 struct extent_map *em;
730 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
731 int ret = 0;
732
733 trans = btrfs_join_transaction(root, 1);
734 BUG_ON(!trans);
735 btrfs_set_trans_block_group(trans, inode);
736
737 actual_end = min_t(u64, isize, end + 1);
738
739 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
740 num_bytes = max(blocksize, num_bytes);
741 disk_num_bytes = num_bytes;
742 ret = 0;
743
744 if (start == 0) {
745 /* lets try to make an inline extent */
746 ret = cow_file_range_inline(trans, root, inode,
747 start, end, 0, NULL);
748 if (ret == 0) {
749 extent_clear_unlock_delalloc(inode,
750 &BTRFS_I(inode)->io_tree,
751 start, end, NULL,
752 EXTENT_CLEAR_UNLOCK_PAGE |
753 EXTENT_CLEAR_UNLOCK |
754 EXTENT_CLEAR_DELALLOC |
755 EXTENT_CLEAR_ACCOUNTING |
756 EXTENT_CLEAR_DIRTY |
757 EXTENT_SET_WRITEBACK |
758 EXTENT_END_WRITEBACK);
759
760 *nr_written = *nr_written +
761 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
762 *page_started = 1;
763 ret = 0;
764 goto out;
765 }
766 }
767
768 BUG_ON(disk_num_bytes >
769 btrfs_super_total_bytes(&root->fs_info->super_copy));
770
771
772 read_lock(&BTRFS_I(inode)->extent_tree.lock);
773 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
774 start, num_bytes);
775 if (em) {
776 /*
777 * if block start isn't an actual block number then find the
778 * first block in this inode and use that as a hint. If that
779 * block is also bogus then just don't worry about it.
780 */
781 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
782 free_extent_map(em);
783 em = search_extent_mapping(em_tree, 0, 0);
784 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
785 alloc_hint = em->block_start;
786 if (em)
787 free_extent_map(em);
788 } else {
789 alloc_hint = em->block_start;
790 free_extent_map(em);
791 }
792 }
793 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
794 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
795
796 while (disk_num_bytes > 0) {
797 unsigned long op;
798
799 cur_alloc_size = disk_num_bytes;
800 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
801 root->sectorsize, 0, alloc_hint,
802 (u64)-1, &ins, 1);
803 BUG_ON(ret);
804
805 em = alloc_extent_map(GFP_NOFS);
806 em->start = start;
807 em->orig_start = em->start;
808 ram_size = ins.offset;
809 em->len = ins.offset;
810
811 em->block_start = ins.objectid;
812 em->block_len = ins.offset;
813 em->bdev = root->fs_info->fs_devices->latest_bdev;
814 set_bit(EXTENT_FLAG_PINNED, &em->flags);
815
816 while (1) {
817 write_lock(&em_tree->lock);
818 ret = add_extent_mapping(em_tree, em);
819 write_unlock(&em_tree->lock);
820 if (ret != -EEXIST) {
821 free_extent_map(em);
822 break;
823 }
824 btrfs_drop_extent_cache(inode, start,
825 start + ram_size - 1, 0);
826 }
827
828 cur_alloc_size = ins.offset;
829 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
830 ram_size, cur_alloc_size, 0);
831 BUG_ON(ret);
832
833 if (root->root_key.objectid ==
834 BTRFS_DATA_RELOC_TREE_OBJECTID) {
835 ret = btrfs_reloc_clone_csums(inode, start,
836 cur_alloc_size);
837 BUG_ON(ret);
838 }
839
840 if (disk_num_bytes < cur_alloc_size)
841 break;
842
843 /* we're not doing compressed IO, don't unlock the first
844 * page (which the caller expects to stay locked), don't
845 * clear any dirty bits and don't set any writeback bits
846 *
847 * Do set the Private2 bit so we know this page was properly
848 * setup for writepage
849 */
850 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
851 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
852 EXTENT_SET_PRIVATE2;
853
854 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
855 start, start + ram_size - 1,
856 locked_page, op);
857 disk_num_bytes -= cur_alloc_size;
858 num_bytes -= cur_alloc_size;
859 alloc_hint = ins.objectid + ins.offset;
860 start += cur_alloc_size;
861 }
862 out:
863 ret = 0;
864 btrfs_end_transaction(trans, root);
865
866 return ret;
867 }
868
869 /*
870 * work queue call back to started compression on a file and pages
871 */
872 static noinline void async_cow_start(struct btrfs_work *work)
873 {
874 struct async_cow *async_cow;
875 int num_added = 0;
876 async_cow = container_of(work, struct async_cow, work);
877
878 compress_file_range(async_cow->inode, async_cow->locked_page,
879 async_cow->start, async_cow->end, async_cow,
880 &num_added);
881 if (num_added == 0)
882 async_cow->inode = NULL;
883 }
884
885 /*
886 * work queue call back to submit previously compressed pages
887 */
888 static noinline void async_cow_submit(struct btrfs_work *work)
889 {
890 struct async_cow *async_cow;
891 struct btrfs_root *root;
892 unsigned long nr_pages;
893
894 async_cow = container_of(work, struct async_cow, work);
895
896 root = async_cow->root;
897 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
898 PAGE_CACHE_SHIFT;
899
900 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
901
902 if (atomic_read(&root->fs_info->async_delalloc_pages) <
903 5 * 1042 * 1024 &&
904 waitqueue_active(&root->fs_info->async_submit_wait))
905 wake_up(&root->fs_info->async_submit_wait);
906
907 if (async_cow->inode)
908 submit_compressed_extents(async_cow->inode, async_cow);
909 }
910
911 static noinline void async_cow_free(struct btrfs_work *work)
912 {
913 struct async_cow *async_cow;
914 async_cow = container_of(work, struct async_cow, work);
915 kfree(async_cow);
916 }
917
918 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
919 u64 start, u64 end, int *page_started,
920 unsigned long *nr_written)
921 {
922 struct async_cow *async_cow;
923 struct btrfs_root *root = BTRFS_I(inode)->root;
924 unsigned long nr_pages;
925 u64 cur_end;
926 int limit = 10 * 1024 * 1042;
927
928 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
929 1, 0, NULL, GFP_NOFS);
930 while (start < end) {
931 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
932 async_cow->inode = inode;
933 async_cow->root = root;
934 async_cow->locked_page = locked_page;
935 async_cow->start = start;
936
937 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
938 cur_end = end;
939 else
940 cur_end = min(end, start + 512 * 1024 - 1);
941
942 async_cow->end = cur_end;
943 INIT_LIST_HEAD(&async_cow->extents);
944
945 async_cow->work.func = async_cow_start;
946 async_cow->work.ordered_func = async_cow_submit;
947 async_cow->work.ordered_free = async_cow_free;
948 async_cow->work.flags = 0;
949
950 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
951 PAGE_CACHE_SHIFT;
952 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
953
954 btrfs_queue_worker(&root->fs_info->delalloc_workers,
955 &async_cow->work);
956
957 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
958 wait_event(root->fs_info->async_submit_wait,
959 (atomic_read(&root->fs_info->async_delalloc_pages) <
960 limit));
961 }
962
963 while (atomic_read(&root->fs_info->async_submit_draining) &&
964 atomic_read(&root->fs_info->async_delalloc_pages)) {
965 wait_event(root->fs_info->async_submit_wait,
966 (atomic_read(&root->fs_info->async_delalloc_pages) ==
967 0));
968 }
969
970 *nr_written += nr_pages;
971 start = cur_end + 1;
972 }
973 *page_started = 1;
974 return 0;
975 }
976
977 static noinline int csum_exist_in_range(struct btrfs_root *root,
978 u64 bytenr, u64 num_bytes)
979 {
980 int ret;
981 struct btrfs_ordered_sum *sums;
982 LIST_HEAD(list);
983
984 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
985 bytenr + num_bytes - 1, &list);
986 if (ret == 0 && list_empty(&list))
987 return 0;
988
989 while (!list_empty(&list)) {
990 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
991 list_del(&sums->list);
992 kfree(sums);
993 }
994 return 1;
995 }
996
997 /*
998 * when nowcow writeback call back. This checks for snapshots or COW copies
999 * of the extents that exist in the file, and COWs the file as required.
1000 *
1001 * If no cow copies or snapshots exist, we write directly to the existing
1002 * blocks on disk
1003 */
1004 static noinline int run_delalloc_nocow(struct inode *inode,
1005 struct page *locked_page,
1006 u64 start, u64 end, int *page_started, int force,
1007 unsigned long *nr_written)
1008 {
1009 struct btrfs_root *root = BTRFS_I(inode)->root;
1010 struct btrfs_trans_handle *trans;
1011 struct extent_buffer *leaf;
1012 struct btrfs_path *path;
1013 struct btrfs_file_extent_item *fi;
1014 struct btrfs_key found_key;
1015 u64 cow_start;
1016 u64 cur_offset;
1017 u64 extent_end;
1018 u64 extent_offset;
1019 u64 disk_bytenr;
1020 u64 num_bytes;
1021 int extent_type;
1022 int ret;
1023 int type;
1024 int nocow;
1025 int check_prev = 1;
1026
1027 path = btrfs_alloc_path();
1028 BUG_ON(!path);
1029 trans = btrfs_join_transaction(root, 1);
1030 BUG_ON(!trans);
1031
1032 cow_start = (u64)-1;
1033 cur_offset = start;
1034 while (1) {
1035 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1036 cur_offset, 0);
1037 BUG_ON(ret < 0);
1038 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1039 leaf = path->nodes[0];
1040 btrfs_item_key_to_cpu(leaf, &found_key,
1041 path->slots[0] - 1);
1042 if (found_key.objectid == inode->i_ino &&
1043 found_key.type == BTRFS_EXTENT_DATA_KEY)
1044 path->slots[0]--;
1045 }
1046 check_prev = 0;
1047 next_slot:
1048 leaf = path->nodes[0];
1049 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1050 ret = btrfs_next_leaf(root, path);
1051 if (ret < 0)
1052 BUG_ON(1);
1053 if (ret > 0)
1054 break;
1055 leaf = path->nodes[0];
1056 }
1057
1058 nocow = 0;
1059 disk_bytenr = 0;
1060 num_bytes = 0;
1061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1062
1063 if (found_key.objectid > inode->i_ino ||
1064 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1065 found_key.offset > end)
1066 break;
1067
1068 if (found_key.offset > cur_offset) {
1069 extent_end = found_key.offset;
1070 extent_type = 0;
1071 goto out_check;
1072 }
1073
1074 fi = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_file_extent_item);
1076 extent_type = btrfs_file_extent_type(leaf, fi);
1077
1078 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1079 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1080 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1081 extent_offset = btrfs_file_extent_offset(leaf, fi);
1082 extent_end = found_key.offset +
1083 btrfs_file_extent_num_bytes(leaf, fi);
1084 if (extent_end <= start) {
1085 path->slots[0]++;
1086 goto next_slot;
1087 }
1088 if (disk_bytenr == 0)
1089 goto out_check;
1090 if (btrfs_file_extent_compression(leaf, fi) ||
1091 btrfs_file_extent_encryption(leaf, fi) ||
1092 btrfs_file_extent_other_encoding(leaf, fi))
1093 goto out_check;
1094 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1095 goto out_check;
1096 if (btrfs_extent_readonly(root, disk_bytenr))
1097 goto out_check;
1098 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1099 found_key.offset -
1100 extent_offset, disk_bytenr))
1101 goto out_check;
1102 disk_bytenr += extent_offset;
1103 disk_bytenr += cur_offset - found_key.offset;
1104 num_bytes = min(end + 1, extent_end) - cur_offset;
1105 /*
1106 * force cow if csum exists in the range.
1107 * this ensure that csum for a given extent are
1108 * either valid or do not exist.
1109 */
1110 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1111 goto out_check;
1112 nocow = 1;
1113 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1114 extent_end = found_key.offset +
1115 btrfs_file_extent_inline_len(leaf, fi);
1116 extent_end = ALIGN(extent_end, root->sectorsize);
1117 } else {
1118 BUG_ON(1);
1119 }
1120 out_check:
1121 if (extent_end <= start) {
1122 path->slots[0]++;
1123 goto next_slot;
1124 }
1125 if (!nocow) {
1126 if (cow_start == (u64)-1)
1127 cow_start = cur_offset;
1128 cur_offset = extent_end;
1129 if (cur_offset > end)
1130 break;
1131 path->slots[0]++;
1132 goto next_slot;
1133 }
1134
1135 btrfs_release_path(root, path);
1136 if (cow_start != (u64)-1) {
1137 ret = cow_file_range(inode, locked_page, cow_start,
1138 found_key.offset - 1, page_started,
1139 nr_written, 1);
1140 BUG_ON(ret);
1141 cow_start = (u64)-1;
1142 }
1143
1144 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1145 struct extent_map *em;
1146 struct extent_map_tree *em_tree;
1147 em_tree = &BTRFS_I(inode)->extent_tree;
1148 em = alloc_extent_map(GFP_NOFS);
1149 em->start = cur_offset;
1150 em->orig_start = em->start;
1151 em->len = num_bytes;
1152 em->block_len = num_bytes;
1153 em->block_start = disk_bytenr;
1154 em->bdev = root->fs_info->fs_devices->latest_bdev;
1155 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1156 while (1) {
1157 write_lock(&em_tree->lock);
1158 ret = add_extent_mapping(em_tree, em);
1159 write_unlock(&em_tree->lock);
1160 if (ret != -EEXIST) {
1161 free_extent_map(em);
1162 break;
1163 }
1164 btrfs_drop_extent_cache(inode, em->start,
1165 em->start + em->len - 1, 0);
1166 }
1167 type = BTRFS_ORDERED_PREALLOC;
1168 } else {
1169 type = BTRFS_ORDERED_NOCOW;
1170 }
1171
1172 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1173 num_bytes, num_bytes, type);
1174 BUG_ON(ret);
1175
1176 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1177 cur_offset, cur_offset + num_bytes - 1,
1178 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1179 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1180 EXTENT_SET_PRIVATE2);
1181 cur_offset = extent_end;
1182 if (cur_offset > end)
1183 break;
1184 }
1185 btrfs_release_path(root, path);
1186
1187 if (cur_offset <= end && cow_start == (u64)-1)
1188 cow_start = cur_offset;
1189 if (cow_start != (u64)-1) {
1190 ret = cow_file_range(inode, locked_page, cow_start, end,
1191 page_started, nr_written, 1);
1192 BUG_ON(ret);
1193 }
1194
1195 ret = btrfs_end_transaction(trans, root);
1196 BUG_ON(ret);
1197 btrfs_free_path(path);
1198 return 0;
1199 }
1200
1201 /*
1202 * extent_io.c call back to do delayed allocation processing
1203 */
1204 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1205 u64 start, u64 end, int *page_started,
1206 unsigned long *nr_written)
1207 {
1208 int ret;
1209 struct btrfs_root *root = BTRFS_I(inode)->root;
1210
1211 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1212 ret = run_delalloc_nocow(inode, locked_page, start, end,
1213 page_started, 1, nr_written);
1214 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1215 ret = run_delalloc_nocow(inode, locked_page, start, end,
1216 page_started, 0, nr_written);
1217 else if (!btrfs_test_opt(root, COMPRESS) &&
1218 !(BTRFS_I(inode)->force_compress))
1219 ret = cow_file_range(inode, locked_page, start, end,
1220 page_started, nr_written, 1);
1221 else
1222 ret = cow_file_range_async(inode, locked_page, start, end,
1223 page_started, nr_written);
1224 return ret;
1225 }
1226
1227 static int btrfs_split_extent_hook(struct inode *inode,
1228 struct extent_state *orig, u64 split)
1229 {
1230 if (!(orig->state & EXTENT_DELALLOC))
1231 return 0;
1232
1233 spin_lock(&BTRFS_I(inode)->accounting_lock);
1234 BTRFS_I(inode)->outstanding_extents++;
1235 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1242 * extents so we can keep track of new extents that are just merged onto old
1243 * extents, such as when we are doing sequential writes, so we can properly
1244 * account for the metadata space we'll need.
1245 */
1246 static int btrfs_merge_extent_hook(struct inode *inode,
1247 struct extent_state *new,
1248 struct extent_state *other)
1249 {
1250 /* not delalloc, ignore it */
1251 if (!(other->state & EXTENT_DELALLOC))
1252 return 0;
1253
1254 spin_lock(&BTRFS_I(inode)->accounting_lock);
1255 BTRFS_I(inode)->outstanding_extents--;
1256 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * extent_io.c set_bit_hook, used to track delayed allocation
1263 * bytes in this file, and to maintain the list of inodes that
1264 * have pending delalloc work to be done.
1265 */
1266 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1267 unsigned long old, unsigned long bits)
1268 {
1269
1270 /*
1271 * set_bit and clear bit hooks normally require _irqsave/restore
1272 * but in this case, we are only testeing for the DELALLOC
1273 * bit, which is only set or cleared with irqs on
1274 */
1275 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277
1278 spin_lock(&BTRFS_I(inode)->accounting_lock);
1279 BTRFS_I(inode)->outstanding_extents++;
1280 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1281 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1282
1283 spin_lock(&root->fs_info->delalloc_lock);
1284 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1285 root->fs_info->delalloc_bytes += end - start + 1;
1286 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1287 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1288 &root->fs_info->delalloc_inodes);
1289 }
1290 spin_unlock(&root->fs_info->delalloc_lock);
1291 }
1292 return 0;
1293 }
1294
1295 /*
1296 * extent_io.c clear_bit_hook, see set_bit_hook for why
1297 */
1298 static int btrfs_clear_bit_hook(struct inode *inode,
1299 struct extent_state *state, unsigned long bits)
1300 {
1301 /*
1302 * set_bit and clear bit hooks normally require _irqsave/restore
1303 * but in this case, we are only testeing for the DELALLOC
1304 * bit, which is only set or cleared with irqs on
1305 */
1306 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1307 struct btrfs_root *root = BTRFS_I(inode)->root;
1308
1309 if (bits & EXTENT_DO_ACCOUNTING) {
1310 spin_lock(&BTRFS_I(inode)->accounting_lock);
1311 WARN_ON(!BTRFS_I(inode)->outstanding_extents);
1312 BTRFS_I(inode)->outstanding_extents--;
1313 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1314 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1315 }
1316
1317 spin_lock(&root->fs_info->delalloc_lock);
1318 if (state->end - state->start + 1 >
1319 root->fs_info->delalloc_bytes) {
1320 printk(KERN_INFO "btrfs warning: delalloc account "
1321 "%llu %llu\n",
1322 (unsigned long long)
1323 state->end - state->start + 1,
1324 (unsigned long long)
1325 root->fs_info->delalloc_bytes);
1326 btrfs_delalloc_free_space(root, inode, (u64)-1);
1327 root->fs_info->delalloc_bytes = 0;
1328 BTRFS_I(inode)->delalloc_bytes = 0;
1329 } else {
1330 btrfs_delalloc_free_space(root, inode,
1331 state->end -
1332 state->start + 1);
1333 root->fs_info->delalloc_bytes -= state->end -
1334 state->start + 1;
1335 BTRFS_I(inode)->delalloc_bytes -= state->end -
1336 state->start + 1;
1337 }
1338 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1339 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1340 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1341 }
1342 spin_unlock(&root->fs_info->delalloc_lock);
1343 }
1344 return 0;
1345 }
1346
1347 /*
1348 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1349 * we don't create bios that span stripes or chunks
1350 */
1351 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1352 size_t size, struct bio *bio,
1353 unsigned long bio_flags)
1354 {
1355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1356 struct btrfs_mapping_tree *map_tree;
1357 u64 logical = (u64)bio->bi_sector << 9;
1358 u64 length = 0;
1359 u64 map_length;
1360 int ret;
1361
1362 if (bio_flags & EXTENT_BIO_COMPRESSED)
1363 return 0;
1364
1365 length = bio->bi_size;
1366 map_tree = &root->fs_info->mapping_tree;
1367 map_length = length;
1368 ret = btrfs_map_block(map_tree, READ, logical,
1369 &map_length, NULL, 0);
1370
1371 if (map_length < length + size)
1372 return 1;
1373 return 0;
1374 }
1375
1376 /*
1377 * in order to insert checksums into the metadata in large chunks,
1378 * we wait until bio submission time. All the pages in the bio are
1379 * checksummed and sums are attached onto the ordered extent record.
