]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
Btrfs: fix race between fsync and direct IO writes for prealloc extents
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 };
75
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101 };
102
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
115
116 static int btrfs_dirty_inode(struct inode *inode);
117
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
128 {
129 int err;
130
131 err = btrfs_init_acl(trans, inode, dir);
132 if (!err)
133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 return err;
135 }
136
137 /*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 struct btrfs_path *path, int extent_inserted,
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
146 int compress_type,
147 struct page **compressed_pages)
148 {
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
157 unsigned long offset;
158
159 if (compressed_size && compressed_pages)
160 cur_size = compressed_size;
161
162 inode_add_bytes(inode, size);
163
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
167
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
170 key.type = BTRFS_EXTENT_DATA_KEY;
171
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
191 if (compress_type != BTRFS_COMPRESS_NONE) {
192 struct page *cpage;
193 int i = 0;
194 while (compressed_size > 0) {
195 cpage = compressed_pages[i];
196 cur_size = min_t(unsigned long, compressed_size,
197 PAGE_SIZE);
198
199 kaddr = kmap_atomic(cpage);
200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 kunmap_atomic(kaddr);
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
208 compress_type);
209 } else {
210 page = find_get_page(inode->i_mapping,
211 start >> PAGE_SHIFT);
212 btrfs_set_file_extent_compression(leaf, ei, 0);
213 kaddr = kmap_atomic(page);
214 offset = start & (PAGE_SIZE - 1);
215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 kunmap_atomic(kaddr);
217 put_page(page);
218 }
219 btrfs_mark_buffer_dirty(leaf);
220 btrfs_release_path(path);
221
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
231 BTRFS_I(inode)->disk_i_size = inode->i_size;
232 ret = btrfs_update_inode(trans, root, inode);
233
234 return ret;
235 fail:
236 return err;
237 }
238
239
240 /*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
250 {
251 struct btrfs_trans_handle *trans;
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
255 u64 aligned_end = ALIGN(end, root->sectorsize);
256 u64 data_len = inline_len;
257 int ret;
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
266 actual_end > root->sectorsize ||
267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
279 trans = btrfs_join_transaction(root);
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
282 return PTR_ERR(trans);
283 }
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
305 inline_len, compressed_size,
306 compress_type, compressed_pages);
307 if (ret && ret != -ENOSPC) {
308 btrfs_abort_transaction(trans, root, ret);
309 goto out;
310 } else if (ret == -ENOSPC) {
311 ret = 1;
312 goto out;
313 }
314
315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326 btrfs_free_path(path);
327 btrfs_end_transaction(trans, root);
328 return ret;
329 }
330
331 struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
337 int compress_type;
338 struct list_head list;
339 };
340
341 struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349 };
350
351 static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
355 unsigned long nr_pages,
356 int compress_type)
357 {
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 BUG_ON(!async_extent); /* -ENOMEM */
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
367 async_extent->compress_type = compress_type;
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370 }
371
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387 }
388
389 /*
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
393 *
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
399 *
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
403 * are written in the same order that the flusher thread sent them
404 * down.
405 */
406 static noinline void compress_file_range(struct inode *inode,
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
411 {
412 struct btrfs_root *root = BTRFS_I(inode)->root;
413 u64 num_bytes;
414 u64 blocksize = root->sectorsize;
415 u64 actual_end;
416 u64 isize = i_size_read(inode);
417 int ret = 0;
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
425 int i;
426 int will_compress;
427 int compress_type = root->fs_info->compress_type;
428 int redirty = 0;
429
430 /* if this is a small write inside eof, kick off a defrag */
431 if ((end - start + 1) < SZ_16K &&
432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
434
435 actual_end = min_t(u64, isize, end + 1);
436 again:
437 will_compress = 0;
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
440
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
454 total_compressed = actual_end - start;
455
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it dosen't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
475 num_bytes = ALIGN(end - start + 1, blocksize);
476 num_bytes = max(blocksize, num_bytes);
477 total_in = 0;
478 ret = 0;
479
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
484 */
485 if (inode_need_compress(inode)) {
486 WARN_ON(pages);
487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
492
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
517 (PAGE_SIZE - 1);
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
525 kaddr = kmap_atomic(page);
526 memset(kaddr + offset, 0,
527 PAGE_SIZE - offset);
528 kunmap_atomic(kaddr);
529 }
530 will_compress = 1;
531 }
532 }
533 cont:
534 if (start == 0) {
535 /* lets try to make an inline extent */
536 if (ret || total_in < (actual_end - start)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
539 */
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
542 } else {
543 /* try making a compressed inline extent */
544 ret = cow_file_range_inline(root, inode, start, end,
545 total_compressed,
546 compress_type, pages);
547 }
548 if (ret <= 0) {
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
551 unsigned long page_error_op;
552
553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555
556 /*
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
560 */
561 extent_clear_unlock_delalloc(inode, start, end, NULL,
562 clear_flags, PAGE_UNLOCK |
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
565 page_error_op |
566 PAGE_END_WRITEBACK);
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
577 total_compressed = ALIGN(total_compressed, blocksize);
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
583 total_in = ALIGN(total_in, PAGE_SIZE);
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
596 WARN_ON(pages[i]->mapping);
597 put_page(pages[i]);
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 }
609 }
610 if (will_compress) {
611 *num_added += 1;
612
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
620
621 if (start + num_bytes < end) {
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
628 cleanup_and_bail_uncompressed:
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 *num_added += 1;
646 }
647
648 return;
649
650 free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
653 put_page(pages[i]);
654 }
655 kfree(pages);
656 }
657
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 put_page(async_extent->pages[i]);
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
672 }
673
674 /*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 struct async_cow *async_cow)
682 {
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
690 int ret = 0;
691
692 again:
693 while (!list_empty(&async_cow->extents)) {
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
697
698 io_tree = &BTRFS_I(inode)->io_tree;
699
700 retry:
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1);
709
710 /* allocate blocks */
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
716
717 /* JDM XXX */
718
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
725 if (!page_started && !ret)
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
732 else if (ret)
733 unlock_page(async_cow->locked_page);
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
740 async_extent->start + async_extent->ram_size - 1);
741
742 ret = btrfs_reserve_extent(root,
743 async_extent->compressed_size,
744 async_extent->compressed_size,
745 0, alloc_hint, &ins, 1, 1);
746 if (ret) {
747 free_async_extent_pages(async_extent);
748
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
765 goto retry;
766 }
767 goto out_free;
768 }
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
777 em = alloc_extent_map();
778 if (!em) {
779 ret = -ENOMEM;
780 goto out_free_reserve;
781 }
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
784 em->orig_start = em->start;
785 em->mod_start = em->start;
786 em->mod_len = em->len;
787
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
790 em->orig_block_len = ins.offset;
791 em->ram_bytes = async_extent->ram_size;
792 em->bdev = root->fs_info->fs_devices->latest_bdev;
793 em->compress_type = async_extent->compress_type;
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 em->generation = -1;
797
798 while (1) {
799 write_lock(&em_tree->lock);
800 ret = add_extent_mapping(em_tree, em, 1);
801 write_unlock(&em_tree->lock);
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
811 if (ret)
812 goto out_free_reserve;
813
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
825 goto out_free_reserve;
826 }
827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
828
829 /*
830 * clear dirty, set writeback and unlock the pages.
831 */
832 extent_clear_unlock_delalloc(inode, async_extent->start,
833 async_extent->start +
834 async_extent->ram_size - 1,
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
837 PAGE_SET_WRITEBACK);
838 ret = btrfs_submit_compressed_write(inode,
839 async_extent->start,
840 async_extent->ram_size,
841 ins.objectid,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
844 if (ret) {
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 PAGE_END_WRITEBACK |
856 PAGE_SET_ERROR);
857 free_async_extent_pages(async_extent);
858 }
859 alloc_hint = ins.objectid + ins.offset;
860 kfree(async_extent);
861 cond_resched();
862 }
863 return;
864 out_free_reserve:
865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
867 out_free:
868 extent_clear_unlock_delalloc(inode, async_extent->start,
869 async_extent->start +
870 async_extent->ram_size - 1,
871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
876 free_async_extent_pages(async_extent);
877 kfree(async_extent);
878 goto again;
879 }
880
881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 u64 num_bytes)
883 {
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
886 u64 alloc_hint = 0;
887
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
890 if (em) {
891 /*
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
895 */
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 free_extent_map(em);
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
901 if (em)
902 free_extent_map(em);
903 } else {
904 alloc_hint = em->block_start;
905 free_extent_map(em);
906 }
907 }
908 read_unlock(&em_tree->lock);
909
910 return alloc_hint;
911 }
912
913 /*
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
918 *
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
921 *
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
924 * IO when we return.
925 */
926 static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
930 int unlock)
931 {
932 struct btrfs_root *root = BTRFS_I(inode)->root;
933 u64 alloc_hint = 0;
934 u64 num_bytes;
935 unsigned long ram_size;
936 u64 disk_num_bytes;
937 u64 cur_alloc_size;
938 u64 blocksize = root->sectorsize;
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 int ret = 0;
943
944 if (btrfs_is_free_space_inode(inode)) {
945 WARN_ON_ONCE(1);
946 ret = -EINVAL;
947 goto out_unlock;
948 }
949
950 num_bytes = ALIGN(end - start + 1, blocksize);
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
953
954 /* if this is a small write inside eof, kick off defrag */
955 if (num_bytes < SZ_64K &&
956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
957 btrfs_add_inode_defrag(NULL, inode);
958
959 if (start == 0) {
960 /* lets try to make an inline extent */
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 NULL);
963 if (ret == 0) {
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
966 EXTENT_DEFRAG, PAGE_UNLOCK |
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 PAGE_END_WRITEBACK);
969
970 *nr_written = *nr_written +
971 (end - start + PAGE_SIZE) / PAGE_SIZE;
972 *page_started = 1;
973 goto out;
974 } else if (ret < 0) {
975 goto out_unlock;
976 }
977 }
978
979 BUG_ON(disk_num_bytes >
980 btrfs_super_total_bytes(root->fs_info->super_copy));
981
982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
985 while (disk_num_bytes > 0) {
986 unsigned long op;
987
988 cur_alloc_size = disk_num_bytes;
989 ret = btrfs_reserve_extent(root, cur_alloc_size,
990 root->sectorsize, 0, alloc_hint,
991 &ins, 1, 1);
992 if (ret < 0)
993 goto out_unlock;
994
995 em = alloc_extent_map();
996 if (!em) {
997 ret = -ENOMEM;
998 goto out_reserve;
999 }
1000 em->start = start;
1001 em->orig_start = em->start;
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
1006
1007 em->block_start = ins.objectid;
1008 em->block_len = ins.offset;
1009 em->orig_block_len = ins.offset;
1010 em->ram_bytes = ram_size;
1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1013 em->generation = -1;
1014
1015 while (1) {
1016 write_lock(&em_tree->lock);
1017 ret = add_extent_mapping(em_tree, em, 1);
1018 write_unlock(&em_tree->lock);
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1021 break;
1022 }
1023 btrfs_drop_extent_cache(inode, start,
1024 start + ram_size - 1, 0);
1025 }
1026 if (ret)
1027 goto out_reserve;
1028
1029 cur_alloc_size = ins.offset;
1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1031 ram_size, cur_alloc_size, 0);
1032 if (ret)
1033 goto out_drop_extent_cache;
1034
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1038 cur_alloc_size);
1039 if (ret)
1040 goto out_drop_extent_cache;
1041 }
1042
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
1045 if (disk_num_bytes < cur_alloc_size)
1046 break;
1047
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
1054 */
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
1057
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1061 op);
1062 disk_num_bytes -= cur_alloc_size;
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
1066 }
1067 out:
1068 return ret;
1069
1070 out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1072 out_reserve:
1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1075 out_unlock:
1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1081 goto out;
1082 }
1083
1084 /*
1085 * work queue call back to started compression on a file and pages
1086 */
1087 static noinline void async_cow_start(struct btrfs_work *work)
1088 {
1089 struct async_cow *async_cow;
1090 int num_added = 0;
1091 async_cow = container_of(work, struct async_cow, work);
1092
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1095 &num_added);
1096 if (num_added == 0) {
1097 btrfs_add_delayed_iput(async_cow->inode);
1098 async_cow->inode = NULL;
1099 }
1100 }
1101
1102 /*
1103 * work queue call back to submit previously compressed pages
1104 */
1105 static noinline void async_cow_submit(struct btrfs_work *work)
1106 {
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1110
1111 async_cow = container_of(work, struct async_cow, work);
1112
1113 root = async_cow->root;
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 PAGE_SHIFT;
1116
1117 /*
1118 * atomic_sub_return implies a barrier for waitqueue_active
1119 */
1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1121 5 * SZ_1M &&
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1124
1125 if (async_cow->inode)
1126 submit_compressed_extents(async_cow->inode, async_cow);
1127 }
1128
1129 static noinline void async_cow_free(struct btrfs_work *work)
1130 {
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
1133 if (async_cow->inode)
1134 btrfs_add_delayed_iput(async_cow->inode);
1135 kfree(async_cow);
1136 }
1137
1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1141 {
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1145 u64 cur_end;
1146 int limit = 10 * SZ_1M;
1147
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
1150 while (start < end) {
1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1152 BUG_ON(!async_cow); /* -ENOMEM */
1153 async_cow->inode = igrab(inode);
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1157
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
1160 cur_end = end;
1161 else
1162 cur_end = min(end, start + SZ_512K - 1);
1163
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1166
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1170 async_cow_free);
1171
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 PAGE_SHIFT;
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1177 &async_cow->work);
1178
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 limit));
1183 }
1184
1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 0));
1190 }
1191
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1194 }
1195 *page_started = 1;
1196 return 0;
1197 }
1198
1199 static noinline int csum_exist_in_range(struct btrfs_root *root,
1200 u64 bytenr, u64 num_bytes)
1201 {
1202 int ret;
1203 struct btrfs_ordered_sum *sums;
1204 LIST_HEAD(list);
1205
1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1207 bytenr + num_bytes - 1, &list, 0);
1208 if (ret == 0 && list_empty(&list))
1209 return 0;
1210
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1214 kfree(sums);
1215 }
1216 return 1;
1217 }
1218
1219 /*
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1222 *
1223 * If no cow copies or snapshots exist, we write directly to the existing
1224 * blocks on disk
1225 */
1226 static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
1230 {
1231 struct btrfs_root *root = BTRFS_I(inode)->root;
1232 struct btrfs_trans_handle *trans;
1233 struct extent_buffer *leaf;
1234 struct btrfs_path *path;
1235 struct btrfs_file_extent_item *fi;
1236 struct btrfs_key found_key;
1237 u64 cow_start;
1238 u64 cur_offset;
1239 u64 extent_end;
1240 u64 extent_offset;
1241 u64 disk_bytenr;
1242 u64 num_bytes;
1243 u64 disk_num_bytes;
1244 u64 ram_bytes;
1245 int extent_type;
1246 int ret, err;
1247 int type;
1248 int nocow;
1249 int check_prev = 1;
1250 bool nolock;
1251 u64 ino = btrfs_ino(inode);
1252
1253 path = btrfs_alloc_path();
1254 if (!path) {
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
1262 return -ENOMEM;
1263 }
1264
1265 nolock = btrfs_is_free_space_inode(inode);
1266
1267 if (nolock)
1268 trans = btrfs_join_transaction_nolock(root);
1269 else
1270 trans = btrfs_join_transaction(root);
1271
1272 if (IS_ERR(trans)) {
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283
1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1285
1286 cow_start = (u64)-1;
1287 cur_offset = start;
1288 while (1) {
1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1290 cur_offset, 0);
1291 if (ret < 0)
1292 goto error;
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
1297 if (found_key.objectid == ino &&
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 path->slots[0]--;
1300 }
1301 check_prev = 0;
1302 next_slot:
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
1306 if (ret < 0)
1307 goto error;
1308 if (ret > 0)
1309 break;
1310 leaf = path->nodes[0];
1311 }
1312
1313 nocow = 0;
1314 disk_bytenr = 0;
1315 num_bytes = 0;
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1318 if (found_key.objectid > ino)
1319 break;
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1326 found_key.offset > end)
1327 break;
1328
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
1331 extent_type = 0;
1332 goto out_check;
1333 }
1334
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1338
1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
1346 disk_num_bytes =
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
1348 if (extent_end <= start) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
1352 if (disk_bytenr == 0)
1353 goto out_check;
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1357 goto out_check;
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 goto out_check;
1360 if (btrfs_extent_readonly(root, disk_bytenr))
1361 goto out_check;
1362 if (btrfs_cross_ref_exist(trans, root, ino,
1363 found_key.offset -
1364 extent_offset, disk_bytenr))
1365 goto out_check;
1366 disk_bytenr += extent_offset;
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
1369 /*
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1372 */
1373 if (!nolock) {
1374 err = btrfs_start_write_no_snapshoting(root);
1375 if (!err)
1376 goto out_check;
1377 }
1378 /*
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1382 */
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 goto out_check;
1385 nocow = 1;
1386 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1387 extent_end = found_key.offset +
1388 btrfs_file_extent_inline_len(leaf,
1389 path->slots[0], fi);
1390 extent_end = ALIGN(extent_end, root->sectorsize);
1391 } else {
1392 BUG_ON(1);
1393 }
1394 out_check:
1395 if (extent_end <= start) {
1396 path->slots[0]++;
1397 if (!nolock && nocow)
1398 btrfs_end_write_no_snapshoting(root);
1399 goto next_slot;
1400 }
1401 if (!nocow) {
1402 if (cow_start == (u64)-1)
1403 cow_start = cur_offset;
1404 cur_offset = extent_end;
1405 if (cur_offset > end)
1406 break;
1407 path->slots[0]++;
1408 goto next_slot;
1409 }
1410
1411 btrfs_release_path(path);
1412 if (cow_start != (u64)-1) {
1413 ret = cow_file_range(inode, locked_page,
1414 cow_start, found_key.offset - 1,
1415 page_started, nr_written, 1);
1416 if (ret) {
1417 if (!nolock && nocow)
1418 btrfs_end_write_no_snapshoting(root);
1419 goto error;
1420 }
1421 cow_start = (u64)-1;
1422 }
1423
1424 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1425 struct extent_map *em;
1426 struct extent_map_tree *em_tree;
1427 em_tree = &BTRFS_I(inode)->extent_tree;
1428 em = alloc_extent_map();
1429 BUG_ON(!em); /* -ENOMEM */
1430 em->start = cur_offset;
1431 em->orig_start = found_key.offset - extent_offset;
1432 em->len = num_bytes;
1433 em->block_len = num_bytes;
1434 em->block_start = disk_bytenr;
1435 em->orig_block_len = disk_num_bytes;
1436 em->ram_bytes = ram_bytes;
1437 em->bdev = root->fs_info->fs_devices->latest_bdev;
1438 em->mod_start = em->start;
1439 em->mod_len = em->len;
1440 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1441 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1442 em->generation = -1;
1443 while (1) {
1444 write_lock(&em_tree->lock);
1445 ret = add_extent_mapping(em_tree, em, 1);
1446 write_unlock(&em_tree->lock);
1447 if (ret != -EEXIST) {
1448 free_extent_map(em);
1449 break;
1450 }
1451 btrfs_drop_extent_cache(inode, em->start,
1452 em->start + em->len - 1, 0);
1453 }
1454 type = BTRFS_ORDERED_PREALLOC;
1455 } else {
1456 type = BTRFS_ORDERED_NOCOW;
1457 }
1458
1459 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1460 num_bytes, num_bytes, type);
1461 BUG_ON(ret); /* -ENOMEM */
1462
1463 if (root->root_key.objectid ==
1464 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1465 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1466 num_bytes);
1467 if (ret) {
1468 if (!nolock && nocow)
1469 btrfs_end_write_no_snapshoting(root);
1470 goto error;
1471 }
1472 }
1473
1474 extent_clear_unlock_delalloc(inode, cur_offset,
1475 cur_offset + num_bytes - 1,
1476 locked_page, EXTENT_LOCKED |
1477 EXTENT_DELALLOC, PAGE_UNLOCK |
1478 PAGE_SET_PRIVATE2);
1479 if (!nolock && nocow)
1480 btrfs_end_write_no_snapshoting(root);
1481 cur_offset = extent_end;
1482 if (cur_offset > end)
1483 break;
1484 }
1485 btrfs_release_path(path);
1486
1487 if (cur_offset <= end && cow_start == (u64)-1) {
1488 cow_start = cur_offset;
1489 cur_offset = end;
1490 }
1491
1492 if (cow_start != (u64)-1) {
1493 ret = cow_file_range(inode, locked_page, cow_start, end,
1494 page_started, nr_written, 1);
1495 if (ret)
1496 goto error;
1497 }
1498
1499 error:
1500 err = btrfs_end_transaction(trans, root);
1501 if (!ret)
1502 ret = err;
1503
1504 if (ret && cur_offset < end)
1505 extent_clear_unlock_delalloc(inode, cur_offset, end,
1506 locked_page, EXTENT_LOCKED |
1507 EXTENT_DELALLOC | EXTENT_DEFRAG |
1508 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1509 PAGE_CLEAR_DIRTY |
1510 PAGE_SET_WRITEBACK |
1511 PAGE_END_WRITEBACK);
1512 btrfs_free_path(path);
1513 return ret;
1514 }
1515
1516 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1517 {
1518
1519 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1520 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1521 return 0;
1522
1523 /*
1524 * @defrag_bytes is a hint value, no spinlock held here,
1525 * if is not zero, it means the file is defragging.
1526 * Force cow if given extent needs to be defragged.
1527 */
1528 if (BTRFS_I(inode)->defrag_bytes &&
1529 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1530 EXTENT_DEFRAG, 0, NULL))
1531 return 1;
1532
1533 return 0;
1534 }
1535
1536 /*
1537 * extent_io.c call back to do delayed allocation processing
1538 */
1539 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1540 u64 start, u64 end, int *page_started,
1541 unsigned long *nr_written)
1542 {
1543 int ret;
1544 int force_cow = need_force_cow(inode, start, end);
1545
1546 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1547 ret = run_delalloc_nocow(inode, locked_page, start, end,
1548 page_started, 1, nr_written);
1549 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1550 ret = run_delalloc_nocow(inode, locked_page, start, end,
1551 page_started, 0, nr_written);
1552 } else if (!inode_need_compress(inode)) {
1553 ret = cow_file_range(inode, locked_page, start, end,
1554 page_started, nr_written, 1);
1555 } else {
1556 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1557 &BTRFS_I(inode)->runtime_flags);
1558 ret = cow_file_range_async(inode, locked_page, start, end,
1559 page_started, nr_written);
1560 }
1561 return ret;
1562 }
1563
1564 static void btrfs_split_extent_hook(struct inode *inode,
1565 struct extent_state *orig, u64 split)
1566 {
1567 u64 size;
1568
1569 /* not delalloc, ignore it */
1570 if (!(orig->state & EXTENT_DELALLOC))
1571 return;
1572
1573 size = orig->end - orig->start + 1;
1574 if (size > BTRFS_MAX_EXTENT_SIZE) {
1575 u64 num_extents;
1576 u64 new_size;
1577
1578 /*
1579 * See the explanation in btrfs_merge_extent_hook, the same
1580 * applies here, just in reverse.
1581 */
1582 new_size = orig->end - split + 1;
1583 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 BTRFS_MAX_EXTENT_SIZE);
1585 new_size = split - orig->start;
1586 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1587 BTRFS_MAX_EXTENT_SIZE);
1588 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1589 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1590 return;
1591 }
1592
1593 spin_lock(&BTRFS_I(inode)->lock);
1594 BTRFS_I(inode)->outstanding_extents++;
1595 spin_unlock(&BTRFS_I(inode)->lock);
1596 }
1597
1598 /*
1599 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1600 * extents so we can keep track of new extents that are just merged onto old
1601 * extents, such as when we are doing sequential writes, so we can properly
1602 * account for the metadata space we'll need.
1603 */
1604 static void btrfs_merge_extent_hook(struct inode *inode,
1605 struct extent_state *new,
1606 struct extent_state *other)
1607 {
1608 u64 new_size, old_size;
1609 u64 num_extents;
1610
1611 /* not delalloc, ignore it */
1612 if (!(other->state & EXTENT_DELALLOC))
1613 return;
1614
1615 if (new->start > other->start)
1616 new_size = new->end - other->start + 1;
1617 else
1618 new_size = other->end - new->start + 1;
1619
1620 /* we're not bigger than the max, unreserve the space and go */
1621 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1622 spin_lock(&BTRFS_I(inode)->lock);
1623 BTRFS_I(inode)->outstanding_extents--;
1624 spin_unlock(&BTRFS_I(inode)->lock);
1625 return;
1626 }
1627
1628 /*
1629 * We have to add up either side to figure out how many extents were
1630 * accounted for before we merged into one big extent. If the number of
1631 * extents we accounted for is <= the amount we need for the new range
1632 * then we can return, otherwise drop. Think of it like this
1633 *
1634 * [ 4k][MAX_SIZE]
1635 *
1636 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1637 * need 2 outstanding extents, on one side we have 1 and the other side
1638 * we have 1 so they are == and we can return. But in this case
1639 *
1640 * [MAX_SIZE+4k][MAX_SIZE+4k]
1641 *
1642 * Each range on their own accounts for 2 extents, but merged together
1643 * they are only 3 extents worth of accounting, so we need to drop in
1644 * this case.
1645 */
1646 old_size = other->end - other->start + 1;
1647 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1648 BTRFS_MAX_EXTENT_SIZE);
1649 old_size = new->end - new->start + 1;
1650 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1651 BTRFS_MAX_EXTENT_SIZE);
1652
1653 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1654 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1655 return;
1656
1657 spin_lock(&BTRFS_I(inode)->lock);
1658 BTRFS_I(inode)->outstanding_extents--;
1659 spin_unlock(&BTRFS_I(inode)->lock);
1660 }
1661
1662 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1663 struct inode *inode)
1664 {
1665 spin_lock(&root->delalloc_lock);
1666 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1667 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1668 &root->delalloc_inodes);
1669 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1670 &BTRFS_I(inode)->runtime_flags);
1671 root->nr_delalloc_inodes++;
1672 if (root->nr_delalloc_inodes == 1) {
1673 spin_lock(&root->fs_info->delalloc_root_lock);
1674 BUG_ON(!list_empty(&root->delalloc_root));
1675 list_add_tail(&root->delalloc_root,
1676 &root->fs_info->delalloc_roots);
1677 spin_unlock(&root->fs_info->delalloc_root_lock);
1678 }
1679 }
1680 spin_unlock(&root->delalloc_lock);
1681 }
1682
1683 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1684 struct inode *inode)
1685 {
1686 spin_lock(&root->delalloc_lock);
1687 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1688 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1689 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1690 &BTRFS_I(inode)->runtime_flags);
1691 root->nr_delalloc_inodes--;
1692 if (!root->nr_delalloc_inodes) {
1693 spin_lock(&root->fs_info->delalloc_root_lock);
1694 BUG_ON(list_empty(&root->delalloc_root));
1695 list_del_init(&root->delalloc_root);
1696 spin_unlock(&root->fs_info->delalloc_root_lock);
1697 }
1698 }
1699 spin_unlock(&root->delalloc_lock);
1700 }
1701
1702 /*
1703 * extent_io.c set_bit_hook, used to track delayed allocation
1704 * bytes in this file, and to maintain the list of inodes that
1705 * have pending delalloc work to be done.
1706 */
1707 static void btrfs_set_bit_hook(struct inode *inode,
1708 struct extent_state *state, unsigned *bits)
1709 {
1710
1711 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1712 WARN_ON(1);
1713 /*
1714 * set_bit and clear bit hooks normally require _irqsave/restore
1715 * but in this case, we are only testing for the DELALLOC
1716 * bit, which is only set or cleared with irqs on
1717 */
1718 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1719 struct btrfs_root *root = BTRFS_I(inode)->root;
1720 u64 len = state->end + 1 - state->start;
1721 bool do_list = !btrfs_is_free_space_inode(inode);
1722
1723 if (*bits & EXTENT_FIRST_DELALLOC) {
1724 *bits &= ~EXTENT_FIRST_DELALLOC;
1725 } else {
1726 spin_lock(&BTRFS_I(inode)->lock);
1727 BTRFS_I(inode)->outstanding_extents++;
1728 spin_unlock(&BTRFS_I(inode)->lock);
1729 }
1730
1731 /* For sanity tests */
1732 if (btrfs_test_is_dummy_root(root))
1733 return;
1734
1735 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1736 root->fs_info->delalloc_batch);
1737 spin_lock(&BTRFS_I(inode)->lock);
1738 BTRFS_I(inode)->delalloc_bytes += len;
1739 if (*bits & EXTENT_DEFRAG)
1740 BTRFS_I(inode)->defrag_bytes += len;
1741 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1742 &BTRFS_I(inode)->runtime_flags))
1743 btrfs_add_delalloc_inodes(root, inode);
1744 spin_unlock(&BTRFS_I(inode)->lock);
1745 }
1746 }
1747
1748 /*
1749 * extent_io.c clear_bit_hook, see set_bit_hook for why
1750 */
1751 static void btrfs_clear_bit_hook(struct inode *inode,
1752 struct extent_state *state,
1753 unsigned *bits)
1754 {
1755 u64 len = state->end + 1 - state->start;
1756 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1757 BTRFS_MAX_EXTENT_SIZE);
1758
1759 spin_lock(&BTRFS_I(inode)->lock);
1760 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1761 BTRFS_I(inode)->defrag_bytes -= len;
1762 spin_unlock(&BTRFS_I(inode)->lock);
1763
1764 /*
1765 * set_bit and clear bit hooks normally require _irqsave/restore
1766 * but in this case, we are only testing for the DELALLOC
1767 * bit, which is only set or cleared with irqs on
1768 */
1769 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 bool do_list = !btrfs_is_free_space_inode(inode);
1772
1773 if (*bits & EXTENT_FIRST_DELALLOC) {
1774 *bits &= ~EXTENT_FIRST_DELALLOC;
1775 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1776 spin_lock(&BTRFS_I(inode)->lock);
1777 BTRFS_I(inode)->outstanding_extents -= num_extents;
1778 spin_unlock(&BTRFS_I(inode)->lock);
1779 }
1780
1781 /*
1782 * We don't reserve metadata space for space cache inodes so we
1783 * don't need to call dellalloc_release_metadata if there is an
1784 * error.
1785 */
1786 if (*bits & EXTENT_DO_ACCOUNTING &&
1787 root != root->fs_info->tree_root)
1788 btrfs_delalloc_release_metadata(inode, len);
1789
1790 /* For sanity tests. */
1791 if (btrfs_test_is_dummy_root(root))
1792 return;
1793
1794 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1795 && do_list && !(state->state & EXTENT_NORESERVE))
1796 btrfs_free_reserved_data_space_noquota(inode,
1797 state->start, len);
1798
1799 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1800 root->fs_info->delalloc_batch);
1801 spin_lock(&BTRFS_I(inode)->lock);
1802 BTRFS_I(inode)->delalloc_bytes -= len;
1803 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1804 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1805 &BTRFS_I(inode)->runtime_flags))
1806 btrfs_del_delalloc_inode(root, inode);
1807 spin_unlock(&BTRFS_I(inode)->lock);
1808 }
1809 }
1810
1811 /*
1812 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1813 * we don't create bios that span stripes or chunks
1814 */
1815 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1816 size_t size, struct bio *bio,
1817 unsigned long bio_flags)
1818 {
1819 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1820 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1821 u64 length = 0;
1822 u64 map_length;
1823 int ret;
1824
1825 if (bio_flags & EXTENT_BIO_COMPRESSED)
1826 return 0;
1827
1828 length = bio->bi_iter.bi_size;
1829 map_length = length;
1830 ret = btrfs_map_block(root->fs_info, rw, logical,
1831 &map_length, NULL, 0);
1832 /* Will always return 0 with map_multi == NULL */
1833 BUG_ON(ret < 0);
1834 if (map_length < length + size)
1835 return 1;
1836 return 0;
1837 }
1838
1839 /*
1840 * in order to insert checksums into the metadata in large chunks,
1841 * we wait until bio submission time. All the pages in the bio are
1842 * checksummed and sums are attached onto the ordered extent record.
1843 *
1844 * At IO completion time the cums attached on the ordered extent record
1845 * are inserted into the btree
1846 */
1847 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1848 struct bio *bio, int mirror_num,
1849 unsigned long bio_flags,
1850 u64 bio_offset)
1851 {
1852 struct btrfs_root *root = BTRFS_I(inode)->root;
1853 int ret = 0;
1854
1855 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1856 BUG_ON(ret); /* -ENOMEM */
1857 return 0;
1858 }
1859
1860 /*
1861 * in order to insert checksums into the metadata in large chunks,
1862 * we wait until bio submission time. All the pages in the bio are
1863 * checksummed and sums are attached onto the ordered extent record.
1864 *
1865 * At IO completion time the cums attached on the ordered extent record
1866 * are inserted into the btree
1867 */
1868 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1869 int mirror_num, unsigned long bio_flags,
1870 u64 bio_offset)
1871 {
1872 struct btrfs_root *root = BTRFS_I(inode)->root;
1873 int ret;
1874
1875 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1876 if (ret) {
1877 bio->bi_error = ret;
1878 bio_endio(bio);
1879 }
1880 return ret;
1881 }
1882
1883 /*
1884 * extent_io.c submission hook. This does the right thing for csum calculation
1885 * on write, or reading the csums from the tree before a read
1886 */
1887 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1888 int mirror_num, unsigned long bio_flags,
1889 u64 bio_offset)
1890 {
1891 struct btrfs_root *root = BTRFS_I(inode)->root;
1892 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1893 int ret = 0;
1894 int skip_sum;
1895 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1896
1897 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1898
1899 if (btrfs_is_free_space_inode(inode))
1900 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1901
1902 if (!(rw & REQ_WRITE)) {
1903 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1904 if (ret)
1905 goto out;
1906
1907 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1908 ret = btrfs_submit_compressed_read(inode, bio,
1909 mirror_num,
1910 bio_flags);
1911 goto out;
1912 } else if (!skip_sum) {
1913 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1914 if (ret)
1915 goto out;
1916 }
1917 goto mapit;
1918 } else if (async && !skip_sum) {
1919 /* csum items have already been cloned */
1920 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1921 goto mapit;
1922 /* we're doing a write, do the async checksumming */
1923 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1924 inode, rw, bio, mirror_num,
1925 bio_flags, bio_offset,
1926 __btrfs_submit_bio_start,
1927 __btrfs_submit_bio_done);
1928 goto out;
1929 } else if (!skip_sum) {
1930 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1931 if (ret)
1932 goto out;
1933 }
1934
1935 mapit:
1936 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1937
1938 out:
1939 if (ret < 0) {
1940 bio->bi_error = ret;
1941 bio_endio(bio);
1942 }
1943 return ret;
1944 }
1945
1946 /*
1947 * given a list of ordered sums record them in the inode. This happens
1948 * at IO completion time based on sums calculated at bio submission time.
1949 */
1950 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1951 struct inode *inode, u64 file_offset,
1952 struct list_head *list)
1953 {
1954 struct btrfs_ordered_sum *sum;
1955
1956 list_for_each_entry(sum, list, list) {
1957 trans->adding_csums = 1;
1958 btrfs_csum_file_blocks(trans,
1959 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1960 trans->adding_csums = 0;
1961 }
1962 return 0;
1963 }
1964
1965 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1966 struct extent_state **cached_state)
1967 {
1968 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1969 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1970 cached_state, GFP_NOFS);
1971 }
1972
1973 /* see btrfs_writepage_start_hook for details on why this is required */
1974 struct btrfs_writepage_fixup {
1975 struct page *page;
1976 struct btrfs_work work;
1977 };
1978
1979 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1980 {
1981 struct btrfs_writepage_fixup *fixup;
1982 struct btrfs_ordered_extent *ordered;
1983 struct extent_state *cached_state = NULL;
1984 struct page *page;
1985 struct inode *inode;
1986 u64 page_start;
1987 u64 page_end;
1988 int ret;
1989
1990 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1991 page = fixup->page;
1992 again:
1993 lock_page(page);
1994 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1995 ClearPageChecked(page);
1996 goto out_page;
1997 }
1998
1999 inode = page->mapping->host;
2000 page_start = page_offset(page);
2001 page_end = page_offset(page) + PAGE_SIZE - 1;
2002
2003 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2004 &cached_state);
2005
2006 /* already ordered? We're done */
2007 if (PagePrivate2(page))
2008 goto out;
2009
2010 ordered = btrfs_lookup_ordered_range(inode, page_start,
2011 PAGE_SIZE);
2012 if (ordered) {
2013 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2014 page_end, &cached_state, GFP_NOFS);
2015 unlock_page(page);
2016 btrfs_start_ordered_extent(inode, ordered, 1);
2017 btrfs_put_ordered_extent(ordered);
2018 goto again;
2019 }
2020
2021 ret = btrfs_delalloc_reserve_space(inode, page_start,
2022 PAGE_SIZE);
2023 if (ret) {
2024 mapping_set_error(page->mapping, ret);
2025 end_extent_writepage(page, ret, page_start, page_end);
2026 ClearPageChecked(page);
2027 goto out;
2028 }
2029
2030 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2031 ClearPageChecked(page);
2032 set_page_dirty(page);
2033 out:
2034 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2035 &cached_state, GFP_NOFS);
2036 out_page:
2037 unlock_page(page);
2038 put_page(page);
2039 kfree(fixup);
2040 }
2041
2042 /*
2043 * There are a few paths in the higher layers of the kernel that directly
2044 * set the page dirty bit without asking the filesystem if it is a
2045 * good idea. This causes problems because we want to make sure COW
2046 * properly happens and the data=ordered rules are followed.
