]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
btrfs: Use right extent length when inserting overlap extent map.
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64 struct btrfs_key *location;
65 struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
114 {
115 int err;
116
117 err = btrfs_init_acl(trans, inode, dir);
118 if (!err)
119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 return err;
121 }
122
123 /*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_path *path, int extent_inserted,
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
132 int compress_type,
133 struct page **compressed_pages)
134 {
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 unsigned long offset;
144
145 if (compressed_size && compressed_pages)
146 cur_size = compressed_size;
147
148 inode_add_bytes(inode, size);
149
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
153
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
157
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
177 if (compress_type != BTRFS_COMPRESS_NONE) {
178 struct page *cpage;
179 int i = 0;
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
183 PAGE_CACHE_SIZE);
184
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
194 compress_type);
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_release_path(path);
207
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
219
220 return ret;
221 fail:
222 return err;
223 }
224
225
226 /*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
236 {
237 struct btrfs_trans_handle *trans;
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
241 u64 aligned_end = ALIGN(end, root->sectorsize);
242 u64 data_len = inline_len;
243 int ret;
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
252 actual_end >= PAGE_CACHE_SIZE ||
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
265 trans = btrfs_join_transaction(root);
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
268 return PTR_ERR(trans);
269 }
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
291 inline_len, compressed_size,
292 compress_type, compressed_pages);
293 if (ret && ret != -ENOSPC) {
294 btrfs_abort_transaction(trans, root, ret);
295 goto out;
296 } else if (ret == -ENOSPC) {
297 ret = 1;
298 goto out;
299 }
300
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 btrfs_free_path(path);
306 btrfs_end_transaction(trans, root);
307 return ret;
308 }
309
310 struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
316 int compress_type;
317 struct list_head list;
318 };
319
320 struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
334 unsigned long nr_pages,
335 int compress_type)
336 {
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 BUG_ON(!async_extent); /* -ENOMEM */
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
346 async_extent->compress_type = compress_type;
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349 }
350
351 /*
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
355 *
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
361 *
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
365 * are written in the same order that the flusher thread sent them
366 * down.
367 */
368 static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375 u64 num_bytes;
376 u64 blocksize = root->sectorsize;
377 u64 actual_end;
378 u64 isize = i_size_read(inode);
379 int ret = 0;
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
386 unsigned long max_uncompressed = 128 * 1024;
387 int i;
388 int will_compress;
389 int compress_type = root->fs_info->compress_type;
390 int redirty = 0;
391
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
395 btrfs_add_inode_defrag(NULL, inode);
396
397 /*
398 * skip compression for a small file range(<=blocksize) that
399 * isn't an inline extent, since it dosen't save disk space at all.
400 */
401 if ((end - start + 1) <= blocksize &&
402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 goto cleanup_and_bail_uncompressed;
404
405 actual_end = min_t(u64, isize, end + 1);
406 again:
407 will_compress = 0;
408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
410
411 /*
412 * we don't want to send crud past the end of i_size through
413 * compression, that's just a waste of CPU time. So, if the
414 * end of the file is before the start of our current
415 * requested range of bytes, we bail out to the uncompressed
416 * cleanup code that can deal with all of this.
417 *
418 * It isn't really the fastest way to fix things, but this is a
419 * very uncommon corner.
420 */
421 if (actual_end <= start)
422 goto cleanup_and_bail_uncompressed;
423
424 total_compressed = actual_end - start;
425
426 /* we want to make sure that amount of ram required to uncompress
427 * an extent is reasonable, so we limit the total size in ram
428 * of a compressed extent to 128k. This is a crucial number
429 * because it also controls how easily we can spread reads across
430 * cpus for decompression.
431 *
432 * We also want to make sure the amount of IO required to do
433 * a random read is reasonably small, so we limit the size of
434 * a compressed extent to 128k.
435 */
436 total_compressed = min(total_compressed, max_uncompressed);
437 num_bytes = ALIGN(end - start + 1, blocksize);
438 num_bytes = max(blocksize, num_bytes);
439 total_in = 0;
440 ret = 0;
441
442 /*
443 * we do compression for mount -o compress and when the
444 * inode has not been flagged as nocompress. This flag can
445 * change at any time if we discover bad compression ratios.
446 */
447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
448 (btrfs_test_opt(root, COMPRESS) ||
449 (BTRFS_I(inode)->force_compress) ||
450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
451 WARN_ON(pages);
452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
453 if (!pages) {
454 /* just bail out to the uncompressed code */
455 goto cont;
456 }
457
458 if (BTRFS_I(inode)->force_compress)
459 compress_type = BTRFS_I(inode)->force_compress;
460
461 /*
462 * we need to call clear_page_dirty_for_io on each
463 * page in the range. Otherwise applications with the file
464 * mmap'd can wander in and change the page contents while
465 * we are compressing them.
466 *
467 * If the compression fails for any reason, we set the pages
468 * dirty again later on.
469 */
470 extent_range_clear_dirty_for_io(inode, start, end);
471 redirty = 1;
472 ret = btrfs_compress_pages(compress_type,
473 inode->i_mapping, start,
474 total_compressed, pages,
475 nr_pages, &nr_pages_ret,
476 &total_in,
477 &total_compressed,
478 max_compressed);
479
480 if (!ret) {
481 unsigned long offset = total_compressed &
482 (PAGE_CACHE_SIZE - 1);
483 struct page *page = pages[nr_pages_ret - 1];
484 char *kaddr;
485
486 /* zero the tail end of the last page, we might be
487 * sending it down to disk
488 */
489 if (offset) {
490 kaddr = kmap_atomic(page);
491 memset(kaddr + offset, 0,
492 PAGE_CACHE_SIZE - offset);
493 kunmap_atomic(kaddr);
494 }
495 will_compress = 1;
496 }
497 }
498 cont:
499 if (start == 0) {
500 /* lets try to make an inline extent */
501 if (ret || total_in < (actual_end - start)) {
502 /* we didn't compress the entire range, try
503 * to make an uncompressed inline extent.
504 */
505 ret = cow_file_range_inline(root, inode, start, end,
506 0, 0, NULL);
507 } else {
508 /* try making a compressed inline extent */
509 ret = cow_file_range_inline(root, inode, start, end,
510 total_compressed,
511 compress_type, pages);
512 }
513 if (ret <= 0) {
514 unsigned long clear_flags = EXTENT_DELALLOC |
515 EXTENT_DEFRAG;
516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517
518 /*
519 * inline extent creation worked or returned error,
520 * we don't need to create any more async work items.
521 * Unlock and free up our temp pages.
522 */
523 extent_clear_unlock_delalloc(inode, start, end, NULL,
524 clear_flags, PAGE_UNLOCK |
525 PAGE_CLEAR_DIRTY |
526 PAGE_SET_WRITEBACK |
527 PAGE_END_WRITEBACK);
528 goto free_pages_out;
529 }
530 }
531
532 if (will_compress) {
533 /*
534 * we aren't doing an inline extent round the compressed size
535 * up to a block size boundary so the allocator does sane
536 * things
537 */
538 total_compressed = ALIGN(total_compressed, blocksize);
539
540 /*
541 * one last check to make sure the compression is really a
542 * win, compare the page count read with the blocks on disk
543 */
544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
545 if (total_compressed >= total_in) {
546 will_compress = 0;
547 } else {
548 num_bytes = total_in;
549 }
550 }
551 if (!will_compress && pages) {
552 /*
553 * the compression code ran but failed to make things smaller,
554 * free any pages it allocated and our page pointer array
555 */
556 for (i = 0; i < nr_pages_ret; i++) {
557 WARN_ON(pages[i]->mapping);
558 page_cache_release(pages[i]);
559 }
560 kfree(pages);
561 pages = NULL;
562 total_compressed = 0;
563 nr_pages_ret = 0;
564
565 /* flag the file so we don't compress in the future */
566 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 !(BTRFS_I(inode)->force_compress)) {
568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
569 }
570 }
571 if (will_compress) {
572 *num_added += 1;
573
574 /* the async work queues will take care of doing actual
575 * allocation on disk for these compressed pages,
576 * and will submit them to the elevator.
577 */
578 add_async_extent(async_cow, start, num_bytes,
579 total_compressed, pages, nr_pages_ret,
580 compress_type);
581
582 if (start + num_bytes < end) {
583 start += num_bytes;
584 pages = NULL;
585 cond_resched();
586 goto again;
587 }
588 } else {
589 cleanup_and_bail_uncompressed:
590 /*
591 * No compression, but we still need to write the pages in
592 * the file we've been given so far. redirty the locked
593 * page if it corresponds to our extent and set things up
594 * for the async work queue to run cow_file_range to do
595 * the normal delalloc dance
596 */
597 if (page_offset(locked_page) >= start &&
598 page_offset(locked_page) <= end) {
599 __set_page_dirty_nobuffers(locked_page);
600 /* unlocked later on in the async handlers */
601 }
602 if (redirty)
603 extent_range_redirty_for_io(inode, start, end);
604 add_async_extent(async_cow, start, end - start + 1,
605 0, NULL, 0, BTRFS_COMPRESS_NONE);
606 *num_added += 1;
607 }
608
609 out:
610 return ret;
611
612 free_pages_out:
613 for (i = 0; i < nr_pages_ret; i++) {
614 WARN_ON(pages[i]->mapping);
615 page_cache_release(pages[i]);
616 }
617 kfree(pages);
618
619 goto out;
620 }
621
622 /*
623 * phase two of compressed writeback. This is the ordered portion
624 * of the code, which only gets called in the order the work was
625 * queued. We walk all the async extents created by compress_file_range
626 * and send them down to the disk.
627 */
628 static noinline int submit_compressed_extents(struct inode *inode,
629 struct async_cow *async_cow)
630 {
631 struct async_extent *async_extent;
632 u64 alloc_hint = 0;
633 struct btrfs_key ins;
634 struct extent_map *em;
635 struct btrfs_root *root = BTRFS_I(inode)->root;
636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 struct extent_io_tree *io_tree;
638 int ret = 0;
639
640 if (list_empty(&async_cow->extents))
641 return 0;
642
643 again:
644 while (!list_empty(&async_cow->extents)) {
645 async_extent = list_entry(async_cow->extents.next,
646 struct async_extent, list);
647 list_del(&async_extent->list);
648
649 io_tree = &BTRFS_I(inode)->io_tree;
650
651 retry:
652 /* did the compression code fall back to uncompressed IO? */
653 if (!async_extent->pages) {
654 int page_started = 0;
655 unsigned long nr_written = 0;
656
657 lock_extent(io_tree, async_extent->start,
658 async_extent->start +
659 async_extent->ram_size - 1);
660
661 /* allocate blocks */
662 ret = cow_file_range(inode, async_cow->locked_page,
663 async_extent->start,
664 async_extent->start +
665 async_extent->ram_size - 1,
666 &page_started, &nr_written, 0);
667
668 /* JDM XXX */
669
670 /*
671 * if page_started, cow_file_range inserted an
672 * inline extent and took care of all the unlocking
673 * and IO for us. Otherwise, we need to submit
674 * all those pages down to the drive.
675 */
676 if (!page_started && !ret)
677 extent_write_locked_range(io_tree,
678 inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1,
681 btrfs_get_extent,
682 WB_SYNC_ALL);
683 else if (ret)
684 unlock_page(async_cow->locked_page);
685 kfree(async_extent);
686 cond_resched();
687 continue;
688 }
689
690 lock_extent(io_tree, async_extent->start,
691 async_extent->start + async_extent->ram_size - 1);
692
693 ret = btrfs_reserve_extent(root,
694 async_extent->compressed_size,
695 async_extent->compressed_size,
696 0, alloc_hint, &ins, 1, 1);
697 if (ret) {
698 int i;
699
700 for (i = 0; i < async_extent->nr_pages; i++) {
701 WARN_ON(async_extent->pages[i]->mapping);
702 page_cache_release(async_extent->pages[i]);
703 }
704 kfree(async_extent->pages);
705 async_extent->nr_pages = 0;
706 async_extent->pages = NULL;
707
708 if (ret == -ENOSPC) {
709 unlock_extent(io_tree, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1);
712
713 /*
714 * we need to redirty the pages if we decide to
715 * fallback to uncompressed IO, otherwise we
716 * will not submit these pages down to lower
717 * layers.
718 */
719 extent_range_redirty_for_io(inode,
720 async_extent->start,
721 async_extent->start +
722 async_extent->ram_size - 1);
723
724 goto retry;
725 }
726 goto out_free;
727 }
728
729 /*
730 * here we're doing allocation and writeback of the
731 * compressed pages
732 */
733 btrfs_drop_extent_cache(inode, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1, 0);
736
737 em = alloc_extent_map();
738 if (!em) {
739 ret = -ENOMEM;
740 goto out_free_reserve;
741 }
742 em->start = async_extent->start;
743 em->len = async_extent->ram_size;
744 em->orig_start = em->start;
745 em->mod_start = em->start;
746 em->mod_len = em->len;
747
748 em->block_start = ins.objectid;
749 em->block_len = ins.offset;
750 em->orig_block_len = ins.offset;
751 em->ram_bytes = async_extent->ram_size;
752 em->bdev = root->fs_info->fs_devices->latest_bdev;
753 em->compress_type = async_extent->compress_type;
754 set_bit(EXTENT_FLAG_PINNED, &em->flags);
755 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
756 em->generation = -1;
757
758 while (1) {
759 write_lock(&em_tree->lock);
760 ret = add_extent_mapping(em_tree, em, 1);
761 write_unlock(&em_tree->lock);
762 if (ret != -EEXIST) {
763 free_extent_map(em);
764 break;
765 }
766 btrfs_drop_extent_cache(inode, async_extent->start,
767 async_extent->start +
768 async_extent->ram_size - 1, 0);
769 }
770
771 if (ret)
772 goto out_free_reserve;
773
774 ret = btrfs_add_ordered_extent_compress(inode,
775 async_extent->start,
776 ins.objectid,
777 async_extent->ram_size,
778 ins.offset,
779 BTRFS_ORDERED_COMPRESSED,
780 async_extent->compress_type);
781 if (ret)
782 goto out_free_reserve;
783
784 /*
785 * clear dirty, set writeback and unlock the pages.
786 */
787 extent_clear_unlock_delalloc(inode, async_extent->start,
788 async_extent->start +
789 async_extent->ram_size - 1,
790 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
791 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
792 PAGE_SET_WRITEBACK);
793 ret = btrfs_submit_compressed_write(inode,
794 async_extent->start,
795 async_extent->ram_size,
796 ins.objectid,
797 ins.offset, async_extent->pages,
798 async_extent->nr_pages);
799 alloc_hint = ins.objectid + ins.offset;
800 kfree(async_extent);
801 if (ret)
802 goto out;
803 cond_resched();
804 }
805 ret = 0;
806 out:
807 return ret;
808 out_free_reserve:
809 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
810 out_free:
811 extent_clear_unlock_delalloc(inode, async_extent->start,
812 async_extent->start +
813 async_extent->ram_size - 1,
814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
815 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
816 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
817 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
818 kfree(async_extent);
819 goto again;
820 }
821
822 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
823 u64 num_bytes)
824 {
825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826 struct extent_map *em;
827 u64 alloc_hint = 0;
828
829 read_lock(&em_tree->lock);
830 em = search_extent_mapping(em_tree, start, num_bytes);
831 if (em) {
832 /*
833 * if block start isn't an actual block number then find the
834 * first block in this inode and use that as a hint. If that
835 * block is also bogus then just don't worry about it.
836 */
837 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
838 free_extent_map(em);
839 em = search_extent_mapping(em_tree, 0, 0);
840 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
841 alloc_hint = em->block_start;
842 if (em)
843 free_extent_map(em);
844 } else {
845 alloc_hint = em->block_start;
846 free_extent_map(em);
847 }
848 }
849 read_unlock(&em_tree->lock);
850
851 return alloc_hint;
852 }
853
854 /*
855 * when extent_io.c finds a delayed allocation range in the file,
856 * the call backs end up in this code. The basic idea is to
857 * allocate extents on disk for the range, and create ordered data structs
858 * in ram to track those extents.
859 *
860 * locked_page is the page that writepage had locked already. We use
861 * it to make sure we don't do extra locks or unlocks.
862 *
863 * *page_started is set to one if we unlock locked_page and do everything
864 * required to start IO on it. It may be clean and already done with
865 * IO when we return.
866 */
867 static noinline int cow_file_range(struct inode *inode,
868 struct page *locked_page,
869 u64 start, u64 end, int *page_started,
870 unsigned long *nr_written,
871 int unlock)
872 {
873 struct btrfs_root *root = BTRFS_I(inode)->root;
874 u64 alloc_hint = 0;
875 u64 num_bytes;
876 unsigned long ram_size;
877 u64 disk_num_bytes;
878 u64 cur_alloc_size;
879 u64 blocksize = root->sectorsize;
880 struct btrfs_key ins;
881 struct extent_map *em;
882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 int ret = 0;
884
885 if (btrfs_is_free_space_inode(inode)) {
886 WARN_ON_ONCE(1);
887 ret = -EINVAL;
888 goto out_unlock;
889 }
890
891 num_bytes = ALIGN(end - start + 1, blocksize);
892 num_bytes = max(blocksize, num_bytes);
893 disk_num_bytes = num_bytes;
894
895 /* if this is a small write inside eof, kick off defrag */
896 if (num_bytes < 64 * 1024 &&
897 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
898 btrfs_add_inode_defrag(NULL, inode);
899
900 if (start == 0) {
901 /* lets try to make an inline extent */
902 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
903 NULL);
904 if (ret == 0) {
905 extent_clear_unlock_delalloc(inode, start, end, NULL,
906 EXTENT_LOCKED | EXTENT_DELALLOC |
907 EXTENT_DEFRAG, PAGE_UNLOCK |
908 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
909 PAGE_END_WRITEBACK);
910
911 *nr_written = *nr_written +
912 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
913 *page_started = 1;
914 goto out;
915 } else if (ret < 0) {
916 goto out_unlock;
917 }
918 }
919
920 BUG_ON(disk_num_bytes >
921 btrfs_super_total_bytes(root->fs_info->super_copy));
922
923 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
924 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
925
926 while (disk_num_bytes > 0) {
927 unsigned long op;
928
929 cur_alloc_size = disk_num_bytes;
930 ret = btrfs_reserve_extent(root, cur_alloc_size,
931 root->sectorsize, 0, alloc_hint,
932 &ins, 1, 1);
933 if (ret < 0)
934 goto out_unlock;
935
936 em = alloc_extent_map();
937 if (!em) {
938 ret = -ENOMEM;
939 goto out_reserve;
940 }
941 em->start = start;
942 em->orig_start = em->start;
943 ram_size = ins.offset;
944 em->len = ins.offset;
945 em->mod_start = em->start;
946 em->mod_len = em->len;
947
948 em->block_start = ins.objectid;
949 em->block_len = ins.offset;
950 em->orig_block_len = ins.offset;
951 em->ram_bytes = ram_size;
952 em->bdev = root->fs_info->fs_devices->latest_bdev;
953 set_bit(EXTENT_FLAG_PINNED, &em->flags);
954 em->generation = -1;
955
956 while (1) {
957 write_lock(&em_tree->lock);
958 ret = add_extent_mapping(em_tree, em, 1);
959 write_unlock(&em_tree->lock);
960 if (ret != -EEXIST) {
961 free_extent_map(em);
962 break;
963 }
964 btrfs_drop_extent_cache(inode, start,
965 start + ram_size - 1, 0);
966 }
967 if (ret)
968 goto out_reserve;
969
970 cur_alloc_size = ins.offset;
971 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
972 ram_size, cur_alloc_size, 0);
973 if (ret)
974 goto out_reserve;
975
976 if (root->root_key.objectid ==
977 BTRFS_DATA_RELOC_TREE_OBJECTID) {
978 ret = btrfs_reloc_clone_csums(inode, start,
979 cur_alloc_size);
980 if (ret)
981 goto out_reserve;
982 }
983
984 if (disk_num_bytes < cur_alloc_size)
985 break;
986
987 /* we're not doing compressed IO, don't unlock the first
988 * page (which the caller expects to stay locked), don't
989 * clear any dirty bits and don't set any writeback bits
990 *
991 * Do set the Private2 bit so we know this page was properly
992 * setup for writepage
993 */
994 op = unlock ? PAGE_UNLOCK : 0;
995 op |= PAGE_SET_PRIVATE2;
996
997 extent_clear_unlock_delalloc(inode, start,
998 start + ram_size - 1, locked_page,
999 EXTENT_LOCKED | EXTENT_DELALLOC,
1000 op);
1001 disk_num_bytes -= cur_alloc_size;
1002 num_bytes -= cur_alloc_size;
1003 alloc_hint = ins.objectid + ins.offset;
1004 start += cur_alloc_size;
1005 }
1006 out:
1007 return ret;
1008
1009 out_reserve:
1010 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1011 out_unlock:
1012 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1013 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1014 EXTENT_DELALLOC | EXTENT_DEFRAG,
1015 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1016 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1017 goto out;
1018 }
1019
1020 /*
1021 * work queue call back to started compression on a file and pages
1022 */
1023 static noinline void async_cow_start(struct btrfs_work *work)
1024 {
1025 struct async_cow *async_cow;
1026 int num_added = 0;
1027 async_cow = container_of(work, struct async_cow, work);
1028
1029 compress_file_range(async_cow->inode, async_cow->locked_page,
1030 async_cow->start, async_cow->end, async_cow,
1031 &num_added);
1032 if (num_added == 0) {
1033 btrfs_add_delayed_iput(async_cow->inode);
1034 async_cow->inode = NULL;
1035 }
1036 }
1037
1038 /*
1039 * work queue call back to submit previously compressed pages
1040 */
1041 static noinline void async_cow_submit(struct btrfs_work *work)
1042 {
1043 struct async_cow *async_cow;
1044 struct btrfs_root *root;
1045 unsigned long nr_pages;
1046
1047 async_cow = container_of(work, struct async_cow, work);
1048
1049 root = async_cow->root;
1050 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1051 PAGE_CACHE_SHIFT;
1052
1053 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1054 5 * 1024 * 1024 &&
1055 waitqueue_active(&root->fs_info->async_submit_wait))
1056 wake_up(&root->fs_info->async_submit_wait);
1057
1058 if (async_cow->inode)
1059 submit_compressed_extents(async_cow->inode, async_cow);
1060 }
1061
1062 static noinline void async_cow_free(struct btrfs_work *work)
1063 {
1064 struct async_cow *async_cow;
1065 async_cow = container_of(work, struct async_cow, work);
1066 if (async_cow->inode)
1067 btrfs_add_delayed_iput(async_cow->inode);
1068 kfree(async_cow);
1069 }
1070
1071 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1072 u64 start, u64 end, int *page_started,
1073 unsigned long *nr_written)
1074 {
1075 struct async_cow *async_cow;
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 unsigned long nr_pages;
1078 u64 cur_end;
1079 int limit = 10 * 1024 * 1024;
1080
1081 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1082 1, 0, NULL, GFP_NOFS);
1083 while (start < end) {
1084 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1085 BUG_ON(!async_cow); /* -ENOMEM */
1086 async_cow->inode = igrab(inode);
1087 async_cow->root = root;
1088 async_cow->locked_page = locked_page;
1089 async_cow->start = start;
1090
1091 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1092 cur_end = end;
1093 else
1094 cur_end = min(end, start + 512 * 1024 - 1);
1095
1096 async_cow->end = cur_end;
1097 INIT_LIST_HEAD(&async_cow->extents);
1098
1099 btrfs_init_work(&async_cow->work, async_cow_start,
1100 async_cow_submit, async_cow_free);
1101
1102 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1103 PAGE_CACHE_SHIFT;
1104 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1105
1106 btrfs_queue_work(root->fs_info->delalloc_workers,
1107 &async_cow->work);
1108
1109 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1110 wait_event(root->fs_info->async_submit_wait,
1111 (atomic_read(&root->fs_info->async_delalloc_pages) <
1112 limit));
1113 }
1114
1115 while (atomic_read(&root->fs_info->async_submit_draining) &&
1116 atomic_read(&root->fs_info->async_delalloc_pages)) {
1117 wait_event(root->fs_info->async_submit_wait,
1118 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1119 0));
1120 }
1121
1122 *nr_written += nr_pages;
1123 start = cur_end + 1;
1124 }
1125 *page_started = 1;
1126 return 0;
1127 }
1128
1129 static noinline int csum_exist_in_range(struct btrfs_root *root,
1130 u64 bytenr, u64 num_bytes)
1131 {
1132 int ret;
1133 struct btrfs_ordered_sum *sums;
1134 LIST_HEAD(list);
1135
1136 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1137 bytenr + num_bytes - 1, &list, 0);
1138 if (ret == 0 && list_empty(&list))
1139 return 0;
1140
1141 while (!list_empty(&list)) {
1142 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1143 list_del(&sums->list);
1144 kfree(sums);
1145 }
1146 return 1;
1147 }
1148
1149 /*
1150 * when nowcow writeback call back. This checks for snapshots or COW copies
1151 * of the extents that exist in the file, and COWs the file as required.
1152 *
1153 * If no cow copies or snapshots exist, we write directly to the existing
1154 * blocks on disk
1155 */
1156 static noinline int run_delalloc_nocow(struct inode *inode,
1157 struct page *locked_page,
1158 u64 start, u64 end, int *page_started, int force,
1159 unsigned long *nr_written)
1160 {
1161 struct btrfs_root *root = BTRFS_I(inode)->root;
1162 struct btrfs_trans_handle *trans;
1163 struct extent_buffer *leaf;
1164 struct btrfs_path *path;
1165 struct btrfs_file_extent_item *fi;
1166 struct btrfs_key found_key;
1167 u64 cow_start;
1168 u64 cur_offset;
1169 u64 extent_end;
1170 u64 extent_offset;
1171 u64 disk_bytenr;
1172 u64 num_bytes;
1173 u64 disk_num_bytes;
1174 u64 ram_bytes;
1175 int extent_type;
1176 int ret, err;
1177 int type;
1178 int nocow;
1179 int check_prev = 1;
1180 bool nolock;
1181 u64 ino = btrfs_ino(inode);
1182
1183 path = btrfs_alloc_path();
1184 if (!path) {
1185 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1186 EXTENT_LOCKED | EXTENT_DELALLOC |
1187 EXTENT_DO_ACCOUNTING |
1188 EXTENT_DEFRAG, PAGE_UNLOCK |
1189 PAGE_CLEAR_DIRTY |
1190 PAGE_SET_WRITEBACK |
1191 PAGE_END_WRITEBACK);
1192 return -ENOMEM;
1193 }
1194
1195 nolock = btrfs_is_free_space_inode(inode);
1196
1197 if (nolock)
1198 trans = btrfs_join_transaction_nolock(root);
1199 else
1200 trans = btrfs_join_transaction(root);
1201
1202 if (IS_ERR(trans)) {
1203 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1204 EXTENT_LOCKED | EXTENT_DELALLOC |
1205 EXTENT_DO_ACCOUNTING |
1206 EXTENT_DEFRAG, PAGE_UNLOCK |
1207 PAGE_CLEAR_DIRTY |
1208 PAGE_SET_WRITEBACK |
1209 PAGE_END_WRITEBACK);
1210 btrfs_free_path(path);
1211 return PTR_ERR(trans);
1212 }
1213
1214 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1215
1216 cow_start = (u64)-1;
1217 cur_offset = start;
1218 while (1) {
1219 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1220 cur_offset, 0);
1221 if (ret < 0)
1222 goto error;
1223 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1224 leaf = path->nodes[0];
1225 btrfs_item_key_to_cpu(leaf, &found_key,
1226 path->slots[0] - 1);
1227 if (found_key.objectid == ino &&
1228 found_key.type == BTRFS_EXTENT_DATA_KEY)
1229 path->slots[0]--;
1230 }
1231 check_prev = 0;
1232 next_slot:
1233 leaf = path->nodes[0];
1234 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1235 ret = btrfs_next_leaf(root, path);
1236 if (ret < 0)
1237 goto error;
1238 if (ret > 0)
1239 break;
1240 leaf = path->nodes[0];
1241 }
1242
1243 nocow = 0;
1244 disk_bytenr = 0;
1245 num_bytes = 0;
1246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1247
1248 if (found_key.objectid > ino ||
1249 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1250 found_key.offset > end)
1251 break;
1252
1253 if (found_key.offset > cur_offset) {
1254 extent_end = found_key.offset;
1255 extent_type = 0;
1256 goto out_check;
1257 }
1258
1259 fi = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_file_extent_item);
1261 extent_type = btrfs_file_extent_type(leaf, fi);
1262
1263 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1264 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1265 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1266 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1267 extent_offset = btrfs_file_extent_offset(leaf, fi);
1268 extent_end = found_key.offset +
1269 btrfs_file_extent_num_bytes(leaf, fi);
1270 disk_num_bytes =
1271 btrfs_file_extent_disk_num_bytes(leaf, fi);
1272 if (extent_end <= start) {
1273 path->slots[0]++;
1274 goto next_slot;
1275 }
1276 if (disk_bytenr == 0)
1277 goto out_check;
1278 if (btrfs_file_extent_compression(leaf, fi) ||
1279 btrfs_file_extent_encryption(leaf, fi) ||
1280 btrfs_file_extent_other_encoding(leaf, fi))
1281 goto out_check;
1282 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1283 goto out_check;
1284 if (btrfs_extent_readonly(root, disk_bytenr))
1285 goto out_check;
1286 if (btrfs_cross_ref_exist(trans, root, ino,
1287 found_key.offset -
1288 extent_offset, disk_bytenr))
1289 goto out_check;
1290 disk_bytenr += extent_offset;
1291 disk_bytenr += cur_offset - found_key.offset;
1292 num_bytes = min(end + 1, extent_end) - cur_offset;
1293 /*
1294 * if there are pending snapshots for this root,
1295 * we fall into common COW way.
1296 */
1297 if (!nolock) {
1298 err = btrfs_start_nocow_write(root);
1299 if (!err)
1300 goto out_check;
1301 }
1302 /*
1303 * force cow if csum exists in the range.
1304 * this ensure that csum for a given extent are
1305 * either valid or do not exist.
1306 */
1307 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1308 goto out_check;
1309 nocow = 1;
1310 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1311 extent_end = found_key.offset +
1312 btrfs_file_extent_inline_len(leaf,
1313 path->slots[0], fi);
1314 extent_end = ALIGN(extent_end, root->sectorsize);
1315 } else {
1316 BUG_ON(1);
1317 }
1318 out_check:
1319 if (extent_end <= start) {
1320 path->slots[0]++;
1321 if (!nolock && nocow)
1322 btrfs_end_nocow_write(root);
1323 goto next_slot;
1324 }
1325 if (!nocow) {
1326 if (cow_start == (u64)-1)
1327 cow_start = cur_offset;
1328 cur_offset = extent_end;
1329 if (cur_offset > end)
1330 break;
1331 path->slots[0]++;
1332 goto next_slot;
1333 }
1334
1335 btrfs_release_path(path);
1336 if (cow_start != (u64)-1) {
1337 ret = cow_file_range(inode, locked_page,
1338 cow_start, found_key.offset - 1,
1339 page_started, nr_written, 1);
1340 if (ret) {
1341 if (!nolock && nocow)
1342 btrfs_end_nocow_write(root);
1343 goto error;
1344 }
1345 cow_start = (u64)-1;
1346 }
1347
1348 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1349 struct extent_map *em;
1350 struct extent_map_tree *em_tree;
1351 em_tree = &BTRFS_I(inode)->extent_tree;
1352 em = alloc_extent_map();
1353 BUG_ON(!em); /* -ENOMEM */
1354 em->start = cur_offset;
1355 em->orig_start = found_key.offset - extent_offset;
1356 em->len = num_bytes;
1357 em->block_len = num_bytes;
1358 em->block_start = disk_bytenr;
1359 em->orig_block_len = disk_num_bytes;
1360 em->ram_bytes = ram_bytes;
1361 em->bdev = root->fs_info->fs_devices->latest_bdev;
1362 em->mod_start = em->start;
1363 em->mod_len = em->len;
1364 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1365 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1366 em->generation = -1;
1367 while (1) {
1368 write_lock(&em_tree->lock);
1369 ret = add_extent_mapping(em_tree, em, 1);
1370 write_unlock(&em_tree->lock);
1371 if (ret != -EEXIST) {
1372 free_extent_map(em);
1373 break;
1374 }
1375 btrfs_drop_extent_cache(inode, em->start,
1376 em->start + em->len - 1, 0);
1377 }
1378 type = BTRFS_ORDERED_PREALLOC;
1379 } else {
1380 type = BTRFS_ORDERED_NOCOW;
1381 }
1382
1383 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1384 num_bytes, num_bytes, type);
1385 BUG_ON(ret); /* -ENOMEM */
1386
1387 if (root->root_key.objectid ==
1388 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1389 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1390 num_bytes);
1391 if (ret) {
1392 if (!nolock && nocow)
1393 btrfs_end_nocow_write(root);
1394 goto error;
1395 }
1396 }
1397
1398 extent_clear_unlock_delalloc(inode, cur_offset,
1399 cur_offset + num_bytes - 1,
1400 locked_page, EXTENT_LOCKED |
1401 EXTENT_DELALLOC, PAGE_UNLOCK |
1402 PAGE_SET_PRIVATE2);
1403 if (!nolock && nocow)
1404 btrfs_end_nocow_write(root);
1405 cur_offset = extent_end;
1406 if (cur_offset > end)
1407 break;
1408 }
1409 btrfs_release_path(path);
1410
1411 if (cur_offset <= end && cow_start == (u64)-1) {
1412 cow_start = cur_offset;
1413 cur_offset = end;
1414 }
1415
1416 if (cow_start != (u64)-1) {
1417 ret = cow_file_range(inode, locked_page, cow_start, end,
1418 page_started, nr_written, 1);
1419 if (ret)
1420 goto error;
1421 }
1422
1423 error:
1424 err = btrfs_end_transaction(trans, root);
1425 if (!ret)
1426 ret = err;
1427
1428 if (ret && cur_offset < end)
1429 extent_clear_unlock_delalloc(inode, cur_offset, end,
1430 locked_page, EXTENT_LOCKED |
1431 EXTENT_DELALLOC | EXTENT_DEFRAG |
1432 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1433 PAGE_CLEAR_DIRTY |
1434 PAGE_SET_WRITEBACK |
1435 PAGE_END_WRITEBACK);
1436 btrfs_free_path(path);
1437 return ret;
1438 }
1439
1440 /*
1441 * extent_io.c call back to do delayed allocation processing
1442 */
1443 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1444 u64 start, u64 end, int *page_started,
1445 unsigned long *nr_written)
1446 {
1447 int ret;
1448 struct btrfs_root *root = BTRFS_I(inode)->root;
1449
1450 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1451 ret = run_delalloc_nocow(inode, locked_page, start, end,
1452 page_started, 1, nr_written);
1453 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1454 ret = run_delalloc_nocow(inode, locked_page, start, end,
1455 page_started, 0, nr_written);
1456 } else if (!btrfs_test_opt(root, COMPRESS) &&
1457 !(BTRFS_I(inode)->force_compress) &&
1458 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1459 ret = cow_file_range(inode, locked_page, start, end,
1460 page_started, nr_written, 1);
1461 } else {
1462 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1463 &BTRFS_I(inode)->runtime_flags);
1464 ret = cow_file_range_async(inode, locked_page, start, end,
1465 page_started, nr_written);
1466 }
1467 return ret;
1468 }
1469
1470 static void btrfs_split_extent_hook(struct inode *inode,
1471 struct extent_state *orig, u64 split)
1472 {
1473 /* not delalloc, ignore it */
1474 if (!(orig->state & EXTENT_DELALLOC))
1475 return;
1476
1477 spin_lock(&BTRFS_I(inode)->lock);
1478 BTRFS_I(inode)->outstanding_extents++;
1479 spin_unlock(&BTRFS_I(inode)->lock);
1480 }
1481
1482 /*
1483 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1484 * extents so we can keep track of new extents that are just merged onto old
1485 * extents, such as when we are doing sequential writes, so we can properly
1486 * account for the metadata space we'll need.