1380 *
1381 * At IO completion time the cums attached on the ordered extent record
1382 * are inserted into the btree
1383 */
1384 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1385 struct bio *bio, int mirror_num,
1386 unsigned long bio_flags)
1387 {
1388 struct btrfs_root *root = BTRFS_I(inode)->root;
1389 int ret = 0;
1390
1391 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1392 BUG_ON(ret);
1393 return 0;
1394 }
1395
1396 /*
1397 * in order to insert checksums into the metadata in large chunks,
1398 * we wait until bio submission time. All the pages in the bio are
1399 * checksummed and sums are attached onto the ordered extent record.
1400 *
1401 * At IO completion time the cums attached on the ordered extent record
1402 * are inserted into the btree
1403 */
1404 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1405 int mirror_num, unsigned long bio_flags)
1406 {
1407 struct btrfs_root *root = BTRFS_I(inode)->root;
1408 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1409 }
1410
1411 /*
1412 * extent_io.c submission hook. This does the right thing for csum calculation
1413 * on write, or reading the csums from the tree before a read
1414 */
1415 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1416 int mirror_num, unsigned long bio_flags)
1417 {
1418 struct btrfs_root *root = BTRFS_I(inode)->root;
1419 int ret = 0;
1420 int skip_sum;
1421
1422 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1423
1424 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1425 BUG_ON(ret);
1426
1427 if (!(rw & (1 << BIO_RW))) {
1428 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1429 return btrfs_submit_compressed_read(inode, bio,
1430 mirror_num, bio_flags);
1431 } else if (!skip_sum)
1432 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1433 goto mapit;
1434 } else if (!skip_sum) {
1435 /* csum items have already been cloned */
1436 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1437 goto mapit;
1438 /* we're doing a write, do the async checksumming */
1439 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1440 inode, rw, bio, mirror_num,
1441 bio_flags, __btrfs_submit_bio_start,
1442 __btrfs_submit_bio_done);
1443 }
1444
1445 mapit:
1446 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1447 }
1448
1449 /*
1450 * given a list of ordered sums record them in the inode. This happens
1451 * at IO completion time based on sums calculated at bio submission time.
1452 */
1453 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1454 struct inode *inode, u64 file_offset,
1455 struct list_head *list)
1456 {
1457 struct btrfs_ordered_sum *sum;
1458
1459 btrfs_set_trans_block_group(trans, inode);
1460
1461 list_for_each_entry(sum, list, list) {
1462 btrfs_csum_file_blocks(trans,
1463 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1464 }
1465 return 0;
1466 }
1467
1468 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1469 struct extent_state **cached_state)
1470 {
1471 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1472 WARN_ON(1);
1473 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1474 cached_state, GFP_NOFS);
1475 }
1476
1477 /* see btrfs_writepage_start_hook for details on why this is required */
1478 struct btrfs_writepage_fixup {
1479 struct page *page;
1480 struct btrfs_work work;
1481 };
1482
1483 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1484 {
1485 struct btrfs_writepage_fixup *fixup;
1486 struct btrfs_ordered_extent *ordered;
1487 struct extent_state *cached_state = NULL;
1488 struct page *page;
1489 struct inode *inode;
1490 u64 page_start;
1491 u64 page_end;
1492
1493 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1494 page = fixup->page;
1495 again:
1496 lock_page(page);
1497 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1498 ClearPageChecked(page);
1499 goto out_page;
1500 }
1501
1502 inode = page->mapping->host;
1503 page_start = page_offset(page);
1504 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1505
1506 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1507 &cached_state, GFP_NOFS);
1508
1509 /* already ordered? We're done */
1510 if (PagePrivate2(page))
1511 goto out;
1512
1513 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1514 if (ordered) {
1515 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1516 page_end, &cached_state, GFP_NOFS);
1517 unlock_page(page);
1518 btrfs_start_ordered_extent(inode, ordered, 1);
1519 goto again;
1520 }
1521
1522 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1523 ClearPageChecked(page);
1524 out:
1525 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1526 &cached_state, GFP_NOFS);
1527 out_page:
1528 unlock_page(page);
1529 page_cache_release(page);
1530 }
1531
1532 /*
1533 * There are a few paths in the higher layers of the kernel that directly
1534 * set the page dirty bit without asking the filesystem if it is a
1535 * good idea. This causes problems because we want to make sure COW
1536 * properly happens and the data=ordered rules are followed.
1537 *
1538 * In our case any range that doesn't have the ORDERED bit set
1539 * hasn't been properly setup for IO. We kick off an async process
1540 * to fix it up. The async helper will wait for ordered extents, set
1541 * the delalloc bit and make it safe to write the page.
1542 */
1543 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1544 {
1545 struct inode *inode = page->mapping->host;
1546 struct btrfs_writepage_fixup *fixup;
1547 struct btrfs_root *root = BTRFS_I(inode)->root;
1548
1549 /* this page is properly in the ordered list */
1550 if (TestClearPagePrivate2(page))
1551 return 0;
1552
1553 if (PageChecked(page))
1554 return -EAGAIN;
1555
1556 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1557 if (!fixup)
1558 return -EAGAIN;
1559
1560 SetPageChecked(page);
1561 page_cache_get(page);
1562 fixup->work.func = btrfs_writepage_fixup_worker;
1563 fixup->page = page;
1564 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1565 return -EAGAIN;
1566 }
1567
1568 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1569 struct inode *inode, u64 file_pos,
1570 u64 disk_bytenr, u64 disk_num_bytes,
1571 u64 num_bytes, u64 ram_bytes,
1572 u8 compression, u8 encryption,
1573 u16 other_encoding, int extent_type)
1574 {
1575 struct btrfs_root *root = BTRFS_I(inode)->root;
1576 struct btrfs_file_extent_item *fi;
1577 struct btrfs_path *path;
1578 struct extent_buffer *leaf;
1579 struct btrfs_key ins;
1580 u64 hint;
1581 int ret;
1582
1583 path = btrfs_alloc_path();
1584 BUG_ON(!path);
1585
1586 path->leave_spinning = 1;
1587
1588 /*
1589 * we may be replacing one extent in the tree with another.
1590 * The new extent is pinned in the extent map, and we don't want
1591 * to drop it from the cache until it is completely in the btree.
1592 *
1593 * So, tell btrfs_drop_extents to leave this extent in the cache.
1594 * the caller is expected to unpin it and allow it to be merged
1595 * with the others.
1596 */
1597 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1598 &hint, 0);
1599 BUG_ON(ret);
1600
1601 ins.objectid = inode->i_ino;
1602 ins.offset = file_pos;
1603 ins.type = BTRFS_EXTENT_DATA_KEY;
1604 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1605 BUG_ON(ret);
1606 leaf = path->nodes[0];
1607 fi = btrfs_item_ptr(leaf, path->slots[0],
1608 struct btrfs_file_extent_item);
1609 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1610 btrfs_set_file_extent_type(leaf, fi, extent_type);
1611 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1612 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1613 btrfs_set_file_extent_offset(leaf, fi, 0);
1614 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1615 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1616 btrfs_set_file_extent_compression(leaf, fi, compression);
1617 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1618 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1619
1620 btrfs_unlock_up_safe(path, 1);
1621 btrfs_set_lock_blocking(leaf);
1622
1623 btrfs_mark_buffer_dirty(leaf);
1624
1625 inode_add_bytes(inode, num_bytes);
1626
1627 ins.objectid = disk_bytenr;
1628 ins.offset = disk_num_bytes;
1629 ins.type = BTRFS_EXTENT_ITEM_KEY;
1630 ret = btrfs_alloc_reserved_file_extent(trans, root,
1631 root->root_key.objectid,
1632 inode->i_ino, file_pos, &ins);
1633 BUG_ON(ret);
1634 btrfs_free_path(path);
1635
1636 return 0;
1637 }
1638
1639 /*
1640 * helper function for btrfs_finish_ordered_io, this
1641 * just reads in some of the csum leaves to prime them into ram
1642 * before we start the transaction. It limits the amount of btree
1643 * reads required while inside the transaction.
1644 */
1645 /* as ordered data IO finishes, this gets called so we can finish
1646 * an ordered extent if the range of bytes in the file it covers are
1647 * fully written.
1648 */
1649 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1650 {
1651 struct btrfs_root *root = BTRFS_I(inode)->root;
1652 struct btrfs_trans_handle *trans;
1653 struct btrfs_ordered_extent *ordered_extent = NULL;
1654 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1655 struct extent_state *cached_state = NULL;
1656 int compressed = 0;
1657 int ret;
1658
1659 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1660 end - start + 1);
1661 if (!ret)
1662 return 0;
1663 BUG_ON(!ordered_extent);
1664
1665 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1666 BUG_ON(!list_empty(&ordered_extent->list));
1667 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1668 if (!ret) {
1669 trans = btrfs_join_transaction(root, 1);
1670 ret = btrfs_update_inode(trans, root, inode);
1671 BUG_ON(ret);
1672 btrfs_end_transaction(trans, root);
1673 }
1674 goto out;
1675 }
1676
1677 lock_extent_bits(io_tree, ordered_extent->file_offset,
1678 ordered_extent->file_offset + ordered_extent->len - 1,
1679 0, &cached_state, GFP_NOFS);
1680
1681 trans = btrfs_join_transaction(root, 1);
1682
1683 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1684 compressed = 1;
1685 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1686 BUG_ON(compressed);
1687 ret = btrfs_mark_extent_written(trans, inode,
1688 ordered_extent->file_offset,
1689 ordered_extent->file_offset +
1690 ordered_extent->len);
1691 BUG_ON(ret);
1692 } else {
1693 ret = insert_reserved_file_extent(trans, inode,
1694 ordered_extent->file_offset,
1695 ordered_extent->start,
1696 ordered_extent->disk_len,
1697 ordered_extent->len,
1698 ordered_extent->len,
1699 compressed, 0, 0,
1700 BTRFS_FILE_EXTENT_REG);
1701 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1702 ordered_extent->file_offset,
1703 ordered_extent->len);
1704 BUG_ON(ret);
1705 }
1706 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1707 ordered_extent->file_offset +
1708 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1709
1710 add_pending_csums(trans, inode, ordered_extent->file_offset,
1711 &ordered_extent->list);
1712
1713 /* this also removes the ordered extent from the tree */
1714 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715 ret = btrfs_update_inode(trans, root, inode);
1716 BUG_ON(ret);
1717 btrfs_end_transaction(trans, root);
1718 out:
1719 /* once for us */
1720 btrfs_put_ordered_extent(ordered_extent);
1721 /* once for the tree */
1722 btrfs_put_ordered_extent(ordered_extent);
1723
1724 return 0;
1725 }
1726
1727 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1728 struct extent_state *state, int uptodate)
1729 {
1730 ClearPagePrivate2(page);
1731 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1732 }
1733
1734 /*
1735 * When IO fails, either with EIO or csum verification fails, we
1736 * try other mirrors that might have a good copy of the data. This
1737 * io_failure_record is used to record state as we go through all the
1738 * mirrors. If another mirror has good data, the page is set up to date
1739 * and things continue. If a good mirror can't be found, the original
1740 * bio end_io callback is called to indicate things have failed.
1741 */
1742 struct io_failure_record {
1743 struct page *page;
1744 u64 start;
1745 u64 len;
1746 u64 logical;
1747 unsigned long bio_flags;
1748 int last_mirror;
1749 };
1750
1751 static int btrfs_io_failed_hook(struct bio *failed_bio,
1752 struct page *page, u64 start, u64 end,
1753 struct extent_state *state)
1754 {
1755 struct io_failure_record *failrec = NULL;
1756 u64 private;
1757 struct extent_map *em;
1758 struct inode *inode = page->mapping->host;
1759 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1760 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1761 struct bio *bio;
1762 int num_copies;
1763 int ret;
1764 int rw;
1765 u64 logical;
1766
1767 ret = get_state_private(failure_tree, start, &private);
1768 if (ret) {
1769 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1770 if (!failrec)
1771 return -ENOMEM;
1772 failrec->start = start;
1773 failrec->len = end - start + 1;
1774 failrec->last_mirror = 0;
1775 failrec->bio_flags = 0;
1776
1777 read_lock(&em_tree->lock);
1778 em = lookup_extent_mapping(em_tree, start, failrec->len);
1779 if (em->start > start || em->start + em->len < start) {
1780 free_extent_map(em);
1781 em = NULL;
1782 }
1783 read_unlock(&em_tree->lock);
1784
1785 if (!em || IS_ERR(em)) {
1786 kfree(failrec);
1787 return -EIO;
1788 }
1789 logical = start - em->start;
1790 logical = em->block_start + logical;
1791 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1792 logical = em->block_start;
1793 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1794 }
1795 failrec->logical = logical;
1796 free_extent_map(em);
1797 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1798 EXTENT_DIRTY, GFP_NOFS);
1799 set_state_private(failure_tree, start,
1800 (u64)(unsigned long)failrec);
1801 } else {
1802 failrec = (struct io_failure_record *)(unsigned long)private;
1803 }
1804 num_copies = btrfs_num_copies(
1805 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1806 failrec->logical, failrec->len);
1807 failrec->last_mirror++;
1808 if (!state) {
1809 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1810 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1811 failrec->start,
1812 EXTENT_LOCKED);
1813 if (state && state->start != failrec->start)
1814 state = NULL;
1815 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1816 }
1817 if (!state || failrec->last_mirror > num_copies) {
1818 set_state_private(failure_tree, failrec->start, 0);
1819 clear_extent_bits(failure_tree, failrec->start,
1820 failrec->start + failrec->len - 1,
1821 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1822 kfree(failrec);
1823 return -EIO;
1824 }
1825 bio = bio_alloc(GFP_NOFS, 1);
1826 bio->bi_private = state;
1827 bio->bi_end_io = failed_bio->bi_end_io;
1828 bio->bi_sector = failrec->logical >> 9;
1829 bio->bi_bdev = failed_bio->bi_bdev;
1830 bio->bi_size = 0;
1831
1832 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1833 if (failed_bio->bi_rw & (1 << BIO_RW))
1834 rw = WRITE;
1835 else
1836 rw = READ;
1837
1838 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1839 failrec->last_mirror,
1840 failrec->bio_flags);
1841 return 0;
1842 }
1843
1844 /*
1845 * each time an IO finishes, we do a fast check in the IO failure tree
1846 * to see if we need to process or clean up an io_failure_record
1847 */
1848 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1849 {
1850 u64 private;
1851 u64 private_failure;
1852 struct io_failure_record *failure;
1853 int ret;
1854
1855 private = 0;
1856 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1857 (u64)-1, 1, EXTENT_DIRTY)) {
1858 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1859 start, &private_failure);
1860 if (ret == 0) {
1861 failure = (struct io_failure_record *)(unsigned long)
1862 private_failure;
1863 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1864 failure->start, 0);
1865 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1866 failure->start,
1867 failure->start + failure->len - 1,
1868 EXTENT_DIRTY | EXTENT_LOCKED,
1869 GFP_NOFS);
1870 kfree(failure);
1871 }
1872 }
1873 return 0;
1874 }
1875
1876 /*
1877 * when reads are done, we need to check csums to verify the data is correct
1878 * if there's a match, we allow the bio to finish. If not, we go through
1879 * the io_failure_record routines to find good copies
1880 */
1881 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1882 struct extent_state *state)
1883 {
1884 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1885 struct inode *inode = page->mapping->host;
1886 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1887 char *kaddr;
1888 u64 private = ~(u32)0;
1889 int ret;
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 u32 csum = ~(u32)0;
1892
1893 if (PageChecked(page)) {
1894 ClearPageChecked(page);
1895 goto good;
1896 }
1897
1898 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1899 return 0;
1900
1901 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1902 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1903 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1904 GFP_NOFS);
1905 return 0;
1906 }
1907
1908 if (state && state->start == start) {
1909 private = state->private;
1910 ret = 0;
1911 } else {
1912 ret = get_state_private(io_tree, start, &private);
1913 }
1914 kaddr = kmap_atomic(page, KM_USER0);
1915 if (ret)
1916 goto zeroit;
1917
1918 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1919 btrfs_csum_final(csum, (char *)&csum);
1920 if (csum != private)
1921 goto zeroit;
1922
1923 kunmap_atomic(kaddr, KM_USER0);
1924 good:
1925 /* if the io failure tree for this inode is non-empty,
1926 * check to see if we've recovered from a failed IO
1927 */
1928 btrfs_clean_io_failures(inode, start);
1929 return 0;
1930
1931 zeroit:
1932 if (printk_ratelimit()) {
1933 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1934 "private %llu\n", page->mapping->host->i_ino,
1935 (unsigned long long)start, csum,
1936 (unsigned long long)private);
1937 }
1938 memset(kaddr + offset, 1, end - start + 1);
1939 flush_dcache_page(page);
1940 kunmap_atomic(kaddr, KM_USER0);
1941 if (private == 0)
1942 return 0;
1943 return -EIO;
1944 }
1945
1946 struct delayed_iput {
1947 struct list_head list;
1948 struct inode *inode;
1949 };
1950
1951 void btrfs_add_delayed_iput(struct inode *inode)
1952 {
1953 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1954 struct delayed_iput *delayed;
1955
1956 if (atomic_add_unless(&inode->i_count, -1, 1))
1957 return;
1958
1959 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1960 delayed->inode = inode;
1961
1962 spin_lock(&fs_info->delayed_iput_lock);
1963 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1964 spin_unlock(&fs_info->delayed_iput_lock);
1965 }
1966
1967 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1968 {
1969 LIST_HEAD(list);
1970 struct btrfs_fs_info *fs_info = root->fs_info;
1971 struct delayed_iput *delayed;
1972 int empty;
1973
1974 spin_lock(&fs_info->delayed_iput_lock);
1975 empty = list_empty(&fs_info->delayed_iputs);
1976 spin_unlock(&fs_info->delayed_iput_lock);
1977 if (empty)
1978 return;
1979
1980 down_read(&root->fs_info->cleanup_work_sem);
1981 spin_lock(&fs_info->delayed_iput_lock);
1982 list_splice_init(&fs_info->delayed_iputs, &list);
1983 spin_unlock(&fs_info->delayed_iput_lock);
1984
1985 while (!list_empty(&list)) {
1986 delayed = list_entry(list.next, struct delayed_iput, list);
1987 list_del(&delayed->list);
1988 iput(delayed->inode);
1989 kfree(delayed);
1990 }
1991 up_read(&root->fs_info->cleanup_work_sem);
1992 }
1993
1994 /*
1995 * This creates an orphan entry for the given inode in case something goes
1996 * wrong in the middle of an unlink/truncate.
1997 */
1998 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1999 {
2000 struct btrfs_root *root = BTRFS_I(inode)->root;
2001 int ret = 0;
2002
2003 spin_lock(&root->list_lock);
2004
2005 /* already on the orphan list, we're good */
2006 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2007 spin_unlock(&root->list_lock);
2008 return 0;
2009 }
2010
2011 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2012
2013 spin_unlock(&root->list_lock);
2014
2015 /*
2016 * insert an orphan item to track this unlinked/truncated file
2017 */
2018 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2019
2020 return ret;
2021 }
2022
2023 /*
2024 * We have done the truncate/delete so we can go ahead and remove the orphan
2025 * item for this particular inode.
2026 */
2027 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2028 {
2029 struct btrfs_root *root = BTRFS_I(inode)->root;
2030 int ret = 0;
2031
2032 spin_lock(&root->list_lock);
2033
2034 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2035 spin_unlock(&root->list_lock);
2036 return 0;
2037 }
2038
2039 list_del_init(&BTRFS_I(inode)->i_orphan);
2040 if (!trans) {
2041 spin_unlock(&root->list_lock);
2042 return 0;
2043 }
2044
2045 spin_unlock(&root->list_lock);
2046
2047 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2048
2049 return ret;
2050 }
2051
2052 /*
2053 * this cleans up any orphans that may be left on the list from the last use
2054 * of this root.
