]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/inode.c
Merge branch 'sbp-target-merge' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88 };
89
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
99
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
103 {
104 int err;
105
106 err = btrfs_init_acl(trans, inode, dir);
107 if (!err)
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 return err;
110 }
111
112 /*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
120 int compress_type,
121 struct page **compressed_pages)
122 {
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
135
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
138
139 path = btrfs_alloc_path();
140 if (!path)
141 return -ENOMEM;
142
143 path->leave_spinning = 1;
144
145 key.objectid = btrfs_ino(inode);
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 if (ret) {
154 err = ret;
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
167 if (compress_type != BTRFS_COMPRESS_NONE) {
168 struct page *cpage;
169 int i = 0;
170 while (compressed_size > 0) {
171 cpage = compressed_pages[i];
172 cur_size = min_t(unsigned long, compressed_size,
173 PAGE_CACHE_SIZE);
174
175 kaddr = kmap_atomic(cpage);
176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 kunmap_atomic(kaddr);
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
184 compress_type);
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
189 kaddr = kmap_atomic(page);
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 kunmap_atomic(kaddr);
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
207 BTRFS_I(inode)->disk_i_size = inode->i_size;
208 ret = btrfs_update_inode(trans, root, inode);
209
210 return ret;
211 fail:
212 btrfs_free_path(path);
213 return err;
214 }
215
216
217 /*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size, int compress_type,
226 struct page **compressed_pages)
227 {
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
241 actual_end >= PAGE_CACHE_SIZE ||
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 (!compressed_size &&
244 (actual_end & (root->sectorsize - 1)) == 0) ||
245 end + 1 < isize ||
246 data_len > root->fs_info->max_inline) {
247 return 1;
248 }
249
250 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 &hint_byte, 1);
252 if (ret)
253 return ret;
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
259 compress_type, compressed_pages);
260 if (ret) {
261 btrfs_abort_transaction(trans, root, ret);
262 return ret;
263 }
264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 return 0;
267 }
268
269 struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
275 int compress_type;
276 struct list_head list;
277 };
278
279 struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287 };
288
289 static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
293 unsigned long nr_pages,
294 int compress_type)
295 {
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 BUG_ON(!async_extent); /* -ENOMEM */
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
305 async_extent->compress_type = compress_type;
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308 }
309
310 /*
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
314 *
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
320 *
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that pdflush sent them down.
325 */
326 static noinline int compress_file_range(struct inode *inode,
327 struct page *locked_page,
328 u64 start, u64 end,
329 struct async_cow *async_cow,
330 int *num_added)
331 {
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct btrfs_trans_handle *trans;
334 u64 num_bytes;
335 u64 blocksize = root->sectorsize;
336 u64 actual_end;
337 u64 isize = i_size_read(inode);
338 int ret = 0;
339 struct page **pages = NULL;
340 unsigned long nr_pages;
341 unsigned long nr_pages_ret = 0;
342 unsigned long total_compressed = 0;
343 unsigned long total_in = 0;
344 unsigned long max_compressed = 128 * 1024;
345 unsigned long max_uncompressed = 128 * 1024;
346 int i;
347 int will_compress;
348 int compress_type = root->fs_info->compress_type;
349
350 /* if this is a small write inside eof, kick off a defrag */
351 if ((end - start + 1) < 16 * 1024 &&
352 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
353 btrfs_add_inode_defrag(NULL, inode);
354
355 actual_end = min_t(u64, isize, end + 1);
356 again:
357 will_compress = 0;
358 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
359 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
360
361 /*
362 * we don't want to send crud past the end of i_size through
363 * compression, that's just a waste of CPU time. So, if the
364 * end of the file is before the start of our current
365 * requested range of bytes, we bail out to the uncompressed
366 * cleanup code that can deal with all of this.
367 *
368 * It isn't really the fastest way to fix things, but this is a
369 * very uncommon corner.
370 */
371 if (actual_end <= start)
372 goto cleanup_and_bail_uncompressed;
373
374 total_compressed = actual_end - start;
375
376 /* we want to make sure that amount of ram required to uncompress
377 * an extent is reasonable, so we limit the total size in ram
378 * of a compressed extent to 128k. This is a crucial number
379 * because it also controls how easily we can spread reads across
380 * cpus for decompression.
381 *
382 * We also want to make sure the amount of IO required to do
383 * a random read is reasonably small, so we limit the size of
384 * a compressed extent to 128k.
385 */
386 total_compressed = min(total_compressed, max_uncompressed);
387 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
388 num_bytes = max(blocksize, num_bytes);
389 total_in = 0;
390 ret = 0;
391
392 /*
393 * we do compression for mount -o compress and when the
394 * inode has not been flagged as nocompress. This flag can
395 * change at any time if we discover bad compression ratios.
396 */
397 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
398 (btrfs_test_opt(root, COMPRESS) ||
399 (BTRFS_I(inode)->force_compress) ||
400 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
401 WARN_ON(pages);
402 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
403 if (!pages) {
404 /* just bail out to the uncompressed code */
405 goto cont;
406 }
407
408 if (BTRFS_I(inode)->force_compress)
409 compress_type = BTRFS_I(inode)->force_compress;
410
411 ret = btrfs_compress_pages(compress_type,
412 inode->i_mapping, start,
413 total_compressed, pages,
414 nr_pages, &nr_pages_ret,
415 &total_in,
416 &total_compressed,
417 max_compressed);
418
419 if (!ret) {
420 unsigned long offset = total_compressed &
421 (PAGE_CACHE_SIZE - 1);
422 struct page *page = pages[nr_pages_ret - 1];
423 char *kaddr;
424
425 /* zero the tail end of the last page, we might be
426 * sending it down to disk
427 */
428 if (offset) {
429 kaddr = kmap_atomic(page);
430 memset(kaddr + offset, 0,
431 PAGE_CACHE_SIZE - offset);
432 kunmap_atomic(kaddr);
433 }
434 will_compress = 1;
435 }
436 }
437 cont:
438 if (start == 0) {
439 trans = btrfs_join_transaction(root);
440 if (IS_ERR(trans)) {
441 ret = PTR_ERR(trans);
442 trans = NULL;
443 goto cleanup_and_out;
444 }
445 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
446
447 /* lets try to make an inline extent */
448 if (ret || total_in < (actual_end - start)) {
449 /* we didn't compress the entire range, try
450 * to make an uncompressed inline extent.
451 */
452 ret = cow_file_range_inline(trans, root, inode,
453 start, end, 0, 0, NULL);
454 } else {
455 /* try making a compressed inline extent */
456 ret = cow_file_range_inline(trans, root, inode,
457 start, end,
458 total_compressed,
459 compress_type, pages);
460 }
461 if (ret <= 0) {
462 /*
463 * inline extent creation worked or returned error,
464 * we don't need to create any more async work items.
465 * Unlock and free up our temp pages.
466 */
467 extent_clear_unlock_delalloc(inode,
468 &BTRFS_I(inode)->io_tree,
469 start, end, NULL,
470 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
471 EXTENT_CLEAR_DELALLOC |
472 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
473
474 btrfs_end_transaction(trans, root);
475 goto free_pages_out;
476 }
477 btrfs_end_transaction(trans, root);
478 }
479
480 if (will_compress) {
481 /*
482 * we aren't doing an inline extent round the compressed size
483 * up to a block size boundary so the allocator does sane
484 * things
485 */
486 total_compressed = (total_compressed + blocksize - 1) &
487 ~(blocksize - 1);
488
489 /*
490 * one last check to make sure the compression is really a
491 * win, compare the page count read with the blocks on disk
492 */
493 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
494 ~(PAGE_CACHE_SIZE - 1);
495 if (total_compressed >= total_in) {
496 will_compress = 0;
497 } else {
498 num_bytes = total_in;
499 }
500 }
501 if (!will_compress && pages) {
502 /*
503 * the compression code ran but failed to make things smaller,
504 * free any pages it allocated and our page pointer array
505 */
506 for (i = 0; i < nr_pages_ret; i++) {
507 WARN_ON(pages[i]->mapping);
508 page_cache_release(pages[i]);
509 }
510 kfree(pages);
511 pages = NULL;
512 total_compressed = 0;
513 nr_pages_ret = 0;
514
515 /* flag the file so we don't compress in the future */
516 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
517 !(BTRFS_I(inode)->force_compress)) {
518 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
519 }
520 }
521 if (will_compress) {
522 *num_added += 1;
523
524 /* the async work queues will take care of doing actual
525 * allocation on disk for these compressed pages,
526 * and will submit them to the elevator.
527 */
528 add_async_extent(async_cow, start, num_bytes,
529 total_compressed, pages, nr_pages_ret,
530 compress_type);
531
532 if (start + num_bytes < end) {
533 start += num_bytes;
534 pages = NULL;
535 cond_resched();
536 goto again;
537 }
538 } else {
539 cleanup_and_bail_uncompressed:
540 /*
541 * No compression, but we still need to write the pages in
542 * the file we've been given so far. redirty the locked
543 * page if it corresponds to our extent and set things up
544 * for the async work queue to run cow_file_range to do
545 * the normal delalloc dance
546 */
547 if (page_offset(locked_page) >= start &&
548 page_offset(locked_page) <= end) {
549 __set_page_dirty_nobuffers(locked_page);
550 /* unlocked later on in the async handlers */
551 }
552 add_async_extent(async_cow, start, end - start + 1,
553 0, NULL, 0, BTRFS_COMPRESS_NONE);
554 *num_added += 1;
555 }
556
557 out:
558 return ret;
559
560 free_pages_out:
561 for (i = 0; i < nr_pages_ret; i++) {
562 WARN_ON(pages[i]->mapping);
563 page_cache_release(pages[i]);
564 }
565 kfree(pages);
566
567 goto out;
568
569 cleanup_and_out:
570 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
571 start, end, NULL,
572 EXTENT_CLEAR_UNLOCK_PAGE |
573 EXTENT_CLEAR_DIRTY |
574 EXTENT_CLEAR_DELALLOC |
575 EXTENT_SET_WRITEBACK |
576 EXTENT_END_WRITEBACK);
577 if (!trans || IS_ERR(trans))
578 btrfs_error(root->fs_info, ret, "Failed to join transaction");
579 else
580 btrfs_abort_transaction(trans, root, ret);
581 goto free_pages_out;
582 }
583
584 /*
585 * phase two of compressed writeback. This is the ordered portion
586 * of the code, which only gets called in the order the work was
587 * queued. We walk all the async extents created by compress_file_range
588 * and send them down to the disk.
589 */
590 static noinline int submit_compressed_extents(struct inode *inode,
591 struct async_cow *async_cow)
592 {
593 struct async_extent *async_extent;
594 u64 alloc_hint = 0;
595 struct btrfs_trans_handle *trans;
596 struct btrfs_key ins;
597 struct extent_map *em;
598 struct btrfs_root *root = BTRFS_I(inode)->root;
599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
600 struct extent_io_tree *io_tree;
601 int ret = 0;
602
603 if (list_empty(&async_cow->extents))
604 return 0;
605
606
607 while (!list_empty(&async_cow->extents)) {
608 async_extent = list_entry(async_cow->extents.next,
609 struct async_extent, list);
610 list_del(&async_extent->list);
611
612 io_tree = &BTRFS_I(inode)->io_tree;
613
614 retry:
615 /* did the compression code fall back to uncompressed IO? */
616 if (!async_extent->pages) {
617 int page_started = 0;
618 unsigned long nr_written = 0;
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start +
622 async_extent->ram_size - 1);
623
624 /* allocate blocks */
625 ret = cow_file_range(inode, async_cow->locked_page,
626 async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1,
629 &page_started, &nr_written, 0);
630
631 /* JDM XXX */
632
633 /*
634 * if page_started, cow_file_range inserted an
635 * inline extent and took care of all the unlocking
636 * and IO for us. Otherwise, we need to submit
637 * all those pages down to the drive.
638 */
639 if (!page_started && !ret)
640 extent_write_locked_range(io_tree,
641 inode, async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
644 btrfs_get_extent,
645 WB_SYNC_ALL);
646 kfree(async_extent);
647 cond_resched();
648 continue;
649 }
650
651 lock_extent(io_tree, async_extent->start,
652 async_extent->start + async_extent->ram_size - 1);
653
654 trans = btrfs_join_transaction(root);
655 if (IS_ERR(trans)) {
656 ret = PTR_ERR(trans);
657 } else {
658 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
659 ret = btrfs_reserve_extent(trans, root,
660 async_extent->compressed_size,
661 async_extent->compressed_size,
662 0, alloc_hint, &ins, 1);
663 if (ret)
664 btrfs_abort_transaction(trans, root, ret);
665 btrfs_end_transaction(trans, root);
666 }
667
668 if (ret) {
669 int i;
670 for (i = 0; i < async_extent->nr_pages; i++) {
671 WARN_ON(async_extent->pages[i]->mapping);
672 page_cache_release(async_extent->pages[i]);
673 }
674 kfree(async_extent->pages);
675 async_extent->nr_pages = 0;
676 async_extent->pages = NULL;
677 unlock_extent(io_tree, async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1);
680 if (ret == -ENOSPC)
681 goto retry;
682 goto out_free; /* JDM: Requeue? */
683 }
684
685 /*
686 * here we're doing allocation and writeback of the
687 * compressed pages
688 */
689 btrfs_drop_extent_cache(inode, async_extent->start,
690 async_extent->start +
691 async_extent->ram_size - 1, 0);
692
693 em = alloc_extent_map();
694 BUG_ON(!em); /* -ENOMEM */
695 em->start = async_extent->start;
696 em->len = async_extent->ram_size;
697 em->orig_start = em->start;
698
699 em->block_start = ins.objectid;
700 em->block_len = ins.offset;
701 em->bdev = root->fs_info->fs_devices->latest_bdev;
702 em->compress_type = async_extent->compress_type;
703 set_bit(EXTENT_FLAG_PINNED, &em->flags);
704 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
705
706 while (1) {
707 write_lock(&em_tree->lock);
708 ret = add_extent_mapping(em_tree, em);
709 write_unlock(&em_tree->lock);
710 if (ret != -EEXIST) {
711 free_extent_map(em);
712 break;
713 }
714 btrfs_drop_extent_cache(inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1, 0);
717 }
718
719 ret = btrfs_add_ordered_extent_compress(inode,
720 async_extent->start,
721 ins.objectid,
722 async_extent->ram_size,
723 ins.offset,
724 BTRFS_ORDERED_COMPRESSED,
725 async_extent->compress_type);
726 BUG_ON(ret); /* -ENOMEM */
727
728 /*
729 * clear dirty, set writeback and unlock the pages.
730 */
731 extent_clear_unlock_delalloc(inode,
732 &BTRFS_I(inode)->io_tree,
733 async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1,
736 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
737 EXTENT_CLEAR_UNLOCK |
738 EXTENT_CLEAR_DELALLOC |
739 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
740
741 ret = btrfs_submit_compressed_write(inode,
742 async_extent->start,
743 async_extent->ram_size,
744 ins.objectid,
745 ins.offset, async_extent->pages,
746 async_extent->nr_pages);
747
748 BUG_ON(ret); /* -ENOMEM */
749 alloc_hint = ins.objectid + ins.offset;
750 kfree(async_extent);
751 cond_resched();
752 }
753 ret = 0;
754 out:
755 return ret;
756 out_free:
757 kfree(async_extent);
758 goto out;
759 }
760
761 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
762 u64 num_bytes)
763 {
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 struct extent_map *em;
766 u64 alloc_hint = 0;
767
768 read_lock(&em_tree->lock);
769 em = search_extent_mapping(em_tree, start, num_bytes);
770 if (em) {
771 /*
772 * if block start isn't an actual block number then find the
773 * first block in this inode and use that as a hint. If that
774 * block is also bogus then just don't worry about it.
775 */
776 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
777 free_extent_map(em);
778 em = search_extent_mapping(em_tree, 0, 0);
779 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
780 alloc_hint = em->block_start;
781 if (em)
782 free_extent_map(em);
783 } else {
784 alloc_hint = em->block_start;
785 free_extent_map(em);
786 }
787 }
788 read_unlock(&em_tree->lock);
789
790 return alloc_hint;
791 }
792
793 /*
794 * when extent_io.c finds a delayed allocation range in the file,
795 * the call backs end up in this code. The basic idea is to
796 * allocate extents on disk for the range, and create ordered data structs
797 * in ram to track those extents.
798 *
799 * locked_page is the page that writepage had locked already. We use
800 * it to make sure we don't do extra locks or unlocks.
801 *
802 * *page_started is set to one if we unlock locked_page and do everything
803 * required to start IO on it. It may be clean and already done with
804 * IO when we return.
805 */
806 static noinline int cow_file_range(struct inode *inode,
807 struct page *locked_page,
808 u64 start, u64 end, int *page_started,
809 unsigned long *nr_written,
810 int unlock)
811 {
812 struct btrfs_root *root = BTRFS_I(inode)->root;
813 struct btrfs_trans_handle *trans;
814 u64 alloc_hint = 0;
815 u64 num_bytes;
816 unsigned long ram_size;
817 u64 disk_num_bytes;
818 u64 cur_alloc_size;
819 u64 blocksize = root->sectorsize;
820 struct btrfs_key ins;
821 struct extent_map *em;
822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
823 int ret = 0;
824
825 BUG_ON(btrfs_is_free_space_inode(root, inode));
826 trans = btrfs_join_transaction(root);
827 if (IS_ERR(trans)) {
828 extent_clear_unlock_delalloc(inode,
829 &BTRFS_I(inode)->io_tree,
830 start, end, NULL,
831 EXTENT_CLEAR_UNLOCK_PAGE |
832 EXTENT_CLEAR_UNLOCK |
833 EXTENT_CLEAR_DELALLOC |
834 EXTENT_CLEAR_DIRTY |
835 EXTENT_SET_WRITEBACK |
836 EXTENT_END_WRITEBACK);
837 return PTR_ERR(trans);
838 }
839 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
840
841 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
842 num_bytes = max(blocksize, num_bytes);
843 disk_num_bytes = num_bytes;
844 ret = 0;
845
846 /* if this is a small write inside eof, kick off defrag */
847 if (num_bytes < 64 * 1024 &&
848 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
849 btrfs_add_inode_defrag(trans, inode);
850
851 if (start == 0) {
852 /* lets try to make an inline extent */
853 ret = cow_file_range_inline(trans, root, inode,
854 start, end, 0, 0, NULL);
855 if (ret == 0) {
856 extent_clear_unlock_delalloc(inode,
857 &BTRFS_I(inode)->io_tree,
858 start, end, NULL,
859 EXTENT_CLEAR_UNLOCK_PAGE |
860 EXTENT_CLEAR_UNLOCK |
861 EXTENT_CLEAR_DELALLOC |
862 EXTENT_CLEAR_DIRTY |
863 EXTENT_SET_WRITEBACK |
864 EXTENT_END_WRITEBACK);
865
866 *nr_written = *nr_written +
867 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
868 *page_started = 1;
869 goto out;
870 } else if (ret < 0) {
871 btrfs_abort_transaction(trans, root, ret);
872 goto out_unlock;
873 }
874 }
875
876 BUG_ON(disk_num_bytes >
877 btrfs_super_total_bytes(root->fs_info->super_copy));
878
879 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
880 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
881
882 while (disk_num_bytes > 0) {
883 unsigned long op;
884
885 cur_alloc_size = disk_num_bytes;
886 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
887 root->sectorsize, 0, alloc_hint,
888 &ins, 1);
889 if (ret < 0) {
890 btrfs_abort_transaction(trans, root, ret);
891 goto out_unlock;
892 }
893
894 em = alloc_extent_map();
895 BUG_ON(!em); /* -ENOMEM */
896 em->start = start;
897 em->orig_start = em->start;
898 ram_size = ins.offset;
899 em->len = ins.offset;
900
901 em->block_start = ins.objectid;
902 em->block_len = ins.offset;
903 em->bdev = root->fs_info->fs_devices->latest_bdev;
904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
905
906 while (1) {
907 write_lock(&em_tree->lock);
908 ret = add_extent_mapping(em_tree, em);
909 write_unlock(&em_tree->lock);
910 if (ret != -EEXIST) {
911 free_extent_map(em);
912 break;
913 }
914 btrfs_drop_extent_cache(inode, start,
915 start + ram_size - 1, 0);
916 }
917
918 cur_alloc_size = ins.offset;
919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
920 ram_size, cur_alloc_size, 0);
921 BUG_ON(ret); /* -ENOMEM */
922
923 if (root->root_key.objectid ==
924 BTRFS_DATA_RELOC_TREE_OBJECTID) {
925 ret = btrfs_reloc_clone_csums(inode, start,
926 cur_alloc_size);
927 if (ret) {
928 btrfs_abort_transaction(trans, root, ret);
929 goto out_unlock;
930 }
931 }
932
933 if (disk_num_bytes < cur_alloc_size)
934 break;
935
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
939 *
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
942 */
943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
945 EXTENT_SET_PRIVATE2;
946
947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
948 start, start + ram_size - 1,
949 locked_page, op);
950 disk_num_bytes -= cur_alloc_size;
951 num_bytes -= cur_alloc_size;
952 alloc_hint = ins.objectid + ins.offset;
953 start += cur_alloc_size;
954 }
955 ret = 0;
956 out:
957 btrfs_end_transaction(trans, root);
958
959 return ret;
960 out_unlock:
961 extent_clear_unlock_delalloc(inode,
962 &BTRFS_I(inode)->io_tree,
963 start, end, NULL,
964 EXTENT_CLEAR_UNLOCK_PAGE |
965 EXTENT_CLEAR_UNLOCK |
966 EXTENT_CLEAR_DELALLOC |
967 EXTENT_CLEAR_DIRTY |
968 EXTENT_SET_WRITEBACK |
969 EXTENT_END_WRITEBACK);
970
971 goto out;
972 }
973
974 /*
975 * work queue call back to started compression on a file and pages
976 */
977 static noinline void async_cow_start(struct btrfs_work *work)
978 {
979 struct async_cow *async_cow;
980 int num_added = 0;
981 async_cow = container_of(work, struct async_cow, work);
982
983 compress_file_range(async_cow->inode, async_cow->locked_page,
984 async_cow->start, async_cow->end, async_cow,
985 &num_added);
986 if (num_added == 0)
987 async_cow->inode = NULL;
988 }
989
990 /*
991 * work queue call back to submit previously compressed pages
992 */
993 static noinline void async_cow_submit(struct btrfs_work *work)
994 {
995 struct async_cow *async_cow;
996 struct btrfs_root *root;
997 unsigned long nr_pages;
998
999 async_cow = container_of(work, struct async_cow, work);
1000
1001 root = async_cow->root;
1002 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1003 PAGE_CACHE_SHIFT;
1004
1005 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1006
1007 if (atomic_read(&root->fs_info->async_delalloc_pages) <
1008 5 * 1042 * 1024 &&
1009 waitqueue_active(&root->fs_info->async_submit_wait))
1010 wake_up(&root->fs_info->async_submit_wait);
1011
1012 if (async_cow->inode)
1013 submit_compressed_extents(async_cow->inode, async_cow);
1014 }
1015
1016 static noinline void async_cow_free(struct btrfs_work *work)
1017 {
1018 struct async_cow *async_cow;
1019 async_cow = container_of(work, struct async_cow, work);
1020 kfree(async_cow);
1021 }
1022
1023 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1024 u64 start, u64 end, int *page_started,
1025 unsigned long *nr_written)
1026 {
1027 struct async_cow *async_cow;
1028 struct btrfs_root *root = BTRFS_I(inode)->root;
1029 unsigned long nr_pages;
1030 u64 cur_end;
1031 int limit = 10 * 1024 * 1042;
1032
1033 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1034 1, 0, NULL, GFP_NOFS);
1035 while (start < end) {
1036 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1037 BUG_ON(!async_cow); /* -ENOMEM */
1038 async_cow->inode = inode;
1039 async_cow->root = root;
1040 async_cow->locked_page = locked_page;
1041 async_cow->start = start;
1042
1043 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1044 cur_end = end;
1045 else
1046 cur_end = min(end, start + 512 * 1024 - 1);
1047
1048 async_cow->end = cur_end;
1049 INIT_LIST_HEAD(&async_cow->extents);
1050
1051 async_cow->work.func = async_cow_start;
1052 async_cow->work.ordered_func = async_cow_submit;
1053 async_cow->work.ordered_free = async_cow_free;
1054 async_cow->work.flags = 0;
1055
1056 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1057 PAGE_CACHE_SHIFT;
1058 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1059
1060 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1061 &async_cow->work);
1062
1063 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1064 wait_event(root->fs_info->async_submit_wait,
1065 (atomic_read(&root->fs_info->async_delalloc_pages) <
1066 limit));
1067 }
1068
1069 while (atomic_read(&root->fs_info->async_submit_draining) &&
1070 atomic_read(&root->fs_info->async_delalloc_pages)) {
1071 wait_event(root->fs_info->async_submit_wait,
1072 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1073 0));
1074 }
1075
1076 *nr_written += nr_pages;
1077 start = cur_end + 1;
1078 }
1079 *page_started = 1;
1080 return 0;
1081 }
1082
1083 static noinline int csum_exist_in_range(struct btrfs_root *root,
1084 u64 bytenr, u64 num_bytes)
1085 {
1086 int ret;
1087 struct btrfs_ordered_sum *sums;
1088 LIST_HEAD(list);
1089
1090 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1091 bytenr + num_bytes - 1, &list, 0);
1092 if (ret == 0 && list_empty(&list))
1093 return 0;
1094
1095 while (!list_empty(&list)) {
1096 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1097 list_del(&sums->list);
1098 kfree(sums);
1099 }
1100 return 1;
1101 }
1102
1103 /*
1104 * when nowcow writeback call back. This checks for snapshots or COW copies
1105 * of the extents that exist in the file, and COWs the file as required.
1106 *
1107 * If no cow copies or snapshots exist, we write directly to the existing
1108 * blocks on disk
1109 */
1110 static noinline int run_delalloc_nocow(struct inode *inode,
1111 struct page *locked_page,
1112 u64 start, u64 end, int *page_started, int force,
1113 unsigned long *nr_written)
1114 {
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 struct btrfs_trans_handle *trans;
1117 struct extent_buffer *leaf;
1118 struct btrfs_path *path;
1119 struct btrfs_file_extent_item *fi;
1120 struct btrfs_key found_key;
1121 u64 cow_start;
1122 u64 cur_offset;
1123 u64 extent_end;
1124 u64 extent_offset;
1125 u64 disk_bytenr;
1126 u64 num_bytes;
1127 int extent_type;
1128 int ret, err;
1129 int type;
1130 int nocow;
1131 int check_prev = 1;
1132 bool nolock;
1133 u64 ino = btrfs_ino(inode);
1134
1135 path = btrfs_alloc_path();
1136 if (!path)
1137 return -ENOMEM;
1138
1139 nolock = btrfs_is_free_space_inode(root, inode);
1140
1141 if (nolock)
1142 trans = btrfs_join_transaction_nolock(root);
1143 else
1144 trans = btrfs_join_transaction(root);
1145
1146 if (IS_ERR(trans)) {
1147 btrfs_free_path(path);
1148 return PTR_ERR(trans);
1149 }
1150
1151 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1152
1153 cow_start = (u64)-1;
1154 cur_offset = start;
1155 while (1) {
1156 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1157 cur_offset, 0);
1158 if (ret < 0) {
1159 btrfs_abort_transaction(trans, root, ret);
1160 goto error;
1161 }
1162 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1163 leaf = path->nodes[0];
1164 btrfs_item_key_to_cpu(leaf, &found_key,
1165 path->slots[0] - 1);
1166 if (found_key.objectid == ino &&
1167 found_key.type == BTRFS_EXTENT_DATA_KEY)
1168 path->slots[0]--;
1169 }
1170 check_prev = 0;
1171 next_slot:
1172 leaf = path->nodes[0];
1173 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1174 ret = btrfs_next_leaf(root, path);
1175 if (ret < 0) {
1176 btrfs_abort_transaction(trans, root, ret);
1177 goto error;
1178 }
1179 if (ret > 0)
1180 break;
1181 leaf = path->nodes[0];
1182 }
1183
1184 nocow = 0;
1185 disk_bytenr = 0;
1186 num_bytes = 0;
1187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1188
1189 if (found_key.objectid > ino ||
1190 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1191 found_key.offset > end)
1192 break;
1193
1194 if (found_key.offset > cur_offset) {
1195 extent_end = found_key.offset;
1196 extent_type = 0;
1197 goto out_check;
1198 }
1199
1200 fi = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_file_extent_item);
1202 extent_type = btrfs_file_extent_type(leaf, fi);
1203
1204 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1205 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1206 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 extent_offset = btrfs_file_extent_offset(leaf, fi);
1208 extent_end = found_key.offset +
1209 btrfs_file_extent_num_bytes(leaf, fi);
1210 if (extent_end <= start) {
1211 path->slots[0]++;
1212 goto next_slot;
1213 }
1214 if (disk_bytenr == 0)
1215 goto out_check;
1216 if (btrfs_file_extent_compression(leaf, fi) ||
1217 btrfs_file_extent_encryption(leaf, fi) ||
1218 btrfs_file_extent_other_encoding(leaf, fi))
1219 goto out_check;
1220 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1221 goto out_check;
1222 if (btrfs_extent_readonly(root, disk_bytenr))
1223 goto out_check;
1224 if (btrfs_cross_ref_exist(trans, root, ino,
1225 found_key.offset -
1226 extent_offset, disk_bytenr))
1227 goto out_check;
1228 disk_bytenr += extent_offset;
1229 disk_bytenr += cur_offset - found_key.offset;
1230 num_bytes = min(end + 1, extent_end) - cur_offset;
1231 /*
1232 * force cow if csum exists in the range.