1487 */
1488 static void btrfs_merge_extent_hook(struct inode *inode,
1489 struct extent_state *new,
1490 struct extent_state *other)
1491 {
1492 /* not delalloc, ignore it */
1493 if (!(other->state & EXTENT_DELALLOC))
1494 return;
1495
1496 spin_lock(&BTRFS_I(inode)->lock);
1497 BTRFS_I(inode)->outstanding_extents--;
1498 spin_unlock(&BTRFS_I(inode)->lock);
1499 }
1500
1501 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1502 struct inode *inode)
1503 {
1504 spin_lock(&root->delalloc_lock);
1505 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1506 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1507 &root->delalloc_inodes);
1508 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1509 &BTRFS_I(inode)->runtime_flags);
1510 root->nr_delalloc_inodes++;
1511 if (root->nr_delalloc_inodes == 1) {
1512 spin_lock(&root->fs_info->delalloc_root_lock);
1513 BUG_ON(!list_empty(&root->delalloc_root));
1514 list_add_tail(&root->delalloc_root,
1515 &root->fs_info->delalloc_roots);
1516 spin_unlock(&root->fs_info->delalloc_root_lock);
1517 }
1518 }
1519 spin_unlock(&root->delalloc_lock);
1520 }
1521
1522 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1523 struct inode *inode)
1524 {
1525 spin_lock(&root->delalloc_lock);
1526 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1527 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1528 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1529 &BTRFS_I(inode)->runtime_flags);
1530 root->nr_delalloc_inodes--;
1531 if (!root->nr_delalloc_inodes) {
1532 spin_lock(&root->fs_info->delalloc_root_lock);
1533 BUG_ON(list_empty(&root->delalloc_root));
1534 list_del_init(&root->delalloc_root);
1535 spin_unlock(&root->fs_info->delalloc_root_lock);
1536 }
1537 }
1538 spin_unlock(&root->delalloc_lock);
1539 }
1540
1541 /*
1542 * extent_io.c set_bit_hook, used to track delayed allocation
1543 * bytes in this file, and to maintain the list of inodes that
1544 * have pending delalloc work to be done.
1545 */
1546 static void btrfs_set_bit_hook(struct inode *inode,
1547 struct extent_state *state, unsigned long *bits)
1548 {
1549
1550 /*
1551 * set_bit and clear bit hooks normally require _irqsave/restore
1552 * but in this case, we are only testing for the DELALLOC
1553 * bit, which is only set or cleared with irqs on
1554 */
1555 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1556 struct btrfs_root *root = BTRFS_I(inode)->root;
1557 u64 len = state->end + 1 - state->start;
1558 bool do_list = !btrfs_is_free_space_inode(inode);
1559
1560 if (*bits & EXTENT_FIRST_DELALLOC) {
1561 *bits &= ~EXTENT_FIRST_DELALLOC;
1562 } else {
1563 spin_lock(&BTRFS_I(inode)->lock);
1564 BTRFS_I(inode)->outstanding_extents++;
1565 spin_unlock(&BTRFS_I(inode)->lock);
1566 }
1567
1568 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1569 root->fs_info->delalloc_batch);
1570 spin_lock(&BTRFS_I(inode)->lock);
1571 BTRFS_I(inode)->delalloc_bytes += len;
1572 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1573 &BTRFS_I(inode)->runtime_flags))
1574 btrfs_add_delalloc_inodes(root, inode);
1575 spin_unlock(&BTRFS_I(inode)->lock);
1576 }
1577 }
1578
1579 /*
1580 * extent_io.c clear_bit_hook, see set_bit_hook for why
1581 */
1582 static void btrfs_clear_bit_hook(struct inode *inode,
1583 struct extent_state *state,
1584 unsigned long *bits)
1585 {
1586 /*
1587 * set_bit and clear bit hooks normally require _irqsave/restore
1588 * but in this case, we are only testing for the DELALLOC
1589 * bit, which is only set or cleared with irqs on
1590 */
1591 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 u64 len = state->end + 1 - state->start;
1594 bool do_list = !btrfs_is_free_space_inode(inode);
1595
1596 if (*bits & EXTENT_FIRST_DELALLOC) {
1597 *bits &= ~EXTENT_FIRST_DELALLOC;
1598 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1599 spin_lock(&BTRFS_I(inode)->lock);
1600 BTRFS_I(inode)->outstanding_extents--;
1601 spin_unlock(&BTRFS_I(inode)->lock);
1602 }
1603
1604 /*
1605 * We don't reserve metadata space for space cache inodes so we
1606 * don't need to call dellalloc_release_metadata if there is an
1607 * error.
1608 */
1609 if (*bits & EXTENT_DO_ACCOUNTING &&
1610 root != root->fs_info->tree_root)
1611 btrfs_delalloc_release_metadata(inode, len);
1612
1613 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1614 && do_list && !(state->state & EXTENT_NORESERVE))
1615 btrfs_free_reserved_data_space(inode, len);
1616
1617 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1618 root->fs_info->delalloc_batch);
1619 spin_lock(&BTRFS_I(inode)->lock);
1620 BTRFS_I(inode)->delalloc_bytes -= len;
1621 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1622 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1623 &BTRFS_I(inode)->runtime_flags))
1624 btrfs_del_delalloc_inode(root, inode);
1625 spin_unlock(&BTRFS_I(inode)->lock);
1626 }
1627 }
1628
1629 /*
1630 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1631 * we don't create bios that span stripes or chunks
1632 */
1633 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1634 size_t size, struct bio *bio,
1635 unsigned long bio_flags)
1636 {
1637 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1638 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1639 u64 length = 0;
1640 u64 map_length;
1641 int ret;
1642
1643 if (bio_flags & EXTENT_BIO_COMPRESSED)
1644 return 0;
1645
1646 length = bio->bi_iter.bi_size;
1647 map_length = length;
1648 ret = btrfs_map_block(root->fs_info, rw, logical,
1649 &map_length, NULL, 0);
1650 /* Will always return 0 with map_multi == NULL */
1651 BUG_ON(ret < 0);
1652 if (map_length < length + size)
1653 return 1;
1654 return 0;
1655 }
1656
1657 /*
1658 * in order to insert checksums into the metadata in large chunks,
1659 * we wait until bio submission time. All the pages in the bio are
1660 * checksummed and sums are attached onto the ordered extent record.
1661 *
1662 * At IO completion time the cums attached on the ordered extent record
1663 * are inserted into the btree
1664 */
1665 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1666 struct bio *bio, int mirror_num,
1667 unsigned long bio_flags,
1668 u64 bio_offset)
1669 {
1670 struct btrfs_root *root = BTRFS_I(inode)->root;
1671 int ret = 0;
1672
1673 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1674 BUG_ON(ret); /* -ENOMEM */
1675 return 0;
1676 }
1677
1678 /*
1679 * in order to insert checksums into the metadata in large chunks,
1680 * we wait until bio submission time. All the pages in the bio are
1681 * checksummed and sums are attached onto the ordered extent record.
1682 *
1683 * At IO completion time the cums attached on the ordered extent record
1684 * are inserted into the btree
1685 */
1686 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1687 int mirror_num, unsigned long bio_flags,
1688 u64 bio_offset)
1689 {
1690 struct btrfs_root *root = BTRFS_I(inode)->root;
1691 int ret;
1692
1693 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1694 if (ret)
1695 bio_endio(bio, ret);
1696 return ret;
1697 }
1698
1699 /*
1700 * extent_io.c submission hook. This does the right thing for csum calculation
1701 * on write, or reading the csums from the tree before a read
1702 */
1703 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1704 int mirror_num, unsigned long bio_flags,
1705 u64 bio_offset)
1706 {
1707 struct btrfs_root *root = BTRFS_I(inode)->root;
1708 int ret = 0;
1709 int skip_sum;
1710 int metadata = 0;
1711 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1712
1713 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1714
1715 if (btrfs_is_free_space_inode(inode))
1716 metadata = 2;
1717
1718 if (!(rw & REQ_WRITE)) {
1719 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1720 if (ret)
1721 goto out;
1722
1723 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1724 ret = btrfs_submit_compressed_read(inode, bio,
1725 mirror_num,
1726 bio_flags);
1727 goto out;
1728 } else if (!skip_sum) {
1729 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1730 if (ret)
1731 goto out;
1732 }
1733 goto mapit;
1734 } else if (async && !skip_sum) {
1735 /* csum items have already been cloned */
1736 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 goto mapit;
1738 /* we're doing a write, do the async checksumming */
1739 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1740 inode, rw, bio, mirror_num,
1741 bio_flags, bio_offset,
1742 __btrfs_submit_bio_start,
1743 __btrfs_submit_bio_done);
1744 goto out;
1745 } else if (!skip_sum) {
1746 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1747 if (ret)
1748 goto out;
1749 }
1750
1751 mapit:
1752 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1753
1754 out:
1755 if (ret < 0)
1756 bio_endio(bio, ret);
1757 return ret;
1758 }
1759
1760 /*
1761 * given a list of ordered sums record them in the inode. This happens
1762 * at IO completion time based on sums calculated at bio submission time.
1763 */
1764 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1765 struct inode *inode, u64 file_offset,
1766 struct list_head *list)
1767 {
1768 struct btrfs_ordered_sum *sum;
1769
1770 list_for_each_entry(sum, list, list) {
1771 trans->adding_csums = 1;
1772 btrfs_csum_file_blocks(trans,
1773 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1774 trans->adding_csums = 0;
1775 }
1776 return 0;
1777 }
1778
1779 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1780 struct extent_state **cached_state)
1781 {
1782 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1783 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1784 cached_state, GFP_NOFS);
1785 }
1786
1787 /* see btrfs_writepage_start_hook for details on why this is required */
1788 struct btrfs_writepage_fixup {
1789 struct page *page;
1790 struct btrfs_work work;
1791 };
1792
1793 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1794 {
1795 struct btrfs_writepage_fixup *fixup;
1796 struct btrfs_ordered_extent *ordered;
1797 struct extent_state *cached_state = NULL;
1798 struct page *page;
1799 struct inode *inode;
1800 u64 page_start;
1801 u64 page_end;
1802 int ret;
1803
1804 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1805 page = fixup->page;
1806 again:
1807 lock_page(page);
1808 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1809 ClearPageChecked(page);
1810 goto out_page;
1811 }
1812
1813 inode = page->mapping->host;
1814 page_start = page_offset(page);
1815 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1816
1817 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1818 &cached_state);
1819
1820 /* already ordered? We're done */
1821 if (PagePrivate2(page))
1822 goto out;
1823
1824 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1825 if (ordered) {
1826 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1827 page_end, &cached_state, GFP_NOFS);
1828 unlock_page(page);
1829 btrfs_start_ordered_extent(inode, ordered, 1);
1830 btrfs_put_ordered_extent(ordered);
1831 goto again;
1832 }
1833
1834 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1835 if (ret) {
1836 mapping_set_error(page->mapping, ret);
1837 end_extent_writepage(page, ret, page_start, page_end);
1838 ClearPageChecked(page);
1839 goto out;
1840 }
1841
1842 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1843 ClearPageChecked(page);
1844 set_page_dirty(page);
1845 out:
1846 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1847 &cached_state, GFP_NOFS);
1848 out_page:
1849 unlock_page(page);
1850 page_cache_release(page);
1851 kfree(fixup);
1852 }
1853
1854 /*
1855 * There are a few paths in the higher layers of the kernel that directly
1856 * set the page dirty bit without asking the filesystem if it is a
1857 * good idea. This causes problems because we want to make sure COW
1858 * properly happens and the data=ordered rules are followed.
1859 *
1860 * In our case any range that doesn't have the ORDERED bit set
1861 * hasn't been properly setup for IO. We kick off an async process
1862 * to fix it up. The async helper will wait for ordered extents, set
1863 * the delalloc bit and make it safe to write the page.
1864 */
1865 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1866 {
1867 struct inode *inode = page->mapping->host;
1868 struct btrfs_writepage_fixup *fixup;
1869 struct btrfs_root *root = BTRFS_I(inode)->root;
1870
1871 /* this page is properly in the ordered list */
1872 if (TestClearPagePrivate2(page))
1873 return 0;
1874
1875 if (PageChecked(page))
1876 return -EAGAIN;
1877
1878 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1879 if (!fixup)
1880 return -EAGAIN;
1881
1882 SetPageChecked(page);
1883 page_cache_get(page);
1884 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
1885 fixup->page = page;
1886 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1887 return -EBUSY;
1888 }
1889
1890 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1891 struct inode *inode, u64 file_pos,
1892 u64 disk_bytenr, u64 disk_num_bytes,
1893 u64 num_bytes, u64 ram_bytes,
1894 u8 compression, u8 encryption,
1895 u16 other_encoding, int extent_type)
1896 {
1897 struct btrfs_root *root = BTRFS_I(inode)->root;
1898 struct btrfs_file_extent_item *fi;
1899 struct btrfs_path *path;
1900 struct extent_buffer *leaf;
1901 struct btrfs_key ins;
1902 int extent_inserted = 0;
1903 int ret;
1904
1905 path = btrfs_alloc_path();
1906 if (!path)
1907 return -ENOMEM;
1908
1909 /*
1910 * we may be replacing one extent in the tree with another.
1911 * The new extent is pinned in the extent map, and we don't want
1912 * to drop it from the cache until it is completely in the btree.
1913 *
1914 * So, tell btrfs_drop_extents to leave this extent in the cache.
1915 * the caller is expected to unpin it and allow it to be merged
1916 * with the others.
1917 */
1918 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1919 file_pos + num_bytes, NULL, 0,
1920 1, sizeof(*fi), &extent_inserted);
1921 if (ret)
1922 goto out;
1923
1924 if (!extent_inserted) {
1925 ins.objectid = btrfs_ino(inode);
1926 ins.offset = file_pos;
1927 ins.type = BTRFS_EXTENT_DATA_KEY;
1928
1929 path->leave_spinning = 1;
1930 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1931 sizeof(*fi));
1932 if (ret)
1933 goto out;
1934 }
1935 leaf = path->nodes[0];
1936 fi = btrfs_item_ptr(leaf, path->slots[0],
1937 struct btrfs_file_extent_item);
1938 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1939 btrfs_set_file_extent_type(leaf, fi, extent_type);
1940 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1941 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1942 btrfs_set_file_extent_offset(leaf, fi, 0);
1943 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1944 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1945 btrfs_set_file_extent_compression(leaf, fi, compression);
1946 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1947 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1948
1949 btrfs_mark_buffer_dirty(leaf);
1950 btrfs_release_path(path);
1951
1952 inode_add_bytes(inode, num_bytes);
1953
1954 ins.objectid = disk_bytenr;
1955 ins.offset = disk_num_bytes;
1956 ins.type = BTRFS_EXTENT_ITEM_KEY;
1957 ret = btrfs_alloc_reserved_file_extent(trans, root,
1958 root->root_key.objectid,
1959 btrfs_ino(inode), file_pos, &ins);
1960 out:
1961 btrfs_free_path(path);
1962
1963 return ret;
1964 }
1965
1966 /* snapshot-aware defrag */
1967 struct sa_defrag_extent_backref {
1968 struct rb_node node;
1969 struct old_sa_defrag_extent *old;
1970 u64 root_id;
1971 u64 inum;
1972 u64 file_pos;
1973 u64 extent_offset;
1974 u64 num_bytes;
1975 u64 generation;
1976 };
1977
1978 struct old_sa_defrag_extent {
1979 struct list_head list;
1980 struct new_sa_defrag_extent *new;
1981
1982 u64 extent_offset;
1983 u64 bytenr;
1984 u64 offset;
1985 u64 len;
1986 int count;
1987 };
1988
1989 struct new_sa_defrag_extent {
1990 struct rb_root root;
1991 struct list_head head;
1992 struct btrfs_path *path;
1993 struct inode *inode;
1994 u64 file_pos;
1995 u64 len;
1996 u64 bytenr;
1997 u64 disk_len;
1998 u8 compress_type;
1999 };
2000
2001 static int backref_comp(struct sa_defrag_extent_backref *b1,
2002 struct sa_defrag_extent_backref *b2)
2003 {
2004 if (b1->root_id < b2->root_id)
2005 return -1;
2006 else if (b1->root_id > b2->root_id)
2007 return 1;
2008
2009 if (b1->inum < b2->inum)
2010 return -1;
2011 else if (b1->inum > b2->inum)
2012 return 1;
2013
2014 if (b1->file_pos < b2->file_pos)
2015 return -1;
2016 else if (b1->file_pos > b2->file_pos)
2017 return 1;
2018
2019 /*
2020 * [------------------------------] ===> (a range of space)
2021 * |<--->| |<---->| =============> (fs/file tree A)
2022 * |<---------------------------->| ===> (fs/file tree B)
2023 *
2024 * A range of space can refer to two file extents in one tree while
2025 * refer to only one file extent in another tree.
2026 *
2027 * So we may process a disk offset more than one time(two extents in A)
2028 * and locate at the same extent(one extent in B), then insert two same
2029 * backrefs(both refer to the extent in B).
2030 */
2031 return 0;
2032 }
2033
2034 static void backref_insert(struct rb_root *root,
2035 struct sa_defrag_extent_backref *backref)
2036 {
2037 struct rb_node **p = &root->rb_node;
2038 struct rb_node *parent = NULL;
2039 struct sa_defrag_extent_backref *entry;
2040 int ret;
2041
2042 while (*p) {
2043 parent = *p;
2044 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2045
2046 ret = backref_comp(backref, entry);
2047 if (ret < 0)
2048 p = &(*p)->rb_left;
2049 else
2050 p = &(*p)->rb_right;
2051 }
2052
2053 rb_link_node(&backref->node, parent, p);
2054 rb_insert_color(&backref->node, root);
2055 }
2056
2057 /*
2058 * Note the backref might has changed, and in this case we just return 0.
2059 */
2060 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2061 void *ctx)
2062 {
2063 struct btrfs_file_extent_item *extent;
2064 struct btrfs_fs_info *fs_info;
2065 struct old_sa_defrag_extent *old = ctx;
2066 struct new_sa_defrag_extent *new = old->new;
2067 struct btrfs_path *path = new->path;
2068 struct btrfs_key key;
2069 struct btrfs_root *root;
2070 struct sa_defrag_extent_backref *backref;
2071 struct extent_buffer *leaf;
2072 struct inode *inode = new->inode;
2073 int slot;
2074 int ret;
2075 u64 extent_offset;
2076 u64 num_bytes;
2077
2078 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2079 inum == btrfs_ino(inode))
2080 return 0;
2081
2082 key.objectid = root_id;
2083 key.type = BTRFS_ROOT_ITEM_KEY;
2084 key.offset = (u64)-1;
2085
2086 fs_info = BTRFS_I(inode)->root->fs_info;
2087 root = btrfs_read_fs_root_no_name(fs_info, &key);
2088 if (IS_ERR(root)) {
2089 if (PTR_ERR(root) == -ENOENT)
2090 return 0;
2091 WARN_ON(1);
2092 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2093 inum, offset, root_id);
2094 return PTR_ERR(root);
2095 }
2096
2097 key.objectid = inum;
2098 key.type = BTRFS_EXTENT_DATA_KEY;
2099 if (offset > (u64)-1 << 32)
2100 key.offset = 0;
2101 else
2102 key.offset = offset;
2103
2104 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2105 if (WARN_ON(ret < 0))
2106 return ret;
2107 ret = 0;
2108
2109 while (1) {
2110 cond_resched();
2111
2112 leaf = path->nodes[0];
2113 slot = path->slots[0];
2114
2115 if (slot >= btrfs_header_nritems(leaf)) {
2116 ret = btrfs_next_leaf(root, path);
2117 if (ret < 0) {
2118 goto out;
2119 } else if (ret > 0) {
2120 ret = 0;
2121 goto out;
2122 }
2123 continue;
2124 }
2125
2126 path->slots[0]++;
2127
2128 btrfs_item_key_to_cpu(leaf, &key, slot);
2129
2130 if (key.objectid > inum)
2131 goto out;
2132
2133 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2134 continue;
2135
2136 extent = btrfs_item_ptr(leaf, slot,
2137 struct btrfs_file_extent_item);
2138
2139 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2140 continue;
2141
2142 /*
2143 * 'offset' refers to the exact key.offset,
2144 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2145 * (key.offset - extent_offset).
2146 */
2147 if (key.offset != offset)
2148 continue;
2149
2150 extent_offset = btrfs_file_extent_offset(leaf, extent);
2151 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2152
2153 if (extent_offset >= old->extent_offset + old->offset +
2154 old->len || extent_offset + num_bytes <=
2155 old->extent_offset + old->offset)
2156 continue;
2157 break;
2158 }
2159
2160 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2161 if (!backref) {
2162 ret = -ENOENT;
2163 goto out;
2164 }
2165
2166 backref->root_id = root_id;
2167 backref->inum = inum;
2168 backref->file_pos = offset;
2169 backref->num_bytes = num_bytes;
2170 backref->extent_offset = extent_offset;
2171 backref->generation = btrfs_file_extent_generation(leaf, extent);
2172 backref->old = old;
2173 backref_insert(&new->root, backref);
2174 old->count++;
2175 out:
2176 btrfs_release_path(path);
2177 WARN_ON(ret);
2178 return ret;
2179 }
2180
2181 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2182 struct new_sa_defrag_extent *new)
2183 {
2184 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2185 struct old_sa_defrag_extent *old, *tmp;
2186 int ret;
2187
2188 new->path = path;
2189
2190 list_for_each_entry_safe(old, tmp, &new->head, list) {
2191 ret = iterate_inodes_from_logical(old->bytenr +
2192 old->extent_offset, fs_info,
2193 path, record_one_backref,
2194 old);
2195 if (ret < 0 && ret != -ENOENT)
2196 return false;
2197
2198 /* no backref to be processed for this extent */
2199 if (!old->count) {
2200 list_del(&old->list);
2201 kfree(old);
2202 }
2203 }
2204
2205 if (list_empty(&new->head))
2206 return false;
2207
2208 return true;
2209 }
2210
2211 static int relink_is_mergable(struct extent_buffer *leaf,
2212 struct btrfs_file_extent_item *fi,
2213 struct new_sa_defrag_extent *new)
2214 {
2215 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2216 return 0;
2217
2218 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2219 return 0;
2220
2221 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2222 return 0;
2223
2224 if (btrfs_file_extent_encryption(leaf, fi) ||
2225 btrfs_file_extent_other_encoding(leaf, fi))
2226 return 0;
2227
2228 return 1;
2229 }
2230
2231 /*
2232 * Note the backref might has changed, and in this case we just return 0.
2233 */
2234 static noinline int relink_extent_backref(struct btrfs_path *path,
2235 struct sa_defrag_extent_backref *prev,
2236 struct sa_defrag_extent_backref *backref)
2237 {
2238 struct btrfs_file_extent_item *extent;
2239 struct btrfs_file_extent_item *item;
2240 struct btrfs_ordered_extent *ordered;
2241 struct btrfs_trans_handle *trans;
2242 struct btrfs_fs_info *fs_info;
2243 struct btrfs_root *root;
2244 struct btrfs_key key;
2245 struct extent_buffer *leaf;
2246 struct old_sa_defrag_extent *old = backref->old;
2247 struct new_sa_defrag_extent *new = old->new;
2248 struct inode *src_inode = new->inode;
2249 struct inode *inode;
2250 struct extent_state *cached = NULL;
2251 int ret = 0;
2252 u64 start;
2253 u64 len;
2254 u64 lock_start;
2255 u64 lock_end;
2256 bool merge = false;
2257 int index;
2258
2259 if (prev && prev->root_id == backref->root_id &&
2260 prev->inum == backref->inum &&
2261 prev->file_pos + prev->num_bytes == backref->file_pos)
2262 merge = true;
2263
2264 /* step 1: get root */
2265 key.objectid = backref->root_id;
2266 key.type = BTRFS_ROOT_ITEM_KEY;
2267 key.offset = (u64)-1;
2268
2269 fs_info = BTRFS_I(src_inode)->root->fs_info;
2270 index = srcu_read_lock(&fs_info->subvol_srcu);
2271
2272 root = btrfs_read_fs_root_no_name(fs_info, &key);
2273 if (IS_ERR(root)) {
2274 srcu_read_unlock(&fs_info->subvol_srcu, index);
2275 if (PTR_ERR(root) == -ENOENT)
2276 return 0;
2277 return PTR_ERR(root);
2278 }
2279
2280 if (btrfs_root_readonly(root)) {
2281 srcu_read_unlock(&fs_info->subvol_srcu, index);
2282 return 0;
2283 }
2284
2285 /* step 2: get inode */
2286 key.objectid = backref->inum;
2287 key.type = BTRFS_INODE_ITEM_KEY;
2288 key.offset = 0;
2289
2290 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2291 if (IS_ERR(inode)) {
2292 srcu_read_unlock(&fs_info->subvol_srcu, index);
2293 return 0;
2294 }
2295
2296 srcu_read_unlock(&fs_info->subvol_srcu, index);
2297
2298 /* step 3: relink backref */
2299 lock_start = backref->file_pos;
2300 lock_end = backref->file_pos + backref->num_bytes - 1;
2301 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2302 0, &cached);
2303
2304 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2305 if (ordered) {
2306 btrfs_put_ordered_extent(ordered);
2307 goto out_unlock;
2308 }
2309
2310 trans = btrfs_join_transaction(root);
2311 if (IS_ERR(trans)) {
2312 ret = PTR_ERR(trans);
2313 goto out_unlock;
2314 }
2315
2316 key.objectid = backref->inum;
2317 key.type = BTRFS_EXTENT_DATA_KEY;
2318 key.offset = backref->file_pos;
2319
2320 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2321 if (ret < 0) {
2322 goto out_free_path;
2323 } else if (ret > 0) {
2324 ret = 0;
2325 goto out_free_path;
2326 }
2327
2328 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2329 struct btrfs_file_extent_item);
2330
2331 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2332 backref->generation)
2333 goto out_free_path;
2334
2335 btrfs_release_path(path);
2336
2337 start = backref->file_pos;
2338 if (backref->extent_offset < old->extent_offset + old->offset)
2339 start += old->extent_offset + old->offset -
2340 backref->extent_offset;
2341
2342 len = min(backref->extent_offset + backref->num_bytes,
2343 old->extent_offset + old->offset + old->len);
2344 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2345
2346 ret = btrfs_drop_extents(trans, root, inode, start,
2347 start + len, 1);
2348 if (ret)
2349 goto out_free_path;
2350 again:
2351 key.objectid = btrfs_ino(inode);
2352 key.type = BTRFS_EXTENT_DATA_KEY;
2353 key.offset = start;
2354
2355 path->leave_spinning = 1;
2356 if (merge) {
2357 struct btrfs_file_extent_item *fi;
2358 u64 extent_len;
2359 struct btrfs_key found_key;
2360
2361 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2362 if (ret < 0)
2363 goto out_free_path;
2364
2365 path->slots[0]--;
2366 leaf = path->nodes[0];
2367 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2368
2369 fi = btrfs_item_ptr(leaf, path->slots[0],
2370 struct btrfs_file_extent_item);
2371 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2372
2373 if (extent_len + found_key.offset == start &&
2374 relink_is_mergable(leaf, fi, new)) {
2375 btrfs_set_file_extent_num_bytes(leaf, fi,
2376 extent_len + len);
2377 btrfs_mark_buffer_dirty(leaf);
2378 inode_add_bytes(inode, len);
2379
2380 ret = 1;
2381 goto out_free_path;
2382 } else {
2383 merge = false;
2384 btrfs_release_path(path);
2385 goto again;
2386 }
2387 }
2388
2389 ret = btrfs_insert_empty_item(trans, root, path, &key,
2390 sizeof(*extent));
2391 if (ret) {
2392 btrfs_abort_transaction(trans, root, ret);
2393 goto out_free_path;
2394 }
2395
2396 leaf = path->nodes[0];
2397 item = btrfs_item_ptr(leaf, path->slots[0],
2398 struct btrfs_file_extent_item);
2399 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2400 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2401 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2402 btrfs_set_file_extent_num_bytes(leaf, item, len);
2403 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2404 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2405 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2406 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2407 btrfs_set_file_extent_encryption(leaf, item, 0);
2408 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2409
2410 btrfs_mark_buffer_dirty(leaf);
2411 inode_add_bytes(inode, len);
2412 btrfs_release_path(path);
2413
2414 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2415 new->disk_len, 0,
2416 backref->root_id, backref->inum,
2417 new->file_pos, 0); /* start - extent_offset */
2418 if (ret) {
2419 btrfs_abort_transaction(trans, root, ret);
2420 goto out_free_path;
2421 }
2422
2423 ret = 1;
2424 out_free_path:
2425 btrfs_release_path(path);
2426 path->leave_spinning = 0;
2427 btrfs_end_transaction(trans, root);
2428 out_unlock:
2429 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2430 &cached, GFP_NOFS);
2431 iput(inode);
2432 return ret;
2433 }
2434
2435 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2436 {
2437 struct old_sa_defrag_extent *old, *tmp;
2438
2439 if (!new)
2440 return;
2441
2442 list_for_each_entry_safe(old, tmp, &new->head, list) {
2443 list_del(&old->list);
2444 kfree(old);
2445 }
2446 kfree(new);
2447 }
2448
2449 static void relink_file_extents(struct new_sa_defrag_extent *new)
2450 {
2451 struct btrfs_path *path;
2452 struct sa_defrag_extent_backref *backref;
2453 struct sa_defrag_extent_backref *prev = NULL;
2454 struct inode *inode;
2455 struct btrfs_root *root;
2456 struct rb_node *node;
2457 int ret;
2458
2459 inode = new->inode;
2460 root = BTRFS_I(inode)->root;
2461
2462 path = btrfs_alloc_path();
2463 if (!path)
2464 return;
2465
2466 if (!record_extent_backrefs(path, new)) {
2467 btrfs_free_path(path);
2468 goto out;
2469 }
2470 btrfs_release_path(path);
2471
2472 while (1) {
2473 node = rb_first(&new->root);
2474 if (!node)
2475 break;
2476 rb_erase(node, &new->root);
2477
2478 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2479
2480 ret = relink_extent_backref(path, prev, backref);
2481 WARN_ON(ret < 0);
2482
2483 kfree(prev);
2484
2485 if (ret == 1)
2486 prev = backref;
2487 else
2488 prev = NULL;
2489 cond_resched();
2490 }
2491 kfree(prev);
2492
2493 btrfs_free_path(path);
2494 out:
2495 free_sa_defrag_extent(new);
2496
2497 atomic_dec(&root->fs_info->defrag_running);
2498 wake_up(&root->fs_info->transaction_wait);
2499 }
2500
2501 static struct new_sa_defrag_extent *
2502 record_old_file_extents(struct inode *inode,
2503 struct btrfs_ordered_extent *ordered)
2504 {
2505 struct btrfs_root *root = BTRFS_I(inode)->root;
2506 struct btrfs_path *path;
2507 struct btrfs_key key;
2508 struct old_sa_defrag_extent *old;
2509 struct new_sa_defrag_extent *new;
2510 int ret;
2511
2512 new = kmalloc(sizeof(*new), GFP_NOFS);
2513 if (!new)
2514 return NULL;
2515
2516 new->inode = inode;
2517 new->file_pos = ordered->file_offset;
2518 new->len = ordered->len;
2519 new->bytenr = ordered->start;
2520 new->disk_len = ordered->disk_len;
2521 new->compress_type = ordered->compress_type;
2522 new->root = RB_ROOT;
2523 INIT_LIST_HEAD(&new->head);
2524
2525 path = btrfs_alloc_path();
2526 if (!path)
2527 goto out_kfree;
2528
2529 key.objectid = btrfs_ino(inode);
2530 key.type = BTRFS_EXTENT_DATA_KEY;
2531 key.offset = new->file_pos;
2532
2533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2534 if (ret < 0)
2535 goto out_free_path;
2536 if (ret > 0 && path->slots[0] > 0)
2537 path->slots[0]--;
2538
2539 /* find out all the old extents for the file range */
2540 while (1) {
2541 struct btrfs_file_extent_item *extent;
2542 struct extent_buffer *l;
2543 int slot;
2544 u64 num_bytes;
2545 u64 offset;
2546 u64 end;
2547 u64 disk_bytenr;
2548 u64 extent_offset;
2549
2550 l = path->nodes[0];
2551 slot = path->slots[0];
2552
2553 if (slot >= btrfs_header_nritems(l)) {
2554 ret = btrfs_next_leaf(root, path);
2555 if (ret < 0)
2556 goto out_free_path;
2557 else if (ret > 0)
2558 break;
2559 continue;
2560 }
2561
2562 btrfs_item_key_to_cpu(l, &key, slot);
2563
2564 if (key.objectid != btrfs_ino(inode))
2565 break;
2566 if (key.type != BTRFS_EXTENT_DATA_KEY)
2567 break;
2568 if (key.offset >= new->file_pos + new->len)
2569 break;
2570
2571 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2572
2573 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2574 if (key.offset + num_bytes < new->file_pos)
2575 goto next;
2576
2577 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2578 if (!disk_bytenr)
2579 goto next;
2580
2581 extent_offset = btrfs_file_extent_offset(l, extent);
2582
2583 old = kmalloc(sizeof(*old), GFP_NOFS);
2584 if (!old)
2585 goto out_free_path;
2586
2587 offset = max(new->file_pos, key.offset);
2588 end = min(new->file_pos + new->len, key.offset + num_bytes);
2589
2590 old->bytenr = disk_bytenr;
2591 old->extent_offset = extent_offset;
2592 old->offset = offset - key.offset;
2593 old->len = end - offset;
2594 old->new = new;
2595 old->count = 0;
2596 list_add_tail(&old->list, &new->head);
2597 next:
2598 path->slots[0]++;
2599 cond_resched();
2600 }
2601
2602 btrfs_free_path(path);
2603 atomic_inc(&root->fs_info->defrag_running);
2604
2605 return new;
2606
2607 out_free_path:
2608 btrfs_free_path(path);
2609 out_kfree:
2610 free_sa_defrag_extent(new);
2611 return NULL;
2612 }
2613
2614 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2615 u64 start, u64 len)
2616 {
2617 struct btrfs_block_group_cache *cache;
2618
2619 cache = btrfs_lookup_block_group(root->fs_info, start);
2620 ASSERT(cache);
2621
2622 spin_lock(&cache->lock);
2623 cache->delalloc_bytes -= len;
2624 spin_unlock(&cache->lock);
2625
2626 btrfs_put_block_group(cache);
2627 }
2628
2629 /* as ordered data IO finishes, this gets called so we can finish
2630 * an ordered extent if the range of bytes in the file it covers are
2631 * fully written.