2055 */
2056 void btrfs_orphan_cleanup(struct btrfs_root *root)
2057 {
2058 struct btrfs_path *path;
2059 struct extent_buffer *leaf;
2060 struct btrfs_item *item;
2061 struct btrfs_key key, found_key;
2062 struct btrfs_trans_handle *trans;
2063 struct inode *inode;
2064 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2065
2066 if (!xchg(&root->clean_orphans, 0))
2067 return;
2068
2069 path = btrfs_alloc_path();
2070 BUG_ON(!path);
2071 path->reada = -1;
2072
2073 key.objectid = BTRFS_ORPHAN_OBJECTID;
2074 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2075 key.offset = (u64)-1;
2076
2077 while (1) {
2078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2079 if (ret < 0) {
2080 printk(KERN_ERR "Error searching slot for orphan: %d"
2081 "\n", ret);
2082 break;
2083 }
2084
2085 /*
2086 * if ret == 0 means we found what we were searching for, which
2087 * is weird, but possible, so only screw with path if we didnt
2088 * find the key and see if we have stuff that matches
2089 */
2090 if (ret > 0) {
2091 if (path->slots[0] == 0)
2092 break;
2093 path->slots[0]--;
2094 }
2095
2096 /* pull out the item */
2097 leaf = path->nodes[0];
2098 item = btrfs_item_nr(leaf, path->slots[0]);
2099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2100
2101 /* make sure the item matches what we want */
2102 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2103 break;
2104 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2105 break;
2106
2107 /* release the path since we're done with it */
2108 btrfs_release_path(root, path);
2109
2110 /*
2111 * this is where we are basically btrfs_lookup, without the
2112 * crossing root thing. we store the inode number in the
2113 * offset of the orphan item.
2114 */
2115 found_key.objectid = found_key.offset;
2116 found_key.type = BTRFS_INODE_ITEM_KEY;
2117 found_key.offset = 0;
2118 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2119 if (IS_ERR(inode))
2120 break;
2121
2122 /*
2123 * add this inode to the orphan list so btrfs_orphan_del does
2124 * the proper thing when we hit it
2125 */
2126 spin_lock(&root->list_lock);
2127 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2128 spin_unlock(&root->list_lock);
2129
2130 /*
2131 * if this is a bad inode, means we actually succeeded in
2132 * removing the inode, but not the orphan record, which means
2133 * we need to manually delete the orphan since iput will just
2134 * do a destroy_inode
2135 */
2136 if (is_bad_inode(inode)) {
2137 trans = btrfs_start_transaction(root, 1);
2138 btrfs_orphan_del(trans, inode);
2139 btrfs_end_transaction(trans, root);
2140 iput(inode);
2141 continue;
2142 }
2143
2144 /* if we have links, this was a truncate, lets do that */
2145 if (inode->i_nlink) {
2146 nr_truncate++;
2147 btrfs_truncate(inode);
2148 } else {
2149 nr_unlink++;
2150 }
2151
2152 /* this will do delete_inode and everything for us */
2153 iput(inode);
2154 }
2155
2156 if (nr_unlink)
2157 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2158 if (nr_truncate)
2159 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2160
2161 btrfs_free_path(path);
2162 }
2163
2164 /*
2165 * very simple check to peek ahead in the leaf looking for xattrs. If we
2166 * don't find any xattrs, we know there can't be any acls.
2167 *
2168 * slot is the slot the inode is in, objectid is the objectid of the inode
2169 */
2170 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2171 int slot, u64 objectid)
2172 {
2173 u32 nritems = btrfs_header_nritems(leaf);
2174 struct btrfs_key found_key;
2175 int scanned = 0;
2176
2177 slot++;
2178 while (slot < nritems) {
2179 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2180
2181 /* we found a different objectid, there must not be acls */
2182 if (found_key.objectid != objectid)
2183 return 0;
2184
2185 /* we found an xattr, assume we've got an acl */
2186 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2187 return 1;
2188
2189 /*
2190 * we found a key greater than an xattr key, there can't
2191 * be any acls later on
2192 */
2193 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2194 return 0;
2195
2196 slot++;
2197 scanned++;
2198
2199 /*
2200 * it goes inode, inode backrefs, xattrs, extents,
2201 * so if there are a ton of hard links to an inode there can
2202 * be a lot of backrefs. Don't waste time searching too hard,
2203 * this is just an optimization
2204 */
2205 if (scanned >= 8)
2206 break;
2207 }
2208 /* we hit the end of the leaf before we found an xattr or
2209 * something larger than an xattr. We have to assume the inode
2210 * has acls
2211 */
2212 return 1;
2213 }
2214
2215 /*
2216 * read an inode from the btree into the in-memory inode
2217 */
2218 static void btrfs_read_locked_inode(struct inode *inode)
2219 {
2220 struct btrfs_path *path;
2221 struct extent_buffer *leaf;
2222 struct btrfs_inode_item *inode_item;
2223 struct btrfs_timespec *tspec;
2224 struct btrfs_root *root = BTRFS_I(inode)->root;
2225 struct btrfs_key location;
2226 int maybe_acls;
2227 u64 alloc_group_block;
2228 u32 rdev;
2229 int ret;
2230
2231 path = btrfs_alloc_path();
2232 BUG_ON(!path);
2233 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2234
2235 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2236 if (ret)
2237 goto make_bad;
2238
2239 leaf = path->nodes[0];
2240 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2241 struct btrfs_inode_item);
2242
2243 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2244 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2245 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2246 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2247 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2248
2249 tspec = btrfs_inode_atime(inode_item);
2250 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2251 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2252
2253 tspec = btrfs_inode_mtime(inode_item);
2254 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2255 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2256
2257 tspec = btrfs_inode_ctime(inode_item);
2258 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2259 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2260
2261 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2262 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2263 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2264 inode->i_generation = BTRFS_I(inode)->generation;
2265 inode->i_rdev = 0;
2266 rdev = btrfs_inode_rdev(leaf, inode_item);
2267
2268 BTRFS_I(inode)->index_cnt = (u64)-1;
2269 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2270
2271 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2272
2273 /*
2274 * try to precache a NULL acl entry for files that don't have
2275 * any xattrs or acls
2276 */
2277 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2278 if (!maybe_acls)
2279 cache_no_acl(inode);
2280
2281 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2282 alloc_group_block, 0);
2283 btrfs_free_path(path);
2284 inode_item = NULL;
2285
2286 switch (inode->i_mode & S_IFMT) {
2287 case S_IFREG:
2288 inode->i_mapping->a_ops = &btrfs_aops;
2289 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2290 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2291 inode->i_fop = &btrfs_file_operations;
2292 inode->i_op = &btrfs_file_inode_operations;
2293 break;
2294 case S_IFDIR:
2295 inode->i_fop = &btrfs_dir_file_operations;
2296 if (root == root->fs_info->tree_root)
2297 inode->i_op = &btrfs_dir_ro_inode_operations;
2298 else
2299 inode->i_op = &btrfs_dir_inode_operations;
2300 break;
2301 case S_IFLNK:
2302 inode->i_op = &btrfs_symlink_inode_operations;
2303 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2304 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2305 break;
2306 default:
2307 inode->i_op = &btrfs_special_inode_operations;
2308 init_special_inode(inode, inode->i_mode, rdev);
2309 break;
2310 }
2311
2312 btrfs_update_iflags(inode);
2313 return;
2314
2315 make_bad:
2316 btrfs_free_path(path);
2317 make_bad_inode(inode);
2318 }
2319
2320 /*
2321 * given a leaf and an inode, copy the inode fields into the leaf
2322 */
2323 static void fill_inode_item(struct btrfs_trans_handle *trans,
2324 struct extent_buffer *leaf,
2325 struct btrfs_inode_item *item,
2326 struct inode *inode)
2327 {
2328 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2329 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2330 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2331 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2332 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2333
2334 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2335 inode->i_atime.tv_sec);
2336 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2337 inode->i_atime.tv_nsec);
2338
2339 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2340 inode->i_mtime.tv_sec);
2341 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2342 inode->i_mtime.tv_nsec);
2343
2344 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2345 inode->i_ctime.tv_sec);
2346 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2347 inode->i_ctime.tv_nsec);
2348
2349 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2350 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2351 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2352 btrfs_set_inode_transid(leaf, item, trans->transid);
2353 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2354 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2355 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2356 }
2357
2358 /*
2359 * copy everything in the in-memory inode into the btree.
2360 */
2361 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2362 struct btrfs_root *root, struct inode *inode)
2363 {
2364 struct btrfs_inode_item *inode_item;
2365 struct btrfs_path *path;
2366 struct extent_buffer *leaf;
2367 int ret;
2368
2369 path = btrfs_alloc_path();
2370 BUG_ON(!path);
2371 path->leave_spinning = 1;
2372 ret = btrfs_lookup_inode(trans, root, path,
2373 &BTRFS_I(inode)->location, 1);
2374 if (ret) {
2375 if (ret > 0)
2376 ret = -ENOENT;
2377 goto failed;
2378 }
2379
2380 btrfs_unlock_up_safe(path, 1);
2381 leaf = path->nodes[0];
2382 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2383 struct btrfs_inode_item);
2384
2385 fill_inode_item(trans, leaf, inode_item, inode);
2386 btrfs_mark_buffer_dirty(leaf);
2387 btrfs_set_inode_last_trans(trans, inode);
2388 ret = 0;
2389 failed:
2390 btrfs_free_path(path);
2391 return ret;
2392 }
2393
2394
2395 /*
2396 * unlink helper that gets used here in inode.c and in the tree logging
2397 * recovery code. It remove a link in a directory with a given name, and
2398 * also drops the back refs in the inode to the directory
2399 */
2400 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2401 struct btrfs_root *root,
2402 struct inode *dir, struct inode *inode,
2403 const char *name, int name_len)
2404 {
2405 struct btrfs_path *path;
2406 int ret = 0;
2407 struct extent_buffer *leaf;
2408 struct btrfs_dir_item *di;
2409 struct btrfs_key key;
2410 u64 index;
2411
2412 path = btrfs_alloc_path();
2413 if (!path) {
2414 ret = -ENOMEM;
2415 goto err;
2416 }
2417
2418 path->leave_spinning = 1;
2419 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2420 name, name_len, -1);
2421 if (IS_ERR(di)) {
2422 ret = PTR_ERR(di);
2423 goto err;
2424 }
2425 if (!di) {
2426 ret = -ENOENT;
2427 goto err;
2428 }
2429 leaf = path->nodes[0];
2430 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2431 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2432 if (ret)
2433 goto err;
2434 btrfs_release_path(root, path);
2435
2436 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2437 inode->i_ino,
2438 dir->i_ino, &index);
2439 if (ret) {
2440 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2441 "inode %lu parent %lu\n", name_len, name,
2442 inode->i_ino, dir->i_ino);
2443 goto err;
2444 }
2445
2446 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2447 index, name, name_len, -1);
2448 if (IS_ERR(di)) {
2449 ret = PTR_ERR(di);
2450 goto err;
2451 }
2452 if (!di) {
2453 ret = -ENOENT;
2454 goto err;
2455 }
2456 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2457 btrfs_release_path(root, path);
2458
2459 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2460 inode, dir->i_ino);
2461 BUG_ON(ret != 0 && ret != -ENOENT);
2462
2463 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2464 dir, index);
2465 BUG_ON(ret);
2466 err:
2467 btrfs_free_path(path);
2468 if (ret)
2469 goto out;
2470
2471 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2472 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2473 btrfs_update_inode(trans, root, dir);
2474 btrfs_drop_nlink(inode);
2475 ret = btrfs_update_inode(trans, root, inode);
2476 out:
2477 return ret;
2478 }
2479
2480 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2481 {
2482 struct btrfs_root *root;
2483 struct btrfs_trans_handle *trans;
2484 struct inode *inode = dentry->d_inode;
2485 int ret;
2486 unsigned long nr = 0;
2487
2488 root = BTRFS_I(dir)->root;
2489
2490 /*
2491 * 5 items for unlink inode
2492 * 1 for orphan
2493 */
2494 ret = btrfs_reserve_metadata_space(root, 6);
2495 if (ret)
2496 return ret;
2497
2498 trans = btrfs_start_transaction(root, 1);
2499 if (IS_ERR(trans)) {
2500 btrfs_unreserve_metadata_space(root, 6);
2501 return PTR_ERR(trans);
2502 }
2503
2504 btrfs_set_trans_block_group(trans, dir);
2505
2506 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2507
2508 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2509 dentry->d_name.name, dentry->d_name.len);
2510
2511 if (inode->i_nlink == 0)
2512 ret = btrfs_orphan_add(trans, inode);
2513
2514 nr = trans->blocks_used;
2515
2516 btrfs_end_transaction_throttle(trans, root);
2517 btrfs_unreserve_metadata_space(root, 6);
2518 btrfs_btree_balance_dirty(root, nr);
2519 return ret;
2520 }
2521
2522 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2523 struct btrfs_root *root,
2524 struct inode *dir, u64 objectid,
2525 const char *name, int name_len)
2526 {
2527 struct btrfs_path *path;
2528 struct extent_buffer *leaf;
2529 struct btrfs_dir_item *di;
2530 struct btrfs_key key;
2531 u64 index;
2532 int ret;
2533
2534 path = btrfs_alloc_path();
2535 if (!path)
2536 return -ENOMEM;
2537
2538 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2539 name, name_len, -1);
2540 BUG_ON(!di || IS_ERR(di));
2541
2542 leaf = path->nodes[0];
2543 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2544 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2545 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2546 BUG_ON(ret);
2547 btrfs_release_path(root, path);
2548
2549 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2550 objectid, root->root_key.objectid,
2551 dir->i_ino, &index, name, name_len);
2552 if (ret < 0) {
2553 BUG_ON(ret != -ENOENT);
2554 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2555 name, name_len);
2556 BUG_ON(!di || IS_ERR(di));
2557
2558 leaf = path->nodes[0];
2559 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2560 btrfs_release_path(root, path);
2561 index = key.offset;
2562 }
2563
2564 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2565 index, name, name_len, -1);
2566 BUG_ON(!di || IS_ERR(di));
2567
2568 leaf = path->nodes[0];
2569 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2570 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2571 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2572 BUG_ON(ret);
2573 btrfs_release_path(root, path);
2574
2575 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2576 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2577 ret = btrfs_update_inode(trans, root, dir);
2578 BUG_ON(ret);
2579 dir->i_sb->s_dirt = 1;
2580
2581 btrfs_free_path(path);
2582 return 0;
2583 }
2584
2585 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2586 {
2587 struct inode *inode = dentry->d_inode;
2588 int err = 0;
2589 int ret;
2590 struct btrfs_root *root = BTRFS_I(dir)->root;
2591 struct btrfs_trans_handle *trans;
2592 unsigned long nr = 0;
2593
2594 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2595 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2596 return -ENOTEMPTY;
2597
2598 ret = btrfs_reserve_metadata_space(root, 5);
2599 if (ret)
2600 return ret;
2601
2602 trans = btrfs_start_transaction(root, 1);
2603 if (IS_ERR(trans)) {
2604 btrfs_unreserve_metadata_space(root, 5);
2605 return PTR_ERR(trans);
2606 }
2607
2608 btrfs_set_trans_block_group(trans, dir);
2609
2610 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2611 err = btrfs_unlink_subvol(trans, root, dir,
2612 BTRFS_I(inode)->location.objectid,
2613 dentry->d_name.name,
2614 dentry->d_name.len);
2615 goto out;
2616 }
2617
2618 err = btrfs_orphan_add(trans, inode);
2619 if (err)
2620 goto out;
2621
2622 /* now the directory is empty */
2623 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2624 dentry->d_name.name, dentry->d_name.len);
2625 if (!err)
2626 btrfs_i_size_write(inode, 0);
2627 out:
2628 nr = trans->blocks_used;
2629 ret = btrfs_end_transaction_throttle(trans, root);
2630 btrfs_unreserve_metadata_space(root, 5);
2631 btrfs_btree_balance_dirty(root, nr);
2632
2633 if (ret && !err)
2634 err = ret;
2635 return err;
2636 }
2637
2638 #if 0
2639 /*
2640 * when truncating bytes in a file, it is possible to avoid reading
2641 * the leaves that contain only checksum items. This can be the
2642 * majority of the IO required to delete a large file, but it must
2643 * be done carefully.
2644 *
2645 * The keys in the level just above the leaves are checked to make sure
2646 * the lowest key in a given leaf is a csum key, and starts at an offset
2647 * after the new size.
2648 *
2649 * Then the key for the next leaf is checked to make sure it also has
2650 * a checksum item for the same file. If it does, we know our target leaf
2651 * contains only checksum items, and it can be safely freed without reading
2652 * it.
2653 *
2654 * This is just an optimization targeted at large files. It may do
2655 * nothing. It will return 0 unless things went badly.
2656 */
2657 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2658 struct btrfs_root *root,
2659 struct btrfs_path *path,
2660 struct inode *inode, u64 new_size)
2661 {
2662 struct btrfs_key key;
2663 int ret;
2664 int nritems;
2665 struct btrfs_key found_key;
2666 struct btrfs_key other_key;
2667 struct btrfs_leaf_ref *ref;
2668 u64 leaf_gen;
2669 u64 leaf_start;
2670
2671 path->lowest_level = 1;
2672 key.objectid = inode->i_ino;
2673 key.type = BTRFS_CSUM_ITEM_KEY;
2674 key.offset = new_size;
2675 again:
2676 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2677 if (ret < 0)
2678 goto out;
2679
2680 if (path->nodes[1] == NULL) {
2681 ret = 0;
2682 goto out;
2683 }
2684 ret = 0;
2685 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2686 nritems = btrfs_header_nritems(path->nodes[1]);
2687
2688 if (!nritems)
2689 goto out;
2690
2691 if (path->slots[1] >= nritems)
2692 goto next_node;
2693
2694 /* did we find a key greater than anything we want to delete? */
2695 if (found_key.objectid > inode->i_ino ||
2696 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2697 goto out;
2698
2699 /* we check the next key in the node to make sure the leave contains
2700 * only checksum items. This comparison doesn't work if our
2701 * leaf is the last one in the node
2702 */
2703 if (path->slots[1] + 1 >= nritems) {
2704 next_node:
2705 /* search forward from the last key in the node, this
2706 * will bring us into the next node in the tree
2707 */
2708 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2709
2710 /* unlikely, but we inc below, so check to be safe */
2711 if (found_key.offset == (u64)-1)
2712 goto out;
2713
2714 /* search_forward needs a path with locks held, do the
2715 * search again for the original key. It is possible
2716 * this will race with a balance and return a path that
2717 * we could modify, but this drop is just an optimization
2718 * and is allowed to miss some leaves.
2719 */
2720 btrfs_release_path(root, path);
2721 found_key.offset++;
2722
2723 /* setup a max key for search_forward */
2724 other_key.offset = (u64)-1;
2725 other_key.type = key.type;
2726 other_key.objectid = key.objectid;
2727
2728 path->keep_locks = 1;
2729 ret = btrfs_search_forward(root, &found_key, &other_key,
2730 path, 0, 0);
2731 path->keep_locks = 0;
2732 if (ret || found_key.objectid != key.objectid ||
2733 found_key.type != key.type) {
2734 ret = 0;
2735 goto out;
2736 }
2737
2738 key.offset = found_key.offset;
2739 btrfs_release_path(root, path);
2740 cond_resched();
2741 goto again;
2742 }
2743
2744 /* we know there's one more slot after us in the tree,
2745 * read that key so we can verify it is also a checksum item
2746 */
2747 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2748
2749 if (found_key.objectid < inode->i_ino)
2750 goto next_key;
2751
2752 if (found_key.type != key.type || found_key.offset < new_size)
2753 goto next_key;
2754
2755 /*
2756 * if the key for the next leaf isn't a csum key from this objectid,
2757 * we can't be sure there aren't good items inside this leaf.
2758 * Bail out
2759 */
2760 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2761 goto out;
2762
2763 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2764 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2765 /*
2766 * it is safe to delete this leaf, it contains only
2767 * csum items from this inode at an offset >= new_size
2768 */
2769 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2770 BUG_ON(ret);
2771
2772 if (root->ref_cows && leaf_gen < trans->transid) {
2773 ref = btrfs_alloc_leaf_ref(root, 0);
2774 if (ref) {
2775 ref->root_gen = root->root_key.offset;
2776 ref->bytenr = leaf_start;
2777 ref->owner = 0;
2778 ref->generation = leaf_gen;
2779 ref->nritems = 0;
2780
2781 btrfs_sort_leaf_ref(ref);
2782
2783 ret = btrfs_add_leaf_ref(root, ref, 0);
2784 WARN_ON(ret);
2785 btrfs_free_leaf_ref(root, ref);
2786 } else {
2787 WARN_ON(1);
2788 }
2789 }
2790 next_key:
2791 btrfs_release_path(root, path);
2792
2793 if (other_key.objectid == inode->i_ino &&
2794 other_key.type == key.type && other_key.offset > key.offset) {
2795 key.offset = other_key.offset;
2796 cond_resched();
2797 goto again;
2798 }
2799 ret = 0;
2800 out:
2801 /* fixup any changes we've made to the path */
2802 path->lowest_level = 0;
2803 path->keep_locks = 0;
2804 btrfs_release_path(root, path);
2805 return ret;
2806 }
2807
2808 #endif
2809
2810 /*
2811 * this can truncate away extent items, csum items and directory items.
