]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/inode.c
Merge tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 struct btrfs_dio_data {
61 u64 reserve;
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct btrfs_inode *inode,
84 struct page *locked_page,
85 u64 start, u64 end, int *page_started,
86 unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
92
93 static void __endio_write_update_ordered(struct btrfs_inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97 /*
98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
99 *
100 * ilock_flags can have the following bit set:
101 *
102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
104 * return -EAGAIN
105 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
106 */
107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
108 {
109 if (ilock_flags & BTRFS_ILOCK_SHARED) {
110 if (ilock_flags & BTRFS_ILOCK_TRY) {
111 if (!inode_trylock_shared(inode))
112 return -EAGAIN;
113 else
114 return 0;
115 }
116 inode_lock_shared(inode);
117 } else {
118 if (ilock_flags & BTRFS_ILOCK_TRY) {
119 if (!inode_trylock(inode))
120 return -EAGAIN;
121 else
122 return 0;
123 }
124 inode_lock(inode);
125 }
126 if (ilock_flags & BTRFS_ILOCK_MMAP)
127 down_write(&BTRFS_I(inode)->i_mmap_lock);
128 return 0;
129 }
130
131 /*
132 * btrfs_inode_unlock - unock inode i_rwsem
133 *
134 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
135 * to decide whether the lock acquired is shared or exclusive.
136 */
137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
138 {
139 if (ilock_flags & BTRFS_ILOCK_MMAP)
140 up_write(&BTRFS_I(inode)->i_mmap_lock);
141 if (ilock_flags & BTRFS_ILOCK_SHARED)
142 inode_unlock_shared(inode);
143 else
144 inode_unlock(inode);
145 }
146
147 /*
148 * Cleanup all submitted ordered extents in specified range to handle errors
149 * from the btrfs_run_delalloc_range() callback.
150 *
151 * NOTE: caller must ensure that when an error happens, it can not call
152 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
153 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
154 * to be released, which we want to happen only when finishing the ordered
155 * extent (btrfs_finish_ordered_io()).
156 */
157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
158 struct page *locked_page,
159 u64 offset, u64 bytes)
160 {
161 unsigned long index = offset >> PAGE_SHIFT;
162 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
163 u64 page_start = page_offset(locked_page);
164 u64 page_end = page_start + PAGE_SIZE - 1;
165
166 struct page *page;
167
168 while (index <= end_index) {
169 page = find_get_page(inode->vfs_inode.i_mapping, index);
170 index++;
171 if (!page)
172 continue;
173 ClearPagePrivate2(page);
174 put_page(page);
175 }
176
177 /*
178 * In case this page belongs to the delalloc range being instantiated
179 * then skip it, since the first page of a range is going to be
180 * properly cleaned up by the caller of run_delalloc_range
181 */
182 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
183 offset += PAGE_SIZE;
184 bytes -= PAGE_SIZE;
185 }
186
187 return __endio_write_update_ordered(inode, offset, bytes, false);
188 }
189
190 static int btrfs_dirty_inode(struct inode *inode);
191
192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
193 struct inode *inode, struct inode *dir,
194 const struct qstr *qstr)
195 {
196 int err;
197
198 err = btrfs_init_acl(trans, inode, dir);
199 if (!err)
200 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
201 return err;
202 }
203
204 /*
205 * this does all the hard work for inserting an inline extent into
206 * the btree. The caller should have done a btrfs_drop_extents so that
207 * no overlapping inline items exist in the btree
208 */
209 static int insert_inline_extent(struct btrfs_trans_handle *trans,
210 struct btrfs_path *path, bool extent_inserted,
211 struct btrfs_root *root, struct inode *inode,
212 u64 start, size_t size, size_t compressed_size,
213 int compress_type,
214 struct page **compressed_pages)
215 {
216 struct extent_buffer *leaf;
217 struct page *page = NULL;
218 char *kaddr;
219 unsigned long ptr;
220 struct btrfs_file_extent_item *ei;
221 int ret;
222 size_t cur_size = size;
223 unsigned long offset;
224
225 ASSERT((compressed_size > 0 && compressed_pages) ||
226 (compressed_size == 0 && !compressed_pages));
227
228 if (compressed_size && compressed_pages)
229 cur_size = compressed_size;
230
231 if (!extent_inserted) {
232 struct btrfs_key key;
233 size_t datasize;
234
235 key.objectid = btrfs_ino(BTRFS_I(inode));
236 key.offset = start;
237 key.type = BTRFS_EXTENT_DATA_KEY;
238
239 datasize = btrfs_file_extent_calc_inline_size(cur_size);
240 ret = btrfs_insert_empty_item(trans, root, path, &key,
241 datasize);
242 if (ret)
243 goto fail;
244 }
245 leaf = path->nodes[0];
246 ei = btrfs_item_ptr(leaf, path->slots[0],
247 struct btrfs_file_extent_item);
248 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
249 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
250 btrfs_set_file_extent_encryption(leaf, ei, 0);
251 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
252 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
253 ptr = btrfs_file_extent_inline_start(ei);
254
255 if (compress_type != BTRFS_COMPRESS_NONE) {
256 struct page *cpage;
257 int i = 0;
258 while (compressed_size > 0) {
259 cpage = compressed_pages[i];
260 cur_size = min_t(unsigned long, compressed_size,
261 PAGE_SIZE);
262
263 kaddr = kmap_atomic(cpage);
264 write_extent_buffer(leaf, kaddr, ptr, cur_size);
265 kunmap_atomic(kaddr);
266
267 i++;
268 ptr += cur_size;
269 compressed_size -= cur_size;
270 }
271 btrfs_set_file_extent_compression(leaf, ei,
272 compress_type);
273 } else {
274 page = find_get_page(inode->i_mapping,
275 start >> PAGE_SHIFT);
276 btrfs_set_file_extent_compression(leaf, ei, 0);
277 kaddr = kmap_atomic(page);
278 offset = offset_in_page(start);
279 write_extent_buffer(leaf, kaddr + offset, ptr, size);
280 kunmap_atomic(kaddr);
281 put_page(page);
282 }
283 btrfs_mark_buffer_dirty(leaf);
284 btrfs_release_path(path);
285
286 /*
287 * We align size to sectorsize for inline extents just for simplicity
288 * sake.
289 */
290 size = ALIGN(size, root->fs_info->sectorsize);
291 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
292 if (ret)
293 goto fail;
294
295 /*
296 * we're an inline extent, so nobody can
297 * extend the file past i_size without locking
298 * a page we already have locked.
299 *
300 * We must do any isize and inode updates
301 * before we unlock the pages. Otherwise we
302 * could end up racing with unlink.
303 */
304 BTRFS_I(inode)->disk_i_size = inode->i_size;
305 fail:
306 return ret;
307 }
308
309
310 /*
311 * conditionally insert an inline extent into the file. This
312 * does the checks required to make sure the data is small enough
313 * to fit as an inline extent.
314 */
315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
316 u64 end, size_t compressed_size,
317 int compress_type,
318 struct page **compressed_pages)
319 {
320 struct btrfs_drop_extents_args drop_args = { 0 };
321 struct btrfs_root *root = inode->root;
322 struct btrfs_fs_info *fs_info = root->fs_info;
323 struct btrfs_trans_handle *trans;
324 u64 isize = i_size_read(&inode->vfs_inode);
325 u64 actual_end = min(end + 1, isize);
326 u64 inline_len = actual_end - start;
327 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
328 u64 data_len = inline_len;
329 int ret;
330 struct btrfs_path *path;
331
332 if (compressed_size)
333 data_len = compressed_size;
334
335 if (start > 0 ||
336 actual_end > fs_info->sectorsize ||
337 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
338 (!compressed_size &&
339 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
340 end + 1 < isize ||
341 data_len > fs_info->max_inline) {
342 return 1;
343 }
344
345 path = btrfs_alloc_path();
346 if (!path)
347 return -ENOMEM;
348
349 trans = btrfs_join_transaction(root);
350 if (IS_ERR(trans)) {
351 btrfs_free_path(path);
352 return PTR_ERR(trans);
353 }
354 trans->block_rsv = &inode->block_rsv;
355
356 drop_args.path = path;
357 drop_args.start = start;
358 drop_args.end = aligned_end;
359 drop_args.drop_cache = true;
360 drop_args.replace_extent = true;
361
362 if (compressed_size && compressed_pages)
363 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
364 compressed_size);
365 else
366 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
367 inline_len);
368
369 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out;
373 }
374
375 if (isize > actual_end)
376 inline_len = min_t(u64, isize, actual_end);
377 ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
378 root, &inode->vfs_inode, start,
379 inline_len, compressed_size,
380 compress_type, compressed_pages);
381 if (ret && ret != -ENOSPC) {
382 btrfs_abort_transaction(trans, ret);
383 goto out;
384 } else if (ret == -ENOSPC) {
385 ret = 1;
386 goto out;
387 }
388
389 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
390 ret = btrfs_update_inode(trans, root, inode);
391 if (ret && ret != -ENOSPC) {
392 btrfs_abort_transaction(trans, ret);
393 goto out;
394 } else if (ret == -ENOSPC) {
395 ret = 1;
396 goto out;
397 }
398
399 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
400 out:
401 /*
402 * Don't forget to free the reserved space, as for inlined extent
403 * it won't count as data extent, free them directly here.
404 * And at reserve time, it's always aligned to page size, so
405 * just free one page here.
406 */
407 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
408 btrfs_free_path(path);
409 btrfs_end_transaction(trans);
410 return ret;
411 }
412
413 struct async_extent {
414 u64 start;
415 u64 ram_size;
416 u64 compressed_size;
417 struct page **pages;
418 unsigned long nr_pages;
419 int compress_type;
420 struct list_head list;
421 };
422
423 struct async_chunk {
424 struct inode *inode;
425 struct page *locked_page;
426 u64 start;
427 u64 end;
428 unsigned int write_flags;
429 struct list_head extents;
430 struct cgroup_subsys_state *blkcg_css;
431 struct btrfs_work work;
432 atomic_t *pending;
433 };
434
435 struct async_cow {
436 /* Number of chunks in flight; must be first in the structure */
437 atomic_t num_chunks;
438 struct async_chunk chunks[];
439 };
440
441 static noinline int add_async_extent(struct async_chunk *cow,
442 u64 start, u64 ram_size,
443 u64 compressed_size,
444 struct page **pages,
445 unsigned long nr_pages,
446 int compress_type)
447 {
448 struct async_extent *async_extent;
449
450 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
451 BUG_ON(!async_extent); /* -ENOMEM */
452 async_extent->start = start;
453 async_extent->ram_size = ram_size;
454 async_extent->compressed_size = compressed_size;
455 async_extent->pages = pages;
456 async_extent->nr_pages = nr_pages;
457 async_extent->compress_type = compress_type;
458 list_add_tail(&async_extent->list, &cow->extents);
459 return 0;
460 }
461
462 /*
463 * Check if the inode has flags compatible with compression
464 */
465 static inline bool inode_can_compress(struct btrfs_inode *inode)
466 {
467 if (inode->flags & BTRFS_INODE_NODATACOW ||
468 inode->flags & BTRFS_INODE_NODATASUM)
469 return false;
470 return true;
471 }
472
473 /*
474 * Check if the inode needs to be submitted to compression, based on mount
475 * options, defragmentation, properties or heuristics.
476 */
477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
478 u64 end)
479 {
480 struct btrfs_fs_info *fs_info = inode->root->fs_info;
481
482 if (!inode_can_compress(inode)) {
483 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
484 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
485 btrfs_ino(inode));
486 return 0;
487 }
488 /* force compress */
489 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
490 return 1;
491 /* defrag ioctl */
492 if (inode->defrag_compress)
493 return 1;
494 /* bad compression ratios */
495 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
496 return 0;
497 if (btrfs_test_opt(fs_info, COMPRESS) ||
498 inode->flags & BTRFS_INODE_COMPRESS ||
499 inode->prop_compress)
500 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
501 return 0;
502 }
503
504 static inline void inode_should_defrag(struct btrfs_inode *inode,
505 u64 start, u64 end, u64 num_bytes, u64 small_write)
506 {
507 /* If this is a small write inside eof, kick off a defrag */
508 if (num_bytes < small_write &&
509 (start > 0 || end + 1 < inode->disk_i_size))
510 btrfs_add_inode_defrag(NULL, inode);
511 }
512
513 /*
514 * we create compressed extents in two phases. The first
515 * phase compresses a range of pages that have already been
516 * locked (both pages and state bits are locked).
517 *
518 * This is done inside an ordered work queue, and the compression
519 * is spread across many cpus. The actual IO submission is step
520 * two, and the ordered work queue takes care of making sure that
521 * happens in the same order things were put onto the queue by
522 * writepages and friends.
523 *
524 * If this code finds it can't get good compression, it puts an
525 * entry onto the work queue to write the uncompressed bytes. This
526 * makes sure that both compressed inodes and uncompressed inodes
527 * are written in the same order that the flusher thread sent them
528 * down.
529 */
530 static noinline int compress_file_range(struct async_chunk *async_chunk)
531 {
532 struct inode *inode = async_chunk->inode;
533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 u64 blocksize = fs_info->sectorsize;
535 u64 start = async_chunk->start;
536 u64 end = async_chunk->end;
537 u64 actual_end;
538 u64 i_size;
539 int ret = 0;
540 struct page **pages = NULL;
541 unsigned long nr_pages;
542 unsigned long total_compressed = 0;
543 unsigned long total_in = 0;
544 int i;
545 int will_compress;
546 int compress_type = fs_info->compress_type;
547 int compressed_extents = 0;
548 int redirty = 0;
549
550 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
551 SZ_16K);
552
553 /*
554 * We need to save i_size before now because it could change in between
555 * us evaluating the size and assigning it. This is because we lock and
556 * unlock the page in truncate and fallocate, and then modify the i_size
557 * later on.
558 *
559 * The barriers are to emulate READ_ONCE, remove that once i_size_read
560 * does that for us.
561 */
562 barrier();
563 i_size = i_size_read(inode);
564 barrier();
565 actual_end = min_t(u64, i_size, end + 1);
566 again:
567 will_compress = 0;
568 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
569 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
570 nr_pages = min_t(unsigned long, nr_pages,
571 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
572
573 /*
574 * we don't want to send crud past the end of i_size through
575 * compression, that's just a waste of CPU time. So, if the
576 * end of the file is before the start of our current
577 * requested range of bytes, we bail out to the uncompressed
578 * cleanup code that can deal with all of this.
579 *
580 * It isn't really the fastest way to fix things, but this is a
581 * very uncommon corner.
582 */
583 if (actual_end <= start)
584 goto cleanup_and_bail_uncompressed;
585
586 total_compressed = actual_end - start;
587
588 /*
589 * skip compression for a small file range(<=blocksize) that
590 * isn't an inline extent, since it doesn't save disk space at all.
591 */
592 if (total_compressed <= blocksize &&
593 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
594 goto cleanup_and_bail_uncompressed;
595
596 total_compressed = min_t(unsigned long, total_compressed,
597 BTRFS_MAX_UNCOMPRESSED);
598 total_in = 0;
599 ret = 0;
600
601 /*
602 * we do compression for mount -o compress and when the
603 * inode has not been flagged as nocompress. This flag can
604 * change at any time if we discover bad compression ratios.
605 */
606 if (inode_need_compress(BTRFS_I(inode), start, end)) {
607 WARN_ON(pages);
608 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
609 if (!pages) {
610 /* just bail out to the uncompressed code */
611 nr_pages = 0;
612 goto cont;
613 }
614
615 if (BTRFS_I(inode)->defrag_compress)
616 compress_type = BTRFS_I(inode)->defrag_compress;
617 else if (BTRFS_I(inode)->prop_compress)
618 compress_type = BTRFS_I(inode)->prop_compress;
619
620 /*
621 * we need to call clear_page_dirty_for_io on each
622 * page in the range. Otherwise applications with the file
623 * mmap'd can wander in and change the page contents while
624 * we are compressing them.
625 *
626 * If the compression fails for any reason, we set the pages
627 * dirty again later on.
628 *
629 * Note that the remaining part is redirtied, the start pointer
630 * has moved, the end is the original one.
631 */
632 if (!redirty) {
633 extent_range_clear_dirty_for_io(inode, start, end);
634 redirty = 1;
635 }
636
637 /* Compression level is applied here and only here */
638 ret = btrfs_compress_pages(
639 compress_type | (fs_info->compress_level << 4),
640 inode->i_mapping, start,
641 pages,
642 &nr_pages,
643 &total_in,
644 &total_compressed);
645
646 if (!ret) {
647 unsigned long offset = offset_in_page(total_compressed);
648 struct page *page = pages[nr_pages - 1];
649
650 /* zero the tail end of the last page, we might be
651 * sending it down to disk
652 */
653 if (offset)
654 memzero_page(page, offset, PAGE_SIZE - offset);
655 will_compress = 1;
656 }
657 }
658 cont:
659 if (start == 0) {
660 /* lets try to make an inline extent */
661 if (ret || total_in < actual_end) {
662 /* we didn't compress the entire range, try
663 * to make an uncompressed inline extent.
664 */
665 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
666 0, BTRFS_COMPRESS_NONE,
667 NULL);
668 } else {
669 /* try making a compressed inline extent */
670 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
671 total_compressed,
672 compress_type, pages);
673 }
674 if (ret <= 0) {
675 unsigned long clear_flags = EXTENT_DELALLOC |
676 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
677 EXTENT_DO_ACCOUNTING;
678 unsigned long page_error_op;
679
680 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
681
682 /*
683 * inline extent creation worked or returned error,
684 * we don't need to create any more async work items.
685 * Unlock and free up our temp pages.
686 *
687 * We use DO_ACCOUNTING here because we need the
688 * delalloc_release_metadata to be done _after_ we drop
689 * our outstanding extent for clearing delalloc for this
690 * range.
691 */
692 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
693 NULL,
694 clear_flags,
695 PAGE_UNLOCK |
696 PAGE_START_WRITEBACK |
697 page_error_op |
698 PAGE_END_WRITEBACK);
699
700 /*
701 * Ensure we only free the compressed pages if we have
702 * them allocated, as we can still reach here with
703 * inode_need_compress() == false.
704 */
705 if (pages) {
706 for (i = 0; i < nr_pages; i++) {
707 WARN_ON(pages[i]->mapping);
708 put_page(pages[i]);
709 }
710 kfree(pages);
711 }
712 return 0;
713 }
714 }
715
716 if (will_compress) {
717 /*
718 * we aren't doing an inline extent round the compressed size
719 * up to a block size boundary so the allocator does sane
720 * things
721 */
722 total_compressed = ALIGN(total_compressed, blocksize);
723
724 /*
725 * one last check to make sure the compression is really a
726 * win, compare the page count read with the blocks on disk,
727 * compression must free at least one sector size
728 */
729 total_in = ALIGN(total_in, PAGE_SIZE);
730 if (total_compressed + blocksize <= total_in) {
731 compressed_extents++;
732
733 /*
734 * The async work queues will take care of doing actual
735 * allocation on disk for these compressed pages, and
736 * will submit them to the elevator.
737 */
738 add_async_extent(async_chunk, start, total_in,
739 total_compressed, pages, nr_pages,
740 compress_type);
741
742 if (start + total_in < end) {
743 start += total_in;
744 pages = NULL;
745 cond_resched();
746 goto again;
747 }
748 return compressed_extents;
749 }
750 }
751 if (pages) {
752 /*
753 * the compression code ran but failed to make things smaller,
754 * free any pages it allocated and our page pointer array
755 */
756 for (i = 0; i < nr_pages; i++) {
757 WARN_ON(pages[i]->mapping);
758 put_page(pages[i]);
759 }
760 kfree(pages);
761 pages = NULL;
762 total_compressed = 0;
763 nr_pages = 0;
764
765 /* flag the file so we don't compress in the future */
766 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
767 !(BTRFS_I(inode)->prop_compress)) {
768 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
769 }
770 }
771 cleanup_and_bail_uncompressed:
772 /*
773 * No compression, but we still need to write the pages in the file
774 * we've been given so far. redirty the locked page if it corresponds
775 * to our extent and set things up for the async work queue to run
776 * cow_file_range to do the normal delalloc dance.
777 */
778 if (async_chunk->locked_page &&
779 (page_offset(async_chunk->locked_page) >= start &&
780 page_offset(async_chunk->locked_page)) <= end) {
781 __set_page_dirty_nobuffers(async_chunk->locked_page);
782 /* unlocked later on in the async handlers */
783 }
784
785 if (redirty)
786 extent_range_redirty_for_io(inode, start, end);
787 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
788 BTRFS_COMPRESS_NONE);
789 compressed_extents++;
790
791 return compressed_extents;
792 }
793
794 static void free_async_extent_pages(struct async_extent *async_extent)
795 {
796 int i;
797
798 if (!async_extent->pages)
799 return;
800
801 for (i = 0; i < async_extent->nr_pages; i++) {
802 WARN_ON(async_extent->pages[i]->mapping);
803 put_page(async_extent->pages[i]);
804 }
805 kfree(async_extent->pages);
806 async_extent->nr_pages = 0;
807 async_extent->pages = NULL;
808 }
809
810 /*
811 * phase two of compressed writeback. This is the ordered portion
812 * of the code, which only gets called in the order the work was
813 * queued. We walk all the async extents created by compress_file_range
814 * and send them down to the disk.
815 */
816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
817 {
818 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
819 struct btrfs_fs_info *fs_info = inode->root->fs_info;
820 struct async_extent *async_extent;
821 u64 alloc_hint = 0;
822 struct btrfs_key ins;
823 struct extent_map *em;
824 struct btrfs_root *root = inode->root;
825 struct extent_io_tree *io_tree = &inode->io_tree;
826 int ret = 0;
827
828 again:
829 while (!list_empty(&async_chunk->extents)) {
830 async_extent = list_entry(async_chunk->extents.next,
831 struct async_extent, list);
832 list_del(&async_extent->list);
833
834 retry:
835 lock_extent(io_tree, async_extent->start,
836 async_extent->start + async_extent->ram_size - 1);
837 /* did the compression code fall back to uncompressed IO? */
838 if (!async_extent->pages) {
839 int page_started = 0;
840 unsigned long nr_written = 0;
841
842 /* allocate blocks */
843 ret = cow_file_range(inode, async_chunk->locked_page,
844 async_extent->start,
845 async_extent->start +
846 async_extent->ram_size - 1,
847 &page_started, &nr_written, 0);
848
849 /* JDM XXX */
850
851 /*
852 * if page_started, cow_file_range inserted an
853 * inline extent and took care of all the unlocking
854 * and IO for us. Otherwise, we need to submit
855 * all those pages down to the drive.
856 */
857 if (!page_started && !ret)
858 extent_write_locked_range(&inode->vfs_inode,
859 async_extent->start,
860 async_extent->start +
861 async_extent->ram_size - 1,
862 WB_SYNC_ALL);
863 else if (ret && async_chunk->locked_page)
864 unlock_page(async_chunk->locked_page);
865 kfree(async_extent);
866 cond_resched();
867 continue;
868 }
869
870 ret = btrfs_reserve_extent(root, async_extent->ram_size,
871 async_extent->compressed_size,
872 async_extent->compressed_size,
873 0, alloc_hint, &ins, 1, 1);
874 if (ret) {
875 free_async_extent_pages(async_extent);
876
877 if (ret == -ENOSPC) {
878 unlock_extent(io_tree, async_extent->start,
879 async_extent->start +
880 async_extent->ram_size - 1);
881
882 /*
883 * we need to redirty the pages if we decide to
884 * fallback to uncompressed IO, otherwise we
885 * will not submit these pages down to lower
886 * layers.
887 */
888 extent_range_redirty_for_io(&inode->vfs_inode,
889 async_extent->start,
890 async_extent->start +
891 async_extent->ram_size - 1);
892
893 goto retry;
894 }
895 goto out_free;
896 }
897 /*
898 * here we're doing allocation and writeback of the
899 * compressed pages
900 */
901 em = create_io_em(inode, async_extent->start,
902 async_extent->ram_size, /* len */
903 async_extent->start, /* orig_start */
904 ins.objectid, /* block_start */
905 ins.offset, /* block_len */
906 ins.offset, /* orig_block_len */
907 async_extent->ram_size, /* ram_bytes */
908 async_extent->compress_type,
909 BTRFS_ORDERED_COMPRESSED);
910 if (IS_ERR(em))
911 /* ret value is not necessary due to void function */
912 goto out_free_reserve;
913 free_extent_map(em);
914
915 ret = btrfs_add_ordered_extent_compress(inode,
916 async_extent->start,
917 ins.objectid,
918 async_extent->ram_size,
919 ins.offset,
920 async_extent->compress_type);
921 if (ret) {
922 btrfs_drop_extent_cache(inode, async_extent->start,
923 async_extent->start +
924 async_extent->ram_size - 1, 0);
925 goto out_free_reserve;
926 }
927 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
928
929 /*
930 * clear dirty, set writeback and unlock the pages.
931 */
932 extent_clear_unlock_delalloc(inode, async_extent->start,
933 async_extent->start +
934 async_extent->ram_size - 1,
935 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
936 PAGE_UNLOCK | PAGE_START_WRITEBACK);
937 if (btrfs_submit_compressed_write(inode, async_extent->start,
938 async_extent->ram_size,
939 ins.objectid,
940 ins.offset, async_extent->pages,
941 async_extent->nr_pages,
942 async_chunk->write_flags,
943 async_chunk->blkcg_css)) {
944 struct page *p = async_extent->pages[0];
945 const u64 start = async_extent->start;
946 const u64 end = start + async_extent->ram_size - 1;
947
948 p->mapping = inode->vfs_inode.i_mapping;
949 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
950
951 p->mapping = NULL;
952 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
953 PAGE_END_WRITEBACK |
954 PAGE_SET_ERROR);
955 free_async_extent_pages(async_extent);
956 }
957 alloc_hint = ins.objectid + ins.offset;
958 kfree(async_extent);
959 cond_resched();
960 }
961 return;
962 out_free_reserve:
963 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
964 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
965 out_free:
966 extent_clear_unlock_delalloc(inode, async_extent->start,
967 async_extent->start +
968 async_extent->ram_size - 1,
969 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
970 EXTENT_DELALLOC_NEW |
971 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
972 PAGE_UNLOCK | PAGE_START_WRITEBACK |
973 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
974 free_async_extent_pages(async_extent);
975 kfree(async_extent);
976 goto again;
977 }
978
979 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
980 u64 num_bytes)
981 {
982 struct extent_map_tree *em_tree = &inode->extent_tree;
983 struct extent_map *em;
984 u64 alloc_hint = 0;
985
986 read_lock(&em_tree->lock);
987 em = search_extent_mapping(em_tree, start, num_bytes);
988 if (em) {
989 /*
990 * if block start isn't an actual block number then find the
991 * first block in this inode and use that as a hint. If that
992 * block is also bogus then just don't worry about it.
993 */
994 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
995 free_extent_map(em);
996 em = search_extent_mapping(em_tree, 0, 0);
997 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
998 alloc_hint = em->block_start;
999 if (em)
1000 free_extent_map(em);
1001 } else {
1002 alloc_hint = em->block_start;
1003 free_extent_map(em);
1004 }
1005 }
1006 read_unlock(&em_tree->lock);
1007
1008 return alloc_hint;
1009 }
1010
1011 /*
1012 * when extent_io.c finds a delayed allocation range in the file,
1013 * the call backs end up in this code. The basic idea is to
1014 * allocate extents on disk for the range, and create ordered data structs
1015 * in ram to track those extents.
1016 *
1017 * locked_page is the page that writepage had locked already. We use
1018 * it to make sure we don't do extra locks or unlocks.
1019 *
1020 * *page_started is set to one if we unlock locked_page and do everything
1021 * required to start IO on it. It may be clean and already done with
1022 * IO when we return.
1023 */
1024 static noinline int cow_file_range(struct btrfs_inode *inode,
1025 struct page *locked_page,
1026 u64 start, u64 end, int *page_started,
1027 unsigned long *nr_written, int unlock)
1028 {
1029 struct btrfs_root *root = inode->root;
1030 struct btrfs_fs_info *fs_info = root->fs_info;
1031 u64 alloc_hint = 0;
1032 u64 num_bytes;
1033 unsigned long ram_size;
1034 u64 cur_alloc_size = 0;
1035 u64 min_alloc_size;
1036 u64 blocksize = fs_info->sectorsize;
1037 struct btrfs_key ins;
1038 struct extent_map *em;
1039 unsigned clear_bits;
1040 unsigned long page_ops;
1041 bool extent_reserved = false;
1042 int ret = 0;
1043
1044 if (btrfs_is_free_space_inode(inode)) {
1045 WARN_ON_ONCE(1);
1046 ret = -EINVAL;
1047 goto out_unlock;
1048 }
1049
1050 num_bytes = ALIGN(end - start + 1, blocksize);
1051 num_bytes = max(blocksize, num_bytes);
1052 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1053
1054 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1055
1056 if (start == 0) {
1057 /* lets try to make an inline extent */
1058 ret = cow_file_range_inline(inode, start, end, 0,
1059 BTRFS_COMPRESS_NONE, NULL);
1060 if (ret == 0) {
1061 /*
1062 * We use DO_ACCOUNTING here because we need the
1063 * delalloc_release_metadata to be run _after_ we drop
1064 * our outstanding extent for clearing delalloc for this
1065 * range.
1066 */
1067 extent_clear_unlock_delalloc(inode, start, end, NULL,
1068 EXTENT_LOCKED | EXTENT_DELALLOC |
1069 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1070 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1071 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1072 *nr_written = *nr_written +
1073 (end - start + PAGE_SIZE) / PAGE_SIZE;
1074 *page_started = 1;
1075 goto out;
1076 } else if (ret < 0) {
1077 goto out_unlock;
1078 }
1079 }
1080
1081 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1082 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1083
1084 /*
1085 * Relocation relies on the relocated extents to have exactly the same
1086 * size as the original extents. Normally writeback for relocation data
1087 * extents follows a NOCOW path because relocation preallocates the
1088 * extents. However, due to an operation such as scrub turning a block
1089 * group to RO mode, it may fallback to COW mode, so we must make sure
1090 * an extent allocated during COW has exactly the requested size and can
1091 * not be split into smaller extents, otherwise relocation breaks and
1092 * fails during the stage where it updates the bytenr of file extent
1093 * items.
1094 */
1095 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1096 min_alloc_size = num_bytes;
1097 else
1098 min_alloc_size = fs_info->sectorsize;
1099
1100 while (num_bytes > 0) {
1101 cur_alloc_size = num_bytes;
1102 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1103 min_alloc_size, 0, alloc_hint,
1104 &ins, 1, 1);
1105 if (ret < 0)
1106 goto out_unlock;
1107 cur_alloc_size = ins.offset;
1108 extent_reserved = true;
1109
1110 ram_size = ins.offset;
1111 em = create_io_em(inode, start, ins.offset, /* len */
1112 start, /* orig_start */
1113 ins.objectid, /* block_start */
1114 ins.offset, /* block_len */
1115 ins.offset, /* orig_block_len */
1116 ram_size, /* ram_bytes */
1117 BTRFS_COMPRESS_NONE, /* compress_type */
1118 BTRFS_ORDERED_REGULAR /* type */);
1119 if (IS_ERR(em)) {
1120 ret = PTR_ERR(em);
1121 goto out_reserve;
1122 }
1123 free_extent_map(em);
1124
1125 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1126 ram_size, cur_alloc_size,
1127 BTRFS_ORDERED_REGULAR);
1128 if (ret)
1129 goto out_drop_extent_cache;
1130
1131 if (root->root_key.objectid ==
1132 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1133 ret = btrfs_reloc_clone_csums(inode, start,
1134 cur_alloc_size);
1135 /*
1136 * Only drop cache here, and process as normal.
1137 *
1138 * We must not allow extent_clear_unlock_delalloc()
1139 * at out_unlock label to free meta of this ordered
1140 * extent, as its meta should be freed by
1141 * btrfs_finish_ordered_io().
1142 *
1143 * So we must continue until @start is increased to
1144 * skip current ordered extent.
1145 */
1146 if (ret)
1147 btrfs_drop_extent_cache(inode, start,
1148 start + ram_size - 1, 0);
1149 }
1150
1151 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1152
1153 /* we're not doing compressed IO, don't unlock the first
1154 * page (which the caller expects to stay locked), don't
1155 * clear any dirty bits and don't set any writeback bits
1156 *
1157 * Do set the Private2 bit so we know this page was properly
1158 * setup for writepage
1159 */
1160 page_ops = unlock ? PAGE_UNLOCK : 0;
1161 page_ops |= PAGE_SET_PRIVATE2;
1162
1163 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1164 locked_page,
1165 EXTENT_LOCKED | EXTENT_DELALLOC,
1166 page_ops);
1167 if (num_bytes < cur_alloc_size)
1168 num_bytes = 0;
1169 else
1170 num_bytes -= cur_alloc_size;
1171 alloc_hint = ins.objectid + ins.offset;
1172 start += cur_alloc_size;
1173 extent_reserved = false;
1174
1175 /*
1176 * btrfs_reloc_clone_csums() error, since start is increased
1177 * extent_clear_unlock_delalloc() at out_unlock label won't
1178 * free metadata of current ordered extent, we're OK to exit.
1179 */
1180 if (ret)
1181 goto out_unlock;
1182 }
1183 out:
1184 return ret;
1185
1186 out_drop_extent_cache:
1187 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1188 out_reserve:
1189 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1191 out_unlock:
1192 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1193 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1194 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1195 /*
1196 * If we reserved an extent for our delalloc range (or a subrange) and
1197 * failed to create the respective ordered extent, then it means that
1198 * when we reserved the extent we decremented the extent's size from
1199 * the data space_info's bytes_may_use counter and incremented the
1200 * space_info's bytes_reserved counter by the same amount. We must make
1201 * sure extent_clear_unlock_delalloc() does not try to decrement again
1202 * the data space_info's bytes_may_use counter, therefore we do not pass
1203 * it the flag EXTENT_CLEAR_DATA_RESV.
1204 */
1205 if (extent_reserved) {
1206 extent_clear_unlock_delalloc(inode, start,
1207 start + cur_alloc_size - 1,
1208 locked_page,
1209 clear_bits,
1210 page_ops);
1211 start += cur_alloc_size;
1212 if (start >= end)
1213 goto out;
1214 }
1215 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1216 clear_bits | EXTENT_CLEAR_DATA_RESV,
1217 page_ops);
1218 goto out;
1219 }
1220
1221 /*
1222 * work queue call back to started compression on a file and pages
1223 */
1224 static noinline void async_cow_start(struct btrfs_work *work)
1225 {
1226 struct async_chunk *async_chunk;
1227 int compressed_extents;
1228
1229 async_chunk = container_of(work, struct async_chunk, work);
1230
1231 compressed_extents = compress_file_range(async_chunk);
1232 if (compressed_extents == 0) {
1233 btrfs_add_delayed_iput(async_chunk->inode);
1234 async_chunk->inode = NULL;
1235 }
1236 }
1237
1238 /*
1239 * work queue call back to submit previously compressed pages
1240 */
1241 static noinline void async_cow_submit(struct btrfs_work *work)
1242 {
1243 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1244 work);
1245 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1246 unsigned long nr_pages;
1247
1248 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1249 PAGE_SHIFT;
1250
1251 /* atomic_sub_return implies a barrier */
1252 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1253 5 * SZ_1M)
1254 cond_wake_up_nomb(&fs_info->async_submit_wait);
1255
1256 /*
1257 * ->inode could be NULL if async_chunk_start has failed to compress,
1258 * in which case we don't have anything to submit, yet we need to
1259 * always adjust ->async_delalloc_pages as its paired with the init
1260 * happening in cow_file_range_async
1261 */
1262 if (async_chunk->inode)
1263 submit_compressed_extents(async_chunk);
1264 }
1265
1266 static noinline void async_cow_free(struct btrfs_work *work)
1267 {
1268 struct async_chunk *async_chunk;
1269
1270 async_chunk = container_of(work, struct async_chunk, work);
1271 if (async_chunk->inode)
1272 btrfs_add_delayed_iput(async_chunk->inode);
1273 if (async_chunk->blkcg_css)
1274 css_put(async_chunk->blkcg_css);
1275 /*
1276 * Since the pointer to 'pending' is at the beginning of the array of
1277 * async_chunk's, freeing it ensures the whole array has been freed.
1278 */
1279 if (atomic_dec_and_test(async_chunk->pending))
1280 kvfree(async_chunk->pending);
1281 }
1282
1283 static int cow_file_range_async(struct btrfs_inode *inode,
1284 struct writeback_control *wbc,
1285 struct page *locked_page,
1286 u64 start, u64 end, int *page_started,
1287 unsigned long *nr_written)
1288 {
1289 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1290 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1291 struct async_cow *ctx;
1292 struct async_chunk *async_chunk;
1293 unsigned long nr_pages;
1294 u64 cur_end;
1295 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1296 int i;
1297 bool should_compress;
1298 unsigned nofs_flag;
1299 const unsigned int write_flags = wbc_to_write_flags(wbc);
1300
1301 unlock_extent(&inode->io_tree, start, end);
1302
1303 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1304 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1305 num_chunks = 1;
1306 should_compress = false;
1307 } else {
1308 should_compress = true;
1309 }
1310
1311 nofs_flag = memalloc_nofs_save();
1312 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1313 memalloc_nofs_restore(nofs_flag);
1314
1315 if (!ctx) {
1316 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1317 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1318 EXTENT_DO_ACCOUNTING;
1319 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1320 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1321
1322 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1323 clear_bits, page_ops);
1324 return -ENOMEM;
1325 }
1326
1327 async_chunk = ctx->chunks;
1328 atomic_set(&ctx->num_chunks, num_chunks);
1329
1330 for (i = 0; i < num_chunks; i++) {
1331 if (should_compress)
1332 cur_end = min(end, start + SZ_512K - 1);
1333 else
1334 cur_end = end;
1335
1336 /*
1337 * igrab is called higher up in the call chain, take only the
1338 * lightweight reference for the callback lifetime
1339 */
1340 ihold(&inode->vfs_inode);
1341 async_chunk[i].pending = &ctx->num_chunks;
1342 async_chunk[i].inode = &inode->vfs_inode;
1343 async_chunk[i].start = start;
1344 async_chunk[i].end = cur_end;
1345 async_chunk[i].write_flags = write_flags;
1346 INIT_LIST_HEAD(&async_chunk[i].extents);
1347
1348 /*
1349 * The locked_page comes all the way from writepage and its
1350 * the original page we were actually given. As we spread
1351 * this large delalloc region across multiple async_chunk
1352 * structs, only the first struct needs a pointer to locked_page
1353 *
1354 * This way we don't need racey decisions about who is supposed
1355 * to unlock it.
1356 */
1357 if (locked_page) {
1358 /*
1359 * Depending on the compressibility, the pages might or
1360 * might not go through async. We want all of them to
1361 * be accounted against wbc once. Let's do it here
1362 * before the paths diverge. wbc accounting is used
1363 * only for foreign writeback detection and doesn't
1364 * need full accuracy. Just account the whole thing
1365 * against the first page.
