]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/inode.c
Btrfs: create special free space cache inode
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
204
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
209 }
210
211
212 /*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222 {
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
258 }
259
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 struct list_head list;
267 };
268
269 struct async_cow {
270 struct inode *inode;
271 struct btrfs_root *root;
272 struct page *locked_page;
273 u64 start;
274 u64 end;
275 struct list_head extents;
276 struct btrfs_work work;
277 };
278
279 static noinline int add_async_extent(struct async_cow *cow,
280 u64 start, u64 ram_size,
281 u64 compressed_size,
282 struct page **pages,
283 unsigned long nr_pages)
284 {
285 struct async_extent *async_extent;
286
287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 async_extent->start = start;
289 async_extent->ram_size = ram_size;
290 async_extent->compressed_size = compressed_size;
291 async_extent->pages = pages;
292 async_extent->nr_pages = nr_pages;
293 list_add_tail(&async_extent->list, &cow->extents);
294 return 0;
295 }
296
297 /*
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
301 *
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
307 *
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
312 */
313 static noinline int compress_file_range(struct inode *inode,
314 struct page *locked_page,
315 u64 start, u64 end,
316 struct async_cow *async_cow,
317 int *num_added)
318 {
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 struct btrfs_trans_handle *trans;
321 u64 num_bytes;
322 u64 orig_start;
323 u64 disk_num_bytes;
324 u64 blocksize = root->sectorsize;
325 u64 actual_end;
326 u64 isize = i_size_read(inode);
327 int ret = 0;
328 struct page **pages = NULL;
329 unsigned long nr_pages;
330 unsigned long nr_pages_ret = 0;
331 unsigned long total_compressed = 0;
332 unsigned long total_in = 0;
333 unsigned long max_compressed = 128 * 1024;
334 unsigned long max_uncompressed = 128 * 1024;
335 int i;
336 int will_compress;
337
338 orig_start = start;
339
340 actual_end = min_t(u64, isize, end + 1);
341 again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 num_bytes = max(blocksize, num_bytes);
374 disk_num_bytes = num_bytes;
375 total_in = 0;
376 ret = 0;
377
378 /*
379 * we do compression for mount -o compress and when the
380 * inode has not been flagged as nocompress. This flag can
381 * change at any time if we discover bad compression ratios.
382 */
383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
384 (btrfs_test_opt(root, COMPRESS) ||
385 (BTRFS_I(inode)->force_compress))) {
386 WARN_ON(pages);
387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388
389 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
390 total_compressed, pages,
391 nr_pages, &nr_pages_ret,
392 &total_in,
393 &total_compressed,
394 max_compressed);
395
396 if (!ret) {
397 unsigned long offset = total_compressed &
398 (PAGE_CACHE_SIZE - 1);
399 struct page *page = pages[nr_pages_ret - 1];
400 char *kaddr;
401
402 /* zero the tail end of the last page, we might be
403 * sending it down to disk
404 */
405 if (offset) {
406 kaddr = kmap_atomic(page, KM_USER0);
407 memset(kaddr + offset, 0,
408 PAGE_CACHE_SIZE - offset);
409 kunmap_atomic(kaddr, KM_USER0);
410 }
411 will_compress = 1;
412 }
413 }
414 if (start == 0) {
415 trans = btrfs_join_transaction(root, 1);
416 BUG_ON(!trans);
417 btrfs_set_trans_block_group(trans, inode);
418 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
419
420 /* lets try to make an inline extent */
421 if (ret || total_in < (actual_end - start)) {
422 /* we didn't compress the entire range, try
423 * to make an uncompressed inline extent.
424 */
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end, 0, NULL);
427 } else {
428 /* try making a compressed inline extent */
429 ret = cow_file_range_inline(trans, root, inode,
430 start, end,
431 total_compressed, pages);
432 }
433 if (ret == 0) {
434 /*
435 * inline extent creation worked, we don't need
436 * to create any more async work items. Unlock
437 * and free up our temp pages.
438 */
439 extent_clear_unlock_delalloc(inode,
440 &BTRFS_I(inode)->io_tree,
441 start, end, NULL,
442 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
443 EXTENT_CLEAR_DELALLOC |
444 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
445
446 btrfs_end_transaction(trans, root);
447 goto free_pages_out;
448 }
449 btrfs_end_transaction(trans, root);
450 }
451
452 if (will_compress) {
453 /*
454 * we aren't doing an inline extent round the compressed size
455 * up to a block size boundary so the allocator does sane
456 * things
457 */
458 total_compressed = (total_compressed + blocksize - 1) &
459 ~(blocksize - 1);
460
461 /*
462 * one last check to make sure the compression is really a
463 * win, compare the page count read with the blocks on disk
464 */
465 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
466 ~(PAGE_CACHE_SIZE - 1);
467 if (total_compressed >= total_in) {
468 will_compress = 0;
469 } else {
470 disk_num_bytes = total_compressed;
471 num_bytes = total_in;
472 }
473 }
474 if (!will_compress && pages) {
475 /*
476 * the compression code ran but failed to make things smaller,
477 * free any pages it allocated and our page pointer array
478 */
479 for (i = 0; i < nr_pages_ret; i++) {
480 WARN_ON(pages[i]->mapping);
481 page_cache_release(pages[i]);
482 }
483 kfree(pages);
484 pages = NULL;
485 total_compressed = 0;
486 nr_pages_ret = 0;
487
488 /* flag the file so we don't compress in the future */
489 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
490 !(BTRFS_I(inode)->force_compress)) {
491 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
492 }
493 }
494 if (will_compress) {
495 *num_added += 1;
496
497 /* the async work queues will take care of doing actual
498 * allocation on disk for these compressed pages,
499 * and will submit them to the elevator.
500 */
501 add_async_extent(async_cow, start, num_bytes,
502 total_compressed, pages, nr_pages_ret);
503
504 if (start + num_bytes < end && start + num_bytes < actual_end) {
505 start += num_bytes;
506 pages = NULL;
507 cond_resched();
508 goto again;
509 }
510 } else {
511 cleanup_and_bail_uncompressed:
512 /*
513 * No compression, but we still need to write the pages in
514 * the file we've been given so far. redirty the locked
515 * page if it corresponds to our extent and set things up
516 * for the async work queue to run cow_file_range to do
517 * the normal delalloc dance
518 */
519 if (page_offset(locked_page) >= start &&
520 page_offset(locked_page) <= end) {
521 __set_page_dirty_nobuffers(locked_page);
522 /* unlocked later on in the async handlers */
523 }
524 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
525 *num_added += 1;
526 }
527
528 out:
529 return 0;
530
531 free_pages_out:
532 for (i = 0; i < nr_pages_ret; i++) {
533 WARN_ON(pages[i]->mapping);
534 page_cache_release(pages[i]);
535 }
536 kfree(pages);
537
538 goto out;
539 }
540
541 /*
542 * phase two of compressed writeback. This is the ordered portion
543 * of the code, which only gets called in the order the work was
544 * queued. We walk all the async extents created by compress_file_range
545 * and send them down to the disk.
546 */
547 static noinline int submit_compressed_extents(struct inode *inode,
548 struct async_cow *async_cow)
549 {
550 struct async_extent *async_extent;
551 u64 alloc_hint = 0;
552 struct btrfs_trans_handle *trans;
553 struct btrfs_key ins;
554 struct extent_map *em;
555 struct btrfs_root *root = BTRFS_I(inode)->root;
556 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
557 struct extent_io_tree *io_tree;
558 int ret = 0;
559
560 if (list_empty(&async_cow->extents))
561 return 0;
562
563
564 while (!list_empty(&async_cow->extents)) {
565 async_extent = list_entry(async_cow->extents.next,
566 struct async_extent, list);
567 list_del(&async_extent->list);
568
569 io_tree = &BTRFS_I(inode)->io_tree;
570
571 retry:
572 /* did the compression code fall back to uncompressed IO? */
573 if (!async_extent->pages) {
574 int page_started = 0;
575 unsigned long nr_written = 0;
576
577 lock_extent(io_tree, async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1, GFP_NOFS);
580
581 /* allocate blocks */
582 ret = cow_file_range(inode, async_cow->locked_page,
583 async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
586 &page_started, &nr_written, 0);
587
588 /*
589 * if page_started, cow_file_range inserted an
590 * inline extent and took care of all the unlocking
591 * and IO for us. Otherwise, we need to submit
592 * all those pages down to the drive.
593 */
594 if (!page_started && !ret)
595 extent_write_locked_range(io_tree,
596 inode, async_extent->start,
597 async_extent->start +
598 async_extent->ram_size - 1,
599 btrfs_get_extent,
600 WB_SYNC_ALL);
601 kfree(async_extent);
602 cond_resched();
603 continue;
604 }
605
606 lock_extent(io_tree, async_extent->start,
607 async_extent->start + async_extent->ram_size - 1,
608 GFP_NOFS);
609
610 trans = btrfs_join_transaction(root, 1);
611 ret = btrfs_reserve_extent(trans, root,
612 async_extent->compressed_size,
613 async_extent->compressed_size,
614 0, alloc_hint,
615 (u64)-1, &ins, 1);
616 btrfs_end_transaction(trans, root);
617
618 if (ret) {
619 int i;
620 for (i = 0; i < async_extent->nr_pages; i++) {
621 WARN_ON(async_extent->pages[i]->mapping);
622 page_cache_release(async_extent->pages[i]);
623 }
624 kfree(async_extent->pages);
625 async_extent->nr_pages = 0;
626 async_extent->pages = NULL;
627 unlock_extent(io_tree, async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1, GFP_NOFS);
630 goto retry;
631 }
632
633 /*
634 * here we're doing allocation and writeback of the
635 * compressed pages
636 */
637 btrfs_drop_extent_cache(inode, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, 0);
640
641 em = alloc_extent_map(GFP_NOFS);
642 em->start = async_extent->start;
643 em->len = async_extent->ram_size;
644 em->orig_start = em->start;
645
646 em->block_start = ins.objectid;
647 em->block_len = ins.offset;
648 em->bdev = root->fs_info->fs_devices->latest_bdev;
649 set_bit(EXTENT_FLAG_PINNED, &em->flags);
650 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651
652 while (1) {
653 write_lock(&em_tree->lock);
654 ret = add_extent_mapping(em_tree, em);
655 write_unlock(&em_tree->lock);
656 if (ret != -EEXIST) {
657 free_extent_map(em);
658 break;
659 }
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663 }
664
665 ret = btrfs_add_ordered_extent(inode, async_extent->start,
666 ins.objectid,
667 async_extent->ram_size,
668 ins.offset,
669 BTRFS_ORDERED_COMPRESSED);
670 BUG_ON(ret);
671
672 /*
673 * clear dirty, set writeback and unlock the pages.
674 */
675 extent_clear_unlock_delalloc(inode,
676 &BTRFS_I(inode)->io_tree,
677 async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1,
680 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
681 EXTENT_CLEAR_UNLOCK |
682 EXTENT_CLEAR_DELALLOC |
683 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
684
685 ret = btrfs_submit_compressed_write(inode,
686 async_extent->start,
687 async_extent->ram_size,
688 ins.objectid,
689 ins.offset, async_extent->pages,
690 async_extent->nr_pages);
691
692 BUG_ON(ret);
693 alloc_hint = ins.objectid + ins.offset;
694 kfree(async_extent);
695 cond_resched();
696 }
697
698 return 0;
699 }
700
701 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
702 u64 num_bytes)
703 {
704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
705 struct extent_map *em;
706 u64 alloc_hint = 0;
707
708 read_lock(&em_tree->lock);
709 em = search_extent_mapping(em_tree, start, num_bytes);
710 if (em) {
711 /*
712 * if block start isn't an actual block number then find the
713 * first block in this inode and use that as a hint. If that
714 * block is also bogus then just don't worry about it.
715 */
716 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
717 free_extent_map(em);
718 em = search_extent_mapping(em_tree, 0, 0);
719 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
720 alloc_hint = em->block_start;
721 if (em)
722 free_extent_map(em);
723 } else {
724 alloc_hint = em->block_start;
725 free_extent_map(em);
726 }
727 }
728 read_unlock(&em_tree->lock);
729
730 return alloc_hint;
731 }
732
733 /*
734 * when extent_io.c finds a delayed allocation range in the file,
735 * the call backs end up in this code. The basic idea is to
736 * allocate extents on disk for the range, and create ordered data structs
737 * in ram to track those extents.
738 *
739 * locked_page is the page that writepage had locked already. We use
740 * it to make sure we don't do extra locks or unlocks.
741 *
742 * *page_started is set to one if we unlock locked_page and do everything
743 * required to start IO on it. It may be clean and already done with
744 * IO when we return.
745 */
746 static noinline int cow_file_range(struct inode *inode,
747 struct page *locked_page,
748 u64 start, u64 end, int *page_started,
749 unsigned long *nr_written,
750 int unlock)
751 {
752 struct btrfs_root *root = BTRFS_I(inode)->root;
753 struct btrfs_trans_handle *trans;
754 u64 alloc_hint = 0;
755 u64 num_bytes;
756 unsigned long ram_size;
757 u64 disk_num_bytes;
758 u64 cur_alloc_size;
759 u64 blocksize = root->sectorsize;
760 u64 actual_end;
761 u64 isize = i_size_read(inode);
762 struct btrfs_key ins;
763 struct extent_map *em;
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 int ret = 0;
766
767 trans = btrfs_join_transaction(root, 1);
768 BUG_ON(!trans);
769 btrfs_set_trans_block_group(trans, inode);
770 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771
772 actual_end = min_t(u64, isize, end + 1);
773
774 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
775 num_bytes = max(blocksize, num_bytes);
776 disk_num_bytes = num_bytes;
777 ret = 0;
778
779 if (start == 0) {
780 /* lets try to make an inline extent */
781 ret = cow_file_range_inline(trans, root, inode,
782 start, end, 0, NULL);
783 if (ret == 0) {
784 extent_clear_unlock_delalloc(inode,
785 &BTRFS_I(inode)->io_tree,
786 start, end, NULL,
787 EXTENT_CLEAR_UNLOCK_PAGE |
788 EXTENT_CLEAR_UNLOCK |
789 EXTENT_CLEAR_DELALLOC |
790 EXTENT_CLEAR_DIRTY |
791 EXTENT_SET_WRITEBACK |
792 EXTENT_END_WRITEBACK);
793
794 *nr_written = *nr_written +
795 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
796 *page_started = 1;
797 ret = 0;
798 goto out;
799 }
800 }
801
802 BUG_ON(disk_num_bytes >
803 btrfs_super_total_bytes(&root->fs_info->super_copy));
804
805 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
806 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
807
808 while (disk_num_bytes > 0) {
809 unsigned long op;
810
811 cur_alloc_size = disk_num_bytes;
812 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
813 root->sectorsize, 0, alloc_hint,
814 (u64)-1, &ins, 1);
815 BUG_ON(ret);
816
817 em = alloc_extent_map(GFP_NOFS);
818 em->start = start;
819 em->orig_start = em->start;
820 ram_size = ins.offset;
821 em->len = ins.offset;
822
823 em->block_start = ins.objectid;
824 em->block_len = ins.offset;
825 em->bdev = root->fs_info->fs_devices->latest_bdev;
826 set_bit(EXTENT_FLAG_PINNED, &em->flags);
827
828 while (1) {
829 write_lock(&em_tree->lock);
830 ret = add_extent_mapping(em_tree, em);
831 write_unlock(&em_tree->lock);
832 if (ret != -EEXIST) {
833 free_extent_map(em);
834 break;
835 }
836 btrfs_drop_extent_cache(inode, start,
837 start + ram_size - 1, 0);
838 }
839
840 cur_alloc_size = ins.offset;
841 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
842 ram_size, cur_alloc_size, 0);
843 BUG_ON(ret);
844
845 if (root->root_key.objectid ==
846 BTRFS_DATA_RELOC_TREE_OBJECTID) {
847 ret = btrfs_reloc_clone_csums(inode, start,
848 cur_alloc_size);
849 BUG_ON(ret);
850 }
851
852 if (disk_num_bytes < cur_alloc_size)
853 break;
854
855 /* we're not doing compressed IO, don't unlock the first
856 * page (which the caller expects to stay locked), don't
857 * clear any dirty bits and don't set any writeback bits
858 *
859 * Do set the Private2 bit so we know this page was properly
860 * setup for writepage
861 */
862 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
863 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
864 EXTENT_SET_PRIVATE2;
865
866 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
867 start, start + ram_size - 1,
868 locked_page, op);
869 disk_num_bytes -= cur_alloc_size;
870 num_bytes -= cur_alloc_size;
871 alloc_hint = ins.objectid + ins.offset;
872 start += cur_alloc_size;
873 }
874 out:
875 ret = 0;
876 btrfs_end_transaction(trans, root);
877
878 return ret;
879 }
880
881 /*
882 * work queue call back to started compression on a file and pages
883 */
884 static noinline void async_cow_start(struct btrfs_work *work)
885 {
886 struct async_cow *async_cow;
887 int num_added = 0;
888 async_cow = container_of(work, struct async_cow, work);
889
890 compress_file_range(async_cow->inode, async_cow->locked_page,
891 async_cow->start, async_cow->end, async_cow,
892 &num_added);
893 if (num_added == 0)
894 async_cow->inode = NULL;
895 }
896
897 /*
898 * work queue call back to submit previously compressed pages
899 */
900 static noinline void async_cow_submit(struct btrfs_work *work)
901 {
902 struct async_cow *async_cow;
903 struct btrfs_root *root;
904 unsigned long nr_pages;
905
906 async_cow = container_of(work, struct async_cow, work);
907
908 root = async_cow->root;
909 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
910 PAGE_CACHE_SHIFT;
911
912 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
913
914 if (atomic_read(&root->fs_info->async_delalloc_pages) <
915 5 * 1042 * 1024 &&
916 waitqueue_active(&root->fs_info->async_submit_wait))
917 wake_up(&root->fs_info->async_submit_wait);
918
919 if (async_cow->inode)
920 submit_compressed_extents(async_cow->inode, async_cow);
921 }
922
923 static noinline void async_cow_free(struct btrfs_work *work)
924 {
925 struct async_cow *async_cow;
926 async_cow = container_of(work, struct async_cow, work);
927 kfree(async_cow);
928 }
929
930 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
931 u64 start, u64 end, int *page_started,
932 unsigned long *nr_written)
933 {
934 struct async_cow *async_cow;
935 struct btrfs_root *root = BTRFS_I(inode)->root;
936 unsigned long nr_pages;
937 u64 cur_end;
938 int limit = 10 * 1024 * 1042;
939
940 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
941 1, 0, NULL, GFP_NOFS);
942 while (start < end) {
943 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
944 async_cow->inode = inode;
945 async_cow->root = root;
946 async_cow->locked_page = locked_page;
947 async_cow->start = start;
948
949 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
950 cur_end = end;
951 else
952 cur_end = min(end, start + 512 * 1024 - 1);
953
954 async_cow->end = cur_end;
955 INIT_LIST_HEAD(&async_cow->extents);
956
957 async_cow->work.func = async_cow_start;
958 async_cow->work.ordered_func = async_cow_submit;
959 async_cow->work.ordered_free = async_cow_free;
960 async_cow->work.flags = 0;
961
962 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
963 PAGE_CACHE_SHIFT;
964 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
965
966 btrfs_queue_worker(&root->fs_info->delalloc_workers,
967 &async_cow->work);
968
969 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
970 wait_event(root->fs_info->async_submit_wait,
971 (atomic_read(&root->fs_info->async_delalloc_pages) <
972 limit));
973 }
974
975 while (atomic_read(&root->fs_info->async_submit_draining) &&
976 atomic_read(&root->fs_info->async_delalloc_pages)) {
977 wait_event(root->fs_info->async_submit_wait,
978 (atomic_read(&root->fs_info->async_delalloc_pages) ==
979 0));
980 }
981
982 *nr_written += nr_pages;
983 start = cur_end + 1;
984 }
985 *page_started = 1;
986 return 0;
987 }
988
989 static noinline int csum_exist_in_range(struct btrfs_root *root,
990 u64 bytenr, u64 num_bytes)
991 {
992 int ret;
993 struct btrfs_ordered_sum *sums;
994 LIST_HEAD(list);
995
996 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
997 bytenr + num_bytes - 1, &list);
998 if (ret == 0 && list_empty(&list))
999 return 0;
1000
1001 while (!list_empty(&list)) {
1002 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1003 list_del(&sums->list);
1004 kfree(sums);
1005 }
1006 return 1;
1007 }
1008
1009 /*
1010 * when nowcow writeback call back. This checks for snapshots or COW copies
1011 * of the extents that exist in the file, and COWs the file as required.
1012 *
1013 * If no cow copies or snapshots exist, we write directly to the existing
1014 * blocks on disk
1015 */
1016 static noinline int run_delalloc_nocow(struct inode *inode,
1017 struct page *locked_page,
1018 u64 start, u64 end, int *page_started, int force,
1019 unsigned long *nr_written)
1020 {
1021 struct btrfs_root *root = BTRFS_I(inode)->root;
1022 struct btrfs_trans_handle *trans;
1023 struct extent_buffer *leaf;
1024 struct btrfs_path *path;
1025 struct btrfs_file_extent_item *fi;
1026 struct btrfs_key found_key;
1027 u64 cow_start;
1028 u64 cur_offset;
1029 u64 extent_end;
1030 u64 extent_offset;
1031 u64 disk_bytenr;
1032 u64 num_bytes;
1033 int extent_type;
1034 int ret;
1035 int type;
1036 int nocow;
1037 int check_prev = 1;
1038
1039 path = btrfs_alloc_path();
1040 BUG_ON(!path);
1041 trans = btrfs_join_transaction(root, 1);
1042 BUG_ON(!trans);
1043
1044 cow_start = (u64)-1;
1045 cur_offset = start;
1046 while (1) {
1047 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1048 cur_offset, 0);
1049 BUG_ON(ret < 0);
1050 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1051 leaf = path->nodes[0];
1052 btrfs_item_key_to_cpu(leaf, &found_key,
1053 path->slots[0] - 1);
1054 if (found_key.objectid == inode->i_ino &&
1055 found_key.type == BTRFS_EXTENT_DATA_KEY)
1056 path->slots[0]--;
1057 }
1058 check_prev = 0;
1059 next_slot:
1060 leaf = path->nodes[0];
1061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1062 ret = btrfs_next_leaf(root, path);
1063 if (ret < 0)
1064 BUG_ON(1);
1065 if (ret > 0)
1066 break;
1067 leaf = path->nodes[0];
1068 }
1069
1070 nocow = 0;
1071 disk_bytenr = 0;
1072 num_bytes = 0;
1073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1074
1075 if (found_key.objectid > inode->i_ino ||
1076 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1077 found_key.offset > end)
1078 break;
1079
1080 if (found_key.offset > cur_offset) {
1081 extent_end = found_key.offset;
1082 extent_type = 0;
1083 goto out_check;
1084 }
1085
1086 fi = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_file_extent_item);
1088 extent_type = btrfs_file_extent_type(leaf, fi);
1089
1090 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1091 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1092 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093 extent_offset = btrfs_file_extent_offset(leaf, fi);
1094 extent_end = found_key.offset +
1095 btrfs_file_extent_num_bytes(leaf, fi);
1096 if (extent_end <= start) {
1097 path->slots[0]++;
1098 goto next_slot;
1099 }
1100 if (disk_bytenr == 0)
1101 goto out_check;
1102 if (btrfs_file_extent_compression(leaf, fi) ||
1103 btrfs_file_extent_encryption(leaf, fi) ||
1104 btrfs_file_extent_other_encoding(leaf, fi))
1105 goto out_check;
1106 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1107 goto out_check;
1108 if (btrfs_extent_readonly(root, disk_bytenr))
1109 goto out_check;
1110 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1111 found_key.offset -
1112 extent_offset, disk_bytenr))
1113 goto out_check;
1114 disk_bytenr += extent_offset;
1115 disk_bytenr += cur_offset - found_key.offset;
1116 num_bytes = min(end + 1, extent_end) - cur_offset;
1117 /*
1118 * force cow if csum exists in the range.
1119 * this ensure that csum for a given extent are
1120 * either valid or do not exist.