1233 * this ensure that csum for a given extent are
1234 * either valid or do not exist.
1235 */
1236 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1237 goto out_check;
1238 nocow = 1;
1239 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1240 extent_end = found_key.offset +
1241 btrfs_file_extent_inline_len(leaf, fi);
1242 extent_end = ALIGN(extent_end, root->sectorsize);
1243 } else {
1244 BUG_ON(1);
1245 }
1246 out_check:
1247 if (extent_end <= start) {
1248 path->slots[0]++;
1249 goto next_slot;
1250 }
1251 if (!nocow) {
1252 if (cow_start == (u64)-1)
1253 cow_start = cur_offset;
1254 cur_offset = extent_end;
1255 if (cur_offset > end)
1256 break;
1257 path->slots[0]++;
1258 goto next_slot;
1259 }
1260
1261 btrfs_release_path(path);
1262 if (cow_start != (u64)-1) {
1263 ret = cow_file_range(inode, locked_page, cow_start,
1264 found_key.offset - 1, page_started,
1265 nr_written, 1);
1266 if (ret) {
1267 btrfs_abort_transaction(trans, root, ret);
1268 goto error;
1269 }
1270 cow_start = (u64)-1;
1271 }
1272
1273 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1274 struct extent_map *em;
1275 struct extent_map_tree *em_tree;
1276 em_tree = &BTRFS_I(inode)->extent_tree;
1277 em = alloc_extent_map();
1278 BUG_ON(!em); /* -ENOMEM */
1279 em->start = cur_offset;
1280 em->orig_start = em->start;
1281 em->len = num_bytes;
1282 em->block_len = num_bytes;
1283 em->block_start = disk_bytenr;
1284 em->bdev = root->fs_info->fs_devices->latest_bdev;
1285 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1286 while (1) {
1287 write_lock(&em_tree->lock);
1288 ret = add_extent_mapping(em_tree, em);
1289 write_unlock(&em_tree->lock);
1290 if (ret != -EEXIST) {
1291 free_extent_map(em);
1292 break;
1293 }
1294 btrfs_drop_extent_cache(inode, em->start,
1295 em->start + em->len - 1, 0);
1296 }
1297 type = BTRFS_ORDERED_PREALLOC;
1298 } else {
1299 type = BTRFS_ORDERED_NOCOW;
1300 }
1301
1302 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1303 num_bytes, num_bytes, type);
1304 BUG_ON(ret); /* -ENOMEM */
1305
1306 if (root->root_key.objectid ==
1307 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1308 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1309 num_bytes);
1310 if (ret) {
1311 btrfs_abort_transaction(trans, root, ret);
1312 goto error;
1313 }
1314 }
1315
1316 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1317 cur_offset, cur_offset + num_bytes - 1,
1318 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1319 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1320 EXTENT_SET_PRIVATE2);
1321 cur_offset = extent_end;
1322 if (cur_offset > end)
1323 break;
1324 }
1325 btrfs_release_path(path);
1326
1327 if (cur_offset <= end && cow_start == (u64)-1)
1328 cow_start = cur_offset;
1329 if (cow_start != (u64)-1) {
1330 ret = cow_file_range(inode, locked_page, cow_start, end,
1331 page_started, nr_written, 1);
1332 if (ret) {
1333 btrfs_abort_transaction(trans, root, ret);
1334 goto error;
1335 }
1336 }
1337
1338 error:
1339 if (nolock) {
1340 err = btrfs_end_transaction_nolock(trans, root);
1341 } else {
1342 err = btrfs_end_transaction(trans, root);
1343 }
1344 if (!ret)
1345 ret = err;
1346
1347 btrfs_free_path(path);
1348 return ret;
1349 }
1350
1351 /*
1352 * extent_io.c call back to do delayed allocation processing
1353 */
1354 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1355 u64 start, u64 end, int *page_started,
1356 unsigned long *nr_written)
1357 {
1358 int ret;
1359 struct btrfs_root *root = BTRFS_I(inode)->root;
1360
1361 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1362 ret = run_delalloc_nocow(inode, locked_page, start, end,
1363 page_started, 1, nr_written);
1364 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1365 ret = run_delalloc_nocow(inode, locked_page, start, end,
1366 page_started, 0, nr_written);
1367 else if (!btrfs_test_opt(root, COMPRESS) &&
1368 !(BTRFS_I(inode)->force_compress) &&
1369 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1370 ret = cow_file_range(inode, locked_page, start, end,
1371 page_started, nr_written, 1);
1372 else
1373 ret = cow_file_range_async(inode, locked_page, start, end,
1374 page_started, nr_written);
1375 return ret;
1376 }
1377
1378 static void btrfs_split_extent_hook(struct inode *inode,
1379 struct extent_state *orig, u64 split)
1380 {
1381 /* not delalloc, ignore it */
1382 if (!(orig->state & EXTENT_DELALLOC))
1383 return;
1384
1385 spin_lock(&BTRFS_I(inode)->lock);
1386 BTRFS_I(inode)->outstanding_extents++;
1387 spin_unlock(&BTRFS_I(inode)->lock);
1388 }
1389
1390 /*
1391 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1392 * extents so we can keep track of new extents that are just merged onto old
1393 * extents, such as when we are doing sequential writes, so we can properly
1394 * account for the metadata space we'll need.
1395 */
1396 static void btrfs_merge_extent_hook(struct inode *inode,
1397 struct extent_state *new,
1398 struct extent_state *other)
1399 {
1400 /* not delalloc, ignore it */
1401 if (!(other->state & EXTENT_DELALLOC))
1402 return;
1403
1404 spin_lock(&BTRFS_I(inode)->lock);
1405 BTRFS_I(inode)->outstanding_extents--;
1406 spin_unlock(&BTRFS_I(inode)->lock);
1407 }
1408
1409 /*
1410 * extent_io.c set_bit_hook, used to track delayed allocation
1411 * bytes in this file, and to maintain the list of inodes that
1412 * have pending delalloc work to be done.
1413 */
1414 static void btrfs_set_bit_hook(struct inode *inode,
1415 struct extent_state *state, int *bits)
1416 {
1417
1418 /*
1419 * set_bit and clear bit hooks normally require _irqsave/restore
1420 * but in this case, we are only testing for the DELALLOC
1421 * bit, which is only set or cleared with irqs on
1422 */
1423 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1424 struct btrfs_root *root = BTRFS_I(inode)->root;
1425 u64 len = state->end + 1 - state->start;
1426 bool do_list = !btrfs_is_free_space_inode(root, inode);
1427
1428 if (*bits & EXTENT_FIRST_DELALLOC) {
1429 *bits &= ~EXTENT_FIRST_DELALLOC;
1430 } else {
1431 spin_lock(&BTRFS_I(inode)->lock);
1432 BTRFS_I(inode)->outstanding_extents++;
1433 spin_unlock(&BTRFS_I(inode)->lock);
1434 }
1435
1436 spin_lock(&root->fs_info->delalloc_lock);
1437 BTRFS_I(inode)->delalloc_bytes += len;
1438 root->fs_info->delalloc_bytes += len;
1439 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1440 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1441 &root->fs_info->delalloc_inodes);
1442 }
1443 spin_unlock(&root->fs_info->delalloc_lock);
1444 }
1445 }
1446
1447 /*
1448 * extent_io.c clear_bit_hook, see set_bit_hook for why
1449 */
1450 static void btrfs_clear_bit_hook(struct inode *inode,
1451 struct extent_state *state, int *bits)
1452 {
1453 /*
1454 * set_bit and clear bit hooks normally require _irqsave/restore
1455 * but in this case, we are only testing for the DELALLOC
1456 * bit, which is only set or cleared with irqs on
1457 */
1458 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1459 struct btrfs_root *root = BTRFS_I(inode)->root;
1460 u64 len = state->end + 1 - state->start;
1461 bool do_list = !btrfs_is_free_space_inode(root, inode);
1462
1463 if (*bits & EXTENT_FIRST_DELALLOC) {
1464 *bits &= ~EXTENT_FIRST_DELALLOC;
1465 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1466 spin_lock(&BTRFS_I(inode)->lock);
1467 BTRFS_I(inode)->outstanding_extents--;
1468 spin_unlock(&BTRFS_I(inode)->lock);
1469 }
1470
1471 if (*bits & EXTENT_DO_ACCOUNTING)
1472 btrfs_delalloc_release_metadata(inode, len);
1473
1474 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1475 && do_list)
1476 btrfs_free_reserved_data_space(inode, len);
1477
1478 spin_lock(&root->fs_info->delalloc_lock);
1479 root->fs_info->delalloc_bytes -= len;
1480 BTRFS_I(inode)->delalloc_bytes -= len;
1481
1482 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1483 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1484 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1485 }
1486 spin_unlock(&root->fs_info->delalloc_lock);
1487 }
1488 }
1489
1490 /*
1491 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1492 * we don't create bios that span stripes or chunks
1493 */
1494 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1495 size_t size, struct bio *bio,
1496 unsigned long bio_flags)
1497 {
1498 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1499 struct btrfs_mapping_tree *map_tree;
1500 u64 logical = (u64)bio->bi_sector << 9;
1501 u64 length = 0;
1502 u64 map_length;
1503 int ret;
1504
1505 if (bio_flags & EXTENT_BIO_COMPRESSED)
1506 return 0;
1507
1508 length = bio->bi_size;
1509 map_tree = &root->fs_info->mapping_tree;
1510 map_length = length;
1511 ret = btrfs_map_block(map_tree, READ, logical,
1512 &map_length, NULL, 0);
1513 /* Will always return 0 or 1 with map_multi == NULL */
1514 BUG_ON(ret < 0);
1515 if (map_length < length + size)
1516 return 1;
1517 return 0;
1518 }
1519
1520 /*
1521 * in order to insert checksums into the metadata in large chunks,
1522 * we wait until bio submission time. All the pages in the bio are
1523 * checksummed and sums are attached onto the ordered extent record.
1524 *
1525 * At IO completion time the cums attached on the ordered extent record
1526 * are inserted into the btree
1527 */
1528 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1529 struct bio *bio, int mirror_num,
1530 unsigned long bio_flags,
1531 u64 bio_offset)
1532 {
1533 struct btrfs_root *root = BTRFS_I(inode)->root;
1534 int ret = 0;
1535
1536 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1537 BUG_ON(ret); /* -ENOMEM */
1538 return 0;
1539 }
1540
1541 /*
1542 * in order to insert checksums into the metadata in large chunks,
1543 * we wait until bio submission time. All the pages in the bio are
1544 * checksummed and sums are attached onto the ordered extent record.
1545 *
1546 * At IO completion time the cums attached on the ordered extent record
1547 * are inserted into the btree
1548 */
1549 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1550 int mirror_num, unsigned long bio_flags,
1551 u64 bio_offset)
1552 {
1553 struct btrfs_root *root = BTRFS_I(inode)->root;
1554 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1555 }
1556
1557 /*
1558 * extent_io.c submission hook. This does the right thing for csum calculation
1559 * on write, or reading the csums from the tree before a read
1560 */
1561 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1562 int mirror_num, unsigned long bio_flags,
1563 u64 bio_offset)
1564 {
1565 struct btrfs_root *root = BTRFS_I(inode)->root;
1566 int ret = 0;
1567 int skip_sum;
1568 int metadata = 0;
1569
1570 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1571
1572 if (btrfs_is_free_space_inode(root, inode))
1573 metadata = 2;
1574
1575 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1576 if (ret)
1577 return ret;
1578
1579 if (!(rw & REQ_WRITE)) {
1580 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1581 return btrfs_submit_compressed_read(inode, bio,
1582 mirror_num, bio_flags);
1583 } else if (!skip_sum) {
1584 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1585 if (ret)
1586 return ret;
1587 }
1588 goto mapit;
1589 } else if (!skip_sum) {
1590 /* csum items have already been cloned */
1591 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1592 goto mapit;
1593 /* we're doing a write, do the async checksumming */
1594 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1595 inode, rw, bio, mirror_num,
1596 bio_flags, bio_offset,
1597 __btrfs_submit_bio_start,
1598 __btrfs_submit_bio_done);
1599 }
1600
1601 mapit:
1602 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1603 }
1604
1605 /*
1606 * given a list of ordered sums record them in the inode. This happens
1607 * at IO completion time based on sums calculated at bio submission time.
1608 */
1609 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1610 struct inode *inode, u64 file_offset,
1611 struct list_head *list)
1612 {
1613 struct btrfs_ordered_sum *sum;
1614
1615 list_for_each_entry(sum, list, list) {
1616 btrfs_csum_file_blocks(trans,
1617 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1618 }
1619 return 0;
1620 }
1621
1622 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1623 struct extent_state **cached_state)
1624 {
1625 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1626 WARN_ON(1);
1627 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1628 cached_state, GFP_NOFS);
1629 }
1630
1631 /* see btrfs_writepage_start_hook for details on why this is required */
1632 struct btrfs_writepage_fixup {
1633 struct page *page;
1634 struct btrfs_work work;
1635 };
1636
1637 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1638 {
1639 struct btrfs_writepage_fixup *fixup;
1640 struct btrfs_ordered_extent *ordered;
1641 struct extent_state *cached_state = NULL;
1642 struct page *page;
1643 struct inode *inode;
1644 u64 page_start;
1645 u64 page_end;
1646 int ret;
1647
1648 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1649 page = fixup->page;
1650 again:
1651 lock_page(page);
1652 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1653 ClearPageChecked(page);
1654 goto out_page;
1655 }
1656
1657 inode = page->mapping->host;
1658 page_start = page_offset(page);
1659 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1660
1661 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1662 &cached_state);
1663
1664 /* already ordered? We're done */
1665 if (PagePrivate2(page))
1666 goto out;
1667
1668 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1669 if (ordered) {
1670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1671 page_end, &cached_state, GFP_NOFS);
1672 unlock_page(page);
1673 btrfs_start_ordered_extent(inode, ordered, 1);
1674 btrfs_put_ordered_extent(ordered);
1675 goto again;
1676 }
1677
1678 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1679 if (ret) {
1680 mapping_set_error(page->mapping, ret);
1681 end_extent_writepage(page, ret, page_start, page_end);
1682 ClearPageChecked(page);
1683 goto out;
1684 }
1685
1686 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1687 ClearPageChecked(page);
1688 set_page_dirty(page);
1689 out:
1690 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1691 &cached_state, GFP_NOFS);
1692 out_page:
1693 unlock_page(page);
1694 page_cache_release(page);
1695 kfree(fixup);
1696 }
1697
1698 /*
1699 * There are a few paths in the higher layers of the kernel that directly
1700 * set the page dirty bit without asking the filesystem if it is a
1701 * good idea. This causes problems because we want to make sure COW
1702 * properly happens and the data=ordered rules are followed.
1703 *
1704 * In our case any range that doesn't have the ORDERED bit set
1705 * hasn't been properly setup for IO. We kick off an async process
1706 * to fix it up. The async helper will wait for ordered extents, set
1707 * the delalloc bit and make it safe to write the page.
1708 */
1709 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1710 {
1711 struct inode *inode = page->mapping->host;
1712 struct btrfs_writepage_fixup *fixup;
1713 struct btrfs_root *root = BTRFS_I(inode)->root;
1714
1715 /* this page is properly in the ordered list */
1716 if (TestClearPagePrivate2(page))
1717 return 0;
1718
1719 if (PageChecked(page))
1720 return -EAGAIN;
1721
1722 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1723 if (!fixup)
1724 return -EAGAIN;
1725
1726 SetPageChecked(page);
1727 page_cache_get(page);
1728 fixup->work.func = btrfs_writepage_fixup_worker;
1729 fixup->page = page;
1730 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1731 return -EBUSY;
1732 }
1733
1734 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1735 struct inode *inode, u64 file_pos,
1736 u64 disk_bytenr, u64 disk_num_bytes,
1737 u64 num_bytes, u64 ram_bytes,
1738 u8 compression, u8 encryption,
1739 u16 other_encoding, int extent_type)
1740 {
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
1742 struct btrfs_file_extent_item *fi;
1743 struct btrfs_path *path;
1744 struct extent_buffer *leaf;
1745 struct btrfs_key ins;
1746 u64 hint;
1747 int ret;
1748
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
1753 path->leave_spinning = 1;
1754
1755 /*
1756 * we may be replacing one extent in the tree with another.
1757 * The new extent is pinned in the extent map, and we don't want
1758 * to drop it from the cache until it is completely in the btree.
1759 *
1760 * So, tell btrfs_drop_extents to leave this extent in the cache.
1761 * the caller is expected to unpin it and allow it to be merged
1762 * with the others.
1763 */
1764 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1765 &hint, 0);
1766 if (ret)
1767 goto out;
1768
1769 ins.objectid = btrfs_ino(inode);
1770 ins.offset = file_pos;
1771 ins.type = BTRFS_EXTENT_DATA_KEY;
1772 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1773 if (ret)
1774 goto out;
1775 leaf = path->nodes[0];
1776 fi = btrfs_item_ptr(leaf, path->slots[0],
1777 struct btrfs_file_extent_item);
1778 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1779 btrfs_set_file_extent_type(leaf, fi, extent_type);
1780 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1781 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1782 btrfs_set_file_extent_offset(leaf, fi, 0);
1783 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1784 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1785 btrfs_set_file_extent_compression(leaf, fi, compression);
1786 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1787 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1788
1789 btrfs_unlock_up_safe(path, 1);
1790 btrfs_set_lock_blocking(leaf);
1791
1792 btrfs_mark_buffer_dirty(leaf);
1793
1794 inode_add_bytes(inode, num_bytes);
1795
1796 ins.objectid = disk_bytenr;
1797 ins.offset = disk_num_bytes;
1798 ins.type = BTRFS_EXTENT_ITEM_KEY;
1799 ret = btrfs_alloc_reserved_file_extent(trans, root,
1800 root->root_key.objectid,
1801 btrfs_ino(inode), file_pos, &ins);
1802 out:
1803 btrfs_free_path(path);
1804
1805 return ret;
1806 }
1807
1808 /*
1809 * helper function for btrfs_finish_ordered_io, this
1810 * just reads in some of the csum leaves to prime them into ram
1811 * before we start the transaction. It limits the amount of btree
1812 * reads required while inside the transaction.
1813 */
1814 /* as ordered data IO finishes, this gets called so we can finish
1815 * an ordered extent if the range of bytes in the file it covers are
1816 * fully written.
1817 */
1818 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1819 {
1820 struct btrfs_root *root = BTRFS_I(inode)->root;
1821 struct btrfs_trans_handle *trans = NULL;
1822 struct btrfs_ordered_extent *ordered_extent = NULL;
1823 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1824 struct extent_state *cached_state = NULL;
1825 int compress_type = 0;
1826 int ret;
1827 bool nolock;
1828
1829 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1830 end - start + 1);
1831 if (!ret)
1832 return 0;
1833 BUG_ON(!ordered_extent); /* Logic error */
1834
1835 nolock = btrfs_is_free_space_inode(root, inode);
1836
1837 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1838 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1839 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1840 if (!ret) {
1841 if (nolock)
1842 trans = btrfs_join_transaction_nolock(root);
1843 else
1844 trans = btrfs_join_transaction(root);
1845 if (IS_ERR(trans))
1846 return PTR_ERR(trans);
1847 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1848 ret = btrfs_update_inode_fallback(trans, root, inode);
1849 if (ret) /* -ENOMEM or corruption */
1850 btrfs_abort_transaction(trans, root, ret);
1851 }
1852 goto out;
1853 }
1854
1855 lock_extent_bits(io_tree, ordered_extent->file_offset,
1856 ordered_extent->file_offset + ordered_extent->len - 1,
1857 0, &cached_state);
1858
1859 if (nolock)
1860 trans = btrfs_join_transaction_nolock(root);
1861 else
1862 trans = btrfs_join_transaction(root);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1865 trans = NULL;
1866 goto out_unlock;
1867 }
1868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1869
1870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1871 compress_type = ordered_extent->compress_type;
1872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1873 BUG_ON(compress_type);
1874 ret = btrfs_mark_extent_written(trans, inode,
1875 ordered_extent->file_offset,
1876 ordered_extent->file_offset +
1877 ordered_extent->len);
1878 } else {
1879 BUG_ON(root == root->fs_info->tree_root);
1880 ret = insert_reserved_file_extent(trans, inode,
1881 ordered_extent->file_offset,
1882 ordered_extent->start,
1883 ordered_extent->disk_len,
1884 ordered_extent->len,
1885 ordered_extent->len,
1886 compress_type, 0, 0,
1887 BTRFS_FILE_EXTENT_REG);
1888 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1889 ordered_extent->file_offset,
1890 ordered_extent->len);
1891 }
1892 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1893 ordered_extent->file_offset +
1894 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1895 if (ret < 0) {
1896 btrfs_abort_transaction(trans, root, ret);
1897 goto out;
1898 }
1899
1900 add_pending_csums(trans, inode, ordered_extent->file_offset,
1901 &ordered_extent->list);
1902
1903 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1904 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1905 ret = btrfs_update_inode_fallback(trans, root, inode);
1906 if (ret) { /* -ENOMEM or corruption */
1907 btrfs_abort_transaction(trans, root, ret);
1908 goto out;
1909 }
1910 }
1911 ret = 0;
1912 out:
1913 if (root != root->fs_info->tree_root)
1914 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1915 if (trans) {
1916 if (nolock)
1917 btrfs_end_transaction_nolock(trans, root);
1918 else
1919 btrfs_end_transaction(trans, root);
1920 }
1921
1922 /* once for us */
1923 btrfs_put_ordered_extent(ordered_extent);
1924 /* once for the tree */
1925 btrfs_put_ordered_extent(ordered_extent);
1926
1927 return 0;
1928 out_unlock:
1929 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1930 ordered_extent->file_offset +
1931 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1932 goto out;
1933 }
1934
1935 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1936 struct extent_state *state, int uptodate)
1937 {
1938 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1939
1940 ClearPagePrivate2(page);
1941 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1942 }
1943
1944 /*
1945 * when reads are done, we need to check csums to verify the data is correct
1946 * if there's a match, we allow the bio to finish. If not, the code in
1947 * extent_io.c will try to find good copies for us.
1948 */
1949 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1950 struct extent_state *state, int mirror)
1951 {
1952 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1953 struct inode *inode = page->mapping->host;
1954 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1955 char *kaddr;
1956 u64 private = ~(u32)0;
1957 int ret;
1958 struct btrfs_root *root = BTRFS_I(inode)->root;
1959 u32 csum = ~(u32)0;
1960
1961 if (PageChecked(page)) {
1962 ClearPageChecked(page);
1963 goto good;
1964 }
1965
1966 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1967 goto good;
1968
1969 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1970 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1971 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1972 GFP_NOFS);
1973 return 0;
1974 }
1975
1976 if (state && state->start == start) {
1977 private = state->private;
1978 ret = 0;
1979 } else {
1980 ret = get_state_private(io_tree, start, &private);
1981 }
1982 kaddr = kmap_atomic(page);
1983 if (ret)
1984 goto zeroit;
1985
1986 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1987 btrfs_csum_final(csum, (char *)&csum);
1988 if (csum != private)
1989 goto zeroit;
1990
1991 kunmap_atomic(kaddr);
1992 good:
1993 return 0;
1994
1995 zeroit:
1996 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1997 "private %llu\n",
1998 (unsigned long long)btrfs_ino(page->mapping->host),
1999 (unsigned long long)start, csum,
2000 (unsigned long long)private);
2001 memset(kaddr + offset, 1, end - start + 1);
2002 flush_dcache_page(page);
2003 kunmap_atomic(kaddr);
2004 if (private == 0)
2005 return 0;
2006 return -EIO;
2007 }
2008
2009 struct delayed_iput {
2010 struct list_head list;
2011 struct inode *inode;
2012 };
2013
2014 /* JDM: If this is fs-wide, why can't we add a pointer to
2015 * btrfs_inode instead and avoid the allocation? */
2016 void btrfs_add_delayed_iput(struct inode *inode)
2017 {
2018 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2019 struct delayed_iput *delayed;
2020
2021 if (atomic_add_unless(&inode->i_count, -1, 1))
2022 return;
2023
2024 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2025 delayed->inode = inode;
2026
2027 spin_lock(&fs_info->delayed_iput_lock);
2028 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2029 spin_unlock(&fs_info->delayed_iput_lock);
2030 }
2031
2032 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2033 {
2034 LIST_HEAD(list);
2035 struct btrfs_fs_info *fs_info = root->fs_info;
2036 struct delayed_iput *delayed;
2037 int empty;
2038
2039 spin_lock(&fs_info->delayed_iput_lock);
2040 empty = list_empty(&fs_info->delayed_iputs);
2041 spin_unlock(&fs_info->delayed_iput_lock);
2042 if (empty)
2043 return;
2044
2045 down_read(&root->fs_info->cleanup_work_sem);
2046 spin_lock(&fs_info->delayed_iput_lock);
2047 list_splice_init(&fs_info->delayed_iputs, &list);
2048 spin_unlock(&fs_info->delayed_iput_lock);
2049
2050 while (!list_empty(&list)) {
2051 delayed = list_entry(list.next, struct delayed_iput, list);
2052 list_del(&delayed->list);
2053 iput(delayed->inode);
2054 kfree(delayed);
2055 }
2056 up_read(&root->fs_info->cleanup_work_sem);
2057 }
2058
2059 enum btrfs_orphan_cleanup_state {
2060 ORPHAN_CLEANUP_STARTED = 1,
2061 ORPHAN_CLEANUP_DONE = 2,
2062 };
2063
2064 /*
2065 * This is called in transaction commit time. If there are no orphan
2066 * files in the subvolume, it removes orphan item and frees block_rsv
2067 * structure.
2068 */
2069 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2070 struct btrfs_root *root)
2071 {
2072 struct btrfs_block_rsv *block_rsv;
2073 int ret;
2074
2075 if (!list_empty(&root->orphan_list) ||
2076 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2077 return;
2078
2079 spin_lock(&root->orphan_lock);
2080 if (!list_empty(&root->orphan_list)) {
2081 spin_unlock(&root->orphan_lock);
2082 return;
2083 }
2084
2085 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2086 spin_unlock(&root->orphan_lock);
2087 return;
2088 }
2089
2090 block_rsv = root->orphan_block_rsv;
2091 root->orphan_block_rsv = NULL;
2092 spin_unlock(&root->orphan_lock);
2093
2094 if (root->orphan_item_inserted &&
2095 btrfs_root_refs(&root->root_item) > 0) {
2096 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2097 root->root_key.objectid);
2098 BUG_ON(ret);
2099 root->orphan_item_inserted = 0;
2100 }
2101
2102 if (block_rsv) {
2103 WARN_ON(block_rsv->size > 0);
2104 btrfs_free_block_rsv(root, block_rsv);
2105 }
2106 }
2107
2108 /*
2109 * This creates an orphan entry for the given inode in case something goes
2110 * wrong in the middle of an unlink/truncate.
