]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
Get "no acls for this inode" right, fix shmem breakage
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93 {
94 int err;
95
96 err = btrfs_init_acl(inode, dir);
97 if (!err)
98 err = btrfs_xattr_security_init(inode, dir);
99 return err;
100 }
101
102 /*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111 {
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
131 path = btrfs_alloc_path();
132 if (!path)
133 return -ENOMEM;
134
135 path->leave_spinning = 1;
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
164 while (compressed_size > 0) {
165 cpage = compressed_pages[i];
166 cur_size = min_t(unsigned long, compressed_size,
167 PAGE_CACHE_SIZE);
168
169 kaddr = kmap_atomic(cpage, KM_USER0);
170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 kunmap_atomic(kaddr, KM_USER0);
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
192 BTRFS_I(inode)->disk_i_size = inode->i_size;
193 btrfs_update_inode(trans, root, inode);
194 return 0;
195 fail:
196 btrfs_free_path(path);
197 return err;
198 }
199
200
201 /*
202 * conditionally insert an inline extent into the file. This
203 * does the checks required to make sure the data is small enough
204 * to fit as an inline extent.
205 */
206 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
207 struct btrfs_root *root,
208 struct inode *inode, u64 start, u64 end,
209 size_t compressed_size,
210 struct page **compressed_pages)
211 {
212 u64 isize = i_size_read(inode);
213 u64 actual_end = min(end + 1, isize);
214 u64 inline_len = actual_end - start;
215 u64 aligned_end = (end + root->sectorsize - 1) &
216 ~((u64)root->sectorsize - 1);
217 u64 hint_byte;
218 u64 data_len = inline_len;
219 int ret;
220
221 if (compressed_size)
222 data_len = compressed_size;
223
224 if (start > 0 ||
225 actual_end >= PAGE_CACHE_SIZE ||
226 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 (!compressed_size &&
228 (actual_end & (root->sectorsize - 1)) == 0) ||
229 end + 1 < isize ||
230 data_len > root->fs_info->max_inline) {
231 return 1;
232 }
233
234 ret = btrfs_drop_extents(trans, root, inode, start,
235 aligned_end, aligned_end, start, &hint_byte);
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
244 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
245 return 0;
246 }
247
248 struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255 };
256
257 struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272 {
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283 }
284
285 /*
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
289 *
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
295 *
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
300 */
301 static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
306 {
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
309 u64 num_bytes;
310 u64 orig_start;
311 u64 disk_num_bytes;
312 u64 blocksize = root->sectorsize;
313 u64 actual_end;
314 u64 isize = i_size_read(inode);
315 int ret = 0;
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
322 unsigned long max_uncompressed = 128 * 1024;
323 int i;
324 int will_compress;
325
326 orig_start = start;
327
328 actual_end = min_t(u64, isize, end + 1);
329 again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 num_bytes = max(blocksize, num_bytes);
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
365
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
370 */
371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
406 /* lets try to make an inline extent */
407 if (ret || total_in < (actual_end - start)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
414 /* try making a compressed inline extent */
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
419 btrfs_end_transaction(trans, root);
420 if (ret == 0) {
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL, 1, 0,
429 0, 1, 1, 1);
430 ret = 0;
431 goto free_pages_out;
432 }
433 }
434
435 if (will_compress) {
436 /*
437 * we aren't doing an inline extent round the compressed size
438 * up to a block size boundary so the allocator does sane
439 * things
440 */
441 total_compressed = (total_compressed + blocksize - 1) &
442 ~(blocksize - 1);
443
444 /*
445 * one last check to make sure the compression is really a
446 * win, compare the page count read with the blocks on disk
447 */
448 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 ~(PAGE_CACHE_SIZE - 1);
450 if (total_compressed >= total_in) {
451 will_compress = 0;
452 } else {
453 disk_num_bytes = total_compressed;
454 num_bytes = total_in;
455 }
456 }
457 if (!will_compress && pages) {
458 /*
459 * the compression code ran but failed to make things smaller,
460 * free any pages it allocated and our page pointer array
461 */
462 for (i = 0; i < nr_pages_ret; i++) {
463 WARN_ON(pages[i]->mapping);
464 page_cache_release(pages[i]);
465 }
466 kfree(pages);
467 pages = NULL;
468 total_compressed = 0;
469 nr_pages_ret = 0;
470
471 /* flag the file so we don't compress in the future */
472 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
473 }
474 if (will_compress) {
475 *num_added += 1;
476
477 /* the async work queues will take care of doing actual
478 * allocation on disk for these compressed pages,
479 * and will submit them to the elevator.
480 */
481 add_async_extent(async_cow, start, num_bytes,
482 total_compressed, pages, nr_pages_ret);
483
484 if (start + num_bytes < end && start + num_bytes < actual_end) {
485 start += num_bytes;
486 pages = NULL;
487 cond_resched();
488 goto again;
489 }
490 } else {
491 cleanup_and_bail_uncompressed:
492 /*
493 * No compression, but we still need to write the pages in
494 * the file we've been given so far. redirty the locked
495 * page if it corresponds to our extent and set things up
496 * for the async work queue to run cow_file_range to do
497 * the normal delalloc dance
498 */
499 if (page_offset(locked_page) >= start &&
500 page_offset(locked_page) <= end) {
501 __set_page_dirty_nobuffers(locked_page);
502 /* unlocked later on in the async handlers */
503 }
504 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505 *num_added += 1;
506 }
507
508 out:
509 return 0;
510
511 free_pages_out:
512 for (i = 0; i < nr_pages_ret; i++) {
513 WARN_ON(pages[i]->mapping);
514 page_cache_release(pages[i]);
515 }
516 kfree(pages);
517
518 goto out;
519 }
520
521 /*
522 * phase two of compressed writeback. This is the ordered portion
523 * of the code, which only gets called in the order the work was
524 * queued. We walk all the async extents created by compress_file_range
525 * and send them down to the disk.
526 */
527 static noinline int submit_compressed_extents(struct inode *inode,
528 struct async_cow *async_cow)
529 {
530 struct async_extent *async_extent;
531 u64 alloc_hint = 0;
532 struct btrfs_trans_handle *trans;
533 struct btrfs_key ins;
534 struct extent_map *em;
535 struct btrfs_root *root = BTRFS_I(inode)->root;
536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 struct extent_io_tree *io_tree;
538 int ret;
539
540 if (list_empty(&async_cow->extents))
541 return 0;
542
543 trans = btrfs_join_transaction(root, 1);
544
545 while (!list_empty(&async_cow->extents)) {
546 async_extent = list_entry(async_cow->extents.next,
547 struct async_extent, list);
548 list_del(&async_extent->list);
549
550 io_tree = &BTRFS_I(inode)->io_tree;
551
552 /* did the compression code fall back to uncompressed IO? */
553 if (!async_extent->pages) {
554 int page_started = 0;
555 unsigned long nr_written = 0;
556
557 lock_extent(io_tree, async_extent->start,
558 async_extent->start +
559 async_extent->ram_size - 1, GFP_NOFS);
560
561 /* allocate blocks */
562 cow_file_range(inode, async_cow->locked_page,
563 async_extent->start,
564 async_extent->start +
565 async_extent->ram_size - 1,
566 &page_started, &nr_written, 0);
567
568 /*
569 * if page_started, cow_file_range inserted an
570 * inline extent and took care of all the unlocking
571 * and IO for us. Otherwise, we need to submit
572 * all those pages down to the drive.
573 */
574 if (!page_started)
575 extent_write_locked_range(io_tree,
576 inode, async_extent->start,
577 async_extent->start +
578 async_extent->ram_size - 1,
579 btrfs_get_extent,
580 WB_SYNC_ALL);
581 kfree(async_extent);
582 cond_resched();
583 continue;
584 }
585
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start + async_extent->ram_size - 1,
588 GFP_NOFS);
589 /*
590 * here we're doing allocation and writeback of the
591 * compressed pages
592 */
593 btrfs_drop_extent_cache(inode, async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1, 0);
596
597 ret = btrfs_reserve_extent(trans, root,
598 async_extent->compressed_size,
599 async_extent->compressed_size,
600 0, alloc_hint,
601 (u64)-1, &ins, 1);
602 BUG_ON(ret);
603 em = alloc_extent_map(GFP_NOFS);
604 em->start = async_extent->start;
605 em->len = async_extent->ram_size;
606 em->orig_start = em->start;
607
608 em->block_start = ins.objectid;
609 em->block_len = ins.offset;
610 em->bdev = root->fs_info->fs_devices->latest_bdev;
611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613
614 while (1) {
615 spin_lock(&em_tree->lock);
616 ret = add_extent_mapping(em_tree, em);
617 spin_unlock(&em_tree->lock);
618 if (ret != -EEXIST) {
619 free_extent_map(em);
620 break;
621 }
622 btrfs_drop_extent_cache(inode, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, 0);
625 }
626
627 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 ins.objectid,
629 async_extent->ram_size,
630 ins.offset,
631 BTRFS_ORDERED_COMPRESSED);
632 BUG_ON(ret);
633
634 btrfs_end_transaction(trans, root);
635
636 /*
637 * clear dirty, set writeback and unlock the pages.
638 */
639 extent_clear_unlock_delalloc(inode,
640 &BTRFS_I(inode)->io_tree,
641 async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
644 NULL, 1, 1, 0, 1, 1, 0);
645
646 ret = btrfs_submit_compressed_write(inode,
647 async_extent->start,
648 async_extent->ram_size,
649 ins.objectid,
650 ins.offset, async_extent->pages,
651 async_extent->nr_pages);
652
653 BUG_ON(ret);
654 trans = btrfs_join_transaction(root, 1);
655 alloc_hint = ins.objectid + ins.offset;
656 kfree(async_extent);
657 cond_resched();
658 }
659
660 btrfs_end_transaction(trans, root);
661 return 0;
662 }
663
664 /*
665 * when extent_io.c finds a delayed allocation range in the file,
666 * the call backs end up in this code. The basic idea is to
667 * allocate extents on disk for the range, and create ordered data structs
668 * in ram to track those extents.
669 *
670 * locked_page is the page that writepage had locked already. We use
671 * it to make sure we don't do extra locks or unlocks.
672 *
673 * *page_started is set to one if we unlock locked_page and do everything
674 * required to start IO on it. It may be clean and already done with
675 * IO when we return.
676 */
677 static noinline int cow_file_range(struct inode *inode,
678 struct page *locked_page,
679 u64 start, u64 end, int *page_started,
680 unsigned long *nr_written,
681 int unlock)
682 {
683 struct btrfs_root *root = BTRFS_I(inode)->root;
684 struct btrfs_trans_handle *trans;
685 u64 alloc_hint = 0;
686 u64 num_bytes;
687 unsigned long ram_size;
688 u64 disk_num_bytes;
689 u64 cur_alloc_size;
690 u64 blocksize = root->sectorsize;
691 u64 actual_end;
692 u64 isize = i_size_read(inode);
693 struct btrfs_key ins;
694 struct extent_map *em;
695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696 int ret = 0;
697
698 trans = btrfs_join_transaction(root, 1);
699 BUG_ON(!trans);
700 btrfs_set_trans_block_group(trans, inode);
701
702 actual_end = min_t(u64, isize, end + 1);
703
704 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 num_bytes = max(blocksize, num_bytes);
706 disk_num_bytes = num_bytes;
707 ret = 0;
708
709 if (start == 0) {
710 /* lets try to make an inline extent */
711 ret = cow_file_range_inline(trans, root, inode,
712 start, end, 0, NULL);
713 if (ret == 0) {
714 extent_clear_unlock_delalloc(inode,
715 &BTRFS_I(inode)->io_tree,
716 start, end, NULL, 1, 1,
717 1, 1, 1, 1);
718 *nr_written = *nr_written +
719 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720 *page_started = 1;
721 ret = 0;
722 goto out;
723 }
724 }
725
726 BUG_ON(disk_num_bytes >
727 btrfs_super_total_bytes(&root->fs_info->super_copy));
728
729 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730
731 while (disk_num_bytes > 0) {
732 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
733 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
734 root->sectorsize, 0, alloc_hint,
735 (u64)-1, &ins, 1);
736 BUG_ON(ret);
737
738 em = alloc_extent_map(GFP_NOFS);
739 em->start = start;
740 em->orig_start = em->start;
741
742 ram_size = ins.offset;
743 em->len = ins.offset;
744
745 em->block_start = ins.objectid;
746 em->block_len = ins.offset;
747 em->bdev = root->fs_info->fs_devices->latest_bdev;
748 set_bit(EXTENT_FLAG_PINNED, &em->flags);
749
750 while (1) {
751 spin_lock(&em_tree->lock);
752 ret = add_extent_mapping(em_tree, em);
753 spin_unlock(&em_tree->lock);
754 if (ret != -EEXIST) {
755 free_extent_map(em);
756 break;
757 }
758 btrfs_drop_extent_cache(inode, start,
759 start + ram_size - 1, 0);
760 }
761
762 cur_alloc_size = ins.offset;
763 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
764 ram_size, cur_alloc_size, 0);
765 BUG_ON(ret);
766
767 if (root->root_key.objectid ==
768 BTRFS_DATA_RELOC_TREE_OBJECTID) {
769 ret = btrfs_reloc_clone_csums(inode, start,
770 cur_alloc_size);
771 BUG_ON(ret);
772 }
773
774 if (disk_num_bytes < cur_alloc_size)
775 break;
776
777 /* we're not doing compressed IO, don't unlock the first
778 * page (which the caller expects to stay locked), don't
779 * clear any dirty bits and don't set any writeback bits
780 */
781 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
782 start, start + ram_size - 1,
783 locked_page, unlock, 1,
784 1, 0, 0, 0);
785 disk_num_bytes -= cur_alloc_size;
786 num_bytes -= cur_alloc_size;
787 alloc_hint = ins.objectid + ins.offset;
788 start += cur_alloc_size;
789 }
790 out:
791 ret = 0;
792 btrfs_end_transaction(trans, root);
793
794 return ret;
795 }
796
797 /*
798 * work queue call back to started compression on a file and pages
799 */
800 static noinline void async_cow_start(struct btrfs_work *work)
801 {
802 struct async_cow *async_cow;
803 int num_added = 0;
804 async_cow = container_of(work, struct async_cow, work);
805
806 compress_file_range(async_cow->inode, async_cow->locked_page,
807 async_cow->start, async_cow->end, async_cow,
808 &num_added);
809 if (num_added == 0)
810 async_cow->inode = NULL;
811 }
812
813 /*
814 * work queue call back to submit previously compressed pages
815 */
816 static noinline void async_cow_submit(struct btrfs_work *work)
817 {
818 struct async_cow *async_cow;
819 struct btrfs_root *root;
820 unsigned long nr_pages;
821
822 async_cow = container_of(work, struct async_cow, work);
823
824 root = async_cow->root;
825 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
826 PAGE_CACHE_SHIFT;
827
828 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
829
830 if (atomic_read(&root->fs_info->async_delalloc_pages) <
831 5 * 1042 * 1024 &&
832 waitqueue_active(&root->fs_info->async_submit_wait))
833 wake_up(&root->fs_info->async_submit_wait);
834
835 if (async_cow->inode)
836 submit_compressed_extents(async_cow->inode, async_cow);
837 }
838
839 static noinline void async_cow_free(struct btrfs_work *work)
840 {
841 struct async_cow *async_cow;
842 async_cow = container_of(work, struct async_cow, work);
843 kfree(async_cow);
844 }
845
846 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
847 u64 start, u64 end, int *page_started,
848 unsigned long *nr_written)
849 {
850 struct async_cow *async_cow;
851 struct btrfs_root *root = BTRFS_I(inode)->root;
852 unsigned long nr_pages;
853 u64 cur_end;
854 int limit = 10 * 1024 * 1042;
855
856 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
857 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
858 while (start < end) {
859 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
860 async_cow->inode = inode;
861 async_cow->root = root;
862 async_cow->locked_page = locked_page;
863 async_cow->start = start;
864
865 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
866 cur_end = end;
867 else
868 cur_end = min(end, start + 512 * 1024 - 1);
869
870 async_cow->end = cur_end;
871 INIT_LIST_HEAD(&async_cow->extents);
872
873 async_cow->work.func = async_cow_start;
874 async_cow->work.ordered_func = async_cow_submit;
875 async_cow->work.ordered_free = async_cow_free;
876 async_cow->work.flags = 0;
877
878 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
879 PAGE_CACHE_SHIFT;
880 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
881
882 btrfs_queue_worker(&root->fs_info->delalloc_workers,
883 &async_cow->work);
884
885 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
886 wait_event(root->fs_info->async_submit_wait,
887 (atomic_read(&root->fs_info->async_delalloc_pages) <
888 limit));
889 }
890
891 while (atomic_read(&root->fs_info->async_submit_draining) &&
892 atomic_read(&root->fs_info->async_delalloc_pages)) {
893 wait_event(root->fs_info->async_submit_wait,
894 (atomic_read(&root->fs_info->async_delalloc_pages) ==
895 0));
896 }
897
898 *nr_written += nr_pages;
899 start = cur_end + 1;
900 }
901 *page_started = 1;
902 return 0;
903 }
904
905 static noinline int csum_exist_in_range(struct btrfs_root *root,
906 u64 bytenr, u64 num_bytes)
907 {
908 int ret;
909 struct btrfs_ordered_sum *sums;
910 LIST_HEAD(list);
911
912 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
913 bytenr + num_bytes - 1, &list);
914 if (ret == 0 && list_empty(&list))
915 return 0;
916
917 while (!list_empty(&list)) {
918 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
919 list_del(&sums->list);
920 kfree(sums);
921 }
922 return 1;
923 }
924
925 /*
926 * when nowcow writeback call back. This checks for snapshots or COW copies
927 * of the extents that exist in the file, and COWs the file as required.