2812 * It starts at a high offset and removes keys until it can't find
2813 * any higher than new_size
2814 *
2815 * csum items that cross the new i_size are truncated to the new size
2816 * as well.
2817 *
2818 * min_type is the minimum key type to truncate down to. If set to 0, this
2819 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2820 */
2821 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2822 struct btrfs_root *root,
2823 struct inode *inode,
2824 u64 new_size, u32 min_type)
2825 {
2826 struct btrfs_path *path;
2827 struct extent_buffer *leaf;
2828 struct btrfs_file_extent_item *fi;
2829 struct btrfs_key key;
2830 struct btrfs_key found_key;
2831 u64 extent_start = 0;
2832 u64 extent_num_bytes = 0;
2833 u64 extent_offset = 0;
2834 u64 item_end = 0;
2835 u64 mask = root->sectorsize - 1;
2836 u32 found_type = (u8)-1;
2837 int found_extent;
2838 int del_item;
2839 int pending_del_nr = 0;
2840 int pending_del_slot = 0;
2841 int extent_type = -1;
2842 int encoding;
2843 int ret;
2844 int err = 0;
2845
2846 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2847
2848 if (root->ref_cows)
2849 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2850
2851 path = btrfs_alloc_path();
2852 BUG_ON(!path);
2853 path->reada = -1;
2854
2855 key.objectid = inode->i_ino;
2856 key.offset = (u64)-1;
2857 key.type = (u8)-1;
2858
2859 search_again:
2860 path->leave_spinning = 1;
2861 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2862 if (ret < 0) {
2863 err = ret;
2864 goto out;
2865 }
2866
2867 if (ret > 0) {
2868 /* there are no items in the tree for us to truncate, we're
2869 * done
2870 */
2871 if (path->slots[0] == 0)
2872 goto out;
2873 path->slots[0]--;
2874 }
2875
2876 while (1) {
2877 fi = NULL;
2878 leaf = path->nodes[0];
2879 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2880 found_type = btrfs_key_type(&found_key);
2881 encoding = 0;
2882
2883 if (found_key.objectid != inode->i_ino)
2884 break;
2885
2886 if (found_type < min_type)
2887 break;
2888
2889 item_end = found_key.offset;
2890 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2891 fi = btrfs_item_ptr(leaf, path->slots[0],
2892 struct btrfs_file_extent_item);
2893 extent_type = btrfs_file_extent_type(leaf, fi);
2894 encoding = btrfs_file_extent_compression(leaf, fi);
2895 encoding |= btrfs_file_extent_encryption(leaf, fi);
2896 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2897
2898 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2899 item_end +=
2900 btrfs_file_extent_num_bytes(leaf, fi);
2901 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2902 item_end += btrfs_file_extent_inline_len(leaf,
2903 fi);
2904 }
2905 item_end--;
2906 }
2907 if (found_type > min_type) {
2908 del_item = 1;
2909 } else {
2910 if (item_end < new_size)
2911 break;
2912 if (found_key.offset >= new_size)
2913 del_item = 1;
2914 else
2915 del_item = 0;
2916 }
2917 found_extent = 0;
2918 /* FIXME, shrink the extent if the ref count is only 1 */
2919 if (found_type != BTRFS_EXTENT_DATA_KEY)
2920 goto delete;
2921
2922 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2923 u64 num_dec;
2924 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2925 if (!del_item && !encoding) {
2926 u64 orig_num_bytes =
2927 btrfs_file_extent_num_bytes(leaf, fi);
2928 extent_num_bytes = new_size -
2929 found_key.offset + root->sectorsize - 1;
2930 extent_num_bytes = extent_num_bytes &
2931 ~((u64)root->sectorsize - 1);
2932 btrfs_set_file_extent_num_bytes(leaf, fi,
2933 extent_num_bytes);
2934 num_dec = (orig_num_bytes -
2935 extent_num_bytes);
2936 if (root->ref_cows && extent_start != 0)
2937 inode_sub_bytes(inode, num_dec);
2938 btrfs_mark_buffer_dirty(leaf);
2939 } else {
2940 extent_num_bytes =
2941 btrfs_file_extent_disk_num_bytes(leaf,
2942 fi);
2943 extent_offset = found_key.offset -
2944 btrfs_file_extent_offset(leaf, fi);
2945
2946 /* FIXME blocksize != 4096 */
2947 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2948 if (extent_start != 0) {
2949 found_extent = 1;
2950 if (root->ref_cows)
2951 inode_sub_bytes(inode, num_dec);
2952 }
2953 }
2954 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2955 /*
2956 * we can't truncate inline items that have had
2957 * special encodings
2958 */
2959 if (!del_item &&
2960 btrfs_file_extent_compression(leaf, fi) == 0 &&
2961 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2962 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2963 u32 size = new_size - found_key.offset;
2964
2965 if (root->ref_cows) {
2966 inode_sub_bytes(inode, item_end + 1 -
2967 new_size);
2968 }
2969 size =
2970 btrfs_file_extent_calc_inline_size(size);
2971 ret = btrfs_truncate_item(trans, root, path,
2972 size, 1);
2973 BUG_ON(ret);
2974 } else if (root->ref_cows) {
2975 inode_sub_bytes(inode, item_end + 1 -
2976 found_key.offset);
2977 }
2978 }
2979 delete:
2980 if (del_item) {
2981 if (!pending_del_nr) {
2982 /* no pending yet, add ourselves */
2983 pending_del_slot = path->slots[0];
2984 pending_del_nr = 1;
2985 } else if (pending_del_nr &&
2986 path->slots[0] + 1 == pending_del_slot) {
2987 /* hop on the pending chunk */
2988 pending_del_nr++;
2989 pending_del_slot = path->slots[0];
2990 } else {
2991 BUG();
2992 }
2993 } else {
2994 break;
2995 }
2996 if (found_extent && root->ref_cows) {
2997 btrfs_set_path_blocking(path);
2998 ret = btrfs_free_extent(trans, root, extent_start,
2999 extent_num_bytes, 0,
3000 btrfs_header_owner(leaf),
3001 inode->i_ino, extent_offset);
3002 BUG_ON(ret);
3003 }
3004
3005 if (found_type == BTRFS_INODE_ITEM_KEY)
3006 break;
3007
3008 if (path->slots[0] == 0 ||
3009 path->slots[0] != pending_del_slot) {
3010 if (root->ref_cows) {
3011 err = -EAGAIN;
3012 goto out;
3013 }
3014 if (pending_del_nr) {
3015 ret = btrfs_del_items(trans, root, path,
3016 pending_del_slot,
3017 pending_del_nr);
3018 BUG_ON(ret);
3019 pending_del_nr = 0;
3020 }
3021 btrfs_release_path(root, path);
3022 goto search_again;
3023 } else {
3024 path->slots[0]--;
3025 }
3026 }
3027 out:
3028 if (pending_del_nr) {
3029 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3030 pending_del_nr);
3031 }
3032 btrfs_free_path(path);
3033 return err;
3034 }
3035
3036 /*
3037 * taken from block_truncate_page, but does cow as it zeros out
3038 * any bytes left in the last page in the file.
3039 */
3040 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3041 {
3042 struct inode *inode = mapping->host;
3043 struct btrfs_root *root = BTRFS_I(inode)->root;
3044 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3045 struct btrfs_ordered_extent *ordered;
3046 struct extent_state *cached_state = NULL;
3047 char *kaddr;
3048 u32 blocksize = root->sectorsize;
3049 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3050 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3051 struct page *page;
3052 int ret = 0;
3053 u64 page_start;
3054 u64 page_end;
3055
3056 if ((offset & (blocksize - 1)) == 0)
3057 goto out;
3058 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3059 if (ret)
3060 goto out;
3061
3062 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3063 if (ret)
3064 goto out;
3065
3066 ret = -ENOMEM;
3067 again:
3068 page = grab_cache_page(mapping, index);
3069 if (!page) {
3070 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3071 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3072 goto out;
3073 }
3074
3075 page_start = page_offset(page);
3076 page_end = page_start + PAGE_CACHE_SIZE - 1;
3077
3078 if (!PageUptodate(page)) {
3079 ret = btrfs_readpage(NULL, page);
3080 lock_page(page);
3081 if (page->mapping != mapping) {
3082 unlock_page(page);
3083 page_cache_release(page);
3084 goto again;
3085 }
3086 if (!PageUptodate(page)) {
3087 ret = -EIO;
3088 goto out_unlock;
3089 }
3090 }
3091 wait_on_page_writeback(page);
3092
3093 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3094 GFP_NOFS);
3095 set_page_extent_mapped(page);
3096
3097 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3098 if (ordered) {
3099 unlock_extent_cached(io_tree, page_start, page_end,
3100 &cached_state, GFP_NOFS);
3101 unlock_page(page);
3102 page_cache_release(page);
3103 btrfs_start_ordered_extent(inode, ordered, 1);
3104 btrfs_put_ordered_extent(ordered);
3105 goto again;
3106 }
3107
3108 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3109 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3110 0, 0, &cached_state, GFP_NOFS);
3111
3112 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3113 &cached_state);
3114 if (ret) {
3115 unlock_extent_cached(io_tree, page_start, page_end,
3116 &cached_state, GFP_NOFS);
3117 goto out_unlock;
3118 }
3119
3120 ret = 0;
3121 if (offset != PAGE_CACHE_SIZE) {
3122 kaddr = kmap(page);
3123 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3124 flush_dcache_page(page);
3125 kunmap(page);
3126 }
3127 ClearPageChecked(page);
3128 set_page_dirty(page);
3129 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3130 GFP_NOFS);
3131
3132 out_unlock:
3133 if (ret)
3134 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3135 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3136 unlock_page(page);
3137 page_cache_release(page);
3138 out:
3139 return ret;
3140 }
3141
3142 int btrfs_cont_expand(struct inode *inode, loff_t size)
3143 {
3144 struct btrfs_trans_handle *trans;
3145 struct btrfs_root *root = BTRFS_I(inode)->root;
3146 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3147 struct extent_map *em;
3148 struct extent_state *cached_state = NULL;
3149 u64 mask = root->sectorsize - 1;
3150 u64 hole_start = (inode->i_size + mask) & ~mask;
3151 u64 block_end = (size + mask) & ~mask;
3152 u64 last_byte;
3153 u64 cur_offset;
3154 u64 hole_size;
3155 int err = 0;
3156
3157 if (size <= hole_start)
3158 return 0;
3159
3160 while (1) {
3161 struct btrfs_ordered_extent *ordered;
3162 btrfs_wait_ordered_range(inode, hole_start,
3163 block_end - hole_start);
3164 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3165 &cached_state, GFP_NOFS);
3166 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3167 if (!ordered)
3168 break;
3169 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3170 &cached_state, GFP_NOFS);
3171 btrfs_put_ordered_extent(ordered);
3172 }
3173
3174 cur_offset = hole_start;
3175 while (1) {
3176 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3177 block_end - cur_offset, 0);
3178 BUG_ON(IS_ERR(em) || !em);
3179 last_byte = min(extent_map_end(em), block_end);
3180 last_byte = (last_byte + mask) & ~mask;
3181 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3182 u64 hint_byte = 0;
3183 hole_size = last_byte - cur_offset;
3184
3185 err = btrfs_reserve_metadata_space(root, 2);
3186 if (err)
3187 break;
3188
3189 trans = btrfs_start_transaction(root, 1);
3190 btrfs_set_trans_block_group(trans, inode);
3191
3192 err = btrfs_drop_extents(trans, inode, cur_offset,
3193 cur_offset + hole_size,
3194 &hint_byte, 1);
3195 BUG_ON(err);
3196
3197 err = btrfs_insert_file_extent(trans, root,
3198 inode->i_ino, cur_offset, 0,
3199 0, hole_size, 0, hole_size,
3200 0, 0, 0);
3201 BUG_ON(err);
3202
3203 btrfs_drop_extent_cache(inode, hole_start,
3204 last_byte - 1, 0);
3205
3206 btrfs_end_transaction(trans, root);
3207 btrfs_unreserve_metadata_space(root, 2);
3208 }
3209 free_extent_map(em);
3210 cur_offset = last_byte;
3211 if (cur_offset >= block_end)
3212 break;
3213 }
3214
3215 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3216 GFP_NOFS);
3217 return err;
3218 }
3219
3220 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3221 {
3222 struct btrfs_root *root = BTRFS_I(inode)->root;
3223 struct btrfs_trans_handle *trans;
3224 unsigned long nr;
3225 int ret;
3226
3227 if (attr->ia_size == inode->i_size)
3228 return 0;
3229
3230 if (attr->ia_size > inode->i_size) {
3231 unsigned long limit;
3232 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3233 if (attr->ia_size > inode->i_sb->s_maxbytes)
3234 return -EFBIG;
3235 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3236 send_sig(SIGXFSZ, current, 0);
3237 return -EFBIG;
3238 }
3239 }
3240
3241 ret = btrfs_reserve_metadata_space(root, 1);
3242 if (ret)
3243 return ret;
3244
3245 trans = btrfs_start_transaction(root, 1);
3246 btrfs_set_trans_block_group(trans, inode);
3247
3248 ret = btrfs_orphan_add(trans, inode);
3249 BUG_ON(ret);
3250
3251 nr = trans->blocks_used;
3252 btrfs_end_transaction(trans, root);
3253 btrfs_unreserve_metadata_space(root, 1);
3254 btrfs_btree_balance_dirty(root, nr);
3255
3256 if (attr->ia_size > inode->i_size) {
3257 ret = btrfs_cont_expand(inode, attr->ia_size);
3258 if (ret) {
3259 btrfs_truncate(inode);
3260 return ret;
3261 }
3262
3263 i_size_write(inode, attr->ia_size);
3264 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3265
3266 trans = btrfs_start_transaction(root, 1);
3267 btrfs_set_trans_block_group(trans, inode);
3268
3269 ret = btrfs_update_inode(trans, root, inode);
3270 BUG_ON(ret);
3271 if (inode->i_nlink > 0) {
3272 ret = btrfs_orphan_del(trans, inode);
3273 BUG_ON(ret);
3274 }
3275 nr = trans->blocks_used;
3276 btrfs_end_transaction(trans, root);
3277 btrfs_btree_balance_dirty(root, nr);
3278 return 0;
3279 }
3280
3281 /*
3282 * We're truncating a file that used to have good data down to
3283 * zero. Make sure it gets into the ordered flush list so that
3284 * any new writes get down to disk quickly.
3285 */
3286 if (attr->ia_size == 0)
3287 BTRFS_I(inode)->ordered_data_close = 1;
3288
3289 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3290 ret = vmtruncate(inode, attr->ia_size);
3291 BUG_ON(ret);
3292
3293 return 0;
3294 }
3295
3296 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3297 {
3298 struct inode *inode = dentry->d_inode;
3299 int err;
3300
3301 err = inode_change_ok(inode, attr);
3302 if (err)
3303 return err;
3304
3305 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3306 err = btrfs_setattr_size(inode, attr);
3307 if (err)
3308 return err;
3309 }
3310 attr->ia_valid &= ~ATTR_SIZE;
3311
3312 if (attr->ia_valid)
3313 err = inode_setattr(inode, attr);
3314
3315 if (!err && ((attr->ia_valid & ATTR_MODE)))
3316 err = btrfs_acl_chmod(inode);
3317 return err;
3318 }
3319
3320 void btrfs_delete_inode(struct inode *inode)
3321 {
3322 struct btrfs_trans_handle *trans;
3323 struct btrfs_root *root = BTRFS_I(inode)->root;
3324 unsigned long nr;
3325 int ret;
3326
3327 truncate_inode_pages(&inode->i_data, 0);
3328 if (is_bad_inode(inode)) {
3329 btrfs_orphan_del(NULL, inode);
3330 goto no_delete;
3331 }
3332 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3333
3334 if (root->fs_info->log_root_recovering) {
3335 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3336 goto no_delete;
3337 }
3338
3339 if (inode->i_nlink > 0) {
3340 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3341 goto no_delete;
3342 }
3343
3344 btrfs_i_size_write(inode, 0);
3345
3346 while (1) {
3347 trans = btrfs_start_transaction(root, 1);
3348 btrfs_set_trans_block_group(trans, inode);
3349 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3350
3351 if (ret != -EAGAIN)
3352 break;
3353
3354 nr = trans->blocks_used;
3355 btrfs_end_transaction(trans, root);
3356 trans = NULL;
3357 btrfs_btree_balance_dirty(root, nr);
3358 }
3359
3360 if (ret == 0) {
3361 ret = btrfs_orphan_del(trans, inode);
3362 BUG_ON(ret);
3363 }
3364
3365 nr = trans->blocks_used;
3366 btrfs_end_transaction(trans, root);
3367 btrfs_btree_balance_dirty(root, nr);
3368 no_delete:
3369 clear_inode(inode);
3370 return;
3371 }
3372
3373 /*
3374 * this returns the key found in the dir entry in the location pointer.
3375 * If no dir entries were found, location->objectid is 0.
3376 */
3377 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3378 struct btrfs_key *location)
3379 {
3380 const char *name = dentry->d_name.name;
3381 int namelen = dentry->d_name.len;
3382 struct btrfs_dir_item *di;
3383 struct btrfs_path *path;
3384 struct btrfs_root *root = BTRFS_I(dir)->root;
3385 int ret = 0;
3386
3387 path = btrfs_alloc_path();
3388 BUG_ON(!path);
3389
3390 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3391 namelen, 0);
3392 if (IS_ERR(di))
3393 ret = PTR_ERR(di);
3394
3395 if (!di || IS_ERR(di))
3396 goto out_err;
3397
3398 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3399 out:
3400 btrfs_free_path(path);
3401 return ret;
3402 out_err:
3403 location->objectid = 0;
3404 goto out;
3405 }
3406
3407 /*
3408 * when we hit a tree root in a directory, the btrfs part of the inode
3409 * needs to be changed to reflect the root directory of the tree root. This
3410 * is kind of like crossing a mount point.