1121 */
1122 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1123 goto out_check;
1124 nocow = 1;
1125 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1126 extent_end = found_key.offset +
1127 btrfs_file_extent_inline_len(leaf, fi);
1128 extent_end = ALIGN(extent_end, root->sectorsize);
1129 } else {
1130 BUG_ON(1);
1131 }
1132 out_check:
1133 if (extent_end <= start) {
1134 path->slots[0]++;
1135 goto next_slot;
1136 }
1137 if (!nocow) {
1138 if (cow_start == (u64)-1)
1139 cow_start = cur_offset;
1140 cur_offset = extent_end;
1141 if (cur_offset > end)
1142 break;
1143 path->slots[0]++;
1144 goto next_slot;
1145 }
1146
1147 btrfs_release_path(root, path);
1148 if (cow_start != (u64)-1) {
1149 ret = cow_file_range(inode, locked_page, cow_start,
1150 found_key.offset - 1, page_started,
1151 nr_written, 1);
1152 BUG_ON(ret);
1153 cow_start = (u64)-1;
1154 }
1155
1156 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1157 struct extent_map *em;
1158 struct extent_map_tree *em_tree;
1159 em_tree = &BTRFS_I(inode)->extent_tree;
1160 em = alloc_extent_map(GFP_NOFS);
1161 em->start = cur_offset;
1162 em->orig_start = em->start;
1163 em->len = num_bytes;
1164 em->block_len = num_bytes;
1165 em->block_start = disk_bytenr;
1166 em->bdev = root->fs_info->fs_devices->latest_bdev;
1167 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1168 while (1) {
1169 write_lock(&em_tree->lock);
1170 ret = add_extent_mapping(em_tree, em);
1171 write_unlock(&em_tree->lock);
1172 if (ret != -EEXIST) {
1173 free_extent_map(em);
1174 break;
1175 }
1176 btrfs_drop_extent_cache(inode, em->start,
1177 em->start + em->len - 1, 0);
1178 }
1179 type = BTRFS_ORDERED_PREALLOC;
1180 } else {
1181 type = BTRFS_ORDERED_NOCOW;
1182 }
1183
1184 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1185 num_bytes, num_bytes, type);
1186 BUG_ON(ret);
1187
1188 if (root->root_key.objectid ==
1189 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1190 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1191 num_bytes);
1192 BUG_ON(ret);
1193 }
1194
1195 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1196 cur_offset, cur_offset + num_bytes - 1,
1197 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1198 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1199 EXTENT_SET_PRIVATE2);
1200 cur_offset = extent_end;
1201 if (cur_offset > end)
1202 break;
1203 }
1204 btrfs_release_path(root, path);
1205
1206 if (cur_offset <= end && cow_start == (u64)-1)
1207 cow_start = cur_offset;
1208 if (cow_start != (u64)-1) {
1209 ret = cow_file_range(inode, locked_page, cow_start, end,
1210 page_started, nr_written, 1);
1211 BUG_ON(ret);
1212 }
1213
1214 ret = btrfs_end_transaction(trans, root);
1215 BUG_ON(ret);
1216 btrfs_free_path(path);
1217 return 0;
1218 }
1219
1220 /*
1221 * extent_io.c call back to do delayed allocation processing
1222 */
1223 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1224 u64 start, u64 end, int *page_started,
1225 unsigned long *nr_written)
1226 {
1227 int ret;
1228 struct btrfs_root *root = BTRFS_I(inode)->root;
1229
1230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1231 ret = run_delalloc_nocow(inode, locked_page, start, end,
1232 page_started, 1, nr_written);
1233 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1234 ret = run_delalloc_nocow(inode, locked_page, start, end,
1235 page_started, 0, nr_written);
1236 else if (!btrfs_test_opt(root, COMPRESS) &&
1237 !(BTRFS_I(inode)->force_compress))
1238 ret = cow_file_range(inode, locked_page, start, end,
1239 page_started, nr_written, 1);
1240 else
1241 ret = cow_file_range_async(inode, locked_page, start, end,
1242 page_started, nr_written);
1243 return ret;
1244 }
1245
1246 static int btrfs_split_extent_hook(struct inode *inode,
1247 struct extent_state *orig, u64 split)
1248 {
1249 /* not delalloc, ignore it */
1250 if (!(orig->state & EXTENT_DELALLOC))
1251 return 0;
1252
1253 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1254 return 0;
1255 }
1256
1257 /*
1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259 * extents so we can keep track of new extents that are just merged onto old
1260 * extents, such as when we are doing sequential writes, so we can properly
1261 * account for the metadata space we'll need.
1262 */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264 struct extent_state *new,
1265 struct extent_state *other)
1266 {
1267 /* not delalloc, ignore it */
1268 if (!(other->state & EXTENT_DELALLOC))
1269 return 0;
1270
1271 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1272 return 0;
1273 }
1274
1275 /*
1276 * extent_io.c set_bit_hook, used to track delayed allocation
1277 * bytes in this file, and to maintain the list of inodes that
1278 * have pending delalloc work to be done.
1279 */
1280 static int btrfs_set_bit_hook(struct inode *inode,
1281 struct extent_state *state, int *bits)
1282 {
1283
1284 /*
1285 * set_bit and clear bit hooks normally require _irqsave/restore
1286 * but in this case, we are only testeing for the DELALLOC
1287 * bit, which is only set or cleared with irqs on
1288 */
1289 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1290 struct btrfs_root *root = BTRFS_I(inode)->root;
1291 u64 len = state->end + 1 - state->start;
1292
1293 if (*bits & EXTENT_FIRST_DELALLOC)
1294 *bits &= ~EXTENT_FIRST_DELALLOC;
1295 else
1296 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1297
1298 spin_lock(&root->fs_info->delalloc_lock);
1299 BTRFS_I(inode)->delalloc_bytes += len;
1300 root->fs_info->delalloc_bytes += len;
1301 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1302 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1303 &root->fs_info->delalloc_inodes);
1304 }
1305 spin_unlock(&root->fs_info->delalloc_lock);
1306 }
1307 return 0;
1308 }
1309
1310 /*
1311 * extent_io.c clear_bit_hook, see set_bit_hook for why
1312 */
1313 static int btrfs_clear_bit_hook(struct inode *inode,
1314 struct extent_state *state, int *bits)
1315 {
1316 /*
1317 * set_bit and clear bit hooks normally require _irqsave/restore
1318 * but in this case, we are only testeing for the DELALLOC
1319 * bit, which is only set or cleared with irqs on
1320 */
1321 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1322 struct btrfs_root *root = BTRFS_I(inode)->root;
1323 u64 len = state->end + 1 - state->start;
1324
1325 if (*bits & EXTENT_FIRST_DELALLOC)
1326 *bits &= ~EXTENT_FIRST_DELALLOC;
1327 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1328 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1329
1330 if (*bits & EXTENT_DO_ACCOUNTING)
1331 btrfs_delalloc_release_metadata(inode, len);
1332
1333 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1334 btrfs_free_reserved_data_space(inode, len);
1335
1336 spin_lock(&root->fs_info->delalloc_lock);
1337 root->fs_info->delalloc_bytes -= len;
1338 BTRFS_I(inode)->delalloc_bytes -= len;
1339
1340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343 }
1344 spin_unlock(&root->fs_info->delalloc_lock);
1345 }
1346 return 0;
1347 }
1348
1349 /*
1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351 * we don't create bios that span stripes or chunks
1352 */
1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1354 size_t size, struct bio *bio,
1355 unsigned long bio_flags)
1356 {
1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358 struct btrfs_mapping_tree *map_tree;
1359 u64 logical = (u64)bio->bi_sector << 9;
1360 u64 length = 0;
1361 u64 map_length;
1362 int ret;
1363
1364 if (bio_flags & EXTENT_BIO_COMPRESSED)
1365 return 0;
1366
1367 length = bio->bi_size;
1368 map_tree = &root->fs_info->mapping_tree;
1369 map_length = length;
1370 ret = btrfs_map_block(map_tree, READ, logical,
1371 &map_length, NULL, 0);
1372
1373 if (map_length < length + size)
1374 return 1;
1375 return 0;
1376 }
1377
1378 /*
1379 * in order to insert checksums into the metadata in large chunks,
1380 * we wait until bio submission time. All the pages in the bio are
1381 * checksummed and sums are attached onto the ordered extent record.
1382 *
1383 * At IO completion time the cums attached on the ordered extent record
1384 * are inserted into the btree
1385 */
1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387 struct bio *bio, int mirror_num,
1388 unsigned long bio_flags,
1389 u64 bio_offset)
1390 {
1391 struct btrfs_root *root = BTRFS_I(inode)->root;
1392 int ret = 0;
1393
1394 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1395 BUG_ON(ret);
1396 return 0;
1397 }
1398
1399 /*
1400 * in order to insert checksums into the metadata in large chunks,
1401 * we wait until bio submission time. All the pages in the bio are
1402 * checksummed and sums are attached onto the ordered extent record.
1403 *
1404 * At IO completion time the cums attached on the ordered extent record
1405 * are inserted into the btree
1406 */
1407 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1408 int mirror_num, unsigned long bio_flags,
1409 u64 bio_offset)
1410 {
1411 struct btrfs_root *root = BTRFS_I(inode)->root;
1412 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1413 }
1414
1415 /*
1416 * extent_io.c submission hook. This does the right thing for csum calculation
1417 * on write, or reading the csums from the tree before a read
1418 */
1419 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1420 int mirror_num, unsigned long bio_flags,
1421 u64 bio_offset)
1422 {
1423 struct btrfs_root *root = BTRFS_I(inode)->root;
1424 int ret = 0;
1425 int skip_sum;
1426
1427 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1428
1429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1430 BUG_ON(ret);
1431
1432 if (!(rw & REQ_WRITE)) {
1433 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1434 return btrfs_submit_compressed_read(inode, bio,
1435 mirror_num, bio_flags);
1436 } else if (!skip_sum)
1437 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1438 goto mapit;
1439 } else if (!skip_sum) {
1440 /* csum items have already been cloned */
1441 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1442 goto mapit;
1443 /* we're doing a write, do the async checksumming */
1444 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1445 inode, rw, bio, mirror_num,
1446 bio_flags, bio_offset,
1447 __btrfs_submit_bio_start,
1448 __btrfs_submit_bio_done);
1449 }
1450
1451 mapit:
1452 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1453 }
1454
1455 /*
1456 * given a list of ordered sums record them in the inode. This happens
1457 * at IO completion time based on sums calculated at bio submission time.
1458 */
1459 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1460 struct inode *inode, u64 file_offset,
1461 struct list_head *list)
1462 {
1463 struct btrfs_ordered_sum *sum;
1464
1465 btrfs_set_trans_block_group(trans, inode);
1466
1467 list_for_each_entry(sum, list, list) {
1468 btrfs_csum_file_blocks(trans,
1469 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1470 }
1471 return 0;
1472 }
1473
1474 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1475 struct extent_state **cached_state)
1476 {
1477 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1478 WARN_ON(1);
1479 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1480 cached_state, GFP_NOFS);
1481 }
1482
1483 /* see btrfs_writepage_start_hook for details on why this is required */
1484 struct btrfs_writepage_fixup {
1485 struct page *page;
1486 struct btrfs_work work;
1487 };
1488
1489 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1490 {
1491 struct btrfs_writepage_fixup *fixup;
1492 struct btrfs_ordered_extent *ordered;
1493 struct extent_state *cached_state = NULL;
1494 struct page *page;
1495 struct inode *inode;
1496 u64 page_start;
1497 u64 page_end;
1498
1499 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1500 page = fixup->page;
1501 again:
1502 lock_page(page);
1503 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1504 ClearPageChecked(page);
1505 goto out_page;
1506 }
1507
1508 inode = page->mapping->host;
1509 page_start = page_offset(page);
1510 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1511
1512 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1513 &cached_state, GFP_NOFS);
1514
1515 /* already ordered? We're done */
1516 if (PagePrivate2(page))
1517 goto out;
1518
1519 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1520 if (ordered) {
1521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1522 page_end, &cached_state, GFP_NOFS);
1523 unlock_page(page);
1524 btrfs_start_ordered_extent(inode, ordered, 1);
1525 goto again;
1526 }
1527
1528 BUG();
1529 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1530 ClearPageChecked(page);
1531 out:
1532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1533 &cached_state, GFP_NOFS);
1534 out_page:
1535 unlock_page(page);
1536 page_cache_release(page);
1537 }
1538
1539 /*
1540 * There are a few paths in the higher layers of the kernel that directly
1541 * set the page dirty bit without asking the filesystem if it is a
1542 * good idea. This causes problems because we want to make sure COW
1543 * properly happens and the data=ordered rules are followed.
1544 *
1545 * In our case any range that doesn't have the ORDERED bit set
1546 * hasn't been properly setup for IO. We kick off an async process
1547 * to fix it up. The async helper will wait for ordered extents, set
1548 * the delalloc bit and make it safe to write the page.
1549 */
1550 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1551 {
1552 struct inode *inode = page->mapping->host;
1553 struct btrfs_writepage_fixup *fixup;
1554 struct btrfs_root *root = BTRFS_I(inode)->root;
1555
1556 /* this page is properly in the ordered list */
1557 if (TestClearPagePrivate2(page))
1558 return 0;
1559
1560 if (PageChecked(page))
1561 return -EAGAIN;
1562
1563 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1564 if (!fixup)
1565 return -EAGAIN;
1566
1567 SetPageChecked(page);
1568 page_cache_get(page);
1569 fixup->work.func = btrfs_writepage_fixup_worker;
1570 fixup->page = page;
1571 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1572 return -EAGAIN;
1573 }
1574
1575 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1576 struct inode *inode, u64 file_pos,
1577 u64 disk_bytenr, u64 disk_num_bytes,
1578 u64 num_bytes, u64 ram_bytes,
1579 u8 compression, u8 encryption,
1580 u16 other_encoding, int extent_type)
1581 {
1582 struct btrfs_root *root = BTRFS_I(inode)->root;
1583 struct btrfs_file_extent_item *fi;
1584 struct btrfs_path *path;
1585 struct extent_buffer *leaf;
1586 struct btrfs_key ins;
1587 u64 hint;
1588 int ret;
1589
1590 path = btrfs_alloc_path();
1591 BUG_ON(!path);
1592
1593 path->leave_spinning = 1;
1594
1595 /*
1596 * we may be replacing one extent in the tree with another.
1597 * The new extent is pinned in the extent map, and we don't want
1598 * to drop it from the cache until it is completely in the btree.
1599 *
1600 * So, tell btrfs_drop_extents to leave this extent in the cache.
1601 * the caller is expected to unpin it and allow it to be merged
1602 * with the others.
1603 */
1604 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1605 &hint, 0);
1606 BUG_ON(ret);
1607
1608 ins.objectid = inode->i_ino;
1609 ins.offset = file_pos;
1610 ins.type = BTRFS_EXTENT_DATA_KEY;
1611 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1612 BUG_ON(ret);
1613 leaf = path->nodes[0];
1614 fi = btrfs_item_ptr(leaf, path->slots[0],
1615 struct btrfs_file_extent_item);
1616 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1617 btrfs_set_file_extent_type(leaf, fi, extent_type);
1618 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1619 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1620 btrfs_set_file_extent_offset(leaf, fi, 0);
1621 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1622 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1623 btrfs_set_file_extent_compression(leaf, fi, compression);
1624 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1625 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1626
1627 btrfs_unlock_up_safe(path, 1);
1628 btrfs_set_lock_blocking(leaf);
1629
1630 btrfs_mark_buffer_dirty(leaf);
1631
1632 inode_add_bytes(inode, num_bytes);
1633
1634 ins.objectid = disk_bytenr;
1635 ins.offset = disk_num_bytes;
1636 ins.type = BTRFS_EXTENT_ITEM_KEY;
1637 ret = btrfs_alloc_reserved_file_extent(trans, root,
1638 root->root_key.objectid,
1639 inode->i_ino, file_pos, &ins);
1640 BUG_ON(ret);
1641 btrfs_free_path(path);
1642
1643 return 0;
1644 }
1645
1646 /*
1647 * helper function for btrfs_finish_ordered_io, this
1648 * just reads in some of the csum leaves to prime them into ram
1649 * before we start the transaction. It limits the amount of btree
1650 * reads required while inside the transaction.
1651 */
1652 /* as ordered data IO finishes, this gets called so we can finish
1653 * an ordered extent if the range of bytes in the file it covers are
1654 * fully written.
1655 */
1656 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1657 {
1658 struct btrfs_root *root = BTRFS_I(inode)->root;
1659 struct btrfs_trans_handle *trans = NULL;
1660 struct btrfs_ordered_extent *ordered_extent = NULL;
1661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1662 struct extent_state *cached_state = NULL;
1663 int compressed = 0;
1664 int ret;
1665
1666 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1667 end - start + 1);
1668 if (!ret)
1669 return 0;
1670 BUG_ON(!ordered_extent);
1671
1672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1673 BUG_ON(!list_empty(&ordered_extent->list));
1674 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1675 if (!ret) {
1676 trans = btrfs_join_transaction(root, 1);
1677 btrfs_set_trans_block_group(trans, inode);
1678 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1679 ret = btrfs_update_inode(trans, root, inode);
1680 BUG_ON(ret);
1681 }
1682 goto out;
1683 }
1684
1685 lock_extent_bits(io_tree, ordered_extent->file_offset,
1686 ordered_extent->file_offset + ordered_extent->len - 1,
1687 0, &cached_state, GFP_NOFS);
1688
1689 trans = btrfs_join_transaction(root, 1);
1690 btrfs_set_trans_block_group(trans, inode);
1691 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1692
1693 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1694 compressed = 1;
1695 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1696 BUG_ON(compressed);
1697 ret = btrfs_mark_extent_written(trans, inode,
1698 ordered_extent->file_offset,
1699 ordered_extent->file_offset +
1700 ordered_extent->len);
1701 BUG_ON(ret);
1702 } else {
1703 BUG_ON(root == root->fs_info->tree_root);
1704 ret = insert_reserved_file_extent(trans, inode,
1705 ordered_extent->file_offset,
1706 ordered_extent->start,
1707 ordered_extent->disk_len,
1708 ordered_extent->len,
1709 ordered_extent->len,
1710 compressed, 0, 0,
1711 BTRFS_FILE_EXTENT_REG);
1712 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1713 ordered_extent->file_offset,
1714 ordered_extent->len);
1715 BUG_ON(ret);
1716 }
1717 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1718 ordered_extent->file_offset +
1719 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1720
1721 add_pending_csums(trans, inode, ordered_extent->file_offset,
1722 &ordered_extent->list);
1723
1724 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1725 ret = btrfs_update_inode(trans, root, inode);
1726 BUG_ON(ret);
1727 out:
1728 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1729 if (trans)
1730 btrfs_end_transaction(trans, root);
1731 /* once for us */
1732 btrfs_put_ordered_extent(ordered_extent);
1733 /* once for the tree */
1734 btrfs_put_ordered_extent(ordered_extent);
1735
1736 return 0;
1737 }
1738
1739 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1740 struct extent_state *state, int uptodate)
1741 {
1742 ClearPagePrivate2(page);
1743 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1744 }
1745
1746 /*
1747 * When IO fails, either with EIO or csum verification fails, we
1748 * try other mirrors that might have a good copy of the data. This
1749 * io_failure_record is used to record state as we go through all the
1750 * mirrors. If another mirror has good data, the page is set up to date
1751 * and things continue. If a good mirror can't be found, the original
1752 * bio end_io callback is called to indicate things have failed.
1753 */
1754 struct io_failure_record {
1755 struct page *page;
1756 u64 start;
1757 u64 len;
1758 u64 logical;
1759 unsigned long bio_flags;
1760 int last_mirror;
1761 };
1762
1763 static int btrfs_io_failed_hook(struct bio *failed_bio,
1764 struct page *page, u64 start, u64 end,
1765 struct extent_state *state)
1766 {
1767 struct io_failure_record *failrec = NULL;
1768 u64 private;
1769 struct extent_map *em;
1770 struct inode *inode = page->mapping->host;
1771 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1772 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1773 struct bio *bio;
1774 int num_copies;
1775 int ret;
1776 int rw;
1777 u64 logical;
1778
1779 ret = get_state_private(failure_tree, start, &private);
1780 if (ret) {
1781 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1782 if (!failrec)
1783 return -ENOMEM;
1784 failrec->start = start;
1785 failrec->len = end - start + 1;
1786 failrec->last_mirror = 0;
1787 failrec->bio_flags = 0;
1788
1789 read_lock(&em_tree->lock);
1790 em = lookup_extent_mapping(em_tree, start, failrec->len);
1791 if (em->start > start || em->start + em->len < start) {
1792 free_extent_map(em);
1793 em = NULL;
1794 }
1795 read_unlock(&em_tree->lock);
1796
1797 if (!em || IS_ERR(em)) {
1798 kfree(failrec);
1799 return -EIO;
1800 }
1801 logical = start - em->start;
1802 logical = em->block_start + logical;
1803 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1804 logical = em->block_start;
1805 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1806 }
1807 failrec->logical = logical;
1808 free_extent_map(em);
1809 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1810 EXTENT_DIRTY, GFP_NOFS);
1811 set_state_private(failure_tree, start,
1812 (u64)(unsigned long)failrec);
1813 } else {
1814 failrec = (struct io_failure_record *)(unsigned long)private;
1815 }
1816 num_copies = btrfs_num_copies(
1817 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1818 failrec->logical, failrec->len);
1819 failrec->last_mirror++;
1820 if (!state) {
1821 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1822 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1823 failrec->start,
1824 EXTENT_LOCKED);
1825 if (state && state->start != failrec->start)
1826 state = NULL;
1827 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1828 }
1829 if (!state || failrec->last_mirror > num_copies) {
1830 set_state_private(failure_tree, failrec->start, 0);
1831 clear_extent_bits(failure_tree, failrec->start,
1832 failrec->start + failrec->len - 1,
1833 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1834 kfree(failrec);
1835 return -EIO;
1836 }
1837 bio = bio_alloc(GFP_NOFS, 1);
1838 bio->bi_private = state;
1839 bio->bi_end_io = failed_bio->bi_end_io;
1840 bio->bi_sector = failrec->logical >> 9;
1841 bio->bi_bdev = failed_bio->bi_bdev;
1842 bio->bi_size = 0;
1843
1844 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1845 if (failed_bio->bi_rw & REQ_WRITE)
1846 rw = WRITE;
1847 else
1848 rw = READ;
1849
1850 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1851 failrec->last_mirror,
1852 failrec->bio_flags, 0);
1853 return 0;
1854 }
1855
1856 /*
1857 * each time an IO finishes, we do a fast check in the IO failure tree
1858 * to see if we need to process or clean up an io_failure_record
1859 */
1860 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1861 {
1862 u64 private;
1863 u64 private_failure;
1864 struct io_failure_record *failure;
1865 int ret;
1866
1867 private = 0;
1868 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1869 (u64)-1, 1, EXTENT_DIRTY)) {
1870 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1871 start, &private_failure);
1872 if (ret == 0) {
1873 failure = (struct io_failure_record *)(unsigned long)
1874 private_failure;
1875 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1876 failure->start, 0);
1877 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1878 failure->start,
1879 failure->start + failure->len - 1,
1880 EXTENT_DIRTY | EXTENT_LOCKED,
1881 GFP_NOFS);
1882 kfree(failure);
1883 }
1884 }
1885 return 0;
1886 }
1887
1888 /*
1889 * when reads are done, we need to check csums to verify the data is correct
1890 * if there's a match, we allow the bio to finish. If not, we go through
1891 * the io_failure_record routines to find good copies
1892 */
1893 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1894 struct extent_state *state)
1895 {
1896 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1897 struct inode *inode = page->mapping->host;
1898 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1899 char *kaddr;
1900 u64 private = ~(u32)0;
1901 int ret;
1902 struct btrfs_root *root = BTRFS_I(inode)->root;
1903 u32 csum = ~(u32)0;
1904
1905 if (PageChecked(page)) {
1906 ClearPageChecked(page);
1907 goto good;
1908 }
1909
1910 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1911 return 0;
1912
1913 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1914 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1915 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1916 GFP_NOFS);
1917 return 0;
1918 }
1919
1920 if (state && state->start == start) {
1921 private = state->private;
1922 ret = 0;
1923 } else {
1924 ret = get_state_private(io_tree, start, &private);
1925 }
1926 kaddr = kmap_atomic(page, KM_USER0);
1927 if (ret)
1928 goto zeroit;
1929
1930 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1931 btrfs_csum_final(csum, (char *)&csum);
1932 if (csum != private)
1933 goto zeroit;
1934
1935 kunmap_atomic(kaddr, KM_USER0);
1936 good:
1937 /* if the io failure tree for this inode is non-empty,
1938 * check to see if we've recovered from a failed IO
1939 */
1940 btrfs_clean_io_failures(inode, start);
1941 return 0;
1942
1943 zeroit:
1944 if (printk_ratelimit()) {
1945 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1946 "private %llu\n", page->mapping->host->i_ino,
1947 (unsigned long long)start, csum,
1948 (unsigned long long)private);
1949 }
1950 memset(kaddr + offset, 1, end - start + 1);
1951 flush_dcache_page(page);
1952 kunmap_atomic(kaddr, KM_USER0);
1953 if (private == 0)
1954 return 0;
1955 return -EIO;
1956 }
1957
1958 struct delayed_iput {
1959 struct list_head list;
1960 struct inode *inode;
1961 };
1962
1963 void btrfs_add_delayed_iput(struct inode *inode)
1964 {
1965 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1966 struct delayed_iput *delayed;
1967
1968 if (atomic_add_unless(&inode->i_count, -1, 1))
1969 return;
1970
1971 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1972 delayed->inode = inode;
1973
1974 spin_lock(&fs_info->delayed_iput_lock);
1975 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1976 spin_unlock(&fs_info->delayed_iput_lock);
1977 }
1978
1979 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1980 {
1981 LIST_HEAD(list);
1982 struct btrfs_fs_info *fs_info = root->fs_info;
1983 struct delayed_iput *delayed;
1984 int empty;
1985
1986 spin_lock(&fs_info->delayed_iput_lock);
1987 empty = list_empty(&fs_info->delayed_iputs);
1988 spin_unlock(&fs_info->delayed_iput_lock);
1989 if (empty)
1990 return;
1991
1992 down_read(&root->fs_info->cleanup_work_sem);
1993 spin_lock(&fs_info->delayed_iput_lock);
1994 list_splice_init(&fs_info->delayed_iputs, &list);
1995 spin_unlock(&fs_info->delayed_iput_lock);
1996
1997 while (!list_empty(&list)) {
1998 delayed = list_entry(list.next, struct delayed_iput, list);
1999 list_del(&delayed->list);
2000 iput(delayed->inode);
2001 kfree(delayed);
2002 }
2003 up_read(&root->fs_info->cleanup_work_sem);
2004 }
2005
2006 /*
2007 * calculate extra metadata reservation when snapshotting a subvolume
2008 * contains orphan files.
2009 */
2010 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2011 struct btrfs_pending_snapshot *pending,
2012 u64 *bytes_to_reserve)
2013 {
2014 struct btrfs_root *root;
2015 struct btrfs_block_rsv *block_rsv;
2016 u64 num_bytes;
2017 int index;
2018
2019 root = pending->root;
2020 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2021 return;
2022
2023 block_rsv = root->orphan_block_rsv;
2024
2025 /* orphan block reservation for the snapshot */
2026 num_bytes = block_rsv->size;
2027
2028 /*
2029 * after the snapshot is created, COWing tree blocks may use more
2030 * space than it frees. So we should make sure there is enough
2031 * reserved space.