2632 */
2633 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2634 {
2635 struct inode *inode = ordered_extent->inode;
2636 struct btrfs_root *root = BTRFS_I(inode)->root;
2637 struct btrfs_trans_handle *trans = NULL;
2638 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2639 struct extent_state *cached_state = NULL;
2640 struct new_sa_defrag_extent *new = NULL;
2641 int compress_type = 0;
2642 int ret = 0;
2643 u64 logical_len = ordered_extent->len;
2644 bool nolock;
2645 bool truncated = false;
2646
2647 nolock = btrfs_is_free_space_inode(inode);
2648
2649 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2650 ret = -EIO;
2651 goto out;
2652 }
2653
2654 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2655 truncated = true;
2656 logical_len = ordered_extent->truncated_len;
2657 /* Truncated the entire extent, don't bother adding */
2658 if (!logical_len)
2659 goto out;
2660 }
2661
2662 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2663 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2664 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2665 if (nolock)
2666 trans = btrfs_join_transaction_nolock(root);
2667 else
2668 trans = btrfs_join_transaction(root);
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 trans = NULL;
2672 goto out;
2673 }
2674 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2675 ret = btrfs_update_inode_fallback(trans, root, inode);
2676 if (ret) /* -ENOMEM or corruption */
2677 btrfs_abort_transaction(trans, root, ret);
2678 goto out;
2679 }
2680
2681 lock_extent_bits(io_tree, ordered_extent->file_offset,
2682 ordered_extent->file_offset + ordered_extent->len - 1,
2683 0, &cached_state);
2684
2685 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2686 ordered_extent->file_offset + ordered_extent->len - 1,
2687 EXTENT_DEFRAG, 1, cached_state);
2688 if (ret) {
2689 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2690 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2691 /* the inode is shared */
2692 new = record_old_file_extents(inode, ordered_extent);
2693
2694 clear_extent_bit(io_tree, ordered_extent->file_offset,
2695 ordered_extent->file_offset + ordered_extent->len - 1,
2696 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2697 }
2698
2699 if (nolock)
2700 trans = btrfs_join_transaction_nolock(root);
2701 else
2702 trans = btrfs_join_transaction(root);
2703 if (IS_ERR(trans)) {
2704 ret = PTR_ERR(trans);
2705 trans = NULL;
2706 goto out_unlock;
2707 }
2708
2709 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2710
2711 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2712 compress_type = ordered_extent->compress_type;
2713 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2714 BUG_ON(compress_type);
2715 ret = btrfs_mark_extent_written(trans, inode,
2716 ordered_extent->file_offset,
2717 ordered_extent->file_offset +
2718 logical_len);
2719 } else {
2720 BUG_ON(root == root->fs_info->tree_root);
2721 ret = insert_reserved_file_extent(trans, inode,
2722 ordered_extent->file_offset,
2723 ordered_extent->start,
2724 ordered_extent->disk_len,
2725 logical_len, logical_len,
2726 compress_type, 0, 0,
2727 BTRFS_FILE_EXTENT_REG);
2728 if (!ret)
2729 btrfs_release_delalloc_bytes(root,
2730 ordered_extent->start,
2731 ordered_extent->disk_len);
2732 }
2733 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2734 ordered_extent->file_offset, ordered_extent->len,
2735 trans->transid);
2736 if (ret < 0) {
2737 btrfs_abort_transaction(trans, root, ret);
2738 goto out_unlock;
2739 }
2740
2741 add_pending_csums(trans, inode, ordered_extent->file_offset,
2742 &ordered_extent->list);
2743
2744 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2745 ret = btrfs_update_inode_fallback(trans, root, inode);
2746 if (ret) { /* -ENOMEM or corruption */
2747 btrfs_abort_transaction(trans, root, ret);
2748 goto out_unlock;
2749 }
2750 ret = 0;
2751 out_unlock:
2752 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2753 ordered_extent->file_offset +
2754 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2755 out:
2756 if (root != root->fs_info->tree_root)
2757 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2758 if (trans)
2759 btrfs_end_transaction(trans, root);
2760
2761 if (ret || truncated) {
2762 u64 start, end;
2763
2764 if (truncated)
2765 start = ordered_extent->file_offset + logical_len;
2766 else
2767 start = ordered_extent->file_offset;
2768 end = ordered_extent->file_offset + ordered_extent->len - 1;
2769 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2770
2771 /* Drop the cache for the part of the extent we didn't write. */
2772 btrfs_drop_extent_cache(inode, start, end, 0);
2773
2774 /*
2775 * If the ordered extent had an IOERR or something else went
2776 * wrong we need to return the space for this ordered extent
2777 * back to the allocator. We only free the extent in the
2778 * truncated case if we didn't write out the extent at all.
2779 */
2780 if ((ret || !logical_len) &&
2781 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2782 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2783 btrfs_free_reserved_extent(root, ordered_extent->start,
2784 ordered_extent->disk_len, 1);
2785 }
2786
2787
2788 /*
2789 * This needs to be done to make sure anybody waiting knows we are done
2790 * updating everything for this ordered extent.
2791 */
2792 btrfs_remove_ordered_extent(inode, ordered_extent);
2793
2794 /* for snapshot-aware defrag */
2795 if (new) {
2796 if (ret) {
2797 free_sa_defrag_extent(new);
2798 atomic_dec(&root->fs_info->defrag_running);
2799 } else {
2800 relink_file_extents(new);
2801 }
2802 }
2803
2804 /* once for us */
2805 btrfs_put_ordered_extent(ordered_extent);
2806 /* once for the tree */
2807 btrfs_put_ordered_extent(ordered_extent);
2808
2809 return ret;
2810 }
2811
2812 static void finish_ordered_fn(struct btrfs_work *work)
2813 {
2814 struct btrfs_ordered_extent *ordered_extent;
2815 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2816 btrfs_finish_ordered_io(ordered_extent);
2817 }
2818
2819 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2820 struct extent_state *state, int uptodate)
2821 {
2822 struct inode *inode = page->mapping->host;
2823 struct btrfs_root *root = BTRFS_I(inode)->root;
2824 struct btrfs_ordered_extent *ordered_extent = NULL;
2825 struct btrfs_workqueue *workers;
2826
2827 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2828
2829 ClearPagePrivate2(page);
2830 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2831 end - start + 1, uptodate))
2832 return 0;
2833
2834 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2835
2836 if (btrfs_is_free_space_inode(inode))
2837 workers = root->fs_info->endio_freespace_worker;
2838 else
2839 workers = root->fs_info->endio_write_workers;
2840 btrfs_queue_work(workers, &ordered_extent->work);
2841
2842 return 0;
2843 }
2844
2845 /*
2846 * when reads are done, we need to check csums to verify the data is correct
2847 * if there's a match, we allow the bio to finish. If not, the code in
2848 * extent_io.c will try to find good copies for us.
2849 */
2850 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2851 u64 phy_offset, struct page *page,
2852 u64 start, u64 end, int mirror)
2853 {
2854 size_t offset = start - page_offset(page);
2855 struct inode *inode = page->mapping->host;
2856 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2857 char *kaddr;
2858 struct btrfs_root *root = BTRFS_I(inode)->root;
2859 u32 csum_expected;
2860 u32 csum = ~(u32)0;
2861 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2862 DEFAULT_RATELIMIT_BURST);
2863
2864 if (PageChecked(page)) {
2865 ClearPageChecked(page);
2866 goto good;
2867 }
2868
2869 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2870 goto good;
2871
2872 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2873 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2874 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2875 GFP_NOFS);
2876 return 0;
2877 }
2878
2879 phy_offset >>= inode->i_sb->s_blocksize_bits;
2880 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2881
2882 kaddr = kmap_atomic(page);
2883 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
2884 btrfs_csum_final(csum, (char *)&csum);
2885 if (csum != csum_expected)
2886 goto zeroit;
2887
2888 kunmap_atomic(kaddr);
2889 good:
2890 return 0;
2891
2892 zeroit:
2893 if (__ratelimit(&_rs))
2894 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2895 btrfs_ino(page->mapping->host), start, csum, csum_expected);
2896 memset(kaddr + offset, 1, end - start + 1);
2897 flush_dcache_page(page);
2898 kunmap_atomic(kaddr);
2899 if (csum_expected == 0)
2900 return 0;
2901 return -EIO;
2902 }
2903
2904 struct delayed_iput {
2905 struct list_head list;
2906 struct inode *inode;
2907 };
2908
2909 /* JDM: If this is fs-wide, why can't we add a pointer to
2910 * btrfs_inode instead and avoid the allocation? */
2911 void btrfs_add_delayed_iput(struct inode *inode)
2912 {
2913 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2914 struct delayed_iput *delayed;
2915
2916 if (atomic_add_unless(&inode->i_count, -1, 1))
2917 return;
2918
2919 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2920 delayed->inode = inode;
2921
2922 spin_lock(&fs_info->delayed_iput_lock);
2923 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2924 spin_unlock(&fs_info->delayed_iput_lock);
2925 }
2926
2927 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2928 {
2929 LIST_HEAD(list);
2930 struct btrfs_fs_info *fs_info = root->fs_info;
2931 struct delayed_iput *delayed;
2932 int empty;
2933
2934 spin_lock(&fs_info->delayed_iput_lock);
2935 empty = list_empty(&fs_info->delayed_iputs);
2936 spin_unlock(&fs_info->delayed_iput_lock);
2937 if (empty)
2938 return;
2939
2940 spin_lock(&fs_info->delayed_iput_lock);
2941 list_splice_init(&fs_info->delayed_iputs, &list);
2942 spin_unlock(&fs_info->delayed_iput_lock);
2943
2944 while (!list_empty(&list)) {
2945 delayed = list_entry(list.next, struct delayed_iput, list);
2946 list_del(&delayed->list);
2947 iput(delayed->inode);
2948 kfree(delayed);
2949 }
2950 }
2951
2952 /*
2953 * This is called in transaction commit time. If there are no orphan
2954 * files in the subvolume, it removes orphan item and frees block_rsv
2955 * structure.
2956 */
2957 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2958 struct btrfs_root *root)
2959 {
2960 struct btrfs_block_rsv *block_rsv;
2961 int ret;
2962
2963 if (atomic_read(&root->orphan_inodes) ||
2964 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2965 return;
2966
2967 spin_lock(&root->orphan_lock);
2968 if (atomic_read(&root->orphan_inodes)) {
2969 spin_unlock(&root->orphan_lock);
2970 return;
2971 }
2972
2973 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2974 spin_unlock(&root->orphan_lock);
2975 return;
2976 }
2977
2978 block_rsv = root->orphan_block_rsv;
2979 root->orphan_block_rsv = NULL;
2980 spin_unlock(&root->orphan_lock);
2981
2982 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
2983 btrfs_root_refs(&root->root_item) > 0) {
2984 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2985 root->root_key.objectid);
2986 if (ret)
2987 btrfs_abort_transaction(trans, root, ret);
2988 else
2989 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
2990 &root->state);
2991 }
2992
2993 if (block_rsv) {
2994 WARN_ON(block_rsv->size > 0);
2995 btrfs_free_block_rsv(root, block_rsv);
2996 }
2997 }
2998
2999 /*
3000 * This creates an orphan entry for the given inode in case something goes
3001 * wrong in the middle of an unlink/truncate.
3002 *
3003 * NOTE: caller of this function should reserve 5 units of metadata for
3004 * this function.
3005 */
3006 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3007 {
3008 struct btrfs_root *root = BTRFS_I(inode)->root;
3009 struct btrfs_block_rsv *block_rsv = NULL;
3010 int reserve = 0;
3011 int insert = 0;
3012 int ret;
3013
3014 if (!root->orphan_block_rsv) {
3015 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3016 if (!block_rsv)
3017 return -ENOMEM;
3018 }
3019
3020 spin_lock(&root->orphan_lock);
3021 if (!root->orphan_block_rsv) {
3022 root->orphan_block_rsv = block_rsv;
3023 } else if (block_rsv) {
3024 btrfs_free_block_rsv(root, block_rsv);
3025 block_rsv = NULL;
3026 }
3027
3028 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3029 &BTRFS_I(inode)->runtime_flags)) {
3030 #if 0
3031 /*
3032 * For proper ENOSPC handling, we should do orphan
3033 * cleanup when mounting. But this introduces backward
3034 * compatibility issue.
3035 */
3036 if (!xchg(&root->orphan_item_inserted, 1))
3037 insert = 2;
3038 else
3039 insert = 1;
3040 #endif
3041 insert = 1;
3042 atomic_inc(&root->orphan_inodes);
3043 }
3044
3045 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3046 &BTRFS_I(inode)->runtime_flags))
3047 reserve = 1;
3048 spin_unlock(&root->orphan_lock);
3049
3050 /* grab metadata reservation from transaction handle */
3051 if (reserve) {
3052 ret = btrfs_orphan_reserve_metadata(trans, inode);
3053 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3054 }
3055
3056 /* insert an orphan item to track this unlinked/truncated file */
3057 if (insert >= 1) {
3058 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3059 if (ret) {
3060 atomic_dec(&root->orphan_inodes);
3061 if (reserve) {
3062 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3063 &BTRFS_I(inode)->runtime_flags);
3064 btrfs_orphan_release_metadata(inode);
3065 }
3066 if (ret != -EEXIST) {
3067 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3068 &BTRFS_I(inode)->runtime_flags);
3069 btrfs_abort_transaction(trans, root, ret);
3070 return ret;
3071 }
3072 }
3073 ret = 0;
3074 }
3075
3076 /* insert an orphan item to track subvolume contains orphan files */
3077 if (insert >= 2) {
3078 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3079 root->root_key.objectid);
3080 if (ret && ret != -EEXIST) {
3081 btrfs_abort_transaction(trans, root, ret);
3082 return ret;
3083 }
3084 }
3085 return 0;
3086 }
3087
3088 /*
3089 * We have done the truncate/delete so we can go ahead and remove the orphan
3090 * item for this particular inode.
3091 */
3092 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3093 struct inode *inode)
3094 {
3095 struct btrfs_root *root = BTRFS_I(inode)->root;
3096 int delete_item = 0;
3097 int release_rsv = 0;
3098 int ret = 0;
3099
3100 spin_lock(&root->orphan_lock);
3101 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3102 &BTRFS_I(inode)->runtime_flags))
3103 delete_item = 1;
3104
3105 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3106 &BTRFS_I(inode)->runtime_flags))
3107 release_rsv = 1;
3108 spin_unlock(&root->orphan_lock);
3109
3110 if (delete_item) {
3111 atomic_dec(&root->orphan_inodes);
3112 if (trans)
3113 ret = btrfs_del_orphan_item(trans, root,
3114 btrfs_ino(inode));
3115 }
3116
3117 if (release_rsv)
3118 btrfs_orphan_release_metadata(inode);
3119
3120 return ret;
3121 }
3122
3123 /*
3124 * this cleans up any orphans that may be left on the list from the last use
3125 * of this root.
3126 */
3127 int btrfs_orphan_cleanup(struct btrfs_root *root)
3128 {
3129 struct btrfs_path *path;
3130 struct extent_buffer *leaf;
3131 struct btrfs_key key, found_key;
3132 struct btrfs_trans_handle *trans;
3133 struct inode *inode;
3134 u64 last_objectid = 0;
3135 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3136
3137 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3138 return 0;
3139
3140 path = btrfs_alloc_path();
3141 if (!path) {
3142 ret = -ENOMEM;
3143 goto out;
3144 }
3145 path->reada = -1;
3146
3147 key.objectid = BTRFS_ORPHAN_OBJECTID;
3148 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3149 key.offset = (u64)-1;
3150
3151 while (1) {
3152 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3153 if (ret < 0)
3154 goto out;
3155
3156 /*
3157 * if ret == 0 means we found what we were searching for, which
3158 * is weird, but possible, so only screw with path if we didn't
3159 * find the key and see if we have stuff that matches
3160 */
3161 if (ret > 0) {
3162 ret = 0;
3163 if (path->slots[0] == 0)
3164 break;
3165 path->slots[0]--;
3166 }
3167
3168 /* pull out the item */
3169 leaf = path->nodes[0];
3170 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3171
3172 /* make sure the item matches what we want */
3173 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3174 break;
3175 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3176 break;
3177
3178 /* release the path since we're done with it */
3179 btrfs_release_path(path);
3180
3181 /*
3182 * this is where we are basically btrfs_lookup, without the
3183 * crossing root thing. we store the inode number in the
3184 * offset of the orphan item.
3185 */
3186
3187 if (found_key.offset == last_objectid) {
3188 btrfs_err(root->fs_info,
3189 "Error removing orphan entry, stopping orphan cleanup");
3190 ret = -EINVAL;
3191 goto out;
3192 }
3193
3194 last_objectid = found_key.offset;
3195
3196 found_key.objectid = found_key.offset;
3197 found_key.type = BTRFS_INODE_ITEM_KEY;
3198 found_key.offset = 0;
3199 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3200 ret = PTR_ERR_OR_ZERO(inode);
3201 if (ret && ret != -ESTALE)
3202 goto out;
3203
3204 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3205 struct btrfs_root *dead_root;
3206 struct btrfs_fs_info *fs_info = root->fs_info;
3207 int is_dead_root = 0;
3208
3209 /*
3210 * this is an orphan in the tree root. Currently these
3211 * could come from 2 sources:
3212 * a) a snapshot deletion in progress
3213 * b) a free space cache inode
3214 * We need to distinguish those two, as the snapshot
3215 * orphan must not get deleted.
3216 * find_dead_roots already ran before us, so if this
3217 * is a snapshot deletion, we should find the root
3218 * in the dead_roots list
3219 */
3220 spin_lock(&fs_info->trans_lock);
3221 list_for_each_entry(dead_root, &fs_info->dead_roots,
3222 root_list) {
3223 if (dead_root->root_key.objectid ==
3224 found_key.objectid) {
3225 is_dead_root = 1;
3226 break;
3227 }
3228 }
3229 spin_unlock(&fs_info->trans_lock);
3230 if (is_dead_root) {
3231 /* prevent this orphan from being found again */
3232 key.offset = found_key.objectid - 1;
3233 continue;
3234 }
3235 }
3236 /*
3237 * Inode is already gone but the orphan item is still there,
3238 * kill the orphan item.
3239 */
3240 if (ret == -ESTALE) {
3241 trans = btrfs_start_transaction(root, 1);
3242 if (IS_ERR(trans)) {
3243 ret = PTR_ERR(trans);
3244 goto out;
3245 }
3246 btrfs_debug(root->fs_info, "auto deleting %Lu",
3247 found_key.objectid);
3248 ret = btrfs_del_orphan_item(trans, root,
3249 found_key.objectid);
3250 btrfs_end_transaction(trans, root);
3251 if (ret)
3252 goto out;
3253 continue;
3254 }
3255
3256 /*
3257 * add this inode to the orphan list so btrfs_orphan_del does
3258 * the proper thing when we hit it
3259 */
3260 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3261 &BTRFS_I(inode)->runtime_flags);
3262 atomic_inc(&root->orphan_inodes);
3263
3264 /* if we have links, this was a truncate, lets do that */
3265 if (inode->i_nlink) {
3266 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3267 iput(inode);
3268 continue;
3269 }
3270 nr_truncate++;
3271
3272 /* 1 for the orphan item deletion. */
3273 trans = btrfs_start_transaction(root, 1);
3274 if (IS_ERR(trans)) {
3275 iput(inode);
3276 ret = PTR_ERR(trans);
3277 goto out;
3278 }
3279 ret = btrfs_orphan_add(trans, inode);
3280 btrfs_end_transaction(trans, root);
3281 if (ret) {
3282 iput(inode);
3283 goto out;
3284 }
3285
3286 ret = btrfs_truncate(inode);
3287 if (ret)
3288 btrfs_orphan_del(NULL, inode);
3289 } else {
3290 nr_unlink++;
3291 }
3292
3293 /* this will do delete_inode and everything for us */
3294 iput(inode);
3295 if (ret)
3296 goto out;
3297 }
3298 /* release the path since we're done with it */
3299 btrfs_release_path(path);
3300
3301 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3302
3303 if (root->orphan_block_rsv)
3304 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3305 (u64)-1);
3306
3307 if (root->orphan_block_rsv ||
3308 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3309 trans = btrfs_join_transaction(root);
3310 if (!IS_ERR(trans))
3311 btrfs_end_transaction(trans, root);
3312 }
3313
3314 if (nr_unlink)
3315 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3316 if (nr_truncate)
3317 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3318
3319 out:
3320 if (ret)
3321 btrfs_crit(root->fs_info,
3322 "could not do orphan cleanup %d", ret);
3323 btrfs_free_path(path);
3324 return ret;
3325 }
3326
3327 /*
3328 * very simple check to peek ahead in the leaf looking for xattrs. If we
3329 * don't find any xattrs, we know there can't be any acls.
3330 *
3331 * slot is the slot the inode is in, objectid is the objectid of the inode
3332 */
3333 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3334 int slot, u64 objectid,
3335 int *first_xattr_slot)
3336 {
3337 u32 nritems = btrfs_header_nritems(leaf);
3338 struct btrfs_key found_key;
3339 static u64 xattr_access = 0;
3340 static u64 xattr_default = 0;
3341 int scanned = 0;
3342
3343 if (!xattr_access) {
3344 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3345 strlen(POSIX_ACL_XATTR_ACCESS));
3346 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3347 strlen(POSIX_ACL_XATTR_DEFAULT));
3348 }
3349
3350 slot++;
3351 *first_xattr_slot = -1;
3352 while (slot < nritems) {
3353 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3354
3355 /* we found a different objectid, there must not be acls */
3356 if (found_key.objectid != objectid)
3357 return 0;
3358
3359 /* we found an xattr, assume we've got an acl */
3360 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3361 if (*first_xattr_slot == -1)
3362 *first_xattr_slot = slot;
3363 if (found_key.offset == xattr_access ||
3364 found_key.offset == xattr_default)
3365 return 1;
3366 }
3367
3368 /*
3369 * we found a key greater than an xattr key, there can't
3370 * be any acls later on
3371 */
3372 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3373 return 0;
3374
3375 slot++;
3376 scanned++;
3377
3378 /*
3379 * it goes inode, inode backrefs, xattrs, extents,
3380 * so if there are a ton of hard links to an inode there can
3381 * be a lot of backrefs. Don't waste time searching too hard,
3382 * this is just an optimization
3383 */
3384 if (scanned >= 8)
3385 break;
3386 }
3387 /* we hit the end of the leaf before we found an xattr or
3388 * something larger than an xattr. We have to assume the inode
3389 * has acls
3390 */
3391 if (*first_xattr_slot == -1)
3392 *first_xattr_slot = slot;
3393 return 1;
3394 }
3395
3396 /*
3397 * read an inode from the btree into the in-memory inode
3398 */
3399 static void btrfs_read_locked_inode(struct inode *inode)
3400 {
3401 struct btrfs_path *path;
3402 struct extent_buffer *leaf;
3403 struct btrfs_inode_item *inode_item;
3404 struct btrfs_timespec *tspec;
3405 struct btrfs_root *root = BTRFS_I(inode)->root;
3406 struct btrfs_key location;
3407 unsigned long ptr;
3408 int maybe_acls;
3409 u32 rdev;
3410 int ret;
3411 bool filled = false;
3412 int first_xattr_slot;
3413
3414 ret = btrfs_fill_inode(inode, &rdev);
3415 if (!ret)
3416 filled = true;
3417
3418 path = btrfs_alloc_path();
3419 if (!path)
3420 goto make_bad;
3421
3422 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3423
3424 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3425 if (ret)
3426 goto make_bad;
3427
3428 leaf = path->nodes[0];
3429
3430 if (filled)
3431 goto cache_index;
3432
3433 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3434 struct btrfs_inode_item);
3435 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3436 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3437 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3438 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3439 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3440
3441 tspec = btrfs_inode_atime(inode_item);
3442 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3443 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3444
3445 tspec = btrfs_inode_mtime(inode_item);
3446 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3447 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3448
3449 tspec = btrfs_inode_ctime(inode_item);
3450 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3451 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3452
3453 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3454 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3455 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3456
3457 /*
3458 * If we were modified in the current generation and evicted from memory
3459 * and then re-read we need to do a full sync since we don't have any
3460 * idea about which extents were modified before we were evicted from
3461 * cache.
3462 */
3463 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3464 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3465 &BTRFS_I(inode)->runtime_flags);
3466
3467 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3468 inode->i_generation = BTRFS_I(inode)->generation;
3469 inode->i_rdev = 0;
3470 rdev = btrfs_inode_rdev(leaf, inode_item);
3471
3472 BTRFS_I(inode)->index_cnt = (u64)-1;
3473 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3474
3475 cache_index:
3476 path->slots[0]++;
3477 if (inode->i_nlink != 1 ||
3478 path->slots[0] >= btrfs_header_nritems(leaf))
3479 goto cache_acl;
3480
3481 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3482 if (location.objectid != btrfs_ino(inode))
3483 goto cache_acl;
3484
3485 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3486 if (location.type == BTRFS_INODE_REF_KEY) {
3487 struct btrfs_inode_ref *ref;
3488
3489 ref = (struct btrfs_inode_ref *)ptr;
3490 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3491 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3492 struct btrfs_inode_extref *extref;
3493
3494 extref = (struct btrfs_inode_extref *)ptr;
3495 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3496 extref);
3497 }
3498 cache_acl:
3499 /*
3500 * try to precache a NULL acl entry for files that don't have
3501 * any xattrs or acls
3502 */
3503 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3504 btrfs_ino(inode), &first_xattr_slot);
3505 if (first_xattr_slot != -1) {
3506 path->slots[0] = first_xattr_slot;
3507 ret = btrfs_load_inode_props(inode, path);
3508 if (ret)
3509 btrfs_err(root->fs_info,
3510 "error loading props for ino %llu (root %llu): %d",
3511 btrfs_ino(inode),
3512 root->root_key.objectid, ret);
3513 }
3514 btrfs_free_path(path);
3515
3516 if (!maybe_acls)
3517 cache_no_acl(inode);
3518
3519 switch (inode->i_mode & S_IFMT) {
3520 case S_IFREG:
3521 inode->i_mapping->a_ops = &btrfs_aops;
3522 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3523 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3524 inode->i_fop = &btrfs_file_operations;
3525 inode->i_op = &btrfs_file_inode_operations;
3526 break;
3527 case S_IFDIR:
3528 inode->i_fop = &btrfs_dir_file_operations;
3529 if (root == root->fs_info->tree_root)
3530 inode->i_op = &btrfs_dir_ro_inode_operations;
3531 else
3532 inode->i_op = &btrfs_dir_inode_operations;
3533 break;
3534 case S_IFLNK:
3535 inode->i_op = &btrfs_symlink_inode_operations;
3536 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3537 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3538 break;
3539 default:
3540 inode->i_op = &btrfs_special_inode_operations;
3541 init_special_inode(inode, inode->i_mode, rdev);
3542 break;
3543 }
3544
3545 btrfs_update_iflags(inode);
3546 return;
3547
3548 make_bad:
3549 btrfs_free_path(path);
3550 make_bad_inode(inode);
3551 }
3552
3553 /*
3554 * given a leaf and an inode, copy the inode fields into the leaf
3555 */
3556 static void fill_inode_item(struct btrfs_trans_handle *trans,
3557 struct extent_buffer *leaf,
3558 struct btrfs_inode_item *item,
3559 struct inode *inode)
3560 {
3561 struct btrfs_map_token token;
3562
3563 btrfs_init_map_token(&token);
3564
3565 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3566 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3567 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3568 &token);
3569 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3570 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3571
3572 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3573 inode->i_atime.tv_sec, &token);
3574 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3575 inode->i_atime.tv_nsec, &token);
3576
3577 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3578 inode->i_mtime.tv_sec, &token);
3579 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3580 inode->i_mtime.tv_nsec, &token);
3581
3582 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3583 inode->i_ctime.tv_sec, &token);
3584 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3585 inode->i_ctime.tv_nsec, &token);
3586
3587 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3588 &token);
3589 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3590 &token);
3591 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3592 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3593 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3594 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3595 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3596 }
3597
3598 /*
3599 * copy everything in the in-memory inode into the btree.
3600 */
3601 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3602 struct btrfs_root *root, struct inode *inode)
3603 {
3604 struct btrfs_inode_item *inode_item;
3605 struct btrfs_path *path;
3606 struct extent_buffer *leaf;
3607 int ret;
3608
3609 path = btrfs_alloc_path();
3610 if (!path)
3611 return -ENOMEM;
3612
3613 path->leave_spinning = 1;
3614 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3615 1);
3616 if (ret) {
3617 if (ret > 0)
3618 ret = -ENOENT;
3619 goto failed;
3620 }
3621
3622 leaf = path->nodes[0];
3623 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3624 struct btrfs_inode_item);
3625
3626 fill_inode_item(trans, leaf, inode_item, inode);
3627 btrfs_mark_buffer_dirty(leaf);
3628 btrfs_set_inode_last_trans(trans, inode);
3629 ret = 0;
3630 failed:
3631 btrfs_free_path(path);
3632 return ret;
3633 }
3634
3635 /*
3636 * copy everything in the in-memory inode into the btree.
3637 */
3638 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3639 struct btrfs_root *root, struct inode *inode)
3640 {
3641 int ret;
3642
3643 /*
3644 * If the inode is a free space inode, we can deadlock during commit
3645 * if we put it into the delayed code.