3411 */
3412 static int fixup_tree_root_location(struct btrfs_root *root,
3413 struct inode *dir,
3414 struct dentry *dentry,
3415 struct btrfs_key *location,
3416 struct btrfs_root **sub_root)
3417 {
3418 struct btrfs_path *path;
3419 struct btrfs_root *new_root;
3420 struct btrfs_root_ref *ref;
3421 struct extent_buffer *leaf;
3422 int ret;
3423 int err = 0;
3424
3425 path = btrfs_alloc_path();
3426 if (!path) {
3427 err = -ENOMEM;
3428 goto out;
3429 }
3430
3431 err = -ENOENT;
3432 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3433 BTRFS_I(dir)->root->root_key.objectid,
3434 location->objectid);
3435 if (ret) {
3436 if (ret < 0)
3437 err = ret;
3438 goto out;
3439 }
3440
3441 leaf = path->nodes[0];
3442 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3443 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3444 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3445 goto out;
3446
3447 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3448 (unsigned long)(ref + 1),
3449 dentry->d_name.len);
3450 if (ret)
3451 goto out;
3452
3453 btrfs_release_path(root->fs_info->tree_root, path);
3454
3455 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3456 if (IS_ERR(new_root)) {
3457 err = PTR_ERR(new_root);
3458 goto out;
3459 }
3460
3461 if (btrfs_root_refs(&new_root->root_item) == 0) {
3462 err = -ENOENT;
3463 goto out;
3464 }
3465
3466 *sub_root = new_root;
3467 location->objectid = btrfs_root_dirid(&new_root->root_item);
3468 location->type = BTRFS_INODE_ITEM_KEY;
3469 location->offset = 0;
3470 err = 0;
3471 out:
3472 btrfs_free_path(path);
3473 return err;
3474 }
3475
3476 static void inode_tree_add(struct inode *inode)
3477 {
3478 struct btrfs_root *root = BTRFS_I(inode)->root;
3479 struct btrfs_inode *entry;
3480 struct rb_node **p;
3481 struct rb_node *parent;
3482 again:
3483 p = &root->inode_tree.rb_node;
3484 parent = NULL;
3485
3486 if (hlist_unhashed(&inode->i_hash))
3487 return;
3488
3489 spin_lock(&root->inode_lock);
3490 while (*p) {
3491 parent = *p;
3492 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3493
3494 if (inode->i_ino < entry->vfs_inode.i_ino)
3495 p = &parent->rb_left;
3496 else if (inode->i_ino > entry->vfs_inode.i_ino)
3497 p = &parent->rb_right;
3498 else {
3499 WARN_ON(!(entry->vfs_inode.i_state &
3500 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3501 rb_erase(parent, &root->inode_tree);
3502 RB_CLEAR_NODE(parent);
3503 spin_unlock(&root->inode_lock);
3504 goto again;
3505 }
3506 }
3507 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3508 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3509 spin_unlock(&root->inode_lock);
3510 }
3511
3512 static void inode_tree_del(struct inode *inode)
3513 {
3514 struct btrfs_root *root = BTRFS_I(inode)->root;
3515 int empty = 0;
3516
3517 spin_lock(&root->inode_lock);
3518 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3519 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3520 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3521 empty = RB_EMPTY_ROOT(&root->inode_tree);
3522 }
3523 spin_unlock(&root->inode_lock);
3524
3525 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3526 synchronize_srcu(&root->fs_info->subvol_srcu);
3527 spin_lock(&root->inode_lock);
3528 empty = RB_EMPTY_ROOT(&root->inode_tree);
3529 spin_unlock(&root->inode_lock);
3530 if (empty)
3531 btrfs_add_dead_root(root);
3532 }
3533 }
3534
3535 int btrfs_invalidate_inodes(struct btrfs_root *root)
3536 {
3537 struct rb_node *node;
3538 struct rb_node *prev;
3539 struct btrfs_inode *entry;
3540 struct inode *inode;
3541 u64 objectid = 0;
3542
3543 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3544
3545 spin_lock(&root->inode_lock);
3546 again:
3547 node = root->inode_tree.rb_node;
3548 prev = NULL;
3549 while (node) {
3550 prev = node;
3551 entry = rb_entry(node, struct btrfs_inode, rb_node);
3552
3553 if (objectid < entry->vfs_inode.i_ino)
3554 node = node->rb_left;
3555 else if (objectid > entry->vfs_inode.i_ino)
3556 node = node->rb_right;
3557 else
3558 break;
3559 }
3560 if (!node) {
3561 while (prev) {
3562 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3563 if (objectid <= entry->vfs_inode.i_ino) {
3564 node = prev;
3565 break;
3566 }
3567 prev = rb_next(prev);
3568 }
3569 }
3570 while (node) {
3571 entry = rb_entry(node, struct btrfs_inode, rb_node);
3572 objectid = entry->vfs_inode.i_ino + 1;
3573 inode = igrab(&entry->vfs_inode);
3574 if (inode) {
3575 spin_unlock(&root->inode_lock);
3576 if (atomic_read(&inode->i_count) > 1)
3577 d_prune_aliases(inode);
3578 /*
3579 * btrfs_drop_inode will remove it from
3580 * the inode cache when its usage count
3581 * hits zero.
3582 */
3583 iput(inode);
3584 cond_resched();
3585 spin_lock(&root->inode_lock);
3586 goto again;
3587 }
3588
3589 if (cond_resched_lock(&root->inode_lock))
3590 goto again;
3591
3592 node = rb_next(node);
3593 }
3594 spin_unlock(&root->inode_lock);
3595 return 0;
3596 }
3597
3598 static noinline void init_btrfs_i(struct inode *inode)
3599 {
3600 struct btrfs_inode *bi = BTRFS_I(inode);
3601
3602 bi->generation = 0;
3603 bi->sequence = 0;
3604 bi->last_trans = 0;
3605 bi->last_sub_trans = 0;
3606 bi->logged_trans = 0;
3607 bi->delalloc_bytes = 0;
3608 bi->reserved_bytes = 0;
3609 bi->disk_i_size = 0;
3610 bi->flags = 0;
3611 bi->index_cnt = (u64)-1;
3612 bi->last_unlink_trans = 0;
3613 bi->ordered_data_close = 0;
3614 bi->force_compress = 0;
3615 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3616 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3617 inode->i_mapping, GFP_NOFS);
3618 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3619 inode->i_mapping, GFP_NOFS);
3620 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3621 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3622 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3623 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3624 mutex_init(&BTRFS_I(inode)->log_mutex);
3625 }
3626
3627 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3628 {
3629 struct btrfs_iget_args *args = p;
3630 inode->i_ino = args->ino;
3631 init_btrfs_i(inode);
3632 BTRFS_I(inode)->root = args->root;
3633 btrfs_set_inode_space_info(args->root, inode);
3634 return 0;
3635 }
3636
3637 static int btrfs_find_actor(struct inode *inode, void *opaque)
3638 {
3639 struct btrfs_iget_args *args = opaque;
3640 return args->ino == inode->i_ino &&
3641 args->root == BTRFS_I(inode)->root;
3642 }
3643
3644 static struct inode *btrfs_iget_locked(struct super_block *s,
3645 u64 objectid,
3646 struct btrfs_root *root)
3647 {
3648 struct inode *inode;
3649 struct btrfs_iget_args args;
3650 args.ino = objectid;
3651 args.root = root;
3652
3653 inode = iget5_locked(s, objectid, btrfs_find_actor,
3654 btrfs_init_locked_inode,
3655 (void *)&args);
3656 return inode;
3657 }
3658
3659 /* Get an inode object given its location and corresponding root.
3660 * Returns in *is_new if the inode was read from disk
3661 */
3662 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3663 struct btrfs_root *root, int *new)
3664 {
3665 struct inode *inode;
3666
3667 inode = btrfs_iget_locked(s, location->objectid, root);
3668 if (!inode)
3669 return ERR_PTR(-ENOMEM);
3670
3671 if (inode->i_state & I_NEW) {
3672 BTRFS_I(inode)->root = root;
3673 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3674 btrfs_read_locked_inode(inode);
3675
3676 inode_tree_add(inode);
3677 unlock_new_inode(inode);
3678 if (new)
3679 *new = 1;
3680 }
3681
3682 return inode;
3683 }
3684
3685 static struct inode *new_simple_dir(struct super_block *s,
3686 struct btrfs_key *key,
3687 struct btrfs_root *root)
3688 {
3689 struct inode *inode = new_inode(s);
3690
3691 if (!inode)
3692 return ERR_PTR(-ENOMEM);
3693
3694 init_btrfs_i(inode);
3695
3696 BTRFS_I(inode)->root = root;
3697 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3698 BTRFS_I(inode)->dummy_inode = 1;
3699
3700 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3701 inode->i_op = &simple_dir_inode_operations;
3702 inode->i_fop = &simple_dir_operations;
3703 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3704 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3705
3706 return inode;
3707 }
3708
3709 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3710 {
3711 struct inode *inode;
3712 struct btrfs_root *root = BTRFS_I(dir)->root;
3713 struct btrfs_root *sub_root = root;
3714 struct btrfs_key location;
3715 int index;
3716 int ret;
3717
3718 dentry->d_op = &btrfs_dentry_operations;
3719
3720 if (dentry->d_name.len > BTRFS_NAME_LEN)
3721 return ERR_PTR(-ENAMETOOLONG);
3722
3723 ret = btrfs_inode_by_name(dir, dentry, &location);
3724
3725 if (ret < 0)
3726 return ERR_PTR(ret);
3727
3728 if (location.objectid == 0)
3729 return NULL;
3730
3731 if (location.type == BTRFS_INODE_ITEM_KEY) {
3732 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3733 return inode;
3734 }
3735
3736 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3737
3738 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3739 ret = fixup_tree_root_location(root, dir, dentry,
3740 &location, &sub_root);
3741 if (ret < 0) {
3742 if (ret != -ENOENT)
3743 inode = ERR_PTR(ret);
3744 else
3745 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3746 } else {
3747 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3748 }
3749 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3750
3751 if (root != sub_root) {
3752 down_read(&root->fs_info->cleanup_work_sem);
3753 if (!(inode->i_sb->s_flags & MS_RDONLY))
3754 btrfs_orphan_cleanup(sub_root);
3755 up_read(&root->fs_info->cleanup_work_sem);
3756 }
3757
3758 return inode;
3759 }
3760
3761 static int btrfs_dentry_delete(struct dentry *dentry)
3762 {
3763 struct btrfs_root *root;
3764
3765 if (!dentry->d_inode && !IS_ROOT(dentry))
3766 dentry = dentry->d_parent;
3767
3768 if (dentry->d_inode) {
3769 root = BTRFS_I(dentry->d_inode)->root;
3770 if (btrfs_root_refs(&root->root_item) == 0)
3771 return 1;
3772 }
3773 return 0;
3774 }
3775
3776 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3777 struct nameidata *nd)
3778 {
3779 struct inode *inode;
3780
3781 inode = btrfs_lookup_dentry(dir, dentry);
3782 if (IS_ERR(inode))
3783 return ERR_CAST(inode);
3784
3785 return d_splice_alias(inode, dentry);
3786 }
3787
3788 static unsigned char btrfs_filetype_table[] = {
3789 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3790 };
3791
3792 static int btrfs_real_readdir(struct file *filp, void *dirent,
3793 filldir_t filldir)
3794 {
3795 struct inode *inode = filp->f_dentry->d_inode;
3796 struct btrfs_root *root = BTRFS_I(inode)->root;
3797 struct btrfs_item *item;
3798 struct btrfs_dir_item *di;
3799 struct btrfs_key key;
3800 struct btrfs_key found_key;
3801 struct btrfs_path *path;
3802 int ret;
3803 u32 nritems;
3804 struct extent_buffer *leaf;
3805 int slot;
3806 int advance;
3807 unsigned char d_type;
3808 int over = 0;
3809 u32 di_cur;
3810 u32 di_total;
3811 u32 di_len;
3812 int key_type = BTRFS_DIR_INDEX_KEY;
3813 char tmp_name[32];
3814 char *name_ptr;
3815 int name_len;
3816
3817 /* FIXME, use a real flag for deciding about the key type */
3818 if (root->fs_info->tree_root == root)
3819 key_type = BTRFS_DIR_ITEM_KEY;
3820
3821 /* special case for "." */
3822 if (filp->f_pos == 0) {
3823 over = filldir(dirent, ".", 1,
3824 1, inode->i_ino,
3825 DT_DIR);
3826 if (over)
3827 return 0;
3828 filp->f_pos = 1;
3829 }
3830 /* special case for .., just use the back ref */
3831 if (filp->f_pos == 1) {
3832 u64 pino = parent_ino(filp->f_path.dentry);
3833 over = filldir(dirent, "..", 2,
3834 2, pino, DT_DIR);
3835 if (over)
3836 return 0;
3837 filp->f_pos = 2;
3838 }
3839 path = btrfs_alloc_path();
3840 path->reada = 2;
3841
3842 btrfs_set_key_type(&key, key_type);
3843 key.offset = filp->f_pos;
3844 key.objectid = inode->i_ino;
3845
3846 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3847 if (ret < 0)
3848 goto err;
3849 advance = 0;
3850
3851 while (1) {
3852 leaf = path->nodes[0];
3853 nritems = btrfs_header_nritems(leaf);
3854 slot = path->slots[0];
3855 if (advance || slot >= nritems) {
3856 if (slot >= nritems - 1) {
3857 ret = btrfs_next_leaf(root, path);
3858 if (ret)
3859 break;
3860 leaf = path->nodes[0];
3861 nritems = btrfs_header_nritems(leaf);
3862 slot = path->slots[0];
3863 } else {
3864 slot++;
3865 path->slots[0]++;
3866 }
3867 }
3868
3869 advance = 1;
3870 item = btrfs_item_nr(leaf, slot);
3871 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3872
3873 if (found_key.objectid != key.objectid)
3874 break;
3875 if (btrfs_key_type(&found_key) != key_type)
3876 break;
3877 if (found_key.offset < filp->f_pos)
3878 continue;
3879
3880 filp->f_pos = found_key.offset;
3881
3882 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3883 di_cur = 0;
3884 di_total = btrfs_item_size(leaf, item);
3885
3886 while (di_cur < di_total) {
3887 struct btrfs_key location;
3888
3889 name_len = btrfs_dir_name_len(leaf, di);
3890 if (name_len <= sizeof(tmp_name)) {
3891 name_ptr = tmp_name;
3892 } else {
3893 name_ptr = kmalloc(name_len, GFP_NOFS);
3894 if (!name_ptr) {
3895 ret = -ENOMEM;
3896 goto err;
3897 }
3898 }
3899 read_extent_buffer(leaf, name_ptr,
3900 (unsigned long)(di + 1), name_len);
3901
3902 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3903 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3904
3905 /* is this a reference to our own snapshot? If so
3906 * skip it
3907 */
3908 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3909 location.objectid == root->root_key.objectid) {
3910 over = 0;
3911 goto skip;
3912 }
3913 over = filldir(dirent, name_ptr, name_len,
3914 found_key.offset, location.objectid,
3915 d_type);
3916
3917 skip:
3918 if (name_ptr != tmp_name)
3919 kfree(name_ptr);
3920
3921 if (over)
3922 goto nopos;
3923 di_len = btrfs_dir_name_len(leaf, di) +
3924 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3925 di_cur += di_len;
3926 di = (struct btrfs_dir_item *)((char *)di + di_len);
3927 }
3928 }
3929
3930 /* Reached end of directory/root. Bump pos past the last item. */
3931 if (key_type == BTRFS_DIR_INDEX_KEY)
3932 /*
3933 * 32-bit glibc will use getdents64, but then strtol -
3934 * so the last number we can serve is this.
3935 */
3936 filp->f_pos = 0x7fffffff;
3937 else
3938 filp->f_pos++;
3939 nopos:
3940 ret = 0;
3941 err:
3942 btrfs_free_path(path);
3943 return ret;
3944 }
3945
3946 int btrfs_write_inode(struct inode *inode, int wait)
3947 {
3948 struct btrfs_root *root = BTRFS_I(inode)->root;
3949 struct btrfs_trans_handle *trans;
3950 int ret = 0;
3951
3952 if (root->fs_info->btree_inode == inode)
3953 return 0;
3954
3955 if (wait) {
3956 trans = btrfs_join_transaction(root, 1);
3957 btrfs_set_trans_block_group(trans, inode);
3958 ret = btrfs_commit_transaction(trans, root);
3959 }
3960 return ret;
3961 }
3962
3963 /*
3964 * This is somewhat expensive, updating the tree every time the
3965 * inode changes. But, it is most likely to find the inode in cache.
3966 * FIXME, needs more benchmarking...there are no reasons other than performance
3967 * to keep or drop this code.
3968 */
3969 void btrfs_dirty_inode(struct inode *inode)
3970 {
3971 struct btrfs_root *root = BTRFS_I(inode)->root;
3972 struct btrfs_trans_handle *trans;
3973
3974 trans = btrfs_join_transaction(root, 1);
3975 btrfs_set_trans_block_group(trans, inode);
3976 btrfs_update_inode(trans, root, inode);
3977 btrfs_end_transaction(trans, root);
3978 }
3979
3980 /*
3981 * find the highest existing sequence number in a directory
3982 * and then set the in-memory index_cnt variable to reflect
3983 * free sequence numbers
3984 */
3985 static int btrfs_set_inode_index_count(struct inode *inode)
3986 {
3987 struct btrfs_root *root = BTRFS_I(inode)->root;
3988 struct btrfs_key key, found_key;
3989 struct btrfs_path *path;
3990 struct extent_buffer *leaf;
3991 int ret;
3992
3993 key.objectid = inode->i_ino;
3994 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3995 key.offset = (u64)-1;
3996
3997 path = btrfs_alloc_path();
3998 if (!path)
3999 return -ENOMEM;
4000
4001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4002 if (ret < 0)
4003 goto out;
4004 /* FIXME: we should be able to handle this */
4005 if (ret == 0)
4006 goto out;
4007 ret = 0;
4008
4009 /*
4010 * MAGIC NUMBER EXPLANATION:
4011 * since we search a directory based on f_pos we have to start at 2
4012 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4013 * else has to start at 2
4014 */
4015 if (path->slots[0] == 0) {
4016 BTRFS_I(inode)->index_cnt = 2;
4017 goto out;
4018 }
4019
4020 path->slots[0]--;
4021
4022 leaf = path->nodes[0];
4023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4024
4025 if (found_key.objectid != inode->i_ino ||
4026 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4027 BTRFS_I(inode)->index_cnt = 2;
4028 goto out;
4029 }
4030
4031 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4032 out:
4033 btrfs_free_path(path);
4034 return ret;
4035 }
4036
4037 /*
4038 * helper to find a free sequence number in a given directory. This current
4039 * code is very simple, later versions will do smarter things in the btree
4040 */
4041 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4042 {
4043 int ret = 0;
4044
4045 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4046 ret = btrfs_set_inode_index_count(dir);
4047 if (ret)
4048 return ret;
4049 }
4050
4051 *index = BTRFS_I(dir)->index_cnt;
4052 BTRFS_I(dir)->index_cnt++;
4053
4054 return ret;
4055 }
4056
4057 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4058 struct btrfs_root *root,
4059 struct inode *dir,
4060 const char *name, int name_len,
4061 u64 ref_objectid, u64 objectid,
4062 u64 alloc_hint, int mode, u64 *index)
4063 {
4064 struct inode *inode;
4065 struct btrfs_inode_item *inode_item;
4066 struct btrfs_key *location;
4067 struct btrfs_path *path;
4068 struct btrfs_inode_ref *ref;
4069 struct btrfs_key key[2];
4070 u32 sizes[2];
4071 unsigned long ptr;
4072 int ret;
4073 int owner;
4074
4075 path = btrfs_alloc_path();
4076 BUG_ON(!path);
4077
4078 inode = new_inode(root->fs_info->sb);
4079 if (!inode)
4080 return ERR_PTR(-ENOMEM);
4081
4082 if (dir) {
4083 ret = btrfs_set_inode_index(dir, index);
4084 if (ret) {
4085 iput(inode);
4086 return ERR_PTR(ret);
4087 }
4088 }
4089 /*
4090 * index_cnt is ignored for everything but a dir,
4091 * btrfs_get_inode_index_count has an explanation for the magic
4092 * number
4093 */
4094 init_btrfs_i(inode);
4095 BTRFS_I(inode)->index_cnt = 2;
4096 BTRFS_I(inode)->root = root;
4097 BTRFS_I(inode)->generation = trans->transid;
4098 btrfs_set_inode_space_info(root, inode);
4099
4100 if (mode & S_IFDIR)
4101 owner = 0;
4102 else
4103 owner = 1;
4104 BTRFS_I(inode)->block_group =
4105 btrfs_find_block_group(root, 0, alloc_hint, owner);
4106
4107 key[0].objectid = objectid;
4108 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4109 key[0].offset = 0;
4110
4111 key[1].objectid = objectid;
4112 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4113 key[1].offset = ref_objectid;
4114
4115 sizes[0] = sizeof(struct btrfs_inode_item);
4116 sizes[1] = name_len + sizeof(*ref);
4117
4118 path->leave_spinning = 1;
4119 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4120 if (ret != 0)
4121 goto fail;
4122
4123 inode->i_uid = current_fsuid();
4124
4125 if (dir && (dir->i_mode & S_ISGID)) {
4126 inode->i_gid = dir->i_gid;
4127 if (S_ISDIR(mode))
4128 mode |= S_ISGID;
4129 } else
4130 inode->i_gid = current_fsgid();
4131
4132 inode->i_mode = mode;
4133 inode->i_ino = objectid;
4134 inode_set_bytes(inode, 0);
4135 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4136 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4137 struct btrfs_inode_item);
4138 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4139
4140 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4141 struct btrfs_inode_ref);
4142 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4143 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4144 ptr = (unsigned long)(ref + 1);
4145 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4146
4147 btrfs_mark_buffer_dirty(path->nodes[0]);
4148 btrfs_free_path(path);
4149
4150 location = &BTRFS_I(inode)->location;
4151 location->objectid = objectid;
4152 location->offset = 0;
4153 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4154
4155 btrfs_inherit_iflags(inode, dir);
4156
4157 if ((mode & S_IFREG)) {
4158 if (btrfs_test_opt(root, NODATASUM))
4159 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4160 if (btrfs_test_opt(root, NODATACOW))
4161 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4162 }
4163
4164 insert_inode_hash(inode);
4165 inode_tree_add(inode);
4166 return inode;
4167 fail:
4168 if (dir)
4169 BTRFS_I(dir)->index_cnt--;
4170 btrfs_free_path(path);
4171 iput(inode);
4172 return ERR_PTR(ret);
4173 }
4174
4175 static inline u8 btrfs_inode_type(struct inode *inode)
4176 {
4177 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4178 }
4179
4180 /*
4181 * utility function to add 'inode' into 'parent_inode' with
4182 * a give name and a given sequence number.