2032 */
2033 index = trans->transid & 0x1;
2034 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2035 num_bytes += block_rsv->size -
2036 (block_rsv->reserved + block_rsv->freed[index]);
2037 }
2038
2039 *bytes_to_reserve += num_bytes;
2040 }
2041
2042 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2043 struct btrfs_pending_snapshot *pending)
2044 {
2045 struct btrfs_root *root = pending->root;
2046 struct btrfs_root *snap = pending->snap;
2047 struct btrfs_block_rsv *block_rsv;
2048 u64 num_bytes;
2049 int index;
2050 int ret;
2051
2052 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2053 return;
2054
2055 /* refill source subvolume's orphan block reservation */
2056 block_rsv = root->orphan_block_rsv;
2057 index = trans->transid & 0x1;
2058 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2059 num_bytes = block_rsv->size -
2060 (block_rsv->reserved + block_rsv->freed[index]);
2061 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2062 root->orphan_block_rsv,
2063 num_bytes);
2064 BUG_ON(ret);
2065 }
2066
2067 /* setup orphan block reservation for the snapshot */
2068 block_rsv = btrfs_alloc_block_rsv(snap);
2069 BUG_ON(!block_rsv);
2070
2071 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2072 snap->orphan_block_rsv = block_rsv;
2073
2074 num_bytes = root->orphan_block_rsv->size;
2075 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2076 block_rsv, num_bytes);
2077 BUG_ON(ret);
2078
2079 #if 0
2080 /* insert orphan item for the snapshot */
2081 WARN_ON(!root->orphan_item_inserted);
2082 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2083 snap->root_key.objectid);
2084 BUG_ON(ret);
2085 snap->orphan_item_inserted = 1;
2086 #endif
2087 }
2088
2089 enum btrfs_orphan_cleanup_state {
2090 ORPHAN_CLEANUP_STARTED = 1,
2091 ORPHAN_CLEANUP_DONE = 2,
2092 };
2093
2094 /*
2095 * This is called in transaction commmit time. If there are no orphan
2096 * files in the subvolume, it removes orphan item and frees block_rsv
2097 * structure.
2098 */
2099 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root)
2101 {
2102 int ret;
2103
2104 if (!list_empty(&root->orphan_list) ||
2105 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2106 return;
2107
2108 if (root->orphan_item_inserted &&
2109 btrfs_root_refs(&root->root_item) > 0) {
2110 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2111 root->root_key.objectid);
2112 BUG_ON(ret);
2113 root->orphan_item_inserted = 0;
2114 }
2115
2116 if (root->orphan_block_rsv) {
2117 WARN_ON(root->orphan_block_rsv->size > 0);
2118 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2119 root->orphan_block_rsv = NULL;
2120 }
2121 }
2122
2123 /*
2124 * This creates an orphan entry for the given inode in case something goes
2125 * wrong in the middle of an unlink/truncate.
2126 *
2127 * NOTE: caller of this function should reserve 5 units of metadata for
2128 * this function.
2129 */
2130 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2131 {
2132 struct btrfs_root *root = BTRFS_I(inode)->root;
2133 struct btrfs_block_rsv *block_rsv = NULL;
2134 int reserve = 0;
2135 int insert = 0;
2136 int ret;
2137
2138 if (!root->orphan_block_rsv) {
2139 block_rsv = btrfs_alloc_block_rsv(root);
2140 BUG_ON(!block_rsv);
2141 }
2142
2143 spin_lock(&root->orphan_lock);
2144 if (!root->orphan_block_rsv) {
2145 root->orphan_block_rsv = block_rsv;
2146 } else if (block_rsv) {
2147 btrfs_free_block_rsv(root, block_rsv);
2148 block_rsv = NULL;
2149 }
2150
2151 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2152 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2153 #if 0
2154 /*
2155 * For proper ENOSPC handling, we should do orphan
2156 * cleanup when mounting. But this introduces backward
2157 * compatibility issue.
2158 */
2159 if (!xchg(&root->orphan_item_inserted, 1))
2160 insert = 2;
2161 else
2162 insert = 1;
2163 #endif
2164 insert = 1;
2165 } else {
2166 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2167 }
2168
2169 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2170 BTRFS_I(inode)->orphan_meta_reserved = 1;
2171 reserve = 1;
2172 }
2173 spin_unlock(&root->orphan_lock);
2174
2175 if (block_rsv)
2176 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2177
2178 /* grab metadata reservation from transaction handle */
2179 if (reserve) {
2180 ret = btrfs_orphan_reserve_metadata(trans, inode);
2181 BUG_ON(ret);
2182 }
2183
2184 /* insert an orphan item to track this unlinked/truncated file */
2185 if (insert >= 1) {
2186 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2187 BUG_ON(ret);
2188 }
2189
2190 /* insert an orphan item to track subvolume contains orphan files */
2191 if (insert >= 2) {
2192 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2193 root->root_key.objectid);
2194 BUG_ON(ret);
2195 }
2196 return 0;
2197 }
2198
2199 /*
2200 * We have done the truncate/delete so we can go ahead and remove the orphan
2201 * item for this particular inode.
2202 */
2203 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2204 {
2205 struct btrfs_root *root = BTRFS_I(inode)->root;
2206 int delete_item = 0;
2207 int release_rsv = 0;
2208 int ret = 0;
2209
2210 spin_lock(&root->orphan_lock);
2211 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2212 list_del_init(&BTRFS_I(inode)->i_orphan);
2213 delete_item = 1;
2214 }
2215
2216 if (BTRFS_I(inode)->orphan_meta_reserved) {
2217 BTRFS_I(inode)->orphan_meta_reserved = 0;
2218 release_rsv = 1;
2219 }
2220 spin_unlock(&root->orphan_lock);
2221
2222 if (trans && delete_item) {
2223 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2224 BUG_ON(ret);
2225 }
2226
2227 if (release_rsv)
2228 btrfs_orphan_release_metadata(inode);
2229
2230 return 0;
2231 }
2232
2233 /*
2234 * this cleans up any orphans that may be left on the list from the last use
2235 * of this root.
2236 */
2237 void btrfs_orphan_cleanup(struct btrfs_root *root)
2238 {
2239 struct btrfs_path *path;
2240 struct extent_buffer *leaf;
2241 struct btrfs_item *item;
2242 struct btrfs_key key, found_key;
2243 struct btrfs_trans_handle *trans;
2244 struct inode *inode;
2245 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2246
2247 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2248 return;
2249
2250 path = btrfs_alloc_path();
2251 BUG_ON(!path);
2252 path->reada = -1;
2253
2254 key.objectid = BTRFS_ORPHAN_OBJECTID;
2255 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2256 key.offset = (u64)-1;
2257
2258 while (1) {
2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2260 if (ret < 0) {
2261 printk(KERN_ERR "Error searching slot for orphan: %d"
2262 "\n", ret);
2263 break;
2264 }
2265
2266 /*
2267 * if ret == 0 means we found what we were searching for, which
2268 * is weird, but possible, so only screw with path if we didnt
2269 * find the key and see if we have stuff that matches
2270 */
2271 if (ret > 0) {
2272 if (path->slots[0] == 0)
2273 break;
2274 path->slots[0]--;
2275 }
2276
2277 /* pull out the item */
2278 leaf = path->nodes[0];
2279 item = btrfs_item_nr(leaf, path->slots[0]);
2280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2281
2282 /* make sure the item matches what we want */
2283 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2284 break;
2285 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2286 break;
2287
2288 /* release the path since we're done with it */
2289 btrfs_release_path(root, path);
2290
2291 /*
2292 * this is where we are basically btrfs_lookup, without the
2293 * crossing root thing. we store the inode number in the
2294 * offset of the orphan item.
2295 */
2296 found_key.objectid = found_key.offset;
2297 found_key.type = BTRFS_INODE_ITEM_KEY;
2298 found_key.offset = 0;
2299 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2300 BUG_ON(IS_ERR(inode));
2301
2302 /*
2303 * add this inode to the orphan list so btrfs_orphan_del does
2304 * the proper thing when we hit it
2305 */
2306 spin_lock(&root->orphan_lock);
2307 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2308 spin_unlock(&root->orphan_lock);
2309
2310 /*
2311 * if this is a bad inode, means we actually succeeded in
2312 * removing the inode, but not the orphan record, which means
2313 * we need to manually delete the orphan since iput will just
2314 * do a destroy_inode
2315 */
2316 if (is_bad_inode(inode)) {
2317 trans = btrfs_start_transaction(root, 0);
2318 btrfs_orphan_del(trans, inode);
2319 btrfs_end_transaction(trans, root);
2320 iput(inode);
2321 continue;
2322 }
2323
2324 /* if we have links, this was a truncate, lets do that */
2325 if (inode->i_nlink) {
2326 nr_truncate++;
2327 btrfs_truncate(inode);
2328 } else {
2329 nr_unlink++;
2330 }
2331
2332 /* this will do delete_inode and everything for us */
2333 iput(inode);
2334 }
2335 btrfs_free_path(path);
2336
2337 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2338
2339 if (root->orphan_block_rsv)
2340 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2341 (u64)-1);
2342
2343 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2344 trans = btrfs_join_transaction(root, 1);
2345 btrfs_end_transaction(trans, root);
2346 }
2347
2348 if (nr_unlink)
2349 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2350 if (nr_truncate)
2351 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2352 }
2353
2354 /*
2355 * very simple check to peek ahead in the leaf looking for xattrs. If we
2356 * don't find any xattrs, we know there can't be any acls.
2357 *
2358 * slot is the slot the inode is in, objectid is the objectid of the inode
2359 */
2360 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2361 int slot, u64 objectid)
2362 {
2363 u32 nritems = btrfs_header_nritems(leaf);
2364 struct btrfs_key found_key;
2365 int scanned = 0;
2366
2367 slot++;
2368 while (slot < nritems) {
2369 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2370
2371 /* we found a different objectid, there must not be acls */
2372 if (found_key.objectid != objectid)
2373 return 0;
2374
2375 /* we found an xattr, assume we've got an acl */
2376 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2377 return 1;
2378
2379 /*
2380 * we found a key greater than an xattr key, there can't
2381 * be any acls later on
2382 */
2383 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2384 return 0;
2385
2386 slot++;
2387 scanned++;
2388
2389 /*
2390 * it goes inode, inode backrefs, xattrs, extents,
2391 * so if there are a ton of hard links to an inode there can
2392 * be a lot of backrefs. Don't waste time searching too hard,
2393 * this is just an optimization
2394 */
2395 if (scanned >= 8)
2396 break;
2397 }
2398 /* we hit the end of the leaf before we found an xattr or
2399 * something larger than an xattr. We have to assume the inode
2400 * has acls
2401 */
2402 return 1;
2403 }
2404
2405 /*
2406 * read an inode from the btree into the in-memory inode
2407 */
2408 static void btrfs_read_locked_inode(struct inode *inode)
2409 {
2410 struct btrfs_path *path;
2411 struct extent_buffer *leaf;
2412 struct btrfs_inode_item *inode_item;
2413 struct btrfs_timespec *tspec;
2414 struct btrfs_root *root = BTRFS_I(inode)->root;
2415 struct btrfs_key location;
2416 int maybe_acls;
2417 u64 alloc_group_block;
2418 u32 rdev;
2419 int ret;
2420
2421 path = btrfs_alloc_path();
2422 BUG_ON(!path);
2423 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2424
2425 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2426 if (ret)
2427 goto make_bad;
2428
2429 leaf = path->nodes[0];
2430 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2431 struct btrfs_inode_item);
2432
2433 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2434 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2435 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2436 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2437 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2438
2439 tspec = btrfs_inode_atime(inode_item);
2440 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2441 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2442
2443 tspec = btrfs_inode_mtime(inode_item);
2444 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2445 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2446
2447 tspec = btrfs_inode_ctime(inode_item);
2448 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2449 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2450
2451 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2452 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2453 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2454 inode->i_generation = BTRFS_I(inode)->generation;
2455 inode->i_rdev = 0;
2456 rdev = btrfs_inode_rdev(leaf, inode_item);
2457
2458 BTRFS_I(inode)->index_cnt = (u64)-1;
2459 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2460
2461 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2462
2463 /*
2464 * try to precache a NULL acl entry for files that don't have
2465 * any xattrs or acls
2466 */
2467 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2468 if (!maybe_acls)
2469 cache_no_acl(inode);
2470
2471 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2472 alloc_group_block, 0);
2473 btrfs_free_path(path);
2474 inode_item = NULL;
2475
2476 switch (inode->i_mode & S_IFMT) {
2477 case S_IFREG:
2478 inode->i_mapping->a_ops = &btrfs_aops;
2479 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2480 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2481 inode->i_fop = &btrfs_file_operations;
2482 inode->i_op = &btrfs_file_inode_operations;
2483 break;
2484 case S_IFDIR:
2485 inode->i_fop = &btrfs_dir_file_operations;
2486 if (root == root->fs_info->tree_root)
2487 inode->i_op = &btrfs_dir_ro_inode_operations;
2488 else
2489 inode->i_op = &btrfs_dir_inode_operations;
2490 break;
2491 case S_IFLNK:
2492 inode->i_op = &btrfs_symlink_inode_operations;
2493 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2494 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2495 break;
2496 default:
2497 inode->i_op = &btrfs_special_inode_operations;
2498 init_special_inode(inode, inode->i_mode, rdev);
2499 break;
2500 }
2501
2502 btrfs_update_iflags(inode);
2503 return;
2504
2505 make_bad:
2506 btrfs_free_path(path);
2507 make_bad_inode(inode);
2508 }
2509
2510 /*
2511 * given a leaf and an inode, copy the inode fields into the leaf
2512 */
2513 static void fill_inode_item(struct btrfs_trans_handle *trans,
2514 struct extent_buffer *leaf,
2515 struct btrfs_inode_item *item,
2516 struct inode *inode)
2517 {
2518 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2519 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2520 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2521 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2522 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2523
2524 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2525 inode->i_atime.tv_sec);
2526 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2527 inode->i_atime.tv_nsec);
2528
2529 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2530 inode->i_mtime.tv_sec);
2531 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2532 inode->i_mtime.tv_nsec);
2533
2534 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2535 inode->i_ctime.tv_sec);
2536 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2537 inode->i_ctime.tv_nsec);
2538
2539 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2540 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2541 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2542 btrfs_set_inode_transid(leaf, item, trans->transid);
2543 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2544 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2545 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2546 }
2547
2548 /*
2549 * copy everything in the in-memory inode into the btree.
2550 */
2551 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2552 struct btrfs_root *root, struct inode *inode)
2553 {
2554 struct btrfs_inode_item *inode_item;
2555 struct btrfs_path *path;
2556 struct extent_buffer *leaf;
2557 int ret;
2558
2559 path = btrfs_alloc_path();
2560 BUG_ON(!path);
2561 path->leave_spinning = 1;
2562 ret = btrfs_lookup_inode(trans, root, path,
2563 &BTRFS_I(inode)->location, 1);
2564 if (ret) {
2565 if (ret > 0)
2566 ret = -ENOENT;
2567 goto failed;
2568 }
2569
2570 btrfs_unlock_up_safe(path, 1);
2571 leaf = path->nodes[0];
2572 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2573 struct btrfs_inode_item);
2574
2575 fill_inode_item(trans, leaf, inode_item, inode);
2576 btrfs_mark_buffer_dirty(leaf);
2577 btrfs_set_inode_last_trans(trans, inode);
2578 ret = 0;
2579 failed:
2580 btrfs_free_path(path);
2581 return ret;
2582 }
2583
2584
2585 /*
2586 * unlink helper that gets used here in inode.c and in the tree logging
2587 * recovery code. It remove a link in a directory with a given name, and
2588 * also drops the back refs in the inode to the directory
2589 */
2590 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2591 struct btrfs_root *root,
2592 struct inode *dir, struct inode *inode,
2593 const char *name, int name_len)
2594 {
2595 struct btrfs_path *path;
2596 int ret = 0;
2597 struct extent_buffer *leaf;
2598 struct btrfs_dir_item *di;
2599 struct btrfs_key key;
2600 u64 index;
2601
2602 path = btrfs_alloc_path();
2603 if (!path) {
2604 ret = -ENOMEM;
2605 goto err;
2606 }
2607
2608 path->leave_spinning = 1;
2609 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2610 name, name_len, -1);
2611 if (IS_ERR(di)) {
2612 ret = PTR_ERR(di);
2613 goto err;
2614 }
2615 if (!di) {
2616 ret = -ENOENT;
2617 goto err;
2618 }
2619 leaf = path->nodes[0];
2620 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2621 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2622 if (ret)
2623 goto err;
2624 btrfs_release_path(root, path);
2625
2626 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2627 inode->i_ino,
2628 dir->i_ino, &index);
2629 if (ret) {
2630 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2631 "inode %lu parent %lu\n", name_len, name,
2632 inode->i_ino, dir->i_ino);
2633 goto err;
2634 }
2635
2636 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2637 index, name, name_len, -1);
2638 if (IS_ERR(di)) {
2639 ret = PTR_ERR(di);
2640 goto err;
2641 }
2642 if (!di) {
2643 ret = -ENOENT;
2644 goto err;
2645 }
2646 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2647 btrfs_release_path(root, path);
2648
2649 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2650 inode, dir->i_ino);
2651 BUG_ON(ret != 0 && ret != -ENOENT);
2652
2653 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2654 dir, index);
2655 BUG_ON(ret);
2656 err:
2657 btrfs_free_path(path);
2658 if (ret)
2659 goto out;
2660
2661 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2662 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2663 btrfs_update_inode(trans, root, dir);
2664 btrfs_drop_nlink(inode);
2665 ret = btrfs_update_inode(trans, root, inode);
2666 out:
2667 return ret;
2668 }
2669
2670 /* helper to check if there is any shared block in the path */
2671 static int check_path_shared(struct btrfs_root *root,
2672 struct btrfs_path *path)
2673 {
2674 struct extent_buffer *eb;
2675 int level;
2676 int ret;
2677 u64 refs = 1;
2678
2679 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2680 if (!path->nodes[level])
2681 break;
2682 eb = path->nodes[level];
2683 if (!btrfs_block_can_be_shared(root, eb))
2684 continue;
2685 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2686 &refs, NULL);
2687 if (refs > 1)
2688 return 1;
2689 }
2690 return 0;
2691 }
2692
2693 /*
2694 * helper to start transaction for unlink and rmdir.
2695 *
2696 * unlink and rmdir are special in btrfs, they do not always free space.
2697 * so in enospc case, we should make sure they will free space before
2698 * allowing them to use the global metadata reservation.
2699 */
2700 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2701 struct dentry *dentry)
2702 {
2703 struct btrfs_trans_handle *trans;
2704 struct btrfs_root *root = BTRFS_I(dir)->root;
2705 struct btrfs_path *path;
2706 struct btrfs_inode_ref *ref;
2707 struct btrfs_dir_item *di;
2708 struct inode *inode = dentry->d_inode;
2709 u64 index;
2710 int check_link = 1;
2711 int err = -ENOSPC;
2712 int ret;
2713
2714 trans = btrfs_start_transaction(root, 10);
2715 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2716 return trans;
2717
2718 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2719 return ERR_PTR(-ENOSPC);
2720
2721 /* check if there is someone else holds reference */
2722 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2723 return ERR_PTR(-ENOSPC);
2724
2725 if (atomic_read(&inode->i_count) > 2)
2726 return ERR_PTR(-ENOSPC);
2727
2728 if (xchg(&root->fs_info->enospc_unlink, 1))
2729 return ERR_PTR(-ENOSPC);
2730
2731 path = btrfs_alloc_path();
2732 if (!path) {
2733 root->fs_info->enospc_unlink = 0;
2734 return ERR_PTR(-ENOMEM);
2735 }
2736
2737 trans = btrfs_start_transaction(root, 0);
2738 if (IS_ERR(trans)) {
2739 btrfs_free_path(path);
2740 root->fs_info->enospc_unlink = 0;
2741 return trans;
2742 }
2743
2744 path->skip_locking = 1;
2745 path->search_commit_root = 1;
2746
2747 ret = btrfs_lookup_inode(trans, root, path,
2748 &BTRFS_I(dir)->location, 0);
2749 if (ret < 0) {
2750 err = ret;
2751 goto out;
2752 }
2753 if (ret == 0) {
2754 if (check_path_shared(root, path))
2755 goto out;
2756 } else {
2757 check_link = 0;
2758 }
2759 btrfs_release_path(root, path);
2760
2761 ret = btrfs_lookup_inode(trans, root, path,
2762 &BTRFS_I(inode)->location, 0);
2763 if (ret < 0) {
2764 err = ret;
2765 goto out;
2766 }
2767 if (ret == 0) {
2768 if (check_path_shared(root, path))
2769 goto out;
2770 } else {
2771 check_link = 0;
2772 }
2773 btrfs_release_path(root, path);
2774
2775 if (ret == 0 && S_ISREG(inode->i_mode)) {
2776 ret = btrfs_lookup_file_extent(trans, root, path,
2777 inode->i_ino, (u64)-1, 0);
2778 if (ret < 0) {
2779 err = ret;
2780 goto out;
2781 }
2782 BUG_ON(ret == 0);
2783 if (check_path_shared(root, path))
2784 goto out;
2785 btrfs_release_path(root, path);
2786 }
2787
2788 if (!check_link) {
2789 err = 0;
2790 goto out;
2791 }
2792
2793 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2794 dentry->d_name.name, dentry->d_name.len, 0);
2795 if (IS_ERR(di)) {
2796 err = PTR_ERR(di);
2797 goto out;
2798 }
2799 if (di) {
2800 if (check_path_shared(root, path))
2801 goto out;
2802 } else {
2803 err = 0;
2804 goto out;
2805 }
2806 btrfs_release_path(root, path);
2807
2808 ref = btrfs_lookup_inode_ref(trans, root, path,
2809 dentry->d_name.name, dentry->d_name.len,
2810 inode->i_ino, dir->i_ino, 0);
2811 if (IS_ERR(ref)) {
2812 err = PTR_ERR(ref);
2813 goto out;
2814 }
2815 BUG_ON(!ref);
2816 if (check_path_shared(root, path))
2817 goto out;
2818 index = btrfs_inode_ref_index(path->nodes[0], ref);
2819 btrfs_release_path(root, path);
2820
2821 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2822 dentry->d_name.name, dentry->d_name.len, 0);
2823 if (IS_ERR(di)) {
2824 err = PTR_ERR(di);
2825 goto out;
2826 }
2827 BUG_ON(ret == -ENOENT);
2828 if (check_path_shared(root, path))
2829 goto out;
2830
2831 err = 0;
2832 out:
2833 btrfs_free_path(path);
2834 if (err) {
2835 btrfs_end_transaction(trans, root);
2836 root->fs_info->enospc_unlink = 0;
2837 return ERR_PTR(err);
2838 }
2839
2840 trans->block_rsv = &root->fs_info->global_block_rsv;
2841 return trans;
2842 }
2843
2844 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root)
2846 {
2847 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2848 BUG_ON(!root->fs_info->enospc_unlink);
2849 root->fs_info->enospc_unlink = 0;
2850 }
2851 btrfs_end_transaction_throttle(trans, root);
2852 }
2853
2854 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2855 {
2856 struct btrfs_root *root = BTRFS_I(dir)->root;
2857 struct btrfs_trans_handle *trans;
2858 struct inode *inode = dentry->d_inode;
2859 int ret;
2860 unsigned long nr = 0;
2861
2862 trans = __unlink_start_trans(dir, dentry);
2863 if (IS_ERR(trans))
2864 return PTR_ERR(trans);
2865
2866 btrfs_set_trans_block_group(trans, dir);
2867
2868 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2869
2870 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2871 dentry->d_name.name, dentry->d_name.len);
2872 BUG_ON(ret);
2873
2874 if (inode->i_nlink == 0) {
2875 ret = btrfs_orphan_add(trans, inode);
2876 BUG_ON(ret);
2877 }
2878
2879 nr = trans->blocks_used;
2880 __unlink_end_trans(trans, root);
2881 btrfs_btree_balance_dirty(root, nr);
2882 return ret;
2883 }
2884
2885 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2886 struct btrfs_root *root,
2887 struct inode *dir, u64 objectid,
2888 const char *name, int name_len)
2889 {
2890 struct btrfs_path *path;
2891 struct extent_buffer *leaf;
2892 struct btrfs_dir_item *di;
2893 struct btrfs_key key;
2894 u64 index;
2895 int ret;
2896
2897 path = btrfs_alloc_path();
2898 if (!path)
2899 return -ENOMEM;
2900
2901 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2902 name, name_len, -1);
2903 BUG_ON(!di || IS_ERR(di));
2904
2905 leaf = path->nodes[0];
2906 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2907 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2908 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2909 BUG_ON(ret);
2910 btrfs_release_path(root, path);
2911
2912 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2913 objectid, root->root_key.objectid,
2914 dir->i_ino, &index, name, name_len);
2915 if (ret < 0) {
2916 BUG_ON(ret != -ENOENT);
2917 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2918 name, name_len);
2919 BUG_ON(!di || IS_ERR(di));
2920
2921 leaf = path->nodes[0];
2922 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2923 btrfs_release_path(root, path);
2924 index = key.offset;
2925 }
2926
2927 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2928 index, name, name_len, -1);
2929 BUG_ON(!di || IS_ERR(di));
2930
2931 leaf = path->nodes[0];
2932 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2933 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2934 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2935 BUG_ON(ret);
2936 btrfs_release_path(root, path);
2937
2938 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2939 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2940 ret = btrfs_update_inode(trans, root, dir);
2941 BUG_ON(ret);
2942
2943 btrfs_free_path(path);
2944 return 0;
2945 }
2946
2947 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2948 {
2949 struct inode *inode = dentry->d_inode;
2950 int err = 0;
2951 struct btrfs_root *root = BTRFS_I(dir)->root;
2952 struct btrfs_trans_handle *trans;
2953 unsigned long nr = 0;
2954
2955 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2956 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2957 return -ENOTEMPTY;
2958
2959 trans = __unlink_start_trans(dir, dentry);
2960 if (IS_ERR(trans))
2961 return PTR_ERR(trans);
2962
2963 btrfs_set_trans_block_group(trans, dir);
2964
2965 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2966 err = btrfs_unlink_subvol(trans, root, dir,
2967 BTRFS_I(inode)->location.objectid,
2968 dentry->d_name.name,
2969 dentry->d_name.len);
2970 goto out;
2971 }
2972
2973 err = btrfs_orphan_add(trans, inode);
2974 if (err)
2975 goto out;
2976
2977 /* now the directory is empty */
2978 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2979 dentry->d_name.name, dentry->d_name.len);
2980 if (!err)
2981 btrfs_i_size_write(inode, 0);
2982 out:
2983 nr = trans->blocks_used;
2984 __unlink_end_trans(trans, root);
2985 btrfs_btree_balance_dirty(root, nr);
2986
2987 return err;
2988 }
2989
2990 #if 0
2991 /*
2992 * when truncating bytes in a file, it is possible to avoid reading
2993 * the leaves that contain only checksum items. This can be the
2994 * majority of the IO required to delete a large file, but it must
2995 * be done carefully.