928 *
929 * If no cow copies or snapshots exist, we write directly to the existing
930 * blocks on disk
931 */
932 static noinline int run_delalloc_nocow(struct inode *inode,
933 struct page *locked_page,
934 u64 start, u64 end, int *page_started, int force,
935 unsigned long *nr_written)
936 {
937 struct btrfs_root *root = BTRFS_I(inode)->root;
938 struct btrfs_trans_handle *trans;
939 struct extent_buffer *leaf;
940 struct btrfs_path *path;
941 struct btrfs_file_extent_item *fi;
942 struct btrfs_key found_key;
943 u64 cow_start;
944 u64 cur_offset;
945 u64 extent_end;
946 u64 extent_offset;
947 u64 disk_bytenr;
948 u64 num_bytes;
949 int extent_type;
950 int ret;
951 int type;
952 int nocow;
953 int check_prev = 1;
954
955 path = btrfs_alloc_path();
956 BUG_ON(!path);
957 trans = btrfs_join_transaction(root, 1);
958 BUG_ON(!trans);
959
960 cow_start = (u64)-1;
961 cur_offset = start;
962 while (1) {
963 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
964 cur_offset, 0);
965 BUG_ON(ret < 0);
966 if (ret > 0 && path->slots[0] > 0 && check_prev) {
967 leaf = path->nodes[0];
968 btrfs_item_key_to_cpu(leaf, &found_key,
969 path->slots[0] - 1);
970 if (found_key.objectid == inode->i_ino &&
971 found_key.type == BTRFS_EXTENT_DATA_KEY)
972 path->slots[0]--;
973 }
974 check_prev = 0;
975 next_slot:
976 leaf = path->nodes[0];
977 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
978 ret = btrfs_next_leaf(root, path);
979 if (ret < 0)
980 BUG_ON(1);
981 if (ret > 0)
982 break;
983 leaf = path->nodes[0];
984 }
985
986 nocow = 0;
987 disk_bytenr = 0;
988 num_bytes = 0;
989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
990
991 if (found_key.objectid > inode->i_ino ||
992 found_key.type > BTRFS_EXTENT_DATA_KEY ||
993 found_key.offset > end)
994 break;
995
996 if (found_key.offset > cur_offset) {
997 extent_end = found_key.offset;
998 goto out_check;
999 }
1000
1001 fi = btrfs_item_ptr(leaf, path->slots[0],
1002 struct btrfs_file_extent_item);
1003 extent_type = btrfs_file_extent_type(leaf, fi);
1004
1005 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1006 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1007 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1008 extent_offset = btrfs_file_extent_offset(leaf, fi);
1009 extent_end = found_key.offset +
1010 btrfs_file_extent_num_bytes(leaf, fi);
1011 if (extent_end <= start) {
1012 path->slots[0]++;
1013 goto next_slot;
1014 }
1015 if (disk_bytenr == 0)
1016 goto out_check;
1017 if (btrfs_file_extent_compression(leaf, fi) ||
1018 btrfs_file_extent_encryption(leaf, fi) ||
1019 btrfs_file_extent_other_encoding(leaf, fi))
1020 goto out_check;
1021 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022 goto out_check;
1023 if (btrfs_extent_readonly(root, disk_bytenr))
1024 goto out_check;
1025 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1026 found_key.offset -
1027 extent_offset, disk_bytenr))
1028 goto out_check;
1029 disk_bytenr += extent_offset;
1030 disk_bytenr += cur_offset - found_key.offset;
1031 num_bytes = min(end + 1, extent_end) - cur_offset;
1032 /*
1033 * force cow if csum exists in the range.
1034 * this ensure that csum for a given extent are
1035 * either valid or do not exist.
1036 */
1037 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1038 goto out_check;
1039 nocow = 1;
1040 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1041 extent_end = found_key.offset +
1042 btrfs_file_extent_inline_len(leaf, fi);
1043 extent_end = ALIGN(extent_end, root->sectorsize);
1044 } else {
1045 BUG_ON(1);
1046 }
1047 out_check:
1048 if (extent_end <= start) {
1049 path->slots[0]++;
1050 goto next_slot;
1051 }
1052 if (!nocow) {
1053 if (cow_start == (u64)-1)
1054 cow_start = cur_offset;
1055 cur_offset = extent_end;
1056 if (cur_offset > end)
1057 break;
1058 path->slots[0]++;
1059 goto next_slot;
1060 }
1061
1062 btrfs_release_path(root, path);
1063 if (cow_start != (u64)-1) {
1064 ret = cow_file_range(inode, locked_page, cow_start,
1065 found_key.offset - 1, page_started,
1066 nr_written, 1);
1067 BUG_ON(ret);
1068 cow_start = (u64)-1;
1069 }
1070
1071 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1072 struct extent_map *em;
1073 struct extent_map_tree *em_tree;
1074 em_tree = &BTRFS_I(inode)->extent_tree;
1075 em = alloc_extent_map(GFP_NOFS);
1076 em->start = cur_offset;
1077 em->orig_start = em->start;
1078 em->len = num_bytes;
1079 em->block_len = num_bytes;
1080 em->block_start = disk_bytenr;
1081 em->bdev = root->fs_info->fs_devices->latest_bdev;
1082 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1083 while (1) {
1084 spin_lock(&em_tree->lock);
1085 ret = add_extent_mapping(em_tree, em);
1086 spin_unlock(&em_tree->lock);
1087 if (ret != -EEXIST) {
1088 free_extent_map(em);
1089 break;
1090 }
1091 btrfs_drop_extent_cache(inode, em->start,
1092 em->start + em->len - 1, 0);
1093 }
1094 type = BTRFS_ORDERED_PREALLOC;
1095 } else {
1096 type = BTRFS_ORDERED_NOCOW;
1097 }
1098
1099 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1100 num_bytes, num_bytes, type);
1101 BUG_ON(ret);
1102
1103 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1104 cur_offset, cur_offset + num_bytes - 1,
1105 locked_page, 1, 1, 1, 0, 0, 0);
1106 cur_offset = extent_end;
1107 if (cur_offset > end)
1108 break;
1109 }
1110 btrfs_release_path(root, path);
1111
1112 if (cur_offset <= end && cow_start == (u64)-1)
1113 cow_start = cur_offset;
1114 if (cow_start != (u64)-1) {
1115 ret = cow_file_range(inode, locked_page, cow_start, end,
1116 page_started, nr_written, 1);
1117 BUG_ON(ret);
1118 }
1119
1120 ret = btrfs_end_transaction(trans, root);
1121 BUG_ON(ret);
1122 btrfs_free_path(path);
1123 return 0;
1124 }
1125
1126 /*
1127 * extent_io.c call back to do delayed allocation processing
1128 */
1129 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1130 u64 start, u64 end, int *page_started,
1131 unsigned long *nr_written)
1132 {
1133 int ret;
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1135
1136 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1137 ret = run_delalloc_nocow(inode, locked_page, start, end,
1138 page_started, 1, nr_written);
1139 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1140 ret = run_delalloc_nocow(inode, locked_page, start, end,
1141 page_started, 0, nr_written);
1142 else if (!btrfs_test_opt(root, COMPRESS))
1143 ret = cow_file_range(inode, locked_page, start, end,
1144 page_started, nr_written, 1);
1145 else
1146 ret = cow_file_range_async(inode, locked_page, start, end,
1147 page_started, nr_written);
1148 return ret;
1149 }
1150
1151 /*
1152 * extent_io.c set_bit_hook, used to track delayed allocation
1153 * bytes in this file, and to maintain the list of inodes that
1154 * have pending delalloc work to be done.
1155 */
1156 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1157 unsigned long old, unsigned long bits)
1158 {
1159 /*
1160 * set_bit and clear bit hooks normally require _irqsave/restore
1161 * but in this case, we are only testeing for the DELALLOC
1162 * bit, which is only set or cleared with irqs on
1163 */
1164 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1165 struct btrfs_root *root = BTRFS_I(inode)->root;
1166 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1167 spin_lock(&root->fs_info->delalloc_lock);
1168 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1169 root->fs_info->delalloc_bytes += end - start + 1;
1170 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1171 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1172 &root->fs_info->delalloc_inodes);
1173 }
1174 spin_unlock(&root->fs_info->delalloc_lock);
1175 }
1176 return 0;
1177 }
1178
1179 /*
1180 * extent_io.c clear_bit_hook, see set_bit_hook for why
1181 */
1182 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1183 unsigned long old, unsigned long bits)
1184 {
1185 /*
1186 * set_bit and clear bit hooks normally require _irqsave/restore
1187 * but in this case, we are only testeing for the DELALLOC
1188 * bit, which is only set or cleared with irqs on
1189 */
1190 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1191 struct btrfs_root *root = BTRFS_I(inode)->root;
1192
1193 spin_lock(&root->fs_info->delalloc_lock);
1194 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1195 printk(KERN_INFO "btrfs warning: delalloc account "
1196 "%llu %llu\n",
1197 (unsigned long long)end - start + 1,
1198 (unsigned long long)
1199 root->fs_info->delalloc_bytes);
1200 btrfs_delalloc_free_space(root, inode, (u64)-1);
1201 root->fs_info->delalloc_bytes = 0;
1202 BTRFS_I(inode)->delalloc_bytes = 0;
1203 } else {
1204 btrfs_delalloc_free_space(root, inode,
1205 end - start + 1);
1206 root->fs_info->delalloc_bytes -= end - start + 1;
1207 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1208 }
1209 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1210 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1211 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1212 }
1213 spin_unlock(&root->fs_info->delalloc_lock);
1214 }
1215 return 0;
1216 }
1217
1218 /*
1219 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1220 * we don't create bios that span stripes or chunks
1221 */
1222 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1223 size_t size, struct bio *bio,
1224 unsigned long bio_flags)
1225 {
1226 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1227 struct btrfs_mapping_tree *map_tree;
1228 u64 logical = (u64)bio->bi_sector << 9;
1229 u64 length = 0;
1230 u64 map_length;
1231 int ret;
1232
1233 if (bio_flags & EXTENT_BIO_COMPRESSED)
1234 return 0;
1235
1236 length = bio->bi_size;
1237 map_tree = &root->fs_info->mapping_tree;
1238 map_length = length;
1239 ret = btrfs_map_block(map_tree, READ, logical,
1240 &map_length, NULL, 0);
1241
1242 if (map_length < length + size)
1243 return 1;
1244 return 0;
1245 }
1246
1247 /*
1248 * in order to insert checksums into the metadata in large chunks,
1249 * we wait until bio submission time. All the pages in the bio are
1250 * checksummed and sums are attached onto the ordered extent record.
1251 *
1252 * At IO completion time the cums attached on the ordered extent record
1253 * are inserted into the btree
1254 */
1255 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1256 struct bio *bio, int mirror_num,
1257 unsigned long bio_flags)
1258 {
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 int ret = 0;
1261
1262 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1263 BUG_ON(ret);
1264 return 0;
1265 }
1266
1267 /*
1268 * in order to insert checksums into the metadata in large chunks,
1269 * we wait until bio submission time. All the pages in the bio are
1270 * checksummed and sums are attached onto the ordered extent record.
1271 *
1272 * At IO completion time the cums attached on the ordered extent record
1273 * are inserted into the btree
1274 */
1275 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1276 int mirror_num, unsigned long bio_flags)
1277 {
1278 struct btrfs_root *root = BTRFS_I(inode)->root;
1279 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1280 }
1281
1282 /*
1283 * extent_io.c submission hook. This does the right thing for csum calculation
1284 * on write, or reading the csums from the tree before a read
1285 */
1286 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1287 int mirror_num, unsigned long bio_flags)
1288 {
1289 struct btrfs_root *root = BTRFS_I(inode)->root;
1290 int ret = 0;
1291 int skip_sum;
1292
1293 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1294
1295 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1296 BUG_ON(ret);
1297
1298 if (!(rw & (1 << BIO_RW))) {
1299 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1300 return btrfs_submit_compressed_read(inode, bio,
1301 mirror_num, bio_flags);
1302 } else if (!skip_sum)
1303 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1304 goto mapit;
1305 } else if (!skip_sum) {
1306 /* csum items have already been cloned */
1307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1308 goto mapit;
1309 /* we're doing a write, do the async checksumming */
1310 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1311 inode, rw, bio, mirror_num,
1312 bio_flags, __btrfs_submit_bio_start,
1313 __btrfs_submit_bio_done);
1314 }
1315
1316 mapit:
1317 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1318 }
1319
1320 /*
1321 * given a list of ordered sums record them in the inode. This happens
1322 * at IO completion time based on sums calculated at bio submission time.
1323 */
1324 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1325 struct inode *inode, u64 file_offset,
1326 struct list_head *list)
1327 {
1328 struct btrfs_ordered_sum *sum;
1329
1330 btrfs_set_trans_block_group(trans, inode);
1331
1332 list_for_each_entry(sum, list, list) {
1333 btrfs_csum_file_blocks(trans,
1334 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1335 }
1336 return 0;
1337 }
1338
1339 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1340 {
1341 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1342 WARN_ON(1);
1343 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1344 GFP_NOFS);
1345 }
1346
1347 /* see btrfs_writepage_start_hook for details on why this is required */
1348 struct btrfs_writepage_fixup {
1349 struct page *page;
1350 struct btrfs_work work;
1351 };
1352
1353 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1354 {
1355 struct btrfs_writepage_fixup *fixup;
1356 struct btrfs_ordered_extent *ordered;
1357 struct page *page;
1358 struct inode *inode;
1359 u64 page_start;
1360 u64 page_end;
1361
1362 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1363 page = fixup->page;
1364 again:
1365 lock_page(page);
1366 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1367 ClearPageChecked(page);
1368 goto out_page;
1369 }
1370
1371 inode = page->mapping->host;
1372 page_start = page_offset(page);
1373 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1374
1375 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1376
1377 /* already ordered? We're done */
1378 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1379 EXTENT_ORDERED, 0)) {
1380 goto out;
1381 }
1382
1383 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1384 if (ordered) {
1385 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1386 page_end, GFP_NOFS);
1387 unlock_page(page);
1388 btrfs_start_ordered_extent(inode, ordered, 1);
1389 goto again;
1390 }
1391
1392 btrfs_set_extent_delalloc(inode, page_start, page_end);
1393 ClearPageChecked(page);
1394 out:
1395 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1396 out_page:
1397 unlock_page(page);
1398 page_cache_release(page);
1399 }
1400
1401 /*
1402 * There are a few paths in the higher layers of the kernel that directly
1403 * set the page dirty bit without asking the filesystem if it is a
1404 * good idea. This causes problems because we want to make sure COW
1405 * properly happens and the data=ordered rules are followed.
1406 *
1407 * In our case any range that doesn't have the ORDERED bit set
1408 * hasn't been properly setup for IO. We kick off an async process
1409 * to fix it up. The async helper will wait for ordered extents, set
1410 * the delalloc bit and make it safe to write the page.
1411 */
1412 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1413 {
1414 struct inode *inode = page->mapping->host;
1415 struct btrfs_writepage_fixup *fixup;
1416 struct btrfs_root *root = BTRFS_I(inode)->root;
1417 int ret;
1418
1419 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1420 EXTENT_ORDERED, 0);
1421 if (ret)
1422 return 0;
1423
1424 if (PageChecked(page))
1425 return -EAGAIN;
1426
1427 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1428 if (!fixup)
1429 return -EAGAIN;
1430
1431 SetPageChecked(page);
1432 page_cache_get(page);
1433 fixup->work.func = btrfs_writepage_fixup_worker;
1434 fixup->page = page;
1435 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1436 return -EAGAIN;
1437 }
1438
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440 struct inode *inode, u64 file_pos,
1441 u64 disk_bytenr, u64 disk_num_bytes,
1442 u64 num_bytes, u64 ram_bytes,
1443 u64 locked_end,
1444 u8 compression, u8 encryption,
1445 u16 other_encoding, int extent_type)
1446 {
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 struct btrfs_file_extent_item *fi;
1449 struct btrfs_path *path;
1450 struct extent_buffer *leaf;
1451 struct btrfs_key ins;
1452 u64 hint;
1453 int ret;
1454
1455 path = btrfs_alloc_path();
1456 BUG_ON(!path);
1457
1458 path->leave_spinning = 1;
1459 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1460 file_pos + num_bytes, locked_end,
1461 file_pos, &hint);
1462 BUG_ON(ret);
1463
1464 ins.objectid = inode->i_ino;
1465 ins.offset = file_pos;
1466 ins.type = BTRFS_EXTENT_DATA_KEY;
1467 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1468 BUG_ON(ret);
1469 leaf = path->nodes[0];
1470 fi = btrfs_item_ptr(leaf, path->slots[0],
1471 struct btrfs_file_extent_item);
1472 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1473 btrfs_set_file_extent_type(leaf, fi, extent_type);
1474 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1475 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1476 btrfs_set_file_extent_offset(leaf, fi, 0);
1477 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1478 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1479 btrfs_set_file_extent_compression(leaf, fi, compression);
1480 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1481 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1482
1483 btrfs_unlock_up_safe(path, 1);
1484 btrfs_set_lock_blocking(leaf);
1485
1486 btrfs_mark_buffer_dirty(leaf);
1487
1488 inode_add_bytes(inode, num_bytes);
1489 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1490
1491 ins.objectid = disk_bytenr;
1492 ins.offset = disk_num_bytes;
1493 ins.type = BTRFS_EXTENT_ITEM_KEY;
1494 ret = btrfs_alloc_reserved_file_extent(trans, root,
1495 root->root_key.objectid,
1496 inode->i_ino, file_pos, &ins);
1497 BUG_ON(ret);
1498 btrfs_free_path(path);
1499
1500 return 0;
1501 }
1502
1503 /*
1504 * helper function for btrfs_finish_ordered_io, this
1505 * just reads in some of the csum leaves to prime them into ram
1506 * before we start the transaction. It limits the amount of btree
1507 * reads required while inside the transaction.
1508 */
1509 static noinline void reada_csum(struct btrfs_root *root,
1510 struct btrfs_path *path,
1511 struct btrfs_ordered_extent *ordered_extent)
1512 {
1513 struct btrfs_ordered_sum *sum;
1514 u64 bytenr;
1515
1516 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1517 list);
1518 bytenr = sum->sums[0].bytenr;
1519
1520 /*
1521 * we don't care about the results, the point of this search is
1522 * just to get the btree leaves into ram
1523 */
1524 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1525 }
1526
1527 /* as ordered data IO finishes, this gets called so we can finish
1528 * an ordered extent if the range of bytes in the file it covers are
1529 * fully written.
1530 */
1531 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1532 {
1533 struct btrfs_root *root = BTRFS_I(inode)->root;
1534 struct btrfs_trans_handle *trans;
1535 struct btrfs_ordered_extent *ordered_extent = NULL;
1536 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1537 struct btrfs_path *path;
1538 int compressed = 0;
1539 int ret;
1540
1541 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1542 if (!ret)
1543 return 0;
1544
1545 /*
1546 * before we join the transaction, try to do some of our IO.
1547 * This will limit the amount of IO that we have to do with
1548 * the transaction running. We're unlikely to need to do any
1549 * IO if the file extents are new, the disk_i_size checks
1550 * covers the most common case.