2047 *
2048 * In our case any range that doesn't have the ORDERED bit set
2049 * hasn't been properly setup for IO. We kick off an async process
2050 * to fix it up. The async helper will wait for ordered extents, set
2051 * the delalloc bit and make it safe to write the page.
2052 */
2053 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2054 {
2055 struct inode *inode = page->mapping->host;
2056 struct btrfs_writepage_fixup *fixup;
2057 struct btrfs_root *root = BTRFS_I(inode)->root;
2058
2059 /* this page is properly in the ordered list */
2060 if (TestClearPagePrivate2(page))
2061 return 0;
2062
2063 if (PageChecked(page))
2064 return -EAGAIN;
2065
2066 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2067 if (!fixup)
2068 return -EAGAIN;
2069
2070 SetPageChecked(page);
2071 get_page(page);
2072 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2073 btrfs_writepage_fixup_worker, NULL, NULL);
2074 fixup->page = page;
2075 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2076 return -EBUSY;
2077 }
2078
2079 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2080 struct inode *inode, u64 file_pos,
2081 u64 disk_bytenr, u64 disk_num_bytes,
2082 u64 num_bytes, u64 ram_bytes,
2083 u8 compression, u8 encryption,
2084 u16 other_encoding, int extent_type)
2085 {
2086 struct btrfs_root *root = BTRFS_I(inode)->root;
2087 struct btrfs_file_extent_item *fi;
2088 struct btrfs_path *path;
2089 struct extent_buffer *leaf;
2090 struct btrfs_key ins;
2091 int extent_inserted = 0;
2092 int ret;
2093
2094 path = btrfs_alloc_path();
2095 if (!path)
2096 return -ENOMEM;
2097
2098 /*
2099 * we may be replacing one extent in the tree with another.
2100 * The new extent is pinned in the extent map, and we don't want
2101 * to drop it from the cache until it is completely in the btree.
2102 *
2103 * So, tell btrfs_drop_extents to leave this extent in the cache.
2104 * the caller is expected to unpin it and allow it to be merged
2105 * with the others.
2106 */
2107 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2108 file_pos + num_bytes, NULL, 0,
2109 1, sizeof(*fi), &extent_inserted);
2110 if (ret)
2111 goto out;
2112
2113 if (!extent_inserted) {
2114 ins.objectid = btrfs_ino(inode);
2115 ins.offset = file_pos;
2116 ins.type = BTRFS_EXTENT_DATA_KEY;
2117
2118 path->leave_spinning = 1;
2119 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2120 sizeof(*fi));
2121 if (ret)
2122 goto out;
2123 }
2124 leaf = path->nodes[0];
2125 fi = btrfs_item_ptr(leaf, path->slots[0],
2126 struct btrfs_file_extent_item);
2127 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2128 btrfs_set_file_extent_type(leaf, fi, extent_type);
2129 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2130 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2131 btrfs_set_file_extent_offset(leaf, fi, 0);
2132 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2133 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2134 btrfs_set_file_extent_compression(leaf, fi, compression);
2135 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2136 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2137
2138 btrfs_mark_buffer_dirty(leaf);
2139 btrfs_release_path(path);
2140
2141 inode_add_bytes(inode, num_bytes);
2142
2143 ins.objectid = disk_bytenr;
2144 ins.offset = disk_num_bytes;
2145 ins.type = BTRFS_EXTENT_ITEM_KEY;
2146 ret = btrfs_alloc_reserved_file_extent(trans, root,
2147 root->root_key.objectid,
2148 btrfs_ino(inode), file_pos,
2149 ram_bytes, &ins);
2150 /*
2151 * Release the reserved range from inode dirty range map, as it is
2152 * already moved into delayed_ref_head
2153 */
2154 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2155 out:
2156 btrfs_free_path(path);
2157
2158 return ret;
2159 }
2160
2161 /* snapshot-aware defrag */
2162 struct sa_defrag_extent_backref {
2163 struct rb_node node;
2164 struct old_sa_defrag_extent *old;
2165 u64 root_id;
2166 u64 inum;
2167 u64 file_pos;
2168 u64 extent_offset;
2169 u64 num_bytes;
2170 u64 generation;
2171 };
2172
2173 struct old_sa_defrag_extent {
2174 struct list_head list;
2175 struct new_sa_defrag_extent *new;
2176
2177 u64 extent_offset;
2178 u64 bytenr;
2179 u64 offset;
2180 u64 len;
2181 int count;
2182 };
2183
2184 struct new_sa_defrag_extent {
2185 struct rb_root root;
2186 struct list_head head;
2187 struct btrfs_path *path;
2188 struct inode *inode;
2189 u64 file_pos;
2190 u64 len;
2191 u64 bytenr;
2192 u64 disk_len;
2193 u8 compress_type;
2194 };
2195
2196 static int backref_comp(struct sa_defrag_extent_backref *b1,
2197 struct sa_defrag_extent_backref *b2)
2198 {
2199 if (b1->root_id < b2->root_id)
2200 return -1;
2201 else if (b1->root_id > b2->root_id)
2202 return 1;
2203
2204 if (b1->inum < b2->inum)
2205 return -1;
2206 else if (b1->inum > b2->inum)
2207 return 1;
2208
2209 if (b1->file_pos < b2->file_pos)
2210 return -1;
2211 else if (b1->file_pos > b2->file_pos)
2212 return 1;
2213
2214 /*
2215 * [------------------------------] ===> (a range of space)
2216 * |<--->| |<---->| =============> (fs/file tree A)
2217 * |<---------------------------->| ===> (fs/file tree B)
2218 *
2219 * A range of space can refer to two file extents in one tree while
2220 * refer to only one file extent in another tree.
2221 *
2222 * So we may process a disk offset more than one time(two extents in A)
2223 * and locate at the same extent(one extent in B), then insert two same
2224 * backrefs(both refer to the extent in B).
2225 */
2226 return 0;
2227 }
2228
2229 static void backref_insert(struct rb_root *root,
2230 struct sa_defrag_extent_backref *backref)
2231 {
2232 struct rb_node **p = &root->rb_node;
2233 struct rb_node *parent = NULL;
2234 struct sa_defrag_extent_backref *entry;
2235 int ret;
2236
2237 while (*p) {
2238 parent = *p;
2239 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2240
2241 ret = backref_comp(backref, entry);
2242 if (ret < 0)
2243 p = &(*p)->rb_left;
2244 else
2245 p = &(*p)->rb_right;
2246 }
2247
2248 rb_link_node(&backref->node, parent, p);
2249 rb_insert_color(&backref->node, root);
2250 }
2251
2252 /*
2253 * Note the backref might has changed, and in this case we just return 0.
2254 */
2255 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2256 void *ctx)
2257 {
2258 struct btrfs_file_extent_item *extent;
2259 struct btrfs_fs_info *fs_info;
2260 struct old_sa_defrag_extent *old = ctx;
2261 struct new_sa_defrag_extent *new = old->new;
2262 struct btrfs_path *path = new->path;
2263 struct btrfs_key key;
2264 struct btrfs_root *root;
2265 struct sa_defrag_extent_backref *backref;
2266 struct extent_buffer *leaf;
2267 struct inode *inode = new->inode;
2268 int slot;
2269 int ret;
2270 u64 extent_offset;
2271 u64 num_bytes;
2272
2273 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2274 inum == btrfs_ino(inode))
2275 return 0;
2276
2277 key.objectid = root_id;
2278 key.type = BTRFS_ROOT_ITEM_KEY;
2279 key.offset = (u64)-1;
2280
2281 fs_info = BTRFS_I(inode)->root->fs_info;
2282 root = btrfs_read_fs_root_no_name(fs_info, &key);
2283 if (IS_ERR(root)) {
2284 if (PTR_ERR(root) == -ENOENT)
2285 return 0;
2286 WARN_ON(1);
2287 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2288 inum, offset, root_id);
2289 return PTR_ERR(root);
2290 }
2291
2292 key.objectid = inum;
2293 key.type = BTRFS_EXTENT_DATA_KEY;
2294 if (offset > (u64)-1 << 32)
2295 key.offset = 0;
2296 else
2297 key.offset = offset;
2298
2299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2300 if (WARN_ON(ret < 0))
2301 return ret;
2302 ret = 0;
2303
2304 while (1) {
2305 cond_resched();
2306
2307 leaf = path->nodes[0];
2308 slot = path->slots[0];
2309
2310 if (slot >= btrfs_header_nritems(leaf)) {
2311 ret = btrfs_next_leaf(root, path);
2312 if (ret < 0) {
2313 goto out;
2314 } else if (ret > 0) {
2315 ret = 0;
2316 goto out;
2317 }
2318 continue;
2319 }
2320
2321 path->slots[0]++;
2322
2323 btrfs_item_key_to_cpu(leaf, &key, slot);
2324
2325 if (key.objectid > inum)
2326 goto out;
2327
2328 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2329 continue;
2330
2331 extent = btrfs_item_ptr(leaf, slot,
2332 struct btrfs_file_extent_item);
2333
2334 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2335 continue;
2336
2337 /*
2338 * 'offset' refers to the exact key.offset,
2339 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2340 * (key.offset - extent_offset).
2341 */
2342 if (key.offset != offset)
2343 continue;
2344
2345 extent_offset = btrfs_file_extent_offset(leaf, extent);
2346 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2347
2348 if (extent_offset >= old->extent_offset + old->offset +
2349 old->len || extent_offset + num_bytes <=
2350 old->extent_offset + old->offset)
2351 continue;
2352 break;
2353 }
2354
2355 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2356 if (!backref) {
2357 ret = -ENOENT;
2358 goto out;
2359 }
2360
2361 backref->root_id = root_id;
2362 backref->inum = inum;
2363 backref->file_pos = offset;
2364 backref->num_bytes = num_bytes;
2365 backref->extent_offset = extent_offset;
2366 backref->generation = btrfs_file_extent_generation(leaf, extent);
2367 backref->old = old;
2368 backref_insert(&new->root, backref);
2369 old->count++;
2370 out:
2371 btrfs_release_path(path);
2372 WARN_ON(ret);
2373 return ret;
2374 }
2375
2376 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2377 struct new_sa_defrag_extent *new)
2378 {
2379 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2380 struct old_sa_defrag_extent *old, *tmp;
2381 int ret;
2382
2383 new->path = path;
2384
2385 list_for_each_entry_safe(old, tmp, &new->head, list) {
2386 ret = iterate_inodes_from_logical(old->bytenr +
2387 old->extent_offset, fs_info,
2388 path, record_one_backref,
2389 old);
2390 if (ret < 0 && ret != -ENOENT)
2391 return false;
2392
2393 /* no backref to be processed for this extent */
2394 if (!old->count) {
2395 list_del(&old->list);
2396 kfree(old);
2397 }
2398 }
2399
2400 if (list_empty(&new->head))
2401 return false;
2402
2403 return true;
2404 }
2405
2406 static int relink_is_mergable(struct extent_buffer *leaf,
2407 struct btrfs_file_extent_item *fi,
2408 struct new_sa_defrag_extent *new)
2409 {
2410 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2411 return 0;
2412
2413 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2414 return 0;
2415
2416 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2417 return 0;
2418
2419 if (btrfs_file_extent_encryption(leaf, fi) ||
2420 btrfs_file_extent_other_encoding(leaf, fi))
2421 return 0;
2422
2423 return 1;
2424 }
2425
2426 /*
2427 * Note the backref might has changed, and in this case we just return 0.
2428 */
2429 static noinline int relink_extent_backref(struct btrfs_path *path,
2430 struct sa_defrag_extent_backref *prev,
2431 struct sa_defrag_extent_backref *backref)
2432 {
2433 struct btrfs_file_extent_item *extent;
2434 struct btrfs_file_extent_item *item;
2435 struct btrfs_ordered_extent *ordered;
2436 struct btrfs_trans_handle *trans;
2437 struct btrfs_fs_info *fs_info;
2438 struct btrfs_root *root;
2439 struct btrfs_key key;
2440 struct extent_buffer *leaf;
2441 struct old_sa_defrag_extent *old = backref->old;
2442 struct new_sa_defrag_extent *new = old->new;
2443 struct inode *src_inode = new->inode;
2444 struct inode *inode;
2445 struct extent_state *cached = NULL;
2446 int ret = 0;
2447 u64 start;
2448 u64 len;
2449 u64 lock_start;
2450 u64 lock_end;
2451 bool merge = false;
2452 int index;
2453
2454 if (prev && prev->root_id == backref->root_id &&
2455 prev->inum == backref->inum &&
2456 prev->file_pos + prev->num_bytes == backref->file_pos)
2457 merge = true;
2458
2459 /* step 1: get root */
2460 key.objectid = backref->root_id;
2461 key.type = BTRFS_ROOT_ITEM_KEY;
2462 key.offset = (u64)-1;
2463
2464 fs_info = BTRFS_I(src_inode)->root->fs_info;
2465 index = srcu_read_lock(&fs_info->subvol_srcu);
2466
2467 root = btrfs_read_fs_root_no_name(fs_info, &key);
2468 if (IS_ERR(root)) {
2469 srcu_read_unlock(&fs_info->subvol_srcu, index);
2470 if (PTR_ERR(root) == -ENOENT)
2471 return 0;
2472 return PTR_ERR(root);
2473 }
2474
2475 if (btrfs_root_readonly(root)) {
2476 srcu_read_unlock(&fs_info->subvol_srcu, index);
2477 return 0;
2478 }
2479
2480 /* step 2: get inode */
2481 key.objectid = backref->inum;
2482 key.type = BTRFS_INODE_ITEM_KEY;
2483 key.offset = 0;
2484
2485 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2486 if (IS_ERR(inode)) {
2487 srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 return 0;
2489 }
2490
2491 srcu_read_unlock(&fs_info->subvol_srcu, index);
2492
2493 /* step 3: relink backref */
2494 lock_start = backref->file_pos;
2495 lock_end = backref->file_pos + backref->num_bytes - 1;
2496 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2497 &cached);
2498
2499 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2500 if (ordered) {
2501 btrfs_put_ordered_extent(ordered);
2502 goto out_unlock;
2503 }
2504
2505 trans = btrfs_join_transaction(root);
2506 if (IS_ERR(trans)) {
2507 ret = PTR_ERR(trans);
2508 goto out_unlock;
2509 }
2510
2511 key.objectid = backref->inum;
2512 key.type = BTRFS_EXTENT_DATA_KEY;
2513 key.offset = backref->file_pos;
2514
2515 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2516 if (ret < 0) {
2517 goto out_free_path;
2518 } else if (ret > 0) {
2519 ret = 0;
2520 goto out_free_path;
2521 }
2522
2523 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2524 struct btrfs_file_extent_item);
2525
2526 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2527 backref->generation)
2528 goto out_free_path;
2529
2530 btrfs_release_path(path);
2531
2532 start = backref->file_pos;
2533 if (backref->extent_offset < old->extent_offset + old->offset)
2534 start += old->extent_offset + old->offset -
2535 backref->extent_offset;
2536
2537 len = min(backref->extent_offset + backref->num_bytes,
2538 old->extent_offset + old->offset + old->len);
2539 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2540
2541 ret = btrfs_drop_extents(trans, root, inode, start,
2542 start + len, 1);
2543 if (ret)
2544 goto out_free_path;
2545 again:
2546 key.objectid = btrfs_ino(inode);
2547 key.type = BTRFS_EXTENT_DATA_KEY;
2548 key.offset = start;
2549
2550 path->leave_spinning = 1;
2551 if (merge) {
2552 struct btrfs_file_extent_item *fi;
2553 u64 extent_len;
2554 struct btrfs_key found_key;
2555
2556 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2557 if (ret < 0)
2558 goto out_free_path;
2559
2560 path->slots[0]--;
2561 leaf = path->nodes[0];
2562 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2563
2564 fi = btrfs_item_ptr(leaf, path->slots[0],
2565 struct btrfs_file_extent_item);
2566 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2567
2568 if (extent_len + found_key.offset == start &&
2569 relink_is_mergable(leaf, fi, new)) {
2570 btrfs_set_file_extent_num_bytes(leaf, fi,
2571 extent_len + len);
2572 btrfs_mark_buffer_dirty(leaf);
2573 inode_add_bytes(inode, len);
2574
2575 ret = 1;
2576 goto out_free_path;
2577 } else {
2578 merge = false;
2579 btrfs_release_path(path);
2580 goto again;
2581 }
2582 }
2583
2584 ret = btrfs_insert_empty_item(trans, root, path, &key,
2585 sizeof(*extent));
2586 if (ret) {
2587 btrfs_abort_transaction(trans, root, ret);
2588 goto out_free_path;
2589 }
2590
2591 leaf = path->nodes[0];
2592 item = btrfs_item_ptr(leaf, path->slots[0],
2593 struct btrfs_file_extent_item);
2594 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2595 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2596 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2597 btrfs_set_file_extent_num_bytes(leaf, item, len);
2598 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2599 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2600 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2601 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2602 btrfs_set_file_extent_encryption(leaf, item, 0);
2603 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2604
2605 btrfs_mark_buffer_dirty(leaf);
2606 inode_add_bytes(inode, len);
2607 btrfs_release_path(path);
2608
2609 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2610 new->disk_len, 0,
2611 backref->root_id, backref->inum,
2612 new->file_pos); /* start - extent_offset */
2613 if (ret) {
2614 btrfs_abort_transaction(trans, root, ret);
2615 goto out_free_path;
2616 }
2617
2618 ret = 1;
2619 out_free_path:
2620 btrfs_release_path(path);
2621 path->leave_spinning = 0;
2622 btrfs_end_transaction(trans, root);
2623 out_unlock:
2624 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2625 &cached, GFP_NOFS);
2626 iput(inode);
2627 return ret;
2628 }
2629
2630 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2631 {
2632 struct old_sa_defrag_extent *old, *tmp;
2633
2634 if (!new)
2635 return;
2636
2637 list_for_each_entry_safe(old, tmp, &new->head, list) {
2638 kfree(old);
2639 }
2640 kfree(new);
2641 }
2642
2643 static void relink_file_extents(struct new_sa_defrag_extent *new)
2644 {
2645 struct btrfs_path *path;
2646 struct sa_defrag_extent_backref *backref;
2647 struct sa_defrag_extent_backref *prev = NULL;
2648 struct inode *inode;
2649 struct btrfs_root *root;
2650 struct rb_node *node;
2651 int ret;
2652
2653 inode = new->inode;
2654 root = BTRFS_I(inode)->root;
2655
2656 path = btrfs_alloc_path();
2657 if (!path)
2658 return;
2659
2660 if (!record_extent_backrefs(path, new)) {
2661 btrfs_free_path(path);
2662 goto out;
2663 }
2664 btrfs_release_path(path);
2665
2666 while (1) {
2667 node = rb_first(&new->root);
2668 if (!node)
2669 break;
2670 rb_erase(node, &new->root);
2671
2672 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2673
2674 ret = relink_extent_backref(path, prev, backref);
2675 WARN_ON(ret < 0);
2676
2677 kfree(prev);
2678
2679 if (ret == 1)
2680 prev = backref;
2681 else
2682 prev = NULL;
2683 cond_resched();
2684 }
2685 kfree(prev);
2686
2687 btrfs_free_path(path);
2688 out:
2689 free_sa_defrag_extent(new);
2690
2691 atomic_dec(&root->fs_info->defrag_running);
2692 wake_up(&root->fs_info->transaction_wait);
2693 }
2694
2695 static struct new_sa_defrag_extent *
2696 record_old_file_extents(struct inode *inode,
2697 struct btrfs_ordered_extent *ordered)
2698 {
2699 struct btrfs_root *root = BTRFS_I(inode)->root;
2700 struct btrfs_path *path;
2701 struct btrfs_key key;
2702 struct old_sa_defrag_extent *old;
2703 struct new_sa_defrag_extent *new;
2704 int ret;
2705
2706 new = kmalloc(sizeof(*new), GFP_NOFS);
2707 if (!new)
2708 return NULL;
2709
2710 new->inode = inode;
2711 new->file_pos = ordered->file_offset;
2712 new->len = ordered->len;
2713 new->bytenr = ordered->start;
2714 new->disk_len = ordered->disk_len;
2715 new->compress_type = ordered->compress_type;
2716 new->root = RB_ROOT;
2717 INIT_LIST_HEAD(&new->head);
2718
2719 path = btrfs_alloc_path();
2720 if (!path)
2721 goto out_kfree;
2722
2723 key.objectid = btrfs_ino(inode);
2724 key.type = BTRFS_EXTENT_DATA_KEY;
2725 key.offset = new->file_pos;
2726
2727 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2728 if (ret < 0)
2729 goto out_free_path;
2730 if (ret > 0 && path->slots[0] > 0)
2731 path->slots[0]--;
2732
2733 /* find out all the old extents for the file range */
2734 while (1) {
2735 struct btrfs_file_extent_item *extent;
2736 struct extent_buffer *l;
2737 int slot;
2738 u64 num_bytes;
2739 u64 offset;
2740 u64 end;
2741 u64 disk_bytenr;
2742 u64 extent_offset;
2743
2744 l = path->nodes[0];
2745 slot = path->slots[0];
2746
2747 if (slot >= btrfs_header_nritems(l)) {
2748 ret = btrfs_next_leaf(root, path);
2749 if (ret < 0)
2750 goto out_free_path;
2751 else if (ret > 0)
2752 break;
2753 continue;
2754 }
2755
2756 btrfs_item_key_to_cpu(l, &key, slot);
2757
2758 if (key.objectid != btrfs_ino(inode))
2759 break;
2760 if (key.type != BTRFS_EXTENT_DATA_KEY)
2761 break;
2762 if (key.offset >= new->file_pos + new->len)
2763 break;
2764
2765 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2766
2767 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2768 if (key.offset + num_bytes < new->file_pos)
2769 goto next;
2770
2771 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2772 if (!disk_bytenr)
2773 goto next;
2774
2775 extent_offset = btrfs_file_extent_offset(l, extent);
2776
2777 old = kmalloc(sizeof(*old), GFP_NOFS);
2778 if (!old)
2779 goto out_free_path;
2780
2781 offset = max(new->file_pos, key.offset);
2782 end = min(new->file_pos + new->len, key.offset + num_bytes);
2783
2784 old->bytenr = disk_bytenr;
2785 old->extent_offset = extent_offset;
2786 old->offset = offset - key.offset;
2787 old->len = end - offset;
2788 old->new = new;
2789 old->count = 0;
2790 list_add_tail(&old->list, &new->head);
2791 next:
2792 path->slots[0]++;
2793 cond_resched();
2794 }
2795
2796 btrfs_free_path(path);
2797 atomic_inc(&root->fs_info->defrag_running);
2798
2799 return new;
2800
2801 out_free_path:
2802 btrfs_free_path(path);
2803 out_kfree:
2804 free_sa_defrag_extent(new);
2805 return NULL;
2806 }
2807
2808 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2809 u64 start, u64 len)
2810 {
2811 struct btrfs_block_group_cache *cache;
2812
2813 cache = btrfs_lookup_block_group(root->fs_info, start);
2814 ASSERT(cache);
2815
2816 spin_lock(&cache->lock);
2817 cache->delalloc_bytes -= len;
2818 spin_unlock(&cache->lock);
2819
2820 btrfs_put_block_group(cache);
2821 }
2822
2823 /* as ordered data IO finishes, this gets called so we can finish
2824 * an ordered extent if the range of bytes in the file it covers are
2825 * fully written.
2826 */
2827 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2828 {
2829 struct inode *inode = ordered_extent->inode;
2830 struct btrfs_root *root = BTRFS_I(inode)->root;
2831 struct btrfs_trans_handle *trans = NULL;
2832 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2833 struct extent_state *cached_state = NULL;
2834 struct new_sa_defrag_extent *new = NULL;
2835 int compress_type = 0;
2836 int ret = 0;
2837 u64 logical_len = ordered_extent->len;
2838 bool nolock;
2839 bool truncated = false;
2840
2841 nolock = btrfs_is_free_space_inode(inode);
2842
2843 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2844 ret = -EIO;
2845 goto out;
2846 }
2847
2848 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2849 ordered_extent->file_offset +
2850 ordered_extent->len - 1);
2851
2852 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2853 truncated = true;
2854 logical_len = ordered_extent->truncated_len;
2855 /* Truncated the entire extent, don't bother adding */
2856 if (!logical_len)
2857 goto out;
2858 }
2859
2860 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2861 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2862
2863 /*
2864 * For mwrite(mmap + memset to write) case, we still reserve
2865 * space for NOCOW range.
2866 * As NOCOW won't cause a new delayed ref, just free the space
2867 */
2868 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2869 ordered_extent->len);
2870 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2871 if (nolock)
2872 trans = btrfs_join_transaction_nolock(root);
2873 else
2874 trans = btrfs_join_transaction(root);
2875 if (IS_ERR(trans)) {
2876 ret = PTR_ERR(trans);
2877 trans = NULL;
2878 goto out;
2879 }
2880 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2881 ret = btrfs_update_inode_fallback(trans, root, inode);
2882 if (ret) /* -ENOMEM or corruption */
2883 btrfs_abort_transaction(trans, root, ret);
2884 goto out;
2885 }
2886
2887 lock_extent_bits(io_tree, ordered_extent->file_offset,
2888 ordered_extent->file_offset + ordered_extent->len - 1,
2889 &cached_state);
2890
2891 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2892 ordered_extent->file_offset + ordered_extent->len - 1,
2893 EXTENT_DEFRAG, 1, cached_state);
2894 if (ret) {
2895 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2896 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2897 /* the inode is shared */
2898 new = record_old_file_extents(inode, ordered_extent);
2899
2900 clear_extent_bit(io_tree, ordered_extent->file_offset,
2901 ordered_extent->file_offset + ordered_extent->len - 1,
2902 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2903 }
2904
2905 if (nolock)
2906 trans = btrfs_join_transaction_nolock(root);
2907 else
2908 trans = btrfs_join_transaction(root);
2909 if (IS_ERR(trans)) {
2910 ret = PTR_ERR(trans);
2911 trans = NULL;
2912 goto out_unlock;
2913 }
2914
2915 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2916
2917 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2918 compress_type = ordered_extent->compress_type;
2919 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2920 BUG_ON(compress_type);
2921 ret = btrfs_mark_extent_written(trans, inode,
2922 ordered_extent->file_offset,
2923 ordered_extent->file_offset +
2924 logical_len);
2925 } else {
2926 BUG_ON(root == root->fs_info->tree_root);
2927 ret = insert_reserved_file_extent(trans, inode,
2928 ordered_extent->file_offset,
2929 ordered_extent->start,
2930 ordered_extent->disk_len,
2931 logical_len, logical_len,
2932 compress_type, 0, 0,
2933 BTRFS_FILE_EXTENT_REG);
2934 if (!ret)
2935 btrfs_release_delalloc_bytes(root,
2936 ordered_extent->start,
2937 ordered_extent->disk_len);
2938 }
2939 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2940 ordered_extent->file_offset, ordered_extent->len,
2941 trans->transid);
2942 if (ret < 0) {
2943 btrfs_abort_transaction(trans, root, ret);
2944 goto out_unlock;
2945 }
2946
2947 add_pending_csums(trans, inode, ordered_extent->file_offset,
2948 &ordered_extent->list);
2949
2950 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2951 ret = btrfs_update_inode_fallback(trans, root, inode);
2952 if (ret) { /* -ENOMEM or corruption */
2953 btrfs_abort_transaction(trans, root, ret);
2954 goto out_unlock;
2955 }
2956 ret = 0;
2957 out_unlock:
2958 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2959 ordered_extent->file_offset +
2960 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2961 out:
2962 if (root != root->fs_info->tree_root)
2963 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2964 if (trans)
2965 btrfs_end_transaction(trans, root);
2966
2967 if (ret || truncated) {
2968 u64 start, end;
2969
2970 if (truncated)
2971 start = ordered_extent->file_offset + logical_len;
2972 else
2973 start = ordered_extent->file_offset;
2974 end = ordered_extent->file_offset + ordered_extent->len - 1;
2975 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2976
2977 /* Drop the cache for the part of the extent we didn't write. */
2978 btrfs_drop_extent_cache(inode, start, end, 0);
2979
2980 /*
2981 * If the ordered extent had an IOERR or something else went
2982 * wrong we need to return the space for this ordered extent
2983 * back to the allocator. We only free the extent in the
2984 * truncated case if we didn't write out the extent at all.
2985 */
2986 if ((ret || !logical_len) &&
2987 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2988 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2989 btrfs_free_reserved_extent(root, ordered_extent->start,
2990 ordered_extent->disk_len, 1);
2991 }
2992
2993
2994 /*
2995 * This needs to be done to make sure anybody waiting knows we are done
2996 * updating everything for this ordered extent.
2997 */
2998 btrfs_remove_ordered_extent(inode, ordered_extent);
2999
3000 /* for snapshot-aware defrag */
3001 if (new) {
3002 if (ret) {
3003 free_sa_defrag_extent(new);
3004 atomic_dec(&root->fs_info->defrag_running);
3005 } else {
3006 relink_file_extents(new);
3007 }
3008 }
3009
3010 /* once for us */
3011 btrfs_put_ordered_extent(ordered_extent);
3012 /* once for the tree */
3013 btrfs_put_ordered_extent(ordered_extent);
3014
3015 return ret;
3016 }
3017
3018 static void finish_ordered_fn(struct btrfs_work *work)
3019 {
3020 struct btrfs_ordered_extent *ordered_extent;
3021 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3022 btrfs_finish_ordered_io(ordered_extent);
3023 }
3024
3025 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3026 struct extent_state *state, int uptodate)
3027 {
3028 struct inode *inode = page->mapping->host;
3029 struct btrfs_root *root = BTRFS_I(inode)->root;
3030 struct btrfs_ordered_extent *ordered_extent = NULL;
3031 struct btrfs_workqueue *wq;
3032 btrfs_work_func_t func;
3033
3034 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3035
3036 ClearPagePrivate2(page);
3037 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3038 end - start + 1, uptodate))
3039 return 0;
3040
3041 if (btrfs_is_free_space_inode(inode)) {
3042 wq = root->fs_info->endio_freespace_worker;
3043 func = btrfs_freespace_write_helper;
3044 } else {
3045 wq = root->fs_info->endio_write_workers;
3046 func = btrfs_endio_write_helper;
3047 }
3048
3049 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3050 NULL);
3051 btrfs_queue_work(wq, &ordered_extent->work);
3052
3053 return 0;
3054 }
3055
3056 static int __readpage_endio_check(struct inode *inode,
3057 struct btrfs_io_bio *io_bio,
3058 int icsum, struct page *page,
3059 int pgoff, u64 start, size_t len)
3060 {
3061 char *kaddr;
3062 u32 csum_expected;
3063 u32 csum = ~(u32)0;
3064
3065 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3066
3067 kaddr = kmap_atomic(page);
3068 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3069 btrfs_csum_final(csum, (char *)&csum);
3070 if (csum != csum_expected)
3071 goto zeroit;
3072
3073 kunmap_atomic(kaddr);
3074 return 0;
3075 zeroit:
3076 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3077 "csum failed ino %llu off %llu csum %u expected csum %u",
3078 btrfs_ino(inode), start, csum, csum_expected);
3079 memset(kaddr + pgoff, 1, len);
3080 flush_dcache_page(page);
3081 kunmap_atomic(kaddr);
3082 if (csum_expected == 0)
3083 return 0;
3084 return -EIO;
3085 }
3086
3087 /*
3088 * when reads are done, we need to check csums to verify the data is correct
3089 * if there's a match, we allow the bio to finish. If not, the code in
3090 * extent_io.c will try to find good copies for us.
3091 */
3092 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3093 u64 phy_offset, struct page *page,
3094 u64 start, u64 end, int mirror)
3095 {
3096 size_t offset = start - page_offset(page);
3097 struct inode *inode = page->mapping->host;
3098 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3099 struct btrfs_root *root = BTRFS_I(inode)->root;
3100
3101 if (PageChecked(page)) {
3102 ClearPageChecked(page);
3103 return 0;
3104 }
3105
3106 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3107 return 0;
3108
3109 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3110 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3111 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3112 GFP_NOFS);
3113 return 0;
3114 }
3115
3116 phy_offset >>= inode->i_sb->s_blocksize_bits;
3117 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3118 start, (size_t)(end - start + 1));
3119 }
3120
3121 void btrfs_add_delayed_iput(struct inode *inode)
3122 {
3123 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3124 struct btrfs_inode *binode = BTRFS_I(inode);
3125
3126 if (atomic_add_unless(&inode->i_count, -1, 1))
3127 return;
3128
3129 spin_lock(&fs_info->delayed_iput_lock);
3130 if (binode->delayed_iput_count == 0) {
3131 ASSERT(list_empty(&binode->delayed_iput));
3132 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3133 } else {
3134 binode->delayed_iput_count++;
3135 }
3136 spin_unlock(&fs_info->delayed_iput_lock);
3137 }
3138
3139 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3140 {
3141 struct btrfs_fs_info *fs_info = root->fs_info;
3142
3143 spin_lock(&fs_info->delayed_iput_lock);
3144 while (!list_empty(&fs_info->delayed_iputs)) {
3145 struct btrfs_inode *inode;
3146
3147 inode = list_first_entry(&fs_info->delayed_iputs,
3148 struct btrfs_inode, delayed_iput);
3149 if (inode->delayed_iput_count) {
3150 inode->delayed_iput_count--;
3151 list_move_tail(&inode->delayed_iput,
3152 &fs_info->delayed_iputs);
3153 } else {
3154 list_del_init(&inode->delayed_iput);
3155 }
3156 spin_unlock(&fs_info->delayed_iput_lock);
3157 iput(&inode->vfs_inode);
3158 spin_lock(&fs_info->delayed_iput_lock);
3159 }
3160 spin_unlock(&fs_info->delayed_iput_lock);
3161 }
3162
3163 /*
3164 * This is called in transaction commit time. If there are no orphan
3165 * files in the subvolume, it removes orphan item and frees block_rsv
3166 * structure.
3167 */
3168 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3169 struct btrfs_root *root)
3170 {
3171 struct btrfs_block_rsv *block_rsv;
3172 int ret;
3173
3174 if (atomic_read(&root->orphan_inodes) ||
3175 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3176 return;
3177
3178 spin_lock(&root->orphan_lock);
3179 if (atomic_read(&root->orphan_inodes)) {
3180 spin_unlock(&root->orphan_lock);
3181 return;
3182 }
3183
3184 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3185 spin_unlock(&root->orphan_lock);
3186 return;
3187 }
3188
3189 block_rsv = root->orphan_block_rsv;
3190 root->orphan_block_rsv = NULL;
3191 spin_unlock(&root->orphan_lock);
3192
3193 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3194 btrfs_root_refs(&root->root_item) > 0) {
3195 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3196 root->root_key.objectid);
3197 if (ret)
3198 btrfs_abort_transaction(trans, root, ret);
3199 else
3200 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3201 &root->state);
3202 }
3203
3204 if (block_rsv) {
3205 WARN_ON(block_rsv->size > 0);
3206 btrfs_free_block_rsv(root, block_rsv);
3207 }
3208 }
3209
3210 /*
3211 * This creates an orphan entry for the given inode in case something goes
3212 * wrong in the middle of an unlink/truncate.
3213 *
3214 * NOTE: caller of this function should reserve 5 units of metadata for
3215 * this function.
3216 */
3217 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3218 {
3219 struct btrfs_root *root = BTRFS_I(inode)->root;
3220 struct btrfs_block_rsv *block_rsv = NULL;
3221 int reserve = 0;
3222 int insert = 0;
3223 int ret;
3224
3225 if (!root->orphan_block_rsv) {
3226 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3227 if (!block_rsv)
3228 return -ENOMEM;
3229 }
3230
3231 spin_lock(&root->orphan_lock);
3232 if (!root->orphan_block_rsv) {
3233 root->orphan_block_rsv = block_rsv;
3234 } else if (block_rsv) {
3235 btrfs_free_block_rsv(root, block_rsv);
3236 block_rsv = NULL;
3237 }
3238
3239 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3240 &BTRFS_I(inode)->runtime_flags)) {
3241 #if 0
3242 /*
3243 * For proper ENOSPC handling, we should do orphan
3244 * cleanup when mounting. But this introduces backward
3245 * compatibility issue.
3246 */
3247 if (!xchg(&root->orphan_item_inserted, 1))
3248 insert = 2;
3249 else
3250 insert = 1;
3251 #endif
3252 insert = 1;
3253 atomic_inc(&root->orphan_inodes);
3254 }
3255
3256 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3257 &BTRFS_I(inode)->runtime_flags))
3258 reserve = 1;
3259 spin_unlock(&root->orphan_lock);
3260
3261 /* grab metadata reservation from transaction handle */
3262 if (reserve) {
3263 ret = btrfs_orphan_reserve_metadata(trans, inode);
3264 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3265 }
3266
3267 /* insert an orphan item to track this unlinked/truncated file */
3268 if (insert >= 1) {
3269 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3270 if (ret) {
3271 atomic_dec(&root->orphan_inodes);
3272 if (reserve) {
3273 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3274 &BTRFS_I(inode)->runtime_flags);
3275 btrfs_orphan_release_metadata(inode);
3276 }
3277 if (ret != -EEXIST) {
3278 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3279 &BTRFS_I(inode)->runtime_flags);
3280 btrfs_abort_transaction(trans, root, ret);
3281 return ret;
3282 }
3283 }
3284 ret = 0;
3285 }
3286
3287 /* insert an orphan item to track subvolume contains orphan files */
3288 if (insert >= 2) {
3289 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3290 root->root_key.objectid);
3291 if (ret && ret != -EEXIST) {
3292 btrfs_abort_transaction(trans, root, ret);
3293 return ret;
3294 }
3295 }
3296 return 0;
3297 }
3298
3299 /*
3300 * We have done the truncate/delete so we can go ahead and remove the orphan
3301 * item for this particular inode.