2996 *
2997 * The keys in the level just above the leaves are checked to make sure
2998 * the lowest key in a given leaf is a csum key, and starts at an offset
2999 * after the new size.
3000 *
3001 * Then the key for the next leaf is checked to make sure it also has
3002 * a checksum item for the same file. If it does, we know our target leaf
3003 * contains only checksum items, and it can be safely freed without reading
3004 * it.
3005 *
3006 * This is just an optimization targeted at large files. It may do
3007 * nothing. It will return 0 unless things went badly.
3008 */
3009 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 struct btrfs_path *path,
3012 struct inode *inode, u64 new_size)
3013 {
3014 struct btrfs_key key;
3015 int ret;
3016 int nritems;
3017 struct btrfs_key found_key;
3018 struct btrfs_key other_key;
3019 struct btrfs_leaf_ref *ref;
3020 u64 leaf_gen;
3021 u64 leaf_start;
3022
3023 path->lowest_level = 1;
3024 key.objectid = inode->i_ino;
3025 key.type = BTRFS_CSUM_ITEM_KEY;
3026 key.offset = new_size;
3027 again:
3028 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3029 if (ret < 0)
3030 goto out;
3031
3032 if (path->nodes[1] == NULL) {
3033 ret = 0;
3034 goto out;
3035 }
3036 ret = 0;
3037 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3038 nritems = btrfs_header_nritems(path->nodes[1]);
3039
3040 if (!nritems)
3041 goto out;
3042
3043 if (path->slots[1] >= nritems)
3044 goto next_node;
3045
3046 /* did we find a key greater than anything we want to delete? */
3047 if (found_key.objectid > inode->i_ino ||
3048 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3049 goto out;
3050
3051 /* we check the next key in the node to make sure the leave contains
3052 * only checksum items. This comparison doesn't work if our
3053 * leaf is the last one in the node
3054 */
3055 if (path->slots[1] + 1 >= nritems) {
3056 next_node:
3057 /* search forward from the last key in the node, this
3058 * will bring us into the next node in the tree
3059 */
3060 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3061
3062 /* unlikely, but we inc below, so check to be safe */
3063 if (found_key.offset == (u64)-1)
3064 goto out;
3065
3066 /* search_forward needs a path with locks held, do the
3067 * search again for the original key. It is possible
3068 * this will race with a balance and return a path that
3069 * we could modify, but this drop is just an optimization
3070 * and is allowed to miss some leaves.
3071 */
3072 btrfs_release_path(root, path);
3073 found_key.offset++;
3074
3075 /* setup a max key for search_forward */
3076 other_key.offset = (u64)-1;
3077 other_key.type = key.type;
3078 other_key.objectid = key.objectid;
3079
3080 path->keep_locks = 1;
3081 ret = btrfs_search_forward(root, &found_key, &other_key,
3082 path, 0, 0);
3083 path->keep_locks = 0;
3084 if (ret || found_key.objectid != key.objectid ||
3085 found_key.type != key.type) {
3086 ret = 0;
3087 goto out;
3088 }
3089
3090 key.offset = found_key.offset;
3091 btrfs_release_path(root, path);
3092 cond_resched();
3093 goto again;
3094 }
3095
3096 /* we know there's one more slot after us in the tree,
3097 * read that key so we can verify it is also a checksum item
3098 */
3099 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3100
3101 if (found_key.objectid < inode->i_ino)
3102 goto next_key;
3103
3104 if (found_key.type != key.type || found_key.offset < new_size)
3105 goto next_key;
3106
3107 /*
3108 * if the key for the next leaf isn't a csum key from this objectid,
3109 * we can't be sure there aren't good items inside this leaf.
3110 * Bail out
3111 */
3112 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3113 goto out;
3114
3115 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3116 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3117 /*
3118 * it is safe to delete this leaf, it contains only
3119 * csum items from this inode at an offset >= new_size
3120 */
3121 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3122 BUG_ON(ret);
3123
3124 if (root->ref_cows && leaf_gen < trans->transid) {
3125 ref = btrfs_alloc_leaf_ref(root, 0);
3126 if (ref) {
3127 ref->root_gen = root->root_key.offset;
3128 ref->bytenr = leaf_start;
3129 ref->owner = 0;
3130 ref->generation = leaf_gen;
3131 ref->nritems = 0;
3132
3133 btrfs_sort_leaf_ref(ref);
3134
3135 ret = btrfs_add_leaf_ref(root, ref, 0);
3136 WARN_ON(ret);
3137 btrfs_free_leaf_ref(root, ref);
3138 } else {
3139 WARN_ON(1);
3140 }
3141 }
3142 next_key:
3143 btrfs_release_path(root, path);
3144
3145 if (other_key.objectid == inode->i_ino &&
3146 other_key.type == key.type && other_key.offset > key.offset) {
3147 key.offset = other_key.offset;
3148 cond_resched();
3149 goto again;
3150 }
3151 ret = 0;
3152 out:
3153 /* fixup any changes we've made to the path */
3154 path->lowest_level = 0;
3155 path->keep_locks = 0;
3156 btrfs_release_path(root, path);
3157 return ret;
3158 }
3159
3160 #endif
3161
3162 /*
3163 * this can truncate away extent items, csum items and directory items.
3164 * It starts at a high offset and removes keys until it can't find
3165 * any higher than new_size
3166 *
3167 * csum items that cross the new i_size are truncated to the new size
3168 * as well.
3169 *
3170 * min_type is the minimum key type to truncate down to. If set to 0, this
3171 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3172 */
3173 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3174 struct btrfs_root *root,
3175 struct inode *inode,
3176 u64 new_size, u32 min_type)
3177 {
3178 struct btrfs_path *path;
3179 struct extent_buffer *leaf;
3180 struct btrfs_file_extent_item *fi;
3181 struct btrfs_key key;
3182 struct btrfs_key found_key;
3183 u64 extent_start = 0;
3184 u64 extent_num_bytes = 0;
3185 u64 extent_offset = 0;
3186 u64 item_end = 0;
3187 u64 mask = root->sectorsize - 1;
3188 u32 found_type = (u8)-1;
3189 int found_extent;
3190 int del_item;
3191 int pending_del_nr = 0;
3192 int pending_del_slot = 0;
3193 int extent_type = -1;
3194 int encoding;
3195 int ret;
3196 int err = 0;
3197
3198 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3199
3200 if (root->ref_cows || root == root->fs_info->tree_root)
3201 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3202
3203 path = btrfs_alloc_path();
3204 BUG_ON(!path);
3205 path->reada = -1;
3206
3207 key.objectid = inode->i_ino;
3208 key.offset = (u64)-1;
3209 key.type = (u8)-1;
3210
3211 search_again:
3212 path->leave_spinning = 1;
3213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3214 if (ret < 0) {
3215 err = ret;
3216 goto out;
3217 }
3218
3219 if (ret > 0) {
3220 /* there are no items in the tree for us to truncate, we're
3221 * done
3222 */
3223 if (path->slots[0] == 0)
3224 goto out;
3225 path->slots[0]--;
3226 }
3227
3228 while (1) {
3229 fi = NULL;
3230 leaf = path->nodes[0];
3231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3232 found_type = btrfs_key_type(&found_key);
3233 encoding = 0;
3234
3235 if (found_key.objectid != inode->i_ino)
3236 break;
3237
3238 if (found_type < min_type)
3239 break;
3240
3241 item_end = found_key.offset;
3242 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3243 fi = btrfs_item_ptr(leaf, path->slots[0],
3244 struct btrfs_file_extent_item);
3245 extent_type = btrfs_file_extent_type(leaf, fi);
3246 encoding = btrfs_file_extent_compression(leaf, fi);
3247 encoding |= btrfs_file_extent_encryption(leaf, fi);
3248 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3249
3250 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3251 item_end +=
3252 btrfs_file_extent_num_bytes(leaf, fi);
3253 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3254 item_end += btrfs_file_extent_inline_len(leaf,
3255 fi);
3256 }
3257 item_end--;
3258 }
3259 if (found_type > min_type) {
3260 del_item = 1;
3261 } else {
3262 if (item_end < new_size)
3263 break;
3264 if (found_key.offset >= new_size)
3265 del_item = 1;
3266 else
3267 del_item = 0;
3268 }
3269 found_extent = 0;
3270 /* FIXME, shrink the extent if the ref count is only 1 */
3271 if (found_type != BTRFS_EXTENT_DATA_KEY)
3272 goto delete;
3273
3274 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3275 u64 num_dec;
3276 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3277 if (!del_item && !encoding) {
3278 u64 orig_num_bytes =
3279 btrfs_file_extent_num_bytes(leaf, fi);
3280 extent_num_bytes = new_size -
3281 found_key.offset + root->sectorsize - 1;
3282 extent_num_bytes = extent_num_bytes &
3283 ~((u64)root->sectorsize - 1);
3284 btrfs_set_file_extent_num_bytes(leaf, fi,
3285 extent_num_bytes);
3286 num_dec = (orig_num_bytes -
3287 extent_num_bytes);
3288 if (root->ref_cows && extent_start != 0)
3289 inode_sub_bytes(inode, num_dec);
3290 btrfs_mark_buffer_dirty(leaf);
3291 } else {
3292 extent_num_bytes =
3293 btrfs_file_extent_disk_num_bytes(leaf,
3294 fi);
3295 extent_offset = found_key.offset -
3296 btrfs_file_extent_offset(leaf, fi);
3297
3298 /* FIXME blocksize != 4096 */
3299 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3300 if (extent_start != 0) {
3301 found_extent = 1;
3302 if (root->ref_cows)
3303 inode_sub_bytes(inode, num_dec);
3304 }
3305 }
3306 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3307 /*
3308 * we can't truncate inline items that have had
3309 * special encodings
3310 */
3311 if (!del_item &&
3312 btrfs_file_extent_compression(leaf, fi) == 0 &&
3313 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3314 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3315 u32 size = new_size - found_key.offset;
3316
3317 if (root->ref_cows) {
3318 inode_sub_bytes(inode, item_end + 1 -
3319 new_size);
3320 }
3321 size =
3322 btrfs_file_extent_calc_inline_size(size);
3323 ret = btrfs_truncate_item(trans, root, path,
3324 size, 1);
3325 BUG_ON(ret);
3326 } else if (root->ref_cows) {
3327 inode_sub_bytes(inode, item_end + 1 -
3328 found_key.offset);
3329 }
3330 }
3331 delete:
3332 if (del_item) {
3333 if (!pending_del_nr) {
3334 /* no pending yet, add ourselves */
3335 pending_del_slot = path->slots[0];
3336 pending_del_nr = 1;
3337 } else if (pending_del_nr &&
3338 path->slots[0] + 1 == pending_del_slot) {
3339 /* hop on the pending chunk */
3340 pending_del_nr++;
3341 pending_del_slot = path->slots[0];
3342 } else {
3343 BUG();
3344 }
3345 } else {
3346 break;
3347 }
3348 if (found_extent && (root->ref_cows ||
3349 root == root->fs_info->tree_root)) {
3350 btrfs_set_path_blocking(path);
3351 ret = btrfs_free_extent(trans, root, extent_start,
3352 extent_num_bytes, 0,
3353 btrfs_header_owner(leaf),
3354 inode->i_ino, extent_offset);
3355 BUG_ON(ret);
3356 }
3357
3358 if (found_type == BTRFS_INODE_ITEM_KEY)
3359 break;
3360
3361 if (path->slots[0] == 0 ||
3362 path->slots[0] != pending_del_slot) {
3363 if (root->ref_cows) {
3364 err = -EAGAIN;
3365 goto out;
3366 }
3367 if (pending_del_nr) {
3368 ret = btrfs_del_items(trans, root, path,
3369 pending_del_slot,
3370 pending_del_nr);
3371 BUG_ON(ret);
3372 pending_del_nr = 0;
3373 }
3374 btrfs_release_path(root, path);
3375 goto search_again;
3376 } else {
3377 path->slots[0]--;
3378 }
3379 }
3380 out:
3381 if (pending_del_nr) {
3382 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3383 pending_del_nr);
3384 BUG_ON(ret);
3385 }
3386 btrfs_free_path(path);
3387 return err;
3388 }
3389
3390 /*
3391 * taken from block_truncate_page, but does cow as it zeros out
3392 * any bytes left in the last page in the file.
3393 */
3394 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3395 {
3396 struct inode *inode = mapping->host;
3397 struct btrfs_root *root = BTRFS_I(inode)->root;
3398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3399 struct btrfs_ordered_extent *ordered;
3400 struct extent_state *cached_state = NULL;
3401 char *kaddr;
3402 u32 blocksize = root->sectorsize;
3403 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3404 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3405 struct page *page;
3406 int ret = 0;
3407 u64 page_start;
3408 u64 page_end;
3409
3410 if ((offset & (blocksize - 1)) == 0)
3411 goto out;
3412 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3413 if (ret)
3414 goto out;
3415
3416 ret = -ENOMEM;
3417 again:
3418 page = grab_cache_page(mapping, index);
3419 if (!page) {
3420 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3421 goto out;
3422 }
3423
3424 page_start = page_offset(page);
3425 page_end = page_start + PAGE_CACHE_SIZE - 1;
3426
3427 if (!PageUptodate(page)) {
3428 ret = btrfs_readpage(NULL, page);
3429 lock_page(page);
3430 if (page->mapping != mapping) {
3431 unlock_page(page);
3432 page_cache_release(page);
3433 goto again;
3434 }
3435 if (!PageUptodate(page)) {
3436 ret = -EIO;
3437 goto out_unlock;
3438 }
3439 }
3440 wait_on_page_writeback(page);
3441
3442 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3443 GFP_NOFS);
3444 set_page_extent_mapped(page);
3445
3446 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3447 if (ordered) {
3448 unlock_extent_cached(io_tree, page_start, page_end,
3449 &cached_state, GFP_NOFS);
3450 unlock_page(page);
3451 page_cache_release(page);
3452 btrfs_start_ordered_extent(inode, ordered, 1);
3453 btrfs_put_ordered_extent(ordered);
3454 goto again;
3455 }
3456
3457 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3458 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3459 0, 0, &cached_state, GFP_NOFS);
3460
3461 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3462 &cached_state);
3463 if (ret) {
3464 unlock_extent_cached(io_tree, page_start, page_end,
3465 &cached_state, GFP_NOFS);
3466 goto out_unlock;
3467 }
3468
3469 ret = 0;
3470 if (offset != PAGE_CACHE_SIZE) {
3471 kaddr = kmap(page);
3472 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3473 flush_dcache_page(page);
3474 kunmap(page);
3475 }
3476 ClearPageChecked(page);
3477 set_page_dirty(page);
3478 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3479 GFP_NOFS);
3480
3481 out_unlock:
3482 if (ret)
3483 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3484 unlock_page(page);
3485 page_cache_release(page);
3486 out:
3487 return ret;
3488 }
3489
3490 int btrfs_cont_expand(struct inode *inode, loff_t size)
3491 {
3492 struct btrfs_trans_handle *trans;
3493 struct btrfs_root *root = BTRFS_I(inode)->root;
3494 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3495 struct extent_map *em = NULL;
3496 struct extent_state *cached_state = NULL;
3497 u64 mask = root->sectorsize - 1;
3498 u64 hole_start = (inode->i_size + mask) & ~mask;
3499 u64 block_end = (size + mask) & ~mask;
3500 u64 last_byte;
3501 u64 cur_offset;
3502 u64 hole_size;
3503 int err = 0;
3504
3505 if (size <= hole_start)
3506 return 0;
3507
3508 while (1) {
3509 struct btrfs_ordered_extent *ordered;
3510 btrfs_wait_ordered_range(inode, hole_start,
3511 block_end - hole_start);
3512 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3513 &cached_state, GFP_NOFS);
3514 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3515 if (!ordered)
3516 break;
3517 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3518 &cached_state, GFP_NOFS);
3519 btrfs_put_ordered_extent(ordered);
3520 }
3521
3522 cur_offset = hole_start;
3523 while (1) {
3524 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3525 block_end - cur_offset, 0);
3526 BUG_ON(IS_ERR(em) || !em);
3527 last_byte = min(extent_map_end(em), block_end);
3528 last_byte = (last_byte + mask) & ~mask;
3529 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3530 u64 hint_byte = 0;
3531 hole_size = last_byte - cur_offset;
3532
3533 trans = btrfs_start_transaction(root, 2);
3534 if (IS_ERR(trans)) {
3535 err = PTR_ERR(trans);
3536 break;
3537 }
3538 btrfs_set_trans_block_group(trans, inode);
3539
3540 err = btrfs_drop_extents(trans, inode, cur_offset,
3541 cur_offset + hole_size,
3542 &hint_byte, 1);
3543 BUG_ON(err);
3544
3545 err = btrfs_insert_file_extent(trans, root,
3546 inode->i_ino, cur_offset, 0,
3547 0, hole_size, 0, hole_size,
3548 0, 0, 0);
3549 BUG_ON(err);
3550
3551 btrfs_drop_extent_cache(inode, hole_start,
3552 last_byte - 1, 0);
3553
3554 btrfs_end_transaction(trans, root);
3555 }
3556 free_extent_map(em);
3557 em = NULL;
3558 cur_offset = last_byte;
3559 if (cur_offset >= block_end)
3560 break;
3561 }
3562
3563 free_extent_map(em);
3564 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3565 GFP_NOFS);
3566 return err;
3567 }
3568
3569 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3570 {
3571 struct btrfs_root *root = BTRFS_I(inode)->root;
3572 struct btrfs_trans_handle *trans;
3573 unsigned long nr;
3574 int ret;
3575
3576 if (attr->ia_size == inode->i_size)
3577 return 0;
3578
3579 if (attr->ia_size > inode->i_size) {
3580 unsigned long limit;
3581 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3582 if (attr->ia_size > inode->i_sb->s_maxbytes)
3583 return -EFBIG;
3584 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3585 send_sig(SIGXFSZ, current, 0);
3586 return -EFBIG;
3587 }
3588 }
3589
3590 trans = btrfs_start_transaction(root, 5);
3591 if (IS_ERR(trans))
3592 return PTR_ERR(trans);
3593
3594 btrfs_set_trans_block_group(trans, inode);
3595
3596 ret = btrfs_orphan_add(trans, inode);
3597 BUG_ON(ret);
3598
3599 nr = trans->blocks_used;
3600 btrfs_end_transaction(trans, root);
3601 btrfs_btree_balance_dirty(root, nr);
3602
3603 if (attr->ia_size > inode->i_size) {
3604 ret = btrfs_cont_expand(inode, attr->ia_size);
3605 if (ret) {
3606 btrfs_truncate(inode);
3607 return ret;
3608 }
3609
3610 i_size_write(inode, attr->ia_size);
3611 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3612
3613 trans = btrfs_start_transaction(root, 0);
3614 BUG_ON(IS_ERR(trans));
3615 btrfs_set_trans_block_group(trans, inode);
3616 trans->block_rsv = root->orphan_block_rsv;
3617 BUG_ON(!trans->block_rsv);
3618
3619 ret = btrfs_update_inode(trans, root, inode);
3620 BUG_ON(ret);
3621 if (inode->i_nlink > 0) {
3622 ret = btrfs_orphan_del(trans, inode);
3623 BUG_ON(ret);
3624 }
3625 nr = trans->blocks_used;
3626 btrfs_end_transaction(trans, root);
3627 btrfs_btree_balance_dirty(root, nr);
3628 return 0;
3629 }
3630
3631 /*
3632 * We're truncating a file that used to have good data down to
3633 * zero. Make sure it gets into the ordered flush list so that
3634 * any new writes get down to disk quickly.
3635 */
3636 if (attr->ia_size == 0)
3637 BTRFS_I(inode)->ordered_data_close = 1;
3638
3639 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3640 ret = vmtruncate(inode, attr->ia_size);
3641 BUG_ON(ret);
3642
3643 return 0;
3644 }
3645
3646 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3647 {
3648 struct inode *inode = dentry->d_inode;
3649 int err;
3650
3651 err = inode_change_ok(inode, attr);
3652 if (err)
3653 return err;
3654
3655 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3656 err = btrfs_setattr_size(inode, attr);
3657 if (err)
3658 return err;
3659 }
3660
3661 if (attr->ia_valid) {
3662 setattr_copy(inode, attr);
3663 mark_inode_dirty(inode);
3664
3665 if (attr->ia_valid & ATTR_MODE)
3666 err = btrfs_acl_chmod(inode);
3667 }
3668
3669 return err;
3670 }
3671
3672 void btrfs_evict_inode(struct inode *inode)
3673 {
3674 struct btrfs_trans_handle *trans;
3675 struct btrfs_root *root = BTRFS_I(inode)->root;
3676 unsigned long nr;
3677 int ret;
3678
3679 truncate_inode_pages(&inode->i_data, 0);
3680 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3681 root == root->fs_info->tree_root))
3682 goto no_delete;
3683
3684 if (is_bad_inode(inode)) {
3685 btrfs_orphan_del(NULL, inode);
3686 goto no_delete;
3687 }
3688 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3689 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3690
3691 if (root->fs_info->log_root_recovering) {
3692 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3693 goto no_delete;
3694 }
3695
3696 if (inode->i_nlink > 0) {
3697 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3698 goto no_delete;
3699 }
3700
3701 btrfs_i_size_write(inode, 0);
3702
3703 while (1) {
3704 trans = btrfs_start_transaction(root, 0);
3705 BUG_ON(IS_ERR(trans));
3706 btrfs_set_trans_block_group(trans, inode);
3707 trans->block_rsv = root->orphan_block_rsv;
3708
3709 ret = btrfs_block_rsv_check(trans, root,
3710 root->orphan_block_rsv, 0, 5);
3711 if (ret) {
3712 BUG_ON(ret != -EAGAIN);
3713 ret = btrfs_commit_transaction(trans, root);
3714 BUG_ON(ret);
3715 continue;
3716 }
3717
3718 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3719 if (ret != -EAGAIN)
3720 break;
3721
3722 nr = trans->blocks_used;
3723 btrfs_end_transaction(trans, root);
3724 trans = NULL;
3725 btrfs_btree_balance_dirty(root, nr);
3726
3727 }
3728
3729 if (ret == 0) {
3730 ret = btrfs_orphan_del(trans, inode);
3731 BUG_ON(ret);
3732 }
3733
3734 nr = trans->blocks_used;
3735 btrfs_end_transaction(trans, root);
3736 btrfs_btree_balance_dirty(root, nr);
3737 no_delete:
3738 end_writeback(inode);
3739 return;
3740 }
3741
3742 /*
3743 * this returns the key found in the dir entry in the location pointer.
3744 * If no dir entries were found, location->objectid is 0.
3745 */
3746 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3747 struct btrfs_key *location)
3748 {
3749 const char *name = dentry->d_name.name;
3750 int namelen = dentry->d_name.len;
3751 struct btrfs_dir_item *di;
3752 struct btrfs_path *path;
3753 struct btrfs_root *root = BTRFS_I(dir)->root;
3754 int ret = 0;
3755
3756 path = btrfs_alloc_path();
3757 BUG_ON(!path);
3758
3759 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3760 namelen, 0);
3761 if (IS_ERR(di))
3762 ret = PTR_ERR(di);
3763
3764 if (!di || IS_ERR(di))
3765 goto out_err;
3766
3767 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3768 out:
3769 btrfs_free_path(path);
3770 return ret;
3771 out_err:
3772 location->objectid = 0;
3773 goto out;
3774 }
3775
3776 /*
3777 * when we hit a tree root in a directory, the btrfs part of the inode
3778 * needs to be changed to reflect the root directory of the tree root. This
3779 * is kind of like crossing a mount point.