1551 */
1552 if (start < BTRFS_I(inode)->disk_i_size) {
1553 path = btrfs_alloc_path();
1554 if (path) {
1555 ret = btrfs_lookup_file_extent(NULL, root, path,
1556 inode->i_ino,
1557 start, 0);
1558 ordered_extent = btrfs_lookup_ordered_extent(inode,
1559 start);
1560 if (!list_empty(&ordered_extent->list)) {
1561 btrfs_release_path(root, path);
1562 reada_csum(root, path, ordered_extent);
1563 }
1564 btrfs_free_path(path);
1565 }
1566 }
1567
1568 trans = btrfs_join_transaction(root, 1);
1569
1570 if (!ordered_extent)
1571 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1572 BUG_ON(!ordered_extent);
1573 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1574 goto nocow;
1575
1576 lock_extent(io_tree, ordered_extent->file_offset,
1577 ordered_extent->file_offset + ordered_extent->len - 1,
1578 GFP_NOFS);
1579
1580 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1581 compressed = 1;
1582 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1583 BUG_ON(compressed);
1584 ret = btrfs_mark_extent_written(trans, root, inode,
1585 ordered_extent->file_offset,
1586 ordered_extent->file_offset +
1587 ordered_extent->len);
1588 BUG_ON(ret);
1589 } else {
1590 ret = insert_reserved_file_extent(trans, inode,
1591 ordered_extent->file_offset,
1592 ordered_extent->start,
1593 ordered_extent->disk_len,
1594 ordered_extent->len,
1595 ordered_extent->len,
1596 ordered_extent->file_offset +
1597 ordered_extent->len,
1598 compressed, 0, 0,
1599 BTRFS_FILE_EXTENT_REG);
1600 BUG_ON(ret);
1601 }
1602 unlock_extent(io_tree, ordered_extent->file_offset,
1603 ordered_extent->file_offset + ordered_extent->len - 1,
1604 GFP_NOFS);
1605 nocow:
1606 add_pending_csums(trans, inode, ordered_extent->file_offset,
1607 &ordered_extent->list);
1608
1609 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1610 btrfs_ordered_update_i_size(inode, ordered_extent);
1611 btrfs_update_inode(trans, root, inode);
1612 btrfs_remove_ordered_extent(inode, ordered_extent);
1613 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1614
1615 /* once for us */
1616 btrfs_put_ordered_extent(ordered_extent);
1617 /* once for the tree */
1618 btrfs_put_ordered_extent(ordered_extent);
1619
1620 btrfs_end_transaction(trans, root);
1621 return 0;
1622 }
1623
1624 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1625 struct extent_state *state, int uptodate)
1626 {
1627 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1628 }
1629
1630 /*
1631 * When IO fails, either with EIO or csum verification fails, we
1632 * try other mirrors that might have a good copy of the data. This
1633 * io_failure_record is used to record state as we go through all the
1634 * mirrors. If another mirror has good data, the page is set up to date
1635 * and things continue. If a good mirror can't be found, the original
1636 * bio end_io callback is called to indicate things have failed.
1637 */
1638 struct io_failure_record {
1639 struct page *page;
1640 u64 start;
1641 u64 len;
1642 u64 logical;
1643 unsigned long bio_flags;
1644 int last_mirror;
1645 };
1646
1647 static int btrfs_io_failed_hook(struct bio *failed_bio,
1648 struct page *page, u64 start, u64 end,
1649 struct extent_state *state)
1650 {
1651 struct io_failure_record *failrec = NULL;
1652 u64 private;
1653 struct extent_map *em;
1654 struct inode *inode = page->mapping->host;
1655 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1656 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1657 struct bio *bio;
1658 int num_copies;
1659 int ret;
1660 int rw;
1661 u64 logical;
1662
1663 ret = get_state_private(failure_tree, start, &private);
1664 if (ret) {
1665 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1666 if (!failrec)
1667 return -ENOMEM;
1668 failrec->start = start;
1669 failrec->len = end - start + 1;
1670 failrec->last_mirror = 0;
1671 failrec->bio_flags = 0;
1672
1673 spin_lock(&em_tree->lock);
1674 em = lookup_extent_mapping(em_tree, start, failrec->len);
1675 if (em->start > start || em->start + em->len < start) {
1676 free_extent_map(em);
1677 em = NULL;
1678 }
1679 spin_unlock(&em_tree->lock);
1680
1681 if (!em || IS_ERR(em)) {
1682 kfree(failrec);
1683 return -EIO;
1684 }
1685 logical = start - em->start;
1686 logical = em->block_start + logical;
1687 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1688 logical = em->block_start;
1689 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1690 }
1691 failrec->logical = logical;
1692 free_extent_map(em);
1693 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1694 EXTENT_DIRTY, GFP_NOFS);
1695 set_state_private(failure_tree, start,
1696 (u64)(unsigned long)failrec);
1697 } else {
1698 failrec = (struct io_failure_record *)(unsigned long)private;
1699 }
1700 num_copies = btrfs_num_copies(
1701 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1702 failrec->logical, failrec->len);
1703 failrec->last_mirror++;
1704 if (!state) {
1705 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1706 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1707 failrec->start,
1708 EXTENT_LOCKED);
1709 if (state && state->start != failrec->start)
1710 state = NULL;
1711 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1712 }
1713 if (!state || failrec->last_mirror > num_copies) {
1714 set_state_private(failure_tree, failrec->start, 0);
1715 clear_extent_bits(failure_tree, failrec->start,
1716 failrec->start + failrec->len - 1,
1717 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1718 kfree(failrec);
1719 return -EIO;
1720 }
1721 bio = bio_alloc(GFP_NOFS, 1);
1722 bio->bi_private = state;
1723 bio->bi_end_io = failed_bio->bi_end_io;
1724 bio->bi_sector = failrec->logical >> 9;
1725 bio->bi_bdev = failed_bio->bi_bdev;
1726 bio->bi_size = 0;
1727
1728 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1729 if (failed_bio->bi_rw & (1 << BIO_RW))
1730 rw = WRITE;
1731 else
1732 rw = READ;
1733
1734 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1735 failrec->last_mirror,
1736 failrec->bio_flags);
1737 return 0;
1738 }
1739
1740 /*
1741 * each time an IO finishes, we do a fast check in the IO failure tree
1742 * to see if we need to process or clean up an io_failure_record
1743 */
1744 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1745 {
1746 u64 private;
1747 u64 private_failure;
1748 struct io_failure_record *failure;
1749 int ret;
1750
1751 private = 0;
1752 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1753 (u64)-1, 1, EXTENT_DIRTY)) {
1754 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1755 start, &private_failure);
1756 if (ret == 0) {
1757 failure = (struct io_failure_record *)(unsigned long)
1758 private_failure;
1759 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1760 failure->start, 0);
1761 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1762 failure->start,
1763 failure->start + failure->len - 1,
1764 EXTENT_DIRTY | EXTENT_LOCKED,
1765 GFP_NOFS);
1766 kfree(failure);
1767 }
1768 }
1769 return 0;
1770 }
1771
1772 /*
1773 * when reads are done, we need to check csums to verify the data is correct
1774 * if there's a match, we allow the bio to finish. If not, we go through
1775 * the io_failure_record routines to find good copies
1776 */
1777 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1778 struct extent_state *state)
1779 {
1780 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1781 struct inode *inode = page->mapping->host;
1782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1783 char *kaddr;
1784 u64 private = ~(u32)0;
1785 int ret;
1786 struct btrfs_root *root = BTRFS_I(inode)->root;
1787 u32 csum = ~(u32)0;
1788
1789 if (PageChecked(page)) {
1790 ClearPageChecked(page);
1791 goto good;
1792 }
1793
1794 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1795 return 0;
1796
1797 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1798 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1799 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1800 GFP_NOFS);
1801 return 0;
1802 }
1803
1804 if (state && state->start == start) {
1805 private = state->private;
1806 ret = 0;
1807 } else {
1808 ret = get_state_private(io_tree, start, &private);
1809 }
1810 kaddr = kmap_atomic(page, KM_USER0);
1811 if (ret)
1812 goto zeroit;
1813
1814 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1815 btrfs_csum_final(csum, (char *)&csum);
1816 if (csum != private)
1817 goto zeroit;
1818
1819 kunmap_atomic(kaddr, KM_USER0);
1820 good:
1821 /* if the io failure tree for this inode is non-empty,
1822 * check to see if we've recovered from a failed IO
1823 */
1824 btrfs_clean_io_failures(inode, start);
1825 return 0;
1826
1827 zeroit:
1828 if (printk_ratelimit()) {
1829 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1830 "private %llu\n", page->mapping->host->i_ino,
1831 (unsigned long long)start, csum,
1832 (unsigned long long)private);
1833 }
1834 memset(kaddr + offset, 1, end - start + 1);
1835 flush_dcache_page(page);
1836 kunmap_atomic(kaddr, KM_USER0);
1837 if (private == 0)
1838 return 0;
1839 return -EIO;
1840 }
1841
1842 /*
1843 * This creates an orphan entry for the given inode in case something goes
1844 * wrong in the middle of an unlink/truncate.
1845 */
1846 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1847 {
1848 struct btrfs_root *root = BTRFS_I(inode)->root;
1849 int ret = 0;
1850
1851 spin_lock(&root->list_lock);
1852
1853 /* already on the orphan list, we're good */
1854 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1855 spin_unlock(&root->list_lock);
1856 return 0;
1857 }
1858
1859 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1860
1861 spin_unlock(&root->list_lock);
1862
1863 /*
1864 * insert an orphan item to track this unlinked/truncated file
1865 */
1866 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1867
1868 return ret;
1869 }
1870
1871 /*
1872 * We have done the truncate/delete so we can go ahead and remove the orphan
1873 * item for this particular inode.
1874 */
1875 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1876 {
1877 struct btrfs_root *root = BTRFS_I(inode)->root;
1878 int ret = 0;
1879
1880 spin_lock(&root->list_lock);
1881
1882 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1883 spin_unlock(&root->list_lock);
1884 return 0;
1885 }
1886
1887 list_del_init(&BTRFS_I(inode)->i_orphan);
1888 if (!trans) {
1889 spin_unlock(&root->list_lock);
1890 return 0;
1891 }
1892
1893 spin_unlock(&root->list_lock);
1894
1895 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1896
1897 return ret;
1898 }
1899
1900 /*
1901 * this cleans up any orphans that may be left on the list from the last use
1902 * of this root.
1903 */
1904 void btrfs_orphan_cleanup(struct btrfs_root *root)
1905 {
1906 struct btrfs_path *path;
1907 struct extent_buffer *leaf;
1908 struct btrfs_item *item;
1909 struct btrfs_key key, found_key;
1910 struct btrfs_trans_handle *trans;
1911 struct inode *inode;
1912 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return;
1917 path->reada = -1;
1918
1919 key.objectid = BTRFS_ORPHAN_OBJECTID;
1920 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1921 key.offset = (u64)-1;
1922
1923
1924 while (1) {
1925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1926 if (ret < 0) {
1927 printk(KERN_ERR "Error searching slot for orphan: %d"
1928 "\n", ret);
1929 break;
1930 }
1931
1932 /*
1933 * if ret == 0 means we found what we were searching for, which
1934 * is weird, but possible, so only screw with path if we didnt
1935 * find the key and see if we have stuff that matches
1936 */
1937 if (ret > 0) {
1938 if (path->slots[0] == 0)
1939 break;
1940 path->slots[0]--;
1941 }
1942
1943 /* pull out the item */
1944 leaf = path->nodes[0];
1945 item = btrfs_item_nr(leaf, path->slots[0]);
1946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1947
1948 /* make sure the item matches what we want */
1949 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1950 break;
1951 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1952 break;
1953
1954 /* release the path since we're done with it */
1955 btrfs_release_path(root, path);
1956
1957 /*
1958 * this is where we are basically btrfs_lookup, without the
1959 * crossing root thing. we store the inode number in the
1960 * offset of the orphan item.
1961 */
1962 found_key.objectid = found_key.offset;
1963 found_key.type = BTRFS_INODE_ITEM_KEY;
1964 found_key.offset = 0;
1965 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1966 if (IS_ERR(inode))
1967 break;
1968
1969 /*
1970 * add this inode to the orphan list so btrfs_orphan_del does
1971 * the proper thing when we hit it
1972 */
1973 spin_lock(&root->list_lock);
1974 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1975 spin_unlock(&root->list_lock);
1976
1977 /*
1978 * if this is a bad inode, means we actually succeeded in
1979 * removing the inode, but not the orphan record, which means
1980 * we need to manually delete the orphan since iput will just
1981 * do a destroy_inode
1982 */
1983 if (is_bad_inode(inode)) {
1984 trans = btrfs_start_transaction(root, 1);
1985 btrfs_orphan_del(trans, inode);
1986 btrfs_end_transaction(trans, root);
1987 iput(inode);
1988 continue;
1989 }
1990
1991 /* if we have links, this was a truncate, lets do that */
1992 if (inode->i_nlink) {
1993 nr_truncate++;
1994 btrfs_truncate(inode);
1995 } else {
1996 nr_unlink++;
1997 }
1998
1999 /* this will do delete_inode and everything for us */
2000 iput(inode);
2001 }
2002
2003 if (nr_unlink)
2004 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2005 if (nr_truncate)
2006 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2007
2008 btrfs_free_path(path);
2009 }
2010
2011 /*
2012 * very simple check to peek ahead in the leaf looking for xattrs. If we
2013 * don't find any xattrs, we know there can't be any acls.
2014 *
2015 * slot is the slot the inode is in, objectid is the objectid of the inode
2016 */
2017 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2018 int slot, u64 objectid)
2019 {
2020 u32 nritems = btrfs_header_nritems(leaf);
2021 struct btrfs_key found_key;
2022 int scanned = 0;
2023
2024 slot++;
2025 while (slot < nritems) {
2026 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2027
2028 /* we found a different objectid, there must not be acls */
2029 if (found_key.objectid != objectid)
2030 return 0;
2031
2032 /* we found an xattr, assume we've got an acl */
2033 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2034 return 1;
2035
2036 /*
2037 * we found a key greater than an xattr key, there can't
2038 * be any acls later on
2039 */
2040 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2041 return 0;
2042
2043 slot++;
2044 scanned++;
2045
2046 /*
2047 * it goes inode, inode backrefs, xattrs, extents,
2048 * so if there are a ton of hard links to an inode there can
2049 * be a lot of backrefs. Don't waste time searching too hard,
2050 * this is just an optimization
2051 */
2052 if (scanned >= 8)
2053 break;
2054 }
2055 /* we hit the end of the leaf before we found an xattr or
2056 * something larger than an xattr. We have to assume the inode
2057 * has acls
2058 */
2059 return 1;
2060 }
2061
2062 /*
2063 * read an inode from the btree into the in-memory inode
2064 */
2065 static void btrfs_read_locked_inode(struct inode *inode)
2066 {
2067 struct btrfs_path *path;
2068 struct extent_buffer *leaf;
2069 struct btrfs_inode_item *inode_item;
2070 struct btrfs_timespec *tspec;
2071 struct btrfs_root *root = BTRFS_I(inode)->root;
2072 struct btrfs_key location;
2073 int maybe_acls;
2074 u64 alloc_group_block;
2075 u32 rdev;
2076 int ret;
2077
2078 path = btrfs_alloc_path();
2079 BUG_ON(!path);
2080 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2081
2082 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2083 if (ret)
2084 goto make_bad;
2085
2086 leaf = path->nodes[0];
2087 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2088 struct btrfs_inode_item);
2089
2090 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2091 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2092 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2093 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2094 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2095
2096 tspec = btrfs_inode_atime(inode_item);
2097 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2098 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2099
2100 tspec = btrfs_inode_mtime(inode_item);
2101 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2102 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2103
2104 tspec = btrfs_inode_ctime(inode_item);
2105 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2106 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2107
2108 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2109 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2110 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2111 inode->i_generation = BTRFS_I(inode)->generation;
2112 inode->i_rdev = 0;
2113 rdev = btrfs_inode_rdev(leaf, inode_item);
2114
2115 BTRFS_I(inode)->index_cnt = (u64)-1;
2116 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2117
2118 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2119
2120 /*
2121 * try to precache a NULL acl entry for files that don't have
2122 * any xattrs or acls
2123 */
2124 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2125 if (!maybe_acls)
2126 cache_no_acl(inode);
2127
2128 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2129 alloc_group_block, 0);
2130 btrfs_free_path(path);
2131 inode_item = NULL;
2132
2133 switch (inode->i_mode & S_IFMT) {
2134 case S_IFREG:
2135 inode->i_mapping->a_ops = &btrfs_aops;
2136 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2137 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2138 inode->i_fop = &btrfs_file_operations;
2139 inode->i_op = &btrfs_file_inode_operations;
2140 break;
2141 case S_IFDIR:
2142 inode->i_fop = &btrfs_dir_file_operations;
2143 if (root == root->fs_info->tree_root)
2144 inode->i_op = &btrfs_dir_ro_inode_operations;
2145 else
2146 inode->i_op = &btrfs_dir_inode_operations;
2147 break;
2148 case S_IFLNK:
2149 inode->i_op = &btrfs_symlink_inode_operations;
2150 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2151 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2152 break;
2153 default:
2154 inode->i_op = &btrfs_special_inode_operations;
2155 init_special_inode(inode, inode->i_mode, rdev);
2156 break;
2157 }
2158
2159 btrfs_update_iflags(inode);
2160 return;
2161
2162 make_bad:
2163 btrfs_free_path(path);
2164 make_bad_inode(inode);
2165 }
2166
2167 /*
2168 * given a leaf and an inode, copy the inode fields into the leaf
2169 */
2170 static void fill_inode_item(struct btrfs_trans_handle *trans,
2171 struct extent_buffer *leaf,
2172 struct btrfs_inode_item *item,
2173 struct inode *inode)
2174 {
2175 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2176 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2177 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2178 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2179 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2180
2181 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2182 inode->i_atime.tv_sec);
2183 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2184 inode->i_atime.tv_nsec);
2185
2186 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2187 inode->i_mtime.tv_sec);
2188 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2189 inode->i_mtime.tv_nsec);
2190
2191 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2192 inode->i_ctime.tv_sec);
2193 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2194 inode->i_ctime.tv_nsec);
2195
2196 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2197 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2198 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2199 btrfs_set_inode_transid(leaf, item, trans->transid);
2200 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2201 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2202 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2203 }
2204
2205 /*
2206 * copy everything in the in-memory inode into the btree.