1366 */
1367 wbc_account_cgroup_owner(wbc, locked_page,
1368 cur_end - start);
1369 async_chunk[i].locked_page = locked_page;
1370 locked_page = NULL;
1371 } else {
1372 async_chunk[i].locked_page = NULL;
1373 }
1374
1375 if (blkcg_css != blkcg_root_css) {
1376 css_get(blkcg_css);
1377 async_chunk[i].blkcg_css = blkcg_css;
1378 } else {
1379 async_chunk[i].blkcg_css = NULL;
1380 }
1381
1382 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1383 async_cow_submit, async_cow_free);
1384
1385 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1386 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1387
1388 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1389
1390 *nr_written += nr_pages;
1391 start = cur_end + 1;
1392 }
1393 *page_started = 1;
1394 return 0;
1395 }
1396
1397 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1398 struct page *locked_page, u64 start,
1399 u64 end, int *page_started,
1400 unsigned long *nr_written)
1401 {
1402 int ret;
1403
1404 ret = cow_file_range(inode, locked_page, start, end, page_started,
1405 nr_written, 0);
1406 if (ret)
1407 return ret;
1408
1409 if (*page_started)
1410 return 0;
1411
1412 __set_page_dirty_nobuffers(locked_page);
1413 account_page_redirty(locked_page);
1414 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1415 *page_started = 1;
1416
1417 return 0;
1418 }
1419
1420 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1421 u64 bytenr, u64 num_bytes)
1422 {
1423 int ret;
1424 struct btrfs_ordered_sum *sums;
1425 LIST_HEAD(list);
1426
1427 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1428 bytenr + num_bytes - 1, &list, 0);
1429 if (ret == 0 && list_empty(&list))
1430 return 0;
1431
1432 while (!list_empty(&list)) {
1433 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1434 list_del(&sums->list);
1435 kfree(sums);
1436 }
1437 if (ret < 0)
1438 return ret;
1439 return 1;
1440 }
1441
1442 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1443 const u64 start, const u64 end,
1444 int *page_started, unsigned long *nr_written)
1445 {
1446 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1447 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1448 BTRFS_DATA_RELOC_TREE_OBJECTID);
1449 const u64 range_bytes = end + 1 - start;
1450 struct extent_io_tree *io_tree = &inode->io_tree;
1451 u64 range_start = start;
1452 u64 count;
1453
1454 /*
1455 * If EXTENT_NORESERVE is set it means that when the buffered write was
1456 * made we had not enough available data space and therefore we did not
1457 * reserve data space for it, since we though we could do NOCOW for the
1458 * respective file range (either there is prealloc extent or the inode
1459 * has the NOCOW bit set).
1460 *
1461 * However when we need to fallback to COW mode (because for example the
1462 * block group for the corresponding extent was turned to RO mode by a
1463 * scrub or relocation) we need to do the following:
1464 *
1465 * 1) We increment the bytes_may_use counter of the data space info.
1466 * If COW succeeds, it allocates a new data extent and after doing
1467 * that it decrements the space info's bytes_may_use counter and
1468 * increments its bytes_reserved counter by the same amount (we do
1469 * this at btrfs_add_reserved_bytes()). So we need to increment the
1470 * bytes_may_use counter to compensate (when space is reserved at
1471 * buffered write time, the bytes_may_use counter is incremented);
1472 *
1473 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1474 * that if the COW path fails for any reason, it decrements (through
1475 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1476 * data space info, which we incremented in the step above.
1477 *
1478 * If we need to fallback to cow and the inode corresponds to a free
1479 * space cache inode or an inode of the data relocation tree, we must
1480 * also increment bytes_may_use of the data space_info for the same
1481 * reason. Space caches and relocated data extents always get a prealloc
1482 * extent for them, however scrub or balance may have set the block
1483 * group that contains that extent to RO mode and therefore force COW
1484 * when starting writeback.
1485 */
1486 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1487 EXTENT_NORESERVE, 0);
1488 if (count > 0 || is_space_ino || is_reloc_ino) {
1489 u64 bytes = count;
1490 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1491 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1492
1493 if (is_space_ino || is_reloc_ino)
1494 bytes = range_bytes;
1495
1496 spin_lock(&sinfo->lock);
1497 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1498 spin_unlock(&sinfo->lock);
1499
1500 if (count > 0)
1501 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1502 0, 0, NULL);
1503 }
1504
1505 return cow_file_range(inode, locked_page, start, end, page_started,
1506 nr_written, 1);
1507 }
1508
1509 /*
1510 * when nowcow writeback call back. This checks for snapshots or COW copies
1511 * of the extents that exist in the file, and COWs the file as required.
1512 *
1513 * If no cow copies or snapshots exist, we write directly to the existing
1514 * blocks on disk
1515 */
1516 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1517 struct page *locked_page,
1518 const u64 start, const u64 end,
1519 int *page_started,
1520 unsigned long *nr_written)
1521 {
1522 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1523 struct btrfs_root *root = inode->root;
1524 struct btrfs_path *path;
1525 u64 cow_start = (u64)-1;
1526 u64 cur_offset = start;
1527 int ret;
1528 bool check_prev = true;
1529 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1530 u64 ino = btrfs_ino(inode);
1531 bool nocow = false;
1532 u64 disk_bytenr = 0;
1533 const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1534
1535 path = btrfs_alloc_path();
1536 if (!path) {
1537 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1538 EXTENT_LOCKED | EXTENT_DELALLOC |
1539 EXTENT_DO_ACCOUNTING |
1540 EXTENT_DEFRAG, PAGE_UNLOCK |
1541 PAGE_START_WRITEBACK |
1542 PAGE_END_WRITEBACK);
1543 return -ENOMEM;
1544 }
1545
1546 while (1) {
1547 struct btrfs_key found_key;
1548 struct btrfs_file_extent_item *fi;
1549 struct extent_buffer *leaf;
1550 u64 extent_end;
1551 u64 extent_offset;
1552 u64 num_bytes = 0;
1553 u64 disk_num_bytes;
1554 u64 ram_bytes;
1555 int extent_type;
1556
1557 nocow = false;
1558
1559 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1560 cur_offset, 0);
1561 if (ret < 0)
1562 goto error;
1563
1564 /*
1565 * If there is no extent for our range when doing the initial
1566 * search, then go back to the previous slot as it will be the
1567 * one containing the search offset
1568 */
1569 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1570 leaf = path->nodes[0];
1571 btrfs_item_key_to_cpu(leaf, &found_key,
1572 path->slots[0] - 1);
1573 if (found_key.objectid == ino &&
1574 found_key.type == BTRFS_EXTENT_DATA_KEY)
1575 path->slots[0]--;
1576 }
1577 check_prev = false;
1578 next_slot:
1579 /* Go to next leaf if we have exhausted the current one */
1580 leaf = path->nodes[0];
1581 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1582 ret = btrfs_next_leaf(root, path);
1583 if (ret < 0) {
1584 if (cow_start != (u64)-1)
1585 cur_offset = cow_start;
1586 goto error;
1587 }
1588 if (ret > 0)
1589 break;
1590 leaf = path->nodes[0];
1591 }
1592
1593 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1594
1595 /* Didn't find anything for our INO */
1596 if (found_key.objectid > ino)
1597 break;
1598 /*
1599 * Keep searching until we find an EXTENT_ITEM or there are no
1600 * more extents for this inode
1601 */
1602 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1603 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1604 path->slots[0]++;
1605 goto next_slot;
1606 }
1607
1608 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1609 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1610 found_key.offset > end)
1611 break;
1612
1613 /*
1614 * If the found extent starts after requested offset, then
1615 * adjust extent_end to be right before this extent begins
1616 */
1617 if (found_key.offset > cur_offset) {
1618 extent_end = found_key.offset;
1619 extent_type = 0;
1620 goto out_check;
1621 }
1622
1623 /*
1624 * Found extent which begins before our range and potentially
1625 * intersect it
1626 */
1627 fi = btrfs_item_ptr(leaf, path->slots[0],
1628 struct btrfs_file_extent_item);
1629 extent_type = btrfs_file_extent_type(leaf, fi);
1630
1631 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1632 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1633 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1634 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1635 extent_offset = btrfs_file_extent_offset(leaf, fi);
1636 extent_end = found_key.offset +
1637 btrfs_file_extent_num_bytes(leaf, fi);
1638 disk_num_bytes =
1639 btrfs_file_extent_disk_num_bytes(leaf, fi);
1640 /*
1641 * If the extent we got ends before our current offset,
1642 * skip to the next extent.
1643 */
1644 if (extent_end <= cur_offset) {
1645 path->slots[0]++;
1646 goto next_slot;
1647 }
1648 /* Skip holes */
1649 if (disk_bytenr == 0)
1650 goto out_check;
1651 /* Skip compressed/encrypted/encoded extents */
1652 if (btrfs_file_extent_compression(leaf, fi) ||
1653 btrfs_file_extent_encryption(leaf, fi) ||
1654 btrfs_file_extent_other_encoding(leaf, fi))
1655 goto out_check;
1656 /*
1657 * If extent is created before the last volume's snapshot
1658 * this implies the extent is shared, hence we can't do
1659 * nocow. This is the same check as in
1660 * btrfs_cross_ref_exist but without calling
1661 * btrfs_search_slot.
1662 */
1663 if (!freespace_inode &&
1664 btrfs_file_extent_generation(leaf, fi) <=
1665 btrfs_root_last_snapshot(&root->root_item))
1666 goto out_check;
1667 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1668 goto out_check;
1669
1670 /*
1671 * The following checks can be expensive, as they need to
1672 * take other locks and do btree or rbtree searches, so
1673 * release the path to avoid blocking other tasks for too
1674 * long.
1675 */
1676 btrfs_release_path(path);
1677
1678 ret = btrfs_cross_ref_exist(root, ino,
1679 found_key.offset -
1680 extent_offset, disk_bytenr, false);
1681 if (ret) {
1682 /*
1683 * ret could be -EIO if the above fails to read
1684 * metadata.
1685 */
1686 if (ret < 0) {
1687 if (cow_start != (u64)-1)
1688 cur_offset = cow_start;
1689 goto error;
1690 }
1691
1692 WARN_ON_ONCE(freespace_inode);
1693 goto out_check;
1694 }
1695 disk_bytenr += extent_offset;
1696 disk_bytenr += cur_offset - found_key.offset;
1697 num_bytes = min(end + 1, extent_end) - cur_offset;
1698 /*
1699 * If there are pending snapshots for this root, we
1700 * fall into common COW way
1701 */
1702 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1703 goto out_check;
1704 /*
1705 * force cow if csum exists in the range.
1706 * this ensure that csum for a given extent are
1707 * either valid or do not exist.
1708 */
1709 ret = csum_exist_in_range(fs_info, disk_bytenr,
1710 num_bytes);
1711 if (ret) {
1712 /*
1713 * ret could be -EIO if the above fails to read
1714 * metadata.
1715 */
1716 if (ret < 0) {
1717 if (cow_start != (u64)-1)
1718 cur_offset = cow_start;
1719 goto error;
1720 }
1721 WARN_ON_ONCE(freespace_inode);
1722 goto out_check;
1723 }
1724 /* If the extent's block group is RO, we must COW */
1725 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1726 goto out_check;
1727 nocow = true;
1728 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1729 extent_end = found_key.offset + ram_bytes;
1730 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1731 /* Skip extents outside of our requested range */
1732 if (extent_end <= start) {
1733 path->slots[0]++;
1734 goto next_slot;
1735 }
1736 } else {
1737 /* If this triggers then we have a memory corruption */
1738 BUG();
1739 }
1740 out_check:
1741 /*
1742 * If nocow is false then record the beginning of the range
1743 * that needs to be COWed
1744 */
1745 if (!nocow) {
1746 if (cow_start == (u64)-1)
1747 cow_start = cur_offset;
1748 cur_offset = extent_end;
1749 if (cur_offset > end)
1750 break;
1751 if (!path->nodes[0])
1752 continue;
1753 path->slots[0]++;
1754 goto next_slot;
1755 }
1756
1757 /*
1758 * COW range from cow_start to found_key.offset - 1. As the key
1759 * will contain the beginning of the first extent that can be
1760 * NOCOW, following one which needs to be COW'ed
1761 */
1762 if (cow_start != (u64)-1) {
1763 ret = fallback_to_cow(inode, locked_page,
1764 cow_start, found_key.offset - 1,
1765 page_started, nr_written);
1766 if (ret)
1767 goto error;
1768 cow_start = (u64)-1;
1769 }
1770
1771 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1772 u64 orig_start = found_key.offset - extent_offset;
1773 struct extent_map *em;
1774
1775 em = create_io_em(inode, cur_offset, num_bytes,
1776 orig_start,
1777 disk_bytenr, /* block_start */
1778 num_bytes, /* block_len */
1779 disk_num_bytes, /* orig_block_len */
1780 ram_bytes, BTRFS_COMPRESS_NONE,
1781 BTRFS_ORDERED_PREALLOC);
1782 if (IS_ERR(em)) {
1783 ret = PTR_ERR(em);
1784 goto error;
1785 }
1786 free_extent_map(em);
1787 ret = btrfs_add_ordered_extent(inode, cur_offset,
1788 disk_bytenr, num_bytes,
1789 num_bytes,
1790 BTRFS_ORDERED_PREALLOC);
1791 if (ret) {
1792 btrfs_drop_extent_cache(inode, cur_offset,
1793 cur_offset + num_bytes - 1,
1794 0);
1795 goto error;
1796 }
1797 } else {
1798 ret = btrfs_add_ordered_extent(inode, cur_offset,
1799 disk_bytenr, num_bytes,
1800 num_bytes,
1801 BTRFS_ORDERED_NOCOW);
1802 if (ret)
1803 goto error;
1804 }
1805
1806 if (nocow)
1807 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1808 nocow = false;
1809
1810 if (root->root_key.objectid ==
1811 BTRFS_DATA_RELOC_TREE_OBJECTID)
1812 /*
1813 * Error handled later, as we must prevent
1814 * extent_clear_unlock_delalloc() in error handler
1815 * from freeing metadata of created ordered extent.
1816 */
1817 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1818 num_bytes);
1819
1820 extent_clear_unlock_delalloc(inode, cur_offset,
1821 cur_offset + num_bytes - 1,
1822 locked_page, EXTENT_LOCKED |
1823 EXTENT_DELALLOC |
1824 EXTENT_CLEAR_DATA_RESV,
1825 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1826
1827 cur_offset = extent_end;
1828
1829 /*
1830 * btrfs_reloc_clone_csums() error, now we're OK to call error
1831 * handler, as metadata for created ordered extent will only
1832 * be freed by btrfs_finish_ordered_io().
1833 */
1834 if (ret)
1835 goto error;
1836 if (cur_offset > end)
1837 break;
1838 }
1839 btrfs_release_path(path);
1840
1841 if (cur_offset <= end && cow_start == (u64)-1)
1842 cow_start = cur_offset;
1843
1844 if (cow_start != (u64)-1) {
1845 cur_offset = end;
1846 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1847 page_started, nr_written);
1848 if (ret)
1849 goto error;
1850 }
1851
1852 error:
1853 if (nocow)
1854 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1855
1856 if (ret && cur_offset < end)
1857 extent_clear_unlock_delalloc(inode, cur_offset, end,
1858 locked_page, EXTENT_LOCKED |
1859 EXTENT_DELALLOC | EXTENT_DEFRAG |
1860 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1861 PAGE_START_WRITEBACK |
1862 PAGE_END_WRITEBACK);
1863 btrfs_free_path(path);
1864 return ret;
1865 }
1866
1867 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1868 {
1869 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1870 if (inode->defrag_bytes &&
1871 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1872 0, NULL))
1873 return false;
1874 return true;
1875 }
1876 return false;
1877 }
1878
1879 /*
1880 * Function to process delayed allocation (create CoW) for ranges which are
1881 * being touched for the first time.
1882 */
1883 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1884 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1885 struct writeback_control *wbc)
1886 {
1887 int ret;
1888 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1889
1890 if (should_nocow(inode, start, end)) {
1891 ASSERT(!zoned);
1892 ret = run_delalloc_nocow(inode, locked_page, start, end,
1893 page_started, nr_written);
1894 } else if (!inode_can_compress(inode) ||
1895 !inode_need_compress(inode, start, end)) {
1896 if (zoned)
1897 ret = run_delalloc_zoned(inode, locked_page, start, end,
1898 page_started, nr_written);
1899 else
1900 ret = cow_file_range(inode, locked_page, start, end,
1901 page_started, nr_written, 1);
1902 } else {
1903 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1904 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1905 page_started, nr_written);
1906 }
1907 if (ret)
1908 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1909 end - start + 1);
1910 return ret;
1911 }
1912
1913 void btrfs_split_delalloc_extent(struct inode *inode,
1914 struct extent_state *orig, u64 split)
1915 {
1916 u64 size;
1917
1918 /* not delalloc, ignore it */
1919 if (!(orig->state & EXTENT_DELALLOC))
1920 return;
1921
1922 size = orig->end - orig->start + 1;
1923 if (size > BTRFS_MAX_EXTENT_SIZE) {
1924 u32 num_extents;
1925 u64 new_size;
1926
1927 /*
1928 * See the explanation in btrfs_merge_delalloc_extent, the same
1929 * applies here, just in reverse.
1930 */
1931 new_size = orig->end - split + 1;
1932 num_extents = count_max_extents(new_size);
1933 new_size = split - orig->start;
1934 num_extents += count_max_extents(new_size);
1935 if (count_max_extents(size) >= num_extents)
1936 return;
1937 }
1938
1939 spin_lock(&BTRFS_I(inode)->lock);
1940 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1941 spin_unlock(&BTRFS_I(inode)->lock);
1942 }
1943
1944 /*
1945 * Handle merged delayed allocation extents so we can keep track of new extents
1946 * that are just merged onto old extents, such as when we are doing sequential
1947 * writes, so we can properly account for the metadata space we'll need.
1948 */
1949 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1950 struct extent_state *other)
1951 {
1952 u64 new_size, old_size;
1953 u32 num_extents;
1954
1955 /* not delalloc, ignore it */
1956 if (!(other->state & EXTENT_DELALLOC))
1957 return;
1958
1959 if (new->start > other->start)
1960 new_size = new->end - other->start + 1;
1961 else
1962 new_size = other->end - new->start + 1;
1963
1964 /* we're not bigger than the max, unreserve the space and go */
1965 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1966 spin_lock(&BTRFS_I(inode)->lock);
1967 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1968 spin_unlock(&BTRFS_I(inode)->lock);
1969 return;
1970 }
1971
1972 /*
1973 * We have to add up either side to figure out how many extents were
1974 * accounted for before we merged into one big extent. If the number of
1975 * extents we accounted for is <= the amount we need for the new range
1976 * then we can return, otherwise drop. Think of it like this
1977 *
1978 * [ 4k][MAX_SIZE]
1979 *
1980 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1981 * need 2 outstanding extents, on one side we have 1 and the other side
1982 * we have 1 so they are == and we can return. But in this case
1983 *
1984 * [MAX_SIZE+4k][MAX_SIZE+4k]
1985 *
1986 * Each range on their own accounts for 2 extents, but merged together
1987 * they are only 3 extents worth of accounting, so we need to drop in
1988 * this case.
1989 */
1990 old_size = other->end - other->start + 1;
1991 num_extents = count_max_extents(old_size);
1992 old_size = new->end - new->start + 1;
1993 num_extents += count_max_extents(old_size);
1994 if (count_max_extents(new_size) >= num_extents)
1995 return;
1996
1997 spin_lock(&BTRFS_I(inode)->lock);
1998 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1999 spin_unlock(&BTRFS_I(inode)->lock);
2000 }
2001
2002 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2003 struct inode *inode)
2004 {
2005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2006
2007 spin_lock(&root->delalloc_lock);
2008 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2009 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2010 &root->delalloc_inodes);
2011 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2012 &BTRFS_I(inode)->runtime_flags);
2013 root->nr_delalloc_inodes++;
2014 if (root->nr_delalloc_inodes == 1) {
2015 spin_lock(&fs_info->delalloc_root_lock);
2016 BUG_ON(!list_empty(&root->delalloc_root));
2017 list_add_tail(&root->delalloc_root,
2018 &fs_info->delalloc_roots);
2019 spin_unlock(&fs_info->delalloc_root_lock);
2020 }
2021 }
2022 spin_unlock(&root->delalloc_lock);
2023 }
2024
2025
2026 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2027 struct btrfs_inode *inode)
2028 {
2029 struct btrfs_fs_info *fs_info = root->fs_info;
2030
2031 if (!list_empty(&inode->delalloc_inodes)) {
2032 list_del_init(&inode->delalloc_inodes);
2033 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2034 &inode->runtime_flags);
2035 root->nr_delalloc_inodes--;
2036 if (!root->nr_delalloc_inodes) {
2037 ASSERT(list_empty(&root->delalloc_inodes));
2038 spin_lock(&fs_info->delalloc_root_lock);
2039 BUG_ON(list_empty(&root->delalloc_root));
2040 list_del_init(&root->delalloc_root);
2041 spin_unlock(&fs_info->delalloc_root_lock);
2042 }
2043 }
2044 }
2045
2046 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2047 struct btrfs_inode *inode)
2048 {
2049 spin_lock(&root->delalloc_lock);
2050 __btrfs_del_delalloc_inode(root, inode);
2051 spin_unlock(&root->delalloc_lock);
2052 }
2053
2054 /*
2055 * Properly track delayed allocation bytes in the inode and to maintain the
2056 * list of inodes that have pending delalloc work to be done.
2057 */
2058 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2059 unsigned *bits)
2060 {
2061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2062
2063 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2064 WARN_ON(1);
2065 /*
2066 * set_bit and clear bit hooks normally require _irqsave/restore
2067 * but in this case, we are only testing for the DELALLOC
2068 * bit, which is only set or cleared with irqs on
2069 */
2070 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2071 struct btrfs_root *root = BTRFS_I(inode)->root;
2072 u64 len = state->end + 1 - state->start;
2073 u32 num_extents = count_max_extents(len);
2074 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2075
2076 spin_lock(&BTRFS_I(inode)->lock);
2077 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2078 spin_unlock(&BTRFS_I(inode)->lock);
2079
2080 /* For sanity tests */
2081 if (btrfs_is_testing(fs_info))
2082 return;
2083
2084 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2085 fs_info->delalloc_batch);
2086 spin_lock(&BTRFS_I(inode)->lock);
2087 BTRFS_I(inode)->delalloc_bytes += len;
2088 if (*bits & EXTENT_DEFRAG)
2089 BTRFS_I(inode)->defrag_bytes += len;
2090 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2091 &BTRFS_I(inode)->runtime_flags))
2092 btrfs_add_delalloc_inodes(root, inode);
2093 spin_unlock(&BTRFS_I(inode)->lock);
2094 }
2095
2096 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2097 (*bits & EXTENT_DELALLOC_NEW)) {
2098 spin_lock(&BTRFS_I(inode)->lock);
2099 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2100 state->start;
2101 spin_unlock(&BTRFS_I(inode)->lock);
2102 }
2103 }
2104
2105 /*
2106 * Once a range is no longer delalloc this function ensures that proper
2107 * accounting happens.
2108 */
2109 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2110 struct extent_state *state, unsigned *bits)
2111 {
2112 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2113 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2114 u64 len = state->end + 1 - state->start;
2115 u32 num_extents = count_max_extents(len);
2116
2117 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2118 spin_lock(&inode->lock);
2119 inode->defrag_bytes -= len;
2120 spin_unlock(&inode->lock);
2121 }
2122
2123 /*
2124 * set_bit and clear bit hooks normally require _irqsave/restore
2125 * but in this case, we are only testing for the DELALLOC
2126 * bit, which is only set or cleared with irqs on
2127 */
2128 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2129 struct btrfs_root *root = inode->root;
2130 bool do_list = !btrfs_is_free_space_inode(inode);
2131
2132 spin_lock(&inode->lock);
2133 btrfs_mod_outstanding_extents(inode, -num_extents);
2134 spin_unlock(&inode->lock);
2135
2136 /*
2137 * We don't reserve metadata space for space cache inodes so we
2138 * don't need to call delalloc_release_metadata if there is an
2139 * error.
2140 */
2141 if (*bits & EXTENT_CLEAR_META_RESV &&
2142 root != fs_info->tree_root)
2143 btrfs_delalloc_release_metadata(inode, len, false);
2144
2145 /* For sanity tests. */
2146 if (btrfs_is_testing(fs_info))
2147 return;
2148
2149 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2150 do_list && !(state->state & EXTENT_NORESERVE) &&
2151 (*bits & EXTENT_CLEAR_DATA_RESV))
2152 btrfs_free_reserved_data_space_noquota(fs_info, len);
2153
2154 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2155 fs_info->delalloc_batch);
2156 spin_lock(&inode->lock);
2157 inode->delalloc_bytes -= len;
2158 if (do_list && inode->delalloc_bytes == 0 &&
2159 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2160 &inode->runtime_flags))
2161 btrfs_del_delalloc_inode(root, inode);
2162 spin_unlock(&inode->lock);
2163 }
2164
2165 if ((state->state & EXTENT_DELALLOC_NEW) &&
2166 (*bits & EXTENT_DELALLOC_NEW)) {
2167 spin_lock(&inode->lock);
2168 ASSERT(inode->new_delalloc_bytes >= len);
2169 inode->new_delalloc_bytes -= len;
2170 if (*bits & EXTENT_ADD_INODE_BYTES)
2171 inode_add_bytes(&inode->vfs_inode, len);
2172 spin_unlock(&inode->lock);
2173 }
2174 }
2175
2176 /*
2177 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2178 * in a chunk's stripe. This function ensures that bios do not span a
2179 * stripe/chunk
2180 *
2181 * @page - The page we are about to add to the bio
2182 * @size - size we want to add to the bio
2183 * @bio - bio we want to ensure is smaller than a stripe
2184 * @bio_flags - flags of the bio
2185 *
2186 * return 1 if page cannot be added to the bio
2187 * return 0 if page can be added to the bio
2188 * return error otherwise
2189 */
2190 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2191 unsigned long bio_flags)
2192 {
2193 struct inode *inode = page->mapping->host;
2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2195 u64 logical = bio->bi_iter.bi_sector << 9;
2196 struct extent_map *em;
2197 u64 length = 0;
2198 u64 map_length;
2199 int ret = 0;
2200 struct btrfs_io_geometry geom;
2201
2202 if (bio_flags & EXTENT_BIO_COMPRESSED)
2203 return 0;
2204
2205 length = bio->bi_iter.bi_size;
2206 map_length = length;
2207 em = btrfs_get_chunk_map(fs_info, logical, map_length);
2208 if (IS_ERR(em))
2209 return PTR_ERR(em);
2210 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical,
2211 map_length, &geom);
2212 if (ret < 0)
2213 goto out;
2214
2215 if (geom.len < length + size)
2216 ret = 1;
2217 out:
2218 free_extent_map(em);
2219 return ret;
2220 }
2221
2222 /*
2223 * in order to insert checksums into the metadata in large chunks,
2224 * we wait until bio submission time. All the pages in the bio are
2225 * checksummed and sums are attached onto the ordered extent record.
2226 *
2227 * At IO completion time the cums attached on the ordered extent record
2228 * are inserted into the btree
2229 */
2230 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2231 u64 dio_file_offset)
2232 {
2233 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2234 }
2235
2236 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio,
2237 unsigned int size)
2238 {
2239 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2241 struct btrfs_ordered_extent *ordered;
2242 u64 len = bio->bi_iter.bi_size + size;
2243 bool ret = true;
2244
2245 ASSERT(btrfs_is_zoned(fs_info));
2246 ASSERT(fs_info->max_zone_append_size > 0);
2247 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND);
2248
2249 /* Ordered extent not yet created, so we're good */
2250 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
2251 if (!ordered)
2252 return ret;
2253
2254 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len >
2255 ordered->disk_bytenr + ordered->disk_num_bytes)
2256 ret = false;
2257
2258 btrfs_put_ordered_extent(ordered);
2259
2260 return ret;
2261 }
2262
2263 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2264 struct bio *bio, loff_t file_offset)
2265 {
2266 struct btrfs_ordered_extent *ordered;
2267 struct extent_map *em = NULL, *em_new = NULL;
2268 struct extent_map_tree *em_tree = &inode->extent_tree;
2269 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2270 u64 len = bio->bi_iter.bi_size;
2271 u64 end = start + len;
2272 u64 ordered_end;
2273 u64 pre, post;
2274 int ret = 0;
2275
2276 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2277 if (WARN_ON_ONCE(!ordered))
2278 return BLK_STS_IOERR;
2279
2280 /* No need to split */
2281 if (ordered->disk_num_bytes == len)
2282 goto out;
2283
2284 /* We cannot split once end_bio'd ordered extent */
2285 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2286 ret = -EINVAL;
2287 goto out;
2288 }
2289
2290 /* We cannot split a compressed ordered extent */
2291 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2292 ret = -EINVAL;
2293 goto out;
2294 }
2295
2296 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2297 /* bio must be in one ordered extent */
2298 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2299 ret = -EINVAL;
2300 goto out;
2301 }
2302
2303 /* Checksum list should be empty */
2304 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2305 ret = -EINVAL;
2306 goto out;
2307 }
2308
2309 pre = start - ordered->disk_bytenr;
2310 post = ordered_end - end;
2311
2312 ret = btrfs_split_ordered_extent(ordered, pre, post);
2313 if (ret)
2314 goto out;
2315
2316 read_lock(&em_tree->lock);
2317 em = lookup_extent_mapping(em_tree, ordered->file_offset, len);
2318 if (!em) {
2319 read_unlock(&em_tree->lock);
2320 ret = -EIO;
2321 goto out;
2322 }
2323 read_unlock(&em_tree->lock);
2324
2325 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2326 /*
2327 * We cannot reuse em_new here but have to create a new one, as
2328 * unpin_extent_cache() expects the start of the extent map to be the
2329 * logical offset of the file, which does not hold true anymore after
2330 * splitting.
2331 */
2332 em_new = create_io_em(inode, em->start + pre, len,
2333 em->start + pre, em->block_start + pre, len,
2334 len, len, BTRFS_COMPRESS_NONE,
2335 BTRFS_ORDERED_REGULAR);
2336 if (IS_ERR(em_new)) {
2337 ret = PTR_ERR(em_new);
2338 goto out;
2339 }
2340 free_extent_map(em_new);
2341
2342 out:
2343 free_extent_map(em);
2344 btrfs_put_ordered_extent(ordered);
2345
2346 return errno_to_blk_status(ret);
2347 }
2348
2349 /*
2350 * extent_io.c submission hook. This does the right thing for csum calculation
2351 * on write, or reading the csums from the tree before a read.
2352 *
2353 * Rules about async/sync submit,
2354 * a) read: sync submit
2355 *
2356 * b) write without checksum: sync submit
2357 *
2358 * c) write with checksum:
2359 * c-1) if bio is issued by fsync: sync submit
2360 * (sync_writers != 0)
2361 *
2362 * c-2) if root is reloc root: sync submit
2363 * (only in case of buffered IO)
2364 *
2365 * c-3) otherwise: async submit
2366 */
2367 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2368 int mirror_num, unsigned long bio_flags)
2369
2370 {
2371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2372 struct btrfs_root *root = BTRFS_I(inode)->root;
2373 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2374 blk_status_t ret = 0;
2375 int skip_sum;
2376 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2377
2378 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2379 !fs_info->csum_root;
2380
2381 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2382 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2383
2384 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2385 struct page *page = bio_first_bvec_all(bio)->bv_page;
2386 loff_t file_offset = page_offset(page);
2387
2388 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2389 if (ret)
2390 goto out;
2391 }
2392
2393 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2394 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2395 if (ret)
2396 goto out;
2397
2398 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2399 ret = btrfs_submit_compressed_read(inode, bio,
2400 mirror_num,
2401 bio_flags);
2402 goto out;
2403 } else {
2404 /*
2405 * Lookup bio sums does extra checks around whether we
2406 * need to csum or not, which is why we ignore skip_sum
2407 * here.
2408 */
2409 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2410 if (ret)
2411 goto out;
2412 }
2413 goto mapit;
2414 } else if (async && !skip_sum) {
2415 /* csum items have already been cloned */
2416 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2417 goto mapit;
2418 /* we're doing a write, do the async checksumming */
2419 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2420 0, btrfs_submit_bio_start);
2421 goto out;
2422 } else if (!skip_sum) {
2423 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2424 if (ret)
2425 goto out;
2426 }
2427
2428 mapit:
2429 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2430
2431 out:
2432 if (ret) {
2433 bio->bi_status = ret;
2434 bio_endio(bio);
2435 }
2436 return ret;
2437 }
2438
2439 /*
2440 * given a list of ordered sums record them in the inode. This happens
2441 * at IO completion time based on sums calculated at bio submission time.
2442 */
2443 static int add_pending_csums(struct btrfs_trans_handle *trans,
2444 struct list_head *list)
2445 {
2446 struct btrfs_ordered_sum *sum;
2447 int ret;
2448
2449 list_for_each_entry(sum, list, list) {
2450 trans->adding_csums = true;
2451 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2452 trans->adding_csums = false;
2453 if (ret)
2454 return ret;
2455 }
2456 return 0;
2457 }
2458
2459 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2460 const u64 start,
2461 const u64 len,
2462 struct extent_state **cached_state)
2463 {
2464 u64 search_start = start;
2465 const u64 end = start + len - 1;
2466
2467 while (search_start < end) {
2468 const u64 search_len = end - search_start + 1;
2469 struct extent_map *em;
2470 u64 em_len;
2471 int ret = 0;
2472
2473 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2474 if (IS_ERR(em))
2475 return PTR_ERR(em);
2476
2477 if (em->block_start != EXTENT_MAP_HOLE)
2478 goto next;
2479
2480 em_len = em->len;
2481 if (em->start < search_start)
2482 em_len -= search_start - em->start;
2483 if (em_len > search_len)
2484 em_len = search_len;
2485
2486 ret = set_extent_bit(&inode->io_tree, search_start,
2487 search_start + em_len - 1,
2488 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2489 GFP_NOFS, NULL);
2490 next:
2491 search_start = extent_map_end(em);
2492 free_extent_map(em);
2493 if (ret)
2494 return ret;
2495 }
2496 return 0;
2497 }
2498
2499 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2500 unsigned int extra_bits,
2501 struct extent_state **cached_state)
2502 {
2503 WARN_ON(PAGE_ALIGNED(end));
2504
2505 if (start >= i_size_read(&inode->vfs_inode) &&
2506 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2507 /*
2508 * There can't be any extents following eof in this case so just
2509 * set the delalloc new bit for the range directly.
2510 */
2511 extra_bits |= EXTENT_DELALLOC_NEW;
2512 } else {
2513 int ret;
2514
2515 ret = btrfs_find_new_delalloc_bytes(inode, start,
2516 end + 1 - start,
2517 cached_state);
2518 if (ret)
2519 return ret;
2520 }
2521
2522 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2523 cached_state);
2524 }
2525
2526 /* see btrfs_writepage_start_hook for details on why this is required */
2527 struct btrfs_writepage_fixup {
2528 struct page *page;
2529 struct inode *inode;
2530 struct btrfs_work work;
2531 };
2532
2533 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2534 {
2535 struct btrfs_writepage_fixup *fixup;
2536 struct btrfs_ordered_extent *ordered;
2537 struct extent_state *cached_state = NULL;
2538 struct extent_changeset *data_reserved = NULL;
2539 struct page *page;
2540 struct btrfs_inode *inode;
2541 u64 page_start;
2542 u64 page_end;
2543 int ret = 0;
2544 bool free_delalloc_space = true;
2545
2546 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2547 page = fixup->page;
2548 inode = BTRFS_I(fixup->inode);
2549 page_start = page_offset(page);
2550 page_end = page_offset(page) + PAGE_SIZE - 1;
2551
2552 /*
2553 * This is similar to page_mkwrite, we need to reserve the space before
2554 * we take the page lock.
2555 */
2556 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2557 PAGE_SIZE);
2558 again:
2559 lock_page(page);
2560
2561 /*
2562 * Before we queued this fixup, we took a reference on the page.
2563 * page->mapping may go NULL, but it shouldn't be moved to a different
2564 * address space.
2565 */
2566 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2567 /*
2568 * Unfortunately this is a little tricky, either
2569 *
2570 * 1) We got here and our page had already been dealt with and
2571 * we reserved our space, thus ret == 0, so we need to just
2572 * drop our space reservation and bail. This can happen the
2573 * first time we come into the fixup worker, or could happen
2574 * while waiting for the ordered extent.
2575 * 2) Our page was already dealt with, but we happened to get an
2576 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2577 * this case we obviously don't have anything to release, but
2578 * because the page was already dealt with we don't want to
2579 * mark the page with an error, so make sure we're resetting
2580 * ret to 0. This is why we have this check _before_ the ret
2581 * check, because we do not want to have a surprise ENOSPC
2582 * when the page was already properly dealt with.
2583 */
2584 if (!ret) {
2585 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2586 btrfs_delalloc_release_space(inode, data_reserved,
2587 page_start, PAGE_SIZE,
2588 true);
2589 }
2590 ret = 0;
2591 goto out_page;
2592 }
2593
2594 /*
2595 * We can't mess with the page state unless it is locked, so now that
2596 * it is locked bail if we failed to make our space reservation.
2597 */
2598 if (ret)
2599 goto out_page;
2600
2601 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2602
2603 /* already ordered? We're done */
2604 if (PagePrivate2(page))
2605 goto out_reserved;
2606
2607 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2608 if (ordered) {
2609 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2610 &cached_state);
2611 unlock_page(page);
2612 btrfs_start_ordered_extent(ordered, 1);
2613 btrfs_put_ordered_extent(ordered);
2614 goto again;
2615 }
2616
2617 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2618 &cached_state);
2619 if (ret)
2620 goto out_reserved;
2621
2622 /*
2623 * Everything went as planned, we're now the owner of a dirty page with
2624 * delayed allocation bits set and space reserved for our COW
2625 * destination.
2626 *
2627 * The page was dirty when we started, nothing should have cleaned it.
2628 */
2629 BUG_ON(!PageDirty(page));
2630 free_delalloc_space = false;
2631 out_reserved:
2632 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2633 if (free_delalloc_space)
2634 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2635 PAGE_SIZE, true);
2636 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2637 &cached_state);
2638 out_page:
2639 if (ret) {
2640 /*
2641 * We hit ENOSPC or other errors. Update the mapping and page
2642 * to reflect the errors and clean the page.
2643 */
2644 mapping_set_error(page->mapping, ret);
2645 end_extent_writepage(page, ret, page_start, page_end);
2646 clear_page_dirty_for_io(page);
2647 SetPageError(page);
2648 }
2649 ClearPageChecked(page);
2650 unlock_page(page);
2651 put_page(page);
2652 kfree(fixup);
2653 extent_changeset_free(data_reserved);
2654 /*
2655 * As a precaution, do a delayed iput in case it would be the last iput
2656 * that could need flushing space. Recursing back to fixup worker would
2657 * deadlock.
2658 */
2659 btrfs_add_delayed_iput(&inode->vfs_inode);
2660 }
2661
2662 /*
2663 * There are a few paths in the higher layers of the kernel that directly
2664 * set the page dirty bit without asking the filesystem if it is a
2665 * good idea. This causes problems because we want to make sure COW
2666 * properly happens and the data=ordered rules are followed.
2667 *
2668 * In our case any range that doesn't have the ORDERED bit set
2669 * hasn't been properly setup for IO. We kick off an async process
2670 * to fix it up. The async helper will wait for ordered extents, set
2671 * the delalloc bit and make it safe to write the page.
2672 */
2673 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2674 {
2675 struct inode *inode = page->mapping->host;
2676 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2677 struct btrfs_writepage_fixup *fixup;
2678
2679 /* this page is properly in the ordered list */
2680 if (TestClearPagePrivate2(page))
2681 return 0;
2682
2683 /*
2684 * PageChecked is set below when we create a fixup worker for this page,
2685 * don't try to create another one if we're already PageChecked()
2686 *
2687 * The extent_io writepage code will redirty the page if we send back
2688 * EAGAIN.
2689 */
2690 if (PageChecked(page))
2691 return -EAGAIN;
2692
2693 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2694 if (!fixup)
2695 return -EAGAIN;
2696
2697 /*
2698 * We are already holding a reference to this inode from
2699 * write_cache_pages. We need to hold it because the space reservation
2700 * takes place outside of the page lock, and we can't trust
2701 * page->mapping outside of the page lock.
2702 */
2703 ihold(inode);
2704 SetPageChecked(page);
2705 get_page(page);
2706 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2707 fixup->page = page;
2708 fixup->inode = inode;
2709 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2710
2711 return -EAGAIN;
2712 }
2713
2714 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2715 struct btrfs_inode *inode, u64 file_pos,
2716 struct btrfs_file_extent_item *stack_fi,
2717 const bool update_inode_bytes,
2718 u64 qgroup_reserved)
2719 {
2720 struct btrfs_root *root = inode->root;
2721 const u64 sectorsize = root->fs_info->sectorsize;
2722 struct btrfs_path *path;
2723 struct extent_buffer *leaf;
2724 struct btrfs_key ins;
2725 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2726 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2727 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2728 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2729 struct btrfs_drop_extents_args drop_args = { 0 };
2730 int ret;
2731
2732 path = btrfs_alloc_path();
2733 if (!path)
2734 return -ENOMEM;
2735
2736 /*
2737 * we may be replacing one extent in the tree with another.