3780 */
3781 static int fixup_tree_root_location(struct btrfs_root *root,
3782 struct inode *dir,
3783 struct dentry *dentry,
3784 struct btrfs_key *location,
3785 struct btrfs_root **sub_root)
3786 {
3787 struct btrfs_path *path;
3788 struct btrfs_root *new_root;
3789 struct btrfs_root_ref *ref;
3790 struct extent_buffer *leaf;
3791 int ret;
3792 int err = 0;
3793
3794 path = btrfs_alloc_path();
3795 if (!path) {
3796 err = -ENOMEM;
3797 goto out;
3798 }
3799
3800 err = -ENOENT;
3801 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3802 BTRFS_I(dir)->root->root_key.objectid,
3803 location->objectid);
3804 if (ret) {
3805 if (ret < 0)
3806 err = ret;
3807 goto out;
3808 }
3809
3810 leaf = path->nodes[0];
3811 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3812 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3813 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3814 goto out;
3815
3816 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3817 (unsigned long)(ref + 1),
3818 dentry->d_name.len);
3819 if (ret)
3820 goto out;
3821
3822 btrfs_release_path(root->fs_info->tree_root, path);
3823
3824 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3825 if (IS_ERR(new_root)) {
3826 err = PTR_ERR(new_root);
3827 goto out;
3828 }
3829
3830 if (btrfs_root_refs(&new_root->root_item) == 0) {
3831 err = -ENOENT;
3832 goto out;
3833 }
3834
3835 *sub_root = new_root;
3836 location->objectid = btrfs_root_dirid(&new_root->root_item);
3837 location->type = BTRFS_INODE_ITEM_KEY;
3838 location->offset = 0;
3839 err = 0;
3840 out:
3841 btrfs_free_path(path);
3842 return err;
3843 }
3844
3845 static void inode_tree_add(struct inode *inode)
3846 {
3847 struct btrfs_root *root = BTRFS_I(inode)->root;
3848 struct btrfs_inode *entry;
3849 struct rb_node **p;
3850 struct rb_node *parent;
3851 again:
3852 p = &root->inode_tree.rb_node;
3853 parent = NULL;
3854
3855 if (hlist_unhashed(&inode->i_hash))
3856 return;
3857
3858 spin_lock(&root->inode_lock);
3859 while (*p) {
3860 parent = *p;
3861 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3862
3863 if (inode->i_ino < entry->vfs_inode.i_ino)
3864 p = &parent->rb_left;
3865 else if (inode->i_ino > entry->vfs_inode.i_ino)
3866 p = &parent->rb_right;
3867 else {
3868 WARN_ON(!(entry->vfs_inode.i_state &
3869 (I_WILL_FREE | I_FREEING)));
3870 rb_erase(parent, &root->inode_tree);
3871 RB_CLEAR_NODE(parent);
3872 spin_unlock(&root->inode_lock);
3873 goto again;
3874 }
3875 }
3876 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3877 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3878 spin_unlock(&root->inode_lock);
3879 }
3880
3881 static void inode_tree_del(struct inode *inode)
3882 {
3883 struct btrfs_root *root = BTRFS_I(inode)->root;
3884 int empty = 0;
3885
3886 spin_lock(&root->inode_lock);
3887 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3888 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3889 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3890 empty = RB_EMPTY_ROOT(&root->inode_tree);
3891 }
3892 spin_unlock(&root->inode_lock);
3893
3894 /*
3895 * Free space cache has inodes in the tree root, but the tree root has a
3896 * root_refs of 0, so this could end up dropping the tree root as a
3897 * snapshot, so we need the extra !root->fs_info->tree_root check to
3898 * make sure we don't drop it.
3899 */
3900 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3901 root != root->fs_info->tree_root) {
3902 synchronize_srcu(&root->fs_info->subvol_srcu);
3903 spin_lock(&root->inode_lock);
3904 empty = RB_EMPTY_ROOT(&root->inode_tree);
3905 spin_unlock(&root->inode_lock);
3906 if (empty)
3907 btrfs_add_dead_root(root);
3908 }
3909 }
3910
3911 int btrfs_invalidate_inodes(struct btrfs_root *root)
3912 {
3913 struct rb_node *node;
3914 struct rb_node *prev;
3915 struct btrfs_inode *entry;
3916 struct inode *inode;
3917 u64 objectid = 0;
3918
3919 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3920
3921 spin_lock(&root->inode_lock);
3922 again:
3923 node = root->inode_tree.rb_node;
3924 prev = NULL;
3925 while (node) {
3926 prev = node;
3927 entry = rb_entry(node, struct btrfs_inode, rb_node);
3928
3929 if (objectid < entry->vfs_inode.i_ino)
3930 node = node->rb_left;
3931 else if (objectid > entry->vfs_inode.i_ino)
3932 node = node->rb_right;
3933 else
3934 break;
3935 }
3936 if (!node) {
3937 while (prev) {
3938 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3939 if (objectid <= entry->vfs_inode.i_ino) {
3940 node = prev;
3941 break;
3942 }
3943 prev = rb_next(prev);
3944 }
3945 }
3946 while (node) {
3947 entry = rb_entry(node, struct btrfs_inode, rb_node);
3948 objectid = entry->vfs_inode.i_ino + 1;
3949 inode = igrab(&entry->vfs_inode);
3950 if (inode) {
3951 spin_unlock(&root->inode_lock);
3952 if (atomic_read(&inode->i_count) > 1)
3953 d_prune_aliases(inode);
3954 /*
3955 * btrfs_drop_inode will have it removed from
3956 * the inode cache when its usage count
3957 * hits zero.
3958 */
3959 iput(inode);
3960 cond_resched();
3961 spin_lock(&root->inode_lock);
3962 goto again;
3963 }
3964
3965 if (cond_resched_lock(&root->inode_lock))
3966 goto again;
3967
3968 node = rb_next(node);
3969 }
3970 spin_unlock(&root->inode_lock);
3971 return 0;
3972 }
3973
3974 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3975 {
3976 struct btrfs_iget_args *args = p;
3977 inode->i_ino = args->ino;
3978 BTRFS_I(inode)->root = args->root;
3979 btrfs_set_inode_space_info(args->root, inode);
3980 return 0;
3981 }
3982
3983 static int btrfs_find_actor(struct inode *inode, void *opaque)
3984 {
3985 struct btrfs_iget_args *args = opaque;
3986 return args->ino == inode->i_ino &&
3987 args->root == BTRFS_I(inode)->root;
3988 }
3989
3990 static struct inode *btrfs_iget_locked(struct super_block *s,
3991 u64 objectid,
3992 struct btrfs_root *root)
3993 {
3994 struct inode *inode;
3995 struct btrfs_iget_args args;
3996 args.ino = objectid;
3997 args.root = root;
3998
3999 inode = iget5_locked(s, objectid, btrfs_find_actor,
4000 btrfs_init_locked_inode,
4001 (void *)&args);
4002 return inode;
4003 }
4004
4005 /* Get an inode object given its location and corresponding root.
4006 * Returns in *is_new if the inode was read from disk
4007 */
4008 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4009 struct btrfs_root *root, int *new)
4010 {
4011 struct inode *inode;
4012
4013 inode = btrfs_iget_locked(s, location->objectid, root);
4014 if (!inode)
4015 return ERR_PTR(-ENOMEM);
4016
4017 if (inode->i_state & I_NEW) {
4018 BTRFS_I(inode)->root = root;
4019 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4020 btrfs_read_locked_inode(inode);
4021
4022 inode_tree_add(inode);
4023 unlock_new_inode(inode);
4024 if (new)
4025 *new = 1;
4026 }
4027
4028 return inode;
4029 }
4030
4031 static struct inode *new_simple_dir(struct super_block *s,
4032 struct btrfs_key *key,
4033 struct btrfs_root *root)
4034 {
4035 struct inode *inode = new_inode(s);
4036
4037 if (!inode)
4038 return ERR_PTR(-ENOMEM);
4039
4040 BTRFS_I(inode)->root = root;
4041 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4042 BTRFS_I(inode)->dummy_inode = 1;
4043
4044 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4045 inode->i_op = &simple_dir_inode_operations;
4046 inode->i_fop = &simple_dir_operations;
4047 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4048 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4049
4050 return inode;
4051 }
4052
4053 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4054 {
4055 struct inode *inode;
4056 struct btrfs_root *root = BTRFS_I(dir)->root;
4057 struct btrfs_root *sub_root = root;
4058 struct btrfs_key location;
4059 int index;
4060 int ret;
4061
4062 dentry->d_op = &btrfs_dentry_operations;
4063
4064 if (dentry->d_name.len > BTRFS_NAME_LEN)
4065 return ERR_PTR(-ENAMETOOLONG);
4066
4067 ret = btrfs_inode_by_name(dir, dentry, &location);
4068
4069 if (ret < 0)
4070 return ERR_PTR(ret);
4071
4072 if (location.objectid == 0)
4073 return NULL;
4074
4075 if (location.type == BTRFS_INODE_ITEM_KEY) {
4076 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4077 return inode;
4078 }
4079
4080 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4081
4082 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4083 ret = fixup_tree_root_location(root, dir, dentry,
4084 &location, &sub_root);
4085 if (ret < 0) {
4086 if (ret != -ENOENT)
4087 inode = ERR_PTR(ret);
4088 else
4089 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4090 } else {
4091 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4092 }
4093 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4094
4095 if (root != sub_root) {
4096 down_read(&root->fs_info->cleanup_work_sem);
4097 if (!(inode->i_sb->s_flags & MS_RDONLY))
4098 btrfs_orphan_cleanup(sub_root);
4099 up_read(&root->fs_info->cleanup_work_sem);
4100 }
4101
4102 return inode;
4103 }
4104
4105 static int btrfs_dentry_delete(struct dentry *dentry)
4106 {
4107 struct btrfs_root *root;
4108
4109 if (!dentry->d_inode && !IS_ROOT(dentry))
4110 dentry = dentry->d_parent;
4111
4112 if (dentry->d_inode) {
4113 root = BTRFS_I(dentry->d_inode)->root;
4114 if (btrfs_root_refs(&root->root_item) == 0)
4115 return 1;
4116 }
4117 return 0;
4118 }
4119
4120 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4121 struct nameidata *nd)
4122 {
4123 struct inode *inode;
4124
4125 inode = btrfs_lookup_dentry(dir, dentry);
4126 if (IS_ERR(inode))
4127 return ERR_CAST(inode);
4128
4129 return d_splice_alias(inode, dentry);
4130 }
4131
4132 static unsigned char btrfs_filetype_table[] = {
4133 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4134 };
4135
4136 static int btrfs_real_readdir(struct file *filp, void *dirent,
4137 filldir_t filldir)
4138 {
4139 struct inode *inode = filp->f_dentry->d_inode;
4140 struct btrfs_root *root = BTRFS_I(inode)->root;
4141 struct btrfs_item *item;
4142 struct btrfs_dir_item *di;
4143 struct btrfs_key key;
4144 struct btrfs_key found_key;
4145 struct btrfs_path *path;
4146 int ret;
4147 u32 nritems;
4148 struct extent_buffer *leaf;
4149 int slot;
4150 int advance;
4151 unsigned char d_type;
4152 int over = 0;
4153 u32 di_cur;
4154 u32 di_total;
4155 u32 di_len;
4156 int key_type = BTRFS_DIR_INDEX_KEY;
4157 char tmp_name[32];
4158 char *name_ptr;
4159 int name_len;
4160
4161 /* FIXME, use a real flag for deciding about the key type */
4162 if (root->fs_info->tree_root == root)
4163 key_type = BTRFS_DIR_ITEM_KEY;
4164
4165 /* special case for "." */
4166 if (filp->f_pos == 0) {
4167 over = filldir(dirent, ".", 1,
4168 1, inode->i_ino,
4169 DT_DIR);
4170 if (over)
4171 return 0;
4172 filp->f_pos = 1;
4173 }
4174 /* special case for .., just use the back ref */
4175 if (filp->f_pos == 1) {
4176 u64 pino = parent_ino(filp->f_path.dentry);
4177 over = filldir(dirent, "..", 2,
4178 2, pino, DT_DIR);
4179 if (over)
4180 return 0;
4181 filp->f_pos = 2;
4182 }
4183 path = btrfs_alloc_path();
4184 path->reada = 2;
4185
4186 btrfs_set_key_type(&key, key_type);
4187 key.offset = filp->f_pos;
4188 key.objectid = inode->i_ino;
4189
4190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191 if (ret < 0)
4192 goto err;
4193 advance = 0;
4194
4195 while (1) {
4196 leaf = path->nodes[0];
4197 nritems = btrfs_header_nritems(leaf);
4198 slot = path->slots[0];
4199 if (advance || slot >= nritems) {
4200 if (slot >= nritems - 1) {
4201 ret = btrfs_next_leaf(root, path);
4202 if (ret)
4203 break;
4204 leaf = path->nodes[0];
4205 nritems = btrfs_header_nritems(leaf);
4206 slot = path->slots[0];
4207 } else {
4208 slot++;
4209 path->slots[0]++;
4210 }
4211 }
4212
4213 advance = 1;
4214 item = btrfs_item_nr(leaf, slot);
4215 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4216
4217 if (found_key.objectid != key.objectid)
4218 break;
4219 if (btrfs_key_type(&found_key) != key_type)
4220 break;
4221 if (found_key.offset < filp->f_pos)
4222 continue;
4223
4224 filp->f_pos = found_key.offset;
4225
4226 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4227 di_cur = 0;
4228 di_total = btrfs_item_size(leaf, item);
4229
4230 while (di_cur < di_total) {
4231 struct btrfs_key location;
4232
4233 name_len = btrfs_dir_name_len(leaf, di);
4234 if (name_len <= sizeof(tmp_name)) {
4235 name_ptr = tmp_name;
4236 } else {
4237 name_ptr = kmalloc(name_len, GFP_NOFS);
4238 if (!name_ptr) {
4239 ret = -ENOMEM;
4240 goto err;
4241 }
4242 }
4243 read_extent_buffer(leaf, name_ptr,
4244 (unsigned long)(di + 1), name_len);
4245
4246 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4247 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4248
4249 /* is this a reference to our own snapshot? If so
4250 * skip it
4251 */
4252 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4253 location.objectid == root->root_key.objectid) {
4254 over = 0;
4255 goto skip;
4256 }
4257 over = filldir(dirent, name_ptr, name_len,
4258 found_key.offset, location.objectid,
4259 d_type);
4260
4261 skip:
4262 if (name_ptr != tmp_name)
4263 kfree(name_ptr);
4264
4265 if (over)
4266 goto nopos;
4267 di_len = btrfs_dir_name_len(leaf, di) +
4268 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4269 di_cur += di_len;
4270 di = (struct btrfs_dir_item *)((char *)di + di_len);
4271 }
4272 }
4273
4274 /* Reached end of directory/root. Bump pos past the last item. */
4275 if (key_type == BTRFS_DIR_INDEX_KEY)
4276 /*
4277 * 32-bit glibc will use getdents64, but then strtol -
4278 * so the last number we can serve is this.
4279 */
4280 filp->f_pos = 0x7fffffff;
4281 else
4282 filp->f_pos++;
4283 nopos:
4284 ret = 0;
4285 err:
4286 btrfs_free_path(path);
4287 return ret;
4288 }
4289
4290 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4291 {
4292 struct btrfs_root *root = BTRFS_I(inode)->root;
4293 struct btrfs_trans_handle *trans;
4294 int ret = 0;
4295 bool nolock = false;
4296
4297 if (BTRFS_I(inode)->dummy_inode)
4298 return 0;
4299
4300 smp_mb();
4301 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4302
4303 if (wbc->sync_mode == WB_SYNC_ALL) {
4304 if (nolock)
4305 trans = btrfs_join_transaction_nolock(root, 1);
4306 else
4307 trans = btrfs_join_transaction(root, 1);
4308 btrfs_set_trans_block_group(trans, inode);
4309 if (nolock)
4310 ret = btrfs_end_transaction_nolock(trans, root);
4311 else
4312 ret = btrfs_commit_transaction(trans, root);
4313 }
4314 return ret;
4315 }
4316
4317 /*
4318 * This is somewhat expensive, updating the tree every time the
4319 * inode changes. But, it is most likely to find the inode in cache.
4320 * FIXME, needs more benchmarking...there are no reasons other than performance
4321 * to keep or drop this code.
4322 */
4323 void btrfs_dirty_inode(struct inode *inode)
4324 {
4325 struct btrfs_root *root = BTRFS_I(inode)->root;
4326 struct btrfs_trans_handle *trans;
4327 int ret;
4328
4329 if (BTRFS_I(inode)->dummy_inode)
4330 return;
4331
4332 trans = btrfs_join_transaction(root, 1);
4333 btrfs_set_trans_block_group(trans, inode);
4334
4335 ret = btrfs_update_inode(trans, root, inode);
4336 if (ret && ret == -ENOSPC) {
4337 /* whoops, lets try again with the full transaction */
4338 btrfs_end_transaction(trans, root);
4339 trans = btrfs_start_transaction(root, 1);
4340 if (IS_ERR(trans)) {
4341 if (printk_ratelimit()) {
4342 printk(KERN_ERR "btrfs: fail to "
4343 "dirty inode %lu error %ld\n",
4344 inode->i_ino, PTR_ERR(trans));
4345 }
4346 return;
4347 }
4348 btrfs_set_trans_block_group(trans, inode);
4349
4350 ret = btrfs_update_inode(trans, root, inode);
4351 if (ret) {
4352 if (printk_ratelimit()) {
4353 printk(KERN_ERR "btrfs: fail to "
4354 "dirty inode %lu error %d\n",
4355 inode->i_ino, ret);
4356 }
4357 }
4358 }
4359 btrfs_end_transaction(trans, root);
4360 }
4361
4362 /*
4363 * find the highest existing sequence number in a directory
4364 * and then set the in-memory index_cnt variable to reflect
4365 * free sequence numbers
4366 */
4367 static int btrfs_set_inode_index_count(struct inode *inode)
4368 {
4369 struct btrfs_root *root = BTRFS_I(inode)->root;
4370 struct btrfs_key key, found_key;
4371 struct btrfs_path *path;
4372 struct extent_buffer *leaf;
4373 int ret;
4374
4375 key.objectid = inode->i_ino;
4376 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4377 key.offset = (u64)-1;
4378
4379 path = btrfs_alloc_path();
4380 if (!path)
4381 return -ENOMEM;
4382
4383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4384 if (ret < 0)
4385 goto out;
4386 /* FIXME: we should be able to handle this */
4387 if (ret == 0)
4388 goto out;
4389 ret = 0;
4390
4391 /*
4392 * MAGIC NUMBER EXPLANATION:
4393 * since we search a directory based on f_pos we have to start at 2
4394 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4395 * else has to start at 2
4396 */
4397 if (path->slots[0] == 0) {
4398 BTRFS_I(inode)->index_cnt = 2;
4399 goto out;
4400 }
4401
4402 path->slots[0]--;
4403
4404 leaf = path->nodes[0];
4405 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4406
4407 if (found_key.objectid != inode->i_ino ||
4408 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4409 BTRFS_I(inode)->index_cnt = 2;
4410 goto out;
4411 }
4412
4413 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4414 out:
4415 btrfs_free_path(path);
4416 return ret;
4417 }
4418
4419 /*
4420 * helper to find a free sequence number in a given directory. This current
4421 * code is very simple, later versions will do smarter things in the btree
4422 */
4423 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4424 {
4425 int ret = 0;
4426
4427 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4428 ret = btrfs_set_inode_index_count(dir);
4429 if (ret)
4430 return ret;
4431 }
4432
4433 *index = BTRFS_I(dir)->index_cnt;
4434 BTRFS_I(dir)->index_cnt++;
4435
4436 return ret;
4437 }
4438
4439 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4440 struct btrfs_root *root,
4441 struct inode *dir,
4442 const char *name, int name_len,
4443 u64 ref_objectid, u64 objectid,
4444 u64 alloc_hint, int mode, u64 *index)
4445 {
4446 struct inode *inode;
4447 struct btrfs_inode_item *inode_item;
4448 struct btrfs_key *location;
4449 struct btrfs_path *path;
4450 struct btrfs_inode_ref *ref;
4451 struct btrfs_key key[2];
4452 u32 sizes[2];
4453 unsigned long ptr;
4454 int ret;
4455 int owner;
4456
4457 path = btrfs_alloc_path();
4458 BUG_ON(!path);
4459
4460 inode = new_inode(root->fs_info->sb);
4461 if (!inode)
4462 return ERR_PTR(-ENOMEM);
4463
4464 if (dir) {
4465 ret = btrfs_set_inode_index(dir, index);
4466 if (ret) {
4467 iput(inode);
4468 return ERR_PTR(ret);
4469 }
4470 }
4471 /*
4472 * index_cnt is ignored for everything but a dir,
4473 * btrfs_get_inode_index_count has an explanation for the magic
4474 * number
4475 */
4476 BTRFS_I(inode)->index_cnt = 2;
4477 BTRFS_I(inode)->root = root;
4478 BTRFS_I(inode)->generation = trans->transid;
4479 btrfs_set_inode_space_info(root, inode);
4480
4481 if (mode & S_IFDIR)
4482 owner = 0;
4483 else
4484 owner = 1;
4485 BTRFS_I(inode)->block_group =
4486 btrfs_find_block_group(root, 0, alloc_hint, owner);
4487
4488 key[0].objectid = objectid;
4489 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4490 key[0].offset = 0;
4491
4492 key[1].objectid = objectid;
4493 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4494 key[1].offset = ref_objectid;
4495
4496 sizes[0] = sizeof(struct btrfs_inode_item);
4497 sizes[1] = name_len + sizeof(*ref);
4498
4499 path->leave_spinning = 1;
4500 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4501 if (ret != 0)
4502 goto fail;
4503
4504 inode_init_owner(inode, dir, mode);
4505 inode->i_ino = objectid;
4506 inode_set_bytes(inode, 0);
4507 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4508 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4509 struct btrfs_inode_item);
4510 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4511
4512 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4513 struct btrfs_inode_ref);
4514 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4515 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4516 ptr = (unsigned long)(ref + 1);
4517 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4518
4519 btrfs_mark_buffer_dirty(path->nodes[0]);
4520 btrfs_free_path(path);
4521
4522 location = &BTRFS_I(inode)->location;
4523 location->objectid = objectid;
4524 location->offset = 0;
4525 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4526
4527 btrfs_inherit_iflags(inode, dir);
4528
4529 if ((mode & S_IFREG)) {
4530 if (btrfs_test_opt(root, NODATASUM))
4531 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4532 if (btrfs_test_opt(root, NODATACOW))
4533 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4534 }
4535
4536 insert_inode_hash(inode);
4537 inode_tree_add(inode);
4538 return inode;
4539 fail:
4540 if (dir)
4541 BTRFS_I(dir)->index_cnt--;
4542 btrfs_free_path(path);
4543 iput(inode);
4544 return ERR_PTR(ret);
4545 }
4546
4547 static inline u8 btrfs_inode_type(struct inode *inode)
4548 {
4549 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4550 }
4551
4552 /*
4553 * utility function to add 'inode' into 'parent_inode' with
4554 * a give name and a given sequence number.
4555 * if 'add_backref' is true, also insert a backref from the
4556 * inode to the parent directory.