2207 */
2208 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2209 struct btrfs_root *root, struct inode *inode)
2210 {
2211 struct btrfs_inode_item *inode_item;
2212 struct btrfs_path *path;
2213 struct extent_buffer *leaf;
2214 int ret;
2215
2216 path = btrfs_alloc_path();
2217 BUG_ON(!path);
2218 path->leave_spinning = 1;
2219 ret = btrfs_lookup_inode(trans, root, path,
2220 &BTRFS_I(inode)->location, 1);
2221 if (ret) {
2222 if (ret > 0)
2223 ret = -ENOENT;
2224 goto failed;
2225 }
2226
2227 btrfs_unlock_up_safe(path, 1);
2228 leaf = path->nodes[0];
2229 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2230 struct btrfs_inode_item);
2231
2232 fill_inode_item(trans, leaf, inode_item, inode);
2233 btrfs_mark_buffer_dirty(leaf);
2234 btrfs_set_inode_last_trans(trans, inode);
2235 ret = 0;
2236 failed:
2237 btrfs_free_path(path);
2238 return ret;
2239 }
2240
2241
2242 /*
2243 * unlink helper that gets used here in inode.c and in the tree logging
2244 * recovery code. It remove a link in a directory with a given name, and
2245 * also drops the back refs in the inode to the directory
2246 */
2247 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2248 struct btrfs_root *root,
2249 struct inode *dir, struct inode *inode,
2250 const char *name, int name_len)
2251 {
2252 struct btrfs_path *path;
2253 int ret = 0;
2254 struct extent_buffer *leaf;
2255 struct btrfs_dir_item *di;
2256 struct btrfs_key key;
2257 u64 index;
2258
2259 path = btrfs_alloc_path();
2260 if (!path) {
2261 ret = -ENOMEM;
2262 goto err;
2263 }
2264
2265 path->leave_spinning = 1;
2266 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2267 name, name_len, -1);
2268 if (IS_ERR(di)) {
2269 ret = PTR_ERR(di);
2270 goto err;
2271 }
2272 if (!di) {
2273 ret = -ENOENT;
2274 goto err;
2275 }
2276 leaf = path->nodes[0];
2277 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2278 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2279 if (ret)
2280 goto err;
2281 btrfs_release_path(root, path);
2282
2283 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2284 inode->i_ino,
2285 dir->i_ino, &index);
2286 if (ret) {
2287 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2288 "inode %lu parent %lu\n", name_len, name,
2289 inode->i_ino, dir->i_ino);
2290 goto err;
2291 }
2292
2293 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2294 index, name, name_len, -1);
2295 if (IS_ERR(di)) {
2296 ret = PTR_ERR(di);
2297 goto err;
2298 }
2299 if (!di) {
2300 ret = -ENOENT;
2301 goto err;
2302 }
2303 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2304 btrfs_release_path(root, path);
2305
2306 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2307 inode, dir->i_ino);
2308 BUG_ON(ret != 0 && ret != -ENOENT);
2309
2310 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2311 dir, index);
2312 BUG_ON(ret);
2313 err:
2314 btrfs_free_path(path);
2315 if (ret)
2316 goto out;
2317
2318 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2319 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2320 btrfs_update_inode(trans, root, dir);
2321 btrfs_drop_nlink(inode);
2322 ret = btrfs_update_inode(trans, root, inode);
2323 out:
2324 return ret;
2325 }
2326
2327 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2328 {
2329 struct btrfs_root *root;
2330 struct btrfs_trans_handle *trans;
2331 struct inode *inode = dentry->d_inode;
2332 int ret;
2333 unsigned long nr = 0;
2334
2335 root = BTRFS_I(dir)->root;
2336
2337 trans = btrfs_start_transaction(root, 1);
2338
2339 btrfs_set_trans_block_group(trans, dir);
2340
2341 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2342
2343 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2344 dentry->d_name.name, dentry->d_name.len);
2345
2346 if (inode->i_nlink == 0)
2347 ret = btrfs_orphan_add(trans, inode);
2348
2349 nr = trans->blocks_used;
2350
2351 btrfs_end_transaction_throttle(trans, root);
2352 btrfs_btree_balance_dirty(root, nr);
2353 return ret;
2354 }
2355
2356 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2357 {
2358 struct inode *inode = dentry->d_inode;
2359 int err = 0;
2360 int ret;
2361 struct btrfs_root *root = BTRFS_I(dir)->root;
2362 struct btrfs_trans_handle *trans;
2363 unsigned long nr = 0;
2364
2365 /*
2366 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2367 * the root of a subvolume or snapshot
2368 */
2369 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2370 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2371 return -ENOTEMPTY;
2372 }
2373
2374 trans = btrfs_start_transaction(root, 1);
2375 btrfs_set_trans_block_group(trans, dir);
2376
2377 err = btrfs_orphan_add(trans, inode);
2378 if (err)
2379 goto fail_trans;
2380
2381 /* now the directory is empty */
2382 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2383 dentry->d_name.name, dentry->d_name.len);
2384 if (!err)
2385 btrfs_i_size_write(inode, 0);
2386
2387 fail_trans:
2388 nr = trans->blocks_used;
2389 ret = btrfs_end_transaction_throttle(trans, root);
2390 btrfs_btree_balance_dirty(root, nr);
2391
2392 if (ret && !err)
2393 err = ret;
2394 return err;
2395 }
2396
2397 #if 0
2398 /*
2399 * when truncating bytes in a file, it is possible to avoid reading
2400 * the leaves that contain only checksum items. This can be the
2401 * majority of the IO required to delete a large file, but it must
2402 * be done carefully.
2403 *
2404 * The keys in the level just above the leaves are checked to make sure
2405 * the lowest key in a given leaf is a csum key, and starts at an offset
2406 * after the new size.
2407 *
2408 * Then the key for the next leaf is checked to make sure it also has
2409 * a checksum item for the same file. If it does, we know our target leaf
2410 * contains only checksum items, and it can be safely freed without reading
2411 * it.
2412 *
2413 * This is just an optimization targeted at large files. It may do
2414 * nothing. It will return 0 unless things went badly.
2415 */
2416 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2417 struct btrfs_root *root,
2418 struct btrfs_path *path,
2419 struct inode *inode, u64 new_size)
2420 {
2421 struct btrfs_key key;
2422 int ret;
2423 int nritems;
2424 struct btrfs_key found_key;
2425 struct btrfs_key other_key;
2426 struct btrfs_leaf_ref *ref;
2427 u64 leaf_gen;
2428 u64 leaf_start;
2429
2430 path->lowest_level = 1;
2431 key.objectid = inode->i_ino;
2432 key.type = BTRFS_CSUM_ITEM_KEY;
2433 key.offset = new_size;
2434 again:
2435 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2436 if (ret < 0)
2437 goto out;
2438
2439 if (path->nodes[1] == NULL) {
2440 ret = 0;
2441 goto out;
2442 }
2443 ret = 0;
2444 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2445 nritems = btrfs_header_nritems(path->nodes[1]);
2446
2447 if (!nritems)
2448 goto out;
2449
2450 if (path->slots[1] >= nritems)
2451 goto next_node;
2452
2453 /* did we find a key greater than anything we want to delete? */
2454 if (found_key.objectid > inode->i_ino ||
2455 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2456 goto out;
2457
2458 /* we check the next key in the node to make sure the leave contains
2459 * only checksum items. This comparison doesn't work if our
2460 * leaf is the last one in the node
2461 */
2462 if (path->slots[1] + 1 >= nritems) {
2463 next_node:
2464 /* search forward from the last key in the node, this
2465 * will bring us into the next node in the tree
2466 */
2467 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2468
2469 /* unlikely, but we inc below, so check to be safe */
2470 if (found_key.offset == (u64)-1)
2471 goto out;
2472
2473 /* search_forward needs a path with locks held, do the
2474 * search again for the original key. It is possible
2475 * this will race with a balance and return a path that
2476 * we could modify, but this drop is just an optimization
2477 * and is allowed to miss some leaves.
2478 */
2479 btrfs_release_path(root, path);
2480 found_key.offset++;
2481
2482 /* setup a max key for search_forward */
2483 other_key.offset = (u64)-1;
2484 other_key.type = key.type;
2485 other_key.objectid = key.objectid;
2486
2487 path->keep_locks = 1;
2488 ret = btrfs_search_forward(root, &found_key, &other_key,
2489 path, 0, 0);
2490 path->keep_locks = 0;
2491 if (ret || found_key.objectid != key.objectid ||
2492 found_key.type != key.type) {
2493 ret = 0;
2494 goto out;
2495 }
2496
2497 key.offset = found_key.offset;
2498 btrfs_release_path(root, path);
2499 cond_resched();
2500 goto again;
2501 }
2502
2503 /* we know there's one more slot after us in the tree,
2504 * read that key so we can verify it is also a checksum item
2505 */
2506 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2507
2508 if (found_key.objectid < inode->i_ino)
2509 goto next_key;
2510
2511 if (found_key.type != key.type || found_key.offset < new_size)
2512 goto next_key;
2513
2514 /*
2515 * if the key for the next leaf isn't a csum key from this objectid,
2516 * we can't be sure there aren't good items inside this leaf.
2517 * Bail out
2518 */
2519 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2520 goto out;
2521
2522 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2523 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2524 /*
2525 * it is safe to delete this leaf, it contains only
2526 * csum items from this inode at an offset >= new_size
2527 */
2528 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2529 BUG_ON(ret);
2530
2531 if (root->ref_cows && leaf_gen < trans->transid) {
2532 ref = btrfs_alloc_leaf_ref(root, 0);
2533 if (ref) {
2534 ref->root_gen = root->root_key.offset;
2535 ref->bytenr = leaf_start;
2536 ref->owner = 0;
2537 ref->generation = leaf_gen;
2538 ref->nritems = 0;
2539
2540 btrfs_sort_leaf_ref(ref);
2541
2542 ret = btrfs_add_leaf_ref(root, ref, 0);
2543 WARN_ON(ret);
2544 btrfs_free_leaf_ref(root, ref);
2545 } else {
2546 WARN_ON(1);
2547 }
2548 }
2549 next_key:
2550 btrfs_release_path(root, path);
2551
2552 if (other_key.objectid == inode->i_ino &&
2553 other_key.type == key.type && other_key.offset > key.offset) {
2554 key.offset = other_key.offset;
2555 cond_resched();
2556 goto again;
2557 }
2558 ret = 0;
2559 out:
2560 /* fixup any changes we've made to the path */
2561 path->lowest_level = 0;
2562 path->keep_locks = 0;
2563 btrfs_release_path(root, path);
2564 return ret;
2565 }
2566
2567 #endif
2568
2569 /*
2570 * this can truncate away extent items, csum items and directory items.
2571 * It starts at a high offset and removes keys until it can't find
2572 * any higher than new_size
2573 *
2574 * csum items that cross the new i_size are truncated to the new size
2575 * as well.
2576 *
2577 * min_type is the minimum key type to truncate down to. If set to 0, this
2578 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2579 */
2580 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2581 struct btrfs_root *root,
2582 struct inode *inode,
2583 u64 new_size, u32 min_type)
2584 {
2585 int ret;
2586 struct btrfs_path *path;
2587 struct btrfs_key key;
2588 struct btrfs_key found_key;
2589 u32 found_type = (u8)-1;
2590 struct extent_buffer *leaf;
2591 struct btrfs_file_extent_item *fi;
2592 u64 extent_start = 0;
2593 u64 extent_num_bytes = 0;
2594 u64 extent_offset = 0;
2595 u64 item_end = 0;
2596 int found_extent;
2597 int del_item;
2598 int pending_del_nr = 0;
2599 int pending_del_slot = 0;
2600 int extent_type = -1;
2601 int encoding;
2602 u64 mask = root->sectorsize - 1;
2603
2604 if (root->ref_cows)
2605 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2606 path = btrfs_alloc_path();
2607 path->reada = -1;
2608 BUG_ON(!path);
2609
2610 /* FIXME, add redo link to tree so we don't leak on crash */
2611 key.objectid = inode->i_ino;
2612 key.offset = (u64)-1;
2613 key.type = (u8)-1;
2614
2615 search_again:
2616 path->leave_spinning = 1;
2617 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2618 if (ret < 0)
2619 goto error;
2620
2621 if (ret > 0) {
2622 /* there are no items in the tree for us to truncate, we're
2623 * done
2624 */
2625 if (path->slots[0] == 0) {
2626 ret = 0;
2627 goto error;
2628 }
2629 path->slots[0]--;
2630 }
2631
2632 while (1) {
2633 fi = NULL;
2634 leaf = path->nodes[0];
2635 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2636 found_type = btrfs_key_type(&found_key);
2637 encoding = 0;
2638
2639 if (found_key.objectid != inode->i_ino)
2640 break;
2641
2642 if (found_type < min_type)
2643 break;
2644
2645 item_end = found_key.offset;
2646 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2647 fi = btrfs_item_ptr(leaf, path->slots[0],
2648 struct btrfs_file_extent_item);
2649 extent_type = btrfs_file_extent_type(leaf, fi);
2650 encoding = btrfs_file_extent_compression(leaf, fi);
2651 encoding |= btrfs_file_extent_encryption(leaf, fi);
2652 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2653
2654 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2655 item_end +=
2656 btrfs_file_extent_num_bytes(leaf, fi);
2657 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2658 item_end += btrfs_file_extent_inline_len(leaf,
2659 fi);
2660 }
2661 item_end--;
2662 }
2663 if (item_end < new_size) {
2664 if (found_type == BTRFS_DIR_ITEM_KEY)
2665 found_type = BTRFS_INODE_ITEM_KEY;
2666 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2667 found_type = BTRFS_EXTENT_DATA_KEY;
2668 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2669 found_type = BTRFS_XATTR_ITEM_KEY;
2670 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2671 found_type = BTRFS_INODE_REF_KEY;
2672 else if (found_type)
2673 found_type--;
2674 else
2675 break;
2676 btrfs_set_key_type(&key, found_type);
2677 goto next;
2678 }
2679 if (found_key.offset >= new_size)
2680 del_item = 1;
2681 else
2682 del_item = 0;
2683 found_extent = 0;
2684
2685 /* FIXME, shrink the extent if the ref count is only 1 */
2686 if (found_type != BTRFS_EXTENT_DATA_KEY)
2687 goto delete;
2688
2689 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2690 u64 num_dec;
2691 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2692 if (!del_item && !encoding) {
2693 u64 orig_num_bytes =
2694 btrfs_file_extent_num_bytes(leaf, fi);
2695 extent_num_bytes = new_size -
2696 found_key.offset + root->sectorsize - 1;
2697 extent_num_bytes = extent_num_bytes &
2698 ~((u64)root->sectorsize - 1);
2699 btrfs_set_file_extent_num_bytes(leaf, fi,
2700 extent_num_bytes);
2701 num_dec = (orig_num_bytes -
2702 extent_num_bytes);
2703 if (root->ref_cows && extent_start != 0)
2704 inode_sub_bytes(inode, num_dec);
2705 btrfs_mark_buffer_dirty(leaf);
2706 } else {
2707 extent_num_bytes =
2708 btrfs_file_extent_disk_num_bytes(leaf,
2709 fi);
2710 extent_offset = found_key.offset -
2711 btrfs_file_extent_offset(leaf, fi);
2712
2713 /* FIXME blocksize != 4096 */
2714 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2715 if (extent_start != 0) {
2716 found_extent = 1;
2717 if (root->ref_cows)
2718 inode_sub_bytes(inode, num_dec);
2719 }
2720 }
2721 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2722 /*
2723 * we can't truncate inline items that have had
2724 * special encodings
2725 */
2726 if (!del_item &&
2727 btrfs_file_extent_compression(leaf, fi) == 0 &&
2728 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2729 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2730 u32 size = new_size - found_key.offset;
2731
2732 if (root->ref_cows) {
2733 inode_sub_bytes(inode, item_end + 1 -
2734 new_size);
2735 }
2736 size =
2737 btrfs_file_extent_calc_inline_size(size);
2738 ret = btrfs_truncate_item(trans, root, path,
2739 size, 1);
2740 BUG_ON(ret);
2741 } else if (root->ref_cows) {
2742 inode_sub_bytes(inode, item_end + 1 -
2743 found_key.offset);
2744 }
2745 }
2746 delete:
2747 if (del_item) {
2748 if (!pending_del_nr) {
2749 /* no pending yet, add ourselves */
2750 pending_del_slot = path->slots[0];
2751 pending_del_nr = 1;
2752 } else if (pending_del_nr &&
2753 path->slots[0] + 1 == pending_del_slot) {
2754 /* hop on the pending chunk */
2755 pending_del_nr++;
2756 pending_del_slot = path->slots[0];
2757 } else {
2758 BUG();
2759 }
2760 } else {
2761 break;
2762 }
2763 if (found_extent && root->ref_cows) {
2764 btrfs_set_path_blocking(path);
2765 ret = btrfs_free_extent(trans, root, extent_start,
2766 extent_num_bytes, 0,
2767 btrfs_header_owner(leaf),
2768 inode->i_ino, extent_offset);
2769 BUG_ON(ret);
2770 }
2771 next:
2772 if (path->slots[0] == 0) {
2773 if (pending_del_nr)
2774 goto del_pending;
2775 btrfs_release_path(root, path);
2776 if (found_type == BTRFS_INODE_ITEM_KEY)
2777 break;
2778 goto search_again;
2779 }
2780
2781 path->slots[0]--;
2782 if (pending_del_nr &&
2783 path->slots[0] + 1 != pending_del_slot) {
2784 struct btrfs_key debug;
2785 del_pending:
2786 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2787 pending_del_slot);
2788 ret = btrfs_del_items(trans, root, path,
2789 pending_del_slot,
2790 pending_del_nr);
2791 BUG_ON(ret);
2792 pending_del_nr = 0;
2793 btrfs_release_path(root, path);
2794 if (found_type == BTRFS_INODE_ITEM_KEY)
2795 break;
2796 goto search_again;
2797 }
2798 }
2799 ret = 0;
2800 error:
2801 if (pending_del_nr) {
2802 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2803 pending_del_nr);
2804 }
2805 btrfs_free_path(path);
2806 return ret;
2807 }
2808
2809 /*
2810 * taken from block_truncate_page, but does cow as it zeros out
2811 * any bytes left in the last page in the file.