2111 *
2112 * NOTE: caller of this function should reserve 5 units of metadata for
2113 * this function.
2114 */
2115 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2116 {
2117 struct btrfs_root *root = BTRFS_I(inode)->root;
2118 struct btrfs_block_rsv *block_rsv = NULL;
2119 int reserve = 0;
2120 int insert = 0;
2121 int ret;
2122
2123 if (!root->orphan_block_rsv) {
2124 block_rsv = btrfs_alloc_block_rsv(root);
2125 if (!block_rsv)
2126 return -ENOMEM;
2127 }
2128
2129 spin_lock(&root->orphan_lock);
2130 if (!root->orphan_block_rsv) {
2131 root->orphan_block_rsv = block_rsv;
2132 } else if (block_rsv) {
2133 btrfs_free_block_rsv(root, block_rsv);
2134 block_rsv = NULL;
2135 }
2136
2137 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2138 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2139 #if 0
2140 /*
2141 * For proper ENOSPC handling, we should do orphan
2142 * cleanup when mounting. But this introduces backward
2143 * compatibility issue.
2144 */
2145 if (!xchg(&root->orphan_item_inserted, 1))
2146 insert = 2;
2147 else
2148 insert = 1;
2149 #endif
2150 insert = 1;
2151 }
2152
2153 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2154 BTRFS_I(inode)->orphan_meta_reserved = 1;
2155 reserve = 1;
2156 }
2157 spin_unlock(&root->orphan_lock);
2158
2159 /* grab metadata reservation from transaction handle */
2160 if (reserve) {
2161 ret = btrfs_orphan_reserve_metadata(trans, inode);
2162 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2163 }
2164
2165 /* insert an orphan item to track this unlinked/truncated file */
2166 if (insert >= 1) {
2167 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2168 if (ret && ret != -EEXIST) {
2169 btrfs_abort_transaction(trans, root, ret);
2170 return ret;
2171 }
2172 ret = 0;
2173 }
2174
2175 /* insert an orphan item to track subvolume contains orphan files */
2176 if (insert >= 2) {
2177 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2178 root->root_key.objectid);
2179 if (ret && ret != -EEXIST) {
2180 btrfs_abort_transaction(trans, root, ret);
2181 return ret;
2182 }
2183 }
2184 return 0;
2185 }
2186
2187 /*
2188 * We have done the truncate/delete so we can go ahead and remove the orphan
2189 * item for this particular inode.
2190 */
2191 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2192 {
2193 struct btrfs_root *root = BTRFS_I(inode)->root;
2194 int delete_item = 0;
2195 int release_rsv = 0;
2196 int ret = 0;
2197
2198 spin_lock(&root->orphan_lock);
2199 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2200 list_del_init(&BTRFS_I(inode)->i_orphan);
2201 delete_item = 1;
2202 }
2203
2204 if (BTRFS_I(inode)->orphan_meta_reserved) {
2205 BTRFS_I(inode)->orphan_meta_reserved = 0;
2206 release_rsv = 1;
2207 }
2208 spin_unlock(&root->orphan_lock);
2209
2210 if (trans && delete_item) {
2211 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2212 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2213 }
2214
2215 if (release_rsv)
2216 btrfs_orphan_release_metadata(inode);
2217
2218 return 0;
2219 }
2220
2221 /*
2222 * this cleans up any orphans that may be left on the list from the last use
2223 * of this root.
2224 */
2225 int btrfs_orphan_cleanup(struct btrfs_root *root)
2226 {
2227 struct btrfs_path *path;
2228 struct extent_buffer *leaf;
2229 struct btrfs_key key, found_key;
2230 struct btrfs_trans_handle *trans;
2231 struct inode *inode;
2232 u64 last_objectid = 0;
2233 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2234
2235 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2236 return 0;
2237
2238 path = btrfs_alloc_path();
2239 if (!path) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
2243 path->reada = -1;
2244
2245 key.objectid = BTRFS_ORPHAN_OBJECTID;
2246 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2247 key.offset = (u64)-1;
2248
2249 while (1) {
2250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2251 if (ret < 0)
2252 goto out;
2253
2254 /*
2255 * if ret == 0 means we found what we were searching for, which
2256 * is weird, but possible, so only screw with path if we didn't
2257 * find the key and see if we have stuff that matches
2258 */
2259 if (ret > 0) {
2260 ret = 0;
2261 if (path->slots[0] == 0)
2262 break;
2263 path->slots[0]--;
2264 }
2265
2266 /* pull out the item */
2267 leaf = path->nodes[0];
2268 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2269
2270 /* make sure the item matches what we want */
2271 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2272 break;
2273 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2274 break;
2275
2276 /* release the path since we're done with it */
2277 btrfs_release_path(path);
2278
2279 /*
2280 * this is where we are basically btrfs_lookup, without the
2281 * crossing root thing. we store the inode number in the
2282 * offset of the orphan item.
2283 */
2284
2285 if (found_key.offset == last_objectid) {
2286 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2287 "stopping orphan cleanup\n");
2288 ret = -EINVAL;
2289 goto out;
2290 }
2291
2292 last_objectid = found_key.offset;
2293
2294 found_key.objectid = found_key.offset;
2295 found_key.type = BTRFS_INODE_ITEM_KEY;
2296 found_key.offset = 0;
2297 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2298 ret = PTR_RET(inode);
2299 if (ret && ret != -ESTALE)
2300 goto out;
2301
2302 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2303 struct btrfs_root *dead_root;
2304 struct btrfs_fs_info *fs_info = root->fs_info;
2305 int is_dead_root = 0;
2306
2307 /*
2308 * this is an orphan in the tree root. Currently these
2309 * could come from 2 sources:
2310 * a) a snapshot deletion in progress
2311 * b) a free space cache inode
2312 * We need to distinguish those two, as the snapshot
2313 * orphan must not get deleted.
2314 * find_dead_roots already ran before us, so if this
2315 * is a snapshot deletion, we should find the root
2316 * in the dead_roots list
2317 */
2318 spin_lock(&fs_info->trans_lock);
2319 list_for_each_entry(dead_root, &fs_info->dead_roots,
2320 root_list) {
2321 if (dead_root->root_key.objectid ==
2322 found_key.objectid) {
2323 is_dead_root = 1;
2324 break;
2325 }
2326 }
2327 spin_unlock(&fs_info->trans_lock);
2328 if (is_dead_root) {
2329 /* prevent this orphan from being found again */
2330 key.offset = found_key.objectid - 1;
2331 continue;
2332 }
2333 }
2334 /*
2335 * Inode is already gone but the orphan item is still there,
2336 * kill the orphan item.
2337 */
2338 if (ret == -ESTALE) {
2339 trans = btrfs_start_transaction(root, 1);
2340 if (IS_ERR(trans)) {
2341 ret = PTR_ERR(trans);
2342 goto out;
2343 }
2344 ret = btrfs_del_orphan_item(trans, root,
2345 found_key.objectid);
2346 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2347 btrfs_end_transaction(trans, root);
2348 continue;
2349 }
2350
2351 /*
2352 * add this inode to the orphan list so btrfs_orphan_del does
2353 * the proper thing when we hit it
2354 */
2355 spin_lock(&root->orphan_lock);
2356 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2357 spin_unlock(&root->orphan_lock);
2358
2359 /* if we have links, this was a truncate, lets do that */
2360 if (inode->i_nlink) {
2361 if (!S_ISREG(inode->i_mode)) {
2362 WARN_ON(1);
2363 iput(inode);
2364 continue;
2365 }
2366 nr_truncate++;
2367 ret = btrfs_truncate(inode);
2368 } else {
2369 nr_unlink++;
2370 }
2371
2372 /* this will do delete_inode and everything for us */
2373 iput(inode);
2374 if (ret)
2375 goto out;
2376 }
2377 /* release the path since we're done with it */
2378 btrfs_release_path(path);
2379
2380 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2381
2382 if (root->orphan_block_rsv)
2383 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2384 (u64)-1);
2385
2386 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2387 trans = btrfs_join_transaction(root);
2388 if (!IS_ERR(trans))
2389 btrfs_end_transaction(trans, root);
2390 }
2391
2392 if (nr_unlink)
2393 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2394 if (nr_truncate)
2395 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2396
2397 out:
2398 if (ret)
2399 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2400 btrfs_free_path(path);
2401 return ret;
2402 }
2403
2404 /*
2405 * very simple check to peek ahead in the leaf looking for xattrs. If we
2406 * don't find any xattrs, we know there can't be any acls.
2407 *
2408 * slot is the slot the inode is in, objectid is the objectid of the inode
2409 */
2410 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2411 int slot, u64 objectid)
2412 {
2413 u32 nritems = btrfs_header_nritems(leaf);
2414 struct btrfs_key found_key;
2415 int scanned = 0;
2416
2417 slot++;
2418 while (slot < nritems) {
2419 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2420
2421 /* we found a different objectid, there must not be acls */
2422 if (found_key.objectid != objectid)
2423 return 0;
2424
2425 /* we found an xattr, assume we've got an acl */
2426 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2427 return 1;
2428
2429 /*
2430 * we found a key greater than an xattr key, there can't
2431 * be any acls later on
2432 */
2433 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2434 return 0;
2435
2436 slot++;
2437 scanned++;
2438
2439 /*
2440 * it goes inode, inode backrefs, xattrs, extents,
2441 * so if there are a ton of hard links to an inode there can
2442 * be a lot of backrefs. Don't waste time searching too hard,
2443 * this is just an optimization
2444 */
2445 if (scanned >= 8)
2446 break;
2447 }
2448 /* we hit the end of the leaf before we found an xattr or
2449 * something larger than an xattr. We have to assume the inode
2450 * has acls
2451 */
2452 return 1;
2453 }
2454
2455 /*
2456 * read an inode from the btree into the in-memory inode
2457 */
2458 static void btrfs_read_locked_inode(struct inode *inode)
2459 {
2460 struct btrfs_path *path;
2461 struct extent_buffer *leaf;
2462 struct btrfs_inode_item *inode_item;
2463 struct btrfs_timespec *tspec;
2464 struct btrfs_root *root = BTRFS_I(inode)->root;
2465 struct btrfs_key location;
2466 int maybe_acls;
2467 u32 rdev;
2468 int ret;
2469 bool filled = false;
2470
2471 ret = btrfs_fill_inode(inode, &rdev);
2472 if (!ret)
2473 filled = true;
2474
2475 path = btrfs_alloc_path();
2476 if (!path)
2477 goto make_bad;
2478
2479 path->leave_spinning = 1;
2480 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2481
2482 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2483 if (ret)
2484 goto make_bad;
2485
2486 leaf = path->nodes[0];
2487
2488 if (filled)
2489 goto cache_acl;
2490
2491 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2492 struct btrfs_inode_item);
2493 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2494 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2495 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2496 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2497 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2498
2499 tspec = btrfs_inode_atime(inode_item);
2500 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2501 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2502
2503 tspec = btrfs_inode_mtime(inode_item);
2504 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2505 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2506
2507 tspec = btrfs_inode_ctime(inode_item);
2508 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2510
2511 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2512 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2513 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2514 inode->i_generation = BTRFS_I(inode)->generation;
2515 inode->i_rdev = 0;
2516 rdev = btrfs_inode_rdev(leaf, inode_item);
2517
2518 BTRFS_I(inode)->index_cnt = (u64)-1;
2519 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2520 cache_acl:
2521 /*
2522 * try to precache a NULL acl entry for files that don't have
2523 * any xattrs or acls
2524 */
2525 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2526 btrfs_ino(inode));
2527 if (!maybe_acls)
2528 cache_no_acl(inode);
2529
2530 btrfs_free_path(path);
2531
2532 switch (inode->i_mode & S_IFMT) {
2533 case S_IFREG:
2534 inode->i_mapping->a_ops = &btrfs_aops;
2535 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2536 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2537 inode->i_fop = &btrfs_file_operations;
2538 inode->i_op = &btrfs_file_inode_operations;
2539 break;
2540 case S_IFDIR:
2541 inode->i_fop = &btrfs_dir_file_operations;
2542 if (root == root->fs_info->tree_root)
2543 inode->i_op = &btrfs_dir_ro_inode_operations;
2544 else
2545 inode->i_op = &btrfs_dir_inode_operations;
2546 break;
2547 case S_IFLNK:
2548 inode->i_op = &btrfs_symlink_inode_operations;
2549 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2550 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2551 break;
2552 default:
2553 inode->i_op = &btrfs_special_inode_operations;
2554 init_special_inode(inode, inode->i_mode, rdev);
2555 break;
2556 }
2557
2558 btrfs_update_iflags(inode);
2559 return;
2560
2561 make_bad:
2562 btrfs_free_path(path);
2563 make_bad_inode(inode);
2564 }
2565
2566 /*
2567 * given a leaf and an inode, copy the inode fields into the leaf
2568 */
2569 static void fill_inode_item(struct btrfs_trans_handle *trans,
2570 struct extent_buffer *leaf,
2571 struct btrfs_inode_item *item,
2572 struct inode *inode)
2573 {
2574 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2575 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2576 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2577 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2578 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2579
2580 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2581 inode->i_atime.tv_sec);
2582 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2583 inode->i_atime.tv_nsec);
2584
2585 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2586 inode->i_mtime.tv_sec);
2587 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2588 inode->i_mtime.tv_nsec);
2589
2590 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2591 inode->i_ctime.tv_sec);
2592 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2593 inode->i_ctime.tv_nsec);
2594
2595 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2596 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2597 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2598 btrfs_set_inode_transid(leaf, item, trans->transid);
2599 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2600 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2601 btrfs_set_inode_block_group(leaf, item, 0);
2602 }
2603
2604 /*
2605 * copy everything in the in-memory inode into the btree.
2606 */
2607 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2608 struct btrfs_root *root, struct inode *inode)
2609 {
2610 struct btrfs_inode_item *inode_item;
2611 struct btrfs_path *path;
2612 struct extent_buffer *leaf;
2613 int ret;
2614
2615 path = btrfs_alloc_path();
2616 if (!path)
2617 return -ENOMEM;
2618
2619 path->leave_spinning = 1;
2620 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2621 1);
2622 if (ret) {
2623 if (ret > 0)
2624 ret = -ENOENT;
2625 goto failed;
2626 }
2627
2628 btrfs_unlock_up_safe(path, 1);
2629 leaf = path->nodes[0];
2630 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2631 struct btrfs_inode_item);
2632
2633 fill_inode_item(trans, leaf, inode_item, inode);
2634 btrfs_mark_buffer_dirty(leaf);
2635 btrfs_set_inode_last_trans(trans, inode);
2636 ret = 0;
2637 failed:
2638 btrfs_free_path(path);
2639 return ret;
2640 }
2641
2642 /*
2643 * copy everything in the in-memory inode into the btree.
2644 */
2645 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root, struct inode *inode)
2647 {
2648 int ret;
2649
2650 /*
2651 * If the inode is a free space inode, we can deadlock during commit
2652 * if we put it into the delayed code.
2653 *
2654 * The data relocation inode should also be directly updated
2655 * without delay
2656 */
2657 if (!btrfs_is_free_space_inode(root, inode)
2658 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2659 ret = btrfs_delayed_update_inode(trans, root, inode);
2660 if (!ret)
2661 btrfs_set_inode_last_trans(trans, inode);
2662 return ret;
2663 }
2664
2665 return btrfs_update_inode_item(trans, root, inode);
2666 }
2667
2668 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2669 struct btrfs_root *root, struct inode *inode)
2670 {
2671 int ret;
2672
2673 ret = btrfs_update_inode(trans, root, inode);
2674 if (ret == -ENOSPC)
2675 return btrfs_update_inode_item(trans, root, inode);
2676 return ret;
2677 }
2678
2679 /*
2680 * unlink helper that gets used here in inode.c and in the tree logging
2681 * recovery code. It remove a link in a directory with a given name, and
2682 * also drops the back refs in the inode to the directory
2683 */
2684 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root,
2686 struct inode *dir, struct inode *inode,
2687 const char *name, int name_len)
2688 {
2689 struct btrfs_path *path;
2690 int ret = 0;
2691 struct extent_buffer *leaf;
2692 struct btrfs_dir_item *di;
2693 struct btrfs_key key;
2694 u64 index;
2695 u64 ino = btrfs_ino(inode);
2696 u64 dir_ino = btrfs_ino(dir);
2697
2698 path = btrfs_alloc_path();
2699 if (!path) {
2700 ret = -ENOMEM;
2701 goto out;
2702 }
2703
2704 path->leave_spinning = 1;
2705 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2706 name, name_len, -1);
2707 if (IS_ERR(di)) {
2708 ret = PTR_ERR(di);
2709 goto err;
2710 }
2711 if (!di) {
2712 ret = -ENOENT;
2713 goto err;
2714 }
2715 leaf = path->nodes[0];
2716 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2717 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2718 if (ret)
2719 goto err;
2720 btrfs_release_path(path);
2721
2722 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2723 dir_ino, &index);
2724 if (ret) {
2725 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2726 "inode %llu parent %llu\n", name_len, name,
2727 (unsigned long long)ino, (unsigned long long)dir_ino);
2728 btrfs_abort_transaction(trans, root, ret);
2729 goto err;
2730 }
2731
2732 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2733 if (ret) {
2734 btrfs_abort_transaction(trans, root, ret);
2735 goto err;
2736 }
2737
2738 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2739 inode, dir_ino);
2740 if (ret != 0 && ret != -ENOENT) {
2741 btrfs_abort_transaction(trans, root, ret);
2742 goto err;
2743 }
2744
2745 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2746 dir, index);
2747 if (ret == -ENOENT)
2748 ret = 0;
2749 err:
2750 btrfs_free_path(path);
2751 if (ret)
2752 goto out;
2753
2754 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2755 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2756 btrfs_update_inode(trans, root, dir);
2757 out:
2758 return ret;
2759 }
2760
2761 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *root,
2763 struct inode *dir, struct inode *inode,
2764 const char *name, int name_len)
2765 {
2766 int ret;
2767 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2768 if (!ret) {
2769 btrfs_drop_nlink(inode);
2770 ret = btrfs_update_inode(trans, root, inode);
2771 }
2772 return ret;
2773 }
2774
2775
2776 /* helper to check if there is any shared block in the path */
2777 static int check_path_shared(struct btrfs_root *root,
2778 struct btrfs_path *path)
2779 {
2780 struct extent_buffer *eb;
2781 int level;
2782 u64 refs = 1;
2783
2784 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2785 int ret;
2786
2787 if (!path->nodes[level])
2788 break;
2789 eb = path->nodes[level];
2790 if (!btrfs_block_can_be_shared(root, eb))
2791 continue;
2792 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2793 &refs, NULL);
2794 if (refs > 1)
2795 return 1;
2796 }
2797 return 0;
2798 }
2799
2800 /*
2801 * helper to start transaction for unlink and rmdir.
2802 *
2803 * unlink and rmdir are special in btrfs, they do not always free space.
2804 * so in enospc case, we should make sure they will free space before
2805 * allowing them to use the global metadata reservation.
2806 */
2807 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2808 struct dentry *dentry)
2809 {
2810 struct btrfs_trans_handle *trans;
2811 struct btrfs_root *root = BTRFS_I(dir)->root;
2812 struct btrfs_path *path;
2813 struct btrfs_inode_ref *ref;
2814 struct btrfs_dir_item *di;
2815 struct inode *inode = dentry->d_inode;
2816 u64 index;
2817 int check_link = 1;
2818 int err = -ENOSPC;
2819 int ret;
2820 u64 ino = btrfs_ino(inode);
2821 u64 dir_ino = btrfs_ino(dir);
2822
2823 /*
2824 * 1 for the possible orphan item
2825 * 1 for the dir item
2826 * 1 for the dir index
2827 * 1 for the inode ref
2828 * 1 for the inode ref in the tree log
2829 * 2 for the dir entries in the log
2830 * 1 for the inode
2831 */
2832 trans = btrfs_start_transaction(root, 8);
2833 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2834 return trans;
2835
2836 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2837 return ERR_PTR(-ENOSPC);
2838
2839 /* check if there is someone else holds reference */
2840 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2841 return ERR_PTR(-ENOSPC);
2842
2843 if (atomic_read(&inode->i_count) > 2)
2844 return ERR_PTR(-ENOSPC);
2845
2846 if (xchg(&root->fs_info->enospc_unlink, 1))
2847 return ERR_PTR(-ENOSPC);
2848
2849 path = btrfs_alloc_path();
2850 if (!path) {
2851 root->fs_info->enospc_unlink = 0;
2852 return ERR_PTR(-ENOMEM);
2853 }
2854
2855 /* 1 for the orphan item */
2856 trans = btrfs_start_transaction(root, 1);
2857 if (IS_ERR(trans)) {
2858 btrfs_free_path(path);
2859 root->fs_info->enospc_unlink = 0;
2860 return trans;
2861 }
2862
2863 path->skip_locking = 1;
2864 path->search_commit_root = 1;
2865
2866 ret = btrfs_lookup_inode(trans, root, path,
2867 &BTRFS_I(dir)->location, 0);
2868 if (ret < 0) {
2869 err = ret;
2870 goto out;
2871 }
2872 if (ret == 0) {
2873 if (check_path_shared(root, path))
2874 goto out;
2875 } else {
2876 check_link = 0;
2877 }
2878 btrfs_release_path(path);
2879
2880 ret = btrfs_lookup_inode(trans, root, path,
2881 &BTRFS_I(inode)->location, 0);
2882 if (ret < 0) {
2883 err = ret;
2884 goto out;
2885 }
2886 if (ret == 0) {
2887 if (check_path_shared(root, path))
2888 goto out;
2889 } else {
2890 check_link = 0;
2891 }
2892 btrfs_release_path(path);
2893
2894 if (ret == 0 && S_ISREG(inode->i_mode)) {
2895 ret = btrfs_lookup_file_extent(trans, root, path,
2896 ino, (u64)-1, 0);
2897 if (ret < 0) {
2898 err = ret;
2899 goto out;
2900 }
2901 BUG_ON(ret == 0); /* Corruption */
2902 if (check_path_shared(root, path))
2903 goto out;
2904 btrfs_release_path(path);
2905 }
2906
2907 if (!check_link) {
2908 err = 0;
2909 goto out;
2910 }
2911
2912 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2913 dentry->d_name.name, dentry->d_name.len, 0);
2914 if (IS_ERR(di)) {
2915 err = PTR_ERR(di);
2916 goto out;
2917 }
2918 if (di) {
2919 if (check_path_shared(root, path))
2920 goto out;
2921 } else {
2922 err = 0;
2923 goto out;
2924 }
2925 btrfs_release_path(path);
2926
2927 ref = btrfs_lookup_inode_ref(trans, root, path,
2928 dentry->d_name.name, dentry->d_name.len,
2929 ino, dir_ino, 0);
2930 if (IS_ERR(ref)) {
2931 err = PTR_ERR(ref);
2932 goto out;
2933 }
2934 BUG_ON(!ref); /* Logic error */
2935 if (check_path_shared(root, path))
2936 goto out;
2937 index = btrfs_inode_ref_index(path->nodes[0], ref);
2938 btrfs_release_path(path);
2939
2940 /*
2941 * This is a commit root search, if we can lookup inode item and other
2942 * relative items in the commit root, it means the transaction of
2943 * dir/file creation has been committed, and the dir index item that we
2944 * delay to insert has also been inserted into the commit root. So
2945 * we needn't worry about the delayed insertion of the dir index item
2946 * here.
2947 */
2948 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2949 dentry->d_name.name, dentry->d_name.len, 0);
2950 if (IS_ERR(di)) {
2951 err = PTR_ERR(di);
2952 goto out;
2953 }
2954 BUG_ON(ret == -ENOENT);
2955 if (check_path_shared(root, path))
2956 goto out;
2957
2958 err = 0;
2959 out:
2960 btrfs_free_path(path);
2961 /* Migrate the orphan reservation over */
2962 if (!err)
2963 err = btrfs_block_rsv_migrate(trans->block_rsv,
2964 &root->fs_info->global_block_rsv,
2965 trans->bytes_reserved);
2966
2967 if (err) {
2968 btrfs_end_transaction(trans, root);
2969 root->fs_info->enospc_unlink = 0;
2970 return ERR_PTR(err);
2971 }
2972
2973 trans->block_rsv = &root->fs_info->global_block_rsv;
2974 return trans;
2975 }
2976
2977 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2978 struct btrfs_root *root)
2979 {
2980 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2981 btrfs_block_rsv_release(root, trans->block_rsv,
2982 trans->bytes_reserved);
2983 trans->block_rsv = &root->fs_info->trans_block_rsv;
2984 BUG_ON(!root->fs_info->enospc_unlink);
2985 root->fs_info->enospc_unlink = 0;
2986 }
2987 btrfs_end_transaction(trans, root);
2988 }
2989
2990 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2991 {
2992 struct btrfs_root *root = BTRFS_I(dir)->root;
2993 struct btrfs_trans_handle *trans;
2994 struct inode *inode = dentry->d_inode;
2995 int ret;
2996 unsigned long nr = 0;
2997
2998 trans = __unlink_start_trans(dir, dentry);
2999 if (IS_ERR(trans))
3000 return PTR_ERR(trans);
3001
3002 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3003
3004 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3005 dentry->d_name.name, dentry->d_name.len);
3006 if (ret)
3007 goto out;
3008
3009 if (inode->i_nlink == 0) {
3010 ret = btrfs_orphan_add(trans, inode);
3011 if (ret)
3012 goto out;
3013 }
3014
3015 out:
3016 nr = trans->blocks_used;
3017 __unlink_end_trans(trans, root);
3018 btrfs_btree_balance_dirty(root, nr);
3019 return ret;
3020 }
3021
3022 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct inode *dir, u64 objectid,
3025 const char *name, int name_len)
3026 {
3027 struct btrfs_path *path;
3028 struct extent_buffer *leaf;
3029 struct btrfs_dir_item *di;
3030 struct btrfs_key key;
3031 u64 index;
3032 int ret;
3033 u64 dir_ino = btrfs_ino(dir);
3034
3035 path = btrfs_alloc_path();
3036 if (!path)
3037 return -ENOMEM;
3038
3039 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3040 name, name_len, -1);
3041 if (IS_ERR_OR_NULL(di)) {
3042 if (!di)
3043 ret = -ENOENT;
3044 else
3045 ret = PTR_ERR(di);
3046 goto out;
3047 }
3048
3049 leaf = path->nodes[0];
3050 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3051 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3052 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3053 if (ret) {
3054 btrfs_abort_transaction(trans, root, ret);
3055 goto out;
3056 }
3057 btrfs_release_path(path);
3058
3059 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3060 objectid, root->root_key.objectid,
3061 dir_ino, &index, name, name_len);
3062 if (ret < 0) {
3063 if (ret != -ENOENT) {
3064 btrfs_abort_transaction(trans, root, ret);
3065 goto out;
3066 }
3067 di = btrfs_search_dir_index_item(root, path, dir_ino,
3068 name, name_len);
3069 if (IS_ERR_OR_NULL(di)) {
3070 if (!di)
3071 ret = -ENOENT;
3072 else
3073 ret = PTR_ERR(di);
3074 btrfs_abort_transaction(trans, root, ret);
3075 goto out;
3076 }
3077
3078 leaf = path->nodes[0];
3079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3080 btrfs_release_path(path);
3081 index = key.offset;
3082 }
3083 btrfs_release_path(path);
3084
3085 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3086 if (ret) {
3087 btrfs_abort_transaction(trans, root, ret);
3088 goto out;
3089 }
3090
3091 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3092 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3093 ret = btrfs_update_inode(trans, root, dir);
3094 if (ret)
3095 btrfs_abort_transaction(trans, root, ret);
3096 out:
3097 btrfs_free_path(path);
3098 return ret;
3099 }
3100
3101 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3102 {
3103 struct inode *inode = dentry->d_inode;
3104 int err = 0;
3105 struct btrfs_root *root = BTRFS_I(dir)->root;
3106 struct btrfs_trans_handle *trans;
3107 unsigned long nr = 0;
3108
3109 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3110 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3111 return -ENOTEMPTY;
3112
3113 trans = __unlink_start_trans(dir, dentry);
3114 if (IS_ERR(trans))
3115 return PTR_ERR(trans);
3116
3117 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3118 err = btrfs_unlink_subvol(trans, root, dir,
3119 BTRFS_I(inode)->location.objectid,
3120 dentry->d_name.name,
3121 dentry->d_name.len);
3122 goto out;
3123 }
3124
3125 err = btrfs_orphan_add(trans, inode);
3126 if (err)
3127 goto out;
3128
3129 /* now the directory is empty */
3130 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3131 dentry->d_name.name, dentry->d_name.len);
3132 if (!err)
3133 btrfs_i_size_write(inode, 0);
3134 out:
3135 nr = trans->blocks_used;
3136 __unlink_end_trans(trans, root);
3137 btrfs_btree_balance_dirty(root, nr);
3138
3139 return err;
3140 }
3141
3142 /*
3143 * this can truncate away extent items, csum items and directory items.