2738 * The new extent is pinned in the extent map, and we don't want
2739 * to drop it from the cache until it is completely in the btree.
2740 *
2741 * So, tell btrfs_drop_extents to leave this extent in the cache.
2742 * the caller is expected to unpin it and allow it to be merged
2743 * with the others.
2744 */
2745 drop_args.path = path;
2746 drop_args.start = file_pos;
2747 drop_args.end = file_pos + num_bytes;
2748 drop_args.replace_extent = true;
2749 drop_args.extent_item_size = sizeof(*stack_fi);
2750 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2751 if (ret)
2752 goto out;
2753
2754 if (!drop_args.extent_inserted) {
2755 ins.objectid = btrfs_ino(inode);
2756 ins.offset = file_pos;
2757 ins.type = BTRFS_EXTENT_DATA_KEY;
2758
2759 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2760 sizeof(*stack_fi));
2761 if (ret)
2762 goto out;
2763 }
2764 leaf = path->nodes[0];
2765 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2766 write_extent_buffer(leaf, stack_fi,
2767 btrfs_item_ptr_offset(leaf, path->slots[0]),
2768 sizeof(struct btrfs_file_extent_item));
2769
2770 btrfs_mark_buffer_dirty(leaf);
2771 btrfs_release_path(path);
2772
2773 /*
2774 * If we dropped an inline extent here, we know the range where it is
2775 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2776 * number of bytes only for that range contaning the inline extent.
2777 * The remaining of the range will be processed when clearning the
2778 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2779 */
2780 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2781 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2782
2783 inline_size = drop_args.bytes_found - inline_size;
2784 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2785 drop_args.bytes_found -= inline_size;
2786 num_bytes -= sectorsize;
2787 }
2788
2789 if (update_inode_bytes)
2790 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2791
2792 ins.objectid = disk_bytenr;
2793 ins.offset = disk_num_bytes;
2794 ins.type = BTRFS_EXTENT_ITEM_KEY;
2795
2796 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2797 if (ret)
2798 goto out;
2799
2800 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2801 file_pos, qgroup_reserved, &ins);
2802 out:
2803 btrfs_free_path(path);
2804
2805 return ret;
2806 }
2807
2808 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2809 u64 start, u64 len)
2810 {
2811 struct btrfs_block_group *cache;
2812
2813 cache = btrfs_lookup_block_group(fs_info, start);
2814 ASSERT(cache);
2815
2816 spin_lock(&cache->lock);
2817 cache->delalloc_bytes -= len;
2818 spin_unlock(&cache->lock);
2819
2820 btrfs_put_block_group(cache);
2821 }
2822
2823 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2824 struct btrfs_ordered_extent *oe)
2825 {
2826 struct btrfs_file_extent_item stack_fi;
2827 u64 logical_len;
2828 bool update_inode_bytes;
2829
2830 memset(&stack_fi, 0, sizeof(stack_fi));
2831 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2832 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2833 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2834 oe->disk_num_bytes);
2835 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2836 logical_len = oe->truncated_len;
2837 else
2838 logical_len = oe->num_bytes;
2839 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2840 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2841 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2842 /* Encryption and other encoding is reserved and all 0 */
2843
2844 /*
2845 * For delalloc, when completing an ordered extent we update the inode's
2846 * bytes when clearing the range in the inode's io tree, so pass false
2847 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2848 * except if the ordered extent was truncated.
2849 */
2850 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2851 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2852
2853 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2854 oe->file_offset, &stack_fi,
2855 update_inode_bytes, oe->qgroup_rsv);
2856 }
2857
2858 /*
2859 * As ordered data IO finishes, this gets called so we can finish
2860 * an ordered extent if the range of bytes in the file it covers are
2861 * fully written.
2862 */
2863 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2864 {
2865 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2866 struct btrfs_root *root = inode->root;
2867 struct btrfs_fs_info *fs_info = root->fs_info;
2868 struct btrfs_trans_handle *trans = NULL;
2869 struct extent_io_tree *io_tree = &inode->io_tree;
2870 struct extent_state *cached_state = NULL;
2871 u64 start, end;
2872 int compress_type = 0;
2873 int ret = 0;
2874 u64 logical_len = ordered_extent->num_bytes;
2875 bool freespace_inode;
2876 bool truncated = false;
2877 bool clear_reserved_extent = true;
2878 unsigned int clear_bits = EXTENT_DEFRAG;
2879
2880 start = ordered_extent->file_offset;
2881 end = start + ordered_extent->num_bytes - 1;
2882
2883 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2884 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2885 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2886 clear_bits |= EXTENT_DELALLOC_NEW;
2887
2888 freespace_inode = btrfs_is_free_space_inode(inode);
2889
2890 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2891 ret = -EIO;
2892 goto out;
2893 }
2894
2895 if (ordered_extent->disk)
2896 btrfs_rewrite_logical_zoned(ordered_extent);
2897
2898 btrfs_free_io_failure_record(inode, start, end);
2899
2900 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2901 truncated = true;
2902 logical_len = ordered_extent->truncated_len;
2903 /* Truncated the entire extent, don't bother adding */
2904 if (!logical_len)
2905 goto out;
2906 }
2907
2908 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2909 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2910
2911 btrfs_inode_safe_disk_i_size_write(inode, 0);
2912 if (freespace_inode)
2913 trans = btrfs_join_transaction_spacecache(root);
2914 else
2915 trans = btrfs_join_transaction(root);
2916 if (IS_ERR(trans)) {
2917 ret = PTR_ERR(trans);
2918 trans = NULL;
2919 goto out;
2920 }
2921 trans->block_rsv = &inode->block_rsv;
2922 ret = btrfs_update_inode_fallback(trans, root, inode);
2923 if (ret) /* -ENOMEM or corruption */
2924 btrfs_abort_transaction(trans, ret);
2925 goto out;
2926 }
2927
2928 clear_bits |= EXTENT_LOCKED;
2929 lock_extent_bits(io_tree, start, end, &cached_state);
2930
2931 if (freespace_inode)
2932 trans = btrfs_join_transaction_spacecache(root);
2933 else
2934 trans = btrfs_join_transaction(root);
2935 if (IS_ERR(trans)) {
2936 ret = PTR_ERR(trans);
2937 trans = NULL;
2938 goto out;
2939 }
2940
2941 trans->block_rsv = &inode->block_rsv;
2942
2943 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2944 compress_type = ordered_extent->compress_type;
2945 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2946 BUG_ON(compress_type);
2947 ret = btrfs_mark_extent_written(trans, inode,
2948 ordered_extent->file_offset,
2949 ordered_extent->file_offset +
2950 logical_len);
2951 } else {
2952 BUG_ON(root == fs_info->tree_root);
2953 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2954 if (!ret) {
2955 clear_reserved_extent = false;
2956 btrfs_release_delalloc_bytes(fs_info,
2957 ordered_extent->disk_bytenr,
2958 ordered_extent->disk_num_bytes);
2959 }
2960 }
2961 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
2962 ordered_extent->num_bytes, trans->transid);
2963 if (ret < 0) {
2964 btrfs_abort_transaction(trans, ret);
2965 goto out;
2966 }
2967
2968 ret = add_pending_csums(trans, &ordered_extent->list);
2969 if (ret) {
2970 btrfs_abort_transaction(trans, ret);
2971 goto out;
2972 }
2973
2974 /*
2975 * If this is a new delalloc range, clear its new delalloc flag to
2976 * update the inode's number of bytes. This needs to be done first
2977 * before updating the inode item.
2978 */
2979 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
2980 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
2981 clear_extent_bit(&inode->io_tree, start, end,
2982 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
2983 0, 0, &cached_state);
2984
2985 btrfs_inode_safe_disk_i_size_write(inode, 0);
2986 ret = btrfs_update_inode_fallback(trans, root, inode);
2987 if (ret) { /* -ENOMEM or corruption */
2988 btrfs_abort_transaction(trans, ret);
2989 goto out;
2990 }
2991 ret = 0;
2992 out:
2993 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
2994 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2995 &cached_state);
2996
2997 if (trans)
2998 btrfs_end_transaction(trans);
2999
3000 if (ret || truncated) {
3001 u64 unwritten_start = start;
3002
3003 if (truncated)
3004 unwritten_start += logical_len;
3005 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3006
3007 /* Drop the cache for the part of the extent we didn't write. */
3008 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3009
3010 /*
3011 * If the ordered extent had an IOERR or something else went
3012 * wrong we need to return the space for this ordered extent
3013 * back to the allocator. We only free the extent in the
3014 * truncated case if we didn't write out the extent at all.
3015 *
3016 * If we made it past insert_reserved_file_extent before we
3017 * errored out then we don't need to do this as the accounting
3018 * has already been done.
3019 */
3020 if ((ret || !logical_len) &&
3021 clear_reserved_extent &&
3022 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3023 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3024 /*
3025 * Discard the range before returning it back to the
3026 * free space pool
3027 */
3028 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3029 btrfs_discard_extent(fs_info,
3030 ordered_extent->disk_bytenr,
3031 ordered_extent->disk_num_bytes,
3032 NULL);
3033 btrfs_free_reserved_extent(fs_info,
3034 ordered_extent->disk_bytenr,
3035 ordered_extent->disk_num_bytes, 1);
3036 }
3037 }
3038
3039 /*
3040 * This needs to be done to make sure anybody waiting knows we are done
3041 * updating everything for this ordered extent.
3042 */
3043 btrfs_remove_ordered_extent(inode, ordered_extent);
3044
3045 /* once for us */
3046 btrfs_put_ordered_extent(ordered_extent);
3047 /* once for the tree */
3048 btrfs_put_ordered_extent(ordered_extent);
3049
3050 return ret;
3051 }
3052
3053 static void finish_ordered_fn(struct btrfs_work *work)
3054 {
3055 struct btrfs_ordered_extent *ordered_extent;
3056 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3057 btrfs_finish_ordered_io(ordered_extent);
3058 }
3059
3060 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3061 u64 end, int uptodate)
3062 {
3063 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3065 struct btrfs_ordered_extent *ordered_extent = NULL;
3066 struct btrfs_workqueue *wq;
3067
3068 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3069
3070 ClearPagePrivate2(page);
3071 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3072 end - start + 1, uptodate))
3073 return;
3074
3075 if (btrfs_is_free_space_inode(inode))
3076 wq = fs_info->endio_freespace_worker;
3077 else
3078 wq = fs_info->endio_write_workers;
3079
3080 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3081 btrfs_queue_work(wq, &ordered_extent->work);
3082 }
3083
3084 /*
3085 * check_data_csum - verify checksum of one sector of uncompressed data
3086 * @inode: inode
3087 * @io_bio: btrfs_io_bio which contains the csum
3088 * @bio_offset: offset to the beginning of the bio (in bytes)
3089 * @page: page where is the data to be verified
3090 * @pgoff: offset inside the page
3091 * @start: logical offset in the file
3092 *
3093 * The length of such check is always one sector size.
3094 */
3095 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3096 u32 bio_offset, struct page *page, u32 pgoff,
3097 u64 start)
3098 {
3099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3100 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3101 char *kaddr;
3102 u32 len = fs_info->sectorsize;
3103 const u32 csum_size = fs_info->csum_size;
3104 unsigned int offset_sectors;
3105 u8 *csum_expected;
3106 u8 csum[BTRFS_CSUM_SIZE];
3107
3108 ASSERT(pgoff + len <= PAGE_SIZE);
3109
3110 offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3111 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3112
3113 kaddr = kmap_atomic(page);
3114 shash->tfm = fs_info->csum_shash;
3115
3116 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3117
3118 if (memcmp(csum, csum_expected, csum_size))
3119 goto zeroit;
3120
3121 kunmap_atomic(kaddr);
3122 return 0;
3123 zeroit:
3124 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3125 io_bio->mirror_num);
3126 if (io_bio->device)
3127 btrfs_dev_stat_inc_and_print(io_bio->device,
3128 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3129 memset(kaddr + pgoff, 1, len);
3130 flush_dcache_page(page);
3131 kunmap_atomic(kaddr);
3132 return -EIO;
3133 }
3134
3135 /*
3136 * When reads are done, we need to check csums to verify the data is correct.
3137 * if there's a match, we allow the bio to finish. If not, the code in
3138 * extent_io.c will try to find good copies for us.
3139 *
3140 * @bio_offset: offset to the beginning of the bio (in bytes)
3141 * @start: file offset of the range start
3142 * @end: file offset of the range end (inclusive)
3143 */
3144 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3145 struct page *page, u64 start, u64 end)
3146 {
3147 struct inode *inode = page->mapping->host;
3148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3149 struct btrfs_root *root = BTRFS_I(inode)->root;
3150 const u32 sectorsize = root->fs_info->sectorsize;
3151 u32 pg_off;
3152
3153 if (PageChecked(page)) {
3154 ClearPageChecked(page);
3155 return 0;
3156 }
3157
3158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3159 return 0;
3160
3161 if (!root->fs_info->csum_root)
3162 return 0;
3163
3164 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3165 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3166 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3167 return 0;
3168 }
3169
3170 ASSERT(page_offset(page) <= start &&
3171 end <= page_offset(page) + PAGE_SIZE - 1);
3172 for (pg_off = offset_in_page(start);
3173 pg_off < offset_in_page(end);
3174 pg_off += sectorsize, bio_offset += sectorsize) {
3175 int ret;
3176
3177 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3178 page_offset(page) + pg_off);
3179 if (ret < 0)
3180 return -EIO;
3181 }
3182 return 0;
3183 }
3184
3185 /*
3186 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3187 *
3188 * @inode: The inode we want to perform iput on
3189 *
3190 * This function uses the generic vfs_inode::i_count to track whether we should
3191 * just decrement it (in case it's > 1) or if this is the last iput then link
3192 * the inode to the delayed iput machinery. Delayed iputs are processed at
3193 * transaction commit time/superblock commit/cleaner kthread.
3194 */
3195 void btrfs_add_delayed_iput(struct inode *inode)
3196 {
3197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3198 struct btrfs_inode *binode = BTRFS_I(inode);
3199
3200 if (atomic_add_unless(&inode->i_count, -1, 1))
3201 return;
3202
3203 atomic_inc(&fs_info->nr_delayed_iputs);
3204 spin_lock(&fs_info->delayed_iput_lock);
3205 ASSERT(list_empty(&binode->delayed_iput));
3206 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3207 spin_unlock(&fs_info->delayed_iput_lock);
3208 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3209 wake_up_process(fs_info->cleaner_kthread);
3210 }
3211
3212 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3213 struct btrfs_inode *inode)
3214 {
3215 list_del_init(&inode->delayed_iput);
3216 spin_unlock(&fs_info->delayed_iput_lock);
3217 iput(&inode->vfs_inode);
3218 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3219 wake_up(&fs_info->delayed_iputs_wait);
3220 spin_lock(&fs_info->delayed_iput_lock);
3221 }
3222
3223 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3224 struct btrfs_inode *inode)
3225 {
3226 if (!list_empty(&inode->delayed_iput)) {
3227 spin_lock(&fs_info->delayed_iput_lock);
3228 if (!list_empty(&inode->delayed_iput))
3229 run_delayed_iput_locked(fs_info, inode);
3230 spin_unlock(&fs_info->delayed_iput_lock);
3231 }
3232 }
3233
3234 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3235 {
3236
3237 spin_lock(&fs_info->delayed_iput_lock);
3238 while (!list_empty(&fs_info->delayed_iputs)) {
3239 struct btrfs_inode *inode;
3240
3241 inode = list_first_entry(&fs_info->delayed_iputs,
3242 struct btrfs_inode, delayed_iput);
3243 run_delayed_iput_locked(fs_info, inode);
3244 }
3245 spin_unlock(&fs_info->delayed_iput_lock);
3246 }
3247
3248 /**
3249 * Wait for flushing all delayed iputs
3250 *
3251 * @fs_info: the filesystem
3252 *
3253 * This will wait on any delayed iputs that are currently running with KILLABLE
3254 * set. Once they are all done running we will return, unless we are killed in
3255 * which case we return EINTR. This helps in user operations like fallocate etc
3256 * that might get blocked on the iputs.
3257 *
3258 * Return EINTR if we were killed, 0 if nothing's pending
3259 */
3260 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3261 {
3262 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3263 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3264 if (ret)
3265 return -EINTR;
3266 return 0;
3267 }
3268
3269 /*
3270 * This creates an orphan entry for the given inode in case something goes wrong
3271 * in the middle of an unlink.
3272 */
3273 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3274 struct btrfs_inode *inode)
3275 {
3276 int ret;
3277
3278 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3279 if (ret && ret != -EEXIST) {
3280 btrfs_abort_transaction(trans, ret);
3281 return ret;
3282 }
3283
3284 return 0;
3285 }
3286
3287 /*
3288 * We have done the delete so we can go ahead and remove the orphan item for
3289 * this particular inode.
3290 */
3291 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3292 struct btrfs_inode *inode)
3293 {
3294 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3295 }
3296
3297 /*
3298 * this cleans up any orphans that may be left on the list from the last use
3299 * of this root.
3300 */
3301 int btrfs_orphan_cleanup(struct btrfs_root *root)
3302 {
3303 struct btrfs_fs_info *fs_info = root->fs_info;
3304 struct btrfs_path *path;
3305 struct extent_buffer *leaf;
3306 struct btrfs_key key, found_key;
3307 struct btrfs_trans_handle *trans;
3308 struct inode *inode;
3309 u64 last_objectid = 0;
3310 int ret = 0, nr_unlink = 0;
3311
3312 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3313 return 0;
3314
3315 path = btrfs_alloc_path();
3316 if (!path) {
3317 ret = -ENOMEM;
3318 goto out;
3319 }
3320 path->reada = READA_BACK;
3321
3322 key.objectid = BTRFS_ORPHAN_OBJECTID;
3323 key.type = BTRFS_ORPHAN_ITEM_KEY;
3324 key.offset = (u64)-1;
3325
3326 while (1) {
3327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3328 if (ret < 0)
3329 goto out;
3330
3331 /*
3332 * if ret == 0 means we found what we were searching for, which
3333 * is weird, but possible, so only screw with path if we didn't
3334 * find the key and see if we have stuff that matches
3335 */
3336 if (ret > 0) {
3337 ret = 0;
3338 if (path->slots[0] == 0)
3339 break;
3340 path->slots[0]--;
3341 }
3342
3343 /* pull out the item */
3344 leaf = path->nodes[0];
3345 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3346
3347 /* make sure the item matches what we want */
3348 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3349 break;
3350 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3351 break;
3352
3353 /* release the path since we're done with it */
3354 btrfs_release_path(path);
3355
3356 /*
3357 * this is where we are basically btrfs_lookup, without the
3358 * crossing root thing. we store the inode number in the
3359 * offset of the orphan item.
3360 */
3361
3362 if (found_key.offset == last_objectid) {
3363 btrfs_err(fs_info,
3364 "Error removing orphan entry, stopping orphan cleanup");
3365 ret = -EINVAL;
3366 goto out;
3367 }
3368
3369 last_objectid = found_key.offset;
3370
3371 found_key.objectid = found_key.offset;
3372 found_key.type = BTRFS_INODE_ITEM_KEY;
3373 found_key.offset = 0;
3374 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3375 ret = PTR_ERR_OR_ZERO(inode);
3376 if (ret && ret != -ENOENT)
3377 goto out;
3378
3379 if (ret == -ENOENT && root == fs_info->tree_root) {
3380 struct btrfs_root *dead_root;
3381 int is_dead_root = 0;
3382
3383 /*
3384 * This is an orphan in the tree root. Currently these
3385 * could come from 2 sources:
3386 * a) a root (snapshot/subvolume) deletion in progress
3387 * b) a free space cache inode
3388 * We need to distinguish those two, as the orphan item
3389 * for a root must not get deleted before the deletion
3390 * of the snapshot/subvolume's tree completes.
3391 *
3392 * btrfs_find_orphan_roots() ran before us, which has
3393 * found all deleted roots and loaded them into
3394 * fs_info->fs_roots_radix. So here we can find if an
3395 * orphan item corresponds to a deleted root by looking
3396 * up the root from that radix tree.
3397 */
3398
3399 spin_lock(&fs_info->fs_roots_radix_lock);
3400 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3401 (unsigned long)found_key.objectid);
3402 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3403 is_dead_root = 1;
3404 spin_unlock(&fs_info->fs_roots_radix_lock);
3405
3406 if (is_dead_root) {
3407 /* prevent this orphan from being found again */
3408 key.offset = found_key.objectid - 1;
3409 continue;
3410 }
3411
3412 }
3413
3414 /*
3415 * If we have an inode with links, there are a couple of
3416 * possibilities. Old kernels (before v3.12) used to create an
3417 * orphan item for truncate indicating that there were possibly
3418 * extent items past i_size that needed to be deleted. In v3.12,
3419 * truncate was changed to update i_size in sync with the extent
3420 * items, but the (useless) orphan item was still created. Since
3421 * v4.18, we don't create the orphan item for truncate at all.
3422 *
3423 * So, this item could mean that we need to do a truncate, but
3424 * only if this filesystem was last used on a pre-v3.12 kernel
3425 * and was not cleanly unmounted. The odds of that are quite
3426 * slim, and it's a pain to do the truncate now, so just delete
3427 * the orphan item.
3428 *
3429 * It's also possible that this orphan item was supposed to be
3430 * deleted but wasn't. The inode number may have been reused,
3431 * but either way, we can delete the orphan item.
3432 */
3433 if (ret == -ENOENT || inode->i_nlink) {
3434 if (!ret)
3435 iput(inode);
3436 trans = btrfs_start_transaction(root, 1);
3437 if (IS_ERR(trans)) {
3438 ret = PTR_ERR(trans);
3439 goto out;
3440 }
3441 btrfs_debug(fs_info, "auto deleting %Lu",
3442 found_key.objectid);
3443 ret = btrfs_del_orphan_item(trans, root,
3444 found_key.objectid);
3445 btrfs_end_transaction(trans);
3446 if (ret)
3447 goto out;
3448 continue;
3449 }
3450
3451 nr_unlink++;
3452
3453 /* this will do delete_inode and everything for us */
3454 iput(inode);
3455 }
3456 /* release the path since we're done with it */
3457 btrfs_release_path(path);
3458
3459 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3460
3461 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3462 trans = btrfs_join_transaction(root);
3463 if (!IS_ERR(trans))
3464 btrfs_end_transaction(trans);
3465 }
3466
3467 if (nr_unlink)
3468 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3469
3470 out:
3471 if (ret)
3472 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3473 btrfs_free_path(path);
3474 return ret;
3475 }
3476
3477 /*
3478 * very simple check to peek ahead in the leaf looking for xattrs. If we
3479 * don't find any xattrs, we know there can't be any acls.
3480 *
3481 * slot is the slot the inode is in, objectid is the objectid of the inode
3482 */
3483 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3484 int slot, u64 objectid,
3485 int *first_xattr_slot)
3486 {
3487 u32 nritems = btrfs_header_nritems(leaf);
3488 struct btrfs_key found_key;
3489 static u64 xattr_access = 0;
3490 static u64 xattr_default = 0;
3491 int scanned = 0;
3492
3493 if (!xattr_access) {
3494 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3495 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3496 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3497 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3498 }
3499
3500 slot++;
3501 *first_xattr_slot = -1;
3502 while (slot < nritems) {
3503 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3504
3505 /* we found a different objectid, there must not be acls */
3506 if (found_key.objectid != objectid)
3507 return 0;
3508
3509 /* we found an xattr, assume we've got an acl */
3510 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3511 if (*first_xattr_slot == -1)
3512 *first_xattr_slot = slot;
3513 if (found_key.offset == xattr_access ||
3514 found_key.offset == xattr_default)
3515 return 1;
3516 }
3517
3518 /*
3519 * we found a key greater than an xattr key, there can't
3520 * be any acls later on
3521 */
3522 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3523 return 0;
3524
3525 slot++;
3526 scanned++;
3527
3528 /*
3529 * it goes inode, inode backrefs, xattrs, extents,
3530 * so if there are a ton of hard links to an inode there can
3531 * be a lot of backrefs. Don't waste time searching too hard,
3532 * this is just an optimization
3533 */
3534 if (scanned >= 8)
3535 break;
3536 }
3537 /* we hit the end of the leaf before we found an xattr or
3538 * something larger than an xattr. We have to assume the inode
3539 * has acls
3540 */
3541 if (*first_xattr_slot == -1)
3542 *first_xattr_slot = slot;
3543 return 1;
3544 }
3545
3546 /*
3547 * read an inode from the btree into the in-memory inode
3548 */
3549 static int btrfs_read_locked_inode(struct inode *inode,
3550 struct btrfs_path *in_path)
3551 {
3552 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3553 struct btrfs_path *path = in_path;
3554 struct extent_buffer *leaf;
3555 struct btrfs_inode_item *inode_item;
3556 struct btrfs_root *root = BTRFS_I(inode)->root;
3557 struct btrfs_key location;
3558 unsigned long ptr;
3559 int maybe_acls;
3560 u32 rdev;
3561 int ret;
3562 bool filled = false;
3563 int first_xattr_slot;
3564
3565 ret = btrfs_fill_inode(inode, &rdev);
3566 if (!ret)
3567 filled = true;
3568
3569 if (!path) {
3570 path = btrfs_alloc_path();
3571 if (!path)
3572 return -ENOMEM;
3573 }
3574
3575 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3576
3577 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3578 if (ret) {
3579 if (path != in_path)
3580 btrfs_free_path(path);
3581 return ret;
3582 }
3583
3584 leaf = path->nodes[0];
3585
3586 if (filled)
3587 goto cache_index;
3588
3589 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3590 struct btrfs_inode_item);
3591 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3592 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3593 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3594 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3595 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3596 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3597 round_up(i_size_read(inode), fs_info->sectorsize));
3598
3599 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3600 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3601
3602 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3603 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3604
3605 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3606 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3607
3608 BTRFS_I(inode)->i_otime.tv_sec =
3609 btrfs_timespec_sec(leaf, &inode_item->otime);
3610 BTRFS_I(inode)->i_otime.tv_nsec =
3611 btrfs_timespec_nsec(leaf, &inode_item->otime);
3612
3613 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3614 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3615 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3616
3617 inode_set_iversion_queried(inode,
3618 btrfs_inode_sequence(leaf, inode_item));
3619 inode->i_generation = BTRFS_I(inode)->generation;
3620 inode->i_rdev = 0;
3621 rdev = btrfs_inode_rdev(leaf, inode_item);
3622
3623 BTRFS_I(inode)->index_cnt = (u64)-1;
3624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3625
3626 cache_index:
3627 /*
3628 * If we were modified in the current generation and evicted from memory
3629 * and then re-read we need to do a full sync since we don't have any
3630 * idea about which extents were modified before we were evicted from
3631 * cache.
3632 *
3633 * This is required for both inode re-read from disk and delayed inode
3634 * in delayed_nodes_tree.
3635 */
3636 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3637 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3638 &BTRFS_I(inode)->runtime_flags);
3639
3640 /*
3641 * We don't persist the id of the transaction where an unlink operation
3642 * against the inode was last made. So here we assume the inode might
3643 * have been evicted, and therefore the exact value of last_unlink_trans
3644 * lost, and set it to last_trans to avoid metadata inconsistencies
3645 * between the inode and its parent if the inode is fsync'ed and the log
3646 * replayed. For example, in the scenario:
3647 *
3648 * touch mydir/foo
3649 * ln mydir/foo mydir/bar
3650 * sync
3651 * unlink mydir/bar
3652 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3653 * xfs_io -c fsync mydir/foo
3654 * <power failure>
3655 * mount fs, triggers fsync log replay
3656 *
3657 * We must make sure that when we fsync our inode foo we also log its
3658 * parent inode, otherwise after log replay the parent still has the
3659 * dentry with the "bar" name but our inode foo has a link count of 1
3660 * and doesn't have an inode ref with the name "bar" anymore.
3661 *
3662 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3663 * but it guarantees correctness at the expense of occasional full
3664 * transaction commits on fsync if our inode is a directory, or if our
3665 * inode is not a directory, logging its parent unnecessarily.
3666 */
3667 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3668
3669 /*
3670 * Same logic as for last_unlink_trans. We don't persist the generation
3671 * of the last transaction where this inode was used for a reflink
3672 * operation, so after eviction and reloading the inode we must be
3673 * pessimistic and assume the last transaction that modified the inode.
3674 */
3675 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3676
3677 path->slots[0]++;
3678 if (inode->i_nlink != 1 ||
3679 path->slots[0] >= btrfs_header_nritems(leaf))
3680 goto cache_acl;
3681
3682 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3683 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3684 goto cache_acl;
3685
3686 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3687 if (location.type == BTRFS_INODE_REF_KEY) {
3688 struct btrfs_inode_ref *ref;
3689
3690 ref = (struct btrfs_inode_ref *)ptr;
3691 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3692 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3693 struct btrfs_inode_extref *extref;
3694
3695 extref = (struct btrfs_inode_extref *)ptr;
3696 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3697 extref);
3698 }
3699 cache_acl:
3700 /*
3701 * try to precache a NULL acl entry for files that don't have
3702 * any xattrs or acls
3703 */
3704 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3705 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3706 if (first_xattr_slot != -1) {
3707 path->slots[0] = first_xattr_slot;
3708 ret = btrfs_load_inode_props(inode, path);
3709 if (ret)
3710 btrfs_err(fs_info,
3711 "error loading props for ino %llu (root %llu): %d",
3712 btrfs_ino(BTRFS_I(inode)),
3713 root->root_key.objectid, ret);
3714 }
3715 if (path != in_path)
3716 btrfs_free_path(path);
3717
3718 if (!maybe_acls)
3719 cache_no_acl(inode);
3720
3721 switch (inode->i_mode & S_IFMT) {
3722 case S_IFREG:
3723 inode->i_mapping->a_ops = &btrfs_aops;
3724 inode->i_fop = &btrfs_file_operations;
3725 inode->i_op = &btrfs_file_inode_operations;
3726 break;
3727 case S_IFDIR:
3728 inode->i_fop = &btrfs_dir_file_operations;
3729 inode->i_op = &btrfs_dir_inode_operations;
3730 break;
3731 case S_IFLNK:
3732 inode->i_op = &btrfs_symlink_inode_operations;
3733 inode_nohighmem(inode);
3734 inode->i_mapping->a_ops = &btrfs_aops;
3735 break;
3736 default:
3737 inode->i_op = &btrfs_special_inode_operations;
3738 init_special_inode(inode, inode->i_mode, rdev);
3739 break;
3740 }
3741
3742 btrfs_sync_inode_flags_to_i_flags(inode);
3743 return 0;
3744 }
3745
3746 /*
3747 * given a leaf and an inode, copy the inode fields into the leaf
3748 */
3749 static void fill_inode_item(struct btrfs_trans_handle *trans,
3750 struct extent_buffer *leaf,
3751 struct btrfs_inode_item *item,
3752 struct inode *inode)
3753 {
3754 struct btrfs_map_token token;
3755
3756 btrfs_init_map_token(&token, leaf);
3757
3758 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3759 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3760 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3761 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3762 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3763
3764 btrfs_set_token_timespec_sec(&token, &item->atime,
3765 inode->i_atime.tv_sec);
3766 btrfs_set_token_timespec_nsec(&token, &item->atime,
3767 inode->i_atime.tv_nsec);
3768
3769 btrfs_set_token_timespec_sec(&token, &item->mtime,
3770 inode->i_mtime.tv_sec);
3771 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3772 inode->i_mtime.tv_nsec);
3773
3774 btrfs_set_token_timespec_sec(&token, &item->ctime,
3775 inode->i_ctime.tv_sec);
3776 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3777 inode->i_ctime.tv_nsec);
3778
3779 btrfs_set_token_timespec_sec(&token, &item->otime,
3780 BTRFS_I(inode)->i_otime.tv_sec);
3781 btrfs_set_token_timespec_nsec(&token, &item->otime,
3782 BTRFS_I(inode)->i_otime.tv_nsec);
3783
3784 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3785 btrfs_set_token_inode_generation(&token, item,
3786 BTRFS_I(inode)->generation);
3787 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3788 btrfs_set_token_inode_transid(&token, item, trans->transid);
3789 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3790 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3791 btrfs_set_token_inode_block_group(&token, item, 0);
3792 }
3793
3794 /*
3795 * copy everything in the in-memory inode into the btree.
3796 */
3797 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3798 struct btrfs_root *root,
3799 struct btrfs_inode *inode)
3800 {
3801 struct btrfs_inode_item *inode_item;
3802 struct btrfs_path *path;
3803 struct extent_buffer *leaf;
3804 int ret;
3805
3806 path = btrfs_alloc_path();
3807 if (!path)
3808 return -ENOMEM;
3809
3810 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3811 if (ret) {
3812 if (ret > 0)
3813 ret = -ENOENT;
3814 goto failed;
3815 }
3816
3817 leaf = path->nodes[0];
3818 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3819 struct btrfs_inode_item);
3820
3821 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3822 btrfs_mark_buffer_dirty(leaf);
3823 btrfs_set_inode_last_trans(trans, inode);
3824 ret = 0;
3825 failed:
3826 btrfs_free_path(path);
3827 return ret;
3828 }
3829
3830 /*
3831 * copy everything in the in-memory inode into the btree.
3832 */
3833 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3834 struct btrfs_root *root,
3835 struct btrfs_inode *inode)
3836 {
3837 struct btrfs_fs_info *fs_info = root->fs_info;
3838 int ret;
3839
3840 /*
3841 * If the inode is a free space inode, we can deadlock during commit
3842 * if we put it into the delayed code.
3843 *
3844 * The data relocation inode should also be directly updated
3845 * without delay
3846 */
3847 if (!btrfs_is_free_space_inode(inode)
3848 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3849 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3850 btrfs_update_root_times(trans, root);
3851
3852 ret = btrfs_delayed_update_inode(trans, root, inode);
3853 if (!ret)
3854 btrfs_set_inode_last_trans(trans, inode);
3855 return ret;
3856 }
3857
3858 return btrfs_update_inode_item(trans, root, inode);
3859 }
3860
3861 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3862 struct btrfs_root *root, struct btrfs_inode *inode)
3863 {
3864 int ret;
3865
3866 ret = btrfs_update_inode(trans, root, inode);
3867 if (ret == -ENOSPC)
3868 return btrfs_update_inode_item(trans, root, inode);
3869 return ret;
3870 }
3871
3872 /*
3873 * unlink helper that gets used here in inode.c and in the tree logging
3874 * recovery code. It remove a link in a directory with a given name, and
3875 * also drops the back refs in the inode to the directory
3876 */
3877 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *root,
3879 struct btrfs_inode *dir,
3880 struct btrfs_inode *inode,
3881 const char *name, int name_len)
3882 {
3883 struct btrfs_fs_info *fs_info = root->fs_info;
3884 struct btrfs_path *path;
3885 int ret = 0;
3886 struct btrfs_dir_item *di;
3887 u64 index;
3888 u64 ino = btrfs_ino(inode);
3889 u64 dir_ino = btrfs_ino(dir);
3890
3891 path = btrfs_alloc_path();
3892 if (!path) {
3893 ret = -ENOMEM;
3894 goto out;
3895 }
3896
3897 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3898 name, name_len, -1);
3899 if (IS_ERR_OR_NULL(di)) {
3900 ret = di ? PTR_ERR(di) : -ENOENT;
3901 goto err;
3902 }
3903 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3904 if (ret)
3905 goto err;
3906 btrfs_release_path(path);
3907
3908 /*
3909 * If we don't have dir index, we have to get it by looking up
3910 * the inode ref, since we get the inode ref, remove it directly,
3911 * it is unnecessary to do delayed deletion.
3912 *
3913 * But if we have dir index, needn't search inode ref to get it.
3914 * Since the inode ref is close to the inode item, it is better
3915 * that we delay to delete it, and just do this deletion when
3916 * we update the inode item.
3917 */
3918 if (inode->dir_index) {
3919 ret = btrfs_delayed_delete_inode_ref(inode);
3920 if (!ret) {
3921 index = inode->dir_index;
3922 goto skip_backref;
3923 }
3924 }
3925
3926 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3927 dir_ino, &index);
3928 if (ret) {
3929 btrfs_info(fs_info,
3930 "failed to delete reference to %.*s, inode %llu parent %llu",
3931 name_len, name, ino, dir_ino);
3932 btrfs_abort_transaction(trans, ret);
3933 goto err;
3934 }
3935 skip_backref:
3936 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3937 if (ret) {
3938 btrfs_abort_transaction(trans, ret);
3939 goto err;
3940 }
3941
3942 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3943 dir_ino);
3944 if (ret != 0 && ret != -ENOENT) {
3945 btrfs_abort_transaction(trans, ret);
3946 goto err;
3947 }
3948
3949 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3950 index);
3951 if (ret == -ENOENT)
3952 ret = 0;
3953 else if (ret)
3954 btrfs_abort_transaction(trans, ret);
3955
3956 /*
3957 * If we have a pending delayed iput we could end up with the final iput
3958 * being run in btrfs-cleaner context. If we have enough of these built
3959 * up we can end up burning a lot of time in btrfs-cleaner without any
3960 * way to throttle the unlinks. Since we're currently holding a ref on
3961 * the inode we can run the delayed iput here without any issues as the
3962 * final iput won't be done until after we drop the ref we're currently
3963 * holding.
3964 */
3965 btrfs_run_delayed_iput(fs_info, inode);
3966 err:
3967 btrfs_free_path(path);
3968 if (ret)
3969 goto out;
3970
3971 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3972 inode_inc_iversion(&inode->vfs_inode);
3973 inode_inc_iversion(&dir->vfs_inode);
3974 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3975 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3976 ret = btrfs_update_inode(trans, root, dir);
3977 out:
3978 return ret;
3979 }
3980
3981 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3982 struct btrfs_root *root,
3983 struct btrfs_inode *dir, struct btrfs_inode *inode,
3984 const char *name, int name_len)
3985 {
3986 int ret;
3987 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3988 if (!ret) {
3989 drop_nlink(&inode->vfs_inode);
3990 ret = btrfs_update_inode(trans, root, inode);
3991 }
3992 return ret;
3993 }
3994
3995 /*
3996 * helper to start transaction for unlink and rmdir.
3997 *
3998 * unlink and rmdir are special in btrfs, they do not always free space, so
3999 * if we cannot make our reservations the normal way try and see if there is
4000 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4001 * allow the unlink to occur.