3302 */
3303 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3304 struct inode *inode)
3305 {
3306 struct btrfs_root *root = BTRFS_I(inode)->root;
3307 int delete_item = 0;
3308 int release_rsv = 0;
3309 int ret = 0;
3310
3311 spin_lock(&root->orphan_lock);
3312 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3313 &BTRFS_I(inode)->runtime_flags))
3314 delete_item = 1;
3315
3316 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3317 &BTRFS_I(inode)->runtime_flags))
3318 release_rsv = 1;
3319 spin_unlock(&root->orphan_lock);
3320
3321 if (delete_item) {
3322 atomic_dec(&root->orphan_inodes);
3323 if (trans)
3324 ret = btrfs_del_orphan_item(trans, root,
3325 btrfs_ino(inode));
3326 }
3327
3328 if (release_rsv)
3329 btrfs_orphan_release_metadata(inode);
3330
3331 return ret;
3332 }
3333
3334 /*
3335 * this cleans up any orphans that may be left on the list from the last use
3336 * of this root.
3337 */
3338 int btrfs_orphan_cleanup(struct btrfs_root *root)
3339 {
3340 struct btrfs_path *path;
3341 struct extent_buffer *leaf;
3342 struct btrfs_key key, found_key;
3343 struct btrfs_trans_handle *trans;
3344 struct inode *inode;
3345 u64 last_objectid = 0;
3346 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3347
3348 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3349 return 0;
3350
3351 path = btrfs_alloc_path();
3352 if (!path) {
3353 ret = -ENOMEM;
3354 goto out;
3355 }
3356 path->reada = READA_BACK;
3357
3358 key.objectid = BTRFS_ORPHAN_OBJECTID;
3359 key.type = BTRFS_ORPHAN_ITEM_KEY;
3360 key.offset = (u64)-1;
3361
3362 while (1) {
3363 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3364 if (ret < 0)
3365 goto out;
3366
3367 /*
3368 * if ret == 0 means we found what we were searching for, which
3369 * is weird, but possible, so only screw with path if we didn't
3370 * find the key and see if we have stuff that matches
3371 */
3372 if (ret > 0) {
3373 ret = 0;
3374 if (path->slots[0] == 0)
3375 break;
3376 path->slots[0]--;
3377 }
3378
3379 /* pull out the item */
3380 leaf = path->nodes[0];
3381 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3382
3383 /* make sure the item matches what we want */
3384 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3385 break;
3386 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3387 break;
3388
3389 /* release the path since we're done with it */
3390 btrfs_release_path(path);
3391
3392 /*
3393 * this is where we are basically btrfs_lookup, without the
3394 * crossing root thing. we store the inode number in the
3395 * offset of the orphan item.
3396 */
3397
3398 if (found_key.offset == last_objectid) {
3399 btrfs_err(root->fs_info,
3400 "Error removing orphan entry, stopping orphan cleanup");
3401 ret = -EINVAL;
3402 goto out;
3403 }
3404
3405 last_objectid = found_key.offset;
3406
3407 found_key.objectid = found_key.offset;
3408 found_key.type = BTRFS_INODE_ITEM_KEY;
3409 found_key.offset = 0;
3410 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3411 ret = PTR_ERR_OR_ZERO(inode);
3412 if (ret && ret != -ESTALE)
3413 goto out;
3414
3415 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3416 struct btrfs_root *dead_root;
3417 struct btrfs_fs_info *fs_info = root->fs_info;
3418 int is_dead_root = 0;
3419
3420 /*
3421 * this is an orphan in the tree root. Currently these
3422 * could come from 2 sources:
3423 * a) a snapshot deletion in progress
3424 * b) a free space cache inode
3425 * We need to distinguish those two, as the snapshot
3426 * orphan must not get deleted.
3427 * find_dead_roots already ran before us, so if this
3428 * is a snapshot deletion, we should find the root
3429 * in the dead_roots list
3430 */
3431 spin_lock(&fs_info->trans_lock);
3432 list_for_each_entry(dead_root, &fs_info->dead_roots,
3433 root_list) {
3434 if (dead_root->root_key.objectid ==
3435 found_key.objectid) {
3436 is_dead_root = 1;
3437 break;
3438 }
3439 }
3440 spin_unlock(&fs_info->trans_lock);
3441 if (is_dead_root) {
3442 /* prevent this orphan from being found again */
3443 key.offset = found_key.objectid - 1;
3444 continue;
3445 }
3446 }
3447 /*
3448 * Inode is already gone but the orphan item is still there,
3449 * kill the orphan item.
3450 */
3451 if (ret == -ESTALE) {
3452 trans = btrfs_start_transaction(root, 1);
3453 if (IS_ERR(trans)) {
3454 ret = PTR_ERR(trans);
3455 goto out;
3456 }
3457 btrfs_debug(root->fs_info, "auto deleting %Lu",
3458 found_key.objectid);
3459 ret = btrfs_del_orphan_item(trans, root,
3460 found_key.objectid);
3461 btrfs_end_transaction(trans, root);
3462 if (ret)
3463 goto out;
3464 continue;
3465 }
3466
3467 /*
3468 * add this inode to the orphan list so btrfs_orphan_del does
3469 * the proper thing when we hit it
3470 */
3471 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3472 &BTRFS_I(inode)->runtime_flags);
3473 atomic_inc(&root->orphan_inodes);
3474
3475 /* if we have links, this was a truncate, lets do that */
3476 if (inode->i_nlink) {
3477 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3478 iput(inode);
3479 continue;
3480 }
3481 nr_truncate++;
3482
3483 /* 1 for the orphan item deletion. */
3484 trans = btrfs_start_transaction(root, 1);
3485 if (IS_ERR(trans)) {
3486 iput(inode);
3487 ret = PTR_ERR(trans);
3488 goto out;
3489 }
3490 ret = btrfs_orphan_add(trans, inode);
3491 btrfs_end_transaction(trans, root);
3492 if (ret) {
3493 iput(inode);
3494 goto out;
3495 }
3496
3497 ret = btrfs_truncate(inode);
3498 if (ret)
3499 btrfs_orphan_del(NULL, inode);
3500 } else {
3501 nr_unlink++;
3502 }
3503
3504 /* this will do delete_inode and everything for us */
3505 iput(inode);
3506 if (ret)
3507 goto out;
3508 }
3509 /* release the path since we're done with it */
3510 btrfs_release_path(path);
3511
3512 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3513
3514 if (root->orphan_block_rsv)
3515 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3516 (u64)-1);
3517
3518 if (root->orphan_block_rsv ||
3519 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3520 trans = btrfs_join_transaction(root);
3521 if (!IS_ERR(trans))
3522 btrfs_end_transaction(trans, root);
3523 }
3524
3525 if (nr_unlink)
3526 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3527 if (nr_truncate)
3528 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3529
3530 out:
3531 if (ret)
3532 btrfs_err(root->fs_info,
3533 "could not do orphan cleanup %d", ret);
3534 btrfs_free_path(path);
3535 return ret;
3536 }
3537
3538 /*
3539 * very simple check to peek ahead in the leaf looking for xattrs. If we
3540 * don't find any xattrs, we know there can't be any acls.
3541 *
3542 * slot is the slot the inode is in, objectid is the objectid of the inode
3543 */
3544 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3545 int slot, u64 objectid,
3546 int *first_xattr_slot)
3547 {
3548 u32 nritems = btrfs_header_nritems(leaf);
3549 struct btrfs_key found_key;
3550 static u64 xattr_access = 0;
3551 static u64 xattr_default = 0;
3552 int scanned = 0;
3553
3554 if (!xattr_access) {
3555 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3556 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3557 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3558 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3559 }
3560
3561 slot++;
3562 *first_xattr_slot = -1;
3563 while (slot < nritems) {
3564 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3565
3566 /* we found a different objectid, there must not be acls */
3567 if (found_key.objectid != objectid)
3568 return 0;
3569
3570 /* we found an xattr, assume we've got an acl */
3571 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3572 if (*first_xattr_slot == -1)
3573 *first_xattr_slot = slot;
3574 if (found_key.offset == xattr_access ||
3575 found_key.offset == xattr_default)
3576 return 1;
3577 }
3578
3579 /*
3580 * we found a key greater than an xattr key, there can't
3581 * be any acls later on
3582 */
3583 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3584 return 0;
3585
3586 slot++;
3587 scanned++;
3588
3589 /*
3590 * it goes inode, inode backrefs, xattrs, extents,
3591 * so if there are a ton of hard links to an inode there can
3592 * be a lot of backrefs. Don't waste time searching too hard,
3593 * this is just an optimization
3594 */
3595 if (scanned >= 8)
3596 break;
3597 }
3598 /* we hit the end of the leaf before we found an xattr or
3599 * something larger than an xattr. We have to assume the inode
3600 * has acls
3601 */
3602 if (*first_xattr_slot == -1)
3603 *first_xattr_slot = slot;
3604 return 1;
3605 }
3606
3607 /*
3608 * read an inode from the btree into the in-memory inode
3609 */
3610 static void btrfs_read_locked_inode(struct inode *inode)
3611 {
3612 struct btrfs_path *path;
3613 struct extent_buffer *leaf;
3614 struct btrfs_inode_item *inode_item;
3615 struct btrfs_root *root = BTRFS_I(inode)->root;
3616 struct btrfs_key location;
3617 unsigned long ptr;
3618 int maybe_acls;
3619 u32 rdev;
3620 int ret;
3621 bool filled = false;
3622 int first_xattr_slot;
3623
3624 ret = btrfs_fill_inode(inode, &rdev);
3625 if (!ret)
3626 filled = true;
3627
3628 path = btrfs_alloc_path();
3629 if (!path)
3630 goto make_bad;
3631
3632 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3633
3634 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3635 if (ret)
3636 goto make_bad;
3637
3638 leaf = path->nodes[0];
3639
3640 if (filled)
3641 goto cache_index;
3642
3643 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3644 struct btrfs_inode_item);
3645 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3646 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3647 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3648 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3649 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3650
3651 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3652 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3653
3654 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3655 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3656
3657 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3658 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3659
3660 BTRFS_I(inode)->i_otime.tv_sec =
3661 btrfs_timespec_sec(leaf, &inode_item->otime);
3662 BTRFS_I(inode)->i_otime.tv_nsec =
3663 btrfs_timespec_nsec(leaf, &inode_item->otime);
3664
3665 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3666 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3667 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3668
3669 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3670 inode->i_generation = BTRFS_I(inode)->generation;
3671 inode->i_rdev = 0;
3672 rdev = btrfs_inode_rdev(leaf, inode_item);
3673
3674 BTRFS_I(inode)->index_cnt = (u64)-1;
3675 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3676
3677 cache_index:
3678 /*
3679 * If we were modified in the current generation and evicted from memory
3680 * and then re-read we need to do a full sync since we don't have any
3681 * idea about which extents were modified before we were evicted from
3682 * cache.
3683 *
3684 * This is required for both inode re-read from disk and delayed inode
3685 * in delayed_nodes_tree.
3686 */
3687 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3688 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3689 &BTRFS_I(inode)->runtime_flags);
3690
3691 /*
3692 * We don't persist the id of the transaction where an unlink operation
3693 * against the inode was last made. So here we assume the inode might
3694 * have been evicted, and therefore the exact value of last_unlink_trans
3695 * lost, and set it to last_trans to avoid metadata inconsistencies
3696 * between the inode and its parent if the inode is fsync'ed and the log
3697 * replayed. For example, in the scenario:
3698 *
3699 * touch mydir/foo
3700 * ln mydir/foo mydir/bar
3701 * sync
3702 * unlink mydir/bar
3703 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3704 * xfs_io -c fsync mydir/foo
3705 * <power failure>
3706 * mount fs, triggers fsync log replay
3707 *
3708 * We must make sure that when we fsync our inode foo we also log its
3709 * parent inode, otherwise after log replay the parent still has the
3710 * dentry with the "bar" name but our inode foo has a link count of 1
3711 * and doesn't have an inode ref with the name "bar" anymore.
3712 *
3713 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3714 * but it guarantees correctness at the expense of ocassional full
3715 * transaction commits on fsync if our inode is a directory, or if our
3716 * inode is not a directory, logging its parent unnecessarily.
3717 */
3718 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3719
3720 path->slots[0]++;
3721 if (inode->i_nlink != 1 ||
3722 path->slots[0] >= btrfs_header_nritems(leaf))
3723 goto cache_acl;
3724
3725 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3726 if (location.objectid != btrfs_ino(inode))
3727 goto cache_acl;
3728
3729 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3730 if (location.type == BTRFS_INODE_REF_KEY) {
3731 struct btrfs_inode_ref *ref;
3732
3733 ref = (struct btrfs_inode_ref *)ptr;
3734 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3735 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3736 struct btrfs_inode_extref *extref;
3737
3738 extref = (struct btrfs_inode_extref *)ptr;
3739 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3740 extref);
3741 }
3742 cache_acl:
3743 /*
3744 * try to precache a NULL acl entry for files that don't have
3745 * any xattrs or acls
3746 */
3747 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3748 btrfs_ino(inode), &first_xattr_slot);
3749 if (first_xattr_slot != -1) {
3750 path->slots[0] = first_xattr_slot;
3751 ret = btrfs_load_inode_props(inode, path);
3752 if (ret)
3753 btrfs_err(root->fs_info,
3754 "error loading props for ino %llu (root %llu): %d",
3755 btrfs_ino(inode),
3756 root->root_key.objectid, ret);
3757 }
3758 btrfs_free_path(path);
3759
3760 if (!maybe_acls)
3761 cache_no_acl(inode);
3762
3763 switch (inode->i_mode & S_IFMT) {
3764 case S_IFREG:
3765 inode->i_mapping->a_ops = &btrfs_aops;
3766 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3767 inode->i_fop = &btrfs_file_operations;
3768 inode->i_op = &btrfs_file_inode_operations;
3769 break;
3770 case S_IFDIR:
3771 inode->i_fop = &btrfs_dir_file_operations;
3772 if (root == root->fs_info->tree_root)
3773 inode->i_op = &btrfs_dir_ro_inode_operations;
3774 else
3775 inode->i_op = &btrfs_dir_inode_operations;
3776 break;
3777 case S_IFLNK:
3778 inode->i_op = &btrfs_symlink_inode_operations;
3779 inode_nohighmem(inode);
3780 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3781 break;
3782 default:
3783 inode->i_op = &btrfs_special_inode_operations;
3784 init_special_inode(inode, inode->i_mode, rdev);
3785 break;
3786 }
3787
3788 btrfs_update_iflags(inode);
3789 return;
3790
3791 make_bad:
3792 btrfs_free_path(path);
3793 make_bad_inode(inode);
3794 }
3795
3796 /*
3797 * given a leaf and an inode, copy the inode fields into the leaf
3798 */
3799 static void fill_inode_item(struct btrfs_trans_handle *trans,
3800 struct extent_buffer *leaf,
3801 struct btrfs_inode_item *item,
3802 struct inode *inode)
3803 {
3804 struct btrfs_map_token token;
3805
3806 btrfs_init_map_token(&token);
3807
3808 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3809 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3810 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3811 &token);
3812 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3813 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3814
3815 btrfs_set_token_timespec_sec(leaf, &item->atime,
3816 inode->i_atime.tv_sec, &token);
3817 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3818 inode->i_atime.tv_nsec, &token);
3819
3820 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3821 inode->i_mtime.tv_sec, &token);
3822 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3823 inode->i_mtime.tv_nsec, &token);
3824
3825 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3826 inode->i_ctime.tv_sec, &token);
3827 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3828 inode->i_ctime.tv_nsec, &token);
3829
3830 btrfs_set_token_timespec_sec(leaf, &item->otime,
3831 BTRFS_I(inode)->i_otime.tv_sec, &token);
3832 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3833 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3834
3835 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3836 &token);
3837 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3838 &token);
3839 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3840 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3841 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3842 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3843 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3844 }
3845
3846 /*
3847 * copy everything in the in-memory inode into the btree.
3848 */
3849 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3850 struct btrfs_root *root, struct inode *inode)
3851 {
3852 struct btrfs_inode_item *inode_item;
3853 struct btrfs_path *path;
3854 struct extent_buffer *leaf;
3855 int ret;
3856
3857 path = btrfs_alloc_path();
3858 if (!path)
3859 return -ENOMEM;
3860
3861 path->leave_spinning = 1;
3862 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3863 1);
3864 if (ret) {
3865 if (ret > 0)
3866 ret = -ENOENT;
3867 goto failed;
3868 }
3869
3870 leaf = path->nodes[0];
3871 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3872 struct btrfs_inode_item);
3873
3874 fill_inode_item(trans, leaf, inode_item, inode);
3875 btrfs_mark_buffer_dirty(leaf);
3876 btrfs_set_inode_last_trans(trans, inode);
3877 ret = 0;
3878 failed:
3879 btrfs_free_path(path);
3880 return ret;
3881 }
3882
3883 /*
3884 * copy everything in the in-memory inode into the btree.
3885 */
3886 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3887 struct btrfs_root *root, struct inode *inode)
3888 {
3889 int ret;
3890
3891 /*
3892 * If the inode is a free space inode, we can deadlock during commit
3893 * if we put it into the delayed code.
3894 *
3895 * The data relocation inode should also be directly updated
3896 * without delay
3897 */
3898 if (!btrfs_is_free_space_inode(inode)
3899 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3900 && !root->fs_info->log_root_recovering) {
3901 btrfs_update_root_times(trans, root);
3902
3903 ret = btrfs_delayed_update_inode(trans, root, inode);
3904 if (!ret)
3905 btrfs_set_inode_last_trans(trans, inode);
3906 return ret;
3907 }
3908
3909 return btrfs_update_inode_item(trans, root, inode);
3910 }
3911
3912 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3913 struct btrfs_root *root,
3914 struct inode *inode)
3915 {
3916 int ret;
3917
3918 ret = btrfs_update_inode(trans, root, inode);
3919 if (ret == -ENOSPC)
3920 return btrfs_update_inode_item(trans, root, inode);
3921 return ret;
3922 }
3923
3924 /*
3925 * unlink helper that gets used here in inode.c and in the tree logging
3926 * recovery code. It remove a link in a directory with a given name, and
3927 * also drops the back refs in the inode to the directory
3928 */
3929 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3930 struct btrfs_root *root,
3931 struct inode *dir, struct inode *inode,
3932 const char *name, int name_len)
3933 {
3934 struct btrfs_path *path;
3935 int ret = 0;
3936 struct extent_buffer *leaf;
3937 struct btrfs_dir_item *di;
3938 struct btrfs_key key;
3939 u64 index;
3940 u64 ino = btrfs_ino(inode);
3941 u64 dir_ino = btrfs_ino(dir);
3942
3943 path = btrfs_alloc_path();
3944 if (!path) {
3945 ret = -ENOMEM;
3946 goto out;
3947 }
3948
3949 path->leave_spinning = 1;
3950 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3951 name, name_len, -1);
3952 if (IS_ERR(di)) {
3953 ret = PTR_ERR(di);
3954 goto err;
3955 }
3956 if (!di) {
3957 ret = -ENOENT;
3958 goto err;
3959 }
3960 leaf = path->nodes[0];
3961 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3962 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3963 if (ret)
3964 goto err;
3965 btrfs_release_path(path);
3966
3967 /*
3968 * If we don't have dir index, we have to get it by looking up
3969 * the inode ref, since we get the inode ref, remove it directly,
3970 * it is unnecessary to do delayed deletion.
3971 *
3972 * But if we have dir index, needn't search inode ref to get it.
3973 * Since the inode ref is close to the inode item, it is better
3974 * that we delay to delete it, and just do this deletion when
3975 * we update the inode item.
3976 */
3977 if (BTRFS_I(inode)->dir_index) {
3978 ret = btrfs_delayed_delete_inode_ref(inode);
3979 if (!ret) {
3980 index = BTRFS_I(inode)->dir_index;
3981 goto skip_backref;
3982 }
3983 }
3984
3985 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3986 dir_ino, &index);
3987 if (ret) {
3988 btrfs_info(root->fs_info,
3989 "failed to delete reference to %.*s, inode %llu parent %llu",
3990 name_len, name, ino, dir_ino);
3991 btrfs_abort_transaction(trans, root, ret);
3992 goto err;
3993 }
3994 skip_backref:
3995 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3996 if (ret) {
3997 btrfs_abort_transaction(trans, root, ret);
3998 goto err;
3999 }
4000
4001 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4002 inode, dir_ino);
4003 if (ret != 0 && ret != -ENOENT) {
4004 btrfs_abort_transaction(trans, root, ret);
4005 goto err;
4006 }
4007
4008 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4009 dir, index);
4010 if (ret == -ENOENT)
4011 ret = 0;
4012 else if (ret)
4013 btrfs_abort_transaction(trans, root, ret);
4014 err:
4015 btrfs_free_path(path);
4016 if (ret)
4017 goto out;
4018
4019 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4020 inode_inc_iversion(inode);
4021 inode_inc_iversion(dir);
4022 inode->i_ctime = dir->i_mtime =
4023 dir->i_ctime = current_fs_time(inode->i_sb);
4024 ret = btrfs_update_inode(trans, root, dir);
4025 out:
4026 return ret;
4027 }
4028
4029 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4030 struct btrfs_root *root,
4031 struct inode *dir, struct inode *inode,
4032 const char *name, int name_len)
4033 {
4034 int ret;
4035 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4036 if (!ret) {
4037 drop_nlink(inode);
4038 ret = btrfs_update_inode(trans, root, inode);
4039 }
4040 return ret;
4041 }
4042
4043 /*
4044 * helper to start transaction for unlink and rmdir.
4045 *
4046 * unlink and rmdir are special in btrfs, they do not always free space, so
4047 * if we cannot make our reservations the normal way try and see if there is
4048 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4049 * allow the unlink to occur.
4050 */
4051 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4052 {
4053 struct btrfs_root *root = BTRFS_I(dir)->root;
4054
4055 /*
4056 * 1 for the possible orphan item
4057 * 1 for the dir item
4058 * 1 for the dir index
4059 * 1 for the inode ref
4060 * 1 for the inode
4061 */
4062 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4063 }
4064
4065 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4066 {
4067 struct btrfs_root *root = BTRFS_I(dir)->root;
4068 struct btrfs_trans_handle *trans;
4069 struct inode *inode = d_inode(dentry);
4070 int ret;
4071
4072 trans = __unlink_start_trans(dir);
4073 if (IS_ERR(trans))
4074 return PTR_ERR(trans);
4075
4076 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4077
4078 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4079 dentry->d_name.name, dentry->d_name.len);
4080 if (ret)
4081 goto out;
4082
4083 if (inode->i_nlink == 0) {
4084 ret = btrfs_orphan_add(trans, inode);
4085 if (ret)
4086 goto out;
4087 }
4088
4089 out:
4090 btrfs_end_transaction(trans, root);
4091 btrfs_btree_balance_dirty(root);
4092 return ret;
4093 }
4094
4095 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4096 struct btrfs_root *root,
4097 struct inode *dir, u64 objectid,
4098 const char *name, int name_len)
4099 {
4100 struct btrfs_path *path;
4101 struct extent_buffer *leaf;
4102 struct btrfs_dir_item *di;
4103 struct btrfs_key key;
4104 u64 index;
4105 int ret;
4106 u64 dir_ino = btrfs_ino(dir);
4107
4108 path = btrfs_alloc_path();
4109 if (!path)
4110 return -ENOMEM;
4111
4112 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4113 name, name_len, -1);
4114 if (IS_ERR_OR_NULL(di)) {
4115 if (!di)
4116 ret = -ENOENT;
4117 else
4118 ret = PTR_ERR(di);
4119 goto out;
4120 }
4121
4122 leaf = path->nodes[0];
4123 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4124 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4125 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4126 if (ret) {
4127 btrfs_abort_transaction(trans, root, ret);
4128 goto out;
4129 }
4130 btrfs_release_path(path);
4131
4132 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4133 objectid, root->root_key.objectid,
4134 dir_ino, &index, name, name_len);
4135 if (ret < 0) {
4136 if (ret != -ENOENT) {
4137 btrfs_abort_transaction(trans, root, ret);
4138 goto out;
4139 }
4140 di = btrfs_search_dir_index_item(root, path, dir_ino,
4141 name, name_len);
4142 if (IS_ERR_OR_NULL(di)) {
4143 if (!di)
4144 ret = -ENOENT;
4145 else
4146 ret = PTR_ERR(di);
4147 btrfs_abort_transaction(trans, root, ret);
4148 goto out;
4149 }
4150
4151 leaf = path->nodes[0];
4152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4153 btrfs_release_path(path);
4154 index = key.offset;
4155 }
4156 btrfs_release_path(path);
4157
4158 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4159 if (ret) {
4160 btrfs_abort_transaction(trans, root, ret);
4161 goto out;
4162 }
4163
4164 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4165 inode_inc_iversion(dir);
4166 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4167 ret = btrfs_update_inode_fallback(trans, root, dir);
4168 if (ret)
4169 btrfs_abort_transaction(trans, root, ret);
4170 out:
4171 btrfs_free_path(path);
4172 return ret;
4173 }
4174
4175 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4176 {
4177 struct inode *inode = d_inode(dentry);
4178 int err = 0;
4179 struct btrfs_root *root = BTRFS_I(dir)->root;
4180 struct btrfs_trans_handle *trans;
4181
4182 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4183 return -ENOTEMPTY;
4184 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4185 return -EPERM;
4186
4187 trans = __unlink_start_trans(dir);
4188 if (IS_ERR(trans))
4189 return PTR_ERR(trans);
4190
4191 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4192 err = btrfs_unlink_subvol(trans, root, dir,
4193 BTRFS_I(inode)->location.objectid,
4194 dentry->d_name.name,
4195 dentry->d_name.len);
4196 goto out;
4197 }
4198
4199 err = btrfs_orphan_add(trans, inode);
4200 if (err)
4201 goto out;
4202
4203 /* now the directory is empty */
4204 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4205 dentry->d_name.name, dentry->d_name.len);
4206 if (!err)
4207 btrfs_i_size_write(inode, 0);
4208 out:
4209 btrfs_end_transaction(trans, root);
4210 btrfs_btree_balance_dirty(root);
4211
4212 return err;
4213 }
4214
4215 static int truncate_space_check(struct btrfs_trans_handle *trans,
4216 struct btrfs_root *root,
4217 u64 bytes_deleted)
4218 {
4219 int ret;
4220
4221 /*
4222 * This is only used to apply pressure to the enospc system, we don't
4223 * intend to use this reservation at all.
4224 */
4225 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4226 bytes_deleted *= root->nodesize;
4227 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4228 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4229 if (!ret) {
4230 trace_btrfs_space_reservation(root->fs_info, "transaction",
4231 trans->transid,
4232 bytes_deleted, 1);
4233 trans->bytes_reserved += bytes_deleted;
4234 }
4235 return ret;
4236
4237 }
4238
4239 static int truncate_inline_extent(struct inode *inode,
4240 struct btrfs_path *path,
4241 struct btrfs_key *found_key,
4242 const u64 item_end,
4243 const u64 new_size)
4244 {
4245 struct extent_buffer *leaf = path->nodes[0];
4246 int slot = path->slots[0];
4247 struct btrfs_file_extent_item *fi;
4248 u32 size = (u32)(new_size - found_key->offset);
4249 struct btrfs_root *root = BTRFS_I(inode)->root;
4250
4251 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4252
4253 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4254 loff_t offset = new_size;
4255 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4256
4257 /*
4258 * Zero out the remaining of the last page of our inline extent,
4259 * instead of directly truncating our inline extent here - that
4260 * would be much more complex (decompressing all the data, then
4261 * compressing the truncated data, which might be bigger than
4262 * the size of the inline extent, resize the extent, etc).
4263 * We release the path because to get the page we might need to
4264 * read the extent item from disk (data not in the page cache).
4265 */
4266 btrfs_release_path(path);
4267 return btrfs_truncate_block(inode, offset, page_end - offset,
4268 0);
4269 }
4270
4271 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4272 size = btrfs_file_extent_calc_inline_size(size);
4273 btrfs_truncate_item(root, path, size, 1);
4274
4275 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4276 inode_sub_bytes(inode, item_end + 1 - new_size);
4277
4278 return 0;
4279 }
4280
4281 /*
4282 * this can truncate away extent items, csum items and directory items.
4283 * It starts at a high offset and removes keys until it can't find
4284 * any higher than new_size
4285 *
4286 * csum items that cross the new i_size are truncated to the new size
4287 * as well.
4288 *
4289 * min_type is the minimum key type to truncate down to. If set to 0, this
4290 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4291 */
4292 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4293 struct btrfs_root *root,
4294 struct inode *inode,
4295 u64 new_size, u32 min_type)
4296 {
4297 struct btrfs_path *path;
4298 struct extent_buffer *leaf;
4299 struct btrfs_file_extent_item *fi;
4300 struct btrfs_key key;
4301 struct btrfs_key found_key;
4302 u64 extent_start = 0;
4303 u64 extent_num_bytes = 0;
4304 u64 extent_offset = 0;
4305 u64 item_end = 0;
4306 u64 last_size = new_size;
4307 u32 found_type = (u8)-1;
4308 int found_extent;
4309 int del_item;
4310 int pending_del_nr = 0;
4311 int pending_del_slot = 0;
4312 int extent_type = -1;
4313 int ret;
4314 int err = 0;
4315 u64 ino = btrfs_ino(inode);
4316 u64 bytes_deleted = 0;
4317 bool be_nice = 0;
4318 bool should_throttle = 0;
4319 bool should_end = 0;
4320
4321 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4322
4323 /*
4324 * for non-free space inodes and ref cows, we want to back off from
4325 * time to time
4326 */
4327 if (!btrfs_is_free_space_inode(inode) &&
4328 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4329 be_nice = 1;
4330
4331 path = btrfs_alloc_path();
4332 if (!path)
4333 return -ENOMEM;
4334 path->reada = READA_BACK;
4335
4336 /*
4337 * We want to drop from the next block forward in case this new size is
4338 * not block aligned since we will be keeping the last block of the
4339 * extent just the way it is.
4340 */
4341 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4342 root == root->fs_info->tree_root)
4343 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4344 root->sectorsize), (u64)-1, 0);
4345
4346 /*
4347 * This function is also used to drop the items in the log tree before
4348 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4349 * it is used to drop the loged items. So we shouldn't kill the delayed
4350 * items.
4351 */
4352 if (min_type == 0 && root == BTRFS_I(inode)->root)
4353 btrfs_kill_delayed_inode_items(inode);
4354
4355 key.objectid = ino;
4356 key.offset = (u64)-1;
4357 key.type = (u8)-1;
4358
4359 search_again:
4360 /*
4361 * with a 16K leaf size and 128MB extents, you can actually queue
4362 * up a huge file in a single leaf. Most of the time that
4363 * bytes_deleted is > 0, it will be huge by the time we get here
4364 */
4365 if (be_nice && bytes_deleted > SZ_32M) {
4366 if (btrfs_should_end_transaction(trans, root)) {
4367 err = -EAGAIN;
4368 goto error;
4369 }
4370 }
4371
4372
4373 path->leave_spinning = 1;
4374 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4375 if (ret < 0) {
4376 err = ret;
4377 goto out;
4378 }
4379
4380 if (ret > 0) {
4381 /* there are no items in the tree for us to truncate, we're
4382 * done
4383 */
4384 if (path->slots[0] == 0)
4385 goto out;
4386 path->slots[0]--;
4387 }
4388
4389 while (1) {
4390 fi = NULL;
4391 leaf = path->nodes[0];
4392 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4393 found_type = found_key.type;
4394
4395 if (found_key.objectid != ino)
4396 break;
4397
4398 if (found_type < min_type)
4399 break;
4400
4401 item_end = found_key.offset;
4402 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4403 fi = btrfs_item_ptr(leaf, path->slots[0],
4404 struct btrfs_file_extent_item);
4405 extent_type = btrfs_file_extent_type(leaf, fi);
4406 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4407 item_end +=
4408 btrfs_file_extent_num_bytes(leaf, fi);
4409 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4410 item_end += btrfs_file_extent_inline_len(leaf,
4411 path->slots[0], fi);
4412 }
4413 item_end--;
4414 }
4415 if (found_type > min_type) {
4416 del_item = 1;
4417 } else {
4418 if (item_end < new_size)
4419 break;
4420 if (found_key.offset >= new_size)
4421 del_item = 1;
4422 else
4423 del_item = 0;
4424 }
4425 found_extent = 0;
4426 /* FIXME, shrink the extent if the ref count is only 1 */
4427 if (found_type != BTRFS_EXTENT_DATA_KEY)
4428 goto delete;
4429
4430 if (del_item)
4431 last_size = found_key.offset;
4432 else
4433 last_size = new_size;
4434
4435 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4436 u64 num_dec;
4437 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4438 if (!del_item) {
4439 u64 orig_num_bytes =
4440 btrfs_file_extent_num_bytes(leaf, fi);
4441 extent_num_bytes = ALIGN(new_size -
4442 found_key.offset,
4443 root->sectorsize);
4444 btrfs_set_file_extent_num_bytes(leaf, fi,
4445 extent_num_bytes);
4446 num_dec = (orig_num_bytes -
4447 extent_num_bytes);
4448 if (test_bit(BTRFS_ROOT_REF_COWS,
4449 &root->state) &&
4450 extent_start != 0)
4451 inode_sub_bytes(inode, num_dec);
4452 btrfs_mark_buffer_dirty(leaf);
4453 } else {
4454 extent_num_bytes =
4455 btrfs_file_extent_disk_num_bytes(leaf,
4456 fi);
4457 extent_offset = found_key.offset -
4458 btrfs_file_extent_offset(leaf, fi);
4459
4460 /* FIXME blocksize != 4096 */
4461 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4462 if (extent_start != 0) {
4463 found_extent = 1;
4464 if (test_bit(BTRFS_ROOT_REF_COWS,
4465 &root->state))
4466 inode_sub_bytes(inode, num_dec);
4467 }
4468 }
4469 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4470 /*
4471 * we can't truncate inline items that have had
4472 * special encodings
4473 */
4474 if (!del_item &&
4475 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4476 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4477
4478 /*
4479 * Need to release path in order to truncate a
4480 * compressed extent. So delete any accumulated
4481 * extent items so far.
4482 */
4483 if (btrfs_file_extent_compression(leaf, fi) !=
4484 BTRFS_COMPRESS_NONE && pending_del_nr) {
4485 err = btrfs_del_items(trans, root, path,
4486 pending_del_slot,
4487 pending_del_nr);
4488 if (err) {
4489 btrfs_abort_transaction(trans,
4490 root,
4491 err);
4492 goto error;
4493 }
4494 pending_del_nr = 0;
4495 }
4496
4497 err = truncate_inline_extent(inode, path,
4498 &found_key,
4499 item_end,
4500 new_size);
4501 if (err) {
4502 btrfs_abort_transaction(trans,
4503 root, err);
4504 goto error;
4505 }
4506 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4507 &root->state)) {
4508 inode_sub_bytes(inode, item_end + 1 - new_size);
4509 }
4510 }
4511 delete:
4512 if (del_item) {
4513 if (!pending_del_nr) {
4514 /* no pending yet, add ourselves */
4515 pending_del_slot = path->slots[0];
4516 pending_del_nr = 1;
4517 } else if (pending_del_nr &&
4518 path->slots[0] + 1 == pending_del_slot) {
4519 /* hop on the pending chunk */
4520 pending_del_nr++;
4521 pending_del_slot = path->slots[0];
4522 } else {
4523 BUG();
4524 }
4525 } else {
4526 break;
4527 }
4528 should_throttle = 0;
4529
4530 if (found_extent &&
4531 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4532 root == root->fs_info->tree_root)) {
4533 btrfs_set_path_blocking(path);
4534 bytes_deleted += extent_num_bytes;
4535 ret = btrfs_free_extent(trans, root, extent_start,
4536 extent_num_bytes, 0,
4537 btrfs_header_owner(leaf),
4538 ino, extent_offset);
4539 BUG_ON(ret);
4540 if (btrfs_should_throttle_delayed_refs(trans, root))
4541 btrfs_async_run_delayed_refs(root,
4542 trans->delayed_ref_updates * 2, 0);
4543 if (be_nice) {
4544 if (truncate_space_check(trans, root,
4545 extent_num_bytes)) {
4546 should_end = 1;
4547 }
4548 if (btrfs_should_throttle_delayed_refs(trans,
4549 root)) {
4550 should_throttle = 1;
4551 }
4552 }
4553 }
4554
4555 if (found_type == BTRFS_INODE_ITEM_KEY)
4556 break;
4557
4558 if (path->slots[0] == 0 ||
4559 path->slots[0] != pending_del_slot ||
4560 should_throttle || should_end) {
4561 if (pending_del_nr) {
4562 ret = btrfs_del_items(trans, root, path,
4563 pending_del_slot,
4564 pending_del_nr);
4565 if (ret) {
4566 btrfs_abort_transaction(trans,
4567 root, ret);
4568 goto error;
4569 }
4570 pending_del_nr = 0;
4571 }
4572 btrfs_release_path(path);
4573 if (should_throttle) {
4574 unsigned long updates = trans->delayed_ref_updates;
4575 if (updates) {
4576 trans->delayed_ref_updates = 0;
4577 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4578 if (ret && !err)
4579 err = ret;
4580 }
4581 }
4582 /*
4583 * if we failed to refill our space rsv, bail out
4584 * and let the transaction restart
4585 */
4586 if (should_end) {
4587 err = -EAGAIN;
4588 goto error;
4589 }
4590 goto search_again;
4591 } else {
4592 path->slots[0]--;
4593 }
4594 }
4595 out:
4596 if (pending_del_nr) {
4597 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4598 pending_del_nr);
4599 if (ret)
4600 btrfs_abort_transaction(trans, root, ret);
4601 }
4602 error:
4603 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4604 btrfs_ordered_update_i_size(inode, last_size, NULL);
4605
4606 btrfs_free_path(path);
4607
4608 if (be_nice && bytes_deleted > SZ_32M) {
4609 unsigned long updates = trans->delayed_ref_updates;
4610 if (updates) {
4611 trans->delayed_ref_updates = 0;
4612 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4613 if (ret && !err)
4614 err = ret;
4615 }
4616 }
4617 return err;
4618 }
4619
4620 /*
4621 * btrfs_truncate_block - read, zero a chunk and write a block
4622 * @inode - inode that we're zeroing
4623 * @from - the offset to start zeroing
4624 * @len - the length to zero, 0 to zero the entire range respective to the
4625 * offset
4626 * @front - zero up to the offset instead of from the offset on
4627 *
4628 * This will find the block for the "from" offset and cow the block and zero the
4629 * part we want to zero. This is used with truncate and hole punching.