2812 */
2813 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2814 {
2815 struct inode *inode = mapping->host;
2816 struct btrfs_root *root = BTRFS_I(inode)->root;
2817 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2818 struct btrfs_ordered_extent *ordered;
2819 char *kaddr;
2820 u32 blocksize = root->sectorsize;
2821 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2822 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2823 struct page *page;
2824 int ret = 0;
2825 u64 page_start;
2826 u64 page_end;
2827
2828 if ((offset & (blocksize - 1)) == 0)
2829 goto out;
2830
2831 ret = -ENOMEM;
2832 again:
2833 page = grab_cache_page(mapping, index);
2834 if (!page)
2835 goto out;
2836
2837 page_start = page_offset(page);
2838 page_end = page_start + PAGE_CACHE_SIZE - 1;
2839
2840 if (!PageUptodate(page)) {
2841 ret = btrfs_readpage(NULL, page);
2842 lock_page(page);
2843 if (page->mapping != mapping) {
2844 unlock_page(page);
2845 page_cache_release(page);
2846 goto again;
2847 }
2848 if (!PageUptodate(page)) {
2849 ret = -EIO;
2850 goto out_unlock;
2851 }
2852 }
2853 wait_on_page_writeback(page);
2854
2855 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2856 set_page_extent_mapped(page);
2857
2858 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2859 if (ordered) {
2860 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2861 unlock_page(page);
2862 page_cache_release(page);
2863 btrfs_start_ordered_extent(inode, ordered, 1);
2864 btrfs_put_ordered_extent(ordered);
2865 goto again;
2866 }
2867
2868 btrfs_set_extent_delalloc(inode, page_start, page_end);
2869 ret = 0;
2870 if (offset != PAGE_CACHE_SIZE) {
2871 kaddr = kmap(page);
2872 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2873 flush_dcache_page(page);
2874 kunmap(page);
2875 }
2876 ClearPageChecked(page);
2877 set_page_dirty(page);
2878 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2879
2880 out_unlock:
2881 unlock_page(page);
2882 page_cache_release(page);
2883 out:
2884 return ret;
2885 }
2886
2887 int btrfs_cont_expand(struct inode *inode, loff_t size)
2888 {
2889 struct btrfs_trans_handle *trans;
2890 struct btrfs_root *root = BTRFS_I(inode)->root;
2891 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2892 struct extent_map *em;
2893 u64 mask = root->sectorsize - 1;
2894 u64 hole_start = (inode->i_size + mask) & ~mask;
2895 u64 block_end = (size + mask) & ~mask;
2896 u64 last_byte;
2897 u64 cur_offset;
2898 u64 hole_size;
2899 int err;
2900
2901 if (size <= hole_start)
2902 return 0;
2903
2904 err = btrfs_check_metadata_free_space(root);
2905 if (err)
2906 return err;
2907
2908 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2909
2910 while (1) {
2911 struct btrfs_ordered_extent *ordered;
2912 btrfs_wait_ordered_range(inode, hole_start,
2913 block_end - hole_start);
2914 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2915 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2916 if (!ordered)
2917 break;
2918 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2919 btrfs_put_ordered_extent(ordered);
2920 }
2921
2922 trans = btrfs_start_transaction(root, 1);
2923 btrfs_set_trans_block_group(trans, inode);
2924
2925 cur_offset = hole_start;
2926 while (1) {
2927 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2928 block_end - cur_offset, 0);
2929 BUG_ON(IS_ERR(em) || !em);
2930 last_byte = min(extent_map_end(em), block_end);
2931 last_byte = (last_byte + mask) & ~mask;
2932 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2933 u64 hint_byte = 0;
2934 hole_size = last_byte - cur_offset;
2935 err = btrfs_drop_extents(trans, root, inode,
2936 cur_offset,
2937 cur_offset + hole_size,
2938 block_end,
2939 cur_offset, &hint_byte);
2940 if (err)
2941 break;
2942 err = btrfs_insert_file_extent(trans, root,
2943 inode->i_ino, cur_offset, 0,
2944 0, hole_size, 0, hole_size,
2945 0, 0, 0);
2946 btrfs_drop_extent_cache(inode, hole_start,
2947 last_byte - 1, 0);
2948 }
2949 free_extent_map(em);
2950 cur_offset = last_byte;
2951 if (err || cur_offset >= block_end)
2952 break;
2953 }
2954
2955 btrfs_end_transaction(trans, root);
2956 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2957 return err;
2958 }
2959
2960 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2961 {
2962 struct inode *inode = dentry->d_inode;
2963 int err;
2964
2965 err = inode_change_ok(inode, attr);
2966 if (err)
2967 return err;
2968
2969 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2970 if (attr->ia_size > inode->i_size) {
2971 err = btrfs_cont_expand(inode, attr->ia_size);
2972 if (err)
2973 return err;
2974 } else if (inode->i_size > 0 &&
2975 attr->ia_size == 0) {
2976
2977 /* we're truncating a file that used to have good
2978 * data down to zero. Make sure it gets into
2979 * the ordered flush list so that any new writes
2980 * get down to disk quickly.
2981 */
2982 BTRFS_I(inode)->ordered_data_close = 1;
2983 }
2984 }
2985
2986 err = inode_setattr(inode, attr);
2987
2988 if (!err && ((attr->ia_valid & ATTR_MODE)))
2989 err = btrfs_acl_chmod(inode);
2990 return err;
2991 }
2992
2993 void btrfs_delete_inode(struct inode *inode)
2994 {
2995 struct btrfs_trans_handle *trans;
2996 struct btrfs_root *root = BTRFS_I(inode)->root;
2997 unsigned long nr;
2998 int ret;
2999
3000 truncate_inode_pages(&inode->i_data, 0);
3001 if (is_bad_inode(inode)) {
3002 btrfs_orphan_del(NULL, inode);
3003 goto no_delete;
3004 }
3005 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3006
3007 btrfs_i_size_write(inode, 0);
3008 trans = btrfs_join_transaction(root, 1);
3009
3010 btrfs_set_trans_block_group(trans, inode);
3011 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3012 if (ret) {
3013 btrfs_orphan_del(NULL, inode);
3014 goto no_delete_lock;
3015 }
3016
3017 btrfs_orphan_del(trans, inode);
3018
3019 nr = trans->blocks_used;
3020 clear_inode(inode);
3021
3022 btrfs_end_transaction(trans, root);
3023 btrfs_btree_balance_dirty(root, nr);
3024 return;
3025
3026 no_delete_lock:
3027 nr = trans->blocks_used;
3028 btrfs_end_transaction(trans, root);
3029 btrfs_btree_balance_dirty(root, nr);
3030 no_delete:
3031 clear_inode(inode);
3032 }
3033
3034 /*
3035 * this returns the key found in the dir entry in the location pointer.
3036 * If no dir entries were found, location->objectid is 0.
3037 */
3038 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3039 struct btrfs_key *location)
3040 {
3041 const char *name = dentry->d_name.name;
3042 int namelen = dentry->d_name.len;
3043 struct btrfs_dir_item *di;
3044 struct btrfs_path *path;
3045 struct btrfs_root *root = BTRFS_I(dir)->root;
3046 int ret = 0;
3047
3048 path = btrfs_alloc_path();
3049 BUG_ON(!path);
3050
3051 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3052 namelen, 0);
3053 if (IS_ERR(di))
3054 ret = PTR_ERR(di);
3055
3056 if (!di || IS_ERR(di))
3057 goto out_err;
3058
3059 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3060 out:
3061 btrfs_free_path(path);
3062 return ret;
3063 out_err:
3064 location->objectid = 0;
3065 goto out;
3066 }
3067
3068 /*
3069 * when we hit a tree root in a directory, the btrfs part of the inode
3070 * needs to be changed to reflect the root directory of the tree root. This
3071 * is kind of like crossing a mount point.
3072 */
3073 static int fixup_tree_root_location(struct btrfs_root *root,
3074 struct btrfs_key *location,
3075 struct btrfs_root **sub_root,
3076 struct dentry *dentry)
3077 {
3078 struct btrfs_root_item *ri;
3079
3080 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3081 return 0;
3082 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3083 return 0;
3084
3085 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3086 dentry->d_name.name,
3087 dentry->d_name.len);
3088 if (IS_ERR(*sub_root))
3089 return PTR_ERR(*sub_root);
3090
3091 ri = &(*sub_root)->root_item;
3092 location->objectid = btrfs_root_dirid(ri);
3093 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3094 location->offset = 0;
3095
3096 return 0;
3097 }
3098
3099 static void inode_tree_add(struct inode *inode)
3100 {
3101 struct btrfs_root *root = BTRFS_I(inode)->root;
3102 struct btrfs_inode *entry;
3103 struct rb_node **p = &root->inode_tree.rb_node;
3104 struct rb_node *parent = NULL;
3105
3106 spin_lock(&root->inode_lock);
3107 while (*p) {
3108 parent = *p;
3109 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3110
3111 if (inode->i_ino < entry->vfs_inode.i_ino)
3112 p = &(*p)->rb_left;
3113 else if (inode->i_ino > entry->vfs_inode.i_ino)
3114 p = &(*p)->rb_right;
3115 else {
3116 WARN_ON(!(entry->vfs_inode.i_state &
3117 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3118 break;
3119 }
3120 }
3121 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3122 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3123 spin_unlock(&root->inode_lock);
3124 }
3125
3126 static void inode_tree_del(struct inode *inode)
3127 {
3128 struct btrfs_root *root = BTRFS_I(inode)->root;
3129
3130 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3131 spin_lock(&root->inode_lock);
3132 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3133 spin_unlock(&root->inode_lock);
3134 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3135 }
3136 }
3137
3138 static noinline void init_btrfs_i(struct inode *inode)
3139 {
3140 struct btrfs_inode *bi = BTRFS_I(inode);
3141
3142 bi->generation = 0;
3143 bi->sequence = 0;
3144 bi->last_trans = 0;
3145 bi->logged_trans = 0;
3146 bi->delalloc_bytes = 0;
3147 bi->reserved_bytes = 0;
3148 bi->disk_i_size = 0;
3149 bi->flags = 0;
3150 bi->index_cnt = (u64)-1;
3151 bi->last_unlink_trans = 0;
3152 bi->ordered_data_close = 0;
3153 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3154 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3155 inode->i_mapping, GFP_NOFS);
3156 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3157 inode->i_mapping, GFP_NOFS);
3158 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3159 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3160 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3161 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3162 mutex_init(&BTRFS_I(inode)->extent_mutex);
3163 mutex_init(&BTRFS_I(inode)->log_mutex);
3164 }
3165
3166 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3167 {
3168 struct btrfs_iget_args *args = p;
3169 inode->i_ino = args->ino;
3170 init_btrfs_i(inode);
3171 BTRFS_I(inode)->root = args->root;
3172 btrfs_set_inode_space_info(args->root, inode);
3173 return 0;
3174 }
3175
3176 static int btrfs_find_actor(struct inode *inode, void *opaque)
3177 {
3178 struct btrfs_iget_args *args = opaque;
3179 return args->ino == inode->i_ino &&
3180 args->root == BTRFS_I(inode)->root;
3181 }
3182
3183 static struct inode *btrfs_iget_locked(struct super_block *s,
3184 u64 objectid,
3185 struct btrfs_root *root)
3186 {
3187 struct inode *inode;
3188 struct btrfs_iget_args args;
3189 args.ino = objectid;
3190 args.root = root;
3191
3192 inode = iget5_locked(s, objectid, btrfs_find_actor,
3193 btrfs_init_locked_inode,
3194 (void *)&args);
3195 return inode;
3196 }
3197
3198 /* Get an inode object given its location and corresponding root.
3199 * Returns in *is_new if the inode was read from disk
3200 */
3201 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3202 struct btrfs_root *root)
3203 {
3204 struct inode *inode;
3205
3206 inode = btrfs_iget_locked(s, location->objectid, root);
3207 if (!inode)
3208 return ERR_PTR(-ENOMEM);
3209
3210 if (inode->i_state & I_NEW) {
3211 BTRFS_I(inode)->root = root;
3212 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3213 btrfs_read_locked_inode(inode);
3214
3215 inode_tree_add(inode);
3216 unlock_new_inode(inode);
3217 }
3218
3219 return inode;
3220 }
3221
3222 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3223 {
3224 struct inode *inode;
3225 struct btrfs_inode *bi = BTRFS_I(dir);
3226 struct btrfs_root *root = bi->root;
3227 struct btrfs_root *sub_root = root;
3228 struct btrfs_key location;
3229 int ret;
3230
3231 if (dentry->d_name.len > BTRFS_NAME_LEN)
3232 return ERR_PTR(-ENAMETOOLONG);
3233
3234 ret = btrfs_inode_by_name(dir, dentry, &location);
3235
3236 if (ret < 0)
3237 return ERR_PTR(ret);
3238
3239 inode = NULL;
3240 if (location.objectid) {
3241 ret = fixup_tree_root_location(root, &location, &sub_root,
3242 dentry);
3243 if (ret < 0)
3244 return ERR_PTR(ret);
3245 if (ret > 0)
3246 return ERR_PTR(-ENOENT);
3247 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3248 if (IS_ERR(inode))
3249 return ERR_CAST(inode);
3250 }
3251 return inode;
3252 }
3253
3254 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3255 struct nameidata *nd)
3256 {
3257 struct inode *inode;
3258
3259 if (dentry->d_name.len > BTRFS_NAME_LEN)
3260 return ERR_PTR(-ENAMETOOLONG);
3261
3262 inode = btrfs_lookup_dentry(dir, dentry);
3263 if (IS_ERR(inode))
3264 return ERR_CAST(inode);
3265
3266 return d_splice_alias(inode, dentry);
3267 }
3268
3269 static unsigned char btrfs_filetype_table[] = {
3270 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3271 };
3272
3273 static int btrfs_real_readdir(struct file *filp, void *dirent,
3274 filldir_t filldir)
3275 {
3276 struct inode *inode = filp->f_dentry->d_inode;
3277 struct btrfs_root *root = BTRFS_I(inode)->root;
3278 struct btrfs_item *item;
3279 struct btrfs_dir_item *di;
3280 struct btrfs_key key;
3281 struct btrfs_key found_key;
3282 struct btrfs_path *path;
3283 int ret;
3284 u32 nritems;
3285 struct extent_buffer *leaf;
3286 int slot;
3287 int advance;
3288 unsigned char d_type;
3289 int over = 0;
3290 u32 di_cur;
3291 u32 di_total;
3292 u32 di_len;
3293 int key_type = BTRFS_DIR_INDEX_KEY;
3294 char tmp_name[32];
3295 char *name_ptr;
3296 int name_len;
3297
3298 /* FIXME, use a real flag for deciding about the key type */
3299 if (root->fs_info->tree_root == root)
3300 key_type = BTRFS_DIR_ITEM_KEY;
3301
3302 /* special case for "." */
3303 if (filp->f_pos == 0) {
3304 over = filldir(dirent, ".", 1,
3305 1, inode->i_ino,
3306 DT_DIR);
3307 if (over)
3308 return 0;
3309 filp->f_pos = 1;
3310 }
3311 /* special case for .., just use the back ref */
3312 if (filp->f_pos == 1) {
3313 u64 pino = parent_ino(filp->f_path.dentry);
3314 over = filldir(dirent, "..", 2,
3315 2, pino, DT_DIR);
3316 if (over)
3317 return 0;
3318 filp->f_pos = 2;
3319 }
3320 path = btrfs_alloc_path();
3321 path->reada = 2;
3322
3323 btrfs_set_key_type(&key, key_type);
3324 key.offset = filp->f_pos;
3325 key.objectid = inode->i_ino;
3326
3327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3328 if (ret < 0)
3329 goto err;
3330 advance = 0;
3331
3332 while (1) {
3333 leaf = path->nodes[0];
3334 nritems = btrfs_header_nritems(leaf);
3335 slot = path->slots[0];
3336 if (advance || slot >= nritems) {
3337 if (slot >= nritems - 1) {
3338 ret = btrfs_next_leaf(root, path);
3339 if (ret)
3340 break;
3341 leaf = path->nodes[0];
3342 nritems = btrfs_header_nritems(leaf);
3343 slot = path->slots[0];
3344 } else {
3345 slot++;
3346 path->slots[0]++;
3347 }
3348 }
3349
3350 advance = 1;
3351 item = btrfs_item_nr(leaf, slot);
3352 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3353
3354 if (found_key.objectid != key.objectid)
3355 break;
3356 if (btrfs_key_type(&found_key) != key_type)
3357 break;
3358 if (found_key.offset < filp->f_pos)
3359 continue;
3360
3361 filp->f_pos = found_key.offset;
3362
3363 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3364 di_cur = 0;
3365 di_total = btrfs_item_size(leaf, item);
3366
3367 while (di_cur < di_total) {
3368 struct btrfs_key location;
3369
3370 name_len = btrfs_dir_name_len(leaf, di);
3371 if (name_len <= sizeof(tmp_name)) {
3372 name_ptr = tmp_name;
3373 } else {
3374 name_ptr = kmalloc(name_len, GFP_NOFS);
3375 if (!name_ptr) {
3376 ret = -ENOMEM;
3377 goto err;
3378 }
3379 }
3380 read_extent_buffer(leaf, name_ptr,
3381 (unsigned long)(di + 1), name_len);
3382
3383 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3384 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3385
3386 /* is this a reference to our own snapshot? If so
3387 * skip it
3388 */
3389 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3390 location.objectid == root->root_key.objectid) {
3391 over = 0;
3392 goto skip;
3393 }
3394 over = filldir(dirent, name_ptr, name_len,
3395 found_key.offset, location.objectid,
3396 d_type);
3397
3398 skip:
3399 if (name_ptr != tmp_name)
3400 kfree(name_ptr);
3401
3402 if (over)
3403 goto nopos;
3404 di_len = btrfs_dir_name_len(leaf, di) +
3405 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3406 di_cur += di_len;
3407 di = (struct btrfs_dir_item *)((char *)di + di_len);
3408 }
3409 }
3410
3411 /* Reached end of directory/root. Bump pos past the last item. */
3412 if (key_type == BTRFS_DIR_INDEX_KEY)
3413 filp->f_pos = INT_LIMIT(off_t);
3414 else
3415 filp->f_pos++;
3416 nopos:
3417 ret = 0;
3418 err:
3419 btrfs_free_path(path);
3420 return ret;
3421 }
3422
3423 int btrfs_write_inode(struct inode *inode, int wait)
3424 {
3425 struct btrfs_root *root = BTRFS_I(inode)->root;
3426 struct btrfs_trans_handle *trans;
3427 int ret = 0;
3428
3429 if (root->fs_info->btree_inode == inode)
3430 return 0;
3431
3432 if (wait) {
3433 trans = btrfs_join_transaction(root, 1);
3434 btrfs_set_trans_block_group(trans, inode);
3435 ret = btrfs_commit_transaction(trans, root);
3436 }
3437 return ret;
3438 }
3439
3440 /*
3441 * This is somewhat expensive, updating the tree every time the
3442 * inode changes. But, it is most likely to find the inode in cache.
3443 * FIXME, needs more benchmarking...there are no reasons other than performance
3444 * to keep or drop this code.