4002 */
4003 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4004 {
4005 struct btrfs_root *root = BTRFS_I(dir)->root;
4006
4007 /*
4008 * 1 for the possible orphan item
4009 * 1 for the dir item
4010 * 1 for the dir index
4011 * 1 for the inode ref
4012 * 1 for the inode
4013 */
4014 return btrfs_start_transaction_fallback_global_rsv(root, 5);
4015 }
4016
4017 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4018 {
4019 struct btrfs_root *root = BTRFS_I(dir)->root;
4020 struct btrfs_trans_handle *trans;
4021 struct inode *inode = d_inode(dentry);
4022 int ret;
4023
4024 trans = __unlink_start_trans(dir);
4025 if (IS_ERR(trans))
4026 return PTR_ERR(trans);
4027
4028 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4029 0);
4030
4031 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4032 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4033 dentry->d_name.len);
4034 if (ret)
4035 goto out;
4036
4037 if (inode->i_nlink == 0) {
4038 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4039 if (ret)
4040 goto out;
4041 }
4042
4043 out:
4044 btrfs_end_transaction(trans);
4045 btrfs_btree_balance_dirty(root->fs_info);
4046 return ret;
4047 }
4048
4049 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4050 struct inode *dir, struct dentry *dentry)
4051 {
4052 struct btrfs_root *root = BTRFS_I(dir)->root;
4053 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4054 struct btrfs_path *path;
4055 struct extent_buffer *leaf;
4056 struct btrfs_dir_item *di;
4057 struct btrfs_key key;
4058 const char *name = dentry->d_name.name;
4059 int name_len = dentry->d_name.len;
4060 u64 index;
4061 int ret;
4062 u64 objectid;
4063 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4064
4065 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4066 objectid = inode->root->root_key.objectid;
4067 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4068 objectid = inode->location.objectid;
4069 } else {
4070 WARN_ON(1);
4071 return -EINVAL;
4072 }
4073
4074 path = btrfs_alloc_path();
4075 if (!path)
4076 return -ENOMEM;
4077
4078 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4079 name, name_len, -1);
4080 if (IS_ERR_OR_NULL(di)) {
4081 ret = di ? PTR_ERR(di) : -ENOENT;
4082 goto out;
4083 }
4084
4085 leaf = path->nodes[0];
4086 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4087 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4088 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4089 if (ret) {
4090 btrfs_abort_transaction(trans, ret);
4091 goto out;
4092 }
4093 btrfs_release_path(path);
4094
4095 /*
4096 * This is a placeholder inode for a subvolume we didn't have a
4097 * reference to at the time of the snapshot creation. In the meantime
4098 * we could have renamed the real subvol link into our snapshot, so
4099 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4100 * Instead simply lookup the dir_index_item for this entry so we can
4101 * remove it. Otherwise we know we have a ref to the root and we can
4102 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4103 */
4104 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4105 di = btrfs_search_dir_index_item(root, path, dir_ino,
4106 name, name_len);
4107 if (IS_ERR_OR_NULL(di)) {
4108 if (!di)
4109 ret = -ENOENT;
4110 else
4111 ret = PTR_ERR(di);
4112 btrfs_abort_transaction(trans, ret);
4113 goto out;
4114 }
4115
4116 leaf = path->nodes[0];
4117 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4118 index = key.offset;
4119 btrfs_release_path(path);
4120 } else {
4121 ret = btrfs_del_root_ref(trans, objectid,
4122 root->root_key.objectid, dir_ino,
4123 &index, name, name_len);
4124 if (ret) {
4125 btrfs_abort_transaction(trans, ret);
4126 goto out;
4127 }
4128 }
4129
4130 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4131 if (ret) {
4132 btrfs_abort_transaction(trans, ret);
4133 goto out;
4134 }
4135
4136 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4137 inode_inc_iversion(dir);
4138 dir->i_mtime = dir->i_ctime = current_time(dir);
4139 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4140 if (ret)
4141 btrfs_abort_transaction(trans, ret);
4142 out:
4143 btrfs_free_path(path);
4144 return ret;
4145 }
4146
4147 /*
4148 * Helper to check if the subvolume references other subvolumes or if it's
4149 * default.
4150 */
4151 static noinline int may_destroy_subvol(struct btrfs_root *root)
4152 {
4153 struct btrfs_fs_info *fs_info = root->fs_info;
4154 struct btrfs_path *path;
4155 struct btrfs_dir_item *di;
4156 struct btrfs_key key;
4157 u64 dir_id;
4158 int ret;
4159
4160 path = btrfs_alloc_path();
4161 if (!path)
4162 return -ENOMEM;
4163
4164 /* Make sure this root isn't set as the default subvol */
4165 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4166 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4167 dir_id, "default", 7, 0);
4168 if (di && !IS_ERR(di)) {
4169 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4170 if (key.objectid == root->root_key.objectid) {
4171 ret = -EPERM;
4172 btrfs_err(fs_info,
4173 "deleting default subvolume %llu is not allowed",
4174 key.objectid);
4175 goto out;
4176 }
4177 btrfs_release_path(path);
4178 }
4179
4180 key.objectid = root->root_key.objectid;
4181 key.type = BTRFS_ROOT_REF_KEY;
4182 key.offset = (u64)-1;
4183
4184 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4185 if (ret < 0)
4186 goto out;
4187 BUG_ON(ret == 0);
4188
4189 ret = 0;
4190 if (path->slots[0] > 0) {
4191 path->slots[0]--;
4192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4193 if (key.objectid == root->root_key.objectid &&
4194 key.type == BTRFS_ROOT_REF_KEY)
4195 ret = -ENOTEMPTY;
4196 }
4197 out:
4198 btrfs_free_path(path);
4199 return ret;
4200 }
4201
4202 /* Delete all dentries for inodes belonging to the root */
4203 static void btrfs_prune_dentries(struct btrfs_root *root)
4204 {
4205 struct btrfs_fs_info *fs_info = root->fs_info;
4206 struct rb_node *node;
4207 struct rb_node *prev;
4208 struct btrfs_inode *entry;
4209 struct inode *inode;
4210 u64 objectid = 0;
4211
4212 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4213 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4214
4215 spin_lock(&root->inode_lock);
4216 again:
4217 node = root->inode_tree.rb_node;
4218 prev = NULL;
4219 while (node) {
4220 prev = node;
4221 entry = rb_entry(node, struct btrfs_inode, rb_node);
4222
4223 if (objectid < btrfs_ino(entry))
4224 node = node->rb_left;
4225 else if (objectid > btrfs_ino(entry))
4226 node = node->rb_right;
4227 else
4228 break;
4229 }
4230 if (!node) {
4231 while (prev) {
4232 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4233 if (objectid <= btrfs_ino(entry)) {
4234 node = prev;
4235 break;
4236 }
4237 prev = rb_next(prev);
4238 }
4239 }
4240 while (node) {
4241 entry = rb_entry(node, struct btrfs_inode, rb_node);
4242 objectid = btrfs_ino(entry) + 1;
4243 inode = igrab(&entry->vfs_inode);
4244 if (inode) {
4245 spin_unlock(&root->inode_lock);
4246 if (atomic_read(&inode->i_count) > 1)
4247 d_prune_aliases(inode);
4248 /*
4249 * btrfs_drop_inode will have it removed from the inode
4250 * cache when its usage count hits zero.
4251 */
4252 iput(inode);
4253 cond_resched();
4254 spin_lock(&root->inode_lock);
4255 goto again;
4256 }
4257
4258 if (cond_resched_lock(&root->inode_lock))
4259 goto again;
4260
4261 node = rb_next(node);
4262 }
4263 spin_unlock(&root->inode_lock);
4264 }
4265
4266 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4267 {
4268 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4269 struct btrfs_root *root = BTRFS_I(dir)->root;
4270 struct inode *inode = d_inode(dentry);
4271 struct btrfs_root *dest = BTRFS_I(inode)->root;
4272 struct btrfs_trans_handle *trans;
4273 struct btrfs_block_rsv block_rsv;
4274 u64 root_flags;
4275 int ret;
4276
4277 /*
4278 * Don't allow to delete a subvolume with send in progress. This is
4279 * inside the inode lock so the error handling that has to drop the bit
4280 * again is not run concurrently.
4281 */
4282 spin_lock(&dest->root_item_lock);
4283 if (dest->send_in_progress) {
4284 spin_unlock(&dest->root_item_lock);
4285 btrfs_warn(fs_info,
4286 "attempt to delete subvolume %llu during send",
4287 dest->root_key.objectid);
4288 return -EPERM;
4289 }
4290 root_flags = btrfs_root_flags(&dest->root_item);
4291 btrfs_set_root_flags(&dest->root_item,
4292 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4293 spin_unlock(&dest->root_item_lock);
4294
4295 down_write(&fs_info->subvol_sem);
4296
4297 ret = may_destroy_subvol(dest);
4298 if (ret)
4299 goto out_up_write;
4300
4301 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4302 /*
4303 * One for dir inode,
4304 * two for dir entries,
4305 * two for root ref/backref.
4306 */
4307 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4308 if (ret)
4309 goto out_up_write;
4310
4311 trans = btrfs_start_transaction(root, 0);
4312 if (IS_ERR(trans)) {
4313 ret = PTR_ERR(trans);
4314 goto out_release;
4315 }
4316 trans->block_rsv = &block_rsv;
4317 trans->bytes_reserved = block_rsv.size;
4318
4319 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4320
4321 ret = btrfs_unlink_subvol(trans, dir, dentry);
4322 if (ret) {
4323 btrfs_abort_transaction(trans, ret);
4324 goto out_end_trans;
4325 }
4326
4327 ret = btrfs_record_root_in_trans(trans, dest);
4328 if (ret) {
4329 btrfs_abort_transaction(trans, ret);
4330 goto out_end_trans;
4331 }
4332
4333 memset(&dest->root_item.drop_progress, 0,
4334 sizeof(dest->root_item.drop_progress));
4335 btrfs_set_root_drop_level(&dest->root_item, 0);
4336 btrfs_set_root_refs(&dest->root_item, 0);
4337
4338 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4339 ret = btrfs_insert_orphan_item(trans,
4340 fs_info->tree_root,
4341 dest->root_key.objectid);
4342 if (ret) {
4343 btrfs_abort_transaction(trans, ret);
4344 goto out_end_trans;
4345 }
4346 }
4347
4348 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4349 BTRFS_UUID_KEY_SUBVOL,
4350 dest->root_key.objectid);
4351 if (ret && ret != -ENOENT) {
4352 btrfs_abort_transaction(trans, ret);
4353 goto out_end_trans;
4354 }
4355 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4356 ret = btrfs_uuid_tree_remove(trans,
4357 dest->root_item.received_uuid,
4358 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4359 dest->root_key.objectid);
4360 if (ret && ret != -ENOENT) {
4361 btrfs_abort_transaction(trans, ret);
4362 goto out_end_trans;
4363 }
4364 }
4365
4366 free_anon_bdev(dest->anon_dev);
4367 dest->anon_dev = 0;
4368 out_end_trans:
4369 trans->block_rsv = NULL;
4370 trans->bytes_reserved = 0;
4371 ret = btrfs_end_transaction(trans);
4372 inode->i_flags |= S_DEAD;
4373 out_release:
4374 btrfs_subvolume_release_metadata(root, &block_rsv);
4375 out_up_write:
4376 up_write(&fs_info->subvol_sem);
4377 if (ret) {
4378 spin_lock(&dest->root_item_lock);
4379 root_flags = btrfs_root_flags(&dest->root_item);
4380 btrfs_set_root_flags(&dest->root_item,
4381 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4382 spin_unlock(&dest->root_item_lock);
4383 } else {
4384 d_invalidate(dentry);
4385 btrfs_prune_dentries(dest);
4386 ASSERT(dest->send_in_progress == 0);
4387 }
4388
4389 return ret;
4390 }
4391
4392 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4393 {
4394 struct inode *inode = d_inode(dentry);
4395 int err = 0;
4396 struct btrfs_root *root = BTRFS_I(dir)->root;
4397 struct btrfs_trans_handle *trans;
4398 u64 last_unlink_trans;
4399
4400 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4401 return -ENOTEMPTY;
4402 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4403 return btrfs_delete_subvolume(dir, dentry);
4404
4405 trans = __unlink_start_trans(dir);
4406 if (IS_ERR(trans))
4407 return PTR_ERR(trans);
4408
4409 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4410 err = btrfs_unlink_subvol(trans, dir, dentry);
4411 goto out;
4412 }
4413
4414 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4415 if (err)
4416 goto out;
4417
4418 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4419
4420 /* now the directory is empty */
4421 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4422 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4423 dentry->d_name.len);
4424 if (!err) {
4425 btrfs_i_size_write(BTRFS_I(inode), 0);
4426 /*
4427 * Propagate the last_unlink_trans value of the deleted dir to
4428 * its parent directory. This is to prevent an unrecoverable
4429 * log tree in the case we do something like this:
4430 * 1) create dir foo
4431 * 2) create snapshot under dir foo
4432 * 3) delete the snapshot
4433 * 4) rmdir foo
4434 * 5) mkdir foo
4435 * 6) fsync foo or some file inside foo
4436 */
4437 if (last_unlink_trans >= trans->transid)
4438 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4439 }
4440 out:
4441 btrfs_end_transaction(trans);
4442 btrfs_btree_balance_dirty(root->fs_info);
4443
4444 return err;
4445 }
4446
4447 /*
4448 * Return this if we need to call truncate_block for the last bit of the
4449 * truncate.
4450 */
4451 #define NEED_TRUNCATE_BLOCK 1
4452
4453 /*
4454 * this can truncate away extent items, csum items and directory items.
4455 * It starts at a high offset and removes keys until it can't find
4456 * any higher than new_size
4457 *
4458 * csum items that cross the new i_size are truncated to the new size
4459 * as well.
4460 *
4461 * min_type is the minimum key type to truncate down to. If set to 0, this
4462 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4463 */
4464 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4465 struct btrfs_root *root,
4466 struct btrfs_inode *inode,
4467 u64 new_size, u32 min_type)
4468 {
4469 struct btrfs_fs_info *fs_info = root->fs_info;
4470 struct btrfs_path *path;
4471 struct extent_buffer *leaf;
4472 struct btrfs_file_extent_item *fi;
4473 struct btrfs_key key;
4474 struct btrfs_key found_key;
4475 u64 extent_start = 0;
4476 u64 extent_num_bytes = 0;
4477 u64 extent_offset = 0;
4478 u64 item_end = 0;
4479 u64 last_size = new_size;
4480 u32 found_type = (u8)-1;
4481 int found_extent;
4482 int del_item;
4483 int pending_del_nr = 0;
4484 int pending_del_slot = 0;
4485 int extent_type = -1;
4486 int ret;
4487 u64 ino = btrfs_ino(inode);
4488 u64 bytes_deleted = 0;
4489 bool be_nice = false;
4490 bool should_throttle = false;
4491 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4492 struct extent_state *cached_state = NULL;
4493
4494 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4495
4496 /*
4497 * For non-free space inodes and non-shareable roots, we want to back
4498 * off from time to time. This means all inodes in subvolume roots,
4499 * reloc roots, and data reloc roots.
4500 */
4501 if (!btrfs_is_free_space_inode(inode) &&
4502 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4503 be_nice = true;
4504
4505 path = btrfs_alloc_path();
4506 if (!path)
4507 return -ENOMEM;
4508 path->reada = READA_BACK;
4509
4510 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4511 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4512 &cached_state);
4513
4514 /*
4515 * We want to drop from the next block forward in case this
4516 * new size is not block aligned since we will be keeping the
4517 * last block of the extent just the way it is.
4518 */
4519 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4520 fs_info->sectorsize),
4521 (u64)-1, 0);
4522 }
4523
4524 /*
4525 * This function is also used to drop the items in the log tree before
4526 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4527 * it is used to drop the logged items. So we shouldn't kill the delayed
4528 * items.
4529 */
4530 if (min_type == 0 && root == inode->root)
4531 btrfs_kill_delayed_inode_items(inode);
4532
4533 key.objectid = ino;
4534 key.offset = (u64)-1;
4535 key.type = (u8)-1;
4536
4537 search_again:
4538 /*
4539 * with a 16K leaf size and 128MB extents, you can actually queue
4540 * up a huge file in a single leaf. Most of the time that
4541 * bytes_deleted is > 0, it will be huge by the time we get here
4542 */
4543 if (be_nice && bytes_deleted > SZ_32M &&
4544 btrfs_should_end_transaction(trans)) {
4545 ret = -EAGAIN;
4546 goto out;
4547 }
4548
4549 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4550 if (ret < 0)
4551 goto out;
4552
4553 if (ret > 0) {
4554 ret = 0;
4555 /* there are no items in the tree for us to truncate, we're
4556 * done
4557 */
4558 if (path->slots[0] == 0)
4559 goto out;
4560 path->slots[0]--;
4561 }
4562
4563 while (1) {
4564 u64 clear_start = 0, clear_len = 0;
4565
4566 fi = NULL;
4567 leaf = path->nodes[0];
4568 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4569 found_type = found_key.type;
4570
4571 if (found_key.objectid != ino)
4572 break;
4573
4574 if (found_type < min_type)
4575 break;
4576
4577 item_end = found_key.offset;
4578 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4579 fi = btrfs_item_ptr(leaf, path->slots[0],
4580 struct btrfs_file_extent_item);
4581 extent_type = btrfs_file_extent_type(leaf, fi);
4582 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4583 item_end +=
4584 btrfs_file_extent_num_bytes(leaf, fi);
4585
4586 trace_btrfs_truncate_show_fi_regular(
4587 inode, leaf, fi, found_key.offset);
4588 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4589 item_end += btrfs_file_extent_ram_bytes(leaf,
4590 fi);
4591
4592 trace_btrfs_truncate_show_fi_inline(
4593 inode, leaf, fi, path->slots[0],
4594 found_key.offset);
4595 }
4596 item_end--;
4597 }
4598 if (found_type > min_type) {
4599 del_item = 1;
4600 } else {
4601 if (item_end < new_size)
4602 break;
4603 if (found_key.offset >= new_size)
4604 del_item = 1;
4605 else
4606 del_item = 0;
4607 }
4608 found_extent = 0;
4609 /* FIXME, shrink the extent if the ref count is only 1 */
4610 if (found_type != BTRFS_EXTENT_DATA_KEY)
4611 goto delete;
4612
4613 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4614 u64 num_dec;
4615
4616 clear_start = found_key.offset;
4617 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4618 if (!del_item) {
4619 u64 orig_num_bytes =
4620 btrfs_file_extent_num_bytes(leaf, fi);
4621 extent_num_bytes = ALIGN(new_size -
4622 found_key.offset,
4623 fs_info->sectorsize);
4624 clear_start = ALIGN(new_size, fs_info->sectorsize);
4625 btrfs_set_file_extent_num_bytes(leaf, fi,
4626 extent_num_bytes);
4627 num_dec = (orig_num_bytes -
4628 extent_num_bytes);
4629 if (test_bit(BTRFS_ROOT_SHAREABLE,
4630 &root->state) &&
4631 extent_start != 0)
4632 inode_sub_bytes(&inode->vfs_inode,
4633 num_dec);
4634 btrfs_mark_buffer_dirty(leaf);
4635 } else {
4636 extent_num_bytes =
4637 btrfs_file_extent_disk_num_bytes(leaf,
4638 fi);
4639 extent_offset = found_key.offset -
4640 btrfs_file_extent_offset(leaf, fi);
4641
4642 /* FIXME blocksize != 4096 */
4643 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4644 if (extent_start != 0) {
4645 found_extent = 1;
4646 if (test_bit(BTRFS_ROOT_SHAREABLE,
4647 &root->state))
4648 inode_sub_bytes(&inode->vfs_inode,
4649 num_dec);
4650 }
4651 }
4652 clear_len = num_dec;
4653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4654 /*
4655 * we can't truncate inline items that have had
4656 * special encodings
4657 */
4658 if (!del_item &&
4659 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4660 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4661 btrfs_file_extent_compression(leaf, fi) == 0) {
4662 u32 size = (u32)(new_size - found_key.offset);
4663
4664 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4665 size = btrfs_file_extent_calc_inline_size(size);
4666 btrfs_truncate_item(path, size, 1);
4667 } else if (!del_item) {
4668 /*
4669 * We have to bail so the last_size is set to
4670 * just before this extent.
4671 */
4672 ret = NEED_TRUNCATE_BLOCK;
4673 break;
4674 } else {
4675 /*
4676 * Inline extents are special, we just treat
4677 * them as a full sector worth in the file
4678 * extent tree just for simplicity sake.
4679 */
4680 clear_len = fs_info->sectorsize;
4681 }
4682
4683 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4684 inode_sub_bytes(&inode->vfs_inode,
4685 item_end + 1 - new_size);
4686 }
4687 delete:
4688 /*
4689 * We use btrfs_truncate_inode_items() to clean up log trees for
4690 * multiple fsyncs, and in this case we don't want to clear the
4691 * file extent range because it's just the log.
4692 */
4693 if (root == inode->root) {
4694 ret = btrfs_inode_clear_file_extent_range(inode,
4695 clear_start, clear_len);
4696 if (ret) {
4697 btrfs_abort_transaction(trans, ret);
4698 break;
4699 }
4700 }
4701
4702 if (del_item)
4703 last_size = found_key.offset;
4704 else
4705 last_size = new_size;
4706 if (del_item) {
4707 if (!pending_del_nr) {
4708 /* no pending yet, add ourselves */
4709 pending_del_slot = path->slots[0];
4710 pending_del_nr = 1;
4711 } else if (pending_del_nr &&
4712 path->slots[0] + 1 == pending_del_slot) {
4713 /* hop on the pending chunk */
4714 pending_del_nr++;
4715 pending_del_slot = path->slots[0];
4716 } else {
4717 BUG();
4718 }
4719 } else {
4720 break;
4721 }
4722 should_throttle = false;
4723
4724 if (found_extent &&
4725 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4726 struct btrfs_ref ref = { 0 };
4727
4728 bytes_deleted += extent_num_bytes;
4729
4730 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4731 extent_start, extent_num_bytes, 0);
4732 ref.real_root = root->root_key.objectid;
4733 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4734 ino, extent_offset);
4735 ret = btrfs_free_extent(trans, &ref);
4736 if (ret) {
4737 btrfs_abort_transaction(trans, ret);
4738 break;
4739 }
4740 if (be_nice) {
4741 if (btrfs_should_throttle_delayed_refs(trans))
4742 should_throttle = true;
4743 }
4744 }
4745
4746 if (found_type == BTRFS_INODE_ITEM_KEY)
4747 break;
4748
4749 if (path->slots[0] == 0 ||
4750 path->slots[0] != pending_del_slot ||
4751 should_throttle) {
4752 if (pending_del_nr) {
4753 ret = btrfs_del_items(trans, root, path,
4754 pending_del_slot,
4755 pending_del_nr);
4756 if (ret) {
4757 btrfs_abort_transaction(trans, ret);
4758 break;
4759 }
4760 pending_del_nr = 0;
4761 }
4762 btrfs_release_path(path);
4763
4764 /*
4765 * We can generate a lot of delayed refs, so we need to
4766 * throttle every once and a while and make sure we're
4767 * adding enough space to keep up with the work we are
4768 * generating. Since we hold a transaction here we
4769 * can't flush, and we don't want to FLUSH_LIMIT because
4770 * we could have generated too many delayed refs to
4771 * actually allocate, so just bail if we're short and
4772 * let the normal reservation dance happen higher up.
4773 */
4774 if (should_throttle) {
4775 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4776 BTRFS_RESERVE_NO_FLUSH);
4777 if (ret) {
4778 ret = -EAGAIN;
4779 break;
4780 }
4781 }
4782 goto search_again;
4783 } else {
4784 path->slots[0]--;
4785 }
4786 }
4787 out:
4788 if (ret >= 0 && pending_del_nr) {
4789 int err;
4790
4791 err = btrfs_del_items(trans, root, path, pending_del_slot,
4792 pending_del_nr);
4793 if (err) {
4794 btrfs_abort_transaction(trans, err);
4795 ret = err;
4796 }
4797 }
4798 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4799 ASSERT(last_size >= new_size);
4800 if (!ret && last_size > new_size)
4801 last_size = new_size;
4802 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4803 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4804 &cached_state);
4805 }
4806
4807 btrfs_free_path(path);
4808 return ret;
4809 }
4810
4811 /*
4812 * btrfs_truncate_block - read, zero a chunk and write a block
4813 * @inode - inode that we're zeroing
4814 * @from - the offset to start zeroing
4815 * @len - the length to zero, 0 to zero the entire range respective to the
4816 * offset
4817 * @front - zero up to the offset instead of from the offset on
4818 *
4819 * This will find the block for the "from" offset and cow the block and zero the
4820 * part we want to zero. This is used with truncate and hole punching.
4821 */
4822 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4823 int front)
4824 {
4825 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4826 struct address_space *mapping = inode->vfs_inode.i_mapping;
4827 struct extent_io_tree *io_tree = &inode->io_tree;
4828 struct btrfs_ordered_extent *ordered;
4829 struct extent_state *cached_state = NULL;
4830 struct extent_changeset *data_reserved = NULL;
4831 bool only_release_metadata = false;
4832 u32 blocksize = fs_info->sectorsize;
4833 pgoff_t index = from >> PAGE_SHIFT;
4834 unsigned offset = from & (blocksize - 1);
4835 struct page *page;
4836 gfp_t mask = btrfs_alloc_write_mask(mapping);
4837 size_t write_bytes = blocksize;
4838 int ret = 0;
4839 u64 block_start;
4840 u64 block_end;
4841
4842 if (IS_ALIGNED(offset, blocksize) &&
4843 (!len || IS_ALIGNED(len, blocksize)))
4844 goto out;
4845
4846 block_start = round_down(from, blocksize);
4847 block_end = block_start + blocksize - 1;
4848
4849 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4850 blocksize);
4851 if (ret < 0) {
4852 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4853 /* For nocow case, no need to reserve data space */
4854 only_release_metadata = true;
4855 } else {
4856 goto out;
4857 }
4858 }
4859 ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4860 if (ret < 0) {
4861 if (!only_release_metadata)
4862 btrfs_free_reserved_data_space(inode, data_reserved,
4863 block_start, blocksize);
4864 goto out;
4865 }
4866 again:
4867 page = find_or_create_page(mapping, index, mask);
4868 if (!page) {
4869 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4870 blocksize, true);
4871 btrfs_delalloc_release_extents(inode, blocksize);
4872 ret = -ENOMEM;
4873 goto out;
4874 }
4875 ret = set_page_extent_mapped(page);
4876 if (ret < 0)
4877 goto out_unlock;
4878
4879 if (!PageUptodate(page)) {
4880 ret = btrfs_readpage(NULL, page);
4881 lock_page(page);
4882 if (page->mapping != mapping) {
4883 unlock_page(page);
4884 put_page(page);
4885 goto again;
4886 }
4887 if (!PageUptodate(page)) {
4888 ret = -EIO;
4889 goto out_unlock;
4890 }
4891 }
4892 wait_on_page_writeback(page);
4893
4894 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4895
4896 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4897 if (ordered) {
4898 unlock_extent_cached(io_tree, block_start, block_end,
4899 &cached_state);
4900 unlock_page(page);
4901 put_page(page);
4902 btrfs_start_ordered_extent(ordered, 1);
4903 btrfs_put_ordered_extent(ordered);
4904 goto again;
4905 }
4906
4907 clear_extent_bit(&inode->io_tree, block_start, block_end,
4908 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4909 0, 0, &cached_state);
4910
4911 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4912 &cached_state);
4913 if (ret) {
4914 unlock_extent_cached(io_tree, block_start, block_end,
4915 &cached_state);
4916 goto out_unlock;
4917 }
4918
4919 if (offset != blocksize) {
4920 if (!len)
4921 len = blocksize - offset;
4922 if (front)
4923 memzero_page(page, (block_start - page_offset(page)),
4924 offset);
4925 else
4926 memzero_page(page, (block_start - page_offset(page)) + offset,
4927 len);
4928 flush_dcache_page(page);
4929 }
4930 ClearPageChecked(page);
4931 set_page_dirty(page);
4932 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4933
4934 if (only_release_metadata)
4935 set_extent_bit(&inode->io_tree, block_start, block_end,
4936 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4937
4938 out_unlock:
4939 if (ret) {
4940 if (only_release_metadata)
4941 btrfs_delalloc_release_metadata(inode, blocksize, true);
4942 else
4943 btrfs_delalloc_release_space(inode, data_reserved,
4944 block_start, blocksize, true);
4945 }
4946 btrfs_delalloc_release_extents(inode, blocksize);
4947 unlock_page(page);
4948 put_page(page);
4949 out:
4950 if (only_release_metadata)
4951 btrfs_check_nocow_unlock(inode);
4952 extent_changeset_free(data_reserved);
4953 return ret;
4954 }
4955
4956 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4957 u64 offset, u64 len)
4958 {
4959 struct btrfs_fs_info *fs_info = root->fs_info;
4960 struct btrfs_trans_handle *trans;
4961 struct btrfs_drop_extents_args drop_args = { 0 };
4962 int ret;
4963
4964 /*
4965 * Still need to make sure the inode looks like it's been updated so
4966 * that any holes get logged if we fsync.
4967 */
4968 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4969 inode->last_trans = fs_info->generation;
4970 inode->last_sub_trans = root->log_transid;
4971 inode->last_log_commit = root->last_log_commit;
4972 return 0;
4973 }
4974
4975 /*
4976 * 1 - for the one we're dropping
4977 * 1 - for the one we're adding
4978 * 1 - for updating the inode.
4979 */
4980 trans = btrfs_start_transaction(root, 3);
4981 if (IS_ERR(trans))
4982 return PTR_ERR(trans);
4983
4984 drop_args.start = offset;
4985 drop_args.end = offset + len;
4986 drop_args.drop_cache = true;
4987
4988 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4989 if (ret) {
4990 btrfs_abort_transaction(trans, ret);
4991 btrfs_end_transaction(trans);
4992 return ret;
4993 }
4994
4995 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4996 offset, 0, 0, len, 0, len, 0, 0, 0);
4997 if (ret) {
4998 btrfs_abort_transaction(trans, ret);
4999 } else {
5000 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5001 btrfs_update_inode(trans, root, inode);
5002 }
5003 btrfs_end_transaction(trans);
5004 return ret;
5005 }
5006
5007 /*
5008 * This function puts in dummy file extents for the area we're creating a hole
5009 * for. So if we are truncating this file to a larger size we need to insert
5010 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5011 * the range between oldsize and size
5012 */
5013 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5014 {
5015 struct btrfs_root *root = inode->root;
5016 struct btrfs_fs_info *fs_info = root->fs_info;
5017 struct extent_io_tree *io_tree = &inode->io_tree;
5018 struct extent_map *em = NULL;
5019 struct extent_state *cached_state = NULL;
5020 struct extent_map_tree *em_tree = &inode->extent_tree;
5021 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5022 u64 block_end = ALIGN(size, fs_info->sectorsize);
5023 u64 last_byte;
5024 u64 cur_offset;
5025 u64 hole_size;
5026 int err = 0;
5027
5028 /*
5029 * If our size started in the middle of a block we need to zero out the
5030 * rest of the block before we expand the i_size, otherwise we could
5031 * expose stale data.
5032 */
5033 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5034 if (err)
5035 return err;
5036
5037 if (size <= hole_start)
5038 return 0;
5039
5040 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5041 &cached_state);
5042 cur_offset = hole_start;
5043 while (1) {
5044 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5045 block_end - cur_offset);
5046 if (IS_ERR(em)) {
5047 err = PTR_ERR(em);
5048 em = NULL;
5049 break;
5050 }
5051 last_byte = min(extent_map_end(em), block_end);
5052 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5053 hole_size = last_byte - cur_offset;
5054
5055 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5056 struct extent_map *hole_em;
5057
5058 err = maybe_insert_hole(root, inode, cur_offset,
5059 hole_size);
5060 if (err)
5061 break;
5062
5063 err = btrfs_inode_set_file_extent_range(inode,
5064 cur_offset, hole_size);
5065 if (err)
5066 break;
5067
5068 btrfs_drop_extent_cache(inode, cur_offset,
5069 cur_offset + hole_size - 1, 0);
5070 hole_em = alloc_extent_map();
5071 if (!hole_em) {
5072 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5073 &inode->runtime_flags);
5074 goto next;
5075 }
5076 hole_em->start = cur_offset;
5077 hole_em->len = hole_size;
5078 hole_em->orig_start = cur_offset;
5079
5080 hole_em->block_start = EXTENT_MAP_HOLE;
5081 hole_em->block_len = 0;
5082 hole_em->orig_block_len = 0;
5083 hole_em->ram_bytes = hole_size;
5084 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5085 hole_em->generation = fs_info->generation;
5086
5087 while (1) {
5088 write_lock(&em_tree->lock);
5089 err = add_extent_mapping(em_tree, hole_em, 1);
5090 write_unlock(&em_tree->lock);
5091 if (err != -EEXIST)
5092 break;
5093 btrfs_drop_extent_cache(inode, cur_offset,
5094 cur_offset +
5095 hole_size - 1, 0);
5096 }
5097 free_extent_map(hole_em);
5098 } else {
5099 err = btrfs_inode_set_file_extent_range(inode,
5100 cur_offset, hole_size);
5101 if (err)
5102 break;
5103 }
5104 next:
5105 free_extent_map(em);
5106 em = NULL;
5107 cur_offset = last_byte;
5108 if (cur_offset >= block_end)
5109 break;
5110 }
5111 free_extent_map(em);
5112 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5113 return err;
5114 }
5115
5116 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5117 {
5118 struct btrfs_root *root = BTRFS_I(inode)->root;
5119 struct btrfs_trans_handle *trans;
5120 loff_t oldsize = i_size_read(inode);
5121 loff_t newsize = attr->ia_size;
5122 int mask = attr->ia_valid;
5123 int ret;
5124
5125 /*
5126 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5127 * special case where we need to update the times despite not having
5128 * these flags set. For all other operations the VFS set these flags
5129 * explicitly if it wants a timestamp update.
5130 */
5131 if (newsize != oldsize) {
5132 inode_inc_iversion(inode);
5133 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5134 inode->i_ctime = inode->i_mtime =
5135 current_time(inode);
5136 }
5137
5138 if (newsize > oldsize) {
5139 /*
5140 * Don't do an expanding truncate while snapshotting is ongoing.
5141 * This is to ensure the snapshot captures a fully consistent
5142 * state of this file - if the snapshot captures this expanding
5143 * truncation, it must capture all writes that happened before
5144 * this truncation.
5145 */
5146 btrfs_drew_write_lock(&root->snapshot_lock);
5147 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5148 if (ret) {
5149 btrfs_drew_write_unlock(&root->snapshot_lock);
5150 return ret;
5151 }
5152
5153 trans = btrfs_start_transaction(root, 1);
5154 if (IS_ERR(trans)) {
5155 btrfs_drew_write_unlock(&root->snapshot_lock);
5156 return PTR_ERR(trans);
5157 }
5158
5159 i_size_write(inode, newsize);
5160 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5161 pagecache_isize_extended(inode, oldsize, newsize);
5162 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5163 btrfs_drew_write_unlock(&root->snapshot_lock);
5164 btrfs_end_transaction(trans);
5165 } else {
5166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5167
5168 if (btrfs_is_zoned(fs_info)) {
5169 ret = btrfs_wait_ordered_range(inode,
5170 ALIGN(newsize, fs_info->sectorsize),
5171 (u64)-1);
5172 if (ret)
5173 return ret;
5174 }
5175
5176 /*
5177 * We're truncating a file that used to have good data down to
5178 * zero. Make sure any new writes to the file get on disk
5179 * on close.
5180 */
5181 if (newsize == 0)
5182 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5183 &BTRFS_I(inode)->runtime_flags);
5184
5185 truncate_setsize(inode, newsize);
5186
5187 inode_dio_wait(inode);
5188
5189 ret = btrfs_truncate(inode, newsize == oldsize);
5190 if (ret && inode->i_nlink) {
5191 int err;
5192
5193 /*
5194 * Truncate failed, so fix up the in-memory size. We
5195 * adjusted disk_i_size down as we removed extents, so
5196 * wait for disk_i_size to be stable and then update the
5197 * in-memory size to match.
5198 */
5199 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5200 if (err)
5201 return err;
5202 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5203 }
5204 }
5205
5206 return ret;
5207 }
5208
5209 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5210 struct iattr *attr)
5211 {
5212 struct inode *inode = d_inode(dentry);
5213 struct btrfs_root *root = BTRFS_I(inode)->root;
5214 int err;
5215
5216 if (btrfs_root_readonly(root))
5217 return -EROFS;
5218
5219 err = setattr_prepare(&init_user_ns, dentry, attr);
5220 if (err)
5221 return err;
5222
5223 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5224 err = btrfs_setsize(inode, attr);
5225 if (err)
5226 return err;
5227 }
5228
5229 if (attr->ia_valid) {
5230 setattr_copy(&init_user_ns, inode, attr);
5231 inode_inc_iversion(inode);
5232 err = btrfs_dirty_inode(inode);
5233
5234 if (!err && attr->ia_valid & ATTR_MODE)
5235 err = posix_acl_chmod(&init_user_ns, inode,
5236 inode->i_mode);
5237 }
5238
5239 return err;
5240 }
5241
5242 /*
5243 * While truncating the inode pages during eviction, we get the VFS calling
5244 * btrfs_invalidatepage() against each page of the inode. This is slow because
5245 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5246 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5247 * extent_state structures over and over, wasting lots of time.
5248 *
5249 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5250 * those expensive operations on a per page basis and do only the ordered io
5251 * finishing, while we release here the extent_map and extent_state structures,
5252 * without the excessive merging and splitting.
5253 */
5254 static void evict_inode_truncate_pages(struct inode *inode)
5255 {
5256 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5257 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5258 struct rb_node *node;
5259
5260 ASSERT(inode->i_state & I_FREEING);
5261 truncate_inode_pages_final(&inode->i_data);
5262
5263 write_lock(&map_tree->lock);
5264 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5265 struct extent_map *em;
5266
5267 node = rb_first_cached(&map_tree->map);
5268 em = rb_entry(node, struct extent_map, rb_node);
5269 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5270 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5271 remove_extent_mapping(map_tree, em);
5272 free_extent_map(em);
5273 if (need_resched()) {
5274 write_unlock(&map_tree->lock);
5275 cond_resched();
5276 write_lock(&map_tree->lock);
5277 }
5278 }
5279 write_unlock(&map_tree->lock);
5280
5281 /*
5282 * Keep looping until we have no more ranges in the io tree.
5283 * We can have ongoing bios started by readahead that have
5284 * their endio callback (extent_io.c:end_bio_extent_readpage)
5285 * still in progress (unlocked the pages in the bio but did not yet
5286 * unlocked the ranges in the io tree). Therefore this means some
5287 * ranges can still be locked and eviction started because before
5288 * submitting those bios, which are executed by a separate task (work
5289 * queue kthread), inode references (inode->i_count) were not taken
5290 * (which would be dropped in the end io callback of each bio).
5291 * Therefore here we effectively end up waiting for those bios and
5292 * anyone else holding locked ranges without having bumped the inode's
5293 * reference count - if we don't do it, when they access the inode's
5294 * io_tree to unlock a range it may be too late, leading to an
5295 * use-after-free issue.
5296 */
5297 spin_lock(&io_tree->lock);
5298 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5299 struct extent_state *state;
5300 struct extent_state *cached_state = NULL;
5301 u64 start;
5302 u64 end;
5303 unsigned state_flags;
5304
5305 node = rb_first(&io_tree->state);
5306 state = rb_entry(node, struct extent_state, rb_node);
5307 start = state->start;
5308 end = state->end;
5309 state_flags = state->state;
5310 spin_unlock(&io_tree->lock);
5311
5312 lock_extent_bits(io_tree, start, end, &cached_state);
5313
5314 /*
5315 * If still has DELALLOC flag, the extent didn't reach disk,
5316 * and its reserved space won't be freed by delayed_ref.
5317 * So we need to free its reserved space here.
5318 * (Refer to comment in btrfs_invalidatepage, case 2)
5319 *
5320 * Note, end is the bytenr of last byte, so we need + 1 here.
5321 */
5322 if (state_flags & EXTENT_DELALLOC)
5323 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5324 end - start + 1);
5325
5326 clear_extent_bit(io_tree, start, end,
5327 EXTENT_LOCKED | EXTENT_DELALLOC |
5328 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5329 &cached_state);
5330
5331 cond_resched();
5332 spin_lock(&io_tree->lock);
5333 }
5334 spin_unlock(&io_tree->lock);
5335 }
5336
5337 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5338 struct btrfs_block_rsv *rsv)
5339 {
5340 struct btrfs_fs_info *fs_info = root->fs_info;
5341 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5342 struct btrfs_trans_handle *trans;
5343 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5344 int ret;
5345
5346 /*
5347 * Eviction should be taking place at some place safe because of our
5348 * delayed iputs. However the normal flushing code will run delayed
5349 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5350 *
5351 * We reserve the delayed_refs_extra here again because we can't use
5352 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5353 * above. We reserve our extra bit here because we generate a ton of
5354 * delayed refs activity by truncating.
5355 *
5356 * If we cannot make our reservation we'll attempt to steal from the
5357 * global reserve, because we really want to be able to free up space.
5358 */
5359 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5360 BTRFS_RESERVE_FLUSH_EVICT);
5361 if (ret) {
5362 /*
5363 * Try to steal from the global reserve if there is space for
5364 * it.