4630 */
4631 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4632 int front)
4633 {
4634 struct address_space *mapping = inode->i_mapping;
4635 struct btrfs_root *root = BTRFS_I(inode)->root;
4636 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4637 struct btrfs_ordered_extent *ordered;
4638 struct extent_state *cached_state = NULL;
4639 char *kaddr;
4640 u32 blocksize = root->sectorsize;
4641 pgoff_t index = from >> PAGE_SHIFT;
4642 unsigned offset = from & (blocksize - 1);
4643 struct page *page;
4644 gfp_t mask = btrfs_alloc_write_mask(mapping);
4645 int ret = 0;
4646 u64 block_start;
4647 u64 block_end;
4648
4649 if ((offset & (blocksize - 1)) == 0 &&
4650 (!len || ((len & (blocksize - 1)) == 0)))
4651 goto out;
4652
4653 ret = btrfs_delalloc_reserve_space(inode,
4654 round_down(from, blocksize), blocksize);
4655 if (ret)
4656 goto out;
4657
4658 again:
4659 page = find_or_create_page(mapping, index, mask);
4660 if (!page) {
4661 btrfs_delalloc_release_space(inode,
4662 round_down(from, blocksize),
4663 blocksize);
4664 ret = -ENOMEM;
4665 goto out;
4666 }
4667
4668 block_start = round_down(from, blocksize);
4669 block_end = block_start + blocksize - 1;
4670
4671 if (!PageUptodate(page)) {
4672 ret = btrfs_readpage(NULL, page);
4673 lock_page(page);
4674 if (page->mapping != mapping) {
4675 unlock_page(page);
4676 put_page(page);
4677 goto again;
4678 }
4679 if (!PageUptodate(page)) {
4680 ret = -EIO;
4681 goto out_unlock;
4682 }
4683 }
4684 wait_on_page_writeback(page);
4685
4686 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4687 set_page_extent_mapped(page);
4688
4689 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4690 if (ordered) {
4691 unlock_extent_cached(io_tree, block_start, block_end,
4692 &cached_state, GFP_NOFS);
4693 unlock_page(page);
4694 put_page(page);
4695 btrfs_start_ordered_extent(inode, ordered, 1);
4696 btrfs_put_ordered_extent(ordered);
4697 goto again;
4698 }
4699
4700 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4701 EXTENT_DIRTY | EXTENT_DELALLOC |
4702 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4703 0, 0, &cached_state, GFP_NOFS);
4704
4705 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4706 &cached_state);
4707 if (ret) {
4708 unlock_extent_cached(io_tree, block_start, block_end,
4709 &cached_state, GFP_NOFS);
4710 goto out_unlock;
4711 }
4712
4713 if (offset != blocksize) {
4714 if (!len)
4715 len = blocksize - offset;
4716 kaddr = kmap(page);
4717 if (front)
4718 memset(kaddr + (block_start - page_offset(page)),
4719 0, offset);
4720 else
4721 memset(kaddr + (block_start - page_offset(page)) + offset,
4722 0, len);
4723 flush_dcache_page(page);
4724 kunmap(page);
4725 }
4726 ClearPageChecked(page);
4727 set_page_dirty(page);
4728 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4729 GFP_NOFS);
4730
4731 out_unlock:
4732 if (ret)
4733 btrfs_delalloc_release_space(inode, block_start,
4734 blocksize);
4735 unlock_page(page);
4736 put_page(page);
4737 out:
4738 return ret;
4739 }
4740
4741 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4742 u64 offset, u64 len)
4743 {
4744 struct btrfs_trans_handle *trans;
4745 int ret;
4746
4747 /*
4748 * Still need to make sure the inode looks like it's been updated so
4749 * that any holes get logged if we fsync.
4750 */
4751 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4752 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4753 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4754 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4755 return 0;
4756 }
4757
4758 /*
4759 * 1 - for the one we're dropping
4760 * 1 - for the one we're adding
4761 * 1 - for updating the inode.
4762 */
4763 trans = btrfs_start_transaction(root, 3);
4764 if (IS_ERR(trans))
4765 return PTR_ERR(trans);
4766
4767 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4768 if (ret) {
4769 btrfs_abort_transaction(trans, root, ret);
4770 btrfs_end_transaction(trans, root);
4771 return ret;
4772 }
4773
4774 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4775 0, 0, len, 0, len, 0, 0, 0);
4776 if (ret)
4777 btrfs_abort_transaction(trans, root, ret);
4778 else
4779 btrfs_update_inode(trans, root, inode);
4780 btrfs_end_transaction(trans, root);
4781 return ret;
4782 }
4783
4784 /*
4785 * This function puts in dummy file extents for the area we're creating a hole
4786 * for. So if we are truncating this file to a larger size we need to insert
4787 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4788 * the range between oldsize and size
4789 */
4790 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4791 {
4792 struct btrfs_root *root = BTRFS_I(inode)->root;
4793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4794 struct extent_map *em = NULL;
4795 struct extent_state *cached_state = NULL;
4796 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4797 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4798 u64 block_end = ALIGN(size, root->sectorsize);
4799 u64 last_byte;
4800 u64 cur_offset;
4801 u64 hole_size;
4802 int err = 0;
4803
4804 /*
4805 * If our size started in the middle of a block we need to zero out the
4806 * rest of the block before we expand the i_size, otherwise we could
4807 * expose stale data.
4808 */
4809 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4810 if (err)
4811 return err;
4812
4813 if (size <= hole_start)
4814 return 0;
4815
4816 while (1) {
4817 struct btrfs_ordered_extent *ordered;
4818
4819 lock_extent_bits(io_tree, hole_start, block_end - 1,
4820 &cached_state);
4821 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4822 block_end - hole_start);
4823 if (!ordered)
4824 break;
4825 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4826 &cached_state, GFP_NOFS);
4827 btrfs_start_ordered_extent(inode, ordered, 1);
4828 btrfs_put_ordered_extent(ordered);
4829 }
4830
4831 cur_offset = hole_start;
4832 while (1) {
4833 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4834 block_end - cur_offset, 0);
4835 if (IS_ERR(em)) {
4836 err = PTR_ERR(em);
4837 em = NULL;
4838 break;
4839 }
4840 last_byte = min(extent_map_end(em), block_end);
4841 last_byte = ALIGN(last_byte , root->sectorsize);
4842 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4843 struct extent_map *hole_em;
4844 hole_size = last_byte - cur_offset;
4845
4846 err = maybe_insert_hole(root, inode, cur_offset,
4847 hole_size);
4848 if (err)
4849 break;
4850 btrfs_drop_extent_cache(inode, cur_offset,
4851 cur_offset + hole_size - 1, 0);
4852 hole_em = alloc_extent_map();
4853 if (!hole_em) {
4854 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4855 &BTRFS_I(inode)->runtime_flags);
4856 goto next;
4857 }
4858 hole_em->start = cur_offset;
4859 hole_em->len = hole_size;
4860 hole_em->orig_start = cur_offset;
4861
4862 hole_em->block_start = EXTENT_MAP_HOLE;
4863 hole_em->block_len = 0;
4864 hole_em->orig_block_len = 0;
4865 hole_em->ram_bytes = hole_size;
4866 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4867 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4868 hole_em->generation = root->fs_info->generation;
4869
4870 while (1) {
4871 write_lock(&em_tree->lock);
4872 err = add_extent_mapping(em_tree, hole_em, 1);
4873 write_unlock(&em_tree->lock);
4874 if (err != -EEXIST)
4875 break;
4876 btrfs_drop_extent_cache(inode, cur_offset,
4877 cur_offset +
4878 hole_size - 1, 0);
4879 }
4880 free_extent_map(hole_em);
4881 }
4882 next:
4883 free_extent_map(em);
4884 em = NULL;
4885 cur_offset = last_byte;
4886 if (cur_offset >= block_end)
4887 break;
4888 }
4889 free_extent_map(em);
4890 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4891 GFP_NOFS);
4892 return err;
4893 }
4894
4895 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4896 {
4897 struct btrfs_root *root = BTRFS_I(inode)->root;
4898 struct btrfs_trans_handle *trans;
4899 loff_t oldsize = i_size_read(inode);
4900 loff_t newsize = attr->ia_size;
4901 int mask = attr->ia_valid;
4902 int ret;
4903
4904 /*
4905 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4906 * special case where we need to update the times despite not having
4907 * these flags set. For all other operations the VFS set these flags
4908 * explicitly if it wants a timestamp update.
4909 */
4910 if (newsize != oldsize) {
4911 inode_inc_iversion(inode);
4912 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4913 inode->i_ctime = inode->i_mtime =
4914 current_fs_time(inode->i_sb);
4915 }
4916
4917 if (newsize > oldsize) {
4918 /*
4919 * Don't do an expanding truncate while snapshoting is ongoing.
4920 * This is to ensure the snapshot captures a fully consistent
4921 * state of this file - if the snapshot captures this expanding
4922 * truncation, it must capture all writes that happened before
4923 * this truncation.
4924 */
4925 btrfs_wait_for_snapshot_creation(root);
4926 ret = btrfs_cont_expand(inode, oldsize, newsize);
4927 if (ret) {
4928 btrfs_end_write_no_snapshoting(root);
4929 return ret;
4930 }
4931
4932 trans = btrfs_start_transaction(root, 1);
4933 if (IS_ERR(trans)) {
4934 btrfs_end_write_no_snapshoting(root);
4935 return PTR_ERR(trans);
4936 }
4937
4938 i_size_write(inode, newsize);
4939 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4940 pagecache_isize_extended(inode, oldsize, newsize);
4941 ret = btrfs_update_inode(trans, root, inode);
4942 btrfs_end_write_no_snapshoting(root);
4943 btrfs_end_transaction(trans, root);
4944 } else {
4945
4946 /*
4947 * We're truncating a file that used to have good data down to
4948 * zero. Make sure it gets into the ordered flush list so that
4949 * any new writes get down to disk quickly.
4950 */
4951 if (newsize == 0)
4952 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4953 &BTRFS_I(inode)->runtime_flags);
4954
4955 /*
4956 * 1 for the orphan item we're going to add
4957 * 1 for the orphan item deletion.
4958 */
4959 trans = btrfs_start_transaction(root, 2);
4960 if (IS_ERR(trans))
4961 return PTR_ERR(trans);
4962
4963 /*
4964 * We need to do this in case we fail at _any_ point during the
4965 * actual truncate. Once we do the truncate_setsize we could
4966 * invalidate pages which forces any outstanding ordered io to
4967 * be instantly completed which will give us extents that need
4968 * to be truncated. If we fail to get an orphan inode down we
4969 * could have left over extents that were never meant to live,
4970 * so we need to garuntee from this point on that everything
4971 * will be consistent.
4972 */
4973 ret = btrfs_orphan_add(trans, inode);
4974 btrfs_end_transaction(trans, root);
4975 if (ret)
4976 return ret;
4977
4978 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4979 truncate_setsize(inode, newsize);
4980
4981 /* Disable nonlocked read DIO to avoid the end less truncate */
4982 btrfs_inode_block_unlocked_dio(inode);
4983 inode_dio_wait(inode);
4984 btrfs_inode_resume_unlocked_dio(inode);
4985
4986 ret = btrfs_truncate(inode);
4987 if (ret && inode->i_nlink) {
4988 int err;
4989
4990 /*
4991 * failed to truncate, disk_i_size is only adjusted down
4992 * as we remove extents, so it should represent the true
4993 * size of the inode, so reset the in memory size and
4994 * delete our orphan entry.
4995 */
4996 trans = btrfs_join_transaction(root);
4997 if (IS_ERR(trans)) {
4998 btrfs_orphan_del(NULL, inode);
4999 return ret;
5000 }
5001 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5002 err = btrfs_orphan_del(trans, inode);
5003 if (err)
5004 btrfs_abort_transaction(trans, root, err);
5005 btrfs_end_transaction(trans, root);
5006 }
5007 }
5008
5009 return ret;
5010 }
5011
5012 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5013 {
5014 struct inode *inode = d_inode(dentry);
5015 struct btrfs_root *root = BTRFS_I(inode)->root;
5016 int err;
5017
5018 if (btrfs_root_readonly(root))
5019 return -EROFS;
5020
5021 err = inode_change_ok(inode, attr);
5022 if (err)
5023 return err;
5024
5025 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5026 err = btrfs_setsize(inode, attr);
5027 if (err)
5028 return err;
5029 }
5030
5031 if (attr->ia_valid) {
5032 setattr_copy(inode, attr);
5033 inode_inc_iversion(inode);
5034 err = btrfs_dirty_inode(inode);
5035
5036 if (!err && attr->ia_valid & ATTR_MODE)
5037 err = posix_acl_chmod(inode, inode->i_mode);
5038 }
5039
5040 return err;
5041 }
5042
5043 /*
5044 * While truncating the inode pages during eviction, we get the VFS calling
5045 * btrfs_invalidatepage() against each page of the inode. This is slow because
5046 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5047 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5048 * extent_state structures over and over, wasting lots of time.
5049 *
5050 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5051 * those expensive operations on a per page basis and do only the ordered io
5052 * finishing, while we release here the extent_map and extent_state structures,
5053 * without the excessive merging and splitting.
5054 */
5055 static void evict_inode_truncate_pages(struct inode *inode)
5056 {
5057 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5058 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5059 struct rb_node *node;
5060
5061 ASSERT(inode->i_state & I_FREEING);
5062 truncate_inode_pages_final(&inode->i_data);
5063
5064 write_lock(&map_tree->lock);
5065 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5066 struct extent_map *em;
5067
5068 node = rb_first(&map_tree->map);
5069 em = rb_entry(node, struct extent_map, rb_node);
5070 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5071 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5072 remove_extent_mapping(map_tree, em);
5073 free_extent_map(em);
5074 if (need_resched()) {
5075 write_unlock(&map_tree->lock);
5076 cond_resched();
5077 write_lock(&map_tree->lock);
5078 }
5079 }
5080 write_unlock(&map_tree->lock);
5081
5082 /*
5083 * Keep looping until we have no more ranges in the io tree.
5084 * We can have ongoing bios started by readpages (called from readahead)
5085 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5086 * still in progress (unlocked the pages in the bio but did not yet
5087 * unlocked the ranges in the io tree). Therefore this means some
5088 * ranges can still be locked and eviction started because before
5089 * submitting those bios, which are executed by a separate task (work
5090 * queue kthread), inode references (inode->i_count) were not taken
5091 * (which would be dropped in the end io callback of each bio).
5092 * Therefore here we effectively end up waiting for those bios and
5093 * anyone else holding locked ranges without having bumped the inode's
5094 * reference count - if we don't do it, when they access the inode's
5095 * io_tree to unlock a range it may be too late, leading to an
5096 * use-after-free issue.
5097 */
5098 spin_lock(&io_tree->lock);
5099 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5100 struct extent_state *state;
5101 struct extent_state *cached_state = NULL;
5102 u64 start;
5103 u64 end;
5104
5105 node = rb_first(&io_tree->state);
5106 state = rb_entry(node, struct extent_state, rb_node);
5107 start = state->start;
5108 end = state->end;
5109 spin_unlock(&io_tree->lock);
5110
5111 lock_extent_bits(io_tree, start, end, &cached_state);
5112
5113 /*
5114 * If still has DELALLOC flag, the extent didn't reach disk,
5115 * and its reserved space won't be freed by delayed_ref.
5116 * So we need to free its reserved space here.
5117 * (Refer to comment in btrfs_invalidatepage, case 2)
5118 *
5119 * Note, end is the bytenr of last byte, so we need + 1 here.
5120 */
5121 if (state->state & EXTENT_DELALLOC)
5122 btrfs_qgroup_free_data(inode, start, end - start + 1);
5123
5124 clear_extent_bit(io_tree, start, end,
5125 EXTENT_LOCKED | EXTENT_DIRTY |
5126 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5127 EXTENT_DEFRAG, 1, 1,
5128 &cached_state, GFP_NOFS);
5129
5130 cond_resched();
5131 spin_lock(&io_tree->lock);
5132 }
5133 spin_unlock(&io_tree->lock);
5134 }
5135
5136 void btrfs_evict_inode(struct inode *inode)
5137 {
5138 struct btrfs_trans_handle *trans;
5139 struct btrfs_root *root = BTRFS_I(inode)->root;
5140 struct btrfs_block_rsv *rsv, *global_rsv;
5141 int steal_from_global = 0;
5142 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5143 int ret;
5144
5145 trace_btrfs_inode_evict(inode);
5146
5147 evict_inode_truncate_pages(inode);
5148
5149 if (inode->i_nlink &&
5150 ((btrfs_root_refs(&root->root_item) != 0 &&
5151 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5152 btrfs_is_free_space_inode(inode)))
5153 goto no_delete;
5154
5155 if (is_bad_inode(inode)) {
5156 btrfs_orphan_del(NULL, inode);
5157 goto no_delete;
5158 }
5159 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5160 if (!special_file(inode->i_mode))
5161 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5162
5163 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5164
5165 if (root->fs_info->log_root_recovering) {
5166 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5167 &BTRFS_I(inode)->runtime_flags));
5168 goto no_delete;
5169 }
5170
5171 if (inode->i_nlink > 0) {
5172 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5173 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5174 goto no_delete;
5175 }
5176
5177 ret = btrfs_commit_inode_delayed_inode(inode);
5178 if (ret) {
5179 btrfs_orphan_del(NULL, inode);
5180 goto no_delete;
5181 }
5182
5183 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5184 if (!rsv) {
5185 btrfs_orphan_del(NULL, inode);
5186 goto no_delete;
5187 }
5188 rsv->size = min_size;
5189 rsv->failfast = 1;
5190 global_rsv = &root->fs_info->global_block_rsv;
5191
5192 btrfs_i_size_write(inode, 0);
5193
5194 /*
5195 * This is a bit simpler than btrfs_truncate since we've already
5196 * reserved our space for our orphan item in the unlink, so we just
5197 * need to reserve some slack space in case we add bytes and update
5198 * inode item when doing the truncate.
5199 */
5200 while (1) {
5201 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5202 BTRFS_RESERVE_FLUSH_LIMIT);
5203
5204 /*
5205 * Try and steal from the global reserve since we will
5206 * likely not use this space anyway, we want to try as
5207 * hard as possible to get this to work.
5208 */
5209 if (ret)
5210 steal_from_global++;
5211 else
5212 steal_from_global = 0;
5213 ret = 0;
5214
5215 /*
5216 * steal_from_global == 0: we reserved stuff, hooray!
5217 * steal_from_global == 1: we didn't reserve stuff, boo!
5218 * steal_from_global == 2: we've committed, still not a lot of
5219 * room but maybe we'll have room in the global reserve this
5220 * time.
5221 * steal_from_global == 3: abandon all hope!
5222 */
5223 if (steal_from_global > 2) {
5224 btrfs_warn(root->fs_info,
5225 "Could not get space for a delete, will truncate on mount %d",
5226 ret);
5227 btrfs_orphan_del(NULL, inode);
5228 btrfs_free_block_rsv(root, rsv);
5229 goto no_delete;
5230 }
5231
5232 trans = btrfs_join_transaction(root);
5233 if (IS_ERR(trans)) {
5234 btrfs_orphan_del(NULL, inode);
5235 btrfs_free_block_rsv(root, rsv);
5236 goto no_delete;
5237 }
5238
5239 /*
5240 * We can't just steal from the global reserve, we need tomake
5241 * sure there is room to do it, if not we need to commit and try
5242 * again.
5243 */
5244 if (steal_from_global) {
5245 if (!btrfs_check_space_for_delayed_refs(trans, root))
5246 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5247 min_size);
5248 else
5249 ret = -ENOSPC;
5250 }
5251
5252 /*
5253 * Couldn't steal from the global reserve, we have too much
5254 * pending stuff built up, commit the transaction and try it
5255 * again.
5256 */
5257 if (ret) {
5258 ret = btrfs_commit_transaction(trans, root);
5259 if (ret) {
5260 btrfs_orphan_del(NULL, inode);
5261 btrfs_free_block_rsv(root, rsv);
5262 goto no_delete;
5263 }
5264 continue;
5265 } else {
5266 steal_from_global = 0;
5267 }
5268
5269 trans->block_rsv = rsv;
5270
5271 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5272 if (ret != -ENOSPC && ret != -EAGAIN)
5273 break;
5274
5275 trans->block_rsv = &root->fs_info->trans_block_rsv;
5276 btrfs_end_transaction(trans, root);
5277 trans = NULL;
5278 btrfs_btree_balance_dirty(root);
5279 }
5280
5281 btrfs_free_block_rsv(root, rsv);
5282
5283 /*
5284 * Errors here aren't a big deal, it just means we leave orphan items
5285 * in the tree. They will be cleaned up on the next mount.
5286 */
5287 if (ret == 0) {
5288 trans->block_rsv = root->orphan_block_rsv;
5289 btrfs_orphan_del(trans, inode);
5290 } else {
5291 btrfs_orphan_del(NULL, inode);
5292 }
5293
5294 trans->block_rsv = &root->fs_info->trans_block_rsv;
5295 if (!(root == root->fs_info->tree_root ||
5296 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5297 btrfs_return_ino(root, btrfs_ino(inode));
5298
5299 btrfs_end_transaction(trans, root);
5300 btrfs_btree_balance_dirty(root);
5301 no_delete:
5302 btrfs_remove_delayed_node(inode);
5303 clear_inode(inode);
5304 }
5305
5306 /*
5307 * this returns the key found in the dir entry in the location pointer.
5308 * If no dir entries were found, location->objectid is 0.
5309 */
5310 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5311 struct btrfs_key *location)
5312 {
5313 const char *name = dentry->d_name.name;
5314 int namelen = dentry->d_name.len;
5315 struct btrfs_dir_item *di;
5316 struct btrfs_path *path;
5317 struct btrfs_root *root = BTRFS_I(dir)->root;
5318 int ret = 0;
5319
5320 path = btrfs_alloc_path();
5321 if (!path)
5322 return -ENOMEM;
5323
5324 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5325 namelen, 0);
5326 if (IS_ERR(di))
5327 ret = PTR_ERR(di);
5328
5329 if (IS_ERR_OR_NULL(di))
5330 goto out_err;
5331
5332 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5333 out:
5334 btrfs_free_path(path);
5335 return ret;
5336 out_err:
5337 location->objectid = 0;
5338 goto out;
5339 }
5340
5341 /*
5342 * when we hit a tree root in a directory, the btrfs part of the inode
5343 * needs to be changed to reflect the root directory of the tree root. This
5344 * is kind of like crossing a mount point.
5345 */
5346 static int fixup_tree_root_location(struct btrfs_root *root,
5347 struct inode *dir,
5348 struct dentry *dentry,
5349 struct btrfs_key *location,
5350 struct btrfs_root **sub_root)
5351 {
5352 struct btrfs_path *path;
5353 struct btrfs_root *new_root;
5354 struct btrfs_root_ref *ref;
5355 struct extent_buffer *leaf;
5356 struct btrfs_key key;
5357 int ret;
5358 int err = 0;
5359
5360 path = btrfs_alloc_path();
5361 if (!path) {
5362 err = -ENOMEM;
5363 goto out;
5364 }
5365
5366 err = -ENOENT;
5367 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5368 key.type = BTRFS_ROOT_REF_KEY;
5369 key.offset = location->objectid;
5370
5371 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5372 0, 0);
5373 if (ret) {
5374 if (ret < 0)
5375 err = ret;
5376 goto out;
5377 }
5378
5379 leaf = path->nodes[0];
5380 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5381 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5382 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5383 goto out;
5384
5385 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5386 (unsigned long)(ref + 1),
5387 dentry->d_name.len);
5388 if (ret)
5389 goto out;
5390
5391 btrfs_release_path(path);
5392
5393 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5394 if (IS_ERR(new_root)) {
5395 err = PTR_ERR(new_root);
5396 goto out;
5397 }
5398
5399 *sub_root = new_root;
5400 location->objectid = btrfs_root_dirid(&new_root->root_item);
5401 location->type = BTRFS_INODE_ITEM_KEY;
5402 location->offset = 0;
5403 err = 0;
5404 out:
5405 btrfs_free_path(path);
5406 return err;
5407 }
5408
5409 static void inode_tree_add(struct inode *inode)
5410 {
5411 struct btrfs_root *root = BTRFS_I(inode)->root;
5412 struct btrfs_inode *entry;
5413 struct rb_node **p;
5414 struct rb_node *parent;
5415 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5416 u64 ino = btrfs_ino(inode);
5417
5418 if (inode_unhashed(inode))
5419 return;
5420 parent = NULL;
5421 spin_lock(&root->inode_lock);
5422 p = &root->inode_tree.rb_node;
5423 while (*p) {
5424 parent = *p;
5425 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5426
5427 if (ino < btrfs_ino(&entry->vfs_inode))
5428 p = &parent->rb_left;
5429 else if (ino > btrfs_ino(&entry->vfs_inode))
5430 p = &parent->rb_right;
5431 else {
5432 WARN_ON(!(entry->vfs_inode.i_state &
5433 (I_WILL_FREE | I_FREEING)));
5434 rb_replace_node(parent, new, &root->inode_tree);
5435 RB_CLEAR_NODE(parent);
5436 spin_unlock(&root->inode_lock);
5437 return;
5438 }
5439 }
5440 rb_link_node(new, parent, p);
5441 rb_insert_color(new, &root->inode_tree);
5442 spin_unlock(&root->inode_lock);
5443 }
5444
5445 static void inode_tree_del(struct inode *inode)
5446 {
5447 struct btrfs_root *root = BTRFS_I(inode)->root;
5448 int empty = 0;
5449
5450 spin_lock(&root->inode_lock);
5451 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5452 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5453 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5454 empty = RB_EMPTY_ROOT(&root->inode_tree);
5455 }
5456 spin_unlock(&root->inode_lock);
5457
5458 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5459 synchronize_srcu(&root->fs_info->subvol_srcu);
5460 spin_lock(&root->inode_lock);
5461 empty = RB_EMPTY_ROOT(&root->inode_tree);
5462 spin_unlock(&root->inode_lock);
5463 if (empty)
5464 btrfs_add_dead_root(root);
5465 }
5466 }
5467
5468 void btrfs_invalidate_inodes(struct btrfs_root *root)
5469 {
5470 struct rb_node *node;
5471 struct rb_node *prev;
5472 struct btrfs_inode *entry;
5473 struct inode *inode;
5474 u64 objectid = 0;
5475
5476 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5477 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5478
5479 spin_lock(&root->inode_lock);
5480 again:
5481 node = root->inode_tree.rb_node;
5482 prev = NULL;
5483 while (node) {
5484 prev = node;
5485 entry = rb_entry(node, struct btrfs_inode, rb_node);
5486
5487 if (objectid < btrfs_ino(&entry->vfs_inode))
5488 node = node->rb_left;
5489 else if (objectid > btrfs_ino(&entry->vfs_inode))
5490 node = node->rb_right;
5491 else
5492 break;
5493 }
5494 if (!node) {
5495 while (prev) {
5496 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5497 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5498 node = prev;
5499 break;
5500 }
5501 prev = rb_next(prev);
5502 }
5503 }
5504 while (node) {
5505 entry = rb_entry(node, struct btrfs_inode, rb_node);
5506 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5507 inode = igrab(&entry->vfs_inode);
5508 if (inode) {
5509 spin_unlock(&root->inode_lock);
5510 if (atomic_read(&inode->i_count) > 1)
5511 d_prune_aliases(inode);
5512 /*
5513 * btrfs_drop_inode will have it removed from
5514 * the inode cache when its usage count
5515 * hits zero.
5516 */
5517 iput(inode);
5518 cond_resched();
5519 spin_lock(&root->inode_lock);
5520 goto again;
5521 }
5522
5523 if (cond_resched_lock(&root->inode_lock))
5524 goto again;
5525
5526 node = rb_next(node);
5527 }
5528 spin_unlock(&root->inode_lock);
5529 }
5530
5531 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5532 {
5533 struct btrfs_iget_args *args = p;
5534 inode->i_ino = args->location->objectid;
5535 memcpy(&BTRFS_I(inode)->location, args->location,
5536 sizeof(*args->location));
5537 BTRFS_I(inode)->root = args->root;
5538 return 0;
5539 }
5540
5541 static int btrfs_find_actor(struct inode *inode, void *opaque)
5542 {
5543 struct btrfs_iget_args *args = opaque;
5544 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5545 args->root == BTRFS_I(inode)->root;
5546 }
5547
5548 static struct inode *btrfs_iget_locked(struct super_block *s,
5549 struct btrfs_key *location,
5550 struct btrfs_root *root)
5551 {
5552 struct inode *inode;
5553 struct btrfs_iget_args args;
5554 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5555
5556 args.location = location;
5557 args.root = root;
5558
5559 inode = iget5_locked(s, hashval, btrfs_find_actor,
5560 btrfs_init_locked_inode,
5561 (void *)&args);
5562 return inode;
5563 }
5564
5565 /* Get an inode object given its location and corresponding root.
5566 * Returns in *is_new if the inode was read from disk
5567 */
5568 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5569 struct btrfs_root *root, int *new)
5570 {
5571 struct inode *inode;
5572
5573 inode = btrfs_iget_locked(s, location, root);
5574 if (!inode)
5575 return ERR_PTR(-ENOMEM);
5576
5577 if (inode->i_state & I_NEW) {
5578 btrfs_read_locked_inode(inode);
5579 if (!is_bad_inode(inode)) {
5580 inode_tree_add(inode);
5581 unlock_new_inode(inode);
5582 if (new)
5583 *new = 1;
5584 } else {
5585 unlock_new_inode(inode);
5586 iput(inode);
5587 inode = ERR_PTR(-ESTALE);
5588 }
5589 }
5590
5591 return inode;
5592 }
5593
5594 static struct inode *new_simple_dir(struct super_block *s,
5595 struct btrfs_key *key,
5596 struct btrfs_root *root)
5597 {
5598 struct inode *inode = new_inode(s);
5599
5600 if (!inode)
5601 return ERR_PTR(-ENOMEM);
5602
5603 BTRFS_I(inode)->root = root;
5604 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5605 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5606
5607 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5608 inode->i_op = &btrfs_dir_ro_inode_operations;
5609 inode->i_fop = &simple_dir_operations;
5610 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5611 inode->i_mtime = current_fs_time(inode->i_sb);
5612 inode->i_atime = inode->i_mtime;
5613 inode->i_ctime = inode->i_mtime;
5614 BTRFS_I(inode)->i_otime = inode->i_mtime;
5615
5616 return inode;
5617 }
5618
5619 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5620 {
5621 struct inode *inode;
5622 struct btrfs_root *root = BTRFS_I(dir)->root;
5623 struct btrfs_root *sub_root = root;
5624 struct btrfs_key location;
5625 int index;
5626 int ret = 0;
5627
5628 if (dentry->d_name.len > BTRFS_NAME_LEN)
5629 return ERR_PTR(-ENAMETOOLONG);
5630
5631 ret = btrfs_inode_by_name(dir, dentry, &location);
5632 if (ret < 0)
5633 return ERR_PTR(ret);
5634
5635 if (location.objectid == 0)
5636 return ERR_PTR(-ENOENT);
5637
5638 if (location.type == BTRFS_INODE_ITEM_KEY) {
5639 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5640 return inode;
5641 }
5642
5643 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5644
5645 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5646 ret = fixup_tree_root_location(root, dir, dentry,
5647 &location, &sub_root);
5648 if (ret < 0) {
5649 if (ret != -ENOENT)
5650 inode = ERR_PTR(ret);
5651 else
5652 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5653 } else {
5654 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5655 }
5656 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5657
5658 if (!IS_ERR(inode) && root != sub_root) {
5659 down_read(&root->fs_info->cleanup_work_sem);
5660 if (!(inode->i_sb->s_flags & MS_RDONLY))
5661 ret = btrfs_orphan_cleanup(sub_root);
5662 up_read(&root->fs_info->cleanup_work_sem);
5663 if (ret) {
5664 iput(inode);
5665 inode = ERR_PTR(ret);
5666 }
5667 }
5668
5669 return inode;
5670 }
5671
5672 static int btrfs_dentry_delete(const struct dentry *dentry)
5673 {
5674 struct btrfs_root *root;
5675 struct inode *inode = d_inode(dentry);
5676
5677 if (!inode && !IS_ROOT(dentry))
5678 inode = d_inode(dentry->d_parent);
5679
5680 if (inode) {
5681 root = BTRFS_I(inode)->root;
5682 if (btrfs_root_refs(&root->root_item) == 0)
5683 return 1;
5684
5685 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5686 return 1;
5687 }
5688 return 0;
5689 }
5690
5691 static void btrfs_dentry_release(struct dentry *dentry)
5692 {
5693 kfree(dentry->d_fsdata);
5694 }
5695
5696 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5697 unsigned int flags)
5698 {
5699 struct inode *inode;
5700
5701 inode = btrfs_lookup_dentry(dir, dentry);
5702 if (IS_ERR(inode)) {
5703 if (PTR_ERR(inode) == -ENOENT)
5704 inode = NULL;
5705 else
5706 return ERR_CAST(inode);
5707 }
5708
5709 return d_splice_alias(inode, dentry);
5710 }
5711
5712 unsigned char btrfs_filetype_table[] = {
5713 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5714 };
5715
5716 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5717 {
5718 struct inode *inode = file_inode(file);
5719 struct btrfs_root *root = BTRFS_I(inode)->root;
5720 struct btrfs_item *item;
5721 struct btrfs_dir_item *di;
5722 struct btrfs_key key;
5723 struct btrfs_key found_key;
5724 struct btrfs_path *path;
5725 struct list_head ins_list;
5726 struct list_head del_list;
5727 int ret;
5728 struct extent_buffer *leaf;
5729 int slot;
5730 unsigned char d_type;
5731 int over = 0;
5732 u32 di_cur;
5733 u32 di_total;
5734 u32 di_len;
5735 int key_type = BTRFS_DIR_INDEX_KEY;
5736 char tmp_name[32];
5737 char *name_ptr;
5738 int name_len;
5739 int is_curr = 0; /* ctx->pos points to the current index? */
5740 bool emitted;
5741
5742 /* FIXME, use a real flag for deciding about the key type */
5743 if (root->fs_info->tree_root == root)
5744 key_type = BTRFS_DIR_ITEM_KEY;
5745
5746 if (!dir_emit_dots(file, ctx))
5747 return 0;
5748
5749 path = btrfs_alloc_path();
5750 if (!path)
5751 return -ENOMEM;
5752
5753 path->reada = READA_FORWARD;
5754
5755 if (key_type == BTRFS_DIR_INDEX_KEY) {
5756 INIT_LIST_HEAD(&ins_list);
5757 INIT_LIST_HEAD(&del_list);
5758 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5759 }
5760
5761 key.type = key_type;
5762 key.offset = ctx->pos;
5763 key.objectid = btrfs_ino(inode);
5764
5765 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5766 if (ret < 0)
5767 goto err;
5768
5769 emitted = false;
5770 while (1) {
5771 leaf = path->nodes[0];
5772 slot = path->slots[0];
5773 if (slot >= btrfs_header_nritems(leaf)) {
5774 ret = btrfs_next_leaf(root, path);
5775 if (ret < 0)
5776 goto err;
5777 else if (ret > 0)
5778 break;
5779 continue;
5780 }
5781
5782 item = btrfs_item_nr(slot);
5783 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5784
5785 if (found_key.objectid != key.objectid)
5786 break;
5787 if (found_key.type != key_type)
5788 break;
5789 if (found_key.offset < ctx->pos)
5790 goto next;
5791 if (key_type == BTRFS_DIR_INDEX_KEY &&
5792 btrfs_should_delete_dir_index(&del_list,
5793 found_key.offset))
5794 goto next;
5795
5796 ctx->pos = found_key.offset;
5797 is_curr = 1;
5798
5799 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5800 di_cur = 0;
5801 di_total = btrfs_item_size(leaf, item);
5802
5803 while (di_cur < di_total) {
5804 struct btrfs_key location;
5805
5806 if (verify_dir_item(root, leaf, di))
5807 break;
5808
5809 name_len = btrfs_dir_name_len(leaf, di);
5810 if (name_len <= sizeof(tmp_name)) {
5811 name_ptr = tmp_name;
5812 } else {
5813 name_ptr = kmalloc(name_len, GFP_KERNEL);
5814 if (!name_ptr) {
5815 ret = -ENOMEM;
5816 goto err;
5817 }
5818 }
5819 read_extent_buffer(leaf, name_ptr,
5820 (unsigned long)(di + 1), name_len);
5821
5822 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5823 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5824
5825
5826 /* is this a reference to our own snapshot? If so
5827 * skip it.