3646 *
3647 * The data relocation inode should also be directly updated
3648 * without delay
3649 */
3650 if (!btrfs_is_free_space_inode(inode)
3651 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3652 btrfs_update_root_times(trans, root);
3653
3654 ret = btrfs_delayed_update_inode(trans, root, inode);
3655 if (!ret)
3656 btrfs_set_inode_last_trans(trans, inode);
3657 return ret;
3658 }
3659
3660 return btrfs_update_inode_item(trans, root, inode);
3661 }
3662
3663 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3664 struct btrfs_root *root,
3665 struct inode *inode)
3666 {
3667 int ret;
3668
3669 ret = btrfs_update_inode(trans, root, inode);
3670 if (ret == -ENOSPC)
3671 return btrfs_update_inode_item(trans, root, inode);
3672 return ret;
3673 }
3674
3675 /*
3676 * unlink helper that gets used here in inode.c and in the tree logging
3677 * recovery code. It remove a link in a directory with a given name, and
3678 * also drops the back refs in the inode to the directory
3679 */
3680 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3681 struct btrfs_root *root,
3682 struct inode *dir, struct inode *inode,
3683 const char *name, int name_len)
3684 {
3685 struct btrfs_path *path;
3686 int ret = 0;
3687 struct extent_buffer *leaf;
3688 struct btrfs_dir_item *di;
3689 struct btrfs_key key;
3690 u64 index;
3691 u64 ino = btrfs_ino(inode);
3692 u64 dir_ino = btrfs_ino(dir);
3693
3694 path = btrfs_alloc_path();
3695 if (!path) {
3696 ret = -ENOMEM;
3697 goto out;
3698 }
3699
3700 path->leave_spinning = 1;
3701 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3702 name, name_len, -1);
3703 if (IS_ERR(di)) {
3704 ret = PTR_ERR(di);
3705 goto err;
3706 }
3707 if (!di) {
3708 ret = -ENOENT;
3709 goto err;
3710 }
3711 leaf = path->nodes[0];
3712 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3713 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3714 if (ret)
3715 goto err;
3716 btrfs_release_path(path);
3717
3718 /*
3719 * If we don't have dir index, we have to get it by looking up
3720 * the inode ref, since we get the inode ref, remove it directly,
3721 * it is unnecessary to do delayed deletion.
3722 *
3723 * But if we have dir index, needn't search inode ref to get it.
3724 * Since the inode ref is close to the inode item, it is better
3725 * that we delay to delete it, and just do this deletion when
3726 * we update the inode item.
3727 */
3728 if (BTRFS_I(inode)->dir_index) {
3729 ret = btrfs_delayed_delete_inode_ref(inode);
3730 if (!ret) {
3731 index = BTRFS_I(inode)->dir_index;
3732 goto skip_backref;
3733 }
3734 }
3735
3736 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3737 dir_ino, &index);
3738 if (ret) {
3739 btrfs_info(root->fs_info,
3740 "failed to delete reference to %.*s, inode %llu parent %llu",
3741 name_len, name, ino, dir_ino);
3742 btrfs_abort_transaction(trans, root, ret);
3743 goto err;
3744 }
3745 skip_backref:
3746 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3747 if (ret) {
3748 btrfs_abort_transaction(trans, root, ret);
3749 goto err;
3750 }
3751
3752 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3753 inode, dir_ino);
3754 if (ret != 0 && ret != -ENOENT) {
3755 btrfs_abort_transaction(trans, root, ret);
3756 goto err;
3757 }
3758
3759 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3760 dir, index);
3761 if (ret == -ENOENT)
3762 ret = 0;
3763 else if (ret)
3764 btrfs_abort_transaction(trans, root, ret);
3765 err:
3766 btrfs_free_path(path);
3767 if (ret)
3768 goto out;
3769
3770 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3771 inode_inc_iversion(inode);
3772 inode_inc_iversion(dir);
3773 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3774 ret = btrfs_update_inode(trans, root, dir);
3775 out:
3776 return ret;
3777 }
3778
3779 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3780 struct btrfs_root *root,
3781 struct inode *dir, struct inode *inode,
3782 const char *name, int name_len)
3783 {
3784 int ret;
3785 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3786 if (!ret) {
3787 drop_nlink(inode);
3788 ret = btrfs_update_inode(trans, root, inode);
3789 }
3790 return ret;
3791 }
3792
3793 /*
3794 * helper to start transaction for unlink and rmdir.
3795 *
3796 * unlink and rmdir are special in btrfs, they do not always free space, so
3797 * if we cannot make our reservations the normal way try and see if there is
3798 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3799 * allow the unlink to occur.
3800 */
3801 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3802 {
3803 struct btrfs_trans_handle *trans;
3804 struct btrfs_root *root = BTRFS_I(dir)->root;
3805 int ret;
3806
3807 /*
3808 * 1 for the possible orphan item
3809 * 1 for the dir item
3810 * 1 for the dir index
3811 * 1 for the inode ref
3812 * 1 for the inode
3813 */
3814 trans = btrfs_start_transaction(root, 5);
3815 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3816 return trans;
3817
3818 if (PTR_ERR(trans) == -ENOSPC) {
3819 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3820
3821 trans = btrfs_start_transaction(root, 0);
3822 if (IS_ERR(trans))
3823 return trans;
3824 ret = btrfs_cond_migrate_bytes(root->fs_info,
3825 &root->fs_info->trans_block_rsv,
3826 num_bytes, 5);
3827 if (ret) {
3828 btrfs_end_transaction(trans, root);
3829 return ERR_PTR(ret);
3830 }
3831 trans->block_rsv = &root->fs_info->trans_block_rsv;
3832 trans->bytes_reserved = num_bytes;
3833 }
3834 return trans;
3835 }
3836
3837 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3838 {
3839 struct btrfs_root *root = BTRFS_I(dir)->root;
3840 struct btrfs_trans_handle *trans;
3841 struct inode *inode = dentry->d_inode;
3842 int ret;
3843
3844 trans = __unlink_start_trans(dir);
3845 if (IS_ERR(trans))
3846 return PTR_ERR(trans);
3847
3848 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3849
3850 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3851 dentry->d_name.name, dentry->d_name.len);
3852 if (ret)
3853 goto out;
3854
3855 if (inode->i_nlink == 0) {
3856 ret = btrfs_orphan_add(trans, inode);
3857 if (ret)
3858 goto out;
3859 }
3860
3861 out:
3862 btrfs_end_transaction(trans, root);
3863 btrfs_btree_balance_dirty(root);
3864 return ret;
3865 }
3866
3867 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3868 struct btrfs_root *root,
3869 struct inode *dir, u64 objectid,
3870 const char *name, int name_len)
3871 {
3872 struct btrfs_path *path;
3873 struct extent_buffer *leaf;
3874 struct btrfs_dir_item *di;
3875 struct btrfs_key key;
3876 u64 index;
3877 int ret;
3878 u64 dir_ino = btrfs_ino(dir);
3879
3880 path = btrfs_alloc_path();
3881 if (!path)
3882 return -ENOMEM;
3883
3884 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3885 name, name_len, -1);
3886 if (IS_ERR_OR_NULL(di)) {
3887 if (!di)
3888 ret = -ENOENT;
3889 else
3890 ret = PTR_ERR(di);
3891 goto out;
3892 }
3893
3894 leaf = path->nodes[0];
3895 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3896 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3897 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3898 if (ret) {
3899 btrfs_abort_transaction(trans, root, ret);
3900 goto out;
3901 }
3902 btrfs_release_path(path);
3903
3904 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3905 objectid, root->root_key.objectid,
3906 dir_ino, &index, name, name_len);
3907 if (ret < 0) {
3908 if (ret != -ENOENT) {
3909 btrfs_abort_transaction(trans, root, ret);
3910 goto out;
3911 }
3912 di = btrfs_search_dir_index_item(root, path, dir_ino,
3913 name, name_len);
3914 if (IS_ERR_OR_NULL(di)) {
3915 if (!di)
3916 ret = -ENOENT;
3917 else
3918 ret = PTR_ERR(di);
3919 btrfs_abort_transaction(trans, root, ret);
3920 goto out;
3921 }
3922
3923 leaf = path->nodes[0];
3924 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3925 btrfs_release_path(path);
3926 index = key.offset;
3927 }
3928 btrfs_release_path(path);
3929
3930 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3931 if (ret) {
3932 btrfs_abort_transaction(trans, root, ret);
3933 goto out;
3934 }
3935
3936 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3937 inode_inc_iversion(dir);
3938 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3939 ret = btrfs_update_inode_fallback(trans, root, dir);
3940 if (ret)
3941 btrfs_abort_transaction(trans, root, ret);
3942 out:
3943 btrfs_free_path(path);
3944 return ret;
3945 }
3946
3947 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3948 {
3949 struct inode *inode = dentry->d_inode;
3950 int err = 0;
3951 struct btrfs_root *root = BTRFS_I(dir)->root;
3952 struct btrfs_trans_handle *trans;
3953
3954 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3955 return -ENOTEMPTY;
3956 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3957 return -EPERM;
3958
3959 trans = __unlink_start_trans(dir);
3960 if (IS_ERR(trans))
3961 return PTR_ERR(trans);
3962
3963 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3964 err = btrfs_unlink_subvol(trans, root, dir,
3965 BTRFS_I(inode)->location.objectid,
3966 dentry->d_name.name,
3967 dentry->d_name.len);
3968 goto out;
3969 }
3970
3971 err = btrfs_orphan_add(trans, inode);
3972 if (err)
3973 goto out;
3974
3975 /* now the directory is empty */
3976 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3977 dentry->d_name.name, dentry->d_name.len);
3978 if (!err)
3979 btrfs_i_size_write(inode, 0);
3980 out:
3981 btrfs_end_transaction(trans, root);
3982 btrfs_btree_balance_dirty(root);
3983
3984 return err;
3985 }
3986
3987 /*
3988 * this can truncate away extent items, csum items and directory items.
3989 * It starts at a high offset and removes keys until it can't find
3990 * any higher than new_size
3991 *
3992 * csum items that cross the new i_size are truncated to the new size
3993 * as well.
3994 *
3995 * min_type is the minimum key type to truncate down to. If set to 0, this
3996 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3997 */
3998 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3999 struct btrfs_root *root,
4000 struct inode *inode,
4001 u64 new_size, u32 min_type)
4002 {
4003 struct btrfs_path *path;
4004 struct extent_buffer *leaf;
4005 struct btrfs_file_extent_item *fi;
4006 struct btrfs_key key;
4007 struct btrfs_key found_key;
4008 u64 extent_start = 0;
4009 u64 extent_num_bytes = 0;
4010 u64 extent_offset = 0;
4011 u64 item_end = 0;
4012 u64 last_size = (u64)-1;
4013 u32 found_type = (u8)-1;
4014 int found_extent;
4015 int del_item;
4016 int pending_del_nr = 0;
4017 int pending_del_slot = 0;
4018 int extent_type = -1;
4019 int ret;
4020 int err = 0;
4021 u64 ino = btrfs_ino(inode);
4022
4023 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4024
4025 path = btrfs_alloc_path();
4026 if (!path)
4027 return -ENOMEM;
4028 path->reada = -1;
4029
4030 /*
4031 * We want to drop from the next block forward in case this new size is
4032 * not block aligned since we will be keeping the last block of the
4033 * extent just the way it is.
4034 */
4035 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4036 root == root->fs_info->tree_root)
4037 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4038 root->sectorsize), (u64)-1, 0);
4039
4040 /*
4041 * This function is also used to drop the items in the log tree before
4042 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4043 * it is used to drop the loged items. So we shouldn't kill the delayed
4044 * items.
4045 */
4046 if (min_type == 0 && root == BTRFS_I(inode)->root)
4047 btrfs_kill_delayed_inode_items(inode);
4048
4049 key.objectid = ino;
4050 key.offset = (u64)-1;
4051 key.type = (u8)-1;
4052
4053 search_again:
4054 path->leave_spinning = 1;
4055 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4056 if (ret < 0) {
4057 err = ret;
4058 goto out;
4059 }
4060
4061 if (ret > 0) {
4062 /* there are no items in the tree for us to truncate, we're
4063 * done
4064 */
4065 if (path->slots[0] == 0)
4066 goto out;
4067 path->slots[0]--;
4068 }
4069
4070 while (1) {
4071 fi = NULL;
4072 leaf = path->nodes[0];
4073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4074 found_type = btrfs_key_type(&found_key);
4075
4076 if (found_key.objectid != ino)
4077 break;
4078
4079 if (found_type < min_type)
4080 break;
4081
4082 item_end = found_key.offset;
4083 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4084 fi = btrfs_item_ptr(leaf, path->slots[0],
4085 struct btrfs_file_extent_item);
4086 extent_type = btrfs_file_extent_type(leaf, fi);
4087 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4088 item_end +=
4089 btrfs_file_extent_num_bytes(leaf, fi);
4090 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4091 item_end += btrfs_file_extent_inline_len(leaf,
4092 path->slots[0], fi);
4093 }
4094 item_end--;
4095 }
4096 if (found_type > min_type) {
4097 del_item = 1;
4098 } else {
4099 if (item_end < new_size)
4100 break;
4101 if (found_key.offset >= new_size)
4102 del_item = 1;
4103 else
4104 del_item = 0;
4105 }
4106 found_extent = 0;
4107 /* FIXME, shrink the extent if the ref count is only 1 */
4108 if (found_type != BTRFS_EXTENT_DATA_KEY)
4109 goto delete;
4110
4111 if (del_item)
4112 last_size = found_key.offset;
4113 else
4114 last_size = new_size;
4115
4116 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4117 u64 num_dec;
4118 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4119 if (!del_item) {
4120 u64 orig_num_bytes =
4121 btrfs_file_extent_num_bytes(leaf, fi);
4122 extent_num_bytes = ALIGN(new_size -
4123 found_key.offset,
4124 root->sectorsize);
4125 btrfs_set_file_extent_num_bytes(leaf, fi,
4126 extent_num_bytes);
4127 num_dec = (orig_num_bytes -
4128 extent_num_bytes);
4129 if (test_bit(BTRFS_ROOT_REF_COWS,
4130 &root->state) &&
4131 extent_start != 0)
4132 inode_sub_bytes(inode, num_dec);
4133 btrfs_mark_buffer_dirty(leaf);
4134 } else {
4135 extent_num_bytes =
4136 btrfs_file_extent_disk_num_bytes(leaf,
4137 fi);
4138 extent_offset = found_key.offset -
4139 btrfs_file_extent_offset(leaf, fi);
4140
4141 /* FIXME blocksize != 4096 */
4142 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4143 if (extent_start != 0) {
4144 found_extent = 1;
4145 if (test_bit(BTRFS_ROOT_REF_COWS,
4146 &root->state))
4147 inode_sub_bytes(inode, num_dec);
4148 }
4149 }
4150 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4151 /*
4152 * we can't truncate inline items that have had
4153 * special encodings
4154 */
4155 if (!del_item &&
4156 btrfs_file_extent_compression(leaf, fi) == 0 &&
4157 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4158 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4159 u32 size = new_size - found_key.offset;
4160
4161 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4162 inode_sub_bytes(inode, item_end + 1 -
4163 new_size);
4164
4165 /*
4166 * update the ram bytes to properly reflect
4167 * the new size of our item
4168 */
4169 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4170 size =
4171 btrfs_file_extent_calc_inline_size(size);
4172 btrfs_truncate_item(root, path, size, 1);
4173 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4174 &root->state)) {
4175 inode_sub_bytes(inode, item_end + 1 -
4176 found_key.offset);
4177 }
4178 }
4179 delete:
4180 if (del_item) {
4181 if (!pending_del_nr) {
4182 /* no pending yet, add ourselves */
4183 pending_del_slot = path->slots[0];
4184 pending_del_nr = 1;
4185 } else if (pending_del_nr &&
4186 path->slots[0] + 1 == pending_del_slot) {
4187 /* hop on the pending chunk */
4188 pending_del_nr++;
4189 pending_del_slot = path->slots[0];
4190 } else {
4191 BUG();
4192 }
4193 } else {
4194 break;
4195 }
4196 if (found_extent &&
4197 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4198 root == root->fs_info->tree_root)) {
4199 btrfs_set_path_blocking(path);
4200 ret = btrfs_free_extent(trans, root, extent_start,
4201 extent_num_bytes, 0,
4202 btrfs_header_owner(leaf),
4203 ino, extent_offset, 0);
4204 BUG_ON(ret);
4205 }
4206
4207 if (found_type == BTRFS_INODE_ITEM_KEY)
4208 break;
4209
4210 if (path->slots[0] == 0 ||
4211 path->slots[0] != pending_del_slot) {
4212 if (pending_del_nr) {
4213 ret = btrfs_del_items(trans, root, path,
4214 pending_del_slot,
4215 pending_del_nr);
4216 if (ret) {
4217 btrfs_abort_transaction(trans,
4218 root, ret);
4219 goto error;
4220 }
4221 pending_del_nr = 0;
4222 }
4223 btrfs_release_path(path);
4224 goto search_again;
4225 } else {
4226 path->slots[0]--;
4227 }
4228 }
4229 out:
4230 if (pending_del_nr) {
4231 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4232 pending_del_nr);
4233 if (ret)
4234 btrfs_abort_transaction(trans, root, ret);
4235 }
4236 error:
4237 if (last_size != (u64)-1)
4238 btrfs_ordered_update_i_size(inode, last_size, NULL);
4239 btrfs_free_path(path);
4240 return err;
4241 }
4242
4243 /*
4244 * btrfs_truncate_page - read, zero a chunk and write a page
4245 * @inode - inode that we're zeroing
4246 * @from - the offset to start zeroing
4247 * @len - the length to zero, 0 to zero the entire range respective to the
4248 * offset
4249 * @front - zero up to the offset instead of from the offset on
4250 *
4251 * This will find the page for the "from" offset and cow the page and zero the
4252 * part we want to zero. This is used with truncate and hole punching.
4253 */
4254 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4255 int front)
4256 {
4257 struct address_space *mapping = inode->i_mapping;
4258 struct btrfs_root *root = BTRFS_I(inode)->root;
4259 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4260 struct btrfs_ordered_extent *ordered;
4261 struct extent_state *cached_state = NULL;
4262 char *kaddr;
4263 u32 blocksize = root->sectorsize;
4264 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4265 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4266 struct page *page;
4267 gfp_t mask = btrfs_alloc_write_mask(mapping);
4268 int ret = 0;
4269 u64 page_start;
4270 u64 page_end;
4271
4272 if ((offset & (blocksize - 1)) == 0 &&
4273 (!len || ((len & (blocksize - 1)) == 0)))
4274 goto out;
4275 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4276 if (ret)
4277 goto out;
4278
4279 again:
4280 page = find_or_create_page(mapping, index, mask);
4281 if (!page) {
4282 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4283 ret = -ENOMEM;
4284 goto out;
4285 }
4286
4287 page_start = page_offset(page);
4288 page_end = page_start + PAGE_CACHE_SIZE - 1;
4289
4290 if (!PageUptodate(page)) {
4291 ret = btrfs_readpage(NULL, page);
4292 lock_page(page);
4293 if (page->mapping != mapping) {
4294 unlock_page(page);
4295 page_cache_release(page);
4296 goto again;
4297 }
4298 if (!PageUptodate(page)) {
4299 ret = -EIO;
4300 goto out_unlock;
4301 }
4302 }
4303 wait_on_page_writeback(page);
4304
4305 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4306 set_page_extent_mapped(page);
4307
4308 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4309 if (ordered) {
4310 unlock_extent_cached(io_tree, page_start, page_end,
4311 &cached_state, GFP_NOFS);
4312 unlock_page(page);
4313 page_cache_release(page);
4314 btrfs_start_ordered_extent(inode, ordered, 1);
4315 btrfs_put_ordered_extent(ordered);
4316 goto again;
4317 }
4318
4319 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4320 EXTENT_DIRTY | EXTENT_DELALLOC |
4321 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4322 0, 0, &cached_state, GFP_NOFS);
4323
4324 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4325 &cached_state);
4326 if (ret) {
4327 unlock_extent_cached(io_tree, page_start, page_end,
4328 &cached_state, GFP_NOFS);
4329 goto out_unlock;
4330 }
4331
4332 if (offset != PAGE_CACHE_SIZE) {
4333 if (!len)
4334 len = PAGE_CACHE_SIZE - offset;
4335 kaddr = kmap(page);
4336 if (front)
4337 memset(kaddr, 0, offset);
4338 else
4339 memset(kaddr + offset, 0, len);
4340 flush_dcache_page(page);
4341 kunmap(page);
4342 }
4343 ClearPageChecked(page);
4344 set_page_dirty(page);
4345 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4346 GFP_NOFS);
4347
4348 out_unlock:
4349 if (ret)
4350 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4351 unlock_page(page);
4352 page_cache_release(page);
4353 out:
4354 return ret;
4355 }
4356
4357 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4358 u64 offset, u64 len)
4359 {
4360 struct btrfs_trans_handle *trans;
4361 int ret;
4362
4363 /*
4364 * Still need to make sure the inode looks like it's been updated so
4365 * that any holes get logged if we fsync.
4366 */
4367 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4368 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4369 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4370 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4371 return 0;
4372 }
4373
4374 /*
4375 * 1 - for the one we're dropping
4376 * 1 - for the one we're adding
4377 * 1 - for updating the inode.
4378 */
4379 trans = btrfs_start_transaction(root, 3);
4380 if (IS_ERR(trans))
4381 return PTR_ERR(trans);
4382
4383 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4384 if (ret) {
4385 btrfs_abort_transaction(trans, root, ret);
4386 btrfs_end_transaction(trans, root);
4387 return ret;
4388 }
4389
4390 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4391 0, 0, len, 0, len, 0, 0, 0);
4392 if (ret)
4393 btrfs_abort_transaction(trans, root, ret);
4394 else
4395 btrfs_update_inode(trans, root, inode);
4396 btrfs_end_transaction(trans, root);
4397 return ret;
4398 }
4399
4400 /*
4401 * This function puts in dummy file extents for the area we're creating a hole
4402 * for. So if we are truncating this file to a larger size we need to insert
4403 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4404 * the range between oldsize and size
4405 */
4406 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4407 {
4408 struct btrfs_root *root = BTRFS_I(inode)->root;
4409 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4410 struct extent_map *em = NULL;
4411 struct extent_state *cached_state = NULL;
4412 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4413 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4414 u64 block_end = ALIGN(size, root->sectorsize);
4415 u64 last_byte;
4416 u64 cur_offset;
4417 u64 hole_size;
4418 int err = 0;
4419
4420 /*
4421 * If our size started in the middle of a page we need to zero out the
4422 * rest of the page before we expand the i_size, otherwise we could
4423 * expose stale data.
4424 */
4425 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4426 if (err)
4427 return err;
4428
4429 if (size <= hole_start)
4430 return 0;
4431
4432 while (1) {
4433 struct btrfs_ordered_extent *ordered;
4434
4435 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4436 &cached_state);
4437 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4438 block_end - hole_start);
4439 if (!ordered)
4440 break;
4441 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4442 &cached_state, GFP_NOFS);
4443 btrfs_start_ordered_extent(inode, ordered, 1);
4444 btrfs_put_ordered_extent(ordered);
4445 }
4446
4447 cur_offset = hole_start;
4448 while (1) {
4449 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4450 block_end - cur_offset, 0);
4451 if (IS_ERR(em)) {
4452 err = PTR_ERR(em);
4453 em = NULL;
4454 break;
4455 }
4456 last_byte = min(extent_map_end(em), block_end);
4457 last_byte = ALIGN(last_byte , root->sectorsize);
4458 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4459 struct extent_map *hole_em;
4460 hole_size = last_byte - cur_offset;
4461
4462 err = maybe_insert_hole(root, inode, cur_offset,
4463 hole_size);
4464 if (err)
4465 break;
4466 btrfs_drop_extent_cache(inode, cur_offset,
4467 cur_offset + hole_size - 1, 0);
4468 hole_em = alloc_extent_map();
4469 if (!hole_em) {
4470 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4471 &BTRFS_I(inode)->runtime_flags);
4472 goto next;
4473 }
4474 hole_em->start = cur_offset;
4475 hole_em->len = hole_size;
4476 hole_em->orig_start = cur_offset;
4477
4478 hole_em->block_start = EXTENT_MAP_HOLE;
4479 hole_em->block_len = 0;
4480 hole_em->orig_block_len = 0;
4481 hole_em->ram_bytes = hole_size;
4482 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4483 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4484 hole_em->generation = root->fs_info->generation;
4485
4486 while (1) {
4487 write_lock(&em_tree->lock);
4488 err = add_extent_mapping(em_tree, hole_em, 1);
4489 write_unlock(&em_tree->lock);
4490 if (err != -EEXIST)
4491 break;
4492 btrfs_drop_extent_cache(inode, cur_offset,
4493 cur_offset +
4494 hole_size - 1, 0);
4495 }
4496 free_extent_map(hole_em);
4497 }
4498 next:
4499 free_extent_map(em);
4500 em = NULL;
4501 cur_offset = last_byte;
4502 if (cur_offset >= block_end)
4503 break;
4504 }
4505 free_extent_map(em);
4506 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4507 GFP_NOFS);
4508 return err;
4509 }
4510
4511 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4512 {
4513 struct btrfs_root *root = BTRFS_I(inode)->root;
4514 struct btrfs_trans_handle *trans;
4515 loff_t oldsize = i_size_read(inode);
4516 loff_t newsize = attr->ia_size;
4517 int mask = attr->ia_valid;
4518 int ret;
4519
4520 /*
4521 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4522 * special case where we need to update the times despite not having
4523 * these flags set. For all other operations the VFS set these flags
4524 * explicitly if it wants a timestamp update.
4525 */
4526 if (newsize != oldsize) {
4527 inode_inc_iversion(inode);
4528 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4529 inode->i_ctime = inode->i_mtime =
4530 current_fs_time(inode->i_sb);
4531 }
4532
4533 if (newsize > oldsize) {
4534 truncate_pagecache(inode, newsize);
4535 ret = btrfs_cont_expand(inode, oldsize, newsize);
4536 if (ret)
4537 return ret;
4538
4539 trans = btrfs_start_transaction(root, 1);
4540 if (IS_ERR(trans))
4541 return PTR_ERR(trans);
4542
4543 i_size_write(inode, newsize);
4544 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4545 ret = btrfs_update_inode(trans, root, inode);
4546 btrfs_end_transaction(trans, root);
4547 } else {
4548
4549 /*
4550 * We're truncating a file that used to have good data down to
4551 * zero. Make sure it gets into the ordered flush list so that
4552 * any new writes get down to disk quickly.
4553 */
4554 if (newsize == 0)
4555 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4556 &BTRFS_I(inode)->runtime_flags);
4557
4558 /*
4559 * 1 for the orphan item we're going to add
4560 * 1 for the orphan item deletion.
4561 */
4562 trans = btrfs_start_transaction(root, 2);
4563 if (IS_ERR(trans))
4564 return PTR_ERR(trans);
4565
4566 /*
4567 * We need to do this in case we fail at _any_ point during the
4568 * actual truncate. Once we do the truncate_setsize we could
4569 * invalidate pages which forces any outstanding ordered io to
4570 * be instantly completed which will give us extents that need
4571 * to be truncated. If we fail to get an orphan inode down we
4572 * could have left over extents that were never meant to live,
4573 * so we need to garuntee from this point on that everything
4574 * will be consistent.
4575 */
4576 ret = btrfs_orphan_add(trans, inode);
4577 btrfs_end_transaction(trans, root);
4578 if (ret)
4579 return ret;
4580
4581 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4582 truncate_setsize(inode, newsize);
4583
4584 /* Disable nonlocked read DIO to avoid the end less truncate */
4585 btrfs_inode_block_unlocked_dio(inode);
4586 inode_dio_wait(inode);
4587 btrfs_inode_resume_unlocked_dio(inode);
4588
4589 ret = btrfs_truncate(inode);
4590 if (ret && inode->i_nlink) {
4591 int err;
4592
4593 /*
4594 * failed to truncate, disk_i_size is only adjusted down
4595 * as we remove extents, so it should represent the true
4596 * size of the inode, so reset the in memory size and
4597 * delete our orphan entry.
4598 */
4599 trans = btrfs_join_transaction(root);
4600 if (IS_ERR(trans)) {
4601 btrfs_orphan_del(NULL, inode);
4602 return ret;
4603 }
4604 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4605 err = btrfs_orphan_del(trans, inode);
4606 if (err)
4607 btrfs_abort_transaction(trans, root, err);
4608 btrfs_end_transaction(trans, root);
4609 }
4610 }
4611
4612 return ret;
4613 }
4614
4615 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4616 {
4617 struct inode *inode = dentry->d_inode;
4618 struct btrfs_root *root = BTRFS_I(inode)->root;
4619 int err;
4620
4621 if (btrfs_root_readonly(root))
4622 return -EROFS;
4623
4624 err = inode_change_ok(inode, attr);
4625 if (err)
4626 return err;
4627
4628 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4629 err = btrfs_setsize(inode, attr);
4630 if (err)
4631 return err;
4632 }
4633
4634 if (attr->ia_valid) {
4635 setattr_copy(inode, attr);
4636 inode_inc_iversion(inode);
4637 err = btrfs_dirty_inode(inode);
4638
4639 if (!err && attr->ia_valid & ATTR_MODE)
4640 err = posix_acl_chmod(inode, inode->i_mode);
4641 }
4642
4643 return err;
4644 }
4645
4646 /*
4647 * While truncating the inode pages during eviction, we get the VFS calling
4648 * btrfs_invalidatepage() against each page of the inode. This is slow because
4649 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4650 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4651 * extent_state structures over and over, wasting lots of time.
4652 *
4653 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4654 * those expensive operations on a per page basis and do only the ordered io
4655 * finishing, while we release here the extent_map and extent_state structures,
4656 * without the excessive merging and splitting.
4657 */
4658 static void evict_inode_truncate_pages(struct inode *inode)
4659 {
4660 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4661 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4662 struct rb_node *node;
4663
4664 ASSERT(inode->i_state & I_FREEING);
4665 truncate_inode_pages_final(&inode->i_data);
4666
4667 write_lock(&map_tree->lock);
4668 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4669 struct extent_map *em;
4670
4671 node = rb_first(&map_tree->map);
4672 em = rb_entry(node, struct extent_map, rb_node);
4673 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4674 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4675 remove_extent_mapping(map_tree, em);
4676 free_extent_map(em);
4677 if (need_resched()) {
4678 write_unlock(&map_tree->lock);
4679 cond_resched();
4680 write_lock(&map_tree->lock);
4681 }
4682 }
4683 write_unlock(&map_tree->lock);
4684
4685 spin_lock(&io_tree->lock);
4686 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4687 struct extent_state *state;
4688 struct extent_state *cached_state = NULL;
4689
4690 node = rb_first(&io_tree->state);
4691 state = rb_entry(node, struct extent_state, rb_node);
4692 atomic_inc(&state->refs);
4693 spin_unlock(&io_tree->lock);
4694
4695 lock_extent_bits(io_tree, state->start, state->end,
4696 0, &cached_state);
4697 clear_extent_bit(io_tree, state->start, state->end,
4698 EXTENT_LOCKED | EXTENT_DIRTY |
4699 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4700 EXTENT_DEFRAG, 1, 1,
4701 &cached_state, GFP_NOFS);
4702 free_extent_state(state);
4703
4704 cond_resched();
4705 spin_lock(&io_tree->lock);
4706 }
4707 spin_unlock(&io_tree->lock);
4708 }
4709
4710 void btrfs_evict_inode(struct inode *inode)
4711 {
4712 struct btrfs_trans_handle *trans;
4713 struct btrfs_root *root = BTRFS_I(inode)->root;
4714 struct btrfs_block_rsv *rsv, *global_rsv;
4715 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4716 int ret;
4717
4718 trace_btrfs_inode_evict(inode);
4719
4720 evict_inode_truncate_pages(inode);
4721
4722 if (inode->i_nlink &&
4723 ((btrfs_root_refs(&root->root_item) != 0 &&
4724 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4725 btrfs_is_free_space_inode(inode)))
4726 goto no_delete;
4727
4728 if (is_bad_inode(inode)) {
4729 btrfs_orphan_del(NULL, inode);
4730 goto no_delete;
4731 }
4732 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4733 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4734
4735 if (root->fs_info->log_root_recovering) {
4736 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4737 &BTRFS_I(inode)->runtime_flags));
4738 goto no_delete;
4739 }
4740
4741 if (inode->i_nlink > 0) {
4742 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4743 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4744 goto no_delete;
4745 }
4746
4747 ret = btrfs_commit_inode_delayed_inode(inode);
4748 if (ret) {
4749 btrfs_orphan_del(NULL, inode);
4750 goto no_delete;
4751 }
4752
4753 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4754 if (!rsv) {
4755 btrfs_orphan_del(NULL, inode);
4756 goto no_delete;
4757 }
4758 rsv->size = min_size;
4759 rsv->failfast = 1;
4760 global_rsv = &root->fs_info->global_block_rsv;
4761
4762 btrfs_i_size_write(inode, 0);
4763
4764 /*
4765 * This is a bit simpler than btrfs_truncate since we've already
4766 * reserved our space for our orphan item in the unlink, so we just
4767 * need to reserve some slack space in case we add bytes and update
4768 * inode item when doing the truncate.
4769 */
4770 while (1) {
4771 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4772 BTRFS_RESERVE_FLUSH_LIMIT);
4773
4774 /*
4775 * Try and steal from the global reserve since we will
4776 * likely not use this space anyway, we want to try as
4777 * hard as possible to get this to work.