5365 */
5366 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5367 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5368 btrfs_warn(fs_info,
5369 "could not allocate space for delete; will truncate on mount");
5370 return ERR_PTR(-ENOSPC);
5371 }
5372 delayed_refs_extra = 0;
5373 }
5374
5375 trans = btrfs_join_transaction(root);
5376 if (IS_ERR(trans))
5377 return trans;
5378
5379 if (delayed_refs_extra) {
5380 trans->block_rsv = &fs_info->trans_block_rsv;
5381 trans->bytes_reserved = delayed_refs_extra;
5382 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5383 delayed_refs_extra, 1);
5384 }
5385 return trans;
5386 }
5387
5388 void btrfs_evict_inode(struct inode *inode)
5389 {
5390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5391 struct btrfs_trans_handle *trans;
5392 struct btrfs_root *root = BTRFS_I(inode)->root;
5393 struct btrfs_block_rsv *rsv;
5394 int ret;
5395
5396 trace_btrfs_inode_evict(inode);
5397
5398 if (!root) {
5399 clear_inode(inode);
5400 return;
5401 }
5402
5403 evict_inode_truncate_pages(inode);
5404
5405 if (inode->i_nlink &&
5406 ((btrfs_root_refs(&root->root_item) != 0 &&
5407 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5408 btrfs_is_free_space_inode(BTRFS_I(inode))))
5409 goto no_delete;
5410
5411 if (is_bad_inode(inode))
5412 goto no_delete;
5413
5414 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5415
5416 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5417 goto no_delete;
5418
5419 if (inode->i_nlink > 0) {
5420 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5421 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5422 goto no_delete;
5423 }
5424
5425 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5426 if (ret)
5427 goto no_delete;
5428
5429 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5430 if (!rsv)
5431 goto no_delete;
5432 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5433 rsv->failfast = 1;
5434
5435 btrfs_i_size_write(BTRFS_I(inode), 0);
5436
5437 while (1) {
5438 trans = evict_refill_and_join(root, rsv);
5439 if (IS_ERR(trans))
5440 goto free_rsv;
5441
5442 trans->block_rsv = rsv;
5443
5444 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5445 0, 0);
5446 trans->block_rsv = &fs_info->trans_block_rsv;
5447 btrfs_end_transaction(trans);
5448 btrfs_btree_balance_dirty(fs_info);
5449 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5450 goto free_rsv;
5451 else if (!ret)
5452 break;
5453 }
5454
5455 /*
5456 * Errors here aren't a big deal, it just means we leave orphan items in
5457 * the tree. They will be cleaned up on the next mount. If the inode
5458 * number gets reused, cleanup deletes the orphan item without doing
5459 * anything, and unlink reuses the existing orphan item.
5460 *
5461 * If it turns out that we are dropping too many of these, we might want
5462 * to add a mechanism for retrying these after a commit.
5463 */
5464 trans = evict_refill_and_join(root, rsv);
5465 if (!IS_ERR(trans)) {
5466 trans->block_rsv = rsv;
5467 btrfs_orphan_del(trans, BTRFS_I(inode));
5468 trans->block_rsv = &fs_info->trans_block_rsv;
5469 btrfs_end_transaction(trans);
5470 }
5471
5472 free_rsv:
5473 btrfs_free_block_rsv(fs_info, rsv);
5474 no_delete:
5475 /*
5476 * If we didn't successfully delete, the orphan item will still be in
5477 * the tree and we'll retry on the next mount. Again, we might also want
5478 * to retry these periodically in the future.
5479 */
5480 btrfs_remove_delayed_node(BTRFS_I(inode));
5481 clear_inode(inode);
5482 }
5483
5484 /*
5485 * Return the key found in the dir entry in the location pointer, fill @type
5486 * with BTRFS_FT_*, and return 0.
5487 *
5488 * If no dir entries were found, returns -ENOENT.
5489 * If found a corrupted location in dir entry, returns -EUCLEAN.
5490 */
5491 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5492 struct btrfs_key *location, u8 *type)
5493 {
5494 const char *name = dentry->d_name.name;
5495 int namelen = dentry->d_name.len;
5496 struct btrfs_dir_item *di;
5497 struct btrfs_path *path;
5498 struct btrfs_root *root = BTRFS_I(dir)->root;
5499 int ret = 0;
5500
5501 path = btrfs_alloc_path();
5502 if (!path)
5503 return -ENOMEM;
5504
5505 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5506 name, namelen, 0);
5507 if (IS_ERR_OR_NULL(di)) {
5508 ret = di ? PTR_ERR(di) : -ENOENT;
5509 goto out;
5510 }
5511
5512 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5513 if (location->type != BTRFS_INODE_ITEM_KEY &&
5514 location->type != BTRFS_ROOT_ITEM_KEY) {
5515 ret = -EUCLEAN;
5516 btrfs_warn(root->fs_info,
5517 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5518 __func__, name, btrfs_ino(BTRFS_I(dir)),
5519 location->objectid, location->type, location->offset);
5520 }
5521 if (!ret)
5522 *type = btrfs_dir_type(path->nodes[0], di);
5523 out:
5524 btrfs_free_path(path);
5525 return ret;
5526 }
5527
5528 /*
5529 * when we hit a tree root in a directory, the btrfs part of the inode
5530 * needs to be changed to reflect the root directory of the tree root. This
5531 * is kind of like crossing a mount point.
5532 */
5533 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5534 struct inode *dir,
5535 struct dentry *dentry,
5536 struct btrfs_key *location,
5537 struct btrfs_root **sub_root)
5538 {
5539 struct btrfs_path *path;
5540 struct btrfs_root *new_root;
5541 struct btrfs_root_ref *ref;
5542 struct extent_buffer *leaf;
5543 struct btrfs_key key;
5544 int ret;
5545 int err = 0;
5546
5547 path = btrfs_alloc_path();
5548 if (!path) {
5549 err = -ENOMEM;
5550 goto out;
5551 }
5552
5553 err = -ENOENT;
5554 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5555 key.type = BTRFS_ROOT_REF_KEY;
5556 key.offset = location->objectid;
5557
5558 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5559 if (ret) {
5560 if (ret < 0)
5561 err = ret;
5562 goto out;
5563 }
5564
5565 leaf = path->nodes[0];
5566 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5567 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5568 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5569 goto out;
5570
5571 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5572 (unsigned long)(ref + 1),
5573 dentry->d_name.len);
5574 if (ret)
5575 goto out;
5576
5577 btrfs_release_path(path);
5578
5579 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5580 if (IS_ERR(new_root)) {
5581 err = PTR_ERR(new_root);
5582 goto out;
5583 }
5584
5585 *sub_root = new_root;
5586 location->objectid = btrfs_root_dirid(&new_root->root_item);
5587 location->type = BTRFS_INODE_ITEM_KEY;
5588 location->offset = 0;
5589 err = 0;
5590 out:
5591 btrfs_free_path(path);
5592 return err;
5593 }
5594
5595 static void inode_tree_add(struct inode *inode)
5596 {
5597 struct btrfs_root *root = BTRFS_I(inode)->root;
5598 struct btrfs_inode *entry;
5599 struct rb_node **p;
5600 struct rb_node *parent;
5601 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5602 u64 ino = btrfs_ino(BTRFS_I(inode));
5603
5604 if (inode_unhashed(inode))
5605 return;
5606 parent = NULL;
5607 spin_lock(&root->inode_lock);
5608 p = &root->inode_tree.rb_node;
5609 while (*p) {
5610 parent = *p;
5611 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5612
5613 if (ino < btrfs_ino(entry))
5614 p = &parent->rb_left;
5615 else if (ino > btrfs_ino(entry))
5616 p = &parent->rb_right;
5617 else {
5618 WARN_ON(!(entry->vfs_inode.i_state &
5619 (I_WILL_FREE | I_FREEING)));
5620 rb_replace_node(parent, new, &root->inode_tree);
5621 RB_CLEAR_NODE(parent);
5622 spin_unlock(&root->inode_lock);
5623 return;
5624 }
5625 }
5626 rb_link_node(new, parent, p);
5627 rb_insert_color(new, &root->inode_tree);
5628 spin_unlock(&root->inode_lock);
5629 }
5630
5631 static void inode_tree_del(struct btrfs_inode *inode)
5632 {
5633 struct btrfs_root *root = inode->root;
5634 int empty = 0;
5635
5636 spin_lock(&root->inode_lock);
5637 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5638 rb_erase(&inode->rb_node, &root->inode_tree);
5639 RB_CLEAR_NODE(&inode->rb_node);
5640 empty = RB_EMPTY_ROOT(&root->inode_tree);
5641 }
5642 spin_unlock(&root->inode_lock);
5643
5644 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5645 spin_lock(&root->inode_lock);
5646 empty = RB_EMPTY_ROOT(&root->inode_tree);
5647 spin_unlock(&root->inode_lock);
5648 if (empty)
5649 btrfs_add_dead_root(root);
5650 }
5651 }
5652
5653
5654 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5655 {
5656 struct btrfs_iget_args *args = p;
5657
5658 inode->i_ino = args->ino;
5659 BTRFS_I(inode)->location.objectid = args->ino;
5660 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5661 BTRFS_I(inode)->location.offset = 0;
5662 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5663 BUG_ON(args->root && !BTRFS_I(inode)->root);
5664 return 0;
5665 }
5666
5667 static int btrfs_find_actor(struct inode *inode, void *opaque)
5668 {
5669 struct btrfs_iget_args *args = opaque;
5670
5671 return args->ino == BTRFS_I(inode)->location.objectid &&
5672 args->root == BTRFS_I(inode)->root;
5673 }
5674
5675 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5676 struct btrfs_root *root)
5677 {
5678 struct inode *inode;
5679 struct btrfs_iget_args args;
5680 unsigned long hashval = btrfs_inode_hash(ino, root);
5681
5682 args.ino = ino;
5683 args.root = root;
5684
5685 inode = iget5_locked(s, hashval, btrfs_find_actor,
5686 btrfs_init_locked_inode,
5687 (void *)&args);
5688 return inode;
5689 }
5690
5691 /*
5692 * Get an inode object given its inode number and corresponding root.
5693 * Path can be preallocated to prevent recursing back to iget through
5694 * allocator. NULL is also valid but may require an additional allocation
5695 * later.
5696 */
5697 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5698 struct btrfs_root *root, struct btrfs_path *path)
5699 {
5700 struct inode *inode;
5701
5702 inode = btrfs_iget_locked(s, ino, root);
5703 if (!inode)
5704 return ERR_PTR(-ENOMEM);
5705
5706 if (inode->i_state & I_NEW) {
5707 int ret;
5708
5709 ret = btrfs_read_locked_inode(inode, path);
5710 if (!ret) {
5711 inode_tree_add(inode);
5712 unlock_new_inode(inode);
5713 } else {
5714 iget_failed(inode);
5715 /*
5716 * ret > 0 can come from btrfs_search_slot called by
5717 * btrfs_read_locked_inode, this means the inode item
5718 * was not found.
5719 */
5720 if (ret > 0)
5721 ret = -ENOENT;
5722 inode = ERR_PTR(ret);
5723 }
5724 }
5725
5726 return inode;
5727 }
5728
5729 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5730 {
5731 return btrfs_iget_path(s, ino, root, NULL);
5732 }
5733
5734 static struct inode *new_simple_dir(struct super_block *s,
5735 struct btrfs_key *key,
5736 struct btrfs_root *root)
5737 {
5738 struct inode *inode = new_inode(s);
5739
5740 if (!inode)
5741 return ERR_PTR(-ENOMEM);
5742
5743 BTRFS_I(inode)->root = btrfs_grab_root(root);
5744 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5745 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5746
5747 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5748 /*
5749 * We only need lookup, the rest is read-only and there's no inode
5750 * associated with the dentry
5751 */
5752 inode->i_op = &simple_dir_inode_operations;
5753 inode->i_opflags &= ~IOP_XATTR;
5754 inode->i_fop = &simple_dir_operations;
5755 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5756 inode->i_mtime = current_time(inode);
5757 inode->i_atime = inode->i_mtime;
5758 inode->i_ctime = inode->i_mtime;
5759 BTRFS_I(inode)->i_otime = inode->i_mtime;
5760
5761 return inode;
5762 }
5763
5764 static inline u8 btrfs_inode_type(struct inode *inode)
5765 {
5766 /*
5767 * Compile-time asserts that generic FT_* types still match
5768 * BTRFS_FT_* types
5769 */
5770 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5771 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5772 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5773 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5774 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5775 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5776 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5777 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5778
5779 return fs_umode_to_ftype(inode->i_mode);
5780 }
5781
5782 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5783 {
5784 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5785 struct inode *inode;
5786 struct btrfs_root *root = BTRFS_I(dir)->root;
5787 struct btrfs_root *sub_root = root;
5788 struct btrfs_key location;
5789 u8 di_type = 0;
5790 int ret = 0;
5791
5792 if (dentry->d_name.len > BTRFS_NAME_LEN)
5793 return ERR_PTR(-ENAMETOOLONG);
5794
5795 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5796 if (ret < 0)
5797 return ERR_PTR(ret);
5798
5799 if (location.type == BTRFS_INODE_ITEM_KEY) {
5800 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5801 if (IS_ERR(inode))
5802 return inode;
5803
5804 /* Do extra check against inode mode with di_type */
5805 if (btrfs_inode_type(inode) != di_type) {
5806 btrfs_crit(fs_info,
5807 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5808 inode->i_mode, btrfs_inode_type(inode),
5809 di_type);
5810 iput(inode);
5811 return ERR_PTR(-EUCLEAN);
5812 }
5813 return inode;
5814 }
5815
5816 ret = fixup_tree_root_location(fs_info, dir, dentry,
5817 &location, &sub_root);
5818 if (ret < 0) {
5819 if (ret != -ENOENT)
5820 inode = ERR_PTR(ret);
5821 else
5822 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5823 } else {
5824 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5825 }
5826 if (root != sub_root)
5827 btrfs_put_root(sub_root);
5828
5829 if (!IS_ERR(inode) && root != sub_root) {
5830 down_read(&fs_info->cleanup_work_sem);
5831 if (!sb_rdonly(inode->i_sb))
5832 ret = btrfs_orphan_cleanup(sub_root);
5833 up_read(&fs_info->cleanup_work_sem);
5834 if (ret) {
5835 iput(inode);
5836 inode = ERR_PTR(ret);
5837 }
5838 }
5839
5840 return inode;
5841 }
5842
5843 static int btrfs_dentry_delete(const struct dentry *dentry)
5844 {
5845 struct btrfs_root *root;
5846 struct inode *inode = d_inode(dentry);
5847
5848 if (!inode && !IS_ROOT(dentry))
5849 inode = d_inode(dentry->d_parent);
5850
5851 if (inode) {
5852 root = BTRFS_I(inode)->root;
5853 if (btrfs_root_refs(&root->root_item) == 0)
5854 return 1;
5855
5856 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5857 return 1;
5858 }
5859 return 0;
5860 }
5861
5862 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5863 unsigned int flags)
5864 {
5865 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5866
5867 if (inode == ERR_PTR(-ENOENT))
5868 inode = NULL;
5869 return d_splice_alias(inode, dentry);
5870 }
5871
5872 /*
5873 * All this infrastructure exists because dir_emit can fault, and we are holding
5874 * the tree lock when doing readdir. For now just allocate a buffer and copy
5875 * our information into that, and then dir_emit from the buffer. This is
5876 * similar to what NFS does, only we don't keep the buffer around in pagecache
5877 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5878 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5879 * tree lock.
5880 */
5881 static int btrfs_opendir(struct inode *inode, struct file *file)
5882 {
5883 struct btrfs_file_private *private;
5884
5885 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5886 if (!private)
5887 return -ENOMEM;
5888 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5889 if (!private->filldir_buf) {
5890 kfree(private);
5891 return -ENOMEM;
5892 }
5893 file->private_data = private;
5894 return 0;
5895 }
5896
5897 struct dir_entry {
5898 u64 ino;
5899 u64 offset;
5900 unsigned type;
5901 int name_len;
5902 };
5903
5904 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5905 {
5906 while (entries--) {
5907 struct dir_entry *entry = addr;
5908 char *name = (char *)(entry + 1);
5909
5910 ctx->pos = get_unaligned(&entry->offset);
5911 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5912 get_unaligned(&entry->ino),
5913 get_unaligned(&entry->type)))
5914 return 1;
5915 addr += sizeof(struct dir_entry) +
5916 get_unaligned(&entry->name_len);
5917 ctx->pos++;
5918 }
5919 return 0;
5920 }
5921
5922 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5923 {
5924 struct inode *inode = file_inode(file);
5925 struct btrfs_root *root = BTRFS_I(inode)->root;
5926 struct btrfs_file_private *private = file->private_data;
5927 struct btrfs_dir_item *di;
5928 struct btrfs_key key;
5929 struct btrfs_key found_key;
5930 struct btrfs_path *path;
5931 void *addr;
5932 struct list_head ins_list;
5933 struct list_head del_list;
5934 int ret;
5935 struct extent_buffer *leaf;
5936 int slot;
5937 char *name_ptr;
5938 int name_len;
5939 int entries = 0;
5940 int total_len = 0;
5941 bool put = false;
5942 struct btrfs_key location;
5943
5944 if (!dir_emit_dots(file, ctx))
5945 return 0;
5946
5947 path = btrfs_alloc_path();
5948 if (!path)
5949 return -ENOMEM;
5950
5951 addr = private->filldir_buf;
5952 path->reada = READA_FORWARD;
5953
5954 INIT_LIST_HEAD(&ins_list);
5955 INIT_LIST_HEAD(&del_list);
5956 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5957
5958 again:
5959 key.type = BTRFS_DIR_INDEX_KEY;
5960 key.offset = ctx->pos;
5961 key.objectid = btrfs_ino(BTRFS_I(inode));
5962
5963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5964 if (ret < 0)
5965 goto err;
5966
5967 while (1) {
5968 struct dir_entry *entry;
5969
5970 leaf = path->nodes[0];
5971 slot = path->slots[0];
5972 if (slot >= btrfs_header_nritems(leaf)) {
5973 ret = btrfs_next_leaf(root, path);
5974 if (ret < 0)
5975 goto err;
5976 else if (ret > 0)
5977 break;
5978 continue;
5979 }
5980
5981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5982
5983 if (found_key.objectid != key.objectid)
5984 break;
5985 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5986 break;
5987 if (found_key.offset < ctx->pos)
5988 goto next;
5989 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5990 goto next;
5991 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5992 name_len = btrfs_dir_name_len(leaf, di);
5993 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5994 PAGE_SIZE) {
5995 btrfs_release_path(path);
5996 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5997 if (ret)
5998 goto nopos;
5999 addr = private->filldir_buf;
6000 entries = 0;
6001 total_len = 0;
6002 goto again;
6003 }
6004
6005 entry = addr;
6006 put_unaligned(name_len, &entry->name_len);
6007 name_ptr = (char *)(entry + 1);
6008 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6009 name_len);
6010 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6011 &entry->type);
6012 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6013 put_unaligned(location.objectid, &entry->ino);
6014 put_unaligned(found_key.offset, &entry->offset);
6015 entries++;
6016 addr += sizeof(struct dir_entry) + name_len;
6017 total_len += sizeof(struct dir_entry) + name_len;
6018 next:
6019 path->slots[0]++;
6020 }
6021 btrfs_release_path(path);
6022
6023 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6024 if (ret)
6025 goto nopos;
6026
6027 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6028 if (ret)
6029 goto nopos;
6030
6031 /*
6032 * Stop new entries from being returned after we return the last
6033 * entry.
6034 *
6035 * New directory entries are assigned a strictly increasing
6036 * offset. This means that new entries created during readdir
6037 * are *guaranteed* to be seen in the future by that readdir.
6038 * This has broken buggy programs which operate on names as
6039 * they're returned by readdir. Until we re-use freed offsets
6040 * we have this hack to stop new entries from being returned
6041 * under the assumption that they'll never reach this huge
6042 * offset.
6043 *
6044 * This is being careful not to overflow 32bit loff_t unless the
6045 * last entry requires it because doing so has broken 32bit apps
6046 * in the past.
6047 */
6048 if (ctx->pos >= INT_MAX)
6049 ctx->pos = LLONG_MAX;
6050 else
6051 ctx->pos = INT_MAX;
6052 nopos:
6053 ret = 0;
6054 err:
6055 if (put)
6056 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6057 btrfs_free_path(path);
6058 return ret;
6059 }
6060
6061 /*
6062 * This is somewhat expensive, updating the tree every time the
6063 * inode changes. But, it is most likely to find the inode in cache.
6064 * FIXME, needs more benchmarking...there are no reasons other than performance
6065 * to keep or drop this code.
6066 */
6067 static int btrfs_dirty_inode(struct inode *inode)
6068 {
6069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6070 struct btrfs_root *root = BTRFS_I(inode)->root;
6071 struct btrfs_trans_handle *trans;
6072 int ret;
6073
6074 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6075 return 0;
6076
6077 trans = btrfs_join_transaction(root);
6078 if (IS_ERR(trans))
6079 return PTR_ERR(trans);
6080
6081 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6082 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6083 /* whoops, lets try again with the full transaction */
6084 btrfs_end_transaction(trans);
6085 trans = btrfs_start_transaction(root, 1);
6086 if (IS_ERR(trans))
6087 return PTR_ERR(trans);
6088
6089 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6090 }
6091 btrfs_end_transaction(trans);
6092 if (BTRFS_I(inode)->delayed_node)
6093 btrfs_balance_delayed_items(fs_info);
6094
6095 return ret;
6096 }
6097
6098 /*
6099 * This is a copy of file_update_time. We need this so we can return error on
6100 * ENOSPC for updating the inode in the case of file write and mmap writes.
6101 */
6102 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6103 int flags)
6104 {
6105 struct btrfs_root *root = BTRFS_I(inode)->root;
6106 bool dirty = flags & ~S_VERSION;
6107
6108 if (btrfs_root_readonly(root))
6109 return -EROFS;
6110
6111 if (flags & S_VERSION)
6112 dirty |= inode_maybe_inc_iversion(inode, dirty);
6113 if (flags & S_CTIME)
6114 inode->i_ctime = *now;
6115 if (flags & S_MTIME)
6116 inode->i_mtime = *now;
6117 if (flags & S_ATIME)
6118 inode->i_atime = *now;
6119 return dirty ? btrfs_dirty_inode(inode) : 0;
6120 }
6121
6122 /*
6123 * find the highest existing sequence number in a directory
6124 * and then set the in-memory index_cnt variable to reflect
6125 * free sequence numbers
6126 */
6127 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6128 {
6129 struct btrfs_root *root = inode->root;
6130 struct btrfs_key key, found_key;
6131 struct btrfs_path *path;
6132 struct extent_buffer *leaf;
6133 int ret;
6134
6135 key.objectid = btrfs_ino(inode);
6136 key.type = BTRFS_DIR_INDEX_KEY;
6137 key.offset = (u64)-1;
6138
6139 path = btrfs_alloc_path();
6140 if (!path)
6141 return -ENOMEM;
6142
6143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6144 if (ret < 0)
6145 goto out;
6146 /* FIXME: we should be able to handle this */
6147 if (ret == 0)
6148 goto out;
6149 ret = 0;
6150
6151 /*
6152 * MAGIC NUMBER EXPLANATION:
6153 * since we search a directory based on f_pos we have to start at 2
6154 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6155 * else has to start at 2
6156 */
6157 if (path->slots[0] == 0) {
6158 inode->index_cnt = 2;
6159 goto out;
6160 }
6161
6162 path->slots[0]--;
6163
6164 leaf = path->nodes[0];
6165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6166
6167 if (found_key.objectid != btrfs_ino(inode) ||
6168 found_key.type != BTRFS_DIR_INDEX_KEY) {
6169 inode->index_cnt = 2;
6170 goto out;
6171 }
6172
6173 inode->index_cnt = found_key.offset + 1;
6174 out:
6175 btrfs_free_path(path);
6176 return ret;
6177 }
6178
6179 /*
6180 * helper to find a free sequence number in a given directory. This current
6181 * code is very simple, later versions will do smarter things in the btree
6182 */
6183 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6184 {
6185 int ret = 0;
6186
6187 if (dir->index_cnt == (u64)-1) {
6188 ret = btrfs_inode_delayed_dir_index_count(dir);
6189 if (ret) {
6190 ret = btrfs_set_inode_index_count(dir);
6191 if (ret)
6192 return ret;
6193 }
6194 }
6195
6196 *index = dir->index_cnt;
6197 dir->index_cnt++;
6198
6199 return ret;
6200 }
6201
6202 static int btrfs_insert_inode_locked(struct inode *inode)
6203 {
6204 struct btrfs_iget_args args;
6205
6206 args.ino = BTRFS_I(inode)->location.objectid;
6207 args.root = BTRFS_I(inode)->root;
6208
6209 return insert_inode_locked4(inode,
6210 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6211 btrfs_find_actor, &args);
6212 }
6213
6214 /*
6215 * Inherit flags from the parent inode.
6216 *
6217 * Currently only the compression flags and the cow flags are inherited.
6218 */
6219 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6220 {
6221 unsigned int flags;
6222
6223 if (!dir)
6224 return;
6225
6226 flags = BTRFS_I(dir)->flags;
6227
6228 if (flags & BTRFS_INODE_NOCOMPRESS) {
6229 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6230 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6231 } else if (flags & BTRFS_INODE_COMPRESS) {
6232 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6233 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6234 }
6235
6236 if (flags & BTRFS_INODE_NODATACOW) {
6237 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6238 if (S_ISREG(inode->i_mode))
6239 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6240 }
6241
6242 btrfs_sync_inode_flags_to_i_flags(inode);
6243 }
6244
6245 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6246 struct btrfs_root *root,
6247 struct inode *dir,
6248 const char *name, int name_len,
6249 u64 ref_objectid, u64 objectid,
6250 umode_t mode, u64 *index)
6251 {
6252 struct btrfs_fs_info *fs_info = root->fs_info;
6253 struct inode *inode;
6254 struct btrfs_inode_item *inode_item;
6255 struct btrfs_key *location;
6256 struct btrfs_path *path;
6257 struct btrfs_inode_ref *ref;
6258 struct btrfs_key key[2];
6259 u32 sizes[2];
6260 int nitems = name ? 2 : 1;
6261 unsigned long ptr;
6262 unsigned int nofs_flag;
6263 int ret;
6264
6265 path = btrfs_alloc_path();
6266 if (!path)
6267 return ERR_PTR(-ENOMEM);
6268
6269 nofs_flag = memalloc_nofs_save();
6270 inode = new_inode(fs_info->sb);
6271 memalloc_nofs_restore(nofs_flag);
6272 if (!inode) {
6273 btrfs_free_path(path);
6274 return ERR_PTR(-ENOMEM);
6275 }
6276
6277 /*
6278 * O_TMPFILE, set link count to 0, so that after this point,
6279 * we fill in an inode item with the correct link count.
6280 */
6281 if (!name)
6282 set_nlink(inode, 0);
6283
6284 /*
6285 * we have to initialize this early, so we can reclaim the inode
6286 * number if we fail afterwards in this function.
6287 */
6288 inode->i_ino = objectid;
6289
6290 if (dir && name) {
6291 trace_btrfs_inode_request(dir);
6292
6293 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6294 if (ret) {
6295 btrfs_free_path(path);
6296 iput(inode);
6297 return ERR_PTR(ret);
6298 }
6299 } else if (dir) {
6300 *index = 0;
6301 }
6302 /*
6303 * index_cnt is ignored for everything but a dir,
6304 * btrfs_set_inode_index_count has an explanation for the magic
6305 * number
6306 */
6307 BTRFS_I(inode)->index_cnt = 2;
6308 BTRFS_I(inode)->dir_index = *index;
6309 BTRFS_I(inode)->root = btrfs_grab_root(root);
6310 BTRFS_I(inode)->generation = trans->transid;
6311 inode->i_generation = BTRFS_I(inode)->generation;
6312
6313 /*
6314 * We could have gotten an inode number from somebody who was fsynced
6315 * and then removed in this same transaction, so let's just set full
6316 * sync since it will be a full sync anyway and this will blow away the
6317 * old info in the log.
6318 */
6319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6320
6321 key[0].objectid = objectid;
6322 key[0].type = BTRFS_INODE_ITEM_KEY;
6323 key[0].offset = 0;
6324
6325 sizes[0] = sizeof(struct btrfs_inode_item);
6326
6327 if (name) {
6328 /*
6329 * Start new inodes with an inode_ref. This is slightly more
6330 * efficient for small numbers of hard links since they will
6331 * be packed into one item. Extended refs will kick in if we
6332 * add more hard links than can fit in the ref item.
6333 */
6334 key[1].objectid = objectid;
6335 key[1].type = BTRFS_INODE_REF_KEY;
6336 key[1].offset = ref_objectid;
6337
6338 sizes[1] = name_len + sizeof(*ref);
6339 }
6340
6341 location = &BTRFS_I(inode)->location;
6342 location->objectid = objectid;
6343 location->offset = 0;
6344 location->type = BTRFS_INODE_ITEM_KEY;
6345
6346 ret = btrfs_insert_inode_locked(inode);
6347 if (ret < 0) {
6348 iput(inode);
6349 goto fail;
6350 }
6351
6352 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6353 if (ret != 0)
6354 goto fail_unlock;
6355
6356 inode_init_owner(&init_user_ns, inode, dir, mode);
6357 inode_set_bytes(inode, 0);
6358
6359 inode->i_mtime = current_time(inode);
6360 inode->i_atime = inode->i_mtime;
6361 inode->i_ctime = inode->i_mtime;
6362 BTRFS_I(inode)->i_otime = inode->i_mtime;
6363
6364 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6365 struct btrfs_inode_item);
6366 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6367 sizeof(*inode_item));
6368 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6369
6370 if (name) {
6371 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6372 struct btrfs_inode_ref);
6373 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6374 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6375 ptr = (unsigned long)(ref + 1);
6376 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6377 }
6378
6379 btrfs_mark_buffer_dirty(path->nodes[0]);
6380 btrfs_free_path(path);
6381
6382 btrfs_inherit_iflags(inode, dir);
6383
6384 if (S_ISREG(mode)) {
6385 if (btrfs_test_opt(fs_info, NODATASUM))
6386 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6387 if (btrfs_test_opt(fs_info, NODATACOW))
6388 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6389 BTRFS_INODE_NODATASUM;
6390 }
6391
6392 inode_tree_add(inode);
6393
6394 trace_btrfs_inode_new(inode);
6395 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6396
6397 btrfs_update_root_times(trans, root);
6398
6399 ret = btrfs_inode_inherit_props(trans, inode, dir);
6400 if (ret)
6401 btrfs_err(fs_info,
6402 "error inheriting props for ino %llu (root %llu): %d",
6403 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6404
6405 return inode;
6406
6407 fail_unlock:
6408 discard_new_inode(inode);
6409 fail:
6410 if (dir && name)
6411 BTRFS_I(dir)->index_cnt--;
6412 btrfs_free_path(path);
6413 return ERR_PTR(ret);
6414 }
6415
6416 /*
6417 * utility function to add 'inode' into 'parent_inode' with
6418 * a give name and a given sequence number.
6419 * if 'add_backref' is true, also insert a backref from the
6420 * inode to the parent directory.
6421 */
6422 int btrfs_add_link(struct btrfs_trans_handle *trans,
6423 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6424 const char *name, int name_len, int add_backref, u64 index)
6425 {
6426 int ret = 0;
6427 struct btrfs_key key;
6428 struct btrfs_root *root = parent_inode->root;
6429 u64 ino = btrfs_ino(inode);
6430 u64 parent_ino = btrfs_ino(parent_inode);
6431
6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6433 memcpy(&key, &inode->root->root_key, sizeof(key));
6434 } else {
6435 key.objectid = ino;
6436 key.type = BTRFS_INODE_ITEM_KEY;
6437 key.offset = 0;
6438 }
6439
6440 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6441 ret = btrfs_add_root_ref(trans, key.objectid,
6442 root->root_key.objectid, parent_ino,
6443 index, name, name_len);
6444 } else if (add_backref) {
6445 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6446 parent_ino, index);
6447 }
6448
6449 /* Nothing to clean up yet */
6450 if (ret)
6451 return ret;
6452
6453 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6454 btrfs_inode_type(&inode->vfs_inode), index);
6455 if (ret == -EEXIST || ret == -EOVERFLOW)
6456 goto fail_dir_item;
6457 else if (ret) {
6458 btrfs_abort_transaction(trans, ret);
6459 return ret;
6460 }
6461
6462 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6463 name_len * 2);
6464 inode_inc_iversion(&parent_inode->vfs_inode);
6465 /*
6466 * If we are replaying a log tree, we do not want to update the mtime
6467 * and ctime of the parent directory with the current time, since the
6468 * log replay procedure is responsible for setting them to their correct
6469 * values (the ones it had when the fsync was done).
6470 */
6471 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6472 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6473
6474 parent_inode->vfs_inode.i_mtime = now;
6475 parent_inode->vfs_inode.i_ctime = now;
6476 }
6477 ret = btrfs_update_inode(trans, root, parent_inode);
6478 if (ret)
6479 btrfs_abort_transaction(trans, ret);
6480 return ret;
6481
6482 fail_dir_item:
6483 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6484 u64 local_index;
6485 int err;
6486 err = btrfs_del_root_ref(trans, key.objectid,
6487 root->root_key.objectid, parent_ino,
6488 &local_index, name, name_len);
6489 if (err)
6490 btrfs_abort_transaction(trans, err);
6491 } else if (add_backref) {
6492 u64 local_index;
6493 int err;
6494
6495 err = btrfs_del_inode_ref(trans, root, name, name_len,
6496 ino, parent_ino, &local_index);
6497 if (err)
6498 btrfs_abort_transaction(trans, err);
6499 }
6500
6501 /* Return the original error code */
6502 return ret;
6503 }
6504
6505 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6506 struct btrfs_inode *dir, struct dentry *dentry,
6507 struct btrfs_inode *inode, int backref, u64 index)
6508 {
6509 int err = btrfs_add_link(trans, dir, inode,
6510 dentry->d_name.name, dentry->d_name.len,
6511 backref, index);
6512 if (err > 0)
6513 err = -EEXIST;
6514 return err;
6515 }
6516
6517 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6518 struct dentry *dentry, umode_t mode, dev_t rdev)
6519 {
6520 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6521 struct btrfs_trans_handle *trans;
6522 struct btrfs_root *root = BTRFS_I(dir)->root;
6523 struct inode *inode = NULL;
6524 int err;
6525 u64 objectid;
6526 u64 index = 0;
6527
6528 /*
6529 * 2 for inode item and ref
6530 * 2 for dir items
6531 * 1 for xattr if selinux is on
6532 */
6533 trans = btrfs_start_transaction(root, 5);
6534 if (IS_ERR(trans))
6535 return PTR_ERR(trans);
6536
6537 err = btrfs_get_free_objectid(root, &objectid);
6538 if (err)
6539 goto out_unlock;
6540
6541 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6542 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6543 mode, &index);
6544 if (IS_ERR(inode)) {
6545 err = PTR_ERR(inode);
6546 inode = NULL;
6547 goto out_unlock;
6548 }
6549
6550 /*
6551 * If the active LSM wants to access the inode during
6552 * d_instantiate it needs these. Smack checks to see
6553 * if the filesystem supports xattrs by looking at the
6554 * ops vector.
6555 */
6556 inode->i_op = &btrfs_special_inode_operations;
6557 init_special_inode(inode, inode->i_mode, rdev);
6558
6559 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6560 if (err)
6561 goto out_unlock;
6562
6563 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6564 0, index);
6565 if (err)
6566 goto out_unlock;
6567
6568 btrfs_update_inode(trans, root, BTRFS_I(inode));
6569 d_instantiate_new(dentry, inode);
6570
6571 out_unlock:
6572 btrfs_end_transaction(trans);
6573 btrfs_btree_balance_dirty(fs_info);
6574 if (err && inode) {
6575 inode_dec_link_count(inode);
6576 discard_new_inode(inode);
6577 }
6578 return err;
6579 }
6580
6581 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6582 struct dentry *dentry, umode_t mode, bool excl)
6583 {
6584 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6585 struct btrfs_trans_handle *trans;
6586 struct btrfs_root *root = BTRFS_I(dir)->root;
6587 struct inode *inode = NULL;
6588 int err;
6589 u64 objectid;
6590 u64 index = 0;
6591
6592 /*
6593 * 2 for inode item and ref
6594 * 2 for dir items
6595 * 1 for xattr if selinux is on
6596 */
6597 trans = btrfs_start_transaction(root, 5);
6598 if (IS_ERR(trans))
6599 return PTR_ERR(trans);
6600
6601 err = btrfs_get_free_objectid(root, &objectid);
6602 if (err)
6603 goto out_unlock;
6604
6605 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6606 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6607 mode, &index);
6608 if (IS_ERR(inode)) {
6609 err = PTR_ERR(inode);
6610 inode = NULL;
6611 goto out_unlock;
6612 }
6613 /*
6614 * If the active LSM wants to access the inode during
6615 * d_instantiate it needs these. Smack checks to see
6616 * if the filesystem supports xattrs by looking at the
6617 * ops vector.
6618 */
6619 inode->i_fop = &btrfs_file_operations;
6620 inode->i_op = &btrfs_file_inode_operations;
6621 inode->i_mapping->a_ops = &btrfs_aops;
6622
6623 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6624 if (err)
6625 goto out_unlock;
6626
6627 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6628 if (err)
6629 goto out_unlock;
6630
6631 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6632 0, index);
6633 if (err)
6634 goto out_unlock;
6635
6636 d_instantiate_new(dentry, inode);
6637
6638 out_unlock:
6639 btrfs_end_transaction(trans);
6640 if (err && inode) {
6641 inode_dec_link_count(inode);
6642 discard_new_inode(inode);
6643 }
6644 btrfs_btree_balance_dirty(fs_info);
6645 return err;
6646 }
6647
6648 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6649 struct dentry *dentry)
6650 {
6651 struct btrfs_trans_handle *trans = NULL;
6652 struct btrfs_root *root = BTRFS_I(dir)->root;
6653 struct inode *inode = d_inode(old_dentry);
6654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6655 u64 index;
6656 int err;
6657 int drop_inode = 0;
6658
6659 /* do not allow sys_link's with other subvols of the same device */
6660 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6661 return -EXDEV;
6662
6663 if (inode->i_nlink >= BTRFS_LINK_MAX)
6664 return -EMLINK;
6665
6666 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6667 if (err)
6668 goto fail;
6669
6670 /*
6671 * 2 items for inode and inode ref
6672 * 2 items for dir items
6673 * 1 item for parent inode
6674 * 1 item for orphan item deletion if O_TMPFILE
6675 */
6676 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6677 if (IS_ERR(trans)) {
6678 err = PTR_ERR(trans);
6679 trans = NULL;
6680 goto fail;
6681 }
6682
6683 /* There are several dir indexes for this inode, clear the cache. */
6684 BTRFS_I(inode)->dir_index = 0ULL;
6685 inc_nlink(inode);
6686 inode_inc_iversion(inode);
6687 inode->i_ctime = current_time(inode);
6688 ihold(inode);
6689 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6690
6691 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6692 1, index);
6693
6694 if (err) {
6695 drop_inode = 1;
6696 } else {
6697 struct dentry *parent = dentry->d_parent;
6698
6699 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6700 if (err)
6701 goto fail;
6702 if (inode->i_nlink == 1) {
6703 /*
6704 * If new hard link count is 1, it's a file created
6705 * with open(2) O_TMPFILE flag.