4183 * if 'add_backref' is true, also insert a backref from the
4184 * inode to the parent directory.
4185 */
4186 int btrfs_add_link(struct btrfs_trans_handle *trans,
4187 struct inode *parent_inode, struct inode *inode,
4188 const char *name, int name_len, int add_backref, u64 index)
4189 {
4190 int ret = 0;
4191 struct btrfs_key key;
4192 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4193
4194 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4195 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4196 } else {
4197 key.objectid = inode->i_ino;
4198 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4199 key.offset = 0;
4200 }
4201
4202 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4203 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4204 key.objectid, root->root_key.objectid,
4205 parent_inode->i_ino,
4206 index, name, name_len);
4207 } else if (add_backref) {
4208 ret = btrfs_insert_inode_ref(trans, root,
4209 name, name_len, inode->i_ino,
4210 parent_inode->i_ino, index);
4211 }
4212
4213 if (ret == 0) {
4214 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4215 parent_inode->i_ino, &key,
4216 btrfs_inode_type(inode), index);
4217 BUG_ON(ret);
4218
4219 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4220 name_len * 2);
4221 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4222 ret = btrfs_update_inode(trans, root, parent_inode);
4223 }
4224 return ret;
4225 }
4226
4227 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4228 struct dentry *dentry, struct inode *inode,
4229 int backref, u64 index)
4230 {
4231 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4232 inode, dentry->d_name.name,
4233 dentry->d_name.len, backref, index);
4234 if (!err) {
4235 d_instantiate(dentry, inode);
4236 return 0;
4237 }
4238 if (err > 0)
4239 err = -EEXIST;
4240 return err;
4241 }
4242
4243 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4244 int mode, dev_t rdev)
4245 {
4246 struct btrfs_trans_handle *trans;
4247 struct btrfs_root *root = BTRFS_I(dir)->root;
4248 struct inode *inode = NULL;
4249 int err;
4250 int drop_inode = 0;
4251 u64 objectid;
4252 unsigned long nr = 0;
4253 u64 index = 0;
4254
4255 if (!new_valid_dev(rdev))
4256 return -EINVAL;
4257
4258 /*
4259 * 2 for inode item and ref
4260 * 2 for dir items
4261 * 1 for xattr if selinux is on
4262 */
4263 err = btrfs_reserve_metadata_space(root, 5);
4264 if (err)
4265 return err;
4266
4267 trans = btrfs_start_transaction(root, 1);
4268 if (!trans)
4269 goto fail;
4270 btrfs_set_trans_block_group(trans, dir);
4271
4272 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4273 if (err) {
4274 err = -ENOSPC;
4275 goto out_unlock;
4276 }
4277
4278 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4279 dentry->d_name.len,
4280 dentry->d_parent->d_inode->i_ino, objectid,
4281 BTRFS_I(dir)->block_group, mode, &index);
4282 err = PTR_ERR(inode);
4283 if (IS_ERR(inode))
4284 goto out_unlock;
4285
4286 err = btrfs_init_inode_security(trans, inode, dir);
4287 if (err) {
4288 drop_inode = 1;
4289 goto out_unlock;
4290 }
4291
4292 btrfs_set_trans_block_group(trans, inode);
4293 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4294 if (err)
4295 drop_inode = 1;
4296 else {
4297 inode->i_op = &btrfs_special_inode_operations;
4298 init_special_inode(inode, inode->i_mode, rdev);
4299 btrfs_update_inode(trans, root, inode);
4300 }
4301 btrfs_update_inode_block_group(trans, inode);
4302 btrfs_update_inode_block_group(trans, dir);
4303 out_unlock:
4304 nr = trans->blocks_used;
4305 btrfs_end_transaction_throttle(trans, root);
4306 fail:
4307 btrfs_unreserve_metadata_space(root, 5);
4308 if (drop_inode) {
4309 inode_dec_link_count(inode);
4310 iput(inode);
4311 }
4312 btrfs_btree_balance_dirty(root, nr);
4313 return err;
4314 }
4315
4316 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4317 int mode, struct nameidata *nd)
4318 {
4319 struct btrfs_trans_handle *trans;
4320 struct btrfs_root *root = BTRFS_I(dir)->root;
4321 struct inode *inode = NULL;
4322 int err;
4323 int drop_inode = 0;
4324 unsigned long nr = 0;
4325 u64 objectid;
4326 u64 index = 0;
4327
4328 /*
4329 * 2 for inode item and ref
4330 * 2 for dir items
4331 * 1 for xattr if selinux is on
4332 */
4333 err = btrfs_reserve_metadata_space(root, 5);
4334 if (err)
4335 return err;
4336
4337 trans = btrfs_start_transaction(root, 1);
4338 if (!trans)
4339 goto fail;
4340 btrfs_set_trans_block_group(trans, dir);
4341
4342 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4343 if (err) {
4344 err = -ENOSPC;
4345 goto out_unlock;
4346 }
4347
4348 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4349 dentry->d_name.len,
4350 dentry->d_parent->d_inode->i_ino,
4351 objectid, BTRFS_I(dir)->block_group, mode,
4352 &index);
4353 err = PTR_ERR(inode);
4354 if (IS_ERR(inode))
4355 goto out_unlock;
4356
4357 err = btrfs_init_inode_security(trans, inode, dir);
4358 if (err) {
4359 drop_inode = 1;
4360 goto out_unlock;
4361 }
4362
4363 btrfs_set_trans_block_group(trans, inode);
4364 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4365 if (err)
4366 drop_inode = 1;
4367 else {
4368 inode->i_mapping->a_ops = &btrfs_aops;
4369 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4370 inode->i_fop = &btrfs_file_operations;
4371 inode->i_op = &btrfs_file_inode_operations;
4372 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4373 }
4374 btrfs_update_inode_block_group(trans, inode);
4375 btrfs_update_inode_block_group(trans, dir);
4376 out_unlock:
4377 nr = trans->blocks_used;
4378 btrfs_end_transaction_throttle(trans, root);
4379 fail:
4380 btrfs_unreserve_metadata_space(root, 5);
4381 if (drop_inode) {
4382 inode_dec_link_count(inode);
4383 iput(inode);
4384 }
4385 btrfs_btree_balance_dirty(root, nr);
4386 return err;
4387 }
4388
4389 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4390 struct dentry *dentry)
4391 {
4392 struct btrfs_trans_handle *trans;
4393 struct btrfs_root *root = BTRFS_I(dir)->root;
4394 struct inode *inode = old_dentry->d_inode;
4395 u64 index;
4396 unsigned long nr = 0;
4397 int err;
4398 int drop_inode = 0;
4399
4400 if (inode->i_nlink == 0)
4401 return -ENOENT;
4402
4403 /* do not allow sys_link's with other subvols of the same device */
4404 if (root->objectid != BTRFS_I(inode)->root->objectid)
4405 return -EPERM;
4406
4407 /*
4408 * 1 item for inode ref
4409 * 2 items for dir items
4410 */
4411 err = btrfs_reserve_metadata_space(root, 3);
4412 if (err)
4413 return err;
4414
4415 btrfs_inc_nlink(inode);
4416
4417 err = btrfs_set_inode_index(dir, &index);
4418 if (err)
4419 goto fail;
4420
4421 trans = btrfs_start_transaction(root, 1);
4422
4423 btrfs_set_trans_block_group(trans, dir);
4424 atomic_inc(&inode->i_count);
4425
4426 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4427
4428 if (err) {
4429 drop_inode = 1;
4430 } else {
4431 btrfs_update_inode_block_group(trans, dir);
4432 err = btrfs_update_inode(trans, root, inode);
4433 BUG_ON(err);
4434 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4435 }
4436
4437 nr = trans->blocks_used;
4438 btrfs_end_transaction_throttle(trans, root);
4439 fail:
4440 btrfs_unreserve_metadata_space(root, 3);
4441 if (drop_inode) {
4442 inode_dec_link_count(inode);
4443 iput(inode);
4444 }
4445 btrfs_btree_balance_dirty(root, nr);
4446 return err;
4447 }
4448
4449 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4450 {
4451 struct inode *inode = NULL;
4452 struct btrfs_trans_handle *trans;
4453 struct btrfs_root *root = BTRFS_I(dir)->root;
4454 int err = 0;
4455 int drop_on_err = 0;
4456 u64 objectid = 0;
4457 u64 index = 0;
4458 unsigned long nr = 1;
4459
4460 /*
4461 * 2 items for inode and ref
4462 * 2 items for dir items
4463 * 1 for xattr if selinux is on
4464 */
4465 err = btrfs_reserve_metadata_space(root, 5);
4466 if (err)
4467 return err;
4468
4469 trans = btrfs_start_transaction(root, 1);
4470 if (!trans) {
4471 err = -ENOMEM;
4472 goto out_unlock;
4473 }
4474 btrfs_set_trans_block_group(trans, dir);
4475
4476 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4477 if (err) {
4478 err = -ENOSPC;
4479 goto out_fail;
4480 }
4481
4482 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4483 dentry->d_name.len,
4484 dentry->d_parent->d_inode->i_ino, objectid,
4485 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4486 &index);
4487 if (IS_ERR(inode)) {
4488 err = PTR_ERR(inode);
4489 goto out_fail;
4490 }
4491
4492 drop_on_err = 1;
4493
4494 err = btrfs_init_inode_security(trans, inode, dir);
4495 if (err)
4496 goto out_fail;
4497
4498 inode->i_op = &btrfs_dir_inode_operations;
4499 inode->i_fop = &btrfs_dir_file_operations;
4500 btrfs_set_trans_block_group(trans, inode);
4501
4502 btrfs_i_size_write(inode, 0);
4503 err = btrfs_update_inode(trans, root, inode);
4504 if (err)
4505 goto out_fail;
4506
4507 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4508 inode, dentry->d_name.name,
4509 dentry->d_name.len, 0, index);
4510 if (err)
4511 goto out_fail;
4512
4513 d_instantiate(dentry, inode);
4514 drop_on_err = 0;
4515 btrfs_update_inode_block_group(trans, inode);
4516 btrfs_update_inode_block_group(trans, dir);
4517
4518 out_fail:
4519 nr = trans->blocks_used;
4520 btrfs_end_transaction_throttle(trans, root);
4521
4522 out_unlock:
4523 btrfs_unreserve_metadata_space(root, 5);
4524 if (drop_on_err)
4525 iput(inode);
4526 btrfs_btree_balance_dirty(root, nr);
4527 return err;
4528 }
4529
4530 /* helper for btfs_get_extent. Given an existing extent in the tree,
4531 * and an extent that you want to insert, deal with overlap and insert
4532 * the new extent into the tree.
4533 */
4534 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4535 struct extent_map *existing,
4536 struct extent_map *em,
4537 u64 map_start, u64 map_len)
4538 {
4539 u64 start_diff;
4540
4541 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4542 start_diff = map_start - em->start;
4543 em->start = map_start;
4544 em->len = map_len;
4545 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4546 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4547 em->block_start += start_diff;
4548 em->block_len -= start_diff;
4549 }
4550 return add_extent_mapping(em_tree, em);
4551 }
4552
4553 static noinline int uncompress_inline(struct btrfs_path *path,
4554 struct inode *inode, struct page *page,
4555 size_t pg_offset, u64 extent_offset,
4556 struct btrfs_file_extent_item *item)
4557 {
4558 int ret;
4559 struct extent_buffer *leaf = path->nodes[0];
4560 char *tmp;
4561 size_t max_size;
4562 unsigned long inline_size;
4563 unsigned long ptr;
4564
4565 WARN_ON(pg_offset != 0);
4566 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4567 inline_size = btrfs_file_extent_inline_item_len(leaf,
4568 btrfs_item_nr(leaf, path->slots[0]));
4569 tmp = kmalloc(inline_size, GFP_NOFS);
4570 ptr = btrfs_file_extent_inline_start(item);
4571
4572 read_extent_buffer(leaf, tmp, ptr, inline_size);
4573
4574 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4575 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4576 inline_size, max_size);
4577 if (ret) {
4578 char *kaddr = kmap_atomic(page, KM_USER0);
4579 unsigned long copy_size = min_t(u64,
4580 PAGE_CACHE_SIZE - pg_offset,
4581 max_size - extent_offset);
4582 memset(kaddr + pg_offset, 0, copy_size);
4583 kunmap_atomic(kaddr, KM_USER0);
4584 }
4585 kfree(tmp);
4586 return 0;
4587 }
4588
4589 /*
4590 * a bit scary, this does extent mapping from logical file offset to the disk.
4591 * the ugly parts come from merging extents from the disk with the in-ram
4592 * representation. This gets more complex because of the data=ordered code,
4593 * where the in-ram extents might be locked pending data=ordered completion.
4594 *
4595 * This also copies inline extents directly into the page.
4596 */
4597
4598 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4599 size_t pg_offset, u64 start, u64 len,
4600 int create)
4601 {
4602 int ret;
4603 int err = 0;
4604 u64 bytenr;
4605 u64 extent_start = 0;
4606 u64 extent_end = 0;
4607 u64 objectid = inode->i_ino;
4608 u32 found_type;
4609 struct btrfs_path *path = NULL;
4610 struct btrfs_root *root = BTRFS_I(inode)->root;
4611 struct btrfs_file_extent_item *item;
4612 struct extent_buffer *leaf;
4613 struct btrfs_key found_key;
4614 struct extent_map *em = NULL;
4615 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4616 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4617 struct btrfs_trans_handle *trans = NULL;
4618 int compressed;
4619
4620 again:
4621 read_lock(&em_tree->lock);
4622 em = lookup_extent_mapping(em_tree, start, len);
4623 if (em)
4624 em->bdev = root->fs_info->fs_devices->latest_bdev;
4625 read_unlock(&em_tree->lock);
4626
4627 if (em) {
4628 if (em->start > start || em->start + em->len <= start)
4629 free_extent_map(em);
4630 else if (em->block_start == EXTENT_MAP_INLINE && page)
4631 free_extent_map(em);
4632 else
4633 goto out;
4634 }
4635 em = alloc_extent_map(GFP_NOFS);
4636 if (!em) {
4637 err = -ENOMEM;
4638 goto out;
4639 }
4640 em->bdev = root->fs_info->fs_devices->latest_bdev;
4641 em->start = EXTENT_MAP_HOLE;
4642 em->orig_start = EXTENT_MAP_HOLE;
4643 em->len = (u64)-1;
4644 em->block_len = (u64)-1;
4645
4646 if (!path) {
4647 path = btrfs_alloc_path();
4648 BUG_ON(!path);
4649 }
4650
4651 ret = btrfs_lookup_file_extent(trans, root, path,
4652 objectid, start, trans != NULL);
4653 if (ret < 0) {
4654 err = ret;
4655 goto out;
4656 }
4657
4658 if (ret != 0) {
4659 if (path->slots[0] == 0)
4660 goto not_found;
4661 path->slots[0]--;
4662 }
4663
4664 leaf = path->nodes[0];
4665 item = btrfs_item_ptr(leaf, path->slots[0],
4666 struct btrfs_file_extent_item);
4667 /* are we inside the extent that was found? */
4668 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4669 found_type = btrfs_key_type(&found_key);
4670 if (found_key.objectid != objectid ||
4671 found_type != BTRFS_EXTENT_DATA_KEY) {
4672 goto not_found;
4673 }
4674
4675 found_type = btrfs_file_extent_type(leaf, item);
4676 extent_start = found_key.offset;
4677 compressed = btrfs_file_extent_compression(leaf, item);
4678 if (found_type == BTRFS_FILE_EXTENT_REG ||
4679 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4680 extent_end = extent_start +
4681 btrfs_file_extent_num_bytes(leaf, item);
4682 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4683 size_t size;
4684 size = btrfs_file_extent_inline_len(leaf, item);
4685 extent_end = (extent_start + size + root->sectorsize - 1) &
4686 ~((u64)root->sectorsize - 1);
4687 }
4688
4689 if (start >= extent_end) {
4690 path->slots[0]++;
4691 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4692 ret = btrfs_next_leaf(root, path);
4693 if (ret < 0) {
4694 err = ret;
4695 goto out;
4696 }
4697 if (ret > 0)
4698 goto not_found;
4699 leaf = path->nodes[0];
4700 }
4701 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4702 if (found_key.objectid != objectid ||
4703 found_key.type != BTRFS_EXTENT_DATA_KEY)
4704 goto not_found;
4705 if (start + len <= found_key.offset)
4706 goto not_found;
4707 em->start = start;
4708 em->len = found_key.offset - start;
4709 goto not_found_em;
4710 }
4711
4712 if (found_type == BTRFS_FILE_EXTENT_REG ||
4713 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4714 em->start = extent_start;
4715 em->len = extent_end - extent_start;
4716 em->orig_start = extent_start -
4717 btrfs_file_extent_offset(leaf, item);
4718 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4719 if (bytenr == 0) {
4720 em->block_start = EXTENT_MAP_HOLE;
4721 goto insert;
4722 }
4723 if (compressed) {
4724 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4725 em->block_start = bytenr;
4726 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4727 item);
4728 } else {
4729 bytenr += btrfs_file_extent_offset(leaf, item);
4730 em->block_start = bytenr;
4731 em->block_len = em->len;
4732 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4733 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4734 }
4735 goto insert;
4736 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4737 unsigned long ptr;
4738 char *map;
4739 size_t size;
4740 size_t extent_offset;
4741 size_t copy_size;
4742
4743 em->block_start = EXTENT_MAP_INLINE;
4744 if (!page || create) {
4745 em->start = extent_start;
4746 em->len = extent_end - extent_start;
4747 goto out;
4748 }
4749
4750 size = btrfs_file_extent_inline_len(leaf, item);
4751 extent_offset = page_offset(page) + pg_offset - extent_start;
4752 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4753 size - extent_offset);
4754 em->start = extent_start + extent_offset;
4755 em->len = (copy_size + root->sectorsize - 1) &
4756 ~((u64)root->sectorsize - 1);
4757 em->orig_start = EXTENT_MAP_INLINE;
4758 if (compressed)
4759 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4760 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4761 if (create == 0 && !PageUptodate(page)) {
4762 if (btrfs_file_extent_compression(leaf, item) ==
4763 BTRFS_COMPRESS_ZLIB) {
4764 ret = uncompress_inline(path, inode, page,
4765 pg_offset,
4766 extent_offset, item);
4767 BUG_ON(ret);
4768 } else {
4769 map = kmap(page);
4770 read_extent_buffer(leaf, map + pg_offset, ptr,
4771 copy_size);
4772 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4773 memset(map + pg_offset + copy_size, 0,
4774 PAGE_CACHE_SIZE - pg_offset -
4775 copy_size);
4776 }
4777 kunmap(page);
4778 }
4779 flush_dcache_page(page);
4780 } else if (create && PageUptodate(page)) {
4781 if (!trans) {
4782 kunmap(page);
4783 free_extent_map(em);
4784 em = NULL;
4785 btrfs_release_path(root, path);
4786 trans = btrfs_join_transaction(root, 1);
4787 goto again;
4788 }
4789 map = kmap(page);
4790 write_extent_buffer(leaf, map + pg_offset, ptr,
4791 copy_size);
4792 kunmap(page);
4793 btrfs_mark_buffer_dirty(leaf);
4794 }
4795 set_extent_uptodate(io_tree, em->start,
4796 extent_map_end(em) - 1, GFP_NOFS);
4797 goto insert;
4798 } else {
4799 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4800 WARN_ON(1);
4801 }
4802 not_found:
4803 em->start = start;
4804 em->len = len;
4805 not_found_em:
4806 em->block_start = EXTENT_MAP_HOLE;
4807 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4808 insert:
4809 btrfs_release_path(root, path);
4810 if (em->start > start || extent_map_end(em) <= start) {
4811 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4812 "[%llu %llu]\n", (unsigned long long)em->start,
4813 (unsigned long long)em->len,
4814 (unsigned long long)start,
4815 (unsigned long long)len);
4816 err = -EIO;
4817 goto out;
4818 }
4819
4820 err = 0;
4821 write_lock(&em_tree->lock);
4822 ret = add_extent_mapping(em_tree, em);
4823 /* it is possible that someone inserted the extent into the tree
4824 * while we had the lock dropped. It is also possible that
4825 * an overlapping map exists in the tree
4826 */
4827 if (ret == -EEXIST) {
4828 struct extent_map *existing;
4829
4830 ret = 0;
4831
4832 existing = lookup_extent_mapping(em_tree, start, len);
4833 if (existing && (existing->start > start ||
4834 existing->start + existing->len <= start)) {
4835 free_extent_map(existing);
4836 existing = NULL;
4837 }
4838 if (!existing) {
4839 existing = lookup_extent_mapping(em_tree, em->start,
4840 em->len);
4841 if (existing) {
4842 err = merge_extent_mapping(em_tree, existing,
4843 em, start,
4844 root->sectorsize);
4845 free_extent_map(existing);
4846 if (err) {
4847 free_extent_map(em);
4848 em = NULL;
4849 }
4850 } else {
4851 err = -EIO;
4852 free_extent_map(em);
4853 em = NULL;
4854 }
4855 } else {
4856 free_extent_map(em);
4857 em = existing;
4858 err = 0;
4859 }
4860 }
4861 write_unlock(&em_tree->lock);
4862 out:
4863 if (path)
4864 btrfs_free_path(path);
4865 if (trans) {
4866 ret = btrfs_end_transaction(trans, root);
4867 if (!err)
4868 err = ret;
4869 }
4870 if (err) {
4871 free_extent_map(em);
4872 return ERR_PTR(err);
4873 }
4874 return em;
4875 }
4876
4877 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4878 const struct iovec *iov, loff_t offset,
4879 unsigned long nr_segs)
4880 {
4881 return -EINVAL;
4882 }
4883
4884 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4885 __u64 start, __u64 len)
4886 {
4887 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4888 }
4889
4890 int btrfs_readpage(struct file *file, struct page *page)
4891 {
4892 struct extent_io_tree *tree;
4893 tree = &BTRFS_I(page->mapping->host)->io_tree;
4894 return extent_read_full_page(tree, page, btrfs_get_extent);
4895 }
4896
4897 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4898 {
4899 struct extent_io_tree *tree;
4900
4901
4902 if (current->flags & PF_MEMALLOC) {
4903 redirty_page_for_writepage(wbc, page);
4904 unlock_page(page);
4905 return 0;
4906 }
4907 tree = &BTRFS_I(page->mapping->host)->io_tree;
4908 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4909 }
4910
4911 int btrfs_writepages(struct address_space *mapping,
4912 struct writeback_control *wbc)
4913 {
4914 struct extent_io_tree *tree;
4915
4916 tree = &BTRFS_I(mapping->host)->io_tree;
4917 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4918 }
4919
4920 static int
4921 btrfs_readpages(struct file *file, struct address_space *mapping,
4922 struct list_head *pages, unsigned nr_pages)
4923 {
4924 struct extent_io_tree *tree;
4925 tree = &BTRFS_I(mapping->host)->io_tree;
4926 return extent_readpages(tree, mapping, pages, nr_pages,
4927 btrfs_get_extent);
4928 }
4929 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4930 {
4931 struct extent_io_tree *tree;
4932 struct extent_map_tree *map;
4933 int ret;
4934
4935 tree = &BTRFS_I(page->mapping->host)->io_tree;
4936 map = &BTRFS_I(page->mapping->host)->extent_tree;
4937 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4938 if (ret == 1) {
4939 ClearPagePrivate(page);
4940 set_page_private(page, 0);
4941 page_cache_release(page);
4942 }
4943 return ret;
4944 }
4945
4946 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4947 {
4948 if (PageWriteback(page) || PageDirty(page))
4949 return 0;
4950 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4951 }
4952
4953 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4954 {
4955 struct extent_io_tree *tree;
4956 struct btrfs_ordered_extent *ordered;
4957 struct extent_state *cached_state = NULL;
4958 u64 page_start = page_offset(page);
4959 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4960
4961
4962 /*
4963 * we have the page locked, so new writeback can't start,
4964 * and the dirty bit won't be cleared while we are here.