4778 */
4779 if (ret)
4780 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4781
4782 if (ret) {
4783 btrfs_warn(root->fs_info,
4784 "Could not get space for a delete, will truncate on mount %d",
4785 ret);
4786 btrfs_orphan_del(NULL, inode);
4787 btrfs_free_block_rsv(root, rsv);
4788 goto no_delete;
4789 }
4790
4791 trans = btrfs_join_transaction(root);
4792 if (IS_ERR(trans)) {
4793 btrfs_orphan_del(NULL, inode);
4794 btrfs_free_block_rsv(root, rsv);
4795 goto no_delete;
4796 }
4797
4798 trans->block_rsv = rsv;
4799
4800 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4801 if (ret != -ENOSPC)
4802 break;
4803
4804 trans->block_rsv = &root->fs_info->trans_block_rsv;
4805 btrfs_end_transaction(trans, root);
4806 trans = NULL;
4807 btrfs_btree_balance_dirty(root);
4808 }
4809
4810 btrfs_free_block_rsv(root, rsv);
4811
4812 /*
4813 * Errors here aren't a big deal, it just means we leave orphan items
4814 * in the tree. They will be cleaned up on the next mount.
4815 */
4816 if (ret == 0) {
4817 trans->block_rsv = root->orphan_block_rsv;
4818 btrfs_orphan_del(trans, inode);
4819 } else {
4820 btrfs_orphan_del(NULL, inode);
4821 }
4822
4823 trans->block_rsv = &root->fs_info->trans_block_rsv;
4824 if (!(root == root->fs_info->tree_root ||
4825 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4826 btrfs_return_ino(root, btrfs_ino(inode));
4827
4828 btrfs_end_transaction(trans, root);
4829 btrfs_btree_balance_dirty(root);
4830 no_delete:
4831 btrfs_remove_delayed_node(inode);
4832 clear_inode(inode);
4833 return;
4834 }
4835
4836 /*
4837 * this returns the key found in the dir entry in the location pointer.
4838 * If no dir entries were found, location->objectid is 0.
4839 */
4840 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4841 struct btrfs_key *location)
4842 {
4843 const char *name = dentry->d_name.name;
4844 int namelen = dentry->d_name.len;
4845 struct btrfs_dir_item *di;
4846 struct btrfs_path *path;
4847 struct btrfs_root *root = BTRFS_I(dir)->root;
4848 int ret = 0;
4849
4850 path = btrfs_alloc_path();
4851 if (!path)
4852 return -ENOMEM;
4853
4854 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4855 namelen, 0);
4856 if (IS_ERR(di))
4857 ret = PTR_ERR(di);
4858
4859 if (IS_ERR_OR_NULL(di))
4860 goto out_err;
4861
4862 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4863 out:
4864 btrfs_free_path(path);
4865 return ret;
4866 out_err:
4867 location->objectid = 0;
4868 goto out;
4869 }
4870
4871 /*
4872 * when we hit a tree root in a directory, the btrfs part of the inode
4873 * needs to be changed to reflect the root directory of the tree root. This
4874 * is kind of like crossing a mount point.
4875 */
4876 static int fixup_tree_root_location(struct btrfs_root *root,
4877 struct inode *dir,
4878 struct dentry *dentry,
4879 struct btrfs_key *location,
4880 struct btrfs_root **sub_root)
4881 {
4882 struct btrfs_path *path;
4883 struct btrfs_root *new_root;
4884 struct btrfs_root_ref *ref;
4885 struct extent_buffer *leaf;
4886 int ret;
4887 int err = 0;
4888
4889 path = btrfs_alloc_path();
4890 if (!path) {
4891 err = -ENOMEM;
4892 goto out;
4893 }
4894
4895 err = -ENOENT;
4896 ret = btrfs_find_item(root->fs_info->tree_root, path,
4897 BTRFS_I(dir)->root->root_key.objectid,
4898 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4899 if (ret) {
4900 if (ret < 0)
4901 err = ret;
4902 goto out;
4903 }
4904
4905 leaf = path->nodes[0];
4906 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4907 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4908 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4909 goto out;
4910
4911 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4912 (unsigned long)(ref + 1),
4913 dentry->d_name.len);
4914 if (ret)
4915 goto out;
4916
4917 btrfs_release_path(path);
4918
4919 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4920 if (IS_ERR(new_root)) {
4921 err = PTR_ERR(new_root);
4922 goto out;
4923 }
4924
4925 *sub_root = new_root;
4926 location->objectid = btrfs_root_dirid(&new_root->root_item);
4927 location->type = BTRFS_INODE_ITEM_KEY;
4928 location->offset = 0;
4929 err = 0;
4930 out:
4931 btrfs_free_path(path);
4932 return err;
4933 }
4934
4935 static void inode_tree_add(struct inode *inode)
4936 {
4937 struct btrfs_root *root = BTRFS_I(inode)->root;
4938 struct btrfs_inode *entry;
4939 struct rb_node **p;
4940 struct rb_node *parent;
4941 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4942 u64 ino = btrfs_ino(inode);
4943
4944 if (inode_unhashed(inode))
4945 return;
4946 parent = NULL;
4947 spin_lock(&root->inode_lock);
4948 p = &root->inode_tree.rb_node;
4949 while (*p) {
4950 parent = *p;
4951 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4952
4953 if (ino < btrfs_ino(&entry->vfs_inode))
4954 p = &parent->rb_left;
4955 else if (ino > btrfs_ino(&entry->vfs_inode))
4956 p = &parent->rb_right;
4957 else {
4958 WARN_ON(!(entry->vfs_inode.i_state &
4959 (I_WILL_FREE | I_FREEING)));
4960 rb_replace_node(parent, new, &root->inode_tree);
4961 RB_CLEAR_NODE(parent);
4962 spin_unlock(&root->inode_lock);
4963 return;
4964 }
4965 }
4966 rb_link_node(new, parent, p);
4967 rb_insert_color(new, &root->inode_tree);
4968 spin_unlock(&root->inode_lock);
4969 }
4970
4971 static void inode_tree_del(struct inode *inode)
4972 {
4973 struct btrfs_root *root = BTRFS_I(inode)->root;
4974 int empty = 0;
4975
4976 spin_lock(&root->inode_lock);
4977 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4978 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4979 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4980 empty = RB_EMPTY_ROOT(&root->inode_tree);
4981 }
4982 spin_unlock(&root->inode_lock);
4983
4984 if (empty && btrfs_root_refs(&root->root_item) == 0) {
4985 synchronize_srcu(&root->fs_info->subvol_srcu);
4986 spin_lock(&root->inode_lock);
4987 empty = RB_EMPTY_ROOT(&root->inode_tree);
4988 spin_unlock(&root->inode_lock);
4989 if (empty)
4990 btrfs_add_dead_root(root);
4991 }
4992 }
4993
4994 void btrfs_invalidate_inodes(struct btrfs_root *root)
4995 {
4996 struct rb_node *node;
4997 struct rb_node *prev;
4998 struct btrfs_inode *entry;
4999 struct inode *inode;
5000 u64 objectid = 0;
5001
5002 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5003 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5004
5005 spin_lock(&root->inode_lock);
5006 again:
5007 node = root->inode_tree.rb_node;
5008 prev = NULL;
5009 while (node) {
5010 prev = node;
5011 entry = rb_entry(node, struct btrfs_inode, rb_node);
5012
5013 if (objectid < btrfs_ino(&entry->vfs_inode))
5014 node = node->rb_left;
5015 else if (objectid > btrfs_ino(&entry->vfs_inode))
5016 node = node->rb_right;
5017 else
5018 break;
5019 }
5020 if (!node) {
5021 while (prev) {
5022 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5023 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5024 node = prev;
5025 break;
5026 }
5027 prev = rb_next(prev);
5028 }
5029 }
5030 while (node) {
5031 entry = rb_entry(node, struct btrfs_inode, rb_node);
5032 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5033 inode = igrab(&entry->vfs_inode);
5034 if (inode) {
5035 spin_unlock(&root->inode_lock);
5036 if (atomic_read(&inode->i_count) > 1)
5037 d_prune_aliases(inode);
5038 /*
5039 * btrfs_drop_inode will have it removed from
5040 * the inode cache when its usage count
5041 * hits zero.
5042 */
5043 iput(inode);
5044 cond_resched();
5045 spin_lock(&root->inode_lock);
5046 goto again;
5047 }
5048
5049 if (cond_resched_lock(&root->inode_lock))
5050 goto again;
5051
5052 node = rb_next(node);
5053 }
5054 spin_unlock(&root->inode_lock);
5055 }
5056
5057 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5058 {
5059 struct btrfs_iget_args *args = p;
5060 inode->i_ino = args->location->objectid;
5061 memcpy(&BTRFS_I(inode)->location, args->location,
5062 sizeof(*args->location));
5063 BTRFS_I(inode)->root = args->root;
5064 return 0;
5065 }
5066
5067 static int btrfs_find_actor(struct inode *inode, void *opaque)
5068 {
5069 struct btrfs_iget_args *args = opaque;
5070 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5071 args->root == BTRFS_I(inode)->root;
5072 }
5073
5074 static struct inode *btrfs_iget_locked(struct super_block *s,
5075 struct btrfs_key *location,
5076 struct btrfs_root *root)
5077 {
5078 struct inode *inode;
5079 struct btrfs_iget_args args;
5080 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5081
5082 args.location = location;
5083 args.root = root;
5084
5085 inode = iget5_locked(s, hashval, btrfs_find_actor,
5086 btrfs_init_locked_inode,
5087 (void *)&args);
5088 return inode;
5089 }
5090
5091 /* Get an inode object given its location and corresponding root.
5092 * Returns in *is_new if the inode was read from disk
5093 */
5094 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5095 struct btrfs_root *root, int *new)
5096 {
5097 struct inode *inode;
5098
5099 inode = btrfs_iget_locked(s, location, root);
5100 if (!inode)
5101 return ERR_PTR(-ENOMEM);
5102
5103 if (inode->i_state & I_NEW) {
5104 btrfs_read_locked_inode(inode);
5105 if (!is_bad_inode(inode)) {
5106 inode_tree_add(inode);
5107 unlock_new_inode(inode);
5108 if (new)
5109 *new = 1;
5110 } else {
5111 unlock_new_inode(inode);
5112 iput(inode);
5113 inode = ERR_PTR(-ESTALE);
5114 }
5115 }
5116
5117 return inode;
5118 }
5119
5120 static struct inode *new_simple_dir(struct super_block *s,
5121 struct btrfs_key *key,
5122 struct btrfs_root *root)
5123 {
5124 struct inode *inode = new_inode(s);
5125
5126 if (!inode)
5127 return ERR_PTR(-ENOMEM);
5128
5129 BTRFS_I(inode)->root = root;
5130 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5131 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5132
5133 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5134 inode->i_op = &btrfs_dir_ro_inode_operations;
5135 inode->i_fop = &simple_dir_operations;
5136 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5137 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5138
5139 return inode;
5140 }
5141
5142 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5143 {
5144 struct inode *inode;
5145 struct btrfs_root *root = BTRFS_I(dir)->root;
5146 struct btrfs_root *sub_root = root;
5147 struct btrfs_key location;
5148 int index;
5149 int ret = 0;
5150
5151 if (dentry->d_name.len > BTRFS_NAME_LEN)
5152 return ERR_PTR(-ENAMETOOLONG);
5153
5154 ret = btrfs_inode_by_name(dir, dentry, &location);
5155 if (ret < 0)
5156 return ERR_PTR(ret);
5157
5158 if (location.objectid == 0)
5159 return ERR_PTR(-ENOENT);
5160
5161 if (location.type == BTRFS_INODE_ITEM_KEY) {
5162 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5163 return inode;
5164 }
5165
5166 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5167
5168 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5169 ret = fixup_tree_root_location(root, dir, dentry,
5170 &location, &sub_root);
5171 if (ret < 0) {
5172 if (ret != -ENOENT)
5173 inode = ERR_PTR(ret);
5174 else
5175 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5176 } else {
5177 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5178 }
5179 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5180
5181 if (!IS_ERR(inode) && root != sub_root) {
5182 down_read(&root->fs_info->cleanup_work_sem);
5183 if (!(inode->i_sb->s_flags & MS_RDONLY))
5184 ret = btrfs_orphan_cleanup(sub_root);
5185 up_read(&root->fs_info->cleanup_work_sem);
5186 if (ret) {
5187 iput(inode);
5188 inode = ERR_PTR(ret);
5189 }
5190 /*
5191 * If orphan cleanup did remove any orphans, it means the tree
5192 * was modified and therefore the commit root is not the same as
5193 * the current root anymore. This is a problem, because send
5194 * uses the commit root and therefore can see inode items that
5195 * don't exist in the current root anymore, and for example make
5196 * calls to btrfs_iget, which will do tree lookups based on the
5197 * current root and not on the commit root. Those lookups will
5198 * fail, returning a -ESTALE error, and making send fail with
5199 * that error. So make sure a send does not see any orphans we
5200 * have just removed, and that it will see the same inodes
5201 * regardless of whether a transaction commit happened before
5202 * it started (meaning that the commit root will be the same as
5203 * the current root) or not.
5204 */
5205 if (sub_root->node != sub_root->commit_root) {
5206 u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5207
5208 if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5209 struct extent_buffer *eb;
5210
5211 /*
5212 * Assert we can't have races between dentry
5213 * lookup called through the snapshot creation
5214 * ioctl and the VFS.
5215 */
5216 ASSERT(mutex_is_locked(&dir->i_mutex));
5217
5218 down_write(&root->fs_info->commit_root_sem);
5219 eb = sub_root->commit_root;
5220 sub_root->commit_root =
5221 btrfs_root_node(sub_root);
5222 up_write(&root->fs_info->commit_root_sem);
5223 free_extent_buffer(eb);
5224 }
5225 }
5226 }
5227
5228 return inode;
5229 }
5230
5231 static int btrfs_dentry_delete(const struct dentry *dentry)
5232 {
5233 struct btrfs_root *root;
5234 struct inode *inode = dentry->d_inode;
5235
5236 if (!inode && !IS_ROOT(dentry))
5237 inode = dentry->d_parent->d_inode;
5238
5239 if (inode) {
5240 root = BTRFS_I(inode)->root;
5241 if (btrfs_root_refs(&root->root_item) == 0)
5242 return 1;
5243
5244 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5245 return 1;
5246 }
5247 return 0;
5248 }
5249
5250 static void btrfs_dentry_release(struct dentry *dentry)
5251 {
5252 kfree(dentry->d_fsdata);
5253 }
5254
5255 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5256 unsigned int flags)
5257 {
5258 struct inode *inode;
5259
5260 inode = btrfs_lookup_dentry(dir, dentry);
5261 if (IS_ERR(inode)) {
5262 if (PTR_ERR(inode) == -ENOENT)
5263 inode = NULL;
5264 else
5265 return ERR_CAST(inode);
5266 }
5267
5268 return d_materialise_unique(dentry, inode);
5269 }
5270
5271 unsigned char btrfs_filetype_table[] = {
5272 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5273 };
5274
5275 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5276 {
5277 struct inode *inode = file_inode(file);
5278 struct btrfs_root *root = BTRFS_I(inode)->root;
5279 struct btrfs_item *item;
5280 struct btrfs_dir_item *di;
5281 struct btrfs_key key;
5282 struct btrfs_key found_key;
5283 struct btrfs_path *path;
5284 struct list_head ins_list;
5285 struct list_head del_list;
5286 int ret;
5287 struct extent_buffer *leaf;
5288 int slot;
5289 unsigned char d_type;
5290 int over = 0;
5291 u32 di_cur;
5292 u32 di_total;
5293 u32 di_len;
5294 int key_type = BTRFS_DIR_INDEX_KEY;
5295 char tmp_name[32];
5296 char *name_ptr;
5297 int name_len;
5298 int is_curr = 0; /* ctx->pos points to the current index? */
5299
5300 /* FIXME, use a real flag for deciding about the key type */
5301 if (root->fs_info->tree_root == root)
5302 key_type = BTRFS_DIR_ITEM_KEY;
5303
5304 if (!dir_emit_dots(file, ctx))
5305 return 0;
5306
5307 path = btrfs_alloc_path();
5308 if (!path)
5309 return -ENOMEM;
5310
5311 path->reada = 1;
5312
5313 if (key_type == BTRFS_DIR_INDEX_KEY) {
5314 INIT_LIST_HEAD(&ins_list);
5315 INIT_LIST_HEAD(&del_list);
5316 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5317 }
5318
5319 btrfs_set_key_type(&key, key_type);
5320 key.offset = ctx->pos;
5321 key.objectid = btrfs_ino(inode);
5322
5323 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5324 if (ret < 0)
5325 goto err;
5326
5327 while (1) {
5328 leaf = path->nodes[0];
5329 slot = path->slots[0];
5330 if (slot >= btrfs_header_nritems(leaf)) {
5331 ret = btrfs_next_leaf(root, path);
5332 if (ret < 0)
5333 goto err;
5334 else if (ret > 0)
5335 break;
5336 continue;
5337 }
5338
5339 item = btrfs_item_nr(slot);
5340 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5341
5342 if (found_key.objectid != key.objectid)
5343 break;
5344 if (btrfs_key_type(&found_key) != key_type)
5345 break;
5346 if (found_key.offset < ctx->pos)
5347 goto next;
5348 if (key_type == BTRFS_DIR_INDEX_KEY &&
5349 btrfs_should_delete_dir_index(&del_list,
5350 found_key.offset))
5351 goto next;
5352
5353 ctx->pos = found_key.offset;
5354 is_curr = 1;
5355
5356 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5357 di_cur = 0;
5358 di_total = btrfs_item_size(leaf, item);
5359
5360 while (di_cur < di_total) {
5361 struct btrfs_key location;
5362
5363 if (verify_dir_item(root, leaf, di))
5364 break;
5365
5366 name_len = btrfs_dir_name_len(leaf, di);
5367 if (name_len <= sizeof(tmp_name)) {
5368 name_ptr = tmp_name;
5369 } else {
5370 name_ptr = kmalloc(name_len, GFP_NOFS);
5371 if (!name_ptr) {
5372 ret = -ENOMEM;
5373 goto err;
5374 }
5375 }
5376 read_extent_buffer(leaf, name_ptr,
5377 (unsigned long)(di + 1), name_len);
5378
5379 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5380 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5381
5382
5383 /* is this a reference to our own snapshot? If so
5384 * skip it.
5385 *
5386 * In contrast to old kernels, we insert the snapshot's
5387 * dir item and dir index after it has been created, so
5388 * we won't find a reference to our own snapshot. We
5389 * still keep the following code for backward
5390 * compatibility.
5391 */
5392 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5393 location.objectid == root->root_key.objectid) {
5394 over = 0;
5395 goto skip;
5396 }
5397 over = !dir_emit(ctx, name_ptr, name_len,
5398 location.objectid, d_type);
5399
5400 skip:
5401 if (name_ptr != tmp_name)
5402 kfree(name_ptr);
5403
5404 if (over)
5405 goto nopos;
5406 di_len = btrfs_dir_name_len(leaf, di) +
5407 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5408 di_cur += di_len;
5409 di = (struct btrfs_dir_item *)((char *)di + di_len);
5410 }
5411 next:
5412 path->slots[0]++;
5413 }
5414
5415 if (key_type == BTRFS_DIR_INDEX_KEY) {
5416 if (is_curr)
5417 ctx->pos++;
5418 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5419 if (ret)
5420 goto nopos;
5421 }
5422
5423 /* Reached end of directory/root. Bump pos past the last item. */
5424 ctx->pos++;
5425
5426 /*
5427 * Stop new entries from being returned after we return the last
5428 * entry.
5429 *
5430 * New directory entries are assigned a strictly increasing
5431 * offset. This means that new entries created during readdir
5432 * are *guaranteed* to be seen in the future by that readdir.
5433 * This has broken buggy programs which operate on names as
5434 * they're returned by readdir. Until we re-use freed offsets
5435 * we have this hack to stop new entries from being returned
5436 * under the assumption that they'll never reach this huge
5437 * offset.
5438 *
5439 * This is being careful not to overflow 32bit loff_t unless the
5440 * last entry requires it because doing so has broken 32bit apps
5441 * in the past.
5442 */
5443 if (key_type == BTRFS_DIR_INDEX_KEY) {
5444 if (ctx->pos >= INT_MAX)
5445 ctx->pos = LLONG_MAX;
5446 else
5447 ctx->pos = INT_MAX;
5448 }
5449 nopos:
5450 ret = 0;
5451 err:
5452 if (key_type == BTRFS_DIR_INDEX_KEY)
5453 btrfs_put_delayed_items(&ins_list, &del_list);
5454 btrfs_free_path(path);
5455 return ret;
5456 }
5457
5458 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5459 {
5460 struct btrfs_root *root = BTRFS_I(inode)->root;
5461 struct btrfs_trans_handle *trans;
5462 int ret = 0;
5463 bool nolock = false;
5464
5465 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5466 return 0;
5467
5468 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5469 nolock = true;
5470
5471 if (wbc->sync_mode == WB_SYNC_ALL) {
5472 if (nolock)
5473 trans = btrfs_join_transaction_nolock(root);
5474 else
5475 trans = btrfs_join_transaction(root);
5476 if (IS_ERR(trans))
5477 return PTR_ERR(trans);
5478 ret = btrfs_commit_transaction(trans, root);
5479 }
5480 return ret;
5481 }
5482
5483 /*
5484 * This is somewhat expensive, updating the tree every time the
5485 * inode changes. But, it is most likely to find the inode in cache.
5486 * FIXME, needs more benchmarking...there are no reasons other than performance
5487 * to keep or drop this code.
5488 */
5489 static int btrfs_dirty_inode(struct inode *inode)
5490 {
5491 struct btrfs_root *root = BTRFS_I(inode)->root;
5492 struct btrfs_trans_handle *trans;
5493 int ret;
5494
5495 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5496 return 0;
5497
5498 trans = btrfs_join_transaction(root);
5499 if (IS_ERR(trans))
5500 return PTR_ERR(trans);
5501
5502 ret = btrfs_update_inode(trans, root, inode);
5503 if (ret && ret == -ENOSPC) {
5504 /* whoops, lets try again with the full transaction */
5505 btrfs_end_transaction(trans, root);
5506 trans = btrfs_start_transaction(root, 1);
5507 if (IS_ERR(trans))
5508 return PTR_ERR(trans);
5509
5510 ret = btrfs_update_inode(trans, root, inode);
5511 }
5512 btrfs_end_transaction(trans, root);
5513 if (BTRFS_I(inode)->delayed_node)
5514 btrfs_balance_delayed_items(root);
5515
5516 return ret;
5517 }
5518
5519 /*
5520 * This is a copy of file_update_time. We need this so we can return error on
5521 * ENOSPC for updating the inode in the case of file write and mmap writes.
5522 */
5523 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5524 int flags)
5525 {
5526 struct btrfs_root *root = BTRFS_I(inode)->root;
5527
5528 if (btrfs_root_readonly(root))
5529 return -EROFS;
5530
5531 if (flags & S_VERSION)
5532 inode_inc_iversion(inode);
5533 if (flags & S_CTIME)
5534 inode->i_ctime = *now;
5535 if (flags & S_MTIME)
5536 inode->i_mtime = *now;
5537 if (flags & S_ATIME)
5538 inode->i_atime = *now;
5539 return btrfs_dirty_inode(inode);
5540 }
5541
5542 /*
5543 * find the highest existing sequence number in a directory
5544 * and then set the in-memory index_cnt variable to reflect
5545 * free sequence numbers
5546 */
5547 static int btrfs_set_inode_index_count(struct inode *inode)
5548 {
5549 struct btrfs_root *root = BTRFS_I(inode)->root;
5550 struct btrfs_key key, found_key;
5551 struct btrfs_path *path;
5552 struct extent_buffer *leaf;
5553 int ret;
5554
5555 key.objectid = btrfs_ino(inode);
5556 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5557 key.offset = (u64)-1;
5558
5559 path = btrfs_alloc_path();
5560 if (!path)
5561 return -ENOMEM;
5562
5563 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5564 if (ret < 0)
5565 goto out;
5566 /* FIXME: we should be able to handle this */
5567 if (ret == 0)
5568 goto out;
5569 ret = 0;
5570
5571 /*
5572 * MAGIC NUMBER EXPLANATION:
5573 * since we search a directory based on f_pos we have to start at 2
5574 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5575 * else has to start at 2
5576 */
5577 if (path->slots[0] == 0) {
5578 BTRFS_I(inode)->index_cnt = 2;
5579 goto out;
5580 }
5581
5582 path->slots[0]--;
5583
5584 leaf = path->nodes[0];
5585 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5586
5587 if (found_key.objectid != btrfs_ino(inode) ||
5588 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5589 BTRFS_I(inode)->index_cnt = 2;
5590 goto out;
5591 }
5592
5593 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5594 out:
5595 btrfs_free_path(path);
5596 return ret;
5597 }
5598
5599 /*
5600 * helper to find a free sequence number in a given directory. This current
5601 * code is very simple, later versions will do smarter things in the btree
5602 */
5603 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5604 {
5605 int ret = 0;
5606
5607 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5608 ret = btrfs_inode_delayed_dir_index_count(dir);
5609 if (ret) {
5610 ret = btrfs_set_inode_index_count(dir);
5611 if (ret)
5612 return ret;
5613 }
5614 }
5615
5616 *index = BTRFS_I(dir)->index_cnt;
5617 BTRFS_I(dir)->index_cnt++;
5618
5619 return ret;
5620 }
5621
5622 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5623 struct btrfs_root *root,
5624 struct inode *dir,
5625 const char *name, int name_len,
5626 u64 ref_objectid, u64 objectid,
5627 umode_t mode, u64 *index)
5628 {
5629 struct inode *inode;
5630 struct btrfs_inode_item *inode_item;
5631 struct btrfs_key *location;
5632 struct btrfs_path *path;
5633 struct btrfs_inode_ref *ref;
5634 struct btrfs_key key[2];
5635 u32 sizes[2];
5636 int nitems = name ? 2 : 1;
5637 unsigned long ptr;
5638 int ret;
5639
5640 path = btrfs_alloc_path();
5641 if (!path)
5642 return ERR_PTR(-ENOMEM);
5643
5644 inode = new_inode(root->fs_info->sb);
5645 if (!inode) {
5646 btrfs_free_path(path);
5647 return ERR_PTR(-ENOMEM);
5648 }
5649
5650 /*
5651 * O_TMPFILE, set link count to 0, so that after this point,
5652 * we fill in an inode item with the correct link count.
5653 */
5654 if (!name)
5655 set_nlink(inode, 0);
5656
5657 /*
5658 * we have to initialize this early, so we can reclaim the inode
5659 * number if we fail afterwards in this function.
5660 */
5661 inode->i_ino = objectid;
5662
5663 if (dir && name) {
5664 trace_btrfs_inode_request(dir);
5665
5666 ret = btrfs_set_inode_index(dir, index);
5667 if (ret) {
5668 btrfs_free_path(path);
5669 iput(inode);
5670 return ERR_PTR(ret);
5671 }
5672 } else if (dir) {
5673 *index = 0;
5674 }
5675 /*
5676 * index_cnt is ignored for everything but a dir,
5677 * btrfs_get_inode_index_count has an explanation for the magic
5678 * number
5679 */
5680 BTRFS_I(inode)->index_cnt = 2;
5681 BTRFS_I(inode)->dir_index = *index;
5682 BTRFS_I(inode)->root = root;
5683 BTRFS_I(inode)->generation = trans->transid;
5684 inode->i_generation = BTRFS_I(inode)->generation;
5685
5686 /*
5687 * We could have gotten an inode number from somebody who was fsynced
5688 * and then removed in this same transaction, so let's just set full
5689 * sync since it will be a full sync anyway and this will blow away the
5690 * old info in the log.
5691 */
5692 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5693
5694 key[0].objectid = objectid;
5695 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5696 key[0].offset = 0;
5697
5698 sizes[0] = sizeof(struct btrfs_inode_item);
5699
5700 if (name) {
5701 /*
5702 * Start new inodes with an inode_ref. This is slightly more
5703 * efficient for small numbers of hard links since they will
5704 * be packed into one item. Extended refs will kick in if we
5705 * add more hard links than can fit in the ref item.
5706 */
5707 key[1].objectid = objectid;
5708 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5709 key[1].offset = ref_objectid;
5710
5711 sizes[1] = name_len + sizeof(*ref);
5712 }
5713
5714 path->leave_spinning = 1;
5715 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5716 if (ret != 0)
5717 goto fail;
5718
5719 inode_init_owner(inode, dir, mode);
5720 inode_set_bytes(inode, 0);
5721 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5722 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5723 struct btrfs_inode_item);
5724 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5725 sizeof(*inode_item));
5726 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5727
5728 if (name) {
5729 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5730 struct btrfs_inode_ref);
5731 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5732 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5733 ptr = (unsigned long)(ref + 1);
5734 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5735 }
5736
5737 btrfs_mark_buffer_dirty(path->nodes[0]);
5738 btrfs_free_path(path);
5739
5740 location = &BTRFS_I(inode)->location;
5741 location->objectid = objectid;
5742 location->offset = 0;
5743 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5744
5745 btrfs_inherit_iflags(inode, dir);
5746
5747 if (S_ISREG(mode)) {
5748 if (btrfs_test_opt(root, NODATASUM))
5749 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5750 if (btrfs_test_opt(root, NODATACOW))
5751 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5752 BTRFS_INODE_NODATASUM;
5753 }
5754
5755 btrfs_insert_inode_hash(inode);
5756 inode_tree_add(inode);
5757
5758 trace_btrfs_inode_new(inode);
5759 btrfs_set_inode_last_trans(trans, inode);
5760
5761 btrfs_update_root_times(trans, root);
5762
5763 ret = btrfs_inode_inherit_props(trans, inode, dir);
5764 if (ret)
5765 btrfs_err(root->fs_info,
5766 "error inheriting props for ino %llu (root %llu): %d",
5767 btrfs_ino(inode), root->root_key.objectid, ret);
5768
5769 return inode;
5770 fail:
5771 if (dir && name)
5772 BTRFS_I(dir)->index_cnt--;
5773 btrfs_free_path(path);
5774 iput(inode);
5775 return ERR_PTR(ret);
5776 }
5777
5778 static inline u8 btrfs_inode_type(struct inode *inode)
5779 {
5780 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5781 }
5782
5783 /*
5784 * utility function to add 'inode' into 'parent_inode' with
5785 * a give name and a given sequence number.
5786 * if 'add_backref' is true, also insert a backref from the
5787 * inode to the parent directory.
5788 */
5789 int btrfs_add_link(struct btrfs_trans_handle *trans,
5790 struct inode *parent_inode, struct inode *inode,
5791 const char *name, int name_len, int add_backref, u64 index)
5792 {
5793 int ret = 0;
5794 struct btrfs_key key;
5795 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5796 u64 ino = btrfs_ino(inode);
5797 u64 parent_ino = btrfs_ino(parent_inode);
5798
5799 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5800 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5801 } else {
5802 key.objectid = ino;
5803 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5804 key.offset = 0;
5805 }
5806
5807 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5808 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5809 key.objectid, root->root_key.objectid,
5810 parent_ino, index, name, name_len);
5811 } else if (add_backref) {
5812 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5813 parent_ino, index);
5814 }
5815
5816 /* Nothing to clean up yet */
5817 if (ret)
5818 return ret;
5819
5820 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5821 parent_inode, &key,
5822 btrfs_inode_type(inode), index);
5823 if (ret == -EEXIST || ret == -EOVERFLOW)
5824 goto fail_dir_item;
5825 else if (ret) {
5826 btrfs_abort_transaction(trans, root, ret);
5827 return ret;
5828 }
5829
5830 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5831 name_len * 2);
5832 inode_inc_iversion(parent_inode);
5833 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5834 ret = btrfs_update_inode(trans, root, parent_inode);
5835 if (ret)
5836 btrfs_abort_transaction(trans, root, ret);
5837 return ret;
5838
5839 fail_dir_item:
5840 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5841 u64 local_index;
5842 int err;
5843 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5844 key.objectid, root->root_key.objectid,
5845 parent_ino, &local_index, name, name_len);
5846
5847 } else if (add_backref) {
5848 u64 local_index;
5849 int err;
5850
5851 err = btrfs_del_inode_ref(trans, root, name, name_len,
5852 ino, parent_ino, &local_index);
5853 }
5854 return ret;
5855 }
5856
5857 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5858 struct inode *dir, struct dentry *dentry,
5859 struct inode *inode, int backref, u64 index)
5860 {
5861 int err = btrfs_add_link(trans, dir, inode,
5862 dentry->d_name.name, dentry->d_name.len,
5863 backref, index);
5864 if (err > 0)
5865 err = -EEXIST;
5866 return err;
5867 }
5868
5869 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5870 umode_t mode, dev_t rdev)
5871 {
5872 struct btrfs_trans_handle *trans;
5873 struct btrfs_root *root = BTRFS_I(dir)->root;
5874 struct inode *inode = NULL;
5875 int err;
5876 int drop_inode = 0;
5877 u64 objectid;
5878 u64 index = 0;
5879
5880 if (!new_valid_dev(rdev))
5881 return -EINVAL;
5882
5883 /*
5884 * 2 for inode item and ref
5885 * 2 for dir items
5886 * 1 for xattr if selinux is on
5887 */
5888 trans = btrfs_start_transaction(root, 5);
5889 if (IS_ERR(trans))
5890 return PTR_ERR(trans);
5891
5892 err = btrfs_find_free_ino(root, &objectid);
5893 if (err)
5894 goto out_unlock;
5895
5896 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5897 dentry->d_name.len, btrfs_ino(dir), objectid,
5898 mode, &index);
5899 if (IS_ERR(inode)) {
5900 err = PTR_ERR(inode);
5901 goto out_unlock;
5902 }
5903
5904 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5905 if (err) {
5906 drop_inode = 1;
5907 goto out_unlock;
5908 }
5909
5910 /*
5911 * If the active LSM wants to access the inode during
5912 * d_instantiate it needs these. Smack checks to see
5913 * if the filesystem supports xattrs by looking at the
5914 * ops vector.