3445 */
3446 void btrfs_dirty_inode(struct inode *inode)
3447 {
3448 struct btrfs_root *root = BTRFS_I(inode)->root;
3449 struct btrfs_trans_handle *trans;
3450
3451 trans = btrfs_join_transaction(root, 1);
3452 btrfs_set_trans_block_group(trans, inode);
3453 btrfs_update_inode(trans, root, inode);
3454 btrfs_end_transaction(trans, root);
3455 }
3456
3457 /*
3458 * find the highest existing sequence number in a directory
3459 * and then set the in-memory index_cnt variable to reflect
3460 * free sequence numbers
3461 */
3462 static int btrfs_set_inode_index_count(struct inode *inode)
3463 {
3464 struct btrfs_root *root = BTRFS_I(inode)->root;
3465 struct btrfs_key key, found_key;
3466 struct btrfs_path *path;
3467 struct extent_buffer *leaf;
3468 int ret;
3469
3470 key.objectid = inode->i_ino;
3471 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3472 key.offset = (u64)-1;
3473
3474 path = btrfs_alloc_path();
3475 if (!path)
3476 return -ENOMEM;
3477
3478 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3479 if (ret < 0)
3480 goto out;
3481 /* FIXME: we should be able to handle this */
3482 if (ret == 0)
3483 goto out;
3484 ret = 0;
3485
3486 /*
3487 * MAGIC NUMBER EXPLANATION:
3488 * since we search a directory based on f_pos we have to start at 2
3489 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3490 * else has to start at 2
3491 */
3492 if (path->slots[0] == 0) {
3493 BTRFS_I(inode)->index_cnt = 2;
3494 goto out;
3495 }
3496
3497 path->slots[0]--;
3498
3499 leaf = path->nodes[0];
3500 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3501
3502 if (found_key.objectid != inode->i_ino ||
3503 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3504 BTRFS_I(inode)->index_cnt = 2;
3505 goto out;
3506 }
3507
3508 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3509 out:
3510 btrfs_free_path(path);
3511 return ret;
3512 }
3513
3514 /*
3515 * helper to find a free sequence number in a given directory. This current
3516 * code is very simple, later versions will do smarter things in the btree
3517 */
3518 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3519 {
3520 int ret = 0;
3521
3522 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3523 ret = btrfs_set_inode_index_count(dir);
3524 if (ret)
3525 return ret;
3526 }
3527
3528 *index = BTRFS_I(dir)->index_cnt;
3529 BTRFS_I(dir)->index_cnt++;
3530
3531 return ret;
3532 }
3533
3534 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root,
3536 struct inode *dir,
3537 const char *name, int name_len,
3538 u64 ref_objectid, u64 objectid,
3539 u64 alloc_hint, int mode, u64 *index)
3540 {
3541 struct inode *inode;
3542 struct btrfs_inode_item *inode_item;
3543 struct btrfs_key *location;
3544 struct btrfs_path *path;
3545 struct btrfs_inode_ref *ref;
3546 struct btrfs_key key[2];
3547 u32 sizes[2];
3548 unsigned long ptr;
3549 int ret;
3550 int owner;
3551
3552 path = btrfs_alloc_path();
3553 BUG_ON(!path);
3554
3555 inode = new_inode(root->fs_info->sb);
3556 if (!inode)
3557 return ERR_PTR(-ENOMEM);
3558
3559 if (dir) {
3560 ret = btrfs_set_inode_index(dir, index);
3561 if (ret) {
3562 iput(inode);
3563 return ERR_PTR(ret);
3564 }
3565 }
3566 /*
3567 * index_cnt is ignored for everything but a dir,
3568 * btrfs_get_inode_index_count has an explanation for the magic
3569 * number
3570 */
3571 init_btrfs_i(inode);
3572 BTRFS_I(inode)->index_cnt = 2;
3573 BTRFS_I(inode)->root = root;
3574 BTRFS_I(inode)->generation = trans->transid;
3575 btrfs_set_inode_space_info(root, inode);
3576
3577 if (mode & S_IFDIR)
3578 owner = 0;
3579 else
3580 owner = 1;
3581 BTRFS_I(inode)->block_group =
3582 btrfs_find_block_group(root, 0, alloc_hint, owner);
3583 if ((mode & S_IFREG)) {
3584 if (btrfs_test_opt(root, NODATASUM))
3585 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3586 if (btrfs_test_opt(root, NODATACOW))
3587 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3588 }
3589
3590 key[0].objectid = objectid;
3591 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3592 key[0].offset = 0;
3593
3594 key[1].objectid = objectid;
3595 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3596 key[1].offset = ref_objectid;
3597
3598 sizes[0] = sizeof(struct btrfs_inode_item);
3599 sizes[1] = name_len + sizeof(*ref);
3600
3601 path->leave_spinning = 1;
3602 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3603 if (ret != 0)
3604 goto fail;
3605
3606 if (objectid > root->highest_inode)
3607 root->highest_inode = objectid;
3608
3609 inode->i_uid = current_fsuid();
3610
3611 if (dir && (dir->i_mode & S_ISGID)) {
3612 inode->i_gid = dir->i_gid;
3613 if (S_ISDIR(mode))
3614 mode |= S_ISGID;
3615 } else
3616 inode->i_gid = current_fsgid();
3617
3618 inode->i_mode = mode;
3619 inode->i_ino = objectid;
3620 inode_set_bytes(inode, 0);
3621 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3622 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3623 struct btrfs_inode_item);
3624 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3625
3626 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3627 struct btrfs_inode_ref);
3628 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3629 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3630 ptr = (unsigned long)(ref + 1);
3631 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3632
3633 btrfs_mark_buffer_dirty(path->nodes[0]);
3634 btrfs_free_path(path);
3635
3636 location = &BTRFS_I(inode)->location;
3637 location->objectid = objectid;
3638 location->offset = 0;
3639 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3640
3641 btrfs_inherit_iflags(inode, dir);
3642
3643 insert_inode_hash(inode);
3644 inode_tree_add(inode);
3645 return inode;
3646 fail:
3647 if (dir)
3648 BTRFS_I(dir)->index_cnt--;
3649 btrfs_free_path(path);
3650 iput(inode);
3651 return ERR_PTR(ret);
3652 }
3653
3654 static inline u8 btrfs_inode_type(struct inode *inode)
3655 {
3656 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3657 }
3658
3659 /*
3660 * utility function to add 'inode' into 'parent_inode' with
3661 * a give name and a given sequence number.
3662 * if 'add_backref' is true, also insert a backref from the
3663 * inode to the parent directory.
3664 */
3665 int btrfs_add_link(struct btrfs_trans_handle *trans,
3666 struct inode *parent_inode, struct inode *inode,
3667 const char *name, int name_len, int add_backref, u64 index)
3668 {
3669 int ret;
3670 struct btrfs_key key;
3671 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3672
3673 key.objectid = inode->i_ino;
3674 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3675 key.offset = 0;
3676
3677 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3678 parent_inode->i_ino,
3679 &key, btrfs_inode_type(inode),
3680 index);
3681 if (ret == 0) {
3682 if (add_backref) {
3683 ret = btrfs_insert_inode_ref(trans, root,
3684 name, name_len,
3685 inode->i_ino,
3686 parent_inode->i_ino,
3687 index);
3688 }
3689 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3690 name_len * 2);
3691 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3692 ret = btrfs_update_inode(trans, root, parent_inode);
3693 }
3694 return ret;
3695 }
3696
3697 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3698 struct dentry *dentry, struct inode *inode,
3699 int backref, u64 index)
3700 {
3701 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3702 inode, dentry->d_name.name,
3703 dentry->d_name.len, backref, index);
3704 if (!err) {
3705 d_instantiate(dentry, inode);
3706 return 0;
3707 }
3708 if (err > 0)
3709 err = -EEXIST;
3710 return err;
3711 }
3712
3713 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3714 int mode, dev_t rdev)
3715 {
3716 struct btrfs_trans_handle *trans;
3717 struct btrfs_root *root = BTRFS_I(dir)->root;
3718 struct inode *inode = NULL;
3719 int err;
3720 int drop_inode = 0;
3721 u64 objectid;
3722 unsigned long nr = 0;
3723 u64 index = 0;
3724
3725 if (!new_valid_dev(rdev))
3726 return -EINVAL;
3727
3728 err = btrfs_check_metadata_free_space(root);
3729 if (err)
3730 goto fail;
3731
3732 trans = btrfs_start_transaction(root, 1);
3733 btrfs_set_trans_block_group(trans, dir);
3734
3735 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3736 if (err) {
3737 err = -ENOSPC;
3738 goto out_unlock;
3739 }
3740
3741 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3742 dentry->d_name.len,
3743 dentry->d_parent->d_inode->i_ino, objectid,
3744 BTRFS_I(dir)->block_group, mode, &index);
3745 err = PTR_ERR(inode);
3746 if (IS_ERR(inode))
3747 goto out_unlock;
3748
3749 err = btrfs_init_inode_security(inode, dir);
3750 if (err) {
3751 drop_inode = 1;
3752 goto out_unlock;
3753 }
3754
3755 btrfs_set_trans_block_group(trans, inode);
3756 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3757 if (err)
3758 drop_inode = 1;
3759 else {
3760 inode->i_op = &btrfs_special_inode_operations;
3761 init_special_inode(inode, inode->i_mode, rdev);
3762 btrfs_update_inode(trans, root, inode);
3763 }
3764 btrfs_update_inode_block_group(trans, inode);
3765 btrfs_update_inode_block_group(trans, dir);
3766 out_unlock:
3767 nr = trans->blocks_used;
3768 btrfs_end_transaction_throttle(trans, root);
3769 fail:
3770 if (drop_inode) {
3771 inode_dec_link_count(inode);
3772 iput(inode);
3773 }
3774 btrfs_btree_balance_dirty(root, nr);
3775 return err;
3776 }
3777
3778 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3779 int mode, struct nameidata *nd)
3780 {
3781 struct btrfs_trans_handle *trans;
3782 struct btrfs_root *root = BTRFS_I(dir)->root;
3783 struct inode *inode = NULL;
3784 int err;
3785 int drop_inode = 0;
3786 unsigned long nr = 0;
3787 u64 objectid;
3788 u64 index = 0;
3789
3790 err = btrfs_check_metadata_free_space(root);
3791 if (err)
3792 goto fail;
3793 trans = btrfs_start_transaction(root, 1);
3794 btrfs_set_trans_block_group(trans, dir);
3795
3796 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3797 if (err) {
3798 err = -ENOSPC;
3799 goto out_unlock;
3800 }
3801
3802 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3803 dentry->d_name.len,
3804 dentry->d_parent->d_inode->i_ino,
3805 objectid, BTRFS_I(dir)->block_group, mode,
3806 &index);
3807 err = PTR_ERR(inode);
3808 if (IS_ERR(inode))
3809 goto out_unlock;
3810
3811 err = btrfs_init_inode_security(inode, dir);
3812 if (err) {
3813 drop_inode = 1;
3814 goto out_unlock;
3815 }
3816
3817 btrfs_set_trans_block_group(trans, inode);
3818 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3819 if (err)
3820 drop_inode = 1;
3821 else {
3822 inode->i_mapping->a_ops = &btrfs_aops;
3823 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3824 inode->i_fop = &btrfs_file_operations;
3825 inode->i_op = &btrfs_file_inode_operations;
3826 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3827 }
3828 btrfs_update_inode_block_group(trans, inode);
3829 btrfs_update_inode_block_group(trans, dir);
3830 out_unlock:
3831 nr = trans->blocks_used;
3832 btrfs_end_transaction_throttle(trans, root);
3833 fail:
3834 if (drop_inode) {
3835 inode_dec_link_count(inode);
3836 iput(inode);
3837 }
3838 btrfs_btree_balance_dirty(root, nr);
3839 return err;
3840 }
3841
3842 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3843 struct dentry *dentry)
3844 {
3845 struct btrfs_trans_handle *trans;
3846 struct btrfs_root *root = BTRFS_I(dir)->root;
3847 struct inode *inode = old_dentry->d_inode;
3848 u64 index;
3849 unsigned long nr = 0;
3850 int err;
3851 int drop_inode = 0;
3852
3853 if (inode->i_nlink == 0)
3854 return -ENOENT;
3855
3856 btrfs_inc_nlink(inode);
3857 err = btrfs_check_metadata_free_space(root);
3858 if (err)
3859 goto fail;
3860 err = btrfs_set_inode_index(dir, &index);
3861 if (err)
3862 goto fail;
3863
3864 trans = btrfs_start_transaction(root, 1);
3865
3866 btrfs_set_trans_block_group(trans, dir);
3867 atomic_inc(&inode->i_count);
3868
3869 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3870
3871 if (err)
3872 drop_inode = 1;
3873
3874 btrfs_update_inode_block_group(trans, dir);
3875 err = btrfs_update_inode(trans, root, inode);
3876
3877 if (err)
3878 drop_inode = 1;
3879
3880 nr = trans->blocks_used;
3881
3882 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3883 btrfs_end_transaction_throttle(trans, root);
3884 fail:
3885 if (drop_inode) {
3886 inode_dec_link_count(inode);
3887 iput(inode);
3888 }
3889 btrfs_btree_balance_dirty(root, nr);
3890 return err;
3891 }
3892
3893 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3894 {
3895 struct inode *inode = NULL;
3896 struct btrfs_trans_handle *trans;
3897 struct btrfs_root *root = BTRFS_I(dir)->root;
3898 int err = 0;
3899 int drop_on_err = 0;
3900 u64 objectid = 0;
3901 u64 index = 0;
3902 unsigned long nr = 1;
3903
3904 err = btrfs_check_metadata_free_space(root);
3905 if (err)
3906 goto out_unlock;
3907
3908 trans = btrfs_start_transaction(root, 1);
3909 btrfs_set_trans_block_group(trans, dir);
3910
3911 if (IS_ERR(trans)) {
3912 err = PTR_ERR(trans);
3913 goto out_unlock;
3914 }
3915
3916 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3917 if (err) {
3918 err = -ENOSPC;
3919 goto out_unlock;
3920 }
3921
3922 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3923 dentry->d_name.len,
3924 dentry->d_parent->d_inode->i_ino, objectid,
3925 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3926 &index);
3927 if (IS_ERR(inode)) {
3928 err = PTR_ERR(inode);
3929 goto out_fail;
3930 }
3931
3932 drop_on_err = 1;
3933
3934 err = btrfs_init_inode_security(inode, dir);
3935 if (err)
3936 goto out_fail;
3937
3938 inode->i_op = &btrfs_dir_inode_operations;
3939 inode->i_fop = &btrfs_dir_file_operations;
3940 btrfs_set_trans_block_group(trans, inode);
3941
3942 btrfs_i_size_write(inode, 0);
3943 err = btrfs_update_inode(trans, root, inode);
3944 if (err)
3945 goto out_fail;
3946
3947 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3948 inode, dentry->d_name.name,
3949 dentry->d_name.len, 0, index);
3950 if (err)
3951 goto out_fail;
3952
3953 d_instantiate(dentry, inode);
3954 drop_on_err = 0;
3955 btrfs_update_inode_block_group(trans, inode);
3956 btrfs_update_inode_block_group(trans, dir);
3957
3958 out_fail:
3959 nr = trans->blocks_used;
3960 btrfs_end_transaction_throttle(trans, root);
3961
3962 out_unlock:
3963 if (drop_on_err)
3964 iput(inode);
3965 btrfs_btree_balance_dirty(root, nr);
3966 return err;
3967 }
3968
3969 /* helper for btfs_get_extent. Given an existing extent in the tree,
3970 * and an extent that you want to insert, deal with overlap and insert
3971 * the new extent into the tree.
3972 */
3973 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3974 struct extent_map *existing,
3975 struct extent_map *em,
3976 u64 map_start, u64 map_len)
3977 {
3978 u64 start_diff;
3979
3980 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3981 start_diff = map_start - em->start;
3982 em->start = map_start;
3983 em->len = map_len;
3984 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3985 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3986 em->block_start += start_diff;
3987 em->block_len -= start_diff;
3988 }
3989 return add_extent_mapping(em_tree, em);
3990 }
3991
3992 static noinline int uncompress_inline(struct btrfs_path *path,
3993 struct inode *inode, struct page *page,
3994 size_t pg_offset, u64 extent_offset,
3995 struct btrfs_file_extent_item *item)
3996 {
3997 int ret;
3998 struct extent_buffer *leaf = path->nodes[0];
3999 char *tmp;
4000 size_t max_size;
4001 unsigned long inline_size;
4002 unsigned long ptr;
4003
4004 WARN_ON(pg_offset != 0);
4005 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4006 inline_size = btrfs_file_extent_inline_item_len(leaf,
4007 btrfs_item_nr(leaf, path->slots[0]));
4008 tmp = kmalloc(inline_size, GFP_NOFS);
4009 ptr = btrfs_file_extent_inline_start(item);
4010
4011 read_extent_buffer(leaf, tmp, ptr, inline_size);
4012
4013 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4014 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4015 inline_size, max_size);
4016 if (ret) {
4017 char *kaddr = kmap_atomic(page, KM_USER0);
4018 unsigned long copy_size = min_t(u64,
4019 PAGE_CACHE_SIZE - pg_offset,
4020 max_size - extent_offset);
4021 memset(kaddr + pg_offset, 0, copy_size);
4022 kunmap_atomic(kaddr, KM_USER0);
4023 }
4024 kfree(tmp);
4025 return 0;
4026 }
4027
4028 /*
4029 * a bit scary, this does extent mapping from logical file offset to the disk.
4030 * the ugly parts come from merging extents from the disk with the in-ram
4031 * representation. This gets more complex because of the data=ordered code,
4032 * where the in-ram extents might be locked pending data=ordered completion.
4033 *
4034 * This also copies inline extents directly into the page.