6706 */
6707 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6708 if (err)
6709 goto fail;
6710 }
6711 d_instantiate(dentry, inode);
6712 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6713 }
6714
6715 fail:
6716 if (trans)
6717 btrfs_end_transaction(trans);
6718 if (drop_inode) {
6719 inode_dec_link_count(inode);
6720 iput(inode);
6721 }
6722 btrfs_btree_balance_dirty(fs_info);
6723 return err;
6724 }
6725
6726 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6727 struct dentry *dentry, umode_t mode)
6728 {
6729 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6730 struct inode *inode = NULL;
6731 struct btrfs_trans_handle *trans;
6732 struct btrfs_root *root = BTRFS_I(dir)->root;
6733 int err = 0;
6734 u64 objectid = 0;
6735 u64 index = 0;
6736
6737 /*
6738 * 2 items for inode and ref
6739 * 2 items for dir items
6740 * 1 for xattr if selinux is on
6741 */
6742 trans = btrfs_start_transaction(root, 5);
6743 if (IS_ERR(trans))
6744 return PTR_ERR(trans);
6745
6746 err = btrfs_get_free_objectid(root, &objectid);
6747 if (err)
6748 goto out_fail;
6749
6750 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6751 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6752 S_IFDIR | mode, &index);
6753 if (IS_ERR(inode)) {
6754 err = PTR_ERR(inode);
6755 inode = NULL;
6756 goto out_fail;
6757 }
6758
6759 /* these must be set before we unlock the inode */
6760 inode->i_op = &btrfs_dir_inode_operations;
6761 inode->i_fop = &btrfs_dir_file_operations;
6762
6763 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6764 if (err)
6765 goto out_fail;
6766
6767 btrfs_i_size_write(BTRFS_I(inode), 0);
6768 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6769 if (err)
6770 goto out_fail;
6771
6772 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6773 dentry->d_name.name,
6774 dentry->d_name.len, 0, index);
6775 if (err)
6776 goto out_fail;
6777
6778 d_instantiate_new(dentry, inode);
6779
6780 out_fail:
6781 btrfs_end_transaction(trans);
6782 if (err && inode) {
6783 inode_dec_link_count(inode);
6784 discard_new_inode(inode);
6785 }
6786 btrfs_btree_balance_dirty(fs_info);
6787 return err;
6788 }
6789
6790 static noinline int uncompress_inline(struct btrfs_path *path,
6791 struct page *page,
6792 size_t pg_offset, u64 extent_offset,
6793 struct btrfs_file_extent_item *item)
6794 {
6795 int ret;
6796 struct extent_buffer *leaf = path->nodes[0];
6797 char *tmp;
6798 size_t max_size;
6799 unsigned long inline_size;
6800 unsigned long ptr;
6801 int compress_type;
6802
6803 WARN_ON(pg_offset != 0);
6804 compress_type = btrfs_file_extent_compression(leaf, item);
6805 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6806 inline_size = btrfs_file_extent_inline_item_len(leaf,
6807 btrfs_item_nr(path->slots[0]));
6808 tmp = kmalloc(inline_size, GFP_NOFS);
6809 if (!tmp)
6810 return -ENOMEM;
6811 ptr = btrfs_file_extent_inline_start(item);
6812
6813 read_extent_buffer(leaf, tmp, ptr, inline_size);
6814
6815 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6816 ret = btrfs_decompress(compress_type, tmp, page,
6817 extent_offset, inline_size, max_size);
6818
6819 /*
6820 * decompression code contains a memset to fill in any space between the end
6821 * of the uncompressed data and the end of max_size in case the decompressed
6822 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6823 * the end of an inline extent and the beginning of the next block, so we
6824 * cover that region here.
6825 */
6826
6827 if (max_size + pg_offset < PAGE_SIZE)
6828 memzero_page(page, pg_offset + max_size,
6829 PAGE_SIZE - max_size - pg_offset);
6830 kfree(tmp);
6831 return ret;
6832 }
6833
6834 /**
6835 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6836 * @inode: file to search in
6837 * @page: page to read extent data into if the extent is inline
6838 * @pg_offset: offset into @page to copy to
6839 * @start: file offset
6840 * @len: length of range starting at @start
6841 *
6842 * This returns the first &struct extent_map which overlaps with the given
6843 * range, reading it from the B-tree and caching it if necessary. Note that
6844 * there may be more extents which overlap the given range after the returned
6845 * extent_map.
6846 *
6847 * If @page is not NULL and the extent is inline, this also reads the extent
6848 * data directly into the page and marks the extent up to date in the io_tree.
6849 *
6850 * Return: ERR_PTR on error, non-NULL extent_map on success.
6851 */
6852 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6853 struct page *page, size_t pg_offset,
6854 u64 start, u64 len)
6855 {
6856 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6857 int ret = 0;
6858 u64 extent_start = 0;
6859 u64 extent_end = 0;
6860 u64 objectid = btrfs_ino(inode);
6861 int extent_type = -1;
6862 struct btrfs_path *path = NULL;
6863 struct btrfs_root *root = inode->root;
6864 struct btrfs_file_extent_item *item;
6865 struct extent_buffer *leaf;
6866 struct btrfs_key found_key;
6867 struct extent_map *em = NULL;
6868 struct extent_map_tree *em_tree = &inode->extent_tree;
6869 struct extent_io_tree *io_tree = &inode->io_tree;
6870
6871 read_lock(&em_tree->lock);
6872 em = lookup_extent_mapping(em_tree, start, len);
6873 read_unlock(&em_tree->lock);
6874
6875 if (em) {
6876 if (em->start > start || em->start + em->len <= start)
6877 free_extent_map(em);
6878 else if (em->block_start == EXTENT_MAP_INLINE && page)
6879 free_extent_map(em);
6880 else
6881 goto out;
6882 }
6883 em = alloc_extent_map();
6884 if (!em) {
6885 ret = -ENOMEM;
6886 goto out;
6887 }
6888 em->start = EXTENT_MAP_HOLE;
6889 em->orig_start = EXTENT_MAP_HOLE;
6890 em->len = (u64)-1;
6891 em->block_len = (u64)-1;
6892
6893 path = btrfs_alloc_path();
6894 if (!path) {
6895 ret = -ENOMEM;
6896 goto out;
6897 }
6898
6899 /* Chances are we'll be called again, so go ahead and do readahead */
6900 path->reada = READA_FORWARD;
6901
6902 /*
6903 * The same explanation in load_free_space_cache applies here as well,
6904 * we only read when we're loading the free space cache, and at that
6905 * point the commit_root has everything we need.
6906 */
6907 if (btrfs_is_free_space_inode(inode)) {
6908 path->search_commit_root = 1;
6909 path->skip_locking = 1;
6910 }
6911
6912 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6913 if (ret < 0) {
6914 goto out;
6915 } else if (ret > 0) {
6916 if (path->slots[0] == 0)
6917 goto not_found;
6918 path->slots[0]--;
6919 ret = 0;
6920 }
6921
6922 leaf = path->nodes[0];
6923 item = btrfs_item_ptr(leaf, path->slots[0],
6924 struct btrfs_file_extent_item);
6925 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6926 if (found_key.objectid != objectid ||
6927 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6928 /*
6929 * If we backup past the first extent we want to move forward
6930 * and see if there is an extent in front of us, otherwise we'll
6931 * say there is a hole for our whole search range which can
6932 * cause problems.
6933 */
6934 extent_end = start;
6935 goto next;
6936 }
6937
6938 extent_type = btrfs_file_extent_type(leaf, item);
6939 extent_start = found_key.offset;
6940 extent_end = btrfs_file_extent_end(path);
6941 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6942 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6943 /* Only regular file could have regular/prealloc extent */
6944 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6945 ret = -EUCLEAN;
6946 btrfs_crit(fs_info,
6947 "regular/prealloc extent found for non-regular inode %llu",
6948 btrfs_ino(inode));
6949 goto out;
6950 }
6951 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6952 extent_start);
6953 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6954 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6955 path->slots[0],
6956 extent_start);
6957 }
6958 next:
6959 if (start >= extent_end) {
6960 path->slots[0]++;
6961 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6962 ret = btrfs_next_leaf(root, path);
6963 if (ret < 0)
6964 goto out;
6965 else if (ret > 0)
6966 goto not_found;
6967
6968 leaf = path->nodes[0];
6969 }
6970 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6971 if (found_key.objectid != objectid ||
6972 found_key.type != BTRFS_EXTENT_DATA_KEY)
6973 goto not_found;
6974 if (start + len <= found_key.offset)
6975 goto not_found;
6976 if (start > found_key.offset)
6977 goto next;
6978
6979 /* New extent overlaps with existing one */
6980 em->start = start;
6981 em->orig_start = start;
6982 em->len = found_key.offset - start;
6983 em->block_start = EXTENT_MAP_HOLE;
6984 goto insert;
6985 }
6986
6987 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6988
6989 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6990 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6991 goto insert;
6992 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6993 unsigned long ptr;
6994 char *map;
6995 size_t size;
6996 size_t extent_offset;
6997 size_t copy_size;
6998
6999 if (!page)
7000 goto out;
7001
7002 size = btrfs_file_extent_ram_bytes(leaf, item);
7003 extent_offset = page_offset(page) + pg_offset - extent_start;
7004 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7005 size - extent_offset);
7006 em->start = extent_start + extent_offset;
7007 em->len = ALIGN(copy_size, fs_info->sectorsize);
7008 em->orig_block_len = em->len;
7009 em->orig_start = em->start;
7010 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7011
7012 if (!PageUptodate(page)) {
7013 if (btrfs_file_extent_compression(leaf, item) !=
7014 BTRFS_COMPRESS_NONE) {
7015 ret = uncompress_inline(path, page, pg_offset,
7016 extent_offset, item);
7017 if (ret)
7018 goto out;
7019 } else {
7020 map = kmap_local_page(page);
7021 read_extent_buffer(leaf, map + pg_offset, ptr,
7022 copy_size);
7023 if (pg_offset + copy_size < PAGE_SIZE) {
7024 memset(map + pg_offset + copy_size, 0,
7025 PAGE_SIZE - pg_offset -
7026 copy_size);
7027 }
7028 kunmap_local(map);
7029 }
7030 flush_dcache_page(page);
7031 }
7032 set_extent_uptodate(io_tree, em->start,
7033 extent_map_end(em) - 1, NULL, GFP_NOFS);
7034 goto insert;
7035 }
7036 not_found:
7037 em->start = start;
7038 em->orig_start = start;
7039 em->len = len;
7040 em->block_start = EXTENT_MAP_HOLE;
7041 insert:
7042 ret = 0;
7043 btrfs_release_path(path);
7044 if (em->start > start || extent_map_end(em) <= start) {
7045 btrfs_err(fs_info,
7046 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7047 em->start, em->len, start, len);
7048 ret = -EIO;
7049 goto out;
7050 }
7051
7052 write_lock(&em_tree->lock);
7053 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7054 write_unlock(&em_tree->lock);
7055 out:
7056 btrfs_free_path(path);
7057
7058 trace_btrfs_get_extent(root, inode, em);
7059
7060 if (ret) {
7061 free_extent_map(em);
7062 return ERR_PTR(ret);
7063 }
7064 return em;
7065 }
7066
7067 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7068 u64 start, u64 len)
7069 {
7070 struct extent_map *em;
7071 struct extent_map *hole_em = NULL;
7072 u64 delalloc_start = start;
7073 u64 end;
7074 u64 delalloc_len;
7075 u64 delalloc_end;
7076 int err = 0;
7077
7078 em = btrfs_get_extent(inode, NULL, 0, start, len);
7079 if (IS_ERR(em))
7080 return em;
7081 /*
7082 * If our em maps to:
7083 * - a hole or
7084 * - a pre-alloc extent,
7085 * there might actually be delalloc bytes behind it.
7086 */
7087 if (em->block_start != EXTENT_MAP_HOLE &&
7088 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7089 return em;
7090 else
7091 hole_em = em;
7092
7093 /* check to see if we've wrapped (len == -1 or similar) */
7094 end = start + len;
7095 if (end < start)
7096 end = (u64)-1;
7097 else
7098 end -= 1;
7099
7100 em = NULL;
7101
7102 /* ok, we didn't find anything, lets look for delalloc */
7103 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7104 end, len, EXTENT_DELALLOC, 1);
7105 delalloc_end = delalloc_start + delalloc_len;
7106 if (delalloc_end < delalloc_start)
7107 delalloc_end = (u64)-1;
7108
7109 /*
7110 * We didn't find anything useful, return the original results from
7111 * get_extent()
7112 */
7113 if (delalloc_start > end || delalloc_end <= start) {
7114 em = hole_em;
7115 hole_em = NULL;
7116 goto out;
7117 }
7118
7119 /*
7120 * Adjust the delalloc_start to make sure it doesn't go backwards from
7121 * the start they passed in
7122 */
7123 delalloc_start = max(start, delalloc_start);
7124 delalloc_len = delalloc_end - delalloc_start;
7125
7126 if (delalloc_len > 0) {
7127 u64 hole_start;
7128 u64 hole_len;
7129 const u64 hole_end = extent_map_end(hole_em);
7130
7131 em = alloc_extent_map();
7132 if (!em) {
7133 err = -ENOMEM;
7134 goto out;
7135 }
7136
7137 ASSERT(hole_em);
7138 /*
7139 * When btrfs_get_extent can't find anything it returns one
7140 * huge hole
7141 *
7142 * Make sure what it found really fits our range, and adjust to
7143 * make sure it is based on the start from the caller
7144 */
7145 if (hole_end <= start || hole_em->start > end) {
7146 free_extent_map(hole_em);
7147 hole_em = NULL;
7148 } else {
7149 hole_start = max(hole_em->start, start);
7150 hole_len = hole_end - hole_start;
7151 }
7152
7153 if (hole_em && delalloc_start > hole_start) {
7154 /*
7155 * Our hole starts before our delalloc, so we have to
7156 * return just the parts of the hole that go until the
7157 * delalloc starts
7158 */
7159 em->len = min(hole_len, delalloc_start - hole_start);
7160 em->start = hole_start;
7161 em->orig_start = hole_start;
7162 /*
7163 * Don't adjust block start at all, it is fixed at
7164 * EXTENT_MAP_HOLE
7165 */
7166 em->block_start = hole_em->block_start;
7167 em->block_len = hole_len;
7168 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7169 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7170 } else {
7171 /*
7172 * Hole is out of passed range or it starts after
7173 * delalloc range
7174 */
7175 em->start = delalloc_start;
7176 em->len = delalloc_len;
7177 em->orig_start = delalloc_start;
7178 em->block_start = EXTENT_MAP_DELALLOC;
7179 em->block_len = delalloc_len;
7180 }
7181 } else {
7182 return hole_em;
7183 }
7184 out:
7185
7186 free_extent_map(hole_em);
7187 if (err) {
7188 free_extent_map(em);
7189 return ERR_PTR(err);
7190 }
7191 return em;
7192 }
7193
7194 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7195 const u64 start,
7196 const u64 len,
7197 const u64 orig_start,
7198 const u64 block_start,
7199 const u64 block_len,
7200 const u64 orig_block_len,
7201 const u64 ram_bytes,
7202 const int type)
7203 {
7204 struct extent_map *em = NULL;
7205 int ret;
7206
7207 if (type != BTRFS_ORDERED_NOCOW) {
7208 em = create_io_em(inode, start, len, orig_start, block_start,
7209 block_len, orig_block_len, ram_bytes,
7210 BTRFS_COMPRESS_NONE, /* compress_type */
7211 type);
7212 if (IS_ERR(em))
7213 goto out;
7214 }
7215 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7216 block_len, type);
7217 if (ret) {
7218 if (em) {
7219 free_extent_map(em);
7220 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7221 }
7222 em = ERR_PTR(ret);
7223 }
7224 out:
7225
7226 return em;
7227 }
7228
7229 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7230 u64 start, u64 len)
7231 {
7232 struct btrfs_root *root = inode->root;
7233 struct btrfs_fs_info *fs_info = root->fs_info;
7234 struct extent_map *em;
7235 struct btrfs_key ins;
7236 u64 alloc_hint;
7237 int ret;
7238
7239 alloc_hint = get_extent_allocation_hint(inode, start, len);
7240 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7241 0, alloc_hint, &ins, 1, 1);
7242 if (ret)
7243 return ERR_PTR(ret);
7244
7245 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7246 ins.objectid, ins.offset, ins.offset,
7247 ins.offset, BTRFS_ORDERED_REGULAR);
7248 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7249 if (IS_ERR(em))
7250 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7251 1);
7252
7253 return em;
7254 }
7255
7256 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7257 {
7258 struct btrfs_block_group *block_group;
7259 bool readonly = false;
7260
7261 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7262 if (!block_group || block_group->ro)
7263 readonly = true;
7264 if (block_group)
7265 btrfs_put_block_group(block_group);
7266 return readonly;
7267 }
7268
7269 /*
7270 * Check if we can do nocow write into the range [@offset, @offset + @len)
7271 *
7272 * @offset: File offset
7273 * @len: The length to write, will be updated to the nocow writeable
7274 * range
7275 * @orig_start: (optional) Return the original file offset of the file extent
7276 * @orig_len: (optional) Return the original on-disk length of the file extent
7277 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7278 * @strict: if true, omit optimizations that might force us into unnecessary
7279 * cow. e.g., don't trust generation number.
7280 *
7281 * Return:
7282 * >0 and update @len if we can do nocow write
7283 * 0 if we can't do nocow write
7284 * <0 if error happened
7285 *
7286 * NOTE: This only checks the file extents, caller is responsible to wait for
7287 * any ordered extents.
7288 */
7289 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7290 u64 *orig_start, u64 *orig_block_len,
7291 u64 *ram_bytes, bool strict)
7292 {
7293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7294 struct btrfs_path *path;
7295 int ret;
7296 struct extent_buffer *leaf;
7297 struct btrfs_root *root = BTRFS_I(inode)->root;
7298 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7299 struct btrfs_file_extent_item *fi;
7300 struct btrfs_key key;
7301 u64 disk_bytenr;
7302 u64 backref_offset;
7303 u64 extent_end;
7304 u64 num_bytes;
7305 int slot;
7306 int found_type;
7307 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7308
7309 path = btrfs_alloc_path();
7310 if (!path)
7311 return -ENOMEM;
7312
7313 ret = btrfs_lookup_file_extent(NULL, root, path,
7314 btrfs_ino(BTRFS_I(inode)), offset, 0);
7315 if (ret < 0)
7316 goto out;
7317
7318 slot = path->slots[0];
7319 if (ret == 1) {
7320 if (slot == 0) {
7321 /* can't find the item, must cow */
7322 ret = 0;
7323 goto out;
7324 }
7325 slot--;
7326 }
7327 ret = 0;
7328 leaf = path->nodes[0];
7329 btrfs_item_key_to_cpu(leaf, &key, slot);
7330 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7331 key.type != BTRFS_EXTENT_DATA_KEY) {
7332 /* not our file or wrong item type, must cow */
7333 goto out;
7334 }
7335
7336 if (key.offset > offset) {
7337 /* Wrong offset, must cow */
7338 goto out;
7339 }
7340
7341 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7342 found_type = btrfs_file_extent_type(leaf, fi);
7343 if (found_type != BTRFS_FILE_EXTENT_REG &&
7344 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7345 /* not a regular extent, must cow */
7346 goto out;
7347 }
7348
7349 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7350 goto out;
7351
7352 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7353 if (extent_end <= offset)
7354 goto out;
7355
7356 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7357 if (disk_bytenr == 0)
7358 goto out;
7359
7360 if (btrfs_file_extent_compression(leaf, fi) ||
7361 btrfs_file_extent_encryption(leaf, fi) ||
7362 btrfs_file_extent_other_encoding(leaf, fi))
7363 goto out;
7364
7365 /*
7366 * Do the same check as in btrfs_cross_ref_exist but without the
7367 * unnecessary search.
7368 */
7369 if (!strict &&
7370 (btrfs_file_extent_generation(leaf, fi) <=
7371 btrfs_root_last_snapshot(&root->root_item)))
7372 goto out;
7373
7374 backref_offset = btrfs_file_extent_offset(leaf, fi);
7375
7376 if (orig_start) {
7377 *orig_start = key.offset - backref_offset;
7378 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7379 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7380 }
7381
7382 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7383 goto out;
7384
7385 num_bytes = min(offset + *len, extent_end) - offset;
7386 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7387 u64 range_end;
7388
7389 range_end = round_up(offset + num_bytes,
7390 root->fs_info->sectorsize) - 1;
7391 ret = test_range_bit(io_tree, offset, range_end,
7392 EXTENT_DELALLOC, 0, NULL);
7393 if (ret) {
7394 ret = -EAGAIN;
7395 goto out;
7396 }
7397 }
7398
7399 btrfs_release_path(path);
7400
7401 /*
7402 * look for other files referencing this extent, if we
7403 * find any we must cow
7404 */
7405
7406 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7407 key.offset - backref_offset, disk_bytenr,
7408 strict);
7409 if (ret) {
7410 ret = 0;
7411 goto out;
7412 }
7413
7414 /*
7415 * adjust disk_bytenr and num_bytes to cover just the bytes
7416 * in this extent we are about to write. If there
7417 * are any csums in that range we have to cow in order
7418 * to keep the csums correct
7419 */
7420 disk_bytenr += backref_offset;
7421 disk_bytenr += offset - key.offset;
7422 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7423 goto out;
7424 /*
7425 * all of the above have passed, it is safe to overwrite this extent
7426 * without cow
7427 */
7428 *len = num_bytes;
7429 ret = 1;
7430 out:
7431 btrfs_free_path(path);
7432 return ret;
7433 }
7434
7435 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7436 struct extent_state **cached_state, bool writing)
7437 {
7438 struct btrfs_ordered_extent *ordered;
7439 int ret = 0;
7440
7441 while (1) {
7442 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7443 cached_state);
7444 /*
7445 * We're concerned with the entire range that we're going to be
7446 * doing DIO to, so we need to make sure there's no ordered
7447 * extents in this range.
7448 */
7449 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7450 lockend - lockstart + 1);
7451
7452 /*
7453 * We need to make sure there are no buffered pages in this
7454 * range either, we could have raced between the invalidate in
7455 * generic_file_direct_write and locking the extent. The
7456 * invalidate needs to happen so that reads after a write do not
7457 * get stale data.
7458 */
7459 if (!ordered &&
7460 (!writing || !filemap_range_has_page(inode->i_mapping,
7461 lockstart, lockend)))
7462 break;
7463
7464 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7465 cached_state);
7466
7467 if (ordered) {
7468 /*
7469 * If we are doing a DIO read and the ordered extent we
7470 * found is for a buffered write, we can not wait for it
7471 * to complete and retry, because if we do so we can
7472 * deadlock with concurrent buffered writes on page
7473 * locks. This happens only if our DIO read covers more
7474 * than one extent map, if at this point has already
7475 * created an ordered extent for a previous extent map
7476 * and locked its range in the inode's io tree, and a
7477 * concurrent write against that previous extent map's
7478 * range and this range started (we unlock the ranges
7479 * in the io tree only when the bios complete and
7480 * buffered writes always lock pages before attempting
7481 * to lock range in the io tree).
7482 */
7483 if (writing ||
7484 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7485 btrfs_start_ordered_extent(ordered, 1);
7486 else
7487 ret = -ENOTBLK;
7488 btrfs_put_ordered_extent(ordered);
7489 } else {
7490 /*
7491 * We could trigger writeback for this range (and wait
7492 * for it to complete) and then invalidate the pages for
7493 * this range (through invalidate_inode_pages2_range()),
7494 * but that can lead us to a deadlock with a concurrent
7495 * call to readahead (a buffered read or a defrag call
7496 * triggered a readahead) on a page lock due to an
7497 * ordered dio extent we created before but did not have
7498 * yet a corresponding bio submitted (whence it can not
7499 * complete), which makes readahead wait for that
7500 * ordered extent to complete while holding a lock on
7501 * that page.
7502 */
7503 ret = -ENOTBLK;
7504 }
7505
7506 if (ret)
7507 break;
7508
7509 cond_resched();
7510 }
7511
7512 return ret;
7513 }
7514
7515 /* The callers of this must take lock_extent() */
7516 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7517 u64 len, u64 orig_start, u64 block_start,
7518 u64 block_len, u64 orig_block_len,
7519 u64 ram_bytes, int compress_type,
7520 int type)
7521 {
7522 struct extent_map_tree *em_tree;
7523 struct extent_map *em;
7524 int ret;
7525
7526 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7527 type == BTRFS_ORDERED_COMPRESSED ||
7528 type == BTRFS_ORDERED_NOCOW ||
7529 type == BTRFS_ORDERED_REGULAR);
7530
7531 em_tree = &inode->extent_tree;
7532 em = alloc_extent_map();
7533 if (!em)
7534 return ERR_PTR(-ENOMEM);
7535
7536 em->start = start;
7537 em->orig_start = orig_start;
7538 em->len = len;
7539 em->block_len = block_len;
7540 em->block_start = block_start;
7541 em->orig_block_len = orig_block_len;
7542 em->ram_bytes = ram_bytes;
7543 em->generation = -1;
7544 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7545 if (type == BTRFS_ORDERED_PREALLOC) {
7546 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7547 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7548 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7549 em->compress_type = compress_type;
7550 }
7551
7552 do {
7553 btrfs_drop_extent_cache(inode, em->start,
7554 em->start + em->len - 1, 0);
7555 write_lock(&em_tree->lock);
7556 ret = add_extent_mapping(em_tree, em, 1);
7557 write_unlock(&em_tree->lock);
7558 /*
7559 * The caller has taken lock_extent(), who could race with us
7560 * to add em?
7561 */
7562 } while (ret == -EEXIST);
7563
7564 if (ret) {
7565 free_extent_map(em);
7566 return ERR_PTR(ret);
7567 }
7568
7569 /* em got 2 refs now, callers needs to do free_extent_map once. */
7570 return em;
7571 }
7572
7573
7574 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7575 struct inode *inode,
7576 struct btrfs_dio_data *dio_data,
7577 u64 start, u64 len)
7578 {
7579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7580 struct extent_map *em = *map;
7581 int ret = 0;
7582
7583 /*
7584 * We don't allocate a new extent in the following cases
7585 *
7586 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7587 * existing extent.
7588 * 2) The extent is marked as PREALLOC. We're good to go here and can
7589 * just use the extent.
7590 *
7591 */
7592 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7593 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7594 em->block_start != EXTENT_MAP_HOLE)) {
7595 int type;
7596 u64 block_start, orig_start, orig_block_len, ram_bytes;
7597
7598 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7599 type = BTRFS_ORDERED_PREALLOC;
7600 else
7601 type = BTRFS_ORDERED_NOCOW;
7602 len = min(len, em->len - (start - em->start));
7603 block_start = em->block_start + (start - em->start);
7604
7605 if (can_nocow_extent(inode, start, &len, &orig_start,
7606 &orig_block_len, &ram_bytes, false) == 1 &&
7607 btrfs_inc_nocow_writers(fs_info, block_start)) {
7608 struct extent_map *em2;
7609
7610 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7611 orig_start, block_start,
7612 len, orig_block_len,
7613 ram_bytes, type);
7614 btrfs_dec_nocow_writers(fs_info, block_start);
7615 if (type == BTRFS_ORDERED_PREALLOC) {
7616 free_extent_map(em);
7617 *map = em = em2;
7618 }
7619
7620 if (em2 && IS_ERR(em2)) {
7621 ret = PTR_ERR(em2);
7622 goto out;
7623 }
7624 /*
7625 * For inode marked NODATACOW or extent marked PREALLOC,
7626 * use the existing or preallocated extent, so does not
7627 * need to adjust btrfs_space_info's bytes_may_use.
7628 */
7629 btrfs_free_reserved_data_space_noquota(fs_info, len);
7630 goto skip_cow;
7631 }
7632 }
7633
7634 /* this will cow the extent */
7635 free_extent_map(em);
7636 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7637 if (IS_ERR(em)) {
7638 ret = PTR_ERR(em);
7639 goto out;
7640 }
7641
7642 len = min(len, em->len - (start - em->start));
7643
7644 skip_cow:
7645 /*
7646 * Need to update the i_size under the extent lock so buffered
7647 * readers will get the updated i_size when we unlock.
7648 */
7649 if (start + len > i_size_read(inode))
7650 i_size_write(inode, start + len);
7651
7652 dio_data->reserve -= len;
7653 out:
7654 return ret;
7655 }
7656
7657 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7658 loff_t length, unsigned int flags, struct iomap *iomap,
7659 struct iomap *srcmap)
7660 {
7661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7662 struct extent_map *em;
7663 struct extent_state *cached_state = NULL;
7664 struct btrfs_dio_data *dio_data = NULL;
7665 u64 lockstart, lockend;
7666 const bool write = !!(flags & IOMAP_WRITE);
7667 int ret = 0;
7668 u64 len = length;
7669 bool unlock_extents = false;
7670
7671 if (!write)
7672 len = min_t(u64, len, fs_info->sectorsize);
7673
7674 lockstart = start;
7675 lockend = start + len - 1;
7676
7677 /*
7678 * The generic stuff only does filemap_write_and_wait_range, which
7679 * isn't enough if we've written compressed pages to this area, so we
7680 * need to flush the dirty pages again to make absolutely sure that any
7681 * outstanding dirty pages are on disk.
7682 */
7683 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7684 &BTRFS_I(inode)->runtime_flags)) {
7685 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7686 start + length - 1);
7687 if (ret)
7688 return ret;
7689 }
7690
7691 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7692 if (!dio_data)
7693 return -ENOMEM;
7694
7695 dio_data->length = length;
7696 if (write) {
7697 dio_data->reserve = round_up(length, fs_info->sectorsize);
7698 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7699 &dio_data->data_reserved,
7700 start, dio_data->reserve);
7701 if (ret) {
7702 extent_changeset_free(dio_data->data_reserved);
7703 kfree(dio_data);
7704 return ret;
7705 }
7706 }
7707 iomap->private = dio_data;
7708
7709
7710 /*
7711 * If this errors out it's because we couldn't invalidate pagecache for
7712 * this range and we need to fallback to buffered.
7713 */
7714 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7715 ret = -ENOTBLK;
7716 goto err;
7717 }
7718
7719 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7720 if (IS_ERR(em)) {
7721 ret = PTR_ERR(em);
7722 goto unlock_err;
7723 }
7724
7725 /*
7726 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7727 * io. INLINE is special, and we could probably kludge it in here, but
7728 * it's still buffered so for safety lets just fall back to the generic
7729 * buffered path.
7730 *
7731 * For COMPRESSED we _have_ to read the entire extent in so we can
7732 * decompress it, so there will be buffering required no matter what we
7733 * do, so go ahead and fallback to buffered.
7734 *
7735 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7736 * to buffered IO. Don't blame me, this is the price we pay for using
7737 * the generic code.
7738 */
7739 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7740 em->block_start == EXTENT_MAP_INLINE) {
7741 free_extent_map(em);
7742 ret = -ENOTBLK;
7743 goto unlock_err;
7744 }
7745
7746 len = min(len, em->len - (start - em->start));
7747 if (write) {
7748 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7749 start, len);
7750 if (ret < 0)
7751 goto unlock_err;
7752 unlock_extents = true;
7753 /* Recalc len in case the new em is smaller than requested */
7754 len = min(len, em->len - (start - em->start));
7755 } else {
7756 /*
7757 * We need to unlock only the end area that we aren't using.
7758 * The rest is going to be unlocked by the endio routine.
7759 */
7760 lockstart = start + len;
7761 if (lockstart < lockend)
7762 unlock_extents = true;
7763 }
7764
7765 if (unlock_extents)
7766 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7767 lockstart, lockend, &cached_state);
7768 else
7769 free_extent_state(cached_state);
7770
7771 /*
7772 * Translate extent map information to iomap.
7773 * We trim the extents (and move the addr) even though iomap code does
7774 * that, since we have locked only the parts we are performing I/O in.
7775 */
7776 if ((em->block_start == EXTENT_MAP_HOLE) ||
7777 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7778 iomap->addr = IOMAP_NULL_ADDR;
7779 iomap->type = IOMAP_HOLE;
7780 } else {
7781 iomap->addr = em->block_start + (start - em->start);
7782 iomap->type = IOMAP_MAPPED;
7783 }
7784 iomap->offset = start;
7785 iomap->bdev = fs_info->fs_devices->latest_bdev;
7786 iomap->length = len;
7787
7788 if (write && btrfs_use_zone_append(BTRFS_I(inode), em))
7789 iomap->flags |= IOMAP_F_ZONE_APPEND;
7790
7791 free_extent_map(em);
7792
7793 return 0;
7794
7795 unlock_err:
7796 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7797 &cached_state);
7798 err:
7799 if (dio_data) {
7800 btrfs_delalloc_release_space(BTRFS_I(inode),
7801 dio_data->data_reserved, start,
7802 dio_data->reserve, true);
7803 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7804 extent_changeset_free(dio_data->data_reserved);
7805 kfree(dio_data);
7806 }
7807 return ret;
7808 }
7809
7810 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7811 ssize_t written, unsigned int flags, struct iomap *iomap)
7812 {
7813 int ret = 0;
7814 struct btrfs_dio_data *dio_data = iomap->private;
7815 size_t submitted = dio_data->submitted;
7816 const bool write = !!(flags & IOMAP_WRITE);
7817
7818 if (!write && (iomap->type == IOMAP_HOLE)) {
7819 /* If reading from a hole, unlock and return */
7820 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7821 goto out;
7822 }
7823
7824 if (submitted < length) {
7825 pos += submitted;
7826 length -= submitted;
7827 if (write)
7828 __endio_write_update_ordered(BTRFS_I(inode), pos,
7829 length, false);
7830 else
7831 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7832 pos + length - 1);
7833 ret = -ENOTBLK;
7834 }
7835
7836 if (write) {
7837 if (dio_data->reserve)
7838 btrfs_delalloc_release_space(BTRFS_I(inode),
7839 dio_data->data_reserved, pos,
7840 dio_data->reserve, true);
7841 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7842 extent_changeset_free(dio_data->data_reserved);
7843 }
7844 out:
7845 kfree(dio_data);
7846 iomap->private = NULL;
7847
7848 return ret;
7849 }
7850
7851 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7852 {
7853 /*
7854 * This implies a barrier so that stores to dio_bio->bi_status before
7855 * this and loads of dio_bio->bi_status after this are fully ordered.
7856 */
7857 if (!refcount_dec_and_test(&dip->refs))
7858 return;
7859
7860 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7861 __endio_write_update_ordered(BTRFS_I(dip->inode),
7862 dip->logical_offset,
7863 dip->bytes,
7864 !dip->dio_bio->bi_status);
7865 } else {
7866 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7867 dip->logical_offset,
7868 dip->logical_offset + dip->bytes - 1);
7869 }
7870
7871 bio_endio(dip->dio_bio);
7872 kfree(dip);
7873 }
7874
7875 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7876 int mirror_num,
7877 unsigned long bio_flags)
7878 {
7879 struct btrfs_dio_private *dip = bio->bi_private;
7880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7881 blk_status_t ret;
7882
7883 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7884
7885 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7886 if (ret)
7887 return ret;
7888
7889 refcount_inc(&dip->refs);
7890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7891 if (ret)
7892 refcount_dec(&dip->refs);
7893 return ret;
7894 }
7895
7896 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7897 struct btrfs_io_bio *io_bio,
7898 const bool uptodate)
7899 {
7900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7901 const u32 sectorsize = fs_info->sectorsize;
7902 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7904 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7905 struct bio_vec bvec;
7906 struct bvec_iter iter;
7907 u64 start = io_bio->logical;
7908 u32 bio_offset = 0;
7909 blk_status_t err = BLK_STS_OK;
7910
7911 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7912 unsigned int i, nr_sectors, pgoff;
7913
7914 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7915 pgoff = bvec.bv_offset;
7916 for (i = 0; i < nr_sectors; i++) {
7917 ASSERT(pgoff < PAGE_SIZE);
7918 if (uptodate &&
7919 (!csum || !check_data_csum(inode, io_bio,
7920 bio_offset, bvec.bv_page,
7921 pgoff, start))) {
7922 clean_io_failure(fs_info, failure_tree, io_tree,
7923 start, bvec.bv_page,
7924 btrfs_ino(BTRFS_I(inode)),
7925 pgoff);
7926 } else {
7927 blk_status_t status;
7928
7929 ASSERT((start - io_bio->logical) < UINT_MAX);
7930 status = btrfs_submit_read_repair(inode,
7931 &io_bio->bio,
7932 start - io_bio->logical,
7933 bvec.bv_page, pgoff,
7934 start,
7935 start + sectorsize - 1,
7936 io_bio->mirror_num,
7937 submit_dio_repair_bio);
7938 if (status)
7939 err = status;
7940 }
7941 start += sectorsize;
7942 ASSERT(bio_offset + sectorsize > bio_offset);
7943 bio_offset += sectorsize;
7944 pgoff += sectorsize;
7945 }
7946 }
7947 return err;
7948 }
7949
7950 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7951 const u64 offset, const u64 bytes,
7952 const bool uptodate)
7953 {
7954 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7955 struct btrfs_ordered_extent *ordered = NULL;
7956 struct btrfs_workqueue *wq;
7957 u64 ordered_offset = offset;
7958 u64 ordered_bytes = bytes;
7959 u64 last_offset;
7960
7961 if (btrfs_is_free_space_inode(inode))
7962 wq = fs_info->endio_freespace_worker;
7963 else
7964 wq = fs_info->endio_write_workers;
7965
7966 while (ordered_offset < offset + bytes) {
7967 last_offset = ordered_offset;
7968 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7969 &ordered_offset,
7970 ordered_bytes,
7971 uptodate)) {
7972 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7973 NULL);
7974 btrfs_queue_work(wq, &ordered->work);
7975 }
7976
7977 /* No ordered extent found in the range, exit */
7978 if (ordered_offset == last_offset)
7979 return;
7980 /*
7981 * Our bio might span multiple ordered extents. In this case
7982 * we keep going until we have accounted the whole dio.
7983 */
7984 if (ordered_offset < offset + bytes) {
7985 ordered_bytes = offset + bytes - ordered_offset;
7986 ordered = NULL;
7987 }
7988 }
7989 }
7990
7991 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7992 struct bio *bio,
7993 u64 dio_file_offset)
7994 {
7995 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
7996 }
7997
7998 static void btrfs_end_dio_bio(struct bio *bio)
7999 {
8000 struct btrfs_dio_private *dip = bio->bi_private;
8001 blk_status_t err = bio->bi_status;
8002
8003 if (err)
8004 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8005 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8006 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8007 bio->bi_opf, bio->bi_iter.bi_sector,
8008 bio->bi_iter.bi_size, err);
8009
8010 if (bio_op(bio) == REQ_OP_READ) {
8011 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8012 !err);
8013 }
8014
8015 if (err)
8016 dip->dio_bio->bi_status = err;
8017
8018 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8019
8020 bio_put(bio);
8021 btrfs_dio_private_put(dip);
8022 }
8023
8024 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8025 struct inode *inode, u64 file_offset, int async_submit)
8026 {
8027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8028 struct btrfs_dio_private *dip = bio->bi_private;
8029 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8030 blk_status_t ret;
8031
8032 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8033 if (async_submit)
8034 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8035
8036 if (!write) {
8037 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8038 if (ret)
8039 goto err;
8040 }
8041
8042 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8043 goto map;
8044
8045 if (write && async_submit) {
8046 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8047 btrfs_submit_bio_start_direct_io);
8048 goto err;
8049 } else if (write) {
8050 /*
8051 * If we aren't doing async submit, calculate the csum of the
8052 * bio now.
8053 */
8054 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8055 if (ret)
8056 goto err;
8057 } else {
8058 u64 csum_offset;
8059
8060 csum_offset = file_offset - dip->logical_offset;
8061 csum_offset >>= fs_info->sectorsize_bits;
8062 csum_offset *= fs_info->csum_size;
8063 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8064 }
8065 map:
8066 ret = btrfs_map_bio(fs_info, bio, 0);
8067 err:
8068 return ret;
8069 }
8070
8071 /*
8072 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8073 * or ordered extents whether or not we submit any bios.
8074 */
8075 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8076 struct inode *inode,
8077 loff_t file_offset)
8078 {
8079 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8080 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8081 size_t dip_size;
8082 struct btrfs_dio_private *dip;
8083
8084 dip_size = sizeof(*dip);
8085 if (!write && csum) {
8086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8087 size_t nblocks;
8088
8089 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8090 dip_size += fs_info->csum_size * nblocks;
8091 }
8092
8093 dip = kzalloc(dip_size, GFP_NOFS);
8094 if (!dip)
8095 return NULL;
8096
8097 dip->inode = inode;
8098 dip->logical_offset = file_offset;
8099 dip->bytes = dio_bio->bi_iter.bi_size;
8100 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8101 dip->dio_bio = dio_bio;
8102 refcount_set(&dip->refs, 1);
8103 return dip;
8104 }
8105
8106 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
8107 struct bio *dio_bio, loff_t file_offset)
8108 {
8109 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8110 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8111 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8112 BTRFS_BLOCK_GROUP_RAID56_MASK);
8113 struct btrfs_dio_private *dip;
8114 struct bio *bio;
8115 u64 start_sector;
8116 int async_submit = 0;
8117 u64 submit_len;
8118 int clone_offset = 0;
8119 int clone_len;
8120 u64 logical;
8121 int ret;
8122 blk_status_t status;
8123 struct btrfs_io_geometry geom;
8124 struct btrfs_dio_data *dio_data = iomap->private;
8125 struct extent_map *em = NULL;
8126
8127 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8128 if (!dip) {
8129 if (!write) {
8130 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8131 file_offset + dio_bio->bi_iter.bi_size - 1);
8132 }
8133 dio_bio->bi_status = BLK_STS_RESOURCE;
8134 bio_endio(dio_bio);
8135 return BLK_QC_T_NONE;
8136 }
8137
8138 if (!write) {
8139 /*
8140 * Load the csums up front to reduce csum tree searches and
8141 * contention when submitting bios.