5915 */
5916
5917 inode->i_op = &btrfs_special_inode_operations;
5918 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5919 if (err)
5920 drop_inode = 1;
5921 else {
5922 init_special_inode(inode, inode->i_mode, rdev);
5923 btrfs_update_inode(trans, root, inode);
5924 d_instantiate(dentry, inode);
5925 }
5926 out_unlock:
5927 btrfs_end_transaction(trans, root);
5928 btrfs_balance_delayed_items(root);
5929 btrfs_btree_balance_dirty(root);
5930 if (drop_inode) {
5931 inode_dec_link_count(inode);
5932 iput(inode);
5933 }
5934 return err;
5935 }
5936
5937 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5938 umode_t mode, bool excl)
5939 {
5940 struct btrfs_trans_handle *trans;
5941 struct btrfs_root *root = BTRFS_I(dir)->root;
5942 struct inode *inode = NULL;
5943 int drop_inode_on_err = 0;
5944 int err;
5945 u64 objectid;
5946 u64 index = 0;
5947
5948 /*
5949 * 2 for inode item and ref
5950 * 2 for dir items
5951 * 1 for xattr if selinux is on
5952 */
5953 trans = btrfs_start_transaction(root, 5);
5954 if (IS_ERR(trans))
5955 return PTR_ERR(trans);
5956
5957 err = btrfs_find_free_ino(root, &objectid);
5958 if (err)
5959 goto out_unlock;
5960
5961 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5962 dentry->d_name.len, btrfs_ino(dir), objectid,
5963 mode, &index);
5964 if (IS_ERR(inode)) {
5965 err = PTR_ERR(inode);
5966 goto out_unlock;
5967 }
5968 drop_inode_on_err = 1;
5969
5970 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5971 if (err)
5972 goto out_unlock;
5973
5974 err = btrfs_update_inode(trans, root, inode);
5975 if (err)
5976 goto out_unlock;
5977
5978 /*
5979 * If the active LSM wants to access the inode during
5980 * d_instantiate it needs these. Smack checks to see
5981 * if the filesystem supports xattrs by looking at the
5982 * ops vector.
5983 */
5984 inode->i_fop = &btrfs_file_operations;
5985 inode->i_op = &btrfs_file_inode_operations;
5986
5987 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5988 if (err)
5989 goto out_unlock;
5990
5991 inode->i_mapping->a_ops = &btrfs_aops;
5992 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5993 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5994 d_instantiate(dentry, inode);
5995
5996 out_unlock:
5997 btrfs_end_transaction(trans, root);
5998 if (err && drop_inode_on_err) {
5999 inode_dec_link_count(inode);
6000 iput(inode);
6001 }
6002 btrfs_balance_delayed_items(root);
6003 btrfs_btree_balance_dirty(root);
6004 return err;
6005 }
6006
6007 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6008 struct dentry *dentry)
6009 {
6010 struct btrfs_trans_handle *trans;
6011 struct btrfs_root *root = BTRFS_I(dir)->root;
6012 struct inode *inode = old_dentry->d_inode;
6013 u64 index;
6014 int err;
6015 int drop_inode = 0;
6016
6017 /* do not allow sys_link's with other subvols of the same device */
6018 if (root->objectid != BTRFS_I(inode)->root->objectid)
6019 return -EXDEV;
6020
6021 if (inode->i_nlink >= BTRFS_LINK_MAX)
6022 return -EMLINK;
6023
6024 err = btrfs_set_inode_index(dir, &index);
6025 if (err)
6026 goto fail;
6027
6028 /*
6029 * 2 items for inode and inode ref
6030 * 2 items for dir items
6031 * 1 item for parent inode
6032 */
6033 trans = btrfs_start_transaction(root, 5);
6034 if (IS_ERR(trans)) {
6035 err = PTR_ERR(trans);
6036 goto fail;
6037 }
6038
6039 /* There are several dir indexes for this inode, clear the cache. */
6040 BTRFS_I(inode)->dir_index = 0ULL;
6041 inc_nlink(inode);
6042 inode_inc_iversion(inode);
6043 inode->i_ctime = CURRENT_TIME;
6044 ihold(inode);
6045 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6046
6047 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6048
6049 if (err) {
6050 drop_inode = 1;
6051 } else {
6052 struct dentry *parent = dentry->d_parent;
6053 err = btrfs_update_inode(trans, root, inode);
6054 if (err)
6055 goto fail;
6056 if (inode->i_nlink == 1) {
6057 /*
6058 * If new hard link count is 1, it's a file created
6059 * with open(2) O_TMPFILE flag.
6060 */
6061 err = btrfs_orphan_del(trans, inode);
6062 if (err)
6063 goto fail;
6064 }
6065 d_instantiate(dentry, inode);
6066 btrfs_log_new_name(trans, inode, NULL, parent);
6067 }
6068
6069 btrfs_end_transaction(trans, root);
6070 btrfs_balance_delayed_items(root);
6071 fail:
6072 if (drop_inode) {
6073 inode_dec_link_count(inode);
6074 iput(inode);
6075 }
6076 btrfs_btree_balance_dirty(root);
6077 return err;
6078 }
6079
6080 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6081 {
6082 struct inode *inode = NULL;
6083 struct btrfs_trans_handle *trans;
6084 struct btrfs_root *root = BTRFS_I(dir)->root;
6085 int err = 0;
6086 int drop_on_err = 0;
6087 u64 objectid = 0;
6088 u64 index = 0;
6089
6090 /*
6091 * 2 items for inode and ref
6092 * 2 items for dir items
6093 * 1 for xattr if selinux is on
6094 */
6095 trans = btrfs_start_transaction(root, 5);
6096 if (IS_ERR(trans))
6097 return PTR_ERR(trans);
6098
6099 err = btrfs_find_free_ino(root, &objectid);
6100 if (err)
6101 goto out_fail;
6102
6103 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6104 dentry->d_name.len, btrfs_ino(dir), objectid,
6105 S_IFDIR | mode, &index);
6106 if (IS_ERR(inode)) {
6107 err = PTR_ERR(inode);
6108 goto out_fail;
6109 }
6110
6111 drop_on_err = 1;
6112
6113 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6114 if (err)
6115 goto out_fail;
6116
6117 inode->i_op = &btrfs_dir_inode_operations;
6118 inode->i_fop = &btrfs_dir_file_operations;
6119
6120 btrfs_i_size_write(inode, 0);
6121 err = btrfs_update_inode(trans, root, inode);
6122 if (err)
6123 goto out_fail;
6124
6125 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6126 dentry->d_name.len, 0, index);
6127 if (err)
6128 goto out_fail;
6129
6130 d_instantiate(dentry, inode);
6131 drop_on_err = 0;
6132
6133 out_fail:
6134 btrfs_end_transaction(trans, root);
6135 if (drop_on_err)
6136 iput(inode);
6137 btrfs_balance_delayed_items(root);
6138 btrfs_btree_balance_dirty(root);
6139 return err;
6140 }
6141
6142 /* helper for btfs_get_extent. Given an existing extent in the tree,
6143 * and an extent that you want to insert, deal with overlap and insert
6144 * the new extent into the tree.
6145 */
6146 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6147 struct extent_map *existing,
6148 struct extent_map *em,
6149 u64 map_start)
6150 {
6151 u64 start_diff;
6152
6153 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6154 start_diff = map_start - em->start;
6155 em->start = map_start;
6156 em->len = existing->start - em->start;
6157 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6158 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6159 em->block_start += start_diff;
6160 em->block_len -= start_diff;
6161 }
6162 return add_extent_mapping(em_tree, em, 0);
6163 }
6164
6165 static noinline int uncompress_inline(struct btrfs_path *path,
6166 struct inode *inode, struct page *page,
6167 size_t pg_offset, u64 extent_offset,
6168 struct btrfs_file_extent_item *item)
6169 {
6170 int ret;
6171 struct extent_buffer *leaf = path->nodes[0];
6172 char *tmp;
6173 size_t max_size;
6174 unsigned long inline_size;
6175 unsigned long ptr;
6176 int compress_type;
6177
6178 WARN_ON(pg_offset != 0);
6179 compress_type = btrfs_file_extent_compression(leaf, item);
6180 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6181 inline_size = btrfs_file_extent_inline_item_len(leaf,
6182 btrfs_item_nr(path->slots[0]));
6183 tmp = kmalloc(inline_size, GFP_NOFS);
6184 if (!tmp)
6185 return -ENOMEM;
6186 ptr = btrfs_file_extent_inline_start(item);
6187
6188 read_extent_buffer(leaf, tmp, ptr, inline_size);
6189
6190 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6191 ret = btrfs_decompress(compress_type, tmp, page,
6192 extent_offset, inline_size, max_size);
6193 kfree(tmp);
6194 return ret;
6195 }
6196
6197 /*
6198 * a bit scary, this does extent mapping from logical file offset to the disk.
6199 * the ugly parts come from merging extents from the disk with the in-ram
6200 * representation. This gets more complex because of the data=ordered code,
6201 * where the in-ram extents might be locked pending data=ordered completion.
6202 *
6203 * This also copies inline extents directly into the page.
6204 */
6205
6206 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6207 size_t pg_offset, u64 start, u64 len,
6208 int create)
6209 {
6210 int ret;
6211 int err = 0;
6212 u64 extent_start = 0;
6213 u64 extent_end = 0;
6214 u64 objectid = btrfs_ino(inode);
6215 u32 found_type;
6216 struct btrfs_path *path = NULL;
6217 struct btrfs_root *root = BTRFS_I(inode)->root;
6218 struct btrfs_file_extent_item *item;
6219 struct extent_buffer *leaf;
6220 struct btrfs_key found_key;
6221 struct extent_map *em = NULL;
6222 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6224 struct btrfs_trans_handle *trans = NULL;
6225 const bool new_inline = !page || create;
6226
6227 again:
6228 read_lock(&em_tree->lock);
6229 em = lookup_extent_mapping(em_tree, start, len);
6230 if (em)
6231 em->bdev = root->fs_info->fs_devices->latest_bdev;
6232 read_unlock(&em_tree->lock);
6233
6234 if (em) {
6235 if (em->start > start || em->start + em->len <= start)
6236 free_extent_map(em);
6237 else if (em->block_start == EXTENT_MAP_INLINE && page)
6238 free_extent_map(em);
6239 else
6240 goto out;
6241 }
6242 em = alloc_extent_map();
6243 if (!em) {
6244 err = -ENOMEM;
6245 goto out;
6246 }
6247 em->bdev = root->fs_info->fs_devices->latest_bdev;
6248 em->start = EXTENT_MAP_HOLE;
6249 em->orig_start = EXTENT_MAP_HOLE;
6250 em->len = (u64)-1;
6251 em->block_len = (u64)-1;
6252
6253 if (!path) {
6254 path = btrfs_alloc_path();
6255 if (!path) {
6256 err = -ENOMEM;
6257 goto out;
6258 }
6259 /*
6260 * Chances are we'll be called again, so go ahead and do
6261 * readahead
6262 */
6263 path->reada = 1;
6264 }
6265
6266 ret = btrfs_lookup_file_extent(trans, root, path,
6267 objectid, start, trans != NULL);
6268 if (ret < 0) {
6269 err = ret;
6270 goto out;
6271 }
6272
6273 if (ret != 0) {
6274 if (path->slots[0] == 0)
6275 goto not_found;
6276 path->slots[0]--;
6277 }
6278
6279 leaf = path->nodes[0];
6280 item = btrfs_item_ptr(leaf, path->slots[0],
6281 struct btrfs_file_extent_item);
6282 /* are we inside the extent that was found? */
6283 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6284 found_type = btrfs_key_type(&found_key);
6285 if (found_key.objectid != objectid ||
6286 found_type != BTRFS_EXTENT_DATA_KEY) {
6287 /*
6288 * If we backup past the first extent we want to move forward
6289 * and see if there is an extent in front of us, otherwise we'll
6290 * say there is a hole for our whole search range which can
6291 * cause problems.
6292 */
6293 extent_end = start;
6294 goto next;
6295 }
6296
6297 found_type = btrfs_file_extent_type(leaf, item);
6298 extent_start = found_key.offset;
6299 if (found_type == BTRFS_FILE_EXTENT_REG ||
6300 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6301 extent_end = extent_start +
6302 btrfs_file_extent_num_bytes(leaf, item);
6303 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6304 size_t size;
6305 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6306 extent_end = ALIGN(extent_start + size, root->sectorsize);
6307 }
6308 next:
6309 if (start >= extent_end) {
6310 path->slots[0]++;
6311 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6312 ret = btrfs_next_leaf(root, path);
6313 if (ret < 0) {
6314 err = ret;
6315 goto out;
6316 }
6317 if (ret > 0)
6318 goto not_found;
6319 leaf = path->nodes[0];
6320 }
6321 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6322 if (found_key.objectid != objectid ||
6323 found_key.type != BTRFS_EXTENT_DATA_KEY)
6324 goto not_found;
6325 if (start + len <= found_key.offset)
6326 goto not_found;
6327 if (start > found_key.offset)
6328 goto next;
6329 em->start = start;
6330 em->orig_start = start;
6331 em->len = found_key.offset - start;
6332 goto not_found_em;
6333 }
6334
6335 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6336
6337 if (found_type == BTRFS_FILE_EXTENT_REG ||
6338 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6339 goto insert;
6340 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6341 unsigned long ptr;
6342 char *map;
6343 size_t size;
6344 size_t extent_offset;
6345 size_t copy_size;
6346
6347 if (new_inline)
6348 goto out;
6349
6350 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6351 extent_offset = page_offset(page) + pg_offset - extent_start;
6352 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6353 size - extent_offset);
6354 em->start = extent_start + extent_offset;
6355 em->len = ALIGN(copy_size, root->sectorsize);
6356 em->orig_block_len = em->len;
6357 em->orig_start = em->start;
6358 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6359 if (create == 0 && !PageUptodate(page)) {
6360 if (btrfs_file_extent_compression(leaf, item) !=
6361 BTRFS_COMPRESS_NONE) {
6362 ret = uncompress_inline(path, inode, page,
6363 pg_offset,
6364 extent_offset, item);
6365 if (ret) {
6366 err = ret;
6367 goto out;
6368 }
6369 } else {
6370 map = kmap(page);
6371 read_extent_buffer(leaf, map + pg_offset, ptr,
6372 copy_size);
6373 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6374 memset(map + pg_offset + copy_size, 0,
6375 PAGE_CACHE_SIZE - pg_offset -
6376 copy_size);
6377 }
6378 kunmap(page);
6379 }
6380 flush_dcache_page(page);
6381 } else if (create && PageUptodate(page)) {
6382 BUG();
6383 if (!trans) {
6384 kunmap(page);
6385 free_extent_map(em);
6386 em = NULL;
6387
6388 btrfs_release_path(path);
6389 trans = btrfs_join_transaction(root);
6390
6391 if (IS_ERR(trans))
6392 return ERR_CAST(trans);
6393 goto again;
6394 }
6395 map = kmap(page);
6396 write_extent_buffer(leaf, map + pg_offset, ptr,
6397 copy_size);
6398 kunmap(page);
6399 btrfs_mark_buffer_dirty(leaf);
6400 }
6401 set_extent_uptodate(io_tree, em->start,
6402 extent_map_end(em) - 1, NULL, GFP_NOFS);
6403 goto insert;
6404 }
6405 not_found:
6406 em->start = start;
6407 em->orig_start = start;
6408 em->len = len;
6409 not_found_em:
6410 em->block_start = EXTENT_MAP_HOLE;
6411 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6412 insert:
6413 btrfs_release_path(path);
6414 if (em->start > start || extent_map_end(em) <= start) {
6415 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6416 em->start, em->len, start, len);
6417 err = -EIO;
6418 goto out;
6419 }
6420
6421 err = 0;
6422 write_lock(&em_tree->lock);
6423 ret = add_extent_mapping(em_tree, em, 0);
6424 /* it is possible that someone inserted the extent into the tree
6425 * while we had the lock dropped. It is also possible that
6426 * an overlapping map exists in the tree
6427 */
6428 if (ret == -EEXIST) {
6429 struct extent_map *existing;
6430
6431 ret = 0;
6432
6433 existing = lookup_extent_mapping(em_tree, start, len);
6434 if (existing && (existing->start > start ||
6435 existing->start + existing->len <= start)) {
6436 free_extent_map(existing);
6437 existing = NULL;
6438 }
6439 if (!existing) {
6440 existing = lookup_extent_mapping(em_tree, em->start,
6441 em->len);
6442 if (existing) {
6443 err = merge_extent_mapping(em_tree, existing,
6444 em, start);
6445 free_extent_map(existing);
6446 if (err) {
6447 free_extent_map(em);
6448 em = NULL;
6449 }
6450 } else {
6451 err = -EIO;
6452 free_extent_map(em);
6453 em = NULL;
6454 }
6455 } else {
6456 free_extent_map(em);
6457 em = existing;
6458 err = 0;
6459 }
6460 }
6461 write_unlock(&em_tree->lock);
6462 out:
6463
6464 trace_btrfs_get_extent(root, em);
6465
6466 if (path)
6467 btrfs_free_path(path);
6468 if (trans) {
6469 ret = btrfs_end_transaction(trans, root);
6470 if (!err)
6471 err = ret;
6472 }
6473 if (err) {
6474 free_extent_map(em);
6475 return ERR_PTR(err);
6476 }
6477 BUG_ON(!em); /* Error is always set */
6478 return em;
6479 }
6480
6481 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6482 size_t pg_offset, u64 start, u64 len,
6483 int create)
6484 {
6485 struct extent_map *em;
6486 struct extent_map *hole_em = NULL;
6487 u64 range_start = start;
6488 u64 end;
6489 u64 found;
6490 u64 found_end;
6491 int err = 0;
6492
6493 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6494 if (IS_ERR(em))
6495 return em;
6496 if (em) {
6497 /*
6498 * if our em maps to
6499 * - a hole or
6500 * - a pre-alloc extent,
6501 * there might actually be delalloc bytes behind it.
6502 */
6503 if (em->block_start != EXTENT_MAP_HOLE &&
6504 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6505 return em;
6506 else
6507 hole_em = em;
6508 }
6509
6510 /* check to see if we've wrapped (len == -1 or similar) */
6511 end = start + len;
6512 if (end < start)
6513 end = (u64)-1;
6514 else
6515 end -= 1;
6516
6517 em = NULL;
6518
6519 /* ok, we didn't find anything, lets look for delalloc */
6520 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6521 end, len, EXTENT_DELALLOC, 1);
6522 found_end = range_start + found;
6523 if (found_end < range_start)
6524 found_end = (u64)-1;
6525
6526 /*
6527 * we didn't find anything useful, return
6528 * the original results from get_extent()
6529 */
6530 if (range_start > end || found_end <= start) {
6531 em = hole_em;
6532 hole_em = NULL;
6533 goto out;
6534 }
6535
6536 /* adjust the range_start to make sure it doesn't
6537 * go backwards from the start they passed in
6538 */
6539 range_start = max(start, range_start);
6540 found = found_end - range_start;
6541
6542 if (found > 0) {
6543 u64 hole_start = start;
6544 u64 hole_len = len;
6545
6546 em = alloc_extent_map();
6547 if (!em) {
6548 err = -ENOMEM;
6549 goto out;
6550 }
6551 /*
6552 * when btrfs_get_extent can't find anything it
6553 * returns one huge hole
6554 *
6555 * make sure what it found really fits our range, and
6556 * adjust to make sure it is based on the start from
6557 * the caller
6558 */
6559 if (hole_em) {
6560 u64 calc_end = extent_map_end(hole_em);
6561
6562 if (calc_end <= start || (hole_em->start > end)) {
6563 free_extent_map(hole_em);
6564 hole_em = NULL;
6565 } else {
6566 hole_start = max(hole_em->start, start);
6567 hole_len = calc_end - hole_start;
6568 }
6569 }
6570 em->bdev = NULL;
6571 if (hole_em && range_start > hole_start) {
6572 /* our hole starts before our delalloc, so we
6573 * have to return just the parts of the hole
6574 * that go until the delalloc starts
6575 */
6576 em->len = min(hole_len,
6577 range_start - hole_start);
6578 em->start = hole_start;
6579 em->orig_start = hole_start;
6580 /*
6581 * don't adjust block start at all,
6582 * it is fixed at EXTENT_MAP_HOLE
6583 */
6584 em->block_start = hole_em->block_start;
6585 em->block_len = hole_len;
6586 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6587 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6588 } else {
6589 em->start = range_start;
6590 em->len = found;
6591 em->orig_start = range_start;
6592 em->block_start = EXTENT_MAP_DELALLOC;
6593 em->block_len = found;
6594 }
6595 } else if (hole_em) {
6596 return hole_em;
6597 }
6598 out:
6599
6600 free_extent_map(hole_em);
6601 if (err) {
6602 free_extent_map(em);
6603 return ERR_PTR(err);
6604 }
6605 return em;
6606 }
6607
6608 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6609 u64 start, u64 len)
6610 {
6611 struct btrfs_root *root = BTRFS_I(inode)->root;
6612 struct extent_map *em;
6613 struct btrfs_key ins;
6614 u64 alloc_hint;
6615 int ret;
6616
6617 alloc_hint = get_extent_allocation_hint(inode, start, len);
6618 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6619 alloc_hint, &ins, 1, 1);
6620 if (ret)
6621 return ERR_PTR(ret);
6622
6623 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6624 ins.offset, ins.offset, ins.offset, 0);
6625 if (IS_ERR(em)) {
6626 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6627 return em;
6628 }
6629
6630 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6631 ins.offset, ins.offset, 0);
6632 if (ret) {
6633 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6634 free_extent_map(em);
6635 return ERR_PTR(ret);
6636 }
6637
6638 return em;
6639 }
6640
6641 /*
6642 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6643 * block must be cow'd
6644 */
6645 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6646 u64 *orig_start, u64 *orig_block_len,
6647 u64 *ram_bytes)
6648 {
6649 struct btrfs_trans_handle *trans;
6650 struct btrfs_path *path;
6651 int ret;
6652 struct extent_buffer *leaf;
6653 struct btrfs_root *root = BTRFS_I(inode)->root;
6654 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6655 struct btrfs_file_extent_item *fi;
6656 struct btrfs_key key;
6657 u64 disk_bytenr;
6658 u64 backref_offset;
6659 u64 extent_end;
6660 u64 num_bytes;
6661 int slot;
6662 int found_type;
6663 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6664
6665 path = btrfs_alloc_path();
6666 if (!path)
6667 return -ENOMEM;
6668
6669 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6670 offset, 0);
6671 if (ret < 0)
6672 goto out;
6673
6674 slot = path->slots[0];
6675 if (ret == 1) {
6676 if (slot == 0) {
6677 /* can't find the item, must cow */
6678 ret = 0;
6679 goto out;
6680 }
6681 slot--;
6682 }
6683 ret = 0;
6684 leaf = path->nodes[0];
6685 btrfs_item_key_to_cpu(leaf, &key, slot);
6686 if (key.objectid != btrfs_ino(inode) ||
6687 key.type != BTRFS_EXTENT_DATA_KEY) {
6688 /* not our file or wrong item type, must cow */
6689 goto out;
6690 }
6691
6692 if (key.offset > offset) {
6693 /* Wrong offset, must cow */
6694 goto out;
6695 }
6696
6697 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6698 found_type = btrfs_file_extent_type(leaf, fi);
6699 if (found_type != BTRFS_FILE_EXTENT_REG &&
6700 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6701 /* not a regular extent, must cow */
6702 goto out;
6703 }
6704
6705 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6706 goto out;
6707
6708 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6709 if (extent_end <= offset)
6710 goto out;
6711
6712 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6713 if (disk_bytenr == 0)
6714 goto out;
6715
6716 if (btrfs_file_extent_compression(leaf, fi) ||
6717 btrfs_file_extent_encryption(leaf, fi) ||
6718 btrfs_file_extent_other_encoding(leaf, fi))
6719 goto out;
6720
6721 backref_offset = btrfs_file_extent_offset(leaf, fi);
6722
6723 if (orig_start) {
6724 *orig_start = key.offset - backref_offset;
6725 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6726 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6727 }
6728
6729 if (btrfs_extent_readonly(root, disk_bytenr))
6730 goto out;
6731
6732 num_bytes = min(offset + *len, extent_end) - offset;
6733 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6734 u64 range_end;
6735
6736 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6737 ret = test_range_bit(io_tree, offset, range_end,
6738 EXTENT_DELALLOC, 0, NULL);
6739 if (ret) {
6740 ret = -EAGAIN;
6741 goto out;
6742 }
6743 }
6744
6745 btrfs_release_path(path);
6746
6747 /*
6748 * look for other files referencing this extent, if we
6749 * find any we must cow
6750 */
6751 trans = btrfs_join_transaction(root);
6752 if (IS_ERR(trans)) {
6753 ret = 0;
6754 goto out;
6755 }
6756
6757 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6758 key.offset - backref_offset, disk_bytenr);
6759 btrfs_end_transaction(trans, root);
6760 if (ret) {
6761 ret = 0;
6762 goto out;
6763 }
6764
6765 /*
6766 * adjust disk_bytenr and num_bytes to cover just the bytes
6767 * in this extent we are about to write. If there
6768 * are any csums in that range we have to cow in order
6769 * to keep the csums correct
6770 */
6771 disk_bytenr += backref_offset;
6772 disk_bytenr += offset - key.offset;
6773 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6774 goto out;
6775 /*
6776 * all of the above have passed, it is safe to overwrite this extent
6777 * without cow
6778 */
6779 *len = num_bytes;
6780 ret = 1;
6781 out:
6782 btrfs_free_path(path);
6783 return ret;
6784 }
6785
6786 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6787 {
6788 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6789 int found = false;
6790 void **pagep = NULL;
6791 struct page *page = NULL;
6792 int start_idx;
6793 int end_idx;
6794
6795 start_idx = start >> PAGE_CACHE_SHIFT;
6796
6797 /*
6798 * end is the last byte in the last page. end == start is legal
6799 */
6800 end_idx = end >> PAGE_CACHE_SHIFT;
6801
6802 rcu_read_lock();
6803
6804 /* Most of the code in this while loop is lifted from
6805 * find_get_page. It's been modified to begin searching from a
6806 * page and return just the first page found in that range. If the
6807 * found idx is less than or equal to the end idx then we know that
6808 * a page exists. If no pages are found or if those pages are
6809 * outside of the range then we're fine (yay!) */
6810 while (page == NULL &&
6811 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6812 page = radix_tree_deref_slot(pagep);
6813 if (unlikely(!page))
6814 break;
6815
6816 if (radix_tree_exception(page)) {
6817 if (radix_tree_deref_retry(page)) {
6818 page = NULL;
6819 continue;
6820 }
6821 /*
6822 * Otherwise, shmem/tmpfs must be storing a swap entry
6823 * here as an exceptional entry: so return it without
6824 * attempting to raise page count.
6825 */
6826 page = NULL;
6827 break; /* TODO: Is this relevant for this use case? */
6828 }
6829
6830 if (!page_cache_get_speculative(page)) {
6831 page = NULL;
6832 continue;
6833 }
6834
6835 /*
6836 * Has the page moved?
6837 * This is part of the lockless pagecache protocol. See
6838 * include/linux/pagemap.h for details.
6839 */
6840 if (unlikely(page != *pagep)) {
6841 page_cache_release(page);
6842 page = NULL;
6843 }
6844 }
6845
6846 if (page) {
6847 if (page->index <= end_idx)
6848 found = true;
6849 page_cache_release(page);
6850 }
6851
6852 rcu_read_unlock();
6853 return found;
6854 }
6855
6856 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6857 struct extent_state **cached_state, int writing)
6858 {
6859 struct btrfs_ordered_extent *ordered;
6860 int ret = 0;
6861
6862 while (1) {
6863 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6864 0, cached_state);
6865 /*
6866 * We're concerned with the entire range that we're going to be
6867 * doing DIO to, so we need to make sure theres no ordered
6868 * extents in this range.
6869 */
6870 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6871 lockend - lockstart + 1);
6872
6873 /*
6874 * We need to make sure there are no buffered pages in this
6875 * range either, we could have raced between the invalidate in
6876 * generic_file_direct_write and locking the extent. The
6877 * invalidate needs to happen so that reads after a write do not
6878 * get stale data.
6879 */
6880 if (!ordered &&
6881 (!writing ||
6882 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6883 break;
6884
6885 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6886 cached_state, GFP_NOFS);
6887
6888 if (ordered) {
6889 btrfs_start_ordered_extent(inode, ordered, 1);
6890 btrfs_put_ordered_extent(ordered);
6891 } else {
6892 /* Screw you mmap */
6893 ret = filemap_write_and_wait_range(inode->i_mapping,
6894 lockstart,
6895 lockend);
6896 if (ret)
6897 break;
6898
6899 /*
6900 * If we found a page that couldn't be invalidated just
6901 * fall back to buffered.
6902 */
6903 ret = invalidate_inode_pages2_range(inode->i_mapping,
6904 lockstart >> PAGE_CACHE_SHIFT,
6905 lockend >> PAGE_CACHE_SHIFT);
6906 if (ret)
6907 break;
6908 }
6909
6910 cond_resched();
6911 }
6912
6913 return ret;
6914 }
6915
6916 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6917 u64 len, u64 orig_start,
6918 u64 block_start, u64 block_len,
6919 u64 orig_block_len, u64 ram_bytes,
6920 int type)
6921 {
6922 struct extent_map_tree *em_tree;
6923 struct extent_map *em;
6924 struct btrfs_root *root = BTRFS_I(inode)->root;
6925 int ret;
6926
6927 em_tree = &BTRFS_I(inode)->extent_tree;
6928 em = alloc_extent_map();
6929 if (!em)
6930 return ERR_PTR(-ENOMEM);
6931
6932 em->start = start;
6933 em->orig_start = orig_start;
6934 em->mod_start = start;
6935 em->mod_len = len;
6936 em->len = len;
6937 em->block_len = block_len;
6938 em->block_start = block_start;
6939 em->bdev = root->fs_info->fs_devices->latest_bdev;
6940 em->orig_block_len = orig_block_len;
6941 em->ram_bytes = ram_bytes;
6942 em->generation = -1;
6943 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6944 if (type == BTRFS_ORDERED_PREALLOC)
6945 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6946
6947 do {
6948 btrfs_drop_extent_cache(inode, em->start,
6949 em->start + em->len - 1, 0);
6950 write_lock(&em_tree->lock);
6951 ret = add_extent_mapping(em_tree, em, 1);
6952 write_unlock(&em_tree->lock);
6953 } while (ret == -EEXIST);
6954
6955 if (ret) {
6956 free_extent_map(em);
6957 return ERR_PTR(ret);
6958 }
6959
6960 return em;
6961 }
6962
6963
6964 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6965 struct buffer_head *bh_result, int create)
6966 {
6967 struct extent_map *em;
6968 struct btrfs_root *root = BTRFS_I(inode)->root;
6969 struct extent_state *cached_state = NULL;
6970 u64 start = iblock << inode->i_blkbits;
6971 u64 lockstart, lockend;
6972 u64 len = bh_result->b_size;
6973 int unlock_bits = EXTENT_LOCKED;
6974 int ret = 0;
6975
6976 if (create)
6977 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6978 else
6979 len = min_t(u64, len, root->sectorsize);
6980
6981 lockstart = start;
6982 lockend = start + len - 1;
6983
6984 /*
6985 * If this errors out it's because we couldn't invalidate pagecache for
6986 * this range and we need to fallback to buffered.
6987 */
6988 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6989 return -ENOTBLK;
6990
6991 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6992 if (IS_ERR(em)) {
6993 ret = PTR_ERR(em);
6994 goto unlock_err;
6995 }
6996
6997 /*
6998 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6999 * io. INLINE is special, and we could probably kludge it in here, but
7000 * it's still buffered so for safety lets just fall back to the generic
7001 * buffered path.
7002 *
7003 * For COMPRESSED we _have_ to read the entire extent in so we can
7004 * decompress it, so there will be buffering required no matter what we
7005 * do, so go ahead and fallback to buffered.
7006 *
7007 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7008 * to buffered IO. Don't blame me, this is the price we pay for using
7009 * the generic code.
7010 */
7011 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7012 em->block_start == EXTENT_MAP_INLINE) {
7013 free_extent_map(em);
7014 ret = -ENOTBLK;
7015 goto unlock_err;
7016 }
7017
7018 /* Just a good old fashioned hole, return */
7019 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7020 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7021 free_extent_map(em);
7022 goto unlock_err;
7023 }
7024
7025 /*
7026 * We don't allocate a new extent in the following cases
7027 *
7028 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7029 * existing extent.
7030 * 2) The extent is marked as PREALLOC. We're good to go here and can
7031 * just use the extent.