5828 *
5829 * In contrast to old kernels, we insert the snapshot's
5830 * dir item and dir index after it has been created, so
5831 * we won't find a reference to our own snapshot. We
5832 * still keep the following code for backward
5833 * compatibility.
5834 */
5835 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5836 location.objectid == root->root_key.objectid) {
5837 over = 0;
5838 goto skip;
5839 }
5840 over = !dir_emit(ctx, name_ptr, name_len,
5841 location.objectid, d_type);
5842
5843 skip:
5844 if (name_ptr != tmp_name)
5845 kfree(name_ptr);
5846
5847 if (over)
5848 goto nopos;
5849 emitted = true;
5850 di_len = btrfs_dir_name_len(leaf, di) +
5851 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5852 di_cur += di_len;
5853 di = (struct btrfs_dir_item *)((char *)di + di_len);
5854 }
5855 next:
5856 path->slots[0]++;
5857 }
5858
5859 if (key_type == BTRFS_DIR_INDEX_KEY) {
5860 if (is_curr)
5861 ctx->pos++;
5862 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5863 if (ret)
5864 goto nopos;
5865 }
5866
5867 /*
5868 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5869 * it was was set to the termination value in previous call. We assume
5870 * that "." and ".." were emitted if we reach this point and set the
5871 * termination value as well for an empty directory.
5872 */
5873 if (ctx->pos > 2 && !emitted)
5874 goto nopos;
5875
5876 /* Reached end of directory/root. Bump pos past the last item. */
5877 ctx->pos++;
5878
5879 /*
5880 * Stop new entries from being returned after we return the last
5881 * entry.
5882 *
5883 * New directory entries are assigned a strictly increasing
5884 * offset. This means that new entries created during readdir
5885 * are *guaranteed* to be seen in the future by that readdir.
5886 * This has broken buggy programs which operate on names as
5887 * they're returned by readdir. Until we re-use freed offsets
5888 * we have this hack to stop new entries from being returned
5889 * under the assumption that they'll never reach this huge
5890 * offset.
5891 *
5892 * This is being careful not to overflow 32bit loff_t unless the
5893 * last entry requires it because doing so has broken 32bit apps
5894 * in the past.
5895 */
5896 if (key_type == BTRFS_DIR_INDEX_KEY) {
5897 if (ctx->pos >= INT_MAX)
5898 ctx->pos = LLONG_MAX;
5899 else
5900 ctx->pos = INT_MAX;
5901 }
5902 nopos:
5903 ret = 0;
5904 err:
5905 if (key_type == BTRFS_DIR_INDEX_KEY)
5906 btrfs_put_delayed_items(&ins_list, &del_list);
5907 btrfs_free_path(path);
5908 return ret;
5909 }
5910
5911 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5912 {
5913 struct btrfs_root *root = BTRFS_I(inode)->root;
5914 struct btrfs_trans_handle *trans;
5915 int ret = 0;
5916 bool nolock = false;
5917
5918 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5919 return 0;
5920
5921 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5922 nolock = true;
5923
5924 if (wbc->sync_mode == WB_SYNC_ALL) {
5925 if (nolock)
5926 trans = btrfs_join_transaction_nolock(root);
5927 else
5928 trans = btrfs_join_transaction(root);
5929 if (IS_ERR(trans))
5930 return PTR_ERR(trans);
5931 ret = btrfs_commit_transaction(trans, root);
5932 }
5933 return ret;
5934 }
5935
5936 /*
5937 * This is somewhat expensive, updating the tree every time the
5938 * inode changes. But, it is most likely to find the inode in cache.
5939 * FIXME, needs more benchmarking...there are no reasons other than performance
5940 * to keep or drop this code.
5941 */
5942 static int btrfs_dirty_inode(struct inode *inode)
5943 {
5944 struct btrfs_root *root = BTRFS_I(inode)->root;
5945 struct btrfs_trans_handle *trans;
5946 int ret;
5947
5948 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5949 return 0;
5950
5951 trans = btrfs_join_transaction(root);
5952 if (IS_ERR(trans))
5953 return PTR_ERR(trans);
5954
5955 ret = btrfs_update_inode(trans, root, inode);
5956 if (ret && ret == -ENOSPC) {
5957 /* whoops, lets try again with the full transaction */
5958 btrfs_end_transaction(trans, root);
5959 trans = btrfs_start_transaction(root, 1);
5960 if (IS_ERR(trans))
5961 return PTR_ERR(trans);
5962
5963 ret = btrfs_update_inode(trans, root, inode);
5964 }
5965 btrfs_end_transaction(trans, root);
5966 if (BTRFS_I(inode)->delayed_node)
5967 btrfs_balance_delayed_items(root);
5968
5969 return ret;
5970 }
5971
5972 /*
5973 * This is a copy of file_update_time. We need this so we can return error on
5974 * ENOSPC for updating the inode in the case of file write and mmap writes.
5975 */
5976 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5977 int flags)
5978 {
5979 struct btrfs_root *root = BTRFS_I(inode)->root;
5980
5981 if (btrfs_root_readonly(root))
5982 return -EROFS;
5983
5984 if (flags & S_VERSION)
5985 inode_inc_iversion(inode);
5986 if (flags & S_CTIME)
5987 inode->i_ctime = *now;
5988 if (flags & S_MTIME)
5989 inode->i_mtime = *now;
5990 if (flags & S_ATIME)
5991 inode->i_atime = *now;
5992 return btrfs_dirty_inode(inode);
5993 }
5994
5995 /*
5996 * find the highest existing sequence number in a directory
5997 * and then set the in-memory index_cnt variable to reflect
5998 * free sequence numbers
5999 */
6000 static int btrfs_set_inode_index_count(struct inode *inode)
6001 {
6002 struct btrfs_root *root = BTRFS_I(inode)->root;
6003 struct btrfs_key key, found_key;
6004 struct btrfs_path *path;
6005 struct extent_buffer *leaf;
6006 int ret;
6007
6008 key.objectid = btrfs_ino(inode);
6009 key.type = BTRFS_DIR_INDEX_KEY;
6010 key.offset = (u64)-1;
6011
6012 path = btrfs_alloc_path();
6013 if (!path)
6014 return -ENOMEM;
6015
6016 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6017 if (ret < 0)
6018 goto out;
6019 /* FIXME: we should be able to handle this */
6020 if (ret == 0)
6021 goto out;
6022 ret = 0;
6023
6024 /*
6025 * MAGIC NUMBER EXPLANATION:
6026 * since we search a directory based on f_pos we have to start at 2
6027 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6028 * else has to start at 2
6029 */
6030 if (path->slots[0] == 0) {
6031 BTRFS_I(inode)->index_cnt = 2;
6032 goto out;
6033 }
6034
6035 path->slots[0]--;
6036
6037 leaf = path->nodes[0];
6038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6039
6040 if (found_key.objectid != btrfs_ino(inode) ||
6041 found_key.type != BTRFS_DIR_INDEX_KEY) {
6042 BTRFS_I(inode)->index_cnt = 2;
6043 goto out;
6044 }
6045
6046 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6047 out:
6048 btrfs_free_path(path);
6049 return ret;
6050 }
6051
6052 /*
6053 * helper to find a free sequence number in a given directory. This current
6054 * code is very simple, later versions will do smarter things in the btree
6055 */
6056 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6057 {
6058 int ret = 0;
6059
6060 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6061 ret = btrfs_inode_delayed_dir_index_count(dir);
6062 if (ret) {
6063 ret = btrfs_set_inode_index_count(dir);
6064 if (ret)
6065 return ret;
6066 }
6067 }
6068
6069 *index = BTRFS_I(dir)->index_cnt;
6070 BTRFS_I(dir)->index_cnt++;
6071
6072 return ret;
6073 }
6074
6075 static int btrfs_insert_inode_locked(struct inode *inode)
6076 {
6077 struct btrfs_iget_args args;
6078 args.location = &BTRFS_I(inode)->location;
6079 args.root = BTRFS_I(inode)->root;
6080
6081 return insert_inode_locked4(inode,
6082 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6083 btrfs_find_actor, &args);
6084 }
6085
6086 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6087 struct btrfs_root *root,
6088 struct inode *dir,
6089 const char *name, int name_len,
6090 u64 ref_objectid, u64 objectid,
6091 umode_t mode, u64 *index)
6092 {
6093 struct inode *inode;
6094 struct btrfs_inode_item *inode_item;
6095 struct btrfs_key *location;
6096 struct btrfs_path *path;
6097 struct btrfs_inode_ref *ref;
6098 struct btrfs_key key[2];
6099 u32 sizes[2];
6100 int nitems = name ? 2 : 1;
6101 unsigned long ptr;
6102 int ret;
6103
6104 path = btrfs_alloc_path();
6105 if (!path)
6106 return ERR_PTR(-ENOMEM);
6107
6108 inode = new_inode(root->fs_info->sb);
6109 if (!inode) {
6110 btrfs_free_path(path);
6111 return ERR_PTR(-ENOMEM);
6112 }
6113
6114 /*
6115 * O_TMPFILE, set link count to 0, so that after this point,
6116 * we fill in an inode item with the correct link count.
6117 */
6118 if (!name)
6119 set_nlink(inode, 0);
6120
6121 /*
6122 * we have to initialize this early, so we can reclaim the inode
6123 * number if we fail afterwards in this function.
6124 */
6125 inode->i_ino = objectid;
6126
6127 if (dir && name) {
6128 trace_btrfs_inode_request(dir);
6129
6130 ret = btrfs_set_inode_index(dir, index);
6131 if (ret) {
6132 btrfs_free_path(path);
6133 iput(inode);
6134 return ERR_PTR(ret);
6135 }
6136 } else if (dir) {
6137 *index = 0;
6138 }
6139 /*
6140 * index_cnt is ignored for everything but a dir,
6141 * btrfs_get_inode_index_count has an explanation for the magic
6142 * number
6143 */
6144 BTRFS_I(inode)->index_cnt = 2;
6145 BTRFS_I(inode)->dir_index = *index;
6146 BTRFS_I(inode)->root = root;
6147 BTRFS_I(inode)->generation = trans->transid;
6148 inode->i_generation = BTRFS_I(inode)->generation;
6149
6150 /*
6151 * We could have gotten an inode number from somebody who was fsynced
6152 * and then removed in this same transaction, so let's just set full
6153 * sync since it will be a full sync anyway and this will blow away the
6154 * old info in the log.
6155 */
6156 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6157
6158 key[0].objectid = objectid;
6159 key[0].type = BTRFS_INODE_ITEM_KEY;
6160 key[0].offset = 0;
6161
6162 sizes[0] = sizeof(struct btrfs_inode_item);
6163
6164 if (name) {
6165 /*
6166 * Start new inodes with an inode_ref. This is slightly more
6167 * efficient for small numbers of hard links since they will
6168 * be packed into one item. Extended refs will kick in if we
6169 * add more hard links than can fit in the ref item.
6170 */
6171 key[1].objectid = objectid;
6172 key[1].type = BTRFS_INODE_REF_KEY;
6173 key[1].offset = ref_objectid;
6174
6175 sizes[1] = name_len + sizeof(*ref);
6176 }
6177
6178 location = &BTRFS_I(inode)->location;
6179 location->objectid = objectid;
6180 location->offset = 0;
6181 location->type = BTRFS_INODE_ITEM_KEY;
6182
6183 ret = btrfs_insert_inode_locked(inode);
6184 if (ret < 0)
6185 goto fail;
6186
6187 path->leave_spinning = 1;
6188 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6189 if (ret != 0)
6190 goto fail_unlock;
6191
6192 inode_init_owner(inode, dir, mode);
6193 inode_set_bytes(inode, 0);
6194
6195 inode->i_mtime = current_fs_time(inode->i_sb);
6196 inode->i_atime = inode->i_mtime;
6197 inode->i_ctime = inode->i_mtime;
6198 BTRFS_I(inode)->i_otime = inode->i_mtime;
6199
6200 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6201 struct btrfs_inode_item);
6202 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6203 sizeof(*inode_item));
6204 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6205
6206 if (name) {
6207 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6208 struct btrfs_inode_ref);
6209 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6210 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6211 ptr = (unsigned long)(ref + 1);
6212 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6213 }
6214
6215 btrfs_mark_buffer_dirty(path->nodes[0]);
6216 btrfs_free_path(path);
6217
6218 btrfs_inherit_iflags(inode, dir);
6219
6220 if (S_ISREG(mode)) {
6221 if (btrfs_test_opt(root, NODATASUM))
6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6223 if (btrfs_test_opt(root, NODATACOW))
6224 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6225 BTRFS_INODE_NODATASUM;
6226 }
6227
6228 inode_tree_add(inode);
6229
6230 trace_btrfs_inode_new(inode);
6231 btrfs_set_inode_last_trans(trans, inode);
6232
6233 btrfs_update_root_times(trans, root);
6234
6235 ret = btrfs_inode_inherit_props(trans, inode, dir);
6236 if (ret)
6237 btrfs_err(root->fs_info,
6238 "error inheriting props for ino %llu (root %llu): %d",
6239 btrfs_ino(inode), root->root_key.objectid, ret);
6240
6241 return inode;
6242
6243 fail_unlock:
6244 unlock_new_inode(inode);
6245 fail:
6246 if (dir && name)
6247 BTRFS_I(dir)->index_cnt--;
6248 btrfs_free_path(path);
6249 iput(inode);
6250 return ERR_PTR(ret);
6251 }
6252
6253 static inline u8 btrfs_inode_type(struct inode *inode)
6254 {
6255 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6256 }
6257
6258 /*
6259 * utility function to add 'inode' into 'parent_inode' with
6260 * a give name and a given sequence number.
6261 * if 'add_backref' is true, also insert a backref from the
6262 * inode to the parent directory.
6263 */
6264 int btrfs_add_link(struct btrfs_trans_handle *trans,
6265 struct inode *parent_inode, struct inode *inode,
6266 const char *name, int name_len, int add_backref, u64 index)
6267 {
6268 int ret = 0;
6269 struct btrfs_key key;
6270 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6271 u64 ino = btrfs_ino(inode);
6272 u64 parent_ino = btrfs_ino(parent_inode);
6273
6274 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6275 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6276 } else {
6277 key.objectid = ino;
6278 key.type = BTRFS_INODE_ITEM_KEY;
6279 key.offset = 0;
6280 }
6281
6282 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6283 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6284 key.objectid, root->root_key.objectid,
6285 parent_ino, index, name, name_len);
6286 } else if (add_backref) {
6287 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6288 parent_ino, index);
6289 }
6290
6291 /* Nothing to clean up yet */
6292 if (ret)
6293 return ret;
6294
6295 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6296 parent_inode, &key,
6297 btrfs_inode_type(inode), index);
6298 if (ret == -EEXIST || ret == -EOVERFLOW)
6299 goto fail_dir_item;
6300 else if (ret) {
6301 btrfs_abort_transaction(trans, root, ret);
6302 return ret;
6303 }
6304
6305 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6306 name_len * 2);
6307 inode_inc_iversion(parent_inode);
6308 parent_inode->i_mtime = parent_inode->i_ctime =
6309 current_fs_time(parent_inode->i_sb);
6310 ret = btrfs_update_inode(trans, root, parent_inode);
6311 if (ret)
6312 btrfs_abort_transaction(trans, root, ret);
6313 return ret;
6314
6315 fail_dir_item:
6316 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6317 u64 local_index;
6318 int err;
6319 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6320 key.objectid, root->root_key.objectid,
6321 parent_ino, &local_index, name, name_len);
6322
6323 } else if (add_backref) {
6324 u64 local_index;
6325 int err;
6326
6327 err = btrfs_del_inode_ref(trans, root, name, name_len,
6328 ino, parent_ino, &local_index);
6329 }
6330 return ret;
6331 }
6332
6333 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6334 struct inode *dir, struct dentry *dentry,
6335 struct inode *inode, int backref, u64 index)
6336 {
6337 int err = btrfs_add_link(trans, dir, inode,
6338 dentry->d_name.name, dentry->d_name.len,
6339 backref, index);
6340 if (err > 0)
6341 err = -EEXIST;
6342 return err;
6343 }
6344
6345 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6346 umode_t mode, dev_t rdev)
6347 {
6348 struct btrfs_trans_handle *trans;
6349 struct btrfs_root *root = BTRFS_I(dir)->root;
6350 struct inode *inode = NULL;
6351 int err;
6352 int drop_inode = 0;
6353 u64 objectid;
6354 u64 index = 0;
6355
6356 /*
6357 * 2 for inode item and ref
6358 * 2 for dir items
6359 * 1 for xattr if selinux is on
6360 */
6361 trans = btrfs_start_transaction(root, 5);
6362 if (IS_ERR(trans))
6363 return PTR_ERR(trans);
6364
6365 err = btrfs_find_free_ino(root, &objectid);
6366 if (err)
6367 goto out_unlock;
6368
6369 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6370 dentry->d_name.len, btrfs_ino(dir), objectid,
6371 mode, &index);
6372 if (IS_ERR(inode)) {
6373 err = PTR_ERR(inode);
6374 goto out_unlock;
6375 }
6376
6377 /*
6378 * If the active LSM wants to access the inode during
6379 * d_instantiate it needs these. Smack checks to see
6380 * if the filesystem supports xattrs by looking at the
6381 * ops vector.
6382 */
6383 inode->i_op = &btrfs_special_inode_operations;
6384 init_special_inode(inode, inode->i_mode, rdev);
6385
6386 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6387 if (err)
6388 goto out_unlock_inode;
6389
6390 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6391 if (err) {
6392 goto out_unlock_inode;
6393 } else {
6394 btrfs_update_inode(trans, root, inode);
6395 unlock_new_inode(inode);
6396 d_instantiate(dentry, inode);
6397 }
6398
6399 out_unlock:
6400 btrfs_end_transaction(trans, root);
6401 btrfs_balance_delayed_items(root);
6402 btrfs_btree_balance_dirty(root);
6403 if (drop_inode) {
6404 inode_dec_link_count(inode);
6405 iput(inode);
6406 }
6407 return err;
6408
6409 out_unlock_inode:
6410 drop_inode = 1;
6411 unlock_new_inode(inode);
6412 goto out_unlock;
6413
6414 }
6415
6416 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6417 umode_t mode, bool excl)
6418 {
6419 struct btrfs_trans_handle *trans;
6420 struct btrfs_root *root = BTRFS_I(dir)->root;
6421 struct inode *inode = NULL;
6422 int drop_inode_on_err = 0;
6423 int err;
6424 u64 objectid;
6425 u64 index = 0;
6426
6427 /*
6428 * 2 for inode item and ref
6429 * 2 for dir items
6430 * 1 for xattr if selinux is on
6431 */
6432 trans = btrfs_start_transaction(root, 5);
6433 if (IS_ERR(trans))
6434 return PTR_ERR(trans);
6435
6436 err = btrfs_find_free_ino(root, &objectid);
6437 if (err)
6438 goto out_unlock;
6439
6440 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6441 dentry->d_name.len, btrfs_ino(dir), objectid,
6442 mode, &index);
6443 if (IS_ERR(inode)) {
6444 err = PTR_ERR(inode);
6445 goto out_unlock;
6446 }
6447 drop_inode_on_err = 1;
6448 /*
6449 * If the active LSM wants to access the inode during
6450 * d_instantiate it needs these. Smack checks to see
6451 * if the filesystem supports xattrs by looking at the
6452 * ops vector.
6453 */
6454 inode->i_fop = &btrfs_file_operations;
6455 inode->i_op = &btrfs_file_inode_operations;
6456 inode->i_mapping->a_ops = &btrfs_aops;
6457
6458 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6459 if (err)
6460 goto out_unlock_inode;
6461
6462 err = btrfs_update_inode(trans, root, inode);
6463 if (err)
6464 goto out_unlock_inode;
6465
6466 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6467 if (err)
6468 goto out_unlock_inode;
6469
6470 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6471 unlock_new_inode(inode);
6472 d_instantiate(dentry, inode);
6473
6474 out_unlock:
6475 btrfs_end_transaction(trans, root);
6476 if (err && drop_inode_on_err) {
6477 inode_dec_link_count(inode);
6478 iput(inode);
6479 }
6480 btrfs_balance_delayed_items(root);
6481 btrfs_btree_balance_dirty(root);
6482 return err;
6483
6484 out_unlock_inode:
6485 unlock_new_inode(inode);
6486 goto out_unlock;
6487
6488 }
6489
6490 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6491 struct dentry *dentry)
6492 {
6493 struct btrfs_trans_handle *trans = NULL;
6494 struct btrfs_root *root = BTRFS_I(dir)->root;
6495 struct inode *inode = d_inode(old_dentry);
6496 u64 index;
6497 int err;
6498 int drop_inode = 0;
6499
6500 /* do not allow sys_link's with other subvols of the same device */
6501 if (root->objectid != BTRFS_I(inode)->root->objectid)
6502 return -EXDEV;
6503
6504 if (inode->i_nlink >= BTRFS_LINK_MAX)
6505 return -EMLINK;
6506
6507 err = btrfs_set_inode_index(dir, &index);
6508 if (err)
6509 goto fail;
6510
6511 /*
6512 * 2 items for inode and inode ref
6513 * 2 items for dir items
6514 * 1 item for parent inode
6515 */
6516 trans = btrfs_start_transaction(root, 5);
6517 if (IS_ERR(trans)) {
6518 err = PTR_ERR(trans);
6519 trans = NULL;
6520 goto fail;
6521 }
6522
6523 /* There are several dir indexes for this inode, clear the cache. */
6524 BTRFS_I(inode)->dir_index = 0ULL;
6525 inc_nlink(inode);
6526 inode_inc_iversion(inode);
6527 inode->i_ctime = current_fs_time(inode->i_sb);
6528 ihold(inode);
6529 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6530
6531 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6532
6533 if (err) {
6534 drop_inode = 1;
6535 } else {
6536 struct dentry *parent = dentry->d_parent;
6537 err = btrfs_update_inode(trans, root, inode);
6538 if (err)
6539 goto fail;
6540 if (inode->i_nlink == 1) {
6541 /*
6542 * If new hard link count is 1, it's a file created
6543 * with open(2) O_TMPFILE flag.
6544 */
6545 err = btrfs_orphan_del(trans, inode);
6546 if (err)
6547 goto fail;
6548 }
6549 d_instantiate(dentry, inode);
6550 btrfs_log_new_name(trans, inode, NULL, parent);
6551 }
6552
6553 btrfs_balance_delayed_items(root);
6554 fail:
6555 if (trans)
6556 btrfs_end_transaction(trans, root);
6557 if (drop_inode) {
6558 inode_dec_link_count(inode);
6559 iput(inode);
6560 }
6561 btrfs_btree_balance_dirty(root);
6562 return err;
6563 }
6564
6565 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6566 {
6567 struct inode *inode = NULL;
6568 struct btrfs_trans_handle *trans;
6569 struct btrfs_root *root = BTRFS_I(dir)->root;
6570 int err = 0;
6571 int drop_on_err = 0;
6572 u64 objectid = 0;
6573 u64 index = 0;
6574
6575 /*
6576 * 2 items for inode and ref
6577 * 2 items for dir items
6578 * 1 for xattr if selinux is on
6579 */
6580 trans = btrfs_start_transaction(root, 5);
6581 if (IS_ERR(trans))
6582 return PTR_ERR(trans);
6583
6584 err = btrfs_find_free_ino(root, &objectid);
6585 if (err)
6586 goto out_fail;
6587
6588 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6589 dentry->d_name.len, btrfs_ino(dir), objectid,
6590 S_IFDIR | mode, &index);
6591 if (IS_ERR(inode)) {
6592 err = PTR_ERR(inode);
6593 goto out_fail;
6594 }
6595
6596 drop_on_err = 1;
6597 /* these must be set before we unlock the inode */
6598 inode->i_op = &btrfs_dir_inode_operations;
6599 inode->i_fop = &btrfs_dir_file_operations;
6600
6601 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6602 if (err)
6603 goto out_fail_inode;
6604
6605 btrfs_i_size_write(inode, 0);
6606 err = btrfs_update_inode(trans, root, inode);
6607 if (err)
6608 goto out_fail_inode;
6609
6610 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6611 dentry->d_name.len, 0, index);
6612 if (err)
6613 goto out_fail_inode;
6614
6615 d_instantiate(dentry, inode);
6616 /*
6617 * mkdir is special. We're unlocking after we call d_instantiate
6618 * to avoid a race with nfsd calling d_instantiate.
6619 */
6620 unlock_new_inode(inode);
6621 drop_on_err = 0;
6622
6623 out_fail:
6624 btrfs_end_transaction(trans, root);
6625 if (drop_on_err) {
6626 inode_dec_link_count(inode);
6627 iput(inode);
6628 }
6629 btrfs_balance_delayed_items(root);
6630 btrfs_btree_balance_dirty(root);
6631 return err;
6632
6633 out_fail_inode:
6634 unlock_new_inode(inode);
6635 goto out_fail;
6636 }
6637
6638 /* Find next extent map of a given extent map, caller needs to ensure locks */
6639 static struct extent_map *next_extent_map(struct extent_map *em)
6640 {
6641 struct rb_node *next;
6642
6643 next = rb_next(&em->rb_node);
6644 if (!next)
6645 return NULL;
6646 return container_of(next, struct extent_map, rb_node);
6647 }
6648
6649 static struct extent_map *prev_extent_map(struct extent_map *em)
6650 {
6651 struct rb_node *prev;
6652
6653 prev = rb_prev(&em->rb_node);
6654 if (!prev)
6655 return NULL;
6656 return container_of(prev, struct extent_map, rb_node);
6657 }
6658
6659 /* helper for btfs_get_extent. Given an existing extent in the tree,
6660 * the existing extent is the nearest extent to map_start,
6661 * and an extent that you want to insert, deal with overlap and insert
6662 * the best fitted new extent into the tree.
6663 */
6664 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6665 struct extent_map *existing,
6666 struct extent_map *em,
6667 u64 map_start)
6668 {
6669 struct extent_map *prev;
6670 struct extent_map *next;
6671 u64 start;
6672 u64 end;
6673 u64 start_diff;
6674
6675 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6676
6677 if (existing->start > map_start) {
6678 next = existing;
6679 prev = prev_extent_map(next);
6680 } else {
6681 prev = existing;
6682 next = next_extent_map(prev);
6683 }
6684
6685 start = prev ? extent_map_end(prev) : em->start;
6686 start = max_t(u64, start, em->start);
6687 end = next ? next->start : extent_map_end(em);
6688 end = min_t(u64, end, extent_map_end(em));
6689 start_diff = start - em->start;
6690 em->start = start;
6691 em->len = end - start;
6692 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6693 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6694 em->block_start += start_diff;
6695 em->block_len -= start_diff;
6696 }
6697 return add_extent_mapping(em_tree, em, 0);
6698 }
6699
6700 static noinline int uncompress_inline(struct btrfs_path *path,
6701 struct page *page,
6702 size_t pg_offset, u64 extent_offset,
6703 struct btrfs_file_extent_item *item)
6704 {
6705 int ret;
6706 struct extent_buffer *leaf = path->nodes[0];
6707 char *tmp;
6708 size_t max_size;
6709 unsigned long inline_size;
6710 unsigned long ptr;
6711 int compress_type;
6712
6713 WARN_ON(pg_offset != 0);
6714 compress_type = btrfs_file_extent_compression(leaf, item);
6715 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6716 inline_size = btrfs_file_extent_inline_item_len(leaf,
6717 btrfs_item_nr(path->slots[0]));
6718 tmp = kmalloc(inline_size, GFP_NOFS);
6719 if (!tmp)
6720 return -ENOMEM;
6721 ptr = btrfs_file_extent_inline_start(item);
6722
6723 read_extent_buffer(leaf, tmp, ptr, inline_size);
6724
6725 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6726 ret = btrfs_decompress(compress_type, tmp, page,
6727 extent_offset, inline_size, max_size);
6728 kfree(tmp);
6729 return ret;
6730 }
6731
6732 /*
6733 * a bit scary, this does extent mapping from logical file offset to the disk.
6734 * the ugly parts come from merging extents from the disk with the in-ram
6735 * representation. This gets more complex because of the data=ordered code,
6736 * where the in-ram extents might be locked pending data=ordered completion.
6737 *
6738 * This also copies inline extents directly into the page.
6739 */
6740
6741 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6742 size_t pg_offset, u64 start, u64 len,
6743 int create)
6744 {
6745 int ret;
6746 int err = 0;
6747 u64 extent_start = 0;
6748 u64 extent_end = 0;
6749 u64 objectid = btrfs_ino(inode);
6750 u32 found_type;
6751 struct btrfs_path *path = NULL;
6752 struct btrfs_root *root = BTRFS_I(inode)->root;
6753 struct btrfs_file_extent_item *item;
6754 struct extent_buffer *leaf;
6755 struct btrfs_key found_key;
6756 struct extent_map *em = NULL;
6757 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6759 struct btrfs_trans_handle *trans = NULL;
6760 const bool new_inline = !page || create;
6761
6762 again:
6763 read_lock(&em_tree->lock);
6764 em = lookup_extent_mapping(em_tree, start, len);
6765 if (em)
6766 em->bdev = root->fs_info->fs_devices->latest_bdev;
6767 read_unlock(&em_tree->lock);
6768
6769 if (em) {
6770 if (em->start > start || em->start + em->len <= start)
6771 free_extent_map(em);
6772 else if (em->block_start == EXTENT_MAP_INLINE && page)
6773 free_extent_map(em);
6774 else
6775 goto out;
6776 }
6777 em = alloc_extent_map();
6778 if (!em) {
6779 err = -ENOMEM;
6780 goto out;
6781 }
6782 em->bdev = root->fs_info->fs_devices->latest_bdev;
6783 em->start = EXTENT_MAP_HOLE;
6784 em->orig_start = EXTENT_MAP_HOLE;
6785 em->len = (u64)-1;
6786 em->block_len = (u64)-1;
6787
6788 if (!path) {
6789 path = btrfs_alloc_path();
6790 if (!path) {
6791 err = -ENOMEM;
6792 goto out;
6793 }
6794 /*
6795 * Chances are we'll be called again, so go ahead and do
6796 * readahead
6797 */
6798 path->reada = READA_FORWARD;
6799 }
6800
6801 ret = btrfs_lookup_file_extent(trans, root, path,
6802 objectid, start, trans != NULL);
6803 if (ret < 0) {
6804 err = ret;
6805 goto out;
6806 }
6807
6808 if (ret != 0) {
6809 if (path->slots[0] == 0)
6810 goto not_found;
6811 path->slots[0]--;
6812 }
6813
6814 leaf = path->nodes[0];
6815 item = btrfs_item_ptr(leaf, path->slots[0],
6816 struct btrfs_file_extent_item);
6817 /* are we inside the extent that was found? */
6818 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6819 found_type = found_key.type;
6820 if (found_key.objectid != objectid ||
6821 found_type != BTRFS_EXTENT_DATA_KEY) {
6822 /*
6823 * If we backup past the first extent we want to move forward
6824 * and see if there is an extent in front of us, otherwise we'll
6825 * say there is a hole for our whole search range which can
6826 * cause problems.
6827 */
6828 extent_end = start;
6829 goto next;
6830 }
6831
6832 found_type = btrfs_file_extent_type(leaf, item);
6833 extent_start = found_key.offset;
6834 if (found_type == BTRFS_FILE_EXTENT_REG ||
6835 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6836 extent_end = extent_start +
6837 btrfs_file_extent_num_bytes(leaf, item);
6838 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6839 size_t size;
6840 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6841 extent_end = ALIGN(extent_start + size, root->sectorsize);
6842 }
6843 next:
6844 if (start >= extent_end) {
6845 path->slots[0]++;
6846 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6847 ret = btrfs_next_leaf(root, path);
6848 if (ret < 0) {
6849 err = ret;
6850 goto out;
6851 }
6852 if (ret > 0)
6853 goto not_found;
6854 leaf = path->nodes[0];
6855 }
6856 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6857 if (found_key.objectid != objectid ||
6858 found_key.type != BTRFS_EXTENT_DATA_KEY)
6859 goto not_found;
6860 if (start + len <= found_key.offset)
6861 goto not_found;
6862 if (start > found_key.offset)
6863 goto next;
6864 em->start = start;
6865 em->orig_start = start;
6866 em->len = found_key.offset - start;
6867 goto not_found_em;
6868 }
6869
6870 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6871
6872 if (found_type == BTRFS_FILE_EXTENT_REG ||
6873 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6874 goto insert;
6875 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6876 unsigned long ptr;
6877 char *map;
6878 size_t size;
6879 size_t extent_offset;
6880 size_t copy_size;
6881
6882 if (new_inline)
6883 goto out;
6884
6885 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6886 extent_offset = page_offset(page) + pg_offset - extent_start;
6887 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6888 size - extent_offset);
6889 em->start = extent_start + extent_offset;
6890 em->len = ALIGN(copy_size, root->sectorsize);
6891 em->orig_block_len = em->len;
6892 em->orig_start = em->start;
6893 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6894 if (create == 0 && !PageUptodate(page)) {
6895 if (btrfs_file_extent_compression(leaf, item) !=
6896 BTRFS_COMPRESS_NONE) {
6897 ret = uncompress_inline(path, page, pg_offset,
6898 extent_offset, item);
6899 if (ret) {
6900 err = ret;
6901 goto out;
6902 }
6903 } else {
6904 map = kmap(page);
6905 read_extent_buffer(leaf, map + pg_offset, ptr,
6906 copy_size);
6907 if (pg_offset + copy_size < PAGE_SIZE) {
6908 memset(map + pg_offset + copy_size, 0,
6909 PAGE_SIZE - pg_offset -
6910 copy_size);
6911 }
6912 kunmap(page);
6913 }
6914 flush_dcache_page(page);
6915 } else if (create && PageUptodate(page)) {
6916 BUG();
6917 if (!trans) {
6918 kunmap(page);
6919 free_extent_map(em);
6920 em = NULL;
6921
6922 btrfs_release_path(path);
6923 trans = btrfs_join_transaction(root);
6924
6925 if (IS_ERR(trans))
6926 return ERR_CAST(trans);
6927 goto again;
6928 }
6929 map = kmap(page);
6930 write_extent_buffer(leaf, map + pg_offset, ptr,
6931 copy_size);
6932 kunmap(page);
6933 btrfs_mark_buffer_dirty(leaf);
6934 }
6935 set_extent_uptodate(io_tree, em->start,
6936 extent_map_end(em) - 1, NULL, GFP_NOFS);
6937 goto insert;
6938 }
6939 not_found:
6940 em->start = start;
6941 em->orig_start = start;
6942 em->len = len;
6943 not_found_em:
6944 em->block_start = EXTENT_MAP_HOLE;
6945 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6946 insert:
6947 btrfs_release_path(path);
6948 if (em->start > start || extent_map_end(em) <= start) {
6949 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6950 em->start, em->len, start, len);
6951 err = -EIO;
6952 goto out;
6953 }
6954
6955 err = 0;
6956 write_lock(&em_tree->lock);
6957 ret = add_extent_mapping(em_tree, em, 0);
6958 /* it is possible that someone inserted the extent into the tree
6959 * while we had the lock dropped. It is also possible that
6960 * an overlapping map exists in the tree
6961 */
6962 if (ret == -EEXIST) {
6963 struct extent_map *existing;
6964
6965 ret = 0;
6966
6967 existing = search_extent_mapping(em_tree, start, len);
6968 /*
6969 * existing will always be non-NULL, since there must be
6970 * extent causing the -EEXIST.
6971 */
6972 if (start >= extent_map_end(existing) ||
6973 start <= existing->start) {
6974 /*
6975 * The existing extent map is the one nearest to
6976 * the [start, start + len) range which overlaps
6977 */
6978 err = merge_extent_mapping(em_tree, existing,
6979 em, start);
6980 free_extent_map(existing);
6981 if (err) {
6982 free_extent_map(em);
6983 em = NULL;
6984 }
6985 } else {
6986 free_extent_map(em);
6987 em = existing;
6988 err = 0;
6989 }
6990 }
6991 write_unlock(&em_tree->lock);
6992 out:
6993
6994 trace_btrfs_get_extent(root, em);
6995
6996 btrfs_free_path(path);
6997 if (trans) {
6998 ret = btrfs_end_transaction(trans, root);
6999 if (!err)
7000 err = ret;
7001 }
7002 if (err) {
7003 free_extent_map(em);
7004 return ERR_PTR(err);
7005 }
7006 BUG_ON(!em); /* Error is always set */
7007 return em;
7008 }
7009
7010 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7011 size_t pg_offset, u64 start, u64 len,
7012 int create)
7013 {
7014 struct extent_map *em;
7015 struct extent_map *hole_em = NULL;
7016 u64 range_start = start;
7017 u64 end;
7018 u64 found;
7019 u64 found_end;
7020 int err = 0;
7021
7022 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7023 if (IS_ERR(em))
7024 return em;
7025 if (em) {
7026 /*
7027 * if our em maps to
7028 * - a hole or
7029 * - a pre-alloc extent,
7030 * there might actually be delalloc bytes behind it.