3144 * It starts at a high offset and removes keys until it can't find
3145 * any higher than new_size
3146 *
3147 * csum items that cross the new i_size are truncated to the new size
3148 * as well.
3149 *
3150 * min_type is the minimum key type to truncate down to. If set to 0, this
3151 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3152 */
3153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3154 struct btrfs_root *root,
3155 struct inode *inode,
3156 u64 new_size, u32 min_type)
3157 {
3158 struct btrfs_path *path;
3159 struct extent_buffer *leaf;
3160 struct btrfs_file_extent_item *fi;
3161 struct btrfs_key key;
3162 struct btrfs_key found_key;
3163 u64 extent_start = 0;
3164 u64 extent_num_bytes = 0;
3165 u64 extent_offset = 0;
3166 u64 item_end = 0;
3167 u64 mask = root->sectorsize - 1;
3168 u32 found_type = (u8)-1;
3169 int found_extent;
3170 int del_item;
3171 int pending_del_nr = 0;
3172 int pending_del_slot = 0;
3173 int extent_type = -1;
3174 int ret;
3175 int err = 0;
3176 u64 ino = btrfs_ino(inode);
3177
3178 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOMEM;
3183 path->reada = -1;
3184
3185 if (root->ref_cows || root == root->fs_info->tree_root)
3186 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3187
3188 /*
3189 * This function is also used to drop the items in the log tree before
3190 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3191 * it is used to drop the loged items. So we shouldn't kill the delayed
3192 * items.
3193 */
3194 if (min_type == 0 && root == BTRFS_I(inode)->root)
3195 btrfs_kill_delayed_inode_items(inode);
3196
3197 key.objectid = ino;
3198 key.offset = (u64)-1;
3199 key.type = (u8)-1;
3200
3201 search_again:
3202 path->leave_spinning = 1;
3203 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3204 if (ret < 0) {
3205 err = ret;
3206 goto out;
3207 }
3208
3209 if (ret > 0) {
3210 /* there are no items in the tree for us to truncate, we're
3211 * done
3212 */
3213 if (path->slots[0] == 0)
3214 goto out;
3215 path->slots[0]--;
3216 }
3217
3218 while (1) {
3219 fi = NULL;
3220 leaf = path->nodes[0];
3221 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3222 found_type = btrfs_key_type(&found_key);
3223
3224 if (found_key.objectid != ino)
3225 break;
3226
3227 if (found_type < min_type)
3228 break;
3229
3230 item_end = found_key.offset;
3231 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3232 fi = btrfs_item_ptr(leaf, path->slots[0],
3233 struct btrfs_file_extent_item);
3234 extent_type = btrfs_file_extent_type(leaf, fi);
3235 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3236 item_end +=
3237 btrfs_file_extent_num_bytes(leaf, fi);
3238 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3239 item_end += btrfs_file_extent_inline_len(leaf,
3240 fi);
3241 }
3242 item_end--;
3243 }
3244 if (found_type > min_type) {
3245 del_item = 1;
3246 } else {
3247 if (item_end < new_size)
3248 break;
3249 if (found_key.offset >= new_size)
3250 del_item = 1;
3251 else
3252 del_item = 0;
3253 }
3254 found_extent = 0;
3255 /* FIXME, shrink the extent if the ref count is only 1 */
3256 if (found_type != BTRFS_EXTENT_DATA_KEY)
3257 goto delete;
3258
3259 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3260 u64 num_dec;
3261 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3262 if (!del_item) {
3263 u64 orig_num_bytes =
3264 btrfs_file_extent_num_bytes(leaf, fi);
3265 extent_num_bytes = new_size -
3266 found_key.offset + root->sectorsize - 1;
3267 extent_num_bytes = extent_num_bytes &
3268 ~((u64)root->sectorsize - 1);
3269 btrfs_set_file_extent_num_bytes(leaf, fi,
3270 extent_num_bytes);
3271 num_dec = (orig_num_bytes -
3272 extent_num_bytes);
3273 if (root->ref_cows && extent_start != 0)
3274 inode_sub_bytes(inode, num_dec);
3275 btrfs_mark_buffer_dirty(leaf);
3276 } else {
3277 extent_num_bytes =
3278 btrfs_file_extent_disk_num_bytes(leaf,
3279 fi);
3280 extent_offset = found_key.offset -
3281 btrfs_file_extent_offset(leaf, fi);
3282
3283 /* FIXME blocksize != 4096 */
3284 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3285 if (extent_start != 0) {
3286 found_extent = 1;
3287 if (root->ref_cows)
3288 inode_sub_bytes(inode, num_dec);
3289 }
3290 }
3291 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3292 /*
3293 * we can't truncate inline items that have had
3294 * special encodings
3295 */
3296 if (!del_item &&
3297 btrfs_file_extent_compression(leaf, fi) == 0 &&
3298 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3299 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3300 u32 size = new_size - found_key.offset;
3301
3302 if (root->ref_cows) {
3303 inode_sub_bytes(inode, item_end + 1 -
3304 new_size);
3305 }
3306 size =
3307 btrfs_file_extent_calc_inline_size(size);
3308 btrfs_truncate_item(trans, root, path,
3309 size, 1);
3310 } else if (root->ref_cows) {
3311 inode_sub_bytes(inode, item_end + 1 -
3312 found_key.offset);
3313 }
3314 }
3315 delete:
3316 if (del_item) {
3317 if (!pending_del_nr) {
3318 /* no pending yet, add ourselves */
3319 pending_del_slot = path->slots[0];
3320 pending_del_nr = 1;
3321 } else if (pending_del_nr &&
3322 path->slots[0] + 1 == pending_del_slot) {
3323 /* hop on the pending chunk */
3324 pending_del_nr++;
3325 pending_del_slot = path->slots[0];
3326 } else {
3327 BUG();
3328 }
3329 } else {
3330 break;
3331 }
3332 if (found_extent && (root->ref_cows ||
3333 root == root->fs_info->tree_root)) {
3334 btrfs_set_path_blocking(path);
3335 ret = btrfs_free_extent(trans, root, extent_start,
3336 extent_num_bytes, 0,
3337 btrfs_header_owner(leaf),
3338 ino, extent_offset, 0);
3339 BUG_ON(ret);
3340 }
3341
3342 if (found_type == BTRFS_INODE_ITEM_KEY)
3343 break;
3344
3345 if (path->slots[0] == 0 ||
3346 path->slots[0] != pending_del_slot) {
3347 if (root->ref_cows &&
3348 BTRFS_I(inode)->location.objectid !=
3349 BTRFS_FREE_INO_OBJECTID) {
3350 err = -EAGAIN;
3351 goto out;
3352 }
3353 if (pending_del_nr) {
3354 ret = btrfs_del_items(trans, root, path,
3355 pending_del_slot,
3356 pending_del_nr);
3357 if (ret) {
3358 btrfs_abort_transaction(trans,
3359 root, ret);
3360 goto error;
3361 }
3362 pending_del_nr = 0;
3363 }
3364 btrfs_release_path(path);
3365 goto search_again;
3366 } else {
3367 path->slots[0]--;
3368 }
3369 }
3370 out:
3371 if (pending_del_nr) {
3372 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3373 pending_del_nr);
3374 if (ret)
3375 btrfs_abort_transaction(trans, root, ret);
3376 }
3377 error:
3378 btrfs_free_path(path);
3379 return err;
3380 }
3381
3382 /*
3383 * taken from block_truncate_page, but does cow as it zeros out
3384 * any bytes left in the last page in the file.
3385 */
3386 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3387 {
3388 struct inode *inode = mapping->host;
3389 struct btrfs_root *root = BTRFS_I(inode)->root;
3390 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3391 struct btrfs_ordered_extent *ordered;
3392 struct extent_state *cached_state = NULL;
3393 char *kaddr;
3394 u32 blocksize = root->sectorsize;
3395 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3396 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3397 struct page *page;
3398 gfp_t mask = btrfs_alloc_write_mask(mapping);
3399 int ret = 0;
3400 u64 page_start;
3401 u64 page_end;
3402
3403 if ((offset & (blocksize - 1)) == 0)
3404 goto out;
3405 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3406 if (ret)
3407 goto out;
3408
3409 ret = -ENOMEM;
3410 again:
3411 page = find_or_create_page(mapping, index, mask);
3412 if (!page) {
3413 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3414 goto out;
3415 }
3416
3417 page_start = page_offset(page);
3418 page_end = page_start + PAGE_CACHE_SIZE - 1;
3419
3420 if (!PageUptodate(page)) {
3421 ret = btrfs_readpage(NULL, page);
3422 lock_page(page);
3423 if (page->mapping != mapping) {
3424 unlock_page(page);
3425 page_cache_release(page);
3426 goto again;
3427 }
3428 if (!PageUptodate(page)) {
3429 ret = -EIO;
3430 goto out_unlock;
3431 }
3432 }
3433 wait_on_page_writeback(page);
3434
3435 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3436 set_page_extent_mapped(page);
3437
3438 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3439 if (ordered) {
3440 unlock_extent_cached(io_tree, page_start, page_end,
3441 &cached_state, GFP_NOFS);
3442 unlock_page(page);
3443 page_cache_release(page);
3444 btrfs_start_ordered_extent(inode, ordered, 1);
3445 btrfs_put_ordered_extent(ordered);
3446 goto again;
3447 }
3448
3449 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3450 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3451 0, 0, &cached_state, GFP_NOFS);
3452
3453 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3454 &cached_state);
3455 if (ret) {
3456 unlock_extent_cached(io_tree, page_start, page_end,
3457 &cached_state, GFP_NOFS);
3458 goto out_unlock;
3459 }
3460
3461 ret = 0;
3462 if (offset != PAGE_CACHE_SIZE) {
3463 kaddr = kmap(page);
3464 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3465 flush_dcache_page(page);
3466 kunmap(page);
3467 }
3468 ClearPageChecked(page);
3469 set_page_dirty(page);
3470 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3471 GFP_NOFS);
3472
3473 out_unlock:
3474 if (ret)
3475 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3476 unlock_page(page);
3477 page_cache_release(page);
3478 out:
3479 return ret;
3480 }
3481
3482 /*
3483 * This function puts in dummy file extents for the area we're creating a hole
3484 * for. So if we are truncating this file to a larger size we need to insert
3485 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3486 * the range between oldsize and size
3487 */
3488 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3489 {
3490 struct btrfs_trans_handle *trans;
3491 struct btrfs_root *root = BTRFS_I(inode)->root;
3492 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3493 struct extent_map *em = NULL;
3494 struct extent_state *cached_state = NULL;
3495 u64 mask = root->sectorsize - 1;
3496 u64 hole_start = (oldsize + mask) & ~mask;
3497 u64 block_end = (size + mask) & ~mask;
3498 u64 last_byte;
3499 u64 cur_offset;
3500 u64 hole_size;
3501 int err = 0;
3502
3503 if (size <= hole_start)
3504 return 0;
3505
3506 while (1) {
3507 struct btrfs_ordered_extent *ordered;
3508 btrfs_wait_ordered_range(inode, hole_start,
3509 block_end - hole_start);
3510 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3511 &cached_state);
3512 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3513 if (!ordered)
3514 break;
3515 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3516 &cached_state, GFP_NOFS);
3517 btrfs_put_ordered_extent(ordered);
3518 }
3519
3520 cur_offset = hole_start;
3521 while (1) {
3522 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3523 block_end - cur_offset, 0);
3524 if (IS_ERR(em)) {
3525 err = PTR_ERR(em);
3526 break;
3527 }
3528 last_byte = min(extent_map_end(em), block_end);
3529 last_byte = (last_byte + mask) & ~mask;
3530 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3531 u64 hint_byte = 0;
3532 hole_size = last_byte - cur_offset;
3533
3534 trans = btrfs_start_transaction(root, 3);
3535 if (IS_ERR(trans)) {
3536 err = PTR_ERR(trans);
3537 break;
3538 }
3539
3540 err = btrfs_drop_extents(trans, inode, cur_offset,
3541 cur_offset + hole_size,
3542 &hint_byte, 1);
3543 if (err) {
3544 btrfs_abort_transaction(trans, root, err);
3545 btrfs_end_transaction(trans, root);
3546 break;
3547 }
3548
3549 err = btrfs_insert_file_extent(trans, root,
3550 btrfs_ino(inode), cur_offset, 0,
3551 0, hole_size, 0, hole_size,
3552 0, 0, 0);
3553 if (err) {
3554 btrfs_abort_transaction(trans, root, err);
3555 btrfs_end_transaction(trans, root);
3556 break;
3557 }
3558
3559 btrfs_drop_extent_cache(inode, hole_start,
3560 last_byte - 1, 0);
3561
3562 btrfs_update_inode(trans, root, inode);
3563 btrfs_end_transaction(trans, root);
3564 }
3565 free_extent_map(em);
3566 em = NULL;
3567 cur_offset = last_byte;
3568 if (cur_offset >= block_end)
3569 break;
3570 }
3571
3572 free_extent_map(em);
3573 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3574 GFP_NOFS);
3575 return err;
3576 }
3577
3578 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3579 {
3580 struct btrfs_root *root = BTRFS_I(inode)->root;
3581 struct btrfs_trans_handle *trans;
3582 loff_t oldsize = i_size_read(inode);
3583 int ret;
3584
3585 if (newsize == oldsize)
3586 return 0;
3587
3588 if (newsize > oldsize) {
3589 truncate_pagecache(inode, oldsize, newsize);
3590 ret = btrfs_cont_expand(inode, oldsize, newsize);
3591 if (ret)
3592 return ret;
3593
3594 trans = btrfs_start_transaction(root, 1);
3595 if (IS_ERR(trans))
3596 return PTR_ERR(trans);
3597
3598 i_size_write(inode, newsize);
3599 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3600 ret = btrfs_update_inode(trans, root, inode);
3601 btrfs_end_transaction(trans, root);
3602 } else {
3603
3604 /*
3605 * We're truncating a file that used to have good data down to
3606 * zero. Make sure it gets into the ordered flush list so that
3607 * any new writes get down to disk quickly.
3608 */
3609 if (newsize == 0)
3610 BTRFS_I(inode)->ordered_data_close = 1;
3611
3612 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3613 truncate_setsize(inode, newsize);
3614 ret = btrfs_truncate(inode);
3615 }
3616
3617 return ret;
3618 }
3619
3620 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3621 {
3622 struct inode *inode = dentry->d_inode;
3623 struct btrfs_root *root = BTRFS_I(inode)->root;
3624 int err;
3625
3626 if (btrfs_root_readonly(root))
3627 return -EROFS;
3628
3629 err = inode_change_ok(inode, attr);
3630 if (err)
3631 return err;
3632
3633 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3634 err = btrfs_setsize(inode, attr->ia_size);
3635 if (err)
3636 return err;
3637 }
3638
3639 if (attr->ia_valid) {
3640 setattr_copy(inode, attr);
3641 err = btrfs_dirty_inode(inode);
3642
3643 if (!err && attr->ia_valid & ATTR_MODE)
3644 err = btrfs_acl_chmod(inode);
3645 }
3646
3647 return err;
3648 }
3649
3650 void btrfs_evict_inode(struct inode *inode)
3651 {
3652 struct btrfs_trans_handle *trans;
3653 struct btrfs_root *root = BTRFS_I(inode)->root;
3654 struct btrfs_block_rsv *rsv, *global_rsv;
3655 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3656 unsigned long nr;
3657 int ret;
3658
3659 trace_btrfs_inode_evict(inode);
3660
3661 truncate_inode_pages(&inode->i_data, 0);
3662 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3663 btrfs_is_free_space_inode(root, inode)))
3664 goto no_delete;
3665
3666 if (is_bad_inode(inode)) {
3667 btrfs_orphan_del(NULL, inode);
3668 goto no_delete;
3669 }
3670 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3671 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3672
3673 if (root->fs_info->log_root_recovering) {
3674 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3675 goto no_delete;
3676 }
3677
3678 if (inode->i_nlink > 0) {
3679 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3680 goto no_delete;
3681 }
3682
3683 rsv = btrfs_alloc_block_rsv(root);
3684 if (!rsv) {
3685 btrfs_orphan_del(NULL, inode);
3686 goto no_delete;
3687 }
3688 rsv->size = min_size;
3689 global_rsv = &root->fs_info->global_block_rsv;
3690
3691 btrfs_i_size_write(inode, 0);
3692
3693 /*
3694 * This is a bit simpler than btrfs_truncate since
3695 *
3696 * 1) We've already reserved our space for our orphan item in the
3697 * unlink.
3698 * 2) We're going to delete the inode item, so we don't need to update
3699 * it at all.
3700 *
3701 * So we just need to reserve some slack space in case we add bytes when
3702 * doing the truncate.
3703 */
3704 while (1) {
3705 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3706
3707 /*
3708 * Try and steal from the global reserve since we will
3709 * likely not use this space anyway, we want to try as
3710 * hard as possible to get this to work.
3711 */
3712 if (ret)
3713 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3714
3715 if (ret) {
3716 printk(KERN_WARNING "Could not get space for a "
3717 "delete, will truncate on mount %d\n", ret);
3718 btrfs_orphan_del(NULL, inode);
3719 btrfs_free_block_rsv(root, rsv);
3720 goto no_delete;
3721 }
3722
3723 trans = btrfs_start_transaction(root, 0);
3724 if (IS_ERR(trans)) {
3725 btrfs_orphan_del(NULL, inode);
3726 btrfs_free_block_rsv(root, rsv);
3727 goto no_delete;
3728 }
3729
3730 trans->block_rsv = rsv;
3731
3732 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3733 if (ret != -EAGAIN)
3734 break;
3735
3736 nr = trans->blocks_used;
3737 btrfs_end_transaction(trans, root);
3738 trans = NULL;
3739 btrfs_btree_balance_dirty(root, nr);
3740 }
3741
3742 btrfs_free_block_rsv(root, rsv);
3743
3744 if (ret == 0) {
3745 trans->block_rsv = root->orphan_block_rsv;
3746 ret = btrfs_orphan_del(trans, inode);
3747 BUG_ON(ret);
3748 }
3749
3750 trans->block_rsv = &root->fs_info->trans_block_rsv;
3751 if (!(root == root->fs_info->tree_root ||
3752 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3753 btrfs_return_ino(root, btrfs_ino(inode));
3754
3755 nr = trans->blocks_used;
3756 btrfs_end_transaction(trans, root);
3757 btrfs_btree_balance_dirty(root, nr);
3758 no_delete:
3759 end_writeback(inode);
3760 return;
3761 }
3762
3763 /*
3764 * this returns the key found in the dir entry in the location pointer.
3765 * If no dir entries were found, location->objectid is 0.
3766 */
3767 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3768 struct btrfs_key *location)
3769 {
3770 const char *name = dentry->d_name.name;
3771 int namelen = dentry->d_name.len;
3772 struct btrfs_dir_item *di;
3773 struct btrfs_path *path;
3774 struct btrfs_root *root = BTRFS_I(dir)->root;
3775 int ret = 0;
3776
3777 path = btrfs_alloc_path();
3778 if (!path)
3779 return -ENOMEM;
3780
3781 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3782 namelen, 0);
3783 if (IS_ERR(di))
3784 ret = PTR_ERR(di);
3785
3786 if (IS_ERR_OR_NULL(di))
3787 goto out_err;
3788
3789 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3790 out:
3791 btrfs_free_path(path);
3792 return ret;
3793 out_err:
3794 location->objectid = 0;
3795 goto out;
3796 }
3797
3798 /*
3799 * when we hit a tree root in a directory, the btrfs part of the inode
3800 * needs to be changed to reflect the root directory of the tree root. This
3801 * is kind of like crossing a mount point.
3802 */
3803 static int fixup_tree_root_location(struct btrfs_root *root,
3804 struct inode *dir,
3805 struct dentry *dentry,
3806 struct btrfs_key *location,
3807 struct btrfs_root **sub_root)
3808 {
3809 struct btrfs_path *path;
3810 struct btrfs_root *new_root;
3811 struct btrfs_root_ref *ref;
3812 struct extent_buffer *leaf;
3813 int ret;
3814 int err = 0;
3815
3816 path = btrfs_alloc_path();
3817 if (!path) {
3818 err = -ENOMEM;
3819 goto out;
3820 }
3821
3822 err = -ENOENT;
3823 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3824 BTRFS_I(dir)->root->root_key.objectid,
3825 location->objectid);
3826 if (ret) {
3827 if (ret < 0)
3828 err = ret;
3829 goto out;
3830 }
3831
3832 leaf = path->nodes[0];
3833 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3834 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3835 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3836 goto out;
3837
3838 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3839 (unsigned long)(ref + 1),
3840 dentry->d_name.len);
3841 if (ret)
3842 goto out;
3843
3844 btrfs_release_path(path);
3845
3846 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3847 if (IS_ERR(new_root)) {
3848 err = PTR_ERR(new_root);
3849 goto out;
3850 }
3851
3852 if (btrfs_root_refs(&new_root->root_item) == 0) {
3853 err = -ENOENT;
3854 goto out;
3855 }
3856
3857 *sub_root = new_root;
3858 location->objectid = btrfs_root_dirid(&new_root->root_item);
3859 location->type = BTRFS_INODE_ITEM_KEY;
3860 location->offset = 0;
3861 err = 0;
3862 out:
3863 btrfs_free_path(path);
3864 return err;
3865 }
3866
3867 static void inode_tree_add(struct inode *inode)
3868 {
3869 struct btrfs_root *root = BTRFS_I(inode)->root;
3870 struct btrfs_inode *entry;
3871 struct rb_node **p;
3872 struct rb_node *parent;
3873 u64 ino = btrfs_ino(inode);
3874 again:
3875 p = &root->inode_tree.rb_node;
3876 parent = NULL;
3877
3878 if (inode_unhashed(inode))
3879 return;
3880
3881 spin_lock(&root->inode_lock);
3882 while (*p) {
3883 parent = *p;
3884 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3885
3886 if (ino < btrfs_ino(&entry->vfs_inode))
3887 p = &parent->rb_left;
3888 else if (ino > btrfs_ino(&entry->vfs_inode))
3889 p = &parent->rb_right;
3890 else {
3891 WARN_ON(!(entry->vfs_inode.i_state &
3892 (I_WILL_FREE | I_FREEING)));
3893 rb_erase(parent, &root->inode_tree);
3894 RB_CLEAR_NODE(parent);
3895 spin_unlock(&root->inode_lock);
3896 goto again;
3897 }
3898 }
3899 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3900 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3901 spin_unlock(&root->inode_lock);
3902 }
3903
3904 static void inode_tree_del(struct inode *inode)
3905 {
3906 struct btrfs_root *root = BTRFS_I(inode)->root;
3907 int empty = 0;
3908
3909 spin_lock(&root->inode_lock);
3910 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3911 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3912 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3913 empty = RB_EMPTY_ROOT(&root->inode_tree);
3914 }
3915 spin_unlock(&root->inode_lock);
3916
3917 /*
3918 * Free space cache has inodes in the tree root, but the tree root has a
3919 * root_refs of 0, so this could end up dropping the tree root as a
3920 * snapshot, so we need the extra !root->fs_info->tree_root check to
3921 * make sure we don't drop it.
3922 */
3923 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3924 root != root->fs_info->tree_root) {
3925 synchronize_srcu(&root->fs_info->subvol_srcu);
3926 spin_lock(&root->inode_lock);
3927 empty = RB_EMPTY_ROOT(&root->inode_tree);
3928 spin_unlock(&root->inode_lock);
3929 if (empty)
3930 btrfs_add_dead_root(root);
3931 }
3932 }
3933
3934 void btrfs_invalidate_inodes(struct btrfs_root *root)
3935 {
3936 struct rb_node *node;
3937 struct rb_node *prev;
3938 struct btrfs_inode *entry;
3939 struct inode *inode;
3940 u64 objectid = 0;
3941
3942 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3943
3944 spin_lock(&root->inode_lock);
3945 again:
3946 node = root->inode_tree.rb_node;
3947 prev = NULL;
3948 while (node) {
3949 prev = node;
3950 entry = rb_entry(node, struct btrfs_inode, rb_node);
3951
3952 if (objectid < btrfs_ino(&entry->vfs_inode))
3953 node = node->rb_left;
3954 else if (objectid > btrfs_ino(&entry->vfs_inode))
3955 node = node->rb_right;
3956 else
3957 break;
3958 }
3959 if (!node) {
3960 while (prev) {
3961 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3962 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3963 node = prev;
3964 break;
3965 }
3966 prev = rb_next(prev);
3967 }
3968 }
3969 while (node) {
3970 entry = rb_entry(node, struct btrfs_inode, rb_node);
3971 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3972 inode = igrab(&entry->vfs_inode);
3973 if (inode) {
3974 spin_unlock(&root->inode_lock);
3975 if (atomic_read(&inode->i_count) > 1)
3976 d_prune_aliases(inode);
3977 /*
3978 * btrfs_drop_inode will have it removed from
3979 * the inode cache when its usage count
3980 * hits zero.
3981 */
3982 iput(inode);
3983 cond_resched();
3984 spin_lock(&root->inode_lock);
3985 goto again;
3986 }
3987
3988 if (cond_resched_lock(&root->inode_lock))
3989 goto again;
3990
3991 node = rb_next(node);
3992 }
3993 spin_unlock(&root->inode_lock);
3994 }
3995
3996 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3997 {
3998 struct btrfs_iget_args *args = p;
3999 inode->i_ino = args->ino;
4000 BTRFS_I(inode)->root = args->root;
4001 btrfs_set_inode_space_info(args->root, inode);
4002 return 0;
4003 }
4004
4005 static int btrfs_find_actor(struct inode *inode, void *opaque)
4006 {
4007 struct btrfs_iget_args *args = opaque;
4008 return args->ino == btrfs_ino(inode) &&
4009 args->root == BTRFS_I(inode)->root;
4010 }
4011
4012 static struct inode *btrfs_iget_locked(struct super_block *s,
4013 u64 objectid,
4014 struct btrfs_root *root)
4015 {
4016 struct inode *inode;
4017 struct btrfs_iget_args args;
4018 args.ino = objectid;
4019 args.root = root;
4020
4021 inode = iget5_locked(s, objectid, btrfs_find_actor,
4022 btrfs_init_locked_inode,
4023 (void *)&args);
4024 return inode;
4025 }
4026
4027 /* Get an inode object given its location and corresponding root.