4035 */
4036
4037 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4038 size_t pg_offset, u64 start, u64 len,
4039 int create)
4040 {
4041 int ret;
4042 int err = 0;
4043 u64 bytenr;
4044 u64 extent_start = 0;
4045 u64 extent_end = 0;
4046 u64 objectid = inode->i_ino;
4047 u32 found_type;
4048 struct btrfs_path *path = NULL;
4049 struct btrfs_root *root = BTRFS_I(inode)->root;
4050 struct btrfs_file_extent_item *item;
4051 struct extent_buffer *leaf;
4052 struct btrfs_key found_key;
4053 struct extent_map *em = NULL;
4054 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4055 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4056 struct btrfs_trans_handle *trans = NULL;
4057 int compressed;
4058
4059 again:
4060 spin_lock(&em_tree->lock);
4061 em = lookup_extent_mapping(em_tree, start, len);
4062 if (em)
4063 em->bdev = root->fs_info->fs_devices->latest_bdev;
4064 spin_unlock(&em_tree->lock);
4065
4066 if (em) {
4067 if (em->start > start || em->start + em->len <= start)
4068 free_extent_map(em);
4069 else if (em->block_start == EXTENT_MAP_INLINE && page)
4070 free_extent_map(em);
4071 else
4072 goto out;
4073 }
4074 em = alloc_extent_map(GFP_NOFS);
4075 if (!em) {
4076 err = -ENOMEM;
4077 goto out;
4078 }
4079 em->bdev = root->fs_info->fs_devices->latest_bdev;
4080 em->start = EXTENT_MAP_HOLE;
4081 em->orig_start = EXTENT_MAP_HOLE;
4082 em->len = (u64)-1;
4083 em->block_len = (u64)-1;
4084
4085 if (!path) {
4086 path = btrfs_alloc_path();
4087 BUG_ON(!path);
4088 }
4089
4090 ret = btrfs_lookup_file_extent(trans, root, path,
4091 objectid, start, trans != NULL);
4092 if (ret < 0) {
4093 err = ret;
4094 goto out;
4095 }
4096
4097 if (ret != 0) {
4098 if (path->slots[0] == 0)
4099 goto not_found;
4100 path->slots[0]--;
4101 }
4102
4103 leaf = path->nodes[0];
4104 item = btrfs_item_ptr(leaf, path->slots[0],
4105 struct btrfs_file_extent_item);
4106 /* are we inside the extent that was found? */
4107 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4108 found_type = btrfs_key_type(&found_key);
4109 if (found_key.objectid != objectid ||
4110 found_type != BTRFS_EXTENT_DATA_KEY) {
4111 goto not_found;
4112 }
4113
4114 found_type = btrfs_file_extent_type(leaf, item);
4115 extent_start = found_key.offset;
4116 compressed = btrfs_file_extent_compression(leaf, item);
4117 if (found_type == BTRFS_FILE_EXTENT_REG ||
4118 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4119 extent_end = extent_start +
4120 btrfs_file_extent_num_bytes(leaf, item);
4121 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4122 size_t size;
4123 size = btrfs_file_extent_inline_len(leaf, item);
4124 extent_end = (extent_start + size + root->sectorsize - 1) &
4125 ~((u64)root->sectorsize - 1);
4126 }
4127
4128 if (start >= extent_end) {
4129 path->slots[0]++;
4130 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4131 ret = btrfs_next_leaf(root, path);
4132 if (ret < 0) {
4133 err = ret;
4134 goto out;
4135 }
4136 if (ret > 0)
4137 goto not_found;
4138 leaf = path->nodes[0];
4139 }
4140 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4141 if (found_key.objectid != objectid ||
4142 found_key.type != BTRFS_EXTENT_DATA_KEY)
4143 goto not_found;
4144 if (start + len <= found_key.offset)
4145 goto not_found;
4146 em->start = start;
4147 em->len = found_key.offset - start;
4148 goto not_found_em;
4149 }
4150
4151 if (found_type == BTRFS_FILE_EXTENT_REG ||
4152 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4153 em->start = extent_start;
4154 em->len = extent_end - extent_start;
4155 em->orig_start = extent_start -
4156 btrfs_file_extent_offset(leaf, item);
4157 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4158 if (bytenr == 0) {
4159 em->block_start = EXTENT_MAP_HOLE;
4160 goto insert;
4161 }
4162 if (compressed) {
4163 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4164 em->block_start = bytenr;
4165 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4166 item);
4167 } else {
4168 bytenr += btrfs_file_extent_offset(leaf, item);
4169 em->block_start = bytenr;
4170 em->block_len = em->len;
4171 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4172 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4173 }
4174 goto insert;
4175 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4176 unsigned long ptr;
4177 char *map;
4178 size_t size;
4179 size_t extent_offset;
4180 size_t copy_size;
4181
4182 em->block_start = EXTENT_MAP_INLINE;
4183 if (!page || create) {
4184 em->start = extent_start;
4185 em->len = extent_end - extent_start;
4186 goto out;
4187 }
4188
4189 size = btrfs_file_extent_inline_len(leaf, item);
4190 extent_offset = page_offset(page) + pg_offset - extent_start;
4191 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4192 size - extent_offset);
4193 em->start = extent_start + extent_offset;
4194 em->len = (copy_size + root->sectorsize - 1) &
4195 ~((u64)root->sectorsize - 1);
4196 em->orig_start = EXTENT_MAP_INLINE;
4197 if (compressed)
4198 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4199 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4200 if (create == 0 && !PageUptodate(page)) {
4201 if (btrfs_file_extent_compression(leaf, item) ==
4202 BTRFS_COMPRESS_ZLIB) {
4203 ret = uncompress_inline(path, inode, page,
4204 pg_offset,
4205 extent_offset, item);
4206 BUG_ON(ret);
4207 } else {
4208 map = kmap(page);
4209 read_extent_buffer(leaf, map + pg_offset, ptr,
4210 copy_size);
4211 kunmap(page);
4212 }
4213 flush_dcache_page(page);
4214 } else if (create && PageUptodate(page)) {
4215 if (!trans) {
4216 kunmap(page);
4217 free_extent_map(em);
4218 em = NULL;
4219 btrfs_release_path(root, path);
4220 trans = btrfs_join_transaction(root, 1);
4221 goto again;
4222 }
4223 map = kmap(page);
4224 write_extent_buffer(leaf, map + pg_offset, ptr,
4225 copy_size);
4226 kunmap(page);
4227 btrfs_mark_buffer_dirty(leaf);
4228 }
4229 set_extent_uptodate(io_tree, em->start,
4230 extent_map_end(em) - 1, GFP_NOFS);
4231 goto insert;
4232 } else {
4233 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4234 WARN_ON(1);
4235 }
4236 not_found:
4237 em->start = start;
4238 em->len = len;
4239 not_found_em:
4240 em->block_start = EXTENT_MAP_HOLE;
4241 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4242 insert:
4243 btrfs_release_path(root, path);
4244 if (em->start > start || extent_map_end(em) <= start) {
4245 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4246 "[%llu %llu]\n", (unsigned long long)em->start,
4247 (unsigned long long)em->len,
4248 (unsigned long long)start,
4249 (unsigned long long)len);
4250 err = -EIO;
4251 goto out;
4252 }
4253
4254 err = 0;
4255 spin_lock(&em_tree->lock);
4256 ret = add_extent_mapping(em_tree, em);
4257 /* it is possible that someone inserted the extent into the tree
4258 * while we had the lock dropped. It is also possible that
4259 * an overlapping map exists in the tree
4260 */
4261 if (ret == -EEXIST) {
4262 struct extent_map *existing;
4263
4264 ret = 0;
4265
4266 existing = lookup_extent_mapping(em_tree, start, len);
4267 if (existing && (existing->start > start ||
4268 existing->start + existing->len <= start)) {
4269 free_extent_map(existing);
4270 existing = NULL;
4271 }
4272 if (!existing) {
4273 existing = lookup_extent_mapping(em_tree, em->start,
4274 em->len);
4275 if (existing) {
4276 err = merge_extent_mapping(em_tree, existing,
4277 em, start,
4278 root->sectorsize);
4279 free_extent_map(existing);
4280 if (err) {
4281 free_extent_map(em);
4282 em = NULL;
4283 }
4284 } else {
4285 err = -EIO;
4286 free_extent_map(em);
4287 em = NULL;
4288 }
4289 } else {
4290 free_extent_map(em);
4291 em = existing;
4292 err = 0;
4293 }
4294 }
4295 spin_unlock(&em_tree->lock);
4296 out:
4297 if (path)
4298 btrfs_free_path(path);
4299 if (trans) {
4300 ret = btrfs_end_transaction(trans, root);
4301 if (!err)
4302 err = ret;
4303 }
4304 if (err) {
4305 free_extent_map(em);
4306 return ERR_PTR(err);
4307 }
4308 return em;
4309 }
4310
4311 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4312 const struct iovec *iov, loff_t offset,
4313 unsigned long nr_segs)
4314 {
4315 return -EINVAL;
4316 }
4317
4318 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4319 __u64 start, __u64 len)
4320 {
4321 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4322 }
4323
4324 int btrfs_readpage(struct file *file, struct page *page)
4325 {
4326 struct extent_io_tree *tree;
4327 tree = &BTRFS_I(page->mapping->host)->io_tree;
4328 return extent_read_full_page(tree, page, btrfs_get_extent);
4329 }
4330
4331 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4332 {
4333 struct extent_io_tree *tree;
4334
4335
4336 if (current->flags & PF_MEMALLOC) {
4337 redirty_page_for_writepage(wbc, page);
4338 unlock_page(page);
4339 return 0;
4340 }
4341 tree = &BTRFS_I(page->mapping->host)->io_tree;
4342 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4343 }
4344
4345 int btrfs_writepages(struct address_space *mapping,
4346 struct writeback_control *wbc)
4347 {
4348 struct extent_io_tree *tree;
4349
4350 tree = &BTRFS_I(mapping->host)->io_tree;
4351 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4352 }
4353
4354 static int
4355 btrfs_readpages(struct file *file, struct address_space *mapping,
4356 struct list_head *pages, unsigned nr_pages)
4357 {
4358 struct extent_io_tree *tree;
4359 tree = &BTRFS_I(mapping->host)->io_tree;
4360 return extent_readpages(tree, mapping, pages, nr_pages,
4361 btrfs_get_extent);
4362 }
4363 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4364 {
4365 struct extent_io_tree *tree;
4366 struct extent_map_tree *map;
4367 int ret;
4368
4369 tree = &BTRFS_I(page->mapping->host)->io_tree;
4370 map = &BTRFS_I(page->mapping->host)->extent_tree;
4371 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4372 if (ret == 1) {
4373 ClearPagePrivate(page);
4374 set_page_private(page, 0);
4375 page_cache_release(page);
4376 }
4377 return ret;
4378 }
4379
4380 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4381 {
4382 if (PageWriteback(page) || PageDirty(page))
4383 return 0;
4384 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4385 }
4386
4387 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4388 {
4389 struct extent_io_tree *tree;
4390 struct btrfs_ordered_extent *ordered;
4391 u64 page_start = page_offset(page);
4392 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4393
4394 wait_on_page_writeback(page);
4395 tree = &BTRFS_I(page->mapping->host)->io_tree;
4396 if (offset) {
4397 btrfs_releasepage(page, GFP_NOFS);
4398 return;
4399 }
4400
4401 lock_extent(tree, page_start, page_end, GFP_NOFS);
4402 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4403 page_offset(page));
4404 if (ordered) {
4405 /*
4406 * IO on this page will never be started, so we need
4407 * to account for any ordered extents now
4408 */
4409 clear_extent_bit(tree, page_start, page_end,
4410 EXTENT_DIRTY | EXTENT_DELALLOC |
4411 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4412 btrfs_finish_ordered_io(page->mapping->host,
4413 page_start, page_end);
4414 btrfs_put_ordered_extent(ordered);
4415 lock_extent(tree, page_start, page_end, GFP_NOFS);
4416 }
4417 clear_extent_bit(tree, page_start, page_end,
4418 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4419 EXTENT_ORDERED,
4420 1, 1, GFP_NOFS);
4421 __btrfs_releasepage(page, GFP_NOFS);
4422
4423 ClearPageChecked(page);
4424 if (PagePrivate(page)) {
4425 ClearPagePrivate(page);
4426 set_page_private(page, 0);
4427 page_cache_release(page);
4428 }
4429 }
4430
4431 /*
4432 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4433 * called from a page fault handler when a page is first dirtied. Hence we must
4434 * be careful to check for EOF conditions here. We set the page up correctly
4435 * for a written page which means we get ENOSPC checking when writing into
4436 * holes and correct delalloc and unwritten extent mapping on filesystems that
4437 * support these features.
4438 *
4439 * We are not allowed to take the i_mutex here so we have to play games to
4440 * protect against truncate races as the page could now be beyond EOF. Because
4441 * vmtruncate() writes the inode size before removing pages, once we have the
4442 * page lock we can determine safely if the page is beyond EOF. If it is not
4443 * beyond EOF, then the page is guaranteed safe against truncation until we
4444 * unlock the page.
4445 */
4446 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4447 {
4448 struct page *page = vmf->page;
4449 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4452 struct btrfs_ordered_extent *ordered;
4453 char *kaddr;
4454 unsigned long zero_start;
4455 loff_t size;
4456 int ret;
4457 u64 page_start;
4458 u64 page_end;
4459
4460 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4461 if (ret) {
4462 if (ret == -ENOMEM)
4463 ret = VM_FAULT_OOM;
4464 else /* -ENOSPC, -EIO, etc */
4465 ret = VM_FAULT_SIGBUS;
4466 goto out;
4467 }
4468
4469 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4470 again:
4471 lock_page(page);
4472 size = i_size_read(inode);
4473 page_start = page_offset(page);
4474 page_end = page_start + PAGE_CACHE_SIZE - 1;
4475
4476 if ((page->mapping != inode->i_mapping) ||
4477 (page_start >= size)) {
4478 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4479 /* page got truncated out from underneath us */
4480 goto out_unlock;
4481 }
4482 wait_on_page_writeback(page);
4483
4484 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4485 set_page_extent_mapped(page);
4486
4487 /*
4488 * we can't set the delalloc bits if there are pending ordered
4489 * extents. Drop our locks and wait for them to finish
4490 */
4491 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4492 if (ordered) {
4493 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4494 unlock_page(page);
4495 btrfs_start_ordered_extent(inode, ordered, 1);
4496 btrfs_put_ordered_extent(ordered);
4497 goto again;
4498 }
4499
4500 btrfs_set_extent_delalloc(inode, page_start, page_end);
4501 ret = 0;
4502
4503 /* page is wholly or partially inside EOF */
4504 if (page_start + PAGE_CACHE_SIZE > size)
4505 zero_start = size & ~PAGE_CACHE_MASK;
4506 else
4507 zero_start = PAGE_CACHE_SIZE;
4508
4509 if (zero_start != PAGE_CACHE_SIZE) {
4510 kaddr = kmap(page);
4511 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4512 flush_dcache_page(page);
4513 kunmap(page);
4514 }
4515 ClearPageChecked(page);
4516 set_page_dirty(page);
4517
4518 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4519 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4520
4521 out_unlock:
4522 unlock_page(page);
4523 out:
4524 return ret;
4525 }
4526
4527 static void btrfs_truncate(struct inode *inode)
4528 {
4529 struct btrfs_root *root = BTRFS_I(inode)->root;
4530 int ret;
4531 struct btrfs_trans_handle *trans;
4532 unsigned long nr;
4533 u64 mask = root->sectorsize - 1;
4534
4535 if (!S_ISREG(inode->i_mode))
4536 return;
4537 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4538 return;
4539
4540 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4541 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4542
4543 trans = btrfs_start_transaction(root, 1);
4544
4545 /*
4546 * setattr is responsible for setting the ordered_data_close flag,
4547 * but that is only tested during the last file release. That
4548 * could happen well after the next commit, leaving a great big
4549 * window where new writes may get lost if someone chooses to write
4550 * to this file after truncating to zero
4551 *
4552 * The inode doesn't have any dirty data here, and so if we commit
4553 * this is a noop. If someone immediately starts writing to the inode
4554 * it is very likely we'll catch some of their writes in this
4555 * transaction, and the commit will find this file on the ordered
4556 * data list with good things to send down.
4557 *
4558 * This is a best effort solution, there is still a window where
4559 * using truncate to replace the contents of the file will
4560 * end up with a zero length file after a crash.
4561 */
4562 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4563 btrfs_add_ordered_operation(trans, root, inode);
4564
4565 btrfs_set_trans_block_group(trans, inode);
4566 btrfs_i_size_write(inode, inode->i_size);
4567
4568 ret = btrfs_orphan_add(trans, inode);
4569 if (ret)
4570 goto out;
4571 /* FIXME, add redo link to tree so we don't leak on crash */
4572 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4573 BTRFS_EXTENT_DATA_KEY);
4574 btrfs_update_inode(trans, root, inode);
4575
4576 ret = btrfs_orphan_del(trans, inode);
4577 BUG_ON(ret);
4578
4579 out:
4580 nr = trans->blocks_used;
4581 ret = btrfs_end_transaction_throttle(trans, root);
4582 BUG_ON(ret);
4583 btrfs_btree_balance_dirty(root, nr);
4584 }
4585
4586 /*
4587 * create a new subvolume directory/inode (helper for the ioctl).
4588 */
4589 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4590 struct btrfs_root *new_root, struct dentry *dentry,
4591 u64 new_dirid, u64 alloc_hint)
4592 {
4593 struct inode *inode;
4594 int error;
4595 u64 index = 0;
4596
4597 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4598 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4599 if (IS_ERR(inode))
4600 return PTR_ERR(inode);
4601 inode->i_op = &btrfs_dir_inode_operations;
4602 inode->i_fop = &btrfs_dir_file_operations;
4603
4604 inode->i_nlink = 1;
4605 btrfs_i_size_write(inode, 0);
4606
4607 error = btrfs_update_inode(trans, new_root, inode);
4608 if (error)
4609 return error;
4610
4611 d_instantiate(dentry, inode);
4612 return 0;
4613 }
4614
4615 /* helper function for file defrag and space balancing. This
4616 * forces readahead on a given range of bytes in an inode
4617 */
4618 unsigned long btrfs_force_ra(struct address_space *mapping,
4619 struct file_ra_state *ra, struct file *file,
4620 pgoff_t offset, pgoff_t last_index)
4621 {
4622 pgoff_t req_size = last_index - offset + 1;
4623
4624 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4625 return offset + req_size;
4626 }
4627
4628 struct inode *btrfs_alloc_inode(struct super_block *sb)
4629 {
4630 struct btrfs_inode *ei;
4631
4632 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4633 if (!ei)
4634 return NULL;
4635 ei->last_trans = 0;
4636 ei->logged_trans = 0;
4637 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4638 INIT_LIST_HEAD(&ei->i_orphan);
4639 INIT_LIST_HEAD(&ei->ordered_operations);
4640 return &ei->vfs_inode;
4641 }
4642
4643 void btrfs_destroy_inode(struct inode *inode)
4644 {
4645 struct btrfs_ordered_extent *ordered;
4646 struct btrfs_root *root = BTRFS_I(inode)->root;
4647
4648 WARN_ON(!list_empty(&inode->i_dentry));
4649 WARN_ON(inode->i_data.nrpages);
4650
4651 /*
4652 * Make sure we're properly removed from the ordered operation
4653 * lists.
4654 */
4655 smp_mb();
4656 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4657 spin_lock(&root->fs_info->ordered_extent_lock);
4658 list_del_init(&BTRFS_I(inode)->ordered_operations);
4659 spin_unlock(&root->fs_info->ordered_extent_lock);
4660 }
4661
4662 spin_lock(&root->list_lock);
4663 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4664 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4665 " list\n", inode->i_ino);
4666 dump_stack();
4667 }
4668 spin_unlock(&root->list_lock);
4669
4670 while (1) {
4671 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4672 if (!ordered)
4673 break;
4674 else {
4675 printk(KERN_ERR "btrfs found ordered "
4676 "extent %llu %llu on inode cleanup\n",
4677 (unsigned long long)ordered->file_offset,
4678 (unsigned long long)ordered->len);
4679 btrfs_remove_ordered_extent(inode, ordered);
4680 btrfs_put_ordered_extent(ordered);
4681 btrfs_put_ordered_extent(ordered);
4682 }
4683 }
4684 inode_tree_del(inode);
4685 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4686 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4687 }
4688
4689 static void init_once(void *foo)
4690 {
4691 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4692
4693 inode_init_once(&ei->vfs_inode);
4694 }
4695
4696 void btrfs_destroy_cachep(void)
4697 {
4698 if (btrfs_inode_cachep)
4699 kmem_cache_destroy(btrfs_inode_cachep);
4700 if (btrfs_trans_handle_cachep)
4701 kmem_cache_destroy(btrfs_trans_handle_cachep);
4702 if (btrfs_transaction_cachep)
4703 kmem_cache_destroy(btrfs_transaction_cachep);
4704 if (btrfs_path_cachep)
4705 kmem_cache_destroy(btrfs_path_cachep);
4706 }
4707
4708 int btrfs_init_cachep(void)
4709 {
4710 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4711 sizeof(struct btrfs_inode), 0,
4712 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4713 if (!btrfs_inode_cachep)
4714 goto fail;
4715
4716 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4717 sizeof(struct btrfs_trans_handle), 0,
4718 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4719 if (!btrfs_trans_handle_cachep)
4720 goto fail;
4721
4722 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4723 sizeof(struct btrfs_transaction), 0,
4724 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4725 if (!btrfs_transaction_cachep)
4726 goto fail;
4727
4728 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4729 sizeof(struct btrfs_path), 0,
4730 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4731 if (!btrfs_path_cachep)
4732 goto fail;
4733
4734 return 0;
4735 fail:
4736 btrfs_destroy_cachep();
4737 return -ENOMEM;
4738 }
4739
4740 static int btrfs_getattr(struct vfsmount *mnt,
4741 struct dentry *dentry, struct kstat *stat)
4742 {
4743 struct inode *inode = dentry->d_inode;
4744 generic_fillattr(inode, stat);
4745 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4746 stat->blksize = PAGE_CACHE_SIZE;
4747 stat->blocks = (inode_get_bytes(inode) +
4748 BTRFS_I(inode)->delalloc_bytes) >> 9;
4749 return 0;
4750 }
4751
4752 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4753 struct inode *new_dir, struct dentry *new_dentry)
4754 {
4755 struct btrfs_trans_handle *trans;
4756 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4757 struct inode *new_inode = new_dentry->d_inode;
4758 struct inode *old_inode = old_dentry->d_inode;
4759 struct timespec ctime = CURRENT_TIME;
4760 u64 index = 0;
4761 int ret;
4762
4763 /* we're not allowed to rename between subvolumes */
4764 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4765 BTRFS_I(new_dir)->root->root_key.objectid)
4766 return -EXDEV;
4767
4768 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4769 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4770 return -ENOTEMPTY;
4771 }
4772
4773 /* to rename a snapshot or subvolume, we need to juggle the
4774 * backrefs. This isn't coded yet
4775 */
4776 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4777 return -EXDEV;
4778
4779 ret = btrfs_check_metadata_free_space(root);
4780 if (ret)
4781 goto out_unlock;
4782
4783 /*
4784 * we're using rename to replace one file with another.