7031 */
7032 if (em->block_start != EXTENT_MAP_HOLE &&
7033 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7034 return em;
7035 else
7036 hole_em = em;
7037 }
7038
7039 /* check to see if we've wrapped (len == -1 or similar) */
7040 end = start + len;
7041 if (end < start)
7042 end = (u64)-1;
7043 else
7044 end -= 1;
7045
7046 em = NULL;
7047
7048 /* ok, we didn't find anything, lets look for delalloc */
7049 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7050 end, len, EXTENT_DELALLOC, 1);
7051 found_end = range_start + found;
7052 if (found_end < range_start)
7053 found_end = (u64)-1;
7054
7055 /*
7056 * we didn't find anything useful, return
7057 * the original results from get_extent()
7058 */
7059 if (range_start > end || found_end <= start) {
7060 em = hole_em;
7061 hole_em = NULL;
7062 goto out;
7063 }
7064
7065 /* adjust the range_start to make sure it doesn't
7066 * go backwards from the start they passed in
7067 */
7068 range_start = max(start, range_start);
7069 found = found_end - range_start;
7070
7071 if (found > 0) {
7072 u64 hole_start = start;
7073 u64 hole_len = len;
7074
7075 em = alloc_extent_map();
7076 if (!em) {
7077 err = -ENOMEM;
7078 goto out;
7079 }
7080 /*
7081 * when btrfs_get_extent can't find anything it
7082 * returns one huge hole
7083 *
7084 * make sure what it found really fits our range, and
7085 * adjust to make sure it is based on the start from
7086 * the caller
7087 */
7088 if (hole_em) {
7089 u64 calc_end = extent_map_end(hole_em);
7090
7091 if (calc_end <= start || (hole_em->start > end)) {
7092 free_extent_map(hole_em);
7093 hole_em = NULL;
7094 } else {
7095 hole_start = max(hole_em->start, start);
7096 hole_len = calc_end - hole_start;
7097 }
7098 }
7099 em->bdev = NULL;
7100 if (hole_em && range_start > hole_start) {
7101 /* our hole starts before our delalloc, so we
7102 * have to return just the parts of the hole
7103 * that go until the delalloc starts
7104 */
7105 em->len = min(hole_len,
7106 range_start - hole_start);
7107 em->start = hole_start;
7108 em->orig_start = hole_start;
7109 /*
7110 * don't adjust block start at all,
7111 * it is fixed at EXTENT_MAP_HOLE
7112 */
7113 em->block_start = hole_em->block_start;
7114 em->block_len = hole_len;
7115 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7116 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7117 } else {
7118 em->start = range_start;
7119 em->len = found;
7120 em->orig_start = range_start;
7121 em->block_start = EXTENT_MAP_DELALLOC;
7122 em->block_len = found;
7123 }
7124 } else if (hole_em) {
7125 return hole_em;
7126 }
7127 out:
7128
7129 free_extent_map(hole_em);
7130 if (err) {
7131 free_extent_map(em);
7132 return ERR_PTR(err);
7133 }
7134 return em;
7135 }
7136
7137 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7138 u64 start, u64 len)
7139 {
7140 struct btrfs_root *root = BTRFS_I(inode)->root;
7141 struct extent_map *em;
7142 struct btrfs_key ins;
7143 u64 alloc_hint;
7144 int ret;
7145
7146 alloc_hint = get_extent_allocation_hint(inode, start, len);
7147 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7148 alloc_hint, &ins, 1, 1);
7149 if (ret)
7150 return ERR_PTR(ret);
7151
7152 /*
7153 * Create the ordered extent before the extent map. This is to avoid
7154 * races with the fast fsync path that would lead to it logging file
7155 * extent items that point to disk extents that were not yet written to.
7156 * The fast fsync path collects ordered extents into a local list and
7157 * then collects all the new extent maps, so we must create the ordered
7158 * extent first and make sure the fast fsync path collects any new
7159 * ordered extents after collecting new extent maps as well.
7160 * The fsync path simply can not rely on inode_dio_wait() because it
7161 * causes deadlock with AIO.
7162 */
7163 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7164 ins.offset, ins.offset, 0);
7165 if (ret) {
7166 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7167 return ERR_PTR(ret);
7168 }
7169
7170 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7171
7172 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7173 ins.offset, ins.offset, ins.offset, 0);
7174 if (IS_ERR(em)) {
7175 struct btrfs_ordered_extent *oe;
7176
7177 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7178 oe = btrfs_lookup_ordered_extent(inode, start);
7179 ASSERT(oe);
7180 if (WARN_ON(!oe))
7181 return em;
7182 set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
7183 set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
7184 btrfs_remove_ordered_extent(inode, oe);
7185 /* Once for our lookup and once for the ordered extents tree. */
7186 btrfs_put_ordered_extent(oe);
7187 btrfs_put_ordered_extent(oe);
7188 }
7189 return em;
7190 }
7191
7192 /*
7193 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7194 * block must be cow'd
7195 */
7196 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7197 u64 *orig_start, u64 *orig_block_len,
7198 u64 *ram_bytes)
7199 {
7200 struct btrfs_trans_handle *trans;
7201 struct btrfs_path *path;
7202 int ret;
7203 struct extent_buffer *leaf;
7204 struct btrfs_root *root = BTRFS_I(inode)->root;
7205 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7206 struct btrfs_file_extent_item *fi;
7207 struct btrfs_key key;
7208 u64 disk_bytenr;
7209 u64 backref_offset;
7210 u64 extent_end;
7211 u64 num_bytes;
7212 int slot;
7213 int found_type;
7214 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7215
7216 path = btrfs_alloc_path();
7217 if (!path)
7218 return -ENOMEM;
7219
7220 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7221 offset, 0);
7222 if (ret < 0)
7223 goto out;
7224
7225 slot = path->slots[0];
7226 if (ret == 1) {
7227 if (slot == 0) {
7228 /* can't find the item, must cow */
7229 ret = 0;
7230 goto out;
7231 }
7232 slot--;
7233 }
7234 ret = 0;
7235 leaf = path->nodes[0];
7236 btrfs_item_key_to_cpu(leaf, &key, slot);
7237 if (key.objectid != btrfs_ino(inode) ||
7238 key.type != BTRFS_EXTENT_DATA_KEY) {
7239 /* not our file or wrong item type, must cow */
7240 goto out;
7241 }
7242
7243 if (key.offset > offset) {
7244 /* Wrong offset, must cow */
7245 goto out;
7246 }
7247
7248 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7249 found_type = btrfs_file_extent_type(leaf, fi);
7250 if (found_type != BTRFS_FILE_EXTENT_REG &&
7251 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7252 /* not a regular extent, must cow */
7253 goto out;
7254 }
7255
7256 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7257 goto out;
7258
7259 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7260 if (extent_end <= offset)
7261 goto out;
7262
7263 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7264 if (disk_bytenr == 0)
7265 goto out;
7266
7267 if (btrfs_file_extent_compression(leaf, fi) ||
7268 btrfs_file_extent_encryption(leaf, fi) ||
7269 btrfs_file_extent_other_encoding(leaf, fi))
7270 goto out;
7271
7272 backref_offset = btrfs_file_extent_offset(leaf, fi);
7273
7274 if (orig_start) {
7275 *orig_start = key.offset - backref_offset;
7276 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7277 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7278 }
7279
7280 if (btrfs_extent_readonly(root, disk_bytenr))
7281 goto out;
7282
7283 num_bytes = min(offset + *len, extent_end) - offset;
7284 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7285 u64 range_end;
7286
7287 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7288 ret = test_range_bit(io_tree, offset, range_end,
7289 EXTENT_DELALLOC, 0, NULL);
7290 if (ret) {
7291 ret = -EAGAIN;
7292 goto out;
7293 }
7294 }
7295
7296 btrfs_release_path(path);
7297
7298 /*
7299 * look for other files referencing this extent, if we
7300 * find any we must cow
7301 */
7302 trans = btrfs_join_transaction(root);
7303 if (IS_ERR(trans)) {
7304 ret = 0;
7305 goto out;
7306 }
7307
7308 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7309 key.offset - backref_offset, disk_bytenr);
7310 btrfs_end_transaction(trans, root);
7311 if (ret) {
7312 ret = 0;
7313 goto out;
7314 }
7315
7316 /*
7317 * adjust disk_bytenr and num_bytes to cover just the bytes
7318 * in this extent we are about to write. If there
7319 * are any csums in that range we have to cow in order
7320 * to keep the csums correct
7321 */
7322 disk_bytenr += backref_offset;
7323 disk_bytenr += offset - key.offset;
7324 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7325 goto out;
7326 /*
7327 * all of the above have passed, it is safe to overwrite this extent
7328 * without cow
7329 */
7330 *len = num_bytes;
7331 ret = 1;
7332 out:
7333 btrfs_free_path(path);
7334 return ret;
7335 }
7336
7337 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7338 {
7339 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7340 int found = false;
7341 void **pagep = NULL;
7342 struct page *page = NULL;
7343 int start_idx;
7344 int end_idx;
7345
7346 start_idx = start >> PAGE_SHIFT;
7347
7348 /*
7349 * end is the last byte in the last page. end == start is legal
7350 */
7351 end_idx = end >> PAGE_SHIFT;
7352
7353 rcu_read_lock();
7354
7355 /* Most of the code in this while loop is lifted from
7356 * find_get_page. It's been modified to begin searching from a
7357 * page and return just the first page found in that range. If the
7358 * found idx is less than or equal to the end idx then we know that
7359 * a page exists. If no pages are found or if those pages are
7360 * outside of the range then we're fine (yay!) */
7361 while (page == NULL &&
7362 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7363 page = radix_tree_deref_slot(pagep);
7364 if (unlikely(!page))
7365 break;
7366
7367 if (radix_tree_exception(page)) {
7368 if (radix_tree_deref_retry(page)) {
7369 page = NULL;
7370 continue;
7371 }
7372 /*
7373 * Otherwise, shmem/tmpfs must be storing a swap entry
7374 * here as an exceptional entry: so return it without
7375 * attempting to raise page count.
7376 */
7377 page = NULL;
7378 break; /* TODO: Is this relevant for this use case? */
7379 }
7380
7381 if (!page_cache_get_speculative(page)) {
7382 page = NULL;
7383 continue;
7384 }
7385
7386 /*
7387 * Has the page moved?
7388 * This is part of the lockless pagecache protocol. See
7389 * include/linux/pagemap.h for details.
7390 */
7391 if (unlikely(page != *pagep)) {
7392 put_page(page);
7393 page = NULL;
7394 }
7395 }
7396
7397 if (page) {
7398 if (page->index <= end_idx)
7399 found = true;
7400 put_page(page);
7401 }
7402
7403 rcu_read_unlock();
7404 return found;
7405 }
7406
7407 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7408 struct extent_state **cached_state, int writing)
7409 {
7410 struct btrfs_ordered_extent *ordered;
7411 int ret = 0;
7412
7413 while (1) {
7414 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7415 cached_state);
7416 /*
7417 * We're concerned with the entire range that we're going to be
7418 * doing DIO to, so we need to make sure theres no ordered
7419 * extents in this range.
7420 */
7421 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7422 lockend - lockstart + 1);
7423
7424 /*
7425 * We need to make sure there are no buffered pages in this
7426 * range either, we could have raced between the invalidate in
7427 * generic_file_direct_write and locking the extent. The
7428 * invalidate needs to happen so that reads after a write do not
7429 * get stale data.
7430 */
7431 if (!ordered &&
7432 (!writing ||
7433 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7434 break;
7435
7436 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7437 cached_state, GFP_NOFS);
7438
7439 if (ordered) {
7440 /*
7441 * If we are doing a DIO read and the ordered extent we
7442 * found is for a buffered write, we can not wait for it
7443 * to complete and retry, because if we do so we can
7444 * deadlock with concurrent buffered writes on page
7445 * locks. This happens only if our DIO read covers more
7446 * than one extent map, if at this point has already
7447 * created an ordered extent for a previous extent map
7448 * and locked its range in the inode's io tree, and a
7449 * concurrent write against that previous extent map's
7450 * range and this range started (we unlock the ranges
7451 * in the io tree only when the bios complete and
7452 * buffered writes always lock pages before attempting
7453 * to lock range in the io tree).
7454 */
7455 if (writing ||
7456 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7457 btrfs_start_ordered_extent(inode, ordered, 1);
7458 else
7459 ret = -ENOTBLK;
7460 btrfs_put_ordered_extent(ordered);
7461 } else {
7462 /*
7463 * We could trigger writeback for this range (and wait
7464 * for it to complete) and then invalidate the pages for
7465 * this range (through invalidate_inode_pages2_range()),
7466 * but that can lead us to a deadlock with a concurrent
7467 * call to readpages() (a buffered read or a defrag call
7468 * triggered a readahead) on a page lock due to an
7469 * ordered dio extent we created before but did not have
7470 * yet a corresponding bio submitted (whence it can not
7471 * complete), which makes readpages() wait for that
7472 * ordered extent to complete while holding a lock on
7473 * that page.
7474 */
7475 ret = -ENOTBLK;
7476 }
7477
7478 if (ret)
7479 break;
7480
7481 cond_resched();
7482 }
7483
7484 return ret;
7485 }
7486
7487 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7488 u64 len, u64 orig_start,
7489 u64 block_start, u64 block_len,
7490 u64 orig_block_len, u64 ram_bytes,
7491 int type)
7492 {
7493 struct extent_map_tree *em_tree;
7494 struct extent_map *em;
7495 struct btrfs_root *root = BTRFS_I(inode)->root;
7496 int ret;
7497
7498 em_tree = &BTRFS_I(inode)->extent_tree;
7499 em = alloc_extent_map();
7500 if (!em)
7501 return ERR_PTR(-ENOMEM);
7502
7503 em->start = start;
7504 em->orig_start = orig_start;
7505 em->mod_start = start;
7506 em->mod_len = len;
7507 em->len = len;
7508 em->block_len = block_len;
7509 em->block_start = block_start;
7510 em->bdev = root->fs_info->fs_devices->latest_bdev;
7511 em->orig_block_len = orig_block_len;
7512 em->ram_bytes = ram_bytes;
7513 em->generation = -1;
7514 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7515 if (type == BTRFS_ORDERED_PREALLOC)
7516 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7517
7518 do {
7519 btrfs_drop_extent_cache(inode, em->start,
7520 em->start + em->len - 1, 0);
7521 write_lock(&em_tree->lock);
7522 ret = add_extent_mapping(em_tree, em, 1);
7523 write_unlock(&em_tree->lock);
7524 } while (ret == -EEXIST);
7525
7526 if (ret) {
7527 free_extent_map(em);
7528 return ERR_PTR(ret);
7529 }
7530
7531 return em;
7532 }
7533
7534 static void adjust_dio_outstanding_extents(struct inode *inode,
7535 struct btrfs_dio_data *dio_data,
7536 const u64 len)
7537 {
7538 unsigned num_extents;
7539
7540 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7541 BTRFS_MAX_EXTENT_SIZE);
7542 /*
7543 * If we have an outstanding_extents count still set then we're
7544 * within our reservation, otherwise we need to adjust our inode
7545 * counter appropriately.
7546 */
7547 if (dio_data->outstanding_extents) {
7548 dio_data->outstanding_extents -= num_extents;
7549 } else {
7550 spin_lock(&BTRFS_I(inode)->lock);
7551 BTRFS_I(inode)->outstanding_extents += num_extents;
7552 spin_unlock(&BTRFS_I(inode)->lock);
7553 }
7554 }
7555
7556 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7557 struct buffer_head *bh_result, int create)
7558 {
7559 struct extent_map *em;
7560 struct btrfs_root *root = BTRFS_I(inode)->root;
7561 struct extent_state *cached_state = NULL;
7562 struct btrfs_dio_data *dio_data = NULL;
7563 u64 start = iblock << inode->i_blkbits;
7564 u64 lockstart, lockend;
7565 u64 len = bh_result->b_size;
7566 int unlock_bits = EXTENT_LOCKED;
7567 int ret = 0;
7568
7569 if (create)
7570 unlock_bits |= EXTENT_DIRTY;
7571 else
7572 len = min_t(u64, len, root->sectorsize);
7573
7574 lockstart = start;
7575 lockend = start + len - 1;
7576
7577 if (current->journal_info) {
7578 /*
7579 * Need to pull our outstanding extents and set journal_info to NULL so
7580 * that anything that needs to check if there's a transction doesn't get
7581 * confused.
7582 */
7583 dio_data = current->journal_info;
7584 current->journal_info = NULL;
7585 }
7586
7587 /*
7588 * If this errors out it's because we couldn't invalidate pagecache for
7589 * this range and we need to fallback to buffered.
7590 */
7591 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7592 create)) {
7593 ret = -ENOTBLK;
7594 goto err;
7595 }
7596
7597 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7598 if (IS_ERR(em)) {
7599 ret = PTR_ERR(em);
7600 goto unlock_err;
7601 }
7602
7603 /*
7604 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7605 * io. INLINE is special, and we could probably kludge it in here, but
7606 * it's still buffered so for safety lets just fall back to the generic
7607 * buffered path.
7608 *
7609 * For COMPRESSED we _have_ to read the entire extent in so we can
7610 * decompress it, so there will be buffering required no matter what we
7611 * do, so go ahead and fallback to buffered.
7612 *
7613 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7614 * to buffered IO. Don't blame me, this is the price we pay for using
7615 * the generic code.
7616 */
7617 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7618 em->block_start == EXTENT_MAP_INLINE) {
7619 free_extent_map(em);
7620 ret = -ENOTBLK;
7621 goto unlock_err;
7622 }
7623
7624 /* Just a good old fashioned hole, return */
7625 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7626 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7627 free_extent_map(em);
7628 goto unlock_err;
7629 }
7630
7631 /*
7632 * We don't allocate a new extent in the following cases
7633 *
7634 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7635 * existing extent.
7636 * 2) The extent is marked as PREALLOC. We're good to go here and can
7637 * just use the extent.
7638 *
7639 */
7640 if (!create) {
7641 len = min(len, em->len - (start - em->start));
7642 lockstart = start + len;
7643 goto unlock;
7644 }
7645
7646 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7647 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7648 em->block_start != EXTENT_MAP_HOLE)) {
7649 int type;
7650 u64 block_start, orig_start, orig_block_len, ram_bytes;
7651
7652 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7653 type = BTRFS_ORDERED_PREALLOC;
7654 else
7655 type = BTRFS_ORDERED_NOCOW;
7656 len = min(len, em->len - (start - em->start));
7657 block_start = em->block_start + (start - em->start);
7658
7659 if (can_nocow_extent(inode, start, &len, &orig_start,
7660 &orig_block_len, &ram_bytes) == 1) {
7661
7662 /*
7663 * Create the ordered extent before the extent map. This
7664 * is to avoid races with the fast fsync path because it
7665 * collects ordered extents into a local list and then
7666 * collects all the new extent maps, so we must create
7667 * the ordered extent first and make sure the fast fsync
7668 * path collects any new ordered extents after
7669 * collecting new extent maps as well. The fsync path
7670 * simply can not rely on inode_dio_wait() because it
7671 * causes deadlock with AIO.
7672 */
7673 ret = btrfs_add_ordered_extent_dio(inode, start,
7674 block_start, len, len, type);
7675 if (ret) {
7676 free_extent_map(em);
7677 goto unlock_err;
7678 }
7679
7680 if (type == BTRFS_ORDERED_PREALLOC) {
7681 free_extent_map(em);
7682 em = create_pinned_em(inode, start, len,
7683 orig_start,
7684 block_start, len,
7685 orig_block_len,
7686 ram_bytes, type);
7687 if (IS_ERR(em)) {
7688 struct btrfs_ordered_extent *oe;
7689
7690 ret = PTR_ERR(em);
7691 oe = btrfs_lookup_ordered_extent(inode,
7692 start);
7693 ASSERT(oe);
7694 if (WARN_ON(!oe))
7695 goto unlock_err;
7696 set_bit(BTRFS_ORDERED_IOERR,
7697 &oe->flags);
7698 set_bit(BTRFS_ORDERED_IO_DONE,
7699 &oe->flags);
7700 btrfs_remove_ordered_extent(inode, oe);
7701 /*
7702 * Once for our lookup and once for the
7703 * ordered extents tree.
7704 */
7705 btrfs_put_ordered_extent(oe);
7706 btrfs_put_ordered_extent(oe);
7707 goto unlock_err;
7708 }
7709 }
7710
7711 goto unlock;
7712 }
7713 }
7714
7715 /*
7716 * this will cow the extent, reset the len in case we changed
7717 * it above
7718 */
7719 len = bh_result->b_size;
7720 free_extent_map(em);
7721 em = btrfs_new_extent_direct(inode, start, len);
7722 if (IS_ERR(em)) {
7723 ret = PTR_ERR(em);
7724 goto unlock_err;
7725 }
7726 len = min(len, em->len - (start - em->start));
7727 unlock:
7728 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7729 inode->i_blkbits;
7730 bh_result->b_size = len;
7731 bh_result->b_bdev = em->bdev;
7732 set_buffer_mapped(bh_result);
7733 if (create) {
7734 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7735 set_buffer_new(bh_result);
7736
7737 /*
7738 * Need to update the i_size under the extent lock so buffered
7739 * readers will get the updated i_size when we unlock.
7740 */
7741 if (start + len > i_size_read(inode))
7742 i_size_write(inode, start + len);
7743
7744 adjust_dio_outstanding_extents(inode, dio_data, len);
7745 btrfs_free_reserved_data_space(inode, start, len);
7746 WARN_ON(dio_data->reserve < len);
7747 dio_data->reserve -= len;
7748 dio_data->unsubmitted_oe_range_end = start + len;
7749 current->journal_info = dio_data;
7750 }
7751
7752 /*
7753 * In the case of write we need to clear and unlock the entire range,
7754 * in the case of read we need to unlock only the end area that we
7755 * aren't using if there is any left over space.
7756 */
7757 if (lockstart < lockend) {
7758 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7759 lockend, unlock_bits, 1, 0,
7760 &cached_state, GFP_NOFS);
7761 } else {
7762 free_extent_state(cached_state);
7763 }
7764
7765 free_extent_map(em);
7766
7767 return 0;
7768
7769 unlock_err:
7770 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7771 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7772 err:
7773 if (dio_data)
7774 current->journal_info = dio_data;
7775 /*
7776 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7777 * write less data then expected, so that we don't underflow our inode's
7778 * outstanding extents counter.
7779 */
7780 if (create && dio_data)
7781 adjust_dio_outstanding_extents(inode, dio_data, len);
7782
7783 return ret;
7784 }
7785
7786 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7787 int rw, int mirror_num)
7788 {
7789 struct btrfs_root *root = BTRFS_I(inode)->root;
7790 int ret;
7791
7792 BUG_ON(rw & REQ_WRITE);
7793
7794 bio_get(bio);
7795
7796 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7797 BTRFS_WQ_ENDIO_DIO_REPAIR);
7798 if (ret)
7799 goto err;
7800
7801 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7802 err:
7803 bio_put(bio);
7804 return ret;
7805 }
7806
7807 static int btrfs_check_dio_repairable(struct inode *inode,
7808 struct bio *failed_bio,
7809 struct io_failure_record *failrec,
7810 int failed_mirror)
7811 {
7812 int num_copies;
7813
7814 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7815 failrec->logical, failrec->len);
7816 if (num_copies == 1) {
7817 /*
7818 * we only have a single copy of the data, so don't bother with
7819 * all the retry and error correction code that follows. no
7820 * matter what the error is, it is very likely to persist.
7821 */
7822 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7823 num_copies, failrec->this_mirror, failed_mirror);
7824 return 0;
7825 }
7826
7827 failrec->failed_mirror = failed_mirror;
7828 failrec->this_mirror++;
7829 if (failrec->this_mirror == failed_mirror)
7830 failrec->this_mirror++;
7831
7832 if (failrec->this_mirror > num_copies) {
7833 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7834 num_copies, failrec->this_mirror, failed_mirror);
7835 return 0;
7836 }
7837
7838 return 1;
7839 }
7840
7841 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7842 struct page *page, unsigned int pgoff,
7843 u64 start, u64 end, int failed_mirror,
7844 bio_end_io_t *repair_endio, void *repair_arg)
7845 {
7846 struct io_failure_record *failrec;
7847 struct bio *bio;
7848 int isector;
7849 int read_mode;
7850 int ret;
7851
7852 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7853
7854 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7855 if (ret)
7856 return ret;
7857
7858 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7859 failed_mirror);
7860 if (!ret) {
7861 free_io_failure(inode, failrec);
7862 return -EIO;
7863 }
7864
7865 if ((failed_bio->bi_vcnt > 1)
7866 || (failed_bio->bi_io_vec->bv_len
7867 > BTRFS_I(inode)->root->sectorsize))
7868 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7869 else
7870 read_mode = READ_SYNC;
7871
7872 isector = start - btrfs_io_bio(failed_bio)->logical;
7873 isector >>= inode->i_sb->s_blocksize_bits;
7874 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7875 pgoff, isector, repair_endio, repair_arg);
7876 if (!bio) {
7877 free_io_failure(inode, failrec);
7878 return -EIO;
7879 }
7880
7881 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7882 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7883 read_mode, failrec->this_mirror, failrec->in_validation);
7884
7885 ret = submit_dio_repair_bio(inode, bio, read_mode,
7886 failrec->this_mirror);
7887 if (ret) {
7888 free_io_failure(inode, failrec);
7889 bio_put(bio);
7890 }
7891
7892 return ret;
7893 }
7894
7895 struct btrfs_retry_complete {
7896 struct completion done;
7897 struct inode *inode;
7898 u64 start;
7899 int uptodate;
7900 };
7901
7902 static void btrfs_retry_endio_nocsum(struct bio *bio)
7903 {
7904 struct btrfs_retry_complete *done = bio->bi_private;
7905 struct inode *inode;
7906 struct bio_vec *bvec;
7907 int i;
7908
7909 if (bio->bi_error)
7910 goto end;
7911
7912 ASSERT(bio->bi_vcnt == 1);
7913 inode = bio->bi_io_vec->bv_page->mapping->host;
7914 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7915
7916 done->uptodate = 1;
7917 bio_for_each_segment_all(bvec, bio, i)
7918 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7919 end:
7920 complete(&done->done);
7921 bio_put(bio);
7922 }
7923
7924 static int __btrfs_correct_data_nocsum(struct inode *inode,
7925 struct btrfs_io_bio *io_bio)
7926 {
7927 struct btrfs_fs_info *fs_info;
7928 struct bio_vec *bvec;
7929 struct btrfs_retry_complete done;
7930 u64 start;
7931 unsigned int pgoff;
7932 u32 sectorsize;
7933 int nr_sectors;
7934 int i;
7935 int ret;
7936
7937 fs_info = BTRFS_I(inode)->root->fs_info;
7938 sectorsize = BTRFS_I(inode)->root->sectorsize;
7939
7940 start = io_bio->logical;
7941 done.inode = inode;
7942
7943 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7944 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7945 pgoff = bvec->bv_offset;
7946
7947 next_block_or_try_again:
7948 done.uptodate = 0;
7949 done.start = start;
7950 init_completion(&done.done);
7951
7952 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7953 pgoff, start, start + sectorsize - 1,
7954 io_bio->mirror_num,
7955 btrfs_retry_endio_nocsum, &done);
7956 if (ret)
7957 return ret;
7958
7959 wait_for_completion(&done.done);
7960
7961 if (!done.uptodate) {
7962 /* We might have another mirror, so try again */
7963 goto next_block_or_try_again;
7964 }
7965
7966 start += sectorsize;
7967
7968 if (nr_sectors--) {
7969 pgoff += sectorsize;
7970 goto next_block_or_try_again;
7971 }
7972 }
7973
7974 return 0;
7975 }
7976
7977 static void btrfs_retry_endio(struct bio *bio)
7978 {
7979 struct btrfs_retry_complete *done = bio->bi_private;
7980 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7981 struct inode *inode;
7982 struct bio_vec *bvec;
7983 u64 start;
7984 int uptodate;
7985 int ret;
7986 int i;
7987
7988 if (bio->bi_error)
7989 goto end;
7990
7991 uptodate = 1;
7992
7993 start = done->start;
7994
7995 ASSERT(bio->bi_vcnt == 1);
7996 inode = bio->bi_io_vec->bv_page->mapping->host;
7997 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7998
7999 bio_for_each_segment_all(bvec, bio, i) {
8000 ret = __readpage_endio_check(done->inode, io_bio, i,
8001 bvec->bv_page, bvec->bv_offset,
8002 done->start, bvec->bv_len);
8003 if (!ret)
8004 clean_io_failure(done->inode, done->start,
8005 bvec->bv_page, bvec->bv_offset);
8006 else
8007 uptodate = 0;
8008 }
8009
8010 done->uptodate = uptodate;
8011 end:
8012 complete(&done->done);
8013 bio_put(bio);
8014 }
8015
8016 static int __btrfs_subio_endio_read(struct inode *inode,
8017 struct btrfs_io_bio *io_bio, int err)
8018 {
8019 struct btrfs_fs_info *fs_info;
8020 struct bio_vec *bvec;
8021 struct btrfs_retry_complete done;
8022 u64 start;
8023 u64 offset = 0;
8024 u32 sectorsize;
8025 int nr_sectors;
8026 unsigned int pgoff;
8027 int csum_pos;
8028 int i;
8029 int ret;
8030
8031 fs_info = BTRFS_I(inode)->root->fs_info;
8032 sectorsize = BTRFS_I(inode)->root->sectorsize;
8033
8034 err = 0;
8035 start = io_bio->logical;
8036 done.inode = inode;
8037
8038 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8039 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8040
8041 pgoff = bvec->bv_offset;
8042 next_block:
8043 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8044 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8045 bvec->bv_page, pgoff, start,
8046 sectorsize);
8047 if (likely(!ret))
8048 goto next;
8049 try_again:
8050 done.uptodate = 0;
8051 done.start = start;
8052 init_completion(&done.done);
8053
8054 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8055 pgoff, start, start + sectorsize - 1,
8056 io_bio->mirror_num,
8057 btrfs_retry_endio, &done);
8058 if (ret) {
8059 err = ret;
8060 goto next;
8061 }
8062
8063 wait_for_completion(&done.done);
8064
8065 if (!done.uptodate) {
8066 /* We might have another mirror, so try again */
8067 goto try_again;
8068 }
8069 next:
8070 offset += sectorsize;
8071 start += sectorsize;
8072
8073 ASSERT(nr_sectors);
8074
8075 if (--nr_sectors) {
8076 pgoff += sectorsize;
8077 goto next_block;
8078 }
8079 }
8080
8081 return err;
8082 }
8083
8084 static int btrfs_subio_endio_read(struct inode *inode,
8085 struct btrfs_io_bio *io_bio, int err)
8086 {
8087 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8088
8089 if (skip_csum) {
8090 if (unlikely(err))
8091 return __btrfs_correct_data_nocsum(inode, io_bio);
8092 else
8093 return 0;
8094 } else {
8095 return __btrfs_subio_endio_read(inode, io_bio, err);
8096 }
8097 }
8098
8099 static void btrfs_endio_direct_read(struct bio *bio)
8100 {
8101 struct btrfs_dio_private *dip = bio->bi_private;
8102 struct inode *inode = dip->inode;
8103 struct bio *dio_bio;
8104 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8105 int err = bio->bi_error;
8106
8107 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8108 err = btrfs_subio_endio_read(inode, io_bio, err);
8109
8110 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8111 dip->logical_offset + dip->bytes - 1);
8112 dio_bio = dip->dio_bio;
8113
8114 kfree(dip);
8115
8116 dio_bio->bi_error = bio->bi_error;
8117 dio_end_io(dio_bio, bio->bi_error);
8118
8119 if (io_bio->end_io)
8120 io_bio->end_io(io_bio, err);
8121 bio_put(bio);
8122 }
8123
8124 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8125 const u64 offset,
8126 const u64 bytes,
8127 const int uptodate)
8128 {
8129 struct btrfs_root *root = BTRFS_I(inode)->root;
8130 struct btrfs_ordered_extent *ordered = NULL;
8131 u64 ordered_offset = offset;
8132 u64 ordered_bytes = bytes;
8133 int ret;
8134
8135 again:
8136 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8137 &ordered_offset,
8138 ordered_bytes,
8139 uptodate);
8140 if (!ret)
8141 goto out_test;
8142
8143 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8144 finish_ordered_fn, NULL, NULL);
8145 btrfs_queue_work(root->fs_info->endio_write_workers,
8146 &ordered->work);
8147 out_test:
8148 /*
8149 * our bio might span multiple ordered extents. If we haven't
8150 * completed the accounting for the whole dio, go back and try again
8151 */
8152 if (ordered_offset < offset + bytes) {
8153 ordered_bytes = offset + bytes - ordered_offset;
8154 ordered = NULL;
8155 goto again;
8156 }
8157 }
8158
8159 static void btrfs_endio_direct_write(struct bio *bio)
8160 {
8161 struct btrfs_dio_private *dip = bio->bi_private;
8162 struct bio *dio_bio = dip->dio_bio;
8163
8164 btrfs_endio_direct_write_update_ordered(dip->inode,
8165 dip->logical_offset,
8166 dip->bytes,
8167 !bio->bi_error);
8168
8169 kfree(dip);
8170
8171 dio_bio->bi_error = bio->bi_error;
8172 dio_end_io(dio_bio, bio->bi_error);
8173 bio_put(bio);
8174 }
8175
8176 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8177 struct bio *bio, int mirror_num,
8178 unsigned long bio_flags, u64 offset)
8179 {
8180 int ret;
8181 struct btrfs_root *root = BTRFS_I(inode)->root;
8182 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8183 BUG_ON(ret); /* -ENOMEM */
8184 return 0;
8185 }
8186
8187 static void btrfs_end_dio_bio(struct bio *bio)
8188 {
8189 struct btrfs_dio_private *dip = bio->bi_private;
8190 int err = bio->bi_error;
8191
8192 if (err)
8193 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8194 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8195 btrfs_ino(dip->inode), bio->bi_rw,
8196 (unsigned long long)bio->bi_iter.bi_sector,
8197 bio->bi_iter.bi_size, err);
8198
8199 if (dip->subio_endio)
8200 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8201
8202 if (err) {
8203 dip->errors = 1;
8204
8205 /*
8206 * before atomic variable goto zero, we must make sure
8207 * dip->errors is perceived to be set.
8208 */
8209 smp_mb__before_atomic();
8210 }
8211
8212 /* if there are more bios still pending for this dio, just exit */
8213 if (!atomic_dec_and_test(&dip->pending_bios))
8214 goto out;
8215
8216 if (dip->errors) {
8217 bio_io_error(dip->orig_bio);
8218 } else {
8219 dip->dio_bio->bi_error = 0;
8220 bio_endio(dip->orig_bio);
8221 }
8222 out:
8223 bio_put(bio);
8224 }
8225
8226 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8227 u64 first_sector, gfp_t gfp_flags)
8228 {
8229 struct bio *bio;
8230 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8231 if (bio)
8232 bio_associate_current(bio);
8233 return bio;
8234 }
8235
8236 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8237 struct inode *inode,
8238 struct btrfs_dio_private *dip,
8239 struct bio *bio,
8240 u64 file_offset)
8241 {
8242 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8243 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8244 int ret;
8245
8246 /*
8247 * We load all the csum data we need when we submit
8248 * the first bio to reduce the csum tree search and
8249 * contention.
8250 */
8251 if (dip->logical_offset == file_offset) {
8252 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8253 file_offset);
8254 if (ret)
8255 return ret;
8256 }
8257
8258 if (bio == dip->orig_bio)
8259 return 0;
8260
8261 file_offset -= dip->logical_offset;
8262 file_offset >>= inode->i_sb->s_blocksize_bits;
8263 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8264
8265 return 0;
8266 }
8267
8268 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8269 int rw, u64 file_offset, int skip_sum,
8270 int async_submit)
8271 {
8272 struct btrfs_dio_private *dip = bio->bi_private;
8273 int write = rw & REQ_WRITE;
8274 struct btrfs_root *root = BTRFS_I(inode)->root;
8275 int ret;
8276
8277 if (async_submit)
8278 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8279
8280 bio_get(bio);
8281
8282 if (!write) {
8283 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8284 BTRFS_WQ_ENDIO_DATA);
8285 if (ret)
8286 goto err;
8287 }
8288
8289 if (skip_sum)
8290 goto map;
8291
8292 if (write && async_submit) {
8293 ret = btrfs_wq_submit_bio(root->fs_info,
8294 inode, rw, bio, 0, 0,
8295 file_offset,
8296 __btrfs_submit_bio_start_direct_io,
8297 __btrfs_submit_bio_done);
8298 goto err;
8299 } else if (write) {
8300 /*
8301 * If we aren't doing async submit, calculate the csum of the
8302 * bio now.