4557 */
4558 int btrfs_add_link(struct btrfs_trans_handle *trans,
4559 struct inode *parent_inode, struct inode *inode,
4560 const char *name, int name_len, int add_backref, u64 index)
4561 {
4562 int ret = 0;
4563 struct btrfs_key key;
4564 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4565
4566 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4567 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4568 } else {
4569 key.objectid = inode->i_ino;
4570 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4571 key.offset = 0;
4572 }
4573
4574 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4575 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4576 key.objectid, root->root_key.objectid,
4577 parent_inode->i_ino,
4578 index, name, name_len);
4579 } else if (add_backref) {
4580 ret = btrfs_insert_inode_ref(trans, root,
4581 name, name_len, inode->i_ino,
4582 parent_inode->i_ino, index);
4583 }
4584
4585 if (ret == 0) {
4586 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4587 parent_inode->i_ino, &key,
4588 btrfs_inode_type(inode), index);
4589 BUG_ON(ret);
4590
4591 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4592 name_len * 2);
4593 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4594 ret = btrfs_update_inode(trans, root, parent_inode);
4595 }
4596 return ret;
4597 }
4598
4599 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4600 struct dentry *dentry, struct inode *inode,
4601 int backref, u64 index)
4602 {
4603 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4604 inode, dentry->d_name.name,
4605 dentry->d_name.len, backref, index);
4606 if (!err) {
4607 d_instantiate(dentry, inode);
4608 return 0;
4609 }
4610 if (err > 0)
4611 err = -EEXIST;
4612 return err;
4613 }
4614
4615 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4616 int mode, dev_t rdev)
4617 {
4618 struct btrfs_trans_handle *trans;
4619 struct btrfs_root *root = BTRFS_I(dir)->root;
4620 struct inode *inode = NULL;
4621 int err;
4622 int drop_inode = 0;
4623 u64 objectid;
4624 unsigned long nr = 0;
4625 u64 index = 0;
4626
4627 if (!new_valid_dev(rdev))
4628 return -EINVAL;
4629
4630 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4631 if (err)
4632 return err;
4633
4634 /*
4635 * 2 for inode item and ref
4636 * 2 for dir items
4637 * 1 for xattr if selinux is on
4638 */
4639 trans = btrfs_start_transaction(root, 5);
4640 if (IS_ERR(trans))
4641 return PTR_ERR(trans);
4642
4643 btrfs_set_trans_block_group(trans, dir);
4644
4645 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4646 dentry->d_name.len,
4647 dentry->d_parent->d_inode->i_ino, objectid,
4648 BTRFS_I(dir)->block_group, mode, &index);
4649 err = PTR_ERR(inode);
4650 if (IS_ERR(inode))
4651 goto out_unlock;
4652
4653 err = btrfs_init_inode_security(trans, inode, dir);
4654 if (err) {
4655 drop_inode = 1;
4656 goto out_unlock;
4657 }
4658
4659 btrfs_set_trans_block_group(trans, inode);
4660 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4661 if (err)
4662 drop_inode = 1;
4663 else {
4664 inode->i_op = &btrfs_special_inode_operations;
4665 init_special_inode(inode, inode->i_mode, rdev);
4666 btrfs_update_inode(trans, root, inode);
4667 }
4668 btrfs_update_inode_block_group(trans, inode);
4669 btrfs_update_inode_block_group(trans, dir);
4670 out_unlock:
4671 nr = trans->blocks_used;
4672 btrfs_end_transaction_throttle(trans, root);
4673 btrfs_btree_balance_dirty(root, nr);
4674 if (drop_inode) {
4675 inode_dec_link_count(inode);
4676 iput(inode);
4677 }
4678 return err;
4679 }
4680
4681 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4682 int mode, struct nameidata *nd)
4683 {
4684 struct btrfs_trans_handle *trans;
4685 struct btrfs_root *root = BTRFS_I(dir)->root;
4686 struct inode *inode = NULL;
4687 int drop_inode = 0;
4688 int err;
4689 unsigned long nr = 0;
4690 u64 objectid;
4691 u64 index = 0;
4692
4693 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4694 if (err)
4695 return err;
4696 /*
4697 * 2 for inode item and ref
4698 * 2 for dir items
4699 * 1 for xattr if selinux is on
4700 */
4701 trans = btrfs_start_transaction(root, 5);
4702 if (IS_ERR(trans))
4703 return PTR_ERR(trans);
4704
4705 btrfs_set_trans_block_group(trans, dir);
4706
4707 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4708 dentry->d_name.len,
4709 dentry->d_parent->d_inode->i_ino,
4710 objectid, BTRFS_I(dir)->block_group, mode,
4711 &index);
4712 err = PTR_ERR(inode);
4713 if (IS_ERR(inode))
4714 goto out_unlock;
4715
4716 err = btrfs_init_inode_security(trans, inode, dir);
4717 if (err) {
4718 drop_inode = 1;
4719 goto out_unlock;
4720 }
4721
4722 btrfs_set_trans_block_group(trans, inode);
4723 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4724 if (err)
4725 drop_inode = 1;
4726 else {
4727 inode->i_mapping->a_ops = &btrfs_aops;
4728 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4729 inode->i_fop = &btrfs_file_operations;
4730 inode->i_op = &btrfs_file_inode_operations;
4731 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4732 }
4733 btrfs_update_inode_block_group(trans, inode);
4734 btrfs_update_inode_block_group(trans, dir);
4735 out_unlock:
4736 nr = trans->blocks_used;
4737 btrfs_end_transaction_throttle(trans, root);
4738 if (drop_inode) {
4739 inode_dec_link_count(inode);
4740 iput(inode);
4741 }
4742 btrfs_btree_balance_dirty(root, nr);
4743 return err;
4744 }
4745
4746 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4747 struct dentry *dentry)
4748 {
4749 struct btrfs_trans_handle *trans;
4750 struct btrfs_root *root = BTRFS_I(dir)->root;
4751 struct inode *inode = old_dentry->d_inode;
4752 u64 index;
4753 unsigned long nr = 0;
4754 int err;
4755 int drop_inode = 0;
4756
4757 if (inode->i_nlink == 0)
4758 return -ENOENT;
4759
4760 /* do not allow sys_link's with other subvols of the same device */
4761 if (root->objectid != BTRFS_I(inode)->root->objectid)
4762 return -EPERM;
4763
4764 btrfs_inc_nlink(inode);
4765
4766 err = btrfs_set_inode_index(dir, &index);
4767 if (err)
4768 goto fail;
4769
4770 /*
4771 * 1 item for inode ref
4772 * 2 items for dir items
4773 */
4774 trans = btrfs_start_transaction(root, 3);
4775 if (IS_ERR(trans)) {
4776 err = PTR_ERR(trans);
4777 goto fail;
4778 }
4779
4780 btrfs_set_trans_block_group(trans, dir);
4781 atomic_inc(&inode->i_count);
4782
4783 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4784
4785 if (err) {
4786 drop_inode = 1;
4787 } else {
4788 btrfs_update_inode_block_group(trans, dir);
4789 err = btrfs_update_inode(trans, root, inode);
4790 BUG_ON(err);
4791 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4792 }
4793
4794 nr = trans->blocks_used;
4795 btrfs_end_transaction_throttle(trans, root);
4796 fail:
4797 if (drop_inode) {
4798 inode_dec_link_count(inode);
4799 iput(inode);
4800 }
4801 btrfs_btree_balance_dirty(root, nr);
4802 return err;
4803 }
4804
4805 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4806 {
4807 struct inode *inode = NULL;
4808 struct btrfs_trans_handle *trans;
4809 struct btrfs_root *root = BTRFS_I(dir)->root;
4810 int err = 0;
4811 int drop_on_err = 0;
4812 u64 objectid = 0;
4813 u64 index = 0;
4814 unsigned long nr = 1;
4815
4816 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4817 if (err)
4818 return err;
4819
4820 /*
4821 * 2 items for inode and ref
4822 * 2 items for dir items
4823 * 1 for xattr if selinux is on
4824 */
4825 trans = btrfs_start_transaction(root, 5);
4826 if (IS_ERR(trans))
4827 return PTR_ERR(trans);
4828 btrfs_set_trans_block_group(trans, dir);
4829
4830 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4831 dentry->d_name.len,
4832 dentry->d_parent->d_inode->i_ino, objectid,
4833 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4834 &index);
4835 if (IS_ERR(inode)) {
4836 err = PTR_ERR(inode);
4837 goto out_fail;
4838 }
4839
4840 drop_on_err = 1;
4841
4842 err = btrfs_init_inode_security(trans, inode, dir);
4843 if (err)
4844 goto out_fail;
4845
4846 inode->i_op = &btrfs_dir_inode_operations;
4847 inode->i_fop = &btrfs_dir_file_operations;
4848 btrfs_set_trans_block_group(trans, inode);
4849
4850 btrfs_i_size_write(inode, 0);
4851 err = btrfs_update_inode(trans, root, inode);
4852 if (err)
4853 goto out_fail;
4854
4855 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4856 inode, dentry->d_name.name,
4857 dentry->d_name.len, 0, index);
4858 if (err)
4859 goto out_fail;
4860
4861 d_instantiate(dentry, inode);
4862 drop_on_err = 0;
4863 btrfs_update_inode_block_group(trans, inode);
4864 btrfs_update_inode_block_group(trans, dir);
4865
4866 out_fail:
4867 nr = trans->blocks_used;
4868 btrfs_end_transaction_throttle(trans, root);
4869 if (drop_on_err)
4870 iput(inode);
4871 btrfs_btree_balance_dirty(root, nr);
4872 return err;
4873 }
4874
4875 /* helper for btfs_get_extent. Given an existing extent in the tree,
4876 * and an extent that you want to insert, deal with overlap and insert
4877 * the new extent into the tree.
4878 */
4879 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4880 struct extent_map *existing,
4881 struct extent_map *em,
4882 u64 map_start, u64 map_len)
4883 {
4884 u64 start_diff;
4885
4886 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4887 start_diff = map_start - em->start;
4888 em->start = map_start;
4889 em->len = map_len;
4890 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4891 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4892 em->block_start += start_diff;
4893 em->block_len -= start_diff;
4894 }
4895 return add_extent_mapping(em_tree, em);
4896 }
4897
4898 static noinline int uncompress_inline(struct btrfs_path *path,
4899 struct inode *inode, struct page *page,
4900 size_t pg_offset, u64 extent_offset,
4901 struct btrfs_file_extent_item *item)
4902 {
4903 int ret;
4904 struct extent_buffer *leaf = path->nodes[0];
4905 char *tmp;
4906 size_t max_size;
4907 unsigned long inline_size;
4908 unsigned long ptr;
4909
4910 WARN_ON(pg_offset != 0);
4911 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4912 inline_size = btrfs_file_extent_inline_item_len(leaf,
4913 btrfs_item_nr(leaf, path->slots[0]));
4914 tmp = kmalloc(inline_size, GFP_NOFS);
4915 ptr = btrfs_file_extent_inline_start(item);
4916
4917 read_extent_buffer(leaf, tmp, ptr, inline_size);
4918
4919 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4920 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4921 inline_size, max_size);
4922 if (ret) {
4923 char *kaddr = kmap_atomic(page, KM_USER0);
4924 unsigned long copy_size = min_t(u64,
4925 PAGE_CACHE_SIZE - pg_offset,
4926 max_size - extent_offset);
4927 memset(kaddr + pg_offset, 0, copy_size);
4928 kunmap_atomic(kaddr, KM_USER0);
4929 }
4930 kfree(tmp);
4931 return 0;
4932 }
4933
4934 /*
4935 * a bit scary, this does extent mapping from logical file offset to the disk.
4936 * the ugly parts come from merging extents from the disk with the in-ram
4937 * representation. This gets more complex because of the data=ordered code,
4938 * where the in-ram extents might be locked pending data=ordered completion.
4939 *
4940 * This also copies inline extents directly into the page.
4941 */
4942
4943 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4944 size_t pg_offset, u64 start, u64 len,
4945 int create)
4946 {
4947 int ret;
4948 int err = 0;
4949 u64 bytenr;
4950 u64 extent_start = 0;
4951 u64 extent_end = 0;
4952 u64 objectid = inode->i_ino;
4953 u32 found_type;
4954 struct btrfs_path *path = NULL;
4955 struct btrfs_root *root = BTRFS_I(inode)->root;
4956 struct btrfs_file_extent_item *item;
4957 struct extent_buffer *leaf;
4958 struct btrfs_key found_key;
4959 struct extent_map *em = NULL;
4960 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4961 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4962 struct btrfs_trans_handle *trans = NULL;
4963 int compressed;
4964
4965 again:
4966 read_lock(&em_tree->lock);
4967 em = lookup_extent_mapping(em_tree, start, len);
4968 if (em)
4969 em->bdev = root->fs_info->fs_devices->latest_bdev;
4970 read_unlock(&em_tree->lock);
4971
4972 if (em) {
4973 if (em->start > start || em->start + em->len <= start)
4974 free_extent_map(em);
4975 else if (em->block_start == EXTENT_MAP_INLINE && page)
4976 free_extent_map(em);
4977 else
4978 goto out;
4979 }
4980 em = alloc_extent_map(GFP_NOFS);
4981 if (!em) {
4982 err = -ENOMEM;
4983 goto out;
4984 }
4985 em->bdev = root->fs_info->fs_devices->latest_bdev;
4986 em->start = EXTENT_MAP_HOLE;
4987 em->orig_start = EXTENT_MAP_HOLE;
4988 em->len = (u64)-1;
4989 em->block_len = (u64)-1;
4990
4991 if (!path) {
4992 path = btrfs_alloc_path();
4993 BUG_ON(!path);
4994 }
4995
4996 ret = btrfs_lookup_file_extent(trans, root, path,
4997 objectid, start, trans != NULL);
4998 if (ret < 0) {
4999 err = ret;
5000 goto out;
5001 }
5002
5003 if (ret != 0) {
5004 if (path->slots[0] == 0)
5005 goto not_found;
5006 path->slots[0]--;
5007 }
5008
5009 leaf = path->nodes[0];
5010 item = btrfs_item_ptr(leaf, path->slots[0],
5011 struct btrfs_file_extent_item);
5012 /* are we inside the extent that was found? */
5013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5014 found_type = btrfs_key_type(&found_key);
5015 if (found_key.objectid != objectid ||
5016 found_type != BTRFS_EXTENT_DATA_KEY) {
5017 goto not_found;
5018 }
5019
5020 found_type = btrfs_file_extent_type(leaf, item);
5021 extent_start = found_key.offset;
5022 compressed = btrfs_file_extent_compression(leaf, item);
5023 if (found_type == BTRFS_FILE_EXTENT_REG ||
5024 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5025 extent_end = extent_start +
5026 btrfs_file_extent_num_bytes(leaf, item);
5027 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5028 size_t size;
5029 size = btrfs_file_extent_inline_len(leaf, item);
5030 extent_end = (extent_start + size + root->sectorsize - 1) &
5031 ~((u64)root->sectorsize - 1);
5032 }
5033
5034 if (start >= extent_end) {
5035 path->slots[0]++;
5036 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5037 ret = btrfs_next_leaf(root, path);
5038 if (ret < 0) {
5039 err = ret;
5040 goto out;
5041 }
5042 if (ret > 0)
5043 goto not_found;
5044 leaf = path->nodes[0];
5045 }
5046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5047 if (found_key.objectid != objectid ||
5048 found_key.type != BTRFS_EXTENT_DATA_KEY)
5049 goto not_found;
5050 if (start + len <= found_key.offset)
5051 goto not_found;
5052 em->start = start;
5053 em->len = found_key.offset - start;
5054 goto not_found_em;
5055 }
5056
5057 if (found_type == BTRFS_FILE_EXTENT_REG ||
5058 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5059 em->start = extent_start;
5060 em->len = extent_end - extent_start;
5061 em->orig_start = extent_start -
5062 btrfs_file_extent_offset(leaf, item);
5063 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5064 if (bytenr == 0) {
5065 em->block_start = EXTENT_MAP_HOLE;
5066 goto insert;
5067 }
5068 if (compressed) {
5069 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5070 em->block_start = bytenr;
5071 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5072 item);
5073 } else {
5074 bytenr += btrfs_file_extent_offset(leaf, item);
5075 em->block_start = bytenr;
5076 em->block_len = em->len;
5077 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5078 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5079 }
5080 goto insert;
5081 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5082 unsigned long ptr;
5083 char *map;
5084 size_t size;
5085 size_t extent_offset;
5086 size_t copy_size;
5087
5088 em->block_start = EXTENT_MAP_INLINE;
5089 if (!page || create) {
5090 em->start = extent_start;
5091 em->len = extent_end - extent_start;
5092 goto out;
5093 }
5094
5095 size = btrfs_file_extent_inline_len(leaf, item);
5096 extent_offset = page_offset(page) + pg_offset - extent_start;
5097 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5098 size - extent_offset);
5099 em->start = extent_start + extent_offset;
5100 em->len = (copy_size + root->sectorsize - 1) &
5101 ~((u64)root->sectorsize - 1);
5102 em->orig_start = EXTENT_MAP_INLINE;
5103 if (compressed)
5104 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5105 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5106 if (create == 0 && !PageUptodate(page)) {
5107 if (btrfs_file_extent_compression(leaf, item) ==
5108 BTRFS_COMPRESS_ZLIB) {
5109 ret = uncompress_inline(path, inode, page,
5110 pg_offset,
5111 extent_offset, item);
5112 BUG_ON(ret);
5113 } else {
5114 map = kmap(page);
5115 read_extent_buffer(leaf, map + pg_offset, ptr,
5116 copy_size);
5117 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5118 memset(map + pg_offset + copy_size, 0,
5119 PAGE_CACHE_SIZE - pg_offset -
5120 copy_size);
5121 }
5122 kunmap(page);
5123 }
5124 flush_dcache_page(page);
5125 } else if (create && PageUptodate(page)) {
5126 WARN_ON(1);
5127 if (!trans) {
5128 kunmap(page);
5129 free_extent_map(em);
5130 em = NULL;
5131 btrfs_release_path(root, path);
5132 trans = btrfs_join_transaction(root, 1);
5133 goto again;
5134 }
5135 map = kmap(page);
5136 write_extent_buffer(leaf, map + pg_offset, ptr,
5137 copy_size);
5138 kunmap(page);
5139 btrfs_mark_buffer_dirty(leaf);
5140 }
5141 set_extent_uptodate(io_tree, em->start,
5142 extent_map_end(em) - 1, GFP_NOFS);
5143 goto insert;
5144 } else {
5145 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5146 WARN_ON(1);
5147 }
5148 not_found:
5149 em->start = start;
5150 em->len = len;
5151 not_found_em:
5152 em->block_start = EXTENT_MAP_HOLE;
5153 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5154 insert:
5155 btrfs_release_path(root, path);
5156 if (em->start > start || extent_map_end(em) <= start) {
5157 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5158 "[%llu %llu]\n", (unsigned long long)em->start,
5159 (unsigned long long)em->len,
5160 (unsigned long long)start,
5161 (unsigned long long)len);
5162 err = -EIO;
5163 goto out;
5164 }
5165
5166 err = 0;
5167 write_lock(&em_tree->lock);
5168 ret = add_extent_mapping(em_tree, em);
5169 /* it is possible that someone inserted the extent into the tree
5170 * while we had the lock dropped. It is also possible that
5171 * an overlapping map exists in the tree
5172 */
5173 if (ret == -EEXIST) {
5174 struct extent_map *existing;
5175
5176 ret = 0;
5177
5178 existing = lookup_extent_mapping(em_tree, start, len);
5179 if (existing && (existing->start > start ||
5180 existing->start + existing->len <= start)) {
5181 free_extent_map(existing);
5182 existing = NULL;
5183 }
5184 if (!existing) {
5185 existing = lookup_extent_mapping(em_tree, em->start,
5186 em->len);
5187 if (existing) {
5188 err = merge_extent_mapping(em_tree, existing,
5189 em, start,
5190 root->sectorsize);
5191 free_extent_map(existing);
5192 if (err) {
5193 free_extent_map(em);
5194 em = NULL;
5195 }
5196 } else {
5197 err = -EIO;
5198 free_extent_map(em);
5199 em = NULL;
5200 }
5201 } else {
5202 free_extent_map(em);
5203 em = existing;
5204 err = 0;
5205 }
5206 }
5207 write_unlock(&em_tree->lock);
5208 out:
5209 if (path)
5210 btrfs_free_path(path);
5211 if (trans) {
5212 ret = btrfs_end_transaction(trans, root);
5213 if (!err)
5214 err = ret;
5215 }
5216 if (err) {
5217 free_extent_map(em);
5218 return ERR_PTR(err);
5219 }
5220 return em;
5221 }
5222
5223 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5224 u64 start, u64 len)
5225 {
5226 struct btrfs_root *root = BTRFS_I(inode)->root;
5227 struct btrfs_trans_handle *trans;
5228 struct extent_map *em;
5229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5230 struct btrfs_key ins;
5231 u64 alloc_hint;
5232 int ret;
5233
5234 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5235
5236 trans = btrfs_join_transaction(root, 0);
5237 if (!trans)
5238 return ERR_PTR(-ENOMEM);
5239
5240 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5241
5242 alloc_hint = get_extent_allocation_hint(inode, start, len);
5243 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5244 alloc_hint, (u64)-1, &ins, 1);
5245 if (ret) {
5246 em = ERR_PTR(ret);
5247 goto out;
5248 }
5249
5250 em = alloc_extent_map(GFP_NOFS);
5251 if (!em) {
5252 em = ERR_PTR(-ENOMEM);
5253 goto out;
5254 }
5255
5256 em->start = start;
5257 em->orig_start = em->start;
5258 em->len = ins.offset;
5259
5260 em->block_start = ins.objectid;
5261 em->block_len = ins.offset;
5262 em->bdev = root->fs_info->fs_devices->latest_bdev;
5263 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5264
5265 while (1) {
5266 write_lock(&em_tree->lock);
5267 ret = add_extent_mapping(em_tree, em);
5268 write_unlock(&em_tree->lock);
5269 if (ret != -EEXIST)
5270 break;
5271 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5272 }
5273
5274 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5275 ins.offset, ins.offset, 0);
5276 if (ret) {
5277 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5278 em = ERR_PTR(ret);
5279 }
5280 out:
5281 btrfs_end_transaction(trans, root);
5282 return em;
5283 }
5284
5285 /*
5286 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5287 * block must be cow'd
5288 */
5289 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5290 struct inode *inode, u64 offset, u64 len)
5291 {
5292 struct btrfs_path *path;
5293 int ret;
5294 struct extent_buffer *leaf;
5295 struct btrfs_root *root = BTRFS_I(inode)->root;
5296 struct btrfs_file_extent_item *fi;
5297 struct btrfs_key key;
5298 u64 disk_bytenr;
5299 u64 backref_offset;
5300 u64 extent_end;
5301 u64 num_bytes;
5302 int slot;
5303 int found_type;
5304
5305 path = btrfs_alloc_path();
5306 if (!path)
5307 return -ENOMEM;
5308
5309 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5310 offset, 0);
5311 if (ret < 0)
5312 goto out;
5313
5314 slot = path->slots[0];
5315 if (ret == 1) {
5316 if (slot == 0) {
5317 /* can't find the item, must cow */
5318 ret = 0;
5319 goto out;
5320 }
5321 slot--;
5322 }
5323 ret = 0;
5324 leaf = path->nodes[0];
5325 btrfs_item_key_to_cpu(leaf, &key, slot);
5326 if (key.objectid != inode->i_ino ||
5327 key.type != BTRFS_EXTENT_DATA_KEY) {
5328 /* not our file or wrong item type, must cow */
5329 goto out;
5330 }
5331
5332 if (key.offset > offset) {
5333 /* Wrong offset, must cow */
5334 goto out;
5335 }
5336
5337 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5338 found_type = btrfs_file_extent_type(leaf, fi);
5339 if (found_type != BTRFS_FILE_EXTENT_REG &&
5340 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5341 /* not a regular extent, must cow */
5342 goto out;
5343 }
5344 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5345 backref_offset = btrfs_file_extent_offset(leaf, fi);
5346
5347 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5348 if (extent_end < offset + len) {
5349 /* extent doesn't include our full range, must cow */
5350 goto out;
5351 }
5352
5353 if (btrfs_extent_readonly(root, disk_bytenr))
5354 goto out;
5355
5356 /*
5357 * look for other files referencing this extent, if we
5358 * find any we must cow
5359 */
5360 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5361 key.offset - backref_offset, disk_bytenr))
5362 goto out;
5363
5364 /*
5365 * adjust disk_bytenr and num_bytes to cover just the bytes
5366 * in this extent we are about to write. If there
5367 * are any csums in that range we have to cow in order
5368 * to keep the csums correct
5369 */
5370 disk_bytenr += backref_offset;
5371 disk_bytenr += offset - key.offset;
5372 num_bytes = min(offset + len, extent_end) - offset;
5373 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5374 goto out;
5375 /*
5376 * all of the above have passed, it is safe to overwrite this extent
5377 * without cow
5378 */
5379 ret = 1;
5380 out:
5381 btrfs_free_path(path);
5382 return ret;
5383 }
5384
5385 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5386 struct buffer_head *bh_result, int create)
5387 {
5388 struct extent_map *em;
5389 struct btrfs_root *root = BTRFS_I(inode)->root;
5390 u64 start = iblock << inode->i_blkbits;
5391 u64 len = bh_result->b_size;
5392 struct btrfs_trans_handle *trans;
5393
5394 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5395 if (IS_ERR(em))
5396 return PTR_ERR(em);
5397
5398 /*
5399 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5400 * io. INLINE is special, and we could probably kludge it in here, but
5401 * it's still buffered so for safety lets just fall back to the generic
5402 * buffered path.
5403 *
5404 * For COMPRESSED we _have_ to read the entire extent in so we can
5405 * decompress it, so there will be buffering required no matter what we
5406 * do, so go ahead and fallback to buffered.
5407 *
5408 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5409 * to buffered IO. Don't blame me, this is the price we pay for using
5410 * the generic code.
5411 */
5412 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5413 em->block_start == EXTENT_MAP_INLINE) {
5414 free_extent_map(em);
5415 return -ENOTBLK;
5416 }
5417
5418 /* Just a good old fashioned hole, return */
5419 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5420 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5421 free_extent_map(em);
5422 /* DIO will do one hole at a time, so just unlock a sector */
5423 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5424 start + root->sectorsize - 1, GFP_NOFS);
5425 return 0;
5426 }
5427
5428 /*
5429 * We don't allocate a new extent in the following cases
5430 *
5431 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5432 * existing extent.
5433 * 2) The extent is marked as PREALLOC. We're good to go here and can
5434 * just use the extent.