4965 *
4966 * Wait for IO on this page so that we can safely clear
4967 * the PagePrivate2 bit and do ordered accounting
4968 */
4969 wait_on_page_writeback(page);
4970
4971 tree = &BTRFS_I(page->mapping->host)->io_tree;
4972 if (offset) {
4973 btrfs_releasepage(page, GFP_NOFS);
4974 return;
4975 }
4976 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
4977 GFP_NOFS);
4978 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4979 page_offset(page));
4980 if (ordered) {
4981 /*
4982 * IO on this page will never be started, so we need
4983 * to account for any ordered extents now
4984 */
4985 clear_extent_bit(tree, page_start, page_end,
4986 EXTENT_DIRTY | EXTENT_DELALLOC |
4987 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4988 &cached_state, GFP_NOFS);
4989 /*
4990 * whoever cleared the private bit is responsible
4991 * for the finish_ordered_io
4992 */
4993 if (TestClearPagePrivate2(page)) {
4994 btrfs_finish_ordered_io(page->mapping->host,
4995 page_start, page_end);
4996 }
4997 btrfs_put_ordered_extent(ordered);
4998 cached_state = NULL;
4999 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5000 GFP_NOFS);
5001 }
5002 clear_extent_bit(tree, page_start, page_end,
5003 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5004 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5005 __btrfs_releasepage(page, GFP_NOFS);
5006
5007 ClearPageChecked(page);
5008 if (PagePrivate(page)) {
5009 ClearPagePrivate(page);
5010 set_page_private(page, 0);
5011 page_cache_release(page);
5012 }
5013 }
5014
5015 /*
5016 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5017 * called from a page fault handler when a page is first dirtied. Hence we must
5018 * be careful to check for EOF conditions here. We set the page up correctly
5019 * for a written page which means we get ENOSPC checking when writing into
5020 * holes and correct delalloc and unwritten extent mapping on filesystems that
5021 * support these features.
5022 *
5023 * We are not allowed to take the i_mutex here so we have to play games to
5024 * protect against truncate races as the page could now be beyond EOF. Because
5025 * vmtruncate() writes the inode size before removing pages, once we have the
5026 * page lock we can determine safely if the page is beyond EOF. If it is not
5027 * beyond EOF, then the page is guaranteed safe against truncation until we
5028 * unlock the page.
5029 */
5030 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5031 {
5032 struct page *page = vmf->page;
5033 struct inode *inode = fdentry(vma->vm_file)->d_inode;
5034 struct btrfs_root *root = BTRFS_I(inode)->root;
5035 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5036 struct btrfs_ordered_extent *ordered;
5037 struct extent_state *cached_state = NULL;
5038 char *kaddr;
5039 unsigned long zero_start;
5040 loff_t size;
5041 int ret;
5042 u64 page_start;
5043 u64 page_end;
5044
5045 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5046 if (ret) {
5047 if (ret == -ENOMEM)
5048 ret = VM_FAULT_OOM;
5049 else /* -ENOSPC, -EIO, etc */
5050 ret = VM_FAULT_SIGBUS;
5051 goto out;
5052 }
5053
5054 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5055 if (ret) {
5056 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5057 ret = VM_FAULT_SIGBUS;
5058 goto out;
5059 }
5060
5061 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5062 again:
5063 lock_page(page);
5064 size = i_size_read(inode);
5065 page_start = page_offset(page);
5066 page_end = page_start + PAGE_CACHE_SIZE - 1;
5067
5068 if ((page->mapping != inode->i_mapping) ||
5069 (page_start >= size)) {
5070 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5071 /* page got truncated out from underneath us */
5072 goto out_unlock;
5073 }
5074 wait_on_page_writeback(page);
5075
5076 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5077 GFP_NOFS);
5078 set_page_extent_mapped(page);
5079
5080 /*
5081 * we can't set the delalloc bits if there are pending ordered
5082 * extents. Drop our locks and wait for them to finish
5083 */
5084 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5085 if (ordered) {
5086 unlock_extent_cached(io_tree, page_start, page_end,
5087 &cached_state, GFP_NOFS);
5088 unlock_page(page);
5089 btrfs_start_ordered_extent(inode, ordered, 1);
5090 btrfs_put_ordered_extent(ordered);
5091 goto again;
5092 }
5093
5094 /*
5095 * XXX - page_mkwrite gets called every time the page is dirtied, even
5096 * if it was already dirty, so for space accounting reasons we need to
5097 * clear any delalloc bits for the range we are fixing to save. There
5098 * is probably a better way to do this, but for now keep consistent with
5099 * prepare_pages in the normal write path.
5100 */
5101 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5102 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5103 0, 0, &cached_state, GFP_NOFS);
5104
5105 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5106 &cached_state);
5107 if (ret) {
5108 unlock_extent_cached(io_tree, page_start, page_end,
5109 &cached_state, GFP_NOFS);
5110 ret = VM_FAULT_SIGBUS;
5111 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5112 goto out_unlock;
5113 }
5114 ret = 0;
5115
5116 /* page is wholly or partially inside EOF */
5117 if (page_start + PAGE_CACHE_SIZE > size)
5118 zero_start = size & ~PAGE_CACHE_MASK;
5119 else
5120 zero_start = PAGE_CACHE_SIZE;
5121
5122 if (zero_start != PAGE_CACHE_SIZE) {
5123 kaddr = kmap(page);
5124 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5125 flush_dcache_page(page);
5126 kunmap(page);
5127 }
5128 ClearPageChecked(page);
5129 set_page_dirty(page);
5130 SetPageUptodate(page);
5131
5132 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5133 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5134
5135 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
5136
5137 out_unlock:
5138 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5139 if (!ret)
5140 return VM_FAULT_LOCKED;
5141 unlock_page(page);
5142 out:
5143 return ret;
5144 }
5145
5146 static void btrfs_truncate(struct inode *inode)
5147 {
5148 struct btrfs_root *root = BTRFS_I(inode)->root;
5149 int ret;
5150 struct btrfs_trans_handle *trans;
5151 unsigned long nr;
5152 u64 mask = root->sectorsize - 1;
5153
5154 if (!S_ISREG(inode->i_mode)) {
5155 WARN_ON(1);
5156 return;
5157 }
5158
5159 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5160 if (ret)
5161 return;
5162
5163 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5164 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5165
5166 trans = btrfs_start_transaction(root, 1);
5167 btrfs_set_trans_block_group(trans, inode);
5168
5169 /*
5170 * setattr is responsible for setting the ordered_data_close flag,
5171 * but that is only tested during the last file release. That
5172 * could happen well after the next commit, leaving a great big
5173 * window where new writes may get lost if someone chooses to write
5174 * to this file after truncating to zero
5175 *
5176 * The inode doesn't have any dirty data here, and so if we commit
5177 * this is a noop. If someone immediately starts writing to the inode
5178 * it is very likely we'll catch some of their writes in this
5179 * transaction, and the commit will find this file on the ordered
5180 * data list with good things to send down.
5181 *
5182 * This is a best effort solution, there is still a window where
5183 * using truncate to replace the contents of the file will
5184 * end up with a zero length file after a crash.
5185 */
5186 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5187 btrfs_add_ordered_operation(trans, root, inode);
5188
5189 while (1) {
5190 ret = btrfs_truncate_inode_items(trans, root, inode,
5191 inode->i_size,
5192 BTRFS_EXTENT_DATA_KEY);
5193 if (ret != -EAGAIN)
5194 break;
5195
5196 ret = btrfs_update_inode(trans, root, inode);
5197 BUG_ON(ret);
5198
5199 nr = trans->blocks_used;
5200 btrfs_end_transaction(trans, root);
5201 btrfs_btree_balance_dirty(root, nr);
5202
5203 trans = btrfs_start_transaction(root, 1);
5204 btrfs_set_trans_block_group(trans, inode);
5205 }
5206
5207 if (ret == 0 && inode->i_nlink > 0) {
5208 ret = btrfs_orphan_del(trans, inode);
5209 BUG_ON(ret);
5210 }
5211
5212 ret = btrfs_update_inode(trans, root, inode);
5213 BUG_ON(ret);
5214
5215 nr = trans->blocks_used;
5216 ret = btrfs_end_transaction_throttle(trans, root);
5217 BUG_ON(ret);
5218 btrfs_btree_balance_dirty(root, nr);
5219 }
5220
5221 /*
5222 * create a new subvolume directory/inode (helper for the ioctl).
5223 */
5224 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5225 struct btrfs_root *new_root,
5226 u64 new_dirid, u64 alloc_hint)
5227 {
5228 struct inode *inode;
5229 int err;
5230 u64 index = 0;
5231
5232 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5233 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5234 if (IS_ERR(inode))
5235 return PTR_ERR(inode);
5236 inode->i_op = &btrfs_dir_inode_operations;
5237 inode->i_fop = &btrfs_dir_file_operations;
5238
5239 inode->i_nlink = 1;
5240 btrfs_i_size_write(inode, 0);
5241
5242 err = btrfs_update_inode(trans, new_root, inode);
5243 BUG_ON(err);
5244
5245 iput(inode);
5246 return 0;
5247 }
5248
5249 /* helper function for file defrag and space balancing. This
5250 * forces readahead on a given range of bytes in an inode
5251 */
5252 unsigned long btrfs_force_ra(struct address_space *mapping,
5253 struct file_ra_state *ra, struct file *file,
5254 pgoff_t offset, pgoff_t last_index)
5255 {
5256 pgoff_t req_size = last_index - offset + 1;
5257
5258 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5259 return offset + req_size;
5260 }
5261
5262 struct inode *btrfs_alloc_inode(struct super_block *sb)
5263 {
5264 struct btrfs_inode *ei;
5265
5266 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5267 if (!ei)
5268 return NULL;
5269 ei->last_trans = 0;
5270 ei->last_sub_trans = 0;
5271 ei->logged_trans = 0;
5272 ei->outstanding_extents = 0;
5273 ei->reserved_extents = 0;
5274 ei->root = NULL;
5275 spin_lock_init(&ei->accounting_lock);
5276 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5277 INIT_LIST_HEAD(&ei->i_orphan);
5278 INIT_LIST_HEAD(&ei->ordered_operations);
5279 return &ei->vfs_inode;
5280 }
5281
5282 void btrfs_destroy_inode(struct inode *inode)
5283 {
5284 struct btrfs_ordered_extent *ordered;
5285 struct btrfs_root *root = BTRFS_I(inode)->root;
5286
5287 WARN_ON(!list_empty(&inode->i_dentry));
5288 WARN_ON(inode->i_data.nrpages);
5289
5290 /*
5291 * This can happen where we create an inode, but somebody else also
5292 * created the same inode and we need to destroy the one we already
5293 * created.
5294 */
5295 if (!root)
5296 goto free;
5297
5298 /*
5299 * Make sure we're properly removed from the ordered operation
5300 * lists.
5301 */
5302 smp_mb();
5303 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5304 spin_lock(&root->fs_info->ordered_extent_lock);
5305 list_del_init(&BTRFS_I(inode)->ordered_operations);
5306 spin_unlock(&root->fs_info->ordered_extent_lock);
5307 }
5308
5309 spin_lock(&root->list_lock);
5310 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5311 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5312 inode->i_ino);
5313 list_del_init(&BTRFS_I(inode)->i_orphan);
5314 }
5315 spin_unlock(&root->list_lock);
5316
5317 while (1) {
5318 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5319 if (!ordered)
5320 break;
5321 else {
5322 printk(KERN_ERR "btrfs found ordered "
5323 "extent %llu %llu on inode cleanup\n",
5324 (unsigned long long)ordered->file_offset,
5325 (unsigned long long)ordered->len);
5326 btrfs_remove_ordered_extent(inode, ordered);
5327 btrfs_put_ordered_extent(ordered);
5328 btrfs_put_ordered_extent(ordered);
5329 }
5330 }
5331 inode_tree_del(inode);
5332 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5333 free:
5334 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5335 }
5336
5337 void btrfs_drop_inode(struct inode *inode)
5338 {
5339 struct btrfs_root *root = BTRFS_I(inode)->root;
5340 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5341 generic_delete_inode(inode);
5342 else
5343 generic_drop_inode(inode);
5344 }
5345
5346 static void init_once(void *foo)
5347 {
5348 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5349
5350 inode_init_once(&ei->vfs_inode);
5351 }
5352
5353 void btrfs_destroy_cachep(void)
5354 {
5355 if (btrfs_inode_cachep)
5356 kmem_cache_destroy(btrfs_inode_cachep);
5357 if (btrfs_trans_handle_cachep)
5358 kmem_cache_destroy(btrfs_trans_handle_cachep);
5359 if (btrfs_transaction_cachep)
5360 kmem_cache_destroy(btrfs_transaction_cachep);
5361 if (btrfs_path_cachep)
5362 kmem_cache_destroy(btrfs_path_cachep);
5363 }
5364
5365 int btrfs_init_cachep(void)
5366 {
5367 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5368 sizeof(struct btrfs_inode), 0,
5369 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5370 if (!btrfs_inode_cachep)
5371 goto fail;
5372
5373 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5374 sizeof(struct btrfs_trans_handle), 0,
5375 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5376 if (!btrfs_trans_handle_cachep)
5377 goto fail;
5378
5379 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5380 sizeof(struct btrfs_transaction), 0,
5381 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5382 if (!btrfs_transaction_cachep)
5383 goto fail;
5384
5385 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5386 sizeof(struct btrfs_path), 0,
5387 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5388 if (!btrfs_path_cachep)
5389 goto fail;
5390
5391 return 0;
5392 fail:
5393 btrfs_destroy_cachep();
5394 return -ENOMEM;
5395 }
5396
5397 static int btrfs_getattr(struct vfsmount *mnt,
5398 struct dentry *dentry, struct kstat *stat)
5399 {
5400 struct inode *inode = dentry->d_inode;
5401 generic_fillattr(inode, stat);
5402 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5403 stat->blksize = PAGE_CACHE_SIZE;
5404 stat->blocks = (inode_get_bytes(inode) +
5405 BTRFS_I(inode)->delalloc_bytes) >> 9;
5406 return 0;
5407 }
5408
5409 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5410 struct inode *new_dir, struct dentry *new_dentry)
5411 {
5412 struct btrfs_trans_handle *trans;
5413 struct btrfs_root *root = BTRFS_I(old_dir)->root;
5414 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5415 struct inode *new_inode = new_dentry->d_inode;
5416 struct inode *old_inode = old_dentry->d_inode;
5417 struct timespec ctime = CURRENT_TIME;
5418 u64 index = 0;
5419 u64 root_objectid;
5420 int ret;
5421
5422 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5423 return -EPERM;
5424
5425 /* we only allow rename subvolume link between subvolumes */
5426 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5427 return -EXDEV;
5428
5429 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5430 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5431 return -ENOTEMPTY;
5432
5433 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5434 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5435 return -ENOTEMPTY;
5436
5437 /*
5438 * We want to reserve the absolute worst case amount of items. So if
5439 * both inodes are subvols and we need to unlink them then that would
5440 * require 4 item modifications, but if they are both normal inodes it
5441 * would require 5 item modifications, so we'll assume their normal
5442 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5443 * should cover the worst case number of items we'll modify.
5444 */
5445 ret = btrfs_reserve_metadata_space(root, 11);
5446 if (ret)
5447 return ret;
5448
5449 /*
5450 * we're using rename to replace one file with another.