7032 *
7033 */
7034 if (!create) {
7035 len = min(len, em->len - (start - em->start));
7036 lockstart = start + len;
7037 goto unlock;
7038 }
7039
7040 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7041 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7042 em->block_start != EXTENT_MAP_HOLE)) {
7043 int type;
7044 int ret;
7045 u64 block_start, orig_start, orig_block_len, ram_bytes;
7046
7047 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7048 type = BTRFS_ORDERED_PREALLOC;
7049 else
7050 type = BTRFS_ORDERED_NOCOW;
7051 len = min(len, em->len - (start - em->start));
7052 block_start = em->block_start + (start - em->start);
7053
7054 if (can_nocow_extent(inode, start, &len, &orig_start,
7055 &orig_block_len, &ram_bytes) == 1) {
7056 if (type == BTRFS_ORDERED_PREALLOC) {
7057 free_extent_map(em);
7058 em = create_pinned_em(inode, start, len,
7059 orig_start,
7060 block_start, len,
7061 orig_block_len,
7062 ram_bytes, type);
7063 if (IS_ERR(em))
7064 goto unlock_err;
7065 }
7066
7067 ret = btrfs_add_ordered_extent_dio(inode, start,
7068 block_start, len, len, type);
7069 if (ret) {
7070 free_extent_map(em);
7071 goto unlock_err;
7072 }
7073 goto unlock;
7074 }
7075 }
7076
7077 /*
7078 * this will cow the extent, reset the len in case we changed
7079 * it above
7080 */
7081 len = bh_result->b_size;
7082 free_extent_map(em);
7083 em = btrfs_new_extent_direct(inode, start, len);
7084 if (IS_ERR(em)) {
7085 ret = PTR_ERR(em);
7086 goto unlock_err;
7087 }
7088 len = min(len, em->len - (start - em->start));
7089 unlock:
7090 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7091 inode->i_blkbits;
7092 bh_result->b_size = len;
7093 bh_result->b_bdev = em->bdev;
7094 set_buffer_mapped(bh_result);
7095 if (create) {
7096 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7097 set_buffer_new(bh_result);
7098
7099 /*
7100 * Need to update the i_size under the extent lock so buffered
7101 * readers will get the updated i_size when we unlock.
7102 */
7103 if (start + len > i_size_read(inode))
7104 i_size_write(inode, start + len);
7105
7106 spin_lock(&BTRFS_I(inode)->lock);
7107 BTRFS_I(inode)->outstanding_extents++;
7108 spin_unlock(&BTRFS_I(inode)->lock);
7109
7110 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7111 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7112 &cached_state, GFP_NOFS);
7113 BUG_ON(ret);
7114 }
7115
7116 /*
7117 * In the case of write we need to clear and unlock the entire range,
7118 * in the case of read we need to unlock only the end area that we
7119 * aren't using if there is any left over space.
7120 */
7121 if (lockstart < lockend) {
7122 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7123 lockend, unlock_bits, 1, 0,
7124 &cached_state, GFP_NOFS);
7125 } else {
7126 free_extent_state(cached_state);
7127 }
7128
7129 free_extent_map(em);
7130
7131 return 0;
7132
7133 unlock_err:
7134 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7135 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7136 return ret;
7137 }
7138
7139 static void btrfs_endio_direct_read(struct bio *bio, int err)
7140 {
7141 struct btrfs_dio_private *dip = bio->bi_private;
7142 struct bio_vec *bvec;
7143 struct inode *inode = dip->inode;
7144 struct btrfs_root *root = BTRFS_I(inode)->root;
7145 struct bio *dio_bio;
7146 u32 *csums = (u32 *)dip->csum;
7147 u64 start;
7148 int i;
7149
7150 start = dip->logical_offset;
7151 bio_for_each_segment_all(bvec, bio, i) {
7152 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7153 struct page *page = bvec->bv_page;
7154 char *kaddr;
7155 u32 csum = ~(u32)0;
7156 unsigned long flags;
7157
7158 local_irq_save(flags);
7159 kaddr = kmap_atomic(page);
7160 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
7161 csum, bvec->bv_len);
7162 btrfs_csum_final(csum, (char *)&csum);
7163 kunmap_atomic(kaddr);
7164 local_irq_restore(flags);
7165
7166 flush_dcache_page(bvec->bv_page);
7167 if (csum != csums[i]) {
7168 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
7169 btrfs_ino(inode), start, csum,
7170 csums[i]);
7171 err = -EIO;
7172 }
7173 }
7174
7175 start += bvec->bv_len;
7176 }
7177
7178 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7179 dip->logical_offset + dip->bytes - 1);
7180 dio_bio = dip->dio_bio;
7181
7182 kfree(dip);
7183
7184 /* If we had a csum failure make sure to clear the uptodate flag */
7185 if (err)
7186 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7187 dio_end_io(dio_bio, err);
7188 bio_put(bio);
7189 }
7190
7191 static void btrfs_endio_direct_write(struct bio *bio, int err)
7192 {
7193 struct btrfs_dio_private *dip = bio->bi_private;
7194 struct inode *inode = dip->inode;
7195 struct btrfs_root *root = BTRFS_I(inode)->root;
7196 struct btrfs_ordered_extent *ordered = NULL;
7197 u64 ordered_offset = dip->logical_offset;
7198 u64 ordered_bytes = dip->bytes;
7199 struct bio *dio_bio;
7200 int ret;
7201
7202 if (err)
7203 goto out_done;
7204 again:
7205 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7206 &ordered_offset,
7207 ordered_bytes, !err);
7208 if (!ret)
7209 goto out_test;
7210
7211 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
7212 btrfs_queue_work(root->fs_info->endio_write_workers,
7213 &ordered->work);
7214 out_test:
7215 /*
7216 * our bio might span multiple ordered extents. If we haven't
7217 * completed the accounting for the whole dio, go back and try again
7218 */
7219 if (ordered_offset < dip->logical_offset + dip->bytes) {
7220 ordered_bytes = dip->logical_offset + dip->bytes -
7221 ordered_offset;
7222 ordered = NULL;
7223 goto again;
7224 }
7225 out_done:
7226 dio_bio = dip->dio_bio;
7227
7228 kfree(dip);
7229
7230 /* If we had an error make sure to clear the uptodate flag */
7231 if (err)
7232 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7233 dio_end_io(dio_bio, err);
7234 bio_put(bio);
7235 }
7236
7237 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7238 struct bio *bio, int mirror_num,
7239 unsigned long bio_flags, u64 offset)
7240 {
7241 int ret;
7242 struct btrfs_root *root = BTRFS_I(inode)->root;
7243 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7244 BUG_ON(ret); /* -ENOMEM */
7245 return 0;
7246 }
7247
7248 static void btrfs_end_dio_bio(struct bio *bio, int err)
7249 {
7250 struct btrfs_dio_private *dip = bio->bi_private;
7251
7252 if (err) {
7253 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7254 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7255 btrfs_ino(dip->inode), bio->bi_rw,
7256 (unsigned long long)bio->bi_iter.bi_sector,
7257 bio->bi_iter.bi_size, err);
7258 dip->errors = 1;
7259
7260 /*
7261 * before atomic variable goto zero, we must make sure
7262 * dip->errors is perceived to be set.
7263 */
7264 smp_mb__before_atomic();
7265 }
7266
7267 /* if there are more bios still pending for this dio, just exit */
7268 if (!atomic_dec_and_test(&dip->pending_bios))
7269 goto out;
7270
7271 if (dip->errors) {
7272 bio_io_error(dip->orig_bio);
7273 } else {
7274 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7275 bio_endio(dip->orig_bio, 0);
7276 }
7277 out:
7278 bio_put(bio);
7279 }
7280
7281 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7282 u64 first_sector, gfp_t gfp_flags)
7283 {
7284 int nr_vecs = bio_get_nr_vecs(bdev);
7285 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7286 }
7287
7288 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7289 int rw, u64 file_offset, int skip_sum,
7290 int async_submit)
7291 {
7292 struct btrfs_dio_private *dip = bio->bi_private;
7293 int write = rw & REQ_WRITE;
7294 struct btrfs_root *root = BTRFS_I(inode)->root;
7295 int ret;
7296
7297 if (async_submit)
7298 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7299
7300 bio_get(bio);
7301
7302 if (!write) {
7303 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7304 if (ret)
7305 goto err;
7306 }
7307
7308 if (skip_sum)
7309 goto map;
7310
7311 if (write && async_submit) {
7312 ret = btrfs_wq_submit_bio(root->fs_info,
7313 inode, rw, bio, 0, 0,
7314 file_offset,
7315 __btrfs_submit_bio_start_direct_io,
7316 __btrfs_submit_bio_done);
7317 goto err;
7318 } else if (write) {
7319 /*
7320 * If we aren't doing async submit, calculate the csum of the
7321 * bio now.
7322 */
7323 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7324 if (ret)
7325 goto err;
7326 } else if (!skip_sum) {
7327 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7328 file_offset);
7329 if (ret)
7330 goto err;
7331 }
7332
7333 map:
7334 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7335 err:
7336 bio_put(bio);
7337 return ret;
7338 }
7339
7340 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7341 int skip_sum)
7342 {
7343 struct inode *inode = dip->inode;
7344 struct btrfs_root *root = BTRFS_I(inode)->root;
7345 struct bio *bio;
7346 struct bio *orig_bio = dip->orig_bio;
7347 struct bio_vec *bvec = orig_bio->bi_io_vec;
7348 u64 start_sector = orig_bio->bi_iter.bi_sector;
7349 u64 file_offset = dip->logical_offset;
7350 u64 submit_len = 0;
7351 u64 map_length;
7352 int nr_pages = 0;
7353 int ret = 0;
7354 int async_submit = 0;
7355
7356 map_length = orig_bio->bi_iter.bi_size;
7357 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7358 &map_length, NULL, 0);
7359 if (ret)
7360 return -EIO;
7361
7362 if (map_length >= orig_bio->bi_iter.bi_size) {
7363 bio = orig_bio;
7364 goto submit;
7365 }
7366
7367 /* async crcs make it difficult to collect full stripe writes. */
7368 if (btrfs_get_alloc_profile(root, 1) &
7369 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7370 async_submit = 0;
7371 else
7372 async_submit = 1;
7373
7374 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7375 if (!bio)
7376 return -ENOMEM;
7377
7378 bio->bi_private = dip;
7379 bio->bi_end_io = btrfs_end_dio_bio;
7380 atomic_inc(&dip->pending_bios);
7381
7382 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7383 if (unlikely(map_length < submit_len + bvec->bv_len ||
7384 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7385 bvec->bv_offset) < bvec->bv_len)) {
7386 /*
7387 * inc the count before we submit the bio so
7388 * we know the end IO handler won't happen before
7389 * we inc the count. Otherwise, the dip might get freed
7390 * before we're done setting it up
7391 */
7392 atomic_inc(&dip->pending_bios);
7393 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7394 file_offset, skip_sum,
7395 async_submit);
7396 if (ret) {
7397 bio_put(bio);
7398 atomic_dec(&dip->pending_bios);
7399 goto out_err;
7400 }
7401
7402 start_sector += submit_len >> 9;
7403 file_offset += submit_len;
7404
7405 submit_len = 0;
7406 nr_pages = 0;
7407
7408 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7409 start_sector, GFP_NOFS);
7410 if (!bio)
7411 goto out_err;
7412 bio->bi_private = dip;
7413 bio->bi_end_io = btrfs_end_dio_bio;
7414
7415 map_length = orig_bio->bi_iter.bi_size;
7416 ret = btrfs_map_block(root->fs_info, rw,
7417 start_sector << 9,
7418 &map_length, NULL, 0);
7419 if (ret) {
7420 bio_put(bio);
7421 goto out_err;
7422 }
7423 } else {
7424 submit_len += bvec->bv_len;
7425 nr_pages++;
7426 bvec++;
7427 }
7428 }
7429
7430 submit:
7431 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7432 async_submit);
7433 if (!ret)
7434 return 0;
7435
7436 bio_put(bio);
7437 out_err:
7438 dip->errors = 1;
7439 /*
7440 * before atomic variable goto zero, we must
7441 * make sure dip->errors is perceived to be set.
7442 */
7443 smp_mb__before_atomic();
7444 if (atomic_dec_and_test(&dip->pending_bios))
7445 bio_io_error(dip->orig_bio);
7446
7447 /* bio_end_io() will handle error, so we needn't return it */
7448 return 0;
7449 }
7450
7451 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7452 struct inode *inode, loff_t file_offset)
7453 {
7454 struct btrfs_root *root = BTRFS_I(inode)->root;
7455 struct btrfs_dio_private *dip;
7456 struct bio *io_bio;
7457 int skip_sum;
7458 int sum_len;
7459 int write = rw & REQ_WRITE;
7460 int ret = 0;
7461 u16 csum_size;
7462
7463 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7464
7465 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7466 if (!io_bio) {
7467 ret = -ENOMEM;
7468 goto free_ordered;
7469 }
7470
7471 if (!skip_sum && !write) {
7472 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7473 sum_len = dio_bio->bi_iter.bi_size >>
7474 inode->i_sb->s_blocksize_bits;
7475 sum_len *= csum_size;
7476 } else {
7477 sum_len = 0;
7478 }
7479
7480 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7481 if (!dip) {
7482 ret = -ENOMEM;
7483 goto free_io_bio;
7484 }
7485
7486 dip->private = dio_bio->bi_private;
7487 dip->inode = inode;
7488 dip->logical_offset = file_offset;
7489 dip->bytes = dio_bio->bi_iter.bi_size;
7490 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7491 io_bio->bi_private = dip;
7492 dip->errors = 0;
7493 dip->orig_bio = io_bio;
7494 dip->dio_bio = dio_bio;
7495 atomic_set(&dip->pending_bios, 0);
7496
7497 if (write)
7498 io_bio->bi_end_io = btrfs_endio_direct_write;
7499 else
7500 io_bio->bi_end_io = btrfs_endio_direct_read;
7501
7502 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7503 if (!ret)
7504 return;
7505
7506 free_io_bio:
7507 bio_put(io_bio);
7508
7509 free_ordered:
7510 /*
7511 * If this is a write, we need to clean up the reserved space and kill
7512 * the ordered extent.
7513 */
7514 if (write) {
7515 struct btrfs_ordered_extent *ordered;
7516 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7517 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7518 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7519 btrfs_free_reserved_extent(root, ordered->start,
7520 ordered->disk_len, 1);
7521 btrfs_put_ordered_extent(ordered);
7522 btrfs_put_ordered_extent(ordered);
7523 }
7524 bio_endio(dio_bio, ret);
7525 }
7526
7527 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7528 const struct iov_iter *iter, loff_t offset)
7529 {
7530 int seg;
7531 int i;
7532 unsigned blocksize_mask = root->sectorsize - 1;
7533 ssize_t retval = -EINVAL;
7534
7535 if (offset & blocksize_mask)
7536 goto out;
7537
7538 if (iov_iter_alignment(iter) & blocksize_mask)
7539 goto out;
7540
7541 /* If this is a write we don't need to check anymore */
7542 if (rw & WRITE)
7543 return 0;
7544 /*
7545 * Check to make sure we don't have duplicate iov_base's in this
7546 * iovec, if so return EINVAL, otherwise we'll get csum errors
7547 * when reading back.
7548 */
7549 for (seg = 0; seg < iter->nr_segs; seg++) {
7550 for (i = seg + 1; i < iter->nr_segs; i++) {
7551 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7552 goto out;
7553 }
7554 }
7555 retval = 0;
7556 out:
7557 return retval;
7558 }
7559
7560 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7561 struct iov_iter *iter, loff_t offset)
7562 {
7563 struct file *file = iocb->ki_filp;
7564 struct inode *inode = file->f_mapping->host;
7565 size_t count = 0;
7566 int flags = 0;
7567 bool wakeup = true;
7568 bool relock = false;
7569 ssize_t ret;
7570
7571 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7572 return 0;
7573
7574 atomic_inc(&inode->i_dio_count);
7575 smp_mb__after_atomic();
7576
7577 /*
7578 * The generic stuff only does filemap_write_and_wait_range, which
7579 * isn't enough if we've written compressed pages to this area, so
7580 * we need to flush the dirty pages again to make absolutely sure
7581 * that any outstanding dirty pages are on disk.
7582 */
7583 count = iov_iter_count(iter);
7584 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7585 &BTRFS_I(inode)->runtime_flags))
7586 filemap_fdatawrite_range(inode->i_mapping, offset,
7587 offset + count - 1);
7588
7589 if (rw & WRITE) {
7590 /*
7591 * If the write DIO is beyond the EOF, we need update
7592 * the isize, but it is protected by i_mutex. So we can
7593 * not unlock the i_mutex at this case.
7594 */
7595 if (offset + count <= inode->i_size) {
7596 mutex_unlock(&inode->i_mutex);
7597 relock = true;
7598 }
7599 ret = btrfs_delalloc_reserve_space(inode, count);
7600 if (ret)
7601 goto out;
7602 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7603 &BTRFS_I(inode)->runtime_flags))) {
7604 inode_dio_done(inode);
7605 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7606 wakeup = false;
7607 }
7608
7609 ret = __blockdev_direct_IO(rw, iocb, inode,
7610 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7611 iter, offset, btrfs_get_blocks_direct, NULL,
7612 btrfs_submit_direct, flags);
7613 if (rw & WRITE) {
7614 if (ret < 0 && ret != -EIOCBQUEUED)
7615 btrfs_delalloc_release_space(inode, count);
7616 else if (ret >= 0 && (size_t)ret < count)
7617 btrfs_delalloc_release_space(inode,
7618 count - (size_t)ret);
7619 else
7620 btrfs_delalloc_release_metadata(inode, 0);
7621 }
7622 out:
7623 if (wakeup)
7624 inode_dio_done(inode);
7625 if (relock)
7626 mutex_lock(&inode->i_mutex);
7627
7628 return ret;
7629 }
7630
7631 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7632
7633 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7634 __u64 start, __u64 len)
7635 {
7636 int ret;
7637
7638 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7639 if (ret)
7640 return ret;
7641
7642 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7643 }
7644
7645 int btrfs_readpage(struct file *file, struct page *page)
7646 {
7647 struct extent_io_tree *tree;
7648 tree = &BTRFS_I(page->mapping->host)->io_tree;
7649 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7650 }
7651
7652 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7653 {
7654 struct extent_io_tree *tree;
7655
7656
7657 if (current->flags & PF_MEMALLOC) {
7658 redirty_page_for_writepage(wbc, page);
7659 unlock_page(page);
7660 return 0;
7661 }
7662 tree = &BTRFS_I(page->mapping->host)->io_tree;
7663 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7664 }
7665
7666 static int btrfs_writepages(struct address_space *mapping,
7667 struct writeback_control *wbc)
7668 {
7669 struct extent_io_tree *tree;
7670
7671 tree = &BTRFS_I(mapping->host)->io_tree;
7672 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7673 }
7674
7675 static int
7676 btrfs_readpages(struct file *file, struct address_space *mapping,
7677 struct list_head *pages, unsigned nr_pages)
7678 {
7679 struct extent_io_tree *tree;
7680 tree = &BTRFS_I(mapping->host)->io_tree;
7681 return extent_readpages(tree, mapping, pages, nr_pages,
7682 btrfs_get_extent);
7683 }
7684 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7685 {
7686 struct extent_io_tree *tree;
7687 struct extent_map_tree *map;
7688 int ret;
7689
7690 tree = &BTRFS_I(page->mapping->host)->io_tree;
7691 map = &BTRFS_I(page->mapping->host)->extent_tree;
7692 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7693 if (ret == 1) {
7694 ClearPagePrivate(page);
7695 set_page_private(page, 0);
7696 page_cache_release(page);
7697 }
7698 return ret;
7699 }
7700
7701 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7702 {
7703 if (PageWriteback(page) || PageDirty(page))
7704 return 0;
7705 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7706 }
7707
7708 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7709 unsigned int length)
7710 {
7711 struct inode *inode = page->mapping->host;
7712 struct extent_io_tree *tree;
7713 struct btrfs_ordered_extent *ordered;
7714 struct extent_state *cached_state = NULL;
7715 u64 page_start = page_offset(page);
7716 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7717 int inode_evicting = inode->i_state & I_FREEING;
7718
7719 /*
7720 * we have the page locked, so new writeback can't start,
7721 * and the dirty bit won't be cleared while we are here.
7722 *
7723 * Wait for IO on this page so that we can safely clear
7724 * the PagePrivate2 bit and do ordered accounting
7725 */
7726 wait_on_page_writeback(page);
7727
7728 tree = &BTRFS_I(inode)->io_tree;
7729 if (offset) {
7730 btrfs_releasepage(page, GFP_NOFS);
7731 return;
7732 }
7733
7734 if (!inode_evicting)
7735 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7736 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7737 if (ordered) {
7738 /*
7739 * IO on this page will never be started, so we need
7740 * to account for any ordered extents now
7741 */
7742 if (!inode_evicting)
7743 clear_extent_bit(tree, page_start, page_end,
7744 EXTENT_DIRTY | EXTENT_DELALLOC |
7745 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7746 EXTENT_DEFRAG, 1, 0, &cached_state,
7747 GFP_NOFS);
7748 /*
7749 * whoever cleared the private bit is responsible
7750 * for the finish_ordered_io
7751 */
7752 if (TestClearPagePrivate2(page)) {
7753 struct btrfs_ordered_inode_tree *tree;
7754 u64 new_len;
7755
7756 tree = &BTRFS_I(inode)->ordered_tree;
7757
7758 spin_lock_irq(&tree->lock);
7759 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7760 new_len = page_start - ordered->file_offset;
7761 if (new_len < ordered->truncated_len)
7762 ordered->truncated_len = new_len;
7763 spin_unlock_irq(&tree->lock);
7764
7765 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7766 page_start,
7767 PAGE_CACHE_SIZE, 1))
7768 btrfs_finish_ordered_io(ordered);
7769 }
7770 btrfs_put_ordered_extent(ordered);
7771 if (!inode_evicting) {
7772 cached_state = NULL;
7773 lock_extent_bits(tree, page_start, page_end, 0,
7774 &cached_state);
7775 }
7776 }
7777
7778 if (!inode_evicting) {
7779 clear_extent_bit(tree, page_start, page_end,
7780 EXTENT_LOCKED | EXTENT_DIRTY |
7781 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7782 EXTENT_DEFRAG, 1, 1,
7783 &cached_state, GFP_NOFS);
7784
7785 __btrfs_releasepage(page, GFP_NOFS);
7786 }
7787
7788 ClearPageChecked(page);
7789 if (PagePrivate(page)) {
7790 ClearPagePrivate(page);
7791 set_page_private(page, 0);
7792 page_cache_release(page);
7793 }
7794 }
7795
7796 /*
7797 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7798 * called from a page fault handler when a page is first dirtied. Hence we must
7799 * be careful to check for EOF conditions here. We set the page up correctly
7800 * for a written page which means we get ENOSPC checking when writing into
7801 * holes and correct delalloc and unwritten extent mapping on filesystems that
7802 * support these features.
7803 *
7804 * We are not allowed to take the i_mutex here so we have to play games to
7805 * protect against truncate races as the page could now be beyond EOF. Because
7806 * vmtruncate() writes the inode size before removing pages, once we have the
7807 * page lock we can determine safely if the page is beyond EOF. If it is not
7808 * beyond EOF, then the page is guaranteed safe against truncation until we
7809 * unlock the page.
7810 */
7811 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7812 {
7813 struct page *page = vmf->page;
7814 struct inode *inode = file_inode(vma->vm_file);
7815 struct btrfs_root *root = BTRFS_I(inode)->root;
7816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7817 struct btrfs_ordered_extent *ordered;
7818 struct extent_state *cached_state = NULL;
7819 char *kaddr;
7820 unsigned long zero_start;
7821 loff_t size;
7822 int ret;
7823 int reserved = 0;
7824 u64 page_start;
7825 u64 page_end;
7826
7827 sb_start_pagefault(inode->i_sb);
7828 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7829 if (!ret) {
7830 ret = file_update_time(vma->vm_file);
7831 reserved = 1;
7832 }
7833 if (ret) {
7834 if (ret == -ENOMEM)
7835 ret = VM_FAULT_OOM;
7836 else /* -ENOSPC, -EIO, etc */
7837 ret = VM_FAULT_SIGBUS;
7838 if (reserved)
7839 goto out;
7840 goto out_noreserve;
7841 }
7842
7843 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7844 again:
7845 lock_page(page);
7846 size = i_size_read(inode);
7847 page_start = page_offset(page);
7848 page_end = page_start + PAGE_CACHE_SIZE - 1;
7849
7850 if ((page->mapping != inode->i_mapping) ||
7851 (page_start >= size)) {
7852 /* page got truncated out from underneath us */
7853 goto out_unlock;
7854 }
7855 wait_on_page_writeback(page);
7856
7857 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7858 set_page_extent_mapped(page);
7859
7860 /*
7861 * we can't set the delalloc bits if there are pending ordered
7862 * extents. Drop our locks and wait for them to finish
7863 */
7864 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7865 if (ordered) {
7866 unlock_extent_cached(io_tree, page_start, page_end,
7867 &cached_state, GFP_NOFS);
7868 unlock_page(page);
7869 btrfs_start_ordered_extent(inode, ordered, 1);
7870 btrfs_put_ordered_extent(ordered);
7871 goto again;
7872 }
7873
7874 /*
7875 * XXX - page_mkwrite gets called every time the page is dirtied, even
7876 * if it was already dirty, so for space accounting reasons we need to
7877 * clear any delalloc bits for the range we are fixing to save. There
7878 * is probably a better way to do this, but for now keep consistent with
7879 * prepare_pages in the normal write path.
7880 */
7881 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7882 EXTENT_DIRTY | EXTENT_DELALLOC |
7883 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7884 0, 0, &cached_state, GFP_NOFS);
7885
7886 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7887 &cached_state);
7888 if (ret) {
7889 unlock_extent_cached(io_tree, page_start, page_end,
7890 &cached_state, GFP_NOFS);
7891 ret = VM_FAULT_SIGBUS;
7892 goto out_unlock;
7893 }
7894 ret = 0;
7895
7896 /* page is wholly or partially inside EOF */
7897 if (page_start + PAGE_CACHE_SIZE > size)
7898 zero_start = size & ~PAGE_CACHE_MASK;
7899 else
7900 zero_start = PAGE_CACHE_SIZE;
7901
7902 if (zero_start != PAGE_CACHE_SIZE) {
7903 kaddr = kmap(page);
7904 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7905 flush_dcache_page(page);
7906 kunmap(page);
7907 }
7908 ClearPageChecked(page);
7909 set_page_dirty(page);
7910 SetPageUptodate(page);
7911
7912 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7913 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7914 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7915
7916 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7917
7918 out_unlock:
7919 if (!ret) {
7920 sb_end_pagefault(inode->i_sb);
7921 return VM_FAULT_LOCKED;
7922 }
7923 unlock_page(page);
7924 out:
7925 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7926 out_noreserve:
7927 sb_end_pagefault(inode->i_sb);
7928 return ret;
7929 }
7930
7931 static int btrfs_truncate(struct inode *inode)
7932 {
7933 struct btrfs_root *root = BTRFS_I(inode)->root;
7934 struct btrfs_block_rsv *rsv;
7935 int ret = 0;
7936 int err = 0;
7937 struct btrfs_trans_handle *trans;
7938 u64 mask = root->sectorsize - 1;
7939 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7940
7941 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7942 (u64)-1);
7943 if (ret)
7944 return ret;
7945
7946 /*
7947 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7948 * 3 things going on here
7949 *
7950 * 1) We need to reserve space for our orphan item and the space to
7951 * delete our orphan item. Lord knows we don't want to have a dangling
7952 * orphan item because we didn't reserve space to remove it.
7953 *
7954 * 2) We need to reserve space to update our inode.
7955 *
7956 * 3) We need to have something to cache all the space that is going to
7957 * be free'd up by the truncate operation, but also have some slack
7958 * space reserved in case it uses space during the truncate (thank you
7959 * very much snapshotting).
7960 *
7961 * And we need these to all be seperate. The fact is we can use alot of
7962 * space doing the truncate, and we have no earthly idea how much space
7963 * we will use, so we need the truncate reservation to be seperate so it
7964 * doesn't end up using space reserved for updating the inode or
7965 * removing the orphan item. We also need to be able to stop the
7966 * transaction and start a new one, which means we need to be able to
7967 * update the inode several times, and we have no idea of knowing how
7968 * many times that will be, so we can't just reserve 1 item for the
7969 * entirety of the opration, so that has to be done seperately as well.
7970 * Then there is the orphan item, which does indeed need to be held on
7971 * to for the whole operation, and we need nobody to touch this reserved
7972 * space except the orphan code.
7973 *
7974 * So that leaves us with
7975 *
7976 * 1) root->orphan_block_rsv - for the orphan deletion.
7977 * 2) rsv - for the truncate reservation, which we will steal from the
7978 * transaction reservation.
7979 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7980 * updating the inode.
7981 */
7982 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7983 if (!rsv)
7984 return -ENOMEM;
7985 rsv->size = min_size;
7986 rsv->failfast = 1;
7987
7988 /*
7989 * 1 for the truncate slack space
7990 * 1 for updating the inode.
7991 */
7992 trans = btrfs_start_transaction(root, 2);
7993 if (IS_ERR(trans)) {
7994 err = PTR_ERR(trans);
7995 goto out;
7996 }
7997
7998 /* Migrate the slack space for the truncate to our reserve */
7999 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8000 min_size);
8001 BUG_ON(ret);
8002
8003 /*
8004 * So if we truncate and then write and fsync we normally would just
8005 * write the extents that changed, which is a problem if we need to
8006 * first truncate that entire inode. So set this flag so we write out
8007 * all of the extents in the inode to the sync log so we're completely
8008 * safe.
8009 */
8010 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8011 trans->block_rsv = rsv;
8012
8013 while (1) {
8014 ret = btrfs_truncate_inode_items(trans, root, inode,
8015 inode->i_size,
8016 BTRFS_EXTENT_DATA_KEY);
8017 if (ret != -ENOSPC) {
8018 err = ret;
8019 break;
8020 }
8021
8022 trans->block_rsv = &root->fs_info->trans_block_rsv;
8023 ret = btrfs_update_inode(trans, root, inode);
8024 if (ret) {
8025 err = ret;
8026 break;
8027 }
8028
8029 btrfs_end_transaction(trans, root);
8030 btrfs_btree_balance_dirty(root);
8031
8032 trans = btrfs_start_transaction(root, 2);
8033 if (IS_ERR(trans)) {
8034 ret = err = PTR_ERR(trans);
8035 trans = NULL;
8036 break;
8037 }
8038
8039 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8040 rsv, min_size);
8041 BUG_ON(ret); /* shouldn't happen */
8042 trans->block_rsv = rsv;
8043 }
8044
8045 if (ret == 0 && inode->i_nlink > 0) {
8046 trans->block_rsv = root->orphan_block_rsv;
8047 ret = btrfs_orphan_del(trans, inode);
8048 if (ret)
8049 err = ret;
8050 }
8051
8052 if (trans) {
8053 trans->block_rsv = &root->fs_info->trans_block_rsv;
8054 ret = btrfs_update_inode(trans, root, inode);
8055 if (ret && !err)
8056 err = ret;
8057
8058 ret = btrfs_end_transaction(trans, root);
8059 btrfs_btree_balance_dirty(root);
8060 }
8061
8062 out:
8063 btrfs_free_block_rsv(root, rsv);
8064
8065 if (ret && !err)
8066 err = ret;
8067
8068 return err;
8069 }
8070
8071 /*
8072 * create a new subvolume directory/inode (helper for the ioctl).
8073 */
8074 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8075 struct btrfs_root *new_root,
8076 struct btrfs_root *parent_root,
8077 u64 new_dirid)
8078 {
8079 struct inode *inode;
8080 int err;
8081 u64 index = 0;
8082
8083 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8084 new_dirid, new_dirid,
8085 S_IFDIR | (~current_umask() & S_IRWXUGO),
8086 &index);
8087 if (IS_ERR(inode))
8088 return PTR_ERR(inode);
8089 inode->i_op = &btrfs_dir_inode_operations;
8090 inode->i_fop = &btrfs_dir_file_operations;
8091
8092 set_nlink(inode, 1);
8093 btrfs_i_size_write(inode, 0);
8094
8095 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8096 if (err)
8097 btrfs_err(new_root->fs_info,
8098 "error inheriting subvolume %llu properties: %d",
8099 new_root->root_key.objectid, err);
8100
8101 err = btrfs_update_inode(trans, new_root, inode);
8102
8103 iput(inode);
8104 return err;
8105 }
8106
8107 struct inode *btrfs_alloc_inode(struct super_block *sb)
8108 {
8109 struct btrfs_inode *ei;
8110 struct inode *inode;
8111
8112 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8113 if (!ei)
8114 return NULL;
8115
8116 ei->root = NULL;
8117 ei->generation = 0;
8118 ei->last_trans = 0;
8119 ei->last_sub_trans = 0;
8120 ei->logged_trans = 0;
8121 ei->delalloc_bytes = 0;
8122 ei->disk_i_size = 0;
8123 ei->flags = 0;
8124 ei->csum_bytes = 0;
8125 ei->index_cnt = (u64)-1;
8126 ei->dir_index = 0;
8127 ei->last_unlink_trans = 0;
8128 ei->last_log_commit = 0;
8129
8130 spin_lock_init(&ei->lock);
8131 ei->outstanding_extents = 0;
8132 ei->reserved_extents = 0;
8133
8134 ei->runtime_flags = 0;
8135 ei->force_compress = BTRFS_COMPRESS_NONE;
8136
8137 ei->delayed_node = NULL;
8138
8139 inode = &ei->vfs_inode;
8140 extent_map_tree_init(&ei->extent_tree);
8141 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8142 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8143 ei->io_tree.track_uptodate = 1;
8144 ei->io_failure_tree.track_uptodate = 1;
8145 atomic_set(&ei->sync_writers, 0);
8146 mutex_init(&ei->log_mutex);
8147 mutex_init(&ei->delalloc_mutex);
8148 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8149 INIT_LIST_HEAD(&ei->delalloc_inodes);
8150 RB_CLEAR_NODE(&ei->rb_node);
8151
8152 return inode;
8153 }
8154
8155 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8156 void btrfs_test_destroy_inode(struct inode *inode)
8157 {
8158 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8159 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8160 }
8161 #endif
8162
8163 static void btrfs_i_callback(struct rcu_head *head)
8164 {
8165 struct inode *inode = container_of(head, struct inode, i_rcu);
8166 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8167 }
8168
8169 void btrfs_destroy_inode(struct inode *inode)
8170 {
8171 struct btrfs_ordered_extent *ordered;
8172 struct btrfs_root *root = BTRFS_I(inode)->root;
8173
8174 WARN_ON(!hlist_empty(&inode->i_dentry));
8175 WARN_ON(inode->i_data.nrpages);
8176 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8177 WARN_ON(BTRFS_I(inode)->reserved_extents);
8178 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8179 WARN_ON(BTRFS_I(inode)->csum_bytes);
8180
8181 /*
8182 * This can happen where we create an inode, but somebody else also
8183 * created the same inode and we need to destroy the one we already
8184 * created.