8303 */
8304 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8305 if (ret)
8306 goto err;
8307 } else {
8308 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8309 file_offset);
8310 if (ret)
8311 goto err;
8312 }
8313 map:
8314 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8315 err:
8316 bio_put(bio);
8317 return ret;
8318 }
8319
8320 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8321 int skip_sum)
8322 {
8323 struct inode *inode = dip->inode;
8324 struct btrfs_root *root = BTRFS_I(inode)->root;
8325 struct bio *bio;
8326 struct bio *orig_bio = dip->orig_bio;
8327 struct bio_vec *bvec = orig_bio->bi_io_vec;
8328 u64 start_sector = orig_bio->bi_iter.bi_sector;
8329 u64 file_offset = dip->logical_offset;
8330 u64 submit_len = 0;
8331 u64 map_length;
8332 u32 blocksize = root->sectorsize;
8333 int async_submit = 0;
8334 int nr_sectors;
8335 int ret;
8336 int i;
8337
8338 map_length = orig_bio->bi_iter.bi_size;
8339 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8340 &map_length, NULL, 0);
8341 if (ret)
8342 return -EIO;
8343
8344 if (map_length >= orig_bio->bi_iter.bi_size) {
8345 bio = orig_bio;
8346 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8347 goto submit;
8348 }
8349
8350 /* async crcs make it difficult to collect full stripe writes. */
8351 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8352 async_submit = 0;
8353 else
8354 async_submit = 1;
8355
8356 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8357 if (!bio)
8358 return -ENOMEM;
8359
8360 bio->bi_private = dip;
8361 bio->bi_end_io = btrfs_end_dio_bio;
8362 btrfs_io_bio(bio)->logical = file_offset;
8363 atomic_inc(&dip->pending_bios);
8364
8365 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8366 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8367 i = 0;
8368 next_block:
8369 if (unlikely(map_length < submit_len + blocksize ||
8370 bio_add_page(bio, bvec->bv_page, blocksize,
8371 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8372 /*
8373 * inc the count before we submit the bio so
8374 * we know the end IO handler won't happen before
8375 * we inc the count. Otherwise, the dip might get freed
8376 * before we're done setting it up
8377 */
8378 atomic_inc(&dip->pending_bios);
8379 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8380 file_offset, skip_sum,
8381 async_submit);
8382 if (ret) {
8383 bio_put(bio);
8384 atomic_dec(&dip->pending_bios);
8385 goto out_err;
8386 }
8387
8388 start_sector += submit_len >> 9;
8389 file_offset += submit_len;
8390
8391 submit_len = 0;
8392
8393 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8394 start_sector, GFP_NOFS);
8395 if (!bio)
8396 goto out_err;
8397 bio->bi_private = dip;
8398 bio->bi_end_io = btrfs_end_dio_bio;
8399 btrfs_io_bio(bio)->logical = file_offset;
8400
8401 map_length = orig_bio->bi_iter.bi_size;
8402 ret = btrfs_map_block(root->fs_info, rw,
8403 start_sector << 9,
8404 &map_length, NULL, 0);
8405 if (ret) {
8406 bio_put(bio);
8407 goto out_err;
8408 }
8409
8410 goto next_block;
8411 } else {
8412 submit_len += blocksize;
8413 if (--nr_sectors) {
8414 i++;
8415 goto next_block;
8416 }
8417 bvec++;
8418 }
8419 }
8420
8421 submit:
8422 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8423 async_submit);
8424 if (!ret)
8425 return 0;
8426
8427 bio_put(bio);
8428 out_err:
8429 dip->errors = 1;
8430 /*
8431 * before atomic variable goto zero, we must
8432 * make sure dip->errors is perceived to be set.
8433 */
8434 smp_mb__before_atomic();
8435 if (atomic_dec_and_test(&dip->pending_bios))
8436 bio_io_error(dip->orig_bio);
8437
8438 /* bio_end_io() will handle error, so we needn't return it */
8439 return 0;
8440 }
8441
8442 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8443 struct inode *inode, loff_t file_offset)
8444 {
8445 struct btrfs_dio_private *dip = NULL;
8446 struct bio *io_bio = NULL;
8447 struct btrfs_io_bio *btrfs_bio;
8448 int skip_sum;
8449 int write = rw & REQ_WRITE;
8450 int ret = 0;
8451
8452 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8453
8454 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8455 if (!io_bio) {
8456 ret = -ENOMEM;
8457 goto free_ordered;
8458 }
8459
8460 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8461 if (!dip) {
8462 ret = -ENOMEM;
8463 goto free_ordered;
8464 }
8465
8466 dip->private = dio_bio->bi_private;
8467 dip->inode = inode;
8468 dip->logical_offset = file_offset;
8469 dip->bytes = dio_bio->bi_iter.bi_size;
8470 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8471 io_bio->bi_private = dip;
8472 dip->orig_bio = io_bio;
8473 dip->dio_bio = dio_bio;
8474 atomic_set(&dip->pending_bios, 0);
8475 btrfs_bio = btrfs_io_bio(io_bio);
8476 btrfs_bio->logical = file_offset;
8477
8478 if (write) {
8479 io_bio->bi_end_io = btrfs_endio_direct_write;
8480 } else {
8481 io_bio->bi_end_io = btrfs_endio_direct_read;
8482 dip->subio_endio = btrfs_subio_endio_read;
8483 }
8484
8485 /*
8486 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8487 * even if we fail to submit a bio, because in such case we do the
8488 * corresponding error handling below and it must not be done a second
8489 * time by btrfs_direct_IO().
8490 */
8491 if (write) {
8492 struct btrfs_dio_data *dio_data = current->journal_info;
8493
8494 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8495 dip->bytes;
8496 dio_data->unsubmitted_oe_range_start =
8497 dio_data->unsubmitted_oe_range_end;
8498 }
8499
8500 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8501 if (!ret)
8502 return;
8503
8504 if (btrfs_bio->end_io)
8505 btrfs_bio->end_io(btrfs_bio, ret);
8506
8507 free_ordered:
8508 /*
8509 * If we arrived here it means either we failed to submit the dip
8510 * or we either failed to clone the dio_bio or failed to allocate the
8511 * dip. If we cloned the dio_bio and allocated the dip, we can just
8512 * call bio_endio against our io_bio so that we get proper resource
8513 * cleanup if we fail to submit the dip, otherwise, we must do the
8514 * same as btrfs_endio_direct_[write|read] because we can't call these
8515 * callbacks - they require an allocated dip and a clone of dio_bio.
8516 */
8517 if (io_bio && dip) {
8518 io_bio->bi_error = -EIO;
8519 bio_endio(io_bio);
8520 /*
8521 * The end io callbacks free our dip, do the final put on io_bio
8522 * and all the cleanup and final put for dio_bio (through
8523 * dio_end_io()).
8524 */
8525 dip = NULL;
8526 io_bio = NULL;
8527 } else {
8528 if (write)
8529 btrfs_endio_direct_write_update_ordered(inode,
8530 file_offset,
8531 dio_bio->bi_iter.bi_size,
8532 0);
8533 else
8534 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8535 file_offset + dio_bio->bi_iter.bi_size - 1);
8536
8537 dio_bio->bi_error = -EIO;
8538 /*
8539 * Releases and cleans up our dio_bio, no need to bio_put()
8540 * nor bio_endio()/bio_io_error() against dio_bio.
8541 */
8542 dio_end_io(dio_bio, ret);
8543 }
8544 if (io_bio)
8545 bio_put(io_bio);
8546 kfree(dip);
8547 }
8548
8549 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8550 const struct iov_iter *iter, loff_t offset)
8551 {
8552 int seg;
8553 int i;
8554 unsigned blocksize_mask = root->sectorsize - 1;
8555 ssize_t retval = -EINVAL;
8556
8557 if (offset & blocksize_mask)
8558 goto out;
8559
8560 if (iov_iter_alignment(iter) & blocksize_mask)
8561 goto out;
8562
8563 /* If this is a write we don't need to check anymore */
8564 if (iov_iter_rw(iter) == WRITE)
8565 return 0;
8566 /*
8567 * Check to make sure we don't have duplicate iov_base's in this
8568 * iovec, if so return EINVAL, otherwise we'll get csum errors
8569 * when reading back.
8570 */
8571 for (seg = 0; seg < iter->nr_segs; seg++) {
8572 for (i = seg + 1; i < iter->nr_segs; i++) {
8573 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8574 goto out;
8575 }
8576 }
8577 retval = 0;
8578 out:
8579 return retval;
8580 }
8581
8582 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8583 loff_t offset)
8584 {
8585 struct file *file = iocb->ki_filp;
8586 struct inode *inode = file->f_mapping->host;
8587 struct btrfs_root *root = BTRFS_I(inode)->root;
8588 struct btrfs_dio_data dio_data = { 0 };
8589 size_t count = 0;
8590 int flags = 0;
8591 bool wakeup = true;
8592 bool relock = false;
8593 ssize_t ret;
8594
8595 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8596 return 0;
8597
8598 inode_dio_begin(inode);
8599 smp_mb__after_atomic();
8600
8601 /*
8602 * The generic stuff only does filemap_write_and_wait_range, which
8603 * isn't enough if we've written compressed pages to this area, so
8604 * we need to flush the dirty pages again to make absolutely sure
8605 * that any outstanding dirty pages are on disk.
8606 */
8607 count = iov_iter_count(iter);
8608 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8609 &BTRFS_I(inode)->runtime_flags))
8610 filemap_fdatawrite_range(inode->i_mapping, offset,
8611 offset + count - 1);
8612
8613 if (iov_iter_rw(iter) == WRITE) {
8614 /*
8615 * If the write DIO is beyond the EOF, we need update
8616 * the isize, but it is protected by i_mutex. So we can
8617 * not unlock the i_mutex at this case.
8618 */
8619 if (offset + count <= inode->i_size) {
8620 inode_unlock(inode);
8621 relock = true;
8622 }
8623 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8624 if (ret)
8625 goto out;
8626 dio_data.outstanding_extents = div64_u64(count +
8627 BTRFS_MAX_EXTENT_SIZE - 1,
8628 BTRFS_MAX_EXTENT_SIZE);
8629
8630 /*
8631 * We need to know how many extents we reserved so that we can
8632 * do the accounting properly if we go over the number we
8633 * originally calculated. Abuse current->journal_info for this.
8634 */
8635 dio_data.reserve = round_up(count, root->sectorsize);
8636 dio_data.unsubmitted_oe_range_start = (u64)offset;
8637 dio_data.unsubmitted_oe_range_end = (u64)offset;
8638 current->journal_info = &dio_data;
8639 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8640 &BTRFS_I(inode)->runtime_flags)) {
8641 inode_dio_end(inode);
8642 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8643 wakeup = false;
8644 }
8645
8646 ret = __blockdev_direct_IO(iocb, inode,
8647 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8648 iter, offset, btrfs_get_blocks_direct, NULL,
8649 btrfs_submit_direct, flags);
8650 if (iov_iter_rw(iter) == WRITE) {
8651 current->journal_info = NULL;
8652 if (ret < 0 && ret != -EIOCBQUEUED) {
8653 if (dio_data.reserve)
8654 btrfs_delalloc_release_space(inode, offset,
8655 dio_data.reserve);
8656 /*
8657 * On error we might have left some ordered extents
8658 * without submitting corresponding bios for them, so
8659 * cleanup them up to avoid other tasks getting them
8660 * and waiting for them to complete forever.
8661 */
8662 if (dio_data.unsubmitted_oe_range_start <
8663 dio_data.unsubmitted_oe_range_end)
8664 btrfs_endio_direct_write_update_ordered(inode,
8665 dio_data.unsubmitted_oe_range_start,
8666 dio_data.unsubmitted_oe_range_end -
8667 dio_data.unsubmitted_oe_range_start,
8668 0);
8669 } else if (ret >= 0 && (size_t)ret < count)
8670 btrfs_delalloc_release_space(inode, offset,
8671 count - (size_t)ret);
8672 }
8673 out:
8674 if (wakeup)
8675 inode_dio_end(inode);
8676 if (relock)
8677 inode_lock(inode);
8678
8679 return ret;
8680 }
8681
8682 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8683
8684 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8685 __u64 start, __u64 len)
8686 {
8687 int ret;
8688
8689 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8690 if (ret)
8691 return ret;
8692
8693 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8694 }
8695
8696 int btrfs_readpage(struct file *file, struct page *page)
8697 {
8698 struct extent_io_tree *tree;
8699 tree = &BTRFS_I(page->mapping->host)->io_tree;
8700 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8701 }
8702
8703 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8704 {
8705 struct extent_io_tree *tree;
8706 struct inode *inode = page->mapping->host;
8707 int ret;
8708
8709 if (current->flags & PF_MEMALLOC) {
8710 redirty_page_for_writepage(wbc, page);
8711 unlock_page(page);
8712 return 0;
8713 }
8714
8715 /*
8716 * If we are under memory pressure we will call this directly from the
8717 * VM, we need to make sure we have the inode referenced for the ordered
8718 * extent. If not just return like we didn't do anything.
8719 */
8720 if (!igrab(inode)) {
8721 redirty_page_for_writepage(wbc, page);
8722 return AOP_WRITEPAGE_ACTIVATE;
8723 }
8724 tree = &BTRFS_I(page->mapping->host)->io_tree;
8725 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8726 btrfs_add_delayed_iput(inode);
8727 return ret;
8728 }
8729
8730 static int btrfs_writepages(struct address_space *mapping,
8731 struct writeback_control *wbc)
8732 {
8733 struct extent_io_tree *tree;
8734
8735 tree = &BTRFS_I(mapping->host)->io_tree;
8736 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8737 }
8738
8739 static int
8740 btrfs_readpages(struct file *file, struct address_space *mapping,
8741 struct list_head *pages, unsigned nr_pages)
8742 {
8743 struct extent_io_tree *tree;
8744 tree = &BTRFS_I(mapping->host)->io_tree;
8745 return extent_readpages(tree, mapping, pages, nr_pages,
8746 btrfs_get_extent);
8747 }
8748 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8749 {
8750 struct extent_io_tree *tree;
8751 struct extent_map_tree *map;
8752 int ret;
8753
8754 tree = &BTRFS_I(page->mapping->host)->io_tree;
8755 map = &BTRFS_I(page->mapping->host)->extent_tree;
8756 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8757 if (ret == 1) {
8758 ClearPagePrivate(page);
8759 set_page_private(page, 0);
8760 put_page(page);
8761 }
8762 return ret;
8763 }
8764
8765 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8766 {
8767 if (PageWriteback(page) || PageDirty(page))
8768 return 0;
8769 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8770 }
8771
8772 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8773 unsigned int length)
8774 {
8775 struct inode *inode = page->mapping->host;
8776 struct extent_io_tree *tree;
8777 struct btrfs_ordered_extent *ordered;
8778 struct extent_state *cached_state = NULL;
8779 u64 page_start = page_offset(page);
8780 u64 page_end = page_start + PAGE_SIZE - 1;
8781 u64 start;
8782 u64 end;
8783 int inode_evicting = inode->i_state & I_FREEING;
8784
8785 /*
8786 * we have the page locked, so new writeback can't start,
8787 * and the dirty bit won't be cleared while we are here.
8788 *
8789 * Wait for IO on this page so that we can safely clear
8790 * the PagePrivate2 bit and do ordered accounting
8791 */
8792 wait_on_page_writeback(page);
8793
8794 tree = &BTRFS_I(inode)->io_tree;
8795 if (offset) {
8796 btrfs_releasepage(page, GFP_NOFS);
8797 return;
8798 }
8799
8800 if (!inode_evicting)
8801 lock_extent_bits(tree, page_start, page_end, &cached_state);
8802 again:
8803 start = page_start;
8804 ordered = btrfs_lookup_ordered_range(inode, start,
8805 page_end - start + 1);
8806 if (ordered) {
8807 end = min(page_end, ordered->file_offset + ordered->len - 1);
8808 /*
8809 * IO on this page will never be started, so we need
8810 * to account for any ordered extents now
8811 */
8812 if (!inode_evicting)
8813 clear_extent_bit(tree, start, end,
8814 EXTENT_DIRTY | EXTENT_DELALLOC |
8815 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8816 EXTENT_DEFRAG, 1, 0, &cached_state,
8817 GFP_NOFS);
8818 /*
8819 * whoever cleared the private bit is responsible
8820 * for the finish_ordered_io
8821 */
8822 if (TestClearPagePrivate2(page)) {
8823 struct btrfs_ordered_inode_tree *tree;
8824 u64 new_len;
8825
8826 tree = &BTRFS_I(inode)->ordered_tree;
8827
8828 spin_lock_irq(&tree->lock);
8829 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8830 new_len = start - ordered->file_offset;
8831 if (new_len < ordered->truncated_len)
8832 ordered->truncated_len = new_len;
8833 spin_unlock_irq(&tree->lock);
8834
8835 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8836 start,
8837 end - start + 1, 1))
8838 btrfs_finish_ordered_io(ordered);
8839 }
8840 btrfs_put_ordered_extent(ordered);
8841 if (!inode_evicting) {
8842 cached_state = NULL;
8843 lock_extent_bits(tree, start, end,
8844 &cached_state);
8845 }
8846
8847 start = end + 1;
8848 if (start < page_end)
8849 goto again;
8850 }
8851
8852 /*
8853 * Qgroup reserved space handler
8854 * Page here will be either
8855 * 1) Already written to disk
8856 * In this case, its reserved space is released from data rsv map
8857 * and will be freed by delayed_ref handler finally.
8858 * So even we call qgroup_free_data(), it won't decrease reserved
8859 * space.
8860 * 2) Not written to disk
8861 * This means the reserved space should be freed here.
8862 */
8863 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8864 if (!inode_evicting) {
8865 clear_extent_bit(tree, page_start, page_end,
8866 EXTENT_LOCKED | EXTENT_DIRTY |
8867 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8868 EXTENT_DEFRAG, 1, 1,
8869 &cached_state, GFP_NOFS);
8870
8871 __btrfs_releasepage(page, GFP_NOFS);
8872 }
8873
8874 ClearPageChecked(page);
8875 if (PagePrivate(page)) {
8876 ClearPagePrivate(page);
8877 set_page_private(page, 0);
8878 put_page(page);
8879 }
8880 }
8881
8882 /*
8883 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8884 * called from a page fault handler when a page is first dirtied. Hence we must
8885 * be careful to check for EOF conditions here. We set the page up correctly
8886 * for a written page which means we get ENOSPC checking when writing into
8887 * holes and correct delalloc and unwritten extent mapping on filesystems that
8888 * support these features.
8889 *
8890 * We are not allowed to take the i_mutex here so we have to play games to
8891 * protect against truncate races as the page could now be beyond EOF. Because
8892 * vmtruncate() writes the inode size before removing pages, once we have the
8893 * page lock we can determine safely if the page is beyond EOF. If it is not
8894 * beyond EOF, then the page is guaranteed safe against truncation until we
8895 * unlock the page.
8896 */
8897 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8898 {
8899 struct page *page = vmf->page;
8900 struct inode *inode = file_inode(vma->vm_file);
8901 struct btrfs_root *root = BTRFS_I(inode)->root;
8902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8903 struct btrfs_ordered_extent *ordered;
8904 struct extent_state *cached_state = NULL;
8905 char *kaddr;
8906 unsigned long zero_start;
8907 loff_t size;
8908 int ret;
8909 int reserved = 0;
8910 u64 reserved_space;
8911 u64 page_start;
8912 u64 page_end;
8913 u64 end;
8914
8915 reserved_space = PAGE_SIZE;
8916
8917 sb_start_pagefault(inode->i_sb);
8918 page_start = page_offset(page);
8919 page_end = page_start + PAGE_SIZE - 1;
8920 end = page_end;
8921
8922 /*
8923 * Reserving delalloc space after obtaining the page lock can lead to
8924 * deadlock. For example, if a dirty page is locked by this function
8925 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8926 * dirty page write out, then the btrfs_writepage() function could
8927 * end up waiting indefinitely to get a lock on the page currently
8928 * being processed by btrfs_page_mkwrite() function.
8929 */
8930 ret = btrfs_delalloc_reserve_space(inode, page_start,
8931 reserved_space);
8932 if (!ret) {
8933 ret = file_update_time(vma->vm_file);
8934 reserved = 1;
8935 }
8936 if (ret) {
8937 if (ret == -ENOMEM)
8938 ret = VM_FAULT_OOM;
8939 else /* -ENOSPC, -EIO, etc */
8940 ret = VM_FAULT_SIGBUS;
8941 if (reserved)
8942 goto out;
8943 goto out_noreserve;
8944 }
8945
8946 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8947 again:
8948 lock_page(page);
8949 size = i_size_read(inode);
8950
8951 if ((page->mapping != inode->i_mapping) ||
8952 (page_start >= size)) {
8953 /* page got truncated out from underneath us */
8954 goto out_unlock;
8955 }
8956 wait_on_page_writeback(page);
8957
8958 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8959 set_page_extent_mapped(page);
8960
8961 /*
8962 * we can't set the delalloc bits if there are pending ordered
8963 * extents. Drop our locks and wait for them to finish
8964 */
8965 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8966 if (ordered) {
8967 unlock_extent_cached(io_tree, page_start, page_end,
8968 &cached_state, GFP_NOFS);
8969 unlock_page(page);
8970 btrfs_start_ordered_extent(inode, ordered, 1);
8971 btrfs_put_ordered_extent(ordered);
8972 goto again;
8973 }
8974
8975 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8976 reserved_space = round_up(size - page_start, root->sectorsize);
8977 if (reserved_space < PAGE_SIZE) {
8978 end = page_start + reserved_space - 1;
8979 spin_lock(&BTRFS_I(inode)->lock);
8980 BTRFS_I(inode)->outstanding_extents++;
8981 spin_unlock(&BTRFS_I(inode)->lock);
8982 btrfs_delalloc_release_space(inode, page_start,
8983 PAGE_SIZE - reserved_space);
8984 }
8985 }
8986
8987 /*
8988 * XXX - page_mkwrite gets called every time the page is dirtied, even
8989 * if it was already dirty, so for space accounting reasons we need to
8990 * clear any delalloc bits for the range we are fixing to save. There
8991 * is probably a better way to do this, but for now keep consistent with
8992 * prepare_pages in the normal write path.
8993 */
8994 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8995 EXTENT_DIRTY | EXTENT_DELALLOC |
8996 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8997 0, 0, &cached_state, GFP_NOFS);
8998
8999 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9000 &cached_state);
9001 if (ret) {
9002 unlock_extent_cached(io_tree, page_start, page_end,
9003 &cached_state, GFP_NOFS);
9004 ret = VM_FAULT_SIGBUS;
9005 goto out_unlock;
9006 }
9007 ret = 0;
9008
9009 /* page is wholly or partially inside EOF */
9010 if (page_start + PAGE_SIZE > size)
9011 zero_start = size & ~PAGE_MASK;
9012 else
9013 zero_start = PAGE_SIZE;
9014
9015 if (zero_start != PAGE_SIZE) {
9016 kaddr = kmap(page);
9017 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9018 flush_dcache_page(page);
9019 kunmap(page);
9020 }
9021 ClearPageChecked(page);
9022 set_page_dirty(page);
9023 SetPageUptodate(page);
9024
9025 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9026 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9027 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9028
9029 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9030
9031 out_unlock:
9032 if (!ret) {
9033 sb_end_pagefault(inode->i_sb);
9034 return VM_FAULT_LOCKED;
9035 }
9036 unlock_page(page);
9037 out:
9038 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9039 out_noreserve:
9040 sb_end_pagefault(inode->i_sb);
9041 return ret;
9042 }
9043
9044 static int btrfs_truncate(struct inode *inode)
9045 {
9046 struct btrfs_root *root = BTRFS_I(inode)->root;
9047 struct btrfs_block_rsv *rsv;
9048 int ret = 0;
9049 int err = 0;
9050 struct btrfs_trans_handle *trans;
9051 u64 mask = root->sectorsize - 1;
9052 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9053
9054 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9055 (u64)-1);
9056 if (ret)
9057 return ret;
9058
9059 /*
9060 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
9061 * 3 things going on here
9062 *
9063 * 1) We need to reserve space for our orphan item and the space to
9064 * delete our orphan item. Lord knows we don't want to have a dangling
9065 * orphan item because we didn't reserve space to remove it.
9066 *
9067 * 2) We need to reserve space to update our inode.
9068 *
9069 * 3) We need to have something to cache all the space that is going to
9070 * be free'd up by the truncate operation, but also have some slack
9071 * space reserved in case it uses space during the truncate (thank you
9072 * very much snapshotting).
9073 *
9074 * And we need these to all be seperate. The fact is we can use alot of
9075 * space doing the truncate, and we have no earthly idea how much space
9076 * we will use, so we need the truncate reservation to be seperate so it
9077 * doesn't end up using space reserved for updating the inode or
9078 * removing the orphan item. We also need to be able to stop the
9079 * transaction and start a new one, which means we need to be able to
9080 * update the inode several times, and we have no idea of knowing how
9081 * many times that will be, so we can't just reserve 1 item for the
9082 * entirety of the opration, so that has to be done seperately as well.
9083 * Then there is the orphan item, which does indeed need to be held on
9084 * to for the whole operation, and we need nobody to touch this reserved
9085 * space except the orphan code.
9086 *
9087 * So that leaves us with
9088 *
9089 * 1) root->orphan_block_rsv - for the orphan deletion.
9090 * 2) rsv - for the truncate reservation, which we will steal from the
9091 * transaction reservation.
9092 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9093 * updating the inode.
9094 */
9095 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9096 if (!rsv)
9097 return -ENOMEM;
9098 rsv->size = min_size;
9099 rsv->failfast = 1;
9100
9101 /*
9102 * 1 for the truncate slack space
9103 * 1 for updating the inode.
9104 */
9105 trans = btrfs_start_transaction(root, 2);
9106 if (IS_ERR(trans)) {
9107 err = PTR_ERR(trans);
9108 goto out;
9109 }
9110
9111 /* Migrate the slack space for the truncate to our reserve */
9112 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9113 min_size);
9114 BUG_ON(ret);
9115
9116 /*
9117 * So if we truncate and then write and fsync we normally would just
9118 * write the extents that changed, which is a problem if we need to
9119 * first truncate that entire inode. So set this flag so we write out
9120 * all of the extents in the inode to the sync log so we're completely
9121 * safe.
9122 */
9123 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9124 trans->block_rsv = rsv;
9125
9126 while (1) {
9127 ret = btrfs_truncate_inode_items(trans, root, inode,
9128 inode->i_size,
9129 BTRFS_EXTENT_DATA_KEY);
9130 if (ret != -ENOSPC && ret != -EAGAIN) {
9131 err = ret;
9132 break;
9133 }
9134
9135 trans->block_rsv = &root->fs_info->trans_block_rsv;
9136 ret = btrfs_update_inode(trans, root, inode);
9137 if (ret) {
9138 err = ret;
9139 break;
9140 }
9141
9142 btrfs_end_transaction(trans, root);
9143 btrfs_btree_balance_dirty(root);
9144
9145 trans = btrfs_start_transaction(root, 2);
9146 if (IS_ERR(trans)) {
9147 ret = err = PTR_ERR(trans);
9148 trans = NULL;
9149 break;
9150 }
9151
9152 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9153 rsv, min_size);
9154 BUG_ON(ret); /* shouldn't happen */
9155 trans->block_rsv = rsv;
9156 }
9157
9158 if (ret == 0 && inode->i_nlink > 0) {
9159 trans->block_rsv = root->orphan_block_rsv;
9160 ret = btrfs_orphan_del(trans, inode);
9161 if (ret)
9162 err = ret;
9163 }
9164
9165 if (trans) {
9166 trans->block_rsv = &root->fs_info->trans_block_rsv;
9167 ret = btrfs_update_inode(trans, root, inode);
9168 if (ret && !err)
9169 err = ret;
9170
9171 ret = btrfs_end_transaction(trans, root);
9172 btrfs_btree_balance_dirty(root);
9173 }
9174
9175 out:
9176 btrfs_free_block_rsv(root, rsv);
9177
9178 if (ret && !err)
9179 err = ret;
9180
9181 return err;
9182 }
9183
9184 /*
9185 * create a new subvolume directory/inode (helper for the ioctl).
9186 */
9187 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9188 struct btrfs_root *new_root,
9189 struct btrfs_root *parent_root,
9190 u64 new_dirid)
9191 {
9192 struct inode *inode;
9193 int err;
9194 u64 index = 0;
9195
9196 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9197 new_dirid, new_dirid,
9198 S_IFDIR | (~current_umask() & S_IRWXUGO),
9199 &index);
9200 if (IS_ERR(inode))
9201 return PTR_ERR(inode);
9202 inode->i_op = &btrfs_dir_inode_operations;
9203 inode->i_fop = &btrfs_dir_file_operations;
9204
9205 set_nlink(inode, 1);
9206 btrfs_i_size_write(inode, 0);
9207 unlock_new_inode(inode);
9208
9209 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9210 if (err)
9211 btrfs_err(new_root->fs_info,
9212 "error inheriting subvolume %llu properties: %d",
9213 new_root->root_key.objectid, err);
9214
9215 err = btrfs_update_inode(trans, new_root, inode);
9216
9217 iput(inode);
9218 return err;
9219 }
9220
9221 struct inode *btrfs_alloc_inode(struct super_block *sb)
9222 {
9223 struct btrfs_inode *ei;
9224 struct inode *inode;
9225
9226 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9227 if (!ei)
9228 return NULL;
9229
9230 ei->root = NULL;
9231 ei->generation = 0;
9232 ei->last_trans = 0;
9233 ei->last_sub_trans = 0;
9234 ei->logged_trans = 0;
9235 ei->delalloc_bytes = 0;
9236 ei->defrag_bytes = 0;
9237 ei->disk_i_size = 0;
9238 ei->flags = 0;
9239 ei->csum_bytes = 0;
9240 ei->index_cnt = (u64)-1;
9241 ei->dir_index = 0;
9242 ei->last_unlink_trans = 0;
9243 ei->last_log_commit = 0;
9244 ei->delayed_iput_count = 0;
9245
9246 spin_lock_init(&ei->lock);
9247 ei->outstanding_extents = 0;
9248 ei->reserved_extents = 0;
9249
9250 ei->runtime_flags = 0;
9251 ei->force_compress = BTRFS_COMPRESS_NONE;
9252
9253 ei->delayed_node = NULL;
9254
9255 ei->i_otime.tv_sec = 0;
9256 ei->i_otime.tv_nsec = 0;
9257
9258 inode = &ei->vfs_inode;
9259 extent_map_tree_init(&ei->extent_tree);
9260 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9261 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9262 ei->io_tree.track_uptodate = 1;
9263 ei->io_failure_tree.track_uptodate = 1;
9264 atomic_set(&ei->sync_writers, 0);
9265 mutex_init(&ei->log_mutex);
9266 mutex_init(&ei->delalloc_mutex);
9267 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9268 INIT_LIST_HEAD(&ei->delalloc_inodes);
9269 INIT_LIST_HEAD(&ei->delayed_iput);
9270 RB_CLEAR_NODE(&ei->rb_node);
9271
9272 return inode;
9273 }
9274
9275 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9276 void btrfs_test_destroy_inode(struct inode *inode)
9277 {
9278 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9279 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9280 }
9281 #endif
9282
9283 static void btrfs_i_callback(struct rcu_head *head)
9284 {
9285 struct inode *inode = container_of(head, struct inode, i_rcu);
9286 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9287 }
9288
9289 void btrfs_destroy_inode(struct inode *inode)
9290 {
9291 struct btrfs_ordered_extent *ordered;
9292 struct btrfs_root *root = BTRFS_I(inode)->root;
9293
9294 WARN_ON(!hlist_empty(&inode->i_dentry));
9295 WARN_ON(inode->i_data.nrpages);
9296 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9297 WARN_ON(BTRFS_I(inode)->reserved_extents);
9298 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9299 WARN_ON(BTRFS_I(inode)->csum_bytes);
9300 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9301
9302 /*
9303 * This can happen where we create an inode, but somebody else also
9304 * created the same inode and we need to destroy the one we already
9305 * created.
9306 */
9307 if (!root)
9308 goto free;
9309
9310 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9311 &BTRFS_I(inode)->runtime_flags)) {
9312 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9313 btrfs_ino(inode));
9314 atomic_dec(&root->orphan_inodes);
9315 }
9316
9317 while (1) {
9318 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9319 if (!ordered)
9320 break;
9321 else {
9322 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9323 ordered->file_offset, ordered->len);
9324 btrfs_remove_ordered_extent(inode, ordered);
9325 btrfs_put_ordered_extent(ordered);
9326 btrfs_put_ordered_extent(ordered);
9327 }
9328 }
9329 btrfs_qgroup_check_reserved_leak(inode);
9330 inode_tree_del(inode);
9331 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9332 free:
9333 call_rcu(&inode->i_rcu, btrfs_i_callback);
9334 }
9335
9336 int btrfs_drop_inode(struct inode *inode)
9337 {
9338 struct btrfs_root *root = BTRFS_I(inode)->root;
9339
9340 if (root == NULL)
9341 return 1;
9342
9343 /* the snap/subvol tree is on deleting */
9344 if (btrfs_root_refs(&root->root_item) == 0)
9345 return 1;
9346 else
9347 return generic_drop_inode(inode);
9348 }
9349
9350 static void init_once(void *foo)
9351 {
9352 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9353
9354 inode_init_once(&ei->vfs_inode);
9355 }
9356
9357 void btrfs_destroy_cachep(void)
9358 {
9359 /*
9360 * Make sure all delayed rcu free inodes are flushed before we
9361 * destroy cache.
9362 */
9363 rcu_barrier();
9364 kmem_cache_destroy(btrfs_inode_cachep);
9365 kmem_cache_destroy(btrfs_trans_handle_cachep);
9366 kmem_cache_destroy(btrfs_transaction_cachep);
9367 kmem_cache_destroy(btrfs_path_cachep);
9368 kmem_cache_destroy(btrfs_free_space_cachep);
9369 }
9370
9371 int btrfs_init_cachep(void)
9372 {
9373 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9374 sizeof(struct btrfs_inode), 0,
9375 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9376 init_once);
9377 if (!btrfs_inode_cachep)
9378 goto fail;
9379
9380 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9381 sizeof(struct btrfs_trans_handle), 0,
9382 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9383 if (!btrfs_trans_handle_cachep)
9384 goto fail;
9385
9386 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9387 sizeof(struct btrfs_transaction), 0,
9388 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9389 if (!btrfs_transaction_cachep)
9390 goto fail;
9391
9392 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9393 sizeof(struct btrfs_path), 0,
9394 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9395 if (!btrfs_path_cachep)
9396 goto fail;
9397
9398 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9399 sizeof(struct btrfs_free_space), 0,
9400 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9401 if (!btrfs_free_space_cachep)
9402 goto fail;
9403
9404 return 0;
9405 fail:
9406 btrfs_destroy_cachep();
9407 return -ENOMEM;
9408 }
9409
9410 static int btrfs_getattr(struct vfsmount *mnt,
9411 struct dentry *dentry, struct kstat *stat)
9412 {
9413 u64 delalloc_bytes;
9414 struct inode *inode = d_inode(dentry);
9415 u32 blocksize = inode->i_sb->s_blocksize;
9416
9417 generic_fillattr(inode, stat);
9418 stat->dev = BTRFS_I(inode)->root->anon_dev;
9419
9420 spin_lock(&BTRFS_I(inode)->lock);
9421 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9422 spin_unlock(&BTRFS_I(inode)->lock);
9423 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9424 ALIGN(delalloc_bytes, blocksize)) >> 9;
9425 return 0;
9426 }
9427
9428 static int btrfs_rename_exchange(struct inode *old_dir,
9429 struct dentry *old_dentry,
9430 struct inode *new_dir,
9431 struct dentry *new_dentry)
9432 {
9433 struct btrfs_trans_handle *trans;
9434 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9435 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9436 struct inode *new_inode = new_dentry->d_inode;
9437 struct inode *old_inode = old_dentry->d_inode;
9438 struct timespec ctime = CURRENT_TIME;
9439 struct dentry *parent;
9440 u64 old_ino = btrfs_ino(old_inode);
9441 u64 new_ino = btrfs_ino(new_inode);
9442 u64 old_idx = 0;
9443 u64 new_idx = 0;
9444 u64 root_objectid;
9445 int ret;
9446 bool root_log_pinned = false;
9447 bool dest_log_pinned = false;
9448
9449 /* we only allow rename subvolume link between subvolumes */
9450 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9451 return -EXDEV;
9452
9453 /* close the race window with snapshot create/destroy ioctl */
9454 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9455 down_read(&root->fs_info->subvol_sem);
9456 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9457 down_read(&dest->fs_info->subvol_sem);
9458
9459 /*
9460 * We want to reserve the absolute worst case amount of items. So if
9461 * both inodes are subvols and we need to unlink them then that would
9462 * require 4 item modifications, but if they are both normal inodes it
9463 * would require 5 item modifications, so we'll assume their normal
9464 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9465 * should cover the worst case number of items we'll modify.
9466 */
9467 trans = btrfs_start_transaction(root, 12);
9468 if (IS_ERR(trans)) {
9469 ret = PTR_ERR(trans);
9470 goto out_notrans;
9471 }
9472
9473 /*
9474 * We need to find a free sequence number both in the source and
9475 * in the destination directory for the exchange.