5451 * and the replacement file is large. Start IO on it now so
5452 * we don't add too much work to the end of the transaction
5453 */
5454 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5455 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5456 filemap_flush(old_inode->i_mapping);
5457
5458 /* close the racy window with snapshot create/destroy ioctl */
5459 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5460 down_read(&root->fs_info->subvol_sem);
5461
5462 trans = btrfs_start_transaction(root, 1);
5463 btrfs_set_trans_block_group(trans, new_dir);
5464
5465 if (dest != root)
5466 btrfs_record_root_in_trans(trans, dest);
5467
5468 ret = btrfs_set_inode_index(new_dir, &index);
5469 if (ret)
5470 goto out_fail;
5471
5472 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5473 /* force full log commit if subvolume involved. */
5474 root->fs_info->last_trans_log_full_commit = trans->transid;
5475 } else {
5476 ret = btrfs_insert_inode_ref(trans, dest,
5477 new_dentry->d_name.name,
5478 new_dentry->d_name.len,
5479 old_inode->i_ino,
5480 new_dir->i_ino, index);
5481 if (ret)
5482 goto out_fail;
5483 /*
5484 * this is an ugly little race, but the rename is required
5485 * to make sure that if we crash, the inode is either at the
5486 * old name or the new one. pinning the log transaction lets
5487 * us make sure we don't allow a log commit to come in after
5488 * we unlink the name but before we add the new name back in.
5489 */
5490 btrfs_pin_log_trans(root);
5491 }
5492 /*
5493 * make sure the inode gets flushed if it is replacing
5494 * something.
5495 */
5496 if (new_inode && new_inode->i_size &&
5497 old_inode && S_ISREG(old_inode->i_mode)) {
5498 btrfs_add_ordered_operation(trans, root, old_inode);
5499 }
5500
5501 old_dir->i_ctime = old_dir->i_mtime = ctime;
5502 new_dir->i_ctime = new_dir->i_mtime = ctime;
5503 old_inode->i_ctime = ctime;
5504
5505 if (old_dentry->d_parent != new_dentry->d_parent)
5506 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5507
5508 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5509 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5510 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5511 old_dentry->d_name.name,
5512 old_dentry->d_name.len);
5513 } else {
5514 btrfs_inc_nlink(old_dentry->d_inode);
5515 ret = btrfs_unlink_inode(trans, root, old_dir,
5516 old_dentry->d_inode,
5517 old_dentry->d_name.name,
5518 old_dentry->d_name.len);
5519 }
5520 BUG_ON(ret);
5521
5522 if (new_inode) {
5523 new_inode->i_ctime = CURRENT_TIME;
5524 if (unlikely(new_inode->i_ino ==
5525 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5526 root_objectid = BTRFS_I(new_inode)->location.objectid;
5527 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5528 root_objectid,
5529 new_dentry->d_name.name,
5530 new_dentry->d_name.len);
5531 BUG_ON(new_inode->i_nlink == 0);
5532 } else {
5533 ret = btrfs_unlink_inode(trans, dest, new_dir,
5534 new_dentry->d_inode,
5535 new_dentry->d_name.name,
5536 new_dentry->d_name.len);
5537 }
5538 BUG_ON(ret);
5539 if (new_inode->i_nlink == 0) {
5540 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5541 BUG_ON(ret);
5542 }
5543 }
5544
5545 ret = btrfs_add_link(trans, new_dir, old_inode,
5546 new_dentry->d_name.name,
5547 new_dentry->d_name.len, 0, index);
5548 BUG_ON(ret);
5549
5550 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5551 btrfs_log_new_name(trans, old_inode, old_dir,
5552 new_dentry->d_parent);
5553 btrfs_end_log_trans(root);
5554 }
5555 out_fail:
5556 btrfs_end_transaction_throttle(trans, root);
5557
5558 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5559 up_read(&root->fs_info->subvol_sem);
5560
5561 btrfs_unreserve_metadata_space(root, 11);
5562 return ret;
5563 }
5564
5565 /*
5566 * some fairly slow code that needs optimization. This walks the list
5567 * of all the inodes with pending delalloc and forces them to disk.
5568 */
5569 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5570 {
5571 struct list_head *head = &root->fs_info->delalloc_inodes;
5572 struct btrfs_inode *binode;
5573 struct inode *inode;
5574
5575 if (root->fs_info->sb->s_flags & MS_RDONLY)
5576 return -EROFS;
5577
5578 spin_lock(&root->fs_info->delalloc_lock);
5579 while (!list_empty(head)) {
5580 binode = list_entry(head->next, struct btrfs_inode,
5581 delalloc_inodes);
5582 inode = igrab(&binode->vfs_inode);
5583 if (!inode)
5584 list_del_init(&binode->delalloc_inodes);
5585 spin_unlock(&root->fs_info->delalloc_lock);
5586 if (inode) {
5587 filemap_flush(inode->i_mapping);
5588 if (delay_iput)
5589 btrfs_add_delayed_iput(inode);
5590 else
5591 iput(inode);
5592 }
5593 cond_resched();
5594 spin_lock(&root->fs_info->delalloc_lock);
5595 }
5596 spin_unlock(&root->fs_info->delalloc_lock);
5597
5598 /* the filemap_flush will queue IO into the worker threads, but
5599 * we have to make sure the IO is actually started and that
5600 * ordered extents get created before we return
5601 */
5602 atomic_inc(&root->fs_info->async_submit_draining);
5603 while (atomic_read(&root->fs_info->nr_async_submits) ||
5604 atomic_read(&root->fs_info->async_delalloc_pages)) {
5605 wait_event(root->fs_info->async_submit_wait,
5606 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5607 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5608 }
5609 atomic_dec(&root->fs_info->async_submit_draining);
5610 return 0;
5611 }
5612
5613 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5614 const char *symname)
5615 {
5616 struct btrfs_trans_handle *trans;
5617 struct btrfs_root *root = BTRFS_I(dir)->root;
5618 struct btrfs_path *path;
5619 struct btrfs_key key;
5620 struct inode *inode = NULL;
5621 int err;
5622 int drop_inode = 0;
5623 u64 objectid;
5624 u64 index = 0 ;
5625 int name_len;
5626 int datasize;
5627 unsigned long ptr;
5628 struct btrfs_file_extent_item *ei;
5629 struct extent_buffer *leaf;
5630 unsigned long nr = 0;
5631
5632 name_len = strlen(symname) + 1;
5633 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5634 return -ENAMETOOLONG;
5635
5636 /*
5637 * 2 items for inode item and ref
5638 * 2 items for dir items
5639 * 1 item for xattr if selinux is on
5640 */
5641 err = btrfs_reserve_metadata_space(root, 5);
5642 if (err)
5643 return err;
5644
5645 trans = btrfs_start_transaction(root, 1);
5646 if (!trans)
5647 goto out_fail;
5648 btrfs_set_trans_block_group(trans, dir);
5649
5650 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5651 if (err) {
5652 err = -ENOSPC;
5653 goto out_unlock;
5654 }
5655
5656 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5657 dentry->d_name.len,
5658 dentry->d_parent->d_inode->i_ino, objectid,
5659 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5660 &index);
5661 err = PTR_ERR(inode);
5662 if (IS_ERR(inode))
5663 goto out_unlock;
5664
5665 err = btrfs_init_inode_security(trans, inode, dir);
5666 if (err) {
5667 drop_inode = 1;
5668 goto out_unlock;
5669 }
5670
5671 btrfs_set_trans_block_group(trans, inode);
5672 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5673 if (err)
5674 drop_inode = 1;
5675 else {
5676 inode->i_mapping->a_ops = &btrfs_aops;
5677 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5678 inode->i_fop = &btrfs_file_operations;
5679 inode->i_op = &btrfs_file_inode_operations;
5680 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5681 }
5682 btrfs_update_inode_block_group(trans, inode);
5683 btrfs_update_inode_block_group(trans, dir);
5684 if (drop_inode)
5685 goto out_unlock;
5686
5687 path = btrfs_alloc_path();
5688 BUG_ON(!path);
5689 key.objectid = inode->i_ino;
5690 key.offset = 0;
5691 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5692 datasize = btrfs_file_extent_calc_inline_size(name_len);
5693 err = btrfs_insert_empty_item(trans, root, path, &key,
5694 datasize);
5695 if (err) {
5696 drop_inode = 1;
5697 goto out_unlock;
5698 }
5699 leaf = path->nodes[0];
5700 ei = btrfs_item_ptr(leaf, path->slots[0],
5701 struct btrfs_file_extent_item);
5702 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5703 btrfs_set_file_extent_type(leaf, ei,
5704 BTRFS_FILE_EXTENT_INLINE);
5705 btrfs_set_file_extent_encryption(leaf, ei, 0);
5706 btrfs_set_file_extent_compression(leaf, ei, 0);
5707 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5708 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5709
5710 ptr = btrfs_file_extent_inline_start(ei);
5711 write_extent_buffer(leaf, symname, ptr, name_len);
5712 btrfs_mark_buffer_dirty(leaf);
5713 btrfs_free_path(path);
5714
5715 inode->i_op = &btrfs_symlink_inode_operations;
5716 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5717 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5718 inode_set_bytes(inode, name_len);
5719 btrfs_i_size_write(inode, name_len - 1);
5720 err = btrfs_update_inode(trans, root, inode);
5721 if (err)
5722 drop_inode = 1;
5723
5724 out_unlock:
5725 nr = trans->blocks_used;
5726 btrfs_end_transaction_throttle(trans, root);
5727 out_fail:
5728 btrfs_unreserve_metadata_space(root, 5);
5729 if (drop_inode) {
5730 inode_dec_link_count(inode);
5731 iput(inode);
5732 }
5733 btrfs_btree_balance_dirty(root, nr);
5734 return err;
5735 }
5736
5737 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5738 u64 alloc_hint, int mode, loff_t actual_len)
5739 {
5740 struct btrfs_trans_handle *trans;
5741 struct btrfs_root *root = BTRFS_I(inode)->root;
5742 struct btrfs_key ins;
5743 u64 cur_offset = start;
5744 u64 num_bytes = end - start;
5745 int ret = 0;
5746 u64 i_size;
5747
5748 while (num_bytes > 0) {
5749 trans = btrfs_start_transaction(root, 1);
5750
5751 ret = btrfs_reserve_extent(trans, root, num_bytes,
5752 root->sectorsize, 0, alloc_hint,
5753 (u64)-1, &ins, 1);
5754 if (ret) {
5755 WARN_ON(1);
5756 goto stop_trans;
5757 }
5758
5759 ret = btrfs_reserve_metadata_space(root, 3);
5760 if (ret) {
5761 btrfs_free_reserved_extent(root, ins.objectid,
5762 ins.offset);
5763 goto stop_trans;
5764 }
5765
5766 ret = insert_reserved_file_extent(trans, inode,
5767 cur_offset, ins.objectid,
5768 ins.offset, ins.offset,
5769 ins.offset, 0, 0, 0,
5770 BTRFS_FILE_EXTENT_PREALLOC);
5771 BUG_ON(ret);
5772 btrfs_drop_extent_cache(inode, cur_offset,
5773 cur_offset + ins.offset -1, 0);
5774
5775 num_bytes -= ins.offset;
5776 cur_offset += ins.offset;
5777 alloc_hint = ins.objectid + ins.offset;
5778
5779 inode->i_ctime = CURRENT_TIME;
5780 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5781 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5782 (actual_len > inode->i_size) &&
5783 (cur_offset > inode->i_size)) {
5784
5785 if (cur_offset > actual_len)
5786 i_size = actual_len;
5787 else
5788 i_size = cur_offset;
5789 i_size_write(inode, i_size);
5790 btrfs_ordered_update_i_size(inode, i_size, NULL);
5791 }
5792
5793 ret = btrfs_update_inode(trans, root, inode);
5794 BUG_ON(ret);
5795
5796 btrfs_end_transaction(trans, root);
5797 btrfs_unreserve_metadata_space(root, 3);
5798 }
5799 return ret;
5800
5801 stop_trans:
5802 btrfs_end_transaction(trans, root);
5803 return ret;
5804
5805 }
5806
5807 static long btrfs_fallocate(struct inode *inode, int mode,
5808 loff_t offset, loff_t len)
5809 {
5810 struct extent_state *cached_state = NULL;
5811 u64 cur_offset;
5812 u64 last_byte;
5813 u64 alloc_start;
5814 u64 alloc_end;
5815 u64 alloc_hint = 0;
5816 u64 locked_end;
5817 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5818 struct extent_map *em;
5819 int ret;
5820
5821 alloc_start = offset & ~mask;
5822 alloc_end = (offset + len + mask) & ~mask;
5823
5824 /*
5825 * wait for ordered IO before we have any locks. We'll loop again
5826 * below with the locks held.
5827 */
5828 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5829
5830 mutex_lock(&inode->i_mutex);
5831 if (alloc_start > inode->i_size) {
5832 ret = btrfs_cont_expand(inode, alloc_start);
5833 if (ret)
5834 goto out;
5835 }
5836
5837 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5838 alloc_end - alloc_start);
5839 if (ret)
5840 goto out;
5841
5842 locked_end = alloc_end - 1;
5843 while (1) {
5844 struct btrfs_ordered_extent *ordered;
5845
5846 /* the extent lock is ordered inside the running
5847 * transaction
5848 */
5849 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
5850 locked_end, 0, &cached_state, GFP_NOFS);
5851 ordered = btrfs_lookup_first_ordered_extent(inode,
5852 alloc_end - 1);
5853 if (ordered &&
5854 ordered->file_offset + ordered->len > alloc_start &&
5855 ordered->file_offset < alloc_end) {
5856 btrfs_put_ordered_extent(ordered);
5857 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
5858 alloc_start, locked_end,
5859 &cached_state, GFP_NOFS);
5860 /*
5861 * we can't wait on the range with the transaction
5862 * running or with the extent lock held
5863 */
5864 btrfs_wait_ordered_range(inode, alloc_start,
5865 alloc_end - alloc_start);
5866 } else {
5867 if (ordered)
5868 btrfs_put_ordered_extent(ordered);
5869 break;
5870 }
5871 }
5872
5873 cur_offset = alloc_start;
5874 while (1) {
5875 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5876 alloc_end - cur_offset, 0);
5877 BUG_ON(IS_ERR(em) || !em);
5878 last_byte = min(extent_map_end(em), alloc_end);
5879 last_byte = (last_byte + mask) & ~mask;
5880 if (em->block_start == EXTENT_MAP_HOLE ||
5881 (cur_offset >= inode->i_size &&
5882 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5883 ret = prealloc_file_range(inode,
5884 cur_offset, last_byte,
5885 alloc_hint, mode, offset+len);
5886 if (ret < 0) {
5887 free_extent_map(em);
5888 break;
5889 }
5890 }
5891 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5892 alloc_hint = em->block_start;
5893 free_extent_map(em);
5894
5895 cur_offset = last_byte;
5896 if (cur_offset >= alloc_end) {
5897 ret = 0;
5898 break;
5899 }
5900 }
5901 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5902 &cached_state, GFP_NOFS);
5903
5904 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5905 alloc_end - alloc_start);
5906 out:
5907 mutex_unlock(&inode->i_mutex);
5908 return ret;
5909 }
5910
5911 static int btrfs_set_page_dirty(struct page *page)
5912 {
5913 return __set_page_dirty_nobuffers(page);
5914 }
5915
5916 static int btrfs_permission(struct inode *inode, int mask)
5917 {
5918 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5919 return -EACCES;
5920 return generic_permission(inode, mask, btrfs_check_acl);
5921 }
5922
5923 static const struct inode_operations btrfs_dir_inode_operations = {
5924 .getattr = btrfs_getattr,
5925 .lookup = btrfs_lookup,
5926 .create = btrfs_create,
5927 .unlink = btrfs_unlink,
5928 .link = btrfs_link,
5929 .mkdir = btrfs_mkdir,
5930 .rmdir = btrfs_rmdir,
5931 .rename = btrfs_rename,
5932 .symlink = btrfs_symlink,
5933 .setattr = btrfs_setattr,
5934 .mknod = btrfs_mknod,
5935 .setxattr = btrfs_setxattr,
5936 .getxattr = btrfs_getxattr,
5937 .listxattr = btrfs_listxattr,
5938 .removexattr = btrfs_removexattr,
5939 .permission = btrfs_permission,
5940 };
5941 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5942 .lookup = btrfs_lookup,
5943 .permission = btrfs_permission,
5944 };
5945
5946 static const struct file_operations btrfs_dir_file_operations = {
5947 .llseek = generic_file_llseek,
5948 .read = generic_read_dir,
5949 .readdir = btrfs_real_readdir,
5950 .unlocked_ioctl = btrfs_ioctl,
5951 #ifdef CONFIG_COMPAT
5952 .compat_ioctl = btrfs_ioctl,
5953 #endif
5954 .release = btrfs_release_file,
5955 .fsync = btrfs_sync_file,
5956 };
5957
5958 static struct extent_io_ops btrfs_extent_io_ops = {
5959 .fill_delalloc = run_delalloc_range,
5960 .submit_bio_hook = btrfs_submit_bio_hook,
5961 .merge_bio_hook = btrfs_merge_bio_hook,
5962 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5963 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5964 .writepage_start_hook = btrfs_writepage_start_hook,
5965 .readpage_io_failed_hook = btrfs_io_failed_hook,
5966 .set_bit_hook = btrfs_set_bit_hook,
5967 .clear_bit_hook = btrfs_clear_bit_hook,
5968 .merge_extent_hook = btrfs_merge_extent_hook,
5969 .split_extent_hook = btrfs_split_extent_hook,
5970 };
5971
5972 /*
5973 * btrfs doesn't support the bmap operation because swapfiles
5974 * use bmap to make a mapping of extents in the file. They assume
5975 * these extents won't change over the life of the file and they
5976 * use the bmap result to do IO directly to the drive.
5977 *
5978 * the btrfs bmap call would return logical addresses that aren't
5979 * suitable for IO and they also will change frequently as COW
5980 * operations happen. So, swapfile + btrfs == corruption.
5981 *
5982 * For now we're avoiding this by dropping bmap.
5983 */
5984 static const struct address_space_operations btrfs_aops = {
5985 .readpage = btrfs_readpage,
5986 .writepage = btrfs_writepage,
5987 .writepages = btrfs_writepages,
5988 .readpages = btrfs_readpages,
5989 .sync_page = block_sync_page,
5990 .direct_IO = btrfs_direct_IO,
5991 .invalidatepage = btrfs_invalidatepage,
5992 .releasepage = btrfs_releasepage,
5993 .set_page_dirty = btrfs_set_page_dirty,
5994 .error_remove_page = generic_error_remove_page,
5995 };
5996
5997 static const struct address_space_operations btrfs_symlink_aops = {
5998 .readpage = btrfs_readpage,
5999 .writepage = btrfs_writepage,
6000 .invalidatepage = btrfs_invalidatepage,
6001 .releasepage = btrfs_releasepage,
6002 };
6003
6004 static const struct inode_operations btrfs_file_inode_operations = {
6005 .truncate = btrfs_truncate,
6006 .getattr = btrfs_getattr,
6007 .setattr = btrfs_setattr,
6008 .setxattr = btrfs_setxattr,
6009 .getxattr = btrfs_getxattr,
6010 .listxattr = btrfs_listxattr,
6011 .removexattr = btrfs_removexattr,
6012 .permission = btrfs_permission,
6013 .fallocate = btrfs_fallocate,
6014 .fiemap = btrfs_fiemap,
6015 };
6016 static const struct inode_operations btrfs_special_inode_operations = {
6017 .getattr = btrfs_getattr,
6018 .setattr = btrfs_setattr,
6019 .permission = btrfs_permission,
6020 .setxattr = btrfs_setxattr,
6021 .getxattr = btrfs_getxattr,
6022 .listxattr = btrfs_listxattr,
6023 .removexattr = btrfs_removexattr,
6024 };
6025 static const struct inode_operations btrfs_symlink_inode_operations = {
6026 .readlink = generic_readlink,
6027 .follow_link = page_follow_link_light,
6028 .put_link = page_put_link,
6029 .permission = btrfs_permission,
6030 .setxattr = btrfs_setxattr,
6031 .getxattr = btrfs_getxattr,
6032 .listxattr = btrfs_listxattr,
6033 .removexattr = btrfs_removexattr,
6034 };
6035
6036 const struct dentry_operations btrfs_dentry_operations = {
6037 .d_delete = btrfs_dentry_delete,
6038 };