8142 *
8143 * If we have csums disabled this will do nothing.
8144 */
8145 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8146 if (status != BLK_STS_OK)
8147 goto out_err;
8148 }
8149
8150 start_sector = dio_bio->bi_iter.bi_sector;
8151 submit_len = dio_bio->bi_iter.bi_size;
8152
8153 do {
8154 logical = start_sector << 9;
8155 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8156 if (IS_ERR(em)) {
8157 status = errno_to_blk_status(PTR_ERR(em));
8158 em = NULL;
8159 goto out_err_em;
8160 }
8161 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8162 logical, submit_len, &geom);
8163 if (ret) {
8164 status = errno_to_blk_status(ret);
8165 goto out_err_em;
8166 }
8167 ASSERT(geom.len <= INT_MAX);
8168
8169 clone_len = min_t(int, submit_len, geom.len);
8170
8171 /*
8172 * This will never fail as it's passing GPF_NOFS and
8173 * the allocation is backed by btrfs_bioset.
8174 */
8175 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8176 bio->bi_private = dip;
8177 bio->bi_end_io = btrfs_end_dio_bio;
8178 btrfs_io_bio(bio)->logical = file_offset;
8179
8180 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8181 status = extract_ordered_extent(BTRFS_I(inode), bio,
8182 file_offset);
8183 if (status) {
8184 bio_put(bio);
8185 goto out_err;
8186 }
8187 }
8188
8189 ASSERT(submit_len >= clone_len);
8190 submit_len -= clone_len;
8191
8192 /*
8193 * Increase the count before we submit the bio so we know
8194 * the end IO handler won't happen before we increase the
8195 * count. Otherwise, the dip might get freed before we're
8196 * done setting it up.
8197 *
8198 * We transfer the initial reference to the last bio, so we
8199 * don't need to increment the reference count for the last one.
8200 */
8201 if (submit_len > 0) {
8202 refcount_inc(&dip->refs);
8203 /*
8204 * If we are submitting more than one bio, submit them
8205 * all asynchronously. The exception is RAID 5 or 6, as
8206 * asynchronous checksums make it difficult to collect
8207 * full stripe writes.
8208 */
8209 if (!raid56)
8210 async_submit = 1;
8211 }
8212
8213 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8214 async_submit);
8215 if (status) {
8216 bio_put(bio);
8217 if (submit_len > 0)
8218 refcount_dec(&dip->refs);
8219 goto out_err_em;
8220 }
8221
8222 dio_data->submitted += clone_len;
8223 clone_offset += clone_len;
8224 start_sector += clone_len >> 9;
8225 file_offset += clone_len;
8226
8227 free_extent_map(em);
8228 } while (submit_len > 0);
8229 return BLK_QC_T_NONE;
8230
8231 out_err_em:
8232 free_extent_map(em);
8233 out_err:
8234 dip->dio_bio->bi_status = status;
8235 btrfs_dio_private_put(dip);
8236
8237 return BLK_QC_T_NONE;
8238 }
8239
8240 const struct iomap_ops btrfs_dio_iomap_ops = {
8241 .iomap_begin = btrfs_dio_iomap_begin,
8242 .iomap_end = btrfs_dio_iomap_end,
8243 };
8244
8245 const struct iomap_dio_ops btrfs_dio_ops = {
8246 .submit_io = btrfs_submit_direct,
8247 };
8248
8249 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8250 u64 start, u64 len)
8251 {
8252 int ret;
8253
8254 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8255 if (ret)
8256 return ret;
8257
8258 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8259 }
8260
8261 int btrfs_readpage(struct file *file, struct page *page)
8262 {
8263 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8264 u64 start = page_offset(page);
8265 u64 end = start + PAGE_SIZE - 1;
8266 unsigned long bio_flags = 0;
8267 struct bio *bio = NULL;
8268 int ret;
8269
8270 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8271
8272 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8273 if (bio)
8274 ret = submit_one_bio(bio, 0, bio_flags);
8275 return ret;
8276 }
8277
8278 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8279 {
8280 struct inode *inode = page->mapping->host;
8281 int ret;
8282
8283 if (current->flags & PF_MEMALLOC) {
8284 redirty_page_for_writepage(wbc, page);
8285 unlock_page(page);
8286 return 0;
8287 }
8288
8289 /*
8290 * If we are under memory pressure we will call this directly from the
8291 * VM, we need to make sure we have the inode referenced for the ordered
8292 * extent. If not just return like we didn't do anything.
8293 */
8294 if (!igrab(inode)) {
8295 redirty_page_for_writepage(wbc, page);
8296 return AOP_WRITEPAGE_ACTIVATE;
8297 }
8298 ret = extent_write_full_page(page, wbc);
8299 btrfs_add_delayed_iput(inode);
8300 return ret;
8301 }
8302
8303 static int btrfs_writepages(struct address_space *mapping,
8304 struct writeback_control *wbc)
8305 {
8306 return extent_writepages(mapping, wbc);
8307 }
8308
8309 static void btrfs_readahead(struct readahead_control *rac)
8310 {
8311 extent_readahead(rac);
8312 }
8313
8314 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8315 {
8316 int ret = try_release_extent_mapping(page, gfp_flags);
8317 if (ret == 1)
8318 clear_page_extent_mapped(page);
8319 return ret;
8320 }
8321
8322 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8323 {
8324 if (PageWriteback(page) || PageDirty(page))
8325 return 0;
8326 return __btrfs_releasepage(page, gfp_flags);
8327 }
8328
8329 #ifdef CONFIG_MIGRATION
8330 static int btrfs_migratepage(struct address_space *mapping,
8331 struct page *newpage, struct page *page,
8332 enum migrate_mode mode)
8333 {
8334 int ret;
8335
8336 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8337 if (ret != MIGRATEPAGE_SUCCESS)
8338 return ret;
8339
8340 if (page_has_private(page))
8341 attach_page_private(newpage, detach_page_private(page));
8342
8343 if (PagePrivate2(page)) {
8344 ClearPagePrivate2(page);
8345 SetPagePrivate2(newpage);
8346 }
8347
8348 if (mode != MIGRATE_SYNC_NO_COPY)
8349 migrate_page_copy(newpage, page);
8350 else
8351 migrate_page_states(newpage, page);
8352 return MIGRATEPAGE_SUCCESS;
8353 }
8354 #endif
8355
8356 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8357 unsigned int length)
8358 {
8359 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8360 struct extent_io_tree *tree = &inode->io_tree;
8361 struct btrfs_ordered_extent *ordered;
8362 struct extent_state *cached_state = NULL;
8363 u64 page_start = page_offset(page);
8364 u64 page_end = page_start + PAGE_SIZE - 1;
8365 u64 start;
8366 u64 end;
8367 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8368 bool found_ordered = false;
8369 bool completed_ordered = false;
8370
8371 /*
8372 * we have the page locked, so new writeback can't start,
8373 * and the dirty bit won't be cleared while we are here.
8374 *
8375 * Wait for IO on this page so that we can safely clear
8376 * the PagePrivate2 bit and do ordered accounting
8377 */
8378 wait_on_page_writeback(page);
8379
8380 if (offset) {
8381 btrfs_releasepage(page, GFP_NOFS);
8382 return;
8383 }
8384
8385 if (!inode_evicting)
8386 lock_extent_bits(tree, page_start, page_end, &cached_state);
8387
8388 start = page_start;
8389 again:
8390 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8391 if (ordered) {
8392 found_ordered = true;
8393 end = min(page_end,
8394 ordered->file_offset + ordered->num_bytes - 1);
8395 /*
8396 * IO on this page will never be started, so we need to account
8397 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8398 * here, must leave that up for the ordered extent completion.
8399 */
8400 if (!inode_evicting)
8401 clear_extent_bit(tree, start, end,
8402 EXTENT_DELALLOC |
8403 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8404 EXTENT_DEFRAG, 1, 0, &cached_state);
8405 /*
8406 * whoever cleared the private bit is responsible
8407 * for the finish_ordered_io
8408 */
8409 if (TestClearPagePrivate2(page)) {
8410 spin_lock_irq(&inode->ordered_tree.lock);
8411 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8412 ordered->truncated_len = min(ordered->truncated_len,
8413 start - ordered->file_offset);
8414 spin_unlock_irq(&inode->ordered_tree.lock);
8415
8416 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8417 start,
8418 end - start + 1, 1)) {
8419 btrfs_finish_ordered_io(ordered);
8420 completed_ordered = true;
8421 }
8422 }
8423 btrfs_put_ordered_extent(ordered);
8424 if (!inode_evicting) {
8425 cached_state = NULL;
8426 lock_extent_bits(tree, start, end,
8427 &cached_state);
8428 }
8429
8430 start = end + 1;
8431 if (start < page_end)
8432 goto again;
8433 }
8434
8435 /*
8436 * Qgroup reserved space handler
8437 * Page here will be either
8438 * 1) Already written to disk or ordered extent already submitted
8439 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8440 * Qgroup will be handled by its qgroup_record then.
8441 * btrfs_qgroup_free_data() call will do nothing here.
8442 *
8443 * 2) Not written to disk yet
8444 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8445 * bit of its io_tree, and free the qgroup reserved data space.
8446 * Since the IO will never happen for this page.
8447 */
8448 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8449 if (!inode_evicting) {
8450 bool delete = true;
8451
8452 /*
8453 * If there's an ordered extent for this range and we have not
8454 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8455 * in the range for the ordered extent completion. We must also
8456 * not delete the range, otherwise we would lose that bit (and
8457 * any other bits set in the range). Make sure EXTENT_UPTODATE
8458 * is cleared if we don't delete, otherwise it can lead to
8459 * corruptions if the i_size is extented later.
8460 */
8461 if (found_ordered && !completed_ordered)
8462 delete = false;
8463 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8464 EXTENT_DELALLOC | EXTENT_UPTODATE |
8465 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8466 delete, &cached_state);
8467
8468 __btrfs_releasepage(page, GFP_NOFS);
8469 }
8470
8471 ClearPageChecked(page);
8472 clear_page_extent_mapped(page);
8473 }
8474
8475 /*
8476 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8477 * called from a page fault handler when a page is first dirtied. Hence we must
8478 * be careful to check for EOF conditions here. We set the page up correctly
8479 * for a written page which means we get ENOSPC checking when writing into
8480 * holes and correct delalloc and unwritten extent mapping on filesystems that
8481 * support these features.
8482 *
8483 * We are not allowed to take the i_mutex here so we have to play games to
8484 * protect against truncate races as the page could now be beyond EOF. Because
8485 * truncate_setsize() writes the inode size before removing pages, once we have
8486 * the page lock we can determine safely if the page is beyond EOF. If it is not
8487 * beyond EOF, then the page is guaranteed safe against truncation until we
8488 * unlock the page.
8489 */
8490 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8491 {
8492 struct page *page = vmf->page;
8493 struct inode *inode = file_inode(vmf->vma->vm_file);
8494 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8495 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8496 struct btrfs_ordered_extent *ordered;
8497 struct extent_state *cached_state = NULL;
8498 struct extent_changeset *data_reserved = NULL;
8499 unsigned long zero_start;
8500 loff_t size;
8501 vm_fault_t ret;
8502 int ret2;
8503 int reserved = 0;
8504 u64 reserved_space;
8505 u64 page_start;
8506 u64 page_end;
8507 u64 end;
8508
8509 reserved_space = PAGE_SIZE;
8510
8511 sb_start_pagefault(inode->i_sb);
8512 page_start = page_offset(page);
8513 page_end = page_start + PAGE_SIZE - 1;
8514 end = page_end;
8515
8516 /*
8517 * Reserving delalloc space after obtaining the page lock can lead to
8518 * deadlock. For example, if a dirty page is locked by this function
8519 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8520 * dirty page write out, then the btrfs_writepage() function could
8521 * end up waiting indefinitely to get a lock on the page currently
8522 * being processed by btrfs_page_mkwrite() function.
8523 */
8524 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8525 page_start, reserved_space);
8526 if (!ret2) {
8527 ret2 = file_update_time(vmf->vma->vm_file);
8528 reserved = 1;
8529 }
8530 if (ret2) {
8531 ret = vmf_error(ret2);
8532 if (reserved)
8533 goto out;
8534 goto out_noreserve;
8535 }
8536
8537 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8538 again:
8539 down_read(&BTRFS_I(inode)->i_mmap_lock);
8540 lock_page(page);
8541 size = i_size_read(inode);
8542
8543 if ((page->mapping != inode->i_mapping) ||
8544 (page_start >= size)) {
8545 /* page got truncated out from underneath us */
8546 goto out_unlock;
8547 }
8548 wait_on_page_writeback(page);
8549
8550 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8551 ret2 = set_page_extent_mapped(page);
8552 if (ret2 < 0) {
8553 ret = vmf_error(ret2);
8554 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8555 goto out_unlock;
8556 }
8557
8558 /*
8559 * we can't set the delalloc bits if there are pending ordered
8560 * extents. Drop our locks and wait for them to finish
8561 */
8562 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8563 PAGE_SIZE);
8564 if (ordered) {
8565 unlock_extent_cached(io_tree, page_start, page_end,
8566 &cached_state);
8567 unlock_page(page);
8568 up_read(&BTRFS_I(inode)->i_mmap_lock);
8569 btrfs_start_ordered_extent(ordered, 1);
8570 btrfs_put_ordered_extent(ordered);
8571 goto again;
8572 }
8573
8574 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8575 reserved_space = round_up(size - page_start,
8576 fs_info->sectorsize);
8577 if (reserved_space < PAGE_SIZE) {
8578 end = page_start + reserved_space - 1;
8579 btrfs_delalloc_release_space(BTRFS_I(inode),
8580 data_reserved, page_start,
8581 PAGE_SIZE - reserved_space, true);
8582 }
8583 }
8584
8585 /*
8586 * page_mkwrite gets called when the page is firstly dirtied after it's
8587 * faulted in, but write(2) could also dirty a page and set delalloc
8588 * bits, thus in this case for space account reason, we still need to
8589 * clear any delalloc bits within this page range since we have to
8590 * reserve data&meta space before lock_page() (see above comments).
8591 */
8592 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8593 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8594 EXTENT_DEFRAG, 0, 0, &cached_state);
8595
8596 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8597 &cached_state);
8598 if (ret2) {
8599 unlock_extent_cached(io_tree, page_start, page_end,
8600 &cached_state);
8601 ret = VM_FAULT_SIGBUS;
8602 goto out_unlock;
8603 }
8604
8605 /* page is wholly or partially inside EOF */
8606 if (page_start + PAGE_SIZE > size)
8607 zero_start = offset_in_page(size);
8608 else
8609 zero_start = PAGE_SIZE;
8610
8611 if (zero_start != PAGE_SIZE) {
8612 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8613 flush_dcache_page(page);
8614 }
8615 ClearPageChecked(page);
8616 set_page_dirty(page);
8617 SetPageUptodate(page);
8618
8619 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8620
8621 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8622 up_read(&BTRFS_I(inode)->i_mmap_lock);
8623
8624 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8625 sb_end_pagefault(inode->i_sb);
8626 extent_changeset_free(data_reserved);
8627 return VM_FAULT_LOCKED;
8628
8629 out_unlock:
8630 unlock_page(page);
8631 up_read(&BTRFS_I(inode)->i_mmap_lock);
8632 out:
8633 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8634 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8635 reserved_space, (ret != 0));
8636 out_noreserve:
8637 sb_end_pagefault(inode->i_sb);
8638 extent_changeset_free(data_reserved);
8639 return ret;
8640 }
8641
8642 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8643 {
8644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8645 struct btrfs_root *root = BTRFS_I(inode)->root;
8646 struct btrfs_block_rsv *rsv;
8647 int ret;
8648 struct btrfs_trans_handle *trans;
8649 u64 mask = fs_info->sectorsize - 1;
8650 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8651
8652 if (!skip_writeback) {
8653 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8654 (u64)-1);
8655 if (ret)
8656 return ret;
8657 }
8658
8659 /*
8660 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8661 * things going on here:
8662 *
8663 * 1) We need to reserve space to update our inode.
8664 *
8665 * 2) We need to have something to cache all the space that is going to
8666 * be free'd up by the truncate operation, but also have some slack
8667 * space reserved in case it uses space during the truncate (thank you
8668 * very much snapshotting).
8669 *
8670 * And we need these to be separate. The fact is we can use a lot of
8671 * space doing the truncate, and we have no earthly idea how much space
8672 * we will use, so we need the truncate reservation to be separate so it
8673 * doesn't end up using space reserved for updating the inode. We also
8674 * need to be able to stop the transaction and start a new one, which
8675 * means we need to be able to update the inode several times, and we
8676 * have no idea of knowing how many times that will be, so we can't just
8677 * reserve 1 item for the entirety of the operation, so that has to be
8678 * done separately as well.
8679 *
8680 * So that leaves us with
8681 *
8682 * 1) rsv - for the truncate reservation, which we will steal from the
8683 * transaction reservation.
8684 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8685 * updating the inode.
8686 */
8687 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8688 if (!rsv)
8689 return -ENOMEM;
8690 rsv->size = min_size;
8691 rsv->failfast = 1;
8692
8693 /*
8694 * 1 for the truncate slack space
8695 * 1 for updating the inode.
8696 */
8697 trans = btrfs_start_transaction(root, 2);
8698 if (IS_ERR(trans)) {
8699 ret = PTR_ERR(trans);
8700 goto out;
8701 }
8702
8703 /* Migrate the slack space for the truncate to our reserve */
8704 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8705 min_size, false);
8706 BUG_ON(ret);
8707
8708 /*
8709 * So if we truncate and then write and fsync we normally would just
8710 * write the extents that changed, which is a problem if we need to
8711 * first truncate that entire inode. So set this flag so we write out
8712 * all of the extents in the inode to the sync log so we're completely
8713 * safe.
8714 */
8715 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8716 trans->block_rsv = rsv;
8717
8718 while (1) {
8719 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8720 inode->i_size,
8721 BTRFS_EXTENT_DATA_KEY);
8722 trans->block_rsv = &fs_info->trans_block_rsv;
8723 if (ret != -ENOSPC && ret != -EAGAIN)
8724 break;
8725
8726 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8727 if (ret)
8728 break;
8729
8730 btrfs_end_transaction(trans);
8731 btrfs_btree_balance_dirty(fs_info);
8732
8733 trans = btrfs_start_transaction(root, 2);
8734 if (IS_ERR(trans)) {
8735 ret = PTR_ERR(trans);
8736 trans = NULL;
8737 break;
8738 }
8739
8740 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8741 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8742 rsv, min_size, false);
8743 BUG_ON(ret); /* shouldn't happen */
8744 trans->block_rsv = rsv;
8745 }
8746
8747 /*
8748 * We can't call btrfs_truncate_block inside a trans handle as we could
8749 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8750 * we've truncated everything except the last little bit, and can do
8751 * btrfs_truncate_block and then update the disk_i_size.
8752 */
8753 if (ret == NEED_TRUNCATE_BLOCK) {
8754 btrfs_end_transaction(trans);
8755 btrfs_btree_balance_dirty(fs_info);
8756
8757 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8758 if (ret)
8759 goto out;
8760 trans = btrfs_start_transaction(root, 1);
8761 if (IS_ERR(trans)) {
8762 ret = PTR_ERR(trans);
8763 goto out;
8764 }
8765 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8766 }
8767
8768 if (trans) {
8769 int ret2;
8770
8771 trans->block_rsv = &fs_info->trans_block_rsv;
8772 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8773 if (ret2 && !ret)
8774 ret = ret2;
8775
8776 ret2 = btrfs_end_transaction(trans);
8777 if (ret2 && !ret)
8778 ret = ret2;
8779 btrfs_btree_balance_dirty(fs_info);
8780 }
8781 out:
8782 btrfs_free_block_rsv(fs_info, rsv);
8783
8784 return ret;
8785 }
8786
8787 /*
8788 * create a new subvolume directory/inode (helper for the ioctl).
8789 */
8790 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8791 struct btrfs_root *new_root,
8792 struct btrfs_root *parent_root)
8793 {
8794 struct inode *inode;
8795 int err;
8796 u64 index = 0;
8797 u64 ino;
8798
8799 err = btrfs_get_free_objectid(new_root, &ino);
8800 if (err < 0)
8801 return err;
8802
8803 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino,
8804 S_IFDIR | (~current_umask() & S_IRWXUGO),
8805 &index);
8806 if (IS_ERR(inode))
8807 return PTR_ERR(inode);
8808 inode->i_op = &btrfs_dir_inode_operations;
8809 inode->i_fop = &btrfs_dir_file_operations;
8810
8811 set_nlink(inode, 1);
8812 btrfs_i_size_write(BTRFS_I(inode), 0);
8813 unlock_new_inode(inode);
8814
8815 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8816 if (err)
8817 btrfs_err(new_root->fs_info,
8818 "error inheriting subvolume %llu properties: %d",
8819 new_root->root_key.objectid, err);
8820
8821 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8822
8823 iput(inode);
8824 return err;
8825 }
8826
8827 struct inode *btrfs_alloc_inode(struct super_block *sb)
8828 {
8829 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8830 struct btrfs_inode *ei;
8831 struct inode *inode;
8832
8833 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8834 if (!ei)
8835 return NULL;
8836
8837 ei->root = NULL;
8838 ei->generation = 0;
8839 ei->last_trans = 0;
8840 ei->last_sub_trans = 0;
8841 ei->logged_trans = 0;
8842 ei->delalloc_bytes = 0;
8843 ei->new_delalloc_bytes = 0;
8844 ei->defrag_bytes = 0;
8845 ei->disk_i_size = 0;
8846 ei->flags = 0;
8847 ei->csum_bytes = 0;
8848 ei->index_cnt = (u64)-1;
8849 ei->dir_index = 0;
8850 ei->last_unlink_trans = 0;
8851 ei->last_reflink_trans = 0;
8852 ei->last_log_commit = 0;
8853
8854 spin_lock_init(&ei->lock);
8855 ei->outstanding_extents = 0;
8856 if (sb->s_magic != BTRFS_TEST_MAGIC)
8857 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8858 BTRFS_BLOCK_RSV_DELALLOC);
8859 ei->runtime_flags = 0;
8860 ei->prop_compress = BTRFS_COMPRESS_NONE;
8861 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8862
8863 ei->delayed_node = NULL;
8864
8865 ei->i_otime.tv_sec = 0;
8866 ei->i_otime.tv_nsec = 0;
8867
8868 inode = &ei->vfs_inode;
8869 extent_map_tree_init(&ei->extent_tree);
8870 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8871 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8872 IO_TREE_INODE_IO_FAILURE, inode);
8873 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8874 IO_TREE_INODE_FILE_EXTENT, inode);
8875 ei->io_tree.track_uptodate = true;
8876 ei->io_failure_tree.track_uptodate = true;
8877 atomic_set(&ei->sync_writers, 0);
8878 mutex_init(&ei->log_mutex);
8879 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8880 INIT_LIST_HEAD(&ei->delalloc_inodes);
8881 INIT_LIST_HEAD(&ei->delayed_iput);
8882 RB_CLEAR_NODE(&ei->rb_node);
8883 init_rwsem(&ei->i_mmap_lock);
8884
8885 return inode;
8886 }
8887
8888 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8889 void btrfs_test_destroy_inode(struct inode *inode)
8890 {
8891 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8892 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8893 }
8894 #endif
8895
8896 void btrfs_free_inode(struct inode *inode)
8897 {
8898 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8899 }
8900
8901 void btrfs_destroy_inode(struct inode *vfs_inode)
8902 {
8903 struct btrfs_ordered_extent *ordered;
8904 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8905 struct btrfs_root *root = inode->root;
8906
8907 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8908 WARN_ON(vfs_inode->i_data.nrpages);
8909 WARN_ON(inode->block_rsv.reserved);
8910 WARN_ON(inode->block_rsv.size);
8911 WARN_ON(inode->outstanding_extents);
8912 WARN_ON(inode->delalloc_bytes);
8913 WARN_ON(inode->new_delalloc_bytes);
8914 WARN_ON(inode->csum_bytes);
8915 WARN_ON(inode->defrag_bytes);
8916
8917 /*
8918 * This can happen where we create an inode, but somebody else also
8919 * created the same inode and we need to destroy the one we already
8920 * created.
8921 */
8922 if (!root)
8923 return;
8924
8925 while (1) {
8926 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8927 if (!ordered)
8928 break;
8929 else {
8930 btrfs_err(root->fs_info,
8931 "found ordered extent %llu %llu on inode cleanup",
8932 ordered->file_offset, ordered->num_bytes);
8933 btrfs_remove_ordered_extent(inode, ordered);
8934 btrfs_put_ordered_extent(ordered);
8935 btrfs_put_ordered_extent(ordered);
8936 }
8937 }
8938 btrfs_qgroup_check_reserved_leak(inode);
8939 inode_tree_del(inode);
8940 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8941 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8942 btrfs_put_root(inode->root);
8943 }
8944
8945 int btrfs_drop_inode(struct inode *inode)
8946 {
8947 struct btrfs_root *root = BTRFS_I(inode)->root;
8948
8949 if (root == NULL)
8950 return 1;
8951
8952 /* the snap/subvol tree is on deleting */
8953 if (btrfs_root_refs(&root->root_item) == 0)
8954 return 1;
8955 else
8956 return generic_drop_inode(inode);
8957 }
8958
8959 static void init_once(void *foo)
8960 {
8961 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8962
8963 inode_init_once(&ei->vfs_inode);
8964 }
8965
8966 void __cold btrfs_destroy_cachep(void)
8967 {
8968 /*
8969 * Make sure all delayed rcu free inodes are flushed before we
8970 * destroy cache.
8971 */
8972 rcu_barrier();
8973 kmem_cache_destroy(btrfs_inode_cachep);
8974 kmem_cache_destroy(btrfs_trans_handle_cachep);
8975 kmem_cache_destroy(btrfs_path_cachep);
8976 kmem_cache_destroy(btrfs_free_space_cachep);
8977 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8978 }
8979
8980 int __init btrfs_init_cachep(void)
8981 {
8982 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8983 sizeof(struct btrfs_inode), 0,
8984 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8985 init_once);
8986 if (!btrfs_inode_cachep)
8987 goto fail;
8988
8989 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8990 sizeof(struct btrfs_trans_handle), 0,
8991 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8992 if (!btrfs_trans_handle_cachep)
8993 goto fail;
8994
8995 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8996 sizeof(struct btrfs_path), 0,
8997 SLAB_MEM_SPREAD, NULL);
8998 if (!btrfs_path_cachep)
8999 goto fail;
9000
9001 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9002 sizeof(struct btrfs_free_space), 0,
9003 SLAB_MEM_SPREAD, NULL);
9004 if (!btrfs_free_space_cachep)
9005 goto fail;
9006
9007 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9008 PAGE_SIZE, PAGE_SIZE,
9009 SLAB_MEM_SPREAD, NULL);
9010 if (!btrfs_free_space_bitmap_cachep)
9011 goto fail;
9012
9013 return 0;
9014 fail:
9015 btrfs_destroy_cachep();
9016 return -ENOMEM;
9017 }
9018
9019 static int btrfs_getattr(struct user_namespace *mnt_userns,
9020 const struct path *path, struct kstat *stat,
9021 u32 request_mask, unsigned int flags)
9022 {
9023 u64 delalloc_bytes;
9024 u64 inode_bytes;
9025 struct inode *inode = d_inode(path->dentry);
9026 u32 blocksize = inode->i_sb->s_blocksize;
9027 u32 bi_flags = BTRFS_I(inode)->flags;
9028
9029 stat->result_mask |= STATX_BTIME;
9030 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9031 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9032 if (bi_flags & BTRFS_INODE_APPEND)
9033 stat->attributes |= STATX_ATTR_APPEND;
9034 if (bi_flags & BTRFS_INODE_COMPRESS)
9035 stat->attributes |= STATX_ATTR_COMPRESSED;
9036 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9037 stat->attributes |= STATX_ATTR_IMMUTABLE;
9038 if (bi_flags & BTRFS_INODE_NODUMP)
9039 stat->attributes |= STATX_ATTR_NODUMP;
9040
9041 stat->attributes_mask |= (STATX_ATTR_APPEND |
9042 STATX_ATTR_COMPRESSED |
9043 STATX_ATTR_IMMUTABLE |
9044 STATX_ATTR_NODUMP);
9045
9046 generic_fillattr(&init_user_ns, inode, stat);
9047 stat->dev = BTRFS_I(inode)->root->anon_dev;
9048
9049 spin_lock(&BTRFS_I(inode)->lock);
9050 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9051 inode_bytes = inode_get_bytes(inode);
9052 spin_unlock(&BTRFS_I(inode)->lock);
9053 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9054 ALIGN(delalloc_bytes, blocksize)) >> 9;
9055 return 0;
9056 }
9057
9058 static int btrfs_rename_exchange(struct inode *old_dir,
9059 struct dentry *old_dentry,
9060 struct inode *new_dir,
9061 struct dentry *new_dentry)
9062 {
9063 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9064 struct btrfs_trans_handle *trans;
9065 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9066 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9067 struct inode *new_inode = new_dentry->d_inode;
9068 struct inode *old_inode = old_dentry->d_inode;
9069 struct timespec64 ctime = current_time(old_inode);
9070 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9071 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9072 u64 old_idx = 0;
9073 u64 new_idx = 0;
9074 int ret;
9075 int ret2;
9076 bool root_log_pinned = false;
9077 bool dest_log_pinned = false;
9078
9079 /* we only allow rename subvolume link between subvolumes */
9080 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9081 return -EXDEV;
9082
9083 /* close the race window with snapshot create/destroy ioctl */
9084 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9085 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9086 down_read(&fs_info->subvol_sem);
9087
9088 /*
9089 * We want to reserve the absolute worst case amount of items. So if
9090 * both inodes are subvols and we need to unlink them then that would
9091 * require 4 item modifications, but if they are both normal inodes it
9092 * would require 5 item modifications, so we'll assume their normal
9093 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9094 * should cover the worst case number of items we'll modify.
9095 */
9096 trans = btrfs_start_transaction(root, 12);
9097 if (IS_ERR(trans)) {
9098 ret = PTR_ERR(trans);
9099 goto out_notrans;
9100 }
9101
9102 if (dest != root) {
9103 ret = btrfs_record_root_in_trans(trans, dest);
9104 if (ret)
9105 goto out_fail;
9106 }
9107
9108 /*
9109 * We need to find a free sequence number both in the source and
9110 * in the destination directory for the exchange.
9111 */
9112 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9113 if (ret)
9114 goto out_fail;
9115 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9116 if (ret)
9117 goto out_fail;
9118
9119 BTRFS_I(old_inode)->dir_index = 0ULL;
9120 BTRFS_I(new_inode)->dir_index = 0ULL;
9121
9122 /* Reference for the source. */
9123 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9124 /* force full log commit if subvolume involved. */
9125 btrfs_set_log_full_commit(trans);
9126 } else {
9127 btrfs_pin_log_trans(root);
9128 root_log_pinned = true;
9129 ret = btrfs_insert_inode_ref(trans, dest,
9130 new_dentry->d_name.name,
9131 new_dentry->d_name.len,
9132 old_ino,
9133 btrfs_ino(BTRFS_I(new_dir)),
9134 old_idx);
9135 if (ret)
9136 goto out_fail;
9137 }
9138
9139 /* And now for the dest. */
9140 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9141 /* force full log commit if subvolume involved. */
9142 btrfs_set_log_full_commit(trans);
9143 } else {
9144 btrfs_pin_log_trans(dest);
9145 dest_log_pinned = true;
9146 ret = btrfs_insert_inode_ref(trans, root,
9147 old_dentry->d_name.name,
9148 old_dentry->d_name.len,
9149 new_ino,
9150 btrfs_ino(BTRFS_I(old_dir)),
9151 new_idx);
9152 if (ret)
9153 goto out_fail;
9154 }
9155
9156 /* Update inode version and ctime/mtime. */
9157 inode_inc_iversion(old_dir);
9158 inode_inc_iversion(new_dir);
9159 inode_inc_iversion(old_inode);
9160 inode_inc_iversion(new_inode);
9161 old_dir->i_ctime = old_dir->i_mtime = ctime;
9162 new_dir->i_ctime = new_dir->i_mtime = ctime;
9163 old_inode->i_ctime = ctime;
9164 new_inode->i_ctime = ctime;
9165
9166 if (old_dentry->d_parent != new_dentry->d_parent) {
9167 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9168 BTRFS_I(old_inode), 1);
9169 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9170 BTRFS_I(new_inode), 1);
9171 }
9172
9173 /* src is a subvolume */
9174 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9175 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9176 } else { /* src is an inode */
9177 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9178 BTRFS_I(old_dentry->d_inode),
9179 old_dentry->d_name.name,
9180 old_dentry->d_name.len);
9181 if (!ret)
9182 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9183 }
9184 if (ret) {
9185 btrfs_abort_transaction(trans, ret);
9186 goto out_fail;
9187 }
9188
9189 /* dest is a subvolume */
9190 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9191 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9192 } else { /* dest is an inode */
9193 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9194 BTRFS_I(new_dentry->d_inode),
9195 new_dentry->d_name.name,
9196 new_dentry->d_name.len);
9197 if (!ret)
9198 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9199 }
9200 if (ret) {
9201 btrfs_abort_transaction(trans, ret);
9202 goto out_fail;
9203 }
9204
9205 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9206 new_dentry->d_name.name,
9207 new_dentry->d_name.len, 0, old_idx);
9208 if (ret) {
9209 btrfs_abort_transaction(trans, ret);
9210 goto out_fail;
9211 }
9212
9213 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9214 old_dentry->d_name.name,
9215 old_dentry->d_name.len, 0, new_idx);
9216 if (ret) {
9217 btrfs_abort_transaction(trans, ret);
9218 goto out_fail;
9219 }
9220
9221 if (old_inode->i_nlink == 1)
9222 BTRFS_I(old_inode)->dir_index = old_idx;
9223 if (new_inode->i_nlink == 1)
9224 BTRFS_I(new_inode)->dir_index = new_idx;
9225
9226 if (root_log_pinned) {
9227 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9228 new_dentry->d_parent);
9229 btrfs_end_log_trans(root);
9230 root_log_pinned = false;
9231 }
9232 if (dest_log_pinned) {
9233 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9234 old_dentry->d_parent);
9235 btrfs_end_log_trans(dest);
9236 dest_log_pinned = false;
9237 }
9238 out_fail:
9239 /*
9240 * If we have pinned a log and an error happened, we unpin tasks
9241 * trying to sync the log and force them to fallback to a transaction
9242 * commit if the log currently contains any of the inodes involved in
9243 * this rename operation (to ensure we do not persist a log with an
9244 * inconsistent state for any of these inodes or leading to any
9245 * inconsistencies when replayed). If the transaction was aborted, the
9246 * abortion reason is propagated to userspace when attempting to commit
9247 * the transaction. If the log does not contain any of these inodes, we
9248 * allow the tasks to sync it.
9249 */
9250 if (ret && (root_log_pinned || dest_log_pinned)) {
9251 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9252 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9253 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9254 (new_inode &&
9255 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9256 btrfs_set_log_full_commit(trans);
9257
9258 if (root_log_pinned) {
9259 btrfs_end_log_trans(root);
9260 root_log_pinned = false;
9261 }
9262 if (dest_log_pinned) {
9263 btrfs_end_log_trans(dest);
9264 dest_log_pinned = false;
9265 }
9266 }
9267 ret2 = btrfs_end_transaction(trans);
9268 ret = ret ? ret : ret2;
9269 out_notrans:
9270 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9271 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9272 up_read(&fs_info->subvol_sem);
9273
9274 return ret;
9275 }
9276
9277 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9278 struct btrfs_root *root,
9279 struct inode *dir,
9280 struct dentry *dentry)
9281 {
9282 int ret;
9283 struct inode *inode;
9284 u64 objectid;
9285 u64 index;
9286
9287 ret = btrfs_get_free_objectid(root, &objectid);
9288 if (ret)
9289 return ret;
9290
9291 inode = btrfs_new_inode(trans, root, dir,
9292 dentry->d_name.name,
9293 dentry->d_name.len,
9294 btrfs_ino(BTRFS_I(dir)),
9295 objectid,
9296 S_IFCHR | WHITEOUT_MODE,
9297 &index);
9298
9299 if (IS_ERR(inode)) {
9300 ret = PTR_ERR(inode);
9301 return ret;
9302 }
9303
9304 inode->i_op = &btrfs_special_inode_operations;
9305 init_special_inode(inode, inode->i_mode,
9306 WHITEOUT_DEV);
9307
9308 ret = btrfs_init_inode_security(trans, inode, dir,
9309 &dentry->d_name);
9310 if (ret)
9311 goto out;
9312
9313 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9314 BTRFS_I(inode), 0, index);
9315 if (ret)
9316 goto out;
9317
9318 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9319 out:
9320 unlock_new_inode(inode);
9321 if (ret)
9322 inode_dec_link_count(inode);
9323 iput(inode);
9324
9325 return ret;
9326 }
9327
9328 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9329 struct inode *new_dir, struct dentry *new_dentry,
9330 unsigned int flags)
9331 {
9332 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9333 struct btrfs_trans_handle *trans;
9334 unsigned int trans_num_items;
9335 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9336 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9337 struct inode *new_inode = d_inode(new_dentry);
9338 struct inode *old_inode = d_inode(old_dentry);
9339 u64 index = 0;
9340 int ret;
9341 int ret2;
9342 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9343 bool log_pinned = false;
9344
9345 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9346 return -EPERM;
9347
9348 /* we only allow rename subvolume link between subvolumes */
9349 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9350 return -EXDEV;
9351
9352 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9353 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9354 return -ENOTEMPTY;
9355
9356 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9357 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9358 return -ENOTEMPTY;
9359
9360
9361 /* check for collisions, even if the name isn't there */
9362 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9363 new_dentry->d_name.name,
9364 new_dentry->d_name.len);
9365
9366 if (ret) {
9367 if (ret == -EEXIST) {
9368 /* we shouldn't get
9369 * eexist without a new_inode */
9370 if (WARN_ON(!new_inode)) {
9371 return ret;
9372 }
9373 } else {
9374 /* maybe -EOVERFLOW */
9375 return ret;
9376 }
9377 }
9378 ret = 0;
9379
9380 /*
9381 * we're using rename to replace one file with another. Start IO on it
9382 * now so we don't add too much work to the end of the transaction
9383 */
9384 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9385 filemap_flush(old_inode->i_mapping);
9386
9387 /* close the racy window with snapshot create/destroy ioctl */
9388 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9389 down_read(&fs_info->subvol_sem);
9390 /*
9391 * We want to reserve the absolute worst case amount of items. So if
9392 * both inodes are subvols and we need to unlink them then that would
9393 * require 4 item modifications, but if they are both normal inodes it
9394 * would require 5 item modifications, so we'll assume they are normal
9395 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9396 * should cover the worst case number of items we'll modify.
9397 * If our rename has the whiteout flag, we need more 5 units for the
9398 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9399 * when selinux is enabled).