4028 * Returns in *is_new if the inode was read from disk
4029 */
4030 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4031 struct btrfs_root *root, int *new)
4032 {
4033 struct inode *inode;
4034
4035 inode = btrfs_iget_locked(s, location->objectid, root);
4036 if (!inode)
4037 return ERR_PTR(-ENOMEM);
4038
4039 if (inode->i_state & I_NEW) {
4040 BTRFS_I(inode)->root = root;
4041 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4042 btrfs_read_locked_inode(inode);
4043 if (!is_bad_inode(inode)) {
4044 inode_tree_add(inode);
4045 unlock_new_inode(inode);
4046 if (new)
4047 *new = 1;
4048 } else {
4049 unlock_new_inode(inode);
4050 iput(inode);
4051 inode = ERR_PTR(-ESTALE);
4052 }
4053 }
4054
4055 return inode;
4056 }
4057
4058 static struct inode *new_simple_dir(struct super_block *s,
4059 struct btrfs_key *key,
4060 struct btrfs_root *root)
4061 {
4062 struct inode *inode = new_inode(s);
4063
4064 if (!inode)
4065 return ERR_PTR(-ENOMEM);
4066
4067 BTRFS_I(inode)->root = root;
4068 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4069 BTRFS_I(inode)->dummy_inode = 1;
4070
4071 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4072 inode->i_op = &btrfs_dir_ro_inode_operations;
4073 inode->i_fop = &simple_dir_operations;
4074 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4075 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4076
4077 return inode;
4078 }
4079
4080 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4081 {
4082 struct inode *inode;
4083 struct btrfs_root *root = BTRFS_I(dir)->root;
4084 struct btrfs_root *sub_root = root;
4085 struct btrfs_key location;
4086 int index;
4087 int ret = 0;
4088
4089 if (dentry->d_name.len > BTRFS_NAME_LEN)
4090 return ERR_PTR(-ENAMETOOLONG);
4091
4092 if (unlikely(d_need_lookup(dentry))) {
4093 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4094 kfree(dentry->d_fsdata);
4095 dentry->d_fsdata = NULL;
4096 /* This thing is hashed, drop it for now */
4097 d_drop(dentry);
4098 } else {
4099 ret = btrfs_inode_by_name(dir, dentry, &location);
4100 }
4101
4102 if (ret < 0)
4103 return ERR_PTR(ret);
4104
4105 if (location.objectid == 0)
4106 return NULL;
4107
4108 if (location.type == BTRFS_INODE_ITEM_KEY) {
4109 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4110 return inode;
4111 }
4112
4113 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4114
4115 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4116 ret = fixup_tree_root_location(root, dir, dentry,
4117 &location, &sub_root);
4118 if (ret < 0) {
4119 if (ret != -ENOENT)
4120 inode = ERR_PTR(ret);
4121 else
4122 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4123 } else {
4124 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4125 }
4126 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4127
4128 if (!IS_ERR(inode) && root != sub_root) {
4129 down_read(&root->fs_info->cleanup_work_sem);
4130 if (!(inode->i_sb->s_flags & MS_RDONLY))
4131 ret = btrfs_orphan_cleanup(sub_root);
4132 up_read(&root->fs_info->cleanup_work_sem);
4133 if (ret)
4134 inode = ERR_PTR(ret);
4135 }
4136
4137 return inode;
4138 }
4139
4140 static int btrfs_dentry_delete(const struct dentry *dentry)
4141 {
4142 struct btrfs_root *root;
4143 struct inode *inode = dentry->d_inode;
4144
4145 if (!inode && !IS_ROOT(dentry))
4146 inode = dentry->d_parent->d_inode;
4147
4148 if (inode) {
4149 root = BTRFS_I(inode)->root;
4150 if (btrfs_root_refs(&root->root_item) == 0)
4151 return 1;
4152
4153 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4154 return 1;
4155 }
4156 return 0;
4157 }
4158
4159 static void btrfs_dentry_release(struct dentry *dentry)
4160 {
4161 if (dentry->d_fsdata)
4162 kfree(dentry->d_fsdata);
4163 }
4164
4165 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4166 struct nameidata *nd)
4167 {
4168 struct dentry *ret;
4169
4170 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4171 if (unlikely(d_need_lookup(dentry))) {
4172 spin_lock(&dentry->d_lock);
4173 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4174 spin_unlock(&dentry->d_lock);
4175 }
4176 return ret;
4177 }
4178
4179 unsigned char btrfs_filetype_table[] = {
4180 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4181 };
4182
4183 static int btrfs_real_readdir(struct file *filp, void *dirent,
4184 filldir_t filldir)
4185 {
4186 struct inode *inode = filp->f_dentry->d_inode;
4187 struct btrfs_root *root = BTRFS_I(inode)->root;
4188 struct btrfs_item *item;
4189 struct btrfs_dir_item *di;
4190 struct btrfs_key key;
4191 struct btrfs_key found_key;
4192 struct btrfs_path *path;
4193 struct list_head ins_list;
4194 struct list_head del_list;
4195 int ret;
4196 struct extent_buffer *leaf;
4197 int slot;
4198 unsigned char d_type;
4199 int over = 0;
4200 u32 di_cur;
4201 u32 di_total;
4202 u32 di_len;
4203 int key_type = BTRFS_DIR_INDEX_KEY;
4204 char tmp_name[32];
4205 char *name_ptr;
4206 int name_len;
4207 int is_curr = 0; /* filp->f_pos points to the current index? */
4208
4209 /* FIXME, use a real flag for deciding about the key type */
4210 if (root->fs_info->tree_root == root)
4211 key_type = BTRFS_DIR_ITEM_KEY;
4212
4213 /* special case for "." */
4214 if (filp->f_pos == 0) {
4215 over = filldir(dirent, ".", 1,
4216 filp->f_pos, btrfs_ino(inode), DT_DIR);
4217 if (over)
4218 return 0;
4219 filp->f_pos = 1;
4220 }
4221 /* special case for .., just use the back ref */
4222 if (filp->f_pos == 1) {
4223 u64 pino = parent_ino(filp->f_path.dentry);
4224 over = filldir(dirent, "..", 2,
4225 filp->f_pos, pino, DT_DIR);
4226 if (over)
4227 return 0;
4228 filp->f_pos = 2;
4229 }
4230 path = btrfs_alloc_path();
4231 if (!path)
4232 return -ENOMEM;
4233
4234 path->reada = 1;
4235
4236 if (key_type == BTRFS_DIR_INDEX_KEY) {
4237 INIT_LIST_HEAD(&ins_list);
4238 INIT_LIST_HEAD(&del_list);
4239 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4240 }
4241
4242 btrfs_set_key_type(&key, key_type);
4243 key.offset = filp->f_pos;
4244 key.objectid = btrfs_ino(inode);
4245
4246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4247 if (ret < 0)
4248 goto err;
4249
4250 while (1) {
4251 leaf = path->nodes[0];
4252 slot = path->slots[0];
4253 if (slot >= btrfs_header_nritems(leaf)) {
4254 ret = btrfs_next_leaf(root, path);
4255 if (ret < 0)
4256 goto err;
4257 else if (ret > 0)
4258 break;
4259 continue;
4260 }
4261
4262 item = btrfs_item_nr(leaf, slot);
4263 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4264
4265 if (found_key.objectid != key.objectid)
4266 break;
4267 if (btrfs_key_type(&found_key) != key_type)
4268 break;
4269 if (found_key.offset < filp->f_pos)
4270 goto next;
4271 if (key_type == BTRFS_DIR_INDEX_KEY &&
4272 btrfs_should_delete_dir_index(&del_list,
4273 found_key.offset))
4274 goto next;
4275
4276 filp->f_pos = found_key.offset;
4277 is_curr = 1;
4278
4279 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4280 di_cur = 0;
4281 di_total = btrfs_item_size(leaf, item);
4282
4283 while (di_cur < di_total) {
4284 struct btrfs_key location;
4285
4286 if (verify_dir_item(root, leaf, di))
4287 break;
4288
4289 name_len = btrfs_dir_name_len(leaf, di);
4290 if (name_len <= sizeof(tmp_name)) {
4291 name_ptr = tmp_name;
4292 } else {
4293 name_ptr = kmalloc(name_len, GFP_NOFS);
4294 if (!name_ptr) {
4295 ret = -ENOMEM;
4296 goto err;
4297 }
4298 }
4299 read_extent_buffer(leaf, name_ptr,
4300 (unsigned long)(di + 1), name_len);
4301
4302 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4303 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4304
4305
4306 /* is this a reference to our own snapshot? If so
4307 * skip it.
4308 *
4309 * In contrast to old kernels, we insert the snapshot's
4310 * dir item and dir index after it has been created, so
4311 * we won't find a reference to our own snapshot. We
4312 * still keep the following code for backward
4313 * compatibility.
4314 */
4315 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4316 location.objectid == root->root_key.objectid) {
4317 over = 0;
4318 goto skip;
4319 }
4320 over = filldir(dirent, name_ptr, name_len,
4321 found_key.offset, location.objectid,
4322 d_type);
4323
4324 skip:
4325 if (name_ptr != tmp_name)
4326 kfree(name_ptr);
4327
4328 if (over)
4329 goto nopos;
4330 di_len = btrfs_dir_name_len(leaf, di) +
4331 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4332 di_cur += di_len;
4333 di = (struct btrfs_dir_item *)((char *)di + di_len);
4334 }
4335 next:
4336 path->slots[0]++;
4337 }
4338
4339 if (key_type == BTRFS_DIR_INDEX_KEY) {
4340 if (is_curr)
4341 filp->f_pos++;
4342 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4343 &ins_list);
4344 if (ret)
4345 goto nopos;
4346 }
4347
4348 /* Reached end of directory/root. Bump pos past the last item. */
4349 if (key_type == BTRFS_DIR_INDEX_KEY)
4350 /*
4351 * 32-bit glibc will use getdents64, but then strtol -
4352 * so the last number we can serve is this.
4353 */
4354 filp->f_pos = 0x7fffffff;
4355 else
4356 filp->f_pos++;
4357 nopos:
4358 ret = 0;
4359 err:
4360 if (key_type == BTRFS_DIR_INDEX_KEY)
4361 btrfs_put_delayed_items(&ins_list, &del_list);
4362 btrfs_free_path(path);
4363 return ret;
4364 }
4365
4366 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4367 {
4368 struct btrfs_root *root = BTRFS_I(inode)->root;
4369 struct btrfs_trans_handle *trans;
4370 int ret = 0;
4371 bool nolock = false;
4372
4373 if (BTRFS_I(inode)->dummy_inode)
4374 return 0;
4375
4376 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4377 nolock = true;
4378
4379 if (wbc->sync_mode == WB_SYNC_ALL) {
4380 if (nolock)
4381 trans = btrfs_join_transaction_nolock(root);
4382 else
4383 trans = btrfs_join_transaction(root);
4384 if (IS_ERR(trans))
4385 return PTR_ERR(trans);
4386 if (nolock)
4387 ret = btrfs_end_transaction_nolock(trans, root);
4388 else
4389 ret = btrfs_commit_transaction(trans, root);
4390 }
4391 return ret;
4392 }
4393
4394 /*
4395 * This is somewhat expensive, updating the tree every time the
4396 * inode changes. But, it is most likely to find the inode in cache.
4397 * FIXME, needs more benchmarking...there are no reasons other than performance
4398 * to keep or drop this code.
4399 */
4400 int btrfs_dirty_inode(struct inode *inode)
4401 {
4402 struct btrfs_root *root = BTRFS_I(inode)->root;
4403 struct btrfs_trans_handle *trans;
4404 int ret;
4405
4406 if (BTRFS_I(inode)->dummy_inode)
4407 return 0;
4408
4409 trans = btrfs_join_transaction(root);
4410 if (IS_ERR(trans))
4411 return PTR_ERR(trans);
4412
4413 ret = btrfs_update_inode(trans, root, inode);
4414 if (ret && ret == -ENOSPC) {
4415 /* whoops, lets try again with the full transaction */
4416 btrfs_end_transaction(trans, root);
4417 trans = btrfs_start_transaction(root, 1);
4418 if (IS_ERR(trans))
4419 return PTR_ERR(trans);
4420
4421 ret = btrfs_update_inode(trans, root, inode);
4422 }
4423 btrfs_end_transaction(trans, root);
4424 if (BTRFS_I(inode)->delayed_node)
4425 btrfs_balance_delayed_items(root);
4426
4427 return ret;
4428 }
4429
4430 /*
4431 * This is a copy of file_update_time. We need this so we can return error on
4432 * ENOSPC for updating the inode in the case of file write and mmap writes.
4433 */
4434 int btrfs_update_time(struct file *file)
4435 {
4436 struct inode *inode = file->f_path.dentry->d_inode;
4437 struct timespec now;
4438 int ret;
4439 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4440
4441 /* First try to exhaust all avenues to not sync */
4442 if (IS_NOCMTIME(inode))
4443 return 0;
4444
4445 now = current_fs_time(inode->i_sb);
4446 if (!timespec_equal(&inode->i_mtime, &now))
4447 sync_it = S_MTIME;
4448
4449 if (!timespec_equal(&inode->i_ctime, &now))
4450 sync_it |= S_CTIME;
4451
4452 if (IS_I_VERSION(inode))
4453 sync_it |= S_VERSION;
4454
4455 if (!sync_it)
4456 return 0;
4457
4458 /* Finally allowed to write? Takes lock. */
4459 if (mnt_want_write_file(file))
4460 return 0;
4461
4462 /* Only change inode inside the lock region */
4463 if (sync_it & S_VERSION)
4464 inode_inc_iversion(inode);
4465 if (sync_it & S_CTIME)
4466 inode->i_ctime = now;
4467 if (sync_it & S_MTIME)
4468 inode->i_mtime = now;
4469 ret = btrfs_dirty_inode(inode);
4470 if (!ret)
4471 mark_inode_dirty_sync(inode);
4472 mnt_drop_write(file->f_path.mnt);
4473 return ret;
4474 }
4475
4476 /*
4477 * find the highest existing sequence number in a directory
4478 * and then set the in-memory index_cnt variable to reflect
4479 * free sequence numbers
4480 */
4481 static int btrfs_set_inode_index_count(struct inode *inode)
4482 {
4483 struct btrfs_root *root = BTRFS_I(inode)->root;
4484 struct btrfs_key key, found_key;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 int ret;
4488
4489 key.objectid = btrfs_ino(inode);
4490 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4491 key.offset = (u64)-1;
4492
4493 path = btrfs_alloc_path();
4494 if (!path)
4495 return -ENOMEM;
4496
4497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4498 if (ret < 0)
4499 goto out;
4500 /* FIXME: we should be able to handle this */
4501 if (ret == 0)
4502 goto out;
4503 ret = 0;
4504
4505 /*
4506 * MAGIC NUMBER EXPLANATION:
4507 * since we search a directory based on f_pos we have to start at 2
4508 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4509 * else has to start at 2
4510 */
4511 if (path->slots[0] == 0) {
4512 BTRFS_I(inode)->index_cnt = 2;
4513 goto out;
4514 }
4515
4516 path->slots[0]--;
4517
4518 leaf = path->nodes[0];
4519 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4520
4521 if (found_key.objectid != btrfs_ino(inode) ||
4522 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4523 BTRFS_I(inode)->index_cnt = 2;
4524 goto out;
4525 }
4526
4527 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4528 out:
4529 btrfs_free_path(path);
4530 return ret;
4531 }
4532
4533 /*
4534 * helper to find a free sequence number in a given directory. This current
4535 * code is very simple, later versions will do smarter things in the btree
4536 */
4537 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4538 {
4539 int ret = 0;
4540
4541 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4542 ret = btrfs_inode_delayed_dir_index_count(dir);
4543 if (ret) {
4544 ret = btrfs_set_inode_index_count(dir);
4545 if (ret)
4546 return ret;
4547 }
4548 }
4549
4550 *index = BTRFS_I(dir)->index_cnt;
4551 BTRFS_I(dir)->index_cnt++;
4552
4553 return ret;
4554 }
4555
4556 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4557 struct btrfs_root *root,
4558 struct inode *dir,
4559 const char *name, int name_len,
4560 u64 ref_objectid, u64 objectid,
4561 umode_t mode, u64 *index)
4562 {
4563 struct inode *inode;
4564 struct btrfs_inode_item *inode_item;
4565 struct btrfs_key *location;
4566 struct btrfs_path *path;
4567 struct btrfs_inode_ref *ref;
4568 struct btrfs_key key[2];
4569 u32 sizes[2];
4570 unsigned long ptr;
4571 int ret;
4572 int owner;
4573
4574 path = btrfs_alloc_path();
4575 if (!path)
4576 return ERR_PTR(-ENOMEM);
4577
4578 inode = new_inode(root->fs_info->sb);
4579 if (!inode) {
4580 btrfs_free_path(path);
4581 return ERR_PTR(-ENOMEM);
4582 }
4583
4584 /*
4585 * we have to initialize this early, so we can reclaim the inode
4586 * number if we fail afterwards in this function.
4587 */
4588 inode->i_ino = objectid;
4589
4590 if (dir) {
4591 trace_btrfs_inode_request(dir);
4592
4593 ret = btrfs_set_inode_index(dir, index);
4594 if (ret) {
4595 btrfs_free_path(path);
4596 iput(inode);
4597 return ERR_PTR(ret);
4598 }
4599 }
4600 /*
4601 * index_cnt is ignored for everything but a dir,
4602 * btrfs_get_inode_index_count has an explanation for the magic
4603 * number
4604 */
4605 BTRFS_I(inode)->index_cnt = 2;
4606 BTRFS_I(inode)->root = root;
4607 BTRFS_I(inode)->generation = trans->transid;
4608 inode->i_generation = BTRFS_I(inode)->generation;
4609 btrfs_set_inode_space_info(root, inode);
4610
4611 if (S_ISDIR(mode))
4612 owner = 0;
4613 else
4614 owner = 1;
4615
4616 key[0].objectid = objectid;
4617 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4618 key[0].offset = 0;
4619
4620 key[1].objectid = objectid;
4621 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4622 key[1].offset = ref_objectid;
4623
4624 sizes[0] = sizeof(struct btrfs_inode_item);
4625 sizes[1] = name_len + sizeof(*ref);
4626
4627 path->leave_spinning = 1;
4628 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4629 if (ret != 0)
4630 goto fail;
4631
4632 inode_init_owner(inode, dir, mode);
4633 inode_set_bytes(inode, 0);
4634 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4635 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4636 struct btrfs_inode_item);
4637 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4638
4639 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4640 struct btrfs_inode_ref);
4641 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4642 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4643 ptr = (unsigned long)(ref + 1);
4644 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4645
4646 btrfs_mark_buffer_dirty(path->nodes[0]);
4647 btrfs_free_path(path);
4648
4649 location = &BTRFS_I(inode)->location;
4650 location->objectid = objectid;
4651 location->offset = 0;
4652 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4653
4654 btrfs_inherit_iflags(inode, dir);
4655
4656 if (S_ISREG(mode)) {
4657 if (btrfs_test_opt(root, NODATASUM))
4658 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4659 if (btrfs_test_opt(root, NODATACOW) ||
4660 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4661 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4662 }
4663
4664 insert_inode_hash(inode);
4665 inode_tree_add(inode);
4666
4667 trace_btrfs_inode_new(inode);
4668 btrfs_set_inode_last_trans(trans, inode);
4669
4670 return inode;
4671 fail:
4672 if (dir)
4673 BTRFS_I(dir)->index_cnt--;
4674 btrfs_free_path(path);
4675 iput(inode);
4676 return ERR_PTR(ret);
4677 }
4678
4679 static inline u8 btrfs_inode_type(struct inode *inode)
4680 {
4681 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4682 }
4683
4684 /*
4685 * utility function to add 'inode' into 'parent_inode' with
4686 * a give name and a given sequence number.
4687 * if 'add_backref' is true, also insert a backref from the
4688 * inode to the parent directory.
4689 */
4690 int btrfs_add_link(struct btrfs_trans_handle *trans,
4691 struct inode *parent_inode, struct inode *inode,
4692 const char *name, int name_len, int add_backref, u64 index)
4693 {
4694 int ret = 0;
4695 struct btrfs_key key;
4696 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4697 u64 ino = btrfs_ino(inode);
4698 u64 parent_ino = btrfs_ino(parent_inode);
4699
4700 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4701 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4702 } else {
4703 key.objectid = ino;
4704 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4705 key.offset = 0;
4706 }
4707
4708 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4709 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4710 key.objectid, root->root_key.objectid,
4711 parent_ino, index, name, name_len);
4712 } else if (add_backref) {
4713 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4714 parent_ino, index);
4715 }
4716
4717 /* Nothing to clean up yet */
4718 if (ret)
4719 return ret;
4720
4721 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4722 parent_inode, &key,
4723 btrfs_inode_type(inode), index);
4724 if (ret == -EEXIST)
4725 goto fail_dir_item;
4726 else if (ret) {
4727 btrfs_abort_transaction(trans, root, ret);
4728 return ret;
4729 }
4730
4731 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4732 name_len * 2);
4733 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4734 ret = btrfs_update_inode(trans, root, parent_inode);
4735 if (ret)
4736 btrfs_abort_transaction(trans, root, ret);
4737 return ret;
4738
4739 fail_dir_item:
4740 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4741 u64 local_index;
4742 int err;
4743 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4744 key.objectid, root->root_key.objectid,
4745 parent_ino, &local_index, name, name_len);
4746
4747 } else if (add_backref) {
4748 u64 local_index;
4749 int err;
4750
4751 err = btrfs_del_inode_ref(trans, root, name, name_len,
4752 ino, parent_ino, &local_index);
4753 }
4754 return ret;
4755 }
4756
4757 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4758 struct inode *dir, struct dentry *dentry,
4759 struct inode *inode, int backref, u64 index)
4760 {
4761 int err = btrfs_add_link(trans, dir, inode,
4762 dentry->d_name.name, dentry->d_name.len,
4763 backref, index);
4764 if (err > 0)
4765 err = -EEXIST;
4766 return err;
4767 }
4768
4769 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4770 umode_t mode, dev_t rdev)
4771 {
4772 struct btrfs_trans_handle *trans;
4773 struct btrfs_root *root = BTRFS_I(dir)->root;
4774 struct inode *inode = NULL;
4775 int err;
4776 int drop_inode = 0;
4777 u64 objectid;
4778 unsigned long nr = 0;
4779 u64 index = 0;
4780
4781 if (!new_valid_dev(rdev))
4782 return -EINVAL;
4783
4784 /*
4785 * 2 for inode item and ref
4786 * 2 for dir items
4787 * 1 for xattr if selinux is on
4788 */
4789 trans = btrfs_start_transaction(root, 5);
4790 if (IS_ERR(trans))
4791 return PTR_ERR(trans);
4792
4793 err = btrfs_find_free_ino(root, &objectid);
4794 if (err)
4795 goto out_unlock;
4796
4797 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4798 dentry->d_name.len, btrfs_ino(dir), objectid,
4799 mode, &index);
4800 if (IS_ERR(inode)) {
4801 err = PTR_ERR(inode);
4802 goto out_unlock;
4803 }
4804
4805 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4806 if (err) {
4807 drop_inode = 1;
4808 goto out_unlock;
4809 }
4810
4811 /*
4812 * If the active LSM wants to access the inode during
4813 * d_instantiate it needs these. Smack checks to see
4814 * if the filesystem supports xattrs by looking at the
4815 * ops vector.
4816 */
4817
4818 inode->i_op = &btrfs_special_inode_operations;
4819 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4820 if (err)
4821 drop_inode = 1;
4822 else {
4823 init_special_inode(inode, inode->i_mode, rdev);
4824 btrfs_update_inode(trans, root, inode);
4825 d_instantiate(dentry, inode);
4826 }
4827 out_unlock:
4828 nr = trans->blocks_used;
4829 btrfs_end_transaction(trans, root);
4830 btrfs_btree_balance_dirty(root, nr);
4831 if (drop_inode) {
4832 inode_dec_link_count(inode);
4833 iput(inode);
4834 }
4835 return err;
4836 }
4837
4838 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4839 umode_t mode, struct nameidata *nd)
4840 {
4841 struct btrfs_trans_handle *trans;
4842 struct btrfs_root *root = BTRFS_I(dir)->root;
4843 struct inode *inode = NULL;
4844 int drop_inode = 0;
4845 int err;
4846 unsigned long nr = 0;
4847 u64 objectid;
4848 u64 index = 0;
4849
4850 /*
4851 * 2 for inode item and ref
4852 * 2 for dir items
4853 * 1 for xattr if selinux is on
4854 */
4855 trans = btrfs_start_transaction(root, 5);
4856 if (IS_ERR(trans))
4857 return PTR_ERR(trans);
4858
4859 err = btrfs_find_free_ino(root, &objectid);
4860 if (err)
4861 goto out_unlock;
4862
4863 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4864 dentry->d_name.len, btrfs_ino(dir), objectid,
4865 mode, &index);
4866 if (IS_ERR(inode)) {
4867 err = PTR_ERR(inode);
4868 goto out_unlock;
4869 }
4870
4871 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4872 if (err) {
4873 drop_inode = 1;
4874 goto out_unlock;
4875 }
4876
4877 /*
4878 * If the active LSM wants to access the inode during
4879 * d_instantiate it needs these. Smack checks to see
4880 * if the filesystem supports xattrs by looking at the
4881 * ops vector.
4882 */
4883 inode->i_fop = &btrfs_file_operations;
4884 inode->i_op = &btrfs_file_inode_operations;
4885
4886 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4887 if (err)
4888 drop_inode = 1;
4889 else {
4890 inode->i_mapping->a_ops = &btrfs_aops;
4891 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4892 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4893 d_instantiate(dentry, inode);
4894 }
4895 out_unlock:
4896 nr = trans->blocks_used;
4897 btrfs_end_transaction(trans, root);
4898 if (drop_inode) {
4899 inode_dec_link_count(inode);
4900 iput(inode);
4901 }
4902 btrfs_btree_balance_dirty(root, nr);
4903 return err;
4904 }
4905
4906 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4907 struct dentry *dentry)
4908 {
4909 struct btrfs_trans_handle *trans;
4910 struct btrfs_root *root = BTRFS_I(dir)->root;
4911 struct inode *inode = old_dentry->d_inode;
4912 u64 index;
4913 unsigned long nr = 0;
4914 int err;
4915 int drop_inode = 0;
4916
4917 /* do not allow sys_link's with other subvols of the same device */
4918 if (root->objectid != BTRFS_I(inode)->root->objectid)
4919 return -EXDEV;
4920
4921 if (inode->i_nlink == ~0U)
4922 return -EMLINK;
4923
4924 err = btrfs_set_inode_index(dir, &index);
4925 if (err)
4926 goto fail;
4927
4928 /*
4929 * 2 items for inode and inode ref
4930 * 2 items for dir items
4931 * 1 item for parent inode
4932 */
4933 trans = btrfs_start_transaction(root, 5);
4934 if (IS_ERR(trans)) {
4935 err = PTR_ERR(trans);
4936 goto fail;
4937 }
4938
4939 btrfs_inc_nlink(inode);
4940 inode->i_ctime = CURRENT_TIME;
4941 ihold(inode);
4942
4943 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4944
4945 if (err) {
4946 drop_inode = 1;
4947 } else {
4948 struct dentry *parent = dentry->d_parent;
4949 err = btrfs_update_inode(trans, root, inode);
4950 if (err)
4951 goto fail;
4952 d_instantiate(dentry, inode);
4953 btrfs_log_new_name(trans, inode, NULL, parent);
4954 }
4955
4956 nr = trans->blocks_used;
4957 btrfs_end_transaction(trans, root);
4958 fail:
4959 if (drop_inode) {
4960 inode_dec_link_count(inode);
4961 iput(inode);
4962 }
4963 btrfs_btree_balance_dirty(root, nr);
4964 return err;
4965 }
4966
4967 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4968 {
4969 struct inode *inode = NULL;
4970 struct btrfs_trans_handle *trans;
4971 struct btrfs_root *root = BTRFS_I(dir)->root;
4972 int err = 0;
4973 int drop_on_err = 0;
4974 u64 objectid = 0;
4975 u64 index = 0;
4976 unsigned long nr = 1;
4977
4978 /*
4979 * 2 items for inode and ref
4980 * 2 items for dir items
4981 * 1 for xattr if selinux is on
4982 */
4983 trans = btrfs_start_transaction(root, 5);
4984 if (IS_ERR(trans))
4985 return PTR_ERR(trans);
4986
4987 err = btrfs_find_free_ino(root, &objectid);
4988 if (err)
4989 goto out_fail;
4990
4991 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4992 dentry->d_name.len, btrfs_ino(dir), objectid,
4993 S_IFDIR | mode, &index);
4994 if (IS_ERR(inode)) {
4995 err = PTR_ERR(inode);
4996 goto out_fail;
4997 }
4998
4999 drop_on_err = 1;
5000
5001 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5002 if (err)
5003 goto out_fail;
5004
5005 inode->i_op = &btrfs_dir_inode_operations;
5006 inode->i_fop = &btrfs_dir_file_operations;
5007
5008 btrfs_i_size_write(inode, 0);
5009 err = btrfs_update_inode(trans, root, inode);
5010 if (err)
5011 goto out_fail;
5012
5013 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5014 dentry->d_name.len, 0, index);
5015 if (err)
5016 goto out_fail;
5017
5018 d_instantiate(dentry, inode);
5019 drop_on_err = 0;
5020
5021 out_fail:
5022 nr = trans->blocks_used;
5023 btrfs_end_transaction(trans, root);
5024 if (drop_on_err)
5025 iput(inode);
5026 btrfs_btree_balance_dirty(root, nr);
5027 return err;
5028 }
5029
5030 /* helper for btfs_get_extent. Given an existing extent in the tree,
5031 * and an extent that you want to insert, deal with overlap and insert
5032 * the new extent into the tree.