8185 */
8186 if (!root)
8187 goto free;
8188
8189 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8190 &BTRFS_I(inode)->runtime_flags)) {
8191 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8192 btrfs_ino(inode));
8193 atomic_dec(&root->orphan_inodes);
8194 }
8195
8196 while (1) {
8197 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8198 if (!ordered)
8199 break;
8200 else {
8201 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8202 ordered->file_offset, ordered->len);
8203 btrfs_remove_ordered_extent(inode, ordered);
8204 btrfs_put_ordered_extent(ordered);
8205 btrfs_put_ordered_extent(ordered);
8206 }
8207 }
8208 inode_tree_del(inode);
8209 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8210 free:
8211 call_rcu(&inode->i_rcu, btrfs_i_callback);
8212 }
8213
8214 int btrfs_drop_inode(struct inode *inode)
8215 {
8216 struct btrfs_root *root = BTRFS_I(inode)->root;
8217
8218 if (root == NULL)
8219 return 1;
8220
8221 /* the snap/subvol tree is on deleting */
8222 if (btrfs_root_refs(&root->root_item) == 0)
8223 return 1;
8224 else
8225 return generic_drop_inode(inode);
8226 }
8227
8228 static void init_once(void *foo)
8229 {
8230 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8231
8232 inode_init_once(&ei->vfs_inode);
8233 }
8234
8235 void btrfs_destroy_cachep(void)
8236 {
8237 /*
8238 * Make sure all delayed rcu free inodes are flushed before we
8239 * destroy cache.
8240 */
8241 rcu_barrier();
8242 if (btrfs_inode_cachep)
8243 kmem_cache_destroy(btrfs_inode_cachep);
8244 if (btrfs_trans_handle_cachep)
8245 kmem_cache_destroy(btrfs_trans_handle_cachep);
8246 if (btrfs_transaction_cachep)
8247 kmem_cache_destroy(btrfs_transaction_cachep);
8248 if (btrfs_path_cachep)
8249 kmem_cache_destroy(btrfs_path_cachep);
8250 if (btrfs_free_space_cachep)
8251 kmem_cache_destroy(btrfs_free_space_cachep);
8252 if (btrfs_delalloc_work_cachep)
8253 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8254 }
8255
8256 int btrfs_init_cachep(void)
8257 {
8258 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8259 sizeof(struct btrfs_inode), 0,
8260 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8261 if (!btrfs_inode_cachep)
8262 goto fail;
8263
8264 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8265 sizeof(struct btrfs_trans_handle), 0,
8266 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8267 if (!btrfs_trans_handle_cachep)
8268 goto fail;
8269
8270 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8271 sizeof(struct btrfs_transaction), 0,
8272 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8273 if (!btrfs_transaction_cachep)
8274 goto fail;
8275
8276 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8277 sizeof(struct btrfs_path), 0,
8278 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8279 if (!btrfs_path_cachep)
8280 goto fail;
8281
8282 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8283 sizeof(struct btrfs_free_space), 0,
8284 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8285 if (!btrfs_free_space_cachep)
8286 goto fail;
8287
8288 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8289 sizeof(struct btrfs_delalloc_work), 0,
8290 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8291 NULL);
8292 if (!btrfs_delalloc_work_cachep)
8293 goto fail;
8294
8295 return 0;
8296 fail:
8297 btrfs_destroy_cachep();
8298 return -ENOMEM;
8299 }
8300
8301 static int btrfs_getattr(struct vfsmount *mnt,
8302 struct dentry *dentry, struct kstat *stat)
8303 {
8304 u64 delalloc_bytes;
8305 struct inode *inode = dentry->d_inode;
8306 u32 blocksize = inode->i_sb->s_blocksize;
8307
8308 generic_fillattr(inode, stat);
8309 stat->dev = BTRFS_I(inode)->root->anon_dev;
8310 stat->blksize = PAGE_CACHE_SIZE;
8311
8312 spin_lock(&BTRFS_I(inode)->lock);
8313 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8314 spin_unlock(&BTRFS_I(inode)->lock);
8315 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8316 ALIGN(delalloc_bytes, blocksize)) >> 9;
8317 return 0;
8318 }
8319
8320 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8321 struct inode *new_dir, struct dentry *new_dentry)
8322 {
8323 struct btrfs_trans_handle *trans;
8324 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8325 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8326 struct inode *new_inode = new_dentry->d_inode;
8327 struct inode *old_inode = old_dentry->d_inode;
8328 struct timespec ctime = CURRENT_TIME;
8329 u64 index = 0;
8330 u64 root_objectid;
8331 int ret;
8332 u64 old_ino = btrfs_ino(old_inode);
8333
8334 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8335 return -EPERM;
8336
8337 /* we only allow rename subvolume link between subvolumes */
8338 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8339 return -EXDEV;
8340
8341 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8342 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8343 return -ENOTEMPTY;
8344
8345 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8346 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8347 return -ENOTEMPTY;
8348
8349
8350 /* check for collisions, even if the name isn't there */
8351 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8352 new_dentry->d_name.name,
8353 new_dentry->d_name.len);
8354
8355 if (ret) {
8356 if (ret == -EEXIST) {
8357 /* we shouldn't get
8358 * eexist without a new_inode */
8359 if (WARN_ON(!new_inode)) {
8360 return ret;
8361 }
8362 } else {
8363 /* maybe -EOVERFLOW */
8364 return ret;
8365 }
8366 }
8367 ret = 0;
8368
8369 /*
8370 * we're using rename to replace one file with another. Start IO on it
8371 * now so we don't add too much work to the end of the transaction
8372 */
8373 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8374 filemap_flush(old_inode->i_mapping);
8375
8376 /* close the racy window with snapshot create/destroy ioctl */
8377 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8378 down_read(&root->fs_info->subvol_sem);
8379 /*
8380 * We want to reserve the absolute worst case amount of items. So if
8381 * both inodes are subvols and we need to unlink them then that would
8382 * require 4 item modifications, but if they are both normal inodes it
8383 * would require 5 item modifications, so we'll assume their normal
8384 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8385 * should cover the worst case number of items we'll modify.
8386 */
8387 trans = btrfs_start_transaction(root, 11);
8388 if (IS_ERR(trans)) {
8389 ret = PTR_ERR(trans);
8390 goto out_notrans;
8391 }
8392
8393 if (dest != root)
8394 btrfs_record_root_in_trans(trans, dest);
8395
8396 ret = btrfs_set_inode_index(new_dir, &index);
8397 if (ret)
8398 goto out_fail;
8399
8400 BTRFS_I(old_inode)->dir_index = 0ULL;
8401 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8402 /* force full log commit if subvolume involved. */
8403 btrfs_set_log_full_commit(root->fs_info, trans);
8404 } else {
8405 ret = btrfs_insert_inode_ref(trans, dest,
8406 new_dentry->d_name.name,
8407 new_dentry->d_name.len,
8408 old_ino,
8409 btrfs_ino(new_dir), index);
8410 if (ret)
8411 goto out_fail;
8412 /*
8413 * this is an ugly little race, but the rename is required
8414 * to make sure that if we crash, the inode is either at the
8415 * old name or the new one. pinning the log transaction lets
8416 * us make sure we don't allow a log commit to come in after
8417 * we unlink the name but before we add the new name back in.
8418 */
8419 btrfs_pin_log_trans(root);
8420 }
8421
8422 inode_inc_iversion(old_dir);
8423 inode_inc_iversion(new_dir);
8424 inode_inc_iversion(old_inode);
8425 old_dir->i_ctime = old_dir->i_mtime = ctime;
8426 new_dir->i_ctime = new_dir->i_mtime = ctime;
8427 old_inode->i_ctime = ctime;
8428
8429 if (old_dentry->d_parent != new_dentry->d_parent)
8430 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8431
8432 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8433 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8434 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8435 old_dentry->d_name.name,
8436 old_dentry->d_name.len);
8437 } else {
8438 ret = __btrfs_unlink_inode(trans, root, old_dir,
8439 old_dentry->d_inode,
8440 old_dentry->d_name.name,
8441 old_dentry->d_name.len);
8442 if (!ret)
8443 ret = btrfs_update_inode(trans, root, old_inode);
8444 }
8445 if (ret) {
8446 btrfs_abort_transaction(trans, root, ret);
8447 goto out_fail;
8448 }
8449
8450 if (new_inode) {
8451 inode_inc_iversion(new_inode);
8452 new_inode->i_ctime = CURRENT_TIME;
8453 if (unlikely(btrfs_ino(new_inode) ==
8454 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8455 root_objectid = BTRFS_I(new_inode)->location.objectid;
8456 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8457 root_objectid,
8458 new_dentry->d_name.name,
8459 new_dentry->d_name.len);
8460 BUG_ON(new_inode->i_nlink == 0);
8461 } else {
8462 ret = btrfs_unlink_inode(trans, dest, new_dir,
8463 new_dentry->d_inode,
8464 new_dentry->d_name.name,
8465 new_dentry->d_name.len);
8466 }
8467 if (!ret && new_inode->i_nlink == 0)
8468 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8469 if (ret) {
8470 btrfs_abort_transaction(trans, root, ret);
8471 goto out_fail;
8472 }
8473 }
8474
8475 ret = btrfs_add_link(trans, new_dir, old_inode,
8476 new_dentry->d_name.name,
8477 new_dentry->d_name.len, 0, index);
8478 if (ret) {
8479 btrfs_abort_transaction(trans, root, ret);
8480 goto out_fail;
8481 }
8482
8483 if (old_inode->i_nlink == 1)
8484 BTRFS_I(old_inode)->dir_index = index;
8485
8486 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8487 struct dentry *parent = new_dentry->d_parent;
8488 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8489 btrfs_end_log_trans(root);
8490 }
8491 out_fail:
8492 btrfs_end_transaction(trans, root);
8493 out_notrans:
8494 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8495 up_read(&root->fs_info->subvol_sem);
8496
8497 return ret;
8498 }
8499
8500 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8501 {
8502 struct btrfs_delalloc_work *delalloc_work;
8503 struct inode *inode;
8504
8505 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8506 work);
8507 inode = delalloc_work->inode;
8508 if (delalloc_work->wait) {
8509 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8510 } else {
8511 filemap_flush(inode->i_mapping);
8512 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8513 &BTRFS_I(inode)->runtime_flags))
8514 filemap_flush(inode->i_mapping);
8515 }
8516
8517 if (delalloc_work->delay_iput)
8518 btrfs_add_delayed_iput(inode);
8519 else
8520 iput(inode);
8521 complete(&delalloc_work->completion);
8522 }
8523
8524 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8525 int wait, int delay_iput)
8526 {
8527 struct btrfs_delalloc_work *work;
8528
8529 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8530 if (!work)
8531 return NULL;
8532
8533 init_completion(&work->completion);
8534 INIT_LIST_HEAD(&work->list);
8535 work->inode = inode;
8536 work->wait = wait;
8537 work->delay_iput = delay_iput;
8538 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8539
8540 return work;
8541 }
8542
8543 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8544 {
8545 wait_for_completion(&work->completion);
8546 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8547 }
8548
8549 /*
8550 * some fairly slow code that needs optimization. This walks the list
8551 * of all the inodes with pending delalloc and forces them to disk.
8552 */
8553 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8554 int nr)
8555 {
8556 struct btrfs_inode *binode;
8557 struct inode *inode;
8558 struct btrfs_delalloc_work *work, *next;
8559 struct list_head works;
8560 struct list_head splice;
8561 int ret = 0;
8562
8563 INIT_LIST_HEAD(&works);
8564 INIT_LIST_HEAD(&splice);
8565
8566 mutex_lock(&root->delalloc_mutex);
8567 spin_lock(&root->delalloc_lock);
8568 list_splice_init(&root->delalloc_inodes, &splice);
8569 while (!list_empty(&splice)) {
8570 binode = list_entry(splice.next, struct btrfs_inode,
8571 delalloc_inodes);
8572
8573 list_move_tail(&binode->delalloc_inodes,
8574 &root->delalloc_inodes);
8575 inode = igrab(&binode->vfs_inode);
8576 if (!inode) {
8577 cond_resched_lock(&root->delalloc_lock);
8578 continue;
8579 }
8580 spin_unlock(&root->delalloc_lock);
8581
8582 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8583 if (unlikely(!work)) {
8584 if (delay_iput)
8585 btrfs_add_delayed_iput(inode);
8586 else
8587 iput(inode);
8588 ret = -ENOMEM;
8589 goto out;
8590 }
8591 list_add_tail(&work->list, &works);
8592 btrfs_queue_work(root->fs_info->flush_workers,
8593 &work->work);
8594 ret++;
8595 if (nr != -1 && ret >= nr)
8596 goto out;
8597 cond_resched();
8598 spin_lock(&root->delalloc_lock);
8599 }
8600 spin_unlock(&root->delalloc_lock);
8601
8602 out:
8603 list_for_each_entry_safe(work, next, &works, list) {
8604 list_del_init(&work->list);
8605 btrfs_wait_and_free_delalloc_work(work);
8606 }
8607
8608 if (!list_empty_careful(&splice)) {
8609 spin_lock(&root->delalloc_lock);
8610 list_splice_tail(&splice, &root->delalloc_inodes);
8611 spin_unlock(&root->delalloc_lock);
8612 }
8613 mutex_unlock(&root->delalloc_mutex);
8614 return ret;
8615 }
8616
8617 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8618 {
8619 int ret;
8620
8621 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
8622 return -EROFS;
8623
8624 ret = __start_delalloc_inodes(root, delay_iput, -1);
8625 if (ret > 0)
8626 ret = 0;
8627 /*
8628 * the filemap_flush will queue IO into the worker threads, but
8629 * we have to make sure the IO is actually started and that
8630 * ordered extents get created before we return
8631 */
8632 atomic_inc(&root->fs_info->async_submit_draining);
8633 while (atomic_read(&root->fs_info->nr_async_submits) ||
8634 atomic_read(&root->fs_info->async_delalloc_pages)) {
8635 wait_event(root->fs_info->async_submit_wait,
8636 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8637 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8638 }
8639 atomic_dec(&root->fs_info->async_submit_draining);
8640 return ret;
8641 }
8642
8643 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8644 int nr)
8645 {
8646 struct btrfs_root *root;
8647 struct list_head splice;
8648 int ret;
8649
8650 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
8651 return -EROFS;
8652
8653 INIT_LIST_HEAD(&splice);
8654
8655 mutex_lock(&fs_info->delalloc_root_mutex);
8656 spin_lock(&fs_info->delalloc_root_lock);
8657 list_splice_init(&fs_info->delalloc_roots, &splice);
8658 while (!list_empty(&splice) && nr) {
8659 root = list_first_entry(&splice, struct btrfs_root,
8660 delalloc_root);
8661 root = btrfs_grab_fs_root(root);
8662 BUG_ON(!root);
8663 list_move_tail(&root->delalloc_root,
8664 &fs_info->delalloc_roots);
8665 spin_unlock(&fs_info->delalloc_root_lock);
8666
8667 ret = __start_delalloc_inodes(root, delay_iput, nr);
8668 btrfs_put_fs_root(root);
8669 if (ret < 0)
8670 goto out;
8671
8672 if (nr != -1) {
8673 nr -= ret;
8674 WARN_ON(nr < 0);
8675 }
8676 spin_lock(&fs_info->delalloc_root_lock);
8677 }
8678 spin_unlock(&fs_info->delalloc_root_lock);
8679
8680 ret = 0;
8681 atomic_inc(&fs_info->async_submit_draining);
8682 while (atomic_read(&fs_info->nr_async_submits) ||
8683 atomic_read(&fs_info->async_delalloc_pages)) {
8684 wait_event(fs_info->async_submit_wait,
8685 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8686 atomic_read(&fs_info->async_delalloc_pages) == 0));
8687 }
8688 atomic_dec(&fs_info->async_submit_draining);
8689 out:
8690 if (!list_empty_careful(&splice)) {
8691 spin_lock(&fs_info->delalloc_root_lock);
8692 list_splice_tail(&splice, &fs_info->delalloc_roots);
8693 spin_unlock(&fs_info->delalloc_root_lock);
8694 }
8695 mutex_unlock(&fs_info->delalloc_root_mutex);
8696 return ret;
8697 }
8698
8699 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8700 const char *symname)
8701 {
8702 struct btrfs_trans_handle *trans;
8703 struct btrfs_root *root = BTRFS_I(dir)->root;
8704 struct btrfs_path *path;
8705 struct btrfs_key key;
8706 struct inode *inode = NULL;
8707 int err;
8708 int drop_inode = 0;
8709 u64 objectid;
8710 u64 index = 0;
8711 int name_len;
8712 int datasize;
8713 unsigned long ptr;
8714 struct btrfs_file_extent_item *ei;
8715 struct extent_buffer *leaf;
8716
8717 name_len = strlen(symname);
8718 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8719 return -ENAMETOOLONG;
8720
8721 /*
8722 * 2 items for inode item and ref
8723 * 2 items for dir items
8724 * 1 item for xattr if selinux is on
8725 */
8726 trans = btrfs_start_transaction(root, 5);
8727 if (IS_ERR(trans))
8728 return PTR_ERR(trans);
8729
8730 err = btrfs_find_free_ino(root, &objectid);
8731 if (err)
8732 goto out_unlock;
8733
8734 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8735 dentry->d_name.len, btrfs_ino(dir), objectid,
8736 S_IFLNK|S_IRWXUGO, &index);
8737 if (IS_ERR(inode)) {
8738 err = PTR_ERR(inode);
8739 goto out_unlock;
8740 }
8741
8742 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8743 if (err) {
8744 drop_inode = 1;
8745 goto out_unlock;
8746 }
8747
8748 /*
8749 * If the active LSM wants to access the inode during
8750 * d_instantiate it needs these. Smack checks to see
8751 * if the filesystem supports xattrs by looking at the
8752 * ops vector.
8753 */
8754 inode->i_fop = &btrfs_file_operations;
8755 inode->i_op = &btrfs_file_inode_operations;
8756
8757 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8758 if (err)
8759 drop_inode = 1;
8760 else {
8761 inode->i_mapping->a_ops = &btrfs_aops;
8762 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8763 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8764 }
8765 if (drop_inode)
8766 goto out_unlock;
8767
8768 path = btrfs_alloc_path();
8769 if (!path) {
8770 err = -ENOMEM;
8771 drop_inode = 1;
8772 goto out_unlock;
8773 }
8774 key.objectid = btrfs_ino(inode);
8775 key.offset = 0;
8776 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8777 datasize = btrfs_file_extent_calc_inline_size(name_len);
8778 err = btrfs_insert_empty_item(trans, root, path, &key,
8779 datasize);
8780 if (err) {
8781 drop_inode = 1;
8782 btrfs_free_path(path);
8783 goto out_unlock;
8784 }
8785 leaf = path->nodes[0];
8786 ei = btrfs_item_ptr(leaf, path->slots[0],
8787 struct btrfs_file_extent_item);
8788 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8789 btrfs_set_file_extent_type(leaf, ei,
8790 BTRFS_FILE_EXTENT_INLINE);
8791 btrfs_set_file_extent_encryption(leaf, ei, 0);
8792 btrfs_set_file_extent_compression(leaf, ei, 0);
8793 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8794 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8795
8796 ptr = btrfs_file_extent_inline_start(ei);
8797 write_extent_buffer(leaf, symname, ptr, name_len);
8798 btrfs_mark_buffer_dirty(leaf);
8799 btrfs_free_path(path);
8800
8801 inode->i_op = &btrfs_symlink_inode_operations;
8802 inode->i_mapping->a_ops = &btrfs_symlink_aops;
8803 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8804 inode_set_bytes(inode, name_len);
8805 btrfs_i_size_write(inode, name_len);
8806 err = btrfs_update_inode(trans, root, inode);
8807 if (err)
8808 drop_inode = 1;
8809
8810 out_unlock:
8811 if (!err)
8812 d_instantiate(dentry, inode);
8813 btrfs_end_transaction(trans, root);
8814 if (drop_inode) {
8815 inode_dec_link_count(inode);
8816 iput(inode);
8817 }
8818 btrfs_btree_balance_dirty(root);
8819 return err;
8820 }
8821
8822 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8823 u64 start, u64 num_bytes, u64 min_size,
8824 loff_t actual_len, u64 *alloc_hint,
8825 struct btrfs_trans_handle *trans)
8826 {
8827 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8828 struct extent_map *em;
8829 struct btrfs_root *root = BTRFS_I(inode)->root;
8830 struct btrfs_key ins;
8831 u64 cur_offset = start;
8832 u64 i_size;
8833 u64 cur_bytes;
8834 int ret = 0;
8835 bool own_trans = true;
8836
8837 if (trans)
8838 own_trans = false;
8839 while (num_bytes > 0) {
8840 if (own_trans) {
8841 trans = btrfs_start_transaction(root, 3);
8842 if (IS_ERR(trans)) {
8843 ret = PTR_ERR(trans);
8844 break;
8845 }
8846 }
8847
8848 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8849 cur_bytes = max(cur_bytes, min_size);
8850 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8851 *alloc_hint, &ins, 1, 0);
8852 if (ret) {
8853 if (own_trans)
8854 btrfs_end_transaction(trans, root);
8855 break;
8856 }
8857
8858 ret = insert_reserved_file_extent(trans, inode,
8859 cur_offset, ins.objectid,
8860 ins.offset, ins.offset,
8861 ins.offset, 0, 0, 0,
8862 BTRFS_FILE_EXTENT_PREALLOC);
8863 if (ret) {
8864 btrfs_free_reserved_extent(root, ins.objectid,
8865 ins.offset, 0);
8866 btrfs_abort_transaction(trans, root, ret);
8867 if (own_trans)
8868 btrfs_end_transaction(trans, root);
8869 break;
8870 }
8871 btrfs_drop_extent_cache(inode, cur_offset,
8872 cur_offset + ins.offset -1, 0);
8873
8874 em = alloc_extent_map();
8875 if (!em) {
8876 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8877 &BTRFS_I(inode)->runtime_flags);
8878 goto next;
8879 }
8880
8881 em->start = cur_offset;
8882 em->orig_start = cur_offset;
8883 em->len = ins.offset;
8884 em->block_start = ins.objectid;
8885 em->block_len = ins.offset;
8886 em->orig_block_len = ins.offset;
8887 em->ram_bytes = ins.offset;
8888 em->bdev = root->fs_info->fs_devices->latest_bdev;
8889 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8890 em->generation = trans->transid;
8891
8892 while (1) {
8893 write_lock(&em_tree->lock);
8894 ret = add_extent_mapping(em_tree, em, 1);
8895 write_unlock(&em_tree->lock);
8896 if (ret != -EEXIST)
8897 break;
8898 btrfs_drop_extent_cache(inode, cur_offset,
8899 cur_offset + ins.offset - 1,
8900 0);
8901 }
8902 free_extent_map(em);
8903 next:
8904 num_bytes -= ins.offset;
8905 cur_offset += ins.offset;
8906 *alloc_hint = ins.objectid + ins.offset;
8907
8908 inode_inc_iversion(inode);
8909 inode->i_ctime = CURRENT_TIME;
8910 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8911 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8912 (actual_len > inode->i_size) &&
8913 (cur_offset > inode->i_size)) {
8914 if (cur_offset > actual_len)
8915 i_size = actual_len;
8916 else
8917 i_size = cur_offset;
8918 i_size_write(inode, i_size);
8919 btrfs_ordered_update_i_size(inode, i_size, NULL);
8920 }
8921
8922 ret = btrfs_update_inode(trans, root, inode);
8923
8924 if (ret) {
8925 btrfs_abort_transaction(trans, root, ret);
8926 if (own_trans)
8927 btrfs_end_transaction(trans, root);
8928 break;
8929 }
8930
8931 if (own_trans)
8932 btrfs_end_transaction(trans, root);
8933 }
8934 return ret;
8935 }
8936
8937 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8938 u64 start, u64 num_bytes, u64 min_size,
8939 loff_t actual_len, u64 *alloc_hint)
8940 {
8941 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8942 min_size, actual_len, alloc_hint,
8943 NULL);
8944 }
8945
8946 int btrfs_prealloc_file_range_trans(struct inode *inode,
8947 struct btrfs_trans_handle *trans, int mode,
8948 u64 start, u64 num_bytes, u64 min_size,
8949 loff_t actual_len, u64 *alloc_hint)
8950 {
8951 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8952 min_size, actual_len, alloc_hint, trans);
8953 }
8954
8955 static int btrfs_set_page_dirty(struct page *page)
8956 {
8957 return __set_page_dirty_nobuffers(page);
8958 }
8959
8960 static int btrfs_permission(struct inode *inode, int mask)
8961 {
8962 struct btrfs_root *root = BTRFS_I(inode)->root;
8963 umode_t mode = inode->i_mode;
8964
8965 if (mask & MAY_WRITE &&
8966 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8967 if (btrfs_root_readonly(root))
8968 return -EROFS;
8969 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8970 return -EACCES;
8971 }
8972 return generic_permission(inode, mask);
8973 }
8974
8975 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
8976 {
8977 struct btrfs_trans_handle *trans;
8978 struct btrfs_root *root = BTRFS_I(dir)->root;
8979 struct inode *inode = NULL;
8980 u64 objectid;
8981 u64 index;
8982 int ret = 0;
8983
8984 /*
8985 * 5 units required for adding orphan entry
8986 */
8987 trans = btrfs_start_transaction(root, 5);
8988 if (IS_ERR(trans))
8989 return PTR_ERR(trans);
8990
8991 ret = btrfs_find_free_ino(root, &objectid);
8992 if (ret)
8993 goto out;
8994
8995 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
8996 btrfs_ino(dir), objectid, mode, &index);
8997 if (IS_ERR(inode)) {
8998 ret = PTR_ERR(inode);
8999 inode = NULL;
9000 goto out;
9001 }
9002
9003 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9004 if (ret)
9005 goto out;
9006
9007 ret = btrfs_update_inode(trans, root, inode);
9008 if (ret)
9009 goto out;
9010
9011 inode->i_fop = &btrfs_file_operations;
9012 inode->i_op = &btrfs_file_inode_operations;
9013
9014 inode->i_mapping->a_ops = &btrfs_aops;
9015 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9016 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9017
9018 ret = btrfs_orphan_add(trans, inode);
9019 if (ret)
9020 goto out;
9021
9022 /*
9023 * We set number of links to 0 in btrfs_new_inode(), and here we set
9024 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9025 * through:
9026 *
9027 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9028 */
9029 set_nlink(inode, 1);
9030 d_tmpfile(dentry, inode);
9031 mark_inode_dirty(inode);
9032
9033 out:
9034 btrfs_end_transaction(trans, root);
9035 if (ret)
9036 iput(inode);
9037 btrfs_balance_delayed_items(root);
9038 btrfs_btree_balance_dirty(root);
9039
9040 return ret;
9041 }
9042
9043 static const struct inode_operations btrfs_dir_inode_operations = {
9044 .getattr = btrfs_getattr,
9045 .lookup = btrfs_lookup,
9046 .create = btrfs_create,
9047 .unlink = btrfs_unlink,
9048 .link = btrfs_link,
9049 .mkdir = btrfs_mkdir,
9050 .rmdir = btrfs_rmdir,
9051 .rename = btrfs_rename,
9052 .symlink = btrfs_symlink,
9053 .setattr = btrfs_setattr,
9054 .mknod = btrfs_mknod,
9055 .setxattr = btrfs_setxattr,
9056 .getxattr = btrfs_getxattr,
9057 .listxattr = btrfs_listxattr,
9058 .removexattr = btrfs_removexattr,
9059 .permission = btrfs_permission,
9060 .get_acl = btrfs_get_acl,
9061 .set_acl = btrfs_set_acl,
9062 .update_time = btrfs_update_time,
9063 .tmpfile = btrfs_tmpfile,
9064 };
9065 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9066 .lookup = btrfs_lookup,
9067 .permission = btrfs_permission,
9068 .get_acl = btrfs_get_acl,
9069 .set_acl = btrfs_set_acl,
9070 .update_time = btrfs_update_time,
9071 };
9072
9073 static const struct file_operations btrfs_dir_file_operations = {
9074 .llseek = generic_file_llseek,
9075 .read = generic_read_dir,
9076 .iterate = btrfs_real_readdir,
9077 .unlocked_ioctl = btrfs_ioctl,
9078 #ifdef CONFIG_COMPAT
9079 .compat_ioctl = btrfs_ioctl,
9080 #endif
9081 .release = btrfs_release_file,
9082 .fsync = btrfs_sync_file,
9083 };
9084
9085 static struct extent_io_ops btrfs_extent_io_ops = {
9086 .fill_delalloc = run_delalloc_range,
9087 .submit_bio_hook = btrfs_submit_bio_hook,
9088 .merge_bio_hook = btrfs_merge_bio_hook,
9089 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9090 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9091 .writepage_start_hook = btrfs_writepage_start_hook,
9092 .set_bit_hook = btrfs_set_bit_hook,
9093 .clear_bit_hook = btrfs_clear_bit_hook,
9094 .merge_extent_hook = btrfs_merge_extent_hook,
9095 .split_extent_hook = btrfs_split_extent_hook,
9096 };
9097
9098 /*
9099 * btrfs doesn't support the bmap operation because swapfiles
9100 * use bmap to make a mapping of extents in the file. They assume
9101 * these extents won't change over the life of the file and they
9102 * use the bmap result to do IO directly to the drive.
9103 *
9104 * the btrfs bmap call would return logical addresses that aren't
9105 * suitable for IO and they also will change frequently as COW
9106 * operations happen. So, swapfile + btrfs == corruption.
9107 *
9108 * For now we're avoiding this by dropping bmap.
9109 */
9110 static const struct address_space_operations btrfs_aops = {
9111 .readpage = btrfs_readpage,
9112 .writepage = btrfs_writepage,
9113 .writepages = btrfs_writepages,
9114 .readpages = btrfs_readpages,
9115 .direct_IO = btrfs_direct_IO,
9116 .invalidatepage = btrfs_invalidatepage,
9117 .releasepage = btrfs_releasepage,
9118 .set_page_dirty = btrfs_set_page_dirty,
9119 .error_remove_page = generic_error_remove_page,
9120 };
9121
9122 static const struct address_space_operations btrfs_symlink_aops = {
9123 .readpage = btrfs_readpage,
9124 .writepage = btrfs_writepage,
9125 .invalidatepage = btrfs_invalidatepage,
9126 .releasepage = btrfs_releasepage,
9127 };
9128
9129 static const struct inode_operations btrfs_file_inode_operations = {
9130 .getattr = btrfs_getattr,
9131 .setattr = btrfs_setattr,
9132 .setxattr = btrfs_setxattr,
9133 .getxattr = btrfs_getxattr,
9134 .listxattr = btrfs_listxattr,
9135 .removexattr = btrfs_removexattr,
9136 .permission = btrfs_permission,
9137 .fiemap = btrfs_fiemap,
9138 .get_acl = btrfs_get_acl,
9139 .set_acl = btrfs_set_acl,
9140 .update_time = btrfs_update_time,
9141 };
9142 static const struct inode_operations btrfs_special_inode_operations = {
9143 .getattr = btrfs_getattr,
9144 .setattr = btrfs_setattr,
9145 .permission = btrfs_permission,
9146 .setxattr = btrfs_setxattr,
9147 .getxattr = btrfs_getxattr,
9148 .listxattr = btrfs_listxattr,
9149 .removexattr = btrfs_removexattr,
9150 .get_acl = btrfs_get_acl,
9151 .set_acl = btrfs_set_acl,
9152 .update_time = btrfs_update_time,
9153 };
9154 static const struct inode_operations btrfs_symlink_inode_operations = {
9155 .readlink = generic_readlink,
9156 .follow_link = page_follow_link_light,
9157 .put_link = page_put_link,
9158 .getattr = btrfs_getattr,
9159 .setattr = btrfs_setattr,
9160 .permission = btrfs_permission,
9161 .setxattr = btrfs_setxattr,
9162 .getxattr = btrfs_getxattr,
9163 .listxattr = btrfs_listxattr,
9164 .removexattr = btrfs_removexattr,
9165 .update_time = btrfs_update_time,
9166 };
9167
9168 const struct dentry_operations btrfs_dentry_operations = {
9169 .d_delete = btrfs_dentry_delete,
9170 .d_release = btrfs_dentry_release,
9171 };