5435 *
5436 */
5437 if (!create) {
5438 len = em->len - (start - em->start);
5439 goto map;
5440 }
5441
5442 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5443 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5444 em->block_start != EXTENT_MAP_HOLE)) {
5445 int type;
5446 int ret;
5447 u64 block_start;
5448
5449 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5450 type = BTRFS_ORDERED_PREALLOC;
5451 else
5452 type = BTRFS_ORDERED_NOCOW;
5453 len = min(len, em->len - (start - em->start));
5454 block_start = em->block_start + (start - em->start);
5455
5456 /*
5457 * we're not going to log anything, but we do need
5458 * to make sure the current transaction stays open
5459 * while we look for nocow cross refs
5460 */
5461 trans = btrfs_join_transaction(root, 0);
5462 if (!trans)
5463 goto must_cow;
5464
5465 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5466 ret = btrfs_add_ordered_extent_dio(inode, start,
5467 block_start, len, len, type);
5468 btrfs_end_transaction(trans, root);
5469 if (ret) {
5470 free_extent_map(em);
5471 return ret;
5472 }
5473 goto unlock;
5474 }
5475 btrfs_end_transaction(trans, root);
5476 }
5477 must_cow:
5478 /*
5479 * this will cow the extent, reset the len in case we changed
5480 * it above
5481 */
5482 len = bh_result->b_size;
5483 free_extent_map(em);
5484 em = btrfs_new_extent_direct(inode, start, len);
5485 if (IS_ERR(em))
5486 return PTR_ERR(em);
5487 len = min(len, em->len - (start - em->start));
5488 unlock:
5489 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5490 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5491 0, NULL, GFP_NOFS);
5492 map:
5493 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5494 inode->i_blkbits;
5495 bh_result->b_size = len;
5496 bh_result->b_bdev = em->bdev;
5497 set_buffer_mapped(bh_result);
5498 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5499 set_buffer_new(bh_result);
5500
5501 free_extent_map(em);
5502
5503 return 0;
5504 }
5505
5506 struct btrfs_dio_private {
5507 struct inode *inode;
5508 u64 logical_offset;
5509 u64 disk_bytenr;
5510 u64 bytes;
5511 u32 *csums;
5512 void *private;
5513 };
5514
5515 static void btrfs_endio_direct_read(struct bio *bio, int err)
5516 {
5517 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5518 struct bio_vec *bvec = bio->bi_io_vec;
5519 struct btrfs_dio_private *dip = bio->bi_private;
5520 struct inode *inode = dip->inode;
5521 struct btrfs_root *root = BTRFS_I(inode)->root;
5522 u64 start;
5523 u32 *private = dip->csums;
5524
5525 start = dip->logical_offset;
5526 do {
5527 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5528 struct page *page = bvec->bv_page;
5529 char *kaddr;
5530 u32 csum = ~(u32)0;
5531 unsigned long flags;
5532
5533 local_irq_save(flags);
5534 kaddr = kmap_atomic(page, KM_IRQ0);
5535 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5536 csum, bvec->bv_len);
5537 btrfs_csum_final(csum, (char *)&csum);
5538 kunmap_atomic(kaddr, KM_IRQ0);
5539 local_irq_restore(flags);
5540
5541 flush_dcache_page(bvec->bv_page);
5542 if (csum != *private) {
5543 printk(KERN_ERR "btrfs csum failed ino %lu off"
5544 " %llu csum %u private %u\n",
5545 inode->i_ino, (unsigned long long)start,
5546 csum, *private);
5547 err = -EIO;
5548 }
5549 }
5550
5551 start += bvec->bv_len;
5552 private++;
5553 bvec++;
5554 } while (bvec <= bvec_end);
5555
5556 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5557 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5558 bio->bi_private = dip->private;
5559
5560 kfree(dip->csums);
5561 kfree(dip);
5562 dio_end_io(bio, err);
5563 }
5564
5565 static void btrfs_endio_direct_write(struct bio *bio, int err)
5566 {
5567 struct btrfs_dio_private *dip = bio->bi_private;
5568 struct inode *inode = dip->inode;
5569 struct btrfs_root *root = BTRFS_I(inode)->root;
5570 struct btrfs_trans_handle *trans;
5571 struct btrfs_ordered_extent *ordered = NULL;
5572 struct extent_state *cached_state = NULL;
5573 int ret;
5574
5575 if (err)
5576 goto out_done;
5577
5578 ret = btrfs_dec_test_ordered_pending(inode, &ordered,
5579 dip->logical_offset, dip->bytes);
5580 if (!ret)
5581 goto out_done;
5582
5583 BUG_ON(!ordered);
5584
5585 trans = btrfs_join_transaction(root, 1);
5586 if (!trans) {
5587 err = -ENOMEM;
5588 goto out;
5589 }
5590 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5591
5592 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5593 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5594 if (!ret)
5595 ret = btrfs_update_inode(trans, root, inode);
5596 err = ret;
5597 goto out;
5598 }
5599
5600 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5601 ordered->file_offset + ordered->len - 1, 0,
5602 &cached_state, GFP_NOFS);
5603
5604 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5605 ret = btrfs_mark_extent_written(trans, inode,
5606 ordered->file_offset,
5607 ordered->file_offset +
5608 ordered->len);
5609 if (ret) {
5610 err = ret;
5611 goto out_unlock;
5612 }
5613 } else {
5614 ret = insert_reserved_file_extent(trans, inode,
5615 ordered->file_offset,
5616 ordered->start,
5617 ordered->disk_len,
5618 ordered->len,
5619 ordered->len,
5620 0, 0, 0,
5621 BTRFS_FILE_EXTENT_REG);
5622 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5623 ordered->file_offset, ordered->len);
5624 if (ret) {
5625 err = ret;
5626 WARN_ON(1);
5627 goto out_unlock;
5628 }
5629 }
5630
5631 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5632 btrfs_ordered_update_i_size(inode, 0, ordered);
5633 btrfs_update_inode(trans, root, inode);
5634 out_unlock:
5635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5636 ordered->file_offset + ordered->len - 1,
5637 &cached_state, GFP_NOFS);
5638 out:
5639 btrfs_delalloc_release_metadata(inode, ordered->len);
5640 btrfs_end_transaction(trans, root);
5641 btrfs_put_ordered_extent(ordered);
5642 btrfs_put_ordered_extent(ordered);
5643 out_done:
5644 bio->bi_private = dip->private;
5645
5646 kfree(dip->csums);
5647 kfree(dip);
5648 dio_end_io(bio, err);
5649 }
5650
5651 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5652 struct bio *bio, int mirror_num,
5653 unsigned long bio_flags, u64 offset)
5654 {
5655 int ret;
5656 struct btrfs_root *root = BTRFS_I(inode)->root;
5657 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5658 BUG_ON(ret);
5659 return 0;
5660 }
5661
5662 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5663 loff_t file_offset)
5664 {
5665 struct btrfs_root *root = BTRFS_I(inode)->root;
5666 struct btrfs_dio_private *dip;
5667 struct bio_vec *bvec = bio->bi_io_vec;
5668 u64 start;
5669 int skip_sum;
5670 int write = rw & REQ_WRITE;
5671 int ret = 0;
5672
5673 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5674
5675 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5676 if (!dip) {
5677 ret = -ENOMEM;
5678 goto free_ordered;
5679 }
5680 dip->csums = NULL;
5681
5682 if (!skip_sum) {
5683 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5684 if (!dip->csums) {
5685 ret = -ENOMEM;
5686 goto free_ordered;
5687 }
5688 }
5689
5690 dip->private = bio->bi_private;
5691 dip->inode = inode;
5692 dip->logical_offset = file_offset;
5693
5694 start = dip->logical_offset;
5695 dip->bytes = 0;
5696 do {
5697 dip->bytes += bvec->bv_len;
5698 bvec++;
5699 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5700
5701 dip->disk_bytenr = (u64)bio->bi_sector << 9;
5702 bio->bi_private = dip;
5703
5704 if (write)
5705 bio->bi_end_io = btrfs_endio_direct_write;
5706 else
5707 bio->bi_end_io = btrfs_endio_direct_read;
5708
5709 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5710 if (ret)
5711 goto out_err;
5712
5713 if (write && !skip_sum) {
5714 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
5715 inode, rw, bio, 0, 0,
5716 dip->logical_offset,
5717 __btrfs_submit_bio_start_direct_io,
5718 __btrfs_submit_bio_done);
5719 if (ret)
5720 goto out_err;
5721 return;
5722 } else if (!skip_sum)
5723 btrfs_lookup_bio_sums_dio(root, inode, bio,
5724 dip->logical_offset, dip->csums);
5725
5726 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5727 if (ret)
5728 goto out_err;
5729 return;
5730 out_err:
5731 kfree(dip->csums);
5732 kfree(dip);
5733 free_ordered:
5734 /*
5735 * If this is a write, we need to clean up the reserved space and kill
5736 * the ordered extent.
5737 */
5738 if (write) {
5739 struct btrfs_ordered_extent *ordered;
5740 ordered = btrfs_lookup_ordered_extent(inode,
5741 dip->logical_offset);
5742 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5743 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5744 btrfs_free_reserved_extent(root, ordered->start,
5745 ordered->disk_len);
5746 btrfs_put_ordered_extent(ordered);
5747 btrfs_put_ordered_extent(ordered);
5748 }
5749 bio_endio(bio, ret);
5750 }
5751
5752 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5753 const struct iovec *iov, loff_t offset,
5754 unsigned long nr_segs)
5755 {
5756 int seg;
5757 size_t size;
5758 unsigned long addr;
5759 unsigned blocksize_mask = root->sectorsize - 1;
5760 ssize_t retval = -EINVAL;
5761 loff_t end = offset;
5762
5763 if (offset & blocksize_mask)
5764 goto out;
5765
5766 /* Check the memory alignment. Blocks cannot straddle pages */
5767 for (seg = 0; seg < nr_segs; seg++) {
5768 addr = (unsigned long)iov[seg].iov_base;
5769 size = iov[seg].iov_len;
5770 end += size;
5771 if ((addr & blocksize_mask) || (size & blocksize_mask))
5772 goto out;
5773 }
5774 retval = 0;
5775 out:
5776 return retval;
5777 }
5778 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5779 const struct iovec *iov, loff_t offset,
5780 unsigned long nr_segs)
5781 {
5782 struct file *file = iocb->ki_filp;
5783 struct inode *inode = file->f_mapping->host;
5784 struct btrfs_ordered_extent *ordered;
5785 struct extent_state *cached_state = NULL;
5786 u64 lockstart, lockend;
5787 ssize_t ret;
5788 int writing = rw & WRITE;
5789 int write_bits = 0;
5790 size_t count = iov_length(iov, nr_segs);
5791
5792 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5793 offset, nr_segs)) {
5794 return 0;
5795 }
5796
5797 lockstart = offset;
5798 lockend = offset + count - 1;
5799
5800 if (writing) {
5801 ret = btrfs_delalloc_reserve_space(inode, count);
5802 if (ret)
5803 goto out;
5804 }
5805
5806 while (1) {
5807 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5808 0, &cached_state, GFP_NOFS);
5809 /*
5810 * We're concerned with the entire range that we're going to be
5811 * doing DIO to, so we need to make sure theres no ordered
5812 * extents in this range.
5813 */
5814 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5815 lockend - lockstart + 1);
5816 if (!ordered)
5817 break;
5818 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5819 &cached_state, GFP_NOFS);
5820 btrfs_start_ordered_extent(inode, ordered, 1);
5821 btrfs_put_ordered_extent(ordered);
5822 cond_resched();
5823 }
5824
5825 /*
5826 * we don't use btrfs_set_extent_delalloc because we don't want
5827 * the dirty or uptodate bits
5828 */
5829 if (writing) {
5830 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
5831 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5832 EXTENT_DELALLOC, 0, NULL, &cached_state,
5833 GFP_NOFS);
5834 if (ret) {
5835 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5836 lockend, EXTENT_LOCKED | write_bits,
5837 1, 0, &cached_state, GFP_NOFS);
5838 goto out;
5839 }
5840 }
5841
5842 free_extent_state(cached_state);
5843 cached_state = NULL;
5844
5845 ret = __blockdev_direct_IO(rw, iocb, inode,
5846 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
5847 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
5848 btrfs_submit_direct, 0);
5849
5850 if (ret < 0 && ret != -EIOCBQUEUED) {
5851 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
5852 offset + iov_length(iov, nr_segs) - 1,
5853 EXTENT_LOCKED | write_bits, 1, 0,
5854 &cached_state, GFP_NOFS);
5855 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
5856 /*
5857 * We're falling back to buffered, unlock the section we didn't
5858 * do IO on.
5859 */
5860 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
5861 offset + iov_length(iov, nr_segs) - 1,
5862 EXTENT_LOCKED | write_bits, 1, 0,
5863 &cached_state, GFP_NOFS);
5864 }
5865 out:
5866 free_extent_state(cached_state);
5867 return ret;
5868 }
5869
5870 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5871 __u64 start, __u64 len)
5872 {
5873 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
5874 }
5875
5876 int btrfs_readpage(struct file *file, struct page *page)
5877 {
5878 struct extent_io_tree *tree;
5879 tree = &BTRFS_I(page->mapping->host)->io_tree;
5880 return extent_read_full_page(tree, page, btrfs_get_extent);
5881 }
5882
5883 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
5884 {
5885 struct extent_io_tree *tree;
5886
5887
5888 if (current->flags & PF_MEMALLOC) {
5889 redirty_page_for_writepage(wbc, page);
5890 unlock_page(page);
5891 return 0;
5892 }
5893 tree = &BTRFS_I(page->mapping->host)->io_tree;
5894 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
5895 }
5896
5897 int btrfs_writepages(struct address_space *mapping,
5898 struct writeback_control *wbc)
5899 {
5900 struct extent_io_tree *tree;
5901
5902 tree = &BTRFS_I(mapping->host)->io_tree;
5903 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5904 }
5905
5906 static int
5907 btrfs_readpages(struct file *file, struct address_space *mapping,
5908 struct list_head *pages, unsigned nr_pages)
5909 {
5910 struct extent_io_tree *tree;
5911 tree = &BTRFS_I(mapping->host)->io_tree;
5912 return extent_readpages(tree, mapping, pages, nr_pages,
5913 btrfs_get_extent);
5914 }
5915 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5916 {
5917 struct extent_io_tree *tree;
5918 struct extent_map_tree *map;
5919 int ret;
5920
5921 tree = &BTRFS_I(page->mapping->host)->io_tree;
5922 map = &BTRFS_I(page->mapping->host)->extent_tree;
5923 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5924 if (ret == 1) {
5925 ClearPagePrivate(page);
5926 set_page_private(page, 0);
5927 page_cache_release(page);
5928 }
5929 return ret;
5930 }
5931
5932 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5933 {
5934 if (PageWriteback(page) || PageDirty(page))
5935 return 0;
5936 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5937 }
5938
5939 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5940 {
5941 struct extent_io_tree *tree;
5942 struct btrfs_ordered_extent *ordered;
5943 struct extent_state *cached_state = NULL;
5944 u64 page_start = page_offset(page);
5945 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5946
5947
5948 /*
5949 * we have the page locked, so new writeback can't start,
5950 * and the dirty bit won't be cleared while we are here.
5951 *
5952 * Wait for IO on this page so that we can safely clear
5953 * the PagePrivate2 bit and do ordered accounting
5954 */
5955 wait_on_page_writeback(page);
5956
5957 tree = &BTRFS_I(page->mapping->host)->io_tree;
5958 if (offset) {
5959 btrfs_releasepage(page, GFP_NOFS);
5960 return;
5961 }
5962 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5963 GFP_NOFS);
5964 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5965 page_offset(page));
5966 if (ordered) {
5967 /*
5968 * IO on this page will never be started, so we need
5969 * to account for any ordered extents now
5970 */
5971 clear_extent_bit(tree, page_start, page_end,
5972 EXTENT_DIRTY | EXTENT_DELALLOC |
5973 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5974 &cached_state, GFP_NOFS);
5975 /*
5976 * whoever cleared the private bit is responsible
5977 * for the finish_ordered_io
5978 */
5979 if (TestClearPagePrivate2(page)) {
5980 btrfs_finish_ordered_io(page->mapping->host,
5981 page_start, page_end);
5982 }
5983 btrfs_put_ordered_extent(ordered);
5984 cached_state = NULL;
5985 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5986 GFP_NOFS);
5987 }
5988 clear_extent_bit(tree, page_start, page_end,
5989 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5990 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5991 __btrfs_releasepage(page, GFP_NOFS);
5992
5993 ClearPageChecked(page);
5994 if (PagePrivate(page)) {
5995 ClearPagePrivate(page);
5996 set_page_private(page, 0);
5997 page_cache_release(page);
5998 }
5999 }
6000
6001 /*
6002 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6003 * called from a page fault handler when a page is first dirtied. Hence we must
6004 * be careful to check for EOF conditions here. We set the page up correctly
6005 * for a written page which means we get ENOSPC checking when writing into
6006 * holes and correct delalloc and unwritten extent mapping on filesystems that
6007 * support these features.
6008 *
6009 * We are not allowed to take the i_mutex here so we have to play games to
6010 * protect against truncate races as the page could now be beyond EOF. Because
6011 * vmtruncate() writes the inode size before removing pages, once we have the
6012 * page lock we can determine safely if the page is beyond EOF. If it is not
6013 * beyond EOF, then the page is guaranteed safe against truncation until we
6014 * unlock the page.
6015 */
6016 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6017 {
6018 struct page *page = vmf->page;
6019 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6020 struct btrfs_root *root = BTRFS_I(inode)->root;
6021 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6022 struct btrfs_ordered_extent *ordered;
6023 struct extent_state *cached_state = NULL;
6024 char *kaddr;
6025 unsigned long zero_start;
6026 loff_t size;
6027 int ret;
6028 u64 page_start;
6029 u64 page_end;
6030
6031 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6032 if (ret) {
6033 if (ret == -ENOMEM)
6034 ret = VM_FAULT_OOM;
6035 else /* -ENOSPC, -EIO, etc */
6036 ret = VM_FAULT_SIGBUS;
6037 goto out;
6038 }
6039
6040 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6041 again:
6042 lock_page(page);
6043 size = i_size_read(inode);
6044 page_start = page_offset(page);
6045 page_end = page_start + PAGE_CACHE_SIZE - 1;
6046
6047 if ((page->mapping != inode->i_mapping) ||
6048 (page_start >= size)) {
6049 /* page got truncated out from underneath us */
6050 goto out_unlock;
6051 }
6052 wait_on_page_writeback(page);
6053
6054 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6055 GFP_NOFS);
6056 set_page_extent_mapped(page);
6057
6058 /*
6059 * we can't set the delalloc bits if there are pending ordered
6060 * extents. Drop our locks and wait for them to finish
6061 */
6062 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6063 if (ordered) {
6064 unlock_extent_cached(io_tree, page_start, page_end,
6065 &cached_state, GFP_NOFS);
6066 unlock_page(page);
6067 btrfs_start_ordered_extent(inode, ordered, 1);
6068 btrfs_put_ordered_extent(ordered);
6069 goto again;
6070 }
6071
6072 /*
6073 * XXX - page_mkwrite gets called every time the page is dirtied, even
6074 * if it was already dirty, so for space accounting reasons we need to
6075 * clear any delalloc bits for the range we are fixing to save. There
6076 * is probably a better way to do this, but for now keep consistent with
6077 * prepare_pages in the normal write path.
6078 */
6079 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6080 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6081 0, 0, &cached_state, GFP_NOFS);
6082
6083 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6084 &cached_state);
6085 if (ret) {
6086 unlock_extent_cached(io_tree, page_start, page_end,
6087 &cached_state, GFP_NOFS);
6088 ret = VM_FAULT_SIGBUS;
6089 goto out_unlock;
6090 }
6091 ret = 0;
6092
6093 /* page is wholly or partially inside EOF */
6094 if (page_start + PAGE_CACHE_SIZE > size)
6095 zero_start = size & ~PAGE_CACHE_MASK;
6096 else
6097 zero_start = PAGE_CACHE_SIZE;
6098
6099 if (zero_start != PAGE_CACHE_SIZE) {
6100 kaddr = kmap(page);
6101 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6102 flush_dcache_page(page);
6103 kunmap(page);
6104 }
6105 ClearPageChecked(page);
6106 set_page_dirty(page);
6107 SetPageUptodate(page);
6108
6109 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6110 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6111
6112 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6113
6114 out_unlock:
6115 if (!ret)
6116 return VM_FAULT_LOCKED;
6117 unlock_page(page);
6118 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6119 out:
6120 return ret;
6121 }
6122
6123 static void btrfs_truncate(struct inode *inode)
6124 {
6125 struct btrfs_root *root = BTRFS_I(inode)->root;
6126 int ret;
6127 struct btrfs_trans_handle *trans;
6128 unsigned long nr;
6129 u64 mask = root->sectorsize - 1;
6130
6131 if (!S_ISREG(inode->i_mode)) {
6132 WARN_ON(1);
6133 return;
6134 }
6135
6136 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6137 if (ret)
6138 return;
6139
6140 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6141 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6142
6143 trans = btrfs_start_transaction(root, 0);
6144 BUG_ON(IS_ERR(trans));
6145 btrfs_set_trans_block_group(trans, inode);
6146 trans->block_rsv = root->orphan_block_rsv;
6147
6148 /*
6149 * setattr is responsible for setting the ordered_data_close flag,
6150 * but that is only tested during the last file release. That
6151 * could happen well after the next commit, leaving a great big
6152 * window where new writes may get lost if someone chooses to write
6153 * to this file after truncating to zero
6154 *
6155 * The inode doesn't have any dirty data here, and so if we commit
6156 * this is a noop. If someone immediately starts writing to the inode
6157 * it is very likely we'll catch some of their writes in this
6158 * transaction, and the commit will find this file on the ordered
6159 * data list with good things to send down.
6160 *
6161 * This is a best effort solution, there is still a window where
6162 * using truncate to replace the contents of the file will
6163 * end up with a zero length file after a crash.
6164 */
6165 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6166 btrfs_add_ordered_operation(trans, root, inode);
6167
6168 while (1) {
6169 if (!trans) {
6170 trans = btrfs_start_transaction(root, 0);
6171 BUG_ON(IS_ERR(trans));
6172 btrfs_set_trans_block_group(trans, inode);
6173 trans->block_rsv = root->orphan_block_rsv;
6174 }
6175
6176 ret = btrfs_block_rsv_check(trans, root,
6177 root->orphan_block_rsv, 0, 5);
6178 if (ret) {
6179 BUG_ON(ret != -EAGAIN);
6180 ret = btrfs_commit_transaction(trans, root);
6181 BUG_ON(ret);
6182 trans = NULL;
6183 continue;
6184 }
6185
6186 ret = btrfs_truncate_inode_items(trans, root, inode,
6187 inode->i_size,
6188 BTRFS_EXTENT_DATA_KEY);
6189 if (ret != -EAGAIN)
6190 break;
6191
6192 ret = btrfs_update_inode(trans, root, inode);
6193 BUG_ON(ret);
6194
6195 nr = trans->blocks_used;
6196 btrfs_end_transaction(trans, root);
6197 trans = NULL;
6198 btrfs_btree_balance_dirty(root, nr);
6199 }
6200
6201 if (ret == 0 && inode->i_nlink > 0) {
6202 ret = btrfs_orphan_del(trans, inode);
6203 BUG_ON(ret);
6204 }
6205
6206 ret = btrfs_update_inode(trans, root, inode);
6207 BUG_ON(ret);
6208
6209 nr = trans->blocks_used;
6210 ret = btrfs_end_transaction_throttle(trans, root);
6211 BUG_ON(ret);
6212 btrfs_btree_balance_dirty(root, nr);
6213 }
6214
6215 /*
6216 * create a new subvolume directory/inode (helper for the ioctl).
6217 */
6218 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6219 struct btrfs_root *new_root,
6220 u64 new_dirid, u64 alloc_hint)
6221 {
6222 struct inode *inode;
6223 int err;
6224 u64 index = 0;
6225
6226 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6227 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6228 if (IS_ERR(inode))
6229 return PTR_ERR(inode);
6230 inode->i_op = &btrfs_dir_inode_operations;
6231 inode->i_fop = &btrfs_dir_file_operations;
6232
6233 inode->i_nlink = 1;
6234 btrfs_i_size_write(inode, 0);
6235
6236 err = btrfs_update_inode(trans, new_root, inode);
6237 BUG_ON(err);
6238
6239 iput(inode);
6240 return 0;
6241 }
6242
6243 /* helper function for file defrag and space balancing. This
6244 * forces readahead on a given range of bytes in an inode
6245 */
6246 unsigned long btrfs_force_ra(struct address_space *mapping,
6247 struct file_ra_state *ra, struct file *file,
6248 pgoff_t offset, pgoff_t last_index)
6249 {
6250 pgoff_t req_size = last_index - offset + 1;
6251
6252 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6253 return offset + req_size;
6254 }
6255
6256 struct inode *btrfs_alloc_inode(struct super_block *sb)
6257 {
6258 struct btrfs_inode *ei;
6259 struct inode *inode;
6260
6261 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6262 if (!ei)
6263 return NULL;
6264
6265 ei->root = NULL;
6266 ei->space_info = NULL;
6267 ei->generation = 0;
6268 ei->sequence = 0;
6269 ei->last_trans = 0;
6270 ei->last_sub_trans = 0;
6271 ei->logged_trans = 0;
6272 ei->delalloc_bytes = 0;
6273 ei->reserved_bytes = 0;
6274 ei->disk_i_size = 0;
6275 ei->flags = 0;
6276 ei->index_cnt = (u64)-1;
6277 ei->last_unlink_trans = 0;
6278
6279 spin_lock_init(&ei->accounting_lock);
6280 atomic_set(&ei->outstanding_extents, 0);
6281 ei->reserved_extents = 0;
6282
6283 ei->ordered_data_close = 0;
6284 ei->orphan_meta_reserved = 0;
6285 ei->dummy_inode = 0;
6286 ei->force_compress = 0;
6287
6288 inode = &ei->vfs_inode;
6289 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6290 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6291 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6292 mutex_init(&ei->log_mutex);
6293 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6294 INIT_LIST_HEAD(&ei->i_orphan);
6295 INIT_LIST_HEAD(&ei->delalloc_inodes);
6296 INIT_LIST_HEAD(&ei->ordered_operations);
6297 RB_CLEAR_NODE(&ei->rb_node);
6298
6299 return inode;
6300 }
6301
6302 void btrfs_destroy_inode(struct inode *inode)
6303 {
6304 struct btrfs_ordered_extent *ordered;
6305 struct btrfs_root *root = BTRFS_I(inode)->root;
6306
6307 WARN_ON(!list_empty(&inode->i_dentry));
6308 WARN_ON(inode->i_data.nrpages);
6309 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6310 WARN_ON(BTRFS_I(inode)->reserved_extents);
6311
6312 /*
6313 * This can happen where we create an inode, but somebody else also
6314 * created the same inode and we need to destroy the one we already
6315 * created.
6316 */
6317 if (!root)
6318 goto free;
6319
6320 /*
6321 * Make sure we're properly removed from the ordered operation
6322 * lists.