5033 */
5034 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5035 struct extent_map *existing,
5036 struct extent_map *em,
5037 u64 map_start, u64 map_len)
5038 {
5039 u64 start_diff;
5040
5041 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5042 start_diff = map_start - em->start;
5043 em->start = map_start;
5044 em->len = map_len;
5045 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5046 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5047 em->block_start += start_diff;
5048 em->block_len -= start_diff;
5049 }
5050 return add_extent_mapping(em_tree, em);
5051 }
5052
5053 static noinline int uncompress_inline(struct btrfs_path *path,
5054 struct inode *inode, struct page *page,
5055 size_t pg_offset, u64 extent_offset,
5056 struct btrfs_file_extent_item *item)
5057 {
5058 int ret;
5059 struct extent_buffer *leaf = path->nodes[0];
5060 char *tmp;
5061 size_t max_size;
5062 unsigned long inline_size;
5063 unsigned long ptr;
5064 int compress_type;
5065
5066 WARN_ON(pg_offset != 0);
5067 compress_type = btrfs_file_extent_compression(leaf, item);
5068 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5069 inline_size = btrfs_file_extent_inline_item_len(leaf,
5070 btrfs_item_nr(leaf, path->slots[0]));
5071 tmp = kmalloc(inline_size, GFP_NOFS);
5072 if (!tmp)
5073 return -ENOMEM;
5074 ptr = btrfs_file_extent_inline_start(item);
5075
5076 read_extent_buffer(leaf, tmp, ptr, inline_size);
5077
5078 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5079 ret = btrfs_decompress(compress_type, tmp, page,
5080 extent_offset, inline_size, max_size);
5081 if (ret) {
5082 char *kaddr = kmap_atomic(page);
5083 unsigned long copy_size = min_t(u64,
5084 PAGE_CACHE_SIZE - pg_offset,
5085 max_size - extent_offset);
5086 memset(kaddr + pg_offset, 0, copy_size);
5087 kunmap_atomic(kaddr);
5088 }
5089 kfree(tmp);
5090 return 0;
5091 }
5092
5093 /*
5094 * a bit scary, this does extent mapping from logical file offset to the disk.
5095 * the ugly parts come from merging extents from the disk with the in-ram
5096 * representation. This gets more complex because of the data=ordered code,
5097 * where the in-ram extents might be locked pending data=ordered completion.
5098 *
5099 * This also copies inline extents directly into the page.
5100 */
5101
5102 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5103 size_t pg_offset, u64 start, u64 len,
5104 int create)
5105 {
5106 int ret;
5107 int err = 0;
5108 u64 bytenr;
5109 u64 extent_start = 0;
5110 u64 extent_end = 0;
5111 u64 objectid = btrfs_ino(inode);
5112 u32 found_type;
5113 struct btrfs_path *path = NULL;
5114 struct btrfs_root *root = BTRFS_I(inode)->root;
5115 struct btrfs_file_extent_item *item;
5116 struct extent_buffer *leaf;
5117 struct btrfs_key found_key;
5118 struct extent_map *em = NULL;
5119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5120 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5121 struct btrfs_trans_handle *trans = NULL;
5122 int compress_type;
5123
5124 again:
5125 read_lock(&em_tree->lock);
5126 em = lookup_extent_mapping(em_tree, start, len);
5127 if (em)
5128 em->bdev = root->fs_info->fs_devices->latest_bdev;
5129 read_unlock(&em_tree->lock);
5130
5131 if (em) {
5132 if (em->start > start || em->start + em->len <= start)
5133 free_extent_map(em);
5134 else if (em->block_start == EXTENT_MAP_INLINE && page)
5135 free_extent_map(em);
5136 else
5137 goto out;
5138 }
5139 em = alloc_extent_map();
5140 if (!em) {
5141 err = -ENOMEM;
5142 goto out;
5143 }
5144 em->bdev = root->fs_info->fs_devices->latest_bdev;
5145 em->start = EXTENT_MAP_HOLE;
5146 em->orig_start = EXTENT_MAP_HOLE;
5147 em->len = (u64)-1;
5148 em->block_len = (u64)-1;
5149
5150 if (!path) {
5151 path = btrfs_alloc_path();
5152 if (!path) {
5153 err = -ENOMEM;
5154 goto out;
5155 }
5156 /*
5157 * Chances are we'll be called again, so go ahead and do
5158 * readahead
5159 */
5160 path->reada = 1;
5161 }
5162
5163 ret = btrfs_lookup_file_extent(trans, root, path,
5164 objectid, start, trans != NULL);
5165 if (ret < 0) {
5166 err = ret;
5167 goto out;
5168 }
5169
5170 if (ret != 0) {
5171 if (path->slots[0] == 0)
5172 goto not_found;
5173 path->slots[0]--;
5174 }
5175
5176 leaf = path->nodes[0];
5177 item = btrfs_item_ptr(leaf, path->slots[0],
5178 struct btrfs_file_extent_item);
5179 /* are we inside the extent that was found? */
5180 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5181 found_type = btrfs_key_type(&found_key);
5182 if (found_key.objectid != objectid ||
5183 found_type != BTRFS_EXTENT_DATA_KEY) {
5184 goto not_found;
5185 }
5186
5187 found_type = btrfs_file_extent_type(leaf, item);
5188 extent_start = found_key.offset;
5189 compress_type = btrfs_file_extent_compression(leaf, item);
5190 if (found_type == BTRFS_FILE_EXTENT_REG ||
5191 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5192 extent_end = extent_start +
5193 btrfs_file_extent_num_bytes(leaf, item);
5194 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5195 size_t size;
5196 size = btrfs_file_extent_inline_len(leaf, item);
5197 extent_end = (extent_start + size + root->sectorsize - 1) &
5198 ~((u64)root->sectorsize - 1);
5199 }
5200
5201 if (start >= extent_end) {
5202 path->slots[0]++;
5203 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5204 ret = btrfs_next_leaf(root, path);
5205 if (ret < 0) {
5206 err = ret;
5207 goto out;
5208 }
5209 if (ret > 0)
5210 goto not_found;
5211 leaf = path->nodes[0];
5212 }
5213 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5214 if (found_key.objectid != objectid ||
5215 found_key.type != BTRFS_EXTENT_DATA_KEY)
5216 goto not_found;
5217 if (start + len <= found_key.offset)
5218 goto not_found;
5219 em->start = start;
5220 em->len = found_key.offset - start;
5221 goto not_found_em;
5222 }
5223
5224 if (found_type == BTRFS_FILE_EXTENT_REG ||
5225 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5226 em->start = extent_start;
5227 em->len = extent_end - extent_start;
5228 em->orig_start = extent_start -
5229 btrfs_file_extent_offset(leaf, item);
5230 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5231 if (bytenr == 0) {
5232 em->block_start = EXTENT_MAP_HOLE;
5233 goto insert;
5234 }
5235 if (compress_type != BTRFS_COMPRESS_NONE) {
5236 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5237 em->compress_type = compress_type;
5238 em->block_start = bytenr;
5239 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5240 item);
5241 } else {
5242 bytenr += btrfs_file_extent_offset(leaf, item);
5243 em->block_start = bytenr;
5244 em->block_len = em->len;
5245 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5246 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5247 }
5248 goto insert;
5249 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5250 unsigned long ptr;
5251 char *map;
5252 size_t size;
5253 size_t extent_offset;
5254 size_t copy_size;
5255
5256 em->block_start = EXTENT_MAP_INLINE;
5257 if (!page || create) {
5258 em->start = extent_start;
5259 em->len = extent_end - extent_start;
5260 goto out;
5261 }
5262
5263 size = btrfs_file_extent_inline_len(leaf, item);
5264 extent_offset = page_offset(page) + pg_offset - extent_start;
5265 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5266 size - extent_offset);
5267 em->start = extent_start + extent_offset;
5268 em->len = (copy_size + root->sectorsize - 1) &
5269 ~((u64)root->sectorsize - 1);
5270 em->orig_start = EXTENT_MAP_INLINE;
5271 if (compress_type) {
5272 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5273 em->compress_type = compress_type;
5274 }
5275 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5276 if (create == 0 && !PageUptodate(page)) {
5277 if (btrfs_file_extent_compression(leaf, item) !=
5278 BTRFS_COMPRESS_NONE) {
5279 ret = uncompress_inline(path, inode, page,
5280 pg_offset,
5281 extent_offset, item);
5282 BUG_ON(ret); /* -ENOMEM */
5283 } else {
5284 map = kmap(page);
5285 read_extent_buffer(leaf, map + pg_offset, ptr,
5286 copy_size);
5287 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5288 memset(map + pg_offset + copy_size, 0,
5289 PAGE_CACHE_SIZE - pg_offset -
5290 copy_size);
5291 }
5292 kunmap(page);
5293 }
5294 flush_dcache_page(page);
5295 } else if (create && PageUptodate(page)) {
5296 BUG();
5297 if (!trans) {
5298 kunmap(page);
5299 free_extent_map(em);
5300 em = NULL;
5301
5302 btrfs_release_path(path);
5303 trans = btrfs_join_transaction(root);
5304
5305 if (IS_ERR(trans))
5306 return ERR_CAST(trans);
5307 goto again;
5308 }
5309 map = kmap(page);
5310 write_extent_buffer(leaf, map + pg_offset, ptr,
5311 copy_size);
5312 kunmap(page);
5313 btrfs_mark_buffer_dirty(leaf);
5314 }
5315 set_extent_uptodate(io_tree, em->start,
5316 extent_map_end(em) - 1, NULL, GFP_NOFS);
5317 goto insert;
5318 } else {
5319 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5320 WARN_ON(1);
5321 }
5322 not_found:
5323 em->start = start;
5324 em->len = len;
5325 not_found_em:
5326 em->block_start = EXTENT_MAP_HOLE;
5327 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5328 insert:
5329 btrfs_release_path(path);
5330 if (em->start > start || extent_map_end(em) <= start) {
5331 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5332 "[%llu %llu]\n", (unsigned long long)em->start,
5333 (unsigned long long)em->len,
5334 (unsigned long long)start,
5335 (unsigned long long)len);
5336 err = -EIO;
5337 goto out;
5338 }
5339
5340 err = 0;
5341 write_lock(&em_tree->lock);
5342 ret = add_extent_mapping(em_tree, em);
5343 /* it is possible that someone inserted the extent into the tree
5344 * while we had the lock dropped. It is also possible that
5345 * an overlapping map exists in the tree
5346 */
5347 if (ret == -EEXIST) {
5348 struct extent_map *existing;
5349
5350 ret = 0;
5351
5352 existing = lookup_extent_mapping(em_tree, start, len);
5353 if (existing && (existing->start > start ||
5354 existing->start + existing->len <= start)) {
5355 free_extent_map(existing);
5356 existing = NULL;
5357 }
5358 if (!existing) {
5359 existing = lookup_extent_mapping(em_tree, em->start,
5360 em->len);
5361 if (existing) {
5362 err = merge_extent_mapping(em_tree, existing,
5363 em, start,
5364 root->sectorsize);
5365 free_extent_map(existing);
5366 if (err) {
5367 free_extent_map(em);
5368 em = NULL;
5369 }
5370 } else {
5371 err = -EIO;
5372 free_extent_map(em);
5373 em = NULL;
5374 }
5375 } else {
5376 free_extent_map(em);
5377 em = existing;
5378 err = 0;
5379 }
5380 }
5381 write_unlock(&em_tree->lock);
5382 out:
5383
5384 trace_btrfs_get_extent(root, em);
5385
5386 if (path)
5387 btrfs_free_path(path);
5388 if (trans) {
5389 ret = btrfs_end_transaction(trans, root);
5390 if (!err)
5391 err = ret;
5392 }
5393 if (err) {
5394 free_extent_map(em);
5395 return ERR_PTR(err);
5396 }
5397 BUG_ON(!em); /* Error is always set */
5398 return em;
5399 }
5400
5401 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5402 size_t pg_offset, u64 start, u64 len,
5403 int create)
5404 {
5405 struct extent_map *em;
5406 struct extent_map *hole_em = NULL;
5407 u64 range_start = start;
5408 u64 end;
5409 u64 found;
5410 u64 found_end;
5411 int err = 0;
5412
5413 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5414 if (IS_ERR(em))
5415 return em;
5416 if (em) {
5417 /*
5418 * if our em maps to a hole, there might
5419 * actually be delalloc bytes behind it
5420 */
5421 if (em->block_start != EXTENT_MAP_HOLE)
5422 return em;
5423 else
5424 hole_em = em;
5425 }
5426
5427 /* check to see if we've wrapped (len == -1 or similar) */
5428 end = start + len;
5429 if (end < start)
5430 end = (u64)-1;
5431 else
5432 end -= 1;
5433
5434 em = NULL;
5435
5436 /* ok, we didn't find anything, lets look for delalloc */
5437 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5438 end, len, EXTENT_DELALLOC, 1);
5439 found_end = range_start + found;
5440 if (found_end < range_start)
5441 found_end = (u64)-1;
5442
5443 /*
5444 * we didn't find anything useful, return
5445 * the original results from get_extent()
5446 */
5447 if (range_start > end || found_end <= start) {
5448 em = hole_em;
5449 hole_em = NULL;
5450 goto out;
5451 }
5452
5453 /* adjust the range_start to make sure it doesn't
5454 * go backwards from the start they passed in
5455 */
5456 range_start = max(start,range_start);
5457 found = found_end - range_start;
5458
5459 if (found > 0) {
5460 u64 hole_start = start;
5461 u64 hole_len = len;
5462
5463 em = alloc_extent_map();
5464 if (!em) {
5465 err = -ENOMEM;
5466 goto out;
5467 }
5468 /*
5469 * when btrfs_get_extent can't find anything it
5470 * returns one huge hole
5471 *
5472 * make sure what it found really fits our range, and
5473 * adjust to make sure it is based on the start from
5474 * the caller
5475 */
5476 if (hole_em) {
5477 u64 calc_end = extent_map_end(hole_em);
5478
5479 if (calc_end <= start || (hole_em->start > end)) {
5480 free_extent_map(hole_em);
5481 hole_em = NULL;
5482 } else {
5483 hole_start = max(hole_em->start, start);
5484 hole_len = calc_end - hole_start;
5485 }
5486 }
5487 em->bdev = NULL;
5488 if (hole_em && range_start > hole_start) {
5489 /* our hole starts before our delalloc, so we
5490 * have to return just the parts of the hole
5491 * that go until the delalloc starts
5492 */
5493 em->len = min(hole_len,
5494 range_start - hole_start);
5495 em->start = hole_start;
5496 em->orig_start = hole_start;
5497 /*
5498 * don't adjust block start at all,
5499 * it is fixed at EXTENT_MAP_HOLE
5500 */
5501 em->block_start = hole_em->block_start;
5502 em->block_len = hole_len;
5503 } else {
5504 em->start = range_start;
5505 em->len = found;
5506 em->orig_start = range_start;
5507 em->block_start = EXTENT_MAP_DELALLOC;
5508 em->block_len = found;
5509 }
5510 } else if (hole_em) {
5511 return hole_em;
5512 }
5513 out:
5514
5515 free_extent_map(hole_em);
5516 if (err) {
5517 free_extent_map(em);
5518 return ERR_PTR(err);
5519 }
5520 return em;
5521 }
5522
5523 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5524 struct extent_map *em,
5525 u64 start, u64 len)
5526 {
5527 struct btrfs_root *root = BTRFS_I(inode)->root;
5528 struct btrfs_trans_handle *trans;
5529 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5530 struct btrfs_key ins;
5531 u64 alloc_hint;
5532 int ret;
5533 bool insert = false;
5534
5535 /*
5536 * Ok if the extent map we looked up is a hole and is for the exact
5537 * range we want, there is no reason to allocate a new one, however if
5538 * it is not right then we need to free this one and drop the cache for
5539 * our range.
5540 */
5541 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5542 em->len != len) {
5543 free_extent_map(em);
5544 em = NULL;
5545 insert = true;
5546 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5547 }
5548
5549 trans = btrfs_join_transaction(root);
5550 if (IS_ERR(trans))
5551 return ERR_CAST(trans);
5552
5553 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5554 btrfs_add_inode_defrag(trans, inode);
5555
5556 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5557
5558 alloc_hint = get_extent_allocation_hint(inode, start, len);
5559 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5560 alloc_hint, &ins, 1);
5561 if (ret) {
5562 em = ERR_PTR(ret);
5563 goto out;
5564 }
5565
5566 if (!em) {
5567 em = alloc_extent_map();
5568 if (!em) {
5569 em = ERR_PTR(-ENOMEM);
5570 goto out;
5571 }
5572 }
5573
5574 em->start = start;
5575 em->orig_start = em->start;
5576 em->len = ins.offset;
5577
5578 em->block_start = ins.objectid;
5579 em->block_len = ins.offset;
5580 em->bdev = root->fs_info->fs_devices->latest_bdev;
5581
5582 /*
5583 * We need to do this because if we're using the original em we searched
5584 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5585 */
5586 em->flags = 0;
5587 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5588
5589 while (insert) {
5590 write_lock(&em_tree->lock);
5591 ret = add_extent_mapping(em_tree, em);
5592 write_unlock(&em_tree->lock);
5593 if (ret != -EEXIST)
5594 break;
5595 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5596 }
5597
5598 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5599 ins.offset, ins.offset, 0);
5600 if (ret) {
5601 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5602 em = ERR_PTR(ret);
5603 }
5604 out:
5605 btrfs_end_transaction(trans, root);
5606 return em;
5607 }
5608
5609 /*
5610 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5611 * block must be cow'd
5612 */
5613 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5614 struct inode *inode, u64 offset, u64 len)
5615 {
5616 struct btrfs_path *path;
5617 int ret;
5618 struct extent_buffer *leaf;
5619 struct btrfs_root *root = BTRFS_I(inode)->root;
5620 struct btrfs_file_extent_item *fi;
5621 struct btrfs_key key;
5622 u64 disk_bytenr;
5623 u64 backref_offset;
5624 u64 extent_end;
5625 u64 num_bytes;
5626 int slot;
5627 int found_type;
5628
5629 path = btrfs_alloc_path();
5630 if (!path)
5631 return -ENOMEM;
5632
5633 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5634 offset, 0);
5635 if (ret < 0)
5636 goto out;
5637
5638 slot = path->slots[0];
5639 if (ret == 1) {
5640 if (slot == 0) {
5641 /* can't find the item, must cow */
5642 ret = 0;
5643 goto out;
5644 }
5645 slot--;
5646 }
5647 ret = 0;
5648 leaf = path->nodes[0];
5649 btrfs_item_key_to_cpu(leaf, &key, slot);
5650 if (key.objectid != btrfs_ino(inode) ||
5651 key.type != BTRFS_EXTENT_DATA_KEY) {
5652 /* not our file or wrong item type, must cow */
5653 goto out;
5654 }
5655
5656 if (key.offset > offset) {
5657 /* Wrong offset, must cow */
5658 goto out;
5659 }
5660
5661 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5662 found_type = btrfs_file_extent_type(leaf, fi);
5663 if (found_type != BTRFS_FILE_EXTENT_REG &&
5664 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5665 /* not a regular extent, must cow */
5666 goto out;
5667 }
5668 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5669 backref_offset = btrfs_file_extent_offset(leaf, fi);
5670
5671 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5672 if (extent_end < offset + len) {
5673 /* extent doesn't include our full range, must cow */
5674 goto out;
5675 }
5676
5677 if (btrfs_extent_readonly(root, disk_bytenr))
5678 goto out;
5679
5680 /*
5681 * look for other files referencing this extent, if we
5682 * find any we must cow
5683 */
5684 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5685 key.offset - backref_offset, disk_bytenr))
5686 goto out;
5687
5688 /*
5689 * adjust disk_bytenr and num_bytes to cover just the bytes
5690 * in this extent we are about to write. If there
5691 * are any csums in that range we have to cow in order
5692 * to keep the csums correct
5693 */
5694 disk_bytenr += backref_offset;
5695 disk_bytenr += offset - key.offset;
5696 num_bytes = min(offset + len, extent_end) - offset;
5697 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5698 goto out;
5699 /*
5700 * all of the above have passed, it is safe to overwrite this extent
5701 * without cow
5702 */
5703 ret = 1;
5704 out:
5705 btrfs_free_path(path);
5706 return ret;
5707 }
5708
5709 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5710 struct buffer_head *bh_result, int create)
5711 {
5712 struct extent_map *em;
5713 struct btrfs_root *root = BTRFS_I(inode)->root;
5714 u64 start = iblock << inode->i_blkbits;
5715 u64 len = bh_result->b_size;
5716 struct btrfs_trans_handle *trans;
5717
5718 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5719 if (IS_ERR(em))
5720 return PTR_ERR(em);
5721
5722 /*
5723 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5724 * io. INLINE is special, and we could probably kludge it in here, but
5725 * it's still buffered so for safety lets just fall back to the generic
5726 * buffered path.
5727 *
5728 * For COMPRESSED we _have_ to read the entire extent in so we can
5729 * decompress it, so there will be buffering required no matter what we
5730 * do, so go ahead and fallback to buffered.
5731 *
5732 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5733 * to buffered IO. Don't blame me, this is the price we pay for using
5734 * the generic code.
5735 */
5736 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5737 em->block_start == EXTENT_MAP_INLINE) {
5738 free_extent_map(em);
5739 return -ENOTBLK;
5740 }
5741
5742 /* Just a good old fashioned hole, return */
5743 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5744 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5745 free_extent_map(em);
5746 /* DIO will do one hole at a time, so just unlock a sector */
5747 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5748 start + root->sectorsize - 1);
5749 return 0;
5750 }
5751
5752 /*
5753 * We don't allocate a new extent in the following cases
5754 *
5755 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5756 * existing extent.
5757 * 2) The extent is marked as PREALLOC. We're good to go here and can
5758 * just use the extent.
5759 *
5760 */
5761 if (!create) {
5762 len = em->len - (start - em->start);
5763 goto map;
5764 }
5765
5766 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5767 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5768 em->block_start != EXTENT_MAP_HOLE)) {
5769 int type;
5770 int ret;
5771 u64 block_start;
5772
5773 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5774 type = BTRFS_ORDERED_PREALLOC;
5775 else
5776 type = BTRFS_ORDERED_NOCOW;
5777 len = min(len, em->len - (start - em->start));
5778 block_start = em->block_start + (start - em->start);
5779
5780 /*
5781 * we're not going to log anything, but we do need
5782 * to make sure the current transaction stays open
5783 * while we look for nocow cross refs
5784 */
5785 trans = btrfs_join_transaction(root);
5786 if (IS_ERR(trans))
5787 goto must_cow;
5788
5789 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5790 ret = btrfs_add_ordered_extent_dio(inode, start,
5791 block_start, len, len, type);
5792 btrfs_end_transaction(trans, root);
5793 if (ret) {
5794 free_extent_map(em);
5795 return ret;
5796 }
5797 goto unlock;
5798 }
5799 btrfs_end_transaction(trans, root);
5800 }
5801 must_cow:
5802 /*
5803 * this will cow the extent, reset the len in case we changed
5804 * it above
5805 */
5806 len = bh_result->b_size;
5807 em = btrfs_new_extent_direct(inode, em, start, len);
5808 if (IS_ERR(em))
5809 return PTR_ERR(em);
5810 len = min(len, em->len - (start - em->start));
5811 unlock:
5812 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5813 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5814 0, NULL, GFP_NOFS);
5815 map:
5816 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5817 inode->i_blkbits;
5818 bh_result->b_size = len;
5819 bh_result->b_bdev = em->bdev;
5820 set_buffer_mapped(bh_result);
5821 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5822 set_buffer_new(bh_result);
5823
5824 free_extent_map(em);
5825
5826 return 0;
5827 }
5828
5829 struct btrfs_dio_private {
5830 struct inode *inode;
5831 u64 logical_offset;
5832 u64 disk_bytenr;
5833 u64 bytes;
5834 u32 *csums;
5835 void *private;
5836
5837 /* number of bios pending for this dio */
5838 atomic_t pending_bios;
5839
5840 /* IO errors */
5841 int errors;
5842
5843 struct bio *orig_bio;
5844 };
5845
5846 static void btrfs_endio_direct_read(struct bio *bio, int err)
5847 {
5848 struct btrfs_dio_private *dip = bio->bi_private;
5849 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5850 struct bio_vec *bvec = bio->bi_io_vec;
5851 struct inode *inode = dip->inode;
5852 struct btrfs_root *root = BTRFS_I(inode)->root;
5853 u64 start;
5854 u32 *private = dip->csums;
5855
5856 start = dip->logical_offset;
5857 do {
5858 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5859 struct page *page = bvec->bv_page;
5860 char *kaddr;
5861 u32 csum = ~(u32)0;
5862 unsigned long flags;
5863
5864 local_irq_save(flags);
5865 kaddr = kmap_atomic(page);
5866 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5867 csum, bvec->bv_len);
5868 btrfs_csum_final(csum, (char *)&csum);
5869 kunmap_atomic(kaddr);
5870 local_irq_restore(flags);
5871
5872 flush_dcache_page(bvec->bv_page);
5873 if (csum != *private) {
5874 printk(KERN_ERR "btrfs csum failed ino %llu off"
5875 " %llu csum %u private %u\n",
5876 (unsigned long long)btrfs_ino(inode),
5877 (unsigned long long)start,
5878 csum, *private);
5879 err = -EIO;
5880 }
5881 }
5882
5883 start += bvec->bv_len;
5884 private++;
5885 bvec++;
5886 } while (bvec <= bvec_end);
5887
5888 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5889 dip->logical_offset + dip->bytes - 1);
5890 bio->bi_private = dip->private;
5891
5892 kfree(dip->csums);
5893 kfree(dip);
5894
5895 /* If we had a csum failure make sure to clear the uptodate flag */
5896 if (err)
5897 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5898 dio_end_io(bio, err);
5899 }
5900
5901 static void btrfs_endio_direct_write(struct bio *bio, int err)
5902 {
5903 struct btrfs_dio_private *dip = bio->bi_private;
5904 struct inode *inode = dip->inode;
5905 struct btrfs_root *root = BTRFS_I(inode)->root;
5906 struct btrfs_trans_handle *trans;
5907 struct btrfs_ordered_extent *ordered = NULL;
5908 struct extent_state *cached_state = NULL;
5909 u64 ordered_offset = dip->logical_offset;
5910 u64 ordered_bytes = dip->bytes;
5911 int ret;
5912
5913 if (err)
5914 goto out_done;
5915 again:
5916 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5917 &ordered_offset,
5918 ordered_bytes);
5919 if (!ret)
5920 goto out_test;
5921
5922 BUG_ON(!ordered);
5923
5924 trans = btrfs_join_transaction(root);
5925 if (IS_ERR(trans)) {
5926 err = -ENOMEM;
5927 goto out;
5928 }
5929 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5930
5931 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5932 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5933 if (!ret)
5934 err = btrfs_update_inode_fallback(trans, root, inode);
5935 goto out;
5936 }
5937
5938 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5939 ordered->file_offset + ordered->len - 1, 0,
5940 &cached_state);
5941
5942 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5943 ret = btrfs_mark_extent_written(trans, inode,
5944 ordered->file_offset,
5945 ordered->file_offset +
5946 ordered->len);
5947 if (ret) {
5948 err = ret;
5949 goto out_unlock;
5950 }
5951 } else {
5952 ret = insert_reserved_file_extent(trans, inode,
5953 ordered->file_offset,
5954 ordered->start,
5955 ordered->disk_len,
5956 ordered->len,
5957 ordered->len,
5958 0, 0, 0,
5959 BTRFS_FILE_EXTENT_REG);
5960 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5961 ordered->file_offset, ordered->len);
5962 if (ret) {
5963 err = ret;
5964 WARN_ON(1);
5965 goto out_unlock;
5966 }
5967 }
5968
5969 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5970 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5971 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5972 btrfs_update_inode_fallback(trans, root, inode);
5973 ret = 0;
5974 out_unlock:
5975 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5976 ordered->file_offset + ordered->len - 1,
5977 &cached_state, GFP_NOFS);
5978 out:
5979 btrfs_delalloc_release_metadata(inode, ordered->len);
5980 btrfs_end_transaction(trans, root);
5981 ordered_offset = ordered->file_offset + ordered->len;
5982 btrfs_put_ordered_extent(ordered);
5983 btrfs_put_ordered_extent(ordered);
5984
5985 out_test:
5986 /*
5987 * our bio might span multiple ordered extents. If we haven't
5988 * completed the accounting for the whole dio, go back and try again
5989 */
5990 if (ordered_offset < dip->logical_offset + dip->bytes) {
5991 ordered_bytes = dip->logical_offset + dip->bytes -
5992 ordered_offset;
5993 goto again;
5994 }
5995 out_done:
5996 bio->bi_private = dip->private;
5997
5998 kfree(dip->csums);
5999 kfree(dip);
6000
6001 /* If we had an error make sure to clear the uptodate flag */
6002 if (err)
6003 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6004 dio_end_io(bio, err);
6005 }
6006
6007 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6008 struct bio *bio, int mirror_num,
6009 unsigned long bio_flags, u64 offset)
6010 {
6011 int ret;
6012 struct btrfs_root *root = BTRFS_I(inode)->root;
6013 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6014 BUG_ON(ret); /* -ENOMEM */
6015 return 0;
6016 }
6017
6018 static void btrfs_end_dio_bio(struct bio *bio, int err)
6019 {
6020 struct btrfs_dio_private *dip = bio->bi_private;
6021
6022 if (err) {
6023 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6024 "sector %#Lx len %u err no %d\n",
6025 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6026 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6027 dip->errors = 1;
6028
6029 /*
6030 * before atomic variable goto zero, we must make sure
6031 * dip->errors is perceived to be set.