9400 */
9401 trans_num_items = 11;
9402 if (flags & RENAME_WHITEOUT)
9403 trans_num_items += 5;
9404 trans = btrfs_start_transaction(root, trans_num_items);
9405 if (IS_ERR(trans)) {
9406 ret = PTR_ERR(trans);
9407 goto out_notrans;
9408 }
9409
9410 if (dest != root) {
9411 ret = btrfs_record_root_in_trans(trans, dest);
9412 if (ret)
9413 goto out_fail;
9414 }
9415
9416 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9417 if (ret)
9418 goto out_fail;
9419
9420 BTRFS_I(old_inode)->dir_index = 0ULL;
9421 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9422 /* force full log commit if subvolume involved. */
9423 btrfs_set_log_full_commit(trans);
9424 } else {
9425 btrfs_pin_log_trans(root);
9426 log_pinned = true;
9427 ret = btrfs_insert_inode_ref(trans, dest,
9428 new_dentry->d_name.name,
9429 new_dentry->d_name.len,
9430 old_ino,
9431 btrfs_ino(BTRFS_I(new_dir)), index);
9432 if (ret)
9433 goto out_fail;
9434 }
9435
9436 inode_inc_iversion(old_dir);
9437 inode_inc_iversion(new_dir);
9438 inode_inc_iversion(old_inode);
9439 old_dir->i_ctime = old_dir->i_mtime =
9440 new_dir->i_ctime = new_dir->i_mtime =
9441 old_inode->i_ctime = current_time(old_dir);
9442
9443 if (old_dentry->d_parent != new_dentry->d_parent)
9444 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9445 BTRFS_I(old_inode), 1);
9446
9447 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9448 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9449 } else {
9450 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9451 BTRFS_I(d_inode(old_dentry)),
9452 old_dentry->d_name.name,
9453 old_dentry->d_name.len);
9454 if (!ret)
9455 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9456 }
9457 if (ret) {
9458 btrfs_abort_transaction(trans, ret);
9459 goto out_fail;
9460 }
9461
9462 if (new_inode) {
9463 inode_inc_iversion(new_inode);
9464 new_inode->i_ctime = current_time(new_inode);
9465 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9466 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9467 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9468 BUG_ON(new_inode->i_nlink == 0);
9469 } else {
9470 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9471 BTRFS_I(d_inode(new_dentry)),
9472 new_dentry->d_name.name,
9473 new_dentry->d_name.len);
9474 }
9475 if (!ret && new_inode->i_nlink == 0)
9476 ret = btrfs_orphan_add(trans,
9477 BTRFS_I(d_inode(new_dentry)));
9478 if (ret) {
9479 btrfs_abort_transaction(trans, ret);
9480 goto out_fail;
9481 }
9482 }
9483
9484 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9485 new_dentry->d_name.name,
9486 new_dentry->d_name.len, 0, index);
9487 if (ret) {
9488 btrfs_abort_transaction(trans, ret);
9489 goto out_fail;
9490 }
9491
9492 if (old_inode->i_nlink == 1)
9493 BTRFS_I(old_inode)->dir_index = index;
9494
9495 if (log_pinned) {
9496 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9497 new_dentry->d_parent);
9498 btrfs_end_log_trans(root);
9499 log_pinned = false;
9500 }
9501
9502 if (flags & RENAME_WHITEOUT) {
9503 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9504 old_dentry);
9505
9506 if (ret) {
9507 btrfs_abort_transaction(trans, ret);
9508 goto out_fail;
9509 }
9510 }
9511 out_fail:
9512 /*
9513 * If we have pinned the log and an error happened, we unpin tasks
9514 * trying to sync the log and force them to fallback to a transaction
9515 * commit if the log currently contains any of the inodes involved in
9516 * this rename operation (to ensure we do not persist a log with an
9517 * inconsistent state for any of these inodes or leading to any
9518 * inconsistencies when replayed). If the transaction was aborted, the
9519 * abortion reason is propagated to userspace when attempting to commit
9520 * the transaction. If the log does not contain any of these inodes, we
9521 * allow the tasks to sync it.
9522 */
9523 if (ret && log_pinned) {
9524 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9525 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9526 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9527 (new_inode &&
9528 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9529 btrfs_set_log_full_commit(trans);
9530
9531 btrfs_end_log_trans(root);
9532 log_pinned = false;
9533 }
9534 ret2 = btrfs_end_transaction(trans);
9535 ret = ret ? ret : ret2;
9536 out_notrans:
9537 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9538 up_read(&fs_info->subvol_sem);
9539
9540 return ret;
9541 }
9542
9543 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9544 struct dentry *old_dentry, struct inode *new_dir,
9545 struct dentry *new_dentry, unsigned int flags)
9546 {
9547 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9548 return -EINVAL;
9549
9550 if (flags & RENAME_EXCHANGE)
9551 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9552 new_dentry);
9553
9554 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9555 }
9556
9557 struct btrfs_delalloc_work {
9558 struct inode *inode;
9559 struct completion completion;
9560 struct list_head list;
9561 struct btrfs_work work;
9562 };
9563
9564 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9565 {
9566 struct btrfs_delalloc_work *delalloc_work;
9567 struct inode *inode;
9568
9569 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9570 work);
9571 inode = delalloc_work->inode;
9572 filemap_flush(inode->i_mapping);
9573 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9574 &BTRFS_I(inode)->runtime_flags))
9575 filemap_flush(inode->i_mapping);
9576
9577 iput(inode);
9578 complete(&delalloc_work->completion);
9579 }
9580
9581 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9582 {
9583 struct btrfs_delalloc_work *work;
9584
9585 work = kmalloc(sizeof(*work), GFP_NOFS);
9586 if (!work)
9587 return NULL;
9588
9589 init_completion(&work->completion);
9590 INIT_LIST_HEAD(&work->list);
9591 work->inode = inode;
9592 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9593
9594 return work;
9595 }
9596
9597 /*
9598 * some fairly slow code that needs optimization. This walks the list
9599 * of all the inodes with pending delalloc and forces them to disk.
9600 */
9601 static int start_delalloc_inodes(struct btrfs_root *root,
9602 struct writeback_control *wbc, bool snapshot,
9603 bool in_reclaim_context)
9604 {
9605 struct btrfs_inode *binode;
9606 struct inode *inode;
9607 struct btrfs_delalloc_work *work, *next;
9608 struct list_head works;
9609 struct list_head splice;
9610 int ret = 0;
9611 bool full_flush = wbc->nr_to_write == LONG_MAX;
9612
9613 INIT_LIST_HEAD(&works);
9614 INIT_LIST_HEAD(&splice);
9615
9616 mutex_lock(&root->delalloc_mutex);
9617 spin_lock(&root->delalloc_lock);
9618 list_splice_init(&root->delalloc_inodes, &splice);
9619 while (!list_empty(&splice)) {
9620 binode = list_entry(splice.next, struct btrfs_inode,
9621 delalloc_inodes);
9622
9623 list_move_tail(&binode->delalloc_inodes,
9624 &root->delalloc_inodes);
9625
9626 if (in_reclaim_context &&
9627 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9628 continue;
9629
9630 inode = igrab(&binode->vfs_inode);
9631 if (!inode) {
9632 cond_resched_lock(&root->delalloc_lock);
9633 continue;
9634 }
9635 spin_unlock(&root->delalloc_lock);
9636
9637 if (snapshot)
9638 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9639 &binode->runtime_flags);
9640 if (full_flush) {
9641 work = btrfs_alloc_delalloc_work(inode);
9642 if (!work) {
9643 iput(inode);
9644 ret = -ENOMEM;
9645 goto out;
9646 }
9647 list_add_tail(&work->list, &works);
9648 btrfs_queue_work(root->fs_info->flush_workers,
9649 &work->work);
9650 } else {
9651 ret = sync_inode(inode, wbc);
9652 if (!ret &&
9653 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9654 &BTRFS_I(inode)->runtime_flags))
9655 ret = sync_inode(inode, wbc);
9656 btrfs_add_delayed_iput(inode);
9657 if (ret || wbc->nr_to_write <= 0)
9658 goto out;
9659 }
9660 cond_resched();
9661 spin_lock(&root->delalloc_lock);
9662 }
9663 spin_unlock(&root->delalloc_lock);
9664
9665 out:
9666 list_for_each_entry_safe(work, next, &works, list) {
9667 list_del_init(&work->list);
9668 wait_for_completion(&work->completion);
9669 kfree(work);
9670 }
9671
9672 if (!list_empty(&splice)) {
9673 spin_lock(&root->delalloc_lock);
9674 list_splice_tail(&splice, &root->delalloc_inodes);
9675 spin_unlock(&root->delalloc_lock);
9676 }
9677 mutex_unlock(&root->delalloc_mutex);
9678 return ret;
9679 }
9680
9681 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9682 {
9683 struct writeback_control wbc = {
9684 .nr_to_write = LONG_MAX,
9685 .sync_mode = WB_SYNC_NONE,
9686 .range_start = 0,
9687 .range_end = LLONG_MAX,
9688 };
9689 struct btrfs_fs_info *fs_info = root->fs_info;
9690
9691 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9692 return -EROFS;
9693
9694 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9695 }
9696
9697 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9698 bool in_reclaim_context)
9699 {
9700 struct writeback_control wbc = {
9701 .nr_to_write = nr,
9702 .sync_mode = WB_SYNC_NONE,
9703 .range_start = 0,
9704 .range_end = LLONG_MAX,
9705 };
9706 struct btrfs_root *root;
9707 struct list_head splice;
9708 int ret;
9709
9710 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9711 return -EROFS;
9712
9713 INIT_LIST_HEAD(&splice);
9714
9715 mutex_lock(&fs_info->delalloc_root_mutex);
9716 spin_lock(&fs_info->delalloc_root_lock);
9717 list_splice_init(&fs_info->delalloc_roots, &splice);
9718 while (!list_empty(&splice)) {
9719 /*
9720 * Reset nr_to_write here so we know that we're doing a full
9721 * flush.
9722 */
9723 if (nr == LONG_MAX)
9724 wbc.nr_to_write = LONG_MAX;
9725
9726 root = list_first_entry(&splice, struct btrfs_root,
9727 delalloc_root);
9728 root = btrfs_grab_root(root);
9729 BUG_ON(!root);
9730 list_move_tail(&root->delalloc_root,
9731 &fs_info->delalloc_roots);
9732 spin_unlock(&fs_info->delalloc_root_lock);
9733
9734 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9735 btrfs_put_root(root);
9736 if (ret < 0 || wbc.nr_to_write <= 0)
9737 goto out;
9738 spin_lock(&fs_info->delalloc_root_lock);
9739 }
9740 spin_unlock(&fs_info->delalloc_root_lock);
9741
9742 ret = 0;
9743 out:
9744 if (!list_empty(&splice)) {
9745 spin_lock(&fs_info->delalloc_root_lock);
9746 list_splice_tail(&splice, &fs_info->delalloc_roots);
9747 spin_unlock(&fs_info->delalloc_root_lock);
9748 }
9749 mutex_unlock(&fs_info->delalloc_root_mutex);
9750 return ret;
9751 }
9752
9753 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9754 struct dentry *dentry, const char *symname)
9755 {
9756 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9757 struct btrfs_trans_handle *trans;
9758 struct btrfs_root *root = BTRFS_I(dir)->root;
9759 struct btrfs_path *path;
9760 struct btrfs_key key;
9761 struct inode *inode = NULL;
9762 int err;
9763 u64 objectid;
9764 u64 index = 0;
9765 int name_len;
9766 int datasize;
9767 unsigned long ptr;
9768 struct btrfs_file_extent_item *ei;
9769 struct extent_buffer *leaf;
9770
9771 name_len = strlen(symname);
9772 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9773 return -ENAMETOOLONG;
9774
9775 /*
9776 * 2 items for inode item and ref
9777 * 2 items for dir items
9778 * 1 item for updating parent inode item
9779 * 1 item for the inline extent item
9780 * 1 item for xattr if selinux is on
9781 */
9782 trans = btrfs_start_transaction(root, 7);
9783 if (IS_ERR(trans))
9784 return PTR_ERR(trans);
9785
9786 err = btrfs_get_free_objectid(root, &objectid);
9787 if (err)
9788 goto out_unlock;
9789
9790 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9791 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9792 objectid, S_IFLNK|S_IRWXUGO, &index);
9793 if (IS_ERR(inode)) {
9794 err = PTR_ERR(inode);
9795 inode = NULL;
9796 goto out_unlock;
9797 }
9798
9799 /*
9800 * If the active LSM wants to access the inode during
9801 * d_instantiate it needs these. Smack checks to see
9802 * if the filesystem supports xattrs by looking at the
9803 * ops vector.
9804 */
9805 inode->i_fop = &btrfs_file_operations;
9806 inode->i_op = &btrfs_file_inode_operations;
9807 inode->i_mapping->a_ops = &btrfs_aops;
9808
9809 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9810 if (err)
9811 goto out_unlock;
9812
9813 path = btrfs_alloc_path();
9814 if (!path) {
9815 err = -ENOMEM;
9816 goto out_unlock;
9817 }
9818 key.objectid = btrfs_ino(BTRFS_I(inode));
9819 key.offset = 0;
9820 key.type = BTRFS_EXTENT_DATA_KEY;
9821 datasize = btrfs_file_extent_calc_inline_size(name_len);
9822 err = btrfs_insert_empty_item(trans, root, path, &key,
9823 datasize);
9824 if (err) {
9825 btrfs_free_path(path);
9826 goto out_unlock;
9827 }
9828 leaf = path->nodes[0];
9829 ei = btrfs_item_ptr(leaf, path->slots[0],
9830 struct btrfs_file_extent_item);
9831 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9832 btrfs_set_file_extent_type(leaf, ei,
9833 BTRFS_FILE_EXTENT_INLINE);
9834 btrfs_set_file_extent_encryption(leaf, ei, 0);
9835 btrfs_set_file_extent_compression(leaf, ei, 0);
9836 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9837 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9838
9839 ptr = btrfs_file_extent_inline_start(ei);
9840 write_extent_buffer(leaf, symname, ptr, name_len);
9841 btrfs_mark_buffer_dirty(leaf);
9842 btrfs_free_path(path);
9843
9844 inode->i_op = &btrfs_symlink_inode_operations;
9845 inode_nohighmem(inode);
9846 inode_set_bytes(inode, name_len);
9847 btrfs_i_size_write(BTRFS_I(inode), name_len);
9848 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9849 /*
9850 * Last step, add directory indexes for our symlink inode. This is the
9851 * last step to avoid extra cleanup of these indexes if an error happens
9852 * elsewhere above.
9853 */
9854 if (!err)
9855 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9856 BTRFS_I(inode), 0, index);
9857 if (err)
9858 goto out_unlock;
9859
9860 d_instantiate_new(dentry, inode);
9861
9862 out_unlock:
9863 btrfs_end_transaction(trans);
9864 if (err && inode) {
9865 inode_dec_link_count(inode);
9866 discard_new_inode(inode);
9867 }
9868 btrfs_btree_balance_dirty(fs_info);
9869 return err;
9870 }
9871
9872 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9873 struct btrfs_trans_handle *trans_in,
9874 struct btrfs_inode *inode,
9875 struct btrfs_key *ins,
9876 u64 file_offset)
9877 {
9878 struct btrfs_file_extent_item stack_fi;
9879 struct btrfs_replace_extent_info extent_info;
9880 struct btrfs_trans_handle *trans = trans_in;
9881 struct btrfs_path *path;
9882 u64 start = ins->objectid;
9883 u64 len = ins->offset;
9884 int qgroup_released;
9885 int ret;
9886
9887 memset(&stack_fi, 0, sizeof(stack_fi));
9888
9889 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9890 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9891 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9892 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9893 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9894 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9895 /* Encryption and other encoding is reserved and all 0 */
9896
9897 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9898 if (qgroup_released < 0)
9899 return ERR_PTR(qgroup_released);
9900
9901 if (trans) {
9902 ret = insert_reserved_file_extent(trans, inode,
9903 file_offset, &stack_fi,
9904 true, qgroup_released);
9905 if (ret)
9906 goto free_qgroup;
9907 return trans;
9908 }
9909
9910 extent_info.disk_offset = start;
9911 extent_info.disk_len = len;
9912 extent_info.data_offset = 0;
9913 extent_info.data_len = len;
9914 extent_info.file_offset = file_offset;
9915 extent_info.extent_buf = (char *)&stack_fi;
9916 extent_info.is_new_extent = true;
9917 extent_info.qgroup_reserved = qgroup_released;
9918 extent_info.insertions = 0;
9919
9920 path = btrfs_alloc_path();
9921 if (!path) {
9922 ret = -ENOMEM;
9923 goto free_qgroup;
9924 }
9925
9926 ret = btrfs_replace_file_extents(inode, path, file_offset,
9927 file_offset + len - 1, &extent_info,
9928 &trans);
9929 btrfs_free_path(path);
9930 if (ret)
9931 goto free_qgroup;
9932 return trans;
9933
9934 free_qgroup:
9935 /*
9936 * We have released qgroup data range at the beginning of the function,
9937 * and normally qgroup_released bytes will be freed when committing
9938 * transaction.
9939 * But if we error out early, we have to free what we have released
9940 * or we leak qgroup data reservation.
9941 */
9942 btrfs_qgroup_free_refroot(inode->root->fs_info,
9943 inode->root->root_key.objectid, qgroup_released,
9944 BTRFS_QGROUP_RSV_DATA);
9945 return ERR_PTR(ret);
9946 }
9947
9948 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9949 u64 start, u64 num_bytes, u64 min_size,
9950 loff_t actual_len, u64 *alloc_hint,
9951 struct btrfs_trans_handle *trans)
9952 {
9953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9954 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9955 struct extent_map *em;
9956 struct btrfs_root *root = BTRFS_I(inode)->root;
9957 struct btrfs_key ins;
9958 u64 cur_offset = start;
9959 u64 clear_offset = start;
9960 u64 i_size;
9961 u64 cur_bytes;
9962 u64 last_alloc = (u64)-1;
9963 int ret = 0;
9964 bool own_trans = true;
9965 u64 end = start + num_bytes - 1;
9966
9967 if (trans)
9968 own_trans = false;
9969 while (num_bytes > 0) {
9970 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9971 cur_bytes = max(cur_bytes, min_size);
9972 /*
9973 * If we are severely fragmented we could end up with really
9974 * small allocations, so if the allocator is returning small
9975 * chunks lets make its job easier by only searching for those
9976 * sized chunks.
9977 */
9978 cur_bytes = min(cur_bytes, last_alloc);
9979 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9980 min_size, 0, *alloc_hint, &ins, 1, 0);
9981 if (ret)
9982 break;
9983
9984 /*
9985 * We've reserved this space, and thus converted it from
9986 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9987 * from here on out we will only need to clear our reservation
9988 * for the remaining unreserved area, so advance our
9989 * clear_offset by our extent size.
9990 */
9991 clear_offset += ins.offset;
9992
9993 last_alloc = ins.offset;
9994 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9995 &ins, cur_offset);
9996 /*
9997 * Now that we inserted the prealloc extent we can finally
9998 * decrement the number of reservations in the block group.
9999 * If we did it before, we could race with relocation and have
10000 * relocation miss the reserved extent, making it fail later.
10001 */
10002 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10003 if (IS_ERR(trans)) {
10004 ret = PTR_ERR(trans);
10005 btrfs_free_reserved_extent(fs_info, ins.objectid,
10006 ins.offset, 0);
10007 break;
10008 }
10009
10010 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10011 cur_offset + ins.offset -1, 0);
10012
10013 em = alloc_extent_map();
10014 if (!em) {
10015 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10016 &BTRFS_I(inode)->runtime_flags);
10017 goto next;
10018 }
10019
10020 em->start = cur_offset;
10021 em->orig_start = cur_offset;
10022 em->len = ins.offset;
10023 em->block_start = ins.objectid;
10024 em->block_len = ins.offset;
10025 em->orig_block_len = ins.offset;
10026 em->ram_bytes = ins.offset;
10027 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10028 em->generation = trans->transid;
10029
10030 while (1) {
10031 write_lock(&em_tree->lock);
10032 ret = add_extent_mapping(em_tree, em, 1);
10033 write_unlock(&em_tree->lock);
10034 if (ret != -EEXIST)
10035 break;
10036 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10037 cur_offset + ins.offset - 1,
10038 0);
10039 }
10040 free_extent_map(em);
10041 next:
10042 num_bytes -= ins.offset;
10043 cur_offset += ins.offset;
10044 *alloc_hint = ins.objectid + ins.offset;
10045
10046 inode_inc_iversion(inode);
10047 inode->i_ctime = current_time(inode);
10048 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10049 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10050 (actual_len > inode->i_size) &&
10051 (cur_offset > inode->i_size)) {
10052 if (cur_offset > actual_len)
10053 i_size = actual_len;
10054 else
10055 i_size = cur_offset;
10056 i_size_write(inode, i_size);
10057 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10058 }
10059
10060 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10061
10062 if (ret) {
10063 btrfs_abort_transaction(trans, ret);
10064 if (own_trans)
10065 btrfs_end_transaction(trans);
10066 break;
10067 }
10068
10069 if (own_trans) {
10070 btrfs_end_transaction(trans);
10071 trans = NULL;
10072 }
10073 }
10074 if (clear_offset < end)
10075 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10076 end - clear_offset + 1);
10077 return ret;
10078 }
10079
10080 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10081 u64 start, u64 num_bytes, u64 min_size,
10082 loff_t actual_len, u64 *alloc_hint)
10083 {
10084 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10085 min_size, actual_len, alloc_hint,
10086 NULL);
10087 }
10088
10089 int btrfs_prealloc_file_range_trans(struct inode *inode,
10090 struct btrfs_trans_handle *trans, int mode,
10091 u64 start, u64 num_bytes, u64 min_size,
10092 loff_t actual_len, u64 *alloc_hint)
10093 {
10094 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10095 min_size, actual_len, alloc_hint, trans);
10096 }
10097
10098 static int btrfs_set_page_dirty(struct page *page)
10099 {
10100 return __set_page_dirty_nobuffers(page);
10101 }
10102
10103 static int btrfs_permission(struct user_namespace *mnt_userns,
10104 struct inode *inode, int mask)
10105 {
10106 struct btrfs_root *root = BTRFS_I(inode)->root;
10107 umode_t mode = inode->i_mode;
10108
10109 if (mask & MAY_WRITE &&
10110 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10111 if (btrfs_root_readonly(root))
10112 return -EROFS;
10113 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10114 return -EACCES;
10115 }
10116 return generic_permission(&init_user_ns, inode, mask);
10117 }
10118
10119 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10120 struct dentry *dentry, umode_t mode)
10121 {
10122 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10123 struct btrfs_trans_handle *trans;
10124 struct btrfs_root *root = BTRFS_I(dir)->root;
10125 struct inode *inode = NULL;
10126 u64 objectid;
10127 u64 index;
10128 int ret = 0;
10129
10130 /*
10131 * 5 units required for adding orphan entry
10132 */
10133 trans = btrfs_start_transaction(root, 5);
10134 if (IS_ERR(trans))
10135 return PTR_ERR(trans);
10136
10137 ret = btrfs_get_free_objectid(root, &objectid);
10138 if (ret)
10139 goto out;
10140
10141 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10142 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10143 if (IS_ERR(inode)) {
10144 ret = PTR_ERR(inode);
10145 inode = NULL;
10146 goto out;
10147 }
10148
10149 inode->i_fop = &btrfs_file_operations;
10150 inode->i_op = &btrfs_file_inode_operations;
10151
10152 inode->i_mapping->a_ops = &btrfs_aops;
10153
10154 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10155 if (ret)
10156 goto out;
10157
10158 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10159 if (ret)
10160 goto out;
10161 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10162 if (ret)
10163 goto out;
10164
10165 /*
10166 * We set number of links to 0 in btrfs_new_inode(), and here we set
10167 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10168 * through:
10169 *
10170 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10171 */
10172 set_nlink(inode, 1);
10173 d_tmpfile(dentry, inode);
10174 unlock_new_inode(inode);
10175 mark_inode_dirty(inode);
10176 out:
10177 btrfs_end_transaction(trans);
10178 if (ret && inode)
10179 discard_new_inode(inode);
10180 btrfs_btree_balance_dirty(fs_info);
10181 return ret;
10182 }
10183
10184 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10185 {
10186 struct inode *inode = tree->private_data;
10187 unsigned long index = start >> PAGE_SHIFT;
10188 unsigned long end_index = end >> PAGE_SHIFT;
10189 struct page *page;
10190
10191 while (index <= end_index) {
10192 page = find_get_page(inode->i_mapping, index);
10193 ASSERT(page); /* Pages should be in the extent_io_tree */
10194 set_page_writeback(page);
10195 put_page(page);
10196 index++;
10197 }
10198 }
10199
10200 #ifdef CONFIG_SWAP
10201 /*
10202 * Add an entry indicating a block group or device which is pinned by a
10203 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10204 * negative errno on failure.
10205 */
10206 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10207 bool is_block_group)
10208 {
10209 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10210 struct btrfs_swapfile_pin *sp, *entry;
10211 struct rb_node **p;
10212 struct rb_node *parent = NULL;
10213
10214 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10215 if (!sp)
10216 return -ENOMEM;
10217 sp->ptr = ptr;
10218 sp->inode = inode;
10219 sp->is_block_group = is_block_group;
10220 sp->bg_extent_count = 1;
10221
10222 spin_lock(&fs_info->swapfile_pins_lock);
10223 p = &fs_info->swapfile_pins.rb_node;
10224 while (*p) {
10225 parent = *p;
10226 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10227 if (sp->ptr < entry->ptr ||
10228 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10229 p = &(*p)->rb_left;
10230 } else if (sp->ptr > entry->ptr ||
10231 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10232 p = &(*p)->rb_right;
10233 } else {
10234 if (is_block_group)
10235 entry->bg_extent_count++;
10236 spin_unlock(&fs_info->swapfile_pins_lock);
10237 kfree(sp);
10238 return 1;
10239 }
10240 }
10241 rb_link_node(&sp->node, parent, p);
10242 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10243 spin_unlock(&fs_info->swapfile_pins_lock);
10244 return 0;
10245 }
10246
10247 /* Free all of the entries pinned by this swapfile. */
10248 static void btrfs_free_swapfile_pins(struct inode *inode)
10249 {
10250 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10251 struct btrfs_swapfile_pin *sp;
10252 struct rb_node *node, *next;
10253
10254 spin_lock(&fs_info->swapfile_pins_lock);
10255 node = rb_first(&fs_info->swapfile_pins);
10256 while (node) {
10257 next = rb_next(node);
10258 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10259 if (sp->inode == inode) {
10260 rb_erase(&sp->node, &fs_info->swapfile_pins);
10261 if (sp->is_block_group) {
10262 btrfs_dec_block_group_swap_extents(sp->ptr,
10263 sp->bg_extent_count);
10264 btrfs_put_block_group(sp->ptr);
10265 }
10266 kfree(sp);
10267 }
10268 node = next;
10269 }
10270 spin_unlock(&fs_info->swapfile_pins_lock);
10271 }
10272
10273 struct btrfs_swap_info {
10274 u64 start;
10275 u64 block_start;
10276 u64 block_len;
10277 u64 lowest_ppage;
10278 u64 highest_ppage;
10279 unsigned long nr_pages;
10280 int nr_extents;
10281 };
10282
10283 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10284 struct btrfs_swap_info *bsi)
10285 {
10286 unsigned long nr_pages;
10287 u64 first_ppage, first_ppage_reported, next_ppage;
10288 int ret;
10289
10290 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10291 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10292 PAGE_SIZE) >> PAGE_SHIFT;
10293
10294 if (first_ppage >= next_ppage)
10295 return 0;
10296 nr_pages = next_ppage - first_ppage;
10297
10298 first_ppage_reported = first_ppage;
10299 if (bsi->start == 0)
10300 first_ppage_reported++;
10301 if (bsi->lowest_ppage > first_ppage_reported)
10302 bsi->lowest_ppage = first_ppage_reported;
10303 if (bsi->highest_ppage < (next_ppage - 1))
10304 bsi->highest_ppage = next_ppage - 1;
10305
10306 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10307 if (ret < 0)
10308 return ret;
10309 bsi->nr_extents += ret;
10310 bsi->nr_pages += nr_pages;
10311 return 0;
10312 }
10313
10314 static void btrfs_swap_deactivate(struct file *file)
10315 {
10316 struct inode *inode = file_inode(file);
10317
10318 btrfs_free_swapfile_pins(inode);
10319 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10320 }
10321
10322 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10323 sector_t *span)
10324 {
10325 struct inode *inode = file_inode(file);
10326 struct btrfs_root *root = BTRFS_I(inode)->root;
10327 struct btrfs_fs_info *fs_info = root->fs_info;
10328 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10329 struct extent_state *cached_state = NULL;
10330 struct extent_map *em = NULL;
10331 struct btrfs_device *device = NULL;
10332 struct btrfs_swap_info bsi = {
10333 .lowest_ppage = (sector_t)-1ULL,
10334 };
10335 int ret = 0;
10336 u64 isize;
10337 u64 start;
10338
10339 /*
10340 * If the swap file was just created, make sure delalloc is done. If the
10341 * file changes again after this, the user is doing something stupid and
10342 * we don't really care.
10343 */
10344 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10345 if (ret)
10346 return ret;
10347
10348 /*
10349 * The inode is locked, so these flags won't change after we check them.
10350 */
10351 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10352 btrfs_warn(fs_info, "swapfile must not be compressed");
10353 return -EINVAL;
10354 }
10355 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10356 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10357 return -EINVAL;
10358 }
10359 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10360 btrfs_warn(fs_info, "swapfile must not be checksummed");
10361 return -EINVAL;
10362 }
10363
10364 /*
10365 * Balance or device remove/replace/resize can move stuff around from
10366 * under us. The exclop protection makes sure they aren't running/won't
10367 * run concurrently while we are mapping the swap extents, and
10368 * fs_info->swapfile_pins prevents them from running while the swap
10369 * file is active and moving the extents. Note that this also prevents
10370 * a concurrent device add which isn't actually necessary, but it's not
10371 * really worth the trouble to allow it.
10372 */
10373 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10374 btrfs_warn(fs_info,
10375 "cannot activate swapfile while exclusive operation is running");
10376 return -EBUSY;
10377 }
10378
10379 /*
10380 * Prevent snapshot creation while we are activating the swap file.
10381 * We do not want to race with snapshot creation. If snapshot creation
10382 * already started before we bumped nr_swapfiles from 0 to 1 and
10383 * completes before the first write into the swap file after it is
10384 * activated, than that write would fallback to COW.
10385 */
10386 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10387 btrfs_exclop_finish(fs_info);
10388 btrfs_warn(fs_info,
10389 "cannot activate swapfile because snapshot creation is in progress");
10390 return -EINVAL;
10391 }
10392 /*
10393 * Snapshots can create extents which require COW even if NODATACOW is
10394 * set. We use this counter to prevent snapshots. We must increment it
10395 * before walking the extents because we don't want a concurrent
10396 * snapshot to run after we've already checked the extents.
10397 */
10398 atomic_inc(&root->nr_swapfiles);
10399
10400 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10401
10402 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10403 start = 0;
10404 while (start < isize) {
10405 u64 logical_block_start, physical_block_start;
10406 struct btrfs_block_group *bg;
10407 u64 len = isize - start;
10408
10409 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10410 if (IS_ERR(em)) {
10411 ret = PTR_ERR(em);
10412 goto out;
10413 }
10414
10415 if (em->block_start == EXTENT_MAP_HOLE) {
10416 btrfs_warn(fs_info, "swapfile must not have holes");
10417 ret = -EINVAL;
10418 goto out;
10419 }
10420 if (em->block_start == EXTENT_MAP_INLINE) {
10421 /*
10422 * It's unlikely we'll ever actually find ourselves
10423 * here, as a file small enough to fit inline won't be
10424 * big enough to store more than the swap header, but in
10425 * case something changes in the future, let's catch it
10426 * here rather than later.
10427 */
10428 btrfs_warn(fs_info, "swapfile must not be inline");
10429 ret = -EINVAL;
10430 goto out;
10431 }
10432 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10433 btrfs_warn(fs_info, "swapfile must not be compressed");
10434 ret = -EINVAL;
10435 goto out;
10436 }
10437
10438 logical_block_start = em->block_start + (start - em->start);
10439 len = min(len, em->len - (start - em->start));
10440 free_extent_map(em);
10441 em = NULL;
10442
10443 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10444 if (ret < 0) {
10445 goto out;
10446 } else if (ret) {
10447 ret = 0;
10448 } else {
10449 btrfs_warn(fs_info,
10450 "swapfile must not be copy-on-write");
10451 ret = -EINVAL;
10452 goto out;
10453 }
10454
10455 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10456 if (IS_ERR(em)) {
10457 ret = PTR_ERR(em);
10458 goto out;
10459 }
10460
10461 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10462 btrfs_warn(fs_info,
10463 "swapfile must have single data profile");
10464 ret = -EINVAL;
10465 goto out;
10466 }
10467
10468 if (device == NULL) {
10469 device = em->map_lookup->stripes[0].dev;
10470 ret = btrfs_add_swapfile_pin(inode, device, false);
10471 if (ret == 1)
10472 ret = 0;
10473 else if (ret)
10474 goto out;
10475 } else if (device != em->map_lookup->stripes[0].dev) {
10476 btrfs_warn(fs_info, "swapfile must be on one device");
10477 ret = -EINVAL;
10478 goto out;
10479 }
10480
10481 physical_block_start = (em->map_lookup->stripes[0].physical +
10482 (logical_block_start - em->start));
10483 len = min(len, em->len - (logical_block_start - em->start));
10484 free_extent_map(em);
10485 em = NULL;
10486
10487 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10488 if (!bg) {
10489 btrfs_warn(fs_info,
10490 "could not find block group containing swapfile");
10491 ret = -EINVAL;
10492 goto out;
10493 }
10494
10495 if (!btrfs_inc_block_group_swap_extents(bg)) {
10496 btrfs_warn(fs_info,
10497 "block group for swapfile at %llu is read-only%s",
10498 bg->start,
10499 atomic_read(&fs_info->scrubs_running) ?
10500 " (scrub running)" : "");
10501 btrfs_put_block_group(bg);
10502 ret = -EINVAL;
10503 goto out;
10504 }
10505
10506 ret = btrfs_add_swapfile_pin(inode, bg, true);
10507 if (ret) {
10508 btrfs_put_block_group(bg);
10509 if (ret == 1)
10510 ret = 0;
10511 else
10512 goto out;
10513 }
10514
10515 if (bsi.block_len &&
10516 bsi.block_start + bsi.block_len == physical_block_start) {
10517 bsi.block_len += len;
10518 } else {
10519 if (bsi.block_len) {
10520 ret = btrfs_add_swap_extent(sis, &bsi);
10521 if (ret)
10522 goto out;
10523 }
10524 bsi.start = start;
10525 bsi.block_start = physical_block_start;
10526 bsi.block_len = len;
10527 }
10528
10529 start += len;
10530 }
10531
10532 if (bsi.block_len)
10533 ret = btrfs_add_swap_extent(sis, &bsi);
10534
10535 out:
10536 if (!IS_ERR_OR_NULL(em))
10537 free_extent_map(em);
10538
10539 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10540
10541 if (ret)
10542 btrfs_swap_deactivate(file);
10543
10544 btrfs_drew_write_unlock(&root->snapshot_lock);
10545
10546 btrfs_exclop_finish(fs_info);
10547
10548 if (ret)
10549 return ret;
10550
10551 if (device)
10552 sis->bdev = device->bdev;
10553 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10554 sis->max = bsi.nr_pages;
10555 sis->pages = bsi.nr_pages - 1;
10556 sis->highest_bit = bsi.nr_pages - 1;
10557 return bsi.nr_extents;
10558 }
10559 #else
10560 static void btrfs_swap_deactivate(struct file *file)
10561 {
10562 }
10563
10564 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10565 sector_t *span)
10566 {
10567 return -EOPNOTSUPP;
10568 }
10569 #endif
10570
10571 /*
10572 * Update the number of bytes used in the VFS' inode. When we replace extents in
10573 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10574 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10575 * always get a correct value.
10576 */
10577 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10578 const u64 add_bytes,
10579 const u64 del_bytes)
10580 {
10581 if (add_bytes == del_bytes)
10582 return;
10583
10584 spin_lock(&inode->lock);
10585 if (del_bytes > 0)
10586 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10587 if (add_bytes > 0)
10588 inode_add_bytes(&inode->vfs_inode, add_bytes);
10589 spin_unlock(&inode->lock);
10590 }
10591
10592 static const struct inode_operations btrfs_dir_inode_operations = {
10593 .getattr = btrfs_getattr,
10594 .lookup = btrfs_lookup,
10595 .create = btrfs_create,
10596 .unlink = btrfs_unlink,
10597 .link = btrfs_link,
10598 .mkdir = btrfs_mkdir,
10599 .rmdir = btrfs_rmdir,
10600 .rename = btrfs_rename2,
10601 .symlink = btrfs_symlink,
10602 .setattr = btrfs_setattr,
10603 .mknod = btrfs_mknod,
10604 .listxattr = btrfs_listxattr,
10605 .permission = btrfs_permission,
10606 .get_acl = btrfs_get_acl,
10607 .set_acl = btrfs_set_acl,
10608 .update_time = btrfs_update_time,
10609 .tmpfile = btrfs_tmpfile,
10610 .fileattr_get = btrfs_fileattr_get,
10611 .fileattr_set = btrfs_fileattr_set,
10612 };
10613
10614 static const struct file_operations btrfs_dir_file_operations = {
10615 .llseek = generic_file_llseek,
10616 .read = generic_read_dir,
10617 .iterate_shared = btrfs_real_readdir,
10618 .open = btrfs_opendir,
10619 .unlocked_ioctl = btrfs_ioctl,
10620 #ifdef CONFIG_COMPAT
10621 .compat_ioctl = btrfs_compat_ioctl,
10622 #endif
10623 .release = btrfs_release_file,
10624 .fsync = btrfs_sync_file,
10625 };
10626
10627 /*
10628 * btrfs doesn't support the bmap operation because swapfiles
10629 * use bmap to make a mapping of extents in the file. They assume
10630 * these extents won't change over the life of the file and they
10631 * use the bmap result to do IO directly to the drive.
10632 *
10633 * the btrfs bmap call would return logical addresses that aren't
10634 * suitable for IO and they also will change frequently as COW
10635 * operations happen. So, swapfile + btrfs == corruption.
10636 *
10637 * For now we're avoiding this by dropping bmap.
10638 */
10639 static const struct address_space_operations btrfs_aops = {
10640 .readpage = btrfs_readpage,
10641 .writepage = btrfs_writepage,
10642 .writepages = btrfs_writepages,
10643 .readahead = btrfs_readahead,
10644 .direct_IO = noop_direct_IO,
10645 .invalidatepage = btrfs_invalidatepage,
10646 .releasepage = btrfs_releasepage,
10647 #ifdef CONFIG_MIGRATION
10648 .migratepage = btrfs_migratepage,
10649 #endif
10650 .set_page_dirty = btrfs_set_page_dirty,
10651 .error_remove_page = generic_error_remove_page,
10652 .swap_activate = btrfs_swap_activate,
10653 .swap_deactivate = btrfs_swap_deactivate,
10654 };
10655
10656 static const struct inode_operations btrfs_file_inode_operations = {
10657 .getattr = btrfs_getattr,
10658 .setattr = btrfs_setattr,
10659 .listxattr = btrfs_listxattr,
10660 .permission = btrfs_permission,
10661 .fiemap = btrfs_fiemap,
10662 .get_acl = btrfs_get_acl,
10663 .set_acl = btrfs_set_acl,
10664 .update_time = btrfs_update_time,
10665 .fileattr_get = btrfs_fileattr_get,
10666 .fileattr_set = btrfs_fileattr_set,
10667 };
10668 static const struct inode_operations btrfs_special_inode_operations = {
10669 .getattr = btrfs_getattr,
10670 .setattr = btrfs_setattr,
10671 .permission = btrfs_permission,
10672 .listxattr = btrfs_listxattr,
10673 .get_acl = btrfs_get_acl,
10674 .set_acl = btrfs_set_acl,
10675 .update_time = btrfs_update_time,
10676 };
10677 static const struct inode_operations btrfs_symlink_inode_operations = {
10678 .get_link = page_get_link,
10679 .getattr = btrfs_getattr,
10680 .setattr = btrfs_setattr,
10681 .permission = btrfs_permission,
10682 .listxattr = btrfs_listxattr,
10683 .update_time = btrfs_update_time,
10684 };
10685
10686 const struct dentry_operations btrfs_dentry_operations = {
10687 .d_delete = btrfs_dentry_delete,
10688 };