4785 * and the replacement file is large. Start IO on it now so
4786 * we don't add too much work to the end of the transaction
4787 */
4788 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4789 new_inode->i_size &&
4790 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4791 filemap_flush(old_inode->i_mapping);
4792
4793 trans = btrfs_start_transaction(root, 1);
4794
4795 /*
4796 * make sure the inode gets flushed if it is replacing
4797 * something.
4798 */
4799 if (new_inode && new_inode->i_size &&
4800 old_inode && S_ISREG(old_inode->i_mode)) {
4801 btrfs_add_ordered_operation(trans, root, old_inode);
4802 }
4803
4804 /*
4805 * this is an ugly little race, but the rename is required to make
4806 * sure that if we crash, the inode is either at the old name
4807 * or the new one. pinning the log transaction lets us make sure
4808 * we don't allow a log commit to come in after we unlink the
4809 * name but before we add the new name back in.
4810 */
4811 btrfs_pin_log_trans(root);
4812
4813 btrfs_set_trans_block_group(trans, new_dir);
4814
4815 btrfs_inc_nlink(old_dentry->d_inode);
4816 old_dir->i_ctime = old_dir->i_mtime = ctime;
4817 new_dir->i_ctime = new_dir->i_mtime = ctime;
4818 old_inode->i_ctime = ctime;
4819
4820 if (old_dentry->d_parent != new_dentry->d_parent)
4821 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4822
4823 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4824 old_dentry->d_name.name,
4825 old_dentry->d_name.len);
4826 if (ret)
4827 goto out_fail;
4828
4829 if (new_inode) {
4830 new_inode->i_ctime = CURRENT_TIME;
4831 ret = btrfs_unlink_inode(trans, root, new_dir,
4832 new_dentry->d_inode,
4833 new_dentry->d_name.name,
4834 new_dentry->d_name.len);
4835 if (ret)
4836 goto out_fail;
4837 if (new_inode->i_nlink == 0) {
4838 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4839 if (ret)
4840 goto out_fail;
4841 }
4842
4843 }
4844 ret = btrfs_set_inode_index(new_dir, &index);
4845 if (ret)
4846 goto out_fail;
4847
4848 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4849 old_inode, new_dentry->d_name.name,
4850 new_dentry->d_name.len, 1, index);
4851 if (ret)
4852 goto out_fail;
4853
4854 btrfs_log_new_name(trans, old_inode, old_dir,
4855 new_dentry->d_parent);
4856 out_fail:
4857
4858 /* this btrfs_end_log_trans just allows the current
4859 * log-sub transaction to complete
4860 */
4861 btrfs_end_log_trans(root);
4862 btrfs_end_transaction_throttle(trans, root);
4863 out_unlock:
4864 return ret;
4865 }
4866
4867 /*
4868 * some fairly slow code that needs optimization. This walks the list
4869 * of all the inodes with pending delalloc and forces them to disk.
4870 */
4871 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4872 {
4873 struct list_head *head = &root->fs_info->delalloc_inodes;
4874 struct btrfs_inode *binode;
4875 struct inode *inode;
4876
4877 if (root->fs_info->sb->s_flags & MS_RDONLY)
4878 return -EROFS;
4879
4880 spin_lock(&root->fs_info->delalloc_lock);
4881 while (!list_empty(head)) {
4882 binode = list_entry(head->next, struct btrfs_inode,
4883 delalloc_inodes);
4884 inode = igrab(&binode->vfs_inode);
4885 if (!inode)
4886 list_del_init(&binode->delalloc_inodes);
4887 spin_unlock(&root->fs_info->delalloc_lock);
4888 if (inode) {
4889 filemap_flush(inode->i_mapping);
4890 iput(inode);
4891 }
4892 cond_resched();
4893 spin_lock(&root->fs_info->delalloc_lock);
4894 }
4895 spin_unlock(&root->fs_info->delalloc_lock);
4896
4897 /* the filemap_flush will queue IO into the worker threads, but
4898 * we have to make sure the IO is actually started and that
4899 * ordered extents get created before we return
4900 */
4901 atomic_inc(&root->fs_info->async_submit_draining);
4902 while (atomic_read(&root->fs_info->nr_async_submits) ||
4903 atomic_read(&root->fs_info->async_delalloc_pages)) {
4904 wait_event(root->fs_info->async_submit_wait,
4905 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4906 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4907 }
4908 atomic_dec(&root->fs_info->async_submit_draining);
4909 return 0;
4910 }
4911
4912 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4913 const char *symname)
4914 {
4915 struct btrfs_trans_handle *trans;
4916 struct btrfs_root *root = BTRFS_I(dir)->root;
4917 struct btrfs_path *path;
4918 struct btrfs_key key;
4919 struct inode *inode = NULL;
4920 int err;
4921 int drop_inode = 0;
4922 u64 objectid;
4923 u64 index = 0 ;
4924 int name_len;
4925 int datasize;
4926 unsigned long ptr;
4927 struct btrfs_file_extent_item *ei;
4928 struct extent_buffer *leaf;
4929 unsigned long nr = 0;
4930
4931 name_len = strlen(symname) + 1;
4932 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4933 return -ENAMETOOLONG;
4934
4935 err = btrfs_check_metadata_free_space(root);
4936 if (err)
4937 goto out_fail;
4938
4939 trans = btrfs_start_transaction(root, 1);
4940 btrfs_set_trans_block_group(trans, dir);
4941
4942 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4943 if (err) {
4944 err = -ENOSPC;
4945 goto out_unlock;
4946 }
4947
4948 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4949 dentry->d_name.len,
4950 dentry->d_parent->d_inode->i_ino, objectid,
4951 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4952 &index);
4953 err = PTR_ERR(inode);
4954 if (IS_ERR(inode))
4955 goto out_unlock;
4956
4957 err = btrfs_init_inode_security(inode, dir);
4958 if (err) {
4959 drop_inode = 1;
4960 goto out_unlock;
4961 }
4962
4963 btrfs_set_trans_block_group(trans, inode);
4964 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4965 if (err)
4966 drop_inode = 1;
4967 else {
4968 inode->i_mapping->a_ops = &btrfs_aops;
4969 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4970 inode->i_fop = &btrfs_file_operations;
4971 inode->i_op = &btrfs_file_inode_operations;
4972 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4973 }
4974 btrfs_update_inode_block_group(trans, inode);
4975 btrfs_update_inode_block_group(trans, dir);
4976 if (drop_inode)
4977 goto out_unlock;
4978
4979 path = btrfs_alloc_path();
4980 BUG_ON(!path);
4981 key.objectid = inode->i_ino;
4982 key.offset = 0;
4983 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4984 datasize = btrfs_file_extent_calc_inline_size(name_len);
4985 err = btrfs_insert_empty_item(trans, root, path, &key,
4986 datasize);
4987 if (err) {
4988 drop_inode = 1;
4989 goto out_unlock;
4990 }
4991 leaf = path->nodes[0];
4992 ei = btrfs_item_ptr(leaf, path->slots[0],
4993 struct btrfs_file_extent_item);
4994 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4995 btrfs_set_file_extent_type(leaf, ei,
4996 BTRFS_FILE_EXTENT_INLINE);
4997 btrfs_set_file_extent_encryption(leaf, ei, 0);
4998 btrfs_set_file_extent_compression(leaf, ei, 0);
4999 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5000 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5001
5002 ptr = btrfs_file_extent_inline_start(ei);
5003 write_extent_buffer(leaf, symname, ptr, name_len);
5004 btrfs_mark_buffer_dirty(leaf);
5005 btrfs_free_path(path);
5006
5007 inode->i_op = &btrfs_symlink_inode_operations;
5008 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5009 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5010 inode_set_bytes(inode, name_len);
5011 btrfs_i_size_write(inode, name_len - 1);
5012 err = btrfs_update_inode(trans, root, inode);
5013 if (err)
5014 drop_inode = 1;
5015
5016 out_unlock:
5017 nr = trans->blocks_used;
5018 btrfs_end_transaction_throttle(trans, root);
5019 out_fail:
5020 if (drop_inode) {
5021 inode_dec_link_count(inode);
5022 iput(inode);
5023 }
5024 btrfs_btree_balance_dirty(root, nr);
5025 return err;
5026 }
5027
5028 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5029 struct inode *inode, u64 start, u64 end,
5030 u64 locked_end, u64 alloc_hint, int mode)
5031 {
5032 struct btrfs_root *root = BTRFS_I(inode)->root;
5033 struct btrfs_key ins;
5034 u64 alloc_size;
5035 u64 cur_offset = start;
5036 u64 num_bytes = end - start;
5037 int ret = 0;
5038
5039 while (num_bytes > 0) {
5040 alloc_size = min(num_bytes, root->fs_info->max_extent);
5041 ret = btrfs_reserve_extent(trans, root, alloc_size,
5042 root->sectorsize, 0, alloc_hint,
5043 (u64)-1, &ins, 1);
5044 if (ret) {
5045 WARN_ON(1);
5046 goto out;
5047 }
5048 ret = insert_reserved_file_extent(trans, inode,
5049 cur_offset, ins.objectid,
5050 ins.offset, ins.offset,
5051 ins.offset, locked_end,
5052 0, 0, 0,
5053 BTRFS_FILE_EXTENT_PREALLOC);
5054 BUG_ON(ret);
5055 num_bytes -= ins.offset;
5056 cur_offset += ins.offset;
5057 alloc_hint = ins.objectid + ins.offset;
5058 }
5059 out:
5060 if (cur_offset > start) {
5061 inode->i_ctime = CURRENT_TIME;
5062 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5063 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5064 cur_offset > i_size_read(inode))
5065 btrfs_i_size_write(inode, cur_offset);
5066 ret = btrfs_update_inode(trans, root, inode);
5067 BUG_ON(ret);
5068 }
5069
5070 return ret;
5071 }
5072
5073 static long btrfs_fallocate(struct inode *inode, int mode,
5074 loff_t offset, loff_t len)
5075 {
5076 u64 cur_offset;
5077 u64 last_byte;
5078 u64 alloc_start;
5079 u64 alloc_end;
5080 u64 alloc_hint = 0;
5081 u64 locked_end;
5082 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5083 struct extent_map *em;
5084 struct btrfs_trans_handle *trans;
5085 int ret;
5086
5087 alloc_start = offset & ~mask;
5088 alloc_end = (offset + len + mask) & ~mask;
5089
5090 /*
5091 * wait for ordered IO before we have any locks. We'll loop again
5092 * below with the locks held.
5093 */
5094 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5095
5096 mutex_lock(&inode->i_mutex);
5097 if (alloc_start > inode->i_size) {
5098 ret = btrfs_cont_expand(inode, alloc_start);
5099 if (ret)
5100 goto out;
5101 }
5102
5103 locked_end = alloc_end - 1;
5104 while (1) {
5105 struct btrfs_ordered_extent *ordered;
5106
5107 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5108 if (!trans) {
5109 ret = -EIO;
5110 goto out;
5111 }
5112
5113 /* the extent lock is ordered inside the running
5114 * transaction
5115 */
5116 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5117 GFP_NOFS);
5118 ordered = btrfs_lookup_first_ordered_extent(inode,
5119 alloc_end - 1);
5120 if (ordered &&
5121 ordered->file_offset + ordered->len > alloc_start &&
5122 ordered->file_offset < alloc_end) {
5123 btrfs_put_ordered_extent(ordered);
5124 unlock_extent(&BTRFS_I(inode)->io_tree,
5125 alloc_start, locked_end, GFP_NOFS);
5126 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5127
5128 /*
5129 * we can't wait on the range with the transaction
5130 * running or with the extent lock held
5131 */
5132 btrfs_wait_ordered_range(inode, alloc_start,
5133 alloc_end - alloc_start);
5134 } else {
5135 if (ordered)
5136 btrfs_put_ordered_extent(ordered);
5137 break;
5138 }
5139 }
5140
5141 cur_offset = alloc_start;
5142 while (1) {
5143 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5144 alloc_end - cur_offset, 0);
5145 BUG_ON(IS_ERR(em) || !em);
5146 last_byte = min(extent_map_end(em), alloc_end);
5147 last_byte = (last_byte + mask) & ~mask;
5148 if (em->block_start == EXTENT_MAP_HOLE) {
5149 ret = prealloc_file_range(trans, inode, cur_offset,
5150 last_byte, locked_end + 1,
5151 alloc_hint, mode);
5152 if (ret < 0) {
5153 free_extent_map(em);
5154 break;
5155 }
5156 }
5157 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5158 alloc_hint = em->block_start;
5159 free_extent_map(em);
5160
5161 cur_offset = last_byte;
5162 if (cur_offset >= alloc_end) {
5163 ret = 0;
5164 break;
5165 }
5166 }
5167 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5168 GFP_NOFS);
5169
5170 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5171 out:
5172 mutex_unlock(&inode->i_mutex);
5173 return ret;
5174 }
5175
5176 static int btrfs_set_page_dirty(struct page *page)
5177 {
5178 return __set_page_dirty_nobuffers(page);
5179 }
5180
5181 static int btrfs_permission(struct inode *inode, int mask)
5182 {
5183 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5184 return -EACCES;
5185 return generic_permission(inode, mask, btrfs_check_acl);
5186 }
5187
5188 static struct inode_operations btrfs_dir_inode_operations = {
5189 .getattr = btrfs_getattr,
5190 .lookup = btrfs_lookup,
5191 .create = btrfs_create,
5192 .unlink = btrfs_unlink,
5193 .link = btrfs_link,
5194 .mkdir = btrfs_mkdir,
5195 .rmdir = btrfs_rmdir,
5196 .rename = btrfs_rename,
5197 .symlink = btrfs_symlink,
5198 .setattr = btrfs_setattr,
5199 .mknod = btrfs_mknod,
5200 .setxattr = btrfs_setxattr,
5201 .getxattr = btrfs_getxattr,
5202 .listxattr = btrfs_listxattr,
5203 .removexattr = btrfs_removexattr,
5204 .permission = btrfs_permission,
5205 };
5206 static struct inode_operations btrfs_dir_ro_inode_operations = {
5207 .lookup = btrfs_lookup,
5208 .permission = btrfs_permission,
5209 };
5210 static struct file_operations btrfs_dir_file_operations = {
5211 .llseek = generic_file_llseek,
5212 .read = generic_read_dir,
5213 .readdir = btrfs_real_readdir,
5214 .unlocked_ioctl = btrfs_ioctl,
5215 #ifdef CONFIG_COMPAT
5216 .compat_ioctl = btrfs_ioctl,
5217 #endif
5218 .release = btrfs_release_file,
5219 .fsync = btrfs_sync_file,
5220 };
5221
5222 static struct extent_io_ops btrfs_extent_io_ops = {
5223 .fill_delalloc = run_delalloc_range,
5224 .submit_bio_hook = btrfs_submit_bio_hook,
5225 .merge_bio_hook = btrfs_merge_bio_hook,
5226 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5227 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5228 .writepage_start_hook = btrfs_writepage_start_hook,
5229 .readpage_io_failed_hook = btrfs_io_failed_hook,
5230 .set_bit_hook = btrfs_set_bit_hook,
5231 .clear_bit_hook = btrfs_clear_bit_hook,
5232 };
5233
5234 /*
5235 * btrfs doesn't support the bmap operation because swapfiles
5236 * use bmap to make a mapping of extents in the file. They assume
5237 * these extents won't change over the life of the file and they
5238 * use the bmap result to do IO directly to the drive.
5239 *
5240 * the btrfs bmap call would return logical addresses that aren't
5241 * suitable for IO and they also will change frequently as COW
5242 * operations happen. So, swapfile + btrfs == corruption.
5243 *
5244 * For now we're avoiding this by dropping bmap.
5245 */
5246 static struct address_space_operations btrfs_aops = {
5247 .readpage = btrfs_readpage,
5248 .writepage = btrfs_writepage,
5249 .writepages = btrfs_writepages,
5250 .readpages = btrfs_readpages,
5251 .sync_page = block_sync_page,
5252 .direct_IO = btrfs_direct_IO,
5253 .invalidatepage = btrfs_invalidatepage,
5254 .releasepage = btrfs_releasepage,
5255 .set_page_dirty = btrfs_set_page_dirty,
5256 };
5257
5258 static struct address_space_operations btrfs_symlink_aops = {
5259 .readpage = btrfs_readpage,
5260 .writepage = btrfs_writepage,
5261 .invalidatepage = btrfs_invalidatepage,
5262 .releasepage = btrfs_releasepage,
5263 };
5264
5265 static struct inode_operations btrfs_file_inode_operations = {
5266 .truncate = btrfs_truncate,
5267 .getattr = btrfs_getattr,
5268 .setattr = btrfs_setattr,
5269 .setxattr = btrfs_setxattr,
5270 .getxattr = btrfs_getxattr,
5271 .listxattr = btrfs_listxattr,
5272 .removexattr = btrfs_removexattr,
5273 .permission = btrfs_permission,
5274 .fallocate = btrfs_fallocate,
5275 .fiemap = btrfs_fiemap,
5276 };
5277 static struct inode_operations btrfs_special_inode_operations = {
5278 .getattr = btrfs_getattr,
5279 .setattr = btrfs_setattr,
5280 .permission = btrfs_permission,
5281 .setxattr = btrfs_setxattr,
5282 .getxattr = btrfs_getxattr,
5283 .listxattr = btrfs_listxattr,
5284 .removexattr = btrfs_removexattr,
5285 };
5286 static struct inode_operations btrfs_symlink_inode_operations = {
5287 .readlink = generic_readlink,
5288 .follow_link = page_follow_link_light,
5289 .put_link = page_put_link,
5290 .permission = btrfs_permission,
5291 .setxattr = btrfs_setxattr,
5292 .getxattr = btrfs_getxattr,
5293 .listxattr = btrfs_listxattr,
5294 .removexattr = btrfs_removexattr,
5295 };