6032 */
6033 smp_mb__before_atomic_dec();
6034 }
6035
6036 /* if there are more bios still pending for this dio, just exit */
6037 if (!atomic_dec_and_test(&dip->pending_bios))
6038 goto out;
6039
6040 if (dip->errors)
6041 bio_io_error(dip->orig_bio);
6042 else {
6043 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6044 bio_endio(dip->orig_bio, 0);
6045 }
6046 out:
6047 bio_put(bio);
6048 }
6049
6050 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6051 u64 first_sector, gfp_t gfp_flags)
6052 {
6053 int nr_vecs = bio_get_nr_vecs(bdev);
6054 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6055 }
6056
6057 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6058 int rw, u64 file_offset, int skip_sum,
6059 u32 *csums, int async_submit)
6060 {
6061 int write = rw & REQ_WRITE;
6062 struct btrfs_root *root = BTRFS_I(inode)->root;
6063 int ret;
6064
6065 bio_get(bio);
6066 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6067 if (ret)
6068 goto err;
6069
6070 if (skip_sum)
6071 goto map;
6072
6073 if (write && async_submit) {
6074 ret = btrfs_wq_submit_bio(root->fs_info,
6075 inode, rw, bio, 0, 0,
6076 file_offset,
6077 __btrfs_submit_bio_start_direct_io,
6078 __btrfs_submit_bio_done);
6079 goto err;
6080 } else if (write) {
6081 /*
6082 * If we aren't doing async submit, calculate the csum of the
6083 * bio now.
6084 */
6085 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6086 if (ret)
6087 goto err;
6088 } else if (!skip_sum) {
6089 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6090 file_offset, csums);
6091 if (ret)
6092 goto err;
6093 }
6094
6095 map:
6096 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6097 err:
6098 bio_put(bio);
6099 return ret;
6100 }
6101
6102 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6103 int skip_sum)
6104 {
6105 struct inode *inode = dip->inode;
6106 struct btrfs_root *root = BTRFS_I(inode)->root;
6107 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6108 struct bio *bio;
6109 struct bio *orig_bio = dip->orig_bio;
6110 struct bio_vec *bvec = orig_bio->bi_io_vec;
6111 u64 start_sector = orig_bio->bi_sector;
6112 u64 file_offset = dip->logical_offset;
6113 u64 submit_len = 0;
6114 u64 map_length;
6115 int nr_pages = 0;
6116 u32 *csums = dip->csums;
6117 int ret = 0;
6118 int async_submit = 0;
6119 int write = rw & REQ_WRITE;
6120
6121 map_length = orig_bio->bi_size;
6122 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6123 &map_length, NULL, 0);
6124 if (ret) {
6125 bio_put(orig_bio);
6126 return -EIO;
6127 }
6128
6129 if (map_length >= orig_bio->bi_size) {
6130 bio = orig_bio;
6131 goto submit;
6132 }
6133
6134 async_submit = 1;
6135 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6136 if (!bio)
6137 return -ENOMEM;
6138 bio->bi_private = dip;
6139 bio->bi_end_io = btrfs_end_dio_bio;
6140 atomic_inc(&dip->pending_bios);
6141
6142 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6143 if (unlikely(map_length < submit_len + bvec->bv_len ||
6144 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6145 bvec->bv_offset) < bvec->bv_len)) {
6146 /*
6147 * inc the count before we submit the bio so
6148 * we know the end IO handler won't happen before
6149 * we inc the count. Otherwise, the dip might get freed
6150 * before we're done setting it up
6151 */
6152 atomic_inc(&dip->pending_bios);
6153 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6154 file_offset, skip_sum,
6155 csums, async_submit);
6156 if (ret) {
6157 bio_put(bio);
6158 atomic_dec(&dip->pending_bios);
6159 goto out_err;
6160 }
6161
6162 /* Write's use the ordered csums */
6163 if (!write && !skip_sum)
6164 csums = csums + nr_pages;
6165 start_sector += submit_len >> 9;
6166 file_offset += submit_len;
6167
6168 submit_len = 0;
6169 nr_pages = 0;
6170
6171 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6172 start_sector, GFP_NOFS);
6173 if (!bio)
6174 goto out_err;
6175 bio->bi_private = dip;
6176 bio->bi_end_io = btrfs_end_dio_bio;
6177
6178 map_length = orig_bio->bi_size;
6179 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6180 &map_length, NULL, 0);
6181 if (ret) {
6182 bio_put(bio);
6183 goto out_err;
6184 }
6185 } else {
6186 submit_len += bvec->bv_len;
6187 nr_pages ++;
6188 bvec++;
6189 }
6190 }
6191
6192 submit:
6193 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6194 csums, async_submit);
6195 if (!ret)
6196 return 0;
6197
6198 bio_put(bio);
6199 out_err:
6200 dip->errors = 1;
6201 /*
6202 * before atomic variable goto zero, we must
6203 * make sure dip->errors is perceived to be set.
6204 */
6205 smp_mb__before_atomic_dec();
6206 if (atomic_dec_and_test(&dip->pending_bios))
6207 bio_io_error(dip->orig_bio);
6208
6209 /* bio_end_io() will handle error, so we needn't return it */
6210 return 0;
6211 }
6212
6213 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6214 loff_t file_offset)
6215 {
6216 struct btrfs_root *root = BTRFS_I(inode)->root;
6217 struct btrfs_dio_private *dip;
6218 struct bio_vec *bvec = bio->bi_io_vec;
6219 int skip_sum;
6220 int write = rw & REQ_WRITE;
6221 int ret = 0;
6222
6223 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6224
6225 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6226 if (!dip) {
6227 ret = -ENOMEM;
6228 goto free_ordered;
6229 }
6230 dip->csums = NULL;
6231
6232 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6233 if (!write && !skip_sum) {
6234 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6235 if (!dip->csums) {
6236 kfree(dip);
6237 ret = -ENOMEM;
6238 goto free_ordered;
6239 }
6240 }
6241
6242 dip->private = bio->bi_private;
6243 dip->inode = inode;
6244 dip->logical_offset = file_offset;
6245
6246 dip->bytes = 0;
6247 do {
6248 dip->bytes += bvec->bv_len;
6249 bvec++;
6250 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6251
6252 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6253 bio->bi_private = dip;
6254 dip->errors = 0;
6255 dip->orig_bio = bio;
6256 atomic_set(&dip->pending_bios, 0);
6257
6258 if (write)
6259 bio->bi_end_io = btrfs_endio_direct_write;
6260 else
6261 bio->bi_end_io = btrfs_endio_direct_read;
6262
6263 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6264 if (!ret)
6265 return;
6266 free_ordered:
6267 /*
6268 * If this is a write, we need to clean up the reserved space and kill
6269 * the ordered extent.
6270 */
6271 if (write) {
6272 struct btrfs_ordered_extent *ordered;
6273 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6274 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6275 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6276 btrfs_free_reserved_extent(root, ordered->start,
6277 ordered->disk_len);
6278 btrfs_put_ordered_extent(ordered);
6279 btrfs_put_ordered_extent(ordered);
6280 }
6281 bio_endio(bio, ret);
6282 }
6283
6284 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6285 const struct iovec *iov, loff_t offset,
6286 unsigned long nr_segs)
6287 {
6288 int seg;
6289 int i;
6290 size_t size;
6291 unsigned long addr;
6292 unsigned blocksize_mask = root->sectorsize - 1;
6293 ssize_t retval = -EINVAL;
6294 loff_t end = offset;
6295
6296 if (offset & blocksize_mask)
6297 goto out;
6298
6299 /* Check the memory alignment. Blocks cannot straddle pages */
6300 for (seg = 0; seg < nr_segs; seg++) {
6301 addr = (unsigned long)iov[seg].iov_base;
6302 size = iov[seg].iov_len;
6303 end += size;
6304 if ((addr & blocksize_mask) || (size & blocksize_mask))
6305 goto out;
6306
6307 /* If this is a write we don't need to check anymore */
6308 if (rw & WRITE)
6309 continue;
6310
6311 /*
6312 * Check to make sure we don't have duplicate iov_base's in this
6313 * iovec, if so return EINVAL, otherwise we'll get csum errors
6314 * when reading back.
6315 */
6316 for (i = seg + 1; i < nr_segs; i++) {
6317 if (iov[seg].iov_base == iov[i].iov_base)
6318 goto out;
6319 }
6320 }
6321 retval = 0;
6322 out:
6323 return retval;
6324 }
6325 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6326 const struct iovec *iov, loff_t offset,
6327 unsigned long nr_segs)
6328 {
6329 struct file *file = iocb->ki_filp;
6330 struct inode *inode = file->f_mapping->host;
6331 struct btrfs_ordered_extent *ordered;
6332 struct extent_state *cached_state = NULL;
6333 u64 lockstart, lockend;
6334 ssize_t ret;
6335 int writing = rw & WRITE;
6336 int write_bits = 0;
6337 size_t count = iov_length(iov, nr_segs);
6338
6339 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6340 offset, nr_segs)) {
6341 return 0;
6342 }
6343
6344 lockstart = offset;
6345 lockend = offset + count - 1;
6346
6347 if (writing) {
6348 ret = btrfs_delalloc_reserve_space(inode, count);
6349 if (ret)
6350 goto out;
6351 }
6352
6353 while (1) {
6354 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6355 0, &cached_state);
6356 /*
6357 * We're concerned with the entire range that we're going to be
6358 * doing DIO to, so we need to make sure theres no ordered
6359 * extents in this range.
6360 */
6361 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6362 lockend - lockstart + 1);
6363 if (!ordered)
6364 break;
6365 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6366 &cached_state, GFP_NOFS);
6367 btrfs_start_ordered_extent(inode, ordered, 1);
6368 btrfs_put_ordered_extent(ordered);
6369 cond_resched();
6370 }
6371
6372 /*
6373 * we don't use btrfs_set_extent_delalloc because we don't want
6374 * the dirty or uptodate bits
6375 */
6376 if (writing) {
6377 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6378 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6379 EXTENT_DELALLOC, NULL, &cached_state,
6380 GFP_NOFS);
6381 if (ret) {
6382 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6383 lockend, EXTENT_LOCKED | write_bits,
6384 1, 0, &cached_state, GFP_NOFS);
6385 goto out;
6386 }
6387 }
6388
6389 free_extent_state(cached_state);
6390 cached_state = NULL;
6391
6392 ret = __blockdev_direct_IO(rw, iocb, inode,
6393 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6394 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6395 btrfs_submit_direct, 0);
6396
6397 if (ret < 0 && ret != -EIOCBQUEUED) {
6398 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6399 offset + iov_length(iov, nr_segs) - 1,
6400 EXTENT_LOCKED | write_bits, 1, 0,
6401 &cached_state, GFP_NOFS);
6402 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6403 /*
6404 * We're falling back to buffered, unlock the section we didn't
6405 * do IO on.
6406 */
6407 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6408 offset + iov_length(iov, nr_segs) - 1,
6409 EXTENT_LOCKED | write_bits, 1, 0,
6410 &cached_state, GFP_NOFS);
6411 }
6412 out:
6413 free_extent_state(cached_state);
6414 return ret;
6415 }
6416
6417 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6418 __u64 start, __u64 len)
6419 {
6420 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6421 }
6422
6423 int btrfs_readpage(struct file *file, struct page *page)
6424 {
6425 struct extent_io_tree *tree;
6426 tree = &BTRFS_I(page->mapping->host)->io_tree;
6427 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6428 }
6429
6430 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6431 {
6432 struct extent_io_tree *tree;
6433
6434
6435 if (current->flags & PF_MEMALLOC) {
6436 redirty_page_for_writepage(wbc, page);
6437 unlock_page(page);
6438 return 0;
6439 }
6440 tree = &BTRFS_I(page->mapping->host)->io_tree;
6441 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6442 }
6443
6444 int btrfs_writepages(struct address_space *mapping,
6445 struct writeback_control *wbc)
6446 {
6447 struct extent_io_tree *tree;
6448
6449 tree = &BTRFS_I(mapping->host)->io_tree;
6450 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6451 }
6452
6453 static int
6454 btrfs_readpages(struct file *file, struct address_space *mapping,
6455 struct list_head *pages, unsigned nr_pages)
6456 {
6457 struct extent_io_tree *tree;
6458 tree = &BTRFS_I(mapping->host)->io_tree;
6459 return extent_readpages(tree, mapping, pages, nr_pages,
6460 btrfs_get_extent);
6461 }
6462 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6463 {
6464 struct extent_io_tree *tree;
6465 struct extent_map_tree *map;
6466 int ret;
6467
6468 tree = &BTRFS_I(page->mapping->host)->io_tree;
6469 map = &BTRFS_I(page->mapping->host)->extent_tree;
6470 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6471 if (ret == 1) {
6472 ClearPagePrivate(page);
6473 set_page_private(page, 0);
6474 page_cache_release(page);
6475 }
6476 return ret;
6477 }
6478
6479 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6480 {
6481 if (PageWriteback(page) || PageDirty(page))
6482 return 0;
6483 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6484 }
6485
6486 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6487 {
6488 struct extent_io_tree *tree;
6489 struct btrfs_ordered_extent *ordered;
6490 struct extent_state *cached_state = NULL;
6491 u64 page_start = page_offset(page);
6492 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6493
6494
6495 /*
6496 * we have the page locked, so new writeback can't start,
6497 * and the dirty bit won't be cleared while we are here.
6498 *
6499 * Wait for IO on this page so that we can safely clear
6500 * the PagePrivate2 bit and do ordered accounting
6501 */
6502 wait_on_page_writeback(page);
6503
6504 tree = &BTRFS_I(page->mapping->host)->io_tree;
6505 if (offset) {
6506 btrfs_releasepage(page, GFP_NOFS);
6507 return;
6508 }
6509 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6510 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6511 page_offset(page));
6512 if (ordered) {
6513 /*
6514 * IO on this page will never be started, so we need
6515 * to account for any ordered extents now
6516 */
6517 clear_extent_bit(tree, page_start, page_end,
6518 EXTENT_DIRTY | EXTENT_DELALLOC |
6519 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6520 &cached_state, GFP_NOFS);
6521 /*
6522 * whoever cleared the private bit is responsible
6523 * for the finish_ordered_io
6524 */
6525 if (TestClearPagePrivate2(page)) {
6526 btrfs_finish_ordered_io(page->mapping->host,
6527 page_start, page_end);
6528 }
6529 btrfs_put_ordered_extent(ordered);
6530 cached_state = NULL;
6531 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6532 }
6533 clear_extent_bit(tree, page_start, page_end,
6534 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6535 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6536 __btrfs_releasepage(page, GFP_NOFS);
6537
6538 ClearPageChecked(page);
6539 if (PagePrivate(page)) {
6540 ClearPagePrivate(page);
6541 set_page_private(page, 0);
6542 page_cache_release(page);
6543 }
6544 }
6545
6546 /*
6547 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6548 * called from a page fault handler when a page is first dirtied. Hence we must
6549 * be careful to check for EOF conditions here. We set the page up correctly
6550 * for a written page which means we get ENOSPC checking when writing into
6551 * holes and correct delalloc and unwritten extent mapping on filesystems that
6552 * support these features.
6553 *
6554 * We are not allowed to take the i_mutex here so we have to play games to
6555 * protect against truncate races as the page could now be beyond EOF. Because
6556 * vmtruncate() writes the inode size before removing pages, once we have the
6557 * page lock we can determine safely if the page is beyond EOF. If it is not
6558 * beyond EOF, then the page is guaranteed safe against truncation until we
6559 * unlock the page.
6560 */
6561 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6562 {
6563 struct page *page = vmf->page;
6564 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6565 struct btrfs_root *root = BTRFS_I(inode)->root;
6566 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6567 struct btrfs_ordered_extent *ordered;
6568 struct extent_state *cached_state = NULL;
6569 char *kaddr;
6570 unsigned long zero_start;
6571 loff_t size;
6572 int ret;
6573 int reserved = 0;
6574 u64 page_start;
6575 u64 page_end;
6576
6577 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6578 if (!ret) {
6579 ret = btrfs_update_time(vma->vm_file);
6580 reserved = 1;
6581 }
6582 if (ret) {
6583 if (ret == -ENOMEM)
6584 ret = VM_FAULT_OOM;
6585 else /* -ENOSPC, -EIO, etc */
6586 ret = VM_FAULT_SIGBUS;
6587 if (reserved)
6588 goto out;
6589 goto out_noreserve;
6590 }
6591
6592 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6593 again:
6594 lock_page(page);
6595 size = i_size_read(inode);
6596 page_start = page_offset(page);
6597 page_end = page_start + PAGE_CACHE_SIZE - 1;
6598
6599 if ((page->mapping != inode->i_mapping) ||
6600 (page_start >= size)) {
6601 /* page got truncated out from underneath us */
6602 goto out_unlock;
6603 }
6604 wait_on_page_writeback(page);
6605
6606 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6607 set_page_extent_mapped(page);
6608
6609 /*
6610 * we can't set the delalloc bits if there are pending ordered
6611 * extents. Drop our locks and wait for them to finish
6612 */
6613 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6614 if (ordered) {
6615 unlock_extent_cached(io_tree, page_start, page_end,
6616 &cached_state, GFP_NOFS);
6617 unlock_page(page);
6618 btrfs_start_ordered_extent(inode, ordered, 1);
6619 btrfs_put_ordered_extent(ordered);
6620 goto again;
6621 }
6622
6623 /*
6624 * XXX - page_mkwrite gets called every time the page is dirtied, even
6625 * if it was already dirty, so for space accounting reasons we need to
6626 * clear any delalloc bits for the range we are fixing to save. There
6627 * is probably a better way to do this, but for now keep consistent with
6628 * prepare_pages in the normal write path.
6629 */
6630 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6631 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6632 0, 0, &cached_state, GFP_NOFS);
6633
6634 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6635 &cached_state);
6636 if (ret) {
6637 unlock_extent_cached(io_tree, page_start, page_end,
6638 &cached_state, GFP_NOFS);
6639 ret = VM_FAULT_SIGBUS;
6640 goto out_unlock;
6641 }
6642 ret = 0;
6643
6644 /* page is wholly or partially inside EOF */
6645 if (page_start + PAGE_CACHE_SIZE > size)
6646 zero_start = size & ~PAGE_CACHE_MASK;
6647 else
6648 zero_start = PAGE_CACHE_SIZE;
6649
6650 if (zero_start != PAGE_CACHE_SIZE) {
6651 kaddr = kmap(page);
6652 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6653 flush_dcache_page(page);
6654 kunmap(page);
6655 }
6656 ClearPageChecked(page);
6657 set_page_dirty(page);
6658 SetPageUptodate(page);
6659
6660 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6661 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6662
6663 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6664
6665 out_unlock:
6666 if (!ret)
6667 return VM_FAULT_LOCKED;
6668 unlock_page(page);
6669 out:
6670 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6671 out_noreserve:
6672 return ret;
6673 }
6674
6675 static int btrfs_truncate(struct inode *inode)
6676 {
6677 struct btrfs_root *root = BTRFS_I(inode)->root;
6678 struct btrfs_block_rsv *rsv;
6679 int ret;
6680 int err = 0;
6681 struct btrfs_trans_handle *trans;
6682 unsigned long nr;
6683 u64 mask = root->sectorsize - 1;
6684 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6685
6686 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6687 if (ret)
6688 return ret;
6689
6690 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6691 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6692
6693 /*
6694 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6695 * 3 things going on here
6696 *
6697 * 1) We need to reserve space for our orphan item and the space to
6698 * delete our orphan item. Lord knows we don't want to have a dangling
6699 * orphan item because we didn't reserve space to remove it.
6700 *
6701 * 2) We need to reserve space to update our inode.
6702 *
6703 * 3) We need to have something to cache all the space that is going to
6704 * be free'd up by the truncate operation, but also have some slack
6705 * space reserved in case it uses space during the truncate (thank you
6706 * very much snapshotting).
6707 *
6708 * And we need these to all be seperate. The fact is we can use alot of
6709 * space doing the truncate, and we have no earthly idea how much space
6710 * we will use, so we need the truncate reservation to be seperate so it
6711 * doesn't end up using space reserved for updating the inode or
6712 * removing the orphan item. We also need to be able to stop the
6713 * transaction and start a new one, which means we need to be able to
6714 * update the inode several times, and we have no idea of knowing how
6715 * many times that will be, so we can't just reserve 1 item for the
6716 * entirety of the opration, so that has to be done seperately as well.
6717 * Then there is the orphan item, which does indeed need to be held on
6718 * to for the whole operation, and we need nobody to touch this reserved
6719 * space except the orphan code.
6720 *
6721 * So that leaves us with
6722 *
6723 * 1) root->orphan_block_rsv - for the orphan deletion.
6724 * 2) rsv - for the truncate reservation, which we will steal from the
6725 * transaction reservation.
6726 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6727 * updating the inode.
6728 */
6729 rsv = btrfs_alloc_block_rsv(root);
6730 if (!rsv)
6731 return -ENOMEM;
6732 rsv->size = min_size;
6733
6734 /*
6735 * 1 for the truncate slack space
6736 * 1 for the orphan item we're going to add
6737 * 1 for the orphan item deletion
6738 * 1 for updating the inode.
6739 */
6740 trans = btrfs_start_transaction(root, 4);
6741 if (IS_ERR(trans)) {
6742 err = PTR_ERR(trans);
6743 goto out;
6744 }
6745
6746 /* Migrate the slack space for the truncate to our reserve */
6747 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6748 min_size);
6749 BUG_ON(ret);
6750
6751 ret = btrfs_orphan_add(trans, inode);
6752 if (ret) {
6753 btrfs_end_transaction(trans, root);
6754 goto out;
6755 }
6756
6757 /*
6758 * setattr is responsible for setting the ordered_data_close flag,
6759 * but that is only tested during the last file release. That
6760 * could happen well after the next commit, leaving a great big
6761 * window where new writes may get lost if someone chooses to write
6762 * to this file after truncating to zero
6763 *
6764 * The inode doesn't have any dirty data here, and so if we commit
6765 * this is a noop. If someone immediately starts writing to the inode
6766 * it is very likely we'll catch some of their writes in this
6767 * transaction, and the commit will find this file on the ordered
6768 * data list with good things to send down.
6769 *
6770 * This is a best effort solution, there is still a window where
6771 * using truncate to replace the contents of the file will
6772 * end up with a zero length file after a crash.
6773 */
6774 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6775 btrfs_add_ordered_operation(trans, root, inode);
6776
6777 while (1) {
6778 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6779 if (ret) {
6780 /*
6781 * This can only happen with the original transaction we
6782 * started above, every other time we shouldn't have a
6783 * transaction started yet.
6784 */
6785 if (ret == -EAGAIN)
6786 goto end_trans;
6787 err = ret;
6788 break;
6789 }
6790
6791 if (!trans) {
6792 /* Just need the 1 for updating the inode */
6793 trans = btrfs_start_transaction(root, 1);
6794 if (IS_ERR(trans)) {
6795 ret = err = PTR_ERR(trans);
6796 trans = NULL;
6797 break;
6798 }
6799 }
6800
6801 trans->block_rsv = rsv;
6802
6803 ret = btrfs_truncate_inode_items(trans, root, inode,
6804 inode->i_size,
6805 BTRFS_EXTENT_DATA_KEY);
6806 if (ret != -EAGAIN) {
6807 err = ret;
6808 break;
6809 }
6810
6811 trans->block_rsv = &root->fs_info->trans_block_rsv;
6812 ret = btrfs_update_inode(trans, root, inode);
6813 if (ret) {
6814 err = ret;
6815 break;
6816 }
6817 end_trans:
6818 nr = trans->blocks_used;
6819 btrfs_end_transaction(trans, root);
6820 trans = NULL;
6821 btrfs_btree_balance_dirty(root, nr);
6822 }
6823
6824 if (ret == 0 && inode->i_nlink > 0) {
6825 trans->block_rsv = root->orphan_block_rsv;
6826 ret = btrfs_orphan_del(trans, inode);
6827 if (ret)
6828 err = ret;
6829 } else if (ret && inode->i_nlink > 0) {
6830 /*
6831 * Failed to do the truncate, remove us from the in memory
6832 * orphan list.
6833 */
6834 ret = btrfs_orphan_del(NULL, inode);
6835 }
6836
6837 if (trans) {
6838 trans->block_rsv = &root->fs_info->trans_block_rsv;
6839 ret = btrfs_update_inode(trans, root, inode);
6840 if (ret && !err)
6841 err = ret;
6842
6843 nr = trans->blocks_used;
6844 ret = btrfs_end_transaction(trans, root);
6845 btrfs_btree_balance_dirty(root, nr);
6846 }
6847
6848 out:
6849 btrfs_free_block_rsv(root, rsv);
6850
6851 if (ret && !err)
6852 err = ret;
6853
6854 return err;
6855 }
6856
6857 /*
6858 * create a new subvolume directory/inode (helper for the ioctl).