6323 */
6324 smp_mb();
6325 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6326 spin_lock(&root->fs_info->ordered_extent_lock);
6327 list_del_init(&BTRFS_I(inode)->ordered_operations);
6328 spin_unlock(&root->fs_info->ordered_extent_lock);
6329 }
6330
6331 if (root == root->fs_info->tree_root) {
6332 struct btrfs_block_group_cache *block_group;
6333
6334 block_group = btrfs_lookup_block_group(root->fs_info,
6335 BTRFS_I(inode)->block_group);
6336 if (block_group && block_group->inode == inode) {
6337 spin_lock(&block_group->lock);
6338 block_group->inode = NULL;
6339 spin_unlock(&block_group->lock);
6340 btrfs_put_block_group(block_group);
6341 } else if (block_group) {
6342 btrfs_put_block_group(block_group);
6343 }
6344 }
6345
6346 spin_lock(&root->orphan_lock);
6347 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6348 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6349 inode->i_ino);
6350 list_del_init(&BTRFS_I(inode)->i_orphan);
6351 }
6352 spin_unlock(&root->orphan_lock);
6353
6354 while (1) {
6355 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6356 if (!ordered)
6357 break;
6358 else {
6359 printk(KERN_ERR "btrfs found ordered "
6360 "extent %llu %llu on inode cleanup\n",
6361 (unsigned long long)ordered->file_offset,
6362 (unsigned long long)ordered->len);
6363 btrfs_remove_ordered_extent(inode, ordered);
6364 btrfs_put_ordered_extent(ordered);
6365 btrfs_put_ordered_extent(ordered);
6366 }
6367 }
6368 inode_tree_del(inode);
6369 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6370 free:
6371 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6372 }
6373
6374 int btrfs_drop_inode(struct inode *inode)
6375 {
6376 struct btrfs_root *root = BTRFS_I(inode)->root;
6377
6378 if (btrfs_root_refs(&root->root_item) == 0 &&
6379 root != root->fs_info->tree_root)
6380 return 1;
6381 else
6382 return generic_drop_inode(inode);
6383 }
6384
6385 static void init_once(void *foo)
6386 {
6387 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6388
6389 inode_init_once(&ei->vfs_inode);
6390 }
6391
6392 void btrfs_destroy_cachep(void)
6393 {
6394 if (btrfs_inode_cachep)
6395 kmem_cache_destroy(btrfs_inode_cachep);
6396 if (btrfs_trans_handle_cachep)
6397 kmem_cache_destroy(btrfs_trans_handle_cachep);
6398 if (btrfs_transaction_cachep)
6399 kmem_cache_destroy(btrfs_transaction_cachep);
6400 if (btrfs_path_cachep)
6401 kmem_cache_destroy(btrfs_path_cachep);
6402 }
6403
6404 int btrfs_init_cachep(void)
6405 {
6406 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6407 sizeof(struct btrfs_inode), 0,
6408 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6409 if (!btrfs_inode_cachep)
6410 goto fail;
6411
6412 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6413 sizeof(struct btrfs_trans_handle), 0,
6414 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6415 if (!btrfs_trans_handle_cachep)
6416 goto fail;
6417
6418 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6419 sizeof(struct btrfs_transaction), 0,
6420 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6421 if (!btrfs_transaction_cachep)
6422 goto fail;
6423
6424 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6425 sizeof(struct btrfs_path), 0,
6426 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6427 if (!btrfs_path_cachep)
6428 goto fail;
6429
6430 return 0;
6431 fail:
6432 btrfs_destroy_cachep();
6433 return -ENOMEM;
6434 }
6435
6436 static int btrfs_getattr(struct vfsmount *mnt,
6437 struct dentry *dentry, struct kstat *stat)
6438 {
6439 struct inode *inode = dentry->d_inode;
6440 generic_fillattr(inode, stat);
6441 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6442 stat->blksize = PAGE_CACHE_SIZE;
6443 stat->blocks = (inode_get_bytes(inode) +
6444 BTRFS_I(inode)->delalloc_bytes) >> 9;
6445 return 0;
6446 }
6447
6448 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6449 struct inode *new_dir, struct dentry *new_dentry)
6450 {
6451 struct btrfs_trans_handle *trans;
6452 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6453 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6454 struct inode *new_inode = new_dentry->d_inode;
6455 struct inode *old_inode = old_dentry->d_inode;
6456 struct timespec ctime = CURRENT_TIME;
6457 u64 index = 0;
6458 u64 root_objectid;
6459 int ret;
6460
6461 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6462 return -EPERM;
6463
6464 /* we only allow rename subvolume link between subvolumes */
6465 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6466 return -EXDEV;
6467
6468 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6469 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6470 return -ENOTEMPTY;
6471
6472 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6473 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6474 return -ENOTEMPTY;
6475 /*
6476 * we're using rename to replace one file with another.
6477 * and the replacement file is large. Start IO on it now so
6478 * we don't add too much work to the end of the transaction
6479 */
6480 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6481 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6482 filemap_flush(old_inode->i_mapping);
6483
6484 /* close the racy window with snapshot create/destroy ioctl */
6485 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6486 down_read(&root->fs_info->subvol_sem);
6487 /*
6488 * We want to reserve the absolute worst case amount of items. So if
6489 * both inodes are subvols and we need to unlink them then that would
6490 * require 4 item modifications, but if they are both normal inodes it
6491 * would require 5 item modifications, so we'll assume their normal
6492 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6493 * should cover the worst case number of items we'll modify.
6494 */
6495 trans = btrfs_start_transaction(root, 20);
6496 if (IS_ERR(trans))
6497 return PTR_ERR(trans);
6498
6499 btrfs_set_trans_block_group(trans, new_dir);
6500
6501 if (dest != root)
6502 btrfs_record_root_in_trans(trans, dest);
6503
6504 ret = btrfs_set_inode_index(new_dir, &index);
6505 if (ret)
6506 goto out_fail;
6507
6508 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6509 /* force full log commit if subvolume involved. */
6510 root->fs_info->last_trans_log_full_commit = trans->transid;
6511 } else {
6512 ret = btrfs_insert_inode_ref(trans, dest,
6513 new_dentry->d_name.name,
6514 new_dentry->d_name.len,
6515 old_inode->i_ino,
6516 new_dir->i_ino, index);
6517 if (ret)
6518 goto out_fail;
6519 /*
6520 * this is an ugly little race, but the rename is required
6521 * to make sure that if we crash, the inode is either at the
6522 * old name or the new one. pinning the log transaction lets
6523 * us make sure we don't allow a log commit to come in after
6524 * we unlink the name but before we add the new name back in.
6525 */
6526 btrfs_pin_log_trans(root);
6527 }
6528 /*
6529 * make sure the inode gets flushed if it is replacing
6530 * something.
6531 */
6532 if (new_inode && new_inode->i_size &&
6533 old_inode && S_ISREG(old_inode->i_mode)) {
6534 btrfs_add_ordered_operation(trans, root, old_inode);
6535 }
6536
6537 old_dir->i_ctime = old_dir->i_mtime = ctime;
6538 new_dir->i_ctime = new_dir->i_mtime = ctime;
6539 old_inode->i_ctime = ctime;
6540
6541 if (old_dentry->d_parent != new_dentry->d_parent)
6542 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6543
6544 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6545 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6546 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6547 old_dentry->d_name.name,
6548 old_dentry->d_name.len);
6549 } else {
6550 btrfs_inc_nlink(old_dentry->d_inode);
6551 ret = btrfs_unlink_inode(trans, root, old_dir,
6552 old_dentry->d_inode,
6553 old_dentry->d_name.name,
6554 old_dentry->d_name.len);
6555 }
6556 BUG_ON(ret);
6557
6558 if (new_inode) {
6559 new_inode->i_ctime = CURRENT_TIME;
6560 if (unlikely(new_inode->i_ino ==
6561 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6562 root_objectid = BTRFS_I(new_inode)->location.objectid;
6563 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6564 root_objectid,
6565 new_dentry->d_name.name,
6566 new_dentry->d_name.len);
6567 BUG_ON(new_inode->i_nlink == 0);
6568 } else {
6569 ret = btrfs_unlink_inode(trans, dest, new_dir,
6570 new_dentry->d_inode,
6571 new_dentry->d_name.name,
6572 new_dentry->d_name.len);
6573 }
6574 BUG_ON(ret);
6575 if (new_inode->i_nlink == 0) {
6576 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6577 BUG_ON(ret);
6578 }
6579 }
6580
6581 ret = btrfs_add_link(trans, new_dir, old_inode,
6582 new_dentry->d_name.name,
6583 new_dentry->d_name.len, 0, index);
6584 BUG_ON(ret);
6585
6586 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6587 btrfs_log_new_name(trans, old_inode, old_dir,
6588 new_dentry->d_parent);
6589 btrfs_end_log_trans(root);
6590 }
6591 out_fail:
6592 btrfs_end_transaction_throttle(trans, root);
6593
6594 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6595 up_read(&root->fs_info->subvol_sem);
6596
6597 return ret;
6598 }
6599
6600 /*
6601 * some fairly slow code that needs optimization. This walks the list
6602 * of all the inodes with pending delalloc and forces them to disk.
6603 */
6604 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6605 {
6606 struct list_head *head = &root->fs_info->delalloc_inodes;
6607 struct btrfs_inode *binode;
6608 struct inode *inode;
6609
6610 if (root->fs_info->sb->s_flags & MS_RDONLY)
6611 return -EROFS;
6612
6613 spin_lock(&root->fs_info->delalloc_lock);
6614 while (!list_empty(head)) {
6615 binode = list_entry(head->next, struct btrfs_inode,
6616 delalloc_inodes);
6617 inode = igrab(&binode->vfs_inode);
6618 if (!inode)
6619 list_del_init(&binode->delalloc_inodes);
6620 spin_unlock(&root->fs_info->delalloc_lock);
6621 if (inode) {
6622 filemap_flush(inode->i_mapping);
6623 if (delay_iput)
6624 btrfs_add_delayed_iput(inode);
6625 else
6626 iput(inode);
6627 }
6628 cond_resched();
6629 spin_lock(&root->fs_info->delalloc_lock);
6630 }
6631 spin_unlock(&root->fs_info->delalloc_lock);
6632
6633 /* the filemap_flush will queue IO into the worker threads, but
6634 * we have to make sure the IO is actually started and that
6635 * ordered extents get created before we return
6636 */
6637 atomic_inc(&root->fs_info->async_submit_draining);
6638 while (atomic_read(&root->fs_info->nr_async_submits) ||
6639 atomic_read(&root->fs_info->async_delalloc_pages)) {
6640 wait_event(root->fs_info->async_submit_wait,
6641 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6642 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6643 }
6644 atomic_dec(&root->fs_info->async_submit_draining);
6645 return 0;
6646 }
6647
6648 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput)
6649 {
6650 struct btrfs_inode *binode;
6651 struct inode *inode = NULL;
6652
6653 spin_lock(&root->fs_info->delalloc_lock);
6654 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6655 binode = list_entry(root->fs_info->delalloc_inodes.next,
6656 struct btrfs_inode, delalloc_inodes);
6657 inode = igrab(&binode->vfs_inode);
6658 if (inode) {
6659 list_move_tail(&binode->delalloc_inodes,
6660 &root->fs_info->delalloc_inodes);
6661 break;
6662 }
6663
6664 list_del_init(&binode->delalloc_inodes);
6665 cond_resched_lock(&root->fs_info->delalloc_lock);
6666 }
6667 spin_unlock(&root->fs_info->delalloc_lock);
6668
6669 if (inode) {
6670 write_inode_now(inode, 0);
6671 if (delay_iput)
6672 btrfs_add_delayed_iput(inode);
6673 else
6674 iput(inode);
6675 return 1;
6676 }
6677 return 0;
6678 }
6679
6680 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6681 const char *symname)
6682 {
6683 struct btrfs_trans_handle *trans;
6684 struct btrfs_root *root = BTRFS_I(dir)->root;
6685 struct btrfs_path *path;
6686 struct btrfs_key key;
6687 struct inode *inode = NULL;
6688 int err;
6689 int drop_inode = 0;
6690 u64 objectid;
6691 u64 index = 0 ;
6692 int name_len;
6693 int datasize;
6694 unsigned long ptr;
6695 struct btrfs_file_extent_item *ei;
6696 struct extent_buffer *leaf;
6697 unsigned long nr = 0;
6698
6699 name_len = strlen(symname) + 1;
6700 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6701 return -ENAMETOOLONG;
6702
6703 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6704 if (err)
6705 return err;
6706 /*
6707 * 2 items for inode item and ref
6708 * 2 items for dir items
6709 * 1 item for xattr if selinux is on
6710 */
6711 trans = btrfs_start_transaction(root, 5);
6712 if (IS_ERR(trans))
6713 return PTR_ERR(trans);
6714
6715 btrfs_set_trans_block_group(trans, dir);
6716
6717 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6718 dentry->d_name.len,
6719 dentry->d_parent->d_inode->i_ino, objectid,
6720 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6721 &index);
6722 err = PTR_ERR(inode);
6723 if (IS_ERR(inode))
6724 goto out_unlock;
6725
6726 err = btrfs_init_inode_security(trans, inode, dir);
6727 if (err) {
6728 drop_inode = 1;
6729 goto out_unlock;
6730 }
6731
6732 btrfs_set_trans_block_group(trans, inode);
6733 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
6734 if (err)
6735 drop_inode = 1;
6736 else {
6737 inode->i_mapping->a_ops = &btrfs_aops;
6738 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6739 inode->i_fop = &btrfs_file_operations;
6740 inode->i_op = &btrfs_file_inode_operations;
6741 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6742 }
6743 btrfs_update_inode_block_group(trans, inode);
6744 btrfs_update_inode_block_group(trans, dir);
6745 if (drop_inode)
6746 goto out_unlock;
6747
6748 path = btrfs_alloc_path();
6749 BUG_ON(!path);
6750 key.objectid = inode->i_ino;
6751 key.offset = 0;
6752 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6753 datasize = btrfs_file_extent_calc_inline_size(name_len);
6754 err = btrfs_insert_empty_item(trans, root, path, &key,
6755 datasize);
6756 if (err) {
6757 drop_inode = 1;
6758 goto out_unlock;
6759 }
6760 leaf = path->nodes[0];
6761 ei = btrfs_item_ptr(leaf, path->slots[0],
6762 struct btrfs_file_extent_item);
6763 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6764 btrfs_set_file_extent_type(leaf, ei,
6765 BTRFS_FILE_EXTENT_INLINE);
6766 btrfs_set_file_extent_encryption(leaf, ei, 0);
6767 btrfs_set_file_extent_compression(leaf, ei, 0);
6768 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6769 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6770
6771 ptr = btrfs_file_extent_inline_start(ei);
6772 write_extent_buffer(leaf, symname, ptr, name_len);
6773 btrfs_mark_buffer_dirty(leaf);
6774 btrfs_free_path(path);
6775
6776 inode->i_op = &btrfs_symlink_inode_operations;
6777 inode->i_mapping->a_ops = &btrfs_symlink_aops;
6778 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6779 inode_set_bytes(inode, name_len);
6780 btrfs_i_size_write(inode, name_len - 1);
6781 err = btrfs_update_inode(trans, root, inode);
6782 if (err)
6783 drop_inode = 1;
6784
6785 out_unlock:
6786 nr = trans->blocks_used;
6787 btrfs_end_transaction_throttle(trans, root);
6788 if (drop_inode) {
6789 inode_dec_link_count(inode);
6790 iput(inode);
6791 }
6792 btrfs_btree_balance_dirty(root, nr);
6793 return err;
6794 }
6795
6796 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
6797 u64 start, u64 num_bytes, u64 min_size,
6798 loff_t actual_len, u64 *alloc_hint,
6799 struct btrfs_trans_handle *trans)
6800 {
6801 struct btrfs_root *root = BTRFS_I(inode)->root;
6802 struct btrfs_key ins;
6803 u64 cur_offset = start;
6804 int ret = 0;
6805 bool own_trans = true;
6806
6807 if (trans)
6808 own_trans = false;
6809 while (num_bytes > 0) {
6810 if (own_trans) {
6811 trans = btrfs_start_transaction(root, 3);
6812 if (IS_ERR(trans)) {
6813 ret = PTR_ERR(trans);
6814 break;
6815 }
6816 }
6817
6818 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
6819 0, *alloc_hint, (u64)-1, &ins, 1);
6820 if (ret) {
6821 if (own_trans)
6822 btrfs_end_transaction(trans, root);
6823 break;
6824 }
6825
6826 ret = insert_reserved_file_extent(trans, inode,
6827 cur_offset, ins.objectid,
6828 ins.offset, ins.offset,
6829 ins.offset, 0, 0, 0,
6830 BTRFS_FILE_EXTENT_PREALLOC);
6831 BUG_ON(ret);
6832 btrfs_drop_extent_cache(inode, cur_offset,
6833 cur_offset + ins.offset -1, 0);
6834
6835 num_bytes -= ins.offset;
6836 cur_offset += ins.offset;
6837 *alloc_hint = ins.objectid + ins.offset;
6838
6839 inode->i_ctime = CURRENT_TIME;
6840 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
6841 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
6842 (actual_len > inode->i_size) &&
6843 (cur_offset > inode->i_size)) {
6844 if (cur_offset > actual_len)
6845 i_size_write(inode, actual_len);
6846 else
6847 i_size_write(inode, cur_offset);
6848 i_size_write(inode, cur_offset);
6849 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
6850 }
6851
6852 ret = btrfs_update_inode(trans, root, inode);
6853 BUG_ON(ret);
6854
6855 if (own_trans)
6856 btrfs_end_transaction(trans, root);
6857 }
6858 return ret;
6859 }
6860
6861 int btrfs_prealloc_file_range(struct inode *inode, int mode,
6862 u64 start, u64 num_bytes, u64 min_size,
6863 loff_t actual_len, u64 *alloc_hint)
6864 {
6865 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
6866 min_size, actual_len, alloc_hint,
6867 NULL);
6868 }
6869
6870 int btrfs_prealloc_file_range_trans(struct inode *inode,
6871 struct btrfs_trans_handle *trans, int mode,
6872 u64 start, u64 num_bytes, u64 min_size,
6873 loff_t actual_len, u64 *alloc_hint)
6874 {
6875 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
6876 min_size, actual_len, alloc_hint, trans);
6877 }
6878
6879 static long btrfs_fallocate(struct inode *inode, int mode,
6880 loff_t offset, loff_t len)
6881 {
6882 struct extent_state *cached_state = NULL;
6883 u64 cur_offset;
6884 u64 last_byte;
6885 u64 alloc_start;
6886 u64 alloc_end;
6887 u64 alloc_hint = 0;
6888 u64 locked_end;
6889 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
6890 struct extent_map *em;
6891 int ret;
6892
6893 alloc_start = offset & ~mask;
6894 alloc_end = (offset + len + mask) & ~mask;
6895
6896 /*
6897 * wait for ordered IO before we have any locks. We'll loop again
6898 * below with the locks held.
6899 */
6900 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
6901
6902 mutex_lock(&inode->i_mutex);
6903 if (alloc_start > inode->i_size) {
6904 ret = btrfs_cont_expand(inode, alloc_start);
6905 if (ret)
6906 goto out;
6907 }
6908
6909 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
6910 if (ret)
6911 goto out;
6912
6913 locked_end = alloc_end - 1;
6914 while (1) {
6915 struct btrfs_ordered_extent *ordered;
6916
6917 /* the extent lock is ordered inside the running
6918 * transaction
6919 */
6920 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
6921 locked_end, 0, &cached_state, GFP_NOFS);
6922 ordered = btrfs_lookup_first_ordered_extent(inode,
6923 alloc_end - 1);
6924 if (ordered &&
6925 ordered->file_offset + ordered->len > alloc_start &&
6926 ordered->file_offset < alloc_end) {
6927 btrfs_put_ordered_extent(ordered);
6928 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
6929 alloc_start, locked_end,
6930 &cached_state, GFP_NOFS);
6931 /*
6932 * we can't wait on the range with the transaction
6933 * running or with the extent lock held
6934 */
6935 btrfs_wait_ordered_range(inode, alloc_start,
6936 alloc_end - alloc_start);
6937 } else {
6938 if (ordered)
6939 btrfs_put_ordered_extent(ordered);
6940 break;
6941 }
6942 }
6943
6944 cur_offset = alloc_start;
6945 while (1) {
6946 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
6947 alloc_end - cur_offset, 0);
6948 BUG_ON(IS_ERR(em) || !em);
6949 last_byte = min(extent_map_end(em), alloc_end);
6950 last_byte = (last_byte + mask) & ~mask;
6951 if (em->block_start == EXTENT_MAP_HOLE ||
6952 (cur_offset >= inode->i_size &&
6953 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6954 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
6955 last_byte - cur_offset,
6956 1 << inode->i_blkbits,
6957 offset + len,
6958 &alloc_hint);
6959 if (ret < 0) {
6960 free_extent_map(em);
6961 break;
6962 }
6963 }
6964 free_extent_map(em);
6965
6966 cur_offset = last_byte;
6967 if (cur_offset >= alloc_end) {
6968 ret = 0;
6969 break;
6970 }
6971 }
6972 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
6973 &cached_state, GFP_NOFS);
6974
6975 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
6976 out:
6977 mutex_unlock(&inode->i_mutex);
6978 return ret;
6979 }
6980
6981 static int btrfs_set_page_dirty(struct page *page)
6982 {
6983 return __set_page_dirty_nobuffers(page);
6984 }
6985
6986 static int btrfs_permission(struct inode *inode, int mask)
6987 {
6988 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
6989 return -EACCES;
6990 return generic_permission(inode, mask, btrfs_check_acl);
6991 }
6992
6993 static const struct inode_operations btrfs_dir_inode_operations = {
6994 .getattr = btrfs_getattr,
6995 .lookup = btrfs_lookup,
6996 .create = btrfs_create,
6997 .unlink = btrfs_unlink,
6998 .link = btrfs_link,
6999 .mkdir = btrfs_mkdir,
7000 .rmdir = btrfs_rmdir,
7001 .rename = btrfs_rename,
7002 .symlink = btrfs_symlink,
7003 .setattr = btrfs_setattr,
7004 .mknod = btrfs_mknod,
7005 .setxattr = btrfs_setxattr,
7006 .getxattr = btrfs_getxattr,
7007 .listxattr = btrfs_listxattr,
7008 .removexattr = btrfs_removexattr,
7009 .permission = btrfs_permission,
7010 };
7011 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7012 .lookup = btrfs_lookup,
7013 .permission = btrfs_permission,
7014 };
7015
7016 static const struct file_operations btrfs_dir_file_operations = {
7017 .llseek = generic_file_llseek,
7018 .read = generic_read_dir,
7019 .readdir = btrfs_real_readdir,
7020 .unlocked_ioctl = btrfs_ioctl,
7021 #ifdef CONFIG_COMPAT
7022 .compat_ioctl = btrfs_ioctl,
7023 #endif
7024 .release = btrfs_release_file,
7025 .fsync = btrfs_sync_file,
7026 };
7027
7028 static struct extent_io_ops btrfs_extent_io_ops = {
7029 .fill_delalloc = run_delalloc_range,
7030 .submit_bio_hook = btrfs_submit_bio_hook,
7031 .merge_bio_hook = btrfs_merge_bio_hook,
7032 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7033 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7034 .writepage_start_hook = btrfs_writepage_start_hook,
7035 .readpage_io_failed_hook = btrfs_io_failed_hook,
7036 .set_bit_hook = btrfs_set_bit_hook,
7037 .clear_bit_hook = btrfs_clear_bit_hook,
7038 .merge_extent_hook = btrfs_merge_extent_hook,
7039 .split_extent_hook = btrfs_split_extent_hook,
7040 };
7041
7042 /*
7043 * btrfs doesn't support the bmap operation because swapfiles
7044 * use bmap to make a mapping of extents in the file. They assume
7045 * these extents won't change over the life of the file and they
7046 * use the bmap result to do IO directly to the drive.
7047 *
7048 * the btrfs bmap call would return logical addresses that aren't
7049 * suitable for IO and they also will change frequently as COW
7050 * operations happen. So, swapfile + btrfs == corruption.
7051 *
7052 * For now we're avoiding this by dropping bmap.
7053 */
7054 static const struct address_space_operations btrfs_aops = {
7055 .readpage = btrfs_readpage,
7056 .writepage = btrfs_writepage,
7057 .writepages = btrfs_writepages,
7058 .readpages = btrfs_readpages,
7059 .sync_page = block_sync_page,
7060 .direct_IO = btrfs_direct_IO,
7061 .invalidatepage = btrfs_invalidatepage,
7062 .releasepage = btrfs_releasepage,
7063 .set_page_dirty = btrfs_set_page_dirty,
7064 .error_remove_page = generic_error_remove_page,
7065 };
7066
7067 static const struct address_space_operations btrfs_symlink_aops = {
7068 .readpage = btrfs_readpage,
7069 .writepage = btrfs_writepage,
7070 .invalidatepage = btrfs_invalidatepage,
7071 .releasepage = btrfs_releasepage,
7072 };
7073
7074 static const struct inode_operations btrfs_file_inode_operations = {
7075 .truncate = btrfs_truncate,
7076 .getattr = btrfs_getattr,
7077 .setattr = btrfs_setattr,
7078 .setxattr = btrfs_setxattr,
7079 .getxattr = btrfs_getxattr,
7080 .listxattr = btrfs_listxattr,
7081 .removexattr = btrfs_removexattr,
7082 .permission = btrfs_permission,
7083 .fallocate = btrfs_fallocate,
7084 .fiemap = btrfs_fiemap,
7085 };
7086 static const struct inode_operations btrfs_special_inode_operations = {
7087 .getattr = btrfs_getattr,
7088 .setattr = btrfs_setattr,
7089 .permission = btrfs_permission,
7090 .setxattr = btrfs_setxattr,
7091 .getxattr = btrfs_getxattr,
7092 .listxattr = btrfs_listxattr,
7093 .removexattr = btrfs_removexattr,
7094 };
7095 static const struct inode_operations btrfs_symlink_inode_operations = {
7096 .readlink = generic_readlink,
7097 .follow_link = page_follow_link_light,
7098 .put_link = page_put_link,
7099 .permission = btrfs_permission,
7100 .setxattr = btrfs_setxattr,
7101 .getxattr = btrfs_getxattr,
7102 .listxattr = btrfs_listxattr,
7103 .removexattr = btrfs_removexattr,
7104 };
7105
7106 const struct dentry_operations btrfs_dentry_operations = {
7107 .d_delete = btrfs_dentry_delete,
7108 };