9476 */
9477 ret = btrfs_set_inode_index(new_dir, &old_idx);
9478 if (ret)
9479 goto out_fail;
9480 ret = btrfs_set_inode_index(old_dir, &new_idx);
9481 if (ret)
9482 goto out_fail;
9483
9484 BTRFS_I(old_inode)->dir_index = 0ULL;
9485 BTRFS_I(new_inode)->dir_index = 0ULL;
9486
9487 /* Reference for the source. */
9488 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9489 /* force full log commit if subvolume involved. */
9490 btrfs_set_log_full_commit(root->fs_info, trans);
9491 } else {
9492 btrfs_pin_log_trans(root);
9493 root_log_pinned = true;
9494 ret = btrfs_insert_inode_ref(trans, dest,
9495 new_dentry->d_name.name,
9496 new_dentry->d_name.len,
9497 old_ino,
9498 btrfs_ino(new_dir), old_idx);
9499 if (ret)
9500 goto out_fail;
9501 }
9502
9503 /* And now for the dest. */
9504 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9505 /* force full log commit if subvolume involved. */
9506 btrfs_set_log_full_commit(dest->fs_info, trans);
9507 } else {
9508 btrfs_pin_log_trans(dest);
9509 dest_log_pinned = true;
9510 ret = btrfs_insert_inode_ref(trans, root,
9511 old_dentry->d_name.name,
9512 old_dentry->d_name.len,
9513 new_ino,
9514 btrfs_ino(old_dir), new_idx);
9515 if (ret)
9516 goto out_fail;
9517 }
9518
9519 /* Update inode version and ctime/mtime. */
9520 inode_inc_iversion(old_dir);
9521 inode_inc_iversion(new_dir);
9522 inode_inc_iversion(old_inode);
9523 inode_inc_iversion(new_inode);
9524 old_dir->i_ctime = old_dir->i_mtime = ctime;
9525 new_dir->i_ctime = new_dir->i_mtime = ctime;
9526 old_inode->i_ctime = ctime;
9527 new_inode->i_ctime = ctime;
9528
9529 if (old_dentry->d_parent != new_dentry->d_parent) {
9530 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9531 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9532 }
9533
9534 /* src is a subvolume */
9535 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9536 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9537 ret = btrfs_unlink_subvol(trans, root, old_dir,
9538 root_objectid,
9539 old_dentry->d_name.name,
9540 old_dentry->d_name.len);
9541 } else { /* src is an inode */
9542 ret = __btrfs_unlink_inode(trans, root, old_dir,
9543 old_dentry->d_inode,
9544 old_dentry->d_name.name,
9545 old_dentry->d_name.len);
9546 if (!ret)
9547 ret = btrfs_update_inode(trans, root, old_inode);
9548 }
9549 if (ret) {
9550 btrfs_abort_transaction(trans, root, ret);
9551 goto out_fail;
9552 }
9553
9554 /* dest is a subvolume */
9555 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9556 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9557 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9558 root_objectid,
9559 new_dentry->d_name.name,
9560 new_dentry->d_name.len);
9561 } else { /* dest is an inode */
9562 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9563 new_dentry->d_inode,
9564 new_dentry->d_name.name,
9565 new_dentry->d_name.len);
9566 if (!ret)
9567 ret = btrfs_update_inode(trans, dest, new_inode);
9568 }
9569 if (ret) {
9570 btrfs_abort_transaction(trans, root, ret);
9571 goto out_fail;
9572 }
9573
9574 ret = btrfs_add_link(trans, new_dir, old_inode,
9575 new_dentry->d_name.name,
9576 new_dentry->d_name.len, 0, old_idx);
9577 if (ret) {
9578 btrfs_abort_transaction(trans, root, ret);
9579 goto out_fail;
9580 }
9581
9582 ret = btrfs_add_link(trans, old_dir, new_inode,
9583 old_dentry->d_name.name,
9584 old_dentry->d_name.len, 0, new_idx);
9585 if (ret) {
9586 btrfs_abort_transaction(trans, root, ret);
9587 goto out_fail;
9588 }
9589
9590 if (old_inode->i_nlink == 1)
9591 BTRFS_I(old_inode)->dir_index = old_idx;
9592 if (new_inode->i_nlink == 1)
9593 BTRFS_I(new_inode)->dir_index = new_idx;
9594
9595 if (root_log_pinned) {
9596 parent = new_dentry->d_parent;
9597 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9598 btrfs_end_log_trans(root);
9599 root_log_pinned = false;
9600 }
9601 if (dest_log_pinned) {
9602 parent = old_dentry->d_parent;
9603 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9604 btrfs_end_log_trans(dest);
9605 dest_log_pinned = false;
9606 }
9607 out_fail:
9608 /*
9609 * If we have pinned a log and an error happened, we unpin tasks
9610 * trying to sync the log and force them to fallback to a transaction
9611 * commit if the log currently contains any of the inodes involved in
9612 * this rename operation (to ensure we do not persist a log with an
9613 * inconsistent state for any of these inodes or leading to any
9614 * inconsistencies when replayed). If the transaction was aborted, the
9615 * abortion reason is propagated to userspace when attempting to commit
9616 * the transaction. If the log does not contain any of these inodes, we
9617 * allow the tasks to sync it.
9618 */
9619 if (ret && (root_log_pinned || dest_log_pinned)) {
9620 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9621 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9622 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9623 (new_inode &&
9624 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9625 btrfs_set_log_full_commit(root->fs_info, trans);
9626
9627 if (root_log_pinned) {
9628 btrfs_end_log_trans(root);
9629 root_log_pinned = false;
9630 }
9631 if (dest_log_pinned) {
9632 btrfs_end_log_trans(dest);
9633 dest_log_pinned = false;
9634 }
9635 }
9636 ret = btrfs_end_transaction(trans, root);
9637 out_notrans:
9638 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9639 up_read(&dest->fs_info->subvol_sem);
9640 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9641 up_read(&root->fs_info->subvol_sem);
9642
9643 return ret;
9644 }
9645
9646 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9647 struct btrfs_root *root,
9648 struct inode *dir,
9649 struct dentry *dentry)
9650 {
9651 int ret;
9652 struct inode *inode;
9653 u64 objectid;
9654 u64 index;
9655
9656 ret = btrfs_find_free_ino(root, &objectid);
9657 if (ret)
9658 return ret;
9659
9660 inode = btrfs_new_inode(trans, root, dir,
9661 dentry->d_name.name,
9662 dentry->d_name.len,
9663 btrfs_ino(dir),
9664 objectid,
9665 S_IFCHR | WHITEOUT_MODE,
9666 &index);
9667
9668 if (IS_ERR(inode)) {
9669 ret = PTR_ERR(inode);
9670 return ret;
9671 }
9672
9673 inode->i_op = &btrfs_special_inode_operations;
9674 init_special_inode(inode, inode->i_mode,
9675 WHITEOUT_DEV);
9676
9677 ret = btrfs_init_inode_security(trans, inode, dir,
9678 &dentry->d_name);
9679 if (ret)
9680 goto out;
9681
9682 ret = btrfs_add_nondir(trans, dir, dentry,
9683 inode, 0, index);
9684 if (ret)
9685 goto out;
9686
9687 ret = btrfs_update_inode(trans, root, inode);
9688 out:
9689 unlock_new_inode(inode);
9690 if (ret)
9691 inode_dec_link_count(inode);
9692 iput(inode);
9693
9694 return ret;
9695 }
9696
9697 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9698 struct inode *new_dir, struct dentry *new_dentry,
9699 unsigned int flags)
9700 {
9701 struct btrfs_trans_handle *trans;
9702 unsigned int trans_num_items;
9703 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9704 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9705 struct inode *new_inode = d_inode(new_dentry);
9706 struct inode *old_inode = d_inode(old_dentry);
9707 u64 index = 0;
9708 u64 root_objectid;
9709 int ret;
9710 u64 old_ino = btrfs_ino(old_inode);
9711 bool log_pinned = false;
9712
9713 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9714 return -EPERM;
9715
9716 /* we only allow rename subvolume link between subvolumes */
9717 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9718 return -EXDEV;
9719
9720 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9721 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9722 return -ENOTEMPTY;
9723
9724 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9725 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9726 return -ENOTEMPTY;
9727
9728
9729 /* check for collisions, even if the name isn't there */
9730 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9731 new_dentry->d_name.name,
9732 new_dentry->d_name.len);
9733
9734 if (ret) {
9735 if (ret == -EEXIST) {
9736 /* we shouldn't get
9737 * eexist without a new_inode */
9738 if (WARN_ON(!new_inode)) {
9739 return ret;
9740 }
9741 } else {
9742 /* maybe -EOVERFLOW */
9743 return ret;
9744 }
9745 }
9746 ret = 0;
9747
9748 /*
9749 * we're using rename to replace one file with another. Start IO on it
9750 * now so we don't add too much work to the end of the transaction
9751 */
9752 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9753 filemap_flush(old_inode->i_mapping);
9754
9755 /* close the racy window with snapshot create/destroy ioctl */
9756 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9757 down_read(&root->fs_info->subvol_sem);
9758 /*
9759 * We want to reserve the absolute worst case amount of items. So if
9760 * both inodes are subvols and we need to unlink them then that would
9761 * require 4 item modifications, but if they are both normal inodes it
9762 * would require 5 item modifications, so we'll assume they are normal
9763 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9764 * should cover the worst case number of items we'll modify.
9765 * If our rename has the whiteout flag, we need more 5 units for the
9766 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9767 * when selinux is enabled).
9768 */
9769 trans_num_items = 11;
9770 if (flags & RENAME_WHITEOUT)
9771 trans_num_items += 5;
9772 trans = btrfs_start_transaction(root, trans_num_items);
9773 if (IS_ERR(trans)) {
9774 ret = PTR_ERR(trans);
9775 goto out_notrans;
9776 }
9777
9778 if (dest != root)
9779 btrfs_record_root_in_trans(trans, dest);
9780
9781 ret = btrfs_set_inode_index(new_dir, &index);
9782 if (ret)
9783 goto out_fail;
9784
9785 BTRFS_I(old_inode)->dir_index = 0ULL;
9786 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9787 /* force full log commit if subvolume involved. */
9788 btrfs_set_log_full_commit(root->fs_info, trans);
9789 } else {
9790 btrfs_pin_log_trans(root);
9791 log_pinned = true;
9792 ret = btrfs_insert_inode_ref(trans, dest,
9793 new_dentry->d_name.name,
9794 new_dentry->d_name.len,
9795 old_ino,
9796 btrfs_ino(new_dir), index);
9797 if (ret)
9798 goto out_fail;
9799 }
9800
9801 inode_inc_iversion(old_dir);
9802 inode_inc_iversion(new_dir);
9803 inode_inc_iversion(old_inode);
9804 old_dir->i_ctime = old_dir->i_mtime =
9805 new_dir->i_ctime = new_dir->i_mtime =
9806 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9807
9808 if (old_dentry->d_parent != new_dentry->d_parent)
9809 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9810
9811 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9812 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9813 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9814 old_dentry->d_name.name,
9815 old_dentry->d_name.len);
9816 } else {
9817 ret = __btrfs_unlink_inode(trans, root, old_dir,
9818 d_inode(old_dentry),
9819 old_dentry->d_name.name,
9820 old_dentry->d_name.len);
9821 if (!ret)
9822 ret = btrfs_update_inode(trans, root, old_inode);
9823 }
9824 if (ret) {
9825 btrfs_abort_transaction(trans, root, ret);
9826 goto out_fail;
9827 }
9828
9829 if (new_inode) {
9830 inode_inc_iversion(new_inode);
9831 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9832 if (unlikely(btrfs_ino(new_inode) ==
9833 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9834 root_objectid = BTRFS_I(new_inode)->location.objectid;
9835 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9836 root_objectid,
9837 new_dentry->d_name.name,
9838 new_dentry->d_name.len);
9839 BUG_ON(new_inode->i_nlink == 0);
9840 } else {
9841 ret = btrfs_unlink_inode(trans, dest, new_dir,
9842 d_inode(new_dentry),
9843 new_dentry->d_name.name,
9844 new_dentry->d_name.len);
9845 }
9846 if (!ret && new_inode->i_nlink == 0)
9847 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9848 if (ret) {
9849 btrfs_abort_transaction(trans, root, ret);
9850 goto out_fail;
9851 }
9852 }
9853
9854 ret = btrfs_add_link(trans, new_dir, old_inode,
9855 new_dentry->d_name.name,
9856 new_dentry->d_name.len, 0, index);
9857 if (ret) {
9858 btrfs_abort_transaction(trans, root, ret);
9859 goto out_fail;
9860 }
9861
9862 if (old_inode->i_nlink == 1)
9863 BTRFS_I(old_inode)->dir_index = index;
9864
9865 if (log_pinned) {
9866 struct dentry *parent = new_dentry->d_parent;
9867
9868 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9869 btrfs_end_log_trans(root);
9870 log_pinned = false;
9871 }
9872
9873 if (flags & RENAME_WHITEOUT) {
9874 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9875 old_dentry);
9876
9877 if (ret) {
9878 btrfs_abort_transaction(trans, root, ret);
9879 goto out_fail;
9880 }
9881 }
9882 out_fail:
9883 /*
9884 * If we have pinned the log and an error happened, we unpin tasks
9885 * trying to sync the log and force them to fallback to a transaction
9886 * commit if the log currently contains any of the inodes involved in
9887 * this rename operation (to ensure we do not persist a log with an
9888 * inconsistent state for any of these inodes or leading to any
9889 * inconsistencies when replayed). If the transaction was aborted, the
9890 * abortion reason is propagated to userspace when attempting to commit
9891 * the transaction. If the log does not contain any of these inodes, we
9892 * allow the tasks to sync it.
9893 */
9894 if (ret && log_pinned) {
9895 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9896 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9897 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9898 (new_inode &&
9899 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9900 btrfs_set_log_full_commit(root->fs_info, trans);
9901
9902 btrfs_end_log_trans(root);
9903 log_pinned = false;
9904 }
9905 btrfs_end_transaction(trans, root);
9906 out_notrans:
9907 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9908 up_read(&root->fs_info->subvol_sem);
9909
9910 return ret;
9911 }
9912
9913 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9914 struct inode *new_dir, struct dentry *new_dentry,
9915 unsigned int flags)
9916 {
9917 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9918 return -EINVAL;
9919
9920 if (flags & RENAME_EXCHANGE)
9921 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9922 new_dentry);
9923
9924 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9925 }
9926
9927 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9928 {
9929 struct btrfs_delalloc_work *delalloc_work;
9930 struct inode *inode;
9931
9932 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9933 work);
9934 inode = delalloc_work->inode;
9935 filemap_flush(inode->i_mapping);
9936 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9937 &BTRFS_I(inode)->runtime_flags))
9938 filemap_flush(inode->i_mapping);
9939
9940 if (delalloc_work->delay_iput)
9941 btrfs_add_delayed_iput(inode);
9942 else
9943 iput(inode);
9944 complete(&delalloc_work->completion);
9945 }
9946
9947 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9948 int delay_iput)
9949 {
9950 struct btrfs_delalloc_work *work;
9951
9952 work = kmalloc(sizeof(*work), GFP_NOFS);
9953 if (!work)
9954 return NULL;
9955
9956 init_completion(&work->completion);
9957 INIT_LIST_HEAD(&work->list);
9958 work->inode = inode;
9959 work->delay_iput = delay_iput;
9960 WARN_ON_ONCE(!inode);
9961 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9962 btrfs_run_delalloc_work, NULL, NULL);
9963
9964 return work;
9965 }
9966
9967 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9968 {
9969 wait_for_completion(&work->completion);
9970 kfree(work);
9971 }
9972
9973 /*
9974 * some fairly slow code that needs optimization. This walks the list
9975 * of all the inodes with pending delalloc and forces them to disk.
9976 */
9977 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9978 int nr)
9979 {
9980 struct btrfs_inode *binode;
9981 struct inode *inode;
9982 struct btrfs_delalloc_work *work, *next;
9983 struct list_head works;
9984 struct list_head splice;
9985 int ret = 0;
9986
9987 INIT_LIST_HEAD(&works);
9988 INIT_LIST_HEAD(&splice);
9989
9990 mutex_lock(&root->delalloc_mutex);
9991 spin_lock(&root->delalloc_lock);
9992 list_splice_init(&root->delalloc_inodes, &splice);
9993 while (!list_empty(&splice)) {
9994 binode = list_entry(splice.next, struct btrfs_inode,
9995 delalloc_inodes);
9996
9997 list_move_tail(&binode->delalloc_inodes,
9998 &root->delalloc_inodes);
9999 inode = igrab(&binode->vfs_inode);
10000 if (!inode) {
10001 cond_resched_lock(&root->delalloc_lock);
10002 continue;
10003 }
10004 spin_unlock(&root->delalloc_lock);
10005
10006 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10007 if (!work) {
10008 if (delay_iput)
10009 btrfs_add_delayed_iput(inode);
10010 else
10011 iput(inode);
10012 ret = -ENOMEM;
10013 goto out;
10014 }
10015 list_add_tail(&work->list, &works);
10016 btrfs_queue_work(root->fs_info->flush_workers,
10017 &work->work);
10018 ret++;
10019 if (nr != -1 && ret >= nr)
10020 goto out;
10021 cond_resched();
10022 spin_lock(&root->delalloc_lock);
10023 }
10024 spin_unlock(&root->delalloc_lock);
10025
10026 out:
10027 list_for_each_entry_safe(work, next, &works, list) {
10028 list_del_init(&work->list);
10029 btrfs_wait_and_free_delalloc_work(work);
10030 }
10031
10032 if (!list_empty_careful(&splice)) {
10033 spin_lock(&root->delalloc_lock);
10034 list_splice_tail(&splice, &root->delalloc_inodes);
10035 spin_unlock(&root->delalloc_lock);
10036 }
10037 mutex_unlock(&root->delalloc_mutex);
10038 return ret;
10039 }
10040
10041 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10042 {
10043 int ret;
10044
10045 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10046 return -EROFS;
10047
10048 ret = __start_delalloc_inodes(root, delay_iput, -1);
10049 if (ret > 0)
10050 ret = 0;
10051 /*
10052 * the filemap_flush will queue IO into the worker threads, but
10053 * we have to make sure the IO is actually started and that
10054 * ordered extents get created before we return
10055 */
10056 atomic_inc(&root->fs_info->async_submit_draining);
10057 while (atomic_read(&root->fs_info->nr_async_submits) ||
10058 atomic_read(&root->fs_info->async_delalloc_pages)) {
10059 wait_event(root->fs_info->async_submit_wait,
10060 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10061 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10062 }
10063 atomic_dec(&root->fs_info->async_submit_draining);
10064 return ret;
10065 }
10066
10067 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10068 int nr)
10069 {
10070 struct btrfs_root *root;
10071 struct list_head splice;
10072 int ret;
10073
10074 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10075 return -EROFS;
10076
10077 INIT_LIST_HEAD(&splice);
10078
10079 mutex_lock(&fs_info->delalloc_root_mutex);
10080 spin_lock(&fs_info->delalloc_root_lock);
10081 list_splice_init(&fs_info->delalloc_roots, &splice);
10082 while (!list_empty(&splice) && nr) {
10083 root = list_first_entry(&splice, struct btrfs_root,
10084 delalloc_root);
10085 root = btrfs_grab_fs_root(root);
10086 BUG_ON(!root);
10087 list_move_tail(&root->delalloc_root,
10088 &fs_info->delalloc_roots);
10089 spin_unlock(&fs_info->delalloc_root_lock);
10090
10091 ret = __start_delalloc_inodes(root, delay_iput, nr);
10092 btrfs_put_fs_root(root);
10093 if (ret < 0)
10094 goto out;
10095
10096 if (nr != -1) {
10097 nr -= ret;
10098 WARN_ON(nr < 0);
10099 }
10100 spin_lock(&fs_info->delalloc_root_lock);
10101 }
10102 spin_unlock(&fs_info->delalloc_root_lock);
10103
10104 ret = 0;
10105 atomic_inc(&fs_info->async_submit_draining);
10106 while (atomic_read(&fs_info->nr_async_submits) ||
10107 atomic_read(&fs_info->async_delalloc_pages)) {
10108 wait_event(fs_info->async_submit_wait,
10109 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10110 atomic_read(&fs_info->async_delalloc_pages) == 0));
10111 }
10112 atomic_dec(&fs_info->async_submit_draining);
10113 out:
10114 if (!list_empty_careful(&splice)) {
10115 spin_lock(&fs_info->delalloc_root_lock);
10116 list_splice_tail(&splice, &fs_info->delalloc_roots);
10117 spin_unlock(&fs_info->delalloc_root_lock);
10118 }
10119 mutex_unlock(&fs_info->delalloc_root_mutex);
10120 return ret;
10121 }
10122
10123 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10124 const char *symname)
10125 {
10126 struct btrfs_trans_handle *trans;
10127 struct btrfs_root *root = BTRFS_I(dir)->root;
10128 struct btrfs_path *path;
10129 struct btrfs_key key;
10130 struct inode *inode = NULL;
10131 int err;
10132 int drop_inode = 0;
10133 u64 objectid;
10134 u64 index = 0;
10135 int name_len;
10136 int datasize;
10137 unsigned long ptr;
10138 struct btrfs_file_extent_item *ei;
10139 struct extent_buffer *leaf;
10140
10141 name_len = strlen(symname);
10142 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10143 return -ENAMETOOLONG;
10144
10145 /*
10146 * 2 items for inode item and ref
10147 * 2 items for dir items
10148 * 1 item for updating parent inode item
10149 * 1 item for the inline extent item
10150 * 1 item for xattr if selinux is on
10151 */
10152 trans = btrfs_start_transaction(root, 7);
10153 if (IS_ERR(trans))
10154 return PTR_ERR(trans);
10155
10156 err = btrfs_find_free_ino(root, &objectid);
10157 if (err)
10158 goto out_unlock;
10159
10160 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10161 dentry->d_name.len, btrfs_ino(dir), objectid,
10162 S_IFLNK|S_IRWXUGO, &index);
10163 if (IS_ERR(inode)) {
10164 err = PTR_ERR(inode);
10165 goto out_unlock;
10166 }
10167
10168 /*
10169 * If the active LSM wants to access the inode during
10170 * d_instantiate it needs these. Smack checks to see
10171 * if the filesystem supports xattrs by looking at the
10172 * ops vector.
10173 */
10174 inode->i_fop = &btrfs_file_operations;
10175 inode->i_op = &btrfs_file_inode_operations;
10176 inode->i_mapping->a_ops = &btrfs_aops;
10177 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10178
10179 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10180 if (err)
10181 goto out_unlock_inode;
10182
10183 path = btrfs_alloc_path();
10184 if (!path) {
10185 err = -ENOMEM;
10186 goto out_unlock_inode;
10187 }
10188 key.objectid = btrfs_ino(inode);
10189 key.offset = 0;
10190 key.type = BTRFS_EXTENT_DATA_KEY;
10191 datasize = btrfs_file_extent_calc_inline_size(name_len);
10192 err = btrfs_insert_empty_item(trans, root, path, &key,
10193 datasize);
10194 if (err) {
10195 btrfs_free_path(path);
10196 goto out_unlock_inode;
10197 }
10198 leaf = path->nodes[0];
10199 ei = btrfs_item_ptr(leaf, path->slots[0],
10200 struct btrfs_file_extent_item);
10201 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10202 btrfs_set_file_extent_type(leaf, ei,
10203 BTRFS_FILE_EXTENT_INLINE);
10204 btrfs_set_file_extent_encryption(leaf, ei, 0);
10205 btrfs_set_file_extent_compression(leaf, ei, 0);
10206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10207 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10208
10209 ptr = btrfs_file_extent_inline_start(ei);
10210 write_extent_buffer(leaf, symname, ptr, name_len);
10211 btrfs_mark_buffer_dirty(leaf);
10212 btrfs_free_path(path);
10213
10214 inode->i_op = &btrfs_symlink_inode_operations;
10215 inode_nohighmem(inode);
10216 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10217 inode_set_bytes(inode, name_len);
10218 btrfs_i_size_write(inode, name_len);
10219 err = btrfs_update_inode(trans, root, inode);
10220 /*
10221 * Last step, add directory indexes for our symlink inode. This is the
10222 * last step to avoid extra cleanup of these indexes if an error happens
10223 * elsewhere above.
10224 */
10225 if (!err)
10226 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10227 if (err) {
10228 drop_inode = 1;
10229 goto out_unlock_inode;
10230 }
10231
10232 unlock_new_inode(inode);
10233 d_instantiate(dentry, inode);
10234
10235 out_unlock:
10236 btrfs_end_transaction(trans, root);
10237 if (drop_inode) {
10238 inode_dec_link_count(inode);
10239 iput(inode);
10240 }
10241 btrfs_btree_balance_dirty(root);
10242 return err;
10243
10244 out_unlock_inode:
10245 drop_inode = 1;
10246 unlock_new_inode(inode);
10247 goto out_unlock;
10248 }
10249
10250 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10251 u64 start, u64 num_bytes, u64 min_size,
10252 loff_t actual_len, u64 *alloc_hint,
10253 struct btrfs_trans_handle *trans)
10254 {
10255 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10256 struct extent_map *em;
10257 struct btrfs_root *root = BTRFS_I(inode)->root;
10258 struct btrfs_key ins;
10259 u64 cur_offset = start;
10260 u64 i_size;
10261 u64 cur_bytes;
10262 u64 last_alloc = (u64)-1;
10263 int ret = 0;
10264 bool own_trans = true;
10265
10266 if (trans)
10267 own_trans = false;
10268 while (num_bytes > 0) {
10269 if (own_trans) {
10270 trans = btrfs_start_transaction(root, 3);
10271 if (IS_ERR(trans)) {
10272 ret = PTR_ERR(trans);
10273 break;
10274 }
10275 }
10276
10277 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10278 cur_bytes = max(cur_bytes, min_size);
10279 /*
10280 * If we are severely fragmented we could end up with really
10281 * small allocations, so if the allocator is returning small
10282 * chunks lets make its job easier by only searching for those
10283 * sized chunks.
10284 */
10285 cur_bytes = min(cur_bytes, last_alloc);
10286 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10287 *alloc_hint, &ins, 1, 0);
10288 if (ret) {
10289 if (own_trans)
10290 btrfs_end_transaction(trans, root);
10291 break;
10292 }
10293 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10294
10295 last_alloc = ins.offset;
10296 ret = insert_reserved_file_extent(trans, inode,
10297 cur_offset, ins.objectid,
10298 ins.offset, ins.offset,
10299 ins.offset, 0, 0, 0,
10300 BTRFS_FILE_EXTENT_PREALLOC);
10301 if (ret) {
10302 btrfs_free_reserved_extent(root, ins.objectid,
10303 ins.offset, 0);
10304 btrfs_abort_transaction(trans, root, ret);
10305 if (own_trans)
10306 btrfs_end_transaction(trans, root);
10307 break;
10308 }
10309
10310 btrfs_drop_extent_cache(inode, cur_offset,
10311 cur_offset + ins.offset -1, 0);
10312
10313 em = alloc_extent_map();
10314 if (!em) {
10315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10316 &BTRFS_I(inode)->runtime_flags);
10317 goto next;
10318 }
10319
10320 em->start = cur_offset;
10321 em->orig_start = cur_offset;
10322 em->len = ins.offset;
10323 em->block_start = ins.objectid;
10324 em->block_len = ins.offset;
10325 em->orig_block_len = ins.offset;
10326 em->ram_bytes = ins.offset;
10327 em->bdev = root->fs_info->fs_devices->latest_bdev;
10328 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10329 em->generation = trans->transid;
10330
10331 while (1) {
10332 write_lock(&em_tree->lock);
10333 ret = add_extent_mapping(em_tree, em, 1);
10334 write_unlock(&em_tree->lock);
10335 if (ret != -EEXIST)
10336 break;
10337 btrfs_drop_extent_cache(inode, cur_offset,
10338 cur_offset + ins.offset - 1,
10339 0);
10340 }
10341 free_extent_map(em);
10342 next:
10343 num_bytes -= ins.offset;
10344 cur_offset += ins.offset;
10345 *alloc_hint = ins.objectid + ins.offset;
10346
10347 inode_inc_iversion(inode);
10348 inode->i_ctime = current_fs_time(inode->i_sb);
10349 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10350 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10351 (actual_len > inode->i_size) &&
10352 (cur_offset > inode->i_size)) {
10353 if (cur_offset > actual_len)
10354 i_size = actual_len;
10355 else
10356 i_size = cur_offset;
10357 i_size_write(inode, i_size);
10358 btrfs_ordered_update_i_size(inode, i_size, NULL);
10359 }
10360
10361 ret = btrfs_update_inode(trans, root, inode);
10362
10363 if (ret) {
10364 btrfs_abort_transaction(trans, root, ret);
10365 if (own_trans)
10366 btrfs_end_transaction(trans, root);
10367 break;
10368 }
10369
10370 if (own_trans)
10371 btrfs_end_transaction(trans, root);
10372 }
10373 return ret;
10374 }
10375
10376 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10377 u64 start, u64 num_bytes, u64 min_size,
10378 loff_t actual_len, u64 *alloc_hint)
10379 {
10380 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10381 min_size, actual_len, alloc_hint,
10382 NULL);
10383 }
10384
10385 int btrfs_prealloc_file_range_trans(struct inode *inode,
10386 struct btrfs_trans_handle *trans, int mode,
10387 u64 start, u64 num_bytes, u64 min_size,
10388 loff_t actual_len, u64 *alloc_hint)
10389 {
10390 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10391 min_size, actual_len, alloc_hint, trans);
10392 }
10393
10394 static int btrfs_set_page_dirty(struct page *page)
10395 {
10396 return __set_page_dirty_nobuffers(page);
10397 }
10398
10399 static int btrfs_permission(struct inode *inode, int mask)
10400 {
10401 struct btrfs_root *root = BTRFS_I(inode)->root;
10402 umode_t mode = inode->i_mode;
10403
10404 if (mask & MAY_WRITE &&
10405 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10406 if (btrfs_root_readonly(root))
10407 return -EROFS;
10408 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10409 return -EACCES;
10410 }
10411 return generic_permission(inode, mask);
10412 }
10413
10414 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10415 {
10416 struct btrfs_trans_handle *trans;
10417 struct btrfs_root *root = BTRFS_I(dir)->root;
10418 struct inode *inode = NULL;
10419 u64 objectid;
10420 u64 index;
10421 int ret = 0;
10422
10423 /*
10424 * 5 units required for adding orphan entry
10425 */
10426 trans = btrfs_start_transaction(root, 5);
10427 if (IS_ERR(trans))
10428 return PTR_ERR(trans);
10429
10430 ret = btrfs_find_free_ino(root, &objectid);
10431 if (ret)
10432 goto out;
10433
10434 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10435 btrfs_ino(dir), objectid, mode, &index);
10436 if (IS_ERR(inode)) {
10437 ret = PTR_ERR(inode);
10438 inode = NULL;
10439 goto out;
10440 }
10441
10442 inode->i_fop = &btrfs_file_operations;
10443 inode->i_op = &btrfs_file_inode_operations;
10444
10445 inode->i_mapping->a_ops = &btrfs_aops;
10446 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10447
10448 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10449 if (ret)
10450 goto out_inode;
10451
10452 ret = btrfs_update_inode(trans, root, inode);
10453 if (ret)
10454 goto out_inode;
10455 ret = btrfs_orphan_add(trans, inode);
10456 if (ret)
10457 goto out_inode;
10458
10459 /*
10460 * We set number of links to 0 in btrfs_new_inode(), and here we set
10461 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10462 * through:
10463 *
10464 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10465 */
10466 set_nlink(inode, 1);
10467 unlock_new_inode(inode);
10468 d_tmpfile(dentry, inode);
10469 mark_inode_dirty(inode);
10470
10471 out:
10472 btrfs_end_transaction(trans, root);
10473 if (ret)
10474 iput(inode);
10475 btrfs_balance_delayed_items(root);
10476 btrfs_btree_balance_dirty(root);
10477 return ret;
10478
10479 out_inode:
10480 unlock_new_inode(inode);
10481 goto out;
10482
10483 }
10484
10485 /* Inspired by filemap_check_errors() */
10486 int btrfs_inode_check_errors(struct inode *inode)
10487 {
10488 int ret = 0;
10489
10490 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10491 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10492 ret = -ENOSPC;
10493 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10494 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10495 ret = -EIO;
10496
10497 return ret;
10498 }
10499
10500 static const struct inode_operations btrfs_dir_inode_operations = {
10501 .getattr = btrfs_getattr,
10502 .lookup = btrfs_lookup,
10503 .create = btrfs_create,
10504 .unlink = btrfs_unlink,
10505 .link = btrfs_link,
10506 .mkdir = btrfs_mkdir,
10507 .rmdir = btrfs_rmdir,
10508 .rename2 = btrfs_rename2,
10509 .symlink = btrfs_symlink,
10510 .setattr = btrfs_setattr,
10511 .mknod = btrfs_mknod,
10512 .setxattr = btrfs_setxattr,
10513 .getxattr = generic_getxattr,
10514 .listxattr = btrfs_listxattr,
10515 .removexattr = btrfs_removexattr,
10516 .permission = btrfs_permission,
10517 .get_acl = btrfs_get_acl,
10518 .set_acl = btrfs_set_acl,
10519 .update_time = btrfs_update_time,
10520 .tmpfile = btrfs_tmpfile,
10521 };
10522 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10523 .lookup = btrfs_lookup,
10524 .permission = btrfs_permission,
10525 .get_acl = btrfs_get_acl,
10526 .set_acl = btrfs_set_acl,
10527 .update_time = btrfs_update_time,
10528 };
10529
10530 static const struct file_operations btrfs_dir_file_operations = {
10531 .llseek = generic_file_llseek,
10532 .read = generic_read_dir,
10533 .iterate = btrfs_real_readdir,
10534 .unlocked_ioctl = btrfs_ioctl,
10535 #ifdef CONFIG_COMPAT
10536 .compat_ioctl = btrfs_ioctl,
10537 #endif
10538 .release = btrfs_release_file,
10539 .fsync = btrfs_sync_file,
10540 };
10541
10542 static const struct extent_io_ops btrfs_extent_io_ops = {
10543 .fill_delalloc = run_delalloc_range,
10544 .submit_bio_hook = btrfs_submit_bio_hook,
10545 .merge_bio_hook = btrfs_merge_bio_hook,
10546 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10547 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10548 .writepage_start_hook = btrfs_writepage_start_hook,
10549 .set_bit_hook = btrfs_set_bit_hook,
10550 .clear_bit_hook = btrfs_clear_bit_hook,
10551 .merge_extent_hook = btrfs_merge_extent_hook,
10552 .split_extent_hook = btrfs_split_extent_hook,
10553 };
10554
10555 /*
10556 * btrfs doesn't support the bmap operation because swapfiles
10557 * use bmap to make a mapping of extents in the file. They assume
10558 * these extents won't change over the life of the file and they
10559 * use the bmap result to do IO directly to the drive.
10560 *
10561 * the btrfs bmap call would return logical addresses that aren't
10562 * suitable for IO and they also will change frequently as COW
10563 * operations happen. So, swapfile + btrfs == corruption.
10564 *
10565 * For now we're avoiding this by dropping bmap.
10566 */
10567 static const struct address_space_operations btrfs_aops = {
10568 .readpage = btrfs_readpage,
10569 .writepage = btrfs_writepage,
10570 .writepages = btrfs_writepages,
10571 .readpages = btrfs_readpages,
10572 .direct_IO = btrfs_direct_IO,
10573 .invalidatepage = btrfs_invalidatepage,
10574 .releasepage = btrfs_releasepage,
10575 .set_page_dirty = btrfs_set_page_dirty,
10576 .error_remove_page = generic_error_remove_page,
10577 };
10578
10579 static const struct address_space_operations btrfs_symlink_aops = {
10580 .readpage = btrfs_readpage,
10581 .writepage = btrfs_writepage,
10582 .invalidatepage = btrfs_invalidatepage,
10583 .releasepage = btrfs_releasepage,
10584 };
10585
10586 static const struct inode_operations btrfs_file_inode_operations = {
10587 .getattr = btrfs_getattr,
10588 .setattr = btrfs_setattr,
10589 .setxattr = btrfs_setxattr,
10590 .getxattr = generic_getxattr,
10591 .listxattr = btrfs_listxattr,
10592 .removexattr = btrfs_removexattr,
10593 .permission = btrfs_permission,
10594 .fiemap = btrfs_fiemap,
10595 .get_acl = btrfs_get_acl,
10596 .set_acl = btrfs_set_acl,
10597 .update_time = btrfs_update_time,
10598 };
10599 static const struct inode_operations btrfs_special_inode_operations = {
10600 .getattr = btrfs_getattr,
10601 .setattr = btrfs_setattr,
10602 .permission = btrfs_permission,
10603 .setxattr = btrfs_setxattr,
10604 .getxattr = generic_getxattr,
10605 .listxattr = btrfs_listxattr,
10606 .removexattr = btrfs_removexattr,
10607 .get_acl = btrfs_get_acl,
10608 .set_acl = btrfs_set_acl,
10609 .update_time = btrfs_update_time,
10610 };
10611 static const struct inode_operations btrfs_symlink_inode_operations = {
10612 .readlink = generic_readlink,
10613 .get_link = page_get_link,
10614 .getattr = btrfs_getattr,
10615 .setattr = btrfs_setattr,
10616 .permission = btrfs_permission,
10617 .setxattr = btrfs_setxattr,
10618 .getxattr = generic_getxattr,
10619 .listxattr = btrfs_listxattr,
10620 .removexattr = btrfs_removexattr,
10621 .update_time = btrfs_update_time,
10622 };
10623
10624 const struct dentry_operations btrfs_dentry_operations = {
10625 .d_delete = btrfs_dentry_delete,
10626 .d_release = btrfs_dentry_release,
10627 };