6859 */
6860 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6861 struct btrfs_root *new_root, u64 new_dirid)
6862 {
6863 struct inode *inode;
6864 int err;
6865 u64 index = 0;
6866
6867 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6868 new_dirid, new_dirid,
6869 S_IFDIR | (~current_umask() & S_IRWXUGO),
6870 &index);
6871 if (IS_ERR(inode))
6872 return PTR_ERR(inode);
6873 inode->i_op = &btrfs_dir_inode_operations;
6874 inode->i_fop = &btrfs_dir_file_operations;
6875
6876 set_nlink(inode, 1);
6877 btrfs_i_size_write(inode, 0);
6878
6879 err = btrfs_update_inode(trans, new_root, inode);
6880
6881 iput(inode);
6882 return err;
6883 }
6884
6885 struct inode *btrfs_alloc_inode(struct super_block *sb)
6886 {
6887 struct btrfs_inode *ei;
6888 struct inode *inode;
6889
6890 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6891 if (!ei)
6892 return NULL;
6893
6894 ei->root = NULL;
6895 ei->space_info = NULL;
6896 ei->generation = 0;
6897 ei->sequence = 0;
6898 ei->last_trans = 0;
6899 ei->last_sub_trans = 0;
6900 ei->logged_trans = 0;
6901 ei->delalloc_bytes = 0;
6902 ei->disk_i_size = 0;
6903 ei->flags = 0;
6904 ei->csum_bytes = 0;
6905 ei->index_cnt = (u64)-1;
6906 ei->last_unlink_trans = 0;
6907
6908 spin_lock_init(&ei->lock);
6909 ei->outstanding_extents = 0;
6910 ei->reserved_extents = 0;
6911
6912 ei->ordered_data_close = 0;
6913 ei->orphan_meta_reserved = 0;
6914 ei->dummy_inode = 0;
6915 ei->in_defrag = 0;
6916 ei->delalloc_meta_reserved = 0;
6917 ei->force_compress = BTRFS_COMPRESS_NONE;
6918
6919 ei->delayed_node = NULL;
6920
6921 inode = &ei->vfs_inode;
6922 extent_map_tree_init(&ei->extent_tree);
6923 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6924 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6925 ei->io_tree.track_uptodate = 1;
6926 ei->io_failure_tree.track_uptodate = 1;
6927 mutex_init(&ei->log_mutex);
6928 mutex_init(&ei->delalloc_mutex);
6929 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6930 INIT_LIST_HEAD(&ei->i_orphan);
6931 INIT_LIST_HEAD(&ei->delalloc_inodes);
6932 INIT_LIST_HEAD(&ei->ordered_operations);
6933 RB_CLEAR_NODE(&ei->rb_node);
6934
6935 return inode;
6936 }
6937
6938 static void btrfs_i_callback(struct rcu_head *head)
6939 {
6940 struct inode *inode = container_of(head, struct inode, i_rcu);
6941 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6942 }
6943
6944 void btrfs_destroy_inode(struct inode *inode)
6945 {
6946 struct btrfs_ordered_extent *ordered;
6947 struct btrfs_root *root = BTRFS_I(inode)->root;
6948
6949 WARN_ON(!list_empty(&inode->i_dentry));
6950 WARN_ON(inode->i_data.nrpages);
6951 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6952 WARN_ON(BTRFS_I(inode)->reserved_extents);
6953 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6954 WARN_ON(BTRFS_I(inode)->csum_bytes);
6955
6956 /*
6957 * This can happen where we create an inode, but somebody else also
6958 * created the same inode and we need to destroy the one we already
6959 * created.
6960 */
6961 if (!root)
6962 goto free;
6963
6964 /*
6965 * Make sure we're properly removed from the ordered operation
6966 * lists.
6967 */
6968 smp_mb();
6969 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6970 spin_lock(&root->fs_info->ordered_extent_lock);
6971 list_del_init(&BTRFS_I(inode)->ordered_operations);
6972 spin_unlock(&root->fs_info->ordered_extent_lock);
6973 }
6974
6975 spin_lock(&root->orphan_lock);
6976 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6977 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6978 (unsigned long long)btrfs_ino(inode));
6979 list_del_init(&BTRFS_I(inode)->i_orphan);
6980 }
6981 spin_unlock(&root->orphan_lock);
6982
6983 while (1) {
6984 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6985 if (!ordered)
6986 break;
6987 else {
6988 printk(KERN_ERR "btrfs found ordered "
6989 "extent %llu %llu on inode cleanup\n",
6990 (unsigned long long)ordered->file_offset,
6991 (unsigned long long)ordered->len);
6992 btrfs_remove_ordered_extent(inode, ordered);
6993 btrfs_put_ordered_extent(ordered);
6994 btrfs_put_ordered_extent(ordered);
6995 }
6996 }
6997 inode_tree_del(inode);
6998 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6999 free:
7000 btrfs_remove_delayed_node(inode);
7001 call_rcu(&inode->i_rcu, btrfs_i_callback);
7002 }
7003
7004 int btrfs_drop_inode(struct inode *inode)
7005 {
7006 struct btrfs_root *root = BTRFS_I(inode)->root;
7007
7008 if (btrfs_root_refs(&root->root_item) == 0 &&
7009 !btrfs_is_free_space_inode(root, inode))
7010 return 1;
7011 else
7012 return generic_drop_inode(inode);
7013 }
7014
7015 static void init_once(void *foo)
7016 {
7017 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7018
7019 inode_init_once(&ei->vfs_inode);
7020 }
7021
7022 void btrfs_destroy_cachep(void)
7023 {
7024 if (btrfs_inode_cachep)
7025 kmem_cache_destroy(btrfs_inode_cachep);
7026 if (btrfs_trans_handle_cachep)
7027 kmem_cache_destroy(btrfs_trans_handle_cachep);
7028 if (btrfs_transaction_cachep)
7029 kmem_cache_destroy(btrfs_transaction_cachep);
7030 if (btrfs_path_cachep)
7031 kmem_cache_destroy(btrfs_path_cachep);
7032 if (btrfs_free_space_cachep)
7033 kmem_cache_destroy(btrfs_free_space_cachep);
7034 }
7035
7036 int btrfs_init_cachep(void)
7037 {
7038 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7039 sizeof(struct btrfs_inode), 0,
7040 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7041 if (!btrfs_inode_cachep)
7042 goto fail;
7043
7044 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7045 sizeof(struct btrfs_trans_handle), 0,
7046 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7047 if (!btrfs_trans_handle_cachep)
7048 goto fail;
7049
7050 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7051 sizeof(struct btrfs_transaction), 0,
7052 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7053 if (!btrfs_transaction_cachep)
7054 goto fail;
7055
7056 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7057 sizeof(struct btrfs_path), 0,
7058 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7059 if (!btrfs_path_cachep)
7060 goto fail;
7061
7062 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7063 sizeof(struct btrfs_free_space), 0,
7064 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7065 if (!btrfs_free_space_cachep)
7066 goto fail;
7067
7068 return 0;
7069 fail:
7070 btrfs_destroy_cachep();
7071 return -ENOMEM;
7072 }
7073
7074 static int btrfs_getattr(struct vfsmount *mnt,
7075 struct dentry *dentry, struct kstat *stat)
7076 {
7077 struct inode *inode = dentry->d_inode;
7078 u32 blocksize = inode->i_sb->s_blocksize;
7079
7080 generic_fillattr(inode, stat);
7081 stat->dev = BTRFS_I(inode)->root->anon_dev;
7082 stat->blksize = PAGE_CACHE_SIZE;
7083 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7084 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7085 return 0;
7086 }
7087
7088 /*
7089 * If a file is moved, it will inherit the cow and compression flags of the new
7090 * directory.
7091 */
7092 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7093 {
7094 struct btrfs_inode *b_dir = BTRFS_I(dir);
7095 struct btrfs_inode *b_inode = BTRFS_I(inode);
7096
7097 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7098 b_inode->flags |= BTRFS_INODE_NODATACOW;
7099 else
7100 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7101
7102 if (b_dir->flags & BTRFS_INODE_COMPRESS)
7103 b_inode->flags |= BTRFS_INODE_COMPRESS;
7104 else
7105 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
7106 }
7107
7108 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7109 struct inode *new_dir, struct dentry *new_dentry)
7110 {
7111 struct btrfs_trans_handle *trans;
7112 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7113 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7114 struct inode *new_inode = new_dentry->d_inode;
7115 struct inode *old_inode = old_dentry->d_inode;
7116 struct timespec ctime = CURRENT_TIME;
7117 u64 index = 0;
7118 u64 root_objectid;
7119 int ret;
7120 u64 old_ino = btrfs_ino(old_inode);
7121
7122 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7123 return -EPERM;
7124
7125 /* we only allow rename subvolume link between subvolumes */
7126 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7127 return -EXDEV;
7128
7129 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7130 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7131 return -ENOTEMPTY;
7132
7133 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7134 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7135 return -ENOTEMPTY;
7136 /*
7137 * we're using rename to replace one file with another.
7138 * and the replacement file is large. Start IO on it now so
7139 * we don't add too much work to the end of the transaction
7140 */
7141 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7142 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7143 filemap_flush(old_inode->i_mapping);
7144
7145 /* close the racy window with snapshot create/destroy ioctl */
7146 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7147 down_read(&root->fs_info->subvol_sem);
7148 /*
7149 * We want to reserve the absolute worst case amount of items. So if
7150 * both inodes are subvols and we need to unlink them then that would
7151 * require 4 item modifications, but if they are both normal inodes it
7152 * would require 5 item modifications, so we'll assume their normal
7153 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7154 * should cover the worst case number of items we'll modify.
7155 */
7156 trans = btrfs_start_transaction(root, 20);
7157 if (IS_ERR(trans)) {
7158 ret = PTR_ERR(trans);
7159 goto out_notrans;
7160 }
7161
7162 if (dest != root)
7163 btrfs_record_root_in_trans(trans, dest);
7164
7165 ret = btrfs_set_inode_index(new_dir, &index);
7166 if (ret)
7167 goto out_fail;
7168
7169 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7170 /* force full log commit if subvolume involved. */
7171 root->fs_info->last_trans_log_full_commit = trans->transid;
7172 } else {
7173 ret = btrfs_insert_inode_ref(trans, dest,
7174 new_dentry->d_name.name,
7175 new_dentry->d_name.len,
7176 old_ino,
7177 btrfs_ino(new_dir), index);
7178 if (ret)
7179 goto out_fail;
7180 /*
7181 * this is an ugly little race, but the rename is required
7182 * to make sure that if we crash, the inode is either at the
7183 * old name or the new one. pinning the log transaction lets
7184 * us make sure we don't allow a log commit to come in after
7185 * we unlink the name but before we add the new name back in.
7186 */
7187 btrfs_pin_log_trans(root);
7188 }
7189 /*
7190 * make sure the inode gets flushed if it is replacing
7191 * something.
7192 */
7193 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7194 btrfs_add_ordered_operation(trans, root, old_inode);
7195
7196 old_dir->i_ctime = old_dir->i_mtime = ctime;
7197 new_dir->i_ctime = new_dir->i_mtime = ctime;
7198 old_inode->i_ctime = ctime;
7199
7200 if (old_dentry->d_parent != new_dentry->d_parent)
7201 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7202
7203 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7204 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7205 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7206 old_dentry->d_name.name,
7207 old_dentry->d_name.len);
7208 } else {
7209 ret = __btrfs_unlink_inode(trans, root, old_dir,
7210 old_dentry->d_inode,
7211 old_dentry->d_name.name,
7212 old_dentry->d_name.len);
7213 if (!ret)
7214 ret = btrfs_update_inode(trans, root, old_inode);
7215 }
7216 if (ret) {
7217 btrfs_abort_transaction(trans, root, ret);
7218 goto out_fail;
7219 }
7220
7221 if (new_inode) {
7222 new_inode->i_ctime = CURRENT_TIME;
7223 if (unlikely(btrfs_ino(new_inode) ==
7224 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7225 root_objectid = BTRFS_I(new_inode)->location.objectid;
7226 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7227 root_objectid,
7228 new_dentry->d_name.name,
7229 new_dentry->d_name.len);
7230 BUG_ON(new_inode->i_nlink == 0);
7231 } else {
7232 ret = btrfs_unlink_inode(trans, dest, new_dir,
7233 new_dentry->d_inode,
7234 new_dentry->d_name.name,
7235 new_dentry->d_name.len);
7236 }
7237 if (!ret && new_inode->i_nlink == 0) {
7238 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7239 BUG_ON(ret);
7240 }
7241 if (ret) {
7242 btrfs_abort_transaction(trans, root, ret);
7243 goto out_fail;
7244 }
7245 }
7246
7247 fixup_inode_flags(new_dir, old_inode);
7248
7249 ret = btrfs_add_link(trans, new_dir, old_inode,
7250 new_dentry->d_name.name,
7251 new_dentry->d_name.len, 0, index);
7252 if (ret) {
7253 btrfs_abort_transaction(trans, root, ret);
7254 goto out_fail;
7255 }
7256
7257 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7258 struct dentry *parent = new_dentry->d_parent;
7259 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7260 btrfs_end_log_trans(root);
7261 }
7262 out_fail:
7263 btrfs_end_transaction(trans, root);
7264 out_notrans:
7265 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7266 up_read(&root->fs_info->subvol_sem);
7267
7268 return ret;
7269 }
7270
7271 /*
7272 * some fairly slow code that needs optimization. This walks the list
7273 * of all the inodes with pending delalloc and forces them to disk.
7274 */
7275 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7276 {
7277 struct list_head *head = &root->fs_info->delalloc_inodes;
7278 struct btrfs_inode *binode;
7279 struct inode *inode;
7280
7281 if (root->fs_info->sb->s_flags & MS_RDONLY)
7282 return -EROFS;
7283
7284 spin_lock(&root->fs_info->delalloc_lock);
7285 while (!list_empty(head)) {
7286 binode = list_entry(head->next, struct btrfs_inode,
7287 delalloc_inodes);
7288 inode = igrab(&binode->vfs_inode);
7289 if (!inode)
7290 list_del_init(&binode->delalloc_inodes);
7291 spin_unlock(&root->fs_info->delalloc_lock);
7292 if (inode) {
7293 filemap_flush(inode->i_mapping);
7294 if (delay_iput)
7295 btrfs_add_delayed_iput(inode);
7296 else
7297 iput(inode);
7298 }
7299 cond_resched();
7300 spin_lock(&root->fs_info->delalloc_lock);
7301 }
7302 spin_unlock(&root->fs_info->delalloc_lock);
7303
7304 /* the filemap_flush will queue IO into the worker threads, but
7305 * we have to make sure the IO is actually started and that
7306 * ordered extents get created before we return
7307 */
7308 atomic_inc(&root->fs_info->async_submit_draining);
7309 while (atomic_read(&root->fs_info->nr_async_submits) ||
7310 atomic_read(&root->fs_info->async_delalloc_pages)) {
7311 wait_event(root->fs_info->async_submit_wait,
7312 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7313 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7314 }
7315 atomic_dec(&root->fs_info->async_submit_draining);
7316 return 0;
7317 }
7318
7319 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7320 const char *symname)
7321 {
7322 struct btrfs_trans_handle *trans;
7323 struct btrfs_root *root = BTRFS_I(dir)->root;
7324 struct btrfs_path *path;
7325 struct btrfs_key key;
7326 struct inode *inode = NULL;
7327 int err;
7328 int drop_inode = 0;
7329 u64 objectid;
7330 u64 index = 0 ;
7331 int name_len;
7332 int datasize;
7333 unsigned long ptr;
7334 struct btrfs_file_extent_item *ei;
7335 struct extent_buffer *leaf;
7336 unsigned long nr = 0;
7337
7338 name_len = strlen(symname) + 1;
7339 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7340 return -ENAMETOOLONG;
7341
7342 /*
7343 * 2 items for inode item and ref
7344 * 2 items for dir items
7345 * 1 item for xattr if selinux is on
7346 */
7347 trans = btrfs_start_transaction(root, 5);
7348 if (IS_ERR(trans))
7349 return PTR_ERR(trans);
7350
7351 err = btrfs_find_free_ino(root, &objectid);
7352 if (err)
7353 goto out_unlock;
7354
7355 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7356 dentry->d_name.len, btrfs_ino(dir), objectid,
7357 S_IFLNK|S_IRWXUGO, &index);
7358 if (IS_ERR(inode)) {
7359 err = PTR_ERR(inode);
7360 goto out_unlock;
7361 }
7362
7363 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7364 if (err) {
7365 drop_inode = 1;
7366 goto out_unlock;
7367 }
7368
7369 /*
7370 * If the active LSM wants to access the inode during
7371 * d_instantiate it needs these. Smack checks to see
7372 * if the filesystem supports xattrs by looking at the
7373 * ops vector.
7374 */
7375 inode->i_fop = &btrfs_file_operations;
7376 inode->i_op = &btrfs_file_inode_operations;
7377
7378 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7379 if (err)
7380 drop_inode = 1;
7381 else {
7382 inode->i_mapping->a_ops = &btrfs_aops;
7383 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7384 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7385 }
7386 if (drop_inode)
7387 goto out_unlock;
7388
7389 path = btrfs_alloc_path();
7390 if (!path) {
7391 err = -ENOMEM;
7392 drop_inode = 1;
7393 goto out_unlock;
7394 }
7395 key.objectid = btrfs_ino(inode);
7396 key.offset = 0;
7397 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7398 datasize = btrfs_file_extent_calc_inline_size(name_len);
7399 err = btrfs_insert_empty_item(trans, root, path, &key,
7400 datasize);
7401 if (err) {
7402 drop_inode = 1;
7403 btrfs_free_path(path);
7404 goto out_unlock;
7405 }
7406 leaf = path->nodes[0];
7407 ei = btrfs_item_ptr(leaf, path->slots[0],
7408 struct btrfs_file_extent_item);
7409 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7410 btrfs_set_file_extent_type(leaf, ei,
7411 BTRFS_FILE_EXTENT_INLINE);
7412 btrfs_set_file_extent_encryption(leaf, ei, 0);
7413 btrfs_set_file_extent_compression(leaf, ei, 0);
7414 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7415 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7416
7417 ptr = btrfs_file_extent_inline_start(ei);
7418 write_extent_buffer(leaf, symname, ptr, name_len);
7419 btrfs_mark_buffer_dirty(leaf);
7420 btrfs_free_path(path);
7421
7422 inode->i_op = &btrfs_symlink_inode_operations;
7423 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7424 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7425 inode_set_bytes(inode, name_len);
7426 btrfs_i_size_write(inode, name_len - 1);
7427 err = btrfs_update_inode(trans, root, inode);
7428 if (err)
7429 drop_inode = 1;
7430
7431 out_unlock:
7432 if (!err)
7433 d_instantiate(dentry, inode);
7434 nr = trans->blocks_used;
7435 btrfs_end_transaction(trans, root);
7436 if (drop_inode) {
7437 inode_dec_link_count(inode);
7438 iput(inode);
7439 }
7440 btrfs_btree_balance_dirty(root, nr);
7441 return err;
7442 }
7443
7444 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7445 u64 start, u64 num_bytes, u64 min_size,
7446 loff_t actual_len, u64 *alloc_hint,
7447 struct btrfs_trans_handle *trans)
7448 {
7449 struct btrfs_root *root = BTRFS_I(inode)->root;
7450 struct btrfs_key ins;
7451 u64 cur_offset = start;
7452 u64 i_size;
7453 int ret = 0;
7454 bool own_trans = true;
7455
7456 if (trans)
7457 own_trans = false;
7458 while (num_bytes > 0) {
7459 if (own_trans) {
7460 trans = btrfs_start_transaction(root, 3);
7461 if (IS_ERR(trans)) {
7462 ret = PTR_ERR(trans);
7463 break;
7464 }
7465 }
7466
7467 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7468 0, *alloc_hint, &ins, 1);
7469 if (ret) {
7470 if (own_trans)
7471 btrfs_end_transaction(trans, root);
7472 break;
7473 }
7474
7475 ret = insert_reserved_file_extent(trans, inode,
7476 cur_offset, ins.objectid,
7477 ins.offset, ins.offset,
7478 ins.offset, 0, 0, 0,
7479 BTRFS_FILE_EXTENT_PREALLOC);
7480 if (ret) {
7481 btrfs_abort_transaction(trans, root, ret);
7482 if (own_trans)
7483 btrfs_end_transaction(trans, root);
7484 break;
7485 }
7486 btrfs_drop_extent_cache(inode, cur_offset,
7487 cur_offset + ins.offset -1, 0);
7488
7489 num_bytes -= ins.offset;
7490 cur_offset += ins.offset;
7491 *alloc_hint = ins.objectid + ins.offset;
7492
7493 inode->i_ctime = CURRENT_TIME;
7494 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7495 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7496 (actual_len > inode->i_size) &&
7497 (cur_offset > inode->i_size)) {
7498 if (cur_offset > actual_len)
7499 i_size = actual_len;
7500 else
7501 i_size = cur_offset;
7502 i_size_write(inode, i_size);
7503 btrfs_ordered_update_i_size(inode, i_size, NULL);
7504 }
7505
7506 ret = btrfs_update_inode(trans, root, inode);
7507
7508 if (ret) {
7509 btrfs_abort_transaction(trans, root, ret);
7510 if (own_trans)
7511 btrfs_end_transaction(trans, root);
7512 break;
7513 }
7514
7515 if (own_trans)
7516 btrfs_end_transaction(trans, root);
7517 }
7518 return ret;
7519 }
7520
7521 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7522 u64 start, u64 num_bytes, u64 min_size,
7523 loff_t actual_len, u64 *alloc_hint)
7524 {
7525 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7526 min_size, actual_len, alloc_hint,
7527 NULL);
7528 }
7529
7530 int btrfs_prealloc_file_range_trans(struct inode *inode,
7531 struct btrfs_trans_handle *trans, int mode,
7532 u64 start, u64 num_bytes, u64 min_size,
7533 loff_t actual_len, u64 *alloc_hint)
7534 {
7535 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7536 min_size, actual_len, alloc_hint, trans);
7537 }
7538
7539 static int btrfs_set_page_dirty(struct page *page)
7540 {
7541 return __set_page_dirty_nobuffers(page);
7542 }
7543
7544 static int btrfs_permission(struct inode *inode, int mask)
7545 {
7546 struct btrfs_root *root = BTRFS_I(inode)->root;
7547 umode_t mode = inode->i_mode;
7548
7549 if (mask & MAY_WRITE &&
7550 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7551 if (btrfs_root_readonly(root))
7552 return -EROFS;
7553 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7554 return -EACCES;
7555 }
7556 return generic_permission(inode, mask);
7557 }
7558
7559 static const struct inode_operations btrfs_dir_inode_operations = {
7560 .getattr = btrfs_getattr,
7561 .lookup = btrfs_lookup,
7562 .create = btrfs_create,
7563 .unlink = btrfs_unlink,
7564 .link = btrfs_link,
7565 .mkdir = btrfs_mkdir,
7566 .rmdir = btrfs_rmdir,
7567 .rename = btrfs_rename,
7568 .symlink = btrfs_symlink,
7569 .setattr = btrfs_setattr,
7570 .mknod = btrfs_mknod,
7571 .setxattr = btrfs_setxattr,
7572 .getxattr = btrfs_getxattr,
7573 .listxattr = btrfs_listxattr,
7574 .removexattr = btrfs_removexattr,
7575 .permission = btrfs_permission,
7576 .get_acl = btrfs_get_acl,
7577 };
7578 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7579 .lookup = btrfs_lookup,
7580 .permission = btrfs_permission,
7581 .get_acl = btrfs_get_acl,
7582 };
7583
7584 static const struct file_operations btrfs_dir_file_operations = {
7585 .llseek = generic_file_llseek,
7586 .read = generic_read_dir,
7587 .readdir = btrfs_real_readdir,
7588 .unlocked_ioctl = btrfs_ioctl,
7589 #ifdef CONFIG_COMPAT
7590 .compat_ioctl = btrfs_ioctl,
7591 #endif
7592 .release = btrfs_release_file,
7593 .fsync = btrfs_sync_file,
7594 };
7595
7596 static struct extent_io_ops btrfs_extent_io_ops = {
7597 .fill_delalloc = run_delalloc_range,
7598 .submit_bio_hook = btrfs_submit_bio_hook,
7599 .merge_bio_hook = btrfs_merge_bio_hook,
7600 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7601 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7602 .writepage_start_hook = btrfs_writepage_start_hook,
7603 .set_bit_hook = btrfs_set_bit_hook,
7604 .clear_bit_hook = btrfs_clear_bit_hook,
7605 .merge_extent_hook = btrfs_merge_extent_hook,
7606 .split_extent_hook = btrfs_split_extent_hook,
7607 };
7608
7609 /*
7610 * btrfs doesn't support the bmap operation because swapfiles
7611 * use bmap to make a mapping of extents in the file. They assume
7612 * these extents won't change over the life of the file and they
7613 * use the bmap result to do IO directly to the drive.
7614 *
7615 * the btrfs bmap call would return logical addresses that aren't
7616 * suitable for IO and they also will change frequently as COW
7617 * operations happen. So, swapfile + btrfs == corruption.
7618 *
7619 * For now we're avoiding this by dropping bmap.
7620 */
7621 static const struct address_space_operations btrfs_aops = {
7622 .readpage = btrfs_readpage,
7623 .writepage = btrfs_writepage,
7624 .writepages = btrfs_writepages,
7625 .readpages = btrfs_readpages,
7626 .direct_IO = btrfs_direct_IO,
7627 .invalidatepage = btrfs_invalidatepage,
7628 .releasepage = btrfs_releasepage,
7629 .set_page_dirty = btrfs_set_page_dirty,
7630 .error_remove_page = generic_error_remove_page,
7631 };
7632
7633 static const struct address_space_operations btrfs_symlink_aops = {
7634 .readpage = btrfs_readpage,
7635 .writepage = btrfs_writepage,
7636 .invalidatepage = btrfs_invalidatepage,
7637 .releasepage = btrfs_releasepage,
7638 };
7639
7640 static const struct inode_operations btrfs_file_inode_operations = {
7641 .getattr = btrfs_getattr,
7642 .setattr = btrfs_setattr,
7643 .setxattr = btrfs_setxattr,
7644 .getxattr = btrfs_getxattr,
7645 .listxattr = btrfs_listxattr,
7646 .removexattr = btrfs_removexattr,
7647 .permission = btrfs_permission,
7648 .fiemap = btrfs_fiemap,
7649 .get_acl = btrfs_get_acl,
7650 };
7651 static const struct inode_operations btrfs_special_inode_operations = {
7652 .getattr = btrfs_getattr,
7653 .setattr = btrfs_setattr,
7654 .permission = btrfs_permission,
7655 .setxattr = btrfs_setxattr,
7656 .getxattr = btrfs_getxattr,
7657 .listxattr = btrfs_listxattr,
7658 .removexattr = btrfs_removexattr,
7659 .get_acl = btrfs_get_acl,
7660 };
7661 static const struct inode_operations btrfs_symlink_inode_operations = {
7662 .readlink = generic_readlink,
7663 .follow_link = page_follow_link_light,
7664 .put_link = page_put_link,
7665 .getattr = btrfs_getattr,
7666 .setattr = btrfs_setattr,
7667 .permission = btrfs_permission,
7668 .setxattr = btrfs_setxattr,
7669 .getxattr = btrfs_getxattr,
7670 .listxattr = btrfs_listxattr,
7671 .removexattr = btrfs_removexattr,
7672 .get_acl = btrfs_get_acl,
7673 };
7674
7675 const struct dentry_operations btrfs_dentry_operations = {
7676 .d_delete = btrfs_dentry_delete,
7677 .d_release = btrfs_dentry_release